Explains how to use Oracle BI Applications Configuration Manager and Functional Setup Manager to perform configuration tasks for the Oracle BI Applications Offerings that you have installed, including functional ETL configuration.
Contents

Preface .. xv
Audience ... xv
Documentation Accessibility ... xv
Related Documentation ... xv
Conventions .. xv

What's New in This Release ... xvii
New Features in Release 11.1.1.8.0 .. xvii

1 Overview

Part I Functional Configuration for Oracle Business Intelligence Applications

2 Overview of Functional Configuration in Oracle BI Applications

2.1 Terminology.. 2-1
2.2 Overview of Oracle BI Applications Configuration Manager and Functional Setup Manager... 2-2
2.2.1 What is Oracle BI Applications Configuration Manager? ... 2-2
2.2.2 What is Functional Setup Manager? ... 2-4
2.3 Getting Started With Oracle BI Applications Configuration Manager.. 2-5
2.3.1 About Getting Help... 2-6
2.3.2 About Setup Data Migration in Oracle BI Applications Configuration Manager 2-6
2.4 About Users and Roles in Oracle BI Applications Configuration Manager............................... 2-6
2.5 About the Main Task Areas in Oracle BI Applications Configuration Manager 2-7
2.6 About Functional Setup Tasks in FSM.. 2-7
2.7 About Setup Objects in Oracle BI Applications Configuration Manager.. 2-8
2.8 About the Work Area in Oracle BI Applications Configuration Manager...................................... 2-8
2.8.1 About the Work Area .. 2-8
2.8.2 About the Menu Options .. 2-10
2.8.3 About the Icons .. 2-10
2.8.4 About sorting items .. 2-12
2.8.5 How to use Query By Example ... 2-13
2.9 About Accessibility Features In Oracle BI Applications Configuration Manager........ 2-13
3 Performing Functional Configuration

3.1 What is Functional Configuration? ... 3-1
3.1.1 About Task Lists and Tasks for Oracle Business Intelligence Applications Offerings... 3-1
3.1.2 About Administrator Passwords... 3-1
3.2 Roadmap for Functional Configuration .. 3-2
3.3 Performing Functional Configuration ... 3-4
3.3.1 Enabling Offerings in FSM ... 3-4
3.3.2 Creating an Implementation Project and Select Offerings 3-5
3.3.3 Performing Functional Configuration Tasks ... 3-7
3.3.4 Additional Steps for Managing Projects in FSM .. 3-7
3.3.4.1 About Performing Functional Tasks ... 3-8
3.3.4.2 How to Assign Tasks to Functional Developers 3-8
3.3.4.3 How to Perform Functional Tasks using the Administrator role 3-9
3.3.4.4 How to Perform Functional Tasks using the Functional Developer role ... 3-9
3.3.4.5 How to Monitor Implementation Projects ... 3-10
3.3.4.6 How to Monitor Functional Setup Tasks .. 3-10
3.3.4.7 About Completing Tasks in the Common Areas and Dimensions Configurations Task List ... 3-11

4 Administering and Maintaining Functional Configuration Data

4.1 About Maintaining and Administering Functional Configuration Data 4-1
4.2 Roadmap for Setup Data Maintenance and Administration.............................. 4-2
4.3 About Functional Configuration Data... 4-4
4.4 About Working With Domains and Domain Mappings 4-5
4.4.1 About Domain Mappings and Domain Member Mappings 4-6
4.4.1.1 About Regular Domains and Band Domains .. 4-7
4.4.2 About Source Domains .. 4-7
4.4.3 About Warehouse Domains .. 4-8
4.4.4 About Warehouse Domain Hierarchies ... 4-9
4.4.5 About Setting Up Domain Member Mappings ... 4-10
4.4.5.1 How to edit a Domain Member Mapping .. 4-10
4.4.5.2 How to add a Range Member Mapping ... 4-11
4.4.5.3 How to add a Target Domain Member ... 4-12
4.4.5.4 How to Localize a New Domain Member ... 4-14
4.4.5.5 How to Add String Localizations for Oracle BI Repository Metadata 4-15
4.4.5.6 How to use Sync to Source to synchronize a Target Domain with a Source Domain ... 4-17
4.4.5.7 How to use Batch Edit to update multiple Target Domain Member Values ... 4-19
4.4.6 How to modify a Warehouse Domain Hierarchy .. 4-19
4.4.7 Why are some domains non-extensible? ... 4-20
4.4.8 How to Configure Externally Conformed Domains 4-20
4.5 About Working With Data Load Parameters .. 4-22
4.5.1 Key points about working with Data Load Parameters 4-22
4.5.2 About editing Data Load Parameters .. 4-24
4.5.3 About Editing Global Data Load Parameters .. 4-24
4.5.4 About Editing Application Specific Parameter Values 4-25
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>How to Configure Self-Service Timecard Attributes to Business Object Natural Keys</td>
<td>B-16</td>
</tr>
<tr>
<td>How to Make Corrections to the Group Account Number Configuration for PeopleSoft</td>
<td>B-16</td>
</tr>
<tr>
<td>Configure Data Load Parameter for JD Edwards EnterpriseOne Rate Type</td>
<td>B-18</td>
</tr>
<tr>
<td>How to Add Dates to the Order Cycle Time Table for Post-Load Processing</td>
<td>B-18</td>
</tr>
<tr>
<td>How to Set Up Group Account Numbers for E-Business Suite</td>
<td>B-18</td>
</tr>
<tr>
<td>Overview of Mapping Oracle GL Accounts to Group Account Numbers</td>
<td>B-19</td>
</tr>
<tr>
<td>How to Map Oracle GL Account Numbers to Group Account Numbers</td>
<td>B-21</td>
</tr>
<tr>
<td>Example of Adding Group Account Number Metrics to the Oracle BI Repository</td>
<td>B-22</td>
</tr>
<tr>
<td>How to Set Up Group Account Numbers for Peoplesoft</td>
<td>B-24</td>
</tr>
<tr>
<td>Overview of Mapping GL Accounts to Group Account Numbers</td>
<td>B-24</td>
</tr>
<tr>
<td>How to Map GL Account Numbers to Group Account Numbers</td>
<td>B-26</td>
</tr>
<tr>
<td>How to Configure GL Account and GL Segments for E-Business Suite</td>
<td>B-27</td>
</tr>
<tr>
<td>Overview</td>
<td>B-28</td>
</tr>
<tr>
<td>Example of Data Configuration for a Chart of Accounts</td>
<td>B-28</td>
</tr>
<tr>
<td>How to Set Up the GL Segment Configuration File</td>
<td>B-28</td>
</tr>
<tr>
<td>How to Configure GL Segments and Hierarchies Using Value Set Definitions</td>
<td>B-31</td>
</tr>
<tr>
<td>How to Configure GL Account and GL Segments for Oracle PeopleSoft</td>
<td>B-35</td>
</tr>
<tr>
<td>How to Make Corrections to the Group Account Number Configuration for E-Business Suite</td>
<td>B-37</td>
</tr>
<tr>
<td>How to Configure Number of Days based Metrics for PeopleSoft</td>
<td>B-38</td>
</tr>
<tr>
<td>How to Update Dashboard Pages with PeopleSoft Prompts</td>
<td>B-39</td>
</tr>
<tr>
<td>How to Configure Original Job Requisition Status</td>
<td>B-41</td>
</tr>
<tr>
<td>How to Configure the Asset Category Dimension for E-Business Suite</td>
<td>B-43</td>
</tr>
<tr>
<td>How to Configure the Customer Costs Lines and Product Costs Lines Tables</td>
<td>B-44</td>
</tr>
<tr>
<td>About the Customer Costs Lines and Product Costs Lines Tables for Financial Profitability Analytics</td>
<td>B-44</td>
</tr>
<tr>
<td>How to Configure the Customer Costs Lines and Product Costs Lines Tables for Financial Profitability Analytics</td>
<td>B-46</td>
</tr>
<tr>
<td>How to Configure Budgets for Oracle General Ledger Analytics</td>
<td>B-46</td>
</tr>
<tr>
<td>About Configuring Universal Source Files</td>
<td>B-47</td>
</tr>
<tr>
<td>How to Import Budget Data into Oracle Business Analytics Warehouse Through the Universal Adapter</td>
<td>B-50</td>
</tr>
<tr>
<td>How to Set Up Workforce Frozen Snapshots</td>
<td>B-51</td>
</tr>
<tr>
<td>How to Use Workforce Deployment Subject Area</td>
<td>B-52</td>
</tr>
<tr>
<td>How to Retrieve Information Stored in Flexfield Columns</td>
<td>B-53</td>
</tr>
<tr>
<td>How to Add Payroll Balances to BI Payroll Balance Group</td>
<td>B-55</td>
</tr>
<tr>
<td>Steps for Fusion</td>
<td>B-55</td>
</tr>
<tr>
<td>Steps for PeopleSoft Global Payroll</td>
<td>B-56</td>
</tr>
<tr>
<td>Steps for PeopleSoft North America Payroll</td>
<td>B-58</td>
</tr>
<tr>
<td>Steps for E-Business Suite</td>
<td>B-59</td>
</tr>
<tr>
<td>How to Configure Band Dimensions</td>
<td>B-59</td>
</tr>
<tr>
<td>How to control HR Future-Data Transaction Data Visibility</td>
<td>B-64</td>
</tr>
<tr>
<td>How To Configure Quarters for a Fiscal Time Dimensions</td>
<td>B-66</td>
</tr>
<tr>
<td>How to Map GL Accounts to Group Account Numbers for JD Edwards EnterpriseOne</td>
<td>B-67</td>
</tr>
</tbody>
</table>
B.2.60 How to Perform RPD Modifications for Cost and Revenue Time Grain Changes
B.2.60.1 Setting the Time Grain Parameters in FSM ... B-119
B.2.60.2 Changing the Time Grain of the Cost Aggregate table to Fiscal/Project/
Enterprise Period .. B-119
B.2.60.3 Changing the Time Grain of the Revenue Aggregate table to Fiscal/Project/
Enterprise Period .. B-126
B.2.60.4 Changing the Time Grain of the Cost Aggregate table to Fiscal/Project/
Enterprise Quarter .. B-132
B.2.60.5 Changing the Time Grain of the Revenue Aggregate table to Fiscal/Project/
Enterprise Quarter ... B-135
B.2.60.6 Changing the Time Grain of the Cost Aggregate table to Fiscal/Project/
Enterprise Year ... B-138
B.2.60.7 Changing the Time grain of the Revenue Aggregate table to Fiscal/Project/
Enterprise Year ... B-140
B.2.61 How to configure E-Business Suite Accrual Extract Mode B-143
B.2.62 How to Configure GL Account Hierarchies using FSG definitions for E-Business
Suite .. B-145
B.2.63 How to Configure Domains and Member Mappings for Employment
Dimension ... B-150
B.2.64 How to Configure Projects Costing Burden Cost for PeopleSoft B-152
B.2.64.1 Identifying Project Cost Burden Costs based on Analysis Type B-152
B.2.64.2 Identifying Project Cost Burden Costs based on a Source Type, Category, and
Subcategory Combination of Values .. B-153
B.2.65 How to Configure Project Commitment Fact for EBS............................ B-155
B.2.66 Manage Domains and Member Mappings for Time and Labor - Reported Time
B.2.66.1 Source Time Entry Unit of Measure Code -> Timecard Unit of Measure
Code ... B-156
B.2.66.2 Source TRC Type Code-> Source Unit Of Measure-> Timecard Unit of
Measure Code .. B-156
B.2.66.3 Source Timecard Punch Type Code-> Timecard Punch Type Code B-156
B.2.66.4 Source Timecard Detail Attributes Descriptive Flexfield -> Timecard Detail
Flex Attributes .. B-158
B.2.67 How to Configure Workforce Revalidate Option.. B-162
B.2.68 How to Manage Domains and Member Mappings for Recruitment Event Type. B-163
B.2.69 How to Configure Project Commitment Fact for PeopleSoft................... B-174
B.2.70 How to Set Up RPD For Budgetary Control For PeopleSoft................... B-174
B.2.71 How to Configure Project Budget Fact for PeopleSoft............................. B-175
B.2.72 How to Configure Financial Analytics CSV Files for JD Edwards
EnterpriseOne .. B-179
B.2.72.1 How to Configure the file_lkp_fiscal_period_Qtr_Config_jde.csv B-180
B.2.73 How to Configure the Asset Location Dimension for E-Business Suite B-181
B.2.74 How to Configure Project Invoice Fact for E-Business Suite B-182
B.2.75 How to Configure Flat Files For Order Item Fact E-Business Suite B-182
B.2.76 How to Configure Flat Files For Price Segment Dimension For E-Business Suite B-184
B.2.77 How to Configure Flat Files For Price Strategy Dimension For E-Business Suite B-185
B.2.78 How to Configure Flat Files For Price Waterfall Element Dimension For
E-Business Suite ... B-186
B.2.79 How to Configure Flat Files For Quote Item Fact For E-Business Suite
file_quoteitem_fs.csv ... B-187
B.2.80 How to Configure Flat Files For Source Domains in Price Analytics for E-Business Suite
B.2.81 How to Configure Flat Files in Price Analytics for E-Business Suite
B.2.82 How to Configure Flat Files For Source Domains in Price Analytics for Siebel Applications
B.2.82.1 How to Configure Source Domain Member Name Values
B.2.82.2 How To Configure Conformed Domain Members
B.2.82.3 Default Seeded Domain Members
B.2.83 How To Configure Flat Files in Price Analytics for Siebel Applications
B.2.83.1 Configuration Required Before a Full Load for Oracle Price Analytics
B.2.83.1.1 Populating Flat File Data For Siebel Sources
B.2.83.1.2 Populating Flat File Data for Non-Siegel Sources
B.2.83.1.3 Data Standards for Flat Files
B.2.83.2 Price Waterfall Element Sample Data
B.2.83.2.1 Example of an Order for a Simple Product
B.2.83.2.2 Example of an Order for a Configured Product
B.2.84 How to Configure Flat Files For Source Domains in Price Analytics for Universal
B.2.84.1 How to Configure Source Domain Member Name Values
B.2.84.2 How To Configure Conformed Domain Members
B.2.84.3 Default Seeded Domain Members
B.2.85 How to configure UOMs
B.2.86 How to Set Up Default Fiscal Calendars for PeopleSoft
B.2.87 How to Configure Cost Fact In Projects Analytics for EBS
B.2.88 How to configure Project UOM for E-Business Suite
B.2.89 How to Configure Project Retention Fact for PeopleSoft
B.2.89.1 How to enable Retention Fact
B.2.89.2 How to un-map extraneous metric definitions
B.2.90 How to Configure Job Dimension in Projects Analytics for E-Business Suite
B.2.90.1 How to Extend the Project Task Hierarchy Dimension for E-Business Suite
B.2.90.2 How to Configure Project Customer in Projects Analytics for E-Business Suite
B.2.90.3 About Configuring Project Classification Dimension in Projects Analytics for E-Business Suite
B.2.90.4 About Configuring Project Funding Fact for E-Business Suite
B.2.91 How to Configure Projects GL Reconciliation Solution for E-Business Suite
B.2.92 Additional Information About GL Reconciliation in Project Analytics
B.2.92.1 Overview
B.2.92.2 Configuring ETL Parameters
B.2.93 How to Configure Projects GL Reconciliation Manual Journal Entries
B.2.94 How to Define Aging Bucket Ranges in Accounts Payable and Accounts Receivable
B.2.95 Manage Domains and Member Mappings for Timecard Entry Status
B.2.96 Manage Domains and Member Mappings for Payroll Balance Dimension
B.2.97 How to Perform System Sets up and Post Install Tasks for BI Applications
B.2.98 How to Set Up Drill Down in Oracle BI from General Ledger to Subledger
B.2.99 How to Integrate Financial Analytics with Project Analytics
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.2.124.4</td>
<td>How to deploy the additional Custom Category2 and Custom Category3</td>
<td>B-282</td>
</tr>
<tr>
<td>B.2.125</td>
<td>How to Configure Enterprise Calendars</td>
<td>B-283</td>
</tr>
<tr>
<td>B.2.126</td>
<td>How to Assign UNSPSC Codes to Products</td>
<td>B-286</td>
</tr>
<tr>
<td>B.2.127</td>
<td>Configure Global Currencies</td>
<td>B-287</td>
</tr>
<tr>
<td>B.2.129</td>
<td>How to Configure Work Type Dimension in Projects Analytics for E-Business Suite</td>
<td>B-288</td>
</tr>
<tr>
<td>B.2.130</td>
<td>How to Configure PeopleSoft Tree Extract</td>
<td>B-288</td>
</tr>
<tr>
<td>B.2.131</td>
<td>How to Configure Journal Source Domain for JD Edwards EnterpriseOne</td>
<td>B-289</td>
</tr>
<tr>
<td>B.2.132</td>
<td>How To Set Up Peoplesoft HR Talent Management data load parameters</td>
<td>B-291</td>
</tr>
<tr>
<td>B.2.134</td>
<td>How to Configure Ledger Type Parameter for JDE Costing and Inventory Balances</td>
<td>B-291</td>
</tr>
<tr>
<td>B.2.135</td>
<td>How to Set Up Inventory Monthly Balance Snapshot Rebuild</td>
<td>B-293</td>
</tr>
<tr>
<td>B.3</td>
<td>Informational Task Reference - ETL Notes and Overviews</td>
<td>B-293</td>
</tr>
<tr>
<td>B.3.1</td>
<td>Getting Started With Functional Configurations</td>
<td>B-293</td>
</tr>
<tr>
<td>B.3.2</td>
<td>ETL Notes and Additional Information for Oracle Project Analytics</td>
<td>B-293</td>
</tr>
<tr>
<td>B.3.3</td>
<td>ETL Notes and Additional Information for Service Analytics</td>
<td>B-294</td>
</tr>
<tr>
<td>B.3.4</td>
<td>ETL Notes and Additional Information for Oracle Procurement and Spend Analytics</td>
<td>B-294</td>
</tr>
<tr>
<td>B.3.5</td>
<td>ETL Notes and Additional Information for Supply Chain and Order Management Analytics</td>
<td>B-294</td>
</tr>
<tr>
<td>B.3.6</td>
<td>ETL Notes and Additional Information for Project Analytics</td>
<td>B-295</td>
</tr>
<tr>
<td>B.3.7</td>
<td>ETL Notes and Additional Information for Sales Analytics</td>
<td>B-295</td>
</tr>
<tr>
<td>B.3.8</td>
<td>ETL Notes and Additional Information for Product Information Management Analytics</td>
<td>B-297</td>
</tr>
<tr>
<td>B.3.9</td>
<td>ETL Notes and Additional Information for Partner Analytics</td>
<td>B-297</td>
</tr>
<tr>
<td>B.3.10</td>
<td>ETL Notes and Additional Information for Human Resources Analytics</td>
<td>B-298</td>
</tr>
<tr>
<td>B.3.11</td>
<td>ETL Notes and Additional Information for Marketing Analytics</td>
<td>B-299</td>
</tr>
<tr>
<td>B.3.12</td>
<td>ETL Notes and Additional Information for Financial Analytics</td>
<td>B-300</td>
</tr>
<tr>
<td>B.3.13</td>
<td>ETL Notes and Additional Information for Customer Data Management Analytics</td>
<td>B-301</td>
</tr>
<tr>
<td>B.3.14</td>
<td>Overview of Student Information Analytics</td>
<td>B-301</td>
</tr>
<tr>
<td>B.3.14.1</td>
<td>Admissions & Recruiting Overview</td>
<td>B-302</td>
</tr>
<tr>
<td>B.3.14.2</td>
<td>Student Records Overview</td>
<td>B-302</td>
</tr>
<tr>
<td>B.3.14.3</td>
<td>Student Financials Overview</td>
<td>B-303</td>
</tr>
<tr>
<td>B.3.15</td>
<td>Overview of Oracle Human Resources Analytics</td>
<td>B-304</td>
</tr>
<tr>
<td>B.3.16</td>
<td>Overview of Oracle Price Analytics</td>
<td>B-307</td>
</tr>
<tr>
<td>B.3.17</td>
<td>Overview of Service Analytics</td>
<td>B-307</td>
</tr>
<tr>
<td>B.3.18</td>
<td>Overview of Oracle Manufacturing Analytics</td>
<td>B-308</td>
</tr>
<tr>
<td>B.3.19</td>
<td>Overview of Supply Chain and Order Management Analytics</td>
<td>B-309</td>
</tr>
<tr>
<td>B.3.20</td>
<td>Overview of Marketing Analytics</td>
<td>B-310</td>
</tr>
<tr>
<td>B.3.21</td>
<td>Overview of Customer Data Management Analytics</td>
<td>B-311</td>
</tr>
<tr>
<td>B.3.22</td>
<td>Overview of Project Resource Management Analytics for PeopleSoft</td>
<td>B-311</td>
</tr>
<tr>
<td>B.3.22.1</td>
<td>About Project Resource Management Analytics for PeopleSoft and E-Business Suite</td>
<td>B-311</td>
</tr>
<tr>
<td>B.3.22.2</td>
<td>Notes on Project Resource Management Analytics for PeopleSoft</td>
<td>B-313</td>
</tr>
</tbody>
</table>

C Oracle BI Applications Configuration Manager Functional Configuration UI Reference

C.1	Add Warehouse Domain Member/Add Target Domain Member button	C-2
C.2	Add Warehouse Domain Member/Add Target Domain Member dialog	C-2
C.3	Edit Domain Member Mappings dialog	C-2
C.4	Edit Parameter Value dialog (for Data Load Parameters)	C-5
C.5	Edit Parameter Value dialog (for Reporting Parameters)	C-7
C.6	Export Data dialog	C-8
C.7	Export Setup Data dialog	C-9
C.8	Import Data dialog	C-10
C.9	Import Setup Data dialog	C-10
C.10	Manage Data Load Parameters dialog	C-11
C.10.1	Icons on the Data Load Parameters dialog	C-14
C.11	Manage Domain Mappings and Hierarchies: Domain Mappings tab	C-15
C.12	Manage Externally Conformed Domains dialog	C-17
C.13	Manage Source Domains: Source Domains tab	C-17
C.14	Manage Warehouse Domains: Warehouse Domains tab	C-18
C.15	Manage Domain Mappings and Hierarchies: Warehouse Domain Hierarchies tab	C-19
C.16	Manage Group dialog	C-21
C.17	Manage Reporting Parameters: Global/Application Specific tab	C-21
C.18	Oracle BI Applications Configuration Manager Help System	C-22
C.19	Overview Panel for Oracle BI Applications Configuration Manager	C-24
C.20	Search pane	C-24

D Oracle BI Applications Configuration Manager System Setup UI Reference

<p>| D.1 | Create/Edit Dimension Group | D-1 |
| D.2 | Create/Edit Fact Group | D-2 |
| D.3 | Define Business Intelligence Applications Instance: Source System Tab | D-3 |
| D.4 | Define Business Intelligence Applications Instance: Target Warehouse Tab | D-4 |
| D.5 | Define Business Intelligence Applications Instance: Environment Configuration Tab | D-5 |
| D.6 | Edit Business Analytics Warehouse Dialog | D-5 |
| D.7 | Edit Preferred Currency Name Dialog | D-5 |
| D.8 | Edit Source Dialog | D-6 |
| D.8.1 | Edit Source in Configuration Manager | D-6 |
| D.8.2 | Edit Source in Oracle Data Integrator Topology | D-6 |</p>
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>D.8.2.1</td>
<td>Oracle Data Integrator Connection Information</td>
<td>D-6</td>
</tr>
<tr>
<td>D.8.2.2</td>
<td>Provide Context Details</td>
<td>D-7</td>
</tr>
<tr>
<td>D.8.2.3</td>
<td>Provide Connection Details</td>
<td>D-7</td>
</tr>
<tr>
<td>D.8.2.3.1</td>
<td>Technology: Oracle BI (Fusion Applications-only)</td>
<td>D-7</td>
</tr>
<tr>
<td>D.8.2.3.2</td>
<td>Technology: Oracle (non-Fusion Applications)</td>
<td>D-7</td>
</tr>
<tr>
<td>D.8.2.3.3</td>
<td>Technology: File System</td>
<td>D-8</td>
</tr>
<tr>
<td>D.9</td>
<td>Manage BI Applications: BI Application Offerings Tab</td>
<td>D-8</td>
</tr>
<tr>
<td>D.10</td>
<td>Manage BI Applications: BI Application Offerings and Associated Sources Tab</td>
<td>D-9</td>
</tr>
<tr>
<td>D.11</td>
<td>Manage Preferred Currencies</td>
<td>D-9</td>
</tr>
<tr>
<td>D.12</td>
<td>Manage Warehouse Languages</td>
<td>D-9</td>
</tr>
<tr>
<td>D.13</td>
<td>Register Source Dialog</td>
<td>D-10</td>
</tr>
<tr>
<td>D.13.1</td>
<td>Register Source in Configuration Manager</td>
<td>D-10</td>
</tr>
<tr>
<td>D.13.2</td>
<td>Register Source in Oracle Data Integrator Topology</td>
<td>D-11</td>
</tr>
<tr>
<td>D.13.2.1</td>
<td>Oracle Data Integrator Connection Information</td>
<td>D-11</td>
</tr>
<tr>
<td>D.13.2.2</td>
<td>Provide Context Details</td>
<td>D-11</td>
</tr>
<tr>
<td>D.13.2.3</td>
<td>Provide Connection Details</td>
<td>D-11</td>
</tr>
<tr>
<td>D.13.2.3.1</td>
<td>Technology: Oracle BI (Fusion Applications-only)</td>
<td>D-11</td>
</tr>
<tr>
<td>D.13.2.3.2</td>
<td>Technology: Oracle (non-Fusion Applications)</td>
<td>D-12</td>
</tr>
<tr>
<td>D.13.2.3.3</td>
<td>Technology: File System</td>
<td>D-12</td>
</tr>
</tbody>
</table>

Index
Oracle Business Intelligence Applications is comprehensive suite of prebuilt solutions that deliver pervasive intelligence across an organization, empowering users at all levels — from front line operational users to senior management — with the key information they need to maximize effectiveness. Intuitive and role-based, these solutions transform and integrate data from a range of enterprise sources and corporate data warehouses into actionable insight that enables more effective actions, decisions, and processes.

Oracle BI Applications is built on Oracle Business Intelligence Suite Enterprise Edition (Oracle BI EE), a comprehensive set of enterprise business intelligence tools and infrastructure, including a scalable and efficient query and analysis server, an ad-hoc query and analysis tool, interactive dashboards, proactive intelligence and alerts, and an enterprise reporting engine.

Audience

This document is intended for ETL implementors and developers who are responsible for setting up and configuring ETL for Oracle BI Applications.

Documentation Accessibility

Access to Oracle Support

Related Documentation

See the Oracle Business Intelligence Applications documentation library for a list of related Oracle Business Intelligence Applications documents.

Conventions

The following text conventions are used in this document:
<table>
<thead>
<tr>
<th>Convention</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>boldface</td>
<td>Boldface type indicates graphical user interface elements associated with an action, or terms defined in text or the glossary.</td>
</tr>
<tr>
<td>italic</td>
<td>Italic type indicates book titles, emphasis, or placeholder variables for which you supply particular values.</td>
</tr>
<tr>
<td>monospace</td>
<td>Monospace type indicates commands within a paragraph, URLs, code in examples, text that appears on the screen, or text that you enter.</td>
</tr>
</tbody>
</table>
This section describes the new features in Oracle BI Applications Release 11.1.1.8.0 that are documented in Oracle Business Intelligence Applications Configuration Guide.

This section contains the following topics:

- "New Features in Release 11.1.1.8.0"

New Features in Release 11.1.1.8.0

New features include the following:

ODI Support for Fusion Applications
Oracle Fusion Applications source systems are supported.

More Powerful Features in Oracle BI Applications Configuration Manager
For example, you can customize the product hierarchy using Oracle BI Applications Configuration Manager.
This section provides an overview to Oracle Business Intelligence Applications Configuration Guide.

Tip: To get started quickly with Functional Configuration, follow the high-level steps in Section 3.2, "Roadmap for Functional Configuration".

Part I explains how to use Functional Setup Manager (FSM) to perform Functional Configuration for Oracle Business Intelligence Applications, and how to use Oracle BI Applications Configuration Manager to administer and maintain setup data, as follows:

- Before starting Functional Configuration, familiarize yourself with the concepts, tools, and workflows that are explained in Chapter 2, "Overview of Functional Configuration in Oracle BI Applications".
- Configure your Offerings, as described Chapter 3, "Performing Functional Configuration".
- Monitor and maintain your Functional Configuration setup data, as described Chapter 4, "Administering and Maintaining Functional Configuration Data".

Part II includes reference information, and supporting information that is used to provide Help topics for Oracle Business Intelligence Applications Configuration Manager, and Functional Setup Manager (FSM) used with Oracle BI Applications.
Part I

Functional Configuration for Oracle Business Intelligence Applications

Part II covers functional configuration of Offerings for Oracle BI Applications. It contains the following sections:

- Chapter 2, "Overview of Functional Configuration in Oracle BI Applications"
- Chapter 3, "Performing Functional Configuration"
- Chapter 4, "Administering and Maintaining Functional Configuration Data"
Overview of Functional Configuration in Oracle BI Applications

This section includes an overview of how to configure Oracle Business Intelligence Applications.

This chapter contains the following topics:

- **Section 2.1, “Terminology”**
- **Section 2.2, “Overview of Oracle BI Applications Configuration Manager and Functional Setup Manager”**
- **Section 2.3, “Getting Started With Oracle BI Applications Configuration Manager”**
- **Section 2.4, “About Users and Roles in Oracle BI Applications Configuration Manager”**
- **Section 2.5, “About the Main Task Areas in Oracle BI Applications Configuration Manager”**
- **Section 2.6, “About Functional Setup Tasks in FSM”**
- **Section 2.7, “About Setup Objects in Oracle BI Applications Configuration Manager”**
- **Section 2.8, “About the Work Area in Oracle BI Applications Configuration Manager”**
- **Section 2.9, “About Accessibility Features In Oracle BI Applications Configuration Manager”**

2.1 Terminology

This section lists terminology that relates to configuration in Oracle Business Intelligence Applications.

- **Source Instance** - The name given by the Oracle BI Applications Administrator to the transactional system (that is, OLTP) that serves as the source of data for Oracle Business Analytics Warehouse. A Source Instance is registered in the System Setups\Define BI Applications Instance\Source Systems dialog in Oracle BI Applications Configuration Manager.

- **BI Application Offering** - A BI Application product that you have purchased. For example, Oracle Financial Analytics, or Oracle Sales Analytics. An Oracle BI Applications Offering can have one or more Functional Areas.

- **Functional Area** - A component part of an Oracle BI Applications Offering. For example, Workforce Effectiveness, Leave & Accrual, Workforce Development are
Functional Areas in Oracle Human Resources Analytics. A Functional Area is the smallest unit of an Oracle BI Applications Offering that can be implemented.

2.2 Overview of Oracle BI Applications Configuration Manager and Functional Setup Manager

Functional configuration for Oracle Business Intelligence Applications is done using the following tools:

- **Oracle BI Applications Configuration Manager:**
 - Contains the setup objects for Oracle BI Applications.
 - Provides administrative GUIs for setup and configuration.
 - Recommended for ongoing administration and maintenance of functional setups.
 - Quick review of the setup values and for troubleshooting.
 For more detailed information about Oracle BI Applications Configuration Manager, see Section 2.2.1, "What is Oracle BI Applications Configuration Manager?".

- **Functional Setup Manager (FSM) for Oracle BI Applications**
 - Oracle BI Applications Configuration Manager leverages FSM to provide Task based implementation, with guided set of sequenced tasks and dependency management.
 - Provides phased implementations capability.
 - If you are using Oracle Fusion Applications, be aware that FSM for Oracle BI Applications is different from the Oracle Fusion Functional Setup Manager:
 - FSM for Oracle BI Applications includes only the features applicable for Oracle BI Applications functional setup.
 - FSM is launched from Oracle BI Applications Configuration Manager to perform functional configurations.
 - FSM is recommended for initial implementation.
 - FSM invokes Oracle BI Applications Configuration Manager UI for setup tasks.
 For more detailed information about FSM for Oracle BI Applications, see Section 2.2.2, "What is Functional Setup Manager?".

2.2.1 What is Oracle BI Applications Configuration Manager?

Oracle BI Applications Configuration Manager is a Web application for setting up and maintaining an Oracle Business Intelligence Applications environment.
For functional configuration, Oracle BI Applications Configuration Manager works in conjunction with Functional Setup Manager to provide guided Tasks to configure Offerings and Functional Areas. For more information about using FSM in conjunction with Oracle BI Applications Configuration Manager, see Section 3.1, "What is Functional Configuration?".

Oracle BI Applications Configuration Manager enables you to do the following:

- **Launch Functional Setup Manager to configure Offerings and Functional Areas (for example, by specifying Domain Mappings, Data Load Parameters, and Reporting Parameters).**

 Functional Setup Manager provides a list of guided Tasks that enable you to configure Oracle BI Applications Modules and Functional Areas. For example, a Functional Developer might use a Task named 'Configure Initial Extract Date' to set the value of INITIAL_EXTRACT_DATE to '2005-01-01'.

 For more information, see Chapter 3, "Performing Functional Configuration".

- **Monitor and manage setup data, and extend Oracle Business Analytics Warehouse where necessary.**

 For example, a Functional Developer might have set the value of INITIAL_EXTRACT_DATE to '2005-01-01'. If you want to change this value to '2006-01-01', then you might use the Manage Data Load Parameters tab in Oracle BI Applications Configuration Manager to edit the value of this parameter.

 For more information, see Section 4.2, "Roadmap for Setup Data Maintenance and Administration".

- **Monitor and manage Load Plans that you use to perform ETL.**
For more information about performing ETL, click the Help icon on the Manage Load Plans dialog, or refer to Oracle Business Intelligence Applications ETL Guide.

- Migrate configuration data across environments, using the Import and Export options.

 For more information, see Section 4.13, "About Exporting and Importing Setup Data for Oracle BI Applications Configuration Manager".

2.2.2 What is Functional Setup Manager?

Functional Setup Manager (FSM) enables you to manage and perform functional configuration tasks for Offerings. Examples of FSM Tasks are 'Configure Initial Extract Date', and 'Configure Global Currencies'.

FSM is installed and deployed as part of Oracle BI Applications. In FSM, you select the Oracle BI Applications Offering and Functional Areas that you wish to deploy. FSM generates a list of configuration tasks specific to the Offering and Functional Area(s) that were selected. These tasks can be assigned to different functional developers and the status of the Oracle BI Applications implementation project can be monitored in FSM. Setup screens guide functional developers through the performance of each task.

How to launch FSM:

In Oracle BI Applications Configuration Manager, select the Perform Functional Configurations link. When prompted, specify a user name with appropriate privileges for the tasks that you want to perform. For example, to create an Implementation Project and assign Tasks to Functional Developers, connect as a user with 'BI Applications Implementation Manager' privileges. For more information about user-privileges, see Section 2.4, "About Users and Roles in Oracle BI Applications Configuration Manager".
When you launch FSM as a user with the BI Applications Administrator role or the BI Applications Implementation Manager role and open an Implementation Project, you see the Functional Tasks that relate to the Offering being deployed by that Implementation Project.

The example screen shot below shows Functional Tasks for Oracle Financial Analytics.

2.3 Getting Started With Oracle BI Applications Configuration Manager

This section explains how to log into Oracle BI Applications Configuration Manager and how to access the User Assistance, Help, Documentation, and other resources that are available.
2.3.1 About Getting Help

Oracle BI Applications Configuration Manager provides the following Help and User Assistance features:

- **Context-sensitive Help** - Click the Help icon on any dialog to view context-sensitive Help for that dialog. When the context-sensitive Help is displayed, use the Table of Contents, Index, and Search facilities to locate User Assistance on other areas of the product.

 Tip: To maximize the text pane in the Help window, choose **Maximize Reading Pane** from the View menu. Alternatively, use the Collapse Pane arrow to hide the left hand tabs (see the following screenshot), or use the vertical sizing bar (above the Collapse Pane arrow) to reduce the width of the tabs.

- **Inline Help**, such as Mouse-over Tool tips - Hold the cursor over an object to view a tool-tip for that object.

![Manage BI Applications: Warehouse Languages tab](image)

2.3.2 About Setup Data Migration in Oracle BI Applications Configuration Manager

Use the Oracle BI Applications Configuration Manager Import and Export facilities to migrate your setup data across environments (for more information, see Section 4.13, "About Exporting and Importing Setup Data for Oracle BI Applications Configuration Manager").

2.4 About Users and Roles in Oracle BI Applications Configuration Manager

To access Oracle BI Applications Configuration Manager or Functional Setup Manager, you must log in as a user with one of the following Duty Roles:

- **BI Applications Administrator**

 Users with the BI Applications Administrator Duty Role have access to all Oracle BI Applications Configuration Manager UIs and all FSM UIs. For Oracle BI Applications Configuration Manager, only users with this duty role can perform System Setups.

- **BI Applications Developer**

 Users with the BI Applications Functional Developer Duty Role have access to Oracle BI Applications Configuration Manager UIs except for the System Setup screens. In FSM, these users have access to the list of functional setup tasks.
assigned to them, and can execute setup tasks (that is, using the Go to Task option in FSM).

- BI Applications Implementation Manager

Users with the BI Applications Implementation Manager Duty Role have access to the Oracle BI Applications Configuration Manager Overview page and dialogs for the Export and Import of Setup Data. In FSM, these users have access to Configure Offerings and Manage Implementation Projects UIs, but they cannot execute setup tasks (that is, they do not have access to the Go to Task option in FSM).

Setting up users with these Duty Role privileges is performed when Oracle BI Applications is set up.

To find out which user IDs have which Duty Role privileges, use your LDAP tools and Oracle APM to determine which users have the Duty Role privileges BIA_ADMINISTRATOR_DUTY, BIA_IMPLEMENTATION_MANAGER_DUTY, and BIA_FUNCTIONAL_DEVELOPER_DUTY. For more detailed information about security privileges required for Oracle BI Applications components, see Section 2.1.11 'Security Overview of Oracle BI Applications Configuration Manager and Functional Setup Manager' in Oracle Business Intelligence Applications Security Guide.

2.5 About the Main Task Areas in Oracle BI Applications Configuration Manager

Oracle BI Applications Configuration Manager has the following main task areas:

- System Setups - use this area to set up Source Systems, Target Databases, Warehouse Languages and so on.

- Functional Configuration - use the Perform Functional Configurations link to perform Functional Configuration using Oracle Functional Setup Manager.

- Setup Data Maintenance and Administration - use this area to monitor the configuration settings that your Functional Developers have made using Oracle Functional Setup Manager, and make changes where required. For example, a Functional Developer might have used a Task in FSM to set the value of INITIAL_EXTRACT_DATE to '2005-01-01'. If you want to change this value to '2007-01-01', then you might use the Manage Data Load Parameters tab in Oracle BI Applications Configuration Manager to edit the value directly, instead of reassigning the Task in FSM.

- Export and Import Configuration - use this area to backup your setup data and migrate your setup data to a separate environment.

2.6 About Functional Setup Tasks in FSM

There are four types of Functional Setup Tasks in FSM:

- Tasks to configure Data Load Parameters. For example, Example: task Configure Initial Extract Date displays Data Load Parameter INITIAL_EXTRACT_DATE.

- Tasks to manage Domains and Mappings. Example: task Manage Domains and Member Mappings for Employee Dimension displays Domain Maps for the Employee Dimension.

- Tasks to configure Reporting Parameters - Example, task 'Configure Reporting Parameters for Master Organization' displays Reporting Parameter FSCM_MASTER_ORG.
Tasks that provide information. These tasks might be:

- A set of instructions for editing components using tools other than Oracle BI Applications Configuration Manager. For example, to configure the BI Metadata Repository, you use Oracle BI EE Administration Tool. The names of these Tasks are prefixed with 'How To…'.

- Conceptual, overview or supporting information. Example, task 'Overview of Financial Analytics' provides information about Functional Areas in this offering.

2.7 About Setup Objects in Oracle BI Applications Configuration Manager

Oracle BI Applications Configuration Manager data includes the following Setup objects:

- **Data Load Parameters** - used to control the nature of data loaded from the transactional system into the Business Analytics Warehouse. Examples: INITIAL_EXTRACT_DATE, TIME_GRAIN.

- **Domain Mappings and Member Mappings** - used to map a Source column List of Values to a Warehouse column List of Values. Example: Domain Maps for the Employee Dimension: COUNTRY -> W_COUNTRY.

- **Reporting Parameters** - correspond to Dynamic Repository Variables in the RPD and allow these variables to be set using Oracle BI Applications Configuration Manager. Example: FSCM_MASTER_ORG.

2.8 About the Work Area in Oracle BI Applications Configuration Manager

This section explains the work area in Oracle BI Applications Configuration Manager.

2.8.1 About the Work Area

The figure below (Figure 2–3) shows the main Tasks bar and the Functional Configuration work area for Domains and Mappings.

Tip: To set accessibility preferences, click the Accessibility link in the top right hand corner to display the Enable Accessibility Preferences dialog. For example, you might want to display high contrast colors, or use large fonts.
Figure 2–3 Oracle BI Applications Configuration Manager Working Area

Key to figure:

a. Tasks bar, which provides links to Oracle BI Applications Configuration Manager options.
b. Work Panel, which displays the currently selected option.
c. The Perform Functional Configurations option starts FSM.
d. Collapse Tasks Pane. Tip: Use the Collapse Task Pane arrow to hide the Tasks bar and maximize the screen area for displaying the Setup Data pages.
e. Resize bar for the Tasks Pane.
f. Expand/Collapse Contextual Pane arrow (for Data Load Parameters and Reporting Parameters only).

Note: Some pages (for example, the Manage Data Load Parameters page) have an additional Contextual Pane at the right hand side that can be expanded (and resized), or collapsed. The following screenshot shows the Expand/Collapse Pane arrow in the bottom right hand corner of the work area.
2.8.2 About the Menu Options

Oracle BI Applications Configuration Manager uses the following menus and options:

<table>
<thead>
<tr>
<th>Icon or Menu Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actions</td>
<td>Use the Actions menu to display a list of available options for the currently selected object. For example, common actions are Enable, Disable, Add, and Edit.</td>
</tr>
<tr>
<td>Detach</td>
<td>Use the Detach icon to view a table tab in a separate larger pane. For example, use this option to view data in wide columns more easily. To re-attach a separated pane, click Detach again. Note: If you are editing a master-detail table, the Detach option does not detach the master-detail relationship.</td>
</tr>
<tr>
<td>View</td>
<td>Use the View menu to select which columns to view, and re-order columns.</td>
</tr>
</tbody>
</table>

2.8.3 About the Icons

Oracle BI Applications Configuration Manager uses the following icons:

<table>
<thead>
<tr>
<th>Icon or Menu Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Add</td>
<td>Use the Add icon (or + symbol) to add an object. For example, click the Add icon on the Define BI Applications Instance - Source Systems tab to add a new Source System.</td>
</tr>
</tbody>
</table>
Table 2–2 (Cont.) Icons and Menu Options in Oracle BI Applications Configuration

<table>
<thead>
<tr>
<th>Icon or Menu Option</th>
<th>Description</th>
</tr>
</thead>
</table>
| ![Set parameter value before full data load](image) | Set parameter value before full data load
This icon indicates that the value of a Data Load Parameter must be set before you perform a full load of data from the source instance to Oracle Business Analytics Warehouse. |
| ![Edit](image) | Edit
Use the Edit icon (or pencil symbol) to edit the object that is currently selected in the table.
For example, click the Edit icon on the Define BI Applications Instance - Source Systems tab to edit the currently selected Source System details.
Alternatively, click on the value in the Parameter Value column to edit the value. |
| ![Global Parameter](image) | Global Parameter
This icon indicates that the parameter is global (that is, it applies to all (or a majority of) ETL tasks). |
| ![Go To Top](image) | Go To Top
Use this icon to display the all nodes in the domain hierarchy. |
| ![Go Up](image) | Go Up
Use this icon to display the next highest level of nodes in the domain hierarchy. |
| ![Overridable Parameter](image) | Overridable Parameter
This icon indicates an overridable Application Specific parameter.
An Overridable parameter icon indicates that each associated Fact Group or Dimension Group can have a different value. For more information, see Section 4.5.1, "Key points about working with Data Load Parameters". |
| ![Parameter](image) | Parameter
This icon denotes a parameter.
For Data Load Parameters, if displayed in the Data Load Parameters pane (or top list), then this icon indicates an Application Specific parameter.
If displayed in the Group Specific Parameter Values For pane (or lower list), then this icon indicates a Non-Overridable Application Specific parameter, which means that each associated Fact Group or Dimension Group must have the same value. In other words, if you change the value for one Fact Group or Dimension Group, then all Fact Groups and Dimension Groups are updated with that value (if you first confirm at a Warning dialog). |
| ![Show as Top](image) | Show as Top
Use this icon to display only the currently selected parent node and child nodes.
Note: This icon is only active for child nodes. |
| ![Read Only Parameter](image) | Read Only Parameter
This icon indicates that a Data Load Parameter parameter value is read-only, which means that you cannot change that parameter value on the Manage Data Load Parameter dialog. |
About the Work Area in Oracle BI Applications Configuration Manager

2.8.4 About sorting items

To change the sort order of displayed items, click on or mouse-over the field name on which you want to sort, then click the up arrow or down arrow that is displayed in the field label. Sort options are only displayed on mouse-over or when a field label or column is selected. For example, to display domain names in descending alphabetical order, you might click on the Name field label and click the down (or Sort Descending) arrow.

Tip: To see a tool tip for an icon, mouse-over the icon. In the following screenshot, mousing-over the Edit icon displays the tool tip 'Edit Data Source Information'.

![Screenshot of Oracle BI Applications Configuration Manager](image)

Table 2–2 (Cont.) Icons and Menu Options in Oracle BI Applications Configuration

<table>
<thead>
<tr>
<th>Icon or Menu Option</th>
<th>Description</th>
</tr>
</thead>
</table>
| ![Parameter Category](image) | **Parameter Category**
This icon denotes a grouping of related parameters, for example, the Configure Time Dimension category is a group of parameters that are related to calendars.
To expand a Parameter Category, click Expand:
![Expand](image)
To collapse a Parameter Category, click Collapse:
![Collapse](image) |
| ![Query By Example](image) | **Query By Example**
Use the Query By Example icon to toggle the display of the Query By Example fields above each display column.
When Query By Example fields are displayed, enter a value into a Query By Example field and press [Enter] to search for records that match that value. To clear a query, clear the text in the Query By Example field and press [Enter] again.
For example, to search for parameters with names beginning with Global, type Global in the query box above a Name column, then press [Enter]. To clear the query, clear the text 'Global' from the query box above the Name column, then press [Enter].
For more information about how to use Query By Example, see Section 2.8.5, "How to use Query By Example". |
| ![Select Date](image) | **Select Date**
Use the Select Date icon to toggle the Calendar pane, which enables you to select a date. For example, on the Export Setup Data tab, select January 1 2010 to display only files that were exported on that day. |
| ![Start Search](image) | **Start Search**
Use the Start Search icon to display parameters matching the value or wildcard specified in the adjacent text box. |
The following screenshot shows the sort options the **Name** field on the Domain Mappings dialog.

Figure 2–5 Name field with sorting options displayed

![Screenshot showing sorting options in Domain Mappings dialog](image)

2.8.5 How to use Query By Example

Query By Example enables you to locate parameter values using a free-text search. To use Query By Example:

1. If the Query By Example fields are not displayed, click the Query By Example icon (see the following screenshot).

 ![Query By Example icon](image)

 For information about menus, see Section 2.8.3, "About the Icons"

2. Enter a value into each Query By Example field on which you want to search.

 For example, to search for domains with a code beginning with 'AP', type AP into the box above the **Code** column (see the following screenshot).

![Query By Example fields](image)

3. Press [Enter] to start the query.

4. To clear a query, clear the text in the Query By Example field and press [Enter] again.

2.9 About Accessibility Features In Oracle BI Applications Configuration Manager

Oracle BI Applications Configuration Manager provides the following accessibility features:
- Screen Reader - this feature provides accessibility-specific constructs in the User Interface to improve the user-experience with a screen reader. For example, menu items are labelled with 'Menu Item', and tables and list items are provided with a radio button to enable navigation and selection using the Tab and Spacebar keys.

- High contrast colors - this feature provides high-contrast-friendly visual content, in conjunction with the high-contrast mode in the browser and in the operating system.

- Large fonts - this feature provides browser-zoom-friendly content in large text.

If accessibility features are not required, you should disable the above features.

How to enable or disable Accessibility features:

1. Select the **Accessibility** link in the top right hand corner of the screen to display the Enable Accessibility Preferences page

![Enable Accessibility Preferences](image)

2. Use the check boxes to select or de-select the features.

3. Click Apply.
Performing Functional Configuration

This section explains how to perform Functional Configuration for Oracle Business Intelligence Applications

This chapter contains the following topics:

- Section 3.1, "What is Functional Configuration?"
- Section 3.2, "Roadmap for Functional Configuration"
- Section 3.3, "Performing Functional Configuration"

3.1 What is Functional Configuration?

Accurate and successful movement of data from source database to target Business Analytics Warehouse requires several functional setups of BI Applications Offerings to be performed. These functional setups, based on either business requirements or on transactional source system settings or configurations, direct the manner in which relevant data is moved and transformed from source database to target database. Additionally, some functional setups of BI Applications control the manner in which data is displayed. Functional setups are also called functional configurations. For more information, see Section 3.2, "Roadmap for Functional Configuration”.

About Starting ETL After Functional Configuration

After all Tasks have been completed in FSM, use the ETL and Additional Information for <Offering> Informational Task (if available) to determine the Load Plan details that you must specify to perform ETL for that Offering. The ETL and Additional Information for <Offering> Informational Task specifies Subject Areas that you must include in the Load Plan, and other ETL requirements.

3.1.1 About Task Lists and Tasks for Oracle Business Intelligence Applications Offerings

When you navigate to an Implementation Project in Functional Setup Manager (FSM), you see the Tasks related to the Offering specified for that Implementation Project. The example screen shot below shows the Functional Tasks for Oracle Financial Analytics.
The list below provides a high-level roadmap for functionally configuring Oracle Business Intelligence Applications.

3.1.2 About Administrator Passwords

When you launch FSM from Oracle BI Applications Configuration Manager, you log into FSM using the same user name and password that you used to log into Oracle BI Applications Configuration Manager.

3.2 Roadmap for Functional Configuration

The list below provides a high-level roadmap for functionally configuring Oracle Business Intelligence Applications.

For more information about types of Functional Task, see Section 2.6, "About Functional Setup Tasks in FSM".

The following Task Lists and Tasks are available for Oracle Business Intelligence Applications:

- **Getting Started with <Offering>** - Each Offering has this Informational Task, which provides an overview of that Offering, and any other information that you need to begin configuration.

- **ETL and Additional Information for <Offering>** - Each Offering has this Informational Task, which lists Functional Areas, and other useful information about configuring the Offering.

- **System Setup and Post-Install Setup** - This task must be completed once per Oracle BI Applications deployment by the System Administrator before Functional Configuration can begin on any Offering, and includes all mandatory post-installation steps for Oracle BI Applications.

- **Common Areas and Dimensions** - this Task List includes Tasks that are common to multiple Offerings. For more information about completing common Tasks, see Section 3.3.4.7, "About Completing Tasks in the Common Areas and Dimensions Configurations Task List".

- **<Offering specific Tasks>** - for a full list of functional Tasks for each Offering, use the Task List and Task reports that are available in FSM.
1. Configure the Offerings and Modules to deploy. For example, you might deploy Oracle Financial Analytics, with Functional Areas: Accounts Payable, Accounts Receivable, and General Ledger.

 For more information, see Section 3.3.1, "Enabling Offerings in FSM".

2. Create an Implementation Project and select an Offering and one or more Modules. For example, you might create an Implementation Project to configure Oracle Financial Analytics, with Functional Areas: Accounts Payable, Accounts Receivable, and General Ledger.

 For more information, see Section 3.3.2, "Creating an Implementation Project and Select Offerings".

 Important Note: When you create an Implementation Project, FSM generates the Tasks required to configure the specified Offerings. By default, the Tasks are assigned to the BI Administrator user. If required, you can optionally assign Tasks to Functional Developers, who will then perform the Tasks.

3. (Optional) Assign the Tasks for the specified Offerings and BI modules to one or more Functional Developers. For example, you might assign Accounts Payable tasks to user Fred, Accounts Receivable tasks to user Jill, and General Ledger tasks to user Mike. For more information about configuration in large projects, see Section 3.3.3, "Performing Functional Configuration Tasks".

 Alternatively, the Tasks can be performed by the default BI Administrator user.

 For more information, see Section 3.3.4.2, "How to Assign Tasks to Functional Developers".

4. Complete the functional configuration Tasks by clicking the Go to Task link.

 To access the ‘Go To Task’ option in FSM, you must be logged into FSM as a user with either BI Applications Functional Developer Duty privileges or BI Applications Administrator Duty privileges.

 For example, user Fred performs the Tasks related to General Ledger.

 For more information, see Section 3.3.4.4, "How to Perform Functional Tasks using the Functional Developer role" and Section 3.3.4.3, "How to Perform Functional Tasks using the Administrator role".

5. Monitor the progress of the Implementation Project to check that the tasks have been completed. For example, you might use the ‘Parameters by Offerings’ report on the Overview page to monitor the number of parameters with no values specified. In addition, Functional Setup Manager provides charts for monitoring the progress of Implementation Projects.

 For more information, see Section 3.3.4.5, "How to Monitor Implementation Projects".

 When functional Configuration is complete, you are ready to start ETL. For information about performing ETL, see Oracle Business Intelligence Applications ETL Guide.
6. If required, use Oracle BI Applications Configuration Manager to make changes to the setup data. For example, the Implementation Manager might use the Domains and Mappings page in Oracle BI Applications Configuration Manager to add a Domain, or to resolve unmapped domain values.

For more information about making configuration changes in Oracle BI Applications Configuration Manager, see Section 4.9, "How to Locate Unmapped Domain Values in Oracle BI Applications Configuration Manager".

3.3 Performing Functional Configuration

This section explains how to functionally configure Oracle BI Applications Offerings, and contains the following topics:

- Section 3.3.1, "Enabling Offerings in FSM"
- Section 3.3.2, "Creating an Implementation Project and Select Offerings"
- Section 3.3.3, "Performing Functional Configuration Tasks"
- Section 3.3.4, "Additional Steps for Managing Projects in FSM"

3.3.1 Enabling Offerings in FSM

This step is part of Section 3.2, "Roadmap for Functional Configuration".

At the start of a deployment project, you must enable your Offerings and Functional Areas for implementation.

If you do not enable an Offering for implementation, then you will not be able to configure that Offering using FSM.

To enable Offerings and Functional Areas for implementation:

1. From the Tasks bar in Oracle BI Applications Configuration Manager, select the Perform Functional Configurations link to launch Functional Setup Manager.
2. Select the Configure Offerings link in the Tasks bar, to display the Configure Offerings page.
3. For each Offering and Functional Area that you want to deploy, do the following:
 a. Select the Enable for Implementation check box next to the Offering and each Functional Area within that Offering that you want to deploy.

 Note: If the value in the Provisioned column for the selected Offering is No, then you will see the following warning:

 Warning: This offering is not provisioned. Offering implementations cannot
be completed until the offering is provisioned. Do you want to continue?

If you want to continue, you must click Yes.

b. Select any other options that are specific to the Offerings that you have selected.

For example, if you have selected the Financials Offering, then you must use the Subledger Accounting Rules field to specify the appropriate accounting method.

4. Save your changes.

3.3.2 Creating an Implementation Project and Select Offerings

This step is part of Section 3.2, “Roadmap for Functional Configuration”.

You use Functional Setup Manager to create an Implementation Project to configure an Offering and the Modules that you want to deploy. For example, if you have installed Oracle Fusion Applications HCM, you might create an Implementation Project to configure the ETL for Oracle Fusion Applications HCM.

To configure ETL for Oracle Fusion Applications, you must create at least one Implementation Project. When you create an Implementation Project, you select the Offering to deploy as part of that project.

When you create an Implementation Project, FSM generates the Tasks required to configure the specified Offerings. By default, the Tasks are assigned to the BI Administrator user. If required, you can optionally assign Tasks to Functional Developers, who will then perform the Tasks.

To create an Implementation Project:

1. From the Tasks bar in Oracle BI Applications Configuration Manager, select the Perform Functional Configurations link to launch Functional Setup Manager.

2. Display the Manage Implementation Projects page, choose Actions, then Create, to display the Enter Basic Information page.

3. Use the Enter Basic Information page to specify the project details.

 Note: A default Name, Code, and Description are created for you. You can change these values if required. If you change the Code value, you must specify a unique code.

 Tip: Use the Name field to specify a meaningful project name that includes the Offerings being deployed. After selecting an Offering and Functional Area(s) for implementation as part of the IP in the next step, there is no way to go back and see which Offerings and Functional Area(s) had been selected.
Performing Functional Configuration

4. Click Next to display the Select Offerings to Implement page.

Note: Do not click Save and Open Project. Choosing Save and Open Project will create an incomplete Implementation Project, for which you cannot later specify an Offering and Functional Areas. You must click Next to specify an Offering on the next page.

5. Use the Select Offerings to Implement page to specify the Offering and the Functional Areas to include in the project.

For example, if you are configuring Oracle Procurement and Spend Analytics with Payables and Sourcing, you select the Include check boxes next to Procurement, Payables, and Sourcing.

Note: To make Offerings easier to manage, Oracle recommends that you deploy one Offering in an Implementation Project. In other words, if you are deploying three Offerings, then create three Implementation Projects.
6. Save the details.

When you save the project, FSM generates the list of configuration tasks for the Offering and Functional Areas that you included in the Implementation Project.

3.3.3 Performing Functional Configuration Tasks

This step is part of Section 3.2, "Roadmap for Functional Configuration".

When you create an Implementation Project, FSM generates a list of Tasks required to configure the selected Offering and Functional Areas. You can perform the functional configuration of an Offering in two ways:

- In a small deployment, a single person logged in with BI Applications Administrator Duty privileges can configure Offerings using the 'Go to Task' links. For more information, see Section 3.3.4.3, "How to Perform Functional Tasks using the Administrator role".

- In a large deployment, a team of Functional Developers typically configure Offerings, as follows:
 - The Implementation Manager assigns Tasks to Functional Developers, see Section 3.3.4.2, "How to Assign Tasks to Functional Developers"
 - Functional Developers logged in with BI Applications Functional Developer Duty privileges configure the Offerings (for more information, see Section 3.3.4.4, "How to Perform Functional Tasks using the Functional Developer role").

3.3.4 Additional Steps for Managing Projects in FSM

This section describes additional management tasks that you perform using FSM, and contains the following topics:

- Section 3.3.4.1, "About Performing Functional Tasks"
- Section 3.3.4.2, "How to Assign Tasks to Functional Developers"
- Section 3.3.4.3, "How to Perform Functional Tasks using the Administrator role"
3.3.4.1 About Performing Functional Tasks
When you complete a Functional Task in FSM, you update the status of the Task (for example, to 'Completed', or 'Completed with Errors').

When you click 'Go To Task' for an Informational Task, you display a list of steps that you must perform externally to FSM. For example, you might need to use Oracle BI EE Administration Tool to configure a value in the BI metadata repository. When you have completed the steps listed in the Informational Task, you must manually set the status of the Task to 'Completed'.

If a parameter value must be re-set after the initial configuration is completed, then the BI Administrator can alternatively use the Setup Data Maintenance and Administration options in Oracle BI Applications Configuration Manager.

3.3.4.2 How to Assign Tasks to Functional Developers
You assign Tasks to Functional Developers so that large configuration projects can be worked on by multiple people. By default, Tasks are assigned to the BI Applications Administrator user. When you assign a Task to a Functional Developer, that Task is displayed in the Assigned Implementation Tasks tab in FSM when that person is logged into FSM. For more information about configuration in large projects, see Section 3.3.3, "Performing Functional Configuration Tasks".

To assign tasks to Functional Developers:

1. From the Tasks bar in Oracle BI Applications Configuration Manager, select the Perform Functional Configurations link to start FSM.

 You must be logged into Oracle BI Applications Configuration Manager with the Implementation Manager (or Administrator role).

2. Display the Implementation Projects tab, and select the Implementation Project.

3. On the Task Lists and Tasks pane, select one or more Tasks, click Assign Task to display the Assign Tasks page.
4. Use the Assign Tasks page to search for and select appropriate Functional Developers.

When Functional Developers log in and display the Assigned Implementation Tasks tab, they only see the Tasks that have been assigned to them (for more information, see Section 3.3.4.4, "How to Perform Functional Tasks using the Functional Developer role"). When BI Administrators log in and display the Implementation Projects tab, they see all Tasks (for more information, see Section 3.3.4.3, "How to Perform Functional Tasks using the Administrator role").

3.3.4.3 How to Perform Functional Tasks using the Administrator role

In a small deployment project, a single person with BI Applications Administrator Duty privileges might perform the setup and functional configuration tasks for Oracle BI Applications.

When you log into FSM with BI Applications Administrator Duty privileges, you see all Tasks that are included in an Implementation Project.

To perform functional tasks as Administrator:

1. From the Tasks bar in Oracle BI Applications Configuration Manager, select the Perform Functional Configurations link to start FSM.

 You must be logged into Oracle BI Applications Configuration Manager with BI Applications Administrator Duty privileges.

2. Display the Implementation Projects tab, and select the Implementation Project that you created for your Offerings.

3. On the Task Lists and Tasks pane, select a Task, and click Go to Task.

 When you click Go to Task, you display a configuration screen that enables you complete the task.
3.3.4.4 How to Perform Functional Tasks using the Functional Developer role

In a medium to large deployment project, a number of Functional Developers might perform functional tasks for an Offering. When you log into Functional Setup Manager with the Functional Developer role, you only see Tasks that have been assigned to you. You do not see Tasks that have been assigned to other Functional Developers.

To perform functional tasks using the Functional Developer role:

1. Log into Oracle BI Applications Configuration Manager with the Functional Developer role.
2. From the Tasks bar in Oracle BI Applications Configuration Manager, select the Perform Functional Configurations link.
3. Display the Assigned Implementation Tasks tab.
4. On the Task Lists and Tasks pane, select a Task, and click Go to Task.
 When you click Go to Task, you display a configuration screen that enables you to complete the task.

3.3.4.5 How to Monitor Implementation Projects

You use Functional Setup Manager to monitor Implementation Projects to track progress of the implementation.

To monitor Implementation Projects:

1. From the Tasks bar in Oracle BI Applications Configuration Manager, select the Perform Functional Configurations link to start FSM.
 You must be logged into Oracle BI Applications Configuration Manager with an Implementation Manager role.
2. Display the Implementation Projects tab, and select the Implementation Project that you want to deploy.
 For example, the Overview page enables you to monitor progress using pie chart.
3. Use the Implementation Project Details pane to monitor the status of the project.

You can also use Oracle BI Applications Configuration Manager to monitor the progress of a project, maintain setup data, and extend Oracle Business Analytics Warehouse if required. For more information, see Section 4, “Administering and Maintaining Functional Configuration Data”.

3.3.4.6 How to Monitor Functional Setup Tasks

You monitor Functional Tasks that are assigned to you to track your progress in configuring the ETL for the Oracle Fusion Applications that are being deployed.

To monitor Functional Tasks assigned to me:

1. From the Tasks bar in Oracle BI Applications Configuration Manager, select the Perform Functional Configurations link to start FSM.
 You must be logged into Oracle BI Applications Configuration Manager with the Administrator role.
2. Display the Manage Implementation Projects page, and select the Implementation Project that you want to deploy.
3. Use the graphs and charts to monitor the progress on the selected Implementation Project.
3.3.4.7 About Completing Tasks in the Common Areas and Dimensions Configurations Task List

Whichever Offerings you include in an Implementation Project, the Tasks will include a **Common Areas and Dimensions Configurations** Task List, which includes Tasks that are common to multiple Offerings. For example, Configure Global Currencies is a Task that is common to multiple Offerings.

![Task List Example](image)

When a Task is completed, the Task status is set to 'Completed'. Completed Tasks in the **Common Areas and Dimensions Configurations** Task List are set to status 'Completed' across all Offerings. In other words, you only need to perform the Tasks in **Common Areas and Dimension Configurations** Task List once for each Oracle BI Applications deployment.
Administering and Maintaining Functional Configuration Data

This section explains how to use Oracle BI Applications Configuration Manager and Functional Setup Manager to administer and maintain functional configuration data.

This section contains the following topics:

- Section 4.1, "About Maintaining and Administering Functional Configuration Data"
- Section 4.2, "Roadmap for Setup Data Maintenance and Administration"
- Section 4.3, "About Functional Configuration Data"
- Section 4.4, "About Working With Domains and Domain Mappings"
- Section 4.5, "About Working With Data Load Parameters"
- Section 4.6, "About Working With Reporting Parameters"
- Section 4.7, "How to Monitor Setup Data"
- Section 4.8, "How to Change Configuration Values Using Oracle BI Applications Configuration Manager"
- Section 4.9, "How to Locate Unmapped Domain Values in Oracle BI Applications Configuration Manager"
- Section 4.10, "How to Locate Data Load Parameters with no Values in Oracle BI Applications Configuration Manager"
- Section 4.11, "About Adding Target Domain Members"
- Section 4.12, "Viewing Domain Hierarchies"
- Section 4.13, "About Exporting and Importing Setup Data for Oracle BI Applications Configuration Manager"
- Section 4.14, "How to Customize a Product Hierarchy"

4.1 About Maintaining and Administering Functional Configuration Data

During an Oracle BI Applications deployment project, you use Oracle BI Applications Configuration Manager and Functional Setup Manager to manage and make changes to configuration values for Data Load Parameters, Domains and Mappings, and Reporting Parameters.

For Functional Configuration road map information, see Section 4.2, "Roadmap for Setup Data Maintenance and Administration".
4.2 Roadmap for Setup Data Maintenance and Administration

The list below provides a high-level roadmap for Setup Data Maintenance and Administration.

High-Level Setup Data Maintenance and Administration Roadmap

1. During the Functional Configuration stage, you typically use Oracle BI Applications Configuration Manager to monitor the setup data values that have been specified using Tasks in Functional Setup Manager.
 - To monitor Domain Mappings, in Oracle BI Applications Configuration Manager, select the Manage Domains and Domain Mappings link from the Tasks bar to display the select Manage Domains and Domain Mappings dialog.
 - Note: Alternatively, in Functional Setup Manager, select the Go to Task link for a Task that updates a Domain or Domain Member mappings. For example, the Task name ‘Manage Domains and Member Mappings for Employee Dimension’ updates Domain and Domain Member Mappings.
 - To monitor Data Load Parameters, select the Data Load Parameters link from the Tasks bar to display the select Manage Data Load Parameters dialog.
Note: Alternatively, in Functional Setup Manager, select the Go to Task link for a Task that updates a Data Load Parameter value. For example, the Task named 'Configure Data Load Parameter Workforce Adjusted Service Date' updates a Data Load Parameter value.

- To monitor Reporting Parameters, select the Manage Reporting Parameters link from the Tasks bar to display the select Manage Reporting Parameters dialog.

Note: Alternatively, in Functional Setup Manager, select the Go to Task link for a Task that updates a Reporting Parameter. For example, the Task named 'Configure Reporting Parameters for Year Prompting' updates a Reporting Parameter.

Tip: Domain values can be used to define delivered business metrics; therefore, you must review the delivered domain member values and map them to the correct source values.
2. During Functional Configuration of purchased Offerings, you use Functional Setup Manager to monitor the status of Tasks and the setup data values that have been set.

For example, you might use the Implementation Project page in Functional Setup Manager to assess the number of completed tasks.

3. If required, you use Oracle BI Applications Configuration Manager to make changes to the configuration values. For more information, see Section 4.8, "How to Change Configuration Values Using Oracle BI Applications Configuration Manager".

4. If required, you use Oracle BI Applications Configuration Manager to add Domains or Domain Member values. For more information, see Section 4.11, "About Adding Target Domain Members".

5. If required, you use Oracle BI Applications Configuration Manager to configure Externally Conformed Domains. For more information, see Section 4.4.8, "How to Configure Externally Conformed Domains".

4.3 About Functional Configuration Data

Functional Configuration Data for Oracle BI Applications is information about the following:

- Domains and Mappings (for more information, see Section 4.4, "About Working With Domains and Domain Mappings").
- Data Load Parameters (for more information, see Section 4.5, "About Working With Data Load Parameters").
- Reporting Parameters (for more information, see Section 4.6, "About Working With Reporting Parameters").

Functional Configuration Data for Oracle BI Applications is:

- configured using Functional Tasks in Functional Setup Manager.
- monitored and updated using Oracle BI Applications Configuration Manager.
4.4 About Working With Domains and Domain Mappings

Domains are pre-seeded dimensional values that help define business metrics. For example, in Financial Analytics, domains store information about the General Ledger accounts.

Domains are typically located in the source system. If domains are not available in a source system, then they can be sourced from a flat file. For example, domains for Oracle Price Analytics are loaded using the flat file file_domain_member_gs.csv. This file will also be used in order to supply source domains for Universal adaptor.

To manage Domains, you use the following dialogs:

- For general Domains, you use the Manage Domains and Mappings dialog (see the following screenshot).

To display the Manage Domains and Mappings dialog, do one of the following:

- In Functional Setup Manager, select the Go to Task link for a Task that updates a Domain and Domain Member mappings.
- In Oracle BI Applications Configuration Manager, select the Manage Domain Mappings and Hierarchies link in the Tasks pane.

The Manage Domains and Mappings dialog contains the following tabs:

- Domain Mappings - this tab shows how data fields in the Source System map to data fields in Oracle Business Analytics Warehouse (for more information, see Section 4.4.1, "About Domain Mappings and Domain Member Mappings").
- Source domains - this tab shows data fields and Domain Members in the Source System (for more information, see Section 4.4.2, "About Source Domains").
- Warehouse Domains - this tab shows data fields and Warehouse Members in Oracle Business Analytics Warehouse (for more information, see Section 4.4.3, "About Warehouse Domains").
- Warehouse Domain Hierarchies - this tab shows Domains that have been organized into hierarchies to enable the data to be more effectively analyzed (for more information about this tab, see Section 4.4.4, "About Warehouse Domains").
For externally sourced Domains, you use the "Manage Externally Conformed Domains" dialog (see the following screenshot).

For more information about how to configure externally conformed domains, see Section 4.4.8, "How to Configure Externally Conformed Domains".

4.4.1 About Domain Mappings and Domain Member Mappings

Domain Mappings specify how data in a source system is extracted and loaded into Oracle Business Analytics Warehouse. For example, the data in domain Source Group Account (BI_GROUP_ACCOUNT) extracts and loads into the domain Group Account (W_GL_GROUP_ACCOUNT).

The following screenshot shows example domain mappings for Oracle Financial Analytics.
Domain Member Mappings specify how domain member data in a source system is extracted and loaded into domain member data in Oracle Business Analytics Warehouse. For example, in Oracle HR Analytics, domain Gender (W_SEX_MF_CODE) has a source value 'Male' that is mapped to a domain member value 'M' in Oracle Business Analytics Warehouse.

4.4.1.1 About Regular Domains and Band Domains

There are two types of Domain, as follows:

- **Regular Domains**

 Regular Domains have members consisting of a single value. For example, members for a Purchase Order Status domain might have the following members:

 - Cancelled
 - Closed
 - Incomplete

 These single values map to single member values in the target system. For example, Cancelled maps to Cancelled, Closed maps to Closed, and so on.

- **Band Domains**

 Band Domains have members consisting of two values (Range Start, and Range End) that specify a range. For example, an Account Employee Size domain might have the following members:

 - 1, 5000
 - 5001, 10,000
 - 10,001, 1,000,000.

 Each range maps to a single target Domain Member. For example, 1, 5000 maps to Small, 5001, 10,000 maps to Medium, and so on.

4.4.2 About Source Domains

Data fields in a Source System application are referred to as Source Domains. Data fields in Oracle Business Analytics Warehouse are referred to as Warehouse Domains.

The following screenshot shows example source domains for Oracle Financial Analytics.

Note: Source Domains displayed on the Source Domains tab are read-only.
Domain Members are the permitted values for a Source or Warehouse Domain. For example, the Domain Members for MARITAL_STATUS include D for Divorced, M for Married, S for Single, and so on.

Tip: Domain values can be used to define delivered business metrics; therefore, you must review the delivered domain member values and map them to the correct source values.

Domain Mappings specify how entities in a Source System application are loaded into Oracle Business Analytics Warehouse.

4.4.3 About Warehouse Domains

Data fields in Oracle Business Analytics Warehouse are referred to as Warehouse Domains.

The following screenshot shows example warehouse domains for Oracle Financial Analytics.
4.4.4 About Warehouse Domain Hierarchies

Warehouse Domain Hierarchies are Domains that have been organized into hierarchies to enable the data to be more effectively analyzed. For example, in Oracle HR Analytics, you might need to have a workforce event hierarchy: Event Group -> Event Sub-group -> Event Detail.

Note: Domain Hierarchies are displayed in inverted format, that is in the following format:

```
<Child 1>\n
<Child n>\n
<Parent>.
```

For more information, see Section 4.12, "Viewing Domain Hierarchies".

The following screenshot shows example warehouse domain hierarchies for Oracle Financial Analytics.
4.4.5 About Setting Up Domain Member Mappings

Oracle Business Intelligence Applications ships default domain value mappings that map the seeded BI Application domain values to the seeded configuration data in Oracle Enterprise Resource Planning applications.

When you configure your Offerings, you review the default mappings for domain values, and if necessary update them to suit the categories that you want to use to report on your data.

For example, in Oracle HR Analytics, the default domain values for Performance Range might be similar to the following:

0 - 50: PERF_RANGE_1
50 - 60: PERF_RANGE_2
60 - 70: PERF_RANGE_3.

If you want to use these default categories, you do not need to make any changes to these mappings before you start your ETL processes.

If you want to make changes to default mappings, then you use the Domain Mappings tab to implement these changes.

For example, you might want to change the range for PERF RANGE_1 from 0 - 50 to 0 - 100. Or you might want to add a new category named PERF RANGE_4 and assign the range 100 - 500 to the new PERF RANGE_4 category.

4.4.5.1 How to edit a Domain Member Mapping

To edit a Domain Member Mapping:

1. Navigate to the Domain that you want to edit, using the "Manage Domain Mappings and Hierarchies: Domain Mappings tab".

To display the Domain Mapping tab, do one of the following:

- In Oracle BI Applications Configuration Manager, select the Manage Domain Mappings and Hierarchies in the Tasks pane, display the Domain Mappings tab, then select a Domain.
In Functional Setup Manager, select the Go to Task link for a Task that updates a Domain or Domain Member Mappings.

2. Scroll down to the Domain Member Mappings pane.

3. Click the Edit Domain Member Mappings icon to display the "Edit Domain Member Mappings dialog".

4. Use the "Edit Domain Member Mappings dialog" to edit the domain mapping values.

4.4.5.2 How to add a Range Member Mapping

To add a Range Member Mapping:

1. Navigate to the Domain that you want to edit, using the "Manage Domain Mappings and Hierarchies: Domain Mappings tab".

 To display the Domain Mapping tab, do one of the following:
About Working With Domains and Domain Mappings

- In Oracle BI Applications Configuration Manager, select the Manage Domain Mappings and Hierarchies link in the Tasks pane, display the Domain Mappings tab, then select a banded (or ranged) Domain.
- In Functional Setup Manager, select the Go to Task link for a Task that updates a banded or ranged Domain or Domain Member Mappings.

2. Scroll down to the Domain Member Mappings pane.

3. Click the Edit Domain Member Mappings icon to display the "Edit Domain Member Mappings dialog",

4. Click the Add Range Member Mapping (+) icon and specify values in the Range Start, Range End, and Target Domain Member - Code fields.

 Tip: Before you create a new range, you might first want to use the Add Warehouse Member button to first create a target Warehouse Member, which is then available as an option in the Target Domain Member - Code list. For example, you might add a Warehouse Member called 'Greater than 250,000' to map to the range 250,000 to 1,000,000.

4.4.5.3 How to add a Target Domain Member

To add a Target Domain Member:
1. Navigate to the Domain that you want to edit, using the "Manage Domain Mappings and Hierarchies: Domain Mappings tab". To display the Domain Mapping tab, do one of the following:
 - In Oracle BI Applications Configuration Manager, select the Manage Domain Mappings and Hierarchies link in the Tasks pane, display the Domain Mappings tab, then select a Domain.
 - In Functional Setup Manager, select the Go to Task link for a Task that updates a Domain or Domain Member Mappings.

2. Scroll down to the Domain Member Mappings pane.

3. Click the Edit Domain Member Mappings icon to display the "Edit Domain Member Mappings dialog".

4. Click Add Target Domain Member to display the Add Target Domain Member dialog, which enables you to specify a Name, Code, and optional Description.
For example, you might add a Warehouse Member called 'Greater than 250,000' to map to the range 250,000 to 1,000,000.

Note: If the **Add Target Domain Member** option is grayed out or not displayed, then the domain is non-extensible (for more information, see Section 4.4.7, "Why are some domains non-extensible?").

When you click OK to return to the "Edit Domain Member Mappings dialog", you can map a Source Domain to the Target Domain that you just created.

4.4.5.4 How to Localize a New Domain Member

If you added a new domain member and it requires localization, follow the procedure in this section.

To add string localizations for Oracle BI Applications Configuration Manager metadata:

1. Open a database administration tool, and connect to the Oracle Business Analytics Warehouse schema.

2. Query for the table C_DOMAIN_MEMBER_TL and the new domain member record you added in Section 4.4.5.3, "How to add a Target Domain Member."

 You can query for the new domain member record by using the query filter on the columns CREATED_BY and CREATION_DATE.

 Each new domain member record will have 28 rows in the C_DOMAIN_MEMBER_TL table.

3. Update the LANGUAGE_CODE column to match the localized deployment language:

 a. Identify the language code for the localized language using the following SQL:

   ```sql
   SELECT LANGUAGE_CODE, NLS_LANGUAGE, NLS_TERRITORY
   FROM FND_LANGUAGES_B
   WHERE INSTALLED_FLAG IN ('B', 'I');
   ```

 b. Update the domain member name, description, and source language code strings for the localized language using the following SQL.

 In this example, the localized language is Arabic, and the LANGUAGE_CODE is AR.

   ```sql
   UPDATE C_DOMAIN_MEMBER_TL
   SET DOMAIN_MEMBER_NAME = '<Arabic translated string for domain member name>', DOMAIN_MEMBER_DESCR = '<Arabic translated string for domain member description>', SRC_LANGUAGE_CODE = 'AR'
   WHERE DOMAIN_KEY = '<Domain key value for the record you want to update>'
   AND DOMAIN_MEMBER_CODE = '<Domain member code value for the record you want to update>'
   AND LANGUAGE_CODE = 'AR';
   ```
4. Exit the database administration tool.
5. Restart the Oracle WebLogic Server.

4.4.5.5 How to Add String Localizations for Oracle BI Repository Metadata

If you added a new domain member, follow this procedure to add string localizations in the Oracle BI Repository metadata.

To add string localizations for Oracle BI repository metadata:

1. Stop the OPMN services.

 Use the command: opmnctl stopall.

2. Open a database administration tool, and connect to the Oracle Business Analytics Warehouse schema.

3. Identify the strings for the following presentation objects:

 - Subject area
 - Presentation table
 - Presentation hierarchy
 - Presentation level
 - Presentation column

 For example, for the subject area Payables Invoices - Prepayment Invoice Distributions Real Time, you would enter the following strings:

4. For each subject area, externalize the strings for localization and generate custom names for the presentation objects:

 a. In the Oracle BI Administration Tool, right-click the subject area and select **Externalize Display Names**, and then select **Generate Custom Names**.

 b. Save your work.

5. Check the consistency of the repository, and remove any inconsistencies.

6. Enter the custom name of one of the presentation objects into the table C_RPD_MSGS:

 INSERT INTO C_RPD_MSGS
 VALUES('<CUSTOM NAME OF PRESENTATION OBJECT>', 'CUSTOM', SYSTIMESTAMP);
 COMMIT;

 Note: To view the values for custom names and logical columns in the Administration Tool, right-click the presentation object and select **Properties**. The data in the **Custom display name** field appears in the format VALUEOF(NQ_SESSION.VALUE, where VALUE is the custom name for a presentation object, or the logical value for a presentation column. This value is the value that you need to enter in the VALUES section of the SQL statement above.

7. Enter the localized string for the presentation object in the previous step into the table C_RPD_MSGS_TL:

 INSERT INTO C_RPD_MSGS_TL
 VALUES('<CUSTOM NAME OF PRESENTATION OBJECT>', '<LOCALIZATION OF THE STRING>', '<LANGUAGE CODE FOR TRANSLATED LANGUAGE>', 'CUSTOM', SYSTIMESTAMP);
 COMMIT;

 To identify the language code for a particular language, use the following SQL:

 SELECT LANGUAGE_CODE, NLS_LANGUAGE, NLS_TERRITORY
 FROM FND_LANGUAGES_B
 WHERE INSTALLED_FLAG IN ('B', 'I');

8. Enter additional details about the presentation object into the table C_RPD_MSGS_REL as indicated by the following SQL:

 INSERT INTO C_RPD_MSGS_REL
 VALUES('<CUSTOM NAME OF PRESENTATION OBJECT>', '<TRANSLATION OF THE STRING>', '<LANGUAGE CODE FOR TRANSLATED LANGUAGE>', 'METADATA', SYSTIMESTAMP);
 COMMIT;

9. Repeat steps 6 through 8 for each presentation object requiring localization.

10. Validate that the physical connection of the session initialization block INIT_USER_LANGUAGE_CODE is operable:

 a. In the Oracle BI Administration Tool, select **Manage, Variables, Session Initialization Block**.

 b. Right-click INIT_USER_LANGUAGE_CODE.

 c. In the Properties dialog, click **Edit Data Source**.

 d. Click **Test**, and input the value for the language code. Then, click **OK**.

 For example, for Arabic enter ‘AR’.

 The value USER_LANGUAGE_CODE = '<language code>' should be returned.

 If this value is not returned, the TNS entry for the data source is not properly configured.

11. Restart the OPMN services.

12. Verify the localized strings in Oracle BI Answers. On the login page, specify the appropriate language.
4.4.5.6 How to use Sync to Source to synchronize a Target Domain with a Source Domain

In some scenarios, you might only know what target Domain member values should be when you deploy Oracle BI Applications. For example, in Order Management or Supply Chain Analytics, UOM (Unit of Measurement) is typically not known until deployment time. You can set up a non-ranged target domain using the **Sync to Source** option to automatically synchronize a target domain with values from the source domain. This process inserts new target members from the source domain, and automatically generates 1:1 mappings. This is useful for large domains with many member mappings that might otherwise take a long time to set up.

![Edit Domain Member Mappings](image)

Note: Sync to Source is only available for extensible non-ranged Domains.

How to synchronize a Target Domain with a Source Domain:

1. Navigate to the Domain that you want to synchronize.

 If you are in Oracle BI Applications Configuration Manager, from the Tasks bar click Manage Domains and Mappings, display the Domain mappings tab, select the Domain that you want to edit, then click the Edit Domain Member Mappings icon in the Domain Member Mappings pane to display the “Edit Domain Member Mappings dialog”.

 If you are in Functional Setup Manager, when you click **Go to Task** for the Task that is updating a Domain, you display the “Edit Domain Member Mappings dialog” dialog.
2. Click Sync to Source.

3. At the Warning dialog, click OK.

Note: If you click OK to continue, then you commit changes to the target Domain members, even if you do not click ‘Save’ or click ‘Save and Close’ on the Edit Domain Member Mappings dialog.

Target Domain member values are generated. In the example below, the target codes for C_JOB_FAMILY are automatically synchronized with the Source member codes.
4.4.5.7 How to use Batch Edit to update multiple Target Domain Member Values

You can set up a target domain using the **Batch Edit** option to update multiple target domain members with the same value. This is useful for large domains with many member mappings that require the same value.

To use Batch Edit to update multiple Target Domain Member Values:

1. Navigate to the Domain that you want to edit.
 - If you are in Oracle BI Applications Configuration Manager, from the Tasks bar click Manage Domains and Mappings, display the Domain mappings tab, select the Domain that you want to edit, then click the Edit Domain Member Mappings icon in the Domain Member Mappings pane to display the “Edit Domain Member Mappings dialog”.
 - If you are in Functional Setup Manager, when you click Go to Task for the Task that is updating a Domain, you display the “Edit Domain Member Mappings dialog” dialog.

2. Multi-select one or more rows in the table.
 - **Tip:** To multi-select, use Ctrl + click to select multiple rows.

3. Select a value from the **Batch Edit** drop down list.

4. Click Change to apply the value selected in the **Batch Edit** drop down list to all specified members.

4.4.6 How to modify a Warehouse Domain Hierarchy

Oracle BI Applications Warehouse Domains are organized into hierarchies. You might want to modify a hierarchy to enable data to be more effectively analyzed. For example, you might change the order of items in a hierarchy.

To create or edit a Warehouse Domain Hierarchy:

1. In the Domain mappings list, select the Domain Mapping that you want to edit.
About Working With Domains and Domain Mappings

2. Use the options at the top of the Domain Mapping list to change the hierarchy.

4.4.7 Why are some domains non-extensible?

To maintain data integrity in Oracle Business Intelligence Applications, some domains have been designed as non-extensible, and are therefore read-only.

If a domain is non-extensible, then when the domain is selected, the following options are greyed out:

- the Edit icon in the Domain Member Mappings pane (on the "Manage Domain Mappings and Hierarchies: Domain Mappings tab" or "Manage Domain Mappings and Hierarchies: Warehouse Domain Hierarchies tab").
- the Add Target Domain Member button (on the "Edit Domain Member Mappings dialog").
- the Add Warehouse Domain Member button (on the "Manage Warehouse Domains: Warehouse Domains tab"\Warehouse Members pane).

4.4.8 How to Configure Externally Conformed Domains

You can manage and create conformed domains in Oracle Business Analytics Warehouse that are based on definitions in a source system. For example, you might want to configure Units of Measure (UOMs) that are sourced from a pre-defined master product-line (typically Fusion) source domain.

To configure an Externally Conformed Domain:

1. In Oracle BI Applications Configuration Manager, select the Manage Externally Conformed Domains link in the Tasks pane to display the "Manage Externally Conformed Domains dialog".
2. Use the Product Line drop down list to select a source system. When a source system is selected, domains for that source system are displayed.

3. In the domains list, select the Domain that you want to configure and click Configure Domain to start the configuration wizard.

Note: If a domain has already been configured, before you can configure the domain using the wizard, you must first delete the existing configuration by clicking Delete Domain Configuration. If a domain has already been configured, a green tick is displayed in the Configured? field, and the unique ID of the data source is displayed in the Referenced Data Source field.

4. Follow the on-screen instructions on the configuration wizard.

5. Click Save.
If you include the configured domain in a Load Plan for ETL, the data will be loaded into Oracle Business Analytics Warehouse from the specified source domain.

4.5 About Working With Data Load Parameters

Data Load Parameters are configuration values that specify how Source System data is loaded into Oracle Business Analytics Warehouse. For example, the cost time grain parameter COST_TIME_GRAIN specifies whether costs are aggregated weekly, monthly, or quarterly, during the data loading process.

4.5.1 Key points about working with Data Load Parameters

When you work with Data Load Parameters in Oracle BI Applications Configuration Manager, note the following key points:

- Data Load Parameters can be either Global or Application Specific, as follows:
 - Global parameters apply to all applications, and are indicated with the (ab) and globe icon:

 ![Global Data Load Parameters icon]

 Global Data Load Parameters can also be associated with specific Fact Groups or Dimension Groups.

 - Application Specific apply to specific applications, and indicated with the (ab) icon:

 ![Application Specific Data Load Parameters icon]

 Application Specific Data Load Parameters are always associated with one or more Fact Groups or Dimension Groups.

- If a Global Data Load Parameter is associated with one or more Fact Groups or Dimension Groups, then each Fact Group or Dimension Group can have a different value. For example, the value of Slowly Changing Dimension Flag for Absence Even Dimension might be Yes, and the value of Slowly Changing Dimension Flag for Asset Dimension might be No.

Values for Global Group-specific parameters are always overridable, and are indicated by the Overridable Parameter icon (that is, the (ab) icon with a pencil):

![Overridable Parameter icon]

The example below shows the Global parameter 'Slowly Changing Dimension Flag' with associated Group-specific values displayed in the lower pane.
For Application Specific Data Load Parameters, values for associated Fact Groups or Dimension Groups can either be Overridable or Non-Overridable, as follows:

Overridable - each associated Fact Group or Dimension Group can have a different value. Overridable parameters are indicated by the Overridable Parameter icon (that is, the (ab) icon with a pencil):

Non-Overridable - each associated Fact Group or Dimension Group must have the same value. Non-Overridable parameters are indicated by the Parameter icon (that is, the (ab) icon without a pencil):

The example below shows the Application Specific parameter 'Product Category Set ID 3' with associated Group-specific values displayed in the lower pane. Note that the Group-specific values in this example cannot be overridden.
4.5.2 About editing Data Load Parameters

You edit Data Load Parameters (whether they are Global or Application Specific) using the Data Load Parameters dialog, which is displayed in Functional Setup Manager when you edit a Data Load Parameter (see the following screenshot). The Data Load Parameters list above (or master table) displays the parameters and values, and the Group Specific Parameter Values list below displays associated Fact Groups or Dimension Groups (if there are any).

To display Data Load Parameters in Oracle BI Applications Configuration Manager, select the Manage Data Load Parameters link on the Tasks bar to display the “Manage Data Load Parameters dialog”.

4.5.3 About Editing Global Data Load Parameters

To edit the value of a Global Parameter, select the record in the Data Load Parameters master table, and then either click the Edit icon in the table toolbar or click on the link in the Global Parameter Values column.

If the Global Parameter that you edit is associated with Fact Groups or Dimension Groups, then a warning message is displayed to verify that you want to update the
value for all associated Fact Groups and Dimension Groups. If you click Yes at the warning message, then the values of all occurrences of the parameter at the Group level will be updated to the new value.

For example, if you click the Edit icon or the link in the Parameter Value column for the parameter SUBLEDGER_MODULE_LIST in the Data Load Parameters master table, then the following Warning dialog is received:

Clicking Yes allows you to continue with the edit of the parameter value. A change to the parameter value is applied to all parameter occurrences at the Group level.

To change the value of parameter for a specific Fact Group or Dimension Group, select the Global Parameter in the Data Load Parameters master table, and then select the parameter in the Group Specific Parameter Values for: <Parameter Name> detail table. Click on the Edit icon in the table tool bar or the link in the Parameter Value column to open the Parameter Value Edit dialog.

Changing the parameter value in the above Edit Dialog updates the parameter value for the Slowly Changing Dimension Flag parameter associated with the Absence Event Dimension Group.

4.5.4 About Editing Application Specific Parameter Values

You use the Edit option to edit the value of a Fact Group or Dimension Group that is associated with an Application Specific parameter (if the parameter is overridable).

You use the Edit All option to edit the value of all Fact Groups and Dimension Groups that are associated with an Application Specific parameter.

If you attempt to edit the value of a specific Fact Group or Dimension Group, then:

- if the parameter is overridable at the Group level, then you update only that specific Fact Group or Dimension Group.
if the parameter is Non-Overridable at the Group level, then a Warning dialog displays a list of Fact Groups and Dimension Groups that will be affected if you click Yes to edit the value.

4.5.5 How to Edit a Data Load Parameter value

You edit Data Load Parameters using the Manage Data Load Parameters dialog. To display the Manage Data Load Parameters dialog, do one of the following:

- In Oracle BI Applications Configuration Manager, select the Manage Data Load Parameters link in the Tasks pane.
- In Functional Setup Manager, select the Go to Task link for a Task that updates a Data Load Parameter (for example, Configure Initial Extract Date).

To edit a Data Load Parameter:

1. Select the parameter in the Data Load Parameters list.
 - If the parameter is a Global parameter, then the Global Parameter Value field displays the actual value (for example, 'MONTHLY').
 - If the parameter is a non-Global parameter, then the Global Parameter Value field displays the text 'Group Specific'.

2. Do one of the following:
 - To update a Global parameter, in the Data Load Parameters list click the value displayed in the Global Parameter Value field to display the "Edit Parameter Value dialog (for Data Load Parameters)", and edit the value. Alternatively, select the row and click the Edit icon.
If a Global parameter is associated with Fact Groups or Dimension Groups, you can override the Global value for specific Fact Groups or Dimension Groups by editing the parameter value in the **Group specific Parameter Values for** pane.

- To update an Application Specific parameter, select the parameter in the Data Load Parameters list, scroll down to the **Group Specific Parameter Values for** list, and click either the Edit icon, or the value in the Parameter Value column (or select the parameter row and click the Edit icon).

If the parameter is overridable at the Group level, then you update only that specific Fact Group or Dimension Group using the Edit Parameter Value dialog.

If the parameter is Non-Overridable at the Group level, then a Warning dialog displays a list of Fact Groups and Dimension Groups that will be affected if you click Yes to edit the value.
4.6 About Working With Reporting Parameters

Reporting Parameters are configuration values that specify how data is presented in Business Intelligence dashboards.

There are two categories of Reporting Parameter:

- Global, which apply to all applications. These are displayed on the Global tab.
- Application Specific, which apply to specific applications. These are displayed on the Application Specific tab.

You manage and edit Reporting Parameters using the "Manage Reporting Parameters: Global/Application Specific tab" (see the following screenshot).
You display the "Manage Reporting Parameters: Global/Application Specific tab" by doing one of the following:

- In Oracle BI Applications Configuration Manager, select the Manage Reporting Parameters link in the Tasks pane.
- In Functional Setup Manager, select the Go to Task link for a Task that updates a Reporting Parameter.

To edit a Reporting Parameter, select the parameter in the parameter list, then either click the Edit icon, or click the value in the Parameter Value column.

4.7 How to Monitor Setup Data

During a functional configuration project, you monitor Setup Data to ensure that your Offerings are being correctly configured. For example, you might use the Parameters By Offerings report on the Overview page to monitor visually the number of parameters that have been configured.

You can monitor set up data in the following ways:

- In Oracle BI Applications Configuration Manager, you can monitor the status of the underlying set up data values, as follows:

 - Use the pages and tabs in the Setup Data Maintenance and Administration area on the Tasks bar.

 From the Tasks bar, select one of the links in the Setup Data Maintenance and Administration area. For example, select the Data Load Parameters link to display the Data Load Parameters page.
4.8 How to Change Configuration Values Using Oracle BI Applications Configuration Manager

If you need to make configuration changes after an Implementation Project has been completed in Functional Setup Manager, you can use Oracle BI Applications Configuration Manager to update setup data. To change setup data values, you use the options in the Setup Data Maintenance and Administration area on the Tasks bar.

To change configuration values using Oracle BI Applications Configuration Manager:

- Use the Reports panes on the Overview page.
 For example, you might use System Sets list to monitor which Offerings have been enabled for deployment.
1. In Oracle BI Applications Configuration Manager, use options in the Setup Data Maintenance and Administration area on the Tasks bar as follows:

- To make changes to domain mappings, select Manage Domains and Mappings and display the tab for the domain type that you want to edit. To edit a Domain Mapping, select a domain in the Domain Mapping list and click the Edit icon in the Domain Member Mappings pane.

- To make changes to data load parameters, select Manage Data Load Parameters and use the Search pane to locate the parameters that you want to edit. To edit the value of a Global Data Load Parameter, click the value in the Global Parameter Value column (or select the row then click the Edit icon) to display the "Edit Parameter Value dialog (for Data Load Parameters)".

For Application Specific parameters, select the parameter in the Data Load Parameters list, scroll down to the Group Specific Parameter Values for list, and click either the Edit icon or the value in the Parameter Value column (or select the parameter row and click the Edit icon).
To make changes to reporting parameters, select **Manage Reporting Parameters**, and display either the Global tab or the Application Specific tab. To edit the value of a Reporting Parameter, click the value in the Parameter Value column (or select the row then click the Edit icon) to display the "Edit Parameter Value dialog (for Reporting Parameters)".

Tip: For information about locating unmapped domain values, see Section 4.9, "How to Locate Unmapped Domain Values in Oracle BI Applications Configuration Manager".

4.9 How to Locate Unmapped Domain Values in Oracle BI Applications Configuration Manager

You locate unmapped Domain Values to enable you to make sure that you have mapped all of your source system domain values.

Tip: You can also use the Alerts pane on the Overview page in Oracle BI Applications Configuration Manager to identify target domains with one or more unmapped source members. Display the Overview page, and navigate to the **Domain Maps with Unmapped Source Members** pane.

How to locate unmapped domain values:

1. Start Oracle BI Applications Configuration Manager.
2. Do one of the following:
From the Tasks bar, select Manage Domains and Mappings to display the Manage Domains and Mappings dialog.

Display the "Manage Domain Mappings and Hierarchies: Domain Mappings tab".

In the Domain Member Mappings pane, select Unmapped from the Source Members list.

From the Tasks bar, select Manage Domains and Mappings to display the Manage Domains and Mappings dialog.

Display the "Manage Domain Mappings and Hierarchies: Warehouse Domain Hierarchies tab".

In the Domain Member Mappings pane, select Unmapped from the Source Members list.

4.10 How to Locate Data Load Parameters with no Values in Oracle BI Applications Configuration Manager

You locate Data Load Parameters with no values to check all Tasks in Functional Setup Manager relating to Data Load Parameters have been completed correctly.

How to locate Data Load Parameters with no values:
1. Start Oracle BI Applications Configuration Manager.

2. Do one of the following:
 - From the Overview page, use the Data Load Parameters with no Values list in the Alerts pane.
 - From the Tasks bar, select Manage Data Load Parameters to display the "Manage Data Load Parameters dialog", which enables you to view and edit parameters.

4.11 About Adding Target Domain Members

You add Target Domain Members to extend Oracle Business Analytics Warehouse. For example, you might want to create a new salary category called 'Range 5' so that you can map salary values to this new category.

- Section 4.11.1, "How to add a Target Domain Member"

4.11.1 How to add a Target Domain Member

You add a target domain member to extend Oracle Business Analytics Warehouse.

To add a Target Domain Member:

1. Display the Warehouse Domains tab.
 - In Functional Setup Manager, the Warehouse Domain tab is displayed when you perform a Task that edits a Warehouse Domain value.
 - In Oracle BI Applications Configuration Manager, from the Tasks bar, select Manage Domains and Mappings to display the Manage Domains and Mappings dialog.

2. In the Warehouse Members pane, click Add Warehouse Domain Member, to display the "Add Warehouse Domain Member/Add Target Domain Member dialog".

3. Use the "Add Warehouse Domain Member/Add Target Domain Member dialog" to specify the details.

4. Click OK to save the details and close the dialog.

4.12 Viewing Domain Hierarchies

To view Domain Hierarchies, select the Manage Domain Mappings and Hierarchies link on the Tasks bar, then display the Warehouse Domain Hierarchies tab.
4.13 About Exporting and Importing Setup Data for Oracle BI Applications Configuration Manager

You export and import Setup Data for Oracle BI Applications Configuration Manager to:

- make a backup of your configuration settings for security purposes. For example, you might keep a record of the configuration changes that you have made.
- migrate the Setup Data for Oracle BI Applications Configuration Manager from one environment to another environment. For example, you might move the configuration changes that you have made from a Test environment to a Production environment.

4.13.1 What Data is Exported?

When you export Setup Data, you export the changes that you have made to the values of the following objects:

Notes

- Domain Hierarchies are displayed in inverted format, that is in the following format:

 `<Child 1>`

 `<Child n>`

 `<Parent>`.

 For example, in the screenshot above, the child node AP Transaction Subtype is shown above and to the left of the parent node AP Transaction Type.

- Domain Hierarchies are read-only. However, you can change the domain mappings.
- For field level help for the Warehouse Domains Hierarchies dialog, see Section C.15, "Manage Domain Mappings and Hierarchies: Warehouse Domain Hierarchies tab".
About Exporting and Importing Setup Data for Oracle BI Applications Configuration Manager

Data Load Parameters
Domains and Mappings
Reporting Parameters

Unchanged configuration values are not exported. In other words, if you only change the value of DEFAULT_CURRENCY from USD to Euro and then you export your data, then the export ZIP file that is produced will only contain columns for 'DEFAULT_CURRENCY=Euro'.

Note: Other Oracle BI Applications Configuration Manager data (for example, Source System configuration settings, Oracle Business Analytics Warehouse configuration settings) is not included in export files. In other words, before you import on the target system, you must first re-specify the Source System and Oracle Business Analytics Warehouse.

4.13.2 What Data is Imported?

When you import Setup Data from a ZIP file, you import whatever configuration changes were exported to that ZIP file. For example, if you first export only Reporting Parameters to a ZIP file, then you import only the changes that were made to Reporting Parameters.

4.13.3 About Migrating Setup Data

To migrate Setup Data, you do the following:

- In the source environment, export the Oracle BI Applications Configuration Manager Setup Data as a ZIP file. For more information about exporting Setup Data, see Section 4.13.5, "How to Export Setup Data".
- Copy the ZIP file from the source environment to the target environment.
- In the target environment, import the Oracle BI Applications Configuration Manager Setup Data from the ZIP file. For more information about importing Setup Data, see Section 4.13.6, "How to Import Setup Data".

Note: The data source number in the target system must be the same as the data source number in the source system.

4.13.4 About Backing-up Setup Data

To back-up Setup Data, you do the following:

- In the source environment, export the Oracle BI Applications Configuration Manager Setup Data as a ZIP file. For more information about exporting Setup Data, see Section 4.13.5, "How to Export Setup Data".
- Store the ZIP file in a secure location.
- In the target environment, make sure that you have installed Oracle BI Applications Configuration Manager, which installs the default setup data. Note: The data source number in the target system must be the same as the data source number in the source system.
- To restore the backed-up data, you import the Oracle BI Applications Configuration Manager Setup Data from the ZIP file. For more information about importing Setup Data, see Section 4.13.6, "How to Import Setup Data".
4.13.5 How to Export Setup Data

You export Setup Data to back-up or migrate a Oracle BI Applications Configuration Manager environment.

To export Setup Data:

1. In the source environment, start Oracle BI Applications Configuration Manager.
2. From the Tasks bar, select Export Setup Data to display the "Export Setup Data dialog".
3. Click Export Data to display the "Export Data dialog".
4. Use the "Export Data dialog" to specify the setup objects that you want to export.
5. Click Export.
6. When the File Download dialog is displayed, click Save to save the ZIP file to a location that you specify.
 If you first click Open at the File Download dialog to open the ZIP file, then make sure that you save the ZIP file in the ZIP program that you are using.

The Export Setup Data table is updated with the export details.
4.13.6 How to Import Setup Data

You import Setup Data to restore or migrate Setup Data. Before you import Setup Data, you must copy the previously exported ZIP file to a file location that is accessible from the machine that is running the Oracle BI Applications Configuration Manager client.

Note: When you import Setup Data, the data source number in the target system must be the same as the data source number in the source system.

To import Setup Data:

1. In the source environment, start Oracle BI Applications Configuration Manager.
2. From the Tasks bar, select Import Setup Data to display the "Import Setup Data dialog".
3. Click Import Data to display the "Import Data dialog".
4. Use the "Import Data dialog" to specify the location and name of the ZIP file that contains the configuration changes that you want to import.
5. Click OK.

The Setup Data is imported from the ZIP file, and the Import table is updated with the details.

4.14 How to Customize a Product Hierarchy

You can customize product hierarchies by associating Dimension Groups or Fact Groups with Offerings and Functional Areas.
To customize a Product Hierarchy:

1. From the Tasks bar, select Manage Business Intelligence Application Offerings to display the "Manage BI Applications: BI Application Offerings Tab".

2. In the Business Intelligence Application Offerings list, select the Offering that you want to customize.

3. In the Associated Fact and Dimension groups area below, do one of the following:
 - To add a Fact Group, choose Actions, then Create Fact Group to display the "Create/Edit Fact Group" dialog.
 - To add a Dimension Group, choose Actions, then Create Fact Group to display the "Create/Edit Dimension Group" dialog.

4. If necessary, use the Edit and Delete options to modify the Dimension Groups or Fact Groups that you have added.

 Note: You can only edit or delete Fact Groups or Dimension Groups that you have created. You cannot edit or delete default groups that are provided on installation.
Part II
Appendices

Part III contains reference information that is used in the Oracle BI Applications Configuration Manager Help System and Functional Setup Manager, and includes the following sections:

- Appendix A, "Supporting Tasks"
- Appendix B, "Functional Configuration Task Reference"
- Appendix C, "Oracle BI Applications Configuration Manager Functional Configuration UI Reference"
- Appendix D, "Oracle BI Applications Configuration Manager System Setup UI Reference"
This section contains supporting information and tasks for setting up Oracle BI Applications.

This section contains the following topics:

- Section A.1, "How to Log Into Oracle BI Applications Configuration Manager"

A.1 How to Log Into Oracle BI Applications Configuration Manager

You use Oracle BI Applications Configuration Manager to set up and manage several aspects of the Oracle BI Applications environment, and to manage and monitor Functional Configuration for Oracle BI Applications Offerings.

To log into Oracle BI Applications Configuration Manager:

1. In a Web browser, go to the Oracle BI Applications Configuration Manager link that is provided by your BI System Administrator.

 For example:

 `http://examplecompany.com:7001/biacm/

 The Oracle BI Applications Configuration Manager Login dialog is displayed.

2. In the Login screen, enter your user credentials.

 Note: Your User Login must be associated to the appropriate Duty Role. For more information see Section 2.4, "About Users and Roles in Oracle BI Applications Configuration Manager". If you do not have access to Oracle BI Applications Configuration Manager or have incorrect access, then contact your Security Administrator.

 The main Oracle BI Applications Configuration Manager page is displayed.
Notes

- Use the Tasks bar on the left-hand side of the Welcome page to navigate the application.

 The options that are displayed in the Tasks bar are dependent on the privileges of the user name that you log in with.

- To display Help for the Overview page, click Help, then Configuration Manager Help. You can also display context-sensitive Help for a dialog by clicking the question mark icon displayed next to the dialog name or a field name.

- To log out of Oracle BI Applications Configuration Manager, select the **Sign out** link in the top right hand corner.
This is a reference section that contains Help topics for Informational Tasks in Functional Setup Manager (FSM). Informational Tasks display conceptual information, or display configuration steps that are performed in tools external to FSM (for example, in Oracle Data Integrator, or Oracle BI EE Administration Tool).

The Help topics in this section are displayed in FSM when you click Go to Task for an Informational Task, or you click a Help icon for additional information about an FSM Task.

This chapter contains the following sections:

- Section B.1, "Example Functional Configuration Tasks For Multiple Offerings"
- Section B.2, "Informational Task Reference - Miscellaneous"
- Section B.3, "Informational Task Reference - ETL Notes and Overviews"

Note: For FSM Tasks relating to security, refer to Oracle Business Intelligence Applications Security Guide.

B.1 Example Functional Configuration Tasks For Multiple Offerings

This section lists example Tasks that apply to multiple Offerings.

Common Areas and Dimensions
Configure Data Load Parameters for File Based Calendars
Configure Enterprise List
Configure Global Currencies
Configure Initial Extract Date
Configure Reporting Parameters for Year Prompting
Configure Slowly Changing Dimensions
Define Enterprise Calendar
Specify Gregorian Calendar Date Range

B.2 Informational Task Reference - Miscellaneous

This section contains miscellaneous Help topics.
B.2.1 Getting Started With Functional Configuration

To get started with Functional Configuration, see Section 3.2, "Roadmap for Functional Configuration".

A BI Application Offering and one or more Functional Areas are selected during the creation of an Implementation Project. A list of Functional Setup tasks is generated based on the selected Oracle BI Applications Offering and Functional Area(s).

There are four main types of Functional Task:

- **Tasks to configure Data Load Parameters** - Clicking on the Go To Task button for these tasks launches Oracle BI Applications Configuration Manager and the Manage Data Load Parameter setup user interface is displayed with the appropriate set of Data Load Parameters required to perform a task.

- **Tasks to manage Domains and Mappings** - Clicking on the Go To Task button for these tasks launches Oracle BI Applications Configuration Manager and the Manage Domains and Mappings setup user interface is displayed with the appropriate set of Domain Mappings.

- **Tasks to configure Reporting Parameters** - Clicking on the Go To Task button for these tasks launches Oracle BI Applications Configuration Manager and the Manage Reporting Parameter setup user interface is displayed with the appropriate set of Reporting Parameters required to perform a task.

- **Tasks that are informational** - These tasks provide either:
 - conceptual, background or supporting information.
 - instructions for configuration that is performed in tools external to FSM (for example, in Oracle Data Integrator, or Oracle BI EE Administration Tool).

B.2.2 About Configuring Initial Extract Date

Initial Extract Date is required when you extract data for a full load. It reduces the volume of data in the initial load. The specified initial extract date will be used as a filter on the creation date of the transactional data in the selected full extract mapping. The date format is YYYY-MM-DD, for example, 2014-12-31. The default date is January 01, 1970.

When you set the Initial Extract Date parameter, ensure that you set it to the beginning of an accounting period and not a date in the middle of an accounting period. For example, if you decide to extract data from June 2005, and the June 2005 accounting period starts on June 5, then set the date to June 5, 2005.

The following tables use INITIAL_EXTRACT_DATE:

PROJECTS:
- W_PROJ_BUDGET_F
- W_PROJ_COMMITMENT_F
- W_PROJ_COMMITMENT_SNP_F
- W_PROJ_CONTRACT_LINE_F
- W_PROJ_COST_LINE_F
- W_PROJ_CROSS_CHARGE_DIST_F
- W_PROJ_FORECAST_F
- W_PROJ_FUNDING_LINE_F
- W_PROJ_INVOICE_DIST_F
- W_PROJ_REVENUE_LINE_F

FINANCE:
- W_GL_OTHER_F
- W_GL_BALANCE_F
W_GL_REVN_F
W_GL_COGS_F
W_GL_COST_REVN_F
W_AP_HOLDS_F
W_FA_BALANCE_F
W_FA_XACT_F

OM:
W_SALES_ORDER_LINE_F
W_SALES_INVOICE_LINE_F
W_SALES_SCHEDULE_LINE_F
W_SALES_PICK_LINE_F
W_SALES_ORDER_HOLD_F
W_SALES_ORDER_HOLD_1_F
W_DOO_PROCESS_F
W_SALES_ORDER_CREDIT_F
W_SALES_INVOICE_CREDIT_F

PIM:
W_ITEM_REQUEST_F
W_ITEM_REQUEST_STATUS_SNP_F
W_ITEM_INTERFACE_F
W_ITEM_F

PRM: No INITIAL_EXTRACT_DATE usage

Procurement:
W_PURCH_RQSTN_LINE_F
W_RQSTN_LINE_COST_F
W_PURCH_AGREEMENT_HEADER_F
W_PURCH_AGREEMENT_LINE_F
W_PURCH_SCHEDULE_LINE_F
W_PURCH_COST_F
W_PURCH_RCPT_F
W_AP_INV_DIST_F
W_PURCH_CHANGE_ORDER_F

Sourcing:
W_NEG_INVITATIONS_F
W_NEG_LINES_F
W_NEG_RESPONSES_F

Expense:
W_EXPENSE_F
W_EXPENSE_CC_F
W_EXPENSE_VIOLATION_F

SCM:
W_CST_ITEM_COST_DAILY_F
W_CST_INTRANIT_DAILY_F
W_CST_INTRAN_ACCNTED_DAILY_F
W_CST_ONHAND_ACCNTED_DAILY_F
W_CST_ONHAND_DAILY_F
W_INVENTORY_CYCLE_COUNT_F
W_PRODUCT_XACT_F

HCM:
W_WRKFC_EVT_F
Note: HR needs a specific extract date (used in place of ‘initial’) such as HR_WRKFC_EXTRACT_DATE, HR_ABSENCE_EXTRACT_DATE, HR_PAYROLL_EXTRACT_DATE and HR_ACCRUAL_EXTRACT_DATE. The requirement for setting up the common INITIAL_EXTRACT_DATE parameter is only that this date should be earlier than any of our four specific extract date values.

B.2.3 About Configuring Slowly Changing Dimensions

Oracle Business Analytics Warehouse provides Category 2 slowly changing dimension (SCD) functionality, which allows you to track the history of updates to dimension records. When a record in Oracle Business Analytics Warehouse has an update, the updated information is posted into a new row and the old information is kept for historical reporting purposes.

Oracle Business Analytics Warehouse identifies and applies the slowly changing dimension logic chosen by the user after data has been extracted and transformed to be source-independent. Users may configure Oracle BI Applications to support both Category 1 SCDs, in which data is overwritten with updates, and Category 2 SCDs, in which the original records are maintained while a new record stores the updated data. Choosing Category 1 or Category 2 SCDs depends on identifying your historically significant attributes.

Users can choose Category 1 or Category 2 by setting the value for $$TYPE2_FLG to Y or N in Oracle BI Applications Configuration Manager.

The following tables have **TYPE2 defined by default** (by default, it is set to ON):

Common Dimensions:
- W_PRODUCT_D
- W_INVENTORY_PRODUCT_D
- W_POSITION_D
- W_USER_D
- W_INT_ORG_DH
- W_PARTY_ORG_D
- W_PARTY_PER_D

HCM:
- W_HR_PERSON_LEG_D
- W_HR_POSITION_D
- W_JOB_D
- W_PAY_GRADE_D
- W_SUPERVISOR_D and W_SUPERVISOR_STATUS_D:
 Note: These are not the classical Type-2 dimensions. They have EFFECTIVE_FROM_DT and EFFECTIVE_TO_DT and are set to Type2.

However, HCM handles the dates internally and does not rely on the SCDUpdate mappings for these two. These tables are used to build the Supervisor Hierarchy, and not exposed in RPD after the physical layer.

Finance:
- W_FIXED_ASSET_D
The following tables have TYPE2 supported in applications but not set by default (by default, it is OFF; it can be turned ON if required).

Common Dimensions:
- W_COST_CENTER_D
- W_COST_CENTER_DH
- W_BUSN_LOCATION_D
- W_TERR_DH

Finance:
- W_AP_TERMS_D
- W_BALANCING SEGMENT D
- W_BANK_D
- W_ASSET_BOOK_D
- W_ASSET CATEGORY_D
- W_ASSET LOCATION_D
- W_GL ACCOUNT_D
- W_GL SEGMENT_D
- W_NATURALACCOUNT D
- W_PAYMENT TERMS D

CRM/OM/PIM:
No SCD2 dims

SCM/Procurement/Sourcing/Expense:
No SCD2 dims

B.2.4 About Specifying the Filter to be Applied on Activity

This task configures the ETL parameter ACTIVITYFILTER for Customer Data Management Analytics. This filter is used to customize Filter on Activity. The default value is ‘(1=1) AND’, which does not affect the data that is loaded.

Change the default value if you want to adjust the number of records that are loaded. For example, to load only the Activity created this month or this quarter, use the following syntax:

\[(ACT.CREATED ON DT > <Date>) \ AND \]

Where `<Date>` is in the format YYYY-MM-DD, for example, 2014-12-31.

B.2.5 About Configuring Data Load Parameter HISTORY_LOAD for Initial Balance load

No Help topic is available for this FSM Task.
B.2.6 About Enabling US Federal Financial Analytics for E-Business Suite

This task is used to configure the load parameter 'Is Fed Fin Enabled' for the E-Business Suite adapter. Set the value to 'Y' if you are deploying Federal Financials Analytics.

B.2.7 About Configuring Data Load Parameters for Master Organization

Products are defined in a Master Organization and then copied into the other Inventory Organizations for transactions. The Product dimension Extract mapping 'SDE_ORA_ProductDimension_Derive' has been enabled for configuration of this Master Organization based on the configuration in the OLTP. By default, the organization ID (that is set by the MASTER_ORG parameter) is set to 204. This organization ID 204 needs to be changed based on the individual implementation of OLTP in your deployment.

Note: This ETL implementation supports the best practice prescribed by Oracle for the creation of Single Master Organization for defining the Product master. This ETL implementation does not support the multiple master Organizations if the same product is defined in multiple master organizations. You can assign Multiple MASTER Organizations also under the same parameter by providing a comma-separated string of Organization codes (for example, '204', '458').

To configure Master Inventory Organization, in FSM, use the FSM Task named 'Configure Data Load Parameters for Master Organization'.

B.2.8 About Configuring Data Load Parameters for Procurement and Spend tasks for JD Edwards EnterpriseOne

Manage Domains and Member Mappings for Purchase Order Status for JD Edwards

Oracle Business Intelligence Applications ships default domain value mappings that map the seeded Oracle BI Application domain values to the seeded configuration data in Oracle Procurement and Spend Analytics applications. The Purchase Order types are configured using the FSM parameter JDE_PURCHASING_ORDER_TYPE_LIST. The default value for this parameter is OP, O4, OS, OD.

When you configure the above parameter to include any other Purchase Order types, you need to review the default mappings for domain values PURCHASE_ORDER_STATUS and the corresponding target domains W_PURCHASE_ORDER_CYCLE_STATUS and W_PURCHASE_ORDER_APPROVAL_STATUS, and if necessary update them to accommodate the mappings for the new purchase order types.

In Oracle Procurement and Spend Analytics, the domain member values for PURCHASE_ORDER_STATUS are Purchase Order type~ Line Status~Next Status. For example: OP~220~240, OP~282~300

If you want to use the default purchase order types as per JDE_PURCHASING_ORDER_TYPE_LIST, then you do not need to make any changes to these domain mappings before you start your ETL processes.

If new order types are added to JDE_PURCHASING_ORDER_TYPE_LIST, then you must add the new domain members for PURCHASE_ORDER_STATUS. Next you will have to make changes to default mappings, using the Domain Mappings tab.
Manage Domains and Member Mappings for Purchase Order Document Subtypes for JD Edwards

Oracle Business Intelligence Applications ships default domain value mappings that map the seeded Oracle BI Application domain values to the seeded configuration data in Oracle Procurement and Spend Analytics applications. The default value for this parameter is OP, O4, OS, OD, OB, C, E, L, N, S, and T.

OP, O4, OS, OD are configured in JDE_PURCHASING_ORDER_TYPE_LIST FSM parameter and the rest OB, C, E, L, N, S, and T are configured in JDE_PO_AGREE_STANDARD_TYPE_LIST.

Manage Domains and Member Mappings for Purchase Order Shipment Type for JD Edwards

Oracle Business Intelligence Applications ships default domain value mappings that map the seeded Oracle BI Application domain values to the seeded configuration data in Oracle Procurement and Spend Analytics applications. The order which is released against any blanket, quotation etc. is considered for mapping of this configuration. The default value for this parameter is OB, OQ and STD.

FSM Parameters:

You configure the following parameters:

- **JDE_PURCHASING_CANCELED_STATUS_CODE_LIST**
 The Purchase Order Cancelled Status Codes are configured using the FSM parameter. All the PO status codes which correspond to cancelled status are listed as values for this parameter. (When entering values in seed manager, remove quotes and spaces). In addition, you can edit the defaults for this parameter for the associated Fact Groups. For example, the default value for this parameter is 980,982,983,984,985,986,987,988,989 for Purchase Orders ETL tasks. However the default values list are 499,980,981,982,983,984,985,986,987,988,989,990,991 for Purchase Requisition ETL tasks.

- **JDE_PURCHASING_ORDER_TYPE_LIST**
 The Purchase Order types are configured using the FSM parameter JDE_PURCHASING_ORDER_TYPE_LIST. Default value for this parameter is OP, O4, OS, and OD. In addition, you can the defaults for this parameter for the associated Fact Groups. When you configure the above parameter to include any other Purchase Order types, you need to review/edit the default mappings for domain values PURCHASE_ORDER_STATUS and the corresponding target domains W_PURCHASE_ORDER_CYCLE_STATUS and W_PURCHASE_ORDER_APPROVAL_STATUS.

- **JDE_REQ_ORDER_TYPE_LIST**
 The Purchase Requisition document types are configured using the FSM parameter JDE_REQ_ORDER_TYPE_LIST. The default value for this parameter is OU, OR.

- **JDE_PO_QUOTE_TYPE**
 'Quote' type purchase order are used in deriving shipment type of purchase order. JDE_PO_QUOTE_TYPE is configured with the Quote types. Default value for this parameter is OQ.

- **JDE_PON_BID_QTN_PRICE_TYPE**
 Price types in Bid Questions are configured using the FSM parameter, JDE_PON_BID_QTN_PRICE_TYPE. The default value is P.
■ JDE_PON_RFI_TYPE

Sourcing RFI document types are configured using the FSM parameter, JDE_PON_RFI_TYPE. The default value is RF.

■ JDE_RCPT_LINE_TYPE

Freight line are not considered in the receipt fact. This is configured using the FSM parameter JDE_RCPT_LINE_TYPE. Default values is F.

■ JDE_PO_AGREE_BLOCKED_STATUS_CODE

The Purchase Agreement Blocked Status Code is configured using the parameter JDE_PO_AGREE_BLOCKED_STATUS_CODE. Default value for this parameter is 210.

■ JDE_PO_AGREE_BLANKET_TYPE

The Purchase Blanket Agreement type is configured using the parameter JDE_PO_AGREE_BLANKET_TYPE. Default value for this parameter is OB.

If you make changes to the default values of this parameter, then you need to review/edit the default mappings for domain values for the PO_DOCUMENT_TYPES and its corresponding target domain W_XACT_TYPE_PO_DOCUMENT_TYPES using the Domain Mappings tab.

■ JDE_PO_AGREE_STANDARD_TYPE_LIST

The Purchase Standard Agreement type is configured using the parameter JDE_PO_AGREE_STANDARD_TYPE_LIST. Default value for this parameter is C, E, L, N, P, S, T.

If you make changes to the default values of this parameter, then you need to review/edit the default mappings for domain values for the PO_DOCUMENT_TYPES and its corresponding target domain W_XACT_TYPE_PO_DOCUMENT_TYPES using the Domain Mappings tab.

B.2.9 How to Add Closed Orders to Backlog Calculations

By default, the Oracle Supply Chain and Order Management Analytics application only extracts open sales orders from the Sales Order Lines (W_SALES_ORDER_LINE_F) table and Sales Schedule Lines table (W_SALES_SCHEDULE_LINE_F) for backlog calculations to populate the Backlog tables. Open sales orders are defined as orders that are not canceled or not complete. The purpose in extracting only open orders is that in most organizations those orders that are closed are no longer a part of backlog. However, if you want to extract sales orders that are marked as closed, you must remove the default filter condition from the extract mapping.

For example, assume your customer orders ten items. Six items are invoiced and shipped, but four items are placed on operational and financial backlog. This backlog status continues until one of two things happens:

■ The items are eventually shipped and invoiced.

■ The remainder of the order is canceled.

If you choose to extract sales orders that are flagged as closed, you must remove the condition in the Backlog flag. To do so, use the following procedure.

The BACKLOG_FLAG in the W_SALES_ORDER_LINE_F table is also used to identify which sales orders are eligible for backlog calculations. By default, all sales order types have their Backlog flag set to Y. As a result, all sales orders are included in backlog calculations.
To remove open order extract filters:

1. In Oracle Data Integrator, open Mappings folder, and then SDE_ORA11510_Adaptor, SDE_ORAR12Version_Adaptor, or SDE_FUSION_V1_Adaptor folder.

3. Click Quick-Edit tab and expand Mappings inside Quick-Edit tab.

5. Find the FIN_BACKLOG_FLG and open Mapping Expression. Then, remove SQ_BCI_SALES_ORDLNS.OPEN_FLAG = 'Y' AND for E-Business Suite adaptors, or remove SQ_FULFILLLINEPVO.FulfillLineOpenFlag = 'Y' AND for FUSION adaptor.

6. Save your changes to the repository.

7. Open the Mappings folder, and then PLP folder.

9. Click Quick-Edit tab and expand Filters inside Quick-Edit tab.

10. Find the filter W_STATUS_D.W_STATUS_CODE<>‘Closed’ and remove it.

12. Click Quick-Edit tab and expand Filters inside Quick-Edit tab.

13. Find the filter W_STATUS_D.W_STATUS_CODE<>‘Closed’ and remove it.

14. Save your changes to the repository.

B.2.10 How to Include Non-booked Orders in Order Line and Schedule Line Tables

This task applies to E-Business Suite source systems, such as SDE_ORA11510_Adaptor, and SDE_ORAR12Version_Adaptor. By default, only booked orders are extracted from the E-Business Suite, as shown in Figure B-1.
Therefore, all orders loaded into the Sales Order Lines, Sales Schedule Lines, and Sales Booking Lines tables are booked.

However, you can also load non-booked orders in Sales Order Lines (W_SALES_ORDERS_LINES_F) and Sales Schedule Lines (W_SALES_SCHEDULE_LINE_F), while loading only booked orders in Sales Booking Lines (W_SALES_BOOKING_LINE_F).

If you want to load non-booked orders into the Sales Order Lines and Sales Schedule Lines tables, you have to configure the extract so that it does not filter out non-booked orders. The OE_ORDER_LINES_ALL.BOOKED_FLAG = 'Y' condition indicates that an order is booked; therefore, this statement is used to filter out non-booked orders. So, to load all orders, including non-booked orders, remove the filter condition from the temp interfaces of the following mappings:

- SDE_ORA_SalesOrderLinesFact
- SDE_ORA_SalesOrderLinesFact_Primary

Also, if you include non-booked orders in the Sales Order Lines and Sales Schedule Lines tables, you have to exclude non-booked orders when you populate the Sales Booking Lines table from the Sales Order Lines or from the Sales Schedule Lines. You can do this by adding the W_SALES_ORDER_LINE_F.BOOKING_FLG = 'Y' or W_SALES_SCHEDULE_LINE_F.BOOKING_FLG = 'Y' condition to the interfaces of the following mappings:

- SIL_SalesBookingLinesFact_Load_OrderLine_Credit
- SIL_SalesBookingLinesFact_Load_OrderLine_Debit
- SIL_SalesBookingLinesFact_Load_ScheduleLine_Credit
- SIL_SalesBookingLinesFact_Load_ScheduleLine_Debit

To include non-booked orders in the Sales Order Lines and Sales Schedule Lines tables (for both full and Incremental load):

1. In ODI Designer Navigator, open the SDE_ORA11510_Adaptor, or SDE_ORAR12Version_Adaptor.
2. Find SDE_ORA_SalesOrderLinesFact and SDE_ORA_SalesOrderLinesFact_Primary. Then open the temp interfaces below.
3. Find and delete the filter condition OE_ORDER_LINES_ALL.BOOKED_FLAG='Y'
 from the temp interfaces mentioned above.

4. Save your changes to the repository.

Follow the steps below to make changes for Booking Lines table.

To include only booked orders in the Sales Booking Lines table:

1. In ODI Designer Navigator, open the SILOS folder.

2. Open the following interfaces then add the filter to Filters section.

 - **SIL_SalesBookingLinesFact_Load_OrderLine_Credit folder**: Open Quick-Edit tab of the **SIL_SalesBookingLinesFact_Load_OrderLine_Credit.W_SALES_BOOKING_LINE_F** interface, and add **W_SALES_ORDER_LINE_F.BOOKING_FLG = 'Y'** to the Filters section.

 - **SIL_SalesBookingLinesFact_Load_OrderLine_Debt folder**: Open Quick-Edit tab of the **SIL_SalesBookingLinesFact_Load_OrderLine_Debt.W_SALES_BOOKING_LINE_F** interface, and add **SQ_W_SALES_ORDER_LINE_F.BOOKING_FLG = 'Y'** to the Filters section.

 - **SIL_SalesBookingLinesFact_Load_ScheduleLine_Credit folder**: Open Quick-Edit tab of the **SIL_SalesBookingLinesFact_Load_ScheduleLine_Credit.W_SALES_BOOKING_LINE_F** interface, and add **W_SALES_SCHEDULE_LINE_F.BOOKING_FLG = 'Y'** to the Filters section.

 - **SIL_SalesBookingLinesFact_Load_ScheduleLine_Debt folder**: Open Quick-Edit tab of the **SIL_SalesBookingLinesFact_Load_ScheduleLine_Debt.W_SALES_BOOKING_LINE_F** interface, and add **SQ_W_SALES_SCHEDULE_LINE_F.BOOKING_FLG = 'Y'** to the Filters section.

3. Save your changes to the repository.

B.2.11 How to Track Multiple Attribute Changes in Bookings

The **W_SALES_BOOKING_LINE_F** table tracts changes in **SALES_QTY**, **NET_AMT**, and certain attributes defined in **BOOKING_ID** column. **BOOKING_ID** is calculated in SDE mappings of Sales Order Line table as follows:

- **For SDE_ORA11510_Adaptor and SDE_ORA12Version_Adaptor:**

  ```sql
  TO_CHAR(SQ_BCI_SALES_ORDLNS.LINE_ID) || '~' || TO_CHAR(SQ_BCI_SALES_ORDLNS.INVENTORY_ITEM_ID) || '~' || TO_CHAR(SQ_BCI_SALES_ORDLNS.SHIP_FROM_ORG_ID)
  ```

- **For SDE_FUSION_V1_Adaptor:**

  ```sql
  TO_CHAR(SQ_FULFILLLINEPVO.FulfillLineId) || '~' || TO_CHAR(SQ_FULFILLLINEPVO.FulfillLineInventoryItemId) || '~' || TO_CHAR(SQ_FULFILLLINEPVO.FulfillLineFulfillOrgId)
  ```

However, if you want to track changes on another attribute, then you must concatenate the source column of the attribute with the default mapping expression. For example, if you want to track changes in Customer Account, then concatenate the source column of Customer Account in the **BOOKING_ID** column as follows:
For SDE_ORA11510_Adaptor and SDE_ORA12Version_Adaptor:

```
TO_CHAR(SQ_BCI_SALES_ORDLNS.LINE_ID)||'~'||TO_CHAR(SQ_BCI_SALES_ORDLNS.INVENTORY_ITEM_ID)||'~'||TO_CHAR(SQ_BCI_SALES_ORDLNS.SHIP_FROM_ORG_ID)||'~'||TO_CHAR(INP_CUSTOMER_ACCOUNT_ID)
```

For SDE_FUSION_V1_Adaptor:

```
TO_CHAR(SQ_FULFILLLINEPVO.FulfillLineId)||'~'||TO_CHAR(SQ_FULFILLLINEPVO.FulfillLineInventoryItemId)||'~'||TO_CHAR(SQ_FULFILLLINEPVO.FulfillLineFulfillOrgId)||'~'||TO_CHAR(SQ_FULFILLLINEPVO.HeaderSoldToCustomerId)
```

To track multiple dimensional attribute changes in bookings:

1. In ODI Designer Navigator, open the SDE_ORA11510_Adaptor, SDE_ORA12Version_Adaptor, or SDE_FUSION_V1_Adaptor folder.

2. Open the main interface of SDE mappings of Sales Order Line table:
 - SDE_ORA_SalesOrderLinesFact.W_SALES_ORDER_LINE_FS
 - SDE_FUSION_SalesOrderLinesFact.W_SALES_ORDER_LINE_FS

3. Find BOOKING_ID column and modify the mapping expression as described above.
 - If you want to track changes in multiple attributes, then you must concatenate all source columns of the attributes.

4. Save your changes to the repository.

B.2.12 Review Table Partitioning for Human Resource Analytics

The Human Resource application will benefit from table partitioning especially on larger systems where the amount of data is greater.

The main benefits of table partitioning are:

- Faster ETL, as indexes are rebuilt only over the table partitions that have changed.
- Faster reports, as partition pruning is a very efficient way of getting to the required data.

Optional or Mandatory

This task is optional, however by default no tables are partitioned.

Applies to

Systems where Oracle Business Analytics Warehouse is implemented on an Oracle database.

Dependencies

No dependencies.

Task

The latest recommendations for table partitioning of Human Resource tables can be found in Tech Notes in My Oracle Support. These should be reviewed before any action is taken.

There is a table partitioning utility provided in ODI which can be used to create partitioned tables. This utility can be run at any time to implement a particular
partition strategy on a table. It is re-rollable and can be used to change the strategy if needed. It will backup the existing table, create the partitioned table in its place and copy in the data and indexes.

For example, to implement table partitioning on the table W_WRKFC_EVT_MONTH_F:

1. Execute the scenario IMPLEMENT_DW_TABLE_PARTITIONING passing in the parameters as follows:

 Table B–1 Parameters for Table Partitioning

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>CREATE_SCRIPT_FILE</td>
<td>Whether or not to create a file with the partition table script.</td>
<td>Y(es)</td>
</tr>
<tr>
<td>PARTITION_KEY</td>
<td>Column acting as partition key.</td>
<td>EVENT_MONTH_WID</td>
</tr>
<tr>
<td>RUN_DDL</td>
<td>Whether or not to execute the script.</td>
<td>N(o)</td>
</tr>
<tr>
<td>SCRIPT_LOCATION</td>
<td>Location on file system to create the script.</td>
<td>C:/Scripts/Partitioning</td>
</tr>
<tr>
<td>TABLE_NAME</td>
<td>Name of table to partition.</td>
<td>W_WRKFC_EVT_MONTH_F</td>
</tr>
</tbody>
</table>

2. If required, then review the script and adjust the partitioning definition.

For the workforce fact table, monthly snapshot records are created from a specified date (HR Workforce Snapshot Date, default value 1st January 2008). Therefore, it would be logical to make this date the cutoff for the first partition, and then partition monthly or quarterly thereafter.

This is done by changing the script from:

 CREATE TABLE W_WRKFC_EVT_MONTH_F
 PARTITION BY RANGE (EVENT_MONTH_WID) INTERVAL(1)
 (PARTITION p0 VALUES LESS THAN {1})

 To:

 CREATE TABLE W_WRKFC_EVT_MONTH_F
 PARTITION BY RANGE (EVENT_MONTH_WID) INTERVAL(3)
 (PARTITION p0 VALUES LESS THAN {200801})

3. Execute the script against Oracle Business Analytics Warehouse.

B.2.13 How to Deploy Objects in E-Business Suite for Exploding the Bill Of Materials

The Bill of Materials (BOM) functional area enables you to determine the profit margin of the components that comprise the finished goods. BOM enables you to keep up with the most viable vendors in terms of cost and profit, and to keep your sales organization aware of product delivery status, including shortages.

To deploy objects in E-Business Suite for exploding the BOM, ensure that the E-Business Suite source environment meets the minimum patch level for your version, as follows:
- Customers with Oracle EBS version R12.2.x must be at or above patch level 17457141:R12.BOM.D.
- Customers with Oracle EBS version R12.0.x or OPI patch set A must be at or above patch level 16507117:R12.OPI.A.
- Customers with Oracle EBS version R12.1.x or OPI patch set B must be at or above patch level 16507117:R12.OPI.B.
- Customers with Oracle EBS version 11i must be at or above patch level 16506948.

Refer to the System Requirements and Supported Platforms for Oracle Business Intelligence Applications for full information about supported patch levels for your source system.

Note: Systems at or above these minimum patch levels include the package OPI_OBIA_BOMPEXPL_WRAPPER_P or OBIA_BOMPEXPL_WRAPPER_P in the APPS schema, and include the following tables in the OPI or BOM schema with alias tables in the APPS schema:

- OPI_OBIA_W_BOM_HEADER_DS or OBIA_W_BOM_HEADER_DS
- OPI_OBIA_BOM_EXPLOSION or OBIA_BOM_EXPLOSION
- OBIA_BOM_EXPLOSION_TEMP

How to Configure the Bill of Materials Explosion Options

The Bill of Materials (BOM) functional area enables you to analyze the components that comprise the finished goods. BOM enables you to determine how many products use a particular component. It also enables you to get visibility into the complete BOM hierarchy for a finished product.

Note: To run the ETL as the apps_read_only user, you must first run the following DCL commands from the APPS schema:

```
Grant insert on opi.opi_obia_w_bom_header_ds to &read_only_user;
Grant analyze any to &read_only_user;
```

You can explode the BOM structure with three different options:

- **All.** All the BOM components are exploded regardless of their effective date or disable date. To explode a BOM component is to expand the BOM tree structure.
- **Current.** The incremental extract logic considers any changed components that are currently effective, any components that are effective after the last extraction date, or any components that are disabled after the last extraction date.
- **Current and Future.** All the BOM components that are effective now or in the future are exploded. The disabled components are left out.

These options are controlled by the EXPLODE_OPTION variable. The EXPLODE_OPTION variable is pre-configured with a value of 2, explode Current BOM structure.

These options are controlled by the EXPLODE_OPTION variable. The EXPLODE_OPTION variable is preconfigured with a value of 2, explode Current BOM structure.

There are five different BOM types in a source system: 1 - Model, 2 - Option Class, 3 - Planning, 4 - Standard, and 5 - Product Family. By default, only the Standard BOM type is extracted and exploded. You can control this selection using the EBS_BOM_TYPE parameter.
The SDE_ORA_BOMItemFact_Header mapping invokes the OPI_OBIA_BOMEXPL_P or OBIA_BOMEXPL_P package in the EBS database to explode the BOM structure. The Table B-2 lists the variables used to control the stored procedure.

Table B–2 Variables for the BOM Explosion Stored Procedure

<table>
<thead>
<tr>
<th>Input Variable</th>
<th>Preconfigured Value</th>
<th>Description</th>
</tr>
</thead>
</table>
| BOM_OR_ENG | 1 | 1—BOM
2—ENG |
| COMMIT_POINT | 5000 | Number of records to trigger a Commit. |
| COMP_CODE | Not applicable. | This parameter is deprecated and no longer affects the functionality of the procedure. |
| CST_TYPE_ID | 0 | This parameter is deprecated and no longer affects the functionality of the procedure. |
| EXPLODE_OPTION | 2 | 1—All
2—Current
3—Current and Future |
| EXPL_QTY | 1 | Explosion quantity. |
| IMPL_FLAG | 1 | 1—Implemented Only
2—Implemented and Non-implemented |
| LEVELS_TO_EXPLODE | 10 | Number of levels to explode. |
| MODULE | 2 | 1—Costing
2—BOM
3—Order Entry
4—ATO
5—WSM |
| ORDER_BY | 1 | Controls the order of the records.
1—Operation Sequence Number, Item Number.
2—Item Number, Operation Sequence Number. |
| PLAN_FACTOR_FLAG | 2 | 1—Yes
2—No |
Table B–2 (Cont.) Variables for the BOM Explosion Stored Procedure

<table>
<thead>
<tr>
<th>Input Variable</th>
<th>Preconfigured Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RELEASE_OPTION</td>
<td>0</td>
<td>For RELEASE_OPTION, the possible values are:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0 – include Revised Items with a status of 6 (Implemented)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 – Include Revised Items with statuses 4, 6, and 7 (Scheduled, Implemented and Released)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 – Include Revised Items with statuses 1, 4, 6, and 7 (Open, Scheduled, Implemented and Released)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 – Include items regardless of status.</td>
</tr>
<tr>
<td>STD_COMP_FLAG</td>
<td>0</td>
<td>0 – Exclude all components</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 – Explode only standard components</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 – Explode all components</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 – Explode only optional components</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NOTE: STD_CMP_FLAG is only used when MODULE = 3 (Order Entry)</td>
</tr>
<tr>
<td>UNIT_NUMBER</td>
<td>Not applicable.</td>
<td>When entered, limits the components exploded to the specified Unit.</td>
</tr>
<tr>
<td>VERIFY_FLAG</td>
<td>0</td>
<td>This parameter is deprecated and no longer affects the functionality of the procedure.</td>
</tr>
</tbody>
</table>

B.2.14 How To Configure JD Edwards EnterpriseOne Category Codes

The Dimension tables listed below contain twenty generic attribute columns to allow for storage and display of customizable values from the source application system:

- W_PRODUCT_ADDL_ATTR_D
- W_PARTY_ORG_ADDL_ATTR_D
- W_CUSTOMER_ACCOUNT_D (contains the new Attributes columns in the base table itself)
- W_INT_ORG_D (contains the new Attributes columns in the base table itself)

B.2.15 How to Configure Self-Service Timecard Attributes to Business Object Natural Keys

This task is not applicable to Oracle BI Applications Release 11.1.1.8.

B.2.16 How to Make Corrections to the Group Account Number Configuration for PeopleSoft

Note: Refer to "How to set up Group Account Numbers for Peoplesoft" for general concepts about group account number and Financial Statement Item code.
When a user maps a GL natural account to an incorrect group account number, incorrect accounting entries might be inserted into the fact table. For example, the natural account 620000 is mistakenly classified under 'AR' group account number when it should be classified under 'AP' group account number. When this happens, the ETL program will try to reconcile all GL journals charged to account 620000 against sub ledger accounting records in AR Fact (W_AR_XACT_F). Since these GL journal lines did not come from AR, the ETL program will not be able to find the corresponding sub ledger accounting records for these GL journal lines. In this case, the ETL program will insert 'Manual' records into the AR fact table because it thinks that these GL journal lines are 'Manual' journal entries created directly in the GL system charging to the AR accounts.

To make corrections to group account number configurations for Peoplesoft, correct the mapping of GL natural account to the correct group account in the input CSV file called file_group_acct_codes_psft.csv.

If you add values, then you also need to update the BI metadata repository (that is, the RPD file).

Note: The configuration file or files for this task are provided on installation of Oracle BI Applications at one of the following locations:

Your system administrator will have copied these files to another location and configured ODI connections to read from this location. Work with your system administrator to obtain the files. When configuration is complete, your system administrator will need to copy the configured files to the location from which ODI reads these files.

For example, before correction, a CSV file has the following values (Incorrect Group Account Number assignment):

- BUSINESS_UNIT = AUS01
- FROM ACCT = 620000
- TO ACCT = 620000
- GROUP_ACCT_NUM = AR

After correction, account '620000' should now correctly point to 'AP' group account number, and the CSV file would have the following (corrected) values:

- BUSINESS_UNIT = AUS01
- FROM ACCT = 620000
- TO ACCT = 620000
- GROUP_ACCT_NUM = AP

Based on the Group Account corrections made in the CSV file, the next ETL process would reassign the group accounts correctly and fix the entries that were made to the fact tables from the previous ETL run(s).
B.2.17 Configure Data Load Parameter for JD Edwards EnterpriseOne Rate Type

Setting up the JDE_RATE_TYPE parameter
The concept of Rate Type in JD Edwards EnterpriseOne is different to that defined in Oracle Business Analytics Warehouse.

In Oracle’s JD Edwards EnterpriseOne, the Rate Type is an optional key; it is not used during Currency Exchange Rate calculations.

ODI uses the JDE_RATE_TYPE parameter to populate the Rate_Type field in the W_EXCH_RATE_GS table. By default, the JDE_RATE_TYPE parameter has a value of "Actual." The query and lookup on W_EXCH_RATE_G will succeed when the RATE_TYPE field in the W_EXCH_RATE_G table contains the same value as the GLOBAL1_RATE_TYPE, GLOBAL2_RATE_TYPE and GLOBAL3_RATE_TYPE fields in the W_GLOBAL_CURR_G table.

B.2.18 How to Add Dates to the Order Cycle Time Table for Post-Load Processing

To add more dates, you need to understand how the Order Cycle Times table is populated. Therefore, if you want to change the dates loaded into the Order Cycle Time table (W_SALES_CYCLE_LINE_F), then you have to modify the interfaces for both a full load and an incremental load that take the dates from the W_* tables and load them into the Cycle Time table.

To add dates to the Cycle Time table load:

1. In ODI Designer Navigator, expand Models - Oracle BI Applications - Oracle BI Applications - Fact.
2. Find W_SALES_CYCLE_LINE_F and add a column to store this date you want to add.
 For example, if you are loading the Validated on Date in the W_SALES_CYCLE_LINE_F table, then you need to create a new column, VALIDATED_ON_DT, and modify the target definition of the W_SALES_CYCLE_LINE_F table.
3. Save the changes.
5. Find PLP_SalesCycleLinesFact_Load folder and modify interfaces under the folder to select the new column from any of the following source tables, and load it to the W_SALES_CYCLE_LINE_F target table:
 - W_SALES_ORDER_LINE_F
 - W_SALES_INVOICE_LINE_F
 - W_SALES_PICK_LINE_F
 - W_SALES_SCHEDULE_LINE_F
6. Modify the temp interfaces and the main interfaces for both a full load and an incremental load.

B.2.19 How to Set Up Group Account Numbers for E-Business Suite

This section explains how to map Oracle General Ledger Accounts to Group Account Numbers, and includes the following topics:

- An overview of setting up Oracle General Ledger Accounts - see Section B.2.19.1, "Overview of Mapping Oracle GL Accounts to Group Account Numbers".
B.2.19.1 Overview of Mapping Oracle GL Accounts to Group Account Numbers

Group Account Number Configuration is an important step in the configuration of Financial Analytics, because it determines the accuracy of the majority of metrics in the General Ledger and Profitability module. Group Accounts in combination with Financial Statement Item Codes are also leveraged in the GL reconciliation process, to ensure that subledger data reconciles with GL journal entries. This topic is discussed in more detail later in this section.

You set up General Ledger accounts using the following configuration file:

- file_group_acct_codes_ora.csv - this file maps General Ledger accounts to group account codes.

Note: The configuration file or files for this task are provided on installation of Oracle BI Applications at one of the following locations:

Your system administrator will have copied these files to another location and configured ODI connections to read from this location. Work with your system administrator to obtain the files. When configuration is complete, your system administrator will need to copy the configured files to the location from which ODI reads these files.

You can categorize your Oracle General Ledger accounts into specific group account numbers. The group account number is used during data extraction as well as front-end reporting. The GROUP_ACCT_NUM field in the GL Account dimension table W_GL_ACCOUNT_D denotes the nature of the General Ledger accounts (for example, cash account, payroll account). For a list of the Group Account Number domain values, see Oracle Business Analytics Warehouse Data Model Reference. The mappings to General Ledger Accounts Numbers are important for both Profitability analysis and General Ledger analysis (for example, Balance Sheets, Profit and Loss, Cash Flow statements).

The logic for assigning the group accounts is located in the file_group_acct_codes_ora.csv file. Table B–3 shows an example configuration of the file_group_acct_codes_ora.csv file.
In Table B–3, in the first row, all accounts within the account number range from 101010 to 101099 that have a Chart of Account (COA) ID equal to 1 are assigned to Current Asset (that is, CA). Each row maps all accounts within the specified account number range and within the given chart of account ID.

If you need to create a new group of account numbers, you can create new rows in Oracle BI Applications Configuration Manager. You can then assign GL accounts to the new group of account numbers in the file_group_acct_codes_ora.csv file.

You must also add a new row in Oracle BI Applications Configuration Manager to map Financial Statement Item codes to the respective Base Table Facts. Table B–4 shows the Financial Statement Item codes to which Group Account Numbers must map, and their associated base fact tables.

By mapping your GL accounts against the group account numbers and then associating the group account number to a Financial Statement Item code, you have indirectly associated the GL account numbers to Financial Statement Item codes as well. This association is important to perform GL reconciliation and to ensure the subledger data reconciles with GL journal entries. It is possible that after an invoice has been transferred to GL, a GL user might adjust that invoice in GL. In this scenario, it is important to ensure that the adjustment amount is reflected in the subledger base fact as well as balance tables. To determine such subledger transactions in GL, the reconciliation process uses Financial Statement Item codes.

Table B–3 Example Configuration of file_group_acct_codes_ora.csv File

<table>
<thead>
<tr>
<th>CHART OF ACCOUNTS ID</th>
<th>FROM ACCT</th>
<th>TO ACCT</th>
<th>GROUP_ACCT_NUM</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>101010</td>
<td>101099</td>
<td>CA</td>
</tr>
<tr>
<td>1</td>
<td>131010</td>
<td>131939</td>
<td>FG INV</td>
</tr>
<tr>
<td>1</td>
<td>152121</td>
<td>152401</td>
<td>RM INV</td>
</tr>
<tr>
<td>1</td>
<td>171101</td>
<td>171901</td>
<td>WIP INV</td>
</tr>
<tr>
<td>1</td>
<td>173001</td>
<td>173001</td>
<td>PPE</td>
</tr>
<tr>
<td>1</td>
<td>240100</td>
<td>240120</td>
<td>ACC DEPCN</td>
</tr>
<tr>
<td>1</td>
<td>261000</td>
<td>261100</td>
<td>INT EXP</td>
</tr>
<tr>
<td>1</td>
<td>181011</td>
<td>181918</td>
<td>CASH</td>
</tr>
<tr>
<td>1</td>
<td>251100</td>
<td>251120</td>
<td>ST BORR</td>
</tr>
</tbody>
</table>

Table B–4 Financial Statement Item Codes and Associated Base Fact Tables

<table>
<thead>
<tr>
<th>Financial Statement Item Codes</th>
<th>Base Fact Tables</th>
</tr>
</thead>
<tbody>
<tr>
<td>AP</td>
<td>AP base fact (W_AP_XACT_F)</td>
</tr>
<tr>
<td>AR</td>
<td>AR base fact (W_AR_XACT_F)</td>
</tr>
<tr>
<td>COGS</td>
<td>Cost of Goods Sold base fact (W_GL_COGS_F)</td>
</tr>
<tr>
<td>REVENUE</td>
<td>Revenue base fact (W_GL_REVN_F)</td>
</tr>
<tr>
<td>TAX</td>
<td>Tax base fact (W_TAX_XACT_F)¹</td>
</tr>
<tr>
<td>OTHERS</td>
<td>GL Journal base fact (W_GL_OTHER_F)</td>
</tr>
</tbody>
</table>

¹ E-Business Suite adapters for Financial Analytics do not support the Tax base fact (W_TAX_XACT_F).
Financial Statement Item codes are internal codes used by the ETL process to process the GL journal records during the GL reconciliation process against the subledgers. When the ETL process reconciles a GL journal record, it looks at the Financial Statement Item code associated with the GL account that the journal is charging against, and then uses the value of the Financial Statement item code to decide which base fact the GL journal should reconcile against. For example, when processing a GL journal that charges to a GL account which is associate to 'AP' Financial Statement Item code, then the ETL process will try to go against AP base fact table (W_AP_XACT_F), and try to locate the corresponding matching AP accounting entry. If that GL account is associated with the 'REVENUE' Financial Statement Item code, then the ETL program will try to go against the Revenue base fact table (W_GL_REVN_F), and try to locate the corresponding matching Revenue accounting entry.

B.2.19.2 How to Map Oracle GL Account Numbers to Group Account Numbers

This section explains how to map Oracle General Ledger Account Numbers to Group Account Numbers.

Note: If you add new Group Account Numbers to the file_group_acct_codes_<source system type>.csv file, you must also add metrics to the BI metadata repository (that is, the RPD file). See Section B.2.19.3, “Example of Adding Group Account Number Metrics to the Oracle BI Repository” for more information.

To map Oracle GL account numbers to group account numbers:

1. Edit the file_group_acct_codes_ora.csv file.

Note: The configuration file or files for this task are provided on installation of Oracle BI Applications at one of the following locations:

Source-independent files: <Oracle Home for BI>\biapps\etl\data_files\src_files\.

Source-specific files: <Oracle Home for BI>\biapps\etl\data_files\src_files\<source adaptor>.

Your system administrator will have copied these files to another location and configured ODI connections to read from this location. Work with your system administrator to obtain the files. When configuration is complete, your system administrator will need to copy the configured files to the location from which ODI reads these files.

2. For each Oracle GL account number that you want to map, create a new row in the file containing the following fields:

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHART OF ACCOUNTS ID</td>
<td>The ID of the GL chart of account.</td>
</tr>
<tr>
<td>FROM ACCT</td>
<td>The lower limit of the natural account range. This is based on the natural account segment of your GL accounts.</td>
</tr>
<tr>
<td>TO ACCT</td>
<td>The higher limit of the natural account range. This is based on the natural account segment of your GL accounts.</td>
</tr>
</tbody>
</table>
3. Ensure that the values that you specify in the file `group_acct_codes_ora.csv` file are consistent with the values that are specified in Oracle BI Applications Configuration Manager for Group Accounts.

4. Save and close the CSV file.

B.2.19.3 Example of Adding Group Account Number Metrics to the Oracle BI Repository

If you add new Group Account Numbers to the file `group_acct_codes_<source system type>.csv` file, then you must also use Oracle BI EE Administration Tool to add metrics to the Oracle BI repository to expose the new Group Account Numbers, as described in this example.

This example is applicable to the following tasks:

- For E-Business Suite, Section B.2.19.2, "How to Map Oracle GL Account Numbers to Group Account Numbers"
- For PeopleSoft, Section B.2.20.2, "How to Map GL Account Numbers to Group Account Numbers"
- For JD Edwards, Section B.2.37.2, "How to Map GL Account Numbers to Group Account Numbers"

This example assumes that you have a new Group Account Number named Payroll (Domain member code 'PAYROLL'), and you want to add a new metric to the Presentation layer called 'Payroll Expense'.

To add a new metric in the logical table Fact – Fins – GL Other Posted Transaction:

1. Using Oracle BI EE Administration Tool, edit the BI metadata repository (that is, the RPD file).

 For example, the file `OracleBIAnalyticsApps.rpd` is located at:

 \ORACLE\INSTANCE\bifoundation\OracleBIServerComponent\coreapplication\obis<system name>\repository

2. In the Business Model and Mapping layer:

 a. Create a logical column named 'Payroll Expense' in the logical table 'Fact – Fins – GL Journals Posted'.

Note: You can optionally remove the unused rows from the CSV file.

For example:

```
101, 1110, 1110, CASH
101, 1210, 1210, AR
101, 1220, 1220, AR
```
For example, right-click the Core\Fact - Fins - GL Journals Posted\ object and choose New Object, then Logical Column, to display the Logical Column dialog. Specify Payroll Expense in the Name field.

b. Display the Aggregation tab, and then choose 'Sum' in the Default aggregation rule drop-down list.

c. Click OK to save the details and close the dialog.

d. Expand the Core\Fact - Fins - GL Journals Posted\Sources\ folder and double click the Fact_W_GL_OTHER_GRPACCT_FSCLPRD_A source to display the Logical Table Source dialog.

e. Display the Column Mapping tab.

f. Select Show unmapped columns.

g. Locate the Payroll Expense expression, and click the Expression Builder button to open Expression Builder.

h. Use Expression Builder to specify the following SQL statement:

```
FILTER("Core"."Fact - Fins - GL Journals Posted"."Transaction Amount" USING "Core"."Dim - GL Account"."Group Account Number" = 'PAYROLL')
```

The filter condition refers to the new Group Account Number 'Payroll'.

i. Repeat steps (d) to (h) for each Logical Table Source. Modify the expression in step (h) appropriately for each LTS by using the appropriate fact table that corresponds to the Logical Table Source.

Steps (d) to (h) must be repeated for each Logical Table Source because in this example, there are multiple Logical Table Sources for fact table and aggregation tables in this logical table. Modify the expression in step (h) appropriately for each Logical Table Source by using the appropriate fact table to which it corresponds.

3. Save the details.

4. To expose the new repository objects in end users’ dashboards and reports, drag the new objects from the Business Model and Mapping layer to an appropriate folder in the Presentation layer.

To add a new metric in the logical table Fact – Fins – GL Balance:

1. Using Oracle BI EE Administration Tool, edit the BI metadata repository (that is, the RPD file).

For example, the file OracleBIAnalyticsApps.rpd is located at:

```
ORACLE_INSTANCE\bifoundation\OracleBIServerComponent\coreapplication_obis\repository
```

2. In the Business Model and Mapping layer:

For example, right-click the Core\Fact – Fins – GL Balance object and choose New Object, then Logical Column, to display the Logical Column dialog. Specify Payroll Expense in the Name field.

b. In the Column Source tab, select Derived from existing columns using an expression.

c. Click the Expression Builder button to display Expression Builder.
d. Use Express Builder to specify the following SQL statement:

```sql
FILTER("Core"."Fact - Fins - GL Balance"."Activity Amount" USING "Core"."Dim - GL Account"."Group Account Number" = 'PAYROLL')
```

The filter condition refers to the new Group Account Number 'PAYROLL'.

3. Save the details.

4. To expose the new repository objects in end users' dashboards and reports, drag the new objects from the Business Model and Mapping layer to an appropriate folder in the Presentation layer.

B.2.20 How to Set Up Group Account Numbers for Peoplesoft

This section explains how to map General Ledger Accounts to Group Account Numbers, and includes the following topics:

- An overview of setting up General Ledger Accounts - see Section B.2.20.1, "Overview of Mapping GL Accounts to Group Account Numbers."

- A description of how to map General Ledger Accounts to Group Account Numbers - see Section B.2.20.2, "How to Map GL Account Numbers to Group Account Numbers."

- An example that explains how to add Group Account Number metrics to the Oracle BI Repository - see Section B.2.19.3, "Example of Adding Group Account Number Metrics to the Oracle BI Repository."

Note: It is critical that the GL account numbers are mapped to the group account numbers (or domain values) because the metrics in the GL reporting layer use these values. For a list of domain values for GL account numbers, see Oracle Business Analytics Warehouse Data Model Reference.

B.2.20.1 Overview of Mapping GL Accounts to Group Account Numbers

Group Account Number configuration is an important step in the configuration of Financial Analytics, as it determines the accuracy of the majority of metrics in the General Ledger and Profitability module. Group Accounts in combination with Financial Statement Item codes are also leveraged in the GL reconciliation process, to ensure that subledger data reconciles with GL journal entries. This topic is discussed in more detail later in this section.

You can categorize your PeopleSoft General Ledger accounts into specific group account numbers. The GROUP_ACCT_NUM field denotes the nature of the General Ledger accounts.

You set up General Ledger accounts using the following configuration file:

- `file_group_acct_codes_psft.csv` - this file maps General Ledger accounts to group account codes.
Examples include Cash account, Payroll account, and so on. For a list of the Group Account Number domain values, see Oracle Business Analytics Warehouse Data Model Reference. The group account number configuration is used during data extraction as well as front-end reporting. For example, the group account number configuration is used heavily in both Profitability Analysis (Income Statement) and General Ledger analysis. The logic for assigning the accounts is located in the file_group_acct_codes_psft.csv file.

In Table B–5, in the first row, all accounts within the account number range from 101010 to 101099 containing a Business Unit equal to AUS01 are assigned to AP. Each row maps all accounts within the specified account number range and with the given Business Unit. If you need to assign a new group of account numbers, you can then assign GL accounts to the new group of account numbers in the file_group_acct_codes_psft.csv file.

You must also add a new row in Oracle BI Applications Configuration Manager to map Financial Statement Item codes to the respective Base Table Facts. Table B–6 shows the Financial Statement Item codes to which Group Account Numbers must map, and their associated base fact tables.

Table B–5 Layout of file_group_acct_codes_psft.csv File

<table>
<thead>
<tr>
<th>BUSINESS_UNIT</th>
<th>FROM_ACCT</th>
<th>TO_ACCT</th>
<th>GROUP_ACCT_NUM</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUS01</td>
<td>101010</td>
<td>101099</td>
<td>AP</td>
</tr>
<tr>
<td>AUS01</td>
<td>131010</td>
<td>131939</td>
<td>AR</td>
</tr>
<tr>
<td>AUS01</td>
<td>152121</td>
<td>152401</td>
<td>COGS</td>
</tr>
<tr>
<td>AUS01</td>
<td>171101</td>
<td>173001</td>
<td>OTHER</td>
</tr>
<tr>
<td>AUS01</td>
<td>240100</td>
<td>240120</td>
<td>REVENUE</td>
</tr>
<tr>
<td>AUS01</td>
<td>251100</td>
<td>251120</td>
<td>TAX</td>
</tr>
</tbody>
</table>

Oracle’s PeopleSoft adapters for Financial Analytics do not support the Tax base fact (W_TAX_XACT_F).

In Table B–5, in the first row, all accounts within the account number range from 101010 to 101099 containing a Business Unit equal to AUS01 are assigned to AP. Each row maps all accounts within the specified account number range and with the given Business Unit. If you need to assign a new group of account numbers, you can then assign GL accounts to the new group of account numbers in the file_group_acct_codes_psft.csv file.

You must also add a new row in Oracle BI Applications Configuration Manager to map Financial Statement Item codes to the respective Base Table Facts. Table B–6 shows the Financial Statement Item codes to which Group Account Numbers must map, and their associated base fact tables.

Table B–6 Financial Statement Item Codes and Associated Base Fact Tables

<table>
<thead>
<tr>
<th>Financial Statement Item Codes</th>
<th>Base Fact Tables</th>
</tr>
</thead>
<tbody>
<tr>
<td>AP</td>
<td>AP base fact (W_AP_XACT_F)</td>
</tr>
<tr>
<td>AR</td>
<td>AR base fact (W_AR_XACT_F)</td>
</tr>
</tbody>
</table>
By mapping your GL accounts against the group account numbers and then associating the group account number to a Financial Statement Item code, you have indirectly associated the GL account numbers to Financial Statement Item codes as well. This association is important to perform GL reconciliation and ensure the subledger data reconciles with GL journal entries. It is possible that after an invoice has been transferred to GL, a GL user might adjust that invoice in GL. In this scenario, it is important to ensure that the adjustment amount is reflected in the subledger base fact as well as balance tables. To determine such subledger transactions in GL, the reconciliation process uses Financial Statement Item codes.

Financial Statement Item codes are internal codes used by the ETL process to process the GL journal records during the GL reconciliation process against the subledgers. When the ETL process reconciles a GL journal record, it looks at the Financial Statement Item code associated with the GL account that the journal is charging against, and then uses the value of the Financial Statement item code to decide which base fact the GL journal should reconcile against. For example, when processing a GL journal that charges to a GL account which is associate to ‘AP’ Financial Statement Item code, then the ETL process will try to go against AP base fact table (W_AP_XACT_F), and try to locate the corresponding matching AP accounting entry. If that GL account is associated with the ‘REVENUE’ Financial Statement Item code, then the ETL program will try to go against the Revenue base fact table (W_GL_REVN_F), and try to locate the corresponding matching Revenue accounting entry.

B.2.20.2 How to Map GL Account Numbers to Group Account Numbers

This section explains how to map General Ledger Account Numbers to Group Account Numbers.

Note: If you add new Group Account Numbers to the file_group_acct_codes_<source system type>.csv file, you must also add metrics to the BI metadata repository (that is, the RPD file). See Section B.2.19.3, "Example of Adding Group Account Number Metrics to the Oracle BI Repository" for more information.

To map PeopleSoft GL account numbers to group account numbers:

1. Edit the file_group_acct_codes_psft.csv file.
2. For each GL account number that you want to map, create a new row in the file containing the following fields:

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BUSINESS_UNIT</td>
<td>The ID of the BUSINESS UNIT.</td>
</tr>
<tr>
<td>FROM ACCT</td>
<td>The lower limit of the natural account range. This is based on the natural</td>
</tr>
<tr>
<td></td>
<td>account segment of your GL accounts.</td>
</tr>
<tr>
<td>TO ACCT</td>
<td>The higher limit of the natural account range. This is based on the natural</td>
</tr>
<tr>
<td></td>
<td>account segment of your GL accounts.</td>
</tr>
<tr>
<td>GROUP_ACCT_NUM</td>
<td>This field denotes the group account number of the General Ledger account,</td>
</tr>
<tr>
<td></td>
<td>as specified in a domain in the Group Account domain in Oracle BI Applications</td>
</tr>
<tr>
<td></td>
<td>Configuration Manager. For example, ‘AP’ for Accounts Payables, ‘CASH’ for</td>
</tr>
<tr>
<td></td>
<td>cash account, ‘GEN PAYROLL’ for payroll account, and so on.</td>
</tr>
</tbody>
</table>

For example:

AUS01, 1110, 1110, CASH
AUS01, 1210, 1210, AR
AUS01, 1220, 1220, AR

Note: You can optionally remove the unused rows in the CSV file.

3. Ensure that the values that you specify in the file_group_acct_codes_psft.csv file are consistent with the values that are specified for domains in Oracle BI Applications Configuration Manager.

4. Save and close the CSV file.

B.2.21 How to Configure GL Account and GL Segments for E-Business Suite

This section explains how to configure General Ledger Account and General Ledger Segments for E-Business Suite, and contains the following topics:

- Section B.2.21.1, “Overview”
B.2.21.1 Overview

If you are deploying Oracle Financial Analytics, Oracle Procurement and Spend Analytics, or Oracle Supply Chain and Order Management Analytics, then you must configure GL account hierarchies as described in this topic.

Thirty segments are supported in which you can store accounting flexfields. Flexfields support complex data configurations. For example:

- You can store data in any segment.
- You can use more or fewer segments per chart of accounts, as required.
- You can specify multiple segments for the same chart of accounts.

B.2.21.2 Example of Data Configuration for a Chart of Accounts

A single company might have a US chart of accounts and an APAC chart of accounts, with the following data configuration:

<table>
<thead>
<tr>
<th>Segment Type</th>
<th>US Chart of Account (4256) value</th>
<th>APAC Chart of Account (4257) value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Company</td>
<td>Stores in segment 3</td>
<td>Stores in segment 1</td>
</tr>
<tr>
<td>Natural Account</td>
<td>Stores in segment 4</td>
<td>Stores in segment 3</td>
</tr>
<tr>
<td>Cost Center</td>
<td>Stores in segment 5</td>
<td>Stores in segment 2</td>
</tr>
<tr>
<td>Geography</td>
<td>Stores in segment 2</td>
<td>Stores in segment 5</td>
</tr>
<tr>
<td>Line of Business (LOB)</td>
<td>Stores in segment 1</td>
<td>Stores in segment 4</td>
</tr>
</tbody>
</table>

This example shows that in US Chart of Account, ‘Company’ is stored in the segment 3 column in the E-Business Suite table GL_CODE_COMBINATIONS. In APAC Chart of Account, ‘Company’ is stored in the segment 1 column in GL_CODE_COMBINATIONS table. The objective of this configuration file is to ensure that when segment information is extracted into the Oracle Business Analytics Warehouse table W_GL_ACCOUNT_D, segments with the same nature from different chart of accounts are stored in the same column in W_GL_ACCOUNT_D.

For example, we can store ‘Company’ segments from US COA and APAC COA in the segment 1 column in W_GL_ACCOUNT_D; and Cost Center segments from US COA and APAC COA in the segment 2 column in W_GL_ACCOUNT_D, and so on.

B.2.21.3 How to Set Up the GL Segment Configuration File

Before you run the ETL process for GL accounts, you must specify the segments that you want to analyze. Natural Account, Balancing Segment, and Cost Center segments are mapped by default, but you must manually map additional segments as described in this topic.

To specify the segments, you use the ETL configuration file named file_glacct_segment_config_ora.csv.
In file_glacct_segment_config_ora.csv, you must specify the segments of the same type in the same column. For example, you might store all Product segments from all charts of accounts in one column, and all Region segments from all charts of accounts in a separate column.

File file_glacct_segment_config_ora.csv contains a set of 3 columns for each accounting segment to be configured in the warehouse. In the 1st column, give the actual segment column name in Oracle E-Business Suite where this particular entity is stored. This column takes values such as SEGMENT1, SEGMENT2,...SEGMENT30 (this is case sensitive). In the second column give the corresponding VALUESETID used for this COA and segment in Oracle E-Business Suite. You will need to configure the third column ONLY if you have configured a dependent segment in the first column. If the segment in the first column is a dependent segment, then give the segment name on which it is dependent on, in Oracle E-Business Suite. If you don't have any dependent segments, then leave this column blank in the CSV file.

For example, you might want to do the following:

- Analyze GL account hierarchies using only Product, Region and Location.
- Store all Product segments from all COAs in ACCOUNT_SEG1_CODE column in W_GL_ACCOUNT_D.
- Store all Region segments from all COAs in ACCOUNT_SEG2_CODE column in W_GL_ACCOUNT_D.
- Store all Location segments from all COAs in ACCOUNT_SEG3_CODE column in W_GL_ACCOUNT_D.

You have defined three different COAs (101, 50194 and 50195) in EBS, as follows:

- For COA 101, Product is SEGMENT1, Region is SEGMENT2 and Location is SEGMENT3.
- For COA 50194, Product is SEGMENT2, Region is SEGMENT3 and Location is SEGMENT1.
- For COA 50195, Product is SEGMENT3, Region is SEGMENT1 and Location is SEGMENT2.
- For COA 50195, both the Region and Location segments are dependent on Product segment.

Figure B–2 shows how the configuration values above would be specified in the CSV file.
Note: If you are upgrading from Oracle BI Applications 7.9.6.x, Cost Center, Balancing Segment and Natural account segments are mapped by default. You do not need to map the Cost Center, Balancing Segment and Natural account segments in the file_glacct_segment_config_ora.csv file. The above example is only included to explain the mapping mechanism for additional segments.

GL Segment Configuration for Budgetary Control
For Budgetary Control, the first two segments are reserved for Project and Program segments respectively. Therefore, to use one or both of these, configure file_glacct_segment_config_ora.csv in this particular order:

1. Edit the file_glacct_segment_config_ora.csv file.
2. Specify your Project segment column name in the ‘SEG_PROJECT’ column.
3. Specify your Program segment column name in the ‘SEG_PROGRAM’ column.
4. If in case your Project and Program segments are dependent on any other segments, then specify those segment column names in ‘PROJECT_DEP’ and ‘PROGRAM_DEP’ columns respectively.
 - If you do not have reserved segments in your source system, leave that particular segment empty.
5. Save the file.

Additional Information
The example SQL Statement below shows against an Oracle E-Business Suite database, and outputs the entire GL chart of accounts setup. This output contains the necessary information required to setup the file_glacct_segment_config_ora.csv file.

```sql
SELECT
ST.ID_FLEX_STRUCTURE_CODE  "Chart of Account Code",
,SG.ID_FLEX_NUM            "Chart of Account Num",
,SG.SEGMENT_NAME               "Segment Name",
,SG.APPLICATION_COLUMN_NAME    "Column Name",
,SG.FLEX_VALUE_SET_ID          "Value Set Id",
,SG1.APPLICATION_COLUMN_NAME   "Parent Column Name"
FROM
FND_ID_FLEX_STRUCTURES ST
INNER JOIN FND_ID_FLEX_SEGMENTS SG ON ST.APPLICATION_ID = SG.APPLICATION_ID AND
ST.ID_FLEX_CODE = SG.ID_FLEX_CODE AND ST.ID_FLEX_NUM = SG.ID_FLEX_NUM
INNER JOIN FND_FLEX_VALUE_SETS VS ON SG.FLEX_VALUE_SET_ID = VS.FLEX_VALUE_SET_ID
LEFT OUTER JOIN FND_ID_FLEX_SEGMENTS SG1 ON VS.PARENT_FLEX_VALUE_SET_ID =
SG1.FLEX_VALUE_SET_ID AND SG.ID_FLEX_NUM = SG1.ID_FLEX_NUM AND SG.APPLICATION_ID =
SG1.APPLICATION_ID AND SG.ID_FLEX_CODE = SG1.ID_FLEX_CODE
WHERE
ST.APPLICATION_ID = 101
AND ST.ID_FLEX_CODE = 'GL#'
AND ST.ENABLED_FLAG = 'Y'
ORDER BY 1,2,3;
```

For example, you have 2 chart of accounts and the setup of the 2 chart of accounts as displayed by the SQL statement above as follows:
You want all these segments in BI and you want to map them as follows in BI:
- Map Region to Seg1
- Map Product to Seg2
- Map Sub-Account to Seg3
- Map Department to Seg4

Note:
- Department is only applicable to COA 201.
- COA 101 has Product and Sub-Account segments as dependent segments.

Figure B–3 shows how the configuration values above would be specified in the CSV file.

B.2.21.4 How to Configure GL Segments and Hierarchies Using Value Set Definitions

Note: The configuration file or files for this task are provided on installation of Oracle BI Applications at one of the following locations:

Source-independent files: <Oracle Home for BI>\biapps\etl\data_files\src_files\.

Source-specific files: <Oracle Home for BI>\biapps\etl\data_files\src_files\<source adaptor>.

Your system administrator will have copied these files to another location and configured ODI connections to read from this location. Work with your system administrator to obtain the files. When configuration is complete, your system administrator will need to copy the configured files to the location from which ODI reads these files.

1. Configure file_glacct_segment_config_ora.csv, as follows:
 a. Edit the file file_glacct_segment_config_ora.csv.
 For example, you might edit the file located in \src_files\EBS11510.
b. Follow the steps in Section B.2.21.3, "How to Set Up the GL Segment Configuration File" to configure the file.

2. Edit the BI metadata repository (that is, the RPD file) for GL Segments and Hierarchies Using Value Set Definitions.

The metadata contains multiple logical tables that represent each GL Segment, such as Dim_W_GL_SEGMENT_D_ProgramSegment, Dim_W_GL_SEGMENT_D_ProjectSegment, Dim_W_GL_SEGMENT_D_Segment1 and so on. Because all these logical tables are mapped to the same physical table, W_GL_SEGMENT_D, a filter should be specified in the logical table source of these logical tables in order to restrain the output of the logical table to get values pertaining to that particular segment. You must set the filter on the physical column SEGMENT_LOV_ID to the Value Set IDs that are applicable for that particular segment. The list of the Value Set IDs would be the same as the Value Set IDs you configured in the CSV file mentioned above.

Specify a filter in the Business Model and Mapping layer of the Oracle BI Repository, as follows.

a. In Oracle BI EE Administration Tool, edit the BI metadata repository (for example, OracleBIAnalyticsApps.rpd).

 The OracleBIAnalyticsApps.rpd file is located in ORACLE_INSTANCE\bifoundation\OracleBIServerComponent\coreapplication_obis\repository.

b. Expand each logical table, for example, Dim - GL Segment1, and open the logical table source under it. Display the Content tab. In the 'Use this WHERE clause…' box, apply a filter on the corresponding physical table alias of W_GL_SEGMENT_D.

 For example: "Oracle Data Warehouse"."Catalog"."dbo"."Dim_W_GL_SEGMENT_D_Segment1"."SEGMENT_LOV_ID" IN (comma separated values IDs).

c. Enter all Value Set IDs, separated by commas that correspond to this segment.

3. Oracle Financial Analytics supports up to 30 segments in the GL Account dimension, and by default delivers ten GL Segment dimensions in the BI metadata repository (that is, the RPD file). If you need more than ten GL Segments, perform the following steps to add new segments:

 In the Physical Layer:

a. Create two new physical alias of W_GL_SEGMENT_D as "Dim_W_GL_SEGMENT_D_SegmentXX" and Dim_W_GL_SEGMENT_D_SegmentXX_GLAccount.

 To do this, right-click the physical table W_GL_SEGMENT_D and select New Object and then Alias.

 Name the new alias as "Dim_W_GL_SEGMENT_D_SegmentXX" and "Dim_W_GL_SEGMENT_D_SegmentXX_GLAccount".

b. Create 4 new alias of W_GL_SEGMENT_DH as:

 - "Dim_W_GL_SEGMENT_DH_SegmentXX"
 - "Dim_W_GL_SEGMENT_DH_Security_SegmentXX"
 - "Dim_W_GL_SEGMENT_DH_SegmentXX_GLAccount"
 - "Dim_W_GL_SEGMENT_DH_Security_SegmentXX_GLAccount"
c. Create a Foreign Key from "Dim_W_GL_SEGMENT_D_SegmentXX" to "Dim_W_GL_SEGMENT_DH_SegmentXX" and "Dim_W_GL_SEGMENT_DH_Security_SegmentXX".

The foreign key is similar to the one from "Dim_W_GL_SEGMENT_D_Segment1" to "Dim_W_GL_SEGMENT_DH_Segment1" and "Dim_W_GL_SEGMENT_DH_Security_Segment1".

The direction of the foreign key should be from W_GL_SEGMENT_DH to W_GL_SEGMENT_D; for example, on a '0/1': N cardinality join, W_GL_SEGMENT_DH will be on the '0/1' side and W_GL_SEGMENT_D will be on the 'N' side. See Oracle Fusion Middleware Metadata Repository Builder’s Guide for Oracle Business Intelligence Enterprise Edition for more information about how to create physical foreign key joins.

d. Create a similar physical foreign key from "Dim_W_GL_SEGMENT_D_SegmentXX_GLAccount" to "Dim_W_GL_SEGMENT_DH_SegmentXX_GLAccount' and "Dim_W_GL_SEGMENT_DH_Security_SegmentXX_GLAccount".

e. Similarly, create physical foreign key join between Dim_W_GL_SEGMENT_D_SegmentXX and Dim_W_GL_ACCOUNT_D, with W_GL_SEGMENT_D on the '1' side and W_GL_ACCOUNT_D on the 'N' side.

f. Save your changes.

4. In the Business Model and Mapping Layer, do the following:

a. Create a new logical table "Dim - GL SegmentXX" similar to "Dim – GL Segment1".

This logical table should have a logical table source that is mapped to the physical tables created above (for example, it will have both Dim_W_GL_SEGMENT_DH_SegmentXX and Dim_W_GL_SEGMENT_DH_SegmentXX_GLAccount).

This logical table should also have all attributes similar to "Dim – GL Segment1" properly mapped to the respective physical tables, Dim_W_GL_SEGMENT_DH_SegmentXX and Dim_W_GL_SEGMENT_DH_SegmentXX_GLAccount.

b. In the Business Model Diagram, create a logical join from "Dim – GL SegmentXX" to all the relevant logical fact tables similar to "Dim – GL Segment1", with the GL Segment Dimension Logical table on the '0/1' side and the logical fact table on the 'N' side.

To see all the relevant logical fact tables, first include Dim – GL Segment1 on the Business Model Diagram, and then right-click that table and select Add Direct Joins.

c. Add the content filter in the logical table source of "Dim – GL SegmentXX" as described in the previous step.

d. Create a dimension by right-clicking "Dim – GL SegmentXX", and select Create Dimension. Rename this to "GL SegmentXX". Make sure the drill-down structure is similar to "GL Segment1".

If you are not sure how to do this, follow these steps: By default, the dimension will have two levels: the Grand Total Level and the Detail Level. Rename these levels to "All" and "Detail – GL Segment" respectively.

Right-click the "All" level and select "New Object" and then "Child Level". Name this level as Tree Code And Version. Create a level under Tree Code
And Version and name it as Level31. Similarly create a level under Level31 as Level30. Repeat this process until you have Level1 under Level2.

e. Drag the "Detail – GL Segment" level under "Level1" so that it is the penultimate level of the hierarchy. Create another child level under "Detail – GL Segment" and name it as "Detail – GL Account".

f. From the new logical table Dim - GL SegmentXX, drag the Segment Code, Segment Name, Segment Description, Segment Code Id and Segment Value Set Code attributes to the "Detail – GL Segment" level of the hierarchy. Similarly pull in the columns mentioned below for the remaining levels.

Detail – GL Account – Segment Code – GL Account

Levelxx – Levelxx Code, Levelxx Name, Levelxx Description and Levelxx Code Id

Tree Code And Version – Tree Filter, Tree Version ID, Tree Version Name and Tree Code

g. Navigate to the properties of each Level and from the Keys tab, create the appropriate keys for each level as mentioned below. Select the primary key and the Use for Display option for each level as mentioned in the matrix below.

<table>
<thead>
<tr>
<th>Table B–8</th>
<th>Configuration values for GL Segments and Hierarchies Using Value Set Definitions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level</td>
<td>Key Name</td>
</tr>
<tr>
<td>Tree Code And Version</td>
<td>Tree Filter</td>
</tr>
<tr>
<td>Levelxx</td>
<td>Levelxx Code</td>
</tr>
<tr>
<td>Levelxx</td>
<td>Levelxx ID</td>
</tr>
<tr>
<td>Detail - GL Segment</td>
<td>Segment ID</td>
</tr>
<tr>
<td>Detail - GL Segment</td>
<td>Segment Code</td>
</tr>
<tr>
<td>Detail - GL Account</td>
<td>Segment Code - GL Account</td>
</tr>
</tbody>
</table>

h. Once you have created these new levels, you will have to set the aggregation content for all the Logical Table Sources of the newly created logical table created Dim - GL SegmentXX. Set the Aggregation Content in the Content tab for each LTS as mentioned below:

Dim_W_GL_SEGMENT_DH_SegmentXX – Set the content level to "Detail – GL Segment".

Dim_W_GL_SEGMENT_DH_SegmentXX_GLAccount – Set it to "Detail – GL Account".

i. Set the aggregation content to all relevant fact logical table sources. Open all Logical Table Sources of all the logical fact tables that are relevant to the new logical table one at a time. Display the Content tab. If the LTS is applicable for that newly created segment, then set the aggregation content to "Detail – GL Account". If not, skip that logical table source and go to the next one.
j. Drag your new "Dim - GL Segment XX" dimensions into the appropriate subject areas in the Presentation layer. Typically, you can expose these GL Segment dimensions in all subject areas where the GL Account dimension is exposed. You can also find all appropriate subject areas by right-clicking Dim – GL Segment1 and select Query Related Objects, then selecting Presentation, and then selecting Subject Area.

k. Save your changes and check global consistency.

5. Each GL Segment denotes a certain meaningful ValueSet(s) in your OLTP. To clearly identify each segment in the report, you can rename the presentation table "GL SegmentX", logical dimension "GL SegmentX", and logical table "Dim - GL SegmentX" according to its own meaning.

For example, if you populate Product segment into Segment1, you can rename logical table "Dim - GL Segment1" as "Dim – GL Segment Product" or any other appropriate name and then rename the tables in the Presentation layer accordingly.

B.2.22 How to Configure GL Account and GL Segments for Oracle PeopleSoft

The GL Account dimension in the Oracle Business Analytics Warehouse is at a granularity of a combination of chart fields. PeopleSoft Financials provides several chart fields for GL accounts, such as account, alternate account, operating unit, department, and so on. The ETL program extracts all possible combinations of these chart fields that you have used and stores each of these chart fields individually in the GL Account dimension. It extracts the combinations of chart fields used from the following PeopleSoft account entry tables:

- PS_VCHR_ACCTG_LINES (Accounts Payable)
- PS_ITEM_DST (Accounts Receivable)
- PS_BL_ACCT_ENTRY (Billings)
- PS_CM_ACCTG_LINE (Costing)
- PS_JRNL_LN (General Ledger)

The GL Account dimension (W_GL_ACCOUNT_D) in the Oracle Business Analytics Warehouse provides a flexible and generic data model to accommodate up to 30 chartfields. These are stored in the generic columns named ACCOUNT_SEG1_CODE, ACCOUNT_SEG2_CODE and so on up to ACCOUNT_SEG30_CODE, henceforth referred to as segments. These columns store the actual chartfield value that is used in your PeopleSoft application.

Mapping PeopleSoft Chartfields

A CSV file named file_glacct_segment_config_psft.csv is provided to map the PeopleSoft chartfields to the generic segments.
The first row in the file is a header row; do not modify this line. The second row in the file is where you specify how to do the mapping. The value for the column ROW_ID is hard coded to '1'; there is no need to change this.

Note: Values are case sensitive. You must specify the values exactly as shown in the following list.

- Activity ID
- Affiliate
- Alternate Account
- Analysis Type
- Book Code
- Budget Reference
- Budget Scenario
- Business Unit PC
- ChartField 1
- ChartField 2
- ChartField 3
- Class Field
- Fund Affiliate
- GL Adjust Type
- Operating Unit
- Operating Unit Affiliate
- Product
- Program Code
B.2.23 How to Make Corrections to the Group Account Number Configuration for E-Business Suite

When a user maps a GL natural account to an incorrect group account number, incorrect accounting entries might be inserted into the fact table. For example, the natural account 1210 is mistakenly classified under ‘AR’ group account number when it should be classified under ‘AP’ group account number. When this happens, the ETL program will charge all the GL journal lines to account 1210 and try to reconcile these GL journal lines against subledger accounting records in the AR fact table (W_AR_XACT_F). Since these GL journal lines did not come from AR, the ETL program will not be able to find the corresponding subledger accounting records for these GL journal lines. In this case, the ETL program will insert ‘Manual’ records into the AR fact table because it thinks that these GL journal lines are ‘Manual’ journal entries created directly in the GL system charging to the AR accounts.

How to Make Corrections to the Group Account Number Configuration for E-Business Suite:

1. Correct the mapping of GL natural account to the group account in the input CSV file named file_group_acct_codes_ora.csv.

 For example, before correction, a CSV file has the following values (Incorrect Group Account Number assignment):

 - CHART OF ACCOUNTS ID = 101
 - FROM ACCT = 2210
 - TO ACCT = 2210

 Note: You only need to include the chartfields in the CSV file that you want to map.

 Note: The configuration file or files for this task are provided on installation of Oracle BI Applications at one of the following locations:

 Your system administrator will have copied these files to another location and configured ODI connections to read from this location. Work with your system administrator to obtain the files. When configuration is complete, your system administrator will need to copy the configured files to the location from which ODI reads these files.
GROUP_ACCT_NUM = AR

After correction, account '2210' should now correctly point to 'AP' group account number, and the CSV file would have the following (corrected) values:

- CHART_OF_ACCOUNTS_ID = 101
- FROM_ACCT = 2210
- TO_ACCT = 2210
- GROUP_ACCT_NUM = AP

2. Save the file.

Based on the Group Account corrections made in the CSV file, the next ETL process will reassign the group accounts correctly and correct the entries that were made to the fact tables from the previous ETL run(s).

B.2.24 How to Configure Number of Days based Metrics for PeopleSoft

For certain metrics to function properly, you must configure the following two internal metrics in the Oracle BI Applications metadata repository (that is, the RPD file):

- # of Elapsed Days
- # of Cumulative Elapsed Days

These metrics affect the calculation of other metrics, such as Days Sales Outstanding, Days Payables Outstanding, AP Turnover, AR Turnover, and so on.

To configure Number of Days based metrics:

1. In Oracle BI EE Administration Tool, edit the BI metadata repository (for example, OracleBIAnalyticsApps.rpd).

 The RPD file is located at:

 ORACLE_INSTANCE\bifoundation\OracleBIServerComponent\coreapplication_obisn\repository

2. On Business Model and Mapping layer, find logical table "Fact - Fins - Period Days Count".

3. Under Sources, select Fact_W_DAY_D_PSFT logical table source.

4. Clear the Disabled option in the General tab and click OK.

5. Open the other two logical table sources, Fact_W_DAY_D_ORA and Fact_W_DAY_D_JDE, and select the Disabled option.

6. Add "Fact - Fins - Period Days Count" and "Dim – Legal Entity" logical tables to the Business Model Diagram. To do so, right-click the objects and select Business Model Diagram, Selected Tables Only.

7. In the Business Model Diagram, create a new logical join from "Dim – Legal Entity" to "Fact - Fins - Period Days Count." The direction of the foreign key should be from "Dim – Legal Entity" logical table to "Fact - Fins - Period Days Count" table. For example, on a (0,1):N cardinality join, "Dim – Legal Entity" will be on the (0/1) side and "Fact - Fins - Period Days Count" will be on the N side.

8. Under "Fact - Fins - Period Days Count" logical table, open "# of Elapsed Days". Go to the Levels tab. For Legal Entity dimension, the Logical Level is set to All. Click the X button to remove this setting.
9. Under "Fact - Fins - Period Days Count" logical table, open "# of Cumulative Elapsed Days". Go to the Levels tab. For Legal Entity dimension, the Logical Level is set to All. Click the X button to remove this setting.

10. Check Global Consistency to ensure there are no errors, and then save the BI metadata repository (that is, the RPD file).

B.2.25 How to Update Dashboard Pages with PeopleSoft Prompts

Data Source specific dashboard prompts are provided with Financial Analytics to accommodate source specific filtering across all application Dashboard pages. You need to add each PeopleSoft dashboard prompt listed in Table B–9 to its associated dashboard page as part of the application configuration process.

Table B–9 Financial Analytics Dashboard Pages with Pre-configured PeopleSoft Path and Prompt Names

<table>
<thead>
<tr>
<th>Dashboard</th>
<th>Dashboard Page</th>
<th>Shared Folders/Financials/Analytic Library</th>
<th>PeopleSoft Prompt Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Ledger</td>
<td>Overview</td>
<td>/General Ledger/Key Ratios</td>
<td>Oracle PSFT - GL Key Ratios Prompt</td>
</tr>
<tr>
<td>General Ledger</td>
<td>Balance Sheet</td>
<td>/General Ledger/Balance Sheet</td>
<td>Oracle PSFT - GL Balance Sheet Prompt</td>
</tr>
<tr>
<td>General Ledger</td>
<td>Cash Flow</td>
<td>/General Ledger/Cash Flow</td>
<td>Oracle PSFT - GL Cash Flow Prompt</td>
</tr>
<tr>
<td>General Ledger</td>
<td>Budget vs. Actual</td>
<td>/General Ledger/Budget Actual</td>
<td>Oracle PSFT - GL Budget Prompt</td>
</tr>
<tr>
<td>General Ledger</td>
<td>Asset Usage</td>
<td>/General Ledger/Asset Usage</td>
<td>Oracle PSFT - GL Asset Usage Prompt</td>
</tr>
<tr>
<td>General Ledger</td>
<td>Liquidity</td>
<td>/General Ledger/Liquidity</td>
<td>Oracle PSFT - GL Liquidity Prompt</td>
</tr>
<tr>
<td>General Ledger</td>
<td>GL Balance</td>
<td>/General Ledger/Transactions</td>
<td>Oracle PSFT - GL Balance Transactions Prompt</td>
</tr>
<tr>
<td>General Ledger</td>
<td>Trial Balance</td>
<td>/General Ledger/Trial Balance</td>
<td>Oracle PSFT - GL Trial Balance Prompt</td>
</tr>
<tr>
<td>Payables</td>
<td>Overview</td>
<td>/Payables/Overview</td>
<td>Oracle PSFT - AP Overview Prompt</td>
</tr>
<tr>
<td>Payables</td>
<td>AP Balance</td>
<td>/Payables/AP Balance</td>
<td>Oracle PSFT - AP Balance Prompt</td>
</tr>
<tr>
<td>Payables</td>
<td>Payments Due</td>
<td>/Payables/Payments Due</td>
<td>Oracle PSFT - AP Payments Due Prompt</td>
</tr>
<tr>
<td>Payables</td>
<td>Effectiveness</td>
<td>/Payables/Effectiveness</td>
<td>Oracle PSFT - AP Effectiveness Prompt</td>
</tr>
<tr>
<td>Payables</td>
<td>Payment Performance</td>
<td>/Payables/Payment Performance</td>
<td>Oracle PSFT - AP Payment Performance Prompt</td>
</tr>
<tr>
<td>Payables</td>
<td>Supplier Report</td>
<td>/Payables/Supplier Report</td>
<td>Oracle PSFT - AP Supplier Report Prompt</td>
</tr>
<tr>
<td>Payables</td>
<td>Holds and Discounts</td>
<td>/Payables/Supplier Report</td>
<td>Oracle PSFT - AP Holds and Discounts Prompt</td>
</tr>
<tr>
<td>Payables</td>
<td>Invoice Details</td>
<td>/Payables/Invoice Details</td>
<td>Oracle PSFT - AP Invoice Details Prompt</td>
</tr>
<tr>
<td>Payables</td>
<td>All AP Transactions</td>
<td>/Payables/All AP Transactions</td>
<td>Oracle PSFT - AP Txn Prompt</td>
</tr>
</tbody>
</table>
To update dashboard pages with PeopleSoft prompts:

These instructions explain how to modify the General Ledger dashboard’s Overview page prompt as an example of how to modify a prompt.

1. Access the dashboard page.
2. Click the Page Options button and then select Edit Dashboard to launch Dashboard Editor.
3. Remove the existing dashboard prompt from the top section in Dashboard Editor. For the Overview page in the General Ledger dashboard, remove the "Oracle FUSION - GL Key Ratios Prompt" from Section 1.

<table>
<thead>
<tr>
<th>Dashboard</th>
<th>Dashboard Page</th>
<th>Shared Folders/Financials/Analytic Library</th>
<th>PeopleSoft Prompt Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Profitability</td>
<td>Overview</td>
<td>/Profitability/Overview</td>
<td>Oracle PSFT - GL Profitability Overview Prompt</td>
</tr>
<tr>
<td>Profitability</td>
<td>P&L</td>
<td>/Profitability/P&L</td>
<td>Oracle PSFT - GL Profitability P&L Prompt</td>
</tr>
<tr>
<td>Profitability</td>
<td>Margins</td>
<td>/Profitability/Margins</td>
<td>Oracle PSFT - GL Profitability Margins Prompt</td>
</tr>
<tr>
<td>Profitability</td>
<td>Revenue</td>
<td>/Profitability/Revenue</td>
<td>Oracle PSFT - GL Profitability Revenue Prompt</td>
</tr>
<tr>
<td>Profitability</td>
<td>Products</td>
<td>/Profitability/Products</td>
<td>Oracle PSFT - GL Profitability Products Prompt</td>
</tr>
<tr>
<td>Profitability</td>
<td>Customers</td>
<td>/Profitability/Customers</td>
<td>Oracle PSFT - GL Profitability Customer Prompt</td>
</tr>
<tr>
<td>Receivables</td>
<td>Overview</td>
<td>/Receivables/Overview</td>
<td>Oracle PSFT - AR Overview Prompt</td>
</tr>
<tr>
<td>Receivables</td>
<td>AR Balance</td>
<td>/Receivables/AR Balance</td>
<td>Oracle PSFT - AR Balance Prompt</td>
</tr>
<tr>
<td>Receivables</td>
<td>Payments Due</td>
<td>/Receivables/Payments Due</td>
<td>Oracle PSFT - AR Payments Due Prompt</td>
</tr>
<tr>
<td>Receivables</td>
<td>Effectiveness</td>
<td>/Receivables/Effectiveness</td>
<td>Oracle PSFT - AR Effectiveness Prompt</td>
</tr>
<tr>
<td>Receivables</td>
<td>Payment Performance</td>
<td>/Receivables/Payment Performance</td>
<td>Oracle PSFT - AR Payment Performance Prompt</td>
</tr>
<tr>
<td>Receivables</td>
<td>Invoice Details</td>
<td>/Receivables/Invoice Details</td>
<td>Oracle PSFT - AR Invoice Details Prompt</td>
</tr>
<tr>
<td>Receivables</td>
<td>All AR Transactions</td>
<td>/Receivables/All AR Transactions</td>
<td>Oracle PSFT - AR Transactions Prompt</td>
</tr>
</tbody>
</table>

Note: Remove the prompt, not the Section.

4. From the selection pane in the Saved Content area, browse to the Shared Folders where the dashboard prompt to be used for this dashboard page is stored. For the Overview page in the General Ledger dashboard, the catalog path is stored in the following location:
5. Drag and drop the dashboard prompt from the shared folder into the section where you removed the prompt in step 3.

6. Click the Save button to save the dashboard page and exit Dashboard Editor. This updates the dashboard page with the PeopleSoft prompt.

7. Repeat these steps for all Financial Analytics dashboard pages listed in Table B–9.

B.2.26 How to Configure Original Job Requisition Status

Overview
In E-Business Suite, the Job Requisition status is not preserved as historical information in the OLTP. Therefore, as a Job Requisition status changes, for example from "Drafted" to "Approved" to "Open" to "Closed", the OLTP saves only the last status.

In Oracle Business Analytics Warehouse, the Job Requisition Open event is a significant event because several Job Requisition metrics depend on it, such as Job Requisition Open to Assessment Start Days, Job Requisition Open Since (Days), Job Requisition Age (Months), Job Requisition Opened, Job Requisition Open, Job Requisition Open (Period Begin) and so on. Therefore, you must track this event by configuring the original Job Requisition status event, which occurs on the Job Requisition start date.

This task configures Job Requisition "start" events.

Optional or Mandatory
This is a mandatory task, although there are defaults set up already in the installed solution. Oracle recommends that you read this section and then decide whether the default settings meet your business needs. If not, then you must change the configuration to suit your business needs.

Applies to
This configuration is required only for E-Business Suite source applications.

Task description
In order to infer the "start" event of a Job Requisition that can be at any state now (named "Job Requisition Current Status" – source conformed domain), you look at the previous "most significant" status. This is named "Job Requisition Original Status" - a source conformed domain. In this task, you will map your "Job Requisition Current Status" domain members to one of the possible members of the "Job Requisition Original Status" domain.

For example, if the current status is "Closed", then you can infer that at one point it had a status of "Open". Therefore, you should map the original status to "Open" against the current status "Closed". However, if the current status is "Approval Denied", then it might make sense to assume that the requisition was never opened. Therefore, you should map the original status to another value, such as "Requested", against the current status "Approval Denied".

Both of the involved source conformed domains "Job Requisition Current Status" (*) and "Job Requisition Original Status" have members that come from the same set of
values. In fact, all values of "Job Requisition Original Status" should exist as a value in "Job Requisition Current Status".

(**) Before you configure "Job Requisition Original Status" you must configure the source conformed domain "Job Requisition Current Status". For more information, refer to the task "Manage Domains and Member Mappings for Recruitment Fact Group".

The Additional Information section below gives some extra information related to this task that should help understand the concept better, in terms of how these configurations are used downstream. Also, it provides a list of installed mappings between the two source-conformed domain members related to this task.

Additional Information

In the current task, it is expected that you would configure a 'probable' and 'most significant' original status of a job requisition, given a current status, with intent to track its "Requisition Open" event. However, by mapping the original "status" alone does not complete the "event" configuration. Once you map the original status, you would also need to map "statuses" to the appropriate "events" in a later task called "Manage Domains and Member Mappings for Recruitment Event Type". These two tasks together complete the configuration of requisition start events.

For example, if the "Job Requisition Current Status" is "Closed", it might mean that the job requisition was "Open" on an earlier date. In this case, the "Job Requisition Original Status" can be configured as "Approved". The "Approved" status can then be mapped to RQSTN_OPEN as W_EVENT_CODE, W_SUB_STAGE_CODE, and W_STAGE_CODE at the configuration task "Manage Domains and Member Mappings for Recruitment Event Type". This completes the process of identifying a job requisition's "Opened" event when the job requisition is currently "Closed" and its previous statuses are not tracked in E-Business Suite.

Another example might go like this. If the "Job Requisition Current Status" is "Rejected", it might mean that this job requisition previously had a status of "Pending" on an earlier date and was never in "Open" status. In this case, the "Job Requisition Original Status" can be configured as "Pending" instead of "Open". The "Pending" status can then be mapped to RQSTN_APPROVAL_PENDING as W_EVENT_CODE, W_SUB_STAGE_CODE and RQSTN_PENDING as stage code at the configuration task "Manage Domains and Member Mappings for Recruitment Event Type". Within Oracle Business Analytics Warehouse, this job requisition will then be treated as being never opened.

The following table shows the installed mapping between the two source-conformed domain members. If this does not meet your business needs, then you will need to edit the member mappings.

Table B–10 Job Requisition Current Status to Job Requisition Original Status Member Mapping

<table>
<thead>
<tr>
<th>Source Member (Current Status)</th>
<th>Source Member Code (Current Status)</th>
<th>Target Member (Original Status)</th>
<th>Target Member Code (Original Status)</th>
</tr>
</thead>
<tbody>
<tr>
<td>APPROVED</td>
<td>APPROVED</td>
<td>APPROVED</td>
<td>APPROVED</td>
</tr>
<tr>
<td>CANCELLED</td>
<td>CANCELLED</td>
<td>PENDING</td>
<td>PENDING</td>
</tr>
<tr>
<td>CLOSED</td>
<td>CLOSED</td>
<td>APPROVED</td>
<td>APPROVED</td>
</tr>
<tr>
<td>HOLD</td>
<td>HOLD</td>
<td>APPROVED</td>
<td>APPROVED</td>
</tr>
<tr>
<td>OPEN</td>
<td>OPEN</td>
<td>APPROVED</td>
<td>APPROVED</td>
</tr>
</tbody>
</table>
Dependency
If you edit this mapping, you would need to carry out a full ETL load into Oracle Business Analytics Warehouse.

B.2.27 How to Configure the Asset Category Dimension for E-Business Suite

Asset Category is defined in E-Business Suite Fixed Asset Application using the Key Flex Field (KFF) feature. You can setup KFF using different segments based on your business needs.

The configuration file file_fa_category_segment_config_ora.csv is used to configure the segment mapping between the Category KFF in your E-Business Suite Fixed Asset application and the Asset Category dimension in Oracle Business Analytics Warehouse. This configuration needs to be done before the ETL load. During ETL, the configuration csv file determines which KFF segment should be loaded into which segment column in the Asset Category dimension table in Oracle Business Analytics Warehouse.

For example, assuming in Oracle Business Analytics Warehouse, the segment columns store the following conformed values:

- **W_ASSET_CATEGORY_D.major_category** stores Major category (such as COMPUTER)
- **W_ASSETCATEGORY_D.minor_category** stores Minor category (such as LAPTOP, or DESKTOP)
- **W_ASSET_CATEGORY_D.segment1** stores Major category
- **W_ASSET_CATEGORY_D.segment2** stores Minor category

Assuming in your E-Business Suite instance, you use segment 2 and segment 3 to store the major and minor category:

- **FA_CATEGORIES_B.segment1** not used
- **FA_CATEGORIES_B.segment2** stores Major category
- **FA_CATEGORIES_B.segment3** stores Minor category

With this example, the configure csv file should be configured as the follows:

<table>
<thead>
<tr>
<th>Source Member (Current Status)</th>
<th>Source Member Code (Current Status)</th>
<th>Target Member (Original Status)</th>
<th>Target Member Code (Original Status)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PENDING</td>
<td>PENDING</td>
<td>APPROVED</td>
<td>APPROVED</td>
</tr>
<tr>
<td>REJECTED</td>
<td>REJECTED</td>
<td>PENDING</td>
<td>PENDING</td>
</tr>
<tr>
<td>RQSTN CANCELLED</td>
<td>UNAPPROVED</td>
<td>PENDING</td>
<td>PENDING</td>
</tr>
<tr>
<td>UNDER REVIEW</td>
<td>UNDER REVIEW</td>
<td>PENDING</td>
<td>PENDING</td>
</tr>
</tbody>
</table>

Table B–11 Asset Category Dimension configuration

<table>
<thead>
<tr>
<th>MAJOR CATEGORY</th>
<th>MINOR CATEGORY</th>
<th>SEG1</th>
<th>SEG2</th>
<th>SEG3</th>
<th>SEG4</th>
<th>SEG5</th>
<th>Etc</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEGMENT2</td>
<td>SEGMENT3</td>
<td>SEGMENT2</td>
<td>SEGMENT3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Note: The major_category and minor_category columns contain the segment numbers that represent the major and minor category respectively.

How to configure the Asset Category Dimension using file_fa_category_segment_config_ora.csv:

1. Edit the file file_fa_category_segment_config_ora.csv.

 The file_fa_category_segment_config_ora.csv is used to match the segment fields in E-Business Suite to the segment fields the Oracle Business Analytics Warehouse table W_ASSET_CATEGORY_D.

 Note: The configuration file or files for this task are provided on installation of Oracle BI Applications at one of the following locations:

 Your system administrator will have copied these files to another location and configured ODI connections to read from this location. Work with your system administrator to obtain the files. When configuration is complete, your system administrator will need to copy the configured files to the location from which ODI reads these files.

2. Enter the segment mapping information into the fields.

 The column SEG1 to SEG7 represent Oracle Business Analytics Warehouse segment columns in the asset category dimension table. For each of these segments, you fill in the corresponding mapped KFF segment. Fill the MAJOR_CATEGORY and MINOR_CATEGORY column with the segment number that represents the major and minor category respectively.

 Leave the field empty if there is no mapping.

3. Save the file.

B.2.28 How to Configure the Customer Costs Lines and Product Costs Lines Tables

This section explains how to configure Customer Costs Lines and Product Costs Lines for Oracle Financial Analytics, and contains the following topics:

- Section B.2.28.1, “About the Customer Costs Lines and Product Costs Lines Tables for Financial Profitability Analytics”
- Section B.2.28.2, “How to Configure the Customer Costs Lines and Product Costs Lines Tables for Financial Profitability Analytics”

B.2.28.1 About the Customer Costs Lines and Product Costs Lines Tables for Financial Profitability Analytics

This configuration is required only if you are implementing Financial Profitability Analytics and you want to allocate your expenses by product or by customer dimensions. The default adapter does not capture the miscellaneous cost and expenses associated with generating revenue from a customer or from a product (for example, marketing campaign expenses). You must provide this miscellaneous data through the csv file, as described in this section.
The data files file_customer_cost_line_fs.csv and file_product_cost_line_fs.csv are used to enter data in the Customer Cost Lines table and the Product Cost Lines table before an ETL full load. Depending on the INTEGRATION_ID mentioned these files the ETL will do an Insert or update in the Customer Cost Line and Product Cost Line tables. If the INTEGRATION_ID mentioned in the files already exists in the fact table then the ETL will do an update for this transaction row in the fact table. You must populate these data files before an ETL load.

Note: The configuration file or files for this task are provided on installation of Oracle BI Applications at one of the following locations:

Your system administrator will have copied these files to another location and configured ODI connections to read from this location. Work with your system administrator to obtain the files. When configuration is complete, your system administrator will need to copy the configured files to the location from which ODI reads these files.

- The file_customer_cost_line_fs.csv file loads the Customer Costs Lines data in the W_CUSTOMER_COST_LINE_F table. Columns are categorized into four types, as follows:
 - Integration_ID - This is a unique identifier to the individual rows in the file.
 - FK_ID - This should be the integration ID's of the corresponding Dimension. For example, CUSTOMER_ID, which should be populated by the Integration ID of the customer dimension.
 - Amount Columns - for example, CUST_COST_AMT, Amount for the particular transaction line.
 - Attribute Columns, for example COST_LINE_DOC_ITEM, COST_LINE_DOC_SUB_ITEM, EXPENSED_ON_DT and so on. While inserting data for the _DT columns, we need to make sure that the data is entered in 'YYYYMMDDHH24MISS' format.

- The file_product_cost_line_fs.csv file loads the Product Costs Lines data in the W_PRODUCT_COST_LINE_F table. Columns are categorized into four types, as follows:
 - Integration_ID - this is a unique identifier to the individual rows in the file.
 - FK_ID - this should be the integration ID of the corresponding Dimension. For example, PRODUCT_ID, which should be populated by the Integration ID of the Product dimension.
 - Amount Columns - for example, CUST_COST_AMT, Amount for the particular transaction line.
 - Attribute Columns - for example, COST_LINE_DOC_ITEM, COST_LINE_DOC_SUB_ITEM, EXPENSED_ON_DT and so on. While inserting data for the _DT columns, we need to make sure that the data is entered in 'YYYYMMDDHH24MISS' format.
B.2.28.2 How to Configure the Customer Costs Lines and Product Costs Lines Tables for Financial Profitability Analytics

Before you perform a full load ETL, you must follow this procedure to configure the Customer Cost Lines and Product Costs Lines.

To configure the Customer Costs Lines and Product Costs Lines tables:

1. Copy the data files file_customer_cost_line_fs.csv and file_product_cost_line_fs.csv.

Note: The configuration file or files for this task are provided on installation of Oracle BI Applications at one of the following locations:

Your system administrator will have copied these files to another location and configured ODI connections to read from this location. Work with your system administrator to obtain the files. When configuration is complete, your system administrator will need to copy the configured files to the location from which ODI reads these files.

2. Edit the file_customer_cost_line_fs.csv.

3. Insert a record into the file for each customer costing transaction that you want to load into the Customer Cost fact table.

4. Save the file.

5. Edit the file_product_cost_line_fs.csv.

6. Insert a record into the file for each product costing transaction that you want to load into the Product Cost fact table.

7. Save the file.

You are now ready to perform a full load ETL to load the Customer Cost Lines and Product Costs Lines.

B.2.29 How to Configure Budgets for Oracle General Ledger Analytics

If you are using E-Business Suite, PeopleSoft, or JD Edwards EnterpriseOne, and you would like to extract the budget data from these sources and import it into Oracle Business Analytics Warehouse, you can use the pre-configured adapter mappings. However, if you want to use budget data from other external systems, you can import the data into Oracle Business Analytics Warehouse using the Universal adapter as described in this section. This section includes the following topics:

- Section B.2.29.1, "About Configuring Universal Source Files"
- Section B.2.29.2, "How to Import Budget Data into Oracle Business Analytics Warehouse Through the Universal Adapter"
B.2.29.1 About Configuring Universal Source Files

The following tables describe the columns in the universal source CSV files file_budget.csv and file_acct_budget.csv, their data types, and how to populate them where applicable.

Table B–12 shows the structure of the file_budget.csv file. The records in file_budget.csv are loaded into W_BUDGET_D.

Table B–12 Universal Source for Budget Fact (file_budget.csv)

<table>
<thead>
<tr>
<th>Column Name</th>
<th>Datatype</th>
<th>Size</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BUDGET_NAME</td>
<td>string</td>
<td>80</td>
<td>Budget name.</td>
</tr>
<tr>
<td>BUDGET_VERSION</td>
<td>string</td>
<td>30</td>
<td>Budget version.</td>
</tr>
<tr>
<td>BUDGET_STATUS</td>
<td>string</td>
<td>30</td>
<td>Budget status.</td>
</tr>
<tr>
<td>BUDGET_TYPE</td>
<td>string</td>
<td>30</td>
<td>Budget type.</td>
</tr>
<tr>
<td>CREATED_BY_ID</td>
<td>string</td>
<td>80</td>
<td>ID of created by user. Populate with Integration_ID from w_user_d.</td>
</tr>
<tr>
<td>CHANGED_BY_ID</td>
<td>string</td>
<td>80</td>
<td>ID of changed by user. Populate with Integration_ID from w_user_d.</td>
</tr>
<tr>
<td>CREATED_ON_DT</td>
<td>string</td>
<td>14</td>
<td>Created date.</td>
</tr>
<tr>
<td>CHANGED_ON_DT</td>
<td>string</td>
<td>14</td>
<td>Changed date. Used for updating an existing record in the warehouse. Increase the date if you want to update the record. If a record with the same integration_ID already exists in the target table W_BUDGET_D, then the load process will compare the CHANGED_ON_DT values between this record and the record in W_BUDGET_D. If this record's CHANGED_ON_DT is later than the record in W_BUDGET_D, then the load process will perform an update against the record in W_BUDGET_D; otherwise the load process will ignore this record, and no update or insertion will occur. If there is no matching record in W_BUDGET_D with the same integration_ID, then the load process will insert this record into W_BUDGET_D.</td>
</tr>
<tr>
<td>AUX1_CHANGED_ON_DT</td>
<td>string</td>
<td>14</td>
<td>-</td>
</tr>
<tr>
<td>AUX2_CHANGED_ON_DT</td>
<td>string</td>
<td>14</td>
<td>-</td>
</tr>
<tr>
<td>AUX3_CHANGED_ON_DT</td>
<td>string</td>
<td>14</td>
<td>-</td>
</tr>
<tr>
<td>AUX4_CHANGED_ON_DT</td>
<td>string</td>
<td>14</td>
<td>-</td>
</tr>
<tr>
<td>DELETE_FLG</td>
<td>string</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>DATASOURCE_NUM_ID</td>
<td>number</td>
<td>10</td>
<td>A number for your data source. Populate the same datasource_num_id as your main source application.</td>
</tr>
<tr>
<td>INTEGRATION_ID</td>
<td>string</td>
<td>80</td>
<td>A unique identifier for the record.</td>
</tr>
<tr>
<td>TENANT_ID</td>
<td>string</td>
<td>80</td>
<td>-</td>
</tr>
<tr>
<td>X_CUSTOM</td>
<td>string</td>
<td>10</td>
<td>-</td>
</tr>
</tbody>
</table>
Table B–13 shows the structure of the file_acct_budget.csv file. The records in the file_acct_budget.csv will be loaded into W__ACCT_BUDGET_F.

Table B–13 Universal Source for Budget Fact (file_acct_budget.csv)

<table>
<thead>
<tr>
<th>Column Name</th>
<th>Datatype</th>
<th>Size</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADJUSTMENT_FLG</td>
<td>string</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>AUX1_CHANGED_ON_DT</td>
<td>string</td>
<td>14</td>
<td>-</td>
</tr>
<tr>
<td>AUX2_CHANGED_ON_DT</td>
<td>string</td>
<td>14</td>
<td>-</td>
</tr>
<tr>
<td>AUX3_CHANGED_ON_DT</td>
<td>string</td>
<td>14</td>
<td>-</td>
</tr>
<tr>
<td>AUX4_CHANGED_ON_DT</td>
<td>string</td>
<td>14</td>
<td>-</td>
</tr>
<tr>
<td>BUDG_BUSN_AREA_ORG_ID</td>
<td>string</td>
<td>80</td>
<td>Company Org identifier. Populate with integration_id from w_int_org_d where business_area_flg = Y.</td>
</tr>
<tr>
<td>BUDG_CTRL_AREA_ORG_ID</td>
<td>string</td>
<td>80</td>
<td>Company Org identifier. Populate with integration_id from w_int_org_d where ctrl_area_flg = Y.</td>
</tr>
<tr>
<td>BUDG_FIN_AREA_ORG_ID</td>
<td>string</td>
<td>80</td>
<td>Company Org identifier. Populate with integration_id from w_int_org_d where fin_area_flg = Y.</td>
</tr>
<tr>
<td>BUDGETCALENDAR_ID</td>
<td>string</td>
<td>80</td>
<td>-</td>
</tr>
<tr>
<td>BUDGET_DOC_AMT</td>
<td>number</td>
<td>22</td>
<td>Budget amount in document currency.</td>
</tr>
<tr>
<td>BUDGET_GRP_AMT</td>
<td>number</td>
<td>22</td>
<td>-</td>
</tr>
<tr>
<td>BUDGET_ID</td>
<td>string</td>
<td>80</td>
<td>Populate with the value from integration_id in file_budget.csv</td>
</tr>
<tr>
<td>BUDGET_LEDGER_ID</td>
<td>string</td>
<td>80</td>
<td>-</td>
</tr>
<tr>
<td>BUDGET_LOC_AMT</td>
<td>number</td>
<td>22</td>
<td>Budget amount in local currency.</td>
</tr>
<tr>
<td>CHANGED_BY_ID</td>
<td>string</td>
<td>80</td>
<td>ID of changed by user. Populate with Integration_ID from w_user_d.</td>
</tr>
<tr>
<td>CHANGED_ON_DT</td>
<td>string</td>
<td>14</td>
<td>Changed date. Used for updating an existing record in the warehouse. Increase the date if you want to update the record. If a record with the same integration_ID exists in the target table W_ACCT_BUDGET_F already, then the load process will compare the CHANGED_ON_DT values between this record and the record in W_ACCT_BUDGET_F. If this record’s CHANGED_ON_DT is later than the record in W_ACCT_BUDGET_F, then the load process will perform an update against the record in W_ACCT_BUDGET_F; otherwise it’ll ignore this record, no update or insertion will occur. If there’s no matching record in W_ACCT_BUDGET_F with the same integration_ID, then the load process will insert this record into W_ACCT_BUDGET_F.</td>
</tr>
</tbody>
</table>
Table B–13 (Cont.) Universal Source for Budget Fact (file_acct_budget.csv)

<table>
<thead>
<tr>
<th>Column Name</th>
<th>Datatype</th>
<th>Size</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMPANY_ORG_ID</td>
<td>string</td>
<td>80</td>
<td>Company Org identifier. Populate with integration_id from w_int_org_d where company_flg = Y.</td>
</tr>
<tr>
<td>COST_CENTER_ID</td>
<td>string</td>
<td>80</td>
<td>Cost Center identifier. Populate with integration_id from w_cost_center_d.</td>
</tr>
<tr>
<td>CREATED_BY_ID</td>
<td>string</td>
<td>80</td>
<td>ID of created by user. Populate with Integration_ID from w_user_d.</td>
</tr>
<tr>
<td>CREATED_ON_DT</td>
<td>string</td>
<td>14</td>
<td>Created date.</td>
</tr>
<tr>
<td>DATASOURCE_NUM_ID</td>
<td>number</td>
<td>10</td>
<td>A number for your data source. Populate the same datasource_num_id as your main source application.</td>
</tr>
<tr>
<td>DELETE_FLG</td>
<td>string</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>DOC_CURR_CODE</td>
<td>string</td>
<td>30</td>
<td>Document currency code.</td>
</tr>
<tr>
<td>GL_ACCOUNT_ID</td>
<td>string</td>
<td>80</td>
<td>GL Account identifier. Populate with integration_id from w_gl_account_d.</td>
</tr>
<tr>
<td>GRP_CURR_CODE</td>
<td>string</td>
<td>30</td>
<td>-</td>
</tr>
<tr>
<td>INTEGRATION_ID</td>
<td>string</td>
<td>80</td>
<td>A unique identifier for the record.</td>
</tr>
<tr>
<td>LOC_CURR_CODE</td>
<td>string</td>
<td>30</td>
<td>Local currency code.</td>
</tr>
<tr>
<td>PERIOD_BEGIN_DT</td>
<td>string</td>
<td>14</td>
<td>-</td>
</tr>
<tr>
<td>PERIOD_END_DT</td>
<td>string</td>
<td>14</td>
<td>Populate with your budget period’s end date. If your budget is monthly, populate with the month end date.</td>
</tr>
<tr>
<td>POSTED_ON_DT</td>
<td>string</td>
<td>14</td>
<td>A date on which this transaction can be reported.</td>
</tr>
<tr>
<td>PRODUCT_ID</td>
<td>string</td>
<td>80</td>
<td>Product identifier. Populate with integration_id from w_product_d.</td>
</tr>
<tr>
<td>PROFIT_CENTER_ID</td>
<td>string</td>
<td>80</td>
<td>Profit Center identifier. Populate with integration_id from w_profit_center_d.</td>
</tr>
<tr>
<td>PROJECT_ID</td>
<td>string</td>
<td>80</td>
<td>-</td>
</tr>
<tr>
<td>TENANT_ID</td>
<td>string</td>
<td>80</td>
<td>-</td>
</tr>
<tr>
<td>X_CUSTOM</td>
<td>string</td>
<td>10</td>
<td>-</td>
</tr>
</tbody>
</table>

Note: Date columns should be populated in the CSV file as a number in the format YYYYMMDDHH24MISS.

Use Table B–14 to understand how the integration_id (key) of some of the key dimensions are constructed for the E-Business Suite source system. You can use this information to populate the dimension foreign key identifiers in the above universal source CSV file for budget fact, if you have to use budget fact in conjunction with dimensions populated from E-Business Suite.

Table B–14 Populating the integration_id fields in E-Business Suite Source Systems

<table>
<thead>
<tr>
<th>Field</th>
<th>How to populate</th>
</tr>
</thead>
<tbody>
<tr>
<td>GL_ACCOUNT_ID (w_gl_account_d)</td>
<td>.GL code combination ID.</td>
</tr>
<tr>
<td>COMPANY_ORG_ID (w_int_org_d)</td>
<td>No need to populate; will be calculated based on GL Account ID.</td>
</tr>
</tbody>
</table>
Use Table B–15 to understand how the integration_id (key) of some of the key dimensions are constructed for Oracle’s JD Edwards EnterpriseOne source systems. You can use this information to populate the dimension foreign key identifiers in the above universal source CSV file for budget fact, if you have to use budget fact in conjunction with dimensions populated from Oracle’s JD Edwards EnterpriseOne.

Table B–15 Populating the integration_id fields in Oracle’s JD Edwards EnterpriseOne

<table>
<thead>
<tr>
<th>Field</th>
<th>How to populate</th>
</tr>
</thead>
<tbody>
<tr>
<td>GL_ACCOUNT_ID (w_gl_account_d)</td>
<td>GBAID</td>
</tr>
<tr>
<td>COMPANY_ORG_ID (w_int_org_d)</td>
<td>GBCO</td>
</tr>
<tr>
<td>COST_CENTER_ID (w_cost_center_d)</td>
<td>GBMCU</td>
</tr>
<tr>
<td>PROFIT_CENTER_ID (w_profit_center_d)</td>
<td>GBCO</td>
</tr>
<tr>
<td>LEDGER_ID (w_ledger_d)</td>
<td>GBCO</td>
</tr>
<tr>
<td>PRODUCT_ID (w_product_d)</td>
<td>If GBSBLT points to item, then update product ID with that GBSBL.</td>
</tr>
<tr>
<td>PROJECT_ID (w_product_d)</td>
<td>Not applicable</td>
</tr>
<tr>
<td>BUDG_BUSN_AREA_ORG_ID (w_int_org_d)</td>
<td>GBMCU</td>
</tr>
<tr>
<td>BUDG_FIN_AREA_ORG_ID (w_int_org_d)</td>
<td>GBMCU</td>
</tr>
<tr>
<td>BUDG_CTRL_AREA_ORG_ID (w_int_org_d)</td>
<td>GBMCU</td>
</tr>
<tr>
<td>BUDGET_ID (w_budget_d)</td>
<td>Not applicable</td>
</tr>
</tbody>
</table>

B.2.29.2 How to Import Budget Data into Oracle Business Analytics Warehouse Through the Universal Adapter

Follow these steps to import budget data into Oracle Business Analytics Warehouse through the Universal adapter.

1. Populate the file_budget.csv and file_acct_budget.csv files with your budget data.
 Refer the tables above for details of how to populate these files.

2. Build a Load Plan with one fact group: "900: Universal Adaptor Instance","GL Budget".

3. Run the Load Plan that you created in the previous step.
 Note: This Load Plan must be run after the regular Load Plan to populate Oracle Business Analytics Warehouse for the other Subject Areas has completed.

4. Load the budget data or changes to existing budget data.
 Repeat Step 1 and Step 3 as needed to load new budget for the next fiscal period or make corrections to already loaded budget data.
B.2.30 How to Set Up Workforce Frozen Snapshots

The Workforce Frozen Snapshot fact will periodically capture a snapshot of the workforce data and keep it unchanged to allow reporting back on how the data actually appeared at a particular point in time. The snapshot frequency can be configured in various different modes.

Optional or Mandatory
This task is optional; however the default option will not collect any frozen snapshots.

Applies to
All sources (E-Business Suite, PeopleSoft and Fusion).

Task description in detail
To enable the feature, configure the following parameter:
HR_WRKFC_SNAPSHOT_HIST_MODE_CODE

The table below describes the valid values.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>None (default)</td>
<td>The feature is disabled. The other options are described in more detail in the following sections. The frozen snapshots are stored in the table W_WRKFC_SNP_F.</td>
</tr>
<tr>
<td>Start of Month</td>
<td>Snapshots taken once per month on the first day of each month. No other parameters need to be configured.</td>
</tr>
<tr>
<td>End of Month</td>
<td>Snapshots taken once per month on the last day of each month. No other parameters need to be configured.</td>
</tr>
<tr>
<td>Relative to Start</td>
<td>Snapshots taken once per month on the nth occurrence of a given day of each month, for example 3rd Tuesday of each month. Other parameters need to be configured:</td>
</tr>
<tr>
<td></td>
<td>■ HR_WRKFC_SNAPSHOT_DAY_CODE to specify the day, for example Tuesday.</td>
</tr>
<tr>
<td></td>
<td>■ HR_WRKFC_SNAPSHOT_DAY_OCCURENCE to specify the nth occurrence, for example 3rd Tuesday.</td>
</tr>
<tr>
<td>Relative to End</td>
<td>Snapshots taken once per month on the nth occurrence of a given day from the end each month, for example 3rd Tuesday from the end each month. Other parameters need to be configured:</td>
</tr>
<tr>
<td></td>
<td>■ HR_WRKFC_SNAPSHOT_DAY_CODE to specify the day, for example Tuesday.</td>
</tr>
<tr>
<td></td>
<td>■ HR_WRKFC_SNAPSHOT_DAY_OCCURENCE to specify the nth occurrence, for example 3rd Tuesday.</td>
</tr>
<tr>
<td>Day of Week</td>
<td>Snapshots taken once per week on a specific day of week, for example every Monday. Other parameters need to be configured:</td>
</tr>
<tr>
<td></td>
<td>■ HR_WRKFC_SNAPSHOT_DAY_CODE to specify the day, for example Monday.</td>
</tr>
</tbody>
</table>

Dependency
No dependencies.
B.2.31 How to Use Workforce Deployment Subject Area

The Workforce Deployment Subject Area contains two logical facts:

- Workforce Balance Information – for reporting on balances at a point in time for example, Month End Headcount and Salary.
- Workforce Event Information – for reporting on events occurring in a period of time for example, Number of Terminations per Year.

Most reports should use either one or the other logical fact, and it is important to know the difference for the report to make sense. It is possible to design reports that use both logical facts together; however care must be taken over dimension usage.

Task description in detail

Workforce Balance Information

The Workforce Balance fact shows status at a given point in time. The time dimension should be used with this fact. If the time dimension is not used, the status for all time periods will be calculated and then only the current one returned. This is very inefficient.

Except for the current period, whichever time period is used (Year, Quarter, Month, and Day) the fact gives the status as of the period end date. For the current period the behaviour can be configured either to show status as of the future period end date or as of the current date. This is controlled by the HR_WRKFC_MAX_EFFECTIVE_DT session variable. For more about this variable, see task "How to Control Future Transaction Data Visibility".

This fact does not include terminated workers. The status is given only for workers who have not been terminated. For E-Business Suite this is inclusive of the "Actual Termination Date" which is the last day of employment where the worker is still active on the system.

Workforce Event Information

The Workforce Event fact shows events that have happened within a given period of time. The time dimension must be used with this fact otherwise all time periods will be shown, which would result in much slower performance. Events are shown which have occurred within each time period. For the current period the behaviour can be configured either to show events up to the current date, or all future events in the period as well. This is controlled by the HR_WRKFC_MAX_EFFECTIVE_DT session variable. For more about this variable, see task "How to Control Future Transaction Data Visibility".

This fact does include termination events, and defines the termination event date to be the first day the worker is inactive. For E-Business Suite this is the day after the "Actual Termination Date" which is the last day of employment where the worker is still active on the system.

Workforce Event Dimension

The Workforce Event Fact joins to the Workforce Event Dimension at detail level. The dimension stores information about each event, such as the type of event (for example, Hire, Termination) along with a number of change flags to indicate whether any of the main dimensions changed (for example, Organization, Job, and Grade).

The Workforce Balance Fact joins to the Workforce Event Dimension at summary level. This means that reports cannot use filters or attributes based on the dimension. However for reports combining balance and event information it is possible to create metrics based on the Workforce Event Dimension.
The Workforce Event Dimension is useful in two main ways:

- Creating detail reports such as "Show me all the terminations in 2011" or "Show me all the organization changes of workers who have less than 1 year of service".

- Creating event based metrics. For example, suppose you wanted to report on "Headhunted" events. In the workforce event domain mapping you map terminations with a reason of "Headhunted" to a new event "Headhunted" (mapped to sub-group Voluntary Termination and group Termination):

 - The "Headhunted" detail report should be straightforward – a listing of attributes where the Workforce Event Dimension Event Code = 'HEADHUNTED'.

 - The summary report needs to show numbers of terminations, including voluntary, involuntary and headhunted. The other metrics are already defined. Add a new metric "Headhunted Count" to the event logical fact defined as:

    ```
    CASE WHEN "Oracle Data Warehouse"."Catalog"."dbo"."Dim_W_WRKFC_EVENT_TYPE_D"."W_EVENT_CODE" = 'HEADHUNTED' THEN 1 ELSE 0 END
    ```

 Set the aggregation rule of this metric to be "Sum".

B.2.32 How to Retrieve Information Stored in Flexfield Columns

Flexfields are customer configured fields that are used to store necessary information like Job Code, Job Family, Job Function, Job Level and Pay Level Name. A flexfield can either be a key flexfield or a descriptive flexfield. It is possible to get information from the flexfield column to Oracle Business Analytics Warehouse. This can be done by configuring the BI Applications Configuration Manager to distinguish and map such columns. This document will explain how the Oracle BI Applications Configuration Manager should be configured to achieve the above.

Optional or Mandatory

This configuration is required only if flexfields are implemented. If these configurations are not done then the columns dependent on flexfield data like Job Code, Job Family, Job Function and Job Level in job dimension and Pay Level Name in Grade dimension will not have any data in them.

Applies to

Applicable to E-Business Suite source systems.

Task description in detail

Oracle BI Applications Configuration Manager is used to configure flexfields, for example: For "Job" dimension flexfields for Job Code, Job Family, Job Function and Job Level are pre-seeded.

First, identify the flexfield structures and columns that store the information for flexfield dependent columns such as Job family, Job Function, etc. For example, a source configuration can have the following scenarios:

For PER_JOB_DEFINITIONS.ID_FLEX_NUM = '52119', PER_JOB_DEFINITIONS(SEMENT1 is Job family or/and PER_JOB_DEFINITIONS(SEMENT2 is Job function. In this case, SEGMENT1 column store values of Job family and SEGMENT2 stores Job Function. ID_FLEX_NUM is flex field structure number.
To configure the flexfield, two source domains and one target domain are used for each area. These are already defined in Oracle BI Applications Configuration Manager. As an example, for "Job" dimension the source domains are "KEY:800:JOB" and "DESCRIPTIVE:800:PER_JOBS". The target domain is "W_FLEX_JOB_ATTRIBUTES". "W_FLEX_JOB_ATTRIBUTES" has its domain members pre-seeded. The members are: Job Code, Job Family, Job Function and Job Level.

The source domain members for source domain code "KEY:800:JOB" either can be seeded manually or can be loaded through the domain ETL and will get values such as 52119:SEGMENT1 and 52119:SEGMENT2 (assuming these are key flex field, a similar approach can also be followed for descriptive flex field).

The source domain (KEY:800:JOB or DESCRIPTIVE:800:PER_JOBS) can be seeded by either of the two methods mentioned below:

1. Manually populate the flexfield in the source domain. Example: for Job dimension populate "52119:SEGMENT1" in KEY:800:JOB or DESCRIPTIVE:800:PER_JOBS depending on whether it is a key or descriptive field. Then you will need to map this value to JOB_FAMILY and run the domain only load plan once to get the configuration done.

2. Run the Domain only Load plan once to automatically populate the values (52119:SEGMENT1) in source domain (KEY:800:JOB or DESCRIPTIVE:800:PER_JOBS). Then map these values ("52119:SEGMENT1-> JOB_FAMILY"). Run the Domain only Load plan second time to get the configuration completed.

You need to map the source domain members to the pre-seeded target domain members in Oracle BI Applications Configuration Manager. A sample member mapping is provided below to explain.

<table>
<thead>
<tr>
<th>Source Domain Member Name</th>
<th>Source Domain Member Code</th>
<th>Target Domain Member Name</th>
<th>Target Domain Member Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>52119:SEGMENT1</td>
<td>52119:SEGMENT1</td>
<td>JOB_FAMILY</td>
<td>JOB_FAMILY</td>
</tr>
<tr>
<td>52119:SEGMENT2</td>
<td>52119:SEGMENT2</td>
<td>JOB_FUNCTION</td>
<td>JOB_FUNCTION</td>
</tr>
</tbody>
</table>

This finishes the configuration required. When the load plan is executed, the values in SEGMENT1 will be used to populate Job family and SEGMENT2 will be used to populate Job function.

List of flexfield-dependant fields:
- Job dimension - Job Code, Job Family, Job Function, Job Level
- Grade dimension - Pay Level name
- HR Position dimension - Position Number

Dependency
None.
B.2.33 How to Add Payroll Balances to BI Payroll Balance Group

Purpose
In order to extract payroll balances into Oracle Business Analytics Warehouse, the balances must be assigned to the BI Balance Group in the Fusion Applications system and Elements to Element Group in PeopleSoft Global Payroll.

For PeopleSoft North American Payroll and E-Business Suite Payroll, it is strongly recommended to create a custom table in the OLTP environment with all the balances/earnings/deductions/taxes that needs to be extracted into Oracle Business Analytics Warehouse.

By limiting the balances extracted, the performance of ETL and reports will be improved. In addition, only certain types of balance are suitable for including in the warehouse. You should only extract run balances, as other types of balances might not be fully additive (for example year-to-date balances cannot be added together).

To ensure additivity of measures we will only support run balances. For each payroll run the actual run balances processed will be stored. Because we are not breaking these down by context we can combine run balances across time to form higher level balances for example, PTD, MTD, YTD.

Optional or Mandatory

For Fusion and Global Payroll, the ETL is configured to extract only the balances that are assigned to the ‘BI Balance Group’ and ‘GLOBAL BI BALGRP’ Element Group respectively.

Applies to

Task description in detail
Refer to the appropriate section for your source system:
- Section B.2.33.1, "Steps for Fusion"
- Section B.2.33.2, "Steps for PeopleSoft Global Payroll"
- Section B.2.33.3, "Steps for PeopleSoft North America Payroll"
- Section B.2.33.4, "Steps for E-Business Suite"

B.2.33.1 Steps for Fusion

Pre-requisites
- Access to Fusion Applications Payroll Administration area.
- Office 2007 with Oracle ADF 11g Plug In.
- List of defined balances required to add to BI Balance Group.
- Listed by Balance Dimension (which must be Run) and Balance Type.
These instructions cover the steps required to add balances to the BI Balance Group for inclusion in Oracle Business Analytics Warehouse. There will be more details on the Payroll Administration documentation which will cover exceptions and verification reports to validate any setup.

Steps to create a batch:

1. Log into Fusion Applications and navigate to the Payroll Administration area (Navigator => Payroll => Payroll Administration).
2. In the Task pane select Batch Processing => Batch Loader.
3. Click the Download button to open the Batch Loader Spreadsheet, re-entering your login details as requested.
4. In the Batch Header Sheet tab, enter a name for the batch and the Legislative Data Group and Save.
5. Double-click the batch name to select the batch and open the Batch Content Sheet tab.
6. Click the Add button and select the 'Add a Defined Balance' action.
7. Enter the details for each defined balance to be added to the BI Balance Group:
 - Line Sequence.
 - Attribute Definition – ‘Global BI Attribute’.
 - Legislative Data Group – as entered in step 4.
 - Balance Dimension – balance dimension name; this should be a simple run balance without any contexts.
 - Balance Type – balance type name for the defined balance
8. Click Save.

Steps to transfer the batch:

1. In Fusion Applications navigate to the Checklists page (Navigator => Payroll => Checklists).
2. In the Task pane select Payroll Flows => Submit a Process or Report.
3. Select the Legislative Data Group for the batch.
4. Select the ‘Transfer Batch’ process and click Next.
5. Enter the details:
 - Give a name for the Payroll Flow.
 - For the batch parameter, select the batch name entered in step 4 of ‘Steps to create a batch’.
6. Submit the process.

B.2.33.2 Steps for PeopleSoft Global Payroll

1. Navigate to Setup HRMS, then Product Related, then Global Payroll & Absence Mgmt, then Elements, then Element Groups, then Add a New Value.
2. Provide the Name of the Element Group as ‘GLOBAL BI BALGRP’ and provide any meaningful description.

3. Click on Element Group Members tab.

4. Add the Earnings/Deductions that need to be extracted into Oracle Business Analytics Warehouse, to the Element Group created.
The Global Payroll ETL is configured to extract only the Earnings/Deductions that are assigned to the Element Group GLOBAL BI BALGRP. The below screen shots show how to assign Earnings/Deductions to the Element Group.

B.2.33.3 Steps for PeopleSoft North America Payroll

For PeopleSoft North American Payroll and E-Business Suite Payroll, it is strongly recommended to create a custom table in the OLTP environment with all balances/earnings/deductions/taxes that need to be extracted into Oracle Business Analytics Warehouse.

For example, you might use the following PeopleSoft North American Payroll Custom Table Script:

```sql
CREATE TABLE OBIA_PAY_BAL_FILTER (BALANCE_ID VARCHAR2 (50));
INSERT INTO OBIA_PAY_BAL_FILTER (BALANCE_ID)
SELECT DISTINCT A.BALANCE_CODE FROM
(PS_DEDUCTION_TBL D
WHERE D.DEDCD IN ('401', 'B00-23', 'B10-02', 'B10-15', 'B10-16')
UNION
SELECT E.ERNCD AS BALANCE_CODE
FROM PS_EARNINGS_TBL E
WHERE E.ERNCD IN ('001', '007', 'B14', 'B30')
UNION
SELECT S.ERNCD_SPCL AS BALANCE_CODE
FROM PS_SPCL_EARNINGS_TBL S
WHERE S.ERNCD_SPCL IN ('100', '142', '143', '145')
UNION
SELECT ST.STATE AS BALANCE_CODE
FROM
```


Add all the Earnings/Deductions/Taxes in the IN clause of the above query respectively.

B.2.34.4 Steps for E-Business Suite

E-Business Suite Payroll Custom Table Script:

```sql
CREATE TABLE OBIA_PAY_BAL_FILTER (BALANCE_ID VARCHAR2 (50));
INSERT INTO OBIA_PAY_BAL_FILTER (BALANCE_ID)
SELECT DISTINCT DB.DEFINED_BALANCE_ID
FROM
PAY_BALANCE_TYPES BT,
PAY_DEFINED_BALANCES DB,
PAY_BALANCE_DIMENSIONS BD
WHERE
BT.BALANCE_TYPE_ID = DB.BALANCE_TYPE_ID AND
DB.BALANCE_DIMENSION_ID = BD.BALANCE_DIMENSION_ID AND
BT.BALANCE_NAME IN ('Payments','Overtime','Regular Earnings','Regular Salary');
CREATE UNIQUE INDEX OBIA_PAY_BAL_FILTER_U1 ON OBIA_PAY_BAL_FILTER (BALANCE_ID);
```

BT.BALANCE_NAME IN ('Payments','Overtime','Regular Earnings','Regular Salary') – List of All balances that need to be extracted into Oracle Business Analytics Warehouse).

B.2.34 How to Configure Band Dimensions

Purpose

There are seven Band Dimensions that HR Analytics make use of. The purpose of this task is to provide information about the band dimensions, and all that is needed to configure the bands in these tables.

Optional or Mandatory

The default solution has bands configured based upon industry best practices. If the default bands meet your business needs, then no further configuration is required. Otherwise, this task is mandatory.

Task description – Overview of Band Dimensions

To enable data analysis based on various groups of a given attribute, Oracle BI Applications provides an option to configure your choice of groups, or bands, for these seven attribute families:

- Person Age
- Job Requisition Age
- Time Card Age
- Performance Ratings
The band data that you configure is stored in seven corresponding dimension tables. The following table provides a description of each of these tables.

Table B–18 Dimension Tables that Store Band Data

<table>
<thead>
<tr>
<th>Dimension Table</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>W_AGE_BAND_D</td>
<td>Age Band table. This table breaks down the ages of people into different bands to help determine the age ranges the people fall into. The table has two levels: LEVEL_ID = AGE_BAND. This level defines the age bands. LEVEL_ID = AGE. This level defines the age (in months) for a person.</td>
</tr>
<tr>
<td>W_JOB_RQSTN_AGE_BAND_D</td>
<td>Job Requisition Age Band table. This table breaks down the age of the job requisition into different bands to help determine the age range the job requisition falls into. The table has two levels: LEVEL_ID = RQSTN_AGE_BAND. This level defines the job requisition age bands. LEVEL_ID = RQSTN_AGE. This level defines the job requisition age (in months).</td>
</tr>
<tr>
<td>W_TLB_AGE_BAND_D</td>
<td>Timecard Age Band table. This table breaks down the age of the time card into different bands to help determine the age range the time card falls into. The table has two levels: LEVEL_ID = TIMECARD_AGE_BAND. This level defines the time card age bands. LEVEL_ID = TIMECARD_AGE. This level defines the age (in days) for a time card.</td>
</tr>
<tr>
<td>W_PERFORMANCE_BAND_D</td>
<td>Performance Band table. This table breaks down the performance ratings into different bands to help determine the level of quality of a candidate. The table has two levels: LEVEL_ID = PERF_BAND. This level defines the performance rating bands. LEVEL_ID = PERF_RTNG. This level defines each normalized performance rating (in integers up to 100) for a person.</td>
</tr>
<tr>
<td>W_PRD_OF_WRK_BAND_D</td>
<td>Period of Work Band table. This table breaks down employees and contingent workers into different bands to help determine the time that the employees or the contingent workers have been employed. The table has three levels: Two levels define the bands: LEVEL_ID = POW_BAND_EMP defines the employees' period of work band; LEVEL_ID = POW_BAND_CWK defines the contingent workers' period of work band. LEVEL_ID = POW. This level defines the period of work (in months) for a person.</td>
</tr>
</tbody>
</table>
Task description – Configuring Bands for all Band Dimensions

The Bands against the supported attributes (all seven) are already pre-seeded within Oracle BI Applications Configuration Manager. However, if you want to change the default bands set up for different base values, you would need to edit the pre-seeded configurations. Go to the ‘Manage Domain Mappings and Hierarchies’ menu within Oracle BI Applications Configuration Manager to do so. Screen shots of the pre-seeded mapping for each supported attribute are shown below.

Age Bands

<table>
<thead>
<tr>
<th>Source Domain Members</th>
<th>Target Domain Members</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 – 240</td>
<td>AGE_BAND_1</td>
<td><30 Years</td>
</tr>
<tr>
<td>240 – 360</td>
<td>AGE_BAND_2</td>
<td>30-40 Years</td>
</tr>
<tr>
<td>360 – 490</td>
<td>AGE_BAND_3</td>
<td>40-50 Years</td>
</tr>
<tr>
<td>490 – 720</td>
<td>AGE_BAND_4</td>
<td>50-60 Years</td>
</tr>
<tr>
<td>720 – 1,000</td>
<td>AGE_BAND_5</td>
<td>60+ Years</td>
</tr>
</tbody>
</table>

Job Requisition Age Bands

<table>
<thead>
<tr>
<th>Source Domain Members</th>
<th>Target Domain Members</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 – 360</td>
<td>AGE_BAND_1</td>
<td><30 Years</td>
</tr>
<tr>
<td>360 – 490</td>
<td>AGE_BAND_2</td>
<td>30-40 Years</td>
</tr>
<tr>
<td>490 – 590</td>
<td>AGE_BAND_3</td>
<td>40-50 Years</td>
</tr>
<tr>
<td>590 – 720</td>
<td>AGE_BAND_4</td>
<td>50-60 Years</td>
</tr>
<tr>
<td>720 – 1,000</td>
<td>AGE_BAND_5</td>
<td>60+ Years</td>
</tr>
</tbody>
</table>
Timecard Age Bands

Performance Bands

Period Of Work Ratio Bands - Employee
Period Of Work Ratio Bands – Contingent Workers

Compa Ratio Bands
B.2.35 How to control HR Future-Data Transaction Data Visibility

Purpose
In most HR systems it is common to enter transactions in advance. These are often termed Future-Dated transactions. Which roles can see future-date transactions is often tied to role based access control. In the BI Applications Human Resources a number of facts are secured in such a way as to limit access to future-dated transactions. This is achieved via some Session level OBIEE Initialization Blocks and associated variables that returns a certain date value. This date value dictates how far into the future the user gets access to data, if at all. The purpose of this task is to set this date.
Optional or Mandatory
By default, no future data access is provided for users. If users need future data access, then this task is mandatory.

Task Description
There are five Session variables, and two related Initialization Blocks involved here. These are:

Table B–19 Session variables

<table>
<thead>
<tr>
<th>Session Variable Name</th>
<th>Initialization Block used</th>
<th>Configuration Needed (Y/N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HR_WRKFC_MAX_EFFECTIVE_DT</td>
<td>HR_WRKFC_MAX_EFFECTIVE_ DT</td>
<td>Y</td>
</tr>
<tr>
<td>HR_WRKFC_MAX_EFFECTIVE_DT_WID</td>
<td>HR Workforce Max Effective Dates</td>
<td>N</td>
</tr>
<tr>
<td>HR_WRKFC_MAX_EFFECTIVE_DT_MONTH_WID</td>
<td>HR Workforce Max Effective Dates</td>
<td>N</td>
</tr>
<tr>
<td>HR_WRKFC_MAX_EFFECTIVE_DT_QTR_WID</td>
<td>HR Workforce Max Effective Dates</td>
<td>N</td>
</tr>
<tr>
<td>HR_WRKFC_MAX_EFFECTIVE_DT_YEAR_WID</td>
<td>HR Workforce Max Effective Dates</td>
<td>N</td>
</tr>
</tbody>
</table>

You need to configure only the first Initialization Block. The default delivered behaviour of the Initialization Block 'HR_WRKFC_MAX_EFFECTIVE_DT' is to always return today's date, and the SQL statement is:

```
select DAY_DT
from 'Oracle Data Warehouse'.'Catalog'.'dbo'.'Dim_W_DAY_D_Common'
where DAY_DT = CURRENT_DATE
```

If your requirement is to allow future data access up until one year ahead of 'today', then you need to change the SQL to:

```
select CAST(TIMESTAMPADD(SQL_TSI_YEAR, 1, DAY_DT) AS DATE)
from 'Oracle Data Warehouse'.'Catalog'.'dbo'.'Dim_W_DAY_D_Common'
where DAY_DT = CURRENT_DATE
```

If you wish to change the default behavior of the Initialization Block based on the authenticated user, then you will need to change the delivered SQL for Initialization Block HR_WRKFC_MAX_EFFECTIVE_DT to something like this:

```
select case when ':USER' in ('A','B','C') then
    CAST(TIMESTAMPADD(SQL_TSI_YEAR, 1, DAY_DT) AS DATE)
else
    DAY_DT
end
from 'Oracle Data Warehouse'.'Catalog'.'dbo'.'Dim_W_DAY_D_Common'
where DAY_DT = CURRENT_DATE
```

The above represents a use case where users A, B and C gets future data access up until one year ahead from today, whereas all other users have no future data access.

Regardless of the use cases, depending on what the variable HR_WRKFC_MAX_EFFECTIVE_DT returns, the second Initialization Block HR - Future-dated Data Date (WIDs) returns the appropriate values for the dependent four variables. The SQL goes (this is for your information only; no change is needed):
The exact SQL will depend on the user/role requirements.

Note: Future-dated security is applied only to HR facts, not dimensions, at the time of writing.

Dependency

Future data restriction is available for the following Logical Facts:

- Fact - HR - Workforce - Balance Information
- Fact - HR - Workforce - Event Information
- Fact - HR - Recruitment Event Information
- Fact - HR - Workforce Gains and Losses - Event Information
- Fact - HR - Workforce Gains and Losses - Balance Information
- Fact - HR - Payroll Balance Detail
- Fact - HR - Payroll Balance Summary
- Fact - HR - Accrual Transactions - Balance Information
- Fact - HR - Accrual Transactions - Event Information

B.2.36 How To Configure Quarters for a Fiscal Time Dimensions

Oracle’s JD Edwards EnterpriseOne does not have a concept of defining the quarters for a fiscal pattern or a fiscal year. Therefore, a configurable flat file is provided to populate quarter information. This configuration file enables you to feed quarter information such as Quarter Number for each period, Quarter Start Date, and Quarter End Date.

For information about how to configure this flat file, see Section B.2.72.1, "How to Configure the file_lkp_fiscal_period_Qtr_Config_jde.csv". Each fiscal pattern can have a varying number of periods as supported by the OLTP. Therefore, the quarter configuration is required for each fiscal year and for each fiscal pattern. The table below shows example values specified in the file file_lkp_fiscal_period_Qtr_Config_jde.csv.

<table>
<thead>
<tr>
<th>Fiscal Pattern</th>
<th>Year</th>
<th>Period</th>
<th>QuarterNo</th>
<th>QuarterStart</th>
<th>QuarterEnd</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>6/1/2004</td>
<td>8/30/2004</td>
</tr>
<tr>
<td>F</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>6/1/2004</td>
<td>8/30/2004</td>
</tr>
<tr>
<td>F</td>
<td>4</td>
<td>3</td>
<td>1</td>
<td>6/1/2004</td>
<td>8/30/2004</td>
</tr>
</tbody>
</table>

Example of file_lkp_fiscal_period_Qtr_Config_jde.csv
For each fiscal year in the F0008 table, you must define the quarters for each fiscal period. The quarter information is used in the calculation of aggregates by quarter. The W_MCAL_CONTEXT_G table in the Oracle Business Analytics Warehouse stores calendars associated with the ORG ID, Ledger ID, and Operating Unit columns. In Oracle’s JD Edwards EnterpriseOne, the fiscal date patterns are associated with the company which forms the ORG_ID and LEDGER_ID.

The W_MCAL_CAL_D table stores the calendar information. Every distinct Fiscal Date Pattern stored in the Fiscal Date Pattern table (F0008) has an entry in this table. The grain of this dimension is the Date Pattern Type, which identifies the Calendar in the Oracle Business Analytics Warehouse. This dimension does not have an association with the Fiscal year for that pattern. The MCAL_CAL_WID column is a four digit number that is reset to 1000 each time the ETL is run and incremented by one for each date pattern type stored in W_MCAL_CAL_D.

B.2.37 How to Map GL Accounts to Group Account Numbers for JD Edwards EnterpriseOne

This section explains how to map General Ledger Accounts to Group Account Numbers, and includes the following topics:

- An overview of setting up General Ledger Accounts - see Section B.2.37.1, "Overview of Mapping GL Accounts to Group Account Numbers."

- A description of how to map General Ledger Accounts to Group Account Numbers - see Section B.2.37.2, “How to Map GL Account Numbers to Group Account Numbers.”

- An example that explains how to add Group Account Number metrics to the Oracle BI Repository - see Section B.2.19.3, "Example of Adding Group Account Number Metrics to the Oracle BI Repository”.

Note: It is critical that the GL account numbers are mapped to the group account numbers (or domain values) because the metrics in the GL reporting layer use these values. For a list of domain values for GL account numbers, see Oracle Business Analytics Warehouse Data Model Reference.
B.2.37.1 Overview of Mapping GL Accounts to Group Account Numbers

Group Account Number Configuration is an important step in the configuration of Financial Analytics, as it determines the accuracy of the majority of metrics in the General Ledger and Profitability module. Group Accounts in combination with Financial Statement Item Codes are also leveraged in the GL reconciliation process, to ensure that subledger data reconciles with GL journal entries. This topic is discussed in more detail later in this section.

You can categorize your General Ledger accounts into specific group account numbers. The GROUP_ACCT_NUM field denotes the nature of the General Ledger accounts.

Note: The configuration file or files for this task are provided on installation of Oracle BI Applications at one of the following locations:

Source-independent files: `<Oracle Home for BI>\biapps\etl\data_files\src_files\`.
Source-specific files: `<Oracle Home for BI>\biapps\etl\data_files\src_files\<source adaptor>`.

Your system administrator will have copied these files to another location and configured ODI connections to read from this location. Work with your system administrator to obtain the files. When configuration is complete, your system administrator will need to copy the configured files to the location from which ODI reads these files.

- `file_group_acct_codes_jde.csv` - this file maps General Ledger accounts to group account codes.

The associations in this file are used in conjunction with the values defined for the following Domains:

- **W.GL.GROUP_Account**
- **W.GL.ACCT_CATEGORY**
- **W.FIN_STMT**

These Domain values and the mappings between them classify accounts into sub-groups, like Revenue and Cost of Goods Sold, as well as dividing accounts between Balance Sheet and Profit and Loss. Before you load your data, you must ensure that the account values are mapped consistently across these three collections. In particular, the GROUP_ACCOUNT_NUM domain that is specified in Oracle BI Applications Configuration Manager must contain valid members of the W.GL.GROUP_ACCOUNT Domain. Those values, in turn, are mapped to members of the W.GL.ACCT_CATEGORY and W.FIN_STMT Domains.

You can categorize the General Ledger accounts in Oracle’s JD Edwards EnterpriseOne into specific group account numbers. The group account number is used during data extraction as well as front-end reporting.

The GROUP_ACCT_NUM field in the GL Account dimension table `W.GL_ACCOUNT_D` denotes the nature of the General Ledger accounts (for example, Cash account, AR account, Long Term Debt account Payroll account). For a list of the Group Account Number domain values, see Oracle Business Analytics Warehouse Data Model Reference.
The mappings to General Ledger Accounts Numbers are important for both Profitability analysis and General Ledger analysis (for example, Balance Sheets).

Using the file_group_account_codes_jde.csv, you can specify which group account (among the available group accounts) the object account is associated with. The Company column in this CSV file is the actual company the object account belongs to.

In addition to the From Account and To Account range, the system uses the incoming company as a parameter for the association. If the incoming company has not been configured in the group account flat file, the system inserts 00000 as the default value for Company for lookups. You can choose to not configure group accounts for any company other than 00000 if you are using a single global chart of accounts. However, if you configure group accounts for additional companies, you must configure all possible From Account and To Account ranges for these companies. In addition, you must always configure the entire range of accounts for company 00000.

Table B–21 below shows example values specified in the file file_group_account_codes_jde.csv

Table B–21 Example of file_group_account_codes_jde.csv

<table>
<thead>
<tr>
<th>COMPANY</th>
<th>FROM ACCT</th>
<th>TO ACCT</th>
<th>GROUP_ACCT_NUM</th>
</tr>
</thead>
<tbody>
<tr>
<td>00000</td>
<td>4100</td>
<td>4190</td>
<td>AP</td>
</tr>
<tr>
<td>00000</td>
<td>1200</td>
<td>1299</td>
<td>AR</td>
</tr>
<tr>
<td>00000</td>
<td>2120</td>
<td>2195</td>
<td>ACC DEPCN</td>
</tr>
<tr>
<td>00000</td>
<td>4200</td>
<td>4211</td>
<td>ACC LIAB</td>
</tr>
<tr>
<td>00000</td>
<td>1100</td>
<td>1121</td>
<td>CASH</td>
</tr>
<tr>
<td>00000</td>
<td>4900</td>
<td>4910</td>
<td>CMMN STOCK</td>
</tr>
<tr>
<td>00000</td>
<td>1401</td>
<td>1469</td>
<td>FG INV</td>
</tr>
<tr>
<td>00000</td>
<td>3990</td>
<td>3990</td>
<td>GOODWILL</td>
</tr>
<tr>
<td>00000</td>
<td>4690</td>
<td>4690</td>
<td>LT DEBT</td>
</tr>
<tr>
<td>00000</td>
<td>3900</td>
<td>3940</td>
<td>OTHER ASSET</td>
</tr>
<tr>
<td>00000</td>
<td>1310</td>
<td>1400</td>
<td>OTHER CA</td>
</tr>
<tr>
<td>00000</td>
<td>4212</td>
<td>4550</td>
<td>OTHER CL</td>
</tr>
<tr>
<td>00000</td>
<td>4950</td>
<td>4950</td>
<td>OTHER EQUITY</td>
</tr>
<tr>
<td>00000</td>
<td>4610</td>
<td>4685</td>
<td>OTHER LIAB</td>
</tr>
</tbody>
</table>

The Domain mapping from W_GL_GROUP_ACCOUNT to W_FIN_STMT specifies the relationship between a group account number and a Financial Statement Item code.

Table B–22 shows the Financial Statement Item codes to which Group Account Numbers must map, and their associated base fact tables.

Table B–22 Financial Statement Item Codes and Associated Base Fact Tables

<table>
<thead>
<tr>
<th>Financial Statement Item Codes</th>
<th>Base Fact Tables</th>
</tr>
</thead>
<tbody>
<tr>
<td>AP</td>
<td>AP base fact (W_AP_XACT_F)</td>
</tr>
<tr>
<td>AR</td>
<td>AR base fact (W_AR_XACT_F)</td>
</tr>
<tr>
<td>COGS</td>
<td>Cost of Goods Sold base fact (W_GL_COGS_F)</td>
</tr>
</tbody>
</table>
By mapping your GL accounts against the group account numbers and then associating the group account number to a Financial Statement Item code, you have indirectly associated the GL account numbers to Financial Statement Item codes as well.

B.2.37.2 How to Map GL Account Numbers to Group Account Numbers

This section explains how to map General Ledger Account Numbers to Group Account Numbers.

Note: If you add new Group Account Numbers to the file_group_account_codes_<source system type>.csv file, you must also add metrics to the BI metadata repository (that is, the RPD file). See Section B.2.19.3, “Example of Adding Group Account Number Metrics to the Oracle BI Repository” for more information.

To map GL account numbers to group account numbers:

1. Edit the file_group_acct_codes_jde.csv.

Note: The configuration file or files for this task are provided on installation of Oracle BI Applications at one of the following locations:

Your system administrator will have copied these files to another location and configured ODI connections to read from this location. Work with your system administrator to obtain the files. When configuration is complete, your system administrator will need to copy the configured files to the location from which ODI reads these files.

2. For each GL account number that you want to map, create a new row in the file containing the following fields:

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMPANY</td>
<td>The ID of the COMPANY.</td>
</tr>
<tr>
<td>FROM ACCT</td>
<td>The lower limit of the natural account range. This is based on the natural account segment of your GL accounts.</td>
</tr>
<tr>
<td>TO ACCT</td>
<td>The higher limit of the natural account range. This is based on the natural account segment of your GL accounts.</td>
</tr>
</tbody>
</table>

Table B–22 (Cont.) Financial Statement Item Codes and Associated Base Fact Tables

<table>
<thead>
<tr>
<th>Financial Statement Item Codes</th>
<th>Base Fact Tables</th>
</tr>
</thead>
<tbody>
<tr>
<td>REVENUE</td>
<td>Revenue base fact (W_GL_REVN_F)</td>
</tr>
<tr>
<td>OTHERS</td>
<td>GL Journal base fact (W_GL_OTHER_F)</td>
</tr>
</tbody>
</table>
Informational Task Reference - Miscellaneous

For example:

1000, 1110, 1110, CASH
1000, 1210, 1210, AR
1000, 1220, 1220, AR

3. Ensure that the values that you specify in the file_group_acct_codes_jde.csv file are consistent with the domain members of Group Account (W_GL_GROUP_ACCOUNT).

 In particular, the GROUP_ACCOUNT_NUM field in file_group_acct_names.csv must contain valid members of the W_GL_GROUP_ACCOUNT Domain. Those values, in turn, are mapped to members of the W_GL_ACCT_CATEGORY and W_FIN_STMT Domains.

4. Save and close the CSV file.

B.2.38 How to Configure Incremental Extract for Projects Facts for PeopleSoft

This section explains how to configure incremental extract for project facts for PeopleSoft. There are two ways to configure incremental extract:

- Using Database Triggers - for information about using this method, see Section B.2.38.1, "How to Configure Incremental extract for projects facts for PeopleSoft Using DB Triggers".

- Using Materialized Views - for information about using this method, see Section B.2.38.2, "How to Configure Incremental extract for projects facts for PeopleSoft Using Materialized Views".

This section explains both of the above methods. This section does not cover the advantages or disadvantages of each method, or advise how to choose which method to adopt.

B.2.38.1 How to Configure Incremental extract for projects facts for PeopleSoft Using DB Triggers

This section describes the incremental extract solution to mitigate the performance issues for incremental ETL from PeopleSoft for Project Budget/Cost/Revenue/Commitment/Forecast/Cross Charge/Retention Facts using a database trigger solution.

To configure incremental extract for Project Facts Using Database Triggers:

1. Read the Overview, which includes deploying the appropriate SQL code in your source system (for more information, see Section B.2.38.1.1, "Overview").

2. Make updates in Oracle BI Applications Configuration Manager (for more information, see Section B.2.38.1.2, "Updates in Oracle BI Applications Domain Members").

Note: You can optionally remove the unused rows in the CSV file.
Configuration Manager.

3. Make updates in Oracle Data Integrator (for more information, see Section B.2.38.1.3, "Updates in Oracle Data Integrator").

4. Modify the Temporary Interfaces (for more information, see Section B.2.38.1.4, "Modify Temporary Interfaces").

5. Modify the Load Plan (for more information, see Section B.2.38.1.5, "Modify Load Plan").

6. Modify the BI metadata repository (that is, the RPD file). For more information, see Section B.2.38.1.6, "Metadata Repository (RPD) Changes".

B.2.38.1 Overview Before you start, read this overview.

Supported Versions

Supported DB: Oracle / SQL Server

Supported Oracle BI Applications releases: 11.1.1.7.1 onwards

Supported Apps releases: PeopleSoft 8.9 onwards

Overview

The PeopleSoft ESA application does not populate the DTTM_STAMP column in PS_PROJ_RESOURCE correctly; this restricts the ability to devise incremental load logic around this column, which leads to a performance overhead while loading the Project Budget, Forecast, Commitment, Cross Charge, Cost, Retention and Revenue facts.

This section outlines the steps to facilitate changed data capture (CDC) for PeopleSoft OLTP based on database triggers. **Note:** By default, CDC using GoldenGate and ODI is supported. If you do not have a license for GoldenGate, then the solution outlined here can be followed for CDC and incremental loading out the relevant project fact tables.

Note: This approach is only supported for Oracle / SQL Server db

The section specifies:

- The code to be deployed in the source system (PeopleSoft apps).
- The ODI XML files which has to be imported to the ODI repository.
- The BI metadata repository (that is, the RPD file) changes for successfully implementing this solution.

Summary

- A Trigger on PS_PROJ_RESOURCE will be created in the OLTP which will insert PKs of changed rows into the PROJ_RESOURCE_UPD_AUD table (Refer to the Steps section for code).
- A View (OBIEE_PS_PROJ_RESOURCE_VW) will be created on the PS_PROJ_RESOURCE and this trigger table (PROJ_RESOURCE_UPD_AUD) and this view (OBIEE_PS_PROJ_RESOURCE_VW) is what will be used in the SDE fact extract source. (Refer to the Steps section for code).
- The deleted rows will be captured in the PE tables via ETL from the Trigger table (PROJ_RESOURCE_UPD_AUD) filtered on update_type = 'D'.
- Rest of the delete strategy interfaces will also be updated to properly handle the soft delete logic.
In the ODI model layer the resource name for the object PS_PROJ_RESOURCE table will be replaced by the View on MV (OBIEE_PS_PROJ_RESOURCE_VW).

The deleted rows will be captured in the <fact>_DEL tables via ETL from the OBIEE_PS_PROJ_RESOURCE_DEL_VW.

The SIL fact interface will properly handle the soft delete logic once we set the values of variables to:
- SOFT_DELETE_PREPROCESS = 'N' (This will not populate the <fact>_PE table)
- SOFTDELETE_FEATURE_ENABLED = 'Y'

Summary of steps:
1. Create the trigger and db objects.
2. Run the full ETL.
3. Modify the data in OLTP.
4. Run the SDE fact extracts.
5. Run the SIL fact loads.
6. Run the soft delete ETLs.

Assumptions
- There will be some performance impact on the OLTP application due to the presence of the trigger.
- Actual deletes from PS_PROJ_RESOURCE will be treated as Soft Delete in Oracle Business Analytics Warehouse.
- Important: The customer need to run truncate on the trigger table PROJ_RESOURCE_UPD_AUD from time to time (say every week) in order to ensure it does not become too big such that it begins to impact ETL run times.

Database Changes Required for an Oracle Database
If your source OLTP database is an Oracle database instance, then execute the SQL script in the file psft_orcl_trigger.txt, which is located in the installation folder <Oracle Home for BI>/biapps/etl/src_specific/PSFT/oracle.

For example:

```sql
/*ORACLE SCRIPT TO IMPLEMENT INCREMENTAL SOLUTION FOR PEOPLESOFT ADAPTOR FOR OBIA PROJECT ANALYTICS */
DROP TABLE PROJ_RESOURCE_UPD_AUD;
/
CREATE TABLE PROJ_RESOURCE_UPD_AUD(
    ROW_WID number(10),
    BUSINESS_UNIT varchar2(5) NULL,
    PROJECT_ID varchar2(15) NULL,
    ...
    ...
And so on.
```

Database Changes Required for an MS SQL Database
If your source OLTP database is an MS SQL Server database instance, then execute the SQL script in the file psft_mssql_trigger.txt, which is located in the installation folder <Oracle Home for BI>/biapps/etl/src_specific/PSFT/ms_sql_server.

For example:
/*MSSQL SCRIPT TO IMPLEMENT INCREMENTAL SOLUTION FOR PEOPLESOFT ADAPTOR FOR OBIA PROJECT ANALYTICS */

/* Replace <DB> with the actual schema name */

USE <DB>

DROP TABLE PROJ_RESOURCE_UPD_AUD;

CREATE TABLE PROJ_RESOURCE_UPD_AUD(
 ROW_WID INT IDENTITY(1,1) PRIMARY KEY,
 ...
 ...
 And so on.
)

B.2.38.1.2 Updates in Oracle BI Applications Configuration Manager In Oracle BI Applications Configuration Manager, make the following changes:

1. Set the value of SOFT_DELETE_PREPROCESS to 'N'.
2. Set the value of SOFTDELETE_FEATURE_ENABLED to 'Y' for the Fact Group Level variables.

B.2.38.1.3 Updates in Oracle Data Integrator Make the following changes:

1. In the ODI model layer the resource name for the object PS_PROJ_RESOURCE table will be replaced by the view OBIEE_PS_PROJ_RESOURCE_VW.

 If you are using PeopleSoft 90, then follow this navigation. Otherwise, navigate to the 9.0 folder. That is, in ODI Designer Navigator, navigate to Models, then Peoplesoft 9.0, then peoplesoft 9.0 FNSCM, then FPC-Projects, then open the object PROJ_RESOURCE and change the 'Resource Name' to OBIEE_PS_PROJ_RESOURCE_VW.
2. Add column LAST_UPDATE_DT TIMESTAMP to the Object PROJ_RESOURCE in ODI model.

3. Click Save.

4. Regenerate the appropriate SDE scenarios for all the facts mentioned above.
 That is, in ODI Designer Navigator, navigate to Projects, then Mapping, then SDE_PSFT_90_Folder, navigate to the fact folder e.g SDE_PSFT_ProjectCostLineFact, then Packages, then Scenarios, then right click on the name and select the Regenerate button.

B.2.38.1.4 Modify Temporary Interfaces Modify temporary interfaces, as follows:

1. In ODI temporary interfaces the mapping for CHANGED_ON_DT needs to be changed to include the LAST_UPDATE_DT column in the code.

2. For example, consider the temporary interface for Cost Fact:
 SDE_PSFT_ProjectCostLineFact.W_PROJ_COST_LINE_FS_SQ_PROJ_RESOURCE

3. The CHANGED_ON_DT is mapped with:
 RUN_REPLICATED_TRANSACTIONAL(‘#IS_SDS_DEPLOYED’,PS_PROJ_RESOURCE.DTTM_STAMP,PS_PROJ_RESOURCE.CDC$_SRC_LAST_UPDATE_DATE)

4. Change the update date:
 RUN_REPLICATED_TRANSACTIONAL(‘#IS_SDS_DEPLOYED’,COALESCE(PS_PROJ_RESOURCE.LAST_UPDATE_DT,PS_PROJ_RESOURCE.DTTM_STAMP),PS_PROJ_RESOURCE.CDC$_SRC_LAST_UPDATE_DATE)

5. Change the incremental filter, and replace PS_PROJ_RESOURCE.DTTM_STAMP with COALESCE(PS_PROJ_RESOURCE.LAST_UPDATE_DT,PS_PROJ_RESOURCE.DTTM_STAMP).

6. Regenerate scenarios.
 Repeat the above steps for the remaining Budget, Forecast, Commitment, Cross Charge, Retention and Revenue facts.
B.2.38.1.5 Modify Load Plan Modify your Load Plan, as follows:

The Interface to load the Deleted rows needs to be added to the Load Plan, as follows:

1. In ODI Designer Navigator, navigate to Load Plans and Scenarios, then Your Generated Load Plan and open it.

2. In the Steps tab, navigate to '1 SDE Extract' step > 2 SDE Fact Group> Parallel (Persisted/Temporary Staging Table)>3 SDE PS PROJECT.
3. Create a Serial Step "Projects_Identify_Deletes" under the root step and add the identify delete fact scenarios for Project Cost, Budget, Forecast, Commitment, Cross Charge, Retention and Revenue facts steps as shown in the screenshot below.

4. Add scenarios in relevance to Load plan. For instance, scenarios with prefix SDE_PSFT_90_ADAPTOR to be added for PeopleSoft 90 Load plan and ones with prefix SDE_PSFT_91_ADAPTOR should be added for PeopleSoft 91 Load plan. These tasks have to be set to 'Restart from Failure'.

5. Click on these newly added tasks, edit them to take the '-1' version as shown in the screenshot. This is necessary to ensure that the latest scenario is used in case if there are multiple scenarios.

6. Save the Load Plan.
B.2.38.1.6 Metadata Repository (RPD) Changes Change BMM filters for base Facts to filter out Deleted records. It is recommended that these changes are done in an offline mode.

1. In Oracle BI EE Administration Tool, edit the BI metadata repository (for example, OracleBIAnalyticsApps.rpd).
2. In the BMM layer and go to Fact – Project Budget.
3. Click to view LTS’es under this logical fact.
4. Add the following filter to Fact_W_PROJ_BUDGET_F_Budget_Fact.
5. Add a similar filter for Budget Fact ITD LTS (Delete Flg = 'N')

Similarly, modify for Cost/Forecast/Commitment/Cross charge/Revenue/Retention facts.
B.2.38.2 How to Configure Incremental extract for Project Facts for PeopleSoft Using Materialized Views

The PeopleSoft ESA application does not populate the DTTM_STAMP column in PS_PROJ_RESOURCE correctly; this restricts the ability to devise incremental load logic around this column, which leads to a performance overhead while loading the Project Budget, Forecast, Commitment, Cross Charge, Cost and Revenue facts.

To configure incremental extract for Project Facts Using Database Triggers:

1. Read the Overview, which includes deploying the appropriate SQL code in your source system (for more information, see Section B.2.38.2.1, "Overview").
2. Make updates in Oracle BI Applications Configuration Manager (for more information, see Section B.2.38.2.2, "Updates in Oracle BI Applications Configuration Manager").
3. Make updates in Oracle Data Integrator (for more information, see Section B.2.38.2.3, "Updates in Oracle Data Integrator").
4. Modify the Temporary Interfaces (for more information, see Section B.2.38.2.4, "Modify Temporary Interfaces").
5. Modify the Load Plan (for more information, see Section B.2.38.2.5, "Modify Load Plan").
6. Modify the BI metadata repository (that is, the RPD file). For more information, see Section B.2.38.2.6, "Metadata Repository (RPD) Changes".

B.2.38.2.1 Overview

This section describes the steps to facilitate changed data capture (CDC) for PeopleSoft OLTP based on fast refresh of Materialized View (using MV log). By default, CDC using GoldenGate and ODI is supported. If you do not have a license for GoldenGate, then the solution outlined here can be followed for CDC and incremental loading of the relevant project fact tables.

Note: This approach is only supported for Oracle databases.

The section specifies:
- The code to be deployed in the source system (PeopleSoft apps).
- The ODI XML files which has to be imported to the ODI repository.
- The RPD changes for successfully implementing this solution.

Supported Versions

Supported DB: 10.2.0.4 with patch (RDBMS patch 9580103), Oracle 11i onwards

Supported Oracle BI Applications releases: 11.1.1.7.1 onwards

Supported Apps releases: PeopleSoft 8.9 onwards

Summary

- An MV log on PS_PROJ_RESOURCE will be created in the OLTP (Refer to the Steps section for code).
- A PK constraint based on the unique index on PS_PROJ_RESOURCE will need to be created.
- An MV will be created on PS_PROJ_RESOURCE with an additional column of LAST_UPDATE_DT which will be populated based on the sysdate. This new field will be indexed. (Refer to the Steps section for code).
A View will be created on the MV and this is what will be used in the SDE fact extract source. (Refer to the Steps section for code).

A one time complete refresh of MV will be done.

Prior to the daily ETL run the MV will be fast refreshed. MV refresh will be integrated in the Load Plan, for details refer to the Steps section below. Note: Oracle automatically purges the MV log once a fast refresh is run (since the MV log can grow substantially it is recommended to run a daily ETL run so that the MV fast refresh is quick.).

In the ODI model layer the resource name for the object PS_PROJ_RESOURCE table will be replaced by the View on MV (OBIEE_PS_PROJ_RESOURCE_VW).

The deleted rows will be captured in the <fact>_DEL tables via ETL from the MV log filtered on DMLTYPES$ = 'D'. This ETL will be run prior to the fast refresh as the data will be truncated otherwise.

The SIL fact interface will properly handle the soft delete logic once we set the values of variables to:

- SOFT_DELETE_PREPROCESS = 'N' (This will not populate the <fact>_PE table)
- SOFTDELETE_FEATURE_ENABLED = 'Y'

Summary of steps:
1. Create the MV log/MV/View.
2. Do a one-time complete refresh of MV.
3. Run the full ETL.
4. Modify the data in OLTP.
5. Run the Primary delete capture ETLs.
6. Fast refresh the MV (MV log gets truncated automatically).
7. Run the SDE fact extracts.
8. Run the SIL fact loads.

Assumptions

- There will be some performance impact on the OLTP application due to the presence of MV log and there is a potential concern with MV Logs refresh time if the MV is not refreshed frequently. Oracle recommends refreshing it on a daily basis to avoid this problem.

- This solution requires Oracle RDBMS version 10.2.0.4 with patch (RDBMS patch 9580103) or version 11.1.2.0 or above. If Oracle database behavior when updating a Materialized view based on a prebuilt table changes, this solution might need to be modified.

- If someone create another MV using the same MVlog (for whatever reason), then one would have to refresh all depending MVs before the log get purged.

- Actual deletes from PS_PROJRESOURCE will be treated as Soft Delete in Oracle Business Analytics Warehouse.

Database Changes

1. Run the following steps in the OLTP database in the instance in the order specified:

 ALTER TABLE PS_PROJ_RESOURCE ADD CONSTRAINT PS_PROJ_RESOURCE_PK PRIMARY KEY
(BUSINESS_UNIT, PROJECT_ID, ACTIVITY_ID, RESOURCE_ID) USING INDEX PS_PROJ_RESOURCE;

CREATE MATERIALIZED VIEW LOG ON PS_PROJ_RESOURCE NOCACHE LOGGING NOPARALLEL WITH SEQUENCE;

CREATE TABLE OBIEE_PS_PROJ_RESOURCE_MV AS SELECT * FROM PS_PROJ_RESOURCE WHERE 1=2;

ALTER TABLE OBIEE_PS_PROJ_RESOURCE_MV ADD (LAST_UPDATE_DT DATE DEFAULT SYSDATE);

CREATE MATERIALIZED VIEW OBIEE_PS_PROJ_RESOURCE_MV ON PREBUILT TABLE REFRESH FAST ON DEMAND AS SELECT * FROM PS_PROJ_RESOURCE;

CREATE VIEW OBIEE_PS_PROJ_RESOURCE_VW AS SELECT * FROM OBIEE_PS_PROJ_RESOURCE_MV;

CREATE VIEW OBIEE_PS_PROJ_RESOURCE_DEL_VW AS SELECT business_unit, project_id, activity_id, resource_id FROM (SELECT business_unit, project_id, activity_id, resource_id, dmltype$$, CASE WHEN sequence$$ = MAX(sequence$$) over (PARTITION BY business_unit, project_id, activity_id, resource_id) THEN sequence$$ ELSE NULL END AS sequence$$ FROM mlog$_ps_proj_resource) WHERE sequence$$ IS NOT NULL AND dmltype$$ = 'D';

2. Refresh the Materialized view.
 It will help to fast refresh the MV during the incremental run, for example, using the command EXECUTE DBMS_MVIEW.REFRESH('OBIEE_PS_PROJ_RESOURCE_MV', 'C');.

3. Determine which indexes to create on the MV, by looking at the extract sql, and running a query plan.
 For example, an index is required on the LAST_UPDATE_DT field and a unique index on the PK fields.

B.2.38.2 Updates in Oracle BI Applications Configuration Manager
In Oracle BI Applications Configuration Manager, make the following changes:

1. Set the value of SOFT_DELETE_PREPROCESS to 'N'.

2. Set the value of SOFTDELETE_FEATURE_ENABLED to 'Y' for the Fact Group Level variables.

B.2.38.2.3 Updates in Oracle Data Integrator
The best option to maintain up-to-date custom MVs is to merge their refresh into the ODI Load Plan.
The following PLSQL call ensures fast refresh for OBIEE_PS_PROJ_RESOURCE_MV:

```
BEGIN
    DBMS_MVIEW.REFRESH('OBIEE_PS_PROJ_RESOURCE_MV', 'F');
END;
```

In ODI Designer Navigator, make the following changes:

1. In the ODI model layer the resource name for the object PS_PROJ_RESOURCE table will be replaced by the view OBIEE_PS_PROJ_RESOURCE_VW.

If you are using PeopleSoft 90, then follow this navigation. Otherwise, navigate to the 9.0 folder. That is, in ODI Designer Navigator, navigate to Models, then Peoplesoft 9.0, then Peoplesoft 9.0 FNSCM, then FPC-Projects, then open the object PROJ_RESOURCE and change the 'Resource Name' to OBIEE_PS_PROJ_RESOURCE_VW.

2. Add column LAST_UPDATE_DT TIMESTAMP to the Object PROJ_RESOURCE in ODI model.
3. Click Save.
4. Regenerate the appropriate SDE scenarios for all the facts mentioned above.

That is, in ODI Designer Navigator, navigate to Projects, then Mapping, then SDE_PSFT_90_Folder, navigate to the fact folder e.g SDE_PSFT_ProjectCostLineFact, then Packages, then Scenarios, then right click on the name and select the Regenerate button.

B.2.38.2.4 Modify Temporary Interfaces

Modify temporary interfaces, as follows:

1. In ODI temporary interfaces the mapping for CHANGED_ON_DT needs to be changed to include the LAST_UPDATE_DT column in the code.
2. For example, consider the temporary interface for Cost Fact:

   ```
   SDE_PSFT_ProjectCostLineFact.W_PROJ_COST_LINE_FS_SQ_PROJ_RESOURCE
   ```

3. The CHANGED_ON_DT is mapped with:
RUN_REPLICATED_TRANSACTIONAL('#IS_SDS_DEPLOYED', PS_PROJ_RESOURCE.DTTM_STAMP, PS_PROJ_RESOURCE.CDC$_SRC_LAST_UPDATE_DATE)

4. Change the update date:
RUN_REPLICATED_TRANSACTIONAL('#IS_SDS_DEPLOYED', COALESCE(PS_PROJ_RESOURCE.LAST_UPDATE_DT, PS_PROJ_RESOURCE.DTTM_STAMP), PS_PROJ_RESOURCE.CDC$_SRC_LAST_UPDATE_DATE)

5. Change the incremental filter, and replace PS_PROJ_RESOURCE.DTTM_STAMP with COALESCE(PS_PROJ_RESOURCE.LAST_UPDATE_DT, PS_PROJ_RESOURCE.DTTM_STAMP).

6. Regenerate scenarios.
Repeat the above steps for the remaining Budget, Forecast, Commitment, Cross Charge, Retention and Revenue facts.
B.2.38.2.5 Modify Load Plan

Modify your Load Plan, as follows:

The Interface to load the Deleted rows needs to be added to the Load Plan.

1. In ODI Designer Navigator, navigate to Load Plans and Scenarios, then your Generated Load Plan, and open it.
2. In the Steps tab, navigate to '1 SDE Extract' step > 2 SDE Fact Group> Parallel (Persisted/Temporary Staging Table)>3 SDE PS PROJECT.

3. Create a Serial Step "Projects_Identify_Deletes" under the root step and add the identify delete fact scenarios for Project Cost, Budget, Forecast, Commitment, Cross Charge, Retention and Revenue facts steps as shown in the screenshot below.

4. Add scenarios in relevance to Load plan. For instance, scenarios with prefix SDE_PSFT_90_ADAPTOR to be added for PeopleSoft 90 Load plan and ones with prefix SDE_PSFT_91_ADAPTOR should be added for PeopleSoft 91 Load plan. These tasks have to be set to 'Restart from Failure'.

5. Click on these newly added tasks, edit them to take the '-1' version as shown in the screenshot.

This is necessary to ensure that the latest scenario is used in case if there are multiple scenarios.

6. Save the Load Plan.
B.2.38.2.6 Metadata Repository (RPD) Changes Change BMM filters for base Facts to filter out Deleted records. It is recommended that these changes are done in an offline mode.

1. In Oracle BI EE Administration Tool, edit the BI metadata repository (for example, OracleBIAnalyticsApps.rpd).
2. In the BMM layer and go to Fact – Project Budget.
3. Click to view LTS’es under this logical fact.
4. Add the following filter to Fact_W_PROJ_BUDGET_F_Budget_Fact.
5. Add a similar filter for Budget Fact ITD LTS (Delete Flg = 'N').

Similarly, modify for Cost/Forecast/Commitment/Cross charge/Revenue/Retention facts.
B.2.39 How to Configure Projects Capitalizable Flag for PeopleSoft

This section describes how to configure Project Capitalizable flag in Project dimension for PeopleSoft source, based on the project type.

Project Capitalizable Flag is associated against Project Type in flat file file_project_capitalizable_flag_psft.csv.

Note: The configuration file or files for this task are provided on installation of Oracle BI Applications at one of the following locations:

Source-independent files: `<Oracle Home for BI>\biapps\etl\data_files\src_files\`.

Source-specific files: `<Oracle Home for BI>\biapps\etl\data_files\src_files\<source adaptor>\`.

Your system administrator will have copied these files to another location and configured ODI connections to read from this location. Work with your system administrator to obtain the files. When configuration is complete, your system administrator will need to copy the configured files to the location from which ODI reads these files.

To Configure Projects Capitalizable Flag for PeopleSoft:

1. Identify the Project Type Class Codes by using the following SQL (To be run in OLTP source):

   ```sql
   SELECT T.PROJECT_TYPE || ' | ' || T.SETID AS PROJECT_TYPE
   FROM PS_PROJ_TYPE_TBL T
   WHERE T.EFFDT = (SELECT MAX(EFFDT)
                   FROM PS_PROJ_TYPE_TBL T1
                   WHERE T1.SETID = T.SETID AND T1.PROJECT_TYPE = T.PROJECT_TYPE
                   AND T1.EFFDT <= CURRENT_TIMESTAMP
                   GROUP BY T1.SETID, T1.PROJECT_TYPE)
   ```

2. Edit the file file_project_capitalizable_flag_psft.csv.

3. Copy the data from the PROJECT_TYPE column to the PROJECT_TYPE_CLASS_CODE column in the CSV file.

4. Map each Project Type Class to a value of Y or N in the CAPITALIZABLE_FLG column. If the Project Type Class is considered capitalizable, enter Y. Otherwise, enter N.

5. Save and close the file.

B.2.40 How to Configure Project Budget Fact for E-Business Suite

In E-Business Suite, baselined Budgets are extracted into the Budget Fact (W_PROJ_BUDGET_F) table, the grain of which is Budget Line. Because only the baselined budgets are extracted, the records in this table are not updated after they are loaded into Oracle Business Analytics Warehouse; only new records are inserted during the incremental ETL run. Budgets are stored in the Budget dimension (W_PROJ_BUDGET_D).

Note: For E-Business Suite, Transaction Currency is the Document Currency for this fact.
Defining Filters on Budget Metrics

A user can create multiple budgets for a single Project and multiple versions for the same budget type. Therefore, all exposed metrics are filtered by the following filters:

- **Approved Budget Type.** A project can have only one Cost Budget with a budget type as "Approved Cost Budget" and one Revenue Budget with a budget type as "Approved Revenue Budget." Therefore, all Cost Budget metrics are filtered by the Approved Cost Budget and Approved Revenue Budget flags to ensure that the metrics include data from one budget only.

- **Current or Original Budget.** Each Project forecast can have multiple versions. The Current Version might not be the same as the Original version. Therefore, to show only one Forecast version at a time, there are separate metrics for Current version and Original version. These flags are set automatically in OLTP when the forecast is baselined, but users can update them manually.

The user can still see the metrics for any other budget type or version by bringing the non-filtered metrics from Fact - Project Budget fact table into the Presentation area. But to avoid duplicate data, the report must have a filter on "Dim - Project Budget Version.Budget Type" and "Dim - Project Budget Version.Budget Version".

Before running the ETL for the first time, then go to the Financial Plan Type page in the HTML application and set your Approved Cost Budget Type and your Approved Revenue Budget Types, as shown in the example screen shot below.

Budgets Created in Forms Client

For budgets entered through the Form client, the PA_BUDGET_TYPES.PLAN_TYPE column is not populated for the two predefined budget types, AC and AR. Therefore, the following ETL logic is incorporated in interface SDE_ORA_ProjectBudgetDimension_BudgetType.W_PROJ_BUDGET_DS in the SDE_ORA_ProjectBudgetDimension folder:

```
DOMAIN_DEFAULT_UNASSIGNED( TO_CHAR(case when ISNULL(SQ_PA_BUDGET_VERSIONS.PLAN_TYPE) then DECODE(SQ_PA_BUDGET_VERSIONS.BUDGET_TYPE_CODE1,'AC','BUDGET','AR','BUDGET','FC','FORECAST','FR', 'FORECAST',SQ_PA_BUDGET_VERSIONS.PLAN_TYPE  else SQ_PA_BUDGET_VERSIONS.PLAN_TYPE end )
```

Budget Fact Canonical Date

The Budget Fact contains the following two sets of Accounting Date and Period WIDs:
■ PROJ_ACCT_START_DT_WID, PROJ_ACCT_END_DT_WID, and PROJ_PERIOD_WID

PROJ_ACCT_START_DT_WID and PROJ_ACCT_END_DT_WID are populated using START_DATE and END_DATE of budget line only for budgets that are time-phased using the Project Accounting (PA) Calendar.

■ GL_ACCT_START_DT_WID, GL_ACCT_END_DT_WID, and GL_PERIOD_WID

The GL_ACCT_START_DT_WID and GL_ACCT_END_DT_WID are populated using the START_DATE and END_DATE of budget line for budgets that are time-phased by the General Ledger (GL) Calendar.

For budgets defined with Time Phase equal 'P'(PA), 'N'(No Time Phase) or 'R'(Date Range), the GL_ACCT_START_DT_WID and GL_PERIOD_WID are resolved using the START_DATE of the budget line by choosing the period containing that date in the GL Calendar (pinned by the GL_MCAL_CAL_WID).

This approach assumes that for time phase 'P', 'N', and 'R', there is a period containing the START_DATE for the given GL Calendar in the OLTP database.

For Forms -based budgets, even though the application does not allow creating budget lines in a different currency than the Project Functional currency, the currency from Project Functional Currency is used for the default value of the Document Currency field. This enables Budget Amounts to be analyzed in the Global Currencies. For example, Doc Raw Cost Amount is populated as:

```sql
COALESCE(SQ_PA_BUDGET_LINES.TXN_RAW_COST,
  IIF(SQ_PA_BUDGET_LINES.TXN_CURRENCY_CODE = SQ_PA_BUDGET_LINES.PROJFUNC_CURRENCY_CODE,
    SQ_PA_BUDGET_LINES.RAW_COST,
    NULL))
```

B.2.41 How to Configure Project Cross Charge Fact for PeopleSoft

In the services industry, employees might work on projects that are outside of their own organizations. In such cases, the organization that owns a project and the organization that owns the human resource (the employee), might be different. To handle these scenarios in Peoplesoft, Organizational Sharing method of project accounting is used to share costs and revenue that the project or activity generates between the entities. Rules and accounting procedures are setup; that define the agreement between the organization that owns the project and the organization that owns the human resource.

If sharing rules are defined and activated, the Pricing process calls the Sharing Application Engine process (PSA_SHARING) to search for rows that are designated for sharing. These rows are either loaded to Cost Fact or Revenue Fact depending on the analysis type. A row is eligible for the Sharing process if it satisfies the conditions set to in sharing setup page to identify shared rows. For example, an Organization that owns the project or activity differs from the organization that owns the transaction. An applicable sharing rule exists, and the row does not qualify as an exception to the sharing rules.

Organization Sharing Example

Assume there is a 80% revenue sharing rule in place between US004 (Receiver) and US001 (Provider) with no exceptions set.
The shared row that gets created in PeopleSoft is loaded to Cross Charge fact table.

Note: Internal contract sharing is not supported in this release. In addition, sharing rows created directly via the Add transactions page in PeopleSoft are not supported (that is, using Project Costing > Transaction Definition > Add Transactions).

B.2.42 How to Configure Project Forecast Fact for E-Business Suite

The Forecast fact table is based on PA_BUDGET_LINES. A filter is applied to the Budget Version table to extract only baselined Forecasts for the Forecast fact. The grain of this table is a Forecast line. The ETL extracts only baselined forecasts, so the records in this table are not updated after they are loaded to Oracle Business Analytics Warehouse; only new records are inserted during an incremental run. Forecasts are stored in the Budget dimension (W_PROJ_BUDGET_D) as well.

Note:

For E-Business Suite, Transaction Currency is the Document Currency for this fact.

Defining Filters on Forecast Metrics

Users can create multiple forecasts for a single Project and multiple versions for the same forecast type. Therefore, Oracle BI Applications filter all exposed metrics using the following filters:

- **Primary Forecast Type:** One project can have only one Cost Forecast with a forecast type of "Primary Cost Forecast" and one Revenue Forecast with a Forecast type of "Primary Revenue Forecast." Therefore, all Cost and Revenue Forecast metrics are filtered on two flags, Primary Cost Forecast and Primary Revenue Forecast, to make sure we are showing data for only one forecast.

- **Current or Original Forecast:** One Project forecast can have multiple versions. To show only one forecast version at a time, every metric for the Current Version and the Current Original Version is shown. These flags are set automatically in OLTP when the forecast is baselined, but users can update them manually.

Users can still view metrics for any other forecast type or version by bringing the non-filtered metrics from the Fact - Project Forecast fact table into the Presentation area. But to avoid duplicate data, the report must have a filter on Dim - Project Forecast Version.Forecast Type and Dim - Project Forecast Version.Forecast Version.

Before running the ETL for the first time, access the Financial Plan Type page in the HTML client, and select your Primary Cost forecast and Primary Revenue forecast types.
Forecasts Created in Forms Client

For Forecasts entered through the Form client, the PA_BUDGET_TYPES.PLAN_TYPE column is not populated for the two predefined budget types, 'FC' and 'FR'. Therefore, the following ETL logic is incorporated in SDE_ORA_ProjectBudgetDimension_BudgetType.W_PROJ_BUDGET_DS in the SDE_ORA_ProjectBudgetDimension folder:

```
DOMAIN_DEFAULT_UNASSIGNED( TO_CHAR(case when ISNULL(SQ_PA_BUDGET_VERSIONS.PLAN_TYPE) then DECODE(SQ_PA_BUDGET_VERSIONS.BUDGET_TYPE_CODE1, 'AC', 'BUDGET', 'AB', 'BUDGET', 'FC', 'FORECAST', 'FR', 'FORECAST', SQ_PA_BUDGET_VERSIONS.PLAN_TYPE else SQ_PA_BUDGET_VERSIONS.PLAN_TYPE end )
)
```

For 'FC' and 'FR' types of Forecast versions created in the Forms client, the PRIMARY_COST_FORECAST_FLAG and PRIMARY_REV_FORECAST_FLAG are not populated in PA_BUDGET_VERSIONS. Therefore, the following ETL logic is incorporated in SDE_ORA_ProjectBudgetDimension_BudgetType.W_PROJ_BUDGET_DS in the SDE_ORA_ProjectBudgetDimension folder:

```
COALESCE(SQ_PA_BUDGET_VERSIONS.PRIMARY_COST_FORECAST_FLAG, case when SQ_PA_BUDGET_VERSIONS.BUDGET_TYPE_CODE1 = 'FC' THEN 'Y' ELSE NULL END)
COALESCE(SQ_PA_BUDGET_VERSIONS.PRIMARY_REV FORECAST_FLAG, case when SQ_PA_BUDGET_VERSIONS.BUDGET_TYPE_CODE1 = 'FR' THEN 'Y' ELSE NULL END)
```

For Forms based forecasts, even though the application does not allow the creation of forecast lines in a different currency than the Project Functional currency, we are defaulting the Project Functional Currency in the Document Currency field, so that the Forecast Amounts can also be analyzed in the Global Currencies. For example Doc EAC Raw Cost Amount is populated as:

```
COALESCE(SQ_PA_BUDGET_LINES.TXN_RAW_COST, IIF(SQ_PA_BUDGET_LINES.TXN_CURRENCY_CODE = SQ_PA_BUDGET_LINES.PROJFUNC_CURRENCY_CODE, SQ_PA_BUDGET_LINES.RAW Cost, NULL))
```

Forecast Fact Canonical Date: The Forecast fact has the following two sets of Accounting Date and Period WIDs:

- **PROJ_ACCT_START_DT_WID, PROJ_ACCT_END_DT_WID & PROJ_PERIOD_WID**

 PROJ_ACCT_START_DT_WID and PROJ_ACCT_END_DT_WID are populated using START_DATE and END_DATE of forecast line only for Forecasts that are time phased using the Project Accounting (PA) Calendar.

- **GL_ACCT_START_DT_WID, GL_ACCT_END_DT_WID and GL_PERIOD_WID**

 The GL_ACCT_START_DT_WID and GL_ACCT_END_DT_WID are populated using START_DATE and END_DATE of forecast line for Forecasts time phased by the General Ledger (GL) Calendar.

 For Forecasts with a Time Phase equal to 'P' (PA), 'N' (No Time Phase), or 'R' (Date Range), the GL_ACCT_START_DT_WID and GL_PERIOD_WID are resolved using the START_DATE of the forecast line by choosing the Period containing that date in the corresponding GL Calendar.

 This approach assumes that for time phase equal 'P', 'N' or 'R', there will always be a period containing the START_DATE for the given GL Calendar in OLTP database.

B.2.43 How to Extend the Project Task Hierarchy Dimension for E-Business Suite

Task dimension data is sourced from the task table (PA_TASKS) in E-Business Suite, as well as from other task-related OLTP tables such as:
PA_PROJ_ELEMENTS
PA_PROJ_ELEMENT_VERSIONS
PA_PROJ_ELEM_VER_STRUCTURE
PA_PROJ_ELEM_VER_SCHEDULE

Attributes such as WBS_NUMBER, PRIORITY_CODE, SCHEDULE_START_DATE, and SCHEDULE_END_DATE are sourced from these tables. Oracle BI Applications support only the latest version of the Financial Structure by using the following filter conditions:

\[
\text{PA_PROJ_ELEM_VER_STRUCTURE.STATUS_CODE = 'STRUCTURE_PUBLISHED'} \\
\text{AND PA_PROJ_ELEM_VER_STRUCTURE.LATEST_EFF_PUBLISHED_FLAG = 'Y'}
\]

The W_TASK_DH hierarchy table stores the flattened hierarchy for every task in W_TASK_D. It is at the same grain as W_TASK_D and is modeled as a Type I dimension. All tasks in the hierarchy support these columns:

- TASK_NAME
- TASK_NUMBER
- WBS_LEVEL
- WBS_NUMBER

Because both tables, W_TASK_D and W_TASK_DH, are at the same grain, fact tables do not have a separate foreign key to join with this table; instead, the join is on the Task Foreign Key.

By default, Oracle BI Applications support 20 levels in the flattened hierarchy. The levels are Base, 1, 2, and so forth up to 18, and Top. The base level represents the hierarchy record, and Top level is the Top hierarchy under the Project. If your financial structure contains more than 20 levels, you can extend the number of levels in the schema and ETL to support all levels.

To Extend the Project Task Hierarchy Dimension:

1. To extend levels, you need to add all the change capture columns (TASK_NUMBER, WBS_LEVEL and WBS_NUMBER) for every new level that you want in the W_TASK_DHS and W_TASK_DH tables in the Models sub tab in ODI Designer Navigator.

2. Extend the interfaces in the SDE and SILOs folder, as follows:
 a. Depending on the source navigate to the correct SDE folder for E-Business Suite or PeopleSoft.
 b. Edit and update the correct main interface by providing the correct mappings for the new columns.
 For example, SDE_ORA_TaskDimensionHierarchy.W_TASK_DHS or SDE_PSFT_TaskDimensionHierarchy.W_TASK_DHS.
 c. Open the SILOS folder and edit and update the ODI interface SIL_Project_TaskDimensionHierarchy.

3. Regenerate the SDE/SILOS scenarios by expanding the Packages folder and right click the scenario to regenerate.
You must also update the following objects in the BI metadata repository (that is, the RPD file):

- W_TASK_DH table in the physical layer.
- Dim - Task Hierarchy Logical Table and Task Hierarchy Dimension in the logical layer.
- All the Task Hierarchy Presentation tables in the Presentation Area.

B.2.44 How to Configure Project Customer in Projects Analytics for E-Business Suite

By default, E-Business Suite only has the 'PRIMARY' relationship code in the PA_PROJECT_CUSTOMERS table. Therefore, the value is included in the ODI filter used in the source extract mapping for the Project dimension to get the customer for a project. Customers can define an additional value such as 'OVERRIDE CUSTOMER' as the relationship value. In this case, the filter must be edited to include any additional values.

To edit the filter:

1. In ODI Designer Navigator, connect to your ODI repository.
2. Open the folder appropriate to your source system (for example, SDE_ORA_11510_Adaptor for Oracle V11.5.10, or SDE_ORA_R12_Adaptor for Oracle V12).
3. Expand the SDE_ORA_ProjectDimension folder and open the interface SDE_ORA_Project.W_PROJECT_DS.LKP_PROJ_CUST and click on the 'Quick-Edit' tab.
4. Expand the Filters tab and edit the expression column for the second filter.
5. Remove the existing SQL and add the following sample SQL where it is assumed the values are 'PRIMARY' and 'OVERRIDE CUSTOMER'.

```
Modify it according to your configuration. If you want it to be independent of any relationships, then just remove the filters on PROJECT_RELATIONSHIP_CODE - UPPER(PA_PROJECT_CUSTOMERS.PROJECT_RELATIONSHIP_CODE (+)) IN ('PRIMARY' . 'OVERRIDE CUSTOMER').
```

6. **Note**: If the lookup returns more than one customer, then apply a MAX function on the id so that it always returns one row.
7. Review the mapping to ensure it is valid then press ok and save the interface.
8. Regenerate the scenario by expanding the Packages folder and right click the scenario to regenerate.
B.2.45 How to Configure Project Classification Dimension in Projects Analytics for E-Business Suite

Every project can be optionally classified into different categories. Within these categories, a project can be further categorized into different classification codes. Depending on how these classification categories are defined in the application, for some categories, a project can be classified with more than one classification code.

The Project Classification Table (W_PROJ_CLASSIFICATION_D) is at the grain of Project, Classification Category and Classification Code. The Project facts do not have an explicit foreign key for joining with Project Classification Dimension; instead the join is on the Project Foreign Key. As specifying a Classification Category is optional for a project, so the logical join in the BI metadata repository (that is, the RPD file) between the Facts and Project Classification Dimension has been set as right outer join to avoid losing records in case the project has not been classified.

Note: A particular classification code might exist for more than one classification category. Therefore, to avoid double counting, it is important that a classification category is fixed in a report that has classification code as one of the reporting attributes. If a Project belongs to more than one Classification Category under the same Classification, the Project metrics (Cost, Revenue, and so forth) will be double counted.

B.2.46 How to Configure Project Funding Fact for E-Business Suite

Funding is based on Funding Line, which represents allocations made to a project or task. The line level funding information is held in the Funding Line fact (W_PROJ_FUNDING_LINE_F), which is based on PA_PROJECT_FUNDINGS table in the Billing Module of E-Business Suite. Also, data is extracted from the Summary Funding table (PA_SUMMARY_PROJECT_FUNDINGS) to retrieve additional metrics like Unbaselined Amount, Baselined Amount, Invoiced Amount, Revenue Accrued; which are not available in the Funding line Fact; these would be available in Funding Header Fact (W_PROJ_FUNDING_HDR_F). Before running any ODI ETL job, you need to run the following process in E-Business Suite to update this table: PRC: Refresh Project Summary Amounts.

Note: For E-Business Suite, Funding Currency is the Document Currency for this fact.

The following Domains are used in the Project Funding area:

- Project_Funding_Category: Used for categorizing funding allocation types.
- Project_Funding_Level: This flat file is used to indicate whether a funding line is for a Task or a Project. It is not used in any by default metric definition.

Note: Funding Fact Canonical Date GL Date is not populated in the OLTP application. So in Oracle Business Analytics Warehouse, the GL Date for E-Business Suite is based on the Funding Allocation Date, using the GL Calendar of the Project OU. This enables cross-functional analysis on GL Calendar. For example, cross analysis of funding and billing by Fiscal Year is not possible if there is no GL Date in the Funding fact. Customers who do not want to perform analysis based on GL Calendar can instead base it on Enterprise Calendar.

- The GL date (Funding Allocation Date) is the canonical date for this table and is also used for global exchange rate calculation.

B.2.47 How to Configure Projects Resource Class for PeopleSoft

Resource Class involves classification of resources into people, equipment, material items, and financial elements.
B.2.47.1 Identify Resource Class based on a Source Type, Category, and Subcategory Combination of Values

To use this identification during the ETL process, you need to set the variable `RESOURCE_CLASS_TYPECATSUB` to 1 in FSM.

The ETL process uses the domainValues_Project_Cost_Resource_Class_TypeCatSub_psft.csv flat file to assign Resource Class to project cost records.

Use the following flat files to identify Resource Class based on a Source Type, Category, and Subcategory Combination of Values:

- **file_project_cost_resource_class_typecatsub_config_psft.csv**

 Use this file to specify the columns (Source Type, Category, and Subcategory) to use in the lookup.

- **file_project_cost_resource_class_typecatsub_psft.csv**

 The ETL process uses this flat file to list all Source Type, Category, Subcategory combinations of values to use for Resource Class. Enter values for only the columns that are selected in the file_Project_Cost_Resource_Class_TypeCatSub_config_psft.csv file. All columns must be included in the flat file and unselected columns must not contain a value.

You must identify each row as either People (L) or Equipment (A) as the last value.

To configure file_Project_Cost_Resource_Class_TypeCatSub_config_psft.csv (config file):

1. Edit the file file_Project_Cost_Resource_Class_TypeCatSub_config_psft.csv.

 Note: The configuration file or files for this task are provided on installation of Oracle BI Applications at one of the following locations:

 Source-independent files: `<Oracle Home for BI>\biapps\etl\data_ files\src_files\`.

 Source-specific files: `<Oracle Home for BI>\biapps\etl\data_ files\src_files\<source adaptor>`.

 Your system administrator will have copied these files to another location and configured ODI connections to read from this location. Work with your system administrator to obtain the files. When configuration is complete, your system administrator will need to copy the configured files to the location from which ODI reads these files.

2. Enter only one row with RowID of 1. Enter a Y in each column that represents the combination to be assigned a Resource Class. The columns are:

 - **Row ID**
 - **Source Type**
 - **Category**
 - **Subcategory**

 The following is an example of using a combination of Source Type and Category:

   ```
   1,YY,
   ```
In this example, Source Type and Category combinations stored in file_project_cost_resource_class_typecatsub_psft.csv are classified as People or Equipment when the values match.

3. Save and close the file.

To configure the file_project_cost_resource_class_typecatsub_psft.csv file (data file):

1. Edit the file_Project_Cost_Resource_Class_TypeCatSub_psft.csv.

2. Enter Resource Type, Category, and Subcategory combinations that are to be considered as Resource Class People or Equipment. For Resource Class of People, enter an L as the last value.

 For Resource Class of Equipment, enter an A as the last value. The format is: XXXXXX,XXXXX,XXXXX,X

 You must specify each combination of lookup values. Wildcards are not supported.

 The following is an example of classifying costs with LABOR or SUBCN Source Type/no Category as People costs and costs with DIRCT Source Type/HRDWR Category as Equipment costs:

 LABOR,,L
 SUBCN,,L
 DIRCT,HRDWR,,A

 Note:

 This CSV file is used in conjunction with the file_Project_Cost_Resource_Class_TypeCatSub_config_psft.csv configuration file. In this example, this configuration file would contain the value 1,YY,

 You must specify each combination of lookup values. The lookup will use columns with a Y in the configuration file.

3. Save and close the file.

B.2.47.2 Identifying Resource Class Based on a ChartField Combination of Values

To use this identification during the ETL process, you need to set the variable RESOURCE_CLASS_CHARTFIELD to 1 in FSM.

The ETL process uses the file_project_cost_resource_class_chartfield_psft.csv flat file to assign Resource Class to Project Cost records.

To assign Resource Class based on a Chartfield combination of values, use the following CSV files:

- file_Project_Cost_Resource_Class_ChartField_config_psft.csv
 Use this flat file to specify the Chartfield columns to use in the lookup.

- file_project_cost_resource_class_chartfield_psft.csv
 Use this flat file to assign all ChartField combinations of values to a Resource Class. Enter values for only the columns that are selected in the file_Project_Cost_Resource_Class_ChartField_config_psft.csv file.

All columns must be included in the flat file and unselected columns must not contain a value. You must identify each row as either People (L) or Equipment (A) as the last value.

To configure the file_Project_Cost_Resource_Class_ChartField_config_psft.csv (config file):

1. Edit the file file_Project_Cost_Resource_Class_ChartField_config_psft.csv.

 Note: The configuration file or files for this task are provided on installation of Oracle BI Applications at one of the following locations:

 Your system administrator will have copied these files to another location and configured ODI connections to read from this location. Work with your system administrator to obtain the files. When configuration is complete, your system administrator will need to copy the configured files to the location from which ODI reads these files.

2. Enter only one row with RowID of 1. Enter a Y in each column that represents the combination to be assigned a Resource Class. The columns are:

 Row ID
 Account
 Alternate Account
 Operating Unit
 Fund
 Dept ID
 Program
 Class
 Budget
 Project
 Business Unit
 Project
 Activity
 Source Type
 Category
 Subcategory
 Affiliate
The following is an example of using a combination of Fund Code and Program:

,,,Y,,Y,,,,,,,,,,,,,,

In this example, Fund Code and Program Code combinations stored in the file_project_cost_resource_class_chartfield_psft.csv are classified as People or Equipment when the values match.

3. Save and close the file.

To configure the file_Project_Cost_Resource_Class_ChartField_psft.csv (data file):

1. Edit the file file_project_cost_resource_class_chartfield_psft.csv.

Note: The configuration file or files for this task are provided on installation of Oracle BI Applications at one of the following locations:

Source-independent files: <Oracle Home for BI>\biapps\etl\data_files\src_files\.

Source-specific files: <Oracle Home for BI>\biapps\etl\data_files\src_files\<source adaptor>.

Your system administrator will have copied these files to another location and configured ODI connections to read from this location. Work with your system administrator to obtain the files. When configuration is complete, your system administrator will need to copy the configured files to the location from which ODI reads these files.

2. Enter ChartField combinations that are to be considered as Resource Class People or Equipment. For Resource Class of People, enter an L as the last value.

For Resource Class of Equipment, enter an A as the last value. The format is:

X represents a Chartfield combination.

Each combination of lookup values must be specified. Wildcards are not supported.

The following example shows how to classify costs with Fund Code FND01 and Program Code P2008 as People costs:

,,,FND01,, P2008,,,,,,,,,,,,,,L

Note:

This CSV file is used in conjunction with the file_Project_Cost_Resource_Class_ChartField_config_psft.csv configuration file. In this example, this configuration file would contain the value ,,Y,,Y,,,,,,,,,,,,,,.

In the above example, Project Costing records with the Fund Code FND01 and Program Code P2008 are classified as Resource Class People.
You must specify each combination of lookup values. Columns with a Y in the configuration file will be considered in the lookup.

3. Save and close the file.

B.2.48 How to Include Incomplete Invoice Lines

By default, the Oracle Supply Chain and Order Management Analytics application is configured to extract completed sales invoices when performing the Sales Invoice data extract. Oracle 11i and Oracle R12 use a flag to indicate whether a sales invoice is complete. In particular, completed sales invoices are those where the RA_CUSTOMER_TRX_ALL.COMPLETE_FLAG = Y in Oracle11i and Oracle R12. To extract incomplete sales invoices, as well as complete invoices, remove the extract filter statement.

To remove the extract filter for sales invoices:

1. In ODI, open the SDE_ORA115<ver>_Adaptor or SDE_ORAR12_Adaptor folder.
2. Open the SDE_ORA_SalesInvoiceLinesFact.W_SALES_INVOICE_LINE_FS.SQ_BCI_SALES_IVCLNS temp interface, click on the Quick Edit tab.
3. Expand the Filter section, select the filter "RA_CUSTOMER_TRX_ALL.COMPLETE_FLAG='Y'".
 The red cross mark gets highlighted, this is to delete the highlighted filter.
4. Click on the cross button.
5. Save your changes to the repository.
6. Regenerate the scenario.
7. Repeat steps 2 - 6 for the temp interface - SDE_ORA_SalesInvoiceLinesFact_Primary.W_SALES_INVOICE_LINE_F_PE_SQ_BCI_SALES_IVCLNS.

Oracle Fusion Applications uses a flag to indicate whether a sales invoice is complete. In particular, completed sales invoices are those where the SALESINVOICECUSTOMERTRXLINESPVO.TransactionHeaderCompleteFlag='Y'. To extract incomplete sales invoices, as well as complete invoices, remove the extract filter statement.

To remove the extract filter for sales invoices:

1. In ODI, open the SDE_FUSION_Adaptor.
2. Open the SDE_FUSION_SalesInvoiceLinesFact.W_SALES_INVOICE_LINE_FS_SQ_TRANSACTIONLINEPVO temp interface, click on the Quick Edit tab.
3. Expand the Filter section, select the filter "SALESINVOICECUSTOMERTRXLINESPVO.TransactionHeaderCompleteFlag='Y'".
 The red cross mark gets highlighted, this is to delete the highlighted filter.
4. Click on the cross button.
5. Save your changes to the repository.
6. Regenerate the scenario.
7. Repeat steps 2 - 6 for the temp interface - SDE_ORA_SalesInvoiceLinesFact_Primary.W_SALES_INVOICE_LINE_F_PE_SQ_BCI_SALES_IVCLNS.
B.2.49 How to Configure Workforce Bypass Fast Formula

Purpose
Headcount and FTE can be derived in a number of different ways depending on the OLTP setup. If they are not stored in the table PER_ASSIGNMENT_BUDGET_VALUES_F then a fast formula is executed to calculate the value for each assignment record.

Typically fast formula execution is slow, and to avoid any performance issues for larger systems there is a new Workforce Bypass Fast Formula feature which retains the flexibility of the fast formulas without the cost.

Optional or Mandatory
This task is optional, however the default option of running the fast formulas will not be as fast.

Applies to
All versions of E-Business Suite.

Task description in detail
To bypass the fast formula execution configure the parameter HR_WRKFC_BYPASS_FF. Once that is done, the ETL will calculate the Headcount and FTE values using the same logic as in the default fast formulas TEMPLATE_HEAD and TEMPLATE_FTE (although values entered directly in the ABV table will still take precedence).

If the template formula logic is not adequate then it is possible to configure that in the ETL, although this is quite a complex task as it involves modifying the SQL expressions that implement the formula logic. The template formula SQL expressions for Headcount and FTE are stored in ODI variables HR_WRKFC_BYPASS_HDC_CALC and HR_WRKFC_BYPASS_FTE_CALC. The variable values can be overridden with the required logic in the generated load plan.

HR_WRKFC_BYPASS_HDC_CALC
Implements the logic from the fast formula TEMPLATE_HEAD but calculated directly from the base tables. The logic implemented is:

- If the assignment is primary then the headcount is 1.
- Otherwise headcount is 0.

The variable expression is:

\[(\text{case when asg.primary_flag = 'Y' then 1 else 0 end})\]

If overriding this expression care must be taken to ensure that all references match up in every data set of the interface. Joins can be added if they do not change the number of rows being processed.

HR_WRKFC_BYPASS_FTE_CALC
Implements the logic from the fast formula TEMPLATE_FTE but calculated directly from the base tables. The logic implemented is:

- If the assignment has full time employment category then the FTE is 1.
- If the assignment has part time employment category then calculate the FTE based on working hours of assignment / expected working hours of assignment.
- Otherwise FTE is 0.
The expected working hours of the assignment come from the position, organization, business group (in that order of precedence). If the assignment hours are given in a different frequency to the expected working hours then some conversion is necessary.

The variable expression is:

\[
\begin{align*}
\text{expression} &= \text{case when asg.employment_category in ('FT', 'FR') then 1} \\
&\quad \text{when asg.employment_category in ('PT', 'PR') then} \\
&\quad \quad \text{round}\left(\text{case when NVL(pos.working_hours,} \\
&\quad \quad \quad \text{NVL(org.org_information3, bus.org_information3)) = 0} \\
&\quad \quad \quad \quad \text{then 0} \\
&\quad \quad \quad \quad \text{else } \text{decode}\left(\text{NVL(pos.frequency,} \\
&\quad \quad \quad \quad \quad \text{NVL(org.org_information4, bus.org_information4}),} \\
&\quad \quad \quad \quad \quad \quad \text{'H', 1, 'D', 8, 'W', 40, 'M', 169}) * \\
&\quad \quad \quad \quad \quad \quad \quad \text{asg.normal_hours) } \\
&\quad \quad \quad \quad \quad \quad \quad / \text{decode(asg.frequency,} \\
&\quad \quad \quad \quad \quad \quad \quad \quad \text{'HO', 1, 'D', 8, 'W', 40, 'M', 169}) * \\
&\quad \quad \quad \quad \quad \quad \quad \quad \text{NVL(pos.working_hours,} \\
&\quad \quad \quad \quad \quad \quad \quad \quad \quad \text{NVL(org.org_information3, bus.org_information3))} \\
&\quad \quad \quad \quad \quad \quad \quad \quad \quad \text{end}, 2)} \\
&\quad \quad \quad \quad \quad \quad \quad \quad \quad \text{end) } \\
&\quad \quad \quad \quad \quad \quad \quad \quad \quad \text{else 0} \\
&\quad \quad \quad \quad \quad \quad \quad \quad \quad \text{end)} \\
&\quad \quad \quad \quad \quad \quad \quad \quad \quad \text{end}
\end{align*}
\]

If overriding this expression care must be taken to ensure that all references match up in every data set of the interface. Joins can be added if they do not change the number of rows being processed.

Dependency

No dependencies.

B.2.50 How to Disable Projects Invoice Line Fact in the RPD for Fusion Applications

This topic explains how to disable Project Invoice Line for fusion users. By default, the Billing metrics are mapped to both Invoice Line Fact -W_PROJ_INVOICE_LINE_F and Invoice Line Distribution Fact -W_PROJ_INVOICE_DIST_F. For customers whose only data source is the Fusion database, the Invoice Line fact is an obsolete table and has to be disabled. But before disabling it metrics which are defined only in the line fact have to be deleted. The metrics listed below are around the Retention area and are not supported in the Fusion application currently.

To Disable Projects Invoice Line Fact, do the following:

1. Delete unnecessary metrics, as described in Section B.2.50.1, "How to Delete Unnecessary Metrics".

2. Disable Invoice Line Fact, as described in Section B.2.50.2, "How to Disable Invoice Line Fact".

Note: Oracle recommends that before you start this process you make a back up of the BI metadata repository (that is, the RPD file).

B.2.50.1 How to Delete Unnecessary Metrics

Before disabling the logical table source, the metrics defined using these Logical Table Sources have to be unmapped / deleted so as to have a consistent RPD, as follows:

1. In Oracle BI EE Administration Tool, edit the BI metadata repository (for example, OracleBIAnalyticsApps.rpd).

2. In the Business Modelling and Mapping layer, navigate to Fact – Project Billing.
3. Delete the metrics listed below, as shown in the following screenshot.

![Screenshot showing delete option in Oracle Business Intelligence Applications Configuration Guide]

List of 71 metrics that must be deleted:

1. Fact - Project Billing.---------- Retention Amount ---------------
2. Fact - Project Billing.Current Withheld Amount
3. Fact - Project Billing.Current Withheld Amount - ITD
4. Fact - Project Billing.Current Withheld Amount - MTD
5. Fact - Project Billing.Current Withheld Amount - QTD
6. Fact - Project Billing.Current Withheld Amount - YTD
7. Fact - Project Billing.---------- Retention Billed ---------------
8. Fact - Project Billing.Rentention Billed
10. Fact - Project Billing.Rentention Billed - MTD
11. Fact - Project Billing.Rentention Billed - QTD
12. Fact - Project Billing.Rentention Billed - YTD
13. Fact - Project Billing.---------- Retention Withheld ---------------
14. Fact - Project Billing.Total Retained Amount
15. Fact - Project Billing.Total Retained Amount - ITD
16. Fact - Project Billing.Total Retained Amount - MTD
17. Fact - Project Billing.Total Retained Amount - QTD
18. Fact - Project Billing.Total Retained Amount - YTD
19. Fact - Project Billing.---------- Retention Write-off ---------------
20. Fact - Project Billing.Rentention Write-off
21. Fact - Project Billing.Rentention Write-off - ITD
22. Fact - Project Billing.Rentention Write-off - MTD
23. Fact - Project Billing.Rentention Write-off - QTD
24. Fact - Project Billing.Rentention Write-off - YTD
25. Fact - Project Billing.---------- Unearned Revenue ---------------
26. Fact - Project Billing.Unearned Revenue
27. Fact - Project Billing.Unearned Revenue - ITD
28. Fact - Project Billing.Unearned Revenue - MTD
29. Fact - Project Billing.Unearned Revenue - QTD
30. Fact - Project Billing.Unearned Revenue - YTD
B.2.50.2 How to Disable Invoice Line Fact

1. In Oracle BI EE Administration Tool, edit the BI metadata repository (for example, OracleBIAnalyticsApps.rpd).
2. In the Business Modelling and Mapping layer, navigate to Fact – Project Billing.
3. Select the 'Fact_W_PROJ_INVOICE_LINE_F_Invoice_Line' Logical Table Source, then right click, and choose Edit.
4. Display the General tab, and select the 'Disabled' check box, then click OK.
5. Select the 'Fact_W_PROJ_INVOICE_LINE_F_Invoice_Line_ITD' Logical Table Source, then right click, and choose Edit.

6. Display the General tab, and select the 'Disabled' check box, then click OK.

7. Save the changes.
8. Run the Consistency Check and ensure that there are no errors, save the RPD file, and clear Oracle BI Enterprise Edition Cache.

If you are making the changes in offline mode, then restart the Oracle BI Server and Oracle BI Presentation Services.

B.2.51 How to Configure Projects Forecast Fact for PeopleSoft

Estimate to Complete (ETC not to be confused with the Analysis Type value ‘ETC’) Cost and Revenue data from PeopleSoft Projects Costing area source is extracted for Project Forecast. Users would need to configure the analysis types for Estimate to Complete Analysis Types in the PROJ_FORECAST_FILTER in the FSM.

In the FSM, go to ‘Manage Data Load Parameters section’; filter for Source PeopleSoft 9.0 or 9.1 FINSCM, filter Offering Oracle Project Analytics, filter Functional Area Project Control and Costing.

For Variable PROJ_FORECAST_FILTER set the Analysis types for Cost and Revenue metrics from Projects Costing Area in quotes for example ‘ETC’, ‘ETB’.

Identifying Project Forecast Costs and Revenue ETC Metrics Based on Analysis Type, Source Type, Category, and Subcategory Combination of Values

You must configure the following flat files to identify Project Forecast ETC Costs and Revenues based on a Analysis Type (Mandatory), Source Type, Category, and Subcategory combination of values.

- Configuring file_Project_Forecast_config_psft.csv

 The ETL process uses this flat file to designate which columns (Analysis Type, Source Type, Category, and Subcategory) are used in the lookup. A parameter specified in Oracle BI Applications Configuration Manager determines whether this lookup is performed for an implementation.

 Example (1) if you wish to configure the filter only on Analysis Type then:

 Example (2) if you wish to configure the filter on RESOURCE_CAT and RESOURCE TYPE then (ANALYSIS_TYPE is mandatory):

<table>
<thead>
<tr>
<th>Table B–23 Example data for Configuring file_Project_Forecast_config_psft.csv</th>
</tr>
</thead>
<tbody>
<tr>
<td>ROWID</td>
</tr>
<tr>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table B–24 Example data for Configuring file_Project_Forecast_config_psft.csv</th>
</tr>
</thead>
<tbody>
<tr>
<td>ROWID</td>
</tr>
<tr>
<td>1</td>
</tr>
</tbody>
</table>
Configuring file Project_Forecast_psft.csv

The ETL process uses this flat file to list all Analysis Type, Source Type, Category, and Subcategory combination of values to use for Project Forecast ETC Cost and Revenue. Example for the above configuration in (1):

Table B–25 Example data for Configuring file Project_Forecast_config_psft.csv

<table>
<thead>
<tr>
<th>ANALYSIS_TYPE</th>
<th>RESOURCE_TYPE</th>
<th>RESOURCE_CAT</th>
<th>RESOURCE_SUB_CAT</th>
<th>RETURN_VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ETC</td>
<td></td>
<td>C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ETB</td>
<td></td>
<td>R</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Example for the configuration in (2):

Table B–26 Example data for Configuring file Project_Forecast_config_psft.csv

<table>
<thead>
<tr>
<th>ANALYSIS_TYPE</th>
<th>RESOURCE_TYPE</th>
<th>RESOURCE_CAT</th>
<th>RESOURCE_SUB_CAT</th>
<th>RETURN_VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ETC LABOR</td>
<td>LABOR</td>
<td>TECH</td>
<td></td>
<td>C</td>
</tr>
<tr>
<td>ETB MATER TECH</td>
<td>MATER</td>
<td>TECH</td>
<td></td>
<td>R</td>
</tr>
</tbody>
</table>

B.2.52 How to Deploy Audit Trail Stored Procedures

Stored procedures are a group of SQL statements that perform particular tasks on the database. For example, stored procedures can help improve the performance of the database. You deploy stored procedures by copying the stored procedure files from your Oracle BI Applications installation and deploying them to Oracle Business Analytics Warehouse.

Note: Some sessions might fail if these procedures are not compiled in the database before running the workflows.

To deploy stored procedures:

1. Navigate to the `<ORACLE_BI_HOME>/biapps/etl/etl_stored_procs/<database technology folder>` folder.

 For example, for Oracle database, navigate to `<ORACLE_BI_HOME>/biapps/etl/etl_stored_procs/oracle`.

2. Execute the sql script 'FIND_AUDIT_VALUES.sql' to deliver stored procedure into Oracle Business Analytics Warehouse.

3. Compile the stored procedures in the Oracle Business Analytics Warehouse schema.
The schema is typically named something like: %PREFIX%_DW. For example, BIAPPS_DW.

Note: If you have problems deploying the stored procedures, refer to your database reference guide, or contact your database administrator.

B.2.53 How to Configure Aggregate tables for Inventory Balances and Transactions

About Configuring the Inventory Monthly Balance Tables

To configure the Inventory Monthly Balance (W_INVENTORY_DAILY_BALANCE_F) and Inventory Lot Monthly Balance (W_INV_LOT_MONTHLY_BAL_F) aggregate tables, you need to consider the aggregation level, the time period to update the aggregation, and the time period to keep records in the Inventory Balance tables. You need to configure three parameters to configure the Inventory Monthly Balance tables:

- **GRAIN**
 The GRAIN parameter controls the time span for which the latest balance is kept. This parameter has a preconfigured value of Month. The possible values for the GRAIN parameter are:
 - DAY
 - WEEK
 - MONTH
 - QUARTER
 - YEAR

- **KEEP_PERIOD**
 The KEEP_PERIOD parameter, in conjunction with NUM_OF_PERIOD, controls how many periods worth of data are retained in the Inventory Daily Balance tables. For example, if KEEP_PERIOD is CAL_MONTH and NUM_OF_PERIOD is 3, then only the most recent 3 months of data are retained. This parameter has a preconfigured value of CAL_MONTH. Values for the KEEP_PERIOD parameter include:
 - CAL_DAY
 - CAL_WEEK
 - CAL_MONTH
 - CAL_QTR
 - CAL_YEAR

- **NUM_OF_PERIOD**
 The NUM_OF_PERIOD parameter has a preconfigured value of 3. The value for the NUM_OF_PERIOD parameter is a positive integer, for example, 1, 2, 3, and so on.

Note: If you need Inventory Turns data for a period older than three months, you must change the parameter values for KEEP_PERIOD and NUM_OF_PERIOD. For example, if you want data for the last three years, then set KEEP_PERIOD to CAL_YEAR and NUM_OF_PERIOD to 3.
About Configuring the Product Transaction Aggregate Table

There are two aggregation scenarios to configure the Product Transaction aggregate (W_PRODUCT_XACT_A) table—the initial ETL run and then the incremental ETL run.

For your initial ETL run, you need to configure the aggregation level, and the length of history kept in the Product Transaction fact table.

For your initial ETL run, you need to configure the aggregation grain, using the GRAIN parameter.

For the incremental ETL run, you need to configure the aggregation level, the update period in aggregation, and the length of history kept in the Product Transaction fact table, using the following parameters:

- **GRAIN**

 The GRAIN parameter specifies the aggregation level. Valid values are DAY, WEEK, MONTH (preconfigured value), QUARTER, YEAR.

- **REFRESH_PERIOD**

 The REFRESH_PERIOD parameter, together with NUM_OF_PERIOD, indicates the number of period of records that will be refresh from the transaction table to the aggregate table. Valid values are DAY, WEEK, MONTH (preconfigured value), QUARTER, YEAR.

- **NUM_OF_PERIOD**

 The NUM_OF_PERIOD parameter, together with REFRESH_METHOD, indicates the number of periods of records that will be refreshed from the transaction table to the aggregate table. Valid values are positive integers, for example, 1, 2, 3 (preconfigured value).

Before you run the initial ETL and then the incremental ETL to load the Product Transaction aggregate table, you need to configure the Product Transaction Aggregate Table, as follows.

To configure the Product Transaction Aggregate Table

You need to configure three parameters: REFRESH_PERIOD = 'MONTH', GRAIN = 'MONTH', and NUM_OF_PERIOD = 3.

To configure the Product Transaction aggregate table for the initial ETL run

1. Retrieve the records in the Product Transaction fact (W_PRODUCT_XACT_F) table, and aggregate the records to the Product Transaction aggregate (W_PRODUCT_XACT_A) table at a certain grain level.

 For example, if GRAIN=MONTH then the records in the W_PRODUCT_XACT_F fact table are retrieved and aggregated to the W_PRODUCT_XACT_A table at a monthly level.

 Running the PLP_ProductTransactionAggregate scenario implements this step.

To configure the Product Transaction aggregate table for the incremental ETL run

1. Delete the refreshed records from the Product Transaction aggregate (W_PRODUCT_XACT_A) table for a certain time.

 The REFRESH_PERIOD and the NUM_OF_PERIOD parameters determine the time period for the deletion.
For example, if REFRESH_PERIOD=MONTH, NUM_OF_PERIOD=1, and the date is May 15, 2005, then all records for April and the current month (May) are deleted in the W_PRODUCT_XACT_A table.

Running the PLP_ProductTransactionAggregate_Update scenario implements this step.

2. Retrieve the records in the Product Transaction fact (W_PRODUCT_XACT_F) table, and aggregate the records to the W_PRODUCT_XACT_A table at a certain grain level.

For example, if GRAIN=MONTH then the records in the W_PRODUCT_XACT_F fact table are retrieved and aggregated to the W_PRODUCT_XACT_A table at a monthly level.

Running the PLP_ProductTransactionAggregate scenario implements this step.

B.2.54 How to Deploy the Stored Procedure for the Left Bound and Right Bound Calculation Option

The SIL_BOMItemFact mapping contains the stored procedure called COMPUTE_BOUNDS which traverses the exploded BOM tree structure and calculates the left bound and right bound. By default, the COMPUTE_BOUNDS stored procedure is turned off. If you want to turn on the procedure, see Section B.2.54.1, "How to Configure the Left Bound and Right Bound Calculation Option".

This procedure applies to E-Business Suite and Oracle Fusion source systems.

Note: This procedure is not required for JD Edwards EnterpriseOne (in JD Edwards EnterpriseOne, the left and right bounds are calculated automatically by the UBE (R30461).

B.2.54.1 How to Configure the Left Bound and Right Bound Calculation Option

You can use the left bound and the right bound calculation to expedite some reporting requirements. For example, you can find the components in a subassembly within a finished product. Left bound and right bound are stored in the W_BOM_ITEM_F table for each BOM node, and they have one row of data in the W_BOM_ITEM_F table. The COMPUTE_BOUNDS stored procedure traverses the exploded BOM tree structure and calculates the left bound and right bound. By default, the COMPUTE_BOUNDS stored procedure is off and the W_BOM_ITEM_F.LEFT_BOUNDS and W_BOM_ITEM_F.RIGHT_BOUNDS columns are empty.

The Figure below illustrates a sample BOM structure with the left bound and right bound values listed for each node. To find all the components under node B, you select the components with a top product key value of A, the left bound value is greater than 2, and the right bound value is less than 17.
To configure the left bound and right bound calculation option:

1. In ODI, navigate to SILOS -> SIL_BOMItemFact -> Packages and edit the SIL_BOMItemFact package.
2. Display the Diagram tab.
3. Choose the 'Next step on success' tool (that is, the green o.k. arrow button).
4. Draw a line connecting the Refresh IS_INCREMENTAL icon to the Run COMPUTE_BOUNDS icon.
5. Draw a line connecting the Run COMPUTE_BOUNDS icon to the Run SIL_BOMItemFact icon.
6. Save the Package.
7. Generate the associated Scenario.

Note: The first step of the COMPUTE_BOUNDS ODI procedure attempts to create or replace the associated stored procedure in Oracle Business Analytics Warehouse. The user account under which the scenario runs must have the appropriate permissions for this step to succeed. Alternatively, the stored procedure can be deployed manually and the first step of the ODI procedure can then be disabled to avoid granting such permissions.

B.2.55 How to Configure Hours Per Absence Day

Purpose
This topic explains the configuration of the ODI variable HR_ABS_WORKING_HOURS_PER_DAY used for hours per days calculation.
Optional or Mandatory

By default, Oracle BI Applications uses a SQL expression for the variable HR_ABS_WORKING_HOURS_PER_DAY which is based on the fast formula named TEMPLATE_BIS_DAYS_TO_HOURS called by the source HR function hri_bpl_utilization.convert_days_to_hours(). If the template formula is used then this configuration is optional.

However if the fast formula is customized at source, the SQL expression used in the HR_ABS_WORKING_HOURS_PER_DAY variable must be reviewed and changed mandatorily.

Applies to

This applies to all extracts done for Absences Module from E-Business Suite 11.1.10 and R12.x.x.

Task description in detail

Check the logic used in the fast formula TEMPLATE_BIS_DAYS_TO_HOURS. If this fast formula is not customized, the default value for this variable will work, otherwise the variable value needs to be changed to a suitable sql expression.

From the fast formula text, determine the values of (a) Default hours per day, (b) Working days per week and (c) Working days per month and assign these values to the ODI variables HR_ABS_DFLT_HOURS_PER_DAY, HR_ABS_WORKING_DAYS_PER_WEEK and HR_ABS_WORKING_DAYS_PER_MONTH respectively.

Review the rest of the fast formula text and determine the formula used for calculating Working hours per day.

Based on the above information form the sql expression that exactly fits the fast formula logic. Refer to the default sql expression provided for a clear idea.

This variable HR_ABS_WORKING_HOURS_PER_DAY is used in the Interface SDEORA_AbsenceEventDimension.W_ABSENCE_EVENT_DS_SQ_PER_ABSENCE_ATTENDANCES_TMP for the column : UTL_HOURS_IN_DAY.

The default sql expression used in HR_ABS_WORKING_HOURS_PER_DAY is as follows:

```
round(case when tab.asg_freq is not null and tab.asg_hours is not null then
  (case when tab.asg_freq = 'W' then tab.asg_hours/tab.working_days_per_week when
  tab.asg_freq = 'M' then
  tab.asg_hours/tab.working_days_per_month when tab.asg_freq = 'D'
  then asg_hours else 0  end) else (case when tab.full_freq is not null and
  tab.full_hours is not null
  then (case when tab.full_freq = 'W' then tab.full_hours/tab.working_days_per_week when
  tab.full_freq = 'M' then tab.full_hours/tab.working_days_per_month when tab.full_freq = 'D'
  then full_hours else 0 end )
  else dflt_hours_per_day end) end,2)
```

Dependency

None.
B.2.56 How to Configure Payroll Balance Filter

Purpose
This Parameter is used to selectively extract the balances in to the Warehouse. By limiting the balances extracted, the performance of ETL and reports will be improved. In addition, only certain types of balance are suitable for including in the warehouse. You should only extract run balances, as other types of balances might not be fully additive (for example year-to-date balances cannot be added together).

Both in case of E-Business Suite Payroll and PeopleSoft North American payroll, the Customer has to be provided a mechanism to choose the balances (in case of E-Business Suite Payroll) and earnings/deductions/taxes (in case of PeopleSoft North American Payroll) to be tracked in the Pay Run Balance Detail fact table.

To ensure additivity of measures we will only support run balances. For each payroll run, the actual run balances processed will be stored. Because we are not breaking these down by context we can combine run balances across time to form higher level balances, for example, PTD, MTD, YTD.

Optional or Mandatory
Optional for E-Business Suite Payroll and PeopleSoft North American Payroll, but is highly recommended.

Applies to

Dependency

Instructions
Create a custom table in the OLTP system with the list of balances that need to be extracted for reporting. The SDE ETL will extract only these balances from the source system. For example:

```
CREATE TABLE OBIA_PAY_BAL_FILTER (BALANCE_ID VARCHAR2 (50));
```

A parameter HR_PAYROLL_FILTER_CLAUSE is added in ODI which will have a SELECT statement from the custom table that the customer has created in the source system, as shown below.

```
SELECT <COLUMN_NAME> FROM <SCHEMA>.<TABLE_NAME>
```

For example: `SELECT BALANCE_ID FROM EMDBO.OBIA_PAY_BAL_FILTER`

If the customer does not choose to create a custom table in the source system, the SDE extract will fetch all the balances and this could lead to performance issues.

If you need to extract all balances, then you must set this parameter to 1=1 (this is the default value on installation).

You set the value for variable HR_PAYROLL_FILTER_CLAUSE using Oracle BI Applications Configuration Manager.

For e-Business Suite Payroll or PeopleSoft North American Payroll, you use the following settings:
- To Filter Balances, use `SELECT<COLUMN_NAME> FROM <TABLE_NAME>`.
- To Extract All Balances, use 1=1.
HR_PAYROLL_FILTER_CLAUSE parameter in ODI

This parameter is set to refresh the value from Oracle BI Applications Configuration Manager.

HR_PAYROLL_FILTER_CLAUSE parameter in Configuration Manager

B.2.57 How to Configure Accrual Extract Months for Incremental ETL

Purpose
This topic explains the configuration of the ODI variable HR_ACCRUAL_EXTRACT_MTHS_INC used for extraction of HR Accrual module data when running in incremental mode.

Optional or Mandatory
By default, Oracle BI Applications sets the value of HR_ACCRUAL_EXTRACT_MTHS_INC variable to 3 months. This variable ensures data from last 3 months is
refreshed in the warehouse when incremental ETL is executed. If this value seems fine no changes are needed.

However if the decision is to have incremental data collection to be different from the last 3 months of data, then this variable value must be set accordingly as per the need as a mandatory step.

Applies to
This applies to all extracts done for Absences Module from E-Business Suite 11.1.10 and R12.x.x.

Task description in detail
Accrual metrics are calculated on the fly and extracted from source. There are no source tables where E-Business Suite Accrual data is stored.

By default, Oracle BI Applications extraction from E-Business Suite extracts incremental Accrual data for last 3 months starting from current day. Hence HR_ACCRUAL_EXTRACT_MTHS_INCR is used in incremental extract filter clause.

Note: Setting a higher value progressively impacts the incremental extract performance. This value must be chosen judiciously based on incremental query performance.

Dependency
None.

B.2.58 How to Add New Country Code

In Oracle Business Analytics Warehouse, country is a domain in Oracle Business Analytics Warehouse with the domain code set to 'W_COUNTRY'. The ISO alpha-2 letter code is stored as a domain code in Oracle BI Applications Configuration Manager.

There are new country codes published by ISO standards, for example, South Sudan Country Code 'SS' is published on August 11, 2011. If new country codes are added in the OLTP, then the following changes need to be done accordingly in Oracle BI Applications:

1. In Oracle BI Applications Configuration Manager, add the new country code as a new domain code to domain 'W_COUNTRY'.
2. In Oracle BI Applications Configuration Manager, add the new country code as a new domain code to domain 'COUNTRY' for the given Product Line Version.
3. In Oracle BI Applications Configuration Manager, create the domain maps between the source domain 'COUNTRY' to the target domain 'W_COUNTRY' for the new country code.
4. Reload the Oracle Business Analytics Warehouse table W_GEO_COUNTRY_D.
 The source is from a csv file GeoCountry_ISO_Country_Codes_FUSION. This file needs to be updated with the new country code.

B.2.59 How to Configure Accrual Fast Formula Function Calls

Purpose
This document explains the configuration of the following ODI variables used by E-Business Suite Accrual Extract interfaces:
■ a) HR_ACCRUAL_PERIOD_GRANT_AMT
■ b) HR_ACCRUAL_BALANCE_AMT
■ c) HR_ACCRUAL_CARRYOVER_AMT
■ d) HR_ACCRUAL_ABSENCE_AMT
■ e) HR_ACCRUAL_OTHER_AMT

Optional or Mandatory
By default, Oracle BI Applications uses a SQL expression for the above mentioned five variables which is used to execute the template Fast Formulas. The SQL expression is a function call for various metrics used in Accrual extract as below:
■ OBIA_ACCRUAL_FUNCTIONS.GET_NET_ACCRUAL() - used in variables (a) and (b).
■ OBIA_ACCRUAL_FUNCTIONS.GET_CARRY_OVER() - used in variable (c).
■ OBIA_ACCRUAL_FUNCTIONS.GET_ABSENCE() - used in variable (d).
■ OBIA_ACCRUAL_FUNCTIONS.GET_OTHER_NET_CONTRIBUTION() - used in variable (e).

If Accrual fast formulas at source are customized this setup step is mandatory.

Applies to
This applies to all extracts done for Accrual Module from E-Business Suite 11.1.10 and R12.x.x.

Task description in detail

Configuring ODI variable HR_ACCRUAL_PERIOD_GRANT_AMT
This variable calls functions that fetches the Period Leave Accrual granted to an Employee for a given Accrual Plan and Period.

The default value is:

```
OBIA_ACCRUAL_FUNCTIONS.GET_NET_ACCRUAL(PER_ALL_ASSIGNMENTS_F.ASSIGNMENT_ID, PER_ALL_ASSIGNMENTS_F.PAYROLL_ID, PER_ALL_ASSIGNMENTS_F.BUSINESS_GROUP_ID, -1, PER_TIME_PERIODS.END_DATE, PAY_ACCRUAL_PLANS.ACCRUAL_PLAN_ID, PER_TIME_PERIODS.START_DATE, NULL)
```

When a customized function is called, the following example shows the expectation from the function call when an employee receives 1.5 days of period accrual grant per accrual period:

<table>
<thead>
<tr>
<th>Period End Date</th>
<th>Accrual Plan</th>
<th>HR_ACCRUAL_PERIOD_GRANT_AMT</th>
</tr>
</thead>
<tbody>
<tr>
<td>31-Jan-2012</td>
<td>Paid Vacation</td>
<td>1.5</td>
</tr>
<tr>
<td>28-Feb-2012</td>
<td>Paid Vacation</td>
<td>1.5</td>
</tr>
<tr>
<td>31-Mar-2012</td>
<td>Paid Vacation</td>
<td>1.5</td>
</tr>
<tr>
<td>30-Apr-2012</td>
<td>Paid Vacation</td>
<td>1.5</td>
</tr>
<tr>
<td>31-May-2012</td>
<td>Paid Vacation</td>
<td>1.5</td>
</tr>
<tr>
<td>30-Jun-2012</td>
<td>Paid Vacation</td>
<td>1.5</td>
</tr>
</tbody>
</table>

If the template fast formula is customized the function call must also be suitably changed inside the ODI variable value.
A sample Accrual period is shown in Other Information section.

Configuring ODI variable HR_ACCRUAL_BALANCE_AMT

This variable calls functions that fetch the Balance Leave Accrual for an Assignment for a given Accrual Plan and Period.

Default value is:

```
OBIA_ACCRUAL_FUNCTIONS.GET_NET_ACCRUAL(PER_ALL_ASSIGNMENTS_F.ASSIGNMENT_ID, PER_ALL_ASSIGNMENTS_F.PAYROLL_ID, PER_ALL_ASSIGNMENTS_F.BUSINESS_GROUP_ID, -1, PER_TIME_PERIODS.END_DATE, PAY_ACCRUAL_PLANS.ACCRUAL_PLAN_ID)
```

When a customized function is called, the following example shows the expectation from such a function call for an employee receiving 1.5 days of period accrual grant and no Absences, Carryovers, Other Net Accruals:

<table>
<thead>
<tr>
<th>Period End Date</th>
<th>Accrual Plan</th>
<th>HR_ACCRUAL_PERIOD_GRANT_AMT</th>
<th>HR_ACCRUAL_BALANCE_AMT</th>
</tr>
</thead>
<tbody>
<tr>
<td>31-Jan-2012</td>
<td>Paid Vacation</td>
<td>1.5</td>
<td>1.5</td>
</tr>
<tr>
<td>20-Feb-2012</td>
<td>Paid Vacation</td>
<td>1.5</td>
<td>3.0</td>
</tr>
<tr>
<td>31-Mar-2012</td>
<td>Paid Vacation</td>
<td>1.5</td>
<td>4.5</td>
</tr>
<tr>
<td>30-Apr-2012</td>
<td>Paid Vacation</td>
<td>1.5</td>
<td>6.0</td>
</tr>
<tr>
<td>31-May-2012</td>
<td>Paid Vacation</td>
<td>1.5</td>
<td>7.5</td>
</tr>
<tr>
<td>30-Jun-2012</td>
<td>Paid Vacation</td>
<td>1.5</td>
<td>9.0</td>
</tr>
</tbody>
</table>

If the template fast formula is customized the function call must also be suitably changed inside the ODI variable value.

Configuring ODI variable HR_ACCRUAL_CARRYOVER_AMT

This variable calls functions that fetch the Carryover amount, when a new Accrual term begins.

Default value is:

```
OBIA_ACCRUAL_FUNCTIONS.GET_CARRY_OVER(PER_ALL_ASSIGNMENTS_F.ASSIGNMENT_ID, PAY_ACCRUAL_PLANS.ACCRUAL_PLAN_ID, PER_TIME_PERIODS.END_DATE, PER_TIME_PERIODS.START_DATE)
```

When a customized function is called, the following example shows the expectation from such a function:

<table>
<thead>
<tr>
<th>Period End Date</th>
<th>Accrual Plan</th>
<th>HR_ACCRUAL_PERIOD_GRANT_AMT</th>
<th>HR_ACCRUAL_BALANCE_AMT</th>
<th>HR_ACCRUAL_CARRYOVER_AMT</th>
</tr>
</thead>
<tbody>
<tr>
<td>31-Dec-2012</td>
<td>Paid Vacation</td>
<td>1.5</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>31-Jan-2012</td>
<td>Paid Vacation</td>
<td>1.5</td>
<td>17.5</td>
<td>16</td>
</tr>
<tr>
<td>31-Feb-2013</td>
<td>Paid Vacation</td>
<td>1.5</td>
<td>19.5</td>
<td>9</td>
</tr>
<tr>
<td>31-Mar-2012</td>
<td>Paid Vacation</td>
<td>1.5</td>
<td>20.5</td>
<td>0</td>
</tr>
<tr>
<td>30-Apr-2012</td>
<td>Paid Vacation</td>
<td>1.5</td>
<td>22</td>
<td>0</td>
</tr>
<tr>
<td>31-May-2012</td>
<td>Paid Vacation</td>
<td>1.5</td>
<td>23.5</td>
<td>0</td>
</tr>
<tr>
<td>30-Jun-2012</td>
<td>Paid Vacation</td>
<td>1.5</td>
<td>25</td>
<td>0</td>
</tr>
</tbody>
</table>

If the template fast formula is customized the function call must also be suitably changed inside the ODI variable value. A sample Accrual term is shown in Other Information section.
Configuring ODI variable HR_ACCRUAL_ABSENCE_AMT

This variable calls the function that fetch the Absence amount, of a given accrual period

Default value is:

```plaintext
OBIA_ACCRUAL_FUNCTIONS.GET_ABSENCE(PER_ALL_ASSIGNMENTS_F.ASSIGNMENT_ID, PAY_ACCRUAL_PLANS.ACCRUAL_PLAN_ID, PER_TIME_PERIODS.END_DATE, PER_TIME_PERIODS.START_DATE )
```

When a customized function is called, the following example shows the expectation from such a function.

<table>
<thead>
<tr>
<th>Period End Date</th>
<th>Absence Plan</th>
<th>HR_ACCRUAL_PERIOD_GRANT_AMT</th>
<th>HR_ACCRUAL_BALANCE_AMT</th>
<th>HR_ACCRUAL_ABSENCE_AMT</th>
</tr>
</thead>
<tbody>
<tr>
<td>31-Mar-2012</td>
<td>Paid Vacation</td>
<td>1.5</td>
<td>1.5</td>
<td>0</td>
</tr>
<tr>
<td>28-Feb-2012</td>
<td>Paid Vacation</td>
<td>1.5</td>
<td>2.0</td>
<td>1.5</td>
</tr>
<tr>
<td>31-Mar-2012</td>
<td>Paid Vacation</td>
<td>1.5</td>
<td>2.0</td>
<td>0</td>
</tr>
<tr>
<td>30-Apr-2012</td>
<td>Paid Vacation</td>
<td>1.5</td>
<td>3.0</td>
<td>0</td>
</tr>
<tr>
<td>31-Mar-2012</td>
<td>Paid Vacation</td>
<td>1.5</td>
<td>4.0</td>
<td>2.0</td>
</tr>
<tr>
<td>30-Jun-2012</td>
<td>Paid Vacation</td>
<td>1.5</td>
<td>6.0</td>
<td>0</td>
</tr>
</tbody>
</table>

If the template fast formula is customized the function call must also be suitably changed inside the ODI variable value.

Configuring ODI variable HR_ACCRUAL_OTHER_AMT

This variable calls the function that fetch the Other Net Accrual amounts, of a given accrual period

Default value is:

```plaintext
OBIA_ACCRUAL_FUNCTIONS.GET_OTHER_NET_CONTRIBUTION(PER_ALL_ASSIGNMENTS_F.ASSIGNMENT_ID, PAY_ACCRUAL_PLANS.ACCRUAL_PLAN_ID, PER_TIME_PERIODS.END_DATE, PER_TIME_PERIODS.START_DATE )
```

When a customized function is called, the following example shows the expectation from such a function.

<table>
<thead>
<tr>
<th>Period End Date</th>
<th>Absence Plan</th>
<th>HR_ACCRUAL_PERIOD_GRANT_AMT</th>
<th>HR_ACCRUAL_BALANCE_AMT</th>
<th>HR_ACCRUAL_ABSENCE_AMT</th>
</tr>
</thead>
<tbody>
<tr>
<td>31-Mar-2012</td>
<td>Paid Vacation</td>
<td>1.5</td>
<td>1.5</td>
<td>9</td>
</tr>
<tr>
<td>28-Feb-2012</td>
<td>Paid Vacation</td>
<td>1.5</td>
<td>4.0</td>
<td>1.0</td>
</tr>
<tr>
<td>31-Mar-2012</td>
<td>Paid Vacation</td>
<td>1.5</td>
<td>1.5</td>
<td>9</td>
</tr>
<tr>
<td>30-Apr-2012</td>
<td>Paid Vacation</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
</tr>
<tr>
<td>31-May-2012</td>
<td>Paid Vacation</td>
<td>1.5</td>
<td>3.0</td>
<td>2.0</td>
</tr>
<tr>
<td>30-Jun-2012</td>
<td>Paid Vacation</td>
<td>1.5</td>
<td>5.5</td>
<td>0</td>
</tr>
</tbody>
</table>

If the template fast formula is customized the function call must also be suitably changed inside the ODI variable value.

Dependency

None.

Additional Information/Notes

- Absences are always subtracted from Accrual balance.
- Carryover is always added to Accrual balance
- Other Net Contributions are always added to Accrual balance, but with Appropriate sign.

For example, if Accrual balance is 10 and Other Net Contribution is 2, then Net Accrual balance is 10+2=12. If Accrual balance is 10 and Other Net Contribution is (-3), then Net Accrual Balance is 10+(-3) = 7.

- The example data set below shows Accrual term and Accrual period.

<table>
<thead>
<tr>
<th>Period Start Date</th>
<th>Period End Date</th>
<th>Term Start Date</th>
<th>Term End Date</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-Jan-2012</td>
<td>31-Jan-2012</td>
<td>1-Jan-2012</td>
<td>31-Dec-2012</td>
<td>One Accrual Period</td>
</tr>
<tr>
<td>1-Feb-2012</td>
<td>31-Jan-2012</td>
<td>1-Jan-2012</td>
<td>31-Dec-2012</td>
<td>One Accrual Period</td>
</tr>
<tr>
<td>1-Mar-2012</td>
<td>30-Apr-2012</td>
<td>1-Apr-2012</td>
<td>31-Dec-2012</td>
<td>One Accrual Period</td>
</tr>
<tr>
<td>1-Apr-2012</td>
<td>31-May-2012</td>
<td>1-May-2012</td>
<td>31-Dec-2012</td>
<td>One Accrual Period</td>
</tr>
<tr>
<td>1-May-2012</td>
<td>31-Jun-2012</td>
<td>1-Jun-2012</td>
<td>31-Dec-2012</td>
<td>One Accrual Period</td>
</tr>
<tr>
<td>1-Jun-2012</td>
<td>31-Jul-2012</td>
<td>1-Jul-2012</td>
<td>31-Dec-2012</td>
<td>One Accrual Period</td>
</tr>
<tr>
<td>1-Jul-2012</td>
<td>31-Aug-2012</td>
<td>1-Aug-2012</td>
<td>31-Dec-2012</td>
<td>One Accrual Period</td>
</tr>
<tr>
<td>1-Aug-2012</td>
<td>31-Sep-2012</td>
<td>1-Sep-2012</td>
<td>31-Dec-2012</td>
<td>One Accrual Period</td>
</tr>
<tr>
<td>1-Sep-2012</td>
<td>30-Oct-2012</td>
<td>1-Oct-2012</td>
<td>31-Dec-2012</td>
<td>One Accrual Period</td>
</tr>
<tr>
<td>1-Oct-2012</td>
<td>30-Nov-2012</td>
<td>1-Nov-2012</td>
<td>31-Dec-2012</td>
<td>One Accrual Period</td>
</tr>
<tr>
<td>1-Nov-2012</td>
<td>31-Dec-2012</td>
<td>1-Dec-2012</td>
<td>31-Dec-2012</td>
<td>One Accrual Period</td>
</tr>
</tbody>
</table>

B.2.60 How to Perform RPD Modifications for Cost and Revenue Time Grain Changes

This topic explains how to configure the grain of Cost aggregate (W_PROJ_COST_A) and Revenue aggregate (W_PROJ_REVENUE_A) to Period, Quarter, or Year. As installed by default, the grain of the cost aggregate and revenue aggregate are set at Fiscal Period. However, you can modify the grain of the aggregate to either Period or Quarter or Year. This is done by configuring the FSM Parameters - COST_TIME_GRAIN and REVENUE_TIME_GRAIN - to 'PERIOD' or 'QUARTER' or 'YEAR'. In addition, you must make changes to the BI metadata repository (that is, the RPD file) that are included in this section.

This topic contains the following sections:

- Section B.2.60.1, "Setting the Time Grain Parameters in FSM"
- Section B.2.60.2, "Changing the Time Grain of the Cost Aggregate table to Fiscal/Project/Enterprise Period"
- Section B.2.60.3, "Changing the Time Grain of the Revenue Aggregate table to Fiscal/Project/Enterprise Period"
- Section B.2.60.4, "Changing the Time Grain of the Cost Aggregate table to Fiscal/Project/Enterprise Quarter"
- Section B.2.60.5, "Changing the Time Grain of the Revenue Aggregate table to Fiscal/Project/Enterprise Quarter"
- Section B.2.60.6, "Changing the Time Grain of the Cost Aggregate table to Fiscal/Project/Enterprise Year"
- Section B.2.60.7, "Changing the Time grain of the Revenue Aggregate table to Fiscal/Project/Enterprise Year"

Note: Oracle recommends that you back up the BI metadata repository (that is, the RPD file) before applying making changes.
B.2.60.1 Setting the Time Grain Parameters in FSM

By default, the parameters COST_TIME_GRAIN and REVENUE_TIME_GRAIN is set to 'PERIOD'. If you want to change the grain of aggregates, you will have to set these variables to desired levels and concurrently the joins in the RPD should be updated to reflect the appropriate tables.

To change the values in FSM, navigate to Manage Parameters, select 'COST_TIME_GRAIN' and click the Edit button.

To setting the Time Grain Parameters in FSM:

1. Navigate to Manage Parameters.
2. Select COST_TIMEGRAIN and click on edit button.
3. In the Manage Parameter Default values area, specify a value in the Default Value field. The allowed values are:
 - PERIOD
 - QUARTER
 - YEAR
4. Repeat the above steps for REVENUE_TIME_GRAIN.

B.2.60.2 Changing the Time Grain of the Cost Aggregate table to Fiscal/Project/Enterprise Period

This is the default configuration. You must ensure that the COST_TIME_GRAIN is set to PERIOD in FSM, and that the following RPD joins are in place.

1. Verify the joins to Fiscal Calendar (Dim-Date Fiscal Calendar).

 In the Business Model and Mapping layer, select the 'Dim_W_MCAL_PERIOD_D_Fiscal_Period' Logical Table Source from the 'Dim - Date Fiscal Calendar' and the 'Fact_Agg_W_PROJ_COST_A_Project_Cost' and 'Fact_Agg_W_PROJ_COST_A_Project_Cost_ITD' Logical Table Sources in 'Fact - Project Cost' and then right click and select 'physical diagram->selected objects only' and verify the following physical joins, then click OK.

 Join A:

JOIN B:

"Oracle Data Warehouse"."Catalog"."dbo"."Dim_W_MCAL_PERIOD_D_Fiscal_Period"."MCAL_PERIOD_END_DAY_WID" >= "Oracle Data Warehouse"."Catalog"."dbo"."Fact_Agg_W_PROJ_COST_A_Project_Cost_ITD"."PRVDR_GL_ACCT_PRD_END_DAY_WID" AND "Oracle Data Warehouse"."Catalog"."dbo"."Dim_W_MCAL_PERIOD_D_Fiscal_Period"."MCAL_CAL_WID" = "Oracle Data Warehouse"."Catalog"."dbo"."Fact_Agg_W_PROJ_COST_A_Project_Cost_ITD"."PRVDR_GL_MCAL_CAL_WID"
Join C:

"Oracle Data Warehouse"."Catalog"."dbo"."Fact_Agg_W_PROJ_COST_A_Project_Cost_ITD"."PRVDR_GL_ACCT_PRD_END_DAY_WID" <= 'Oracle Data Warehouse"."Catalog"."dbo"."Dim_W_MCAL_QTR_D_Fiscal_Quarter"."MCAL_QTR_END_DAY_WID" AND 'Oracle Data Warehouse"."Catalog"."dbo"."Dim_W_MCAL_QTR_D_Fiscal_Quarter"."MCAL_CAL_WID" = 'Oracle Data Warehouse"."Catalog"."dbo"."Fact_Agg_W_PROJ_COST_A_Project_Cost_ITD"."PRVDR_GL_MCAL_CAL_WID"

Join D:

"Oracle Data Warehouse"."Catalog"."dbo"."Dim_W_MCAL_YEAR_D_Fiscal_Year"."MCAL_YEAR_END_DAY_WID" >= 'Oracle Data Warehouse"."Catalog"."dbo"."Fact_Agg_W_PROJ_COST_A_Project_Cost_ITD"."PRVDR_GL_ACCT_PRD_END_DAY_WID" AND 'Oracle Data Warehouse"."Catalog"."dbo"."Dim_W_MCAL_YEAR_D_Fiscal_Year"."MCAL_CAL_WID" = 'Oracle Data Warehouse"."Catalog"."dbo"."Fact_Agg_W_PROJ_COST_A_Project_Cost_ITD"."PRVDR_GL_MCAL_CAL_WID"

2. Verify the joins to Project Calendar (Dim-Date Project Calendar).

In the Business Model and Mapping layer, select the 'Dim_W_MCAL_PERIOD_D_Project_Period' Logical Table Source from the 'Dim - Date Project Calendar' and the 'Fact_Agg_W_PROJ_COST_A_Project_Cost' and 'Fact_Agg_W_PROJ_COST_A_Project_Cost_ITD' Logical Table Sources in 'Fact - Project Cost' and then right click and select 'physical diagram->selected objects only' and verify the following physical join, then click OK.
Join A:

"Oracle Data Warehouse"."Catalog"."dbo"."Dim_W_MCAL_PERIOD_D_Project_Period"."MCAL_PERIOD_START_DAY_WID" = "Oracle Data Warehouse"."Catalog"."dbo"."Fact_Agg_W_PROJ_COST_A_Project_Cost".'PRVDR_PRJ_ACCT_PRD_ST_DAY_WID"

Join B:

"Oracle Data Warehouse"."Catalog"."dbo"."Dim_W_MCAL_PERIOD_D_Project_Period"."MCAL_PERIOD_END_DAY_WID" >= "Oracle Data Warehouse"."Catalog"."dbo"."Fact_Agg_W_PROJ_COST_A_Project_Cost_ITD".'PRVDR_PRJ_ACCT_PRD_EN_DAY_WID' AND "Oracle Data Warehouse"."Catalog"."dbo"."Dim_W_MCAL_PERIOD_D_Project_Period"."MCAL_CAL_WID" = "Oracle Data Warehouse"."Catalog"."dbo"."Fact_Agg_W_PROJ_COST_A_Project_Cost_ITD".'PRVDR_PROJ_MCAL_CAL_WID"
Join C:

"Oracle Data Warehouse"."Catalog"."dbo"."Fact_Agg_W_PROJ_COST_A_Project_Cost_ITD"."PRVDR_PRJ_ACCT_PRD_END_DAY_WID" <= "Oracle Data Warehouse"."Catalog"."dbo"."Dim_W_MCAL_QTR_D_Project_Quarter"."MCAL_QTR_END_DAY_WID" AND "Oracle Data Warehouse"."Catalog"."dbo"."Dim_W_MCAL_QTR_D_Project_Quarter"."MCAL_CAL_WID" = "Oracle Data Warehouse"."Catalog"."dbo"."Fact_Agg_W_PROJ_COST_A_Project_Cost_ITD"."PRVDR_PROJ_MCAL_CAL_WID"

Join D:

"Oracle Data Warehouse"."Catalog"."dbo"."Dim_W_MCAL_YEAR_D_Project_Year"."MCAL_YEAR_END_DAY_WID" >= "Oracle Data Warehouse"."Catalog"."dbo"."Fact_Agg_W_PROJ_COST_A_Project_Cost_ITD"."PRVDR_PRJ_ACCT_PRD_END_DAY_WID" AND "Oracle Data Warehouse"."Catalog"."dbo"."Dim_W_MCAL_YEAR_D_Project_Year"."MCAL_CAL_WID" = "Oracle Data Warehouse"."Catalog"."dbo"."Fact_Agg_W_PROJ_COST_A_Project_Cost_ITD"."PRVDR_PROJ_MCAL_CAL_WID"

3. Verify the joins to Enterprise Calendar (Dim-Date).

In the Business Model and Mapping layer, select the 'Dim_W_ENT_PERIOD_D' Logical Table Source from the 'Dim-Date' and the 'Fact_Agg_W_PROJ_COST_A_Project_Cost' and 'Fact_Agg_W_PROJ_COST_A_Project_Cost_ITD' Logical Table Sources in 'Fact - Project Cost' and then right click and select 'physical diagram->selected objects only' and verify the following physical join, then click OK.
Join A:

"Oracle Data Warehouse"."Catalog"."dbo"."Dim_W_ENT_PERIOD_D"."ENT_PERIOD_START_DT_WID" = "Oracle Data Warehouse"."Catalog"."dbo"."Fact_Agg_W_PROJ_COST_A_Project_Cost"."ENT_PERIOD_START_DAY_WID"

Join B:

"Oracle Data Warehouse"."Catalog"."dbo"."Fact_Agg_W_PROJ_COST_A_Project_Cost_ITD"."ENT_PERIOD_END_DAY_WID" <= "Oracle Data Warehouse"."Catalog"."dbo"."Dim_W_ENT_PERIOD_D"."ENT_PERIOD_END_DT_WID"
Join C:

"Oracle Data Warehouse"."Catalog"."dbo"."Fact_Agg_W_PROJ_COST_A_Project_Cost_ITD"."ENT_PERIOD_END_DAY_WID" <= "Oracle Data Warehouse"."Catalog"."dbo"."Dim_W_ENT_QTR_D"."ENT_QTR_END_DT_WID"

Join D:

"Oracle Data Warehouse"."Catalog"."dbo"."Dim_W_ENT_YEAR_D"."ENT_YEAR_END_DT_WID" >= "Oracle Data Warehouse"."Catalog"."dbo"."Fact_Agg_W_PROJ_COST_A_Project_Cost_ITD"."ENT_PERIOD_END_DAY_WID"

4. Change the Content Aggregation Level in the Business Model and Mapping layer.

As installed by default, the grain for cost aggregate is set to Period against the dimensions Dim-Date Fiscal Calendar, Dim-Date Project Calendar and Dim - Date. In the Business Model and Mapping layer open these two Logical Table Sources in 'Fact – Project Cost' and verify if grain is set at Period level.
5. Save the changes.

Run the Consistency Check and ensure that there are no errors, save the RPD file, and clear Oracle BI Enterprise Edition Cache. If you are making the changes in offline mode, then restart the Oracle BI Server and Oracle BI Presentation Services.

B.2.60.3 Changing the Time Grain of the Revenue Aggregate table to Fiscal/Project/Enterprise Period

This is default configuration. You must ensure that the REVENUE_TIME_GRAIN is set to 'PERIOD' in the FSM and that the following RPD joins are in place.

1. Verify the joins to Fiscal Calendar (Dim-Date Fiscal Calendar).

In the Business Model and Mapping layer, select the 'Dim_W_MCAL_PERIOD_D_Fiscal_Period' Logical Table Source from the 'Dim - Date Fiscal Calendar' and the 'Fact_Agg_W_PROJ_REVENUE_A_Revenue' and 'Fact_Agg_W_PROJ_REVENUE_A_Revenue_ITD' Logical Table Sources in 'Fact - Project Revenue' and then right click and select 'physical diagram->selected objects only' and verify the following physical join, then click OK.
Join A:

"Oracle Data Warehouse"."Catalog"."dbo"."Dim_W_MCAL_PERIOD_D_Fiscal_Period"."MCAL_PERIOD_START_DAY_WID" = "Oracle Data Warehouse"."Catalog"."dbo"."Fact_Agg_W_PROJ_REVENUE_A_Revenue"."GL_ACCT_PERIOD_START_DAY_WID"

Join B:

"Oracle Data Warehouse"."Catalog"."dbo"."Dim_W_MCAL_PERIOD_D_Fiscal_Period"."MCAL_PERIOD_END_DAY_WID" >= "Oracle Data Warehouse"."Catalog"."dbo"."Fact_Agg_W_PROJ_REVENUE_A_Revenue_ITD"."GL_ACCT_PERIOD_END_DAY_WID" AND "Oracle Data Warehouse"."Catalog"."dbo"."Dim_W_MCAL_PERIOD_D_Fiscal_Period"."MCAL_CAL_WID" = "Oracle Data Warehouse"."Catalog"."dbo"."Fact_Agg_W_PROJ_REVENUE_A_Revenue_ITD"."GL_MCAL_CAL_WID"
Join C:
"Oracle Data Warehouse"."Catalog"."dbo"."Fact_Agg_W_PROJ_REVENUE_A_Revenue_ITD"."GL_ACCT_PERIOD_END_DAY_WID" <= "Oracle Data Warehouse"."Catalog"."dbo"."Dim_W_MCAL_QTR_D_Fiscal_Quarter"."MCAL_QTR_END_DAY_WID" AND "Oracle Data Warehouse"."Catalog"."dbo"."Dim_W_MCAL_QTR_D_Fiscal_Quarter"."MCAL_CAL_WID" = "Oracle Data Warehouse"."Catalog"."dbo"."Fact_Agg_W_PROJ_REVENUE_A_Revenue_ITD"."GL_MCAL_CAL_WID"

Join D:
"Oracle Data Warehouse"."Catalog"."dbo"."Dim_W_MCAL_YEAR_D_Fiscal_Year"."MCAL_YEAR_END_DAY_WID" >= "Oracle Data Warehouse"."Catalog"."dbo"."Fact_Agg_W_PROJ_REVENUE_A_Revenue_ITD"."GL_ACCT_PERIOD_END_DAY_WID" AND "Oracle Data Warehouse"."Catalog"."dbo"."Dim_W_MCAL_YEAR_D_Fiscal_Year"."MCAL_CAL_WID" = "Oracle Data Warehouse"."Catalog"."dbo"."Fact_Agg_W_PROJ_REVENUE_A_Revenue_ITD"."GL_MCAL_CAL_WID"

2. Verify the joins to Project Calendar (Dim-Date Project Calendar).

In the Business Model and Mapping layer, select the 'Dim_W_MCAL_PERIOD_D_Project_Period' Logical Table Source from the 'Dim - Date Project Calendar' and the 'Fact_Agg_W_PROJ_REVENUE_A_Revenue' and 'Fact_Agg_W_PROJ_REVENUE_A_Revenue_ITD' Logical Table Sources in 'Fact - Project Revenue' and then right click and select 'physical diagram->selected objects only' and verify the following physical join, then click OK.
Join A:

"Oracle Data Warehouse"."Catalog"."dbo"."Dim_W_MCAL_PERIOD_D_Project_Period"."MCAL_PERIOD_START_DAY_WID" = "Oracle Data Warehouse"."Catalog"."dbo"."Fact_Agg_W_PROJ_REVENUE_A_Revenue"."PROJ_ACCT_PERIOD_START_DAY_WID"

Join B:

"Oracle Data Warehouse"."Catalog"."dbo"."Dim_W_MCAL_PERIOD_D_Project_Period"."MCAL_PERIOD_END_DAY_WID" >= "Oracle Data Warehouse"."Catalog"."dbo"."Fact_Agg_W_PROJ_REVENUE_A_Revenue_ITD"."PROJ_ACCT_PERIOD_END_DAY_WID" AND "Oracle Data Warehouse"."Catalog"."dbo"."Dim_W_MCAL_PERIOD_D_Project_Period"."MCAL_CAL_WID" = "Oracle Data Warehouse"."Catalog"."dbo"."Fact_Agg_W_PROJ_REVENUE_A_Revenue_ITD"."PROJ_MCAL_CAL_WID"
Join C:

"Oracle Data Warehouse"."Catalog"."dbo"."Fact_Agg_W_PROJ_REVENUE_A_Revenue_ITD"."PROJ_ACCT_PERIOD_END_DAY_WID" <= "Oracle Data Warehouse"."Catalog"."dbo"."Dim_W_MCAL_QTR_D_Project_Quarter"."MCAL_QTR_END_DAY_WID" AND "Oracle Data Warehouse"."Catalog"."dbo"."Dim_W_MCAL_QTR_D_Project_Quarter"."MCAL_CAL_WID" = "Oracle Data Warehouse"."Catalog"."dbo"."Fact_Agg_W_PROJ_REVENUE_A_Revenue_ITD"."PROJ_MCAL_CAL_WID"

Join D:

"Oracle Data Warehouse"."Catalog"."dbo"."Dim_W_MCAL_YEAR_D_Project_Year"."MCAL_YEAR_END_DAY_WID" >= "Oracle Data Warehouse"."Catalog"."dbo"."Fact_Agg_W_PROJ_REVENUE_A_Revenue_ITD"."PROJ_ACCT_PERIOD_END_DAY_WID" AND "Oracle Data Warehouse"."Catalog"."dbo"."Dim_W_MCAL_YEAR_D_Project_Year"."MCAL_CAL_WID" = "Oracle Data Warehouse"."Catalog"."dbo"."Fact_Agg_W_PROJ_REVENUE_A_Revenue_ITD"."PROJ_MCAL_CAL_WID"

3. Verify the joins to Enterprise Calendar (Dim-Date).

In the Business Model and Mapping layer, select the 'Dim_W_ENT_PERIOD_D' Logical Table Source from the 'Dim - Date' and the 'Fact_Agg_W_PROJ_COST_A_Project_Cost' and the 'Fact_Agg_W_PROJ_REVENUE_A_Revenue' and 'Fact_Agg_W_PROJ_REVENUE_A_Revenue_ITD' Logical Table Sources in 'Fact - Project Revenue' and then right click and select 'physical diagram->selected objects only' and verify the following physical join, then click OK.

Join A:

"Oracle Data Warehouse"."Catalog"."dbo"."Dim_W_ENT_PERIOD_D"."ENT_PERIOD_START_
DT_WID = "Oracle Data Warehouse"."Catalog"."dbo"."Fact_Agg_W_PROJ_REVENUE_A_Revenue"."ENT_PERIOD_START_DAY_WID"

Join B:
"Oracle Data Warehouse"."Catalog"."dbo"."Fact_Agg_W_PROJ_REVENUE_A_Revenue_ITD"."ENT_PERIOD_END_DAY_WID" <= "Oracle Data Warehouse"."Catalog"."dbo"."Dim_W_ENT_PERIOD_D"."ENT_PERIOD_END_DT_WID"

Join C:
"Oracle Data Warehouse"."Catalog"."dbo"."Fact_Agg_W_PROJ_REVENUE_A_Revenue_ITD"."ENT_PERIOD_END_DAY_WID" <= "Oracle Data Warehouse"."Catalog"."dbo"."Dim_W_ENT_QTR_D"."ENT_QTR_END_DT_WID"

Join D:
"Oracle Data Warehouse"."Catalog"."dbo"."Dim_W_ENT_YEAR_D"."ENT_YEAR_END_DT_WID" >= "Oracle Data Warehouse"."Catalog"."dbo"."Fact_Agg_W_PROJ_REVENUE_A_Revenue_ITD"."ENT_PERIOD_END_DAY_WID"

4. Change the Content Aggregation Level in the Business Model and Mapping layer.
As installed by default, the grain for cost aggregate is set to Period against the dimensions Dim-Date Fiscal Calendar, Dim-Date Project Calendar and Dim- Date.
In the Business Model and Mapping layer open these two Logical Table Sources in 'Fact – Project Revenue' and verify if grain is set at Period level.

5. Save the changes.

Run the Consistency Check and ensure that there are no errors, save the RPD file, and clear Oracle BI Enterprise Edition Cache. If you are making the changes in offline mode, then restart the Oracle BI Server and Oracle BI Presentation Services.

B.2.60.4 Changing the Time Grain of the Cost Aggregate table to Fiscal/Project/Enterprise Quarter

If the grain of Cost aggregate is at quarter level, then you must ensure that the COST_TIME_GRAIN is set to 'QUARTER' in the FSM. In addition, make the following metadata changes for the Fiscal, Project, and Enterprise calendars:

1. Delete the joins to Dim_W_MCAL_PERIOD_D_Fiscal_Period/ Dim_W_MCAL_PERIOD_D_Project_Period /Dim_W_ENT_PERIOD_D.

 Delete the existing physical joins between Fact_Agg_W_PROJ_COST_A_Project_Cost (under logical fact 'Fact – Project Cost') to Dim_W_MCAL_PERIOD_D_Fiscal_Period (under logical dimension 'Dim – Date Fiscal Calendar'), Dim_W_MCAL_PERIOD_D_Project_Period (under logical dimension 'Dim – Date Project Calendar') and Dim_W_ENT_PERIOD_D (under logical dimension 'Dim - Date')

Join A:

"Oracle Data Warehouse"."Catalog"."dbo"."Dim_W_MCAL_PERIOD_D_Fiscal_Period"."MCAL_PERIOD_START_DAY_WID" = "Oracle Data Warehouse"."Catalog"."dbo"."Fact_Agg_W_PROJ_COST_A_Project_Cost"."PRVDR_GL_ACCT_PRD_STRT_DAY_WID"

Join B:

"Oracle Data Warehouse"."Catalog"."dbo"."Dim_W_MCAL_PERIOD_D_Project_Period"."MCAL_PERIOD_START_DAY_WID" = "Oracle Data Warehouse"."Catalog"."dbo"."Fact_Agg_W_PROJ_COST_A_Project_Cost"."PRVDR_PRJ_ACCT_PRD_ST_DAY_WID"
Join C:

"Oracle Data Warehouse"."Catalog"."dbo"."Dim_W_ENT_PERIOD_D"."ENT_PERIOD_START_DT_WID" = "Oracle Data Warehouse"."Catalog"."dbo"."Fact_Agg_W_PROJ_COST_A_Project_Cost"."ENT_PERIOD_START_DAY_WID"

Delete the existing physical joins between Fact_Agg_W_PROJ_COST_A_Project_Cost_ITD (under logical fact 'Fact - Project Cost') to Dim_W_MCAL_PERIOD_D_Fiscal_Period (under logical dimension 'Dim - Fiscal Calendar'), Dim_W_MCAL_PERIOD_D_Project_Period (under logical dimension 'Dim - Project Calendar') and Dim_W_ENT_PERIOD_D (under logical dimension 'Dim - Date').

Join A:

"Oracle Data Warehouse"."Catalog"."dbo"."Dim_W_MCAL_PERIOD_D_Fiscal_Period"."MCAL_PERIOD_END_DAY_WID" >= "Oracle Data Warehouse"."Catalog"."dbo"."Fact_Agg_W_PROJ_COST_A_Project_Cost_ITD"."PRVDR_GL_ACCT_PRD_END_DAY_WID" AND "Oracle Data Warehouse"."Catalog"."dbo"."Dim_W_MCAL_PERIOD_D_Project_Period"."MCAL_CAL_WID" = "Oracle Data Warehouse"."Catalog"."dbo"."Fact_Agg_W_PROJ_COST_A_Project_Cost_ITD"."PRVDR_GL_MCAL_CAL_WID"

Join B:

"Oracle Data Warehouse"."Catalog"."dbo"."Dim_W_MCAL_PERIOD_D_Project_Period"."MCAL_PERIOD_END_DAY_WID" >= "Oracle Data Warehouse"."Catalog"."dbo"."Fact_Agg_W_PROJ_COST_A_Project_Cost_ITD"."PRVDR_PROJ_ACCT_PRD_END_DAY_WID" AND "Oracle Data Warehouse"."Catalog"."dbo"."Dim_W_MCAL_QTR_D_Project_Quarter"."MCAL_QTR_START_DAY_WID" = "Oracle Data Warehouse"."Catalog"."dbo"."Fact_Agg_W_PROJ_COST_A_Project_Cost_ITD"."PRVDR_GL_ACCT_PERIOD_START_DAY_WID"

And verify the following joins:

Join A:

"Oracle Data Warehouse"."Catalog"."dbo"."Fact_Agg_W_PROJ_COST_A_Project_Cost_ITD"."PRVDR_GL_ACCT_PERIOD_END_DAY_WID" <= "Oracle Data Warehouse"."Catalog"."dbo"."Dim_W_MCAL_QTR_D_Project_Quarter"."MCAL_QTR_END_DAY_WID" AND

2. Create join to Dim_W_MCAL_QTR_D_Fiscal_Quarter.

In the Business Model and Mapping layer, select the Dim_W_MCAL_QTR_D_Project_Quarter / Dim_W_MCAL_YEAR_D_Project_Year Logical Table Source from the 'Dim - Date Project Calendar' and the Fact_Agg_W_PROJ_COST_A_Project_Cost and Fact_Agg_W_PROJ_COST_A_Project_Cost_ITD Logical Table Sources in 'Fact - Project Cost' and then right click and select 'physical diagram->selected objects only' and click ok. Create following physical join:

Join A:

"Oracle Data Warehouse"."Catalog"."dbo"."Dim_W_MCAL_QTR_D_Fiscal_Quarter"."MCAL_QTR_START_DAY_WID" = "Oracle Data Warehouse"."Catalog"."dbo"."Fact_Agg_W_PROJ_COST_A_Project_Cost"."PRVDR_GL_ACCT_PERIOD_START_DAY_WID"

And verify the following joins:

Join A:

"Oracle Data Warehouse"."Catalog"."dbo"."Fact_Agg_W_PROJ_COST_A_Project_Cost_ITD"."PRVDR_GL_ACCT_PERIOD_END_DAY_WID" <= "Oracle Data Warehouse"."Catalog"."dbo"."Dim_W_MCAL_QTR_D_Fiscal_Quarter"."MCAL_QTR_END_DAY_WID" AND
3. Create joins to Dim_W_MCAL_QTR_D_Project_Quarter.

In the Business Model and Mapping layer, select the Dim_W_MCAL_QTR_D_Project_Quarter / Dim_W_MCAL_YEAR_D_Project_Year Logical Table Source from the 'Dim - Date Project Calendar' and the Fact_Agg_W_PROJ_COST_A_Project_Cost and Fact_Agg_W_PROJ_COST_A_Project_Cost_ITD Logical Table Sources in 'Fact - Project Cost' and then right click and select 'physical diagram->selected objects only' and click ok. Create following physical join:

Join A:

"Oracle Data Warehouse"."Catalog"."dbo"."Dim_W_MCAL_QTR_D_Project_Quarter"."MCAL_QTR_START_DAY_WID" = "Oracle Data Warehouse"."Catalog"."dbo"."Fact_Agg_W_PROJ_COST_A_Project_Cost"."PRVDR_PRJ_ACCT_PRD_START_DAY_WID"

And verify the following joins:

Join A:

"Oracle Data Warehouse"."Catalog"."dbo"."Dim_W_MCAL_QTR_D_Project_Quarter"."MCAL_QTR_END_DAY_WID" <= "Oracle Data Warehouse"."Catalog"."dbo"."Fact_Agg_W_PROJ_COST_A_Project_Cost"."PRVDR_PRJ_ACCT_PRD_END_DAY_WID"

AND "Oracle Data Warehouse"."Catalog"."dbo"."Dim_W_MCAL_QTR_D_Project_Quarter"."MCAL_CAL_WID" = "Oracle Data Warehouse"."Catalog"."dbo"."Fact_Agg_W_PROJ_COST_A_Project_Cost"."PRVDR_GL_MCAL_CAL_WID"

Join B:

"Oracle Data Warehouse"."Catalog"."dbo"."Dim_W_MCAL_YEAR_D_Project_Year"."MCAL_YEAR_END_DAY_WID" >= "Oracle Data Warehouse"."Catalog"."dbo"."Fact_Agg_W_PROJ_COST_A_Project_Cost"."PRVDR_GL_ACCT_PERIOD_END_DAY_WID"

AND "Oracle Data Warehouse"."Catalog"."dbo"."Dim_W_MCAL_YEAR_D_Project_Year"."MCAL_CAL_WID" = "Oracle Data Warehouse"."Catalog"."dbo"."Fact_Agg_W_PROJ_COST_A_Project_Cost"."PRVDR_GL_MCAL_CAL_WID"

4. Create joins to Dim_W_ENT_QTR_D.

In the Business Model and Mapping layer, select the Dim_W_ENT_QTR_D / Dim_W_ENT_YEAR_D Logical Table Source from the 'Dim - Date' and the Fact_Agg_W_PROJ_COST_A_Project_Cost and Fact_Agg_W_PROJ_COST_A_Project_Cost_ITD Logical Table Sources in 'Fact - Project Cost' and then right click and select 'physical diagram->selected objects only' and click ok. Create following physical join:

As installed by default, the grain for cost aggregate is set to Period against the dimensions Dim-Date Fiscal Calendar, Dim-Date Project Calendar and Dim - Date. Instead of Fiscal/Project/Enterprise Period you must set this to Fiscal Quarter for Dim – Date Fiscal Calendar, Project Quarter for Dim – Date Project Calendar and Enterprise Quarter for Dim - Date.

6. Save the changes.

When these changes are complete, run the Consistency Check and ensure that there are no errors, save the RPD file, and clear the Oracle BI Enterprise Edition Cache. If you are making the changes in offline mode, then restart the Oracle BI Server and Oracle BI Presentation Services.

B.2.60.5 Changing the Time Grain of the Revenue Aggregate table to Fiscal/Project/Enterprise Quarter

If the grain of Revenue aggregate is at quarter level, then you must ensure that the REVENUE_TIME_GRAIN is set to 'QUARTER' in FSM. Also, the following metadata changes should be made for the Fiscal, Project, and Enterprise calendars:

1. Delete the joins to Dim_W_MCAL_PERIOD_D_Fiscal_Period/ Dim_W_MCAL_PERIOD_D_Project_Period /Dim_W_ENT_PERIOD_D.

Delete the existing physical joins between Fact_Agg_W_PROJ_REVENUE_A_Revenue (under logical fact 'Fact – Project Revenue') to Dim_W_MCAL_PERIOD_D_Fiscal_Period (under logical dimension 'Dim – Date Fiscal Calendar'), Dim_W_MCAL_PERIOD_D_Project_Period (under logical dimension 'Dim – Date Project Calendar') and Dim_W_ENT_PERIOD_D (under logical dimension 'Dim - Date').

Join A:

"Oracle Data Warehouse".'Catalog'.'dbo'.'Dim_W_MCAL_PERIOD_D_Fiscal_Period'.'MCAL_PERIOD_START_DAY_WID' = "Oracle Data Warehouse".'Catalog'.'dbo'.'Fact_Agg_W_PROJ_REVENUE_A_Revenue'.'GL_ACCT_PERIOD_START_DAY_WID"

Join B:

"Oracle Data Warehouse".'Catalog'.'dbo'.'Dim_W_MCAL_PERIOD_D_Project_Period'.'MCAL_PERIOD_START_DAY_WID' = "Oracle Data Warehouse".'Catalog'.'dbo'.'Fact_Agg_W_PROJ_REVENUE_A_Revenue'.'GL_ACCT_PERIOD_START_DAY_WID"
Delete the existing physical joins between Fact_Agg_W_PROJ_REVENUE_A_Revenue_ITD (under logical fact 'Fact – Project Revenue') to Dim_W_MCAL_PERIOD_D_Fiscal_Period (under logical dimension 'Dim – Date Fiscal Calendar'), Dim_W_MCAL_PERIOD_D_Project_Period (under logical dimension 'Dim – Date Project Calendar') and Dim_W_ENT_PERIOD_D (under logical dimension 'Dim - Date').

Join A:

"Oracle Data Warehouse"."Catalog"."dbo"."Dim_W_MCAL_PERIOD_D_Fiscal_Period"."MCAL_PERIOD_END_DAY_WID" >= "Oracle Data Warehouse"."Catalog"."dbo"."Fact_Agg_W_PROJ_REVENUE_A_Revenue_ITD"."GL_ACCT_PERIOD_END_DAY_WID" AND "Oracle Data Warehouse"."Catalog"."dbo"."Dim_W_MCAL_PERIOD_D_Fiscal_Period"."MCAL_CAL_WID" = "Oracle Data Warehouse"."Catalog"."dbo"."Fact_Agg_W_PROJ_REVENUE_A_Revenue_ITD"."GL_MCAL_CAL_WID"

Join B:

"Oracle Data Warehouse"."Catalog"."dbo"."Dim_W_MCAL_PERIOD_D_Project_Period"."MCAL_PERIOD_END_DAY_WID" >= "Oracle Data Warehouse"."Catalog"."dbo"."Fact_Agg_W_PROJ_REVENUE_A_Revenue_ITD"."PROJ_ACCT_PERIOD_END_DAY_WID" AND "Oracle Data Warehouse"."Catalog"."dbo"."Dim_W_MCAL_PERIOD_D_Project_Period"."MCAL_CAL_WID" = "Oracle Data Warehouse"."Catalog"."dbo"."Fact_Agg_W_PROJ_REVENUE_A_Revenue_ITD"."PROJ_MCAL_CAL_WID"

Join C:

"Oracle Data Warehouse"."Catalog"."dbo"."Fact_Agg_W_PROJ_REVENUE_A_Revenue_ITD"."ENT_PERIOD_END_DAY_WID" <= "Oracle Data Warehouse"."Catalog"."dbo"."Dim_W_ENT_PERIOD_D"."ENT_PERIOD_END_DT_WID"

2. Create joins to Dim_W_MCAL_QTR_D_Fiscal_Quarter.

In the Business Model and Mapping layer, select the Dim_W_MCAL_QTR_D_Fiscal_Quarter/ Dim_W_MCAL_YEAR_D_Fiscal_Year Logical Table Source from the 'Dim - Date Fiscal Calendar' and the Fact_Agg_W_PROJ_REVENUE_A_Revenue and Fact_Agg_W_PROJ_REVENUE_A_Revenue_ITD Logical Table Sources in 'Fact - Project Revenue' and then right click and select 'physical diagram-> selected objects only' and click ok. Create following physical join:

Join A:

"Oracle Data Warehouse"."Catalog"."dbo"."Dim_W_MCAL_QTR_D_Fiscal_Quarter"."MCAL_PERIOD_START_DAY_WID" = "Oracle Data Warehouse"."Catalog"."dbo"."Fact_Agg_W_PROJ_REVENUE_A_Revenue"."GL_ACCT_PERIOD_START_DAY_WID"

And verify the following joins:

Join A:

"Oracle Data Warehouse"."Catalog"."dbo"."Fact_Agg_W_PROJ_REVENUE_A_Revenue_
Join A:

"Oracle Data Warehouse"."Catalog"."dbo"."Dim_W_MCAL_QTR_D_Project_Quarter"."MCAL_QTR_START_DAY_WID" = "Oracle Data Warehouse"."Catalog"."dbo"."Fact_Agg_W_PROJ_REVENUE_A_Revenue_ITD"."PROJ_ACCT_PERIOD_START_DAY_WID"

And verify the following joins:

Join A:

"Oracle Data Warehouse"."Catalog"."dbo"."Fact_Agg_W_PROJ_REVENUE_A_Revenue_ITD"."PROJ_ACCT_PERIOD_END_DAY_WID" <= "Oracle Data Warehouse"."Catalog"."dbo"."Dim_W_MCAL_QTR_D_Project_Quarter"."MCAL_QTR_END_DAY_WID" AND "Oracle Data Warehouse"."Catalog"."dbo"."Dim_W_MCAL_QTR_D_Project_Quarter"."MCAL_CAL_WID" = "Oracle Data Warehouse"."Catalog"."dbo"."Fact_Agg_W_PROJ_REVENUE_A_Revenue_ITD"."GL_MCAL_CAL_WID"

Join B:

"Oracle Data Warehouse"."Catalog"."dbo"."Dim_W_MCAL_YEAR_D_Project_Year"."MCAL_YEAR_END_DAY_WID" >= "Oracle Data Warehouse"."Catalog"."dbo"."Fact_Agg_W_PROJ_REVENUE_A_Revenue_ITD"."PROJ_ACCT_PERIOD_END_DAY_WID" AND "Oracle Data Warehouse"."Catalog"."dbo"."Dim_W_MCAL_YEAR_D_Project_Year"."MCAL_CAL_WID" = "Oracle Data Warehouse"."Catalog"."dbo"."Fact_Agg_W_PROJ_REVENUE_A_Revenue_ITD"."GL_MCAL_CAL_WID"

4. **Create joins to Dim_W_ENT_QTR_D.**

In the Business Model and Mapping layer, select the Dim_W_ENT_QTR_D / Dim_W_ENT_YEAR_D Logical Table Source from the 'Dim - Date' and the Fact_Agg_W_PROJ_REVENUE_A_Revenue and Fact_Agg_W_PROJ_REVENUE_A_Revenue_ITD Logical Table Sources in 'Fact - Project Revenue' and then right click and select 'physical diagram->selected objects only' and click ok. Create following physical join:

Join A:

"Oracle Data Warehouse"."Catalog"."dbo"."Dim_W_ENT_QTR_D"."ENT_QTR_END_DT_"
And verify the following joins:

Join A:
"Oracle Data Warehouse"."Catalog"."dbo"."Fact_Agg_W_PROJ_REVENUE_A_Revenue_ITD"."ENT_PERIOD_END_DAY_WID" <= "Oracle Data Warehouse"."Catalog"."dbo"."Dim_W_ENT_QTR_D"."ENT_QTR_END_DT_WID"

Join A:
"Oracle Data Warehouse"."Catalog"."dbo"."Dim_W_ENT_YEAR_D"."ENT_YEAR_END_DT_WID" >= "Oracle Data Warehouse"."Catalog"."dbo"."Fact_Agg_W_PROJ_REVENUE_A_Revenue_ITD"."ENT_PERIOD_END_DAY_WID"

As installed by default, the grain for revenue aggregate is set to Period against the dimensions Dim-Date Fiscal Calendar, Dim-Date Project Calendar and Dim - Date.

Instead of Fiscal/Project Period you must set this to Fiscal Quarter for Dim – Date Fiscal Calendar, Project Quarter for Dim – Date Project Calendar and Enterprise Quarter for Dim - Date.

6. Save the changes.

When these changes are complete, run the Consistency Check and ensure that there are no errors, save the RPD file, and clear the Oracle BI Enterprise Edition Cache. If you are making the changes in offline mode, then restart the Oracle BI Server and Oracle BI Presentation Services.

B.2.6.0.6 Changing the Time Grain of the Cost Aggregate table to Fiscal/Project/Enterprise Year

If the grain of Cost aggregate is at year level, then you must ensure that the COST_TIME_GRAIN is set to 'YEAR' in FSM. Also, the following metadata changes should be made for the Fiscal, Project, and Enterprise calendars:

1. Delete the joins to Dim_W_MCAL_PERIOD_D_Fiscal_Period/ Dim_W_MCAL_PERIOD_D_Project_Period /Dim_W_ENT_PERIOD_D.

Delete the existing physical joins between Fact_Agg_W_PROJ_COST_A_Project_Cost (under logical fact 'Fact – Project Cost') to Dim_W_MCAL_PERIOD_D_Fiscal_Period (under logical dimension 'Dim – Date Fiscal Calendar'), Dim_W_MCAL_PERIOD_D_Project_Period (under logical dimension 'Dim – Date Project Calendar') and Dim_W_ENT_PERIOD_D (under logical dimension 'Dim - Date').

Join A:
"Oracle Data Warehouse"."Catalog"."dbo"."Dim_W_MCAL.PERIOD_D_Fiscal_Period"."MCAL_PERIOD_START_DAY_WID" = "Oracle Data Warehouse"."Catalog"."dbo"."Fact_Agg_W_PROJ_COST_A.Project_Cost"."PRVDR_GL_ACCT_PRD_STRT_DAY_WID"

Join B:
"Oracle Data Warehouse"."Catalog"."dbo"."Dim_W_MCAL.PERIOD_D_Project_Period"."MCAL_PERIOD_START_DAY_WID" = "Oracle Data Warehouse"."Catalog"."dbo"."Fact_Agg_W_PROJ_COST_A.Project_Cost"."PRVDR_PRJ_ACCT_PRD_ST_DAY_WID"
Join C:

"Oracle Data Warehouse".'Catalog'..'dbo'..'Dim_W_ENT_PERIOD_D'..'ENT_PERIOD_START_DT_WID' = 'Oracle Data Warehouse'.'Catalog'..'dbo'..'Fact_Agg_W_PROJ_COST_A_Project_Cost'..'ENT_PERIOD_START_DAY_WID'

Delete the existing physical joins between Fact_Agg_W_PROJ_COST_A_Project_Cost_ITD (under logical fact 'Fact – Project Cost') to Dim_W_MCAL_PERIOD_D_Fiscal_Period (under logical dimension 'Dim – Date Fiscal Calendar'), Dim_W_MCAL_PERIOD_D_Project_Period (under logical dimension 'Dim – Date Project Calendar') and Dim_W_ENT_PERIOD_D (under logical dimension 'Dim - Date').

Join A:

"Oracle Data Warehouse".'Catalog'..'dbo'..'Dim_W_MCAL_PERIOD_D_Fiscal_Period'..'MCAL_PERIOD_END_DAY_WID' >= "Oracle Data Warehouse".'Catalog'..'dbo'..'Fact_Agg_W_PROJ_COST_A_Project_Cost_ITD'..'PRVDR_GL_ACCT_PRD_END_DAY_WID' AND "Oracle Data Warehouse".'Catalog'..'dbo'..'Dim_W_MCAL_PERIOD_D_Fiscal_Period'..'MCAL_CAL_WID' = 'Oracle Data Warehouse'.'Catalog'..'dbo'..'Fact_Agg_W_PROJ_COST_A_Project_Cost_ITD'..'PRVDR_GL_MCAL_CAL_WID'

Join B:

"Oracle Data Warehouse".'Catalog'..'dbo'..'Dim_W_MCAL_PERIOD_D_Project_Period'..'MCAL_PERIOD_END_DAY_WID' >= "Oracle Data Warehouse".'Catalog'..'dbo'..'Fact_Agg_W_PROJ_COST_A_Project_Cost_ITD'..'PRVDR_PRJ_ACCT_PRD_END_DAY_WID' AND "Oracle Data Warehouse".'Catalog'..'dbo'..'Dim_W_MCAL_PERIOD_D_Project_Period'..'MCAL_CAL_WID' = 'Oracle Data Warehouse'.'Catalog'..'dbo'..'Fact_Agg_W_PROJ_COST_A_Project_Cost_ITD'..'PRVDR_PRJ_MCAL_CAL_WID'

Join C:

"Oracle Data Warehouse".'Catalog'..'dbo'..'Fact_Agg_W_PROJ_COST_A_Project_Cost_ITD'..'ENT_PERIOD_END_DAY_WID' <= "Oracle Data Warehouse".'Catalog'..'dbo'..'Dim_W_ENT_PERIOD_D'..'ENT_PERIOD_END_DT_WID'

2. Create joins to Dim_W_MCAL_YEAR_D_Fiscal_Year/ Dim_W_MCAL_YEAR_D_Project_Year/ Dim_W_ENT_YEAR_D.

Following physical joins need to be created between following Logical Table Source fact Fact_Agg_W_PROJ_COST_A_Project_Cost (under logical fact 'Fact – Project Cost') and Dim_W_MCAL_YEAR_D_Fiscal_Year (under logical dimension 'Dim – Date Fiscal Calendar'), Dim_W_MCAL_YEAR_D_Project_Year (under logical dimension 'Dim – Date Project Calendar') and Dim_W_ENT_YEAR_D (under logical dimension 'Dim – Date').

Join A:

"Oracle Data Warehouse".'Catalog'..'dbo'..'Dim_W_MCAL_YEAR_D_Fiscal_Year'..'MCAL_YEAR_START_DAY_WID' = "Oracle Data Warehouse".'Catalog'..'dbo'..'Fact_Agg_W_PROJ_COST_A_Project_Cost'..'PRVDR_GL_ACCT_PERIOD_START_DAY_WID'

Join B:

"Oracle Data Warehouse".'Catalog'..'dbo'..'Dim_W_MCAL_YEAR_D_Project_Year'..'MCAL_YEAR_START_DAY_WID' = "Oracle Data Warehouse".'Catalog'..'dbo'..'Fact_Agg_W_PROJ_COST_A_Project_Cost'..'PRVDR_PRJ_ACCT_PRD_START_DAY_WID'

Join C:
3. Verify the joins to Dim_W_MCAL_YEAR_D_Fiscal_Year/ Dim_W_MCAL_YEAR_D_Project_Year/ Dim_W_ENT_YEAR_D.

Ensure that there are joins between Fact_Agg_W_PROJ_COST_A_Project_Cost_ITD Logical Table Source in 'Fact - Project Cost' to Dim_W_MCAL_YEAR_D_Fiscal_Year Logical Table Source from the 'Dim - Date Fiscal Calendar', Dim_W_MCAL_YEAR_D_Project_Year Logical Table Source from the 'Dim - Date Project Calendar' and Dim_W_ENT_YEAR_D Logical Table Source from the 'Dim - Date'. These are done by default.

Join A:

"Oracle Data Warehouse"."Catalog"."dbo"."Dim_W_MCAL_YEAR_D_Fiscal_Year"."MCAL_YEAR_END_DAY_WID" >= "Oracle Data Warehouse"."Catalog"."dbo"."Fact_Agg_W_PROJ_COST_A_Project_Cost_ITD"."PRVDR_GL_ACCT_PRD_END_DAY_WID" AND "Oracle Data Warehouse"."Catalog"."dbo"."Dim_W_MCAL_YEAR_D_Fiscal_Year"."MCAL_CAL_WID" = "Oracle Data Warehouse"."Catalog"."dbo"."Fact_Agg_W_PROJ_COST_A_Project_Cost_ITD"."PRVDR_GL_MCAL_CAL_WID"

Join B:

"Oracle Data Warehouse"."Catalog"."dbo"."Dim_W_MCAL_YEAR_D_Project_Year"."MCAL_YEAR_END_DAY_WID" >= "Oracle Data Warehouse"."Catalog"."dbo"."Fact_Agg_W_PROJ_COST_A_Project_Cost_ITD"."PRVDR_PROJ_ACCT_PRD_END_DAY_WID" AND "Oracle Data Warehouse"."Catalog"."dbo"."Dim_W_MCAL_YEAR_D_Project_Year"."MCAL_CAL_WID" = "Oracle Data Warehouse"."Catalog"."dbo"."Fact_Agg_W_PROJ_COST_A_Project_Cost_ITD"."PRVDR_PROJ_MCAL_CAL_WID"

Join C:

"Oracle Data Warehouse"."Catalog"."dbo"."Dim_W_ENT_YEAR_D"."ENT_YEAR_END_DT_WID" >= "Oracle Data Warehouse"."Catalog"."dbo"."Fact_Agg_W_PROJ_COST_A_Project_Cost_ITD"."ENT_PERIOD_END_DAY_WID"

4. Changing Content Aggregation Level in the Business Model and Mapping layer

As installed by default, the grain for cost aggregate is set to Period against the dimensions Dim-Date Fiscal Calendar, Dim-Date Project Calendar and Dim - Date. Instead of Fiscal/Project Period you must set this to Fiscal Year for Dim – Date Fiscal Calendar, Project Year for Dim – Date Project Calendar and Enterprise year for Dim - Date.

5. Save the changes.

When these changes are complete, run the Consistency Check and ensure that there are no errors, save the RPD file, and clear the Oracle BI Enterprise Edition Cache. If you are making the changes in offline mode, then restart the Oracle BI Server and Oracle BI Presentation Services.

B.2.60.7 Changing the Time grain of the Revenue Aggregate table to Fiscal/Project/Enterprise Year

If the grain of Revenue aggregate is at year level, then you must ensure that the REVENUE_TIME_GRAIN is set to 'YEAR' in the FSM. Also, the following metadata changes should be made for the Fiscal, Project, and Enterprise calendars:
1. Delete the joins to Dim_W_MCAL_PERIOD_D_Fiscal_Period/ Dim_W_MCAL_PERIOD_D_Project_Period /Dim_W_ENT.PERIOD_D.

Delete the existing physical joins between Fact_Agg_W_PROJ_REVENUE_A_Revenue (under logical fact 'Fact – Project Revenue') to Dim_W_MCAL_PERIOD_D_Fiscal_Period (under logical dimension 'Dim – Date Fiscal Calendar'), Dim_W_MCAL_PERIOD_D_Project_Period (under logical dimension 'Dim – Date Project Calendar') and Dim_W_ENT_PERIOD_D (under logical dimension 'Dim - Date').

Join A:

"Oracle Data Warehouse"."Catalog"."dbo"."Dim_W_MCAL_PERIOD_D_Fiscal_Period"."MCAL_PERIOD_START_DAY_WID" = "Oracle Data Warehouse"."Catalog"."dbo"."Fact_Agg_W_PROJ_REVENUE_A_Revenue"."GL_ACCT_PERIOD_START_DAY_WID"

Join B:

"Oracle Data Warehouse"."Catalog"."dbo"."Dim_W_MCAL_PERIOD_D_Project_Period"."MCAL_PERIOD_START_DAY_WID" = "Oracle Data Warehouse"."Catalog"."dbo"."Fact_Agg_W_PROJ_REVENUE_A_Revenue"."PROJ_ACCT_PERIOD_START_DAY_WID"

Join C:

"Oracle Data Warehouse"."Catalog"."dbo"."Dim_W_ENT_PERIOD_D"."ENT_PERIOD_START_DT_WID" = "Oracle Data Warehouse"."Catalog"."dbo"."Fact_Agg_W_PROJ_REVENUE_A_Revenue"."ENT_PERIOD_START_DAY_WID"

Delete the existing physical joins between Fact_Agg_W_PROJ_REVENUE_A_Revenue_ITD (under logical fact 'Fact – Project Revenue') to Dim_W_MCAL_PERIOD_D_Fiscal_Period (under logical dimension 'Dim – Date Fiscal Calendar'), Dim_W_MCAL_PERIOD_D_Project_Period (under logical dimension 'Dim – Date Project Calendar') and Dim_W_ENT_PERIOD_D (under logical dimension 'Dim - Date').

Join A:

"Oracle Data Warehouse"."Catalog"."dbo"."Dim_W_MCAL_PERIOD_D_Fiscal_Period"."MCAL_PERIOD_END_DAY_WID" >= "Oracle Data Warehouse"."Catalog"."dbo"."Fact_Agg_W_PROJ_REVENUE_A_Revenue_ITD"."GL_ACCT_PERIOD_END_DAY_WID" AND "Oracle Data Warehouse"."Catalog"."dbo"."Dim_W_MCAL_PERIOD_D_Fiscal_Period"."MCAL_CAL_WID" = "Oracle Data Warehouse"."Catalog"."dbo"."Fact_Agg_W_PROJ_REVENUE_A_Revenue_ITD"."GL_MCAL_CAL_WID"

Join B:

"Oracle Data Warehouse"."Catalog"."dbo"."Dim_W_MCAL_PERIOD_D_Project_Period"."MCAL_PERIOD_END_DAY_WID" >= "Oracle Data Warehouse"."Catalog"."dbo"."Fact_Agg_W_PROJ_REVENUE_A_Revenue_ITD"."PROJ_ACCT_PERIOD_END_DAY_WID" AND "Oracle Data Warehouse"."Catalog"."dbo"."Dim_W_MCAL_PERIOD_D_Project_Period"."MCAL_CAL_WID" = "Oracle Data Warehouse"."Catalog"."dbo"."Fact_Agg_W_PROJ_REVENUE_A_Revenue_ITD"."PROJ_MCAL_CAL_WID"

Join C:

"Oracle Data Warehouse"."Catalog"."dbo"."Fact_Agg_W_PROJ_REVENUE_A_Revenue_ITD"."ENT_PERIOD_END_DAY_WID" <= "Oracle Data Warehouse"."Catalog"."dbo"."Dim_W_ENT_PERIOD_D"."ENT_PERIOD_END_DT_WID"
2. Create joins to Dim_W_MCAL_YEAR_D_Fiscal_Year/ Dim_W_MCAL_YEAR_D_Project_Year.

Additional physical joins need to be created between following Logical Table Source fact Fact_Agg_W_PROJ_REVENUE_A_Revenue (under logical fact 'Fact – Project Cost') and Dim_W_MCAL_YEAR_D_Fiscal_Year (under logical dimension 'Dim – Date Fiscal Calendar'), Dim_W_MCAL_YEAR_D_Project_Year (under logical dimension 'Dim – Date Project Calendar') and Dim_W_ENT_YEAR_D (under logical dimension 'Dim – Date').

Join A:

"Oracle Data Warehouse"."Catalog"."dbo"."Dim_W_MCAL_YEAR_D_Fiscal_Year"."MCAL_YEAR_START_DAY_WID" = "Oracle Data Warehouse"."Catalog"."dbo"."Fact_Agg_W_PROJ_REVENUE_A_Revenue"."GL_ACCT_PERIOD_START_DAY_WID"

Join B:

"Oracle Data Warehouse"."Catalog"."dbo"."Dim_W_MCAL_YEAR_D_Project_Year"."MCAL_YEAR_START_DAY_WID" = "Oracle Data Warehouse"."Catalog"."dbo"."Fact_Agg_W_PROJ_REVENUE_A_Revenue"."PROJ_ACCT_PERIOD_START_DAY_WID"

Join C:

"Oracle Data Warehouse"."Catalog"."dbo"."Dim_W_ENT_YEAR_D"."ENT_YEAR_START_DT_WID" = "Oracle Data Warehouse"."Catalog"."dbo"."Fact_Agg_W_PROJ_REVENUE_A_Revenue"."ENT_PERIOD_START_DAY_WID"

3. Verify the joins to Dim_W_MCAL_YEAR_D_Fiscal_Year/ Dim_W_MCAL_YEAR_D_Project_Year.

Ensure that there are joins between Fact_Agg_W_PROJ_REVENUE_A_Revenue_ITD Logical Table Source in 'Fact - Project Revenue' to Dim_W_MCAL_YEAR_D_Fiscal_Year Logical Table Source from the 'Dim - Date Fiscal Calendar', Dim_W_MCAL_YEAR_D_Project_Year Logical Table Source from the 'Dim - Date Project Calendar' and Dim_W_ENT_YEAR_D Logical Table Source from the 'Dim - Date'. These are done by default.

Join A:

"Oracle Data Warehouse"."Catalog"."dbo"."Dim_W_MCAL_YEAR_D_Fiscal_Year"."MCAL_YEAR_END_DAY_WID" >= "Oracle Data Warehouse"."Catalog"."dbo"."Fact_Agg_W_PROJ_REVENUE_A_Revenue_ITD"."GL_ACCT_PERIOD_END_DAY_WID" AND "Oracle Data Warehouse"."Catalog"."dbo"."Fact_Agg_W_PROJ_REVENUE_A_Revenue_ITD"."MCAL_CAL_WID" = "Oracle Data Warehouse"."Catalog"."dbo"."Dim_W_MCAL_YEAR_D_Fiscal_Year"."MCAL_CAL_WID"

Join B:

"Oracle Data Warehouse"."Catalog"."dbo"."Dim_W_MCAL_YEAR_D_Project_Year"."MCAL_YEAR_END_DAY_WID" >= "Oracle Data Warehouse"."Catalog"."dbo"."Fact_Agg_W_PROJ_REVENUE_A_Revenue_ITD"."PROJ_ACCT_PERIOD_END_DAY_WID" AND "Oracle Data Warehouse"."Catalog"."dbo"."Fact_Agg_W_PROJ_REVENUE_A_Revenue_ITD"."MCAL_CAL_WID" = "Oracle Data Warehouse"."Catalog"."dbo"."Dim_W_MCAL_YEAR_D_Project_Year"."MCAL_CAL_WID"

Join C:

"Oracle Data Warehouse"."Catalog"."dbo"."Dim_W_ENT_YEAR_D"."ENT_YEAR_END_DT_WID" >= "Oracle Data Warehouse"."Catalog"."dbo"."Fact_Agg_W_PROJ_REVENUE_A_Revenue_ITD"."ENT_PERIOD_END_DAY_WID"
4. Changing Content Aggregation Level in the Business Model and Mapping layer

As installed by default, the grain for revenue aggregate is set to Period against the dimensions Dim-Date Fiscal Calendar, Dim-Date Project Calendar and Dim - Date.

Instead of Fiscal/Project Period you must set this to Fiscal Year for Dim – Date Fiscal Calendar and Project Year for Dim – Date Project Calendar and Enterprise year for Dim - Date.

5. Save the changes.

When these changes are complete, run the Consistency Check and ensure that there are no errors, save the RPD file, and clear the Oracle BI Enterprise Edition Cache. If you are making the changes in offline mode, then restart the Oracle BI Server and Oracle BI Presentation Services.

B.2.61 How to configure E-Business Suite Accrual Extract Mode

Purpose

This document explains the configuration of the ODI variable HR_ACCRUAL_EXTRACT_MODE used for E-Business Suite Accrual extraction programs.

Based on the value of HR_ACCRUAL_EXTRACT_MODE, the variable HR_ACCRUAL_THREADS_TOTAL also needs to be setup as part of the extraction.

Optional or Mandatory

This is a mandatory step. The default value of HR_ACCRUAL_EXTRACT_MODE must be reviewed and its impact must be understood before setting a value or continuing with the default value, which is NOPARALLEL. See the ‘Task Description in Detail’ section for further information on this mode.

Applies to

This applies to all extracts done for Accrual Module from E-Business Suite 11.1.10 and R12.x.x.

Task description in detail

The E-Business Suite Accrual uses fast formula calls for extracting accrual data for assignments. Fast formula function calls are inherently slow and might cause performance problems. However if the number of assignments are less and/or number of periods of history being collected is small, the time taken to call the fast formulas for the various metrics should be reviewed. See the Additional Information section below for the SQL used to estimate the timings.

There are 3 modes that can be used:

- NOPARALLEL: This value is used when Accruals Extraction runs in single a thread mode. This ensures that Accrual extraction is done as a part of the Accrual Load Plan. Permissions in E-Business Suite source schemas to create pl/sql package is needed by ODI for this mode to work. Can be used when data load is less, for example, In Incremental Load or when HR_ACCRUAL_EXTRACT_DATE parameter is set to a smaller value. This is also the DEFAULT extraction mode by default.

- PARALLEL: This value is used when Accruals Extraction runs in Parallel threads. This will improve loading speed. To configure this mode we must assign a value to HR_ACCRUAL_THREADS_TOTAL variable. The numerical value in this
variable decides the number of parallel threads spawned by accrual source extract program. A default value of 8 is assigned to this variable, implying that 8 parallel threads will be spawned. But provision is available to extend it till 10 threads, in which case the parallel loads plan steps for thread 9 and thread 10 have to be enabled (by default, eight parallel steps are enabled).

■ STANDALONE: This value is used when the Accrual Extraction process is not part of Accrual Load plan and is executed independently in a standalone manner before the Accrual Load Plan is executed. This might be done to prevent holding up the Accrual Load plan from spending too much time on the Accrual Extract interfaces. Standalone mode can be used when extraction volume is high in full load and takes a long time to complete. Here also PLSQL based wrapper approach is used. Permissions in E-Business Suite source schemas to create pl/sql package is needed by ODI for this mode to work.

Dependency
The extraction of incremental load depends on the value set for HR_ACCRUAL_EXTRACT_DATE. Hence for a high value of this variable which fetches a bigger dataset STANDALONE mode is best.

Additional Information
The following SQL can be used to estimate the Accrual Extraction Time:

```sql
SELECT PER_ALL_ASSIGNMENTS_F.ASSIGNMENT_ID, PER_TIME_PERIODS.END_DATE,
PER.UtilityFunctions.GET_NET_ACCRUAL(PER_ALL_ASSIGNMENTS_F.ASSIGNMENT_ID, PER_ALL_ASSIGNMENTS_F.PAYROLL_ID,
PER_ALL_ASSIGNMENTS_F.BUSINESS_GROUP_ID, -1, PER_TIME_PERIODS.END_DATE, PAY_ACCRUAL_PLANS.ACCRUAL_PLAN_ID, PER_TIME_PERIODS.START_DATE, NULL),
PER_ACCRUAL_CALC_FUNCTIONS.GET_CARRY_OVER(PER_ALL_ASSIGNMENTS_F.ASSIGNMENT_ID, PAY_ACCRUAL_PLANS.ACCRUAL_PLAN_ID, PER_TIME_PERIODS.END_DATE, PER_TIME_PERIODS.START_DATE),
PER_ACCRUAL_CALC_FUNCTIONS.GET_ABSENCE(PER_ALL_ASSIGNMENTS_F.ASSIGNMENT_ID, PAY_ACCRUAL_PLANS.ACCRUAL_PLAN_ID, PER_TIME_PERIODS.END_DATE, PER_TIME_PERIODS.START_DATE),
PER_ACCRUAL_CALC_FUNCTIONS.GET_OTHER_NET_CONTRIBUTION(PER_ALL_ASSIGNMENTS_F.ASSIGNMENT_ID, PAY_ACCRUAL_PLANS.ACCRUAL_PLAN_ID, PER_TIME_PERIODS.END_DATE, PER_TIME_PERIODS.START_DATE)
FROM APPS.PAY_ELEMENT_ENTRIES_F PAY_ELEMENT_ENTRIES_F,
APPS.PAY_ELEMENT_LINKS_F PAY_ELEMENT_LINKS_F,
APPS.PAY_ELEMENT_TYPES_F PAY_ELEMENT_TYPES_F,
APPS.PER_ALL_ASSIGNMENTS_F PAY_ALL_ASSIGNMENTS_F,
APPS.PER_TIME_PERIODS PAY_TIME_PERIODS,
APPS.PAY_ACCRUAL_PLANS PAY_ACCRUAL_PlANS
WHERE (1=1)
AND (PER_ALL_ASSIGNMENTS_F.ASSIGNMENT_TYPE IN ('E', 'C'))
AND (PER_ALL_ASSIGNMENTS_F.PAYROLL_ID IS NOT NULL)
AND (PER_ALL_ASSIGNMENTS_F.PAYROLL_ID=PER_TIME_PERIODS.PAYROLL_ID)
AND (PAY_ELEMENT_ENTRIES_F.ELEMENT_LINK_ID=PAY_ELEMENT_LINKS_F.ELEMENT_LINK_ID)
AND (PAY_ELEMENT_LINKS_F.ELEMENT_TYPE_ID=PAY_ELEMENT_TYPES_F.ELEMENT_TYPE_ID)
AND (PAY_ELEMENT_LINKS_F.ELEMENT_TYPE_ID=PAY_ACCRUAL_PLANS.ACCRUAL_PLAN_ELEMENT_TYPE_ID)
AND (PER_TIME_PERIODS.END_DATE BETWEEN PAY_ELEMENT_ENTRIES_F.EFFECTIVE_
B.2.62 How to Configure GL Account Hierarchies using FSG definitions for E-Business Suite

You must configure GL account hierarchies if you are deploying Oracle Financial Analytics, Oracle Procurement and Spend Analytics, and Oracle Supply Chain and Order Management Analytics.

For information on how to configure Hierarchies using GL Accounting flexfields value sets definitions, see Section B.2.21, "How to Configure GL Account and GL Segments for E-Business Suite".

If you need to define GL account hierarchies based on multiple segments within a chart of accounts, then you can use the Oracle FSG report definition in E-Business Suite to define them.

You should first use the Oracle FSG form to define a row set or a column set, then Oracle BI Applications will extract the row set or column set definition and convert them into hierarchies.

Oracle FSG hierarchies are extracted from following E-Business Suite source tables:

- **RG_REPORT_AXIS_CONTENTS**
  This table defines the relationship between the FSG report axis and GL code combinations. The GL code combinations with segment values within the value range defined for that axis are categorized as children of that axis.

- **RG_REPORT_AXIS_SETS**
  This table stores the information for each of the row set or column set you defined. There is one record in this table for each row or column set you defined. Each row includes an axis set identifier, a row or column set name, and a structure identifier to assign a specific chart of accounts to the row set or column set.

- **RG_REPORT_CALCULATIONS**
  This table stores formulas for calculating each row or column in the row or column set. An example of a row calculation might be to sum up the amount from the previous five rows. An example of a columns calculation might be to calculate column five by subtracting column four from column three.

For example, in Income Statement, 'Net Income' is the calculation result of 'Gross Profit from Revenue' minus 'Total Expense'. When converting to hierarchy, Net Income becomes the parent of 'Gross Profit from Revenue' and 'Total Expense'. Therefore, hierarchy can be derived based on the information in RG_REPORT_CALCULATION.

The following diagram shows an example hierarchy, with the top level Net Income node having two child nodes, Total Expense, and Gross Profit from Revenue, and the Total Expense node having two child nodes, Operating Expense, and Depreciation Expense.

The following diagram shows how an income state is derived from a hierarchy:
This hierarchy would be converted into a flattened hierarchy and stored in W_HIERARCHY_D in the following format:

### Table B–27 Example of Flattened Hierarchy Stored in W_HIERARCHY_D

<table>
<thead>
<tr>
<th>HIER Name</th>
<th>HIER1</th>
<th>HIER2</th>
<th>HIER3</th>
<th>HIER4</th>
<th>HIER20</th>
</tr>
</thead>
<tbody>
<tr>
<td>Income Statement</td>
<td>Net Income</td>
<td>Gross Profit...</td>
<td>Gross Profit...</td>
<td>Gross Profit...</td>
<td>Gross Profit...</td>
</tr>
<tr>
<td>Income Statement</td>
<td>Net Income</td>
<td>Total Expenses</td>
<td>Operating Expenses</td>
<td>Operating Expenses</td>
<td>Operating Expenses</td>
</tr>
<tr>
<td>Income Statement</td>
<td>Net Income</td>
<td>Total Expenses</td>
<td>Depreciation Expense</td>
<td>Depreciation Expense</td>
<td>Depreciation Expense</td>
</tr>
</tbody>
</table>

Fact tables join to the W_HIERARCHY_D table through the GL Account dimension table (W_GL_ACCOUNT_D).

The W_GL_ACCOUNT_D table contains six fields (HIER1_WID, HIER2_WID, HIER3_WID, ..., HIER6_WID), which are foreign keys to the W_HIERARCHY_D.row_wid. Therefore, each General Ledger Code combination can participate in up to six different hierarchies. You can decide which of the six hierarchies to drill on based on the column you use to join to W_HIERARCHY_D. For example, if you want to drill using the third hierarchy, you use W_GL_ACCOUNT_D.hier3_wid = W_HIERARCHY_D.row_wid.

**Note:** Mathematical operators, such as '+', '-', '*', '/' (addition, subtraction, multiplication, division, and so on) are not extracted from the FSG definitions. For example, both A + B = C and A - B = C would give the same hierarchy, with a node C having two child nodes A and B, as shown in the following diagram:

```
 C
 /|
 / \
A B
```
About the ETL Process for Oracle FSG Report

Before you run the ETL process for GL accounts, you must specify the hierarchies that you want to reference. To specify the FSG hierarchies that you want to reference, use the file file_gl_hierarchy_assignment_ora.csv.

---

**Note:** The configuration file or files for this task are provided on installation of Oracle BI Applications at one of the following locations:


Your system administrator will have copied these files to another location and configured ODI connections to read from this location. Work with your system administrator to obtain the files. When configuration is complete, your system administrator will need to copy the configured files to the location from which ODI reads these files.

---

**Figure B–5  Example values in file_gl_hierarchy_assignment_ora.csv**

In this file, for each chart of accounts, you can specify six FSG hierarchies, using axis_set_id, which is a column from the RG_REPORT_AXIS_SETS table. It is the unique ID of a row set or column set you want to store in the GL account dimension table for the code combinations that belong to that chart of accounts.

The DATASOURCE_NUM_ID field specifies the data source to which the configurations apply. If you have multiple source systems, there might be a chart of accounts across the multiple source systems with the same ID. Therefore, you must use the DATASOURCE_NUM_ID value to distinguish between them.

For example, suppose you have an income statement FSG report and a balance sheet FSG report and you want to input both of their hierarchy structures into Oracle Business Analytics Warehouse. Oracle BI Applications assumes that both reports are derived from the same set of GL accounts with CHART_OF_ACCOUNTS=101. The axis_set_id of the income statement is 1001, and for the balance sheet, it is 1003. The DATASOURCE_NUM_ID for this application is 2.

In addition, for those GL accounts that belong to the two reports, assume you want to associate their HIER1 column (in GL_ACCOUNT_D) with the income statement hierarchy structure and HIER3 column with balance sheet hierarchy structure.
In this case, you would add one row into file_gl_hierarchy_assignment_ora.csv with fields set as follows:

CHART OF ACCOUNTS - 101
HIER1_AXIS_SET_ID - 1001
HIER3_AXIS_SET_ID - 1003
DATASOURCE_NUM_ID - 2

(Leave the other row values blank.)

This row indicates that for all of the GL accounts with CHART_OF_ACCOUNTS=101 and DATASOURCE_NUM_ID=2, assigning hierarchies with axis_set_id=1001, null, 1003, null, null, null to HIER1~HIER6 columns respectively. Therefore, after extraction and loading, for those affected GL account rows, HIER1 column will be the foreign key to the income statement hierarchy row ID in W_HIERARCHY_D, and HIER3 column will be the foreign key to the balance sheet hierarchy row ID in W_HIERARCHY_D.

Note: Axis_set_id must be specified in file_gl_hierarchy_assignment_ora.csv for Financial Analytics to load the hierarchies.

To set up hierarchies with FSG Report Definition:

1. Configure the file_gl_hierarchy_assignment_ora.csv file to specify the hierarchies you want to reference for each CHART_OF_ACCOUNTS, as follows:
   a. Edit the file file_gl_hierarchy_assignment_ora.csv.

   **Note:** The configuration file or files for this task are provided on installation of Oracle BI Applications at one of the following locations:


   Your system administrator will have copied these files to another location and configured ODI connections to read from this location. Work with your system administrator to obtain the files. When configuration is complete, your system administrator will need to copy the configured files to the location from which ODI reads these files.

   b. Specify the segments that you want to analyze.

   c. Save and close the file.

2. Configuration provided by default in the BI metadata repository (that is, the RPD file) relating to GL Account Hierarchy using FSG:
   a. Physical table aliases for GL Account Hierarchy using FSG (6) are created and joins created to GL Account Dimension table (Dim_W_GL_ACCOUNT_D).
b. Logical tables for the above six dimension hierarchy physical tables are created along with the BMM joins to relevant logical facts.

c. Appropriate logical Levels and content filters have been set for the 6 FSG Logical dimensions that are provided by default.

d. All relevant Logical Table sources of the Logical Fact tables have been set with necessary Aggregation content for the six Logical dimensions that are provided by default.
3. The following additional configuration might be needed by the users to expose the necessary attributes relating to FSG.
   
   a. Using Oracle BI EE Administration Tool, in the Presentation layer of the Oracle BI Repository, drag the new hierarchies from appropriate Logical dimensions into the Presentation folder.
   
   b. If required, then rename the hierarchies in the presentation layers.

B.2.63 How to Configure Domains and Member Mappings for Employment Dimension

Purpose
The Employment Dimension has a number of conformed domains which are used in many of the HCM metrics. These domains must be configured correctly for the reports to contain accurate information.

Optional or Mandatory
This task is optional, however the default configuration might not adequately reflect the OLTP setup, so this should be reviewed to ensure the reports are accurate.

Applies to
All sources.

Task description in detail
Configure the domain mappings related to the Employment Dimension. The most important one of these, as it is used by many metrics, is the mapping to worker type and subtype. These are designed as a hierarchy, where worker types from different systems can be conformed onto a single classification. Worker Type is primarily used to distinguish between Employees and Contingent Workers, and Worker Subtype gives a more detailed breakdown within each type.

The domain mapping for Worker Type is derived from the source domain “System Worker Type and User Worker Type”. This is derived differently for each source system, and examples are given below for each.

Example for E-Business Suite
The System Worker Type and User Worker Type domain is based on:

- System Person Type
- User Person Type
Example Requirements: By default contingent workers are all grouped together. Add a sub-type of contingent workers for Interns, identified by the corresponding User Person Type.

Example Implementation:

1. Add the following mappings to the domain map System Worker Type and User Worker Type -> Worker Subtype:

   CWK~INTERN -> CONTINGENT_INTERN

   The remaining definition for regular contingent workers is already seeded so no change required.

   The table below shows how the resulting domain mappings will look, with rows 1 and 2 showing the seeded domain mappings:

   **Table B–28 Example Domain Mappings**

<table>
<thead>
<tr>
<th>Source Member Code</th>
<th>Column 1 Member Code</th>
<th>Column 2 Member Code</th>
<th>Target Member Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>CWK~<strong>ANY</strong></td>
<td>CWK</td>
<td><strong>ANY</strong></td>
<td>CONTINGENT_CONTINGENT</td>
</tr>
<tr>
<td>EMP~<strong>ANY</strong></td>
<td>EMP</td>
<td><strong>ANY</strong></td>
<td>EMPLOYEE_REGULAR</td>
</tr>
<tr>
<td>CWK~INTERN</td>
<td>CWK</td>
<td>INTERN</td>
<td>CONTINGENT_INTERN</td>
</tr>
</tbody>
</table>

   **Note:** Multiple match is allowed, for example a contingent worker with person type "Intern" would match the mapping to either CONTINGENT_CONTINGENT or CONTINGENT_INTERN. The exact match on User Person Type takes precedence over "any" type, so the result would be CONTINGENT_INTERN.

**Example for Peoplesoft**

The System Worker Type and User Worker Type domain is based on:

- Organizational Relationship
- Empl Class

Example Requirements: By default contingent workers are all grouped together. Add a sub-type of contingent workers for Interns, identified by the corresponding Empl Class within Set Id XXX.

Example Implementation:

1. Add the following mappings to the domain map System Worker Type and User Worker Type -> Worker Subtype:

   CWR~XXX:I -> CONTINGENT_INTERN

   The remaining definition for regular contingent workers is already seeded so no change required.

   The table below shows how the resulting domain mappings will look, with rows 1 to 7 showing the seeded domain mappings:
Table B–29  Example Domain Mappings

<table>
<thead>
<tr>
<th>Source Member Code</th>
<th>Column 1 Member Code</th>
<th>Column 2 Member Code</th>
<th>Target Member Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>CWR~STD:G</td>
<td>CWR</td>
<td>STD:G</td>
<td>CONTINGENT_TEMP</td>
</tr>
<tr>
<td>CWR~STD:I</td>
<td>CWR</td>
<td>STD:I</td>
<td>CONTINGENT_INTERN</td>
</tr>
<tr>
<td>CWR~STD:T</td>
<td>CWR</td>
<td>STD:T</td>
<td>CONTINGENT_TRAINEE</td>
</tr>
<tr>
<td>CWR~<strong>ANY</strong></td>
<td>CWR</td>
<td><strong>ANY</strong></td>
<td>CONTINGENT_CONTRACTOR</td>
</tr>
<tr>
<td>EMP~STD:E</td>
<td>EMP</td>
<td>STD:E</td>
<td>EMPLOYEE_EXPATRIATE</td>
</tr>
<tr>
<td>EMP~<strong>ANY</strong></td>
<td>EMP</td>
<td><strong>ANY</strong></td>
<td>EMPLOYEE_REGULAR</td>
</tr>
<tr>
<td>POI~<strong>ANY</strong></td>
<td>POI</td>
<td><strong>ANY</strong></td>
<td>NONWORKER</td>
</tr>
<tr>
<td>CWR~XXX:I</td>
<td>CWR</td>
<td>XXX:I</td>
<td>CONTINGENT_INTERN</td>
</tr>
</tbody>
</table>

Note: Multiple match is allowed, for example a contingent worker with Empl Class "Intern" would match the mapping to either CONTINGENT_CONTRACTOR or CONTINGENT_INTERN. The exact match on Empl Class takes precedence over "any" class, so the result would be CONTINGENT_INTERN.

Example for Fusion
The setup in Fusion is exactly the same as for E-Business Suite.

Dependency
None.

B.2.64 How to Configure Projects Costing Burden Cost for PeopleSoft

Actual Costs are extracted from Project Costing for all Analysis Types within the project's Actual Cost Analysis Group.

All costs extracted will be loaded into the Cost Fact Line table as Raw Cost unless you perform one or both of the following configurations:

- "Identifying Project Cost Burden Costs based on Analysis Type"
- "Identifying Project Cost Burden Costs based on a Source Type, Category, and Subcategory Combination of Values"

B.2.64.1 Identifying Project Cost Burden Costs based on Analysis Type

To use this identification during the ETL process, you need to set the variable BURDEN_ANALYSIS_TYPE to 1 in FSM.

The ETL process uses the file Project_Cost_Burden_Analysis_Type_psft.csv flat file to list all Analysis Types for Project Cost Burden Cost.

If the ETL process finds the Analysis Type in this flat file, it will not perform further lookups against other lookup tables to determine Project Cost Burden Cost.

To identify the Project Cost Burden Costs based on Analysis Type:
1. Edit the file file_Project_Cost_Burden_Analysis_Type_psft.csv.

   **Note:** The configuration file or files for this task are provided on installation of Oracle BI Applications at one of the following locations:


   Your system administrator will have copied these files to another location and configured ODI connections to read from this location. Work with your system administrator to obtain the files. When configuration is complete, your system administrator will need to copy the configured files to the location from which ODI reads these files.

2. Enter the list of Analysis Types to be considered as Burden Costs.

   The format is XXX,1, where XXX is an Analysis Type. The 1 is a return value that indicates that this is a Burden Cost.

   The following example shows how to classify Costs with BUR and BRD Analysis Types as Burden Costs:

   BUR, 1
   BRD, 1

3. Save and close the file.

   **Note:**

   FSM parameter BURDEN_ANALYSIS_TYPE is common to both Cost and Budget subject areas to identify Burden Costs.

   If the requirements differ between Project Budget and Project Cost in your implementation you can create separate FSM and ODI variables for the same. **Note:** In the case of creating separate FSM variables for budget and cost facts to identify burden costs, the ETL would need to be modified to use these new variables.

   **B.2.64.2 Identifying Project Cost Burden Costs based on a Source Type, Category, and Subcategory Combination of Values**

   To use this identification during the ETL process, you need to set the variable BURDEN_TYPECATSUB to 1 in FSM.

   You must configure the following flat files to identify Project Cost Burden Costs based on a Source Type, Category, and Subcategory combination of values: file_Project_Cost_Burden_TypeCatSub_config_psft.csv.

   Use this flat file to specify all the columns among (Source Type, Category, and Subcategory) to use in the lookup: file_Project_Cost_Burden_TypeCatSub_psft.csv.

   Based on the columns entered in the previous csv file, use this flat file to list all Source Type, Category, and Subcategory combination of values to use as Project Cost Burden Cost.

   **Note:**

   Both Project Budget and Project Cost use these flat files to load data to W_PROJ_LOOKUP_PS table, along with a FSM parameter, to identify Burden Costs.
You can customize these files if the requirements differ between Project Budget and Project Cost in your implementation.

To configure the file `Project_Cost_Burden_TypeCatSub_config_psft.csv` file (Config file):

1. Edit the file `Project_Cost_Burden_TypeCatSub_config_psft.csv`.

   **Note:** The configuration file or files for this task are provided on installation of Oracle BI Applications at one of the following locations:

   Source-independent files: `<Oracle Home for BI>\biapps\etl\data_files\src_files\`.

   Source-specific files: `<Oracle Home for BI>\biapps\etl\data_files\src_files\<source adaptor>`.

   Your system administrator will have copied these files to another location and configured ODI connections to read from this location. Work with your system administrator to obtain the files. When configuration is complete, your system administrator will need to copy the configured files to the location from which ODI reads these files.

2. Enter only one row with RowID of 1. Enter a Y in each column that represents the combination to be evaluated as a Project Cost Burden Cost. The columns are:

<table>
<thead>
<tr>
<th>Row ID</th>
<th>Source Type</th>
<th>Category</th>
<th>Subcategory</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Y</td>
<td>Y</td>
<td></td>
</tr>
</tbody>
</table>

   (For Source Type and SubCategory combination it would be 1,Y,Y.)

3. Save and close the file.

To configure the file `Project_Cost_Burden_TypeCatSub_psft.csv` file (Data file):

1. Edit the file `Project_Cost_Burden_TypeCatSub_psft.csv`.

   **Note:** The configuration file or files for this task are provided on installation of Oracle BI Applications at one of the following locations:

   Source-independent files: `<Oracle Home for BI>\biapps\etl\data_files\src_files\`.

   Source-specific files: `<Oracle Home for BI>\biapps\etl\data_files\src_files\<source adaptor>`.

   Your system administrator will have copied these files to another location and configured ODI connections to read from this location. Work with your system administrator to obtain the files. When configuration is complete, your system administrator will need to copy the configured files to the location from which ODI reads these files.
2. Enter a list of Resource Type, Resource Category, and Resource Subcategory combinations to be considered as Project Cost Burden Costs. The format is: 

```
XXXXX,XXXXX,XXXXX,1
```

XXXXX represents each combination of Resource Type, Resource Category, and Resource Subcategory.

The 1 is a return value that indicates that this is a Burden Cost. Each combination of lookup values must be specified. Wildcards are not supported.

The following example shows how to classify Costs with G&A or FRNG Source Types as Project Cost Burden Costs:

```
G&A,,1
FRNG,,1
```

Note: This CSV file is used in conjunction with the file_Project_Cost_Burden_TypeCatSub_config_psft.csv configuration file. In this example, this configuration file would contain the value 1,Y.

3. Save and close the file.

**B.2.65 How to Configure Project Commitment Fact for EBS**

Oracle Project Analytics for E-Business Suite includes a Project Commitments subject area that provides the ability to report on project commitments. Project commitments include total raw and burdened amounts for requisitions, purchase orders, and supplier invoices for organizations, projects, tasks, resources, suppliers, and associated hierarchies. The subject area provides the ability to track commitments at the commitment document level.

Oracle Business Analytics Warehouse includes a star schema to support the Project Commitments subject area. This star contains metrics to report on total commitments and its components, which includes quantity and amount (raw and burdened) for requisitions, purchase orders, and supplier invoices.

The W_PROJ_COMMITMENT_F fact table at the center of the star schema stores the latest commitment data, sourced from the transactional source PA_COMMITMENT_TXNS.

**Configuration of Commitment Snapshot**

Commitment data being transient, a snapshot table W_PROJ_COMMITMENT_SNP_F is populated. The grain of data in the snapshot table is controlled by ETL parameter PROJ_COMMITMENT_GRAIN. This parameter is set in the FSM and can have values WEEK, MONTH, QUARTER and YEAR. Example: PROJ_COMMITMENT_GRAIN = 'WEEK' would mean that the snapshot table stores one snapshot per week. So if the ETL is run multiple times within a week, the last snapshot will keep overwriting the older one until the end of the week. The Friday record will be kept, and a new record will be generated next Monday for the new week. This Grain is specified using a Task in FSM. The default is set to 'Month'.

Set the value for this variable in the FSM by navigating to Manage Data Load Parameters section; filter for offering Oracle Project Analytics.
B.2.66 Manage Domains and Member Mappings for Time and Labor - Reported Time

**Purpose**
The Time and Labor - Reported Time dimension has a number of conformed domains that are used in many of the Time and Labor metrics. These domains must be configured correctly for the reports to contain accurate information, as described in the following sections:

- "Source Time Entry Unit of Measure Code -> Timecard Unit of Measure Code"
- "Source TRC Type Code~Source Unit Of Measure-> Timecard Unit of Measure Code"
- "Source Timecard Punch Type Code-> Timecard Punch Type Code"
- "Source Timecard Detail Attributes Descriptive Flexfield -> Timecard Detail Flex Attributes"

**Optional or Mandatory**
This task is optional; the default values might meet your business requirements.

**Applies to**
E-Business Suite, and PeopleSoft.

**Task description in detail**
Configuring the domains on the Time and Labor - Reported Time dimension are key to the successful attribution of time reporting entries to warehouse reporting unit of measure, punch types, and E-Business Suite Flexfield attributes.

B.2.66.1 Source Time Entry Unit of Measure Code -> Timecard Unit of Measure Code
This task is optional; the default values might meet your business requirements.

Used to identify how Source Time Entry Unit of Measure Code maps to delivered target Timecard Unit of Measure Code domain members. The target domain is Extensible - you can add to but not delete from it.

**Example for E-Business Suite**
The Source Time Entry Unit of Measure Code is the currently always assumed to be Hours.

**Example Implementation**

*Table B–30  Source Member Codes and Target Member Codes*

<table>
<thead>
<tr>
<th>Source Member Code (Name)</th>
<th>Target Member Code (Name)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HOURS (Hours)</td>
<td>HOURS (Hours)</td>
</tr>
</tbody>
</table>

B.2.66.2 Source TRC Type Code~Source Unit Of Measure-> Timecard Unit of Measure Code
This task is optional; the default values might meet your business requirements.

Used to identify how Source Time Entry Unit of Measure Code maps to delivered target Timecard Unit of Measure Code domain members. The target domain is Extensible - you can add to but not delete from it.
This domain is a Multi Code domain member type; it uses two source domains (Source TRC Type Code and Source Unit of Measure) in combination to map to a target domain.

**Example for PeopleSoft**

*Source TRC Type Code*

On PeopleSoft the Source TRC Type Code is the PSXLATITEM TRC_TYPE_CODE.

*Source Unit of Measure (UOM)*

On PeopleSoft the Source Unit of Measure is the PSXLATITEM.

**Example Implementation**

<table>
<thead>
<tr>
<th>Table B–31</th>
<th>Source TRC Type Codes, Source Units of Measure, and Target Member Codes</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Source TRC Type Code</strong></td>
<td><strong>Source Unit Of Measure</strong></td>
</tr>
<tr>
<td>A (Amount)</td>
<td><em>ANY</em> (Any)</td>
</tr>
<tr>
<td>H (Hours)</td>
<td><em>ANY</em> (Any)</td>
</tr>
</tbody>
</table>

**B.2.66.3 Source Timecard Punch Type Code -> Timecard Punch Type Code**

This task is optional; the default values might meet your business requirements.

Used to identify how Source Timecard Punch Type Code maps to delivered target Timecard Punch Type Code domain members. The target domain is Extensible - you can add to but not delete from it.

**Example for E-Business Suite**

The Source Timecard Punch Type Code is the currently always assumed to be Elapsed.

**Example Implementation**

<table>
<thead>
<tr>
<th>Table B–32</th>
<th>Source Member Codes and Target Member Codes</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Source Member Code (Name)</strong></td>
<td><strong>Target Member Code (Name)</strong></td>
</tr>
<tr>
<td>ELAPSED (Elapsed)</td>
<td>ELAPSED (ELAPSED)</td>
</tr>
</tbody>
</table>

**Example for PeopleSoft**

*Source TRC Type Code*

On PeopleSoft the Source Timecard Punch Type Code is the PSXLATITEM PUNCH_TYPE.

**Example Implementation**

<table>
<thead>
<tr>
<th>Table B–33</th>
<th>Source Member Codes and Target Member Codes</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Source Member Code (Name)</strong></td>
<td><strong>Target Member Code (Name)</strong></td>
</tr>
<tr>
<td>0 (Elapsed)</td>
<td>ELAPSED (ELAPSED)</td>
</tr>
<tr>
<td>1 (In)</td>
<td>IN (In)</td>
</tr>
<tr>
<td>2 (Out) *</td>
<td>OUT (Out)</td>
</tr>
</tbody>
</table>
*To reduce data volume, punch "Out" are not extracted into Oracle Business Analytics Warehouse.

B.2.66.4 Source Timecard Detail Attributes Descriptive Flexfield -> Timecard Detail Flex Attributes

This task is optional; the default values might meet your business requirements.

Used to identify how Source Timecard Detail Attributes Descriptive Flexfield maps to delivered target Timecard Detail Flex Attributes domain members. The target domain is Extensible - you can add to but not delete from it.

Example for E-Business Suite

The Source Timecard Detail Attributes Descriptive Flexfield domain includes the following:

- Layout Identifier (LAYOUT_ID)
- ATTRIBUTE_CATEGORY (HXC_TIME_ATTRIBUTES)
- Descriptive flexfield column (e.g. ATTRIBUTE2)

The Source Timecard Detail Attributes Descriptive Flexfield domain should have been loaded by the domain task SDE_ORA_DESCRIPITIVEFLEXFIELD_COLUMN_TIMECARDLAYOUT.

Example Implementation

<table>
<thead>
<tr>
<th>Source Member Code (Name)</th>
<th>Target Member Code (Name)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No seeded mapping, see Associated Variable HR_TIMECARD_FLEX_MAP_ELEMENT_TYPE_ID</td>
<td>ELEMENT_TYPE_ID_CHAR</td>
</tr>
<tr>
<td>No seeded mapping, see Associated Variable HR_TIMECARD_FLEX_MAP_HR_ORG_ID</td>
<td>HR_ORG_ID_CHAR</td>
</tr>
<tr>
<td>No seeded mapping, see Associated Variable HR_TIMECARD_FLEX_MAP_JOB_ID</td>
<td>JOB_ID_CHAR</td>
</tr>
<tr>
<td>No seeded mapping, see Associated Variable HR_TIMECARD_FLEX_MAP_PAY_GRADE_ID</td>
<td>PAY_GRADE_ID_CHAR</td>
</tr>
<tr>
<td>No seeded mapping, see Associated Variable HR_TIMECARD_FLEX_MAP_POSITION_ID</td>
<td>POSITION_ID_CHAR</td>
</tr>
<tr>
<td>No seeded mapping, see Associated Variable HR_TIMECARD_FLEX_MAP_LOCATION_ID</td>
<td>LOCATION_ID_CHAR</td>
</tr>
</tbody>
</table>
Table B–34  (Cont.)  Source Member Codes and Target Member Codes

<table>
<thead>
<tr>
<th>Source Member Code (Name)</th>
<th>Target Member Code (Name)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No seeded mapping, see Associated Variable HR_TIMECARD_FLEX_MAP_COST_CENTER_ID</td>
<td>COSTCENTERID_CHAR</td>
</tr>
<tr>
<td>11:PROJECTS:ATTRIBUTE1 Projects Timecard Layout - Project Id (Character)</td>
<td>PROJECTID_CHAR</td>
</tr>
<tr>
<td>11:PROJECTS:ATTRIBUTE2 Projects Timecard Layout - Task Id (Character)</td>
<td>TASKID_CHAR</td>
</tr>
<tr>
<td>11:PROJECTS:ATTRIBUTE3 Projects Timecard Layout - Expenditure Type (Character)</td>
<td>EXP_TYPEID_CHAR</td>
</tr>
<tr>
<td>No seeded mapping, see Associated Variable HR_TIMECARD_FLEX_MAP_BILLABLE_FLG</td>
<td>BILLABLEFLAG_CHAR</td>
</tr>
<tr>
<td>No seeded mapping, see Associated Variable HR_TIMECARD_FLEX_MAP_PO_NUMBER</td>
<td>PONUMBER</td>
</tr>
<tr>
<td>1198:PURCHASING:ATTRIBUTE8 Projects-Purchasing Timecard Layout - PO Header ID (Character)</td>
<td>POHEADERID</td>
</tr>
<tr>
<td>1198:PURCHASING:ATTRIBUTE8 Projects-Purchasing Timecard Layout - PO Line ID (Character)</td>
<td>PO_LINE_ID</td>
</tr>
<tr>
<td>No seeded mapping, see Associated Variable HR_TIMECARD_FLEX_MAP_BUSINESS_GROUP_ID</td>
<td>BUSINESSGROUPID_CHAR</td>
</tr>
<tr>
<td>No seeded mapping, see Associated Variable HR_TIMECARD_FLEX_MAP_PEOPLE_GROUP_ID</td>
<td>PEOPLEGROUPID_CHAR</td>
</tr>
<tr>
<td>No seeded mapping, see Associated Variable HR_TIMECARD_FLEX_DET_ATTR1_CHAR</td>
<td>FLEX_DET_ATTR1_CHAR</td>
</tr>
<tr>
<td>No seeded mapping, see Associated Variable HR_TIMECARD_FLEX_DET_ATTR2_CHAR</td>
<td>FLEX_DET_ATTR2_CHAR</td>
</tr>
<tr>
<td>No seeded mapping, see Associated Variable HR_TIMECARD_FLEX_DET_ATTR3_CHAR</td>
<td>FLEX_DET_ATTR3_CHAR</td>
</tr>
<tr>
<td>No seeded mapping, see Associated Variable HR_TIMECARD_FLEX_DET_ATTR4_CHAR</td>
<td>FLEX_DET_ATTR4_CHAR</td>
</tr>
<tr>
<td>No seeded mapping, see Associated Variable HR_TIMECARD_FLEX_DET_ATTR5_CHAR</td>
<td>FLEX_DET_ATTR5_CHAR</td>
</tr>
<tr>
<td>No seeded mapping, see Associated Variable HR_TIMECARD_FLEX_DET_ATTR6_CHAR</td>
<td>FLEX_DET_ATTR6_CHAR</td>
</tr>
<tr>
<td>No seeded mapping, see Associated Variable HR_TIMECARD_FLEX_DET_ATTR7_CHAR</td>
<td>FLEX_DET_ATTR7_CHAR</td>
</tr>
</tbody>
</table>
**Table B–34 (Cont.) Source Member Codes and Target Member Codes**

<table>
<thead>
<tr>
<th>Source Member Code (Name)</th>
<th>Target Member Code (Name)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No seeded mapping, see Associated Variable HR_TIMECARD_FLEX_DET_ATTR8_CHAR</td>
<td>FLEX_DET_ATTR8_CHAR</td>
</tr>
<tr>
<td>No seeded mapping, see Associated Variable HR_TIMECARD_FLEX_DET_ATTR9_CHAR</td>
<td>FLEX_DET_ATTR9_CHAR</td>
</tr>
<tr>
<td>No seeded mapping, see Associated Variable HR_TIMECARD_FLEX_DET_ATTR10_CHAR</td>
<td>FLEX_DET_ATTR10_CHAR</td>
</tr>
</tbody>
</table>

**Associated Variables**

Each Target Domain Code has an associated ODI Variable, listed in the table below. Each variable has a default value which should map the seeded Oracle E-Business Time and Labor Engine Timecard Layouts correctly in the majority of cases.

The case statement expression for mapped domains is retrieved from the Oracle Business Analytics Warehouse table, W_FLEX_SQL_G, via a Variable Refresh of the form:

```
SELECT COLUMN_EXPRESSION
FROM W_FLEX_SQL_G
WHERE DOMAIN_CODE = 'W_FLEX_TIMECARD_DETAIL_ATTRIBUTES'
AND DOMAIN_MEMBER_CODE = '<Target Domain Code>'
AND DATASOURCE_NUM_ID = #DATASOURCE_NUM_ID
```

The following table lists variable names and default expressions.

**Table B–35 Variable Names and Default Expressions**

<table>
<thead>
<tr>
<th>Variable Name</th>
<th>Default Expression</th>
<th>Refreshed from BIACM*</th>
</tr>
</thead>
<tbody>
<tr>
<td>HR_TIMECARD_FLEX_MAP_ELEMENT_TYPE_ID</td>
<td>SUBSTR(HA.ATTRIBUTE_CATEGORY,1,7) = 'ELEMENT' THEN SUBSTR(HA.ATTRIBUTE_CATEGORY,LENGTH('ELEMENT - ') +1)</td>
<td>Y</td>
</tr>
<tr>
<td>HR_TIMECARD_FLEX_MAP_BUSINESS_GROUP_ID</td>
<td>WHEN HA.ATTRIBUTE_CATEGORY = 'SECURITY' THEN HA.ATTRIBUTE2</td>
<td>Y</td>
</tr>
<tr>
<td>HR_TIMECARD_FLEX_MAP_HR_ORG_ID</td>
<td>WHEN HA.ATTRIBUTE_CATEGORY = 'SECURITY' THEN HA.ATTRIBUTE1</td>
<td>Y</td>
</tr>
<tr>
<td>HR_TIMECARD_FLEX_MAP_JOB_ID</td>
<td>WHEN 1=0 THEN NULL</td>
<td>Y</td>
</tr>
<tr>
<td>HR_TIMECARD_FLEX_MAP_POSITION_ID</td>
<td>WHEN 1=0 THEN NULL</td>
<td>Y</td>
</tr>
<tr>
<td>HR_TIMECARD_FLEX_MAP_LOCATION_ID</td>
<td>WHEN 1=0 THEN NULL</td>
<td>Y</td>
</tr>
<tr>
<td>HR_TIMECARD_FLEX_MAP/people/person_ID</td>
<td>WHEN 1=0 THEN NULL</td>
<td>Y</td>
</tr>
</tbody>
</table>
### Table B–35 (Cont.) Variable Names and Default Expressions

<table>
<thead>
<tr>
<th>Variable Name</th>
<th>Default Expression</th>
<th>Refreshed from BIACM*</th>
</tr>
</thead>
<tbody>
<tr>
<td>HR_TIMECARD_FLEX_MAP_PO_HEADER_ID</td>
<td>WHEN HA.ATTRIBUTECATEGORY = 'PURCHASING' THEN HA.ATTRIBUTE8</td>
<td>Y</td>
</tr>
<tr>
<td>HR_TIMECARD_FLEX_MAP_PO_LINE_ID</td>
<td>WHEN HA.ATTRIBUTECATEGORY = 'PURCHASING' THEN HA.ATTRIBUTE2</td>
<td>Y</td>
</tr>
<tr>
<td>HR_TIMECARD_FLEX_MAP_PO_NUMBER</td>
<td>WHEN HA.ATTRIBUTECATEGORY = 'PURCHASING' THEN HA.ATTRIBUTE1</td>
<td>Y</td>
</tr>
<tr>
<td>HR_TIMECARD_FLEX_MAP_COST_CENTER_ID</td>
<td>WHEN HA.ATTRIBUTECATEGORY = 'Dummy Cost Context' THEN HA.ATTRIBUTE1</td>
<td>Y</td>
</tr>
<tr>
<td>HR_TIMECARD_FLEX_MAP_PROJECT_ID</td>
<td>WHEN HA.ATTRIBUTECATEGORY = 'PROJECTS' THEN HA.ATTRIBUTE1</td>
<td>Y</td>
</tr>
<tr>
<td>HR_TIMECARD_FLEX_MAP_TASK_ID</td>
<td>WHEN HA.ATTRIBUTECATEGORY = 'PROJECTS' THEN HA.ATTRIBUTE2</td>
<td>Y</td>
</tr>
<tr>
<td>HR_TIMECARD_FLEX_MAP_EXPENDITURE_TYPE_ID</td>
<td>WHEN HA.ATTRIBUTECATEGORY = 'PROJECTS' THEN HA.ATTRIBUTE3</td>
<td>Y</td>
</tr>
<tr>
<td>HR_TIMECARD_FLEX_MAP_BILLABLE_FLG</td>
<td>WHEN HA.ATTRIBUTECATEGORY = 'PROJECTS' THEN HA.ATTRIBUTE7</td>
<td>Y</td>
</tr>
<tr>
<td>HR_TIMECARD_FLEX_MAP_APPROVED_DATE</td>
<td>DECODE(HA.ATTRIBUTE_CATEGORY, 'APPROVAL', DECODE(TRANSLATE(HA.ATTRIBUTE5, '0123456789', '0000000000'), '0000/00/00 00:00:00', FND_DATE.CANONICAL_TO_DATE(HA.ATTRIBUTE5)))</td>
<td>N</td>
</tr>
<tr>
<td>HR_TIMECARD_FLEX_MAP_APPROVER_ID</td>
<td>DECODE(HA.ATTRIBUTE_CATEGORY, 'APPROVAL', HA.ATTRIBUTE3)</td>
<td>N</td>
</tr>
<tr>
<td>HR_TIMECARD_FLEX_MAP_CLA_COMMENTS</td>
<td>WHEN HA.ATTRIBUTECATEGORY = 'REASON' THEN HA.ATTRIBUTE2</td>
<td>Y</td>
</tr>
<tr>
<td>HR_TIMECARD_FLEX_MAP_CLA_REASON</td>
<td>WHEN HA.ATTRIBUTECATEGORY = 'REASON' THEN HA.ATTRIBUTE1</td>
<td>Y</td>
</tr>
<tr>
<td>HR_TIMECARD_FLEX_MAP_CLA_TYPE</td>
<td>WHEN HA.ATTRIBUTECATEGORY = 'REASON' THEN HA.ATTRIBUTE1</td>
<td>Y</td>
</tr>
<tr>
<td>HR_TIMECARD_FLEX_DET_ATTR1_CHAR, HR_TIMECARD_FLEX_DET_ATTR2_CHAR and so on to HR_TIMECARD_FLEX_DET_ATTR10_CHAR</td>
<td>WHEN 1=0 THEN NULL</td>
<td>Y</td>
</tr>
</tbody>
</table>

* BIACM is Oracle BI Applications Configuration Manager.

**Note:** The ODI Interfaces / Expressions that make use of these substitution variable expressions (or domain generated expressions) will surround the expression with CASE statement logic, that is:

**Default (no domain mapping):**

```sql
CASE
```
WHEN 1=0 THEN NULL
END

**With Source -> Target Domain Mappings:**

WHEN TC.LAYOUT_ID = 11
AND HA.ATTRIBUTE_CATEGORY = 'PROJECTS' THEN HA.ATTRIBUTE2
WHEN TC.LAYOUT_ID = 123456
AND HA.ATTRIBUTE_CATEGORY = 'PROJECTS' THEN HA.ATTRIBUTE3

... 

**Example for PeopleSoft**
This feature is not applicable to PeopleSoft.

**Example for Fusion**
This feature is not applicable to Fusion Applications.

### B.2.67 How to Configure Workforce Revalidate Option

**Purpose**
Some cases of bad data are handled by the Workforce ETL Processes in the Persisted Staging layer and instead of raising an error the bad data is flagged invalid and excluded from Oracle Business Analytics Warehouse. If the bad data is cleaned up on the OLTP then use the Revalidate Option to reprocess it and if valid it will be included in Oracle Business Analytics Warehouse.

**Optional or Mandatory**
This task is optional, however the default option will always reprocess the bad data which will be a small overhead if it isn't going to be cleaned up.

**Applies to**
All sources.

**Task description in detail**
Set the parameter HR_WRKFC_REVALIDATE. The corresponding ETL tasks that will be affected can be found by searching for SDE%Workforce%Validate%. The invalid data can be reviewed by checking the records marked with VALID_FLG = 'N'. The tables and checks implemented are listed below.

<table>
<thead>
<tr>
<th>Persisted Staging Table</th>
<th>Type of bad data excluded</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assignment - W_ORA_WEVT_ASG_PS</td>
<td>Overlapping effective dates</td>
</tr>
<tr>
<td></td>
<td>Overlapping active primary assignments</td>
</tr>
<tr>
<td>FTE - W_ORA_WEVT_FTE_PS</td>
<td>Overlapping effective dates</td>
</tr>
<tr>
<td>Grade Rate - W_ORA_WEVT_GRT_PS</td>
<td>Overlapping effective dates</td>
</tr>
<tr>
<td>Headcount - W_ORA_WEVT_HDC_PS</td>
<td>Overlapping effective dates</td>
</tr>
<tr>
<td>Performance Reviews - W_ORA_WEVT_PERF_PS</td>
<td>More than one review per person/assignment per day</td>
</tr>
<tr>
<td>Person - W_ORA_WEVT_PSN_PS</td>
<td>Overlapping effective dates</td>
</tr>
</tbody>
</table>
B.2.68 How to Manage Domains and Member Mappings for Recruitment Event Type

**Purpose**

This task is a critical configuration step for Recruitment Analytics. This task helps you to configure the domain member mapping between Recruitment pipeline 'source statuses' (both Job Requisition and Applicant statuses) and 'source reasons' associated to those source statuses to a set of warehouse conformed domains. These delivered warehouse conformed domains include Recruitment Event, Recruitment Event Reason, Recruitment Event Reason Type, Recruitment Sub Stage, Recruitment Stage, Applicant Event Flag and Job Requisition Event Flag.

There exist relationships between the delivered warehouse conformed domains, and default member mappings are already configured in your system. If you wish to change them, you are free to do so. However, the primary focus of this task is to make sure your source domain members (status and reasons) get mapped to the warehouse conformed domains, meaningfully.

**Optional or Mandatory**

This is a mandatory task for Recruitment Analytics.

**Background**

Before going into the actual task, it is worth clarifying the relationships/mappings that exists between the domains.

---

### Table B–36  (Cont.) E-Business Suite

<table>
<thead>
<tr>
<th>Persisted Staging Table</th>
<th>Type of bad data excluded</th>
</tr>
</thead>
<tbody>
<tr>
<td>Person Type - W_ORA_WEVT_PTYP_PS</td>
<td>Overlapping effective dates</td>
</tr>
<tr>
<td>Salary - W_ORA_WEVT_SAL_PS</td>
<td>Overlapping effective dates</td>
</tr>
</tbody>
</table>

### Table B–37  Peoplesoft

<table>
<thead>
<tr>
<th>Persisted Staging Table</th>
<th>Type of bad data excluded</th>
</tr>
</thead>
<tbody>
<tr>
<td>Headcount - W_PSFT_WEVT_HDC_PS</td>
<td>Overlapping active primary assignments</td>
</tr>
<tr>
<td>Performance Reviews - W_PSFT_WEVT_PERF_PS</td>
<td>More than one review per person/assignment per day</td>
</tr>
</tbody>
</table>

### Table B–38  Fusion

<table>
<thead>
<tr>
<th>Persisted Staging Table</th>
<th>Type of bad data excluded</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assignment - W_FSN_WEVT_ASG_PS</td>
<td>Overlapping effective dates</td>
</tr>
<tr>
<td>Performance Reviews - W_FSN_WEVT_PERF_PS</td>
<td>Overlapping active primary assignments</td>
</tr>
<tr>
<td>Salary - W_FSN_WEVT_SAL_PS</td>
<td>Overlapping effective dates</td>
</tr>
<tr>
<td>Supervisor - W_FSN_WEVT_SUP_PS</td>
<td>Overlapping effective dates</td>
</tr>
</tbody>
</table>
The domain member mappings between the warehouse conformed domains are seeded by default, and if the default settings meet your business needs, then no further configuration is required.

Metrics in Recruitment Analytics are heavily dependent upon the Warehouse Conformed domains Recruitment Event, Recruitment Sub Stage and Recruitment Stage. In a recruitment process, depending on certain activities/events, the status of the application process (or job requisition process) can change. As we proceed through the recruitment process pipeline, certain applications (or job requisitions) can be thought of entering a particular "stage" or leaving a "stage" and entering to a new "stage" that indicates where the application is in the overall process. Each "stage" can be further classified into "sub stages" for a finer grain analysis. For example, applicants get initial screening (sub stage = INITIAL_SCREENING), and those who qualify move to a written test (sub stage = ASSESSMENT), and those who pass the written test, are interviewed (sub stage = INTERVIEW). In a broad picture, the candidate has gone through two major stages – INITIAL_SCREENING and ASSESSMENT. For this example, this is how the default domain member mappings are configured:

### Sub Stage to Stage map

<table>
<thead>
<tr>
<th>Table B–39 Sub Stage to Stage map</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Recruitment Sub Stage (Warehouse conformed)</strong></td>
</tr>
<tr>
<td>INITIAL_SCREENING</td>
</tr>
<tr>
<td>ASSESSMENT</td>
</tr>
<tr>
<td>INTERVIEW</td>
</tr>
</tbody>
</table>

An application enters and leaves a "stage" or a "sub stage" because of some "events" that occur. When you map the warehouse confirmed domain "Recruitment Event" to the "sub stage", you actually link together the "cause and effect". Consider the possible events that might cause an application to enter INITIAL_SCREENING sub stage. To start with, we do initial screening after we receive an application. "Application
Received” being a seeded value for domain “Recruitment Event”, this is the “cause” (or event) that triggers the “effect” that the application has gone into “Initial Screening”. A few others are below:

**Recruitment Event to Sub Stage map**

*Table B–40 Recruitment Event to Sub Stage map*

<table>
<thead>
<tr>
<th>Recruitment Sub Stage (Warehouse conformed)</th>
<th>Recruitment Stage (Warehouse conformed)</th>
</tr>
</thead>
<tbody>
<tr>
<td>APPLICATION_RECEIVED</td>
<td>INITIAL_SCREENING</td>
</tr>
<tr>
<td>ASSESSMENT_START</td>
<td>ASSESSMENT</td>
</tr>
<tr>
<td>ASSESSMENT_INTERVIEW</td>
<td>INTERVIEW</td>
</tr>
<tr>
<td>ASSESSMENT_INTERVIEW1</td>
<td>INTERVIEW</td>
</tr>
<tr>
<td>ASSESSMENT_INTERVIEW2</td>
<td>INTERVIEW</td>
</tr>
</tbody>
</table>

These are just examples showing a few warehouse conformed domain member mappings, and is intended to introduce you to the topic of recruitment pipeline stages and sub stages and related events. As mentioned earlier, you do not have to alter these mappings unless your business requirements don’t match what is delivered. A complete list of warehouse conformed domain member mappings are provided at the end of this help topic (see ‘Additional Information’ section), for your information.

Before moving on to the source to warehouse conformed domain member maps, here’s a short note on the other two ‘warehouse conformed’ domain mappings. We will not provide examples for these at this time, rather just touch upon them.

**Recruitment Event to Recruitment Event Sequence Map**

You could order your warehouse conformed recruitment events using numeric sequencing. This will help your business users to see the recruitment process more clearly. Some businesses prefer to carry out background checks at the end of the process, right before hiring. Other businesses do background checks during the assessment stage. Recruitment event sequence order does not matter very much when it comes to processing recruitment analytics data, but might be helpful for reporting purposes.

**Recruitment Event Reason to Recruitment Event Reason Type Map**

The Recruitment Event is the ‘cause’ of a status change in the recruitment pipeline, and usually there is a ‘reason’ for the event. For example, ‘Application Termination’ might have happened because the candidate found a different job elsewhere. In this case, ‘Another Job’ is the reason. We will show how to map your source reasons to the warehouse-conformed Recruitment Even Reason later, but Recruitment Analytics provides a higher level of analysis grain through Recruitment Event Reason Type. This ‘type’ level primarily attempts to segregate the Recruitment Event Reasons into three buckets – VOLUNTARY, INVOLUNTARY, or OTHER (if not possible to make out). In this particular case, it seems like the application was terminated voluntarily, since the candidate got another job.

**Task description**

Now we talk about the actual task to be carried out – mapping your source domain members to different warehouse conformed domain members. The mappings “Source Recruitment Status and Event Reason ? To ? Recruitment Event”, and “Source Recruitment Event Reason ? To ? Recruitment Event Reason” already exist in the...
default solution. In other words, you do not have to create these domain mappings; you have to carry out the domain member mappings between these domains.

In order to map a "status" to an "event" accurately, you need to associate a reason to a status. This is the reason why both source (status + reason) together should be, and can be used to map to the warehouse conformed events, as well as the warehouse conformed event reasons.

Source Recruitment Status and Event Reason to Recruitment Event Map

The Source Recruitment Status and Event Reason (or Status alone) to Recruitment Event domain map is different for E-Business Suite and PeopleSoft. Two distinct source domain values are delivered – one for E-Business Suite (DOMAIN_CODE = ASSIGNMENT_SYSTEM_STATUS~ASSIGNMENT_USER_STATUS~RECRUITMENT_EVENT_REASON) and one for PeopleSoft (CODE = RECRUITMENT_STATUS). These are discussed separately, however, the overall objective is the same. That is, to map a source status and reason to one of the warehouse conformed values for Recruitment Event domain.

E-Business Suite Applications:

In this case, the true status for an applicant assignment can be inferred from the system status and user status from PER_ASSINGMENT_STATUS_TYPES table. The system status is filtered on the list ('ACTIVE_APL','INTERVIEW1','INTERVIEW2', 'OFFER', 'ACCEPTED') to only consider applicant statuses, and the user status adds more user friendly value to the actual status. The reason comes from HR_STANDARD_LOOKUPS.LOOKUP_TYPE = 'APL_ASSIGN_REASON' and gets tagged with all possible applicant statuses. Similarly, for application termination statuses, the system status used is 'TERM_APL' and reason 'TERM_APL_REASON'. These two are of type “Applicant Events”. In addition, we also get Vacancy statuses (HR_STANDARD_LOOKUPS.LOOKUP_TYPE = 'VACANCY_STATUS'). There are no reasons associated with Vacancy Statuses, and hence, we substitute 'Unspecified' for the Vacancy reason. In a nutshell, the E-Business Suite set of source domain will contain members for application assignment status & reasons, application termination status & reasons, vacancy status & reasons ('Unspecified' only). You are expected to map these source domain members to one of the members under Recruitment Event warehouse conformed domain.

Below is a sample list of delivered E-Business Suite source domain mapping to Recruitment Event domain values. You will need to review and configure the appropriate mappings based on real values in your source E-Business Suite iRecruitment configuration.
PeopleSoft Applications:
Status, with status area, is needed to correctly identify the recruitment event. PS_HRS_STS_TBL tracks the valid combinations of statuses by status area, and this table becomes the primary source for our source domain members. Both applicant statuses (STATUS_AREA = 3) as well as job requisition statuses (STATUS_AREA = 1) are brought in as source domain members. This combination now needs to be mapped to the warehouse conformed Recruitment Event domain members.

The following table shows a sample set of delivered member mappings. You need to review and configure the appropriate mappings based on the real values in your PeopleSoft configuration.

### Table B–41  (EBS) Source Recruitment Status and Event Reason (Source Domains) to Recruitment Event (Warehouse Conformed) Member Mappings

<table>
<thead>
<tr>
<th>Source Member Code</th>
<th>Target Member Code</th>
<th>Target Member Code</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>ANY</strong></td>
<td>Other Event</td>
<td>OTHER</td>
</tr>
<tr>
<td>ACCEPTED~__ANY~_<em>ANY</em><del>_<em>ANY</em></del><strong>ANY</strong></td>
<td>Offer Accepted</td>
<td>OFFER_ACCEPTED</td>
</tr>
<tr>
<td>ACTIVE_APL~__ANY~<strong>ANY</strong></td>
<td>Application Received</td>
<td>APPLICATION_RECEIVED</td>
</tr>
<tr>
<td>INTERVIEW1~__ANY~<strong>ANY</strong></td>
<td>Assessment Interview</td>
<td>ASSESSMENT_INTERVIEW</td>
</tr>
<tr>
<td>INTERVIEW2~__ANY~<strong>ANY</strong></td>
<td>Assessment Second Interview</td>
<td>ASSESSMENT_INTERVIEW2</td>
</tr>
<tr>
<td>OFFER~__ANY~<strong>ANY</strong></td>
<td>Offer Extended</td>
<td>OFFER_EXTENDEDTERM_APL~__ANY~<strong>ANY</strong></td>
</tr>
<tr>
<td>TERM_APL~__ANY~<strong>ANY</strong></td>
<td>Application Terminated</td>
<td>APPLICATION_TERMINATED</td>
</tr>
</tbody>
</table>

### Table B–42  PeopleSoft Source Recruitment Status (Source Domains) to Recruitment Event (Warehouse Conformed) Member Mappings

<table>
<thead>
<tr>
<th>Source Member</th>
<th>Source Member Code</th>
<th>Target Member</th>
<th>Target Member Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Applied</td>
<td>3~020</td>
<td>Application Received</td>
<td>APPLICATION RECEIVED</td>
</tr>
<tr>
<td>Cancelled</td>
<td>1~120</td>
<td>Requisition Cancelled</td>
<td>RQSTN CANCELLED</td>
</tr>
<tr>
<td>Closed</td>
<td>1~110</td>
<td>Requisition Filled Closed</td>
<td>RQSTN_FILLED CLOSED</td>
</tr>
<tr>
<td>Denied</td>
<td>1~008</td>
<td>Requisition Approval Denied</td>
<td>RQSTN_APPROVAL_DENIED</td>
</tr>
<tr>
<td>Denied</td>
<td>3~008</td>
<td>Application Terminated</td>
<td>APPLICATION TERMINATED</td>
</tr>
<tr>
<td>Draft</td>
<td>1~005</td>
<td>Requisition Drafted</td>
<td>RQSTN_DRAFTED</td>
</tr>
<tr>
<td>Draft</td>
<td>3~005</td>
<td>Application Received</td>
<td>APPLICATION RECEIVED</td>
</tr>
<tr>
<td>Hire Dec</td>
<td>3~078</td>
<td>Offer Extended</td>
<td>OFFER_EXTENDED</td>
</tr>
<tr>
<td>Hired</td>
<td>3~090</td>
<td>Hire</td>
<td>HIRE</td>
</tr>
<tr>
<td>Hold</td>
<td>1~100</td>
<td>Requisition on Hold</td>
<td>RQSTN_HOLD</td>
</tr>
</tbody>
</table>
### Table B–42 (Cont.) PeopleSoft Source Recruitment Status (Source Domains) to Recruitment Event (Warehouse Conformed) Member Mappings

<table>
<thead>
<tr>
<th>Source Member</th>
<th>Source Member Code</th>
<th>Target Member</th>
<th>Target Member Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hold</td>
<td>3–100</td>
<td>Non Pipeline Events</td>
<td>NON_PIPELINE</td>
</tr>
<tr>
<td>Inactive</td>
<td>3–140</td>
<td>Non Pipeline Events</td>
<td>NON_PIPELINE</td>
</tr>
<tr>
<td>Interview</td>
<td>3–060</td>
<td>Assessment Interview</td>
<td>ASSESSMENT_INTERVIEW</td>
</tr>
<tr>
<td>Linked</td>
<td>3–015</td>
<td>Application Received</td>
<td>APPLICATION_RECEIVED</td>
</tr>
<tr>
<td>Linked Quest</td>
<td>3–019</td>
<td>Application Received</td>
<td>APPLICATION_RECEIVED</td>
</tr>
<tr>
<td>Offer</td>
<td>3–070</td>
<td>Offer Extended</td>
<td>OFFER_EXTENDED</td>
</tr>
<tr>
<td>Offer Accepted</td>
<td>3–071</td>
<td>Offer Accepted</td>
<td>OFFER_ACCEPTED</td>
</tr>
<tr>
<td>Open</td>
<td>1–010</td>
<td>Requisition Opened</td>
<td>RQSTN_OPEN</td>
</tr>
<tr>
<td>Pending</td>
<td>1–006</td>
<td>Requisition Approval Pending</td>
<td>RQSTN_APPROVAL_PENDING</td>
</tr>
<tr>
<td>PreOffAcc</td>
<td>3–076</td>
<td>Offer Accepted</td>
<td>OFFER_ACCEPTED</td>
</tr>
<tr>
<td>PreOffDec</td>
<td>3–069</td>
<td>Offer Extended</td>
<td>OFFER_EXTENDED</td>
</tr>
<tr>
<td>PreOffNot</td>
<td>3–075</td>
<td>Offer Extended</td>
<td>OFFER_EXTENDED</td>
</tr>
<tr>
<td>PreOffRej</td>
<td>3–077</td>
<td>Offer Extended</td>
<td>OFFER_EXTENDED</td>
</tr>
<tr>
<td>Ready to Hire</td>
<td>3–080</td>
<td>Offer Accepted</td>
<td>OFFER_ACCEPTED</td>
</tr>
<tr>
<td>Reject</td>
<td>3–110</td>
<td>Application Terminated</td>
<td>APPLICATION_TERMINATED</td>
</tr>
<tr>
<td>Review</td>
<td>3–010</td>
<td>Application Received</td>
<td>APPLICATION_RECEIVED</td>
</tr>
<tr>
<td>Route</td>
<td>3–050</td>
<td>Assessment Start</td>
<td>ASSESSMENT_START</td>
</tr>
<tr>
<td>Screen</td>
<td>3–030</td>
<td>Assessment Start</td>
<td>ASSESSMENT_START</td>
</tr>
<tr>
<td>Withdrawn</td>
<td>3–120</td>
<td>Application Terminated</td>
<td>APPLICATION_TERMINATED</td>
</tr>
</tbody>
</table>

### Source Recruitment Event Reason to Recruitment Event Reason Map

The source domain "Source Recruitment Event Reason" (RECRUITMENT_EVENT_REASON) members comprise of all vacancy and applicant status reasons for both E-Business Suite Applications and PeopleSoft Applications. For E-Business Suite, you are only required to map termination related status reasons, as a minimum. All other reasons are mapped to "Other" in the target domain member. (Note that this is only minimum requirement. You can map all other reasons too). For PeopleSoft, source members (or reasons) are made up of three components – status area, status, and reason. These three together are required to map to the appropriate target domain member reasons. These mappings exist by default, but you are expected to treat them as "sample" only and provide your own. The following table shows a set of sample member mappings, for your information purposes only.
<table>
<thead>
<tr>
<th>Source Member</th>
<th>Source Member Code</th>
<th>Target Member</th>
<th>Target Member Code</th>
<th>Product Line</th>
</tr>
</thead>
<tbody>
<tr>
<td>APPLICATON WITHDRAWN</td>
<td>APL_ASSIGN_REASON:EBSTM WA</td>
<td>Application Withdrawn</td>
<td>WITHDRAWN</td>
<td>EBS</td>
</tr>
<tr>
<td>APPLICATON WITHDRAWN</td>
<td>APL_ASSIGN_REASON:WA</td>
<td>Application Withdrawn</td>
<td>WITHDRAWN</td>
<td>EBS</td>
</tr>
<tr>
<td>APPLICATON WITHDRAWN</td>
<td>TERM_APL_REASON:W</td>
<td>Application Withdrawn</td>
<td>WITHDRAWN</td>
<td>EBS</td>
</tr>
<tr>
<td>Any</td>
<td><strong>ANY</strong></td>
<td>Other</td>
<td>OTHER</td>
<td>EBS</td>
</tr>
<tr>
<td>DECLINED POSITION</td>
<td>APL_ASSIGN_REASON:DEC</td>
<td>Ineligible</td>
<td>INELIGIBLE</td>
<td>EBS</td>
</tr>
<tr>
<td>DECLINED POSITION</td>
<td>APL_ASSIGN_REASON:EBSTM DEC</td>
<td>Ineligible</td>
<td>INELIGIBLE</td>
<td>EBS</td>
</tr>
<tr>
<td>DECLINED POSITION</td>
<td>TERM_APL_REASON:D</td>
<td>Ineligible</td>
<td>INELIGIBLE</td>
<td>EBS</td>
</tr>
<tr>
<td>DECLINED POSITION</td>
<td>TERM_APL_REASON:DEC</td>
<td>Ineligible</td>
<td>INELIGIBLE</td>
<td>EBS</td>
</tr>
<tr>
<td>Not Selected</td>
<td>3~110:150</td>
<td>Disqualified In Interview</td>
<td>DISQUALIFIED</td>
<td>PSFT</td>
</tr>
<tr>
<td>Another Applicant was Hired</td>
<td>3~110:010</td>
<td>Failed To Start</td>
<td>FAILED_TO_START</td>
<td>PSFT</td>
</tr>
<tr>
<td>Another Job</td>
<td>3~110:190</td>
<td>Another Job</td>
<td>ANOTHER_JOB</td>
<td>PSFT</td>
</tr>
<tr>
<td>Ineligible - Basic Eligibility</td>
<td>3~110:100</td>
<td>Ineligible</td>
<td>INELIGIBLE</td>
<td>PSFT</td>
</tr>
<tr>
<td>Ineligible - Employment Cond</td>
<td>3~110:110</td>
<td>Ineligible</td>
<td>INELIGIBLE</td>
<td>PSFT</td>
</tr>
<tr>
<td>Ineligible - Min Grade/Salary</td>
<td>3~110:120</td>
<td>Ineligible</td>
<td>INELIGIBLE</td>
<td>PSFT</td>
</tr>
<tr>
<td>Lacks Other Min Qualifications</td>
<td>3~110:130</td>
<td>Ineligible</td>
<td>INELIGIBLE</td>
<td>PSFT</td>
</tr>
<tr>
<td>Lacks Required Credentials</td>
<td>3~110:140</td>
<td>Ineligible</td>
<td>INELIGIBLE</td>
<td>PSFT</td>
</tr>
<tr>
<td>Lacks Required Education</td>
<td>3~110:090</td>
<td>Ineligible</td>
<td>INELIGIBLE</td>
<td>PSFT</td>
</tr>
<tr>
<td>Lacks Required Experience</td>
<td>3~110:160</td>
<td>Ineligible</td>
<td>INELIGIBLE</td>
<td>PSFT</td>
</tr>
<tr>
<td>Misrepresentatio n</td>
<td>3~110:070</td>
<td>Disqualified In Interview</td>
<td>DISQUALIFIED</td>
<td>PSFT</td>
</tr>
<tr>
<td>No Opening</td>
<td>3~110:180</td>
<td>Headcount Not Available Or Hiring Freeze</td>
<td>HEADCOUNT_NOT_AVAILABLE</td>
<td>PSFT</td>
</tr>
<tr>
<td>No Show for Interview</td>
<td>3~110:060</td>
<td>No Show For Interview</td>
<td>NO_SHOW</td>
<td>PSFT</td>
</tr>
</tbody>
</table>
Dependency
The default Oracle BI Applications – Recruitment Analytics depends heavily on correct domain member maps and other configurations. If you change any domain member map, you need to carry out a full load ETL.

Extensibility
While target domain members are usually extensible, that is not the case for two Recruitment Analytics target domains, "Recruitment Stage" and "Recruitment Sub Stage". ETL logic expects the seeded domain values for these two target warehouse domains, and any extensions/alterations will require changes to the delivered ETL logic.

Additional Information
Following is a list of warehouse conformed domain member mappings. As mentioned earlier, you do not have to alter these mappings unless your business requirements don’t match with the way these are mapped.

Table B–43 (Cont.) (All Sources) Source Recruitment Event Reason (Source Domains) to Recruitment Event Reason (Warehouse Conformed) Member

<table>
<thead>
<tr>
<th>Source Member</th>
<th>Source Member Code</th>
<th>Target Member</th>
<th>Target Member Code</th>
<th>Product Line</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Skills Match</td>
<td>3~110:040</td>
<td>Disqualified In Interview</td>
<td>DISQUALIFIED</td>
<td>PSFT</td>
</tr>
<tr>
<td>Poor Interview</td>
<td>3~110:030</td>
<td>Disqualified In Interview</td>
<td>DISQUALIFIED</td>
<td>PSFT</td>
</tr>
<tr>
<td>Rejected by Works Council</td>
<td>3~110:200</td>
<td>Offer Rejected</td>
<td>OFFER_REJECTED</td>
<td>PSFT</td>
</tr>
<tr>
<td>Rejected by Works Council</td>
<td>3~110:210</td>
<td>Offer Rejected</td>
<td>OFFER_REJECTED</td>
<td>PSFT</td>
</tr>
<tr>
<td>Selected for Other Position</td>
<td>3~110:080</td>
<td>Another Job</td>
<td>ANOTHER_JOB</td>
<td>PSFT</td>
</tr>
<tr>
<td>Unable to Contact</td>
<td>3~110:020</td>
<td>No Show For Interview</td>
<td>NO_SHOW</td>
<td>PSFT</td>
</tr>
<tr>
<td>Underqualified</td>
<td>3~110:050</td>
<td>Disqualified In Interview</td>
<td>DISQUALIFIED</td>
<td>PSFT</td>
</tr>
</tbody>
</table>

Table B–44 Recruitment Event (Warehouse Conformed) to Recruitment Sub Stage (Warehouse Conformed) Member Mappings

<table>
<thead>
<tr>
<th>Source Member</th>
<th>Source Member Code</th>
<th>Target Member</th>
<th>Target Member Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Application Received</td>
<td>APPLICATION_RECEIVED</td>
<td>Initial Screening</td>
<td>INITIALSCREENING</td>
</tr>
<tr>
<td>Application Terminated</td>
<td>APPLICATION TERMINATED</td>
<td>Application Terminated</td>
<td>APPLICATION TERMINATED</td>
</tr>
<tr>
<td>Assessment First Interview</td>
<td>ASSESSMENT INTERVIEW1</td>
<td>Interview</td>
<td>INTERVIEW</td>
</tr>
<tr>
<td>Assessment Interview</td>
<td>ASSESSMENT INTERVIEW</td>
<td>Interview</td>
<td>INTERVIEW</td>
</tr>
<tr>
<td>Assessment Second Interview</td>
<td>ASSESSMENT INTERVIEW2</td>
<td>Interview</td>
<td>INTERVIEW</td>
</tr>
</tbody>
</table>
### Table B–44  (Cont.) Recruitment Event (Warehouse Conformed) to Recruitment Sub Stage (Warehouse Conformed) Member Mappings

<table>
<thead>
<tr>
<th>Source Member</th>
<th>Source Member Code</th>
<th>Target Member</th>
<th>Target Member Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assessment Start</td>
<td>ASSESSMENT_ START</td>
<td>Assessment</td>
<td>ASSESSMENT</td>
</tr>
<tr>
<td>Employed after completing first period of work band</td>
<td>EMP_FST_POW_COMPLETION</td>
<td>Employment beyond 1st period of work band</td>
<td>EMPLOYMENT_POST_POW1</td>
</tr>
<tr>
<td>First Appraisal / Review</td>
<td>EMP_PERF_REVIEW</td>
<td>Employment before 1st period of work band</td>
<td>EMPLOYMENT_PRE_POW1</td>
</tr>
<tr>
<td>Hire</td>
<td>HIRE</td>
<td>Employment before 1st period of work band</td>
<td>EMPLOYMENT_PRE_POW1</td>
</tr>
<tr>
<td>Non Pipeline Events</td>
<td>NON_PIPELINE</td>
<td>Non Pipeline</td>
<td>NON_PIPELINE</td>
</tr>
<tr>
<td>Offer Accepted</td>
<td>OFFER_ACCEPTED</td>
<td>Start Pending</td>
<td>START_PENDING</td>
</tr>
<tr>
<td>Offer Extended</td>
<td>OFFER_EXTENDED</td>
<td>Offer</td>
<td>OFFER</td>
</tr>
<tr>
<td>Other Event</td>
<td>OTHER</td>
<td>Non Pipeline</td>
<td>NON_PIPELINE</td>
</tr>
<tr>
<td>Requisition Approval Denied</td>
<td>RQSTN_APPROVAL_DENIED</td>
<td>Requisition Approval Denied</td>
<td>RQSTN_APPROVAL_DENIED</td>
</tr>
<tr>
<td>Requisition Approval Pending</td>
<td>RQSTN_APPROVAL_PENDING</td>
<td>Requisition Approval Pending</td>
<td>RQSTN_APPROVAL_PENDING</td>
</tr>
<tr>
<td>Requisition Cancelled</td>
<td>RQSTN_CANCELLED</td>
<td>Requisition Cancelled</td>
<td>RQSTN_CANCELLED</td>
</tr>
<tr>
<td>Requisition Drafted</td>
<td>RQSTN_DRAFTED</td>
<td>Requisition Drafted</td>
<td>RQSTN_DRAFTED</td>
</tr>
<tr>
<td>Requisition Filled Closed</td>
<td>RQSTN_FILLED_CLOSED</td>
<td>Requisition Filled or Closed</td>
<td>RQSTN_FILLED_CLOSED</td>
</tr>
<tr>
<td>Requisition Opened</td>
<td>RQSTN_OPEN</td>
<td>Requisition Open</td>
<td>RQSTN_OPEN</td>
</tr>
<tr>
<td>Requisition on Hold</td>
<td>RQSTN_HOLD</td>
<td>Requisition on Hold</td>
<td>RQSTN_HOLD</td>
</tr>
<tr>
<td>Terminated prior to completing first period of work band</td>
<td>EMP_TERMINATED</td>
<td>Employment Terminated</td>
<td>EMPLOYMENT_TERMINATED</td>
</tr>
<tr>
<td>Transferred prior to completing first period of work band</td>
<td>EMP_TRANSFER</td>
<td>Employment before 1st period of work band</td>
<td>EMPLOYMENT_PRE_POW1</td>
</tr>
</tbody>
</table>

### Table B–45  Recruitment Sub Stage (Warehouse Conformed) to Recruitment Stage (Warehouse Conformed) Member Mappings

<table>
<thead>
<tr>
<th>Source Member</th>
<th>Source Member Code</th>
<th>Target Member</th>
<th>Target Member Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Application Terminated</td>
<td>APPLICATION_TERMINATED</td>
<td>Application Terminated</td>
<td>APPLICATION_TERMINATED</td>
</tr>
<tr>
<td>Assessment</td>
<td>ASSESSMENT</td>
<td>Assessment</td>
<td>ASSESSMENT</td>
</tr>
<tr>
<td>Employment Terminated</td>
<td>EMPLOYMENT_TERMINATED</td>
<td>Employment Terminated</td>
<td>EMPLOYMENT_TERMINATED</td>
</tr>
</tbody>
</table>
### Table B–45  (Cont.) Recruitment Sub Stage (Warehouse Conformed) to Recruitment Stage (Warehouse Conformed) Member Mappings

<table>
<thead>
<tr>
<th>Source Member</th>
<th>Source Member Code</th>
<th>Target Member</th>
<th>Target Member Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Employment before 1st period of work band</td>
<td>EMPLOYMENT_ PRE_POW1</td>
<td>Employment</td>
<td>EMPLOYMENT</td>
</tr>
<tr>
<td>Employment beyond 1st period of work band</td>
<td>EMPLOYMENT_ POST_POW1</td>
<td>Employment</td>
<td>EMPLOYMENT</td>
</tr>
<tr>
<td>Initial Screening</td>
<td>INITIAL_ SCREENING</td>
<td>Initial Screening</td>
<td>INITIAL_ SCREENING</td>
</tr>
<tr>
<td>Interview</td>
<td>INTERVIEW</td>
<td>Assessment</td>
<td>ASSESSMENT</td>
</tr>
<tr>
<td>Non Pipeline</td>
<td>NON_PIPELINE</td>
<td>Non Pipeline</td>
<td>NON_PIPELINE</td>
</tr>
<tr>
<td>Offer</td>
<td>OFFER</td>
<td>Offer</td>
<td>OFFER</td>
</tr>
<tr>
<td>Requisition Approval Denied</td>
<td>RQSTN_APPROVAL_ DENIED</td>
<td>Requisition Rejected</td>
<td>RQSTN_REJECTED</td>
</tr>
<tr>
<td>Requisition Approval Pending</td>
<td>RQSTN_APPROVAL_ PENDING</td>
<td>Requisition Pending</td>
<td>RQSTN_PENDING</td>
</tr>
<tr>
<td>Requisition Cancelled</td>
<td>RQSTN_CANCELL</td>
<td>Requisition Closed</td>
<td>RQSTN_CLOSED</td>
</tr>
<tr>
<td>Requisition Drafted</td>
<td>RQSTN_DRAFTED</td>
<td>Requisition Pending</td>
<td>RQSTN_PENDING</td>
</tr>
<tr>
<td>Requisition Filled or Closed</td>
<td>RQSTN_FILLED_ CLOSED</td>
<td>Requisition Closed</td>
<td>RQSTN_CLOSED</td>
</tr>
<tr>
<td>Requisition Open</td>
<td>RQSTN_OPEN</td>
<td>Requisition Open</td>
<td>RQSTN_OPEN</td>
</tr>
<tr>
<td>Requisition on Hold</td>
<td>RQSTN_HOLD</td>
<td>Requisition Open</td>
<td>RQSTN_OPEN</td>
</tr>
<tr>
<td>Start Pending</td>
<td>START_PENDING</td>
<td>Start Pending</td>
<td>START_PENDING</td>
</tr>
</tbody>
</table>

### Table B–46 Recruitment Event (Warehouse Conformed) to Recruitment Event Sequence (Warehouse Conformed) Member Mappings

<table>
<thead>
<tr>
<th>Source Member</th>
<th>Source Member Code</th>
<th>Target Member</th>
<th>Target Member Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Requisition Drafted</td>
<td>RQSTN_DRAFTED</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Requisition Approval Pending</td>
<td>RQSTN_APPROVAL_ PENDING</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Requisition Approval Denied</td>
<td>RQSTN_APPROVAL_ DENIED</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>Requisition Opened</td>
<td>RQSTN_OPEN</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>Requisition on Hold</td>
<td>RQSTN_HOLD</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>Requisition Cancelled</td>
<td>RQSTN_CANCELL</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>Requisition Filled Closed</td>
<td>RQSTN_FILLED_ CLOSED</td>
<td>70</td>
<td>70</td>
</tr>
<tr>
<td>Application Received</td>
<td>APPLICATION_ RECEIVED</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Assessment Start</td>
<td>ASSESSMENT_ START</td>
<td>110</td>
<td>110</td>
</tr>
</tbody>
</table>
### Table B–46 (Cont.) Recruitment Event (Warehouse Conformed) to Recruitment Event Sequence (Warehouse Conformed) Member Mappings

<table>
<thead>
<tr>
<th>Source Member</th>
<th>Source Member Code</th>
<th>Target Member</th>
<th>Target Member Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assessment Interview</td>
<td>ASSESSMENT_INTERVIEW</td>
<td>120</td>
<td>120</td>
</tr>
<tr>
<td>Assessment First Interview</td>
<td>ASSESSMENT_INTERVIEW1</td>
<td>130</td>
<td>130</td>
</tr>
<tr>
<td>Assessment Second Interview</td>
<td>ASSESSMENT_INTERVIEW2</td>
<td>140</td>
<td>140</td>
</tr>
<tr>
<td>Offer Extended</td>
<td>OFFER_EXTENDED</td>
<td>150</td>
<td>150</td>
</tr>
<tr>
<td>Offer Accepted</td>
<td>OFFER_ACCEPTED</td>
<td>170</td>
<td>170</td>
</tr>
<tr>
<td>Application Terminated</td>
<td>APPLICATION_TERMINATED</td>
<td>190</td>
<td>190</td>
</tr>
<tr>
<td>Hire</td>
<td>HIRE</td>
<td>200</td>
<td>200</td>
</tr>
<tr>
<td>First Appraisal / Review</td>
<td>EMP_PERF_REVIEW</td>
<td>230</td>
<td>230</td>
</tr>
<tr>
<td>Transferred prior to</td>
<td>EMP_TRANSFER</td>
<td>240</td>
<td>240</td>
</tr>
<tr>
<td>completing first period of work</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>band</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Employed after completing</td>
<td>EMP_FST_POW_COMPLETION</td>
<td>250</td>
<td>250</td>
</tr>
<tr>
<td>first period of work band</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Terminated prior to</td>
<td>EMP_TERMINATED</td>
<td>270</td>
<td>270</td>
</tr>
<tr>
<td>completing first period of work</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>band</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non Pipeline Events</td>
<td>NON_PIPELINE</td>
<td>1000</td>
<td>1000</td>
</tr>
<tr>
<td>Other Event</td>
<td>OTHER</td>
<td>1010</td>
<td>1010</td>
</tr>
</tbody>
</table>

### Table B–47 Recruitment Event Reason (Warehouse Conformed) to Recruitment Event Reason Type (Warehouse Conformed) Member Mappings

<table>
<thead>
<tr>
<th>Source Member</th>
<th>Source Member Code</th>
<th>Target Member</th>
<th>Target Member Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Another Job</td>
<td>ANOTHER_JOB</td>
<td>Voluntary</td>
<td>VOLUNTARY</td>
</tr>
<tr>
<td>Application Withdrawn</td>
<td>WITHDRAWN</td>
<td>Voluntary</td>
<td>VOLUNTARY</td>
</tr>
<tr>
<td>Disqualified In Interview</td>
<td>DISQUALIFIED</td>
<td>Involuntary</td>
<td>INVOLUNTARY</td>
</tr>
<tr>
<td>Failed To Start</td>
<td>FAILED_TO_START</td>
<td>Voluntary</td>
<td>VOLUNTARY</td>
</tr>
<tr>
<td>Headcount Available</td>
<td>HEADCOUNT_AVAILABLE</td>
<td>Other</td>
<td>OTHER</td>
</tr>
<tr>
<td>Headcount Not Available Or</td>
<td>HEADCOUNT_NOT_AVAILABLE</td>
<td>Other</td>
<td>OTHER</td>
</tr>
<tr>
<td>Hiring Freeze</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ineligible</td>
<td>INELIGIBLE</td>
<td>Involuntary</td>
<td>INVOLUNTARY</td>
</tr>
<tr>
<td>No Show For Interview</td>
<td>NO_SHOW</td>
<td>Voluntary</td>
<td>VOLUNTARY</td>
</tr>
<tr>
<td>Offer Rejected</td>
<td>OFFER_REJECTED</td>
<td>Involuntary</td>
<td>INVOLUNTARY</td>
</tr>
</tbody>
</table>
### B.2.69 How to Configure Project Commitment Fact for PeopleSoft

The commitment subject area from PeopleSoft is filtered from the source by filtering on the PS_INSTALLATION_PC table so ensure the analysis types for commitment transactions of Purchase Orders and Requisitions are mapped appropriately in PeopleSoft.

**Configuration of Commitment Snapshot**

Commitment data being transient, a snapshot table W_PROJ_COMMITMENT_SNP_F is populated. The grain of data in the snapshot table is controlled by ETL parameter PROJ_COMMITMENT_GRAIN. This parameter is set in the FSM and can have values WEEK, MONTH, QUARTER and YEAR. Example: PROJ_COMMITMENT_GRAIN = 'WEEK' would mean that the snapshot table stores one snapshot per week. So if the ETL is run multiple times within a week, the last snapshot will keep overwriting the older one until the end of the week. The Friday record will be kept, and a new record will be generated next Monday for the new week. This Grain is specified using Tasks in FSM. The default is set to 'Month'.

Set the value for this variable in the FSM by navigating to Manage Data Load Parameters section; filter for offering Oracle Project Analytics.

### B.2.70 How to Set Up RPD For Budgetary Control For PeopleSoft

To set up the RPD for Budgetary Control for PeopleSoft:

1. In Oracle BI EE Administration Tool, edit the BI metadata repository (for example, OracleBIAnalyticsApps.rpd).

   The RPD file is located at:

   ORACLE_INSTANCE\bifoundation\OracleBIServerComponent\coreapplication\obisn\repository
2. In the Business Model and Mapping layer, go to the logical table Fact - Fins - GL Journals Budgetary Control.

3. Under Sources, select the Fact_W_GL_OTHER_F_PSFT logical table source.

4. Clear the Disabled option in the General tab and click OK.

5. Repeat step 4 for the logical table sources – Fact_W_GL_OTHER_GRPACCT_DAY_A_PSFT and Fact_W_GL_OTHER_GRPACCT_FSCLPRD_A_PSFT.

6. Under Sources, select the Fact_W_GL_OTHER_F_EBS logical table source.

7. Select the Disabled option in the General tab and click OK.

8. Repeat step 7 for the logical table sources - Fact_W_GL_OTHER_GRPACCT_DAY_A_EBS and Fact_W_GL_OTHER_GRPACCT_FSCLPRD_A_EBS.

9. In the Business Model and Mapping layer, go the logical table Fact - Fins - Activity Budgetary Control.

10. Under Sources, select the Fact_W_GL_BALANCE_F_PSFT logical table source.

11. Clear the Disabled option in the General tab and click OK.

12. Repeat step 11 for the other logical table source – Fact_W_GL_BALANCE_A_PSFT.

13. Under Sources, select the Fact_W_GL_BALANCE_F_EBS logical table source.

14. Select the Disabled option in the General tab and click OK.

15. Repeat step 13 for the other logical table source - Fact_W_GL_BALANCE_A_EBS.

B.2.71 How to Configure Project Budget Fact for PeopleSoft

Cost Budget is extracted from Project Costing for all Analysis Types within the project's Cost Budget Analysis Group. All extracted Cost Budgets are loaded into the Budget fact table as Raw Cost unless you perform one or both of the following configurations described in this section.

Identifying Project Budget Burden Costs Based on Analysis Type

The ETL process uses the file_Project_Budget_Burden_Analysis_Type_psft.csv flat file to list all Analysis Types for Project Budget Burden Cost. If the ETL process finds the Analysis Type in this flat file, it will not perform further lookups against other lookup tables to determine Project Budget Burden Cost.

To configure the file_Project_Budget_Burden_Analysis_Type_psft.csv file:

1. Edit the file file_Project_Budget_Burden_Analysis_Type_psft.csv file.
2. Enter a list of Analysis Types to be considered as Project Budget Burden Costs.
   The format is XXX,1 where XXX is an Analysis Type. The 1 is used as a return value to indicate that this is a Project Budget Burden Cost.
   The following is an example of classifying Costs with BUR and BRD Analysis Types as Project Budget Burden Costs:
   BUR,1
   BRD,1

3. Save and close the file.

**Identifying Project Budget Burden Costs Based on a Source Type, Category, and Subcategory Combination of Values**

You must configure the following flat files to identify Project Budget Burden Costs based on a Source Type, Category, and Subcategory combination of values. FSM parameter BURDEN_TYPECATSUB determines if this lookup is performed for an implementation:

- file_Project_Cost_Burden_TypeCatSub_config_psft.csv
  The ETL process uses this flat file to designate which columns (Source Type, Category, and Subcategory) are used in the lookup.
- file_Project_Cost_Burden_TypeCatSub_psft.csv
  The ETL process uses this flat file to list all Source Type, Category, and Subcategory combination of values to use for Project Budget Burden Cost.

To configure the file_Project_Cost_Burden_TypeCatSub_config_psft.csv file:

1. Edit the file_Project_Cost_Burden_TypeCatSub_config_psft.csv.
2. Enter only one row with RowID of 1. Enter a Y in each column that represents the combination to be evaluated as a Burden Cost. The columns are:

- Row ID
- Source Type
- Category
- Subcategory

The following example shows how to use combinations of Source Type and Category:

1, Y, Y,

3. Save and close the file.

To configure the file_Project_Cost_Burden_TypeCatSub_psft.csv file:

1. Edit the file_Project_Cost_Burden_TypeCatSub_psft.csv.

---

**Note:** The configuration file or files for this task are provided on installation of Oracle BI Applications at one of the following locations:


Your system administrator will have copied these files to another location and configured ODI connections to read from this location. Work with your system administrator to obtain the files. When configuration is complete, your system administrator will need to copy the configured files to the location from which ODI reads these files.

---

2. Enter a list of Resource Type, Resource Category, and Resource Subcategory combinations to be considered as Burden costs. The format is:

```
XXXXX,XXXXX,XXXXX,1
```

Where XXXXX is a combination of Resource Type, Resource Category, and Resource Subcategory.
The `1` is a return value that indicates that this is a Project Budget Burden Cost. Each combination of lookup values must be specified.

Wildcards are not supported.

The following is an example of classifying costs with G&A or FRNG Source Type as Project Budget Burden Costs:

```
G&A,,1
FRNG,,1
```

**Note:** This CSV file is used in conjunction with the file `Project_Cost_Burden_TypeCatSub_config_psft.csv` configuration file. In this example, this configuration file would contain the value `1,Y`.

<table>
<thead>
<tr>
<th>Source Type</th>
<th>Category</th>
<th>Subcategory</th>
</tr>
</thead>
<tbody>
<tr>
<td>G&amp;A</td>
<td>&lt;Blank&gt;</td>
<td>&lt;Blank&gt;</td>
</tr>
<tr>
<td>FRNG</td>
<td>LUX</td>
<td>TEMP</td>
</tr>
<tr>
<td>FRNG</td>
<td>BONUS</td>
<td>&lt;Blank&gt;</td>
</tr>
</tbody>
</table>

**Note:** You must specify each combination of lookup values. The lookup will use columns with a `Y` in the configuration file.

3. Save and close the file.

### How to Configure Project Budget Analytics

This section describes how to configure Project Budget Analytics.

1. In the FSM, go to 'Manage Data Load Parameters section', then filter for Source Peoplesoft 9.0 or 9.1 FINSCM, filter Offering Oracle Project Analytics, filter Functional Area Project Control and Costing.

2. Set the following parameters:

   **BURDEN_ANALYSIS_TYPE**
Use this parameter to specify Analysis Types as Burden Cost for the lookup. Valid values are:

- 1. Enables the implementation to perform this lookup.
- 0. (Default) Disables this lookup.

**BURDEN_TYPECATSUB**

Use this parameter to specify a combination of Source Type, Category, and Subcategory values as Burden Cost for the lookup. Valid values are:

- 1. Enables this lookup.
- 0. (Default) Disables this lookup.

3. Save the details.

### B.2.72 How to Configure Financial Analytics CSV Files for JD Edwards EnterpriseOne

The table below lists the CSV worksheet files and the domain values for Financial Analytics for JD Edwards EnterpriseOne.

**Table B–49 CSV worksheet files and the domain values for Financial Analytics for JD Edwards EnterpriseOne.**

<table>
<thead>
<tr>
<th>Worksheet File Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>file_group_acct_codes_jde.csv</td>
<td>Lists the Group Account Codes and the corresponding domain values for the JD Edwards EnterpriseOne application.</td>
</tr>
<tr>
<td>file_lkp_fiscal_period_Qtr_Config_jde.csv</td>
<td>Lists the Time Dimension Fiscal Period and the corresponding domain values for the JD Edwards application.</td>
</tr>
</tbody>
</table>

**How to Configure the file_group_acct_codes_jde.csv**

This section explains how to configure the file_group_acct_codes_jde.csv. This flat file is used to identify the Group Account Codes for each object account range for each company. For example, for company 00001 you might specify group account codes for accounts 1000 to 2000 as REVENUE. For a detailed list of the domain values for all possible Group Account Codes, see Oracle Business Analytics Warehouse Data Model Reference.

To configure file_group_acct_codes_jde.csv:

1. Edit the file file_group_acct_codes_jde.csv.

**Note:** The configuration file or files for this task are provided on installation of Oracle BI Applications at one of the following locations:


Your system administrator will have copied these files to another location and configured ODI connections to read from this location. Work with your system administrator to obtain the files. When configuration is complete, your system administrator will need to copy the configured files to the location from which ODI reads these files.
2. In the Company field, populate the company that you are setting up and specify the ranges in the From and To column of that row with the corresponding Group Account Code.

3. Save and close the file.

B.2.72.1 How to Configure the file_lkp_fiscal_period_Qtr_Config_jde.csv

This section explains how to configure the file_lkp_fiscal_period_Qtr_Config_jde.csv. You must configure this file to support the metrics that are based on the Fiscal Quarter.

To configure file_lkp_fiscal_period_Qtr_Config_jde.csv:

1. Identify the Fiscal Quarter data in your JD Edwards EnterpriseOne source system by using the following SQL:

   Select CDDTPN, CDFY from F0008

2. Edit the file file_lkp_fiscal_period_Qtr_Config_jde.csv.

   ![Note](Note: The configuration file or files for this task are provided on installation of Oracle BI Applications at one of the following locations:


   Your system administrator will have copied these files to another location and configured ODI connections to read from this location. Work with your system administrator to obtain the files. When configuration is complete, your system administrator will need to copy the configured files to the location from which ODI reads these files.

3. For each Date pattern, set the following fields:

<table>
<thead>
<tr>
<th>Field</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>FiscalPattern</td>
<td>CDDTPN.</td>
</tr>
<tr>
<td>YEAR</td>
<td>CDFY.</td>
</tr>
<tr>
<td>Period</td>
<td>Period Number Numeric.</td>
</tr>
<tr>
<td>Quarter No</td>
<td>As there is no concept of Quarter in JD Edwards EnterpriseOne, define a numeric quarter number to which the period belongs.</td>
</tr>
<tr>
<td>Quarter Start Date</td>
<td>Customized Quarter Start Date for each period. Each quarter can span as many periods as users configure. The format is DD/MM/YYYY.</td>
</tr>
<tr>
<td>Quarter End Date</td>
<td>Customized Quarter End Date for each period. Each quarter can span as many periods as users configure. The format is DD/MM/YYYY.</td>
</tr>
</tbody>
</table>

   ![Note](Note: Ensure that there are no unnecessary spaces in the flat file.

4. Save and close the file.
Asset Location is defined in the Fixed Asset Application in E-Business Suite using the Key Flex Field (KFF) feature. You set up KFF using different segments based on your business needs. For example, one source system might have KFF set up using segment 1, 2, 3, 4 for country, state, city and address, while another source system might have segment 1, 2, 3, 4 for address, city, state, and country, or other additional information.

The configuration file file_fa_location_segment_config_ora.csv is used to configure the segment mapping between the Location KFF in your Fixed Asset application and the Asset Location dimension in Oracle Business Analytics Warehouse. You must configure this file before you start ETL.

**Setting up the config file: file_fa_location_segment_config_ora.csv**

The file_fa_location_segment_config_ora.csv is to be used to match the segment fields in E-Business Suite to the segment fields in the asset location table W_ASSET_LOCATION_D in Oracle Business Analytics Warehouse.

---

**Note:** The configuration file or files for this task are provided on installation of Oracle BI Applications at one of the following locations:


Your system administrator will have copied these files to another location and configured ODI connections to read from this location. Work with your system administrator to obtain the files. When configuration is complete, your system administrator will need to copy the configured files to the location from which ODI reads these files.

---

Edit this file and fill in the segment mapping info. The column SEG1 to SEG7 represent Oracle Business Analytics Warehouse segment columns in the asset location dimension table. For each of the segments, you fill in the corresponding mapped KFF segment. If there is no mapping, then leave the field empty.

**Example**

In Oracle Business Analytics Warehouse, the segment columns store the following conformed values:

- `W_ASSET_LOCATION_D.segment1` stores the value of Country
- `W_ASSET_LOCATION_D.segment2` stores the value of State
- `W_ASSET_LOCATION_D.segment3` stores the value of County
- `W_ASSET_LOCATION_D.segment4` stores the value of City
- `W_ASSET_LOCATION_D.segment5` stores Address

In the E-Business Suite, County is not used. In KFF you have Country, State, City, and Address, as follows:

- `FA_LOCATIONS.segment1` stores the value of Country
- `FA_LOCATIONS.segment2` stores the value of State
FA_LOCATIONS.segment3 stores the value of City
FA_LOCATIONS.segment4 stores the value of Address

To deploy this scenario, the file_fa_location_segment_config_ora.csv file would be configured as follows:

<table>
<thead>
<tr>
<th>SEG1</th>
<th>SEG2</th>
<th>SEG3</th>
<th>SEG4</th>
<th>SEG5</th>
<th>SEG6</th>
<th>SEG7</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEGMENT 1</td>
<td>SEGMENT 2</td>
<td>&lt;Empty&gt;</td>
<td>SEGMENT 3</td>
<td>SEGMENT 4</td>
<td>&lt;Empty&gt;</td>
<td>&lt;Empty&gt;</td>
</tr>
</tbody>
</table>

**B.2.74 How to Configure Project Invoice Fact for E-Business Suite**

Line level invoice information is extracted from the Invoice Line table (PA_DRAFT_INVOICE_ITEMS) in the Billing Module of E-Business Suite and loaded into Invoice Line Fact (W_PROJ_INVOICE_LINE_F). All invoices at any stage of the invoice generation process, such as creation, approval, release, transfer, and so forth, are loaded into this table so that customers can see a full view of the invoices. Some of the information available in the Invoice Header Table (PA_DRAFT_INVOICES_ALL) such as GL Date and PA Date; and flags such as Write-Off Flag, Concession Flag, Cancelled Flag, and Retention Invoice Flag in E-Business Suite, have also been denormalized into Invoice Line Fact.

For E-Business Suite, Invoice Currency is the Document Currency for this fact.

**Note:**

The E-Business Suite concurrent programs, such as PRC: Generate Draft Invoices for a Single Project or PRC: Generate Draft Invoices for a Range of Projects, for generating draft invoices, or PRC: Interface streamline Process, for transferring invoice to Receivables, should be run before the ETL is run to load Oracle Business Analytics Warehouse.

**B.2.75 How to Configure Flat Files For Order Item Fact E-Business Suite**

**Configuration File: file_orderitem_fs.csv**

The file is generic and therefore does not support any source Order system-specific features, such as recurring order lines.

Each line in this file will supplement existing E-Business Suite Order Lines with data to populate the following prices:

- Order Item Approved Invoice Price
- Order Item Approved Pocket Margin
- Order Item Approved Pocket Price
- Order Item Guideline Invoice Price
- Order Item Guideline Pocket Price
- Order Item Guideline Pocket Price
- Order Item Requested Invoice Price
- Order Item Requested Pocket Margin
- Order Item Requested Pocket Price

Table B–51 Example configuration in file_fa_location_segment_config_ora.csv
The granularity of this file is each Order Line ID which should be the root Order Line ID in the case of configured products.

Each price above should be the rolled-up price in case of a configured product.

### Table B–52  file_orderitem_fs.csv Field Descriptions

<table>
<thead>
<tr>
<th>Column Name</th>
<th>Data Type</th>
<th>Sample Data</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTEGRATION_ID</td>
<td>VARCHAR2(80)</td>
<td>344946</td>
<td>The INTEGRATION_ID for this file will be the Order Line ID. This should be the root Order Line ID in the case of configured products.</td>
</tr>
<tr>
<td>GLN_INV_PRI</td>
<td>NUMBER(28,10)</td>
<td>101.55</td>
<td>The sales guideline (price policy) invoice price that was applied to the order. If there was no price exception, this is the same as the actual invoice price.</td>
</tr>
<tr>
<td>GLN_PKT_PRI</td>
<td>NUMBER(28,10)</td>
<td>91.534</td>
<td>The sales guideline (price policy) pocket price that was applied to the order, or the derived guideline pocket price based on the guideline invoice price. If there was no price exception, this is the same as the actual pocket price.</td>
</tr>
<tr>
<td>GLN_PKT_MARGIN</td>
<td>NUMBER(28,10)</td>
<td>30</td>
<td>What the pocket margin would have been for the order based on its quantity and the guideline pocket price. If there was no price exception, this is the same as the actual pocket margin.</td>
</tr>
<tr>
<td>REQ_INV_PRI</td>
<td>NUMBER(28,10)</td>
<td>1345.12</td>
<td>The invoice price that was requested (usually by sales) on the price exception request. If there was no price exception, this is the same as the actual invoice price.</td>
</tr>
<tr>
<td>REQ_PKT_PRI</td>
<td>NUMBER(28,10)</td>
<td>122.2</td>
<td>The pocket price based on the requested invoice price (usually by sales) on the price exception request. If there was no price exception, this is the same as the actual pocket price.</td>
</tr>
<tr>
<td>REQ_PKT_MARGIN</td>
<td>NUMBER(28,10)</td>
<td>1.3</td>
<td>What the pocket margin would have been for the order based on its quantity and the requested pocket price. If there was no price exception, this is the same as the actual pocket margin.</td>
</tr>
<tr>
<td>APPR_INV_PRI</td>
<td>NUMBER(28,10)</td>
<td>44.44</td>
<td>The invoice price that was last approved for the order. If there was no price exception, this is the same as the actual invoice price.</td>
</tr>
<tr>
<td>APPR_PKT_PRI</td>
<td>NUMBER(28,10)</td>
<td>22222.2</td>
<td>The pocket price that was last approved for the order. If there was no price exception, this is the same as the actual pocket price.</td>
</tr>
</tbody>
</table>
B.2.76 How to Configure Flat Files For Price Segment Dimension For E-Business Suite

Configuration File: file_pri_segment_ds.csv

The file is generic and therefore does not support any source Pricing system-specific features.

Note: The configuration file or files for this task are provided on installation of Oracle BI Applications at one of the following locations:


Your system administrator will have copied these files to another location and configured ODI connections to read from this location. Work with your system administrator to obtain the files. When configuration is complete, your system administrator will need to copy the configured files to the location from which ODI reads these files.

Each row of this file will supplement existing E-Business Suite Customer Class that are extracted using the following SQL:

SELECT LOOKUP_CODE, MEANING FROM FND_LOOKUP_VALUES WHERE LOOKUP_TYPE = 'CUSTOMER CLASS' AND VIEW_APPLICATION_ID = 220 AND LANGUAGE = '<Base Language>'

The granularity of this file is each Customer Class Lookup code that has been created in the E-Business Suite Application.

Table B–53 file_pri_segment_ds.csv Field Descriptions

<table>
<thead>
<tr>
<th>Column Name</th>
<th>Data Type</th>
<th>Sample Data</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTEGRATION_ID</td>
<td>VARCHAR2(80)</td>
<td>172222.2</td>
<td>The INTEGRATION_ID for this file will be the Customer Class Code that is, FND_LOOKUP_VALUES.LOOKUP_CODE.</td>
</tr>
<tr>
<td>PROF_ATTR_&lt;n&gt;_CODE</td>
<td>VARCHAR2(50)</td>
<td>Credit</td>
<td>Profile Attribute Code. The Code-Name pair values will have to be supplemented as Source domains via - file_domain_member_gs.csv</td>
</tr>
</tbody>
</table>
**B.2.77 How to Configure Flat Files For Price Strategy Dimension For E-Business Suite**

**Configuration File: file_pri_strategy_ds.csv**

The file is generic and therefore does not support any source Pricing system-specific features.

Each row of this file will supplement existing E-Business Suite Sales Channels that are extracted using the following SQL:

```sql
SELECT LOOKUP_CODE, MEANING FROM FND_LOOKUP_VALUES WHERE LOOKUP_TYPE = 'SALES_CHANNEL' AND VIEW_APPLICATION_ID = 660 AND LANGUAGE = '<Base Language>'
```

The granularity of this file is each Sales Channel Lookup code that has been created in the E-Business Suite Application.

<table>
<thead>
<tr>
<th>Column Name</th>
<th>Data Type</th>
<th>Sample Data</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTEGRATION_ID</td>
<td>VARCHAR2(80)</td>
<td>ALUMNI_VISIT</td>
<td>The INTEGRATION_ID for this file will be the Sales Channel Code that is, FND_LOOKUP_VALUES.LOOKUP_CODE.</td>
</tr>
<tr>
<td>STRATEGY_NUM</td>
<td>VARCHAR2(30)</td>
<td>PRODENTIC_H_NAME</td>
<td>Not available.</td>
</tr>
<tr>
<td>PRODUCT_GL_PLAN_NAME</td>
<td>VARCHAR2(200)</td>
<td>PRICE_LIST_NAME</td>
<td>Not available.</td>
</tr>
<tr>
<td>PRICE_LIST_NAME</td>
<td>VARCHAR2(100)</td>
<td>Corporat e Price List</td>
<td>Not available.</td>
</tr>
<tr>
<td>DEAL_GL_PLAN_NAME</td>
<td>VARCHAR2(200)</td>
<td>Standard Deal Policies</td>
<td>Not available.</td>
</tr>
<tr>
<td>PRI_SEGMENT_NAME</td>
<td>VARCHAR2(200)</td>
<td>Industri al – Retain/ Harvest</td>
<td>Not available.</td>
</tr>
<tr>
<td>VERSION</td>
<td>NUMBER(10)</td>
<td>1</td>
<td>Not available.</td>
</tr>
<tr>
<td>COMPETITOR_NAME</td>
<td>VARCHAR2(200)</td>
<td>Name</td>
<td>Not available.</td>
</tr>
<tr>
<td>AUX1_CHANGED_ON_DT</td>
<td>VARCHAR2(19)</td>
<td>Not available.</td>
<td>This column should be populated in case of an Incremental load which should effect a type 2 change for a Sales Channel.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Column Name</th>
<th>Data Type</th>
<th>Sample Data</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUX1_CHANGED_ON_DT</td>
<td>NUMBER(28,10)</td>
<td>&lt;Date&gt;</td>
<td>In order to effect a Type 1 change, this column should be populated with the update date of the record in an Incremental Load.</td>
</tr>
</tbody>
</table>
B.2.78 How to Configure Flat Files For Price Waterfall Element Dimension For E-Business Suite

**Configuration File: file_pwf_element_ds.csv**

The file is generic and therefore does not support any source Pricing system-specific features.

---

**Note:** The configuration file or files for this task are provided on installation of Oracle BI Applications at one of the following locations:


Your system administrator will have copied these files to another location and configured ODI connections to read from this location. Work with your system administrator to obtain the files. When configuration is complete, your system administrator will need to copy the configured files to the location from which ODI reads these files.

Each row of this file will supplement existing E-Business Suite Modifier Line IDs that are extracted using the following SQL:

```
SELECT QP_LIST_LINES.LIST_LINE_ID MODIFIER_LINE_ID FROM APPS.QP_LIST_LINES INNER JOIN APPS.QP_LIST_HEADERS_B ON QP_LIST_LINES.LIST_HEADER_ID = QP_LIST_HEADERS_B.LIST_HEADER_ID INNER JOIN APPS.QP_LIST_HEADERS_TL ON QP_LIST_HEADERS_B.LIST_HEADER_ID = QP_LIST_HEADERS_TL.LIST_HEADER_ID WHERE (QP_LIST_HEADERS_TL.LANGUAGE = 'US') AND QP_LIST_LINES.LIST_LINE_TYPE_CODE IN ('DIS','SUR','PBH','FREIGHT_CHARGE') AND EXISTS (SELECT 1 FROM ASO_PRICE_ADJUSTMENTS WHERE QP_LIST_LINES.LIST_LINE_ID = ASO_PRICE_ADJUSTMENTS.MODIFIER_LINE_ID AND ASO_PRICE_ADJUSTMENTS.APPLIED_FLAG = 'Y' UNION ALL SELECT 1 FROM OE_PRICE_ADJUSTMENTS WHERE QP_LIST_LINES.LIST_LINE_ID = OE_PRICE_ADJUSTMENTS.LIST_LINE_ID AND OE_PRICE_ADJUSTMENTS.APPLIED_FLAG = 'Y')
```

The granularity of this file is each Modifier Line ID of the Modifier Line Type – Discount, Surcharge, Price Break Header or Freight Charge which has caused an adjustment for an Order (or) Quote line.

**Table B–55 file_pwf_element_ds.csv Field Descriptions**

<table>
<thead>
<tr>
<th>Column Name</th>
<th>Data Type</th>
<th>Sample Data</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTEGRATION_ID</td>
<td>VARCHAR2(80)</td>
<td>15678</td>
<td>The INTEGRATION_ID for this file will be the Modifier Line Id that is, QP_LIST_LINES.LIST_LINE_ID.</td>
</tr>
<tr>
<td>ELEMENT_TYPE_CODE</td>
<td>VARCHAR2(80)</td>
<td>Revenue Adjustm ent</td>
<td>Price Element Type Code. Code-Name pair values are supplemented using the file: file_domain_member_gs.csv.</td>
</tr>
<tr>
<td>BASIS_SEGMENT</td>
<td>VARCHAR2(50)</td>
<td>Ceiling Revenue</td>
<td>Not available.</td>
</tr>
</tbody>
</table>
B.2.79 How to Configure Flat Files For Quote Item Fact For E-Business Suite file_quoteitem_fs.csv

Configuration File: file_quoteitem_fs.csv

The file is generic and therefore does not support any source quote system specific features, such as recurring quote lines, etc.

Table B–55 (Cont.) file_pwf_element_ds.csv Field Descriptions

<table>
<thead>
<tr>
<th>Column Name</th>
<th>Data Type</th>
<th>Sample Data</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOKEN</td>
<td>VARCHAR2(50)</td>
<td>OFF_CEILING</td>
<td>Not available.</td>
</tr>
<tr>
<td>REVN_COST_IND</td>
<td>NUMBER(10)</td>
<td>1</td>
<td>Not available.</td>
</tr>
<tr>
<td>DISP_ON_ZERO_FLG</td>
<td>VARCHAR2(1)</td>
<td>N</td>
<td>Not available.</td>
</tr>
</tbody>
</table>

Note: The configuration file or files for this task are provided on installation of Oracle BI Applications at one of the following locations:


Your system administrator will have copied these files to another location and configured ODI connections to read from this location. Work with your system administrator to obtain the files. When configuration is complete, your system administrator will need to copy the configured files to the location from which ODI reads these files.

Each line in this file will supplement existing EBS Quote Lines with data to populate the following prices:

- Quote Item Approved Invoice Price
- Quote Item Approved Pocket Margin
- Quote Item Approved Pocket Price
- Quote Item Guideline Invoice Price
- Quote Item Guideline Pocket Margin
- Quote Item Guideline Pocket Price
- Quote Item Requested Invoice Price
- Quote Item Requested Pocket Margin
- Quote Item Requested Pocket Price

The granularity of this file is each Quote Line ID which should be the root Quote Line ID in the case of configured products.

Each price above should be the rolled-up price in case of a configured product.
<table>
<thead>
<tr>
<th>Column Name</th>
<th>Data Type</th>
<th>Sample Data</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTEGRATION_ID</td>
<td>VARCHAR2(80)</td>
<td>344946</td>
<td>The INTEGRATION_ID for this file will be the Quote Line ID. This should be the root Quote Line ID in the case of configured products.</td>
</tr>
<tr>
<td>GLN_INV_PRI</td>
<td>NUMBER(28,10)</td>
<td>101.55</td>
<td>The sales guideline (price policy) invoice price that was applied to the quote. If there was no price exception, this is the same as the actual invoice price.</td>
</tr>
<tr>
<td>GLN_PKT_PRI</td>
<td>NUMBER(28,10)</td>
<td>91.534</td>
<td>The sales guideline (price policy) pocket price that was applied to the quote, or the derived guideline pocket price based on the guideline invoice price. If there was no price exception, this is the same as the actual pocket price.</td>
</tr>
<tr>
<td>GLN_PKT_MARGIN</td>
<td>NUMBER(28,10)</td>
<td>30</td>
<td>What the pocket margin would have been for the quote based on its quantity and the guideline pocket price. If there was no price exception, this is the same as the actual pocket margin.</td>
</tr>
<tr>
<td>REQ_INV_PRI</td>
<td>NUMBER(28,10)</td>
<td>1345.12</td>
<td>The invoice price that was requested (usually by sales) on the price exception request. If there was no price exception, this is the same as the actual invoice price.</td>
</tr>
<tr>
<td>REQ_PKT_PRI</td>
<td>NUMBER(28,10)</td>
<td>122.2</td>
<td>The pocket price based on the requested invoice price (usually by sales) on the price exception request. If there was no price exception, this is the same as the actual pocket price.</td>
</tr>
<tr>
<td>REQ_PKT_MARGIN</td>
<td>NUMBER(28,10)</td>
<td>1.3</td>
<td>What the pocket margin would have been for the quote based on its quantity and the requested pocket price. If there was no price exception, this is the same as the actual pocket margin.</td>
</tr>
<tr>
<td>APPR_INV_PRI</td>
<td>NUMBER(28,10)</td>
<td>44.44</td>
<td>The invoice price that was last approved for the quote. If there was no price exception, this is the same as the actual invoice price.</td>
</tr>
<tr>
<td>APPR_PKT_PRI</td>
<td>NUMBER(28,10)</td>
<td>22222.2</td>
<td>The pocket price that was last approved for the quote. If there was no price exception, this is the same as the actual pocket price.</td>
</tr>
<tr>
<td>APPR_PKT_MARGIN</td>
<td>NUMBER(28,10)</td>
<td>172222.2</td>
<td>What the pocket margin amount would have been on the quote the quote based on its quantity and the invoice price that was last approved for the quote. If there was no price exception, this is the same as the actual pocket margin.</td>
</tr>
</tbody>
</table>
B.2.80 How to Configure Flat Files For Source Domains in Price Analytics for E-Business Suite

This section provides instructions on how to configure the Source Domain Member Name values for those Codes seeded through the Price flat files. The table below captures the lineage from Presentation Column to Flat file column and relevant Source domain codes.

<table>
<thead>
<tr>
<th>Presentation Table</th>
<th>Presentation Column</th>
<th>File Name</th>
<th>File Column</th>
<th>Source Domain Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Price Waterfall Element</td>
<td>Source Element Code</td>
<td>file_pwf_element_ds.csv</td>
<td>ELEMENT_CODE</td>
<td>PRC_ELEMENT_CODE</td>
</tr>
<tr>
<td>Price Waterfall Element</td>
<td>Source Element Type Code</td>
<td>file_pwf_element_ds.csv</td>
<td>ELEMENT_TYPE_CODE</td>
<td>PRC_ELEMENT_TYPE_CODE</td>
</tr>
<tr>
<td>Price Profile</td>
<td>Profile Attribute 1 Code</td>
<td>file_pri_segment_ds.csv</td>
<td>PROF_ATTR_1_CODE</td>
<td>PRC_PROFILE_1</td>
</tr>
<tr>
<td>Price Profile</td>
<td>Profile Attribute 2 Code</td>
<td>file_pri_segment_ds.csv</td>
<td>PROF_ATTR_2_CODE</td>
<td>PRC_PROFILE_2</td>
</tr>
<tr>
<td>Price Profile</td>
<td>Profile Attribute 3 Code</td>
<td>file_pri_segment_ds.csv</td>
<td>PROF_ATTR_3_CODE</td>
<td>PRC_PROFILE_3</td>
</tr>
<tr>
<td>Price Profile</td>
<td>Profile Attribute 4 Code</td>
<td>file_pri_segment_ds.csv</td>
<td>PROF_ATTR_4_CODE</td>
<td>PRC_PROFILE_4</td>
</tr>
<tr>
<td>Price Profile</td>
<td>Profile Attribute 5 Code</td>
<td>file_pri_segment_ds.csv</td>
<td>PROF_ATTR_5_CODE</td>
<td>PRC_PROFILE_5</td>
</tr>
</tbody>
</table>

**Note:** The configuration file or files for this task are provided on installation of Oracle BI Applications at one of the following locations:


Your system administrator will have copied these files to another location and configured ODI connections to read from this location. Work with your system administrator to obtain the files. When configuration is complete, your system administrator will need to copy the configured files to the location from which ODI reads these files.

**Configuration File: file_domain_member_gs.csv**

The file is generic and therefore does not support any source Pricing system specific features.

This file is used to populate data for the following domains which are not available in E-Business Suite and should be loaded only if supplementing data for any of the dimensions listed below:

- Price Waterfall Element Dimension – Price Element Type Code (the Conformed Price Element Type will have to be mapped to any new domains introduced through this).
- Price Segment Dimension - Price Profile Attribute 1 Code
- Price Segment Dimension - Price Profile Attribute 2 Code
- Price Segment Dimension - Price Profile Attribute 3 Code
- Price Segment Dimension - Price Profile Attribute 4 Code
- Price Segment Dimension - Price Profile Attribute 5 Code

Task SDE_ORA_DomainGeneral_PriceElementType will load the file data to Warehouse staging table W_DOMAIN_MEMBER_GS.

The granularity of this file is each domain member per language for any of the domains listed above.

### Table B–58  file_domain_member_gs.csv Field Descriptions

<table>
<thead>
<tr>
<th>Column Name</th>
<th>Data Type</th>
<th>Sample Data</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DOMAIN_CODE</td>
<td>Not available.</td>
<td>Not available.</td>
<td>This should be populated with the Domain Code corresponding to the Source Domain that is to be configured as per Table 10-1.</td>
</tr>
<tr>
<td>DOMAIN_TYPE_CODE</td>
<td>Not available.</td>
<td>Not available.</td>
<td>Defaulted to 'S' - indicates this is a Source Domain Code.</td>
</tr>
<tr>
<td>DOMAIN_MEMBER_CODE</td>
<td>Not available.</td>
<td>Not available.</td>
<td>This should be populated with the CODE value supplied in any of the above files.</td>
</tr>
<tr>
<td>DOMAIN_MEMBER_NAME</td>
<td>Not available.</td>
<td>Not available.</td>
<td>This should be populated with the NAME value that corresponds to the Member Code supplied.</td>
</tr>
<tr>
<td>DOMAIN_MEMBER_DESCR</td>
<td>Not available.</td>
<td>Not available.</td>
<td>Not available.</td>
</tr>
<tr>
<td>DOMAIN_MEMBER_REF_CODE</td>
<td>Not available.</td>
<td>Not available.</td>
<td>Hardcode to '<strong>NOT_APPLICABLE</strong>._'</td>
</tr>
<tr>
<td>DOMAIN_MEMBER_DEFN_TYPE_CODE</td>
<td>Not available.</td>
<td>Not available.</td>
<td>Not available.</td>
</tr>
<tr>
<td>INTEGRATION_ID</td>
<td>Not available.</td>
<td>Not available.</td>
<td>This is the unique ID for the record. The INTEGRATION_ID for this file can also be populated as DOMAIN_CODE~DOMAIN_MEMBER_CODE.</td>
</tr>
<tr>
<td>DATASOURCE_NUM_ID</td>
<td>Not available.</td>
<td>Not available.</td>
<td>The unique Data Source ID of the Siebel Instance you are configuring.</td>
</tr>
</tbody>
</table>
B.2.81 How to Configure Flat Files in Price Analytics for E-Business Suite

Background
Oracle Price Analytics sources data from Quoting, Order Management and Advanced Pricing modules by default which are available for E-Business Suite. Additionally, a flat file option has been provided to supplement Dimension attributes and additional Order (or) Quote line prices (for example, Guideline Invoice Price) which are not available in vanilla implementations of above modules.

Note: The configuration file or files for this task are provided on installation of Oracle BI Applications at one of the following locations:


Your system administrator will have copied these files to another location and configured ODI connections to read from this location. Work with your system administrator to obtain the files. When configuration is complete, your system administrator will need to copy the configured files to the location from which ODI reads these files.

ETL from Flat Files
The ETL process loads the non-E-Business Suite data from flat files and data from E-Business Suite Applications database tables into staging tables; then loads data from the staging tables into Oracle Business Analytics Warehouse.

Table B–59 Flat Files and target tables in Oracle Business Analytics Warehouse

<table>
<thead>
<tr>
<th>Flat File</th>
<th>Description</th>
<th>Supplements Target</th>
</tr>
</thead>
</table>
| file_pri_strategy_ds      | This file holds data for additional attributes to supplement EBS Sales Channel Codes. | W_PRI_STRATEGY_D
Price Strategy- A grouping of pricing rules that define the approach for achieving a specific goal around selling and pricing and products, targeted at a Pricing Segment, sub-segment and specific selling situation. |
| file_pri_segment_ds       | This file holds data for additional attributes to supplement EBS Customer Class Codes. | W_PRI_SEGMENT_D
Price Segment - A collection or grouping of customers that exhibit a common set of characteristics and buying behaviors in relation to a vendor of products or services. The Pricing Segment is usually a further refinement of the Market Segment in order to allow the pricing strategist to categorize and understand sets of customers who will respond to common pricing tactics. |
Configuring Domains via Flat Files

Source Domain member values for those Code Dimension attributes which are supplemented using these files can be populated in the Warehouse via a domains file that is, file_domain_member_gs.csv

File Specifications

These files are used across all adaptors and hence only a few columns need to be populated which are supported for the E-Business Suite 12.1.3 Adaptor – the other columns should be populated with NULL.

The columns supported for a file are listed under File Structure in subsequent sections. These files should exist in E-Business Suite 12.1.3 Source Files Folder even if not being used to supplement data. If not, Extract tasks will fail.

The data in the source files should conform to the following specifications:

- Data should be in CSV files (*.csv).
- For Full Load ETL, the files should contain all initial records that are supposed to be loaded into Oracle Business Analytics Warehouse; for incremental ETL, the files should contain only new or updated records.
- All columns in the files should follow E-Business Suite application data model terms and standards, and all ID columns in the files are expected to have corresponding E-Business Suite IDs.
- Data should start from line six of each file. The first five lines of each file will be skipped during ETL process.
- Each row represents one unique record in staging table.

---

<table>
<thead>
<tr>
<th>Flat File</th>
<th>Description</th>
<th>Supplements Target</th>
</tr>
</thead>
<tbody>
<tr>
<td>file_pwf_element_ds</td>
<td>This file holds data for additional attributes to supplement EBS Modifier Lines.</td>
<td>W_PWF_ELEMENT_D</td>
</tr>
<tr>
<td></td>
<td>Price Waterfall Element - PWF elements are the various components that make up a Price Waterfall and include both: (a) Summed up price/revenues such as ceiling and segment revenues and (b) the various adjustments, which may be either a unitized adjustment or actual dollar adjustment for a discounting program, incentive, expense or cost summed up price/revenue.</td>
<td></td>
</tr>
<tr>
<td>file_quoteitem_fs</td>
<td>This file holds the Approved, Requested and Guideline Invoice/Pocket Price and Margins corresponding to transaction data for Quote Item.</td>
<td>WQUOTEITEM_F</td>
</tr>
<tr>
<td></td>
<td>Quote Item–Stores the various quote line revenue amounts and adjustments. The grain of this table is the Quote Line.</td>
<td></td>
</tr>
<tr>
<td>file_orderitem_fs</td>
<td>This file holds the Approved, Requested and Guideline Invoice/Pocket Price and Margins corresponding to transaction data for Order Item.</td>
<td>WORDERITEM_F</td>
</tr>
<tr>
<td></td>
<td>Order Item – Stores the various order line revenue amounts and adjustments. The grain of this table is: Order Line.</td>
<td></td>
</tr>
</tbody>
</table>
- All date values should be in the format of YYYYMMDDHH24MISS. For example, 20071231140300 should be used for December 31, 2007, 2:03 pm.
- Amount (or) Price column values should be of the same Document Currency Code used in the OLTP transaction.
- Column INTEGRATION_ID in all flat files cannot be NULL as it will serve as either the (i) lookup key when supplementing OLTP data or (ii) primary key in case the file serves as the Primary source.

B.2.82 How to Configure Flat Files For Source Domains in Price Analytics for Siebel Applications

This section contains configuration steps that you need to perform on Oracle Price Analytics to populate Source and Conformed Domain Code Members. It contains the following topics:

- Section B.2.82.1, "How to Configure Source Domain Member Name Values"
- Section B.2.82.2, "How To Configure Conformed Domain Members"
- Section B.2.82.3, "Default Seeded Domain Members"

Note: The configuration file or files for this task are provided on installation of Oracle BI Applications at one of the following locations:

Source-independent files: <Oracle Home for BI>\biapps\etl\data_files\src_files\.

Source-specific files: <Oracle Home for BI>\biapps\etl\data_files\src_files\<source adaptor>.

Your system administrator will have copied these files to another location and configured ODI connections to read from this location. Work with your system administrator to obtain the files. When configuration is complete, your system administrator will need to copy the configured files to the location from which ODI reads these files.

B.2.82.1 How to Configure Source Domain Member Name Values

This section provides instructions on how to configure the Source Domain Member Name values for those Codes seeded through the Price flat files. The table below captures the lineage from Presentation Column to Flat file column and relevant Source domain codes.

<table>
<thead>
<tr>
<th>Presentation Table</th>
<th>Presentation Column</th>
<th>File Name</th>
<th>File Column</th>
<th>Source Domain Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Price Waterfall Element</td>
<td>Source Element Code</td>
<td>file_pwf_element_ds.csv</td>
<td>ELEMENT_CODE</td>
<td>PRC_ELEMENT_CODE</td>
</tr>
<tr>
<td>Price Waterfall Element</td>
<td>Source Element Type Code</td>
<td>file_pwf_element_ds.csv</td>
<td>ELEMENT_TYPE_CODE</td>
<td>PRC_ELEMENT_TYPE_CODE</td>
</tr>
<tr>
<td>Price Waterfall Element</td>
<td>Price Group Code</td>
<td>file_pwf_element_ds.csv</td>
<td>GROUP_CODE</td>
<td>PRC_GROUP_CODE</td>
</tr>
<tr>
<td>Price Profile</td>
<td>Profile Attribute 1 Code</td>
<td>file_pri_segment_ds.csv</td>
<td>PROF_ATTR_1_CODE</td>
<td>PRC_PROFILE_1</td>
</tr>
</tbody>
</table>
For example, the different Element Types used in the sample data in file – file_pwf_element_ds.csv are the following:

- **Segment**
  
  The revenues that are part of a waterfall, such as ceiling revenue, list revenue, and so on.

- **Revenue Adjustment**
  
  The adjustments made to the segment elements, for example, ceiling adjustment, invoice adjustment, and so on.

- **Cost Adjustment**
  
  All other adjustments that are not part of any segment.

The corresponding Name values for above Element Types or any of the source domain members specified in Table 10-1 has to be supplied via file – file_domain_member_gs.csv in order for them to show up when querying Names in Analytics.

**File_domain_member_gs.csv**

- The file is generic and therefore does not support any source Pricing system specific features.

- Task SDE_DomainGeneral_PriceElementType will load the file data to Warehouse staging table W_DOMAIN_MEMBER_GS.

- The granularity of this file is each domain member per language for any of the domains listed above.

### Table B–61  **file_domain_member_gs.csv Field Descriptions**

<table>
<thead>
<tr>
<th>Column Name</th>
<th>Data Type</th>
<th>Sample Data</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DOMAIN_CODE</td>
<td>Not available.</td>
<td>Not available.</td>
<td>This should be populated with the Domain Code corresponding to the Source Domain that is to be configured as per Table 10-1.</td>
</tr>
<tr>
<td>DOMAIN_TYPE_CODE</td>
<td>Not available.</td>
<td>Not available.</td>
<td>Defaulted to 'S' - indicates this is a Source Domain Code.</td>
</tr>
<tr>
<td>DOMAIN_MEMBER_CODE</td>
<td>Not available.</td>
<td>Not available.</td>
<td>This should be populated with the CODE value supplied in any of the above files.</td>
</tr>
</tbody>
</table>
Table B–61 (Cont.) file_domain_member_gs.csv Field Descriptions

<table>
<thead>
<tr>
<th>Column Name</th>
<th>Data Type</th>
<th>Sample Data</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DOMAIN_MEMBER_NAME</td>
<td>Not available.</td>
<td>Not available .</td>
<td>This should be populated with the NAME value that corresponds to the Member Code supplied.</td>
</tr>
<tr>
<td>DOMAIN_MEMBER_DESCR</td>
<td>Not available.</td>
<td>Not available .</td>
<td>Not available.</td>
</tr>
<tr>
<td>DOMAIN_MEMBER_REF_CODE</td>
<td>Not available.</td>
<td>Not available .</td>
<td>Hardcode to '<strong>NOT_APPLICABLE</strong>'.</td>
</tr>
<tr>
<td>DOMAIN_MEMBER_DEFN_TYPE_CODE</td>
<td>Not available.</td>
<td>Not available .</td>
<td>Not available.</td>
</tr>
<tr>
<td>INTEGRATION_ID</td>
<td>Not available.</td>
<td>Not available .</td>
<td>This is the unique ID for the record. The INTEGRATION_ID for this file can also be populated as DOMAIN_CODE~DOMAIN_MEMBER_CODE.</td>
</tr>
<tr>
<td>DATASOURCE_NUM_ID</td>
<td>Not available.</td>
<td>Not available .</td>
<td>The unique Data Source ID of the Siebel Instance you are configuring.</td>
</tr>
</tbody>
</table>

B.2.82.2 How To Configure Conformed Domain Members

There are two conformed domains used in Oracle Price Analytics as summarized in the table below:

Table B–62 Configure Flat Files For Source Domains in Price Analytics

<table>
<thead>
<tr>
<th>Presentation Table</th>
<th>Presentation Column</th>
<th>File Name</th>
<th>File Column</th>
<th>Source Domain Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Price Waterfall Element</td>
<td>Element Code</td>
<td>file_pwf_element_ds.csv</td>
<td>W_ELEMENT_CODE</td>
<td>Conformed Price Waterfall Element</td>
</tr>
<tr>
<td>Price Waterfall Element</td>
<td>Element Type</td>
<td>file_pwf_element_ds.csv</td>
<td>W_ELEMENT_TYPE_CODE</td>
<td>Conformed Price Waterfall Element Type</td>
</tr>
</tbody>
</table>

The source file file_pwf_element_ds.csv should already have the conformed domain mapped and should have values for the above columns for the corresponding Source Domain Code Member.

As these conformed domains are extensible by the user, the Name values for these domain members of Conformed domains specified in the Table above should be entered in Oracle BI Applications Configuration Manager.

B.2.82.3 Default Seeded Domain Members

This section provides instructions on how to configure the Source Domain Member Name values for those Codes seeded through the Price flat files. The table below
captures the lineage from Presentation Column to Flat file column and relevant Source domain codes.

**Table B–63 Domain Map: Price Waterfall Element -> Conformed Price Waterfall Element**

<table>
<thead>
<tr>
<th>Source Price Waterfall Element Member Code</th>
<th>Source Price Waterfall Element Name</th>
<th>Conformed Price Waterfall Element Member Code</th>
<th>Conformed Price Waterfall Element Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ceiling Revenue</td>
<td>Ceiling Revenue</td>
<td>Ceiling Revenue</td>
<td>Ceiling Revenue</td>
</tr>
<tr>
<td>Cost</td>
<td>Cost</td>
<td>Cost</td>
<td>Cost</td>
</tr>
<tr>
<td>Invoice Revenue</td>
<td>Invoice Revenue</td>
<td>Invoice Revenue</td>
<td>Invoice Revenue</td>
</tr>
<tr>
<td>Pocket Margin</td>
<td>Pocket Margin</td>
<td>Pocket Margin</td>
<td>Pocket Margin</td>
</tr>
<tr>
<td>Pocket Revenue</td>
<td>Pocket Revenue</td>
<td>Pocket Revenue</td>
<td>Pocket Revenue</td>
</tr>
<tr>
<td>Segment Revenue</td>
<td>Segment Revenue</td>
<td>Segment Revenue</td>
<td>Segment</td>
</tr>
</tbody>
</table>

This section provides instructions on how to configure the Source Domain Member Name values for those Codes seeded through the Price flat files. The table below captures the lineage from Presentation Column to Flat file column and relevant Source domain codes.

**Table B–64 Domain Map: Price Waterfall Element Type -> Conformed Price Waterfall Element Type**

<table>
<thead>
<tr>
<th>Source Price Waterfall Element Member Code</th>
<th>Source Price Waterfall Element Name</th>
<th>Conformed Price Waterfall Element Member Code</th>
<th>Conformed Price Waterfall Element Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost Adjustment</td>
<td>Cost Adjustment</td>
<td>Cost Adjustment</td>
<td>Cost Adjustment</td>
</tr>
<tr>
<td>Revenue Adjustment</td>
<td>Revenue Adjustment</td>
<td>Revenue Adjustment</td>
<td>Revenue Adjustment</td>
</tr>
<tr>
<td>Segment</td>
<td>Segment</td>
<td>Segment</td>
<td>Segment</td>
</tr>
</tbody>
</table>

These can be included in the file – file_pwf_element_ds.csv or new source/conformed domain members can be entered as mentioned in the previous sections.

**B.2.83 How To Configure Flat Files in Price Analytics for Siebel Applications**

This section describes how to configure Oracle Price Analytics. It contains the following topics:

**Note:** The configuration file or files for this task are provided on installation of Oracle BI Applications at one of the following locations:

Source-independent files: `<Oracle Home for BI>\biapps\etl\data_files\src_files\`.

Source-specific files: `<Oracle Home for BI>\biapps\etl\data_files\src_files\<source adaptor>`.

Your system administrator will have copied these files to another location and configured ODI connections to read from this location. Work with your system administrator to obtain the files. When configuration is complete, your system administrator will need to copy the configured files to the location from which ODI reads these files.
Section B.2.83.1, "Configuration Required Before a Full Load for Oracle Price Analytics"

Section B.2.83.2, "Price Waterfall Element Sample Data"

### B.2.83.1 Configuration Required Before a Full Load for Oracle Price Analytics

This section contains configuration steps that you need to perform on Oracle Price Analytics before you do a full data load.

#### Configuration Steps for Universal Sources

Oracle Price Analytics relies on data from universal sources, such as flat files, for waterfall related data.

The Table below lists the flat file source tables and the corresponding Oracle Business Analytics Warehouse tables for waterfall related data.

<table>
<thead>
<tr>
<th>Flat File Description</th>
<th>Loads Target</th>
</tr>
</thead>
<tbody>
<tr>
<td>FILE_PRI_STRATEGY_DS</td>
<td>W_PRI_STRATEGY_D</td>
</tr>
<tr>
<td>FILE_PRI_SEGMENT_DS</td>
<td>W_PRI_SEGMENT_D</td>
</tr>
<tr>
<td>FILE_PWF_ELEMENT</td>
<td>W_PWF_ELEMENT_D</td>
</tr>
<tr>
<td>FILE_ORDIT_WTR_LOG_FS</td>
<td>W_ORDIT_WTR_LOG_F</td>
</tr>
<tr>
<td>FILE_QTEIT_WTR_LOG_FS</td>
<td>W_QTEIT_WTR_LOG_F</td>
</tr>
</tbody>
</table>

#### B.2.83.1.1 Populating Flat File Data For Siebel Sources

This section provides guidelines for populating pricing data into flat files when the source is Siebel.

Oracle Price Analytics does not provide a way to load pricing strategy, pricing segment or price waterfall element information from a Siebel source. All such dimensions must be loaded with a universal source, such as flat files.

The source files for the pricing-related dimensions must conform to the following rules:

- The Pricing Segment and Pricing Strategy IDs provided in the flat file must be the same for all the order lines in any given order.
- The ROW_ID must be unique in all the flat files because they are used to form the Integration IDs.
- The information added must be consistent with the existing data in the Siebel system. For instance, the Competitor Name added in the file must exist in the source system for proper resolution.
The Order Line IDs in the Order Item Waterfall fact source must exist in the source table S_ORDER_ITEM.

The Quote Line IDs in Quote Item Waterfall fact source must be a part of source table S_QUOTE_ITEM.

The Oracle Price Analytics facts W_ORDIT_WTR_LOG_F and W_QTEIT_WTR_LOG_F are loaded using the Order Item and Quote Item facts as well as flat files.

The pricing columns in the Order Item and Quote Item facts are loaded as shown in the table below.

### Table B–66 Pricing columns in the Order Item and Quote Item facts

<table>
<thead>
<tr>
<th>Column Name</th>
<th>Expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEIL_PRI</td>
<td>IIF(ISNULL(FLAT_FILE_DATA),START_PRI,FLAT_FILE_DATA)</td>
</tr>
<tr>
<td>SEG_PRI</td>
<td>IIF(ISNULL(FLAT_FILE_DATA),START_PRI,FLAT_FILE_DATA)</td>
</tr>
<tr>
<td>INV_PRI</td>
<td>IIF(ISNULL(FLAT_FILE_DATA),NET_PRI,FLAT_FILE_DATA)</td>
</tr>
<tr>
<td>PKT_PRI</td>
<td>IIF(ISNULL(FLAT_FILE_DATA),NET_PRI,FLAT_FILE_DATA)</td>
</tr>
<tr>
<td>PKT_MARGIN</td>
<td>IIF(ISNULL(FLAT_FILE_DATA),START_PRI-NET_PRICE,FLAT_FILE_DATA)</td>
</tr>
</tbody>
</table>

If you need to load different values for the pricing columns other than the existing prices, you can use the flat files FILE_ORDERITEM_FS.csv and FILE_QUOTEITEM_FS.csv. Based on the Integration IDs, the pricing data is looked up from these flat files and loaded into the fact tables.

**Note:** Even if not supplementing QUOTEITEM or ORDERITEM – empty files should be available in the adaptor source files folder so that extract tasks do not fail.

#### B.2.83.1.2 Populating Flat File Data for Non-Siebel Sources

This section provides guidelines for populating pricing data into flat files for non-Siebel sources.

For non-Siebel sources, the source files for the pricing-related dimensions must conform to the following rules:

- The Order Line IDs in the Order Item Waterfall fact source must exist in fact file source FILE_ORDERITEM_FS.
- The Quote Line IDs in Quote Item Waterfall fact source must be a part of the fact file source FILE_QUOTEITEM_FS.
- Ensure all the ROW_IDs are unique so as to avoid any duplication or index issues.
- All the fact IDs added must be consistent with the ROW_ID of dimension file sources for proper resolution.

#### B.2.83.1.3 Data Standards for Flat Files

The flat files being used for Oracle Price Analytics facts, such as FILE_ORDIT_WTR_LOG_FS and FILE_QTEIT_WTR_LOG_FS, must be consistent with the line item tables. The prices in the waterfall log table must be the aggregated price in the line item tables. And, in the case of assembled or packaged products, the item tables store the package or assembly and the individual items that make up the package or assembly as separate line items. The line items in the flat file must store the individual prices and not rolled up prices; that is, if a package does not have a price and only the items inside it have prices, either the price of the package should be 0 and the items should have the prices or the package should...
have the rolled up prices and the item prices should be 0 to prevent double counting. Also, the Waterfall log table should store only the package or assembly and not the items that comprise it, and the price should be the rolled up price for a unit package or assembly.

**B.2.83.2 Price Waterfall Element Sample Data**

This section provides price waterfall element sample data.

<table>
<thead>
<tr>
<th>ELEMENT_NAME</th>
<th>ELEMENT_TYPE</th>
<th>GROUP_NAME</th>
<th>BASIS</th>
<th>SEGMENT</th>
<th>TOKEN</th>
<th>ORDER_INDEX</th>
<th>REVN_IND</th>
<th>COST_IND</th>
<th>DEEP ON ZERO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ceiling Revenue</td>
<td>Segment</td>
<td>Revenue</td>
<td>Ceiling Revenue</td>
<td>CEILING</td>
<td>4</td>
<td>0</td>
<td>Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Segment Revenue</td>
<td>Segment</td>
<td>Revenue</td>
<td>Segment Revenue</td>
<td>SEGMENT</td>
<td>4</td>
<td>0</td>
<td>Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Invoice Revenue</td>
<td>Segment</td>
<td>Revenue</td>
<td>Invoice Revenue</td>
<td>INVOICE</td>
<td>7</td>
<td>0</td>
<td>Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pocket Revenue</td>
<td>Segment</td>
<td>Revenue</td>
<td>Pocket Revenue</td>
<td>POCKET</td>
<td>10</td>
<td>0</td>
<td>Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pocket Margin</td>
<td>Segment</td>
<td>Revenue</td>
<td>Pocket Margin</td>
<td>POCKET_MARGIN</td>
<td>15</td>
<td>0</td>
<td>Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cost</td>
<td>Adjustment</td>
<td>Cost</td>
<td>Pocket Revenue</td>
<td>COST</td>
<td>13</td>
<td>1</td>
<td>Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cost Adjustment</td>
<td>Cost Adjustment</td>
<td>Cost Adjustment</td>
<td>Pocket Revenue</td>
<td>OFF_COST</td>
<td>14</td>
<td>1</td>
<td>Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ceiling Adjustment</td>
<td>Adjustment Revenue</td>
<td>Ceiling Adjustment</td>
<td>Ceiling Revenue</td>
<td>OFF_CEILING</td>
<td>8</td>
<td>0</td>
<td>Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Volume Adjustment</td>
<td>Revenue Adjustment</td>
<td>Volume</td>
<td>Segment Revenue</td>
<td>OFF_SEGMENT</td>
<td>5</td>
<td>0</td>
<td>Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Invoice Adjustment</td>
<td>Revenue Adjustment</td>
<td>Invoice</td>
<td>Invoice Revenue</td>
<td>OFF_INVOICE</td>
<td>2</td>
<td>0</td>
<td>Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pocket Adjustment</td>
<td>Revenue Adjustment</td>
<td>Pocket</td>
<td>Pocket Revenue</td>
<td>OFF_POCKET</td>
<td>11</td>
<td>0</td>
<td>Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Product Adjustment</td>
<td>Revenue Adjustment</td>
<td>Product</td>
<td>Segment Revenue</td>
<td>OFF_SEGMENT</td>
<td>6</td>
<td>0</td>
<td>Y</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**B.2.83.2.1 Example of an Order for a Simple Product**  In this scenario, a simple order is created for a company that manufactures and sells lap tops. The graphic below shows an example of the order information in the Order Item fact table.

**Sample Data for a Simple Product**

<table>
<thead>
<tr>
<th>Sales Order Number</th>
<th>LINE ID</th>
<th>PRODUCT</th>
<th>QUANTITY</th>
<th>UNIT PRICE</th>
<th>TOP_LVL_FLG</th>
<th>INC_CALC_IND</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>1001</td>
<td>Laptop</td>
<td>10</td>
<td>$1,248</td>
<td>Y</td>
<td>1</td>
</tr>
</tbody>
</table>

The graphic below shows an example of the Order Item waterfall log fact data for the transaction.
Order Item Waterfall Log Fact Data for a Simple Product

<table>
<thead>
<tr>
<th>Order Identifier</th>
<th>Line ID</th>
<th>Row Identifier</th>
<th>PWF Element Identifier</th>
<th>Extended Qty</th>
<th>Unit Price</th>
<th>Element Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>1001</td>
<td>2001</td>
<td>Ceiling Revenue</td>
<td>10</td>
<td>$1,248</td>
<td>$12,480</td>
</tr>
<tr>
<td>100</td>
<td>1001</td>
<td>2002</td>
<td>Ceiling Revenue</td>
<td>10</td>
<td>-200</td>
<td>-2000</td>
</tr>
<tr>
<td>100</td>
<td>1001</td>
<td>2003</td>
<td>Segment Revenue</td>
<td>10</td>
<td>$1,048</td>
<td>$10,480</td>
</tr>
<tr>
<td>100</td>
<td>1001</td>
<td>2004</td>
<td>Volume Adjustment</td>
<td>10</td>
<td>-100</td>
<td>-1000</td>
</tr>
<tr>
<td>100</td>
<td>1001</td>
<td>2005</td>
<td>Product Adjustment</td>
<td>10</td>
<td>-50</td>
<td>-500</td>
</tr>
<tr>
<td>100</td>
<td>1001</td>
<td>2006</td>
<td>Invoice Revenue</td>
<td>10</td>
<td>998</td>
<td>9980</td>
</tr>
<tr>
<td>100</td>
<td>1001</td>
<td>2007</td>
<td>Invoice Adjustment</td>
<td>10</td>
<td>120</td>
<td>1200</td>
</tr>
<tr>
<td>100</td>
<td>1001</td>
<td>2008</td>
<td>Pocket Revenue</td>
<td>10</td>
<td>778</td>
<td>7780</td>
</tr>
<tr>
<td>100</td>
<td>1001</td>
<td>2009</td>
<td>Pocket Adjustment</td>
<td>10</td>
<td>-28</td>
<td>-280</td>
</tr>
<tr>
<td>100</td>
<td>1001</td>
<td>2010</td>
<td>Cost</td>
<td>10</td>
<td>400</td>
<td>4000</td>
</tr>
<tr>
<td>100</td>
<td>1001</td>
<td>2011</td>
<td>Pocket Margin</td>
<td>10</td>
<td>290</td>
<td>2900</td>
</tr>
</tbody>
</table>

As this example shows, each waterfall element is stored as an individual record and the Waterfall Element dimension identifies whether the element is a revenue or an adjustment.

B.2.83.2.2 Example of an Order for a Configured Product This section shows an example of an order for an assembled product that has multiple child products.

Sample Data for an Assembled Product

<table>
<thead>
<tr>
<th>Sales Order Number</th>
<th>LINE ID</th>
<th>PRODUCT</th>
<th>QUANTITY</th>
<th>UNIT PRICE</th>
<th>TOP_LVL_IN_FLG</th>
<th>INCL_CALC_IND</th>
</tr>
</thead>
<tbody>
<tr>
<td>101</td>
<td>1002</td>
<td>Desktop</td>
<td>1</td>
<td>$1,200</td>
<td>Y</td>
<td>1</td>
</tr>
<tr>
<td>101</td>
<td>1003</td>
<td>Monitor</td>
<td>1</td>
<td>$300</td>
<td>Y</td>
<td>0</td>
</tr>
<tr>
<td>101</td>
<td>1004</td>
<td>Keyboard</td>
<td>1</td>
<td>$250</td>
<td>N</td>
<td>0</td>
</tr>
<tr>
<td>101</td>
<td>1005</td>
<td>Mouse</td>
<td>1</td>
<td>$150</td>
<td>N</td>
<td>0</td>
</tr>
</tbody>
</table>

The Price Waterfall is stored for the packaged product and not the individual child items. The graphic below shows an example of the Order Item waterfall log fact data for the transaction.
Order Item Waterfall Log Fact Data for an Assembled Product

<table>
<thead>
<tr>
<th>Order</th>
<th>Line ID</th>
<th>Row Identifier</th>
<th>PWF Element Identifier</th>
<th>Extended Qty</th>
<th>Unit Price</th>
<th>Element Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>101</td>
<td>1002</td>
<td>2012</td>
<td>Ceiling Revenue</td>
<td>1</td>
<td>$1,200</td>
<td>$1,200</td>
</tr>
<tr>
<td>101</td>
<td>1002</td>
<td>2013</td>
<td>Ceiling Adjustment</td>
<td>1</td>
<td>$(200)</td>
<td>$(200)</td>
</tr>
<tr>
<td>101</td>
<td>1002</td>
<td>2014</td>
<td>Segment Revenue</td>
<td>1</td>
<td>$1,000</td>
<td>$1,000</td>
</tr>
<tr>
<td>101</td>
<td>1002</td>
<td>2015</td>
<td>Volume Adjustment</td>
<td>1</td>
<td>$(100)</td>
<td>$(100)</td>
</tr>
<tr>
<td>101</td>
<td>1002</td>
<td>2016</td>
<td>Product Adjustment</td>
<td>1</td>
<td>$(50)</td>
<td>$(50)</td>
</tr>
<tr>
<td>101</td>
<td>1002</td>
<td>2017</td>
<td>Invoice Revenue</td>
<td>1</td>
<td>$850</td>
<td>$850</td>
</tr>
<tr>
<td>101</td>
<td>1002</td>
<td>2018</td>
<td>Invoice Adjustment</td>
<td>1</td>
<td>$(120)</td>
<td>$(120)</td>
</tr>
<tr>
<td>101</td>
<td>1002</td>
<td>2019</td>
<td>Pocket Revenue</td>
<td>1</td>
<td>$730</td>
<td>$730</td>
</tr>
<tr>
<td>101</td>
<td>1002</td>
<td>2020</td>
<td>Pocket Adjustment</td>
<td>1</td>
<td>$(80)</td>
<td>$(80)</td>
</tr>
<tr>
<td>101</td>
<td>1002</td>
<td>2021</td>
<td>Cost</td>
<td>1</td>
<td>$(400)</td>
<td>$(400)</td>
</tr>
<tr>
<td>101</td>
<td>1002</td>
<td>2022</td>
<td>Pocket Margin</td>
<td>1</td>
<td>$250</td>
<td>$250</td>
</tr>
</tbody>
</table>

**B.2.84 How to Configure Flat Files For Source Domains in Price Analytics for Universal**

This section contains configuration steps that you need to perform on Oracle Price Analytics to populate Source and Conformed Domain Code Members. It contains the following topics:

- Section B.2.84.1, "How to Configure Source Domain Member Name Values"
- Section B.2.84.2, "How To Configure Conformed Domain Members"
- Section B.2.84.3, "Default Seeded Domain Members"

**Note:** The configuration file or files for this task are provided on installation of Oracle BI Applications at one of the following locations:

- Source-independent files: `<Oracle Home for BI>\biapps\etl\data_files\src_files\`
- Source-specific files: `<Oracle Home for BI>\biapps\etl\data_files\src_files\<source adaptor>.

Your system administrator will have copied these files to another location and configured ODI connections to read from this location. Work with your system administrator to obtain the files. When configuration is complete, your system administrator will need to copy the configured files to the location from which ODI reads these files.

**B.2.84.1 How to Configure Source Domain Member Name Values**

This section provides instructions on how to configure the Source Domain Member Name values for those Codes seeded through the Price flat files. The table below captures the lineage from Presentation Column to Flat file column and relevant Source domain codes.
For example, the different Element Types used in the sample data in file – file_pwf_element_ds.csv are the following:

- **Segment**
  The revenues that are part of a waterfall, such as ceiling revenue, list revenue, and so on.

- **Revenue Adjustment**
  The adjustments made to the segment elements, for example, ceiling adjustment, invoice adjustment, and so on.

- **Cost Adjustment**
  All other adjustments that are not part of any segment.

The corresponding Name values for above Element Types or any of the source domain members specified in Table 10-1 has to be supplied via file – file_domain_member_gs.csv in order for them to show up when querying Names in Analytics.

**File_domain_member_gs.csv**

- The file is generic and therefore does not support any source Pricing system specific features.

- Task SDE_DomainGeneral_PriceElementType will load the file data to Warehouse staging table W.DOMAIN_MEMBER_GS.

- The granularity of this file is each domain member per language for any of the domains listed above.
### Table B–68  file_domain_member_gs.csv Field Descriptions

<table>
<thead>
<tr>
<th>Column Name</th>
<th>Data Type</th>
<th>Sample Data</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DOMAIN_CODE</td>
<td>Not available.</td>
<td>Not available.</td>
<td>This should be populated with the Domain Code corresponding to the Source Domain that is to be configured as per Table 10-1.</td>
</tr>
<tr>
<td>DOMAIN_TYPE_CODE</td>
<td>Not available.</td>
<td>Not available.</td>
<td>Defaulted to ‘S’ - indicates this is a Source Domain Code.</td>
</tr>
<tr>
<td>DOMAIN_MEMBER_CODE</td>
<td>Not available.</td>
<td>Not available.</td>
<td>This should be populated with the CODE value supplied in any of the above files.</td>
</tr>
<tr>
<td>DOMAIN_MEMBER_NAME</td>
<td>Not available.</td>
<td>Not available.</td>
<td>This should be populated with the NAME value that corresponds to the Member Code supplied.</td>
</tr>
<tr>
<td>DOMAIN_MEMBER_DESCR</td>
<td>Not available.</td>
<td>Not available.</td>
<td>Not available.</td>
</tr>
<tr>
<td>DOMAIN_MEMBER_REF_CODE</td>
<td>Not available.</td>
<td>Not available.</td>
<td>Hardcode to ‘<strong>NOT_APPLICABLE</strong>’.</td>
</tr>
<tr>
<td>DOMAIN_MEMBER_DEFN_TYPE_CODE</td>
<td>Not available.</td>
<td>Not available.</td>
<td>Not available.</td>
</tr>
<tr>
<td>INTEGRATION_ID</td>
<td>Not available.</td>
<td>Not available.</td>
<td>This is the unique ID for the record. The INTEGRATION_ID for this file can also be populated as DOMAIN_CODE~DOMAIN_MEMBER_CODE.</td>
</tr>
<tr>
<td>DATASOURCE_NUM_ID</td>
<td>Not available.</td>
<td>Not available.</td>
<td>The unique Data Source ID of the Siebel Instance you are configuring.</td>
</tr>
</tbody>
</table>

### B.2.84.2 How To Configure Conformed Domain Members

There are two conformed domains used in Oracle Price Analytics as summarized in the table below:

### Table B–69  Configure Flat Files For Source Domains in Price Analytics

<table>
<thead>
<tr>
<th>Presentation Table</th>
<th>Presentation Column</th>
<th>File Name</th>
<th>File Column</th>
<th>Source Domain Code</th>
</tr>
</thead>
</table>
| Price Waterfall Element  | Element Code         | file_pwf_element_
|                          | ds.csv                | W_ELEMENT_CODE            | Conformed Price Waterfall Element       |
| Price Waterfall Element  | Element Type         | file_pwf_element_
|                          | ds.csv                | W_ELEMENT_TYPE_CODE       | Conformed Price Waterfall Type          |
The source file file_pwf_element_ds.csv should already have the conformed domain mapped and should have values for the above columns for the corresponding Source Domain Code Member.

As these conformed domains are extensible by the user, the Name values for these domain members of Conformed domains specified in Table 10-2 should be entered in Oracle BI Applications Configuration Manager.

**B.2.84.3 Default Seeded Domain Members**

This section provides instructions on how to configure the Source Domain Member Name values for those Codes seeded through the Price flat files. The table below captures the lineage from Presentation Column to Flat file column and relevant Source domain codes.

<p>| Table B–70 Domain Map: Price Waterfall Element -&gt; Conformed Price Waterfall Element |
|---------------------------------|---------------------------------|---------------------------------|---------------------------------|</p>
<table>
<thead>
<tr>
<th>Source Price Waterfall Element Member Code</th>
<th>Source Price Waterfall Element Name</th>
<th>Conformed Price Waterfall Element Member Code</th>
<th>Conformed Price Waterfall Element Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ceiling Revenue</td>
<td>Ceiling Revenue</td>
<td>Ceiling Revenue</td>
<td>Ceiling Revenue</td>
</tr>
<tr>
<td>Cost</td>
<td>Cost</td>
<td>Cost</td>
<td>Cost</td>
</tr>
<tr>
<td>Invoice Revenue</td>
<td>Invoice Revenue</td>
<td>Invoice Revenue</td>
<td>Invoice Revenue</td>
</tr>
<tr>
<td>Pocket Margin</td>
<td>Pocket Margin</td>
<td>Pocket Margin</td>
<td>Pocket Margin</td>
</tr>
<tr>
<td>Pocket Revenue</td>
<td>Pocket Revenue</td>
<td>Pocket Revenue</td>
<td>Pocket Revenue</td>
</tr>
<tr>
<td>Segment Revenue</td>
<td>Segment Revenue</td>
<td>Segment Revenue</td>
<td>Segment Revenue</td>
</tr>
</tbody>
</table>

This section provides instructions on how to configure the Source Domain Member Name values for those Codes seeded through the Price flat files. The table below captures the lineage from Presentation Column to Flat file column and relevant Source domain codes.

<table>
<thead>
<tr>
<th>Table B–71 Domain Map: Price Waterfall Element Type -&gt; Conformed Price Waterfall Element Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>---------------------------------</td>
</tr>
<tr>
<td>Source Price Waterfall Element Member Code</td>
</tr>
<tr>
<td>------------------------------------------</td>
</tr>
<tr>
<td>Cost Adjustment</td>
</tr>
<tr>
<td>Revenue Adjustment</td>
</tr>
<tr>
<td>Segment</td>
</tr>
</tbody>
</table>

These can be included in the file – file_pwf_element_ds.csv or new source/conformed domain members can be entered as mentioned in the previous sections.

**B.2.85 How to configure UOMs**

To configure Units of Measure (UOM), you use Externally Conformed Domains in Oracle BI Applications Configuration Manager. For more information about how to configure an externally conformed domain, see Section 4.4.8, "How to Configure Externally Conformed Domains".
B.2.86 How to Set Up Default Fiscal Calendars for PeopleSoft

Semantic layer (RPD) metadata contains session variables to store the current fiscal year, fiscal quarter, and fiscal period and so on for the user. To support multiple fiscal calendars, you need to get the default fiscal calendar for a user based on the Ledger and/or Business Unit assigned to the user, and then get the current fiscal year, quarter and so on based on this default fiscal calendar. In order to do this, appropriate initialization blocks need to be enabled depending on the deployed source system and all others have to be disabled. The initialization block names relevant to various source systems are given below. If more than one source system is deployed, then you must also enable the initialization blocks of those source systems.

There are two sets of init blocks related to this feature:

**Ledger related Init Blocks:**
- Oracle Fusion Applications: Ledgers_MCAL Fusion
- E-Business Suite 11i: Ledgers_MCAL EBS11
- E-Business Suite R12: Ledgers_MCAL EBS12
- Oracle PeopleSoft: Ledgers_MCAL PSFT

**Operating Unit related Init Blocks:**
- Oracle Fusion Applications: Operating Unit Orgs Calendar Fusion
- E-Business Suite (All versions): Operating Unit Orgs Calendar EBS
- Oracle PeopleSoft: Operating Unit Orgs Calendar PSFT

To enable initialization blocks, follow the steps below:

1. In Oracle BI EE Administration Tool, edit the BI metadata repository (for example, OracleBIAnalyticsApps.rpd).
2. Choose Manage, then Variables.
3. Under Session – Initialization Blocks, open the initialization block that you need to enable.
4. Clear the Disabled check box.
5. Save the BI metadata repository (that is, the RPD file).

B.2.87 How to Configure Cost Fact In Projects Analytics for EBS

Actual Costs are extracted from the Cost Distribution Lines table in the Project Costing module in E-Business Suite and loaded into the Cost Line Fact (W_PROJ_COST_LINE_F) table. For E-Business Suite, Transaction Currency is the Document Currency for this fact.

**Note:** The GL Date is assigned to the Cost Distribution Line only (during Cost distribution) and not to the Expenditure Item records. The Expenditure data can only be analyzed by the Enterprise Calendar dimension and not by the GL calendar. The Expenditure data cannot be analyzed by the GL Account because the GL account is associated only when the data is distributed.

**Cost Fact Canonical Date**
The Canonical Date dimension for the Cost fact is based on the PRVDR_GL_DATE from Distribution Line table, whereas the Canonical Date dimension for the Expenditure fact is based on the EXPENDITURE_DATE from the Expenditure Items table.

The multi calendar date dimension contains calendars for multiple organizations. It is essential that all records in a report analyzing data by the Fiscal Calendar (Dim - Fiscal Calendar) point to the same calendar. For this reason, all reports in the dashboard are filtered on the Project Business Unit. To make all Cost records in a Project Business Unit point to the same calendar, the RCVR_GL_DATE and RCVR_PA_DATE columns are used to populate the GL_ACCOUNTING_DT_WID and PROJ_ACCOUNTING_DT_WID columns in the fact table respectively. Expenditure OU view (in Cost Fact) can be built using Enterprise Calendar as well.

**Domain Values for Cost Fact**

The Project Cost Transfer Status has been modeled as a domain value and can be configured in FSM.

**Incremental Logic for Cost Fact**

The incremental extract logic for the Cost fact table depends on the 'REQUEST_ID' field of the Cost Distribution Lines table. The W_PROJ_ETL_PS parameter table facilitates this logic. Using a separate ODI interface, the maximum Request Id in the source table at the time of the ETL run is stored in this table, which is subsequently used to populate the SDE task (SDE_ORA_PROJECTCOSTLINE) level ODI variable #EBS_REQUEST_ID_1. It is initialized using the following query: SELECT COALESCE((SELECT PRE_REQUEST_ID FROM QUALIFY_DS(W_PROJ_ETL_PS) WHERE TBL_NAME = 'PA_COST_DISTRIBUTION_LINES_ALL'),0) FROM DUAL()

### Note:
If you are missing some Cost records in W_PROJ_COST_LINE_F after an incremental update, download patch 9896800 from My Oracle Support. The Tech Note included with the patch explains the scenarios where this can happen, and the proposed solution.

**Configuring the Project Cost Aggregate Table**

The Project Cost aggregate table (W_PROJ_COST_A) is used to capture information about the project cost distributions for the expenditure items. You need to configure the Project Cost Lines aggregate table before the initial ETL run and subsequent incremental ETL.

Before the initial ETL run, you need to configure the COST_TIME_GRAIN parameter in FSM for the time aggregation level in the Project Cost Lines aggregate fact table.

By default, the COST_TIME_GRAIN parameter has a value of PERIOD. The possible values for the COST_TIME_GRAIN parameter are:

- PERIOD
- QUARTER
- YEAR

The Project Cost Lines aggregate table is fully loaded from the base table in the initial ETL run. The table can grow to millions of records. Therefore, the Project Cost aggregate table is not fully reloaded from the base table after each incremental ETL run. The Oracle Business Analytics Warehouse minimizes the incremental aggregation effort by modifying the aggregate table incrementally as the base table is updated.
The process is as follows:

1. Oracle Business Analytics Warehouse finds the records to be updated in the base table since the last ETL run, and loads them into the W_PROJ_COST_LINE_TMP table. The measures in these records are multiplied by (-1). The mapping responsible for this task is SIL_ProjectCostLinesFact_Derive_PreLoadImage.

2. Oracle Business Analytics Warehouse finds the inserted or updated records in the base table since the last ETL run, and loads them into the W_PROJ_COST_LINE_TMP table, without changing their sign. The mapping responsible for this task is SIL_ProjectCostLinesFact_Derive_PreLoadImage, which is run before PLP_ProjectCostLinesFact_Derive_PostLoadImage updates or inserts records in the base table.

3. Oracle Business Analytics Warehouse aggregates the W_PROJ_COST_LINE_TMP table and load to W_PROJ_COST_A_TMP, which has the same granularity as the W_PROJ_COST_A table.

4. The PLP_ProjectCostLinesAggregate_Derive mapping looks up the W_PROJ_COST_A aggregate table to update existing buckets or insert new buckets in the aggregate table (the mapping is PLP_ProjectCostLinesAggregate_Load).

**Configuring Revenue Fact for E-Business Suite**

Actual Revenue Line records are extracted from the Revenue/Event Distribution Lines tables (PA_CUST_REV_DISTRIB_LINES_ALL and PA_CUST_EVENT_DIST_ALL) in the Project Costing module in E-Business Suite and are loaded into the Revenue Line Fact (W_PROJ_REVENUE_LINE_F) table.


---

**Note:** E-Business Suite concurrent programs (such as PRC: Generate Draft Revenue for a Single Project or PRC: Generate Draft Revenue for a Range of Projects) for distributing revenue should be run before the ETL is run to load Oracle Business Analytics Warehouse.

---

For the Revenue Header Fact (W_PROJ_REVENUE_HDR_F), the primary source is the PA_DRAFT.REVENUES table. Revenue line metrics, such as Bill and Revenue amounts, are aggregated in this table as well.

**Revenue Fact Canonical Date**

The Revenue Fact Canonical Date dimension is based on the GL_DATE from the Draft Revenues table.

**Revenue Facts Staging Table**

The Revenue Facts Staging Table is a common staging table that loads both the header and the line level revenue fact tables.

**Revenue Fact Multicurrency Support**

Some metrics such as Unearned Revenue, Unbilled Receivables, Realized Gains, and Realized Losses are only available in Local Currency and Global Currencies. There are three columns in w_proj_revenue_line_f and w_proj_revenue_hdr_f respectively for revenue amounts in global currencies.

**Revenue Fact Domain Values**
The project revenue status has been modeled as a domain value and can be configured in FSM.

**Incremental Logic for Revenue Fact**

The incremental extract logic for the Revenue fact table depends on the REQUEST_ID field of the Revenue Distribution Lines table. The W_PROJ_ETL_PS parameter facilitates this logic, and through a separate ODI process, the maximum Request Id in the source table at the time of the ETL run is stored in this table, which is subsequently used to populate the following variables for the SDE_ORA_ProjectRevenueLine task in ODI:

- #EBS_REQUEST_ID_2
- #EBS_REQUEST_ID_3
- #EBS_REQUEST_ID_4

They are initialized using the following queries:

- \[
  \text{SELECT COALESCE((SELECT COALESCE(PRE_REQUEST_ID,0) FROM QUALIFY_DS(W_PROJ_ETL_PS) WHERE TBL_NAME = 'PA_CUST_EVENT_RDL_ALL'),0) FROM_DUAL()}
  \]

- \[
  \text{SELECT COALESCE((SELECT COALESCE(PRE_REQUEST_ID,0) FROM QUALIFY_DS(W_PROJ_ETL_PS) WHERE TBL_NAME = 'PA_CUST_REV_DIST_LINES_ALL'),0) FROM_DUAL()}
  \]

- \[
  \text{SELECT COALESCE((SELECT COALESCE(PRE_REQUEST_ID,0) FROM QUALIFY_DS(W_PROJ_ETL_PS) WHERE TBL_NAME = 'PA_DRAFT_REVENUES_ALL'),0) FROM_DUAL()}
  \]

**Configuring the Project Revenue Aggregate Table**

The Project Cost aggregate table (W_PROJ_REVENUE_A) is used to capture information about the project revenue distributions. You need to configure the Project Revenue Lines aggregate table before the initial ETL run and subsequent incremental ETL.

Before the initial ETL run, you need to configure the REVENUE_TIME_GRAIN parameter in FSM for the time aggregation level in the Project Revenue Lines aggregate fact table.

By default, the REVENUE_TIME_GRAIN parameter has a value of PERIOD. The possible values for the REVENUE_TIME_GRAIN parameter are:

- PERIOD
- QUARTER
- YEAR

The Project Revenue Lines aggregate table is fully loaded from the base table in the initial ETL run. The table can grow to millions of records. Therefore, the Project Revenue aggregate table is not fully reloaded from the base table after each incremental ETL run. The Oracle Business Analytics Warehouse minimizes the incremental aggregation effort by modifying the aggregate table incrementally as the base table is updated.

The process is as follows:

1. Oracle Business Analytics Warehouse finds the records to be updated in the base table since the last ETL run, and loads them into the W_PROJ_REVENUE_LINE_TMP table. The measures in these records are multiplied by (-1). The mapping responsible for this task is SIL_ProjectRevenueLinesFact_Derive_PreLoadImage.

2. Oracle Business Analytics Warehouse finds the inserted or updated records in the base table since the last ETL run, and loads them into the W_PROJ_REVENUE_LINE_TMP table, without changing their sign. The mapping responsible for this task is SIL_ProjectRevenueLinesFact_Derive_PreLoadImage, which is run before
PLP_ProjectRevenueLinesFact_Derive_PostLoadImage updates or inserts records in the base table.

3. Oracle Business Analytics Warehouse aggregates the W_PROJ_REVENUE_LINE_TMP table and load to W_PROJ_REVENUE_A_TMP, which has the same granularity as the W_PROJ_REVENUE_A table.

4. The PLP_ProjectRevenueLinesAggregate_Derive mapping looks up the W_PROJ_REVENUE_A aggregate table to update existing buckets or insert new buckets in the aggregate table (the mapping is PLP_ProjectRevenueLinesAggregate_Load).

How To Configure Project Uom For E-Business Suite

1. Use the following SQL to obtain the project UOMs:
   
   ```sql
 select lookup_code, meaning, description from fnd_lookup_values where lookup_type='UNIT' and LANGUAGE='US';
   ```

2. If the codes are not already mapped, map the project UOMs to the warehouse (conformed) UOMs coded in FSM.

For more information, see About Working With Domains and Domain Mappings.

B.2.88 How to configure Project UOM for E-Business Suite

To get the project UOMs, use the SQL below in the OLTP source database, and then map them to warehouse (conformed) UOMs coded in FSM if the codes are not already mapped. For example:

```sql
select lookup_code, meaning, description from fnd_lookup_values where lookup_type='UNIT' and LANGUAGE='US';
```

B.2.89 How to Configure Project Retention Fact for PeopleSoft

This topic explains how to configure Project Retention Fact for PSFT adaptor, and includes the following sections:

- Section B.2.89.1, "How to enable Retention Fact"
- Section B.2.89.2, "How to un-map extraneous metric definitions"

Retention metrics are supported for EBS and PSFT adaptors. Since the source of truth for EBS adaptor is billing fact, by default the Retention amounts are mapped to Invoice Line fact. But for PSFT adaptor these mappings are not valid and have to be sourced from Retention fact. Hence metrics defined on the Invoice line fact have to be unmapped and retention fact has to be enabled.

Oracle recommends that you make a back up of the BI metadata repository (that is, the RPD file) before applying changes.

B.2.89.1 How to enable Retention Fact

1. In Oracle BI EE Administration Tool, edit the BI metadata repository (for example, OracleBIAnalyticsApps.rpd) in online mode.

2. In the Business Model and Mapping layer, select the 'Fact_W_PROJ_RETENTION_F_Retention_Amounts' Logical Table Source from the 'Fact - Project Billing', and then right click and choose Edit.

3. Display the General tab and clear the **Disabled** check box as shown in the screenshot below.
4. Save the BI metadata repository (that is, the RPD file).

**B.2.89.2 How to un-map extraneous metric definitions**

By default, the Retention related amounts are mapped to Invoice Line fact. But for a PeopleSoft adaptor, this mapping is not valid, therefore you must un-map these metrics.

1. In Oracle BI EE Administration Tool, edit the BI metadata repository (for example, OracleBIAnalyticsApps.rpd) in online mode.

2. Navigate to Fact – Project Billing, select the metric Retention Billed, right click and edit.

3. Display the Column Source tab, select the definition mapped to Fact_W_PROJ_INVOICE_LINE_F_Invoice_Line, and click on Unmap as shown in the screenshot below.
4. Repeat steps 2 and 3 for following metrics for Fact_W_PROJ_INVOICE_LINE_F_Invoice_Line:
   - Total Retained Amount
   - Retention Write-off

5. Run the Consistency Check and ensure that there are no errors, then save the BI metadata repository, and clear Oracle BI Enterprise Edition Cache.

6. Restart the Oracle BI Server and Oracle BI Presentation Services.

B.2.90 How to Configure Job Dimension in Projects Analytics for E-Business Suite

The Job dimension is maintained in the Human Resources Analytics module.

- **Section B.2.90.1, “How to Extend the Project Task Hierarchy Dimension for E-Business Suite”**
- **Section B.2.90.2, “How to Configure Project Customer in Projects Analytics for E-Business Suite”**
- **Section B.2.90.3, “About Configuring Project Classification Dimension in Projects Analytics for E-Business Suite”**
- **Section B.2.90.4, “About Configuring Project Funding Fact for E-Business Suite”**

B.2.90.1 How to Extend the Project Task Hierarchy Dimension for E-Business Suite

Task dimension data is sourced from the task table (PA_TASKS) in E-Business Suite, as well as from other task-related OLTP tables such as:

- PA_PROJ_ELEMENTS
- PA_PROJ_ELEMENT_VERSIONS
- PA_PROJ_ELEM_VER_STRUCTURE
- PA_PROJ_ELEM_VER_SCHEDULE

Attributes such as WBS_NUMBER, PRIORITY_CODE, SCHEDULE_START_DATE, and SCHEDULE_END_DATE are sourced from these tables. Oracle BI Applications support only the latest version of the Financial Structure by using the following filter conditions:

- **PA_PROJ_ELEM_VER_STRUCTURE.STATUS_CODE = 'STRUCTURE_PUBLISHED'**
- **AND PA_PROJ_ELEM_VER_STRUCTURE.LATEST_EFF_PUBLISHED_FLAG = 'Y'**

The W_TASK_DH hierarchy table stores the flattened hierarchy for every task in W_TASK_D. It is at the same grain as W_TASK_D and is modeled as a Type I dimension. All tasks in the hierarchy support these columns:

- TASK_NAME
- TASK_NUMBER
- WBS_LEVEL
- WBS_NUMBER

Because both tables, W_TASK_D and W_TASK_DH, are at the same grain, fact tables do not have a separate foreign key to join with this table; instead, the join is on the Task Foreign Key.
By default, Oracle BI Applications support 20 levels in the flattened hierarchy. The levels are Base, 1, 2, and so forth up to 18, and Top. The base level represents the hierarchy record, and Top level is the Top hierarchy under the Project. If your financial structure contains more than 20 levels, then you can extend the number of levels in the schema and ETL to support all levels.

To Extend the Project Task Hierarchy Dimension for E-Business Suite:

1. In ODI Designer Navigator, display the Models tab, and add the change capture columns (TASK_NUMBER, WBS_LEVEL and WBS_NUMBER) for every new level that you want in the W_TASK_DHS and W_TASK_DH tables.

2. Extend the interfaces in the SDE and SILOs folder, as follows:
   a. Depending on the source navigate to the correct SDE folder for EBS or PSFT.
   b. Edit and update the correct main interface for example, SDE_ORA_TaskDimensionHierarchy.W_TASK_DHS or SDE_PSFT_TaskDimensionHierarchy.W_TASK_DHS by providing the correct mappings for the new columns.
c. Open the SILOS folder and edit and update the ODI interface SIL_Project_TaskDimensionHierarchy.

3. Regenerate the SDE/SILOS scenarios by expanding the Packages folder and right click the scenario to regenerate.

You must also use Oracle BI EE Administration Tool to update the following objects in the BI metadata repository (that is, the RPD file):

- W_TASK_DH table in the physical layer.
- Dim - Task Hierarchy Logical Table and Task Hierarchy Dimension in the logical layer.
- All the Task Hierarchy Presentation tables in the Presentation Area.

**B.2.90.2 How to Configure Project Customer in Projects Analytics for E-Business Suite**

By default, E-Business Suite only has the 'PRIMARY' relationship code in the PA_PROJECT_CUSTOMERS table. Therefore, the value is included in the ODI filter used in the source extract mapping for the Project dimension to get the customer for a project. You can define an additional value such as 'OVERRIDE CUSTOMER' as the relationship value. In this case, the filter must be edited to include any additional values, as follows.

To Configure Project Customer in Projects Analytics for E-Business Suite:
1. In ODI Designer Navigator, connect to your ODI repository.

2. Open the correct folder like SDE_ORA_11510_Adaptor or SDE_ORA_R12_Adaptor folder etc depending on the source.

3. Expand the SDE_ORA_ProjectDimension folder and open the interface SDE_ORA_Project.W_PROJECT_DS.LKP_PROJ_CUST and click on the ‘Quick-Edit’ tab.

4. Expand the Filters tab and edit the expression column for the second filter.

5. Remove the existing SQL and add the following sample SQL where it is assumed the values are ‘PRIMARY’ and ‘OVERRIDE CUSTOMER’. Modify it according to your configuration.

   If you want it to be independent of any relationships, then you must remove the filters on PROJECT_RELATIONSHIP_CODE -UPPER(PA_PROJECT_CUSTOMERS.PROJECT_RELATIONSHIP_CODE (+)) IN ('PRIMARY', 'OVERRIDE CUSTOMER').

   **Note:** If the lookup returns more than one customer, then you must apply a max on the id so that it always returns one row.

6. Review the mapping to ensure it is valid then press ok and save the interface.

7. Regenerate the scenario by expanding the Packages folder and right click the scenario to regenerate.

---

**B.2.90.3 About Configuring Project Classification Dimension in Projects Analytics for E-Business Suite**

Every project can be optionally classified into different categories. Within these categories, a project can be further categorized into different classification codes. Depending on how these classification categories are defined in the application, for some categories, a project can be classified with more than one classification code.

The Project Classification Table (W_PROJ_CLASSIFICATION_D) is at the grain of Project, Classification Category and Classification Code. The Project facts do not have an explicit foreign key for joining with Project Classification Dimension; instead the join is on the Project Foreign Key. As specifying a Classification Category is optional for a project, so the logical join in the BI metadata repository (that is, the RPD file) between the Facts and Project Classification Dimension has been set as right outer join to avoid losing records in case the project has not been classified.

**Note:** A particular classification code might exist for more than one classification category. Therefore, to avoid double counting, it is important that a classification category is fixed in a report that has classification code as one of the reporting attributes. If a Project belongs to more than one Classification Category under the
same Classification, the Project metrics (Cost, Revenue, and so forth) will be double counted.

**B.2.90.4 About Configuring Project Funding Fact for E-Business Suite**

Funding is based on Funding Line, which represents allocations made to a project or task. The line level funding information is held in the Funding Line fact (W_TXN_FUNDING_LINE_F), which is based on PA_PROJECT_FUNDINGS table in the Billing Module of E-Business Suite. Also, data is extracted from the Summary Funding table (PA_SUMMARY_PROJECT_FUNDINGS) to retrieve additional metrics like Unbaselined Amount, Baselined Amount, Invoiced Amount, Revenue Accrued; which are not available in the Funding line Fact; these would be available in Funding Header Fact (W_PROJ_FUNDING_HDR_F). Before running any ODI etl job, you need to run the following process in E-Business Suite to update this table: PRC: Refresh Project Summary Amounts.

**Note:** For E-Business Suite, Funding Currency is the Document Currency for this fact.

- **Project_Funding_Category:** Used for categorizing funding allocation types.  
**Project_Funding_Level:** This flat file is used to indicate whether a funding line is for a Task or a Project. It is not used in any default metric definition.

- **Note:** Funding Fact Canonical Date GL Date is not populated in the OLTP application. So in Oracle Business Analytics Warehouse, the GL Date for E-Business Suite is based on the Funding Allocation Date, using the GL Calendar of the Project OU. This enables cross-functional analysis on GL Calendar. For example, cross-analysis of funding and billing by Fiscal Year is not possible if there is no GL Date in the Funding fact. Customers who do not want to perform analysis based on GL Calendar can instead base it on Enterprise Calendar.

- The GL date (Funding Allocation Date) is the canonical date for this table and is also used for global exchange rate calculation.

**B.2.91 How to Configure Projects GL Reconciliation Solution for E-Business Suite 11.5.10**

Projects GL Reconciliation solution is supported by default for E-Business Suite V12 and PeopleSoft V90 adaptors. To support this solution for E-Business Suite V11510 adaptor, you must perform the steps below. These steps include adding a join in the PLP GL reconciliation ODI interfaces.

**Note:** The additional join is required for E-Business Suite V11510 adaptor because sub-ledger accounting was introduced from E-Business Suite V12 onwards and the joins between Projects and GL source tables in E-Business Suite V11510 and V12 are different.

To Configure Projects GL Reconciliation Solution for E-Business Suite 11.5.10:

1. In ODI Designer Navigator, connect to your ODI repository.
2. Navigate to "BI Apps Project" -> "Mappings" -> "PLP" -> "PLP_Project_GLReconciliationFact".
3. Before making any changes, right click ’PLP_Project_GLReconciliationFact’ folder and create a version of existing folder.

4. Enter description: "Before adding GL Account join for 11510 source", then click OK.
5. Modify the following three temp interfaces:
   - PLP_Project_GLReconciliationFact.SQ_AGGRCDL_AMOUNTS
   - PLP_Project_GLReconciliationFact.SQ_W_PROJ_GL_RECONCILIATION_F_A
     ("Cost Distributions with mismatch" dataset)
   - PLP_Project_GLReconciliationFact.SQ_W_PROJ_GL_RECONCILIATION_F_U

   a. Navigate to "BI Apps Project" -> "Mappings" -> "PLP" -> "PLP_Project_GLReconciliationFact".
   b. Open the temp interface -> Go to "Quick-Edit" Tab.
   c. Expand "Sources" and Click "Add Sources".

   d. Source Wizard dialog box will open up. Click on "Interfaces" tab and search for LKP_W_GL_ACCOUNT_D. Select the lookup interface under PLP folder, give it an alias: LKP_W_GL_ACCOUNT_D, check the "Use Temporary Interface as Derived Table (Sub-Select)" option and Click Ok. Press NO when ODI prompts "Do you want to perform Automatic Mapping?"
e. Source Wizard dialog box will open up. Click on "Interfaces" tab and search for LKP_W_GL_ACCOUNT_D. Select the lookup interface under PLP folder, give it an alias: LKP_W_GL_ACCOUNT_D, check the "Use Temporary Interface as Derived Table (Sub-Select)" option and Click Ok. Press NO when ODI prompts "Do you want to perform Automatic Mapping?"

In this step, we will add two joins:

- A join between W_GL_LINKAGE_INFORMATION_G and LKP_W_GL_ACCOUNT_D.
- A join between W_PROJ_COST_LINE_F and LKP_W_GL_ACCOUNT_D.

   e.1 Expand "Joins" section on Quick-Edit tab and click on "Add Joins".

   e.2 Select "General Ledger Linkage Information" as Left Source and LKP_W_GL_ACCOUNT_D as Right Source. Join on fields:

   W_GL_LINKAGE_INFORMATION_G.GL_ACCOUNT_ID = LKP_W_GL_ACCOUNT_D.INTEGRATION_ID
   AND W_GL_LINKAGE_INFORMATION_G.DATASOURCE_NUM_ID = LKP_W_GL_ACCOUNT_D.DATASOURCE_NUM_ID

   e.3 Select Join Type as "Left Outer Join" and Click OK.
e.4 Click "Add Joins" again. Select "W_PROJ_COST_LINE_F" as Left Source and LKP_W_GL_ACCOUNT_D as Right Source. Join on fields:

\[\text{W_PROJ_COST_LINE_F.COST_GL_ACCOUNT_WID} = \text{LKP_W_GL_ACCOUNT_D.ROW_WID}\]
\[\text{AND W_PROJ_COST_LINE_F.CR_GL_ACCOUNT_WID} = \text{LKP_W_GL_ACCOUNT_D.ROW_WID}\]

e.5 Select join Type as "Inner Join" and Click OK.

e.6 In the "Joins" section, scroll to right and "Edit" the newly added join between W_PROJ_COST_LINE_F and LKP_W_GL_ACCOUNT_D.
e.7 Edit the join condition to:

\[
\text{W\_PROJ\_COST\_LINE\_F\_COST\_GL\_ACCOUNT\_WID} = \text{COALESCE}(\text{LKP\_W\_GL\_ACCOUNT\_D\_ROW\_WID}, \#ETL\_UNSPEC\_NUM) \\
\text{OR W\_PROJ\_COST\_LINE\_F\_CR\_GL\_ACCOUNT\_WID} = \text{COALESCE}(\text{LKP\_W\_GL\_ACCOUNT\_D\_ROW\_WID}, \#ETL\_UNSPEC\_NUM)
\]

e.8 Make sure you modify the join condition to OR apart from adding the COALESCE function. Click OK.

![Expression Editor](image)

e.9 Check the "Ordered" check box for the Left Outer join between GL Linkage and GL Account lookup.

![Join Type](image)

f.

6. Save the interface.

Repeat the steps a. to e. for all the following three temp interfaces:

- PLP_Project_GLReconciliationFact.SQ_AGG_CDL_AMOUNTS
- PLP_Project_GLReconciliationFact.SQ_W_PROJ_GL_RECNCLIAITION_F_A ("Cost Distributions with mismatch" dataset only. Do not add joins in "Journal Lines with mismatch" dataset)
- PLP_Project_GLReconciliationFact.SQ_W_PROJ_GL_RECNCLIAITION_F_U

7. Regenerate the scenario.

a. After all three temp interfaces are modified and saved, navigate to 'PLP_Project_GLReconciliationFact' -> 'Packages' -> 'PLP_Project_GLReconciliationFact' -> 'Scenarios'. Right click scenario 'PLP_PLP_PROJECT_GLRECONCILIATIONFACT' and click 'Regenerate'.
b. On the "Regenerate Scenario" dialog box, click OK.

c. On Scenario Variables dialog, select 'Use All' in the Startup Parameters drop down list, then click OK.

B.2.92 Additional Information About GL Reconciliation in Project Analytics

This section contains an overview of GL Reconciliation for Project Analytics, and contains the following sections:

- Section B.2.92.1, "Overview"
B.2.92.1 Overview
The sub ledger to General Ledger account reconciliation is a common task in the accounting process. The reconciliation process involves comparing the balances accounts between the General Ledger (GL) and a sub ledger, such as Projects. Balance differences between an account in the GL and the sub ledger are then explained, or "Reconciled" by finding unmatched journal entries. The differences might happen due to the asynchronous nature of Cost/Revenue Distributions processes from Projects module and the GL Journals creation/posting in the Finance module. For example, we can have cost distributions which are transferred to the sub ledger but the corresponding journal was either not created or not posted to the GL.

Reconciliations provide assurance that numbers in the GL are correct and synchronized with their corresponding drill down distributions, which is important as these numbers are used to generate financial statements.

New Functionality
To assist project accountants in reconciling the Project sub ledger with the GL, Oracle Project Analytics introduces a reconciliation solution that identifies six situations, or use cases, that explain why the GL and the Project sub ledger are not balanced. Section 3, below, identifies and explains these use cases and what do they mean for each adapter.

For Oracle Business Intelligence Applications release 11.1.1.7.1, the reconciliation solution is available for project cost and revenue transactions, for E-Business Suite 11.5.10, E-Business Suite R12x and PeopleSoft 9x source systems.

For this solution, Oracle Business Intelligence Applications introduces two new subject areas and over 30 new metrics. The Catalog includes two new dashboard pages in the Project Executive dashboard and 22 reports. The reports in the dashboard pages show the count of exceptions found for each of the use cases and their total amount. Users can slice these reports by time, organization and project when related to cost and revenue lines, and by time, ledger and natural segment when related to journal lines.

The reports are designed to help users find where they need to take action to reconcile the Projects sub ledger and the GL. For this, the reports identify the cost lines, revenue lines, and journal lines that explain the differences between the sub ledger and the GL.

Notice that at implementation time, and depending of the customer source system, customizations to the ETL code and metadata might be needed to enable support for some use cases. This document lists the FSM tasks that contain these instructions for the E-Business Suite and PeopleSoft source systems and the use cases for each one.

B.2.92.2 Configuring ETL Parameters
Project GL reconciliation ETL runs for a specific period window. Customers can specify the period for which they want to identify reconciliation issues by configuring the following two variables. These variables should not be null.

- **PROJ_GL_PERIODS_TO_LOAD**
  - Specifies the number of periods to include for reconciliation.
  - Default (installed) value: 1.
  - Permissible values: positive integers 0,1,2,3 and so on.

- **PROJ_GL_RECON_DT**
- This is the date we start counting from (going backward) the number of periods, when loading data for Reconciliation.
- Default (installed): "DEFAULT". When this variable has value "DEFAULT" it means it will use SYSDATE to identify the current period.
- Permissible values: String "DEFAULT" or a date in YYYY-MM-DD format.

**Examples**

**Table B–72 Examples**

<table>
<thead>
<tr>
<th>Sample Values</th>
<th>Behavior</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROJ_GL_RECON_DT: DEFAULT&lt;br&gt;PROJ_GL_PERIODS_TO_LOAD: 1</td>
<td>When both these variables have default values, the ETL will run to reconcile data for current period (based on SYSDATE) and 1 previous period.</td>
</tr>
<tr>
<td>PROJ_GL_RECON_DT: DEFAULT&lt;br&gt;PROJ_GL_PERIODS_TO_LOAD: 3</td>
<td>With these values, the ETL will run to reconcile data for current period (based on SYSDATE) and 3 previous periods.</td>
</tr>
<tr>
<td>PROJ_GL_RECON_DT: 2012-12-31&lt;br&gt;PROJ_GL_PERIODS_TO_LOAD: 1</td>
<td>With these values, the ETL will run to reconcile data for the period in which 31-DEC-2012 falls and 1 previous period. So if the calendar is monthly, it would reconcile for the current period which would be DEC-2012 and previous period would be NOV-2012.</td>
</tr>
<tr>
<td>PROJ_GL_RECON_DT: 2012-06-30&lt;br&gt;PROJ_GL_PERIODS_TO_LOAD: 3</td>
<td>With these values, the ETL will run to reconcile data for the period in which 30-JUN-2012 falls and 3 previous periods. So if the calendar is monthly, it would reconcile for the current period which would be JUN-2012 and previous periods would be MAR-2012, APR-2012, MAY-2012.</td>
</tr>
</tbody>
</table>

**B.2.93 How to Configure Projects GL Reconciliation Manual Journal Entries**

In addition to the default supported use cases, the Projects GL Reconciliation solution in this release supports an additional use case to identify manually created project journals in GL.

For EBS R11.5.10 and R12.x, most often customers configure a descriptive flexfield in source to populate it with a project number or identifier when creating manual journals to associate a project to that journal. In such cases, the ETL code can be customized to extract and report these manually created journals. So in case if a customer has created a descriptive flexfield in EBS Apps GL Journal header or Lines table and they use it to populate Project Number for manually created journals, the Projects GL Reconciliation ODI interfaces can identify those transactions after doing some customizations to the expression where JOURNAL_SOURCE field is populated during extract.

By default, JOURNAL_SOURCE is populated directly from GL_JE_HEADERS, it will not be linked with Project Sub Ledger and in that case, such transactions will be filtered out.

This document describes the sample steps to customize the ETL code in ODI interfaces to identify manually created journal entries assuming the following:

The descriptive flexfield ATTRIBUTE1 in table GL_JE_HEADERS is used to store the Project Number (or some other Project key).
To Configure Projects GL Reconciliation Manual Journal Entries:

1. In ODI Designer Navigator, connect your ODI repository.


3. Open the temp interface and check the expression for JE_SOURCE.
   
   The expression mapped by default is GL_JE_HEADERS.JOURNAL_SOURCE.

4. Modify JE_SOURCE field to the following value:
   
   \[ GL_JE_HEADERS.JE_SOURCE || \left( \begin{cases} \text{GL_JE_HEADERS.JE_SOURCE} & \text{when GL_JE_HEADERS.CONTEXT} = \text{Project Context} \text{ AND GL_JE_HEADERS.ATTRIBUTE1 IS NOT NULL} \\ \text{~PA} & \text{else} \end{cases} \right) \]

   In general, you need to customize this expression to:

   \[ GL_JE_HEADERS.JOURNAL_SOURCE || \left( \begin{cases} \text{Manual Entries for Projects} & \text{then} \\ \text{~PA} & \text{else} \end{cases} \right) \]

5. Save the interface.

6. Re-generate the scenario for SDE_ORA_GLJOURNALSFACT.
   
   The next time the ETL is run, JOURNAL_SOURCE field in the W_GL_OTHER_F table will be populated with the value "Manual~PA" for manually created journals for Projects and GL Reconciliation ODI interfaces will identify them as manual journals related to Projects.

---

B.2.94 How to Define Aging Bucket Ranges in Accounts Payable and Accounts Receivable

Oracle Financial Analytics does not support overlapping aging bucket ranges. When you set up aging buckets in Fusion Applications or E-Business Suite, you must use only non-overlapping aging buckets for AP and AR aging analysis in Financial Analytics. Also, when buckets are defined to separate out due and overdue amounts in different buckets, make sure that the days_from value and days_to value for a bucket are defined so that it takes either due or overdue transactions, but not both. To do this, make sure the days_from for overdue buckets start from 1 or a positive number, not from 0 or a negative number. The following examples illustrate the supported aging bucket ranges.

**Supported:**

- a) -60 days to -31 days
- b) -30 days to -11 days
- c) -10 days to 0 days
- d) 1 days to 10 days
- e) 11 days to 30 days
- f) 31 days to 60 days and so on.

In this example, a/b/c are 'due' buckets and d/e/f are 'overdue' buckets. The bucket ranges are defined correctly with no overlaps and all overdue buckets start from 1 or above.

**Not Supported:**

- a) -60 days to -31 days
- b) -30 days to -11 days
- c) -10 days to -1 days
- d) 0 days to 10 days
- e) 9 days to 30 days
f) 31 days to 60 days and so on.
In this example, the bucket ranges are not defined correctly. Note that bucket d starts from 0. So this bucket could hold some invoices that are due and some that are overdue. Thus a report that shows only overdue buckets could include some invoices that are not overdue. Furthermore, buckets d and e are overlapping. Therefore, some invoices could be reported in both buckets, thus making the total outstanding amount appear larger than it is.

Not Supported:
a) -60 days to -31 days
b) -30 days to -11 days
c) -10 days to -6 days
d) -5 days to 5 days
e) 6 days to 30 days
f) 31 days to 60 days and so on.
In this example, the bucket ranges are not defined correctly. Here, bucket d starts from a negative number and ends with a positive number. Similar to the previous example, this bucket could hold some invoices that are due and some that are overdue.

B.2.95 Manage Domains and Member Mappings for Timecard Entry Status

Purpose
The Timecard Entry Status dimension is key understanding the status of a timecard entry. The Timecard Entry Status is different for Reported and Processed (aka Payable) time. Oracle provides domain member mappings for both Reported and Processed.

Optional or Mandatory
This task is mandatory.

Applies to
E-Business Suite, and PeopleSoft

Task description in detail
Configuring the domains on the Timecard Entry Status dimension are key to the successful attribution of time reporting entries to warehouse reporting categories and subcategories.

Source Reported Timecard Entry Status Code -> Reported Timecard Status Code
This task is mandatory. Used to identify how Source Reported Timecard Entry Status map to delivered target Reported Timecard Status domain members; target domain members are used in the delivered metrics, dashboards and reports, for example, WORKING (Working), APPROVED (Approved). The target domain is Extensible - customers can add to but not delete from it.

Example for E-Business Suite
The Source Reported Timecard Entry Status Code is based on the values in the FND look-up (HXC_APPROVAL_STATUS).
Example Implementation

Table B–73  Example Target Member Codes

<table>
<thead>
<tr>
<th>Source Member Code (Name)</th>
<th>Target Member Code (Name)</th>
</tr>
</thead>
<tbody>
<tr>
<td>APPROVED (Approved)</td>
<td>APPROVED (Approved)</td>
</tr>
<tr>
<td>ERROR (Error)</td>
<td>ERROR (Error)</td>
</tr>
<tr>
<td>REJECTED (Rejected)</td>
<td>REJECTED (Rejected)</td>
</tr>
<tr>
<td>SUBMITTED (Submitted)</td>
<td>SUBMITTED (Submitted)</td>
</tr>
<tr>
<td>WORKING (Working)</td>
<td>WORKING (Working)</td>
</tr>
</tbody>
</table>

Example for PeopleSoft

The Source Reported Timecard Entry Status Code is based on the values in PSXLATITEM (REPORTED_STATUS).

Example Implementation

Table B–74  Example Target Member Codes

<table>
<thead>
<tr>
<th>Source Member Code (Name)</th>
<th>Target Member Code (Name)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AP (Approved)</td>
<td>APPROVED</td>
</tr>
<tr>
<td>CN (Cancelled)</td>
<td>CANCELLED</td>
</tr>
<tr>
<td>DN (Denied)</td>
<td>REJECTED</td>
</tr>
<tr>
<td>IE (In Error)</td>
<td>ERROR</td>
</tr>
<tr>
<td>IP (In Process)</td>
<td>IN_PROCESS</td>
</tr>
<tr>
<td>NA (Needs Approval)</td>
<td>SUBMITTED</td>
</tr>
<tr>
<td>NW (New)</td>
<td>WORKING</td>
</tr>
<tr>
<td>PR (Processed)</td>
<td>PROCESSED</td>
</tr>
<tr>
<td>PB (Pushed Back)</td>
<td>PUSHED_BACK</td>
</tr>
<tr>
<td>SV (Saved)</td>
<td>WORKING</td>
</tr>
<tr>
<td>Submitted (SB)</td>
<td>SUBMITTED</td>
</tr>
<tr>
<td>Voided (VD)</td>
<td>VOIDED</td>
</tr>
</tbody>
</table>

Source Processed Timecard Entry Status Code -> Processed Timecard Entry Status Code

This task is mandatory.

Used to identify which Source Processed Timecard Entry Status are mapped to Processed Timecard Entry Status; target domain members are used in the delivered metrics, dashboards and reports, for example, ESTIMATE (Estimated), TRNSFRD_TO_PAY (Transferred to Payroll). The target domain is Extensible - customers can add to but not delete from it.

Example for E-Business Suite

On Oracle EBS (HXT_) the Source Processed Timecard Entry Status is the Batch Status.
On Oracle EBS (HXC_) the Source Processed Timecard Entry Status is a combination of the retrieval status and the retrieving application.

**Example Implementation**

**Table B–75**  
*Example Target Member Codes*

<table>
<thead>
<tr>
<th>Source Member Code (Name)</th>
<th>Target Member Code (Name)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUCCESS:PAY (Retrieved by Payroll)</td>
<td>TRNSFRD_TO_PAY (Transferred to Payroll)</td>
</tr>
<tr>
<td>SUCCESS:PA (Retrieved by Projects)</td>
<td>TRNSFRD_TO_PROJ (Transferred to Projects)</td>
</tr>
<tr>
<td>SUCCESS:PO (Retrieved by Purchasing)</td>
<td>TRNSFRD_TO_PURCH (Transferred to Purchasing)</td>
</tr>
</tbody>
</table>

**Example for PeopleSoft**

On PeopleSoft the Source Processed Timecard Entry Status is the PSXLATITEM (PAYABLE_STATUS).

**Example Implementation**

**Table B–76**  
*Example Target Member Codes*

<table>
<thead>
<tr>
<th>Source Member Code (Name)</th>
<th>Target Member Code (Name)</th>
</tr>
</thead>
<tbody>
<tr>
<td>OE (Online Estimate)</td>
<td>ONLINE_ESTIMATE (Online Estimate)</td>
</tr>
<tr>
<td>NA (Needs Approval)</td>
<td>NEEDS_APPROVAL (Needs Approval)</td>
</tr>
<tr>
<td>ES (Estimate)</td>
<td>ESTIMATED (Estimated)</td>
</tr>
<tr>
<td>AP (Approved)</td>
<td>APPROVED (Approved)</td>
</tr>
<tr>
<td>CL (Closed)</td>
<td>&lt;No value&gt;</td>
</tr>
<tr>
<td>SP (Sent to Payroll)</td>
<td>&lt;No value&gt;</td>
</tr>
<tr>
<td>RP (Rejected by Payroll)</td>
<td>&lt;No value&gt;</td>
</tr>
<tr>
<td>TP (Taken by Payroll)</td>
<td>TAKEN_BY_PAY (Taken by Payroll)</td>
</tr>
<tr>
<td>PD</td>
<td>&lt;No value&gt;</td>
</tr>
<tr>
<td>DL</td>
<td>&lt;No value&gt;</td>
</tr>
<tr>
<td>IG</td>
<td>&lt;No value&gt;</td>
</tr>
<tr>
<td>RV</td>
<td>&lt;No value&gt;</td>
</tr>
<tr>
<td>NP</td>
<td>TRNSFRD_TO_PROJ (Transferred to Projects)</td>
</tr>
<tr>
<td>DN</td>
<td>&lt;No value&gt;</td>
</tr>
<tr>
<td>PB</td>
<td>&lt;No value&gt;</td>
</tr>
</tbody>
</table>

**B.2.96 Manage Domains and Member Mappings for Payroll Balance Dimension**

**Purpose**

This section explains the mapping from source Payroll balances/earnings/deductions/taxes to the Oracle Business Analytics Warehouse Payroll summary measures through the use of domain values.

HR Analytics Payroll model has two fact tables, the detailed fact table and the summary fact table. The detailed fact table will have all the balances (in case of EBS...
Payroll) and Earnings/Deductions/Taxes (In case of PeopleSoft North American and Global Payroll) extracted from the source system on separate rows. This table will be used for detail reports and ad-hoc analysis.

To support analytic reporting, the summary fact table delivers a set of default summary measures. Source payroll balances are mapped to the summary measures and loaded into summary fact table. More than one payroll balance can be mapped to a summary metric, in which case the individual source balances will be summed to form a summary measure.

If, Base Pay constitutes Regular Salary, Total Earnings constitutes Regular Salary and Bonus and Total Tax constitutes Income Tax and Social Insurance Tax.

The source to target balance mapping should be done accordingly as shown below.

- Regular Salary is mapped to Pay_Base and Total Earnings summary measures.
- Bonus is mapped to Total Earnings (Total Earnings = Regular Salary + Bonus).
- Income Tax and Social Insurance Tax are mapped to Total Tax (Total Tax = Income Tax + Social Insurance Tax).

To ensure additive property of measures, we only support run balances. For each payroll run the actual run balances processed are stored. Because we are not breaking these down by context, we can combine run balances across time to form higher level balances, for example, PTD, MTD, and YTD.

If the source balance mapping to the summary measures are not done in the Configuration Manager, the Payroll Summary Fact table will not be loaded with any data and this will cause the reports based on the summary fact table to return no data.

Optional or Mandatory

Mandatory, as the default HR Analytics payroll reports that are based on the Summary Fact table will return no data if the Source balance mapping is not configured.

Task description in detail

The graphic below shows the domains used for mapping the source balances to the target summary measures.
Source payroll balances can be mapped to the target summary measures in two ways:

- One to One Mapping (using W_PAY_BALANCE domain).
- Many to One Mapping (using W_PAY_MAP_FACTOR_xxxx domain).

In one-to-one mapping, a source balance is directly mapped to a summary measure in Oracle BI Applications Configuration Manager.

For example: If you have a source balance called Base Pay, you can map it to PAY_BASE summary measure code in the configuration manager using the Domain Mappings.

If you have multiple source balances Earns1, Earns2 that constitute a summary measure PAY_BASE, you can map multiple source balances to a single summary measure.

The source balances will be aggregated to populate the summary measure.

PAY_BASE = Earns1 + Earns2

**Steps for One-to-One Balance Mapping**

The following are the steps to be followed to map the Source Balances to the Warehouse Summary Measures.

1. Identify the Source Balances to be extracted in the ETL.
   a. Refer to task "How to Add Balances to BI Balance Group" for restricting the balances extraction.

2. Run the Domains ETL and extract the source domains into Oracle BI Applications Configuration Manager.
   a. Create a Domains ETL load plan in the Configuration Manager with the Fact Group as Payroll Fact Group.
   b. Execute the load plan and the source domains will be extracted into the Configuration Manager schema.
3. Map the Source balances to the corresponding summary measures.

a. Navigate to 'Manage Source Domains' under Domains Administration to check if the source domains are populated.

b. Navigate to 'Manage Warehouse Domains' under Domains Administration to verify the target domains (summary measures) are present.

c. Navigate to 'Manage Domain Mappings and Hierarchies' for mapping the Source balances to the Summary Measures.
d. Click on the Edit button in the Domain Member Mappings section to map the source domains to the target domains.

e. Save and Close.

4. Run the main Load Plan to load Oracle Business Analytics Warehouse.

5. The identified balances are loaded into Payroll detail fact table as separate rows.

6. The Summary Measures are loaded in the summary fact table as per the mapping done in step 3.

Steps for Many to One Balance Mapping

In Many-to-One mapping, you can also derive a summary measure using various balances.

For example, NET_PAY can be derived using a calculation like:

Earns1 + Earns2 – Ded1 – Ded2, Earns1, Earns2, Ded1 and Ded2 being source balances.

For this to achieve, you need to map the above source balances to warehouse domain W_PAY_MAP_FACTOR_PAY_NET.

1. Follow the above steps from 1 to 3.a (in Section ‘Steps for One-to-One Balance Mapping’ above)

2. Navigate to Manage Warehouse Domains and search for W_PAY_MAP_FACTOR domain code.
You can add the desired multiplier as the Domain Member Code. For example: 1, if you want the balance to be added once or -1 to deduct once.

3. Navigate to the Manage Domain Mappings and Hierarchies and search for the domain W_PAY_MAP_FACTOR.

4. Select the Net Pay domain mapping and click on Edit button in the Domain Member Section.
In this screen, you can map the source balances to the balance multiplier.

For example: If NET_PAY is calculated as Earns1 + Earns2 – Ded1 – Ded2, then Source Earns1 is mapped to 1, Earns2 is mapped to 1, Ded1 is mapped to –1 and Ded2 is mapped to –1.

For each employee, per pay period, the NET_PAY is calculated with the above formula and loaded into PAY_NET column of the Payroll Summary Fact table.

5. Run the Main Load Plan to extract the balances from source to warehouse.

6. The identified balances are loaded into Payroll detail fact table as separate rows.

7. The Summary Measures are loaded in the summary fact table as per the mapping done in step 3.

List of delivered Payroll Summary Measures

FLEX_BALANCEx summary measures can be used to map any source balance that does not fit in to the out-of-box summary measures. The flex balance list can be extended as part of any customization.

The following list shows the tab-separated data for Summary Measure Code, Category, and Description for the delivered Payroll Summary Measures.

<table>
<thead>
<tr>
<th>SUMMARY_MEASURE_CODE</th>
<th>CATEGORY</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>BEN_COST_EMPLOYEE</td>
<td>Benefits</td>
<td>Benefit costs paid by an employee such as employee premium for medical, dental, vision, disability and life insurance.</td>
</tr>
<tr>
<td>BEN_COST_EMPLOYER</td>
<td>Benefits</td>
<td>Benefit costs paid by the employer such as employer premium for medical, dental, vision, disability, and life insurance, retirement funding and educational assistance, etc. Employer-paid benefit cost is a key metric in analyzing employee total compensation and workforce cost.</td>
</tr>
<tr>
<td>BEN_TAXABLE</td>
<td>Benefits</td>
<td>Taxable benefits are employer provided &quot;non-cash&quot; taxable compensation or fringe benefits, such as employer-provided vehicles, complementary tickets, and educational assistance, are subject to tax rules.</td>
</tr>
<tr>
<td>DEDUCTIONS_INVOL</td>
<td>Other</td>
<td>Involuntary deductions are payroll deductions that the employer is mandated by the law to withhold from an employee's paycheck, e.g. income tax withholding, social security taxes, court ordered garnishment such as child support, bankruptcy order, tax levy.</td>
</tr>
<tr>
<td>DEDUCTIONS_POST_TAX</td>
<td>Other</td>
<td>Payroll deductions that are deducted after taxes are withheld. Examples of post tax deductions are union dues, transportation fees, garnishments etc. These deductions do not reduce taxable wages.</td>
</tr>
<tr>
<td>DEDUCTIONS_PRE_TAX</td>
<td>Other</td>
<td>Payroll deductions that are deducted before taxes are withheld. Examples of before tax deductions are health insurance premium, 401K deductions, etc. These deductions reduce taxable wages.</td>
</tr>
<tr>
<td>DEDUCTIONS_VOL</td>
<td>Other</td>
<td>Voluntary deductions are payroll deductions that...</td>
</tr>
</tbody>
</table>
have been authorized by an employee e.g. retirement saving deduction, health and life insurance premiums, contribution to disability and health saving plans. Some voluntary deductions are before-tax withholdings whereas others are withheld after taxes.

**FLEX_BALANCE1** Flex Balances
Extensible balance field 1

**FLEX_BALANCE10** Flex Balances
Extensible balance field 10

**FLEX_BALANCE11** Flex Balances
Extensible balance field 11

**FLEX_BALANCE12** Flex Balances
Extensible balance field 12

**FLEX_BALANCE13** Flex Balances
Extensible balance field 13

**FLEX_BALANCE14** Flex Balances
Extensible balance field 14

**FLEX_BALANCE15** Flex Balances
Extensible balance field 15

**FLEX_BALANCE16** Flex Balances
Extensible balance field 16

**FLEX_BALANCE17** Flex Balances
Extensible balance field 17

**FLEX_BALANCE18** Flex Balances
Extensible balance field 18

**FLEX_BALANCE19** Flex Balances
Extensible balance field 19

**FLEX_BALANCE20** Flex Balances
Extensible balance field 20

**FLEX_BALANCE21** Flex Balances
Extensible balance field 2

**FLEX_BALANCE22** Flex Balances
Extensible balance field 4

**FLEX_BALANCE23** Flex Balances
Extensible balance field 5

**FLEX_BALANCE24** Flex Balances
Extensible balance field 6

**FLEX_BALANCE25** Flex Balances
Extensible balance field 7

**FLEX_BALANCE26** Flex Balances
Extensible balance field 8

**FLEX_BALANCE27** Flex Balances
Extensible balance field 9

**HEALTHCARE_EMPLOYEE** Other Deductions
Employee contribution to healthcare insurance premiums including medical, dental and vision plans.

**HEALTHCARE_EMPLOYER** Benefits
Employer contribution towards the cost of employee healthcare insurance including medical, dental and vision insurance premium, or other employer-assisted wellness plans.

**HOLIDAY_HOURS** Hours
Holiday hours are hours compensated for paid company holidays such as New Year, Christmas, etc.

**OVERTIME_HOURS** Hours
Overtime hours paid

**PAY_BASE** Standard Earnings
Base salary is the fixed salary or wage paid to an employee based on an employment contract. Base pay does not include variable pay components such as bonus, overtime or sales commission.

**PAY_BONUS** Standard Earnings
Bonus pay is the pay compensation over and above the amount of pay specified as a base salary or hourly rate of pay.

**PAY_COMMISSION** Standard Earnings
The amount of money that an individual receives based on the level of sales he or she has achieved. Sales commission is the amount earned in addition to his/her base salary.

**PAY_GROSS** Standard Earnings
Gross amount of remuneration for each pay type including regular pay, overtime pay, allowances, commissions, bonuses, and any other amounts, before any deductions are made.

**PAY_HOLIDAY** Standard Earnings
Holiday pay are pay compensated for paid company holidays such as New Year, Christmas, etc.

**PAY_NET** Standard Earnings
The remaining amounts of an employee's gross pay after deductions, such as taxes and retirement contributions, are made.

**PAY_OTHER** Standard Earnings
Other types of pay that are not base pay, bonus, overtime, commission pay.

**PAY_OVERTIME** Standard Earnings
The amount of pay compensated for hours worked beyond an employee's normal working hours and is entitled to overtime premium.

**PAY_VARIABLE** Standard Earnings
Variable pay is also known as performance pay, is used to recognise and reward employee performance above and beyond their normal job requirements. Variable pay may include profit sharing, bonuses, holiday bonus, or other forms of cash, and goods and services such as a company-paid trip.

**PENSION_EMPLOYEE** Pension
The amount contributed by an employee towards his/her retirement funding such as an employee’s contribution to a retirement saving plan.

**PENSION_EMPLOYER** Pension
The amount contributed by the employer towards an employee's retirement funding such as employer contribution to an employee's retirement saving plan.
REGULAR_HOURS: Hours compensation for an employee's normal working hours based on an employment contract.

SICK_HOURS: Hours an employee's sick time that is compensated.

SICK_PAY: Standard Earnings Amount paid for an employee's sick time.

SOC_INS_EMPLOYEE: Other Deductions Social security insurance taxes paid by an employee.

SOC_INS_EMPLOYER: Other Deductions Social security insurance taxes paid by the employer.

STOCK_VESTED_VAL: Benefits The value of an employee's vested stock options.

TAX_EMPLOYER: Tax Payroll taxes withheld from an employee's pay check such as income taxes, social security and medicare taxes, etc.

TAX_EMPLOYER: Tax Employer paid taxes are payroll taxes paid by the employer for social security, medicare tax withholding unemployment tax insurance or any other form of employee payroll taxes. Employer-paid tax is a key metric in analyzing employee total compensation and workforce cost.

TOTAL_DEDUCTIONS: Totals Total before and after tax deductions including benefit deductions, taxes, and other voluntary or involuntary deductions.

TOTAL_EARNINGS: Totals Total gross pay; this is the grand total of all gross pays on a pay check.

VACATION_HOURS: Hours Total number of hours paid for an employee's vacation time or personal time off.

VACATION_PAY: Standard Earnings Amount compensated for an employee's vacation time or personal time off.

---

B.2.97 How to Perform System Setups and Post Install Tasks for BI Applications

For information about setting up Oracle BI Applications after installation, refer to Oracle Business Intelligence Applications Installation Guide.

B.2.98 How to Set Up Drill Down in Oracle BI from General Ledger to Subledger

To set up drill down in Oracle BI Answers from General Ledger to subledger:

1. Create your subledger request from 'Financials - AP Transactions' or 'Financials - AR Transactions' catalog as applicable.

2. In your request, add a filter on the column 'GL Journal ID' under the 'Document Details' subfolder for the 'AP Line Details' or 'AR Line Details' folder, =65 and then set the operator of the filter to 'Is Prompted'.

3. Build your GL Journal request from the 'Financials - GL Detail Transactions' catalog.

4. To your request, add the column 'GL Journal ID' under the 'Document Details' folder.

5. Navigate to the Column Properties of this column, and set the Value Primary Interaction property in the Column Format Interaction tab to 'NavigateAction Links'.

6. Add a navigation target and set the target location to the sub ledger request you created earlier.

You might add multiple navigation targets if your GL report shows transactions from multiple subledgers and you want to drill from GL to the appropriate Subledger report. For example, if your GL report shows transactions from AP, AR and Revenue, and you have three subledger analyses for each of these, you can add three navigation targets (by selecting the option 'Add Navigation TargetsAction Link') and set the locations to each of these analyses. Subsequently, when you run the GL report and click on the 'GL Journal ID' column value, a popup appears, where you need to click on the appropriate target based on the journal you clicked on. This will not happen
automatically. For example, if you click on a journal transaction originating from AP, you need to pick the appropriate subledger report (that is, the AP report in this case) to drill into the AP report and see the details. You can add the Group Account Number attribute from GL Account Dimension to your GL report to easily identify the subledger that the GL transaction belongs to.

**Note:** For COGS, the ‘GL Journal ID’ column is not exposed in any presentation catalogs. It is available in the business model layer of the RPD metadata under the logical tables 'Dim - GL COGS Details'. As a workaround, you can create presentation catalogs to report on detail level transactions for COGS and expose this column under the 'Document Details' folder in the presentation catalog. You use similar steps as described above to setup a drill-down from GL to COGS.

1. In Oracle BI EE Administration Tool, edit the BI metadata repository (for example, OracleBIAnalyticsApps.rpd).
   The RPD file is located in the \\bifoundation\\OracleBIServerComponent\\coreapplication_\obisn\\repository folder.
2. Create an empty presentation catalog (for example, Financials – GL Cost of Goods Sold). Set properties by following other presentation catalogs.
4. Drag other dimensions.
5. Rename the presentation table 'Dim – GL COGS Details' to 'Document Details'.

You might also follow this same process to create a Presentation Table for Revenue to be able to drill from GL to Revenue level detail transactions.

**B.2.99 How to Integrate Financial Analytics with Project Analytics**

You can enable Oracle Financial Analytics to use dimension tables in Oracle Project Analytics. You can only perform this integration if you have licensed Oracle Project Analytics.

You can configure the following Oracle Financial Analytics Subject Areas to join to certain Project Dimensions:

- Financials - Payables (Project, Task, Financial Resource and Expenditure Organization Dimensions)
- Financials - Receivables (Contract Dim)

The following Oracle Financial Analytics fact tables integrate with Project Analytics dimensions:

- W_AP_XACT_F
- W_AR_XACT_F
- W_AR_AGING_INVOICE_A

To use dimensions from Oracle Project Analytics in Oracle Financial Analytics, you must select the Oracle Project Analytics offering during installation and setup.
B.2.100 How to Implement Asset Category and Asset Location Dimensions in Fusion Application

No Help topic is available for this FSM Task.

B.2.101 How to Implement GL Segment, GL Account, Asset Category and Asset Location Dimensions for Fusion Applications

Follow the steps in this section to implement GL Segment and GL Segment Hierarchy Dimensions.

Guidelines

- If you need to report on only concatenated segments, then no configuration is required, and you can skip this section.
- If you want only Group Account Num (and related attributes), then at a minimum you need to configure just the Natural Account dimension.
- If you are exposing any GL Segments (including cost center, balancing segment, natural account), then you must go through the full configuration.
- If you are exposing any Financial fact, then at a minimum you need to configure the Natural Account dimension, because you need group account number.

Prerequisites

Make sure that preconfiguration tasks for BI Extender have been performed, as specified in Oracle Business Intelligence Applications Administration Guide.

B.2.101.1 Configuring GL Segment and GL Account Dimensions

This section explains how to configure GL Segment and GL Account Dimensions.

B.2.101.1.1 Mapping the segment labels to BI Objects in Fusion Applications

In order to enable GL Accounting Flexfield in Oracle BI Applications, the following configuration must be performed in the Manage Key Flexfields UI in Fusion Applications. This configuration enables the Accounting Flex Segments for BI and provides the mapping with BI Object names that should be used as dimensions for each of the Account Flexfield segments.

For General Ledger:

To map the General Ledger segment labels to BI Objects in Fusion Applications:

1. In Fusion Applications, navigate to Manage Key Flexfields.
2. For General Ledger, in each of the Accounting Flexfield segments, set the BI Enabled Flag to Y, as follows:
   a. Query for 'GL#' as Key Flexfield Code.
   b. Click Manage Structure Instances.
   c. Edit each of the segments and select the BI enabled check box, then save the details.

   This should be done for all segments in every Structure instance that you intend to be mapped in the BI metadata repository (that is, the RPD file).
3. Populate the BI Object Name for each of the Segment Labels, as follows:

   **Note**: This name is the Logical table name in the BI metadata repository (that is, the RPD file) that is used as the dimension for the corresponding segment.

   a. In the Manage Key Flexfields UI in Fusion Applications, query for ‘GL#’ as Key Flexfield Code.

   b. Choose Actions, then Manage Segment Labels.

   c. Populate the BI Object Name for all the segment labels that you need to map in the RPD, then save the details.

The following table shows the BI Object Names for each Qualified Segment label.
For the non qualified segment labels, the BI Object Name should be populated with one of the 10 numbered Dim - Segments: Dim - GL Segment1, Dim - GL Segment2, Dim - GL Segment<\text{n}>, and so on, to Dim - GL Segment10.

4. Click the Deploy Flexfield option to deploy the Flexfields.

**For Assets:**

To map the Assets segment labels to BI Objects in Fusion Applications:

1. In Fusion Applications, navigate to Manage Key Flexfields.

2. For Assets, in each of the Accounting Flexfield segments, set the BI Enabled Flag to Y, as follows:
   a. Query for Key Flexfield Code equals the following:
      - For Fixed Asset Category, query on CAT#.
      - For Fixed Asset Location, query on LOC#.
   b. Click Manage Structure Instances.
   c. Edit each of the segments and select the **BI enabled** check box, then save the details.
   
   This should be done for all segments in every Structure instance that you intend to be mapped in the BI metadata repository (that is, the RPD file).

3. Populate the BI Object Name for each of the Segment Labels, as follows:
   
   **Note:** This name is the Logical table name in the BI metadata repository (that is, the RPD file) that is used as the dimension for the corresponding segment.
   a. Query for the appropriate Key Flexfield Code (CAT# or LOC#) in the Manage Key Flexfields dialog.
   b. Choose Actions, then Manage Segment Labels.

<table>
<thead>
<tr>
<th>Segment Label Code</th>
<th>BI Object Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>FA_COST_CTR</td>
<td>Dim - Cost Center</td>
</tr>
<tr>
<td>GL_BALANCING</td>
<td>Dim - Balancing Segment</td>
</tr>
<tr>
<td>GL_ACCOUNT</td>
<td>Dim - Natural Account Segment</td>
</tr>
</tbody>
</table>

Table B–77  Mappings for Segment Label Codes to BI Object Names
c. Populate the BI Object Name for all the segment labels that you need to map in the BI metadata repository (that is, the RPD file), then save the details.

For the "qualified" segment labels, use the following BI Object Names for each Qualified Segment label:

<table>
<thead>
<tr>
<th>Segment Label Code</th>
<th>BI Object Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>BASED_CATEGORY</td>
<td>Major Category</td>
</tr>
<tr>
<td>MINOR_CATEGORY</td>
<td>Minor Category</td>
</tr>
</tbody>
</table>

For all other segment labels, use any of the following values: Segment1, Segment2, and so on, to Segment10

For BI Object Names for "Fixed Asset Location (LOC#)" Key Flex Field, for all segment labels, use Segment1, Segment2, and so on, to Segment7.

4. Click the Deploy Flexfield option to deploy the Flexfields.

B.2.101.1.2 Configuring GL Segments and GL Account using the BI Extension process  
This section describes how to configure the GL Accounting Segment Dimension in the BI metadata repository (that is, the RPD file), and how to extend the ETL metadata to populate the corresponding tables in Oracle Business Analytics Warehouse.

Overview of the BI Extension Process
In Oracle Business Analytics Warehouse, there are no default mappings to populate the segment dimension tables (W_COST_CENTER_D, W_COST_CENTER_DH, W_NATURAL_ACCOUNT_D, W_NATURAL_ACCOUNT_DH, W_BALANCING_SEGMENT_D, W_BALANCING_SEGMENT_DH, W_GL_SEGMENT_D, W_GL_SEGMENT_DH). Mappings to populate these tables are generated by the BI extension.
process. This process is driven through the RPD metadata. The logical dimensions in the RPD metadata corresponding to these tables are 'Dim – Cost Center', 'Dim – Balancing Segment', 'Dim – Natural Account Segment' and all 'Dim – GL Segment' dimensions. These dimension tables are populated from a Tree View Object (VO) or from a Value Set View Object (VO), depending on whether a tree was associated with the segment or not in Fusion Applications.

For each segment associated with trees, two VOs will be generated (Tree and TreeCode) with the following naming structure:

- FscmTopModelAM.AccountBIAM.FLEX_TREE_VS_<segment label> _VI
- FscmTopModelAM.AccountBIAM.FLEX_TREECODE_VS_<segment label>_VI

For each segment without trees, one VO will be generated with the following naming structure:

- FscmTopModelAM.AccountBIAM.FLEX_VS_<XXX>_VI

In addition to the segment dimension tables, the BI Extension process also extends the installed ETL mapping that populates the GL Account Dimension (W_GL_ACCOUNT_D). This dimension table has a pair of columns for each segment dimension. For example, COST_CENTER_NUM and COST_CENTER_ATTRIB for Cost Center dimension, BALANCING_SEGMENT_NUM and BALANCING_SEGMENT_ATTRIB for Balancing Segment dimension, ACCOUNT SEGn_CODE and ACCOUNT SEGn_ATTRIB corresponding to the generic GL Segment<n> dimensions. These columns will be populated from the Flex BI Flattened VO; FscmTopModelAM.AccountBIAM.FLEX_BI_Account_VI. This VO will have a pair of columns for each segment; <segment label> and <segment label>_. For example, for your Cost Center segment which has the segment label FA_COST_CTR, there will be two columns in this VOs named FA_COST_CTR_ and FA_COST_CTR_c.

**BI Extension Process Flow**

- Step 1 - Import the appropriate View Objects (VOs) from the ADF data source.
- Step 2 – Verify the automatic mapping of the VOs to the logical objects in the mapping dialog.
- Step 3 - Provide connection information such as user name and password for repositories.
- Step 4 - Click finish, and the appropriate metadata is generated and updated in the respective repositories.

**Prerequisite**

Before you start the BI Extension process, you must enable the Extender For BIAPPS setting using Oracle BI EE Administration Tool. To do this, choose Tools, then Options, then General, to display the Options dialog, and select the **Extender for BIAPPS** check box.
To configure GL Segments and GL Account using the BI Extension process:

1. In Oracle BI EE Administration Tool, edit the BI metadata repository (for example, OracleBIAnalyticsApps.rpd).

2. Navigate to the Oracle ADF database in the physical layer:

   oracle.apps.fscm.model.analytics.applicationModule.FscmTopModelAM_
   FscmTopModelAMLocal

   Then right click on the connection pool and select Import Metadata.

3. In the 'Select Metadata Objects' dialog, do the following:
   a. Ensure that you have selected the 'Automatically include any missing joined objects' radio button.
   b. Click on the 'Synchronize with data source' icon, as shown in the example screenshot below.

These settings import all VOs that need to be mapped to the logical tables in the RPD based on the mapping done between the segment labels and the BI Objects.
Asset Category and Asset Location Dimension Configuration

For Implementing Fixed Asset Category and Asset Location dimensions, the following Flex BI Flattened View Objects and Segment columns will be imported in the same import process.

- FscmTopModelAM.CategoryBIAM.FLEX_BI_Category_VI
- FscmTopModelAM.LocationBIAM.FLEX_BI_Location_VI

The example below shows the import process for FLEX_BI_Category_VI.

The example below shows the import process for FLEX_BI_Location_VI.
4. Click on Next after you complete the import.

Note: When some complex Chart of Account structures are defined in Fusion Applications, more than one VO might be generated for the same segment label. In this case you will see a warning message as shown in the screenshot below. Copy the information posted in the message, as this might be required in later steps. Click OK to proceed.

5. In the ‘Map to Logical Model’ dialog you would see that the VOs imported in Step 3 are automatically mapped to the appropriate logical tables. You would also see that the logical columns are automatically mapped to the VO columns in the bottom panel.
Validation:

- For tree based segments, both the Tree and the Tree Code VO should be mapped to the same logical table. The 'Hierarchy' option should be checked for both.

- For non-tree based segments, 'Hierarchy' option should not be checked.

- FscmTopModelAM.AccountBIAM.FLEX_BI_Account_VI is mapped to 'Dim – GL Account'.

- For the VOs that are mapped to logical tables, the necessary VO columns are also mapped to appropriate logical columns.

  **Note:** If you received the warning message in step 4, then none of the VOs mentioned in the message are mapped to a logical table. If you want to map these VOs in Oracle BI Applications, then you need to map to one of the generic GL segment dimensions (Dim – GL Segment<n>) manually at this stage. For each of the VOs that you manually map at this step, you also need to map the corresponding columns in FscmTopModelAM.AccountBIAM.FLEX_BI_Account_VI to the appropriate logical column in "Dim – GL Account".

**Asset Category and Asset Location Dimension Configuration**

In the Map to Logical Model dialog, note that the VOs imported in Step 3 are automatically mapped to the appropriate logical tables. Note also that the logical columns are automatically mapped to the VO columns in the bottom panel.

**Validation:** You can validate at this stage that all the automatic mappings have happened as expected using the guidelines below:

- FLEX_BI_Category_VI is mapped to logical table 'Dim – Asset Category' and FLEX_BI_Location_VI is mapped to logical table 'Dim – Asset Location'.

- The segment columns in these VOs are mapped to the appropriate logical columns in these dimensions based on the Segment Label Code to BI Object Name mapping.

6. When you have validated your mappings, click on Next and this will take you to the 'Publish to Warehouse' dialog.

7. Select the ODI check box, and provide the following details:

   **User Name** – <ODI Master Repository User Name>

   **Password** - <ODI Master Repository Password>

   **Schema Owner Name** – <ODI Master Repository DB Schema Owner Name>

   **Password** - <ODI Master Repository DB Schema Owner Password>
8. Click Finish, then Validate, and save your changes.

9. Validation: If you have successfully completed the extension process, you will see new mappings in the ODI repository to populate the necessary tables. The mappings will be named with the following naming convention SDE_<Logical Table Name>_<Physical Target Name>.

For General Ledger:
- If a segment is mapped from a Tree and a Tree Code VO, then two mappings are generated: one mapping for loading the segment dimension, and one mapping for the hierarchy dimension. For example, SDE_Dim_Cost_Center_W_COST_CENTER_D and SDE_Dim_Cost_Center_W_COST_CENTER_DH for Cost Center Dimension.
- If a segment is mapped from a Value Set VO, then one mapping is generated for loading the segment dimension. For example, SDE_Dim_GL_Segment1_W_GL_SEGMENT_D.
- For the GL Account dimension extension, the mapping SDE_FUSION_GLAccountDimension is extended to populate the new columns that were mapped in the previous steps.
- For each new mapping created above, the mappings are also added to the corresponding load plan components under "Designer navigator -> Load Plans and Scenarios -> BIAPPS Load Plan -> Load Plan Dev Components -> SDE -> FUSION_1_0". The load plan component that is modified will be one of the following depending on the segment dimension:
  - 3 SDE Dims COSTCTR_DIM FUSION_1_0
  - 3 SDE Dims BALSEG_DIM FUSION_1_0
  - 3 SDE Dims NAT_ACCT_DIM FUSION_1_0
  - 3 SDE Dims GLSEG_DIM FUSION_1_0

For Asset Category and Asset Location:
- For the Asset Category and Asset Location extensions, the mappings under the folders SDE_FUSION_FixedAssetCategoryDimension and SDE_FUSION_FixedAssetLocationDimension are extended to populate the new columns that were mapped in the previous steps.

10. When you have completed the BI Extension process, rebuild the appropriate Load Plan or create a new Load Plan.

B.2.101.1.3 Validating the Logical Table Source Filters for Generic GL Segment Divisions

The RPD metadata contains multiple logical tables that represent the generic GL segments, such as Dim – GL Segment1, Dim – GL Segment2 and so on. Since these logical tables are mapped to the same physical table, W_GL_SEGMENT_D, a filter should be specified in the logical table source of these logical tables to restrain the output of the
logical table to represent only that particular segment. These filters must be applied on the physical column SEGMENT_LOV_ID to the Value Set Codes that are applicable for that particular segment.

The extension process applies the content Logical Table Source filters for all the generic Dim – GL Segment<n> dimensions mapped in the previous steps. You can validate to check if the filters are applied accordingly and save your changes.

To validate the Logical Table Source Filters for Generic GL Segment Divisions:
1. In Oracle BI EE Administration Tool, edit the BI metadata repository (for example, OracleBIAnalyticsApps.rpd).
2. In the Business Model and Mapping layer, double click on 'Dim – GL Segment<n>' and open the LTS. Navigate to the Content table and there you would be able to see the filters applied, which should look similar to the filters in the example below.

Note: You can find the list of value set codes for a particular segment by opening the segment VO table object in the physical layer of the RPD. It will be stored in the 'description' field of the table object.

B.2.101.1.4 Re-configuring Segment Dimensions While configuring the segment dimensions as described in the first section, if you had mapped an incorrect VO to the segment dimension and generated metadata, you must revert the changes and re-map using the correct VO(s).

To re-configure Segment Dimensions:
1. Delete the existing VO Logical Table Source from the corresponding logical table to bring it to the initial state.
2. Delete the Logical Table Source filters if any applied on the DW Logical Table Source (only for the generic segment dimensions).
3. Import the new VO (re-import if the VO already exists in the physical layer) and re-do the extension process as mentioned in the previous sections.
4. If the process completes successfully, then the previously created mapping is replaced with a new mapping with the new VO.
B.2.102 How to Assign Group Account Numbers to Natural Accounts for HR Analytics

You must assign the following group account numbers in Fusion Applications for HR:
(You can skip this task if you have already completed this task for General Ledger.)

- 'CONT EXP' for 'Contracting Expenses'
- 'COGS' for 'Cost of Goods Sold'
- 'DEPCN' for 'Depreciation Expenses'
- 'EMP BENFT' for 'Employee Benefits Related Expenses'
- 'EMP OVERTIME' for 'Employee Overtime Expenses'
- 'EMP SUPP' for Employee Support Expenses'
- 'GEN PAYROLL' for 'Payroll Expenses' (GEN PAYROLL is already listed)
- 'MKTG PAYROLL' for 'Payroll Expenses'
- 'SLS PAYROLL' for 'Payroll Expenses'
- 'R&D PAYROLL' for 'Payroll Expenses' (GEN PAYROLL is already listed)
- 'VARIANCE EXP' for 'Product Variance Expenses'
- 'REVENUE' for 'Revenue'

Note: 'Other Operating Expenses' is a derived column. It does not need a group account number assignment.

How to Assign Group Account Numbers to Natural Accounts:

1. Login to Fusion Applications.
2. Click the Applcore menu.
3. Identify the value set used for your natural account.
4. Open the window to maintain value set values.
5. Assign financial categories to each natural account from the list of values.

The following group account numbers (financial categories) are seeded:

ACC DEPCN - Accumulated Depreciation
ACC LIAB - Accrued Liabilities
AP - Account Payables
AR - Account Receivables
CASH - Cash
CMMN STOCK - Common Stock
COGS - Cost Of Goods Sold
CONT EXP - Contracting Expenses
DEFERRED COGS - Deferred Cost of Goods Sold
DEFERRED REVENUE - Deferred Revenue
DEPCN - Depreciation Expenses
EMP BENFT - Employee Benefits Related Expenses
EMP OVERTIME - Employee Overtime
EMP SUPP - Employee Support and Cafeteria Expenses
FG INV - Finished Goods Inventory, FREIGHT - Freight Expenses
GEN PAYROLL - General Admin And Other Payroll
GOODWILL - Goodwill
INC TAX - Income Tax
INT EXP - Interest Expenses
LT DEBT - Long Term Debt
B.2.103 How to Set Up Group Account Numbers for Fusion Applications

Assign Financial Categories (Group Account Num) to natural accounts as follows. You need access to Fusion Applications - Application Core Setup.

1. In Fusion Applications, go to Application Core Setup.
2. Click Manage Key Flexfields.
3. Search Key Flexfield Code 'GL#'
4. Click Manage Structure Instance.
5. Find a structure instance for your chart of accounts.
6. Select the structure instance and click Edit.
7. Click Value Set Code for the Account segment to open Manage Value Sets.
8. Click Manage Values.
9. Search a natural account to which you want to assign financial categories.
10. Select a value and click Edit.
11. Assign a financial category from the list of values.
12. Save the changes.

B.2.104 How to Set up GL Segments Which Need to be Aggregated for GL Balances

Aggregated GL balances are populated in W_GL_BALANCE_A. This table stores GL Balances by only 3 qualified GL segment by default - Natural Account segment, Balancing segment and Cost center segment. The GL balances are not summarized by non-qualified segments as installed by default. If you want to include the non-qualified segments, then you must modify the ODI interfaces as follows.
To Set Up GL Balance Segment Aggregates:

1. In ODI Designer Navigator, connect to your ODI repository.
2. Open temporary interface PLP_GLBalanceAggrByAcctSegCodes.SQ_W_GL_BALANCE_F.
3. Open the Mapping tab.
4. Right click GL_SEGMENT<N>_WID in General Account Balances (W_GL_BALANCE_F) and click "Add Column to Target Table".
6. Open main interface PLP_GLBalanceAggrByAcctSegCodes.W_GL_BALANCE_A.
7. Modify the expression of SEGMENT<N>_WID as follows. SQ_W_GL_BALANCE_F.GL_SEGMENT<N>_WID

B.2.105 How to Remove Spend Classification Integration Metadata

If you are not implementing Oracle Spend Classification, Oracle recommends that you remove or hide the Oracle Spend Classification integration metadata that is included in the Presentation layer of the BI repository. Hiding or deleting this metadata avoids potential confusion among business end users.

To remove or hide Oracle Spend Classification Integration Metadata:

1. In Oracle BI EE Administration Tool, edit the BI metadata repository (for example, OracleBIAnalyticsApps.rpd).
   Deployed RPD files are located in ORACLE_HOME\bifoundation\OracleBIServerComponent\coreapplication\obis<n>\repository.
2. In the Presentation layer pane, expand the folder 'Procurement and Spend - Invoice Lines'.
   The Oracle Spend Classification metadata in the Physical layer consists of the following objects:
   - Data Classification
   - Auto UNSPSC
   - Auto Purchasing Category
   - Auto Custom Category 1
3. To remove the metadata objects listed above, right click on the objects and select Delete.
4. To hide the objects listed above from end users, right click and select Properties, then Permissions, and clear the Read permission check box for the appropriate user or group.

Note: If you decide later to implement Oracle Spend Classification, you need to do the following:

1. To display the following objects to end users, right click and select Properties, then Permissions, and select the Read permission check box for the appropriate user or group:
   - Data Classification
   - Auto UNSPSC
   - Auto Purchasing Category
   - Auto Custom Category 1

5. Save and close the BI metadata repository (that is, the RPD file).

**B.2.106 How to Enable Project Dimensions**

You can enable Oracle Supply Chain and Order Management to use dimension tables in Oracle Project Analytics. You can only perform this integration if you have licensed Oracle Project Analytics. You can configure the Oracle Supply Chain and Order Management Subject Areas listed below to join to certain Project Dimensions: Inventory Transactions (Project Dim, Task Dim, Financial Resource Dim).

The following Supply Chain fact table integrates with Project Analytics dimensions:

W_PRODUCT_XACT_F

Due to a limitation in Fusion Applications, the following Subject Areas of Oracle Supply Chain and Order Management Analytics are included in the configuration tag 'Enable Project Dimension', but are inactivated by default. **Note:** These settings are intentional, and they should not be re-activated.

- SCOM_AN: Order Backlog
- SCOM_AN: Order Booking
- SCOM_AN: Order Credit
- SCOM_AN: Order Customer Status History
- SCOM_AN: Order Cycle
- SCOM_AN: Order Fulfillment
- SCOM_AN: Order Hold
- SCOM_AN: Order Invoice
- SCOM_AN: Order Invoice Credit
- SCOM_AN: Order Scheduling
- SCOM_AN: Order Shipping

**B.2.107 How to Integrate Project Analytics with Financial Analytics**

You can enable Oracle Financial Analytics to use dimension tables in Oracle Project Analytics. You can only perform this integration if you have licensed Oracle Project Analytics. You can configure the following Subject Areas in Oracle Financial Analytics to use Oracle Project Analytics tables:

- Financials - Payables
- Financials - Receivables

The following Oracle Financial Analytics fact tables integrate with Project Analytics dimensions:

- W_AP_XACT_F
- W_AP_BALANCE_F
- W_AR_XACT_F
- W_AR_AGING_INVOICE_A

**B.2.108 How to Configure Order Item and Service Request Flat Files For ETL**

**Background**

In Fusion Applications, there are several entities that are sourced from non-Fusion Applications systems. Fusion Applications CRM is leveraging OBIA (Oracle Business Intelligence Applications) to integrate data from Fusion Applications and non-Fusion Applications source systems. The Oracle BI Applications metadata layer consolidates disparate physical data sources and makes it ready for analysis by Fusion Applications users. Sales Prospector (SPE) is a brand new Fusion application for sales users helping them to manage their pipeline and whitespace effectively. SPE expects Order Item and Service Request data to be supplied from non-Fusion applications.

---

**Note:** The configuration file or files for this task are provided on installation of Oracle BI Applications at one of the following locations:


Your system administrator will have copied these files to another location and configured ODI connections to read from this location. Work with your system administrator to obtain the files. When configuration is complete, your system administrator will need to copy the configured files to the location from which ODI reads these files.
ETL from Flat Files
Non-Fusion Applications data such as Order Item and Service Request can be directly loaded into Oracle Business Analytics Warehouse as long as the data can be presented in the specified flat file format. The ETL process loads the non-Fusion Applications data from the flat files and Fusion Applications data from Fusion Applications database tables into staging tables; then loads data from the staging tables into Oracle Business Analytics Warehouse.

SPE ETL Preparation
SPE needs non-Fusion Applications data for Order Item Fact, Service Request Fact and Service Request Dimension. The data should be presented in flat files according to the following specifications:

- Data should be in CSV files (*.csv).
- For full ETL, the files should contain all initial records that are supposed to be loaded into Oracle Business Analytics Warehouse; for incremental ETL, the files should contain only new or updated records.
- The files are specially formatted for Fusion Sales Prediction Engine (SPE) data mining use only. All columns in the files should follow Fusion application data model terms and standards, and all ID columns in the files are expected to have corresponding Fusion Integration ID.
- Data should start from line six of each file. The first five lines of each file will be skipped during ETL process.
- Each row represents one record in staging table.
- All date values should be in the format of YYYYMMDDHH24MISS. For example, 20071231140300 should be used for December 31, 2007, 2:03 pm.
- Columns DATASOURCE_NUM_ID and INTEGRATION_ID in all flat files cannot be NULL.
- Column DATASOURCE_NUM_ID needs to be fixed to 200, which is also the Fusion Applications data source number.

The Flat files for Order Item Fact, Service Request Fact and Service Request Dimension are:

- file_orderitem_fs.csv - for more information about the structure of this file, see Section B.2.108.1, "Flat file file_orderitem_fs.csv".
- file_srvreq_fs.csv - for more information about the structure of this file, see Section B.2.108.2, "Flat file file_srvreq_fs.csv".
- file_srvreq_ds.csv - for more information about the structure of this file, see Section B.2.108.3, "Flat file file_srvreq_ds.csv".

Before starting the ETL run, the flat files should be prepared based on the formats provided in sections below.

B.2.108.1 Flat file file_orderitem_fs.csv
The file is generic and therefore does not support any source order system specific features, such as recurring order lines and etc. Each line in this file will contribute to the total order amount. The granularity of this file is each order line.

The file is specially formatted for Fusion Sales Prediction Engine (SPE) data mining use only.
### Table B–79 File Structure for file_orderitem_fs.csv

<table>
<thead>
<tr>
<th>Column Name</th>
<th>Data Type</th>
<th>Sample Data</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CUSTOMER_ID</td>
<td>VARCHAR(80)</td>
<td>999997551042159</td>
<td>Customer Party Id. There could be more than one customer IDs in an order. Among the possible customer IDs of bill to, ship to, invoice to and so on; this is the primary ID for BI analysis use. Foreign key to HZ_PARTIES.PARTY_ID.</td>
</tr>
<tr>
<td>CURCY_CD</td>
<td>VARCHAR(20)</td>
<td>USD</td>
<td>Currency Code, the currency that the order line amounts are based on.</td>
</tr>
<tr>
<td>CRM_CURR_EXCHANGE_RATE</td>
<td>NUMBER(28,10)</td>
<td>1.00</td>
<td>CRM Currency Exchange Rate, which is for the conversion of the order line amounts to the CRM common currency.</td>
</tr>
<tr>
<td>CRM_CORP_CURR_CODE</td>
<td>VARCHAR(20)</td>
<td>USD</td>
<td>CRM Common Currency Code.</td>
</tr>
<tr>
<td>ORDER_ID</td>
<td>VARCHAR(80)</td>
<td>4171787</td>
<td>Order header ID.</td>
</tr>
<tr>
<td>PROD_ID</td>
<td>VARCHAR(80)</td>
<td>999997500678718</td>
<td>Product Inventory Item ID.</td>
</tr>
<tr>
<td>PROD_GROUP_ID</td>
<td>VARCHAR(80)</td>
<td>Null</td>
<td>Product Group ID. Optional for SPE ETL use. Leave null.</td>
</tr>
<tr>
<td>RESOURCE_ID</td>
<td>VARCHAR(80)</td>
<td>123445623</td>
<td>Resource ID, order owner Resource ID for order. Foreign key to HZ_PARTIES.PARTY_ID</td>
</tr>
<tr>
<td>RESOURCE_ORG_ID</td>
<td>VARCHAR(80)</td>
<td>3453453453</td>
<td>Resource Organization ID, order owner’s organization ID. Foreign key to HR_ALL_ORGANIZATION_UNITS_FORORGANIZATION_ID.</td>
</tr>
<tr>
<td>SOURCE_ID</td>
<td>VARCHAR(80)</td>
<td>100000016742344</td>
<td>Marketing campaign source code defined in MKT_SC_SOURCE_CODES.</td>
</tr>
<tr>
<td>Column Name</td>
<td>Data Type</td>
<td>Sample Data</td>
<td>Description</td>
</tr>
<tr>
<td>--------------------</td>
<td>-----------------</td>
<td>-------------</td>
<td>---------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>ORDER_DT</td>
<td>DATE</td>
<td>20061220000000</td>
<td>Order Date in the format of YYYYMMDDHH24MISS. It is the date when order is placed. This date is used in ETL as canonical date for resolving dimensional FKs.</td>
</tr>
<tr>
<td>DATASOURCE_NUM_ID</td>
<td>NUMBER(10)</td>
<td>200</td>
<td>Data Source Number ID. Need to be fixed to 200, which is the same value for Fusion Applications data source in ETL.</td>
</tr>
<tr>
<td>INTEGRATION_ID</td>
<td>VARCHAR(80)</td>
<td>12149813</td>
<td>Integration ID, the order Line ID. Typically, each order has one order header and multiple order lines.</td>
</tr>
<tr>
<td>DISCNT_AMT</td>
<td>NUMBER(28,10)</td>
<td>2.33</td>
<td>Discount Amount, deduction made to the unit price.</td>
</tr>
<tr>
<td>NET_PRI</td>
<td>NUMBER(28,10)</td>
<td>45.752</td>
<td>Net Price of order line item. This is the final price after deducting discount amount.</td>
</tr>
<tr>
<td>QTY_REQ</td>
<td>NUMBER(28,10)</td>
<td>12</td>
<td>Quantity Ordered for the line item.</td>
</tr>
<tr>
<td>PR_TERR_ID</td>
<td>VARCHAR(80)</td>
<td>1000000000023112</td>
<td>Primary Territory ID, ID of primary sales territory where order is placed. Territory ID is defined in MOT_TERRITORIES.</td>
</tr>
<tr>
<td>CREATED_BY_ID</td>
<td>VARCHAR(80)</td>
<td>SALES_ADMIN</td>
<td>Created By ID, Login ID of the user who created the row.</td>
</tr>
<tr>
<td>CREATED_ON_DT</td>
<td>DATE</td>
<td>20071231140300</td>
<td>Created On Date in the format of YYYYMMDDHH24MISS.</td>
</tr>
<tr>
<td>CHANGED_BY_ID</td>
<td>VARCHAR(80)</td>
<td>SALES_ADMIN</td>
<td>Changed By ID, Login ID of the user who modified the row.</td>
</tr>
<tr>
<td>CHANGED_ON_DT</td>
<td>DATE</td>
<td>20071231140300</td>
<td>Changed On Date in the format of YYYYMMDDHH24MISS.</td>
</tr>
<tr>
<td>DELETE_FLG</td>
<td>VARCHAR(1)</td>
<td>Null, Y or N</td>
<td>Delete Flag, indicates if the record is deleted since last ETL. Default to N if null.</td>
</tr>
<tr>
<td>X_CUSTOM</td>
<td>VARCHAR(10)</td>
<td>Null</td>
<td>ETL reserved. Leave null.</td>
</tr>
</tbody>
</table>
B.2.108.2 Flat file file_srvreq_fs.csv

The columns listed below are required for SPE ETL use. The granularity of this file is each Service Request. The file is specially formatted for Fusion Sales Prediction Engine (SPE) data mining use only.

<table>
<thead>
<tr>
<th>Column Name</th>
<th>Data Type</th>
<th>Sample Data</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DATASOURCE_NUM_ID</td>
<td>NUMBER(10)</td>
<td>200</td>
<td>Data Source Number ID. Data Source Number ID needs to be fixed to 200, the same value for Fusion Applications data source in ETL.</td>
</tr>
<tr>
<td>INTEGRATION_ID</td>
<td>VARCHAR(80)</td>
<td>12149813</td>
<td>Integration ID, unique IDentifier ID for each Service Request.</td>
</tr>
<tr>
<td>CLOSE_DT</td>
<td>DATE</td>
<td>20030616174947</td>
<td>Closed Date, date in the format of YYYYMMDDHH24MISS when service request was closed.</td>
</tr>
<tr>
<td>OPEN_DT</td>
<td>DATE</td>
<td>20020516174947</td>
<td>Open Date, date in the format of YYYYMMDDHH24MISS when service request was open.</td>
</tr>
<tr>
<td>DELETE_FLG</td>
<td>VARCHAR(1)</td>
<td>Null, Y or N</td>
<td>Delete Flag, indicates if the record is deleted since last ETL. Default to N if null.</td>
</tr>
<tr>
<td>CREATED_BY_ID</td>
<td>VARCHAR(80)</td>
<td>SALES_ADMIN</td>
<td>Created By ID, Login ID of user who created the row.</td>
</tr>
<tr>
<td>CREATED_ON_DT</td>
<td>DATE</td>
<td>20071231140300</td>
<td>Created On Date in the format of YYYYMMDDHH24MISS.</td>
</tr>
<tr>
<td>CHANGED_BY_ID</td>
<td>VARCHAR(80)</td>
<td>SALES_ADMIN</td>
<td>Changed By ID, Login ID of the user who modified the row.</td>
</tr>
<tr>
<td>CHANGED_ON_DT</td>
<td>DATE</td>
<td>20071231140300</td>
<td>Changed On Date in the format of YYYYMMDDHH24MISS.</td>
</tr>
<tr>
<td>X_CUSTOM</td>
<td>VARCHAR(10)</td>
<td>Null</td>
<td>ETL reserved. Leave null.</td>
</tr>
<tr>
<td>CUSTOMER_ID</td>
<td>VARCHAR(80)</td>
<td>999997551042159</td>
<td>Customer Party Id. Foreign key to HZ_PARTIES.PARTY_ID.</td>
</tr>
<tr>
<td>PROD_ID</td>
<td>VARCHAR(80)</td>
<td>999997500678718</td>
<td>Product Inventory Item ID. Foreign key to EGP_SYSTEM_ITEMS_B.INVENTORY_ITEM_ID.</td>
</tr>
</tbody>
</table>
B.2.108.3 Flat file file_srvreq_ds.csv

The columns listed below are required for SPE ETL use. The granularity of this file is each Service Request. The file is specially formatted for Fusion Sales Prediction Engine (SPE) data mining use only.

Table B–81 File Structure for Flat file file_srvreq_ds.csv

<table>
<thead>
<tr>
<th>Column Name</th>
<th>Data Type</th>
<th>Sample Data</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DATASOURCE_NUM_ID</td>
<td>NUMBER(10)</td>
<td>200</td>
<td>Data Source Number Id. Data Source Number Id needs to be fixed to 200, the same value for Fusion Applications data source in ETL.</td>
</tr>
<tr>
<td>INTEGRATION_ID</td>
<td>VARCHAR(80)</td>
<td>1-10E-5</td>
<td>Integration ID, unique Identifier ID for each Service Request.</td>
</tr>
<tr>
<td>CLOSE_DT</td>
<td>DATE</td>
<td>20020516174947</td>
<td>Closed Date, date in the format of YYYYMMDDHH24MISS when service request was closed.</td>
</tr>
<tr>
<td>OPEN_DT</td>
<td>DATE</td>
<td>20020516174947</td>
<td>Open Date, date in the format of YYYYMMDDHH24MISS when service request was open.</td>
</tr>
<tr>
<td>SEV_CD</td>
<td>VARCHAR(80)</td>
<td>SR_SEVERITY~3-Medium</td>
<td>Severity Code of the Service Request. Possible values are: SR_SEVERITY<del>1-Critical, SR_SEVERITY</del>2-High, SR_SEVERITY<del>3-Medium, SR_SEVERITY</del>4-Low.</td>
</tr>
<tr>
<td>STATUS</td>
<td>VARCHAR(80)</td>
<td>SR_STATUS~Open</td>
<td>Service Request Status. Possible values are: SR_STATUS<del>Approved, SR_STATUS</del>Cancelled, SR_STATUS<del>Closed, SR_STATUS</del>Completed, SR_STATUS<del>Open, SR_STATUS</del>Pending.</td>
</tr>
<tr>
<td>DELETE_FLG</td>
<td>VARCHAR(1)</td>
<td>Null, Y or N</td>
<td>Delete Flag, indicates if the record is deleted since last ETL. Default to N if null.</td>
</tr>
<tr>
<td>CREATED_BY_ID</td>
<td>VARCHAR(80)</td>
<td>SALES_ADMIN</td>
<td>Created By ID, Login ID of the user who created the row.</td>
</tr>
<tr>
<td>CREATED_ON_DT</td>
<td>DATE</td>
<td>20071231140300</td>
<td>Created On Date in the format of YYYYMMDDHH24MISS.</td>
</tr>
</tbody>
</table>
B.2.109 How to Incrementally Refresh the Inventory Monthly Balance Table

To incrementally refresh the Inventory Monthly Balance table:

1. Delete the records from the Monthly Balance (W_INVENTORY_MONTHLY_BAL_F) aggregate table for a certain time.

   The GRAIN parameter determines the time period for the deletion. For example, if GRAIN=MONTH, and the date is May 15, 2005, then all records for April and the current month (May) are deleted in the Monthly Balance (W_INVENTORY_MONTHLY_BAL_F) table.

   Running the PLP_InventoryMonthlyBalance workflow mapping implements this step.

2. Retrieve the records in the Inventory Balance (W_INVENTORY_DAILY_BAL_F) fact table and load the records to the Monthly Balance (W_INVENTORY_MONTHLY_BAL_F) table at a certain grain level.

   For example, if GRAIN=MONTH, then the month end balance records in the W_INVENTORY_DAILY_BAL_F fact table are stored in and aggregated to the Monthly Balance (W_INVENTORY_MONTHLY_BAL_F).

   Running the PLP_InventoryMonthlyBalance session, and the PLP_InventoryMonthlyBalance mapping implements this step. For the current month balance, balance records of the previous day (if it is in the same month) are deleted from W_INVENTORY_MONTHLY_BAL_F, and balance records of the current day will be loaded from W_INVENTORY_BALANCE_F to W_INVENTORY_MONTHLY_BAL_F.

   Running the PLP_InventoryMonthlyBalance workflow implements this step.

3. Remove the old records from the W_INVENTORY_DAILY_BAL_F fact table.

   To remove old records you need to use the KEEP_PERIOD and the NUM_OF_PERIOD parameters. For example, if KEEP_PERIOD=MONTH, NUM_OF_PERIOD=1, and the date is May 15, 2005, then the records for April and the current month (May) are kept and the older records are deleted.

   Running the PLP_InventoryDailyBalance_Trim workflow implements this step.

**Note:** The trimming process is to reduce data size in the table. It is important to emphasize that you will not be able to see the old daily balance records. But you will still be able to see the month-end balance. Therefore, make sure that you adjust the NUM_OF_PERIOD values to reflect your data volume and data recency requirements.

---

**Table B–81 (Cont.) File Structure for Flat file file_srvreq_ds.csv**

<table>
<thead>
<tr>
<th>Column Name</th>
<th>Data Type</th>
<th>Sample Data</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHANGED_BY_ID</td>
<td>VARCHAR(80)</td>
<td>SALES_ADMIN</td>
<td>Changed By ID, Login ID of the user who modified the row.</td>
</tr>
<tr>
<td>CHANGED_ON_DT</td>
<td>DATE</td>
<td>20071231140300</td>
<td>Changed On Date in the format of YYYYMMDDHH24MISS.</td>
</tr>
<tr>
<td>X_CUSTOM</td>
<td>VARCHAR(10)</td>
<td>Null</td>
<td>ETL reserved. Leave null.</td>
</tr>
</tbody>
</table>
To Configure Inventory Monthly Balance and the Inventory Transaction Aggregate Table:

1. Delete the records from the Monthly Balance (W_INVENTORY_MONTHLY_BAL_F) aggregate table for a certain time.

   The GRAIN parameter determines the time period for the deletion. For example, if GRAIN=MONTH, and the date is May 15, 2005, then all records for April and the current month (May) are deleted in the Monthly Balance (W_INVENTORY_MONTHLY_BAL_F) table.

   Running the PLP_InventoryMonthlyBalance workflow mapping implements this step.

2. Retrieve the records in the Inventory Balance (W_INVENTORY_DAILY_BAL_F) fact table and load the records to the Monthly Balance (W_INVENTORY_MONTHLY_BAL_F) table at a certain grain level.

   For example, if GRAIN=MONTH, then the month end balance records in the W_INVENTORY_DAILY_BAL_F fact table are stored in and aggregated to the Monthly Balance (W_INVENTORY_MONTHLY_BAL_F).

   Running the PLP_InventoryMonthlyBalance session, and the PLP_InventoryMonthlyBalance mapping implements this step. For the current month balance, balance records of the previous day (if it is in the same month) are deleted from W_INVENTORY_MONTHLY_BAL_F, and balance records of the current day will be loaded from W_INVENTORY_BALANCE_F to W_INVENTORY_MONTHLY_BAL_F.

   Running the PLP_InventoryMonthlyBalance workflow implements this step.

3. Remove the old records from the W_INVENTORY_DAILY_BAL_F fact table.

   To remove old records you need to use the KEEP_PERIOD and the NUM_OF_PERIOD parameters. For example, if KEEP_PERIOD=MONTH, NUM_OF_PERIOD=1, and the date is May 15, 2005, then the records for April and the current month (May) are kept and the older records are deleted.

   Running the PLP_InventoryDailyBalance_Trim workflow implements this step.

---

**Note:** The trimming process reduces the amount of data in the table. It is important to emphasize that after data trimming you will not be able to see the old daily balance records. However, you will still be able to see the month-end balance. Therefore, make sure that you adjust the NUM_OF_PERIOD values to reflect your data volume and data recency requirements.

---

**B.2.110 How to Configure the Product Transaction Aggregate Table for ETL Runs**

Before you run the initial ETL and then the incremental ETL to load the Product Transaction aggregate table, you need to configure the Product Transaction Aggregate Table, as follows.

**To configure the Product Transaction Aggregate Table**

Use Oracle BI Applications Configuration Manager to ensure that the required values are set for the following Parameters:

- REFRESH_PERIOD = 'MONTH'
- GRAIN = 'MONTH'
NUM_OF_PERIOD = 3

**Note:** If any of these parameters do not exist, create them as Data Type = Text with the specified Values.

**To configure the Product Transaction aggregate table for the initial ETL run**
Retrieve the records in the Product Transaction fact (W_PRODUCT_XACT_F) table, and aggregate the records to the Product Transaction aggregate (W_PRODUCT_XACT_A) table at a certain grain level.

For example, if GRAIN=MONTH then the records in the W_PRODUCT_XACT_F fact table are retrieved and aggregated to the W_PRODUCT_XACT_A table at a monthly level.

Running the PLP_ProductTransactionAggregate mapping implements this step.

**To configure the Product Transaction aggregate table for the incremental ETL run**
Delete the refreshed records from the Product Transaction aggregate (W_PRODUCT_XACT_A) table for a certain time.

The REFRESH_PERIOD and the NUM_OF_PERIOD parameters determine the time period for the deletion.

For example, if REFRESH_PERIOD=M0NTH, NUM_OF_PERIOD=1, and the date is May 15, 2013, then all records for April and the current month (May) are deleted in the W_PRODUCT_XACT_A table.

Running the PLP_ProductTransactionAggregate mapping implements this step.

Retrieve the records in the Product Transaction fact (W_PRODUCT_XACT_F) table, and aggregate the records to the W_PRODUCT_XACT_A table at a certain grain level.

For example, if GRAIN=MONTH then the records in the W_PRODUCT_XACT_F fact table are retrieved and aggregated to the W_PRODUCT_XACT_A table at a monthly level.

Running the PLP_ProductTransactionAggregate workflow implements this step.

**B.2.111 How to Process Bill of Material Explosion for JD Edwards EnterpriseOne**

This section explains how to process the Bill of Materials (BOM) for exploding to a multi-level structure to ultimately populate both the W_BOM_HEADER_D and W_BOM_ITEM_F tables.

JD Edwards EnterpriseOne maintains BOM information in a single level format, but Oracle BI Applications requires it in multi-level format. Therefore, before loading data into Oracle BI Application tables, the single level structure must be exploded into a multi-level structure.

Because all of the BOM information is stored in one single table in JD Edwards EnterpriseOne source and there are no defined levels for the BOM, the system has to loop through iteratively to get the BOM exploded. Also, Oracle BI Applications maintains all the revisions to the components as a new version of the BOM along with their effective dates. Considering these facts, it is not feasible to use ETL to convert the single level BOM to a multi-level BOM. Therefore the logic from an existing JD Edwards EnterpriseOne UBE (R30460) was used to create a new UBE for the explosion.

This new UBE (R30461) extracts the manufactured end products and converts the single-level BOM format into a multi-level BOM format. In addition, it also extracts some required information like Left bounds/Right bounds and level parents (1 - 10).
The UBE loads the multi-level BOM structure for manufactured end products with each revision into two work files respectively for BOM header and item (component). The ETL then extracts the data from the two work files and loads it into the Oracle BI Applications tables.

**Note:** If you plan to consume analytics on Bill of Materials, it is mandatory to run this UBE before starting the ETL. This UBE and the related JD Edwards EnterpriseOne objects are created solely for the benefit of analytics and therefore will not be available in the existing source system.

**B.2.112 Manage Domains and Member Mappings for Timecard Entry Type Dimension**

The Timecard Entry Type dimension has a number of conformed domains which are used in many of the Time and Labor metrics. These domains must be configured correctly for the reports to contain the accurate attribution of time reporting entries to warehouse reporting categories and subcategories.

**Optional or Mandatory**

This task is mandatory.

**Applies to**

E-Business Suite and PeopleSoft.

**Source Timecard Entry Type Code Mapped To Timecard Entry Type Subcategory**

This task is mandatory.

Used to identify how Source Timecard Entry Type map to delivered target Timecard Entry Type Subcategory domain members; target domain members are used in the delivered metrics, dashboards and reports, for example, REGULAR (Regular), OVERTIME (Overtime). The target domain is Extensible - customers can add to but not delete from it.

**Example for E-Business Suite**

The Source Timecard Entry Type is the Element Type Id (Element).

**Table B–82 Example Implementation for E-Business Suite**

<table>
<thead>
<tr>
<th>Source Member Code (Name)</th>
<th>Target Member Code (Name)</th>
</tr>
</thead>
<tbody>
<tr>
<td>64668 (Overtime Element)</td>
<td>OVERTIME (Overtime)</td>
</tr>
<tr>
<td>57941 (Regular Hours Worked)</td>
<td>REGULAR (Regular)</td>
</tr>
<tr>
<td><em>HOURS</em> (Hours)</td>
<td>REGULAR (Regular)</td>
</tr>
<tr>
<td>63085 (In Class Training Hours Rebate)</td>
<td>TRAINING (Training)</td>
</tr>
</tbody>
</table>

**Example for PeopleSoft**

On PeopleSoft the Source Timecard Entry Type is the Time Reporting Code (TRC).
**Table B–83  Example Implementation for PeopleSoft**

<table>
<thead>
<tr>
<th>Source Member Code (Name)</th>
<th>Target Member Code (Name)</th>
</tr>
</thead>
<tbody>
<tr>
<td>KAO20 (Overtime - Double Time)</td>
<td>OVERTIME (Overtime)</td>
</tr>
<tr>
<td>MCREG (Regular)</td>
<td>REGULAR (Regular)</td>
</tr>
<tr>
<td>MTRG (Training)</td>
<td>TRAINING (Training)</td>
</tr>
</tbody>
</table>

**Timecard Entry Type Subcategory Mapped to Timecard Entry Type Category**

This task is optional. There are seeded mappings delivered with the product.

Used to identify which Timecard Entry Type Subcategory are mapped to Timecard Entry Type Category; target domain members are used in the delivered metrics, dashboards and reports, for example, WORKED (Worked), NON_WORKED (Non-Worked). The target domain is Extensible - customers can add to but not delete from it.

**Table B–84  Example Seeded Implementation**

<table>
<thead>
<tr>
<th>Source Member Code (Name)</th>
<th>Target Member Code (Name)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BL (Bereavement)</td>
<td>NON_WORKED (Non-Worked)</td>
</tr>
<tr>
<td>FAML (Family Leave)</td>
<td>NON_WORKED (Non-Worked)</td>
</tr>
<tr>
<td>HOL (Holiday)</td>
<td>NON_WORKED (Non-Worked)</td>
</tr>
<tr>
<td>OVERTIME (Overtime)</td>
<td>WORKED (Worked)</td>
</tr>
<tr>
<td>PREMIUM (Premium)</td>
<td>WORKED (Worked)</td>
</tr>
<tr>
<td>REGULAR (Regular)</td>
<td>WORKED (Worked)</td>
</tr>
<tr>
<td>SCK (Sickness)</td>
<td>NON_WORKED (Non-Worked)</td>
</tr>
<tr>
<td>TRAINING (Training)</td>
<td>OTHER (Other)</td>
</tr>
<tr>
<td>WORKING (Working)</td>
<td>WORKED (Worked)</td>
</tr>
</tbody>
</table>

**Source Timecard Entry Type Code for Timecard Entry Productive (Y or N) Flag**

Used to identify which Source Timecard Entry Type are considered productive; target domain members are used in the delivered metrics, dashboards and reports, for example, Y (Yes), N (No). The target domain is Extensible - customers can add to but not delete from it.

**Example for E-Business Suite**

The Source Timecard Entry Type is the Element Type Id (Element).

**Table B–85  Example Implementation for E-Business Suite**

<table>
<thead>
<tr>
<th>Source Member Code (Name)</th>
<th>Target Member Code (Name)</th>
</tr>
</thead>
<tbody>
<tr>
<td>64668 (Overtime Element)</td>
<td>Y (Yes)</td>
</tr>
<tr>
<td>57941 (Regular Hours Worked)</td>
<td>Y (Yes)</td>
</tr>
<tr>
<td>63085 (In Class Training Hours Rebate)</td>
<td>N (No)</td>
</tr>
</tbody>
</table>
Example for PeopleSoft

On PeopleSoft the Source Timecard Entry Type is the Time Reporting Code (TRC).

<table>
<thead>
<tr>
<th>Source Member Code</th>
<th>Target Member Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>KAO20 (Overtime - Double Time)</td>
<td>Y (Yes)</td>
</tr>
<tr>
<td>MCREG (Regular)</td>
<td>Y (Yes)</td>
</tr>
<tr>
<td>MTRG (Training)</td>
<td>N (No)</td>
</tr>
</tbody>
</table>

**Note:** The following Domain Member Mappings should be completed by customers prior to loading the Time and Labor warehouse schema.

**Source Timecard Entry Absence Category Mapped to Timecard Entry Absence Category**

This task is optional.

Used to identify which Source Timecard Entry Absence Category are mapped to Timecard Entry Absence Category; target domain members are not currently used in the delivered metrics, dashboards and reports. The target domain is Extensible - customers can add to but not delete from it.

**Source Timecard Entry Earning Category Code for Timecard Entry Type Earning Category**

This task is optional

Used to identify which Source Timecard Entry Earning Category are mapped to Timecard Entry Type Earning Category; target domain members are not currently used in the delivered metrics, dashboards and reports. The target domain is Extensible - customers can add to but not delete from it.

**B.2.113 How to Set Up the C_STATE_PROV Domain**

To configure conformed STATE_PROV, you use Externally Conformed Domains in Oracle BI Applications Configuration Manager. For more information about how to configure externally conformed domains, see Section 4.4.8, "How to Configure Externally Conformed Domains".

**B.2.114 How to Configure Projects Resource Management Work Type Dimension for PeopleSoft**

**Note:** This task is only applicable for Peoplesoft Project Resource Management.

Work Type identifies the type of work done on a project and/or task. Work Type can identify whether this particular task is billable, capitalizable or for training; and assigns a weight to the level of utilization of the person performing the task. Lot of metrics in Project Analytics Resource Management solution depends on the work type. For example, Training Hours considers only those tasks which are of type Training. In PeopleSoft Resource Management, Resource tasks are managed with a set of predefined task categories that are delivered with PeopleSoft Resource Management, and user definable categories that are available for tasks that are specific to the
organization. However, in Peoplesoft Resource Management UI, there is no way to specify the work type associated with these task categories. The Task Types defined in PeopleSoft Resource Management is mapped to Work type Dimension. Work Type Dimension for PeopleSoft is not applicable for other Project Subject areas except Resource Management.

To Configure Projects Resource Management Work Type Dimension for PeopleSoft:

1. Run the following query in the source database:

   ```sql
 SELECT CONCAT(CONCAT(TASK_TYPE,'~'),SYSTEM_SOURCE) FROM PS_RS_TASK_TYPE WHERE SYSTEM_SOURCE='RS'
   ```

2. Copy the output of the above query and put in the file `file_psft_work_type_ds.csv` under the first column (INTEGRATION_ID) from row 5 onwards.

3. The Work Type dimension provides two different scales to weight assigned time. This allows showing two different views of utilization: One at the resource level and the other at the organization level. For example, time doing rework or training could have full credit at the resource level while only partial at the organization level. For each of the row, specify the following information:

<table>
<thead>
<tr>
<th>Column</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RES_UTILIZATION_PERCENTAGE</td>
<td>Resource Utilization Percentage for the task category. Any value between 0 and 100.</td>
</tr>
<tr>
<td>ORG_UTILIZATION_PERCENTAGE</td>
<td>Organization Utilization Percentage for the task category. Any value between 0 and 100.</td>
</tr>
<tr>
<td>REDUCE_CAPACITY_FLG</td>
<td>Flag that indicates whether any hours charged by the resource to this task category will reduce the capacity of the resource and the appropriate organization. Either Y or N.</td>
</tr>
<tr>
<td>BILLABLE_CAPITALIZABLE_FLG</td>
<td>Flag that indicates whether the task category type is billable or capitalizable. Either Y or N.</td>
</tr>
<tr>
<td>TRAINING_FLAG</td>
<td>Flag that indicates whether the task category is of type training.</td>
</tr>
</tbody>
</table>

4. Save the file.

   Ensure that the file is saved in CSV (text) not in MS Excel format.

5. This file need to be placed under Oracle BI Applications Source Files folder.

**B.2.115 How to Configure Project Revenue Fact for E-Business Suite**

This topic contains the following sections:
- Section B.2.115.1, "Overview of Configuring Cost Fact for E-Business Suite"
- Section B.2.115.2, "How to Configure the Project Cost Aggregate Table"
- Section B.2.115.3, "Configuring Revenue Fact for E-Business Suite"
- Section B.2.115.4, "How to Configure the Project Revenue Aggregate Table"
- Section B.2.115.5, "How To Configure Project Uom For E-Business Suite"
B.2.115.1 Overview of Configuring Cost Fact for E-Business Suite

Actual Costs are extracted from the Cost Distribution Lines table in the Project Costing module in E-Business Suite and loaded into the Cost Line Fact (W_PROJ_COST_LINE_F) table.

For E-Business Suite, Transaction Currency is the Document Currency for this fact.

**Note**: E-Business Suite concurrent programs (such as PRC: Distribute Labor Costs and PRC: Distribute Usage and Miscellaneous Costs) for distributing Cost should be run before running the ETL to load Oracle Business Analytics Warehouse. If the Cost Distribution program is not run before every incremental ETL run, the data in Cost Distribution Fact will not be synchronized with the actual expenditures in the Expenditure Fact table.

**Expenditure Fact**
The Expenditure Fact (W_PROJ_EXP_LINE_F) is based on PA_EXPENDITURE_ITEMS_ALL. It shows the actual expenditure data before distribution. This fact should be used by customers who do not distribute their Expenditure on a daily basis, but who have some users who need to see a frequently updated view of Expenditure data.

**Note**: The GL Date is assigned to the Cost Distribution Line only (during Cost distribution) and not to the Expenditure Item records. Therefore, the Expenditure data can only be analyzed by the Enterprise Calendar dimension and not by the GL calendar. Also, the Expenditure data cannot be analyzed by the GL Account because the GL account is associated only when the data is distributed.

**Cost Fact Canonical Date**
The Canonical Date dimension for the Cost fact is based on the PRVDR_GL_DATE from Distribution Line table, whereas the Canonical Date dimension for the Expenditure fact is based on the EXPENDITURE_DATE from the Expenditure Items table.

The multi calendar date dimension contains calendars for multiple organizations. It is essential that all records in a report analyzing data by the Fiscal Calendar (Dim - Fiscal Calendar) point to the same calendar. For this reason, all reports in the dashboard are filtered on the Project Business Unit. To make all Cost records in a Project Business Unit point to the same calendar, the RCVR_GL_DATE and RCVR_PA_DATE columns are used to populate the GL_ACCOUNTING_DT_WID and PROJ_ACCOUNTING_DT_WID columns in the fact table respectively. Expenditure OU view (in Cost Fact) can be built using Enterprise Calendar as well.

**About Domain Values for Cost Fact**
The Project Cost Transfer Status has been modeled as a domain value and can be configured in FSM.

**Incremental Logic for Cost Fact**
The incremental extract logic for the Cost fact table depends on the 'REQUEST_ID' field of the Cost Distribution Lines table. The W_PROJ_ETL_PS parameter table facilitates this logic.

Using a separate ODI interface, the maximum Request Id in the source table at the time of the ETL run is stored in this table, which is subsequently used to populate the SDE task (SDE_ORA_PROJECTCOSTLINE) level ODI variable #EBS_REQUEST_ID_1. It is initialized using the following query:

```sql
SELECT COALESCE((SELECT PRE_REQUEST_ID FROM QUALIFY_DS(W_PROJ_ETL_PS) WHERE TBL_NAME = 'PA_COST_DISTRIBUTION_LINES_ALL'), 0) FROM_DUAL()
```
Note: If you are missing Cost records in W_PROJ_COST_LINE_F after an incremental update, download patch 9896800 from My Oracle Support. The Tech Note included with the patch explains the scenarios where this can happen, and the proposed solution.

B.2.115.2 How to Configure the Project Cost Aggregate Table

The Project Cost aggregate table (W_PROJ_COST_A) is used to capture information about the project cost distributions for the expenditure items. You need to configure the Project Cost Lines aggregate table before the initial ETL run and subsequent incremental ETL.

Before the initial ETL run, you need to configure the COST_TIME_GRAIN parameter in FSM for the time aggregation level in the Project Cost Lines aggregate fact table.

By default, the COST_TIMEGRAIN parameter has a value of PERIOD. The possible values for the COST_TIME_GRAIN parameter are:

- PERIOD
- QUARTER
- YEAR

The Project Cost Lines aggregate table is fully loaded from the base table in the initial ETL run. The table can grow to millions of records. Therefore, the Project Cost aggregate table is not fully reloaded from the base table after each incremental ETL run. The Oracle Business Analytics Warehouse minimizes the incremental aggregation effort by modifying the aggregate table incrementally as the base table is updated, as described below.

To Configure the Project Cost Aggregate Table:

1. Oracle Business Analytics Warehouse finds the records to be updated in the base table since the last ETL run, and loads them into the W_PROJ_COST_LINE_TMP table. The measures in these records are multiplied by (-1). The mapping responsible for this task is SIL_ProjectCostLinesFact_Derive_PreLoadImage.

2. Oracle Business Analytics Warehouse finds the inserted or updated records in the base table since the last ETL run, and loads them into the W_PROJ_COST_LINE_TMP table, without changing their sign. The mapping responsible for this task is SIL_ProjectCostLinesFact_Derive_PreLoadImage, which is run before PLP_ProjectCostLinesFact_Derive_PostLoadImage updates or inserts records in the base table.

3. Oracle Business Analytics Warehouse aggregates the W_PROJ_COST_LINE_TMP table and load to W_PROJ_COST_A_TMP, which has the same granularity as the W_PROJ_COST_A table.

4. The PLP_ProjectCostLinesAggregate_Derive mapping looks up the W_PROJ_COST_A aggregate table to update existing buckets or insert new buckets in the aggregate table (the mapping is PLP_ProjectCostLinesAggregate_Load).

B.2.115.3 Configuring Revenue Fact for E-Business Suite

Actual Revenue Line records are extracted from the Revenue/Event Distribution Lines tables (PA_CUST_REV_DISTRIB_LINES_ALL and PA_CUST_EVENT_DIST_ALL) in the Project Costing module in E-Business Suite and are loaded into the Revenue Line Fact (W_PROJ_REVENUE_LINE_F) table.

**Note:** E-Business Suite concurrent programs (such as PRC: Generate Draft Revenue for a Single Project or PRC: Generate Draft Revenue for a Range of Projects) for distributing revenue should be run before the ETL is run to load Oracle Business Analytics Warehouse.

For the Revenue Header Fact (W_PROJ_REVENUE_HDR_F), the primary source is the PA_DRAFT_REVENUES table. Revenue line metrics, such as Bill and Revenue amounts, are aggregated in this table as well.

**Revenue Fact Canonical Date**
The Canonical Date dimension is based on the GL_DATE from the Draft Revenues table.

**Revenue Facts Staging Table**
This is a common staging table that loads both the header and the line level revenue fact tables.

**Revenue Fact Multicurrency Support**
Some metrics such as Unearned Revenue, Unbilled Receivables, Realized Gains, and Realized Losses are only available in Local Currency and Global Currencies. There are three columns in w_proj_revenue_line_f and w_proj_revenue_hdr_f respectively for revenue amounts in global currencies.

**Revenue Fact Domain Values**
The project revenue status has been modeled as a domain value and can be configured in FSM.

**Incremental Logic for Revenue Fact**
The incremental extract logic for the Revenue fact table depends on the REQUEST_ID field of the Revenue Distribution Lines table. The W_PROJ_ETL_PS parameter facilitates this logic, and through a separate ODI process, the maximum Request Id in the source table at the time of the ETL run is stored in this table, which is subsequently used to populate the following variables for the SDE_ORA_ProjectRevenueLine task in ODI:

- **#EBS_REQUEST_ID_2**
  This variable is initialized using the following query:
  
  ```sql
 SELECT COALESCE((SELECT COALESCE(PRE_REQUEST_ID,0) FROM QUALIFY_DS(W_PROJ_ETL_PS) WHERE TBL_NAME = 'PA_CUST_EVENT_RDL_ALL'),0) FROM_DUAL()
  ```

- **#EBS_REQUEST_ID_4**
  This variable is initialized using the following query:
  
  ```sql
 SELECT COALESCE((SELECT COALESCE(PRE_REQUEST_ID,0) FROM QUALIFY_DS(W_PROJ_ETL_PS) WHERE TBL_NAME = 'PA_CUST_REV_DIST_LINES_ALL'),0) FROM_DUAL()
  ```

- **#EBS_REQUEST_ID_4**
  This variable is initialized using the following query:
  
  ```sql
 SELECT COALESCE((SELECT COALESCE(PRE_REQUEST_ID,0) FROM QUALIFY_DS(W_PROJ_ETL_PS) WHERE TBL_NAME = 'PA_DRAFT_REVENUES_ALL'),0) FROM_DUAL()
  ```
B.2.115.4 How to Configure the Project Revenue Aggregate Table

The Project Cost aggregate table (W_PROJ_REVENUE_A) is used to capture information about the project revenue distributions. You need to configure the Project Revenue Lines aggregate table before the initial ETL run and subsequent incremental ETL.

Before the initial ETL run, you need to configure the REVENUE_TIME_GRAIN parameter in FSM for the time aggregation level in the Project Revenue Lines aggregate fact table.

By default, the REVENUE_TIME_GRAIN parameter has a value of PERIOD. The possible values for the REVENUE_TIME_GRAIN parameter are:

- PERIOD
- QUARTER
- YEAR

The Project Revenue Lines aggregate table is fully loaded from the base table in the initial ETL run. The table can grow to millions of records. Therefore, the Project Revenue aggregate table is not fully reloaded from the base table after each incremental ETL run. The Oracle Business Analytics Warehouse minimizes the incremental aggregation effort by modifying the aggregate table incrementally as the base table is updated.

To configure the Project Revenue Aggregate Table:

1. Oracle Business Analytics Warehouse finds the records to be updated in the base table since the last ETL run, and loads them into the W_PROJ_REVENUE_LINE_TMP table. The measures in these records are multiplied by (-1). The mapping responsible for this task is SIL_ProjectRevenueLinesFact_Derive_PreLoadImage.

2. Oracle Business Analytics Warehouse finds the inserted or updated records in the base table since the last ETL run, and loads them into the W_PROJ_REVENUE_LINE_TMP table, without changing their sign. The mapping responsible for this task is SIL_ProjectRevenueLinesFact_Derive_PreLoadImage, which is run before PLP_ProjectRevenueLinesFact_Derive_PostLoadImage updates or inserts records in the base table.

3. Oracle Business Analytics Warehouse aggregates the W_PROJ_REVENUE_LINE_TMP table and load to W_PROJ_REVENUE_A_TMP, which has the same granularity as the W_PROJ_REVENUE_A table.

4. The PLP_ProjectRevenueLinesAggregate_Derive mapping looks up the W_PROJ_REVENUE_A aggregate table to update existing buckets or insert new buckets in the aggregate table (the mapping is PLP_ProjectRevenueLinesAggregate_Load).

B.2.115.5 How To Configure Project Uom For E-Business Suite

Use the SQL below in the OLTP to get the project UOMs and then map them to warehouse (conformed) UOMs coded in FSM if the codes are not already mapped.

```
select lookup_code, meaning, description from fnd_lookup_values where lookup_type='UNIT' and LANGUAGE='US';
```

B.2.116 How to Configure SIA Presentation Hierarchy in RPD

In Student Information Analytics (SIA), the following presentation hierarchies are implemented in the default delivery of the Student Information Analytics module:

- Hierarchy -1 : Academic Year -> Academic Term
- Hierarchy -4 (Program hierarchy) : Academic Institution -> Academic Career -> Academic Program

Hierarchy-1 doesn’t require any configuration. However, Hierarchy-2, 3 and 4 require certain configurations as per the customer preference / customer data.

The steps to configure the sub-plan hierarchy are mentioned below. Similar steps can be adopted to configure the plan and program hierarchies.

**Sub-Plan hierarchy configuration**

The sub-plan hierarchy has been created based on the sub plan dimension which is basically a subset of academic plan dimension. If a customer has fact data till the sub plan level for all the fact rows, then the default Sub-Plan hierarchy will work properly and it doesn’t require any configuration.

However, if you determine that in your data all fact rows will have data at least to the academic plan level, and academic sub plan information is optional, then you should use Academic Plan hierarchy (which is already present in the BMM layer).

The steps to configure the sub-plan hierarchy (in the scenario described above) are as follows:

1. Delete the "SIA Academic Subplan" hierarchy from presentation layer under Academic Institution presentation table.
2. Drag and drop the "SIA Academic Plan" hierarchy from the BMM layer to Academic Institution presentation table of a specific subject area.
3. Drag and drop the following presentation columns to the respective presentation hierarchy levels of Academic Plan presentation hierarchy.

However, if you determine that in your data all fact rows will have data at least to the academic program level, and academic sub plan and plan information are optional, then you should use Academic Program hierarchy (which is also present in the BMM layer).

However, if you want to use Academic Career hierarchy, then you must create it first. Academic Career hierarchy is deployed by default, and is requires a customization.

**Table B–88 Presentation tables and columns**

<table>
<thead>
<tr>
<th>SI Number</th>
<th>Presentation Table</th>
<th>Presentation Column</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Academic Institution / Institution</td>
<td>Source Institution</td>
</tr>
<tr>
<td>1</td>
<td>Academic Career</td>
<td>Academic Career</td>
</tr>
<tr>
<td>2</td>
<td>Academic Program</td>
<td>Academic Program</td>
</tr>
<tr>
<td>3</td>
<td>Academic Plan</td>
<td>Academic Plan</td>
</tr>
</tbody>
</table>

**B.2.117 How to Configure Backlog Period**

The Backlog table (W_SALES_BACKLOG_LINE_F) stores backlog data for the current month. In contrast, the Backlog History table (W_SALES_BACKLOG_HIST_F) stores
snapshots of all previous months’ historical backlog data. The periods for which the Backlog History table tracks backlog data is defined by the Backlog Period Date. By default, the date is set as the last calendar day of the month; however you may configure this date. You might want to view backlog history at a more detailed level, such as by day or by week, instead of by ‘MONTH’ or at a more higher level like Quarter or Year, then this is done by configuring the FSM Parameters - TIME_GRAIN to ‘DAY’ OR ‘WEEK’ OR ‘QUARTER’ OR ‘YEAR’. In addition, you must make the ODI changes that are included in this section.

Setting the Time Grain Parameters in FSM

By default, the parameter TIME_GRAIN is set to ‘MONTH’. If you want to change the period of aggregates, you will have to set these variables to desired levels. To change the values in FSM, navigate to Manage Parameters, select ‘TIME_GRAIN’ and click the Edit button.

To set the Time Grain Parameters in FSM:

1. Navigate to Manage Parameters.
2. Select TIME_GRAIN and click on the edit button.
3. In the Manage Parameter Default values area, specify a value in the Default Value field. The valid values are:
   - DAY
   - WEEK
   - MONTH
   - QUARTER
   - YEAR

The corresponding Parameter Task in FSM is ‘Configure Time Grain for Backlog Period Date’.

Setting the KM option for Backlog Period in ODI

By default the Aggregation period for Backlog Period is set to Month level. If you want to change the period of aggregates, you will have to set the ‘OBI_DELETE_TYPE’ which is a KM option for the ODI Interface named PLP_SalesBacklogHistoryFact_Load.W_SALES_BACKLOG_HISTORY_F.

To set the OBI_DELETE_TYPE in ODI:

1. In ODI Designer Navigator, navigate to BIApps Projects, then Mappings, then PLP, then PLP_SalesBacklogHistoryFact_Load folder.
3. In the Property Inspector, navigate to the KM Option "OBI_DELETE_TYPE", change the value to one of the below options as per the setting for the FSM TIME_GRAIN parameter value. The valid values for this option are:
   - CAL_DAY
   - CAL_WEEK
   - CAL_MONTH
   - CAL_QTR
   - CAL_YEAR

4. Save the interface and Regenerate the scenario.

**B.2.118 How to Reload the Time Dimension Tables After Oracle Business Analytics Warehouse Is Loaded**

The default value for the last date in time dimension is Dec 31, 2020. If you need to extend this date, you must use Oracle BI Applications Configuration Manager to change the default value of the variable END_DATE to a larger value (no greater than Dec 31, 2050, which is the upper limit). The time dimension tables will be extended automatically in the next incremental load.

To Reload the Time Dimension Tables After Oracle Business Analytics Warehouse Is Loaded:

1. You will see a Subject Area named Common Dimension and Extend Day Dimension. If you have Multiple calendar in your Day Dimension, then choose the configuration tag Extend Day Dimension Multiple Calendar Support, or else remove it. Then assemble the Subject Area.
2. Choose the Task Sil_DayDimension_XTND. Choose a new START_DATE (= @ END_DATE +1) and new END_DATE and set the parameter values.
3. Choose the Task SDE_FUSION_TimePeriodMCalPeriod_XTND. Retain the START_DATE and choose a new END_DATE.
4. Build the corresponding Load Plan with same name.
5. Remember to change FILE_MCAL_CAL_D, FILE_MCAL_CONTEXT_G, FILE_MCAL_PERIOD_DS (these 3 in universal) and FILE_MCAL_CONFIG_G, in case you use them as source.

Load Plan steps for an Fusion Applications container:

1. You will see a subject Area 'Common-Extend Day Dimension'. If you have Multiple calendars in your Day Dimension, then choose the configuration tag
Extend Day Dimension Multiple Calendar Support, or else remove it. Then, assemble the Subject Area.

2. Choose the Task Sil_DayDimension_XTND. Choose a new START_DATE (= END_DATE +1) and new END_DATE and set the parameter values.

3. Choose the Task SDE_FUSION_TimePeriodMCalPeriod_XTND. Retain the START_DATE and choose a new END_DATE.

4. Build the corresponding Load Plan named 'Common-Extend Day Dimension Fusion'.

B.2.119 How to Configure Scorecard Target Before Running ETL

Purpose
This section helps you to understand how to prepare the scorecard target files.

Optional or Mandatory
This task is only required if you choose to implement procurement scorecard feature.

Task description in detail
Use the file file_purch_scorecard_target.csv to specify the target for the KPI. The supported dimensions are time dimension and procurement Business Unit dimension.

**Note:** The configuration file or files for this task are provided on installation of Oracle BI Applications at one of the following locations:

Source-independent files: `<Oracle Home for BI>\biapps\etl\data_files\src_files\`

Source-specific files: `<Oracle Home for BI>\biapps\etl\data_files\src_files<source adaptor>`

Your system administrator will have copied these files to another location and configured ODI connections to read from this location. Work with your system administrator to obtain the files. When configuration is complete, your system administrator will need to copy the configured files to the location from which ODI reads these files.

You must specify the following values in the source file in the required data format:

- Quarter start date
- Procurement business Unit ID
- KPI name
- KPI target value

The following KPIs are supported for KPI target value:

- # of Negotiation Lines Awarded Per Category
- # of POs Per Buyer
- # of Suppliers Per Category
- % of Fulfilled Requisition Lines Past Expected Date
- % of Late Receipts
- % of Processed Requisition Lines Past Expected Date
- % of Realized Savings
B.2.120 About Configuring Purchase Cycle Lines Aggregate Fact

This topic provides additional information about configuring the purchase cycle line aggregate parameter.

To aggregate the Purchase Cycle Lines table for ETL, you configure the TIME_GRAIN parameter, which is preconfigured to the value of Month. Valid values are DAY, WEEK, MONTH, QUARTER, YEAR.

The Purchase Cycle Lines aggregate table is fully loaded from the base table in the initial ETL run. The table can grow to millions of records. The Purchase Cycle Lines aggregate table is not fully reloaded from the base table after an ETL run. Oracle Business Analytics Warehouse minimizes the incremental aggregation effort by modifying the aggregate table incrementally as the base table is updated.

When the Supply Chain - Purchase Cycle Lines Subject Area is included in a Load Plan in Oracle BI Applications Configuration Manager, the Purchase Cycle Lines data is extracted using the following tasks:

- **SIL_PurchaseCycleLinesAggregate_Derive_PreSoftDeleteImage** finds the records to be deleted in the base table since the last ETL run, and loads them into the W_PURCH_CYCLE_LINE_TMP table. The task is run in the source-specific window before the records are deleted from the base table.

- **SIL_PurchaseCycleLinesAggregate_Derive_PreLoadImage** finds the records to be updated in the base table since the last ETL run, and loads them into the W_PURCH_CYCLE_LINE_TMP table. The measures in these records are multiplied by (-1). The task is run in the source-specific workflow before the records are updated in the base table.

- **PLP_PurchaseCycleLinesAggregate_Derive_PostLoadImage** finds the inserted or updated records in the base table since the last ETL run, and loads them into the W_PURCH_CYCLE_LINE_TMP table, without changing their sign. The task is run in the post load-processing workflow after the records are updated or inserted into the base table.

- **PLP_PurchaseCycleLinesAggregate_Load** aggregates the W_PURCH_CYCLE_LINE_TMP table, and joins it with the W_PURCH_CYCLE_LINE_A aggregate table to insert new or update existing buckets to the aggregate table.

B.2.121 About Configuring Purchase Receipts Aggregate Fact

This topic provides additional information about configuring the purchase receipt aggregate parameter.

To aggregate the Purchase Receipts table for ETL, you configure the TIME_GRAIN parameter, which is preconfigured to the value of Month. Valid values are DAY, WEEK, MONTH, QUARTER, YEAR.
The Purchase Receipt Lines aggregate table is fully loaded from the base table in the initial ETL run. The table can grow to millions of records. Thus, the Purchase Receipts aggregate table is not fully reloaded from the base table after each incremental ETL run. Oracle Business Analytics Warehouse minimizes the incremental aggregation effort by modifying the aggregate table incrementally as the base table is updated.

When the Supply Chain - Purchase Receipts Subject Area is included in a Load Plan in Oracle BI Applications Configuration Manager, the Purchase Receipts data is extracted using the following tasks:

- **SIL_PurchaseReceiptAggregate_Derive_PreSoftDeleteImage** finds the records to be deleted in the base table since the last ETL run, and loads them into the W_PURCH_RCPT_TMP table. The measures in these records are multiplied by (-1). The task is run in the source-specific workflow before the records are deleted from the base table.

- **SIL_PurchaseReceiptAggregate_Derive_PreLoadImage** finds the records to be updated in the base table since the last ETL run, and loads them into the W_PURCH_RCPT_TMP table. The measures in these records are multiplied by (-1). The task is run in the source-specific workflow before the records are updated in the base table.

- **PLP_PurchaseReceiptAggregate_Derive_PostLoadImage** finds the inserted or updated records in the base table since the last ETL run, and loads them into the W_PURCH_RCPT_TMP table, without changing their sign. The task is run in the post load-processing workflow after the records are updated or inserted into the base table.

- **PLP_PurchaseReceiptAggregate_Load** aggregates the W_PURCH_RCPT_TMP table, and joins it with the W_PURCH_RCPT_A aggregate table to insert new or update existing buckets to the aggregate table.

### B.2.122 About Manage Domains and Member Mappings for Workforce Event

#### Purpose
The Workforce Event Dimension has a number of conformed domains which are used in many of the HCM metrics. These domains must be configured correctly for the reports to contain accurate information.

#### Optional or Mandatory
This task is optional; however the default configuration might not adequately reflect the OLTP setup, so this should be reviewed to ensure the reports are accurate.

#### Applies to
All sources, however the method of configuring this domain varies for each source.

#### Task description in detail
Configure the domain mappings related to the Workforce Event Dimension/Fact. The domain mapping for Workforce Event, Sub-Group and Group is used to classify events such as Hires, Terminations and Transfers, and to drill down further into different subtypes such as Voluntary or Involuntary Terminations.

These domains are designed as a hierarchy, so at the base level all events should map onto a conformed Workforce Event Domain which can be extended to include additional events. Custom metrics can be defined on events in this domain. The higher
level group domains provide a drill to detail. For example, a hire (group) might break
down into a new hire or rehire (sub-group).

**Example for E-Business Suite**

For E-Business Suite the domain mapping to configure is from a combination of event
source, event reason and change combination:

- Event source is the origin of the event. These are already seeded for example, ASG,
  FTE, HDC, SAL.
- Event reason is the corresponding reason derived from the application lookup
table. The reason codes are prefixed with the corresponding reason types.
- Change combination allows events with organization, job, grade, location, position
  or supervisor changes to be mapped. Any combination of these can be specified, a
  few examples have been seeded.

**Example Requirements:**

- Define Promotion as an assignment change with reason "Promotion" and an
  accompanying grade change.
- Define Restructure as an organization change with reason "Restructure".
- Define Transfer as an organization change with any other reason.

**Example Implementation:**

1. Add "Restructure" to Workforce Event Detail domain.
   a. Map it to "Transfer" in the Workforce Event Sub Group domain.
   b. "Transfer" is already mapped to "Transfer" in the Workforce Event Group
domain.
2. Add the new source domain members that are needed for the required mapping
   from Source Workforce Event Reason Combination:
   a. ASG~PROMOTION~Grd=Y
   b. ASG~RESTRUCTURE~Org=Y
3. Add the following mappings to the domain map Source Workforce Event Reason
   Combination -> Workforce Event Detail:
   a. ASG~PROMOTION~Grd=Y > ASG_PROMOTION
   b. ASG~RESTRUCTURE~Org=Y > RESTRUCTURE
4. The remaining definition for transfers is already seeded so no change required
   The resulting domain mapping will look like this, with the shaded lines the seeded
domain mappings:
Notes
Multiple matches are allowed, for example an assignment change with reason "Restructure" and an organization change would match the mapping to either TRANSFER or RESTRUCTURE. The exact match on reason takes precedence over "any" reason, so the result would be RESTRUCTURE.

Example for PeopleSoft
For PeopleSoft, the domain mapping to configure is from a combination of action and action reason. The action reason code is prefixed with the corresponding action code.

Example Requirements:
- Define Restructure as a transfer action with reason "Restructure".
- Define Transfer as a transfer action with any other reason.

Example Implementation:

1. Add "Restructure" to Workforce Event Detail domain.
   a. Map it to "Transfer" in the Workforce Event Sub Group domain.
   b. "Transfer" is already mapped to "Transfer" in the Workforce Event Group domain.

2. Add the following mappings to the domain map Source Workforce Event and Reason -> Workforce Event Detail:
   a. XFR~RESTRUCTURE -> RESTRUCTURE

3. The remaining definition for transfers is already seeded so no change required.
   The resulting domain mapping will look like this, with the shaded lines the seeded domain mappings:
Notes
Multiple matches are allowed, for example a transfer action with reason "Restructure" would match the mapping to either TRANSFER or RESTRUCTURE. The exact match on reason takes precedence over "any" reason, so the result would be RESTRUCTURE.

Example for Fusion
For Fusion there are two domain mappings for determining workforce events. The seeded mapping uses action type only to provide a default workforce event. This may be overridden by the domain mapping that uses a combination of action and action reason.

Example Requirements:
- Define Restructure as a transfer action with reason "Restructure".
- Define Transfer as a transfer action with any other reason.

Example Implementation:
1. Add "Restructure" to Workforce Event Detail domain.
   a. Map it to "Transfer" in the Workforce Event Sub Group domain,
   b. "Transfer" is already mapped to "Transfer" in the Workforce Event Group domain.
2. Add the following mappings to the domain map Source Workforce Event and Reason -> Workforce Event Detail:
   a. TRANSFER~RESTRUCTURE -> RESTRUCTURE
3. The remaining definition for transfers is already seeded so no change required
   The resulting domain mapping from action and action reason will look like this:
Notes
There are no seeded mappings for the Source Workforce Event and Reason domain mapping. If no match is found for this domain mapping then the default is taken from the Source Workforce Event Type domain mapping.

Dependency
No dependencies.

B.2.123 Integration of Procurement and Spend Analytics with Project Analytics

If you have not implemented Project Applications with the minimum required level in your ERP, or if you have not licensed Oracle Project Analytics, or if you consider project dimensions are not important for Procurement and Spend Analytics, you should disable project integration with procurement and spend analytics. Otherwise, you can enable the integration.

Some Project Management dimensions are supported in certain Procurement facts to allow analysis of Procurement facts by Project and Task Dimension for example.

By default (that is, on installation) these dimension will be populated in the Procurement and Spend Analytics warehouse, and the foreign keys will be resolved in the following facts:

- Expense Overview (Project Dim, Task Dim, Financial Resource Dim)
- Spend Invoice Distribution (Project Dim, Task Dim)
- Purchase Orders (Project Dim, Task Dim)
- Purchase Requisition (Project Dim, Task Dim)

The following Oracle Procurement and Spend Analytics fact tables integrate with Project Analytics dimensions:
- W_EXPENSE_F
- W_AP_INV_DIST_F
- W_AP_XACT_F
- W_PURCH_COST_F
- W_RQSTN_LINE_COST_F

To Enable Project Analytics Integration with Procurement and Spend Subject Areas:

The load plan generator will automatically pull in project related dimensions and tasks in the load plan when you select fact groups of the procurement and spend analytics. There is no extra step required.

To Disable Project Analytics Integration with Procurement and Spend Subject Areas:

1. In ODI Designer Navigator, navigate to Load Plans and Generated Scenarios, and open your generated Load plan.
2. Expand your Load Plan as follows:
   1 SDE Extract, then 2 SDE Dimension Group, then Parallel.

3. Disable the following dimension groups:
   - SDE Dims PROJECT_DIM
- SDE Dims PROJRSRC_DIM
- SDE Dims TASK_DIM

4. Save the Load Plan.

**B.2.124 How to Integrate Procurement and Spend Analytics with Spend Classification**

This section contains configuration steps that apply to Oracle Procurement and Spend Analytics when deployed with Oracle Spend Classification. For implementing Oracle Spend Classification and required patches, refer to the Oracle Spend Classification product documentation.

If you are not implementing Oracle Spend Classification, you might choose to remove or hide the Oracle Spend Classification integration metadata from the Presentation layer of the BI repository (for more information about removing Oracle Spend Classification metadata, see Section B.2.105, "How to Remove Spend Classification Integration Metadata").

**Note:** Oracle Spend Classification is not part of the core Oracle BI Applications product suite, and is not packaged with any module of Oracle BI Applications. It is a separate solution offered by Oracle, and a separate license is required. If you are interested in licensing and implementing Oracle Spend Classification, then contact your Oracle Sales Representative.

**B.2.124.1 Overview to Oracle Spend Classification Integration**

Oracle Spend Classification is a complementary product that can be used in conjunction with Oracle Procurement and Spend Analytics to improve the accuracy of Spend by converting 'unclassified' Spend into item categories. Oracle Procurement and Spend Analytics is designed to work with or without Oracle Spend Classification.

Typical procurement systems will have many PO, Invoice, and Expense Transactions without reference to item and item categories, and in most cases they might have item descriptions in a free text format. When you implement Oracle Procurement and Spend Analytics, these transactions will come into the system as 'Unclassified' because they do not have corresponding items and/or item categories. This issue is more prominent if your organization’s Spend constitutes a major portion of Indirect Spend.

Oracle Procurement and Spend Analytics is installed with infrastructure required to feed data from Oracle Business Analytics Warehouse to Oracle Spend Classification, and feed the classified data back into Oracle Business Analytics Warehouse. This Infrastructure is provided as an additional feature for those customers who would like to take the advantage of both Oracle Procurement and Spend Analytics and Oracle Spend Classification.

If you choose not to use Oracle Spend Classification, Oracle Procurement and Spend Analytics can be deployed as a stand alone solution, and the features of Procurement and Spend Analytics can be deployed without any dependency on Oracle Spend Classification.

**B.2.124.2 About the Oracle Spend Classification Metadata**

This section describes the Oracle Spend Classification metadata and repository metadata that is available for use with Oracle Spend Classification.

**The following facts are integrated with Oracle Data Classification to enrich and automatically assign category codes.**

- W_AP_INV_DIST_F
There are five types of taxonomy supported: UNSPSC, Oracle Purchasing Categories, and three custom categories. The classification results are stored in these columns:

- AUTO_UNSPSC_WID
- AUTO_PURCHASING_CATEGORY_WID
- AUTO_CUSTOM_CATEGORY1_WID
- AUTO_CUSTOM_CATEGORY2_WID
- AUTO_CUSTOM_CATEGORY3_WID

In the Analytics metadata repository (RPD), the following is configured by default.

- UNSPSC, Oracle Purchasing Categories, and Custom Category1 are configured up to the Business Model and Mapping layer. The facts and dimension names are as follows:
  - Fact - Spend and AP Invoice Distribution
  - Fact - Purchasing – Order
  - Fact - Purchasing – Requisition
  - Dim - Auto UNSPSC
  - Dim - Auto Purchasing Category
  - Dim - Auto Custom Category1

- In the Presentation Layer, 'Procurement and Spend - Invoice Lines' contains the columns for data classification, under the following folders:
  - Data Classification
  - Auto UNSPSC
  - Auto Purchasing Category
  - Auto Custom Category1

**B.2.124.3 How to deploy UNSPSC, Oracle Purchasing Categories, and Custom Category1**

Follow these steps if you want to expose UNSPSC, Oracle Purchasing Categories, and Custom Category1 for your Purchase Order and Purchase Requisition Subject Area.

To deploy UNSPCC, Oracle Purchasing Categories, and Custom Category1:

1. In Oracle BI EE Administration Tool, edit the BI metadata repository (for example, OracleBIAnalyticsApps.rpd).
   
   The RPD file is located in the \bifoundation\OracleBIServerComponent\coreapplication_obisn\repository folder.

2. In the Presentation layer, do the following:
   
   a. Expand the folder 'Procurement and Spend - Invoice Lines'.
   b. Multi-select the following folders and right click to copy:
Data Classification
Auto UNSPSC
Auto Purchasing Category
Auto Custom Category 1
c. To implement Oracle Spend Classification in Purchase Orders, select the folder 'Procurement and Spend - Purchase Orders' and right click to paste in the folders.
d. To implement Oracle Spend Classification in Purchase Requisitions, select the folder 'Procurement and Spend - Purchase Requisitions' and right click to paste in the selected folders.
e. Verify the new folders.
f. If required, re-order the folders as you would like the folders to be displayed to business users in the Presentation Services catalog.

3. Save and close the repository.

B.2.124.4 How to deploy the additional Custom Category2 and Custom Category3
To deploy Custom Category2 and Custom Category3:

Note: This task uses the Fact_W_AP_INV_DIST_F fact as an example, though you can also apply the steps to deploy other facts.

1. In Oracle BI EE Administration Tool, edit the BI metadata repository (for example, OracleBIAnalyticsApps.rpd).

   The RPD file is located in the \bifoundation\OracleBIServerComponent\coreapplication_obisn\repository folder.

2. In the Physical layer, do the following:
   a. Right click on 'Dim_W_PROD_CAT_DH_AUTO_CUSTOM_CATEGORY1' under 'Oracle Data Warehouse' and select Duplicate.
   b. Rename it as 'Dim_W_PROD_CAT_DH_AUTO_CUSTOM_CATEGORY2'.
   c. Join dimension 'Dim_W_PROD_CAT_DH_AUTO_CUSTOM_CATEGORY2' and fact 'Fact_W_AP_INV_DIST_F' using the following condition:

      Dim_W_PROD_CAT_DH_AUTO_CUSTOM_CATEGORY2.ROW_WID = Fact_W_AP_INV_DIST_F.AUTO_CUSTOM_CATEGORY2_WID

3. In the Business Model and Mapping layer, do the following:
   a. Immediately below table 'Dim - Auto Custom Category1', create 'Dim - Auto Custom Category2'.
   b. Immediately below hierarchy 'Auto Custom Category1', create 'Dim - Auto Custom Category2' based on the physical table 'Dim_W_PROD_CAT_DH_AUTO_CUSTOM_CATEGORY2'.
   c. Join 'Dim - Auto Custom Category1' to 'Fact - Spend and AP Invoice Distribution'.
   d. Edit 'Fact - Spend and AP Invoice Distribution'. Fact_W_AP_INV_DIST_F. Display the Content tab, and set the level of 'Auto Custom Category2' to 'Custom Hierarchy Base Level'.

B-282 Oracle Business Intelligence Applications Configuration Guide
4. In the Presentation layer, do the following:
   a. Create a sub-folder called 'Auto Custom Category 2' in the 'Procurement and Spend - Invoice Lines' folder. Edit folder and add this exact string to the Description box.
      Auto Custom Category2 becomes a sub-folder of Data Classification.
   b. Order this folder so that it is after 'Auto Custom Category 1'.
   c. Drag the 'Dim - Auto Custom Category1' columns from the Business Model and Mapping layer into the 'Auto Custom Category 2' folder in the Presentation layer.

5. Save and close the repository.

6. Repeat steps 2 - 5 for Custom Category3.

**B.2.125 How to Configure Enterprise Calendars**

An Enterprise calendar (or reporting calendar) enables cross Subject Area analysis. Enterprise calendar tables have the W_ENT prefix.

Enterprise calendars can be set to one of the OLTP sourced fiscal calendars, or to one of the warehouse generated calendars. This can be done by setting the following source system parameters at the Business Intelligence Applications Configuration Manager:

- `GBL_CALENDAR_ID`
- `GBL_DATASOURCE_NUM_ID`

The following sections show how to set up the source system parameters for the Enterprise calendar in different scenarios.

**Scenario 1: Using an Oracle EBS fiscal calendar as the Enterprise calendar**

Source System Oracle BI Applications Configuration Manager Parameters for Oracle EBS Enterprise Calendars:

**GBL_CALENDAR_ID**

This parameter is used to select the Enterprise Calendar. It should be the MCAL_CAL_NAME~MCAL_PERIOD_TYPE for Non-Generated Calendars. For example, `GBL_CALENDAR_ID` will be 'Accounting~41' if the Enterprise Calendar id = 'Accounting' and the calendar period_type = '41'.

Note: MCAL_CAL_NAME and MCAL_PERIOD_TYPE are sourced from PERIOD_SET_NAME and PERIOD_TYPE of the GL_PERIODS table (an Oracle EBS OLTP table). To see a valid list of combinations of MCAL_CAL_NAME~MCAL_PERIOD_TYPE, run the following query in the OLTP:

```sql
SELECT DISTINCT PERIOD_SET_NAME || '~' || PERIOD_TYPE FROM GL_PERIODS;
```

**GBL_DATASOURCE_NUM_ID**

If Enterprise Calendar is not a Generated Calendar: It should be the DATASOURCE_NUM_ID of the source system from where the Calendar definition is taken. For example, if you have two data sources, PeopleSoft and Oracle, and the Global Calendar is from an Oracle data source, then this parameter value should specify an Oracle data source. The pre-determined values of DATASORUCE_NUM_ID for different Oracle EBS versions are provided in the table below.
To set `GBL_CALENDAR_ID` and `GBL_DATASOURCE_NUM_ID`, log into Oracle BI Applications Configuration Manager, and click on Manage Data Load Parameters from the navigation bar on the left. Once being directed to the Manager Data Load Parameters page, type in `GBL_CALENDAR_ID` in the parameter field and choose Code as the parameter type. Then click the Search button after which the parameter with its current value will be returned. Refer to the example below, which shows 10000 as the current value of `GBL_CALENDAR_ID`.

<table>
<thead>
<tr>
<th>Oracle EBS version</th>
<th>DATASOURCE_NUM_ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>EBS R11.5.10</td>
<td>310</td>
</tr>
<tr>
<td>EBS R12.0.0</td>
<td>320</td>
</tr>
<tr>
<td>EBS R12.1.1</td>
<td>325</td>
</tr>
<tr>
<td>EBS R12.1.2</td>
<td>330</td>
</tr>
<tr>
<td>EBS R12.1.3</td>
<td>335</td>
</tr>
</tbody>
</table>

To change the value of `GBL_CALENDAR_ID`, click on its current value, and then an edit dialog pops up.

Provide the desired value in the Parameter Value field (note that you do not need to include single quotes in the value, for example, just use `Accounting~41` rather than `'Accounting~41'`), and then click Save and Close to save your change. The new value of `GBL_CALENDAR_ID` has been set.
The setting procedure for GBL_DATASOURCE_NUM_ID is similar. It should be first retrieved by searching this variable. Once it is returned, click on its current value and then an edit dialog pops up. Change its parameter value there and then save the change.

Note: The available Oracle EBS calendars are also loaded into the OLAP warehouse table W_MCAL_CAL_D. Therefore, they can be viewed by running the following query in DW:

```
SELECT MCAL_CAL_ID, MCAL_CAL_NAME, MCAL_CAL_CLASS, DATASOURCE_NUM_ID FROM W_MCAL_CAL_D
WHERE DATASOURCE_NUM_ID = <the value corresponding to the EBS version that you use>;
```

**Scenario 2: Using a PeopleSoft fiscal calendar as the Enterprise calendar**

Source System Oracle BI Applications Configuration Manager Parameters for PeopleSoft Enterprise Calendars:

**GBL_CALENDAR_ID**

This parameter is used to select the Enterprise Calendar. It should be the SETID~CALENDAR_ID for Non-Generated Calendars. For example, GBL_CALENDAR_ID will be 'SHARE~01' if the Enterprise Calendar is = '01' and SET_ID = 'SHARE'.

Note: SETID and CALENDAR_ID are sourced from the PS_CAL_DEFN_TBL table (a PeopleSoft OLTP table). To see a valid list of combinations of SETID~CALENDAR_ID, run the following query in the OLTP:

```
SELECT DISTINCT SETID || '~' || CALENDAR_ID FROM PS_CAL_DEFN_TBL;
```

**GBL_DATASOURCE_NUM_ID**

If Global Calendar is not a Generated Calendar: It should be the DATASOURCE_NUM_ID of the source system from where the Calendar definition is taken. For example, if you have two data sources, PeopleSoft and Oracle, and the Global Calendar is from PeopleSoft source, then this parameter value should specify a PeopleSoft data source. The pre-determined values of DATASORUCE_NUM_ID for different PeopleSoft versions are provided in the table below.

<table>
<thead>
<tr>
<th>PeopleSoft version</th>
<th>DATASOURCE_NUM_ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>PeopleSoft 9.0 GSI Instance</td>
<td>515</td>
</tr>
<tr>
<td>PeopleSoft 9.0 CS Instance</td>
<td>516</td>
</tr>
<tr>
<td>PeopleSoft 9.0 FINSCM Instance</td>
<td>517</td>
</tr>
<tr>
<td>PeopleSoft 9.0 HCM Instance</td>
<td>518</td>
</tr>
<tr>
<td>PeopleSoft 9.0 ELM Instance</td>
<td>518</td>
</tr>
<tr>
<td>PeopleSoft 9.1 GSI Instance</td>
<td>520</td>
</tr>
<tr>
<td>PeopleSoft 9.1 CS Instance</td>
<td>521</td>
</tr>
<tr>
<td>PeopleSoft 9.1 FINSCM Instance</td>
<td>522</td>
</tr>
<tr>
<td>PeopleSoft 9.1 HCM Instance</td>
<td>523</td>
</tr>
<tr>
<td>PeopleSoft 9.1 ELM Instance</td>
<td>523</td>
</tr>
</tbody>
</table>

The settings of these two variables in Oracle BI Applications Configuration Manager are the same as those steps for Oracle EBS.
Note: The available PeopleSoft calendars are also loaded into the OLAP warehouse table W_MCAL_CAL_D. Therefore, they can be viewed by running the following query in DW:

```sql
SELECT MCAL_CAL_ID, MCAL_CAL_NAME, MCAL_CAL_CLASS, DATASOURCE_NUM_ID FROM W_MCAL_CAL_D WHERE DATASOURCE_NUM_ID = 'the value corresponding to the PeopleSoft version that you use';
```

**Scenario 3: Using a warehouse generated calendar as the Enterprise calendar**

Source System Oracle BI Applications Configuration Manager Parameters for Generated Enterprise Calendars:

**GBL_CALENDAR_ID**
This parameter should be the CALENDAR_ID of the Generated Calendar (4-4-5 or 14 period type of Calendars). By default, the 4-4-5 calendar has a CALENDAR_ID of '10000', and the 13-period calendar has a CALENDAR_ID of '10001'.

**GBL_DATASOURCE_NUM_ID**
If Global Calendar is a Generated Calendar: It should be the DATASOURCE_NUM_ID value of the OLAP (Oracle Business Analytics Warehouse), which is 999.

The settings of these two variables in Oracle BI Applications Configuration Manager are the same as those steps for Oracle EBS.

Note 1: Customers can generate additional warehouse generated calendars which can be picked as the Enterprise calendar.

Note 2: In Oracle Business Analytics Warehouse, the available calendars are also loaded into the OLAP table W_MCAL_CAL_D. Therefore, they can be viewed by running the following query in DW:

```sql
SELECT MCAL_CAL_ID, MCAL_CAL_NAME, MCAL_CAL_CLASS, DATASOURCE_NUM_ID FROM W_MCAL_CAL_D WHERE DATASOURCE_NUM_ID = 999;
```

**Setting GBL_CALENDAR_ID and GBL_DATASOURCE_NUM_ID in a multi-source ETL**

In a multi-source ETL run, multiple calendars from different data sources can be loaded. However, in this case, ONLY ONE calendar can be chosen as the Global Calendar. For example, if you have two data sources, PeopleSoft and Oracle, then you can only choose either a calendar from PeopleSoft or a calendar from Oracle as the Global Calendar. The two parameters GBL_CALENDAR_ID and GBL_DATASOURCE_NUM_ID should be set in Oracle BI Applications Configuration Manager according to the global calendar that you choose. Never provide more than one value to GBL_CALENDAR_ID or GBL_DATASOURCE_NUM_ID in Oracle BI Applications Configuration Manager. That would fail the ETL run.

**B.2.126 How to Assign UNSPSC Codes to Products**

This section explains how to assign United Nations Standard Products and Services Code (UNSPSC) codes to products and commodities. The United Nations Standard Products and Services Code® (UNSPSC®) provides an open, global multi-sector standard for efficient, accurate classification of products and services.
You can assign UNSPSC codes to your Products by associating PRODUCT with UNSPSC codes in file_unspsc.csv file, which are then loaded into the W_PROD_CAT_DH table. UNSPSC Codes are created automatically by the UNSPSC process in the W_PROD_CAT_DHS flow. This process loads the UNSPSC codes from the file_unspsc.csv into the W_PROD_CAT_DHS table.

**Note:** The configuration file or files for this task are provided on installation of Oracle BI Applications at one of the following locations:


Your system administrator will have copied these files to another location and configured ODI connections to read from this location. Work with your system administrator to obtain the files. When configuration is complete, your system administrator will need to copy the configured files to the location from which ODI reads these files.

---

To Assign UNSPSC Codes to Products

1. Run a select statement on the W_PRODUCT_D to get the Products used in your deployment.

   For example, you might use Oracle SQLDeveloper to run the following SQL command:

   ```sql
 SELECT INTEGRATION_ID PRODUCT_ID, PRODUCT_NAME PRODUCT_NAME, PART_NUMBER PART_NUMBER, DATASOURCE_NUM_ID DATASOURCE_NUM_ID FROM W_PRODUCT_D;
   ```

   **Note:** In the above example SQL statement, the INTEGRATION_ID is the product that needs classification. The PRODUCT_NAME and PART_NUM are additional attributes to assist in classifying the UNSPSC Codes.

2. Add an entry to the file_item_to_unspsc.csv file to associate a PRODUCT to a UNSPSC Code.

   The entry must be in the following format:

   ```plaintext
 (PRODUCT_ID, PRODUCT_NAME, PART_NUMBER, UNSPSC_CODE, DATASOURCE_NUM_ID)
   ```

   A list of UNSPSC Codes can be found in file_unspsc.csv.

   **Note:** When the file_unspsc.csv is configured with data, the PLP_ItemToUNSPSC_Classification workflow updates the rows in the W_PRODUCT_D table.

---

**B.2.127 Configure Global Currencies**

Currency conversions are required because your business might have transactions involving multiple currencies. To create a meaningful report, you have to use a common currency. Oracle Business Analytics Warehouse stores amounts in the following currencies:

- Document currency. The document currency is the currency of the transaction. For example, if you purchase a chair from a supplier in Mexico, the document currency is probably the Mexican peso. Or, if you made a business trip to the
United Kingdom and filed an expense report for meal expenses in the UK, the document currency of the expense report will most likely be in GBP.

- Local currency. The local currency is the base currency of your ledger, or the currency in which your accounting entries are recorded in.

- Global currencies. Oracle BI Applications provides three global currencies, which are the common currencies used by Oracle Business Analytics Warehouse. For example, if your organization is a multinational enterprise that has its headquarters in the United States, you probably want to choose US dollars (USD) as one of the three global currencies.

The global currency is useful when creating enterprise-wide analyses. For example, a user might want to view enterprise-wide data in other currencies. For every monetary amount extracted from the source, the load mapping loads the document and local amounts into the target table. It also loads the exchange rates required to convert the document amount into each of the three global currencies. For fact tables, there are two amount columns covering the Local currency amount and the Document currency amount. In addition, there are three columns covering the Global currency (for example, global_amount1) and their corresponding exchange rate columns.

In most cases, the source system provides the document currency amount, which is the default setting for handling currency. If the source system provides only the document currency amount, the source adapter performs lookups to identify the local currency codes based on the source system the appropriate currencies are assigned. After the lookups occur, the extract mapping provides the load mapping with the document currency amount and the document and local currency codes. The load mapping will then use the provided local currency codes and perform currency conversion to derive the local amount. The load mapping will also fetch the global currencies setup from DAC parameters and look up the corresponding exchange rates to each of the three global currencies.

To specify global currencies, use the parameters GLOBAL1_CURR_CODE, GLOBAL2_CURR_CODE, and GLOBAL3_CURR_CODE.

### B.2.128 How to Configure Financial Resource Dimension in Projects Analytics for E-Business Suite

No Help topic is available for this FSM Task.

### B.2.129 How to Configure Work Type Dimension in Projects Analytics for E-Business Suite

No additional configuration is required for Work Type Dimension.

### B.2.130 How to Configure Project Cost Fact for PeopleSoft

To configure Project Cost Fact for PeopleSoft, do the following:

1. Complete the FSM Task ‘Configure Project Resource Class for PeopleSoft’.
2. Complete the FSM Task ‘How to Configure Projects Costing burden cost for PeopleSoft’.

The steps for this task are displayed in FSM, or can be accessed in Section B.2.64, "How to Configure Projects Costing Burden Cost for PeopleSoft".
B.2.131 How to Configure PeopleSoft Tree Extract

Oracle BI Applications uses the trees defined in PeopleSoft Tree Manager as the sources for dimension hierarchies for the following dimensions:

- Department Hierarchy
- Company (Business Unit) Hierarchy
- Product Category Hierarchy
- HR Position Hierarchy

You configure these PeopleSoft Tree Extract processes by specifying the data load parameters for these dimension hierarchies. For each dimension hierarchy, the following list shows the related data load parameters and how they are used:

- **Tree Structure ID** - PeopleSoft Trees are defined under a given tree structure. The tree structure determines the tables used to store the tree nodes and tree details. It also determines if a tree is defined as a winter tree or a summer tree. Typically each dimension hierarchy in Oracle BI Application is based on one tree structure. However, in some cases, you might want to extract the trees from multiple tree structures. The only constraint is that you need to ensure that these tree structures are using the same table for the details.

- **Tree and the SETID** - PeopleSoft applications store trees for different SETID. The combination of the tree name and the SETID can uniquely identify a hierarchy. Oracle BI Applications can support multiple hierarchies for a given dimension. By default, the Tree Extract process extracts all trees created against the given tree structure. You can also specify a list of combinations of tree and SETID to limit the number of trees to be extracted.

B.2.132 How to Configure Journal Source Domain for JD Edwards EnterpriseOne

This task is a configuration step for Financial Analytics sourced from JD Edwards Enterprise One. The journal source domain is used to identify the source of GL journals like Payables, Receivables, and so on in Financial Analytics. This task helps you to configure the domain member mappings between batch types in JDE Edwards Enterprise One and journal sources in Financial Analytics.

**Domain Member Mapping**

The following table illustrates domain member mappings for the Journal Source domain. You can modify the seeded mappings to satisfy your requirements.

<table>
<thead>
<tr>
<th>Source Member</th>
<th>Source Member Code</th>
<th>Target Member</th>
<th>Target Member Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>A/P Checks (Automatic)</td>
<td>K</td>
<td>Account Payables</td>
<td>AP</td>
</tr>
<tr>
<td>Account Payables</td>
<td>Payables</td>
<td>Account Payables</td>
<td>AP</td>
</tr>
<tr>
<td>Direct Payments</td>
<td>Q</td>
<td>Account Payables</td>
<td>AP</td>
</tr>
<tr>
<td>Manual &amp; Void Checks w/Match</td>
<td>M</td>
<td>Account Payables</td>
<td>AP</td>
</tr>
<tr>
<td>Manual Checks without Match</td>
<td>W</td>
<td>Account Payables</td>
<td>AP</td>
</tr>
<tr>
<td>Voucher Entry</td>
<td>V</td>
<td>Account Payables</td>
<td>AP</td>
</tr>
</tbody>
</table>
Notes

- Use the following SQL to see the list of batch types (source domain members) in JDE:

  SELECT * FROM F0005 WHERE DRSY = '98' AND DRRT = 'IT'

- Payables, Receivables, Fixed Assets, COGS and Revenue are internal source member codes. These do not come from JDE batch types. These are used to tag the subledger transactions in the respective subledger facts in Financial Analytics.

### ETL

JOURNAL_SOURCE_ID is hard-coded in the SDE interfaces for based on the internally sourced domain members.

#### Table B–89  Mappings for Source Domain GL_JOURNAL_SOURCE to Target Domain W_GL_JOURNAL_SOURCE

<table>
<thead>
<tr>
<th>Source Member</th>
<th>Source Member Code</th>
<th>Target Member</th>
<th>Target Member Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>A/R Drafts</td>
<td>&amp;</td>
<td>Account Receivables</td>
<td>AR</td>
</tr>
<tr>
<td>Invoice Entry</td>
<td>I</td>
<td>Account Receivables</td>
<td>AR</td>
</tr>
<tr>
<td>Invoices</td>
<td>IB</td>
<td>Account Receivables</td>
<td>AR</td>
</tr>
<tr>
<td>Account Receivables</td>
<td>Receivables</td>
<td>Account Receivables</td>
<td>AR</td>
</tr>
<tr>
<td>Cash Receipts and Adjustments</td>
<td>R</td>
<td>Account Receivables</td>
<td>AR</td>
</tr>
<tr>
<td>Receipts &amp; Adjustments</td>
<td>RB</td>
<td>Account Receivables</td>
<td>AR</td>
</tr>
<tr>
<td>Revenue</td>
<td>Revenue</td>
<td>Account Receivables</td>
<td>AR</td>
</tr>
<tr>
<td>Asset Revaluation</td>
<td>AR</td>
<td>Fixed Assets</td>
<td>FA</td>
</tr>
<tr>
<td>Asset Transfer</td>
<td>E</td>
<td>Fixed Assets</td>
<td>FA</td>
</tr>
<tr>
<td>Depreciation - Journal Entries</td>
<td>X</td>
<td>Fixed Assets</td>
<td>FA</td>
</tr>
<tr>
<td>Fixed Assets</td>
<td>Fixed Assets</td>
<td>Fixed Assets</td>
<td>FA</td>
</tr>
<tr>
<td>COGS</td>
<td>COGS</td>
<td>Inventory</td>
<td>INV</td>
</tr>
<tr>
<td>Inventory</td>
<td>N</td>
<td>Inventory</td>
<td>INV</td>
</tr>
<tr>
<td>General Accounting</td>
<td>G</td>
<td>Inventory</td>
<td>INV</td>
</tr>
</tbody>
</table>

#### Table B–90  Mappings for Interface Name to JOURNAL_SOURCE_ID

<table>
<thead>
<tr>
<th>Interface Name</th>
<th>JOURNAL_SOURCE_ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>SDE_JDE_ARTransactionFact%</td>
<td>GL_JOURNAL_SOURCE~Payables</td>
</tr>
<tr>
<td>SDE_JDE_ARTransactionFact%</td>
<td>GL_JOURNAL_SOURCE~Receivables</td>
</tr>
<tr>
<td>SDE_JDE_GL_Cogs_Fact</td>
<td>GL_JOURNAL_SOURCE~COGS</td>
</tr>
<tr>
<td>SDE_JDE_GL_Revenue_Fact%</td>
<td>GL_JOURNAL_SOURCE~Revenue</td>
</tr>
</tbody>
</table>
B.2.133 How To Set Up Peoplesoft HR Talent Management data load parameters

**Purpose**
This note explains the configuration of the ODI variable HR_PSFT_TLNT_PROFILE_TYPES_FILTER and HR_PSFT_TLNT_CONTENT_TYPES_FILTER, which are used for extraction of HR-PeopleSoft Talent Management data.

**Optional or Mandatory**
This is a mandatory step. Data will not be loaded into Talent Management Fact tables if this setup step is not done.

**Applies to**
This applies to PeopleSoft 9.0, 9.1 and 9.2 extracts.

**Task description in detail**
- **ETL Variable: HR_PSFT_TLNT_CONTENT_TYPES_FILTER**
  Use the following SQL to identify the Talent Content Types to be used for ETL:
  
  ```sql
 SELECT DISTINCT JPM_CAT_TYPE
 FROM PS_JPM_CAT_TYPES;
  ```
  
  Select the relevant types to be extracted.

- **ETL Variable: HR_PSFT_TLNT_PROFILE_TYPES_FILTER**
  In PeopleSoft, profiles are categorized as person and non-person profiles. Use the following SQL to identify the Profile Types to be used for ETL:
  
  ```sql
 SELECT DISTINCT JPM_JP_TYPE
 FROM PS_JPM_JP_TYPES;
  ```
  
  Select the relevant types to be extracted.

**Dependency**
None.

B.2.134 How to Configure Ledger Type Parameter for JDE Costing and Inventory Balances

To configure Ledger Type for JDE Costing and Inventory Balances:

1. In Oracle BI Applications Configuration Manager, click on the **Manage Data Load Parameters** on the Tasks Panel under the section Data Load Parameters Administration.
2. On the Manage Data Load Parameters panel, change the value of the **Parameter** drop-down to Code, enter CST_LEDGER_TYPE in the adjacent Text Box and click Search.

3. Click anywhere on the row displayed on the panel Data Load Parameters.

4. On panel Group Specific Parameter Values for: JDE Costing Ledger Type, use either the pencil icon or hyperlinks under Parameter Value column to open Edit Dialog popup window.

5. Edit the values in the **Parameter Value** field, then click Save and Close.
Note: Care should be taken to enter a valid Ledger Type value. There is no validation of this free-form text at this point.

6. Click on Done button on the upper right-hand corner of the page.

B.2.135 How to Set Up Inventory Monthly Balance Snapshot Rebuild

During a Full warehouse extraction and load, existing data is erased from tables in Oracle Business Analytics Warehouse and new data is populated. In the case of Aggregate or Snapshot tables, this can result in the loss of historical data which has been accumulated over time. Once erased, such historical data cannot easily be replaced.

In order to preserve Snapshot data from Inventory Balance aggregate tables (Inventory Monthly Balance and Inventory Lot Monthly Balance), mappings have been created that will copy the data to temporary tables at the beginning of a Full load and then restore the copied data back into the Snapshot tables once the Full load is complete. These mappings will only execute during a Full load.

Additionally, in order to enable the copy and restore process, the associated parameter, RESTORE_INV_MONTHLY_BAL, must be set to Y. If you do NOT wish to copy and restore data from the Inventory Balance Snapshot tables during a Full load, then set the value for this parameter to N (or any value other than Y).

B.3 Informational Task Reference - ETL Notes and Overviews

This section contains ETL Notes and Overview Help topics.

B.3.1 Getting Started With Functional Configurations

For information about getting started with functional configuration, see Section 3.2, "Roadmap for Functional Configuration".

B.3.2 ETL Notes and Additional Information for Oracle Project Analytics

List of Functional Areas for this Offering:

- PROJECT_AN: Revenue
- PROJECT_AN: Funding
- PROJECT_AN: Forecast
- PROJECT_AN: Cross Charge
- PROJECT_AN: Cost
- PROJECT_AN: Contract
■ PROJECT_AN: Commitment
■ PROJECT_AN: Budget
■ PROJECT_AN: Billing

B.3.3 ETL Notes and Additional Information for Service Analytics

No additional information is provided for this Offering.

B.3.4 ETL Notes and Additional Information for Oracle Procurement and Spend Analytics

Procurement and Spend Analytics includes the following fact groups:
■ Employee Expense Functional Area
  – Expense Credit Card
  – Expense Overview
  – Expense Violations
■ Sourcing Functional Area
  – Sourcing Negotiation
  – Sourcing Response
■ Procurement Functional Area
  – Purchase Orders
  – Purchase Cycle
  – Purchase Receipts
  – Purchase Requisition
  – Purchase Agreement
  – Spend Invoice Distribution
  – Procurement Scorecard Target Fact Group

You should also include Accounts Payable Functional Area and AP Transactions and Balance Fact group too in your implementation as Procurement and Spend Analytics has cross functional analysis with Financial Analytics.

B.3.5 ETL Notes and Additional Information for Supply Chain and Order Management Analytics

Supply Chain and Order Management related functional areas and fact groups:
■ Accounts Receivable
  – AR Transactions and Balance (ARTRANS_FG)
  – Customer Financial Profile Fact (FINPROFL_FG)
■ Costing
  – Item Cost (ITEMCOST_FG)
  – Valuation (VALUATION_FG)
  – Cost of Goods Sold (GLCOGS_FG)
Logistics
- Inventory Balance (INVBAL_FG)
- Inventory Cycle Count (INVCYCNT_FG)
- Inventory Transactions (INVTRX_FG)

Order Management
- Order Booking (OMBACKLOG_FG)
- Order Booking (OMBOOKING_FG)
- Order Customer Status History (OMCUSTSTAT_HIST_FG)
- Order Cycle (OMCYCLE_FG)
- Order Shipping (OMDEDELIVERY_FG)
- Order Orchestration Process (OMDOOPRCSS_FG)
- Order Invoice Credit (OMINVOICECREDIT_FG)
- Order Invoice (OMINVOICE_FG)
- Order Credit (OMORDERCREDIT_FG)
- Order Fulfillment (OMORDERFULFILL_FG)
- Order Hold (OMORDERHOLD_FG)
- Order Scheduling (OMSCHEDULE_FG)

Profitability
- Customer Expenses (CUSTEXP_FG)
- Cost of Goods Sold (GLCOGS_FG)
- GL Revenue (GLREVN_FG)
- Product Expenses (PRODEXP_FG)

Supply Chain
- BOM Item Fact (BOMITEM_FG)

B.3.6 ETL Notes and Additional Information for Project Analytics
No additional information is provided for this Offering.

B.3.7 ETL Notes and Additional Information for Sales Analytics
List of Functional Areas and Fact Groups under the "Oracle Sales Analytics" offering:

Offering
---> Oracle Sales Analytics (SALES_AN_OFRNG)
  Functional Area
  ---> Asset (ASSET_FA)
    Fact Group
      ---> Asset (ASSET_FG)
  ---> Customer Interactions Management (CUSTINTMGMT_FA)
    Fact Group
--> Interactions Coverage (INTCTNCVRG_FG)
--> Interactions (INTERACTIONS_FG)

--> Marketing Leads (LEADS_FA)
   Fact Group
   --> Interactions (INTERACTIONS_FG)
   --> Marketing Lead (MKTGLEAD_FG)

--> Opportunity and Revenue Management (OPTYREVNMGMT_FA)
   Fact Group
   --> Interactions (INTERACTIONS_FG)
   --> Opportunity Revenue (OPTYREVN_FG)

--> Opportunity and Revenue Management for Segmentation (OPTYREVNMGMTSEG_FA)
   Fact Group
   --> Opportunity Revenue Segmentation (OPTYSEG_FG)

--> Order CRM (ORDRCRM_FA)
   Fact Group
   --> CRM Order (ORDER_FG)

--> Quota Management (QUOTAMGMT_FA)
   Fact Group
   --> Resource Quota (RESOURCEQUOTA_FG)
   --> Territory Quota (TERRQUOTA_FG)

--> Quote CRM (QTECRM_FA)
   Fact Group
   --> CRM Quote (QUOTE_FG)

--> Sales Account (SALESACCNT_FA)
   Fact Group
   --> Sales Account (SALESACCNT_FG)

--> Sales Forecasting Management (SALESFCSTMGMT_FA)
   Fact Group
   --> Sales Forecast (SALESFCST_FG)
   --> Siebel Sales Forecast (SIEBELSALESFCST_FG)

--> Sales Prediction Engine (SPE_FA)
   Fact Group
   --> Agreement Contract Item Fact (AGREE_FG)
   --> Asset (ASSET_FG)
   --> Campaign History (CAMPHIST_FG)
   --> Marketing Lead (MKTGLEAD_FG)
--> Opportunity Revenue (OPTYREVN_FG)
--> CRM Order (ORDER_FG)
--> Response (RESPONSE_FG)
--> Service Request (SRVREQ_FG)

--> Service Agreement (AGREE_FA)

Fact Group
--> Agreement Invoice Line Fact Group (AGREEINVCLINE_FG)
--> Agreement Contract Item Fact (AGREE_FG)
--> Invoice Fact Group (INVOICE_FG)

--> Service Request (SRVREQ_FA)

Fact Group
--> Activity Fact Group (ACTIVITY_FG)
--> Service Request (SRVREQ_FG)
--> Survey (SURVEY_FG)

--> Territory Management (TERRMGMT_FA)

Fact Group
--> Marketing Lead (MKTGLEAD_FG)
--> Opportunity Revenue (OPTYREVN_FG)
--> Sales Account (SALESACCNT_FG)
--> Sales Forecast (SALESFCST_FG)

--> Usage Accelerator (USGACC_FA)

Fact Group
--> Customer Data Completeness (CUSTDTCMP_FG)
--> Interactions (INTERACTIONS_FG)
--> Party Person Fact (PARTYPERSON_FG)

### B.3.8 ETL Notes and Additional Information for Product Information Management Analytics

No additional information is provided for this Offering.

### B.3.9 ETL Notes and Additional Information for Partner Analytics

List of Functional Areas and Fact Groups under the "Oracle Partner Analytics" offering:

Offering

--> Oracle Marketing Analytics (PARTNER_AN_OFRNG)

Functional Area

--> Partner Deals (DEALS_FA)

Fact Group
--> Marketing Lead (MKTGLEAD_FG)
--> Opportunity and Revenue Management (OPTYREVNMGMT_FA)
   Fact Group
   --> Interactions (INTERACTIONS_FG)
   --> Opportunity Revenue (OPTYREVN_FG)
--> Partner Performance (PARTPERF_FA)
   Fact Group
   --> Partner Program Measure Fact Group (PRMPROGMSR_FG)
--> Partner Programs (PARTPROG_FA)
   Fact Group
   --> Partner Enrollment Fact Group (PRMENROLL_FG)
   --> Partner Presence Fact Group (PRMPRES_FG)
--> Service Request (SRVREQ_FA)
   Fact Group
   --> Activity Fact Group (ACTIVITY_FG)
   --> Service Request (SRVREQ_FG)
   --> Survey (SURVEY_FG)

B.3.10 ETL Notes and Additional Information for Human Resources Analytics
List of Functional Areas and Fact Groups under the Oracle Human Resources Analytics offering:

Offering
--> Oracle Human Resources Analytics (HR_AN_OFRNG)
   Functional Area
   --> Absence & Accrual (ABSACCRUAL_FA)
      Fact Group
      --> Absence Event (ABSEVT_FG)
      --> Accrual Transaction (ACCRUALTRANS_FG)
--> General Ledger (GENLDGR_FA)
   Fact Group
   --> GL Budget (BUDGET_FG)
   --> GL Balance (GLBAL_FG)
   --> GL Journals (GLBAL_FG)
--> Learning (LEARNING_FA)
   Fact Group
   --> Learning Enrollment (LMENROLL_FG)
--> Payroll (PAYROLL_FA)
   Fact Group
--> Payroll Balance (PAYROLLBAL_FG)

--> Recruitment (RCRTMNT_FA)
   Fact Group
   --> Recruitment (RCRTMNT_FG)

--> Time and Labor (TIMELABOR_FA)
   Fact Group
   --> Time and Labor - Processed / Payable Time (TLPRCSD_FG)
   --> Time and Labor - Reported Time (TLRPTD_FG)

--> Workforce Deployment (WRKFCDEPLOY_FA)
   Fact Group
   --> Workforce Event (WRKFRCEVT_FG)

--> Workforce Effectiveness (WRKFCEFFECT_FA)
   Fact Group
   --> GL Journals (GLBAL_FG)
   --> Workforce Event (WRKFRCEVT_FG)

### B.3.11 ETL Notes and Additional Information for Marketing Analytics

List of Functional Areas and Fact Groups under the Oracle Marketing Analytics offering:

**Offering**

--> Oracle Marketing Analytics (MARKETING_AN_OFRNG)
   Functional Area
   --> Core Marketing (COREMKTG_FA)
      Fact Group
      --> Campaign History (CAMPHIST_FG)
      --> Campaign Opportunity (CAMPOPTY_FG)
      --> Household Fact (HOUSEHLD_FG)
      --> Interactions (INTERACTIONS_FG)
      --> KPI (KPI_FG)
      --> Offer Product (OFFRPROD_FG)
      --> Party Person Fact (PARTYPERSO_FG)
      --> Response (RESPONSE_FG)

--> Marketing Leads (LEADS_FA)
   Fact Group
   --> Interactions (INTERACTIONS_FG)
   --> Marketing Lead (MKTGLEAD_FG)

--> Marketing Plan (MKTGPLAN_FA)
   Fact Group
--> Marketing Cost (MKTGCOST_FG)
--> Marketing Goal (MKTGGOAL_FG)
--> Opportunity Landscape (OPTYLANDSCAPE_FA)

Fact Group
--> Customer Purchase (CUSTPURCH_FG)
--> Marketing Lead (MKTGLEAD_FG)
--> Sales Account (SALESACCNT_FG)

--> Opportunity and Revenue Management (OPTYREVNMGMT_FA)

Fact Group
--> Interactions (INTERACTIONS_FG)
--> Opportunity Revenue (OPTYREVN_FG)

--> Order CRM (ORDRCRM_FA)

Fact Group
--> CRM Order (ORDER_FG)

--> Quote CRM (QTECRM_FA)

Fact Group
--> CRM Quote (QUOTE_FG)

--> Service Request (SRVREQ_FA)

Fact Group
--> Activity Fact Group (ACTIVITY_FG)
--> Service Request (SRVREQ_FG)
--> Survey (SURVEY_FG)

B.3.12 ETL Notes and Additional Information for Financial Analytics

List of Functional Areas and Fact Groups for the Oracle Financial Analytics Offering (FIN_AN_OFRNG):

Functional Areas:
--> Account Payables (ACNTPAY_FA)

Fact Group
--> AP Holds (APHOLDS_FG)
--> AP Transactions and Balance (APTRANS_FG)

--> Account Receivables (ACNTREC_FA)

Fact Group
--> AR Transactions and Balance (ARTRANS_FG)

--> Budgetary Control (BUDCNTRL_FA)

Fact Group
--> GL Budget (BUDGET_FG)
--> GL Balance (GLBAL_FG)
--> GL Journals (GLJRNLS_FG)

--> Employee Expense (EMPEXP_FA)

   Fact Group
   --> Expense Credit Card (EXPCRDCRDCRD_FG)
   --> Expense Overview (EXPOVERVIEW_FG)
   --> Expense Violations (EXPVIOLATION_FG)

--> Federal Financials (FEDFIN_FA)

   Fact Group
   --> GL Budget (BUDGET_FG)
   --> GL Balance (GLBAL_FG)
   --> GL Journals (GLJRNLS_FG)

--> Fixed Asset (FIXEDASSET_FA)

   Fact Group
   --> Fixed Asset Balance (ASTBAL_FG)
   --> Fixed Asset Transactions (ASTXACT_FG)

--> General Ledger (GENLDGR_FA)

   Fact Group
   --> GL Budget (BUDGET_FG)
   --> GL Balance (GLBAL_FG)
   --> GL Journals (GLJRNLS_FG)

--> Profitability (PROFIT_FA)

   Fact Group
   --> Customer Expenses (CUSTEXP_FG)
   --> Cost of Goods Sold (GLCOGS_FG)
   --> GL Revenue (GLREVN_FG)
   --> Product Expenses (PRODEXP_FG)

B.3.13 ETL Notes and Additional Information for Customer Data Management Analytics

   No additional information is provided for this Offering.

B.3.14 Overview of Student Information Analytics

   Student Information Analytics (SIA) in BI Applications captures detailed student, Instructor and Institution related information into a single environment. This enables Institutions in analyzing recruiting, admissions, student records and student financials data. It leverages the right strategic decisions to maximize an institution's student recruiting efforts, improve retention rates, identify successful and unsuccessful courses and programs, analyze faculty workloads and manage and track Student Financials.

   Student Information Analytics is comprised of the following three content-specific data marts which constitute a comprehensive, integrated analytic platform.
B.3.14.1 Admissions & Recruiting Overview
The analytics around student recruiting seek to provide information about prospects and recruiters for an institution and the institution's success in converting the prospects to applicants and enrollees, with focus on the students' academic career, academic program, admit term and recruiting status.

The analytics around student admissions seek to provide information about applicants to the institution and the eventual records at the institution, with focus on the students' academic career, academic program, admit term and program status.

Admissions & Recruiting contains the following subject areas:

- Student Recruiting: Contains data on prospective students, associated academic institutions, academic careers, academic programs, plans and sub-plans.
- Student Admission Application: Contains current information of student applications and provides information on applicants and their applications, and associated academic institutions, academic careers, programs, plans and sub-plans.
- Student Admission Applications Status: This contains data on the application status changes and the effective dates. Each status change is represented as a row in the table.
- External Test Scores: This contains data on the external test scores of the prospects and applicants.
- External Academic Summary: This contains data on the external academic information of the prospects and applicants.
- Application Evaluation: Contains information about the application evaluation which are used to evaluate applicants on specific criteria for the academic career and program to which they are applying.
- Admissions Funnel: Enables funnel report analysis by applicant type, academic level, academic load, last school attended, as well as by term, institution, career, program, campus, and so forth.
- Student Response: Contains information about student responses to Institution and enables analysis such as why students chose not accept Institution Admission.
- Transfer Credit: Contains information about the students' credits. A student can have course credit, test credit or other credits.

B.3.14.2 Student Records Overview
Student Records helps to manage all aspects of enrollment, including catalog and class schedule maintenance, transfer credits, class start and end dates, wait lists, academic programs, transcripts, and analysis. Analytics around Student Records help institutions to review and manage items such as enrollment and registration metrics, count of student and faculty by registered courses, available courses, graduation rates, student career, student academic standing, faculty and student profiles.

Student Records currently contains the following subject areas:
• Academic Plan Summary - This Academic Plan Summary business area contains summary information about individual student for a given academic plan and related academic program.

• Academic Program Detail - This Academic Program business area contains details on individual program actions for every student for a given academic program.

• Academic Class - Academic Class business area contains information about class, courses offered, course component etc.

• Class Enrollment - Class Enrollment business area contains details on individual student's enrollment for a given term for a given class.

• Class Instructor - Class Instructor business area contains details on individual classes scheduled for a given term.

• Class Meeting Pattern - The Class Meeting Pattern subject area contains metrics such as average class size by subject area or department, average class size by meeting patterns, classroom utilization by times of day and days of the week, class utilization and grade distribution.

• Enrollment Requests - This subject area provides analysis of student enrollment requests. It allows managers to analyze metrics on enrollment requests by student, academic career, institution, term, status, action, reason, etc.

• Degrees and Honors - This subject area provides analysis of student degrees as well as related honors. It allows managers to analyze metrics on degrees and honors conferred by student, term, institution, academic plan, academic sub plan, etc.

• Term Enrollment - Term Enrollment business area contains details on individual student’s enrollment for a given term.

• Institution Summary - This Institution Summary business area contains details on student headcount, graduation count and retention count for every academic program, admit term, admit type, student gender, ethnicity, and student cohort.

B.3.14.3 Student Financials Overview

Student Financial Services is used by institutions to manage student receivables, billing, and collections. The subject areas in SIA link student financial information to dimensions such as Student, Account Category etc, enabling the analysis of student financial information from various viewpoints.

Analytics around Student Financials help institutions to review and manage and Student Financial transactions and monitor the outstanding. It allows Institutions to get student financial transactional level of detail.

Student Financial module currently contains the following subject areas:

• Payment Details - Information about payments at a detail level. It allows managers to analyze payments by business unit, payment method, item type, term, academic year, etc.

• Payment and Charges Cross Reference - Provides information on the payments applied to charges within student financials. It allows managers to analyze payments applied to charges by business unit, item type, account type, term, academic year, etc.

• Transaction Details - Information about student financial transactions at a detail level. It allows managers to analyze line items by business unit, item type, account type, term, academic year, etc.
- Credit History - Information on student and external organization accounts by aging set and aging category. It allows student financial managers to analyze credit history trends for a given business unit, account type, student, external org, etc.

B.3.15 Overview of Oracle Human Resources Analytics

Oracle Human Resources Analytics integrates workforce information from different HR functions and Finance. It provides executives, HR managers and front-line managers with an interactive tool to analyze workforce staffing, employee performance and payroll cost, to better design compensation that rewards performance, and to reduce employee retention and absence costs and to better source high quality applicants.

The Oracle HR Analytics application has the following functional areas:

Workforce Effectiveness

Workforce Effectiveness combines key HR metrics with the organization's financial data. It allows senior executives to monitor key HR effectiveness metrics at the enterprise level. The correlation of workforce and financial metrics provides insight into how workforce trends directly impact the organization's operations and financial strength.

Workforce Effectiveness delivers the following sample metrics:

- Contracting Expense
- Contribution per Headcount
- Return on Human Capital
- Revenue per Headcount
- Workforce Cost

Workforce Deployment

Workforce Deployment subject area is the foundation for workforce analysis. It provides the comprehensive core workforce information to support analysis on head count, retention, workforce diversity, employee performance, and contingent labor utilization. Key workforce deployment information such as employee, organization, supervisor, performance band, and service band are shared with other HR functional areas. Sensitive personal attributes like birth date, age, and marital status are organized in a separate folder to allow for restricted access.

Configurable HR event analysis is another key feature of Workforce Deployment subject area. You can configure various employee assignment actions to support analysis in voluntary/involuntary termination, hires, transfers, promotions, or layoffs, and so on. In addition, changes in an employee's job, organization, location, supervisor and salary are tracked to support workforce movement analysis.

Workforce Deployment supports the following types of analysis:

- Headcount analysis
- Workforce diversity
- Employee attrition and retention
- Employee performance
- Span of control
• Internal mobility

**Workforce Gains and Losses**
Understanding headcount movement is essential to manage headcount budget and talent movement. A job transfer can result in a gain, loss or no headcount change as you traverse through the reporting hierarchy. Headcount Gains and Losses subject area allows you to analyze the effect of assignment changes, for example, hires, transfer-in, transfer-outs, reorganization, termination, on headcount movement by supervisor hierarchy.

Workforce Gain and Loss delivers the following metrics:

• Headcount gain from Hire, Reorganization, Global Transfer, Transfer, Supervisor Change

• Headcount loss from Transfer, Reorganization, Global Transfer, Supervisor Change, Termination

**Compensation**
The Compensation subject area provides the information that compensation managers and line managers need to manage compensation costs and evaluate the effectiveness of the compensation plan. The delivered compensation metrics allow you to correlate employee pay with performance and perform compensation parity analyses at different levels by job, grade, and tenure. It proactively detects over or under-compensated employees, which can have big impact on your company’s ability to maintain a competitive edge.

Compensation subject area supports the following analysis:

• Salary trend and percentile analysis

• Salary compression between grades, jobs, and experienced workers

• Salary and employee performance

• Compa-ratio band analysis

**Absence and Leave Accrual**
Absence and Leave Accrual analyzes employee absence trends and leave accrual balances. Absenteeism impedes workforce productivity and increase workforce cost. It analyzes planned and unplanned absence trends, employee working days lost, and identify employees with frequent unplanned absences to reduce absenteeism cost. Leave and Accrual also allows managers to view employees’ accrual balances and accrual liability.

Absence and Leave Accrual supports the following types of analysis:

• Working days lost and Absence Trend

• Employee absence calendar

• Bradford Score

• Accrual balance and liability by organization

**Payroll**
Payroll subject area captures transactional payroll details as well as aggregated payroll balances. With the Payroll subject area, you can analyze all earning, deduction, tax and special accumulator balances from Payroll. It allows you to configure source payroll balances to summary measures such as base pay, variable pay, total employer-paid
health care cost, and total employer-paid taxes etc. to facilitate total compensation or workforce cost analysis. Payroll subject area is extensible. It delivers extension fields allowing customers to map additional balances measures that are not available in the pre-defined payroll balances.

All payroll measures are available for time trend analysis for example, Year, Quarter, Month and Year Ago.

Payroll subject area supports the following types of analysis:

- Payroll balances
- Payroll earning and deduction balances YTD, QTD, MTD, YAGO
- Payroll cost trend
- Overtime spend and Payroll labor hours

Recruitment
Recruitment functional area provides executives, recruiting managers and line managers the intelligence in assessing the efficiency and effectiveness of the recruitment process in sourcing and attracting quality new hires. It delivers over 100 metrics to monitor the entire recruitment life cycle.

Recruitment subject area supports the following types of recruitment analysis:

- Job vacancy analysis
- Recruitment events analysis
- Quality of hire
- Source of hire
- Applicant pool analysis
- Referral analysis

Learning
Learning is a key component of Talent Management. The Learning functional area focuses on the analysis of course offerings, delivery methods, course utilization, and learner enrollment and completion. By combining learning and workforce metrics, the Learning functional area provides critical insight into the effectiveness of learning delivery and how learning contributes to workforce development and employee performance.

Learning subject area supports the following types of analysis:

- Employee course enrollment and completion rate
- Learning hours delivered
- Top 10 course enrollments
- Course enrollment wait time
- Learning scores

Time and Labor
Time and Labor subject area analyzes late timecard submission, reported time, processed or payable time. Time and Labor stores timecard transaction details from the source time tracking systems. With a configurable time entry category, you can analyze productive vs. productive hours, overtime trend, estimated cost for reported time, and
variance between reported and processed time. Time and Labor also supports project time reporting by analyzing reported and processed time by project and tasks.

Time and Labor subject area supports the following types of analysis:

- Reported time by time category and submission status
- Productive vs. non-productive time
- Late Timecards and timecard aging
- Processed or payable time by processing status
- Estimated cost for reported and processed time
- Project labor hours

### B.3.16 Overview of Oracle Price Analytics

Oracle Price Analytics is aimed at pricing analysis, sales operations, product marketing and management, and finance. It provides pricing analytics across the full price waterfall of contracts, quotes, orders and competitor pricing, allowing business users to do the following:

- Identify the true realized price, as well as understand how price is diluted at appropriate summary and transactional levels.
- Monitor price and discounting trends across segment, strategy, channel, geography and time.
- Understand price and margin variation within the same products or customers through price band analysis.
- Look for ‘outliers’ in customer and product profitability to determine the root cause as to why some groups perform better than others and to identify surgical pricing policy and deal opportunities.
- Combine insights from historical data with Oracle data mining and predictive technologies to improve forward-looking decisions.
- Break down price elements at the transaction level and identify the true realized price and margin through detailed waterfall analysis.
- Highlight discounts that are disproportionate to volume and determine which regions, products or customers are responsible.

The following sources can populate pricing data:

- Siebel CRM 8.1.1.7 and 8.2.2
- E-Business Suite 12.1.3
- Universal source

### B.3.17 Overview of Service Analytics

In today’s increasingly competitive marketplace, a company’s customer service center can become an important source of competitive advantage. Indeed, companies with top-performing service centers typically have more satisfied customers, lower operating costs, and higher revenue per customer. To achieve these results, however, organizations must rigorously track and analyze key service center metrics—for example, service request aging, service request resolution, service activities per employee—and take the appropriate actions to maintain performance levels. Oracle Service Analytics provides organizations with powerful insight that enables them to
analyze all aspects of service center performance. The solution provides best-practice metrics, alerts, and key performance indicators (KPIs), enabling companies to take targeted action to improve employee productivity, reduce costs, and increase customer satisfaction.

B.3.18 Overview of Oracle Manufacturing Analytics

Oracle Manufacturing Analytics, part of the Oracle Business Intelligence Applications product line, delivers deep insight into manufacturing execution, production costing, inventory builds, and production quality. It helps manufacturing executives, cost accountants and production and operations managers track performance indicators and key trends in manufacturing execution. Manufacturing analytics, coupled with tight integration to other Oracle Business Intelligence Applications analytics offerings, helps organizations make informed decisions to monitor and evaluate supply chain execution and effectiveness.

Oracle Manufacturing Analytics provides analytics support for the following content areas:

Manufacturing Execution
Manufacturing execution captures the work order transactions on the production shop floor to provide summary level performance indicators with drill down to granular work order details. The analytics support includes:

- Production completions into Inventory.
- Work order analysis, which includes production schedule adherence, production quality, work order cycle times, work order aging etc.
- Material issues to production and usage variance analysis.
- Resource usage variance against standards as well as resource utilization of standard capacity.
- Kanban card activity and kanban replenishment analysis for lean manufacturing.

Production Costing
This content area provides Production cost accountants with insight into production costs and cost variances. Production costing captures the actual production cost of work order completions with cost element break down by resource, material, overhead etc. In addition to actual cost trending and exception tracking, this content area also helps standard costing organizations track production cost variances by cost elements against pre-defined standard costs for a given item. This variance analysis can be performed at a summary level by GL variance accounts with the ability to drill down to work order and cost element details to track exceptions.

Production Quality
This content area captures quality testing information. It's an attribute rich content area that captures quality test results for a given quality plan and all the associated collection elements. These test results can be analyzed against pre-defined thresholds to identify exceptions with the non conformance and disposition details.

The ability to couple actual work order quality like scrap, rework, first pass yield with quality plans and their test results provides extensive capabilities to monitor and track production quality performance.
Production to Plan
This content area provides the capability to analyze different production plans sourced from ASCP and/or MPS, with the ability to pre-configure a specific plan as the baseline plan. This baseline plan is then compared against actual production completions to better understand production adherence to plan, production attainment to-date, deviations from the baseline plan etc. It also helps compare a given plan against the baseline plan to review deviations in the recommendations of a particular plan relative to the baseline plan.

Inventory
In addition to production performance on the shop floor, there is analytics support to analyze Inventory details to provide a holistic picture of the total supply available in a production plant as well as across all the Inventory organizations. The analytics support relatively to Inventory includes:

- Inventory Balances: This content area captures daily and monthly snapshots of Inventory balances by product and by lots, if lot control is turned on. It helps analyze trends in Inventory balances across the different Inventory organizations. It also supports aggregate industry standard metrics like Inventory Turn and Days Inventory Outstanding, which are calculated metrics to help provide supply chain executives with KPIs to track supply performance across the organization.

- Inventory Transactions: This content area captures all the Inventory transactions, including inter-organization transfers, customer and supplier returns, material issues and returns from shop floor, work order completions into inventory etc. It helps analyze the trends by transaction types to better understand the inventory movement patterns in an organization.

- Inventory Bill of Materials: This content area helps review a flattened bill of material for a given product to better understand all the components and raw materials consumed collectively across all the levels as well as individually at each stage in the bill of material. This information, based on effectivity dates helps pull up all the components/material associated with a production work order and the associated inventory levels for these components/materials.

- Inventory Aging: This content area provides the ability to track Inventory age, based on receipt into inventory and categorize the Inventory into aging buckets. With shelf life and/or lot expiration dates, this content area also helps classify expiring inventory into different buckets to monitor and expedite.

B.3.19 Overview of Supply Chain and Order Management Analytics
The Oracle Supply Chain and Order Management Analytics application for Fusion Applications allows you to analyze:

- Bookings
- Financial and Operational Backlogs
- Invoices
- The movement of sales orders through different stages of the sales cycle
- Orchestration orders analysis
- Order Hold analysis
- Inventory held by an organization
- Inventory movements in, out, and through manufacturing plants, distribution centers, or storage locations
■ Inventory Valuation
■ Inventory cycle count with Hit or Miss and Exact Match analysis
■ Product Information Management covering analytics for Item, Item-Batch and Item-Catalog attributes
■ Product Information analytics to support New Item Requests and Change Order processes in Fusion

The Oracle Supply Chain and Order Management Analytics application consists of orders, invoices, order orchestration, backlogs, inventory, logistics and product information management. Sales orders are the entry point for the sales process. Invoices are the exit point from the fulfillment process. Backlogs are points of congestion in your fulfillment process. This coverage includes insight into orchestration orders and process durations and which items are booked, backlogged, and invoiced. This allows you to evaluate the sales performance of individual sales representatives or departments. Oracle Supply Chain and Order Management Analytics application also provides you with information on Inventory Transactions, Inventory Balances and Customer and Supplier Returns. This enables companies to monitor inventory levels trend to Sales performance to improve cost exposure, increase turnover through inventory level reduction and increased velocity, properly deploy inventory at the right place / right time and better understand Customer and Supplier Returns to maintain quality.

In addition to the above, the Oracle Supply Chain and Order Management Analytics for has new content for Fusion Applications source that includes new subject areas in Costing, Distributed Order Orchestration, Logistics and Product Information Management.

B.3.20 Overview of Marketing Analytics

Oracle Marketing Analytics is a comprehensive analytical solution that provides timely fact-based insight into the marketing activities of the entire organization. It provides new levels of information richness, usability, and reach to marketing professionals throughout the enterprise. It provides actionable intelligence in the following Marketing areas: Marketing Effectiveness, Customer Insight, and Lead Analysis.

The main functional areas within Marketing Analytics are:

■ Core Marketing - Helps to analyze customer and prospect responses to campaigns, marketing activities and marketing offers.
■ Marketing Leads - Helps to do a detailed analysis on leads as they move through the lifecycle and leads interactions that a company has had with their customer and prospects. Analysis includes lead to opportunity conversion, what percentage of the leads are getting rejected and retired by the sales team, what are the main reasons, how effective the sales force in converting the leads and so on.
■ Marketing Planning - Helps to analyze marketing planning related information including marketing goals and marketing cost analysis.
■ Opportunity Revenue Management - Helps to analyze the opportunity revenue generated from marketing activities, helping marketers to calculate the Return on Marketing Investment (ROMI).
■ Order CRM - Helps to analyze order revenue generated from marketing activities, helping marketers to calculate the return on Marketing Investment.
Quote CRM - Helps to analyze quote revenue generated from marketing activities, helping marketers to calculate the return on Marketing Investment.

Service Request - Helps to analyze various marketing activities a company has had with their customers and prospects.

For a complete end to end analysis of marketing campaigns and other activities, you must implement all of the above functional areas.

Opportunity Landscape - Opportunity Landscape is a functional area included within Marketing Analytics, but is not necessary for the Marketing Analytics to function. This module provides analysis for Fusion Opportunity Landscape application. Refer to the product documentation of Fusion Opportunity Landscape for more details.

B.3.21 Overview of Customer Data Management Analytics
Fusion Customer Data Management Analytics provides insight into the data quality of an organization's customer data. This solution provides a set of data completeness analyses which allow you to monitor, measure, and analyze the completeness of the underlying party information of your enterprise, including organization and person information.

B.3.22 Overview of Project Resource Management Analytics for PeopleSoft
This section provides an overview of Project Resource Management Analytics.

For generic information about using Project Resource Management Analytics with PeopleSoft or E-Business Suite, see Section B.3.22.1, "About Project Resource Management Analytics for PeopleSoft and E-Business Suite".

For information about using Project Resource Management Analytics with PeopleSoft, see Section B.3.22.2, "Notes on Project Resource Management Analytics for PeopleSoft".

Note: For information about using Project Resource Management Analytics with E-Business Suite, see Section B.3.23, "Overview of Project Resource Management Analytics for E-Business Suite".

B.3.22.1 About Project Resource Management Analytics for PeopleSoft and E-Business Suite
This section contains information that applies to Project Resource Management Analytics with PeopleSoft and E-Business Suite.

Overview
With Oracle Business Intelligence Applications release 11.1.1.7.1, Project Analytics introduces a new subject area to analyze Project Resource Management.

This release supports E-Business Suite 11.5.10 and R12x, and PeopleSoft 9x.

The new subject area comes with over 230 metrics and the catalog includes five new dashboard pages and over 40 new reports. For details, refer to the Oracle BI Applications Metrics Guide.

The following are the areas of analysis that this subject area supports and the new fact tables in Oracle Business Analytics Warehouse introduced.

Project Requirements
Table W_PROJ_RSRC_RQRMNT_F stores the detail about project requirements, including metrics such as time and number of resources requested and unfulfilled by
project requirement. The fact table stores the requirement at the grain of requirement date range. Requirements are captured for a range of days in the ERP, but to provide the ability to compare requirements to Capacity at daily grain, the requirement hours is distributed linearly among the days within that range in the BI metadata repository (that is, the RPD file).

**Resource Utilization**

Table `W_PROJ_RSRC_UTILIZATION_F` stores the details about resource assignments for each assigned day as well as resource capacity for each valid business day for each resource. This fact includes metrics such as capacity, scheduled, available and unassigned time. Actual Utilization is also supported via Project Cost fact.

**Competencies and Jobs**

Table `W_EMP_JOB_F` stores the details about the employee's primary job. Table `W_EMP_COMPETENCY_F` stores the detail about the employee's competencies. The RPD introduces a new logical table source that uses the above two facts to provide the ability to compare supply vs demand of jobs and competencies. This fact includes metrics such as # Of Employees, # Of Employees MAGO etc.

**Resource Availability**

This star provides the ability to find resources available for a pre-determined number of consecutive business days. There is no physical table for this fact in the warehouse. It is an opaque view in the BI metadata repository (that is, the RPD file).

This opaque view is a select query which makes use of Employee's Holiday information and the Employee's assignment information to calculate the availability. This fact includes metrics such as Available Resource Count for Bucket1 etc.

This new subject area requires the parameters listed below to be set at implementation time. These are FSM parameters which are used by both EBS and PSFT adaptors. These parameters need to be configured in FSM.

- Project Resource Management Capacity Records Creation Period: This parameter is used to determine for how long (in months) the capacity records are created. The default value of this parameter is 12.
- Project Availability Bucket Size: This parameter is used to specify the number of consecutive available business days used in the search for resources. The default value for this parameter is 5.
- Project Resource Management UOM: The RPD variable `PROJ_RSRC_MNGMT_UOM` specifies the unit of the reporting. This can be: HOURS, DAYS or FTE. The default value for this parameter is 'HOURS'.
- Project Resource Management Value of Unit of Measure in Days: Value of Unit of Measure in Days expressed in hours. This specifies the number of hours in a business day. The default value for this parameter is 8.
- Project Resource Management Value of Unit of Measure in FTE: Value of Unit of Measure in FTE - full time equivalent weekly hours. The default value for this parameter is 40.
- Project Resource Management Value of Unit of Measure in Hours: Project Resource Management Value of Unit of Measure in Hours. By Default all metrics are displayed in Hours. The default value for this parameter is 1.
B.3.22.2 Notes on Project Resource Management Analytics for PeopleSoft
This section provides information that is specific to Project Resource Management Analytics for PeopleSoft.

- Task Types defined in Resource Management source application need to be mapped to the Work Type Dimension. A configuration point in FSM is provided to specify whether the task type is billable, capitalizable or used for training. It also specifies the weight given to the time of each type in the calculation of utilization percentages.
- Expenditure Type, Expenditure Class, GL Accounting Date, GL Accounting Date Fiscal Calendar, Projects Calendar dimension are not supported for this adapter.
- PeopleSoft Resource Management does not store the capacity of a resource. The capacity is calculated in ETL only for working days.
- Only those employees who are eligible to be staffed on projects are considered when doing these calculations.

B.3.23 Overview of Project Resource Management Analytics for E-Business Suite
This section contains information that is specific to using Project Resource Management Analytics with E-Business Suite.

For generic information about using Project Resource Management Analytics with PeopleSoft or E-Business Suite, see Section B.3.22.1, "About Project Resource Management Analytics for PeopleSoft and E-Business Suite”.

Notes on the E-Business Suite Adapter
E-Business Suite Resource Management creates the capacity of a resource except for the case where the resource has never been assigned to a Project. To ensure uniform reports for all employees, the capacity records of unassigned employees are created during ETL process and loaded into Oracle Business Analytics Warehouse. The duration for which the capacity records are created is controlled by the FSM parameter ‘Project Resource Management Capacity Records Creation Period’.

B.3.24 Overview of Project Analytics
Oracle Project Analytics offers a comprehensive solution that delivers pervasive insight into several fundamental areas of project management. With Project Analytics, project executives, project managers and project accountants can track the status of projects through their life-cycle to improve their performance and profitability. Oracle Project Analytics is also integrated with other Oracle BI Applications, such as Financials and Procurement Analytics. These integrations deliver cross functional analysis on AR and AP and procurement transactions by project.

Project Analytics includes the following Subject Areas:

- Project - Project Billing
  This subject area provides the ability to report on Invoicing, including amounts and quantities, across projects, tasks, organizations, resources, and associated hierarchies and for external, interproject and intercompany invoicing. This subject area also includes contract metrics.

- Project - Budget
  This subject area provides the ability to report on cost, revenue, margin budgets, and the budget changes including tracking original and current budgets across
projects, tasks, organizations, resources, periods and associated hierarchies at budget line level.

- Project - Cost
  This subject area provides the ability to report on Cost (Burdened Cost), Raw Cost, Burden Cost for the past and current periods including inception-to-date, year-to-date comparisons across projects, tasks, organizations, resources, suppliers and associated hierarchies. It provides the ability to track the cost at cost distribution level.

- Project - Forecast
  This subject area provides the ability to report on Cost, Revenue and Margin Forecasts, and the Forecast changes including tracking original and current forecasts across projects, tasks, organizations, resources, periods and associated hierarchies. It provides the ability to track the metrics that indicates the past, present and future performance of the cost, revenue and margin.

- Project - Funding
  This subject area provides the ability to track contract amount, funding amount and other changes of the funding throughout the life cycle of the project. In addition, it provides the ability to compare analysis of Contract Amount, Funding amount and Invoice Amount across projects, tasks, customers, organizations and associated hierarchies.

- Project - Performance
  This is a consolidated subject area with the combined information from Budgets, Forecasts, Cost, Revenue, and provides the ability to monitor performance by comparing the actual (cost, revenue, margin and margin %) with budgets, and forecasts across projects, tasks, organizations, resources, and associated hierarchies.

- Project - Revenue
  This subject area provides the ability to report on Revenue transactions for the past and current periods including inception-to-date, year-to-date comparisons across projects, tasks, organizations, resources, suppliers and associated hierarchies. It provides the ability to track the revenue at the distribution level.

- Project - Commitments
  This subject area provides the ability to report on the obligations for future expenditures that a project has made. Reporting can be done across organizations, projects, tasks, resources and periods. There are metrics showing raw and burdened amounts for requisitions, purchase orders and supplier invoices.

- Project – Cross Charges
  This subject area provides the ability to report on expenditures that projects or organizations charge to each other for resources that they share. Reporting is possible across periods, organizations, projects, task and resources. Metrics include charges generated by Intercompany Billing or the Borrowing and Lent methods for current and previous periods.

- Project – Resource Management
  This subject area provides the ability to report on the utilization of resources, the status and attributes of project requirements and the supply and demand of competencies and jobs. Reporting is possible across Gregorian calendar periods, resource organizations, resources, requirements and projects.
- **Project – Cost GL Reconciliation**

  This subject area provides metrics and dimensions to track the number of reconciliation exceptions between Projects and the General Ledger and their amount value. There are six use cases supported covering from the transfer of cost distribution lines from Projects to the posting of the corresponding journal lines to the General Ledger. Use cases also cover exceptions because of mismatch between journal lines and the cost distributions lines that they summarize and journal lines with no matching cost distribution lines.

- **Project – Revenue GL Reconciliation**

  This subject area provides metrics and dimensions to track the number of reconciliation exceptions between Projects and the General Ledger and their amount value. There are six use cases supported covering from the transfer of revenue distribution lines from Projects to the posting of the corresponding journal lines to the General Ledger. Use cases also cover exceptions because of mismatch between journal lines and the revenue distributions lines that they summarize and journal lines with no matching revenue distribution lines.

**Cross Fact Analysis**

The Canonical BU (Canonical Organization) is the Common Logical BU (Organization) against which data is analyzed across different fact tables. From each fact table one main BU (Org) is selected to be used for analyzing data in that fact table (for example, for Cost Fact, the canonical BU is the Expenditure BU; for Revenue Fact, the canonical BU is the Contact BU) and use the corresponding foreign key to join to the logical dimension Dim - Business Unit (Dim - Project Organization). These dimensions Dim - Business Unit and Dim - Project Organization are called Canonical BU and Canonical Project Organizations dimensions respectively. For example, for the Cost Fact the join would be

\[
\text{Dim}_W\_\text{INT}\_\text{ORG}_D\_\text{Business}_\text{Unit}.\text{SCD1}_\text{WID} = \text{Fact}_W\_\text{PROJ}\_\text{COST}\_\text{LINE}_F\_\text{Project}_\text{Cost}.\text{EXPENDITURE}_\text{OPER}_\text{UNIT}_\text{WID}
\]

For Revenue Fact the join would be:

\[
\text{Dim}_W\_\text{INT}\_\text{ORG}_D\_\text{Business}_\text{Unit}.\text{SCD1}_\text{WID} = \text{Fact}_W\_\text{PROJ}\_\text{REVENUE}_\text{LINE}_F\_\text{Revenue}_\text{Lines}.\text{CONTRACT}_\text{BU}_\text{WID}
\]

In addition the Canonical BU calendar is used when forming the foreign key to the Fiscal Calendar Day dimension (W_MCAL_DAY_D). For Cross Fact Analysis, you must always ensure that you have a filter on Canonical BU (Business Unit Name column under Organizations folder in presentation area). This filter on Canonical BU is required in all dashboards because it ensures the calendar is unique and prevents double counting.

The table below lists the Canonical BU (Canonical Organizations) that are available for the Logical Facts supported in Project Analytics solution.

**Table B–91 List of Facts, Canonical BUs, and Canonical Organization**

<table>
<thead>
<tr>
<th>Fact</th>
<th>Canonical Business Unit</th>
<th>Canonical Organization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Billing</td>
<td>Contract BU</td>
<td>Contract Organization</td>
</tr>
<tr>
<td>Project Budget</td>
<td>Project BU</td>
<td>Project Organization</td>
</tr>
<tr>
<td>Project Budget - Linear Spread</td>
<td>Project BU</td>
<td>Project Organization</td>
</tr>
<tr>
<td>Project Commitment</td>
<td>Project BU</td>
<td>Project Organization</td>
</tr>
</tbody>
</table>
B.3.25 Overview of Budgetary Control in Financial Analytics

The Budgetary Control dashboard is targeted at executives managing overall budgets and senior level managers managing budgets by cost centers, funds, programs, projects and accounts. It is designed to provide key analysis pertaining to expense budgets including budget amounts, encumbrances and expenditures as well as revenue budgets including budget amounts and recognized revenues.

There are some pre-requisites to meet in order to use Budgetary Control Analytics:

- Budgetary Control Analytics dashboards allows drill down from summary reports to detail reports on purchase orders, purchase requisitions etc. which fall under Procurement and Spend Analytics subject areas. So, in order for these drill downs to work, you must license and implement Procurement and Spend Analytics offering in addition to the Financial Analytics offering.

- PeopleSoft customers, commercial or public sector, need to implement Commitment Control module in the PeopleSoft Applications to use Budgetary Control Analytics.

B.3.26 Overview of Project GL Reconciliation Analytics for E-Business Suite 11.5.10

For an overview of GL Reconciliation for Projects Analytics, see Section B.2.92, "Additional Information About GL Reconciliation in Project Analytics”.

Because in E-Business Suite11.5.10, there is no concept of a linkage (SLA) table, the use cases are a little different than the ones in R12. The following are the use cases supported for E-Business Suite11.5.10 source system.

---

**Table B–91 (Cont.) List of Facts, Canonical BUs, and Canonical Organization**

<table>
<thead>
<tr>
<th>Fact</th>
<th>Canonical Business Unit</th>
<th>Canonical Organization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Commitment Snapshot</td>
<td>Project BU</td>
<td>Project Organization</td>
</tr>
<tr>
<td>Project Contract</td>
<td>Contract BU</td>
<td>Contract Organization</td>
</tr>
<tr>
<td>Project Cost</td>
<td>Expenditure BU</td>
<td>Expenditure Organization</td>
</tr>
<tr>
<td>Project Cross Charge - Invoice</td>
<td>Project BU</td>
<td>Project Organization</td>
</tr>
<tr>
<td>Project Cross Charge - Provider</td>
<td>Expenditure BU</td>
<td>Expenditure Organization</td>
</tr>
<tr>
<td>Project Cross Charge - Receiver</td>
<td>Project BU</td>
<td>Contract Organization</td>
</tr>
<tr>
<td>Project Cross Charge - Revenue</td>
<td>Contract BU</td>
<td>Contract Organization</td>
</tr>
<tr>
<td>Project Forecast</td>
<td>Project BU</td>
<td>Project Organization</td>
</tr>
<tr>
<td>Project Funding</td>
<td>Contract BU</td>
<td>Contract Organization</td>
</tr>
<tr>
<td>Project Revenue</td>
<td>Contract BU</td>
<td>Contract Organization</td>
</tr>
</tbody>
</table>
B.3.27 Overview of GL Reconciliation Analytics for E-Business Suite R12

For an overview of GL Reconciliation for Projects Analytics, see Section B.2.92, "Additional Information About GL Reconciliation in Project Analytics".

The following are the use cases supported for E-Business Suite R12 source system.

### Table B–92 Use cases and descriptions

<table>
<thead>
<tr>
<th>Use Case</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost/Revenue Lines Not Transferred</td>
<td>Cost/Revenue line transactions with transfer status - &quot;Not Transferred&quot;.</td>
</tr>
<tr>
<td>Cost/Revenue Line Transfer Exceptions</td>
<td>Cost/Revenue lines which have transfer status = &quot;Transferred&quot; but with transfer exceptions. The ETL process identifies these lines because they are not present in table w_gl_linkage_information_G of the Oracle Business Intelligence Date Warehouse. Lines which have been successfully transferred to General Ledger are included in table w_gl_linkage_information_G.</td>
</tr>
<tr>
<td>Cost/Revenue Lines not in GL</td>
<td>Not supported for EBS 11.5.10 as there is no SLA module.</td>
</tr>
<tr>
<td>Cost/Revenue Lines with Unposted Journals</td>
<td>Cost/Revenue lines which have been transferred out of Projects and transferred to GL but which are not posted in General Ledger. This use case requires some customizations as described in FSM Task: How to configure projects GL reconciliation manual journal entries use case for EBS R11510 and R12.</td>
</tr>
<tr>
<td>Manual Journal Lines</td>
<td>Reports journal lines which are manually created in General Ledger and have no corresponding Cost/Revenue lines in Projects. In cases where the accounting has been set up such that there is no project segment in the chart of accounts, this reconciliation module cannot match manual journal lines with individual projects. To match manual journal lines with projects, users need to annotate manual journal lines with the project number that they correspond to using a flex field, and modify the ETL to pick up this information.</td>
</tr>
<tr>
<td>Amounts Mismatch</td>
<td>Reports journal lines and cost/revenue lines for which GL amount of journal line does not match with the sum of corresponding cost/revenue line amounts that they summarize.</td>
</tr>
</tbody>
</table>
Overview of Project GL Reconciliation Analytics for PeopleSoft 9.0

For an overview of GL Reconciliation for Projects Analytics, see Section B.2.92, "Additional Information About GL Reconciliation in Project Analytics".

The following are the use cases supported for the PeopleSoft 9.0 source system.

**Single-Feed Data System**

If source system is set for single feed, then there is table PS_CA_ACCTG_LN_PC, which is a step previous to General Ledger for cost transfers (Single Feed) and for Revenue.

---

### Table B–93 Use cases and descriptions

<table>
<thead>
<tr>
<th>Use Case</th>
<th>Description</th>
</tr>
</thead>
</table>
| Cost/Revenue Lines Not Transferred    | Cost/Revenue line transactions with transfer status = "Not Transferred".
| Cost/Revenue Line Transfer Exceptions | Cost/Revenue lines with transfer status = "Transferred" but which are not in the GL Linkage table. The ETL process identifies these lines because they are not present in table w_gl_linkage_information_G of the Oracle Business Intelligence Date Warehouse. Lines which have been successfully transferred to SLA are included in table w_gl_linkage_information_G. |
| Cost/Revenue Lines not in GL          | Cost/Revenue lines which have been transferred out of Projects SLA but that have not been transferred to General Ledger.                                                                                   |
| Cost/Revenue Lines with Unposted Journals | Cost/Revenue lines with corresponding journal lines not posted to General Ledger.                                                                                                                        |
| Manual Journal Lines                  | Reports journal lines which are manually created in General Ledger and have no corresponding Cost/Revenue lines in Projects. In cases where the accounting has been set up such that there is no project segment in the chart of accounts, this reconciliation module cannot match manual journal lines with individual projects. To match manual journal lines with projects, users need to annotate manual journal lines with the project number that they correspond to using a flex field, and modify the ETL to pick up this information. This use case requires some customizations as described in FSM Task: How to configure projects GL reconciliation manual journal entries use case for EBS R11510 and R12. |
| Amounts Mismatch                      | Journal lines with amounts that do not match that of their corresponding cost or revenue lines.                                                                                                          |
Table B–94 Use cases and descriptions

<table>
<thead>
<tr>
<th>Use Case</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost/Revenue Lines Not Transferred</td>
<td>Cost/Revenue line transactions with transfer status – &quot;Not Transferred&quot;.</td>
</tr>
<tr>
<td>Cost/Revenue Line Transfer Exceptions</td>
<td>Cost/Revenue lines which have transfer status = &quot;Transferred&quot; but with transfer exceptions. The ETL process identifies these lines because they are not present in table w_gl_linkage_information_G of the Oracle Business Intelligence Date Warehouse. Lines which have been successfully transferred to PS_CA_ACCTG_LN_FC are included in table w_gl_linkage_information_G.</td>
</tr>
<tr>
<td>Cost/Revenue Lines not in GL</td>
<td>Cost/Revenue lines which have been transferred out of Projects to intermediate Sub Ledger or GL Linkage table but are not transferred to General Ledger.</td>
</tr>
<tr>
<td>Cost/Revenue Lines with Unposted Journals</td>
<td>Cost/Revenue lines which have been transferred out of Projects and transferred to GL but which are not posted in General Ledger.</td>
</tr>
<tr>
<td>Manual Journal Lines</td>
<td>Reports journal lines which are manually created in General Ledger and have no corresponding Cost/Revenue lines in Projects.</td>
</tr>
<tr>
<td>Amounts Mismatch</td>
<td>Reports journal lines and cost/revenue lines for which GL amount of journal line does not match with the sum of corresponding cost/revenue line amounts that they summarize.</td>
</tr>
</tbody>
</table>

Dual-Feed Data System
Table B–95  Use cases and descriptions

<table>
<thead>
<tr>
<th>Use Case</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost/Revenue Lines Not Transferred</td>
<td>This use case does not apply for the dual feed setup.</td>
</tr>
<tr>
<td>Cost/Revenue Line Transfer Exceptions</td>
<td>This use case identifies lines that are in Projects sub ledger but not in the General Ledger. The ETL process identifies these lines because they are not present in table W_GL_LINKAGE_INFORMATION_G of the Oracle Business Intelligence Date Warehouse, while line which have been successfully transferred to General Ledger are included in table W_GL_LINKAGE_INFORMATION_G.</td>
</tr>
<tr>
<td>Cost/Revenue Lines not in GL</td>
<td>This use case does not apply for the dual feed setup.</td>
</tr>
<tr>
<td>Cost/Revenue Lines with Unposted Journals</td>
<td>Cost/Revenue lines which have been transferred out of Projects and transferred to GL but which are not posted in General Ledger.</td>
</tr>
<tr>
<td>Manual Journal Lines</td>
<td>Reports journal lines which are manually created in General Ledger and have no corresponding Cost/Revenue lines in Projects.</td>
</tr>
<tr>
<td>Amounts Mismatch</td>
<td>Reports journal lines and cost/revenue lines for which GL amount of journal line does not match with the sum of corresponding cost/revenue line amounts that they summarize.</td>
</tr>
</tbody>
</table>

Note

In PeopleSoft systems there are two types of revenue transactions: Amount-Based Revenue, and Rate-Based Revenue.

For Oracle Business Intelligence Applications release 11.1.1.7.1, the reconciliation only supports Rate-Based Revenue transactions. 'Amount Based Revenue’ rows are currently not captured in our Revenue Fact table and are therefore not supported.

B.3.29  Overview of Oracle Procurement and Spend Analytics

Oracle Procurement and Spend Analytics comprises of Procurement Analytics, Sourcing Analytics, and Employee Expense Analytics.

Oracle Procurement and Spend Analytics enable organizations to optimize their supply side performance by integrating data from across the enterprise value chain and enabling executives, managers, and frontline employees to make more informed and actionable decisions. Organizations using Oracle Procurement and Spend Analytics benefit from increased visibility into the Corporate Spend and complete source-to-pay process, including comprehensive sourcing and procurement analysis, supplier performance analysis, supplier payables analysis, and Employee Expenses analysis. Through complete end-to-end insight into the savings, spend patterns, and supplier performance, organizations can significantly reduce costs, enhance profitability, increase customer satisfaction, and gain competitive advantage. Oracle Procurement and Spend Analytics also integrates with the other applications in the Oracle Business Intelligence Applications product line, such as Oracle Financial Analytics. They deliver this insight across the organization to increase the company’s effectiveness in managing its customers, suppliers, and financial decisions.

Oracle Procurement and Spend Analytics provides visibility into sourcing, direct and indirect spending across the enterprise, payment, and employee expenses. Oracle Procurement and Spend Analytics comprises the following Subject Areas:
• Procurement and Spend - Change Orders: This subject area provides the ability to report on changes to purchasing documents post approval, showing count of changes/cancellations and processing time by Supplier, BU, Buyer, and Change Order attributes such as method, type, initiator, and so on. Note: this subject area is applicable to Fusion source. Other sources such as EBS or PeopleSoft does not support this subject area.

• Procurement and Spend - Invoice Lines: This is a detailed subject area that provides the ability to report on total spend of an organization across suppliers, products, item categories, business units, cost centers, buying locations, supplier locations and associated hierarchy. In addition, this subject area also provides detailed information at invoice distribution level.

• Procurement and Spend - Procure to Pay: This is a summary subject area that provides the ability to do comparative analysis and report on requested spend, committed spend and actual spend and receipts across business units, buying locations, suppliers, products, item categories and associated hierarchies for both direct and indirect spend (indirect spend being MRO and employee expenses) in detail to allow complete visibility of spending across your organization.

• Procurement and Spend - Purchase Agreement: This subject area provides ability to report on Purchase Agreements, showing agreement amount, its consumption and expiration, number of different agreement types, buyers, supplier and supplier sites, agreement lines across Supplier, Supplier Site, Buyer, Item, BUs, and Agreement details.

• Procurement and Spend - Purchase Cycle Lines: This is a summary subject area that provides the ability to report cycle time performance, such as requisition to purchase order lead time, purchase order to receipt lead time, P2P lead time of the suppliers of an organization.

• Procurement and Spend - Purchase Orders: This is a detailed subject area that combines the information from Purchase Orders, Purchase Order Costs and Purchase Schedules with the ability to report on committed spend, contract compliance and Purchase orders of the suppliers of an organization across suppliers, company, products, item categories and associated hierarchies at purchase order line level.

• Procurement and Spend - Purchase Orders BU Summary: This is the same as 'Procurement and Spend - Purchase Orders' Subject Area, except that they do not have data security enabled, and is used in Fusion Applications embedded reports only by explicit data filter.

• Procurement and Spend - Purchase Receipts: This is a detailed subject area that provides the ability to report on actual spend and purchase receipts of the suppliers of an organization across suppliers, company, location, products, item categories and associated hierarchies at purchase receipt line level, including reporting based on receiving time.

• Procurement and Spend - Purchase Requisition BU Summary: This is the same as 'Procurement and Spend - Purchase Receipts' Subject Area, except that they do not have data security enabled, and is used in Fusion Applications embedded reports only by explicit data filter.

• Procurement and Spend - Purchase Requisition Status: This is a summary subject area that provides the ability to report on requisition status along the approval cycle of purchase requisitions of the suppliers of an organization. This subject area is only populated by the Universal adapter.
Procurement and Spend - Purchase Requisitions: This is a detailed subject area that provides the ability to report on requested spend and purchase requisitions (including cyclic requisitions) of the suppliers of an organization across suppliers, company, products, item categories and associated hierarchies at purchase requisition line level.

Supplier Performance - Supplier AP Transactions: This is a summary subject area that provides the ability to analyze payment performance and payment due analysis of the suppliers of an organization across suppliers, company, location, products, commodities and associated hierarchies. (Note: In order to populate Supplier Payables component, you must implement the Accounts Payables module of Oracle Financial Analytics. If you do not implement the Accounts Payables module, then some of the Supplier Payables reports will not be populated.)

Procurement and Spend - Scorecard: This subject area supports Procurement Scorecard. It includes metrics/ KPIs and its targets that provide the ability to monitor and analyze trends of procurement organization’s performance. It provides performance and goal attainment information, across time and business units, from different perspectives such as finance, internal customer, operations and supplier.

Supplier Performance - Supplier Performance: This subject area (built on Purchase Cycle Lines) contains targeted metrics that allow users to analyze the timeliness, reliability, cost, and quality of goods provided by the suppliers. It helps you to understand how well suppliers are contributing to the success of your organization.

Sourcing - Award: This subject area provides the ability to report on Sourcing Awards, showing projected and realized savings, award amount, quantity, price, PO amount, number of suppliers and BUs awarded across sourcing negotiation types, BUs, Suppliers, Buyers and Categories.

Sourcing - Negotiation: This subject area provides the ability to report on Sourcing Negotiations, showing negotiation amounts, header/ line counts and cycle times across sourcing negotiation types, BUs, Suppliers, Buyers and Categories.

Sourcing - Overview: This is a detailed subject area that provides the ability to report on supplier participation and response to sourcing documents, projects and realized savings, award amount, quantity, price, PO amount, number of suppliers and BUs awarded, and various cycle times across Sourcing negotiation types, BUs, Suppliers, Buyers and Categories.

Sourcing - Response: This subject area provides the ability to report on Sourcing Responses, showing supplier response and participation across sourcing negotiation types, BUs, Suppliers, Buyers and Categories.

Employee Expenses - Credit Card: This subject area provides the ability to report on the corporate card spend of an organization, showing the number and amount of outstanding transactions by business unit, employee, and expense categories.

Employee Expenses - Overview: This is a detailed subject area that provides the ability to report on employee spend of an organization across employees, company, cost center and associated hierarchies, including Approvers and cycle time measurements related to Approval, and Employee Expenses by various expense types.

Employee Expenses - Violations: This subject area provides the ability to report on policy violations for submitted employee expenses of an organization, across employee and business.
- **Spend Planning - Common**: This subject area is used by spend panning application to provide reference data such as Exchange Rate, UOM conversion, Agreement etc. Note each of the table in this subject area represents an object that should be query independently. You should not create queries crossing tables.

- **Spend Planning - Historical Spend**: This subject area is used by spend planning application to extract and analyze historical spend data.

- **Spend Planning - Purchasing**: This subject area is used by spend planning application to extract and analyze historical purchasing data.

### B.3.30 Overview of Product Information Management Analytics

Oracle Product Information Management (PIM) Data Hub is an enterprise data management solution that enables customers to centralize all product information from heterogeneous systems. It allows organizations to create a single, enterprise view of their product information, by integrating, standardizing and synchronizing fragmented product data from multiple source systems into a central, operational, data repository ('Hub').

PIM Data Hub solution centralizes the disparate sources of product information and provides a full, 360-degree view of products across all channels. It enables articulated management and communication of product information both within the organization as well as externally to customers and value-chain partners.

Oracle Product Information Management Analytics application comprises the following Subject Areas:

- **PIM - Item**: This subject area provides information on creation and approval activities related to items of different Item class, type, phase and status.

- **PIM - Change Orders**: This subject area provides information on activities related to Change Orders such as number of change orders in different age range, average age of change orders, different stages of change order life cycle, for example, approved, rejected, draft, pending effective.

- **PIM - New Item Request**: This subject area provides information on activities related to New Item requests such as number of new item requests in different age range, average age of new item requests, New Item Request Cycle Time and different stages of new item request life cycle, for example, new, approved, rejected.

- **PIM - Item Catalog**: This subject area provides information on activities related to Item Catalogs like number of new catalogs, categories, and shared categories.

- **PIM - Item Batch**: This subject area provides information on activities related to Item Import from any external system such as number of items excluded, partially imported, successfully imported, and so on during the batch import process.

### B.3.31 Overview of Partner Analytics

Partner Analytics helps channel and partner account managers assess partner and program performance on all key fronts - lead generation, deals registered, revenue and enrollments. It also enables partner organization sales representatives and managers to assess their own sales performance.

### B.3.32 Overview of Financial Analytics

Oracle Financial Analytics comprises the following Functional Areas:
- **Employee Expenses** - The Oracle Employee Expenses Analytics application has been designed to provide visibility into an organization’s employee related expenditures, including corporate card usage, expense policy violations, and the overall submission and approval process. Gain control of the drivers of employee expenses by isolating top spenders across expense categories and identifying recurring policy violations. Visibility into overall expense trends improve ability to negotiate with key merchants. The default configuration for the Oracle Employee Expenses Analytics application is based on what is identified as the most-common level of detail or granularity. However, you may configure and modify the extracts to best meet your business requirements.

- **Fixed Assets** - The Oracle Fixed Assets Analytics application provides finance controllers, asset managers, and cost center managers with a complete picture of the asset’s life cycle from acquisition through to retirement. Fixed assets comprise approximately 40 to 50% of the balance sheet and are a key component for both the commercial and public sector customers. Tracking asset life cycle value and measuring returns on some of the key assets are important to increase the overall return of the organization. The default configuration for the Oracle Fixed Assets Analytics application is based on what is identified as the most-common level of detail or granularity. However, you may configure and modify the extracts to best meet your business requirements.

- **General Ledger** - The General Ledger Analytics application has been designed to provide insight into key financial areas of performance, including balance sheet, cash flow, expenses, budget vs. actual, working capital, liquidity. Identify root cause of discrepancies for more timely, informed decisions at all levels of the organization. Gain access to reporting and analysis from intra-period financial information before books are closed. The default configuration for the Oracle General Ledger Analytics application is based on what is identified as the most-common level of detail or granularity. However, you may configure and modify the extracts to best meet your business requirements.

- **Payables** - The Oracle Payables Analytics application has been designed to provide an overview of the health of the payables side of the business and enables Finance to best manage its cash outflows and ensure timely payments to its suppliers. The need for analysis is increasingly important because suppliers are becoming strategic business partners with the focus on increased efficiency for just in time, and quality purchasing relationships. The default configuration for the Oracle Payables Analytics application is based on what is identified as the most-common level of detail, or granularity. However, you can configure or modify the extracts to best meet your business requirements.

- **Profitability** - The Oracle Profitability Analytics application has been designed to provide key data pertaining to profitability, including Profit and Loss Statements, Customer and Product profitability, Margin Analysis, ROA, and ROE. Insight into Revenue and Cost Drivers help drive financial accountability, and proactive behavior. The default configuration for the Oracle Profitability Analytics application is based on what is identified as the most-common level of detail or granularity. However, you may configure and modify the extracts to best meet your business requirements.

- **Receivables** - The Receivables Analytics application has been designed to provide key data pertaining to receivables, including receivables due, credit risk, payments, collector efficiency and enables Finance to best manage cash inflows and their ability to collect debt. Each day that your receivables are past the due date represents a significant, opportunity-cost to your company. Keeping a close eye on the trends, and clearing of AR is one way to assess the efficiency of your sales operations, the quality of your receivables, and the value of key customers.
The default configuration for the Oracle Receivables Analytics application is based on what is identified as the most-common level of detail or granularity. However, you may configure and modify the extracts to best meet your business requirements.

- **Subledger Accounting** - The Oracle Subledger Accounting Analytics provides visibility into enterprise-wide accounting information with a single, global accounting repository. It helps streamline period-end close reporting and improve reconciliation, meet diverse global accounting reporting requirements, trading partner reporting – account activity by Supplier and Customer and complete audit trail. The default configuration for the Oracle Subledger Accounting Analytics application is based on what is identified as the most-common level of detail or granularity. However, you may configure and modify the extracts to best meet your business requirements.

### B.3.33 Overview of Oracle Enterprise Asset Management

Oracle Enterprise Asset Management Analytics offers complete and enhanced visibility into enterprise-wide maintenance information. With a pre-built solution covering asset failure analysis, maintenance work orders, maintenance history, maintenance cost analysis, resource utilization, asset quality and meter readings, Oracle Enterprise Asset Management Analytics enables maintenance managers to maximize performance and identify opportunities for optimizing the asset availability. It also helps to identify potential issues in advance and address them before they turn into serious problems. Coupled with ability to drill down to detail level analysis for failure details, work order cost, asset maintenance, work order completion, work order backlog, and resource utilization Oracle Enterprise Asset Management Analytics provides the much needed visibility for every maintenance organization to improve performance and meet strategic objectives. The solution comes seamlessly integrated with other products of Oracle BI Applications such as Oracle Manufacturing Analytics, Supply Chain and Order Management Analytics, Financial Analytics and Procurement and Spend Analytics and supports cross functional analysis.

Oracle Enterprise Asset Management Analytics provides analytics support for the following content areas:

- **Maintenance Cost Analysis** - It provides information about the maintenance costs incurred across various asset groups. This helps in evaluating the maintenance cost variances. It also helps in analyzing maintenance costs at very granular level for example you can analyze by each of the cost components like material cost, labor cost and break down cost.

- **Work Order Analysis** - It provides all the required analytical information about the maintenance work orders. It also provides insightful information about backlog, past due backlog and on-time completion of percentage of the work orders there by helping in improving the operational efficiency of the maintenance organization.

- **Failure Analysis** - It provides information related to asset failures and time & cost incurred in attending to those failures. With industry standard metrics like mean time to repair (MTTR) and mean time between failure (MTBF) the information helps in assessing the overall failure history of the asset and the burden imposed on the organization due to those failures.

- **Resource Analysis** - It provides information about the maintenance resources used their utilization and efficiency details. It also assists the maintenance manager to effectively utilize available maintenance resources.
- **MRO Inventory** - It helps in analyzing the on-hand inventory details across maintenance organizations there by highlighting the organizational spend in maintaining inventory of spare Items. When combined with MRO inventory aging, MRO inventory analysis provides a complete 360 degree view of the total cost incurred by a maintenance organization.

- **Asset History** - It provides complete information about all the assets since their inception like asset cost, total maintenance cost incurred, number of years in service etc. The information helps a maintenance manager to decide whether to retire any existing asset or maintain the asset to keep it in service.

- **Asset Quality** - It provides the information about the quality test applied on an asset along with collection plan, collection elements, their results, and non-conformance and disposition status for an asset.
This is a reference section that contains Help topics for the User Interface dialogs for Functional Configuration in Oracle BI Applications Configuration Manager. The Help topics in this section are displayed when you click the Help icon on a dialog in Oracle BI Applications Configuration Manager.

This chapter contains the following topics:

- Section C.1, "Add Warehouse Domain Member/Add Target Domain Member button"
- Section C.2, "Add Warehouse Domain Member/Add Target Domain Member dialog"
- Section C.3, "Edit Domain Member Mappings dialog"
- Section C.4, "Edit Parameter Value dialog (for Data Load Parameters)"
- Section C.5, "Edit Parameter Value dialog (for Reporting Parameters)"
- Section C.6, "Export Data dialog"
- Section C.7, "Export Setup Data dialog"
- Section C.8, "Import Data dialog"
- Section C.9, "Import Setup Data dialog"
- Section C.10, "Manage Data Load Parameters dialog"
- Section C.11, "Manage Domain Mappings and Hierarchies: Domain Mappings tab"
- Section C.12, "Manage Externally Conformed Domains dialog"
- Section C.13, "Manage Source Domains: Source Domains tab"
- Section C.14, "Manage Warehouse Domains: Warehouse Domains tab"
- Section C.15, "Manage Domain Mappings and Hierarchies: Warehouse Domain Hierarchies tab"
- Section C.16, "Manage Group dialog"
- Section C.17, "Manage Reporting Parameters: Global/Application Specific tab"
- Section C.18, "Oracle BI Applications Configuration Manager Help System"
- Section C.19, "Overview Panel for Oracle BI Applications Configuration Manager"
C.1 Add Warehouse Domain Member/Add Target Domain Member button

Use the Add Warehouse Domain Member or Add Target Domain Member button to display the "Add Warehouse Domain Member/Add Target Domain Member dialog", which enables you to add a Domain member. For example, you might want to create a salary category called 'Range 5' so that you can map a range of values in the Source Instance to 'Range 5'.

Note: If this button is grayed out, then the selected Domain is non-extensible (for more information, see Section 4.4.7, "Why are some domains non-extensible?").

C.2 Add Warehouse Domain Member/Add Target Domain Member dialog

Use this dialog to create a new Domain member in Oracle Business Analytics Warehouse. For example, you might want to create a band category called 'Range 5' so that you can map a range of values in the Source Instance to the band category 'Range 5'.

<table>
<thead>
<tr>
<th>Element</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
<td>Use this field to specify a unique value that identifies the new Domain member. For example 'Range_5'.</td>
</tr>
<tr>
<td>Name</td>
<td>Use this field to specify a short name up to 255 characters long for the new Domain member. For example, 'Range_100,000_Plus'.</td>
</tr>
<tr>
<td>Description</td>
<td>(Optional) Use this field to provide additional information up to 2000 characters long about the Domain Member, to assist Functional Developers.</td>
</tr>
</tbody>
</table>

C.3 Edit Domain Member Mappings dialog

Use this dialog to map source domain members to target domain members. You can also use this dialog to change the default member mappings to meet your business requirements. For example, in a Country source domain, you might want 'AE United Arab Emirates' to map to the code value 'AE' in Oracle Business Analytics Warehouse.

For ranged (or banded) domains, you can use this dialog to edit and create ranges. For example, you might want to increase an existing performance range from 1 - 100 to 1 - 200. Or, you might want to create a new performance range called Performance_Range_6 and map values between 500 and 1000 to Performance_Range_6.

For more information about how to edit domain mappings and domain ranges, see Section 4.4.5, "About Setting Up Domain Member Mappings".

Tip: If you start to add a new Range Member Mapping then click Cancel, before you can cancel the dialog you must specify a value in every field. In other words, if you specify a value in the Range Start field and Range End field but not the Code field, an error message is displayed when you click Cancel. To cancel the dialog, you must first specify a value in every field before you click Cancel.
<table>
<thead>
<tr>
<th>Element</th>
<th>Description</th>
</tr>
</thead>
</table>
| Sync to Source                              | Use this option to synchronize the domain members in Oracle Business Analytics Warehouse with the domain members in the source system. This process automatically inserts target members from the source domain, and automatically generates 1:1 mappings for the currently selected domain. This option does not override existing member mappings.  
When you click Sync to Source, a Warning dialog is displayed that prompts you to either click OK to continue or click Cancel to stop the synchronization process. If you click OK to continue, then you commit changes to the target Domain members, even if you do not click 'Save' or click 'Save and Close'.  
This option becomes grayed out if you start to edit mappings (for example, if you select a value from the Code drop down list), until you click Save, or you click Cancel then relaunch the dialog.  
*Note:* This option is only available for extensible non-ranged target Domains (for more information, see Section 4.4.7, "Why are some domains non-extensible?").  
For more information about using Sync to Source, see Section 4.4.5.6, "How to use Sync to Source to synchronize a Target Domain with a Source Domain". |
| Batch Edit                                  | Use this field (and the accompanying Change button) to update multiple Target Domain Member Mappings with the same value.  
Select one or more member mappings in the Source Domain Member list, select a value from the Batch Edit drop down list, then click Change. All Target Domain Members will be updated with the value selected.  
For more information about using Batch Edit, see Section 4.4.5.7, "How to use Batch Edit to update multiple Target Domain Member Values". |
| Change                                      | Use this option to apply the value selected in the Batch Edit drop down list to all target domains members currently selected.  
*Note:* If you click Change erroneously, then click Cancel to 'undo' the changes and close the Edit Domain Member Mappings dialog. |
| Add Range Member Mapping (+ icon)           | Use this option to add a new Domain Member Mapping. Click the + icon to display a new row in the table, containing blank fields, which you use to specify the details of the new range.  
*Note:* This option is only available for Domains for which you can specify ranges. For example, a Performance Percentile domain in a HR application might have the ranges: 0 - 100 as Performance Range 1, and 101 - 200 as Performance Range 2.  
If this option is grayed out, then the target Domain is non-extensible (for more information, see Section 4.4.7, "Why are some domains non-extensible?").  
*Note:* If you start to add a new Range Member Mapping then click Cancel, before you can cancel the dialog you must specify a value in every field. In other words, if you specify a value in the Range Start field and Range End field but not the Code field, an error message is displayed when you click Cancel. To cancel the dialog, you must first specify a value in every field, then click Cancel again.  
If you want to assign a new range to a new category (for example, to Performance Range 3), then before you create the new range you must first use the Add Warehouse Member option to create the new category. |
**Edit Domain Member Mappings dialog**

<table>
<thead>
<tr>
<th>Element</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source Members</td>
<td><strong>Note:</strong> This option is only available for non-ranged Domain Member Mappings. Use this drop down list to change the type of domains displayed. Select 'Unmapped' to display only source domains that are not mapped to target domains. Select 'Mapped' to display only source domains that are mapped to target domains. The default value 'All' displays both mapped and unmapped domains. <strong>Note:</strong> If you selected a value in the Source Members field on the &quot;Manage Domain Mappings and Hierarchies: Domain Mappings tab&quot;, then that selection does not persist to this dialog. For example, if you selected Not Mapped in the Source Members field on the &quot;Manage Domain Mappings and Hierarchies: Domain Mappings tab&quot;, then by default this dialog displays both Mapped and Unmapped values.</td>
</tr>
<tr>
<td>Add Target Domain Member</td>
<td>Use this option to display the &quot;Add Warehouse Domain Member/Add Target Domain Member dialog&quot;, which enables you to create a new target mapping value. The &quot;Add Warehouse Domain Member/Add Target Domain Member dialog&quot; prompts you to specify a Code, Name, and Description (optional) for the new target mapping. For example, if you have a Performance Percentile domain in a HR application with the ranges: 0 - 100 as Performance Range 1, and 101 - 200 as Performance Range 2, then you might want to create a category (or Range) called Performance Range 3, to which you can map a new range. Or, you might want to create a new domain called Payment Method in a Financial application. If this option is grayed out, then the target Domain is non-extensible (for more information, see Section 4.4.7, &quot;Why are some domains non-extensible?&quot;).</td>
</tr>
<tr>
<td>Source Domain Member</td>
<td>The list of Source Domain Members for the Source Domain.</td>
</tr>
<tr>
<td>Target Domain Member</td>
<td>This column value displays the mapped Warehouse or Target member value for the Source Domain Member displayed in the Source Domain Member column. Use the lists in the Code column to change the target domain member to which the adjacent Source Domain Member value is mapped. For example, if you have used the Add Warehouse Member button to create a new target category (or Range) called ‘&gt; 2000’, you might want to select ‘&gt; 2000’ for the range that is specified with Range Start = 2000 and Range End =10,000.</td>
</tr>
<tr>
<td>Common Options</td>
<td>For information about using common options in Oracle BI Applications Configuration Manager, refer to the following:</td>
</tr>
<tr>
<td></td>
<td>- View - for information about this menu, see Section 2.8.2, &quot;About the Menu Options&quot;.</td>
</tr>
<tr>
<td></td>
<td>- Detach - for information about this option, see Section 2.8.3, &quot;About the Icons&quot;.</td>
</tr>
</tbody>
</table>

**Related Topics**

- Section 2.8.1, "About the Work Area"
- Section 2.8.2, "About the Menu Options"
- Section 2.8.3, "About the Icons"
- Section 4.4, "About Working With Domains and Domain Mappings"
C.4 Edit Parameter Value dialog (for Data Load Parameters)

Use this dialog to specify a value or set of values for the selected Data Load Parameter. For example, you might set the value of the global currency parameter GBL_CURRENCY to 'USD'.

The fields that are displayed on this dialog are different depending on the type of parameter being edited (for example, boolean, date, multi-value select list of values, number, single-value select list of values, string).

This dialog uses the following selection field types:

- **Boolean**
  - Use the list to select either Yes or No.

- **Date**
  - Use the field to type a date in the format MM/DD/YYYY, or use the Date Picker to select a date.

- **Table for Single Values**
  - Use the table to select a single value, then click Save and Close to complete the selection.
  - If the table is empty, click Retrieve Source Values first to populate the table.

- **Multi-value Select List of Values**
  - Move the items that you want to select from the Available Values list to the Selected Values list. Use Ctrl + click to select multiple non-contiguous values. Use Shift + click to select multiple contiguous values.
  - Click Retrieve Source Values to refresh the Available Values. For example, if you have access to more than one data source, you might use the Source Instance field to select a different data source, then you might click Retrieve Source Values to populate the Available Values list.
- **Number**
  
  Use the field to type a number, or use the spinner controls to increase or decrease the number.

- **Single-value Select List of Values**
  
  Click a value in the list, click Select, then click Save and Close. **Note:** If you do not click Select before first clicking Save and Close, the changes are not saved.
Edit Parameter Value dialog (for Reporting Parameters)

C.5 Edit Parameter Value dialog (for Reporting Parameters)

Use this dialog to specify a value or set of values for the selected Reporting Parameter. The fields that are displayed on this dialog are different depending on the type of parameter being edited (for example, boolean, date, multi-value select list of values, number, single-value select list of values, string).

This dialog uses the following selection field types:

- **Boolean**
  
  Use the list to select either Yes or No.

- **Date**

**Related Topics**

Section 2.8.1, "About the Work Area"

Section 2.8.2, "About the Menu Options"

Section 2.8.3, "About the Icons"
Use the field to type a date in the format MM/DD/YYYY, or use the Date Picker to select a date.

- **Table for Single Values**
  
  Use the table to select a single value, then click Save and Close to complete the selection.

  If the table is empty, click Retrieve Source Values first to populate the table.

- **Multi-value Select List of Values**
  
  Move the items that you want to select from the *Available Values* list to the *Selected Values* list. Use Ctrl + click to select multiple non-contiguous values. Use Shift + click to select multiple contiguous values.

  Click Retrieve Source Values to refresh the *Available Values*. For example, if you have access to more than one data source, you might use the *Datasourcename* field to select a different data source, then you might click Retrieve Source Values to populate the *Available Values* list.

- **Number**
  
  Use the field to type a number, or use the spinner controls to increase or decrease the number.

- **Single-value Select List of Values**
  
  Click a value in the list, click Select, then click Save and Close. **Note:** If you do not click Select before first clicking Save and Close, the changes are not saved.

- **String**
  
  Use the field to type a value.

**Related Topics**

*Section 2.8.1, "About the Work Area"

*Section 2.8.2, "About the Menu Options"

*Section 2.8.3, "About the Icons"

**C.6 Export Data dialog**

Use this dialog to specify the objects that you want to export. For example, you might want to export only changes to Data Load Parameters.
Export Setup Data dialog

C.7 Export Setup Data dialog

Use this dialog to view details of previous exports of setup data, and to export your setup data to a ZIP file for data migration. For example, you might want to view recent exports, or migrate your setup data from a test environment to a production environment.

Note: When you export setup data, Oracle BI Applications Configuration Manager does not record the location of ZIP files that are created. In other words, you need to manually keep a note of ZIP file locations for each export.

<table>
<thead>
<tr>
<th>Element</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Export File Name</td>
<td>Use this field to specify a name for the export (for example, June_1_setup_data). This name is displayed in the &lt;Export List&gt; on the Export Setup Data dialog, and is used as the default ZIP file name that is generated by Oracle BI Applications Configuration Manager. Alternatively, you can also use the default export file name that is displayed. The name that you specify in this field can be different to the ZIP file name that you specify when the export is complete. For example, you might specify 'ExportSetupData' in this field, but when the export is complete and you are prompted to specify a file name you might change the file name to ExportSetupData_2010-05-14.zip. <strong>Note</strong>: Do not specify a ZIP file extension or a file location in this field. A ZIP file extension is appended automatically during the export. You are prompted for a file location later if you choose to save the ZIP that is generated.</td>
</tr>
<tr>
<td>Setup Objects to Export</td>
<td>Use these check boxes to specify the objects that you want to export. For more information about what data is exported, see Section 4.13.1, &quot;What Data is Exported?&quot;.</td>
</tr>
<tr>
<td>Export Data</td>
<td>Use this button to display the &quot;Export Data dialog&quot;, which enables you to export the setup data from the current environment to a ZIP file.</td>
</tr>
<tr>
<td>&lt;Export List&gt;</td>
<td>Use this list to view and manage previous exports. Use the Status column to make sure that an export was a Success. If the Status column reports an Error, repeat the export process and make sure that you specify a name only in the Export File Name field. Do not specify a ZIP extension or a file location.</td>
</tr>
</tbody>
</table>
C.8 Import Data dialog

Use this dialog to specify the name and location of the ZIP file that you want to import. For example, if you have previously exported data to a file called 'C:\temp\ExportSetupData_2010-02-01 07:43:15.0.ZIP', use this dialog to specify 'C:\temp\ExportSetupData_2010-02-01 07:43:15.0.ZIP'.

<table>
<thead>
<tr>
<th>Element</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Import File Location</td>
<td>Use this field to specify the name and location of the ZIP file to import. Type in a file location and file name or use the Browse button to locate and select a file using the Choose File dialog.</td>
</tr>
<tr>
<td>OK</td>
<td>Use this button to import the specified file. When the import is complete, use the &lt;Import List&gt; on the Import Setup Data dialog to monitor the progress.</td>
</tr>
</tbody>
</table>

Related Topics
Section 4.13, "About Exporting and Importing Setup Data for Oracle BI Applications Configuration Manager"
Section 4.13.1, "What Data is Exported?"

C.9 Import Setup Data dialog

Use this dialog to view details of previous imports of setup data, and to import setup data from a ZIP file. For example, you might want to view recent imports, or migrate your Setup Data from a test environment to a production environment.

<table>
<thead>
<tr>
<th>Element</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Import Data</td>
<td>Use this button to display the &quot;Import Data dialog&quot;, which enables you to import setup data from a ZIP file located on a local or network drive.</td>
</tr>
<tr>
<td>&lt;Import List&gt;</td>
<td>Use this list to view and manage previous imports.</td>
</tr>
<tr>
<td>Import Details</td>
<td>Use this pane to view the Setup Objects, Status, Table Name, and Import Start Date of the currently selected import in the &lt;Import List&gt; above.</td>
</tr>
</tbody>
</table>

Related Topics
Section 4.13, "About Exporting and Importing Setup Data for Oracle BI Applications Configuration Manager"
Section 4.13.2, "What Data is Imported?"
C.10 Manage Data Load Parameters dialog

Use this dialog to verify that Data Load Parameter values have been set correctly, and edit values where necessary. For example, you might want to change a Global Currency Code value from USD to EUR.

The Data Load Parameters pane (or master table) displays parameters and values, and the Group Specific Parameter Values for pane displays associated Fact Groups or Dimension Groups (if there are any) and their values. You can specify different values for associated Fact Groups and Dimension Groups, except for Non-Overridable Application Specific parameters (for more information, see Section 4.5.1, "Key points about working with Data Load Parameters").

Tip: Use the Restore Pane arrow in the bottom right-hand corner of the dialog to display parameter details in the Context Pane (for more information, see Section 2.8.1, "About the Work Area").

Note: For information about the icons used on this dialog, see Section C.10.1, "Icons on the Data Load Parameters dialog".
<table>
<thead>
<tr>
<th>Element</th>
<th>Description</th>
</tr>
</thead>
</table>
| Data Load Parameters        | Use this list to navigate and edit Data Load Parameters. Options:  
- **<Edit icon>** Use this option to display the “Edit Parameter Value dialog (for Data Load Parameters)”, which enables you to update the currently selected Global parameter.  
  
  **Note:** The Edit icon is grayed out for Application Specific parameters. You edit Application Specific parameters values in the Group Specific Parameter Values for pane.  
  
  If you click Edit for an parameter that is associated with specific Fact Groups and Dimension Groups, then a Warning dialog displays a list of groups that will be affected if you specify a value.  
  
  You can also edit a Global parameter value by clicking on the value in the Global Parameter Value column.  
  
  Columns:  
- **Instance** displays the instance to which the parameter is applicable (for example, 'Fusion Applications' for a source instance, and 'BI Applications Data-Warehouse' for a target instance).  
- **Parameter Name** is the human-readable parameter name. For a description of icons used in this column, see Section C.10.1, "Icons on the Data Load Parameters dialog".  
- **Parameter Code** is the underlying parameter identifier.  
- **Global Parameter Value** displays one of the following:  
  
  For Global parameters, the parameter value is displayed. If the parameter is associated with Fact Groups or Dimension Groups (as displayed in the Group Specific Parameter Values for pane), then the Global value can be overridden at the Fact Groups or Dimension Group level.  
  
  For Application Specific parameters, the text 'Group Specific’ is displayed. Use the Group Specific Parameter Values for pane to edit the values for associated Fact Groups and Dimension Groups.  
- **Description** contains additional information about the parameter.  
- **Last Updated By** displays the login details used to last update the value.  

---

C-12  Oracle Business Intelligence Applications Configuration Guide
### Element Description

<table>
<thead>
<tr>
<th>Element</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group Specific Parameter Values for:</td>
<td>Use this list to view and edit parameter values for associated Fact Groups and Dimension Groups. The parameter values specified in this pane are specific to a Fact Group or Dimension Group. For example, you might specify the Time Grain as MONTH for the Order Fulfilment Fact Group, and the Time Grain as WEEK for the Purchase Cycle Fact Group. <strong>Note:</strong> Global Parameters that are not associated with any Fact Groups or Dimension Groups do not show any records in this table.</td>
</tr>
<tr>
<td>Options:</td>
<td></td>
</tr>
<tr>
<td>- &lt;Edit icon&gt;</td>
<td>Use this option to display the &quot;Edit Parameter Value dialog (for Data Load Parameters)&quot;, which enables you to update the parameter value for the currently selected Fact Group or Dimension Group. If you edit a Non-Overridable Application Specific Parameter, then a Warning dialog is displayed showing a list of Dimension Groups and Fact Groups that will be affected if you change the value.</td>
</tr>
<tr>
<td>- <strong>Edit All</strong></td>
<td>Use this option to display the &quot;Edit Parameter Value dialog (for Data Load Parameters)&quot;, which enables you to update the parameter value for all associated Fact Groups and Dimension Groups in the <strong>Group Specific Parameter Values for</strong> list. For Global parameters, using this option does not override the Global parameter value (that is, as displayed in the Data Load Parameters pane).</td>
</tr>
<tr>
<td>Columns:</td>
<td></td>
</tr>
<tr>
<td>- <strong>Group</strong></td>
<td>displays the Fact Group or Dimension Group to which the parameter is applicable (for example, Refresh Period applies to the Fact Group named Inventory Transactions).</td>
</tr>
<tr>
<td>- <strong>Parameter Name</strong></td>
<td>is the human-readable parameter name, which is taken from the parent Data Load Parameter name. For a description of icons used in this column, see Section C.10.1, &quot;Icons on the Data Load Parameters dialog&quot;.</td>
</tr>
<tr>
<td>- <strong>Parameter Value</strong></td>
<td>is the parameter value for that Fact Group or Dimension Group. To edit the value, click the value. If a value has not been specified, click &lt;Edit Value&gt; to specify the value. If you edit a Non-Overridable Application Specific Parameter, a Warning dialog is displayed showing a list of Dimension Groups and Fact Groups that will be affected if you change the value.</td>
</tr>
<tr>
<td>- <strong>Last Updated By</strong></td>
<td>displays the login details used to last update the value.</td>
</tr>
<tr>
<td>Search (Only displayed when this dialog is invoked directly from Oracle BI Applications Configuration Manager. Search is not available when this dialog is invoked from FSM.)</td>
<td>For User Assistance on the Search pane, see Section C.20, &quot;Search pane&quot;.</td>
</tr>
</tbody>
</table>
C.10.1 Icons on the Data Load Parameters dialog

The Manage Data Load Parameter dialog uses the following icons:

<table>
<thead>
<tr>
<th>Icon or Menu Option</th>
<th>Description</th>
</tr>
</thead>
</table>
| ![Image] | Application Specific Parameter or Non-Overridable Parameter  
If displayed in the Data Load Parameters pane (or top list), then this icon indicates an Application Specific parameter.  
If displayed in the Group Specific Parameter Values For pane (or lower list), then this icon indicates a Non-Overridable Application Specific parameter, which means that each associated Fact Group or Dimension Group must have the same value. In other words, if you change the value for one Fact Group or Dimension Group, then all Fact Groups and Dimension Groups are updated with that value (if you first confirm at a Warning dialog).  
For more information, see Section 4.5.1, "Key points about working with Data Load Parameters". |
| ![Image] | Dimension Group  
This icon indicates that a Group Specific Parameter applies to a Dimension Group. For more information, see Section 4.5.1, "Key points about working with Data Load Parameters". |
| ![Image] | Fact Group  
This icon indicates that a Group Specific Parameter applies to a Fact Group. For more information, see Section 4.5.1, "Key points about working with Data Load Parameters". |
C.11 Manage Domain Mappings and Hierarchies: Domain Mappings tab

Use this tab to verify that data is mapped correctly from the Source Instance to Oracle Business Analytics Warehouse, and edit the domain member mappings if required. For example, in a HR application you might want to check that the EMPLOYEE_SEX code in the Source Instance maps to W_EMPLOYEE_SEX_MF in the target system. Or, you might want to change the Range Start and Range End values for a category (or Range) mapping.

Note: When you first display this tab, the Domain mappings list is empty. Use the Search pane to specify the BI Application Module that you want to look at.

For more information about Domain Mappings, see Section 4.4.1, "About Domain Mappings and Domain Member Mappings".

Table C–1  (Cont.) Icons on the Data Load Parameters dialog

<table>
<thead>
<tr>
<th>Icon or Menu Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><img src="image" alt="Global Parameter" /></td>
<td>This icon indicates that the parameter is global (that is, it applies to all (or a majority of) ETL tasks). For more information Global Data Load Parameters, see Section 4.5.1, &quot;Key points about working with Data Load Parameters&quot;.</td>
</tr>
<tr>
<td><img src="image" alt="Read Only Parameter" /></td>
<td>The Lock icon indicates that you cannot edit the parameter value. For example, the value might be read-only, or the value might be set in a different part of the application.</td>
</tr>
<tr>
<td><img src="image" alt="Overrideable Parameter" /></td>
<td>This icon indicates an overridable Application Specific parameter, which means that each associated Fact Group or Dimension Group can have a different value if required. For more information, see Section 4.5.1, &quot;Key points about working with Data Load Parameters&quot;.</td>
</tr>
<tr>
<td><img src="image" alt="Set Before A Full Load" /></td>
<td>The Alert icon indicates that you must set the value of a Data Load Parameter before you perform a Full Data Load. If you change this value after you have performed a Full Data Load, then you must perform a new Full Data Load.</td>
</tr>
<tr>
<td><img src="image" alt="Parameter Category" /></td>
<td>This icon denotes a grouping of related parameters, for example, the Configure Time Dimension category is a group of parameters that is related to calendars. To expand a Parameter Category, click Expand: <img src="image" alt="Expand" /> To collapse a Parameter Category, click Collapse: <img src="image" alt="Collapse" /></td>
</tr>
<tr>
<td>Element</td>
<td>Description</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>Domain Mappings</td>
<td>Use this list to navigate and view the Domain Mappings. If this list is empty, use the Search pane to specify the functional area (that is BI Application Modules, Dimensions or Fact Groups) that you want to configure. The domains in the Source Domain list at the left hand side map to the adjacent domains in the Target Domain list at the right hand side. When you select a domain in the Domain Mappings list, domain members are displayed in the Domain Member Mappings list below.</td>
</tr>
<tr>
<td>Domain Member Mappings</td>
<td>Use this list to view and edit the Domain Member Mappings for the domain map that is currently selected in the Domain Mappings list.</td>
</tr>
<tr>
<td></td>
<td>■ Edit Domain Member Mappings (Edit icon) - Use this option to display the &quot;Edit Domain Member Mappings dialog&quot;, which enables you to edit the member mappings.</td>
</tr>
<tr>
<td></td>
<td>Note: If the Edit Domain Member Mappings icon (Edit icon) is grayed out, then the Domain is non-extensible (for more information, see Section 4.4.7, &quot;Why are some domains non-extensible?&quot;).</td>
</tr>
<tr>
<td>Search</td>
<td>For User Assistance on the Search pane, see Section C.20, &quot;Search pane&quot;.</td>
</tr>
<tr>
<td></td>
<td><strong>Note:</strong> If only one Source System is defined, then when you select a value in the Source Instance drop down list the other search fields are not populated by default with 'All'. You must select values in the other search fields before clicking Search.</td>
</tr>
<tr>
<td>Common Options</td>
<td>For information about using common options in Oracle BI Applications Configuration Manager, refer to the following:</td>
</tr>
<tr>
<td></td>
<td>■ Actions - for information about this menu, see Section 2.8.2, &quot;About the Menu Options&quot;.</td>
</tr>
<tr>
<td></td>
<td>■ View - for information about this menu, see Section 2.8.2, &quot;About the Menu Options&quot;.</td>
</tr>
<tr>
<td></td>
<td>■ Query By Example - for information about this option, see Section 2.8.3, &quot;About the Icons&quot;.</td>
</tr>
<tr>
<td></td>
<td>■ Detach - for information about this option, see Section 2.8.2, &quot;About the Menu Options&quot;.</td>
</tr>
</tbody>
</table>

**Related Topics**

Section 2.8.1, "About the Work Area"

Section 4.4.1, "About Domain Mappings and Domain Member Mappings"

Section 4.4.5, "About Setting Up Domain Member Mappings"

Section 4.4.6, "How to modify a Warehouse Domain Hierarchy"

Section 4.4.7, "Why are some domains non-extensible?"
C.12 Manage Externally Conformed Domains dialog

Use this dialog to manage and create conformed domains in Oracle Business Analytics Warehouse that are based on definitions in a source system. For example, you might set up a conformed domain that is sourced from a pre-defined master product-line (typically Fusion) source domain. Or, you might set up an external source domain that is defined at your deployment site.

Note: When you first display this dialog, the Domain list is empty. Use the Product Line drop down to specify a source system and display domains for that source system.

<table>
<thead>
<tr>
<th>Element</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product Line</td>
<td>Use this option to specify a source system and display domains for that source system. For example, select 'Oracle E-Business Suite' to display domains for that source system.</td>
</tr>
<tr>
<td>List of Domains</td>
<td>This list displays Domains that are available for the source system specified in the Product Line field.</td>
</tr>
<tr>
<td>Delete Domain Configuration</td>
<td>Use this option to delete the configuration for the Domain that is currently selected in the list. This option is only valid for Domains that have been configured, and are displayed with a Green tick in the Configured field.</td>
</tr>
<tr>
<td>Configure Domain</td>
<td>Use this option to start the wizard that enables you to configure the Domain that is currently selected in the list. This option is only valid for unconfigured Domains that are not displayed with a Green tick in the Configured field. If you want to re-configure a Domain, you must first click Delete Domain Configuration, then click Configure Domain. The wizard displays the following pages: Select Conformed Data Source. Select Data Source(s) to Auto-generate Maps. Show Summary.</td>
</tr>
</tbody>
</table>

Related Topics

Section 2.8.1, "About the Work Area"

C.13 Manage Source Domains: Source Domains tab

Use this read-only tab to view the domains and domain members in the Source Instance. For example, you might want to verify that the CURRENCY domain has the correct domain members (e.g. EUR for Euro, USD for US Dollar).

Note: This tab is only displayed in Oracle BI Applications Configuration Manager. It is not displayed in FSM.

For more information about Domains, see Section 4.4, "About Working With Domains and Domain Mappings".

<table>
<thead>
<tr>
<th>Element</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source Domains</td>
<td>Use this read-only list to navigate the Source Domains.</td>
</tr>
<tr>
<td>Domain Members</td>
<td>Use this list to view the members for the currently selected domain.</td>
</tr>
</tbody>
</table>
Manage Warehouse Domains: Warehouse Domains tab

<table>
<thead>
<tr>
<th>Element</th>
<th>Description</th>
</tr>
</thead>
</table>
| Search (Only displayed when this dialog is invoked directly from Oracle BI Applications Configuration Manager. Search is not available when this dialog is invoked from FSM.) | For User Assistance on the Search pane, see Section C.20, "Search pane".

**Note:** If only one Source System is defined, then when you select a value in the Source Instance drop down list the other search fields are not populated by default with 'All'. You must select values in the other search fields before clicking Search. |

<table>
<thead>
<tr>
<th>Common Options</th>
<th>For information about using common options in Oracle BI Applications Configuration Manager, refer to the following:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actions - for information about this menu, see Section 2.8.2, &quot;About the Menu Options&quot;.</td>
<td></td>
</tr>
<tr>
<td>View - for information about this menu, see Section 2.8.2, &quot;About the Menu Options&quot;.</td>
<td></td>
</tr>
<tr>
<td>Query By Example - for information about this option, see Section 2.8.3, &quot;About the Icons&quot;.</td>
<td></td>
</tr>
<tr>
<td>Detach - for information about this option, see Section 2.8.2, &quot;About the Menu Options&quot;.</td>
<td></td>
</tr>
</tbody>
</table>

**Related Topics**
Section 2.8.1, "About the Work Area"
Section 4.4.2, "About Source Domains"
Section 4.4.5, "About Setting Up Domain Member Mappings"
Section 4.4.6, "How to modify a Warehouse Domain Hierarchy"
Section 4.4.7, "Why are some domains non-extensible?"

**C.14 Manage Warehouse Domains: Warehouse Domains tab**

Use this tab to verify that the domains and domain members in the target system have been set correctly, and also to edit the name and description for domain members. For example, you might want to change the Name and Description for the Application transaction type for AP Transaction Type (W_AP_XACT_TYPE).

**Note:** This tab is only displayed in Oracle BI Applications Configuration Manager. It is not displayed in FSM.

For more information about Domains, see Section 4.4, "About Working With Domains and Domain Mappings".

<table>
<thead>
<tr>
<th>Element</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Warehouse Domains</td>
<td>Use this list to navigate the Warehouse domains.</td>
</tr>
<tr>
<td>Warehouse Members</td>
<td>Use this list to view and edit the members for the currently selected domain.</td>
</tr>
</tbody>
</table>
### C.15 Manage Domain Mappings and Hierarchies: Warehouse Domain Hierarchies tab

Use this tab to check that the domain hierarchies have been set up correctly in Oracle Business Analytics Warehouse. You can also change how domain values are mapped from the source system to Oracle Business Analytics Warehouse.

For more information about Warehouse Domain Hierarchies, see Section 4.12, "Viewing Domain Hierarchies".

<table>
<thead>
<tr>
<th>Element</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Add Warehouse Domain Member</td>
<td>Use this option to display the &quot;Add Warehouse Domain Member/Add Target Domain Member dialog&quot;, which enables you to create a new warehouse member. The &quot;Add Warehouse Domain Member/Add Target Domain Member dialog&quot; prompts you to specify a Code, Name, and Description (optional) for the new warehouse member. For example, if you have a Performance Percentile domain in a HR application with the ranges: 0 - 100 as Performance Range 1, and 101 - 200 as Performance Range 2, then you might want to create a category called Performance Range 3, to which you can map a new range. Or, you might want to create a new target domain called Payment Method in a Financial application. If this option is grayed out, then the domain is non-extensible (for more information, see Section 4.4.7, &quot;Why are some domains non-extensible?&quot;).</td>
</tr>
<tr>
<td>Search (Only displayed when this dialog is invoked directly from Oracle BI Applications Configuration Manager. Search is not available when this dialog is invoked from FSM.)</td>
<td>For User Assistance on the Search pane, see Section C.20, &quot;Search pane&quot;.</td>
</tr>
<tr>
<td>Common Options</td>
<td>For information about using common options in Oracle BI Applications Configuration Manager, refer to the following:</td>
</tr>
<tr>
<td></td>
<td>■ Actions - for information about this menu, see Section 2.8.2, &quot;About the Menu Options&quot;.</td>
</tr>
<tr>
<td></td>
<td>■ View - for information about this menu, see Section 2.8.2, &quot;About the Menu Options&quot;.</td>
</tr>
<tr>
<td></td>
<td>■ Query By Example - for information about this option, see Section 2.8.3, &quot;About the Icons&quot;.</td>
</tr>
<tr>
<td></td>
<td>■ Detach - for information about this option, see Section 2.8.2, &quot;About the Menu Options&quot;.</td>
</tr>
</tbody>
</table>

**Related Topics**

Section 2.8.1, "About the Work Area"

Section 4.4.3, "About Warehouse Domains"

Section 4.4.5, "About Setting Up Domain Member Mappings"

Section 4.4.6, "How to modify a Warehouse Domain Hierarchy"

Section 4.4.7, "Why are some domains non-extensible?"
Note: Domain Hierarchies are displayed in inverted format, that is in the following format:

<Child 1>\n
<Child n>\n
<Parent>.

For more information, see Section 4.12, "Viewing Domain Hierarchies".

<table>
<thead>
<tr>
<th>Element</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domain Mappings</td>
<td>Use this list to navigate the domain hierarchies in Oracle Business Analytics Warehouse. For example, in a Financials target warehouse, the Group Account domain _W.GL_GROUP_ACCOUNT is the parent domain to Financials Statement Item _W_FIN_STMT.</td>
</tr>
<tr>
<td></td>
<td>See Note above for more information about the tree format.</td>
</tr>
<tr>
<td>Domain Member Mappings</td>
<td>Use this list to view and edit the members for the domain that is currently selected in the Domain Mappings list above.</td>
</tr>
<tr>
<td></td>
<td>Use the Source Members drop down list to change the type of domains displayed. For example, select 'Unmapped' to locate source domains that are not mapped to target domains. Select 'Mapped' to display only source domains that are mapped to target domains. The default value 'All' displays both mapped and unmapped domains.</td>
</tr>
<tr>
<td></td>
<td>Edit Domain Member Mappings (Edit icon) - Use this option to display the &quot;Edit Domain Member Mappings dialog&quot;, which enables you to edit the values in this list. If a domain has been defined as extensible, then you can also create ranges and categories (or Ranges).</td>
</tr>
<tr>
<td></td>
<td>Note: If the Edit Domain Member Mappings icon is grayed out, then the Domain is non-extensible (for more information, see Section 4.4.7, &quot;Why are some domains non-extensible?&quot;).</td>
</tr>
<tr>
<td></td>
<td>For more information about how to create ranges and Ranges, see Section 4.4.5, &quot;About Setting Up Domain Member Mappings&quot;.</td>
</tr>
<tr>
<td>View menu</td>
<td>Use the View menu options as follows:</td>
</tr>
<tr>
<td></td>
<td>Expand - use this option to expand the currently selected node.</td>
</tr>
<tr>
<td></td>
<td>Expand All Below - use this option to expand all levels below the currently selected node.</td>
</tr>
<tr>
<td></td>
<td>Expand All Above - use this option to expand all levels above the currently selected node.</td>
</tr>
<tr>
<td></td>
<td>Expand All - use this option to expand all nodes at all levels.</td>
</tr>
<tr>
<td></td>
<td>Collapse All - use this option to collapse all nodes at all levels.</td>
</tr>
<tr>
<td></td>
<td>Show as Top (child nodes only) - use this option to display the currently selected tree branch and hide the other tree branches.</td>
</tr>
<tr>
<td></td>
<td>Go Up - display the next level of parent nodes.</td>
</tr>
<tr>
<td></td>
<td>Go to Top - use this option to display the top level of parent nodes.</td>
</tr>
</tbody>
</table>
Manage Reporting Parameters: Global/Application Specific tab

<table>
<thead>
<tr>
<th>Element</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Search (Only displayed when this dialog is invoked directly from Oracle BI Applications Configuration Manager. Search is not available when this dialog is invoked from FSM.)</td>
<td>For User Assistance on the Search pane, see Section C.20, &quot;Search pane&quot;.</td>
</tr>
<tr>
<td>Common Options</td>
<td>For information about using common options in Oracle BI Applications Configuration Manager, refer to the following:</td>
</tr>
<tr>
<td></td>
<td>- Actions - for information about this menu, see Section 2.8.2, &quot;About the Menu Options&quot;.</td>
</tr>
<tr>
<td></td>
<td>- Query By Example - for information about this option, see Section 2.8.3, &quot;About the Icons&quot;.</td>
</tr>
<tr>
<td></td>
<td>- Detach - for information about this option, see Section 2.8.2, &quot;About the Menu Options&quot;.</td>
</tr>
</tbody>
</table>

Related Topics

Section 2.8.1, "About the Work Area"
Section 4.4.4, "About Warehouse Domain Hierarchies"
Section 4.4.5, "About Setting Up Domain Member Mappings"
Section 4.4.6, "How to modify a Warehouse Domain Hierarchy"
Section 4.4.7, "Why are some domains non-extensible?"

C.16 Manage Group dialog

Use this dialog to override a Data Load Parameter value for multiple Fact Groups or Dimension Groups at the same time. For example, you might want to override the value of Initial Extract Date for every Fact Group and Dimension Group that you are loading.

<table>
<thead>
<tr>
<th>Element</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select Group</td>
<td>This list displays groups that are related to the selected Data Load Parameter. Move the groups that you want to override from the Select Group list to the Selected Group list. Use Ctrl + click to select multiple non-contiguous values. Use Shift + click to select multiple contiguous values.</td>
</tr>
<tr>
<td>Selected Group</td>
<td>This list displays groups that have been selected for overriding.</td>
</tr>
</tbody>
</table>

C.17 Manage Reporting Parameters: Global/Application Specific tab

Use this tab to verify that Reporting Parameters have been set correctly, and edit values where necessary.

For more information about Reporting Parameters, see Section 4.6, "About Working With Reporting Parameters".

Tip: Use the Restore Pane arrow in the bottom right-hand corner of the dialog to display parameter details in the Context Pane (for more information, see Section 2.8.1, "About the Work Area").
Welcome to the Help System for Oracle BI Applications Configuration Manager.

Note: If you cannot see the Tasks panel at the left hand side, click the Restore Pane (right arrow) at the left hand side of the work area. For more information about collapsing and expanding panes in the work area, see Section 2.8.1, “About the Work Area”.

Use the Tasks panel at the left hand side as follows:

**Table C–2  Options on the Tasks panel in Oracle BI Applications Configuration Manager**

<table>
<thead>
<tr>
<th>Tasks pane categories</th>
<th>Use to</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overview</td>
<td>Use the <strong>Overview</strong> link to display or return to the main Overview panel, which enables you to monitor deployed Offerings, parameters, domains, and the status of Load Plan executions. For example, you might use the Generation Status of a Load Plan to find out whether an ETL process is complete.</td>
</tr>
<tr>
<td>System Setups</td>
<td>Set up the Oracle BI Applications environment. For example, you might specify a Source Instance, or specify Oracle Business Analytics Warehouse.</td>
</tr>
</tbody>
</table>
### Table C–2  (Cont.) Options on the Tasks panel in Oracle BI Applications Configuration

<table>
<thead>
<tr>
<th>Tasks pane categories</th>
<th>Use to</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Functional Configurations</strong></td>
<td>Functionally configure the installed Offerings using FSM. Select the Perform Functional Configurations link to start FSM. For example, you might start FSM in order to configure the ETL settings for Oracle Financial Analytics.</td>
</tr>
<tr>
<td><strong>Domains Administration</strong></td>
<td>Monitor and make changes to Domains. For example, you might check for un-mapped domain values, or add domain values to Oracle Business Analytics Warehouse.</td>
</tr>
<tr>
<td><strong>Data Load Parameters Administration</strong></td>
<td>Monitor and make changes to Data Load Parameters or Reporting Parameters. For example, you might monitor Data Load Parameter values that have been set by Functional Developers using FSM.</td>
</tr>
<tr>
<td><strong>Load Plans Administration</strong></td>
<td>Create and manage Load Plans to perform ETL. For example, you might create a Load Plan to load data for Oracle Financial Analytics.</td>
</tr>
<tr>
<td><strong>Setup Data Export and Import</strong></td>
<td>Migrate Setup Data to a separate environment or make a copy of Setup Data for back-up. For example, you might migrate Setup Data from a test environment to a production environment.</td>
</tr>
<tr>
<td><strong>Preferences</strong></td>
<td>Change the localization and accessibility settings for Oracle BI Applications Configuration Manager. For example, you might change the date format or time format in which values are displayed.</td>
</tr>
<tr>
<td><strong>Getting Started</strong></td>
<td>Display Roadmaps that explain how to configure Oracle BI Applications using Oracle BI Applications Configuration Manager and FSM.</td>
</tr>
</tbody>
</table>

For general information, see:

- Chapter 2, "Overview of Functional Configuration in Oracle BI Applications"
- Section 2.2.1, "What is Oracle BI Applications Configuration Manager?"  
- Section 2.5, "About the Main Task Areas in Oracle BI Applications Configuration Manager"

For roadmap information, see:

- For a Functional Configuration Roadmap, see Section 3.2, "Roadmap for Functional Configuration".
- For a Setup Data Maintenance and Administration Roadmap, see Section 4.2, "Roadmap for Setup Data Maintenance and Administration".

**Related Topics**

For information about getting started with Oracle BI Applications Configuration Manager:

- Section 2.3, "Getting Started With Oracle BI Applications Configuration Manager"
- Section 2.8, "About the Work Area in Oracle BI Applications Configuration Manager"
- Section 2.9, "About Accessibility Features In Oracle BI Applications Configuration Manager"

For information about using Oracle BI Applications Configuration Manager:

- Section 3, "Performing Functional Configuration"
C.19 Overview Panel for Oracle BI Applications Configuration Manager

The Overview panel provides an interactive summary of configuration activities, as follows:

<table>
<thead>
<tr>
<th>Area</th>
<th>Use to</th>
</tr>
</thead>
<tbody>
<tr>
<td>System Setups</td>
<td>Review the applications and source systems that have been deployed.</td>
</tr>
<tr>
<td>Parameters of Offerings</td>
<td>Analyze the number of parameters and the number of parameters with no value, for the deployed Offerings.</td>
</tr>
<tr>
<td>Load Plan Executions</td>
<td>Monitor the status of load plans.</td>
</tr>
<tr>
<td>Domain Mappings of Offerings</td>
<td>Analyze the number of domains and the number of domains in the source system that are not mapped to domains in the target data warehouse.</td>
</tr>
</tbody>
</table>

Related Topics
For information about getting started with Oracle BI Applications Configuration Manager:

Section 2.3, "Getting Started With Oracle BI Applications Configuration Manager"
Section 2.8, "About the Work Area in Oracle BI Applications Configuration Manager"
Section 2.9, "About Accessibility Features In Oracle BI Applications Configuration Manager"

C.20 Search pane

The Search pane is used to locate setup data for specific functional areas. For example, you might want to locate Domains and Mappings for the Financial Analytics application only. Or, you might want to locate Data Load Parameters with codes that include 'GLOBAL'.

Use the Search fields to specify search values, then click Search to locate matching Setup Data.

Note: The Manage Data Load Parameters dialog displays all values by default. Use the Search pane to restrict the list to parameters that match specified search values. The Manage domains and Mappings tabs display no values by default. Use the Search pane to locate parameters that match specified search values.

Note: If you use the Dimension or Fact Group field to specify a Dimension or Fact Group, then you will only return domains and mappings that are explicitly associated with the specified dimension or fact group. That is, if the fact table within the Fact Group or Dimension Group contains the Mapping. If you cannot locate a domain or mapping by specifying a Dimension Group or Fact Group, then use the 'All' option to display all domains and mappings. For example, if you use the Dimension or Fact Group field to select 'Purchase Orders', then no domains or mappings will be returned by the search. If you select 'All' in the Dimension or Fact Group list, then you will return domains and mappings related to Purchase Orders.
<table>
<thead>
<tr>
<th>Element</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source Instance</td>
<td>Use this list to specify a Fusion Applications instance, if you have more than one instance deployed.</td>
</tr>
<tr>
<td>BI Application</td>
<td>Use this list to locate Setup Data for specific applications. For example, if you want to configure Oracle Financial Analytics, you might select Financial Analytics. To display Domains and Mappings for all functional applications, leave this field empty.</td>
</tr>
<tr>
<td>Dimension or Fact Group</td>
<td>(Specific toDomains and Mappings) Use this list to locate Setup Data for specific functional areas within the BI Application specified in the <strong>BI Application</strong> field. For example, if you want to configure Oracle Financial Analytics, you might want to locate Setup Data GL Balance only.</td>
</tr>
<tr>
<td>Functional Area</td>
<td>(Specific to Manage Data Load Parameters) Use this list to locate Data Load Parameters for specific functional areas within the BI Application specified in the <strong>BI Application</strong> field. For example, if you want to configure Oracle Financial Analytics, you might want to locate setup data for GL Balance only.</td>
</tr>
<tr>
<td>Parameter</td>
<td>(Specific to Manage Data Load Parameters) Use this field to locate parameters by Name, Code, or Category. Specify all or part of a search term in the adjacent text field. For example, to locate all parameters with 'GLOBAL' in the parameter code, you might select Code from the <strong>Parameter</strong> list and type 'GLOBAL' in the text field.</td>
</tr>
<tr>
<td>Fact Group</td>
<td>(Specific to Manage Data Load Parameters) Use this list to locate parameters for a specific Fact Group within the BI Application specified in the <strong>BI Application</strong> field. For example, if you want to configure General Ledger, you might want to locate parameters for GL Balance only.</td>
</tr>
<tr>
<td>Show Global Parameters</td>
<td>(Specific to Manage Data Load Parameters) Select this check box to locate parameters that apply to all applications. If you clear this check box, you display only Data Load Parameters that apply to the application specified in the <strong>BI Application</strong> field.</td>
</tr>
<tr>
<td>Dimension Group</td>
<td>(Specific to Manage Data Load Parameters) Use this list to locate parameters for a specific Dimension Group within the BI Application specified in the <strong>BI Application</strong> field. For example, if you want to configure General Ledger\GL Balance, you might want to locate Setup Data for Ledger Dimension only.</td>
</tr>
<tr>
<td>Search</td>
<td>Use this button to start the search, using the search values specified in the search fields.</td>
</tr>
<tr>
<td>Reset</td>
<td>Use this button to clear the Search values. To start a new search, select new search values then click Search.</td>
</tr>
</tbody>
</table>

**Note:** This Search pane is used on the following dialogs:
- "Manage Data Load Parameters dialog"
- "Manage Domain Mappings and Hierarchies: Domain Mappings tab"
- "Manage Source Domains: Source Domains tab"
- "Manage Warehouse Domains: Warehouse Domains tab"
- "Manage Domain Mappings and Hierarchies: Warehouse Domain Hierarchies tab"
This is a reference section that contains Help topics for the User Interface dialogs for System Setup in Oracle BI Applications Configuration Manager. The Help topics in this section are displayed when you click the Help icon on a dialog in Oracle BI Applications Configuration Manager.

This appendix contains the following topics:

- Section D.1, "Create/Edit Dimension Group"
- Section D.2, "Create/Edit Fact Group"
- Section D.3, "Define Business Intelligence Applications Instance: Source System Tab"
- Section D.4, "Define Business Intelligence Applications Instance: Target Warehouse Tab"
- Section D.5, "Define Business Intelligence Applications Instance: Environment Configuration Tab"
- Section D.6, "Edit Business Analytics Warehouse Dialog"
- Section D.7, "Edit Preferred Currency Name Dialog"
- Section D.8, "Edit Source Dialog"
- Section D.9, "Manage BI Applications: BI Application Offerings Tab"
- Section D.10, "Manage BI Applications: BI Application Offerings and Associated Sources Tab"
- Section D.11, "Manage Preferred Currencies"
- Section D.12, "Manage Warehouse Languages"
- Section D.13, "Register Source Dialog"

D.1 Create/Edit Dimension Group

Use this dialog to customize an Offering by associating Dimension Groups with Functional Areas.

<table>
<thead>
<tr>
<th>Element</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
<td>Use this field to specify a unique value that identifies the new Domain member. For example 'Range_5'.</td>
</tr>
</tbody>
</table>
Create/Edit Fact Group

Use this dialog to customize an Offering by associating Fact Groups with Functional Areas.

<table>
<thead>
<tr>
<th>Element</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Use this field to specify a short name up to 255 characters long for the new Domain member. For example, 'Range_100,000_Plus'.</td>
</tr>
<tr>
<td>Description</td>
<td>(Optional) Use this field to assist Functional Developers by providing additional information up to 2000 characters long about the Dimension Group.</td>
</tr>
<tr>
<td>Associate Fact Groups</td>
<td>Use this shuttle dialog to specify the Fact Groups that you want to include in the Dimension Group. Move the items that you want to select from the list on the left to the adjacent list on the right. Use Ctrl + click to select multiple non-contiguous values. Use Shift + click to select multiple contiguous values.</td>
</tr>
<tr>
<td>Associate Domains</td>
<td>Use this shuttle dialog to specify the Domains that you want to include in the Dimension Group. Move the items that you want to select from the list on the left to the adjacent list on the right. Use Ctrl + click to select multiple non-contiguous values. Use Shift + click to select multiple contiguous values.</td>
</tr>
</tbody>
</table>

D.2 Create/Edit Fact Group

Use this dialog to customize an Offering by associating Fact Groups with Functional Areas.

<table>
<thead>
<tr>
<th>Element</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
<td>Use this field to specify a unique value that identifies the new Domain member. For example 'Range_5'.</td>
</tr>
<tr>
<td>Name</td>
<td>Use this field to specify a short name up to 255 characters long for the new Domain member. For example, 'Range_100,000_Plus'.</td>
</tr>
<tr>
<td>Description</td>
<td>(Optional) Use this field to assist Functional Developers by providing additional information up to 2000 characters long about the Fact Group.</td>
</tr>
<tr>
<td>Associate Functional Area</td>
<td>Use this shuttle dialog to specify the Functional Areas that you want to include in the Fact Group. Move the items that you want to select from the list on the left to the adjacent list on the right. Use Ctrl + click to select multiple non-contiguous values. Use Shift + click to select multiple contiguous values.</td>
</tr>
<tr>
<td>Associate Dimension Groups</td>
<td>Use this shuttle dialog to specify the Dimension Groups that you want to include in the Fact Group. Move the items that you want to select from the list on the left to the adjacent list on the right. Use Ctrl + click to select multiple non-contiguous values. Use Shift + click to select multiple contiguous values.</td>
</tr>
<tr>
<td>Associate Domains</td>
<td>Use this shuttle dialog to specify the Domains that you want to include in the Fact Group. Move the items that you want to select from the list on the left to the adjacent list on the right. Use Ctrl + click to select multiple non-contiguous values. Use Shift + click to select multiple contiguous values.</td>
</tr>
<tr>
<td>Has Child Fact Groups?</td>
<td>Use this check box to toggle the Child Fact Groups list.</td>
</tr>
</tbody>
</table>
D.3 Define Business Intelligence Applications Instance: Source System Tab

The Source Systems tab on the Define Business Intelligence Applications Instance page lists the registered source instances for the current deployment. You can use this tab to register a source instance, edit a registered source instance, or disable a source instance. Note that in a new installation of Oracle BI Applications, no source instances will be listed.

A source system is the transactional system that serves as the source of data for the Oracle Business Analytics Warehouse. A source instance is a particular instance of a source system and is given a name by the BI Applications Administrator. An Oracle BI Applications instance is an Oracle BI Applications environment consisting of one Oracle Business Analytics Warehouse and one or more source instances.

The table below provides a description of the user interface elements in the Source Systems tab.

<table>
<thead>
<tr>
<th>Element</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source Instance Name column</td>
<td>The name given by the BI Applications System Administrator to a transactional system that serves as a source of data for BI Applications data load. The source instance is important because functional setup tasks, and the setting of values for objects such as parameters and domain maps are performed in relation to a source instance. Each source instance must have a unique data source number.</td>
</tr>
<tr>
<td>Description column</td>
<td>Additional information specified by the BI Applications System Administrator about the source instance.</td>
</tr>
<tr>
<td>Product Line column</td>
<td>The source instance product line.</td>
</tr>
<tr>
<td>Product Line Version column</td>
<td>The version number of the source instance product line.</td>
</tr>
<tr>
<td>Data Source Number column</td>
<td>The unique, user-specified number used to identify the source instance. The Data Source Number value specifies a data source so that the data can be identified in the Oracle Business Analytics Warehouse. Each source instance must have a unique Data Source Number.</td>
</tr>
</tbody>
</table>
D.4 Define Business Intelligence Applications Instance: Target Warehouse Tab

The Target Warehouse tab on the Define Business Intelligence Applications Instance page enables you to view and edit Oracle Business Analytics Warehouse information and ODI connection details, as described in the table below.

Note that an Oracle BI Applications instance is an Oracle BI Applications environment consisting of one Oracle Business Analytics Warehouse and one or more source instances.

<table>
<thead>
<tr>
<th>Element</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>The name of the Oracle Business Analytics Warehouse.</td>
</tr>
<tr>
<td>Product Line Version</td>
<td>The product version used to verify the Oracle BI Applications version that is deployed.</td>
</tr>
</tbody>
</table>
D.5 Define Business Intelligence Applications Instance: Environment Configuration Tab

The Environment Configuration tab displays properties and default values for Configuration Manager and ODI integration. The default values for these properties derive from the installation provisioning process.

Note that an Oracle BI Applications instance is an Oracle BI Applications environment consisting of one Oracle Business Analytics Warehouse and one or more source instances.

D.6 Edit Business Analytics Warehouse Dialog

Use the Edit Business Analytics Warehouse dialog to edit the **Name** and **Description** fields.

D.7 Edit Preferred Currency Name Dialog

Use this dialog to edit the Preferred Currency names that are displayed on Oracle Business Intelligence dashboards in the Currency drop-down on the My Account dialog \Preferences tab for a user logged into Oracle Business Intelligence. You can either use the default currency display names or, if required, you can specify different currency display names.

<table>
<thead>
<tr>
<th>Element</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preferred Currency Code</td>
<td>A read-only code that identifies a preferred currency type.</td>
</tr>
<tr>
<td>Preferred Currency Name</td>
<td>The currency label that is displayed in the Currency drop-down on the My Account dialog \Preferences tab for a user logged into Oracle Business Intelligence. If required, you can change the default values. For example, if your organization prefers to use the term 'Local Currency' instead of 'Ledger Currency', then you would use this field to change the value 'Ledger Currency' to 'Local Currency'.</td>
</tr>
</tbody>
</table>
D.8 Edit Source Dialog

Use the Edit Source dialog to edit the details for the currently selected source instance. In a new Oracle BI Applications installation, you need to register at least one source instance.

The Edit Source dialog has two entry pages:

- Edit Source in Configuration Manager
- Edit Source in Oracle Data Integrator Topology

**Note:** When you save the data you entered in the Edit Source dialog, this data is propagated to the ODI Repository.

D.8.1 Edit Source in Configuration Manager

The Edit Source in Configuration Manager fields are described in the following table.

<table>
<thead>
<tr>
<th>Element</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product Line</td>
<td>This field is read-only. The source instance product line.</td>
</tr>
<tr>
<td>Data Source Number</td>
<td>The unique, user-specified number used to identify the source instance. The Data Source Number value specifies a data source so that the data can be identified in the Oracle Business Analytics Warehouse. Each source instance must have a unique Data Source Number value.</td>
</tr>
<tr>
<td>Source Instance Name</td>
<td>The name given by the BI Applications System Administrator to a transactional system that serves as a source of data for BI Applications data load. The source instance is important because functional setup tasks, and setting of values of objects such as parameters and domain maps are performed in relation to a source instance. Each source instance must have a unique data source number.</td>
</tr>
<tr>
<td>Description</td>
<td>(Optional) Additional information about the source instance</td>
</tr>
</tbody>
</table>

D.8.2 Edit Source in Oracle Data Integrator Topology

The Edit Source in Oracle Data Integrator Topology page contains the following windows:

- Oracle Data Integrator Connection Information
- Provide Context Details
- Provide Connection Details

D.8.2.1 Oracle Data Integrator Connection Information

The Oracle Data Integrator Connection Information window appears at the top of the page. The information contained in this window is read-only and is passed to Oracle BI Applications Configuration Manager from the ODI Repository. The models specified in this window are the models for which connection information is set in the Provide Context Details and Provide Connection Details windows.
D.8.2.2 Provide Context Details
In the Context drop-down list, you must select Global. The Global value is required because the Oracle BI Applications interfaces are designed to use this value.

D.8.2.3 Provide Connection Details
The Provide Connections Details window contains the following tabs:

- **Technology: Oracle BI (Fusion Applications-only)**
- **Technology: Oracle (non-Fusion Applications)**
- **Technology: File System**

D.8.2.3.1 Technology: Oracle BI (Fusion Applications-only)
Use this tab to set the Oracle BI EE connection details for the model selected in the Oracle Data Integrator Connection Information window.

<table>
<thead>
<tr>
<th>Element</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oracle Data Integrator</td>
<td>The unique name that identifies the connection (Read-only).</td>
</tr>
<tr>
<td>Data Server Name</td>
<td></td>
</tr>
<tr>
<td>JDBC Driver</td>
<td>The name of the JDBC driver for Oracle BI EE.</td>
</tr>
<tr>
<td></td>
<td>For example: oracle.bi.jdbc.AnaJdbcDriver.</td>
</tr>
<tr>
<td></td>
<td>It is recommended that you leave the default value.</td>
</tr>
<tr>
<td>JDBC URL</td>
<td>The JDBC URL for Oracle BI EE.</td>
</tr>
<tr>
<td></td>
<td>The format for the URL is the following: jdbc:oraclebi://&lt;sid&gt;:&lt;port&gt;/</td>
</tr>
<tr>
<td></td>
<td>For example, jdbc:oraclebi://hostname.com:10206/.</td>
</tr>
<tr>
<td>Database Username</td>
<td>The database user name for Oracle BI EE.</td>
</tr>
<tr>
<td></td>
<td>For example, OBIA_ETL_USER.</td>
</tr>
<tr>
<td>Database Password</td>
<td>The password for the OBIA_ETL_USER user.</td>
</tr>
<tr>
<td>Test</td>
<td>Use this button to test the connection to Oracle BI EE.</td>
</tr>
</tbody>
</table>

D.8.2.3.2 Technology: Oracle (non-Fusion Applications)
Use this tab to set the transactional database connection details for the model selected in the Oracle Data Integrator Connection Information window.

<table>
<thead>
<tr>
<th>Element</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oracle Data Integrator</td>
<td>The unique name that identifies the connection (Read-only).</td>
</tr>
<tr>
<td>Data Server Name</td>
<td></td>
</tr>
<tr>
<td>JDBC Driver</td>
<td>The JDBC driver for the transactional database connection.</td>
</tr>
<tr>
<td></td>
<td>Leave the default value.</td>
</tr>
<tr>
<td></td>
<td>Note that the JDBC driver and JDBC URL are required to create the data</td>
</tr>
<tr>
<td></td>
<td>server and physical schema in ODI for the transactional database.</td>
</tr>
<tr>
<td>JDBC URL</td>
<td>The JDBC URL for the transactional database connection.</td>
</tr>
<tr>
<td></td>
<td>The format for the URL is the following: jdbc:oracle:thin:@&lt;host&gt;:&lt;port&gt;:&lt;sid&gt;</td>
</tr>
<tr>
<td>Database Username</td>
<td>The database username for the transactional database.</td>
</tr>
</tbody>
</table>
D.8.2.3.3 Technology: File System Use this tab to set the file system connection details for the model selected in the Oracle Data Integrator Connection Information window. In this tab there are columns that are not displayed, which have defaulted values. You do not need to change these values.

<table>
<thead>
<tr>
<th>Element</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Database Password</td>
<td>The password for the transactional database.</td>
</tr>
<tr>
<td>Test</td>
<td>Use this button to test the connection to the transactional database.</td>
</tr>
<tr>
<td>Oracle Data Integrator</td>
<td>The unique name that identifies the connection (Read-only).</td>
</tr>
<tr>
<td>Data Server Name</td>
<td>The unique name that identifies the connection (Read-only).</td>
</tr>
<tr>
<td>Host Name</td>
<td>The name of the host machine where the file system resides.</td>
</tr>
<tr>
<td>Path To File</td>
<td>The directory path of the ETL files that were installed by the Business</td>
</tr>
<tr>
<td></td>
<td>Analytics Applications Suite installer.</td>
</tr>
<tr>
<td></td>
<td>The default location is &lt;Oracle Home for BI&gt;/biapps/etl.</td>
</tr>
<tr>
<td></td>
<td>For example, /Oracle_BI1/biapps/etl/data_files/src_files/FUSION_1_0.</td>
</tr>
<tr>
<td>Array Fetch Size</td>
<td>The number of rows requested by ODI on each communication with the data server.</td>
</tr>
<tr>
<td></td>
<td><strong>Note:</strong> This column might be hidden. To view this column, click View,</td>
</tr>
<tr>
<td></td>
<td>Columns, Show All.</td>
</tr>
<tr>
<td>Batch Update Size</td>
<td>The number of rows in a single INSERT command.</td>
</tr>
<tr>
<td></td>
<td><strong>Note:</strong> This column might be hidden. To view this column, click View,</td>
</tr>
<tr>
<td></td>
<td>Columns, Show All.</td>
</tr>
<tr>
<td>JDBC Driver</td>
<td>The name of the JDBC driver for the transactional database connection.</td>
</tr>
<tr>
<td></td>
<td>It is recommended that you leave the default value.</td>
</tr>
<tr>
<td></td>
<td>Note that the JDBC driver and JDBC URL are required to create the data</td>
</tr>
<tr>
<td></td>
<td>server and physical schema in ODI for the transactional database.</td>
</tr>
<tr>
<td></td>
<td><strong>Note:</strong> This column might be hidden. To view this column, click View,</td>
</tr>
<tr>
<td></td>
<td>Columns, Show All.</td>
</tr>
<tr>
<td>JDBC URL</td>
<td>The JDBC URL for the transactional database connection.</td>
</tr>
<tr>
<td></td>
<td>The format for the URL is the following:</td>
</tr>
<tr>
<td></td>
<td>jdbc:oracle:thin:@&lt;host&gt;:&lt;port&gt;:&lt;sid&gt;</td>
</tr>
<tr>
<td></td>
<td><strong>Note:</strong> This column might be hidden. To view this column, click View,</td>
</tr>
<tr>
<td></td>
<td>Columns, Show All.</td>
</tr>
</tbody>
</table>

D.9 Manage BI Applications: BI Application Offerings Tab

Use this tab to enable Oracle BI Applications offerings. The offerings you enable are those you have purchased and are deploying. The setup data relating to that offering is made visible in Oracle BI Applications Configuration Manager when you enable the offering.
Manage Warehouse Languages

<table>
<thead>
<tr>
<th>Element</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Business Intelligence</td>
<td>Use this list to view available Offerings.</td>
</tr>
<tr>
<td>Applications Offerings</td>
<td>Use this list to view associated Fact Groups and Dimension Groups for the selected Offering.</td>
</tr>
<tr>
<td>Enabled</td>
<td>Use the Enabled check box to enable or disable an offering.</td>
</tr>
<tr>
<td></td>
<td>You can customize the Offering by adding Fact Groups and Dimension Groups as follows:</td>
</tr>
<tr>
<td></td>
<td>- To add a Fact Group, choose Actions\Create Fact Group to display the Section D.2, &quot;Create/Edit Fact Group&quot;.</td>
</tr>
<tr>
<td></td>
<td>- To add a Dimension Group, choose Actions\Create Dimension Group to display the Section D.1, &quot;Create/Edit Dimension Group&quot;.</td>
</tr>
<tr>
<td></td>
<td>If you add Fact Groups or Dimension Groups, you can edit and delete them using the Edit icon and Add icon.</td>
</tr>
<tr>
<td></td>
<td><strong>Note:</strong> You cannot edit or delete default groups that are provided on installation.</td>
</tr>
</tbody>
</table>

D.10 Manage BI Applications: BI Application Offerings and Associated Sources Tab

Use this tab to enable and disable the sources associated with an Oracle BI Applications offering.

<table>
<thead>
<tr>
<th>Element</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BI Applications Offerings</td>
<td>When you expand the offering in the list, the source instances associated with that offering are displayed.</td>
</tr>
<tr>
<td>Enabled</td>
<td>Use the Enabled check box to enable or disable the source instance associated with the offering.</td>
</tr>
</tbody>
</table>

D.11 Manage Preferred Currencies

Use this dialog to view the preferred currency names that are used on Oracle Business Intelligence dashboards in the Currency drop-down on the My Account dialog\Preferences tab for a user logged into Oracle Business Intelligence. You can edit preferred currency names by clicking the Edit icon. For example, if your organization prefers to use the term 'Local Currency' instead of 'Ledger Currency', you can use this dialog to change the default value 'Ledger Currency' to 'Local Currency.'

<table>
<thead>
<tr>
<th>Element</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preferred Currencies</td>
<td>Use this pane to view the preferred currency names.</td>
</tr>
<tr>
<td></td>
<td>To change a preferred currency name, click the Edit icon to display the Edit Preferred Currency Name dialog.</td>
</tr>
</tbody>
</table>

D.12 Manage Warehouse Languages

Use this tab to specify the languages for which data will be loaded into the Business Analytics Warehouse during the ETL process. When you install Oracle BI Applications, the American English Language is enabled by default. You must enable the languages that you want to deploy.
You can also specify a Base Language. The Base Language is used if the ETL process cannot locate data in any one of the enabled languages. For example, if French is an enabled language and American English is the Base Language, there will be two rows, one for each language. If French values are not available, then American English values will be substituted.

<table>
<thead>
<tr>
<th>Element</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manage Business Analytics Warehouse Languages</td>
<td>Use this list to view the available languages, and enable the languages that you want to support. Use the <strong>Installed</strong> column to change the default value of 'Disabled' to 'Installed', which enables the selected language. The other table columns display read-only data.</td>
</tr>
<tr>
<td>Set Base Language</td>
<td>Use this option to specify the Base Language, which is marked with a blue dot. You can only specify one Base Language. American English is the default Base Language. To select a different Base Language, select a record in the table, then click the <strong>Set Base Language</strong> icon. If the current Base Language record is selected, then this icon is grayed out.</td>
</tr>
</tbody>
</table>

### D.13 Register Source Dialog

Use this dialog to register source instances. In a new Oracle BI Applications installation, you need to register and enable at least one source instance.

The Register Source dialog has two data entry pages:

- **Register Source in Configuration Manager**
- **Register Source in Oracle Data Integrator Topology**

---

**Note:** To propagate connection details to the ODI Repository, you must enter and save information on both the Register Source in Configuration Manager page and the Register Source in Oracle Data Integrator Topology page.

### D.13.1 Register Source in Configuration Manager

The Register Source in Configuration Manager fields are described in the following table.

<table>
<thead>
<tr>
<th>Element</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product Line</td>
<td>The source instance product line.</td>
</tr>
<tr>
<td>Product Version</td>
<td>The version number of the source instance product line</td>
</tr>
<tr>
<td>Source Instance Name</td>
<td>The name given by the BI Applications System Administrator to a transactional system that serves as a source of data for BI Applications data load. The source instance is important because functional setup tasks, and setting of values of objects such as parameters and domain maps are performed in relation to a source instance. Each source instance must have a unique data source number.</td>
</tr>
<tr>
<td>Description</td>
<td>(Optional) Additional information about the source instance</td>
</tr>
</tbody>
</table>
D.13.2 Register Source in Oracle Data Integrator Topology

The Register Source in Oracle Data Integrator Topology page contains the following windows:

- Oracle Data Integrator Connection Information
- Provide Context Details
- Provide Connection Details

D.13.2.1 Oracle Data Integrator Connection Information

The Oracle Data Integrator Connection Information window appears at the top of the page. The information contained in this window is read-only and is passed to Oracle BI Applications Configuration Manager from the ODI Repository, based on the specified product line version.

D.13.2.2 Provide Context Details

In the Context drop-down list, you must select Global. The Global value is required because the Oracle BI Applications interfaces are designed to use this value.

D.13.2.3 Provide Connection Details

The Provide Connections Details window contains the following tabs:

- Technology: Oracle BI (Fusion Applications-only)
- Technology: Oracle (non-Fusion Applications)
- Technology: File System

D.13.2.3.1 Technology: Oracle BI (Fusion Applications-only)

Use this tab to set the Oracle BI EE connection details for the model selected in the Oracle Data Integrator Connection Information window.

<table>
<thead>
<tr>
<th><strong>Element</strong></th>
<th><strong>Description</strong></th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Source Number</td>
<td>The unique, user-specified number used to identify the source instance. The Data Source Number value specifies a data source so that the data can be identified in the Oracle Business Analytics Warehouse. Each source instance must have a unique Data Source Number value.</td>
</tr>
<tr>
<td>Data Server Details (Fusion Applications and PeopleSoft source system only)</td>
<td>If the source system is PeopleSoft or Fusion Applications, then a read-only list of data servers is displayed.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th><strong>Element</strong></th>
<th><strong>Description</strong></th>
</tr>
</thead>
<tbody>
<tr>
<td>Oracle Data Integrator Data Server Name</td>
<td>A short meaningful name incorporating 'FUSION' or similar that identifies the data server as being for Fusion Applications. For example, FUSION_CMDS. This name must be unique across all ODI data servers in the ODI Repository.</td>
</tr>
<tr>
<td>JDBC Driver</td>
<td>The name of the JDBC driver for Oracle BI EE. For example: oracle.bi.jdbc.AnaJdbcDriver. It is recommended that you leave the default value.</td>
</tr>
</tbody>
</table>
D.13.2.3.2 Technology: Oracle (non-Fusion Applications)  Use this tab to set the transactional database connection details for the model selected in the Oracle Data Integrator Connection Information window.

<table>
<thead>
<tr>
<th>Element</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oracle Data Integrator</td>
<td>A short meaningful name that identifies the data server.</td>
</tr>
<tr>
<td>Data Server Name</td>
<td>This name must be unique across all ODI data servers in the ODI Repository.</td>
</tr>
<tr>
<td>JDBC Driver</td>
<td>The JDBC driver for the transactional database connection.</td>
</tr>
<tr>
<td></td>
<td>Leave the default value.</td>
</tr>
<tr>
<td></td>
<td>Note that the JDBC driver and JDBC URL are required to create the data server and physical schema in ODI for the transactional database.</td>
</tr>
<tr>
<td>JDBC URL</td>
<td>The JDBC URL for the transactional database connection.</td>
</tr>
<tr>
<td></td>
<td>The format for the URL is the following:</td>
</tr>
<tr>
<td></td>
<td>jdbc:oracle:thin:@&lt;host&gt;:&lt;port&gt;:&lt;sid&gt;</td>
</tr>
<tr>
<td>Database Username</td>
<td>The database username for the transactional database.</td>
</tr>
<tr>
<td>Database Password</td>
<td>The password for the transactional database.</td>
</tr>
<tr>
<td>Test</td>
<td>Use this button to test the connection to the transactional database.</td>
</tr>
</tbody>
</table>

D.13.2.3.3 Technology: File System  Use this tab to set the file system connection details for the model selected in the Oracle Data Integrator Connection Information window.

In this tab there are columns that are not displayed, which have defaulted values. You do not need to change these values.

<table>
<thead>
<tr>
<th>Element</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oracle Data Integrator</td>
<td>A short meaningful name that identifies the data server.</td>
</tr>
<tr>
<td>Data Server Name</td>
<td>The name of the host machine where the file system resides.</td>
</tr>
<tr>
<td>Path To File</td>
<td>The directory path of the ETL files that were installed by the Business Analytics Applications Suite installer.</td>
</tr>
<tr>
<td></td>
<td>The default location is &lt;Oracle Home for BI&gt;/biapps/etl.</td>
</tr>
<tr>
<td></td>
<td>For example, /Oracle_BI1/biapps/etl/data_files/src_files/FUSION_1_0.</td>
</tr>
<tr>
<td>Element</td>
<td>Description</td>
</tr>
<tr>
<td>---------------------</td>
<td>-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>Array Fetch Size</td>
<td>The number of rows requested by ODI on each communication with the data server.</td>
</tr>
<tr>
<td></td>
<td><strong>Note:</strong> This column might be hidden. To view this column, click View, Columns, Show All.</td>
</tr>
<tr>
<td>Batch Update Size</td>
<td>The number of rows in a single INSERT command.</td>
</tr>
<tr>
<td></td>
<td><strong>Note:</strong> This column might be hidden. To view this column, click View, Columns, Show All.</td>
</tr>
<tr>
<td>JDBC Driver</td>
<td>The name of the JDBC driver for the transactional database connection.</td>
</tr>
<tr>
<td></td>
<td>It is recommended that you leave the default value.</td>
</tr>
<tr>
<td></td>
<td>Note that the JDBC driver and JDBC URL are required to create the data server and physical schema in ODI for the transactional database.</td>
</tr>
<tr>
<td></td>
<td><strong>Note:</strong> This column might be hidden. To view this column, click View, Columns, Show All.</td>
</tr>
<tr>
<td>JDBC URL</td>
<td>The JDBC URL for the transactional database connection.</td>
</tr>
<tr>
<td></td>
<td>The format for the URL is the following:</td>
</tr>
<tr>
<td></td>
<td><code>jdbc:oracle:thin:@&lt;host&gt;:&lt;port&gt;:&lt;sid&gt;</code></td>
</tr>
<tr>
<td></td>
<td><strong>Note:</strong> This column might be hidden. To view this column, click View, Columns, Show All.</td>
</tr>
</tbody>
</table>
Index

A

Accessibility
  how to enable or disable features, 2-14
  screen reader, high contrast colors, large fonts, 2-13
  setting preferences, 2-8
  using a screen reader, 2-8
Actions menu, 2-10
Add icon
  how to use, 2-10
Add Range Member Mapping icon grayed out, 4-20
Add Target Domain Member option
  why is it grayed out?, 4-20
Add Warehouse Domain Member
  why is it grayed out?, 4-20
Applications
  Oracle Spend Classification, B-280

B

Batch Edit, 4-19
  what does it do?, C-3

C

calendar
  configuring enterprise, B-283
Using a PeopleSoft fiscal calendar as the Enterprise calendar, B-285
Using a warehouse generated calendar as the Enterprise calendar, B-286
Using an Oracle EBS fiscal calendar as the Enterprise calendar, B-283
Collapse Pane
  maximizing the Help viewing area, 2-6
  colors
    how to use high contrast colors, 2-8
Common Areas and Dimensions
  about completing Tasks, 3-11
  configuration Tasks, 3-11
configuration
  overview of functional configuration, 2-1
  steps for Oracle Spend Classification, B-280
Configuration Manager
  about the main screen, 2-8
accessibility, 2-13
Help and User Assistance, 2-6
how to log in, A-1
icons, 2-10
interaction with FSM, 2-2
Main Task Areas, 2-7
menus, 2-10
Query By Example, 2-13
security roles and users, 2-6
Users and Roles, 2-6
using with screen reader, 2-13
what is?, 2-2
Configuration Tasks
  list of Functional Configuration tasks, B-1
Customize product hierarchy
  how to, 4-38

D

Data Load Parameters
  date format, B-5
  Key points, 4-22
Date format, B-2
  for Data Load Parameters, B-5
Detach menu
  using, 2-10
Dimension Group
  adding, 4-38
disabled icons, about, 4-20
disabling a Source System, D-4
Domains
  non-extensible, 4-20
  using Batch Edit option, 4-19
  using Sync to Source option, 4-17
domains
  Externally Conformed Domains, 4-20

E

Edit icon, 2-10
edit multiple target domain values using Batch Edit, 4-19
Edit option grayed out, 4-20
enabling a Source System, D-4
Enterprise calendar
  configuring, B-283
Externally Conformed Domains
  how to configure, 4-20

F
Fact Group
  adding, 4-38
  font size
    how to use large fonts, 2-8
FSM
  About Tasks in the Common Areas and Dimensions area, 3-11
  Assigning Tasks to Functional Developers, 3-8
  Creating an Implementation Project and Selecting Offerings, 3-5
  getting started, 3-3
  how to start, 2-9
  interaction with Configuration Manager, 2-2
  Monitoring Functional Setup Tasks, 3-10
  Overview to using, 1-1
  password for Oracle BI Applications, 3-2
  Performing Functional Tasks using the Administrator role, 3-9
  Performing Functional Tasks using the Functional Developer role, 3-10
  Roadmap to using, 1-1
  Task reference for Oracle BI Applications, B-1
Functional Area, definition, 2-1
Functional Configuration roadmap, 3-2
  Task Reference, B-1
Functional Configuration Tasks list of, B-1

G
Getting Started
  with Functional Configuration, 3-2
  with Oracle BI Applications Configuration Manager, 2-5
  with Setup Data Maintenance and Administration, 4-2
  grayed out options
    why?, 4-20

H
Help System
  for Configuration Manager, 2-6
  maximize viewing area, 2-6
  Tip on maximizing the viewing area, 2-6
  High-contrast colors
    enabling, 2-13

I
icons
  disabled, 4-20
  grayed out, 4-20
Implementation Project
  how to create, 3-5

Initial Extract Date
  format, B-2

L
Large fonts
  enabling, 2-13

M
Manage Data Load Parameters dialog
  description of icons, C-14
  maximize Help viewing area, 2-6
menus
  about, 2-10
  Actions, 2-10
  Detach, 2-10
  View, 2-10

O
Offerings
  definition, 2-1
  how to select, 3-5
options
  disabled, 4-20
Oracle Business Intelligence Applications
  overview of functional configuration, 2-1
Oracle Spend Classification
  configuration steps for, B-280
  how to deploy, B-281
  how to remove metadata, B-250
Overview to this guide, 1-1

P
parameters
  read-only, 2-11
password
  for FSM with Oracle BI Applications, 3-2
  Oracle BI Applications Configuration Manager, 3-2
Perform Functional Configurations link, 2-9
Product hierarchy
  customizing, 4-38

Q
Query By Example
  how to use, 2-13
  icon, 2-10

R
read-only parameters, 2-11
Roadmaps
  Functional Configuration, 3-2
  Overview to guide, 1-1
  Setup Data Maintenance and Administration, 4-2
  using FSM, 1-1
S
Screen Reader
  how to use, 2-8
Screen reader
  enabling, 2-13
sort
  how to sort items, 2-12
Source System
  definition, 2-1
  enabling and disabling, D-4
Sync to Source, 4-17
  what does it do?, C-3
synchronizing target domain values using Sync to Source, 4-17

T
Task Reference
  Functional Configuration, B-1
Tasks
  Common Areas and Dimensions, 3-11
terminology, 2-1

U
Universal Source
  about configuring, B-47
using to edit multiple target domain values, 4-19
using to synchronize target domain values, 4-17

V
View menu
  using, 2-10