Oracle FLEXCUBE Universal Banking ® 12.0.2
Child and Screen Childs - Concept and Design

August 2013

ORACLE
FINANCIAL SERVICES

Child and Screen Childs - Concept and Design



Contents

O = - Vo S 3
L1 AUGIEINCE . ..ttt 3
2 B L = (= To [ o ol U o 41T | £ 3

22 | 011 o o 18 o 1o o O SRUPPPURP 4

3 G SCIBEBN .. 4
3.1 Screen DeVeIOPMENT ......cooiiiiiiiiieeeeeee e 4
3.2 Generation Of FleS..........cooiiiiiiiii 7
3.3 Extensible DeVEIOPMENT ........cooviiiiiiiiiiie e 7

4 SCreeN Child ..o 8
4.1 SCreen DEVEIOPIMENT ....uiiiiiitiietiiieteeeiee ettt bbeensnnnnes 8
A € 1= =T = 1= o 1= 10
4.3  EXtENSIDIE DEVEIOPIMENT ...ttt eeeeennnes 11

2

Child and Screen Childs - Concept and Design



1 Preface

This document describes the concept Child and Screen Child screens available in Oracle
FLEXCUBE Development Workbench for Universal Banking and guides the developers on
how to design child and screen child screens

1.1 Audience

This document is intended for FLEXCUBE Application developers/users that use
Development Workbench to develop various FLEXCUBE components.

To Use this manual, you need conceptual and working knowledge of the below:

Proficiency

Resources

FLEXCUBE Functional Architecture

FLEXCUBE Technical Architecture

FLEXCUBE Object Naming conventions

Working knowledge of Web based
applications

Working knowledge of Oracle Database

Working knowledge of PLSQL

Training programs from Oracle
Financial Software Services.

Training programs from Oracle
Financial Software Services.

Development Overview Guide

Self Acquired

Oracle Documentations

Respective vendor documents

developer
Working knowledge of PLSQL & SQL | Self Acquired
Language
Working knowledge of XML files Self Acquired

1.2 Related Documents

04-Development_ WorkBench_Screen _Development-Lpdf

05-Development_WorkBench_Screen_Development-11.pdf

14-Development _of Online Forms.pdf

Child and Screen Childs - Concept and Design


04-Development_WorkBench_Screen_Development-I.pdf
05-Development_WorkBench_Screen_Development-II.pdf
14-Development_of_Online_Forms.pdf

2 Introduction

This document provides information on:
e Chapter 2, “Introduction”
e Chapter 3, “Child Screen"
e Chapter 4, “Screen Child Screen"

3 Child Screen

Screens required in FLEXCUBE where the base functionality is same and the differences are
either in the layout or in some additional processing i.e. there are some set of screens where
majority of the functionality is same with some variance with existing screens.

Development Workbench supports developing such screens as the child screens of the base
function with a facility to upgrade the child screens whenever the base or parent screen
undergoes a change.
Example: Term Deposit Account Booking

Account for term deposit booking will have all the features of a normal customer account with some
additional features. Thus it can be designed as the child screen of normal customer account maintenance

Workbench provides an option to design a child screen as a derivative of a parent screen.
Workbench automatically inherits the parent screen and tracks the modifications made in the
child screen.

Workbench does not allow the developer to delete elements inherited from the parent screen.

For child screens, in addition to release specific hooks for each logical stage, System also calls
the corresponding hook from the parent function’s programs. This allows the re-use of the
common business logic among all the child functions.

FLEXCUBE does not support multi level inheritance (i.e.child of child is not supported)

3.1 Screen Development

For developing a New Child screen,

e Select the action as New

e Function Type as Child

e Parent Xml field gets enabled
Click on browse button and select the required parent function form the hard disk.
On successful loading parent function will be get update with parent function id
value.

e Parent function field will get defaulted to the name of the function id which has been
loaded as the parent

Child and Screen Childs - Concept and Design



User has to enter Child function Id in function Id field. Standard naming conventions
apply

Function category will be defaulted with category of the parent. It cannot be modified

Upload File

{2 Choose File to Upload

.« MAIN » Core » RADXML

Organize New folder

& Downloads o Name Date modified

»
%] Recent Places

| ACCSFOML_RADxml 12/23/2012 9:31 AM
| ACDACTRN_RAD.xml 12/23/2012 9:31 AM
| ACDADCRP_RADxmI 12/23/2012 9:32 AM
| ACDAUDTR_RADxmI 12/23/2012 9:32 AM
| ACDBIRAC_RADxml 12/25/201212:04 ...

| ACDCASHF_RAD.xml 12/23/2012 9:31 AM
| ACDCBIR_RADxml 12/23/2012 9:32 AM
|| ACDCBIRD_RAD.xml 12/23/2012 9:32 AM
| ACDCODQR_RADxml 12/23/2012 9:32 AM
|I | ACDCODQS_RADxmI 12/23/2012 9:31 AM

- m ]

File name:  EGIGIBEN] > |AllFiles (*.7) =

B Desktop

4 Libraries

A panraju

M Computer
&, system (C1)
s Data (D3)
< DVD RW Drive |
% FLEXCUBE Kent

€ Network

Fig 3.1: Creating Child Screen: Selecting Parent

Preferences:

Make sure the function id name in the preferences screen is that of the child screen and not of
parent screen
On tab out of Preferences node function name gets changed automatically if not changed
manually. Hence developer has to visit the Preferences node at least once before generating files
for child function Id.

Child and Screen Childs - Concept and Design



Function Generation - X

BxBE ¥ 4=

Action Function Type Function Category Maintenance -
Function Id STDCIFPR Parent Function Header Template Mone -
Save XML Path Parent Xml STDCIF_RAD Footer Template Maint Audit -
Search Preferences (7 R
[CaPreferences [ Head Office Function Modwe BT |
@ [ DataSource — . .
Logging Required Static Maintenance
@ [3 ListOValues v Module Description
= £ DataBlocks [~ Aulo Authorization Branch Program Id 100 |
® [C3 Screens [» TankModifications Process Code | |
# [ FieldSets [+ Field Log Required SVN Repository URL | ‘
(3 Actions _
3 CallForms Multi Branch Access Transaction Block Choose Block -
3 LaunchFarms [F] Excel Export Required Mame .
3 Summary Transaction Field ~ Choose Field hd
Name
Control String E”
= Function Id Module * Module Description m
[[] STDCIFPR ST @ Static Maintenance
STSCIFPR ST @ Static Maintenance

Fig 3.2: Preferences node of Child Screen

Child Screen Design is similar to normal Screen design. Refer 04-
Development _WorkBench_Screen_Development-I.pdf for detailed explanation.

Note the following while designing a child screen.

e Developer will not be allowed to delete or rename elements created in Parent
function.

¢ New data source or adding columns to existing data sources are allowed

e Addition of new LOVs and modification of existing LOVs are allowed

e Modifying properties of existing block fields(of parent) is allowed

e New Screens, tabs, section etc can be added by the developer

e Deletion and Renaming of screens, tabs, section etc are not allowed. Instead developer
has the option to hide them

e Addition or removal of fields from field set is allowed. Properties of fields can also be
modified. Note that the block to which field set is attached cannot be changed in child
level

Child and Screen Childs - Concept and Design


04-Development_WorkBench_Screen_Development-I.pdf
04-Development_WorkBench_Screen_Development-I.pdf

e New Field sets can be defined

e Developer can add new Launch Form and Call Form in the child screen. Existing
launch Form/Call form can be made inactive, if not required in the child level.

¢ Amendable fields can be modified

e Summary screen can also be completely re designed in the child level

Note: If enhancement on parent screen happens parallel to child screen design developer can
use child refresh option to upgrade latest changes in parent screen to child screen.

3.2 Generation of Files

Process of generation of files is similar to that of normal function id .
All the units generated for a normal function id will be generated for the child screen as well

In the script for SMTB_MENU, column PARENT_FUNCTION would contain the name of the
parent function id

3.3 Extensible Development

Developer can add his code in hook packages and release specific JavaScript file.
Extensible Development process is similar to that followed in a maintenance or transaction
screen. Refer respective documents for detailed explanation
Structure of the system packages will be same as for a normal maintenance or transaction
function id
For child screens, in addition to release specific hooks for each logical stage, System also
calls the corresponding hook from the parent function’s programs. This allows the re-use of
the common business logic among all the child functions.
Assume STDCUSAC is a normal maintenance screen and STDCUSTD as the child of this
screen.
Below figure shows the snippet of code from fn_default_and_validate of the child main
package

Child and Screen Childs - Concept and Design



IF NOT stpks_stdcustd Main.Fn_Skip Master THEN
Pr_Convert_Child To_Master(p_stdcustd,l STDCUSAC) ;
Pr Convert Child To Master(p Prev stdcustd,l Prev STDCUSAC) ;
Pr_convert Child To Master(p Wrk stdcustd,l Wrk STDCUSAC)
Dbg('Calling stpks_stdcusac_Kernel.Fn_Pre_Default_And_V#lidate Yy
IF HOT stpks stdcusac Kernel.Fn Pre Default And validate (p_Source,
p_fource Operation,
p_Function Id,
p_Action Code,
p_function Id
1 STDCURAC,
1 Prev STDCUSAC,
1 Wrk STDCUSAC,
p_Err_ Code,
p_Err Params) THEHN
Dbg('Failed in stpks stdcusac Kernel.Fn Pre Default And vValidate 7);
BEETUEN FALSE .,
END IF .
Pr Convert Master To Child{(l Prewv STDCUSAC,p Prev stdcoustd)
Pr Convert Master To Child(l Wrk STDCUSAC,p Wrk stdcustd);
END TIF;

Fig 3.3: Snippet from stpks_stdcustd_main.sql

Here u can find that the developer written defaulting and validation for the parent screen is
being called before doing validations specific to child screen . Hence business logic for parent is
re used. Developer has the option to skip doing parent validation for the child screens using
skip handlers if he wishes so.

Note the functions Pr_convert_child_to_master and Pr _convert_master_to_child. These
procedures have to be used every time a call is made to the parent function id packages. This
procedure prepares object types for the parent and child respectively

4 Screen Child

Screen child can be derived from a parent screen or a child screen. Screen child uses the packages
for maintenance Functions from the parent itself. Only screen level modifications can be done in a Screen
Child

It should be noted that Screen Child are not exactly the child of child screens (second level
inheritance). It can be the child of a parent or a child screen. Difference between child and
screen child is that only screen level changes can be done in a screen Child. Business logic
will remain the same as its parent.

In child screen business logic can also be enhanced for the child function id.

4.1 Screen Development

For developing a New Screen Child screen,
e Select the action as New

Child and Screen Childs - Concept and Design



e Function Type as Screen Child

e Parent Xml field gets enabled
Click on browse button and select the required parent function form the hard disk.
On successful loading parent function will be get update with parent function id
value. Parent function can be either a parent function id or a child function id

e Parent function field will get defaulted to the name of the function id which has been
loaded as the parent function

e User has to enter Screen Child function Id in function Id field. Standard naming
conventions apply

¢ Function category will be defaulted with category of the parent. It cannot be modified

Function Generation

1
x

B xEFa

Action New |Func1ianType Screen Child » | Function Category Maintenance -

Fund\unld\ Parent Function Header Template None v

Save XML Path Parent Xml BROWSE Footer Template None hd

Search

(3 DataBlocks
|4 Screens
[ FieldSets
[ Actions

Fig 4.1: Screen Child Option to be selected

Only 4 nodes of the parent can be modified in a Screen Child
e Data Blocks, Screens ,Field Sets and Actions

Function Generation - X
X EF e
Action Function Type Function Category Maintenance -
Function Id STDCSCR Parent Function Header Template None -
Save XML Path Parent Xml ETDC\F_RAD Footer Template Maint Audit -

Search

& 3 DataBlocks

@ 4 Screens

# [J FieldSets
(3 Actions

Fig 4.2: The Tree Available for Screen Child

Child and Screen Childs - Concept and Design



Below are the possible operations that can be done on a screen child in Oracle FLEXCUBE
Development Workbench

e Existing elements cannot be deleted

e New blocks or block fields cannot be added

e Only certain properties of the fields in the block can be modified

e Properties of Screens and Field sets can be modified

e New screens and Field Sets can be added

e Tabs, Sections and partitions can be added to the existing screens.

e Web Service and Operation can be configured for the Screen Child, but
amendable fields cannot be modified.

Field level properties that can be modified are

Field Label

Field Size

Maximum Decimals
Default Value
Preview Value
Visible

Read Only

Calendar Text
Popup Edit Required
Uppercase Only

e Input by LOV only

e Not Required in XSD

Screen level modification can be done according to the requirement. Most of the properties at
the screen level can be modified
Field set level modification also can be done as per requirement .Note that the block to which
field set is attached cannot be changed at screen child for existing field sets. However all
properties can be modified for new field sets.

Note: If parent screen enhancements are happening parallel to Screen Child design developer
can use Screen child refresh option to upgrade latest parent changes to screen child .

4.2 Generated Files

Only Screen Xml (i.e. language specific xml) . Menu details, Label Details, XML Schema
Definitions and Screen Html will be generated from the Workbench for Screen-Child Screen.

10
Child and Screen Childs - Concept and Design



Front-End Files. System Packages Hook Packages Wleta Data Others i
adXML Main Package Spec Kernel Package Spec |Menu Details I ILaheI Details I | [ Xsds I
Screen Xml Main Package Body Kermnel Package Body Datasource Details Block PK Columns 5| nnotations
System JS Motification Triggers Cluster Package Spec LOV Details Function Call Forms
Upload Package Spec Cluster Package Body Block Details Upload Table Trigger
Upload Package Body Custom Package Spec Screen Details Notification Details Upload Tables Definition
Custom Package Body Amendable Details Function Parameters Archive Table Definition
Call form Details Purge Details
Summary Details
SLHo File Name

File Type Status "

Fig 4.3: Generated Files

4.3 Extensible Development

Screen child uses the packages and JavaScript files of parent itself.

11
Child and Screen Childs - Concept and Design



ORACLE

Child and Screen Childs - Concept and Design
August 2013

Oracle Corporation

World Headquarters

500 Oracle Parkwa
Redwood Shores, CA 94065
US.A.

Worldwide Inquiries:

Phone: +1.650.506.7000

Fax: +1.650.506.7200
www.oracle.com/ financial_services/

Copyright © 2012-2013 Oracle Financial Services Software Limited. All rights reserved.

No part of this work may be reproduced, stored in a retrieval system, adopted or transmitted in any form
or by any means, electronic, mechanical, photographic, graphic, optic recording or otherwise, translated
in any language or computer language, without the prior written permission of Oracle Financial Services
Software Limited.

Due care has been taken to make this document Child and Screen Childs-Concept and Design and
accompanying software package as accurate as possible. However, Oracle Financial Services Software
Limited makes no representation or warranties with respect to the contents hereof and shall not be
responsible for any loss or damage caused to the user by the direct or indirect use of this Child and Screen
Childs - Concept and Design and the accompanying Software System. Furthermore, Oracle Financial
Services Software Limited reserves the right to alter, modify or otherwise change in any manner the
content hereof, without obligation of Oracle Financial Services Software Limited to notify any person of
such revision or changes.

All company and product names are trademarks of the respective companies with which they are
associated.

12
Child and Screen Childs - Concept and Design



	1 Preface
	1.1 Audience
	1.2 Related Documents

	2 Introduction
	3 Child Screen
	3.1 Screen Development
	3.2 Generation of Files
	3.3 Extensible Development

	4 Screen Child
	4.1 Screen Development
	4.2 Generated Files
	4.3 Extensible Development


