Oracle® Endeca Information Discovery
Integrator

Integrator Acquisition System API Guide

Version 3.2.0 « January 2016

ORACLE

Copyright and disclaimer

Copyright © 2003, 2016, Oracle and/or its affiliates. All rights reserved.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners. UNIX is a registered trademark of The Open Group.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No
other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It
is not developed or intended for use in any inherently dangerous applications, including applications that may
create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall
be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe
use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software
or hardware in dangerous applications.

This software or hardware and documentation may provide access to or information on content, products and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim
all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and
its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services.

Oracle® Endeca Information Discovery Integrator: Integrator Version 3.2.0 « January 2016
Acquisition System API Guide

Table of Contents

Copyright and disclaimer 2
Preface. . . 5
About this QUIdE 5
Who should use this guide. 5
Conventions used inthis guUIde. e 5
Contacting Oracle Customer SUPPOIT o it e e e e e 6
Chapter 1: Introduction to the IAS APIS 7
The JAS APIS . . 7
Generating client stubs for the IAS Web services 8
Chapter 2: IAS Server APL. 10
IAS Server Core OPerationsottt 10
Connecting to the TAS Server. 11
Creating Crawlsot 11
About the source properties for crawls 12

File system source properties and example i 13

Source properties foracustomdatasource 15

Source properties fora manipulator 17

Setting text extraction OPtioNS i 19

Filtering files and folders 20

Creating wildcard filters e 21

Creating regular expression filters 22

Creating date filters e 23

Creating long filters 25

About the output properties for crawls. e 26

Record Store output properties and example 27

Record file output properties and example 28

LiStiNg Crawls 30
Starting a Crawlo 30
SIOPPING @ Crawlo 31
Deleting Crawls 32
Listing modules available to a crawl 33
Retrieving crawl configurations. 34
Updating crawl configurations. i e 35
Getting crawl MetriCS 36
Getting the status of acrawl. 37
Retrieving IAS Server information. 38
Chapter 3: Component Instance Manager APL. 39
Component Instance Manager client utility classes i 39
Oracle® Endeca Information Discovery Integrator: Integrator Version 3.2.0 « January 2016

Acquisition System API Guide

Table of Contents 4

Component Instance Manager core Operationsottt it 39
Creating @ COMPONENT e e e e e 40

Deleting a COMPONENE oo 40

Listing cCOompoNent iNStANCESottt 41

Listing COMPONENE LYPES ottt et e e e e e e e e 42

Chapter 4: Record Store APl 43
Record Store client utility Classes 43
Record Store core operations.ot 44
Getting and setting a Record Store instance configuration. 45

Running a baseline read of the last-committed generation. 46

Running adeltaread. 47
Maintaining client read state in the Record Store. 48
Performing an incremental Write 51
Performing a baseline write 51

Sample Writer client example. 52
Sample Reader client example. e 55
Oracle® Endeca Information Discovery Integrator: Integrator Version 3.2.0 « January 2016

Acquisition System API Guide

Preface

Oracle® Endeca Information Discovery Integrator is a powerful visual data integration environment that
includes:

The Integrator Acquisition System (IAS) for gathering content from delimited files, file systems, JDBC
databases, and Web sites.

Integrator ETL, an out-of-the-box ETL purpose-built for incorporating data from a wide array of sources,
including Oracle Bl Server.

In addition, Oracle Endeca Web Acquisition Toolkit is a Web-based graphical ETL tool, sold as an add-on
module. Text Enrichment and Text Enrichment with Sentiment Analysis are also sold as add-on modules.
Connectivity to data is also available through Oracle Data Integrator (ODI).

About this guide

This guide describes how to programmatically configure and run IAS crawls using the IAS Server API, the
Component Instance Manager API, and the Record Store API.

The guide assumes that you are familiar with the concepts of the Integrator Acquisition System, including how
file systems, delimited files, JDBC databases, and custom data sources are crawled by IAS.

Who should use this guide

This guide is intended for data developers who are using the Integrator Acquisition System APIs to crawl
source data and incorporate that data into an Endeca data domain.

Conventions used in this guide

The following conventions are used in this document.

Typographic conventions

The following table describes the typographic conventions used in this document.

Typographic conventions

Typeface Meaning

User Interface Elements This formatting is used for graphical user interface elements such as
pages, dialog boxes, buttons, and fields.

Code Sanpl e This formatting is used for sample code phrases within a paragraph.
<Vari abl e Name> This formatting is used for variable values, such as <install path>.

Fil e Path This formatting is used for file names and paths.
Oracle® Endeca Information Discovery Integrator: Integrator Version 3.2.0 « January 2016

Acquisition System API Guide

Preface

Symbol conventions

The following table describes symbol conventions used in this document.

Symbol conventions

Symbol

Description

Example

Meaning

>

The right angle bracket,
or greater-than sign,
indicates menu item
selections in a graphic
user interface.

File > New > Project

From the File menu,
choose New, then from
the New submenu,
choose Project.

Contacting Oracle Customer Support

Oracle Customer Support provides registered users with important information regarding Oracle software,
implementation questions, product and solution help, as well as overall news and updates from Oracle.

You can contact Oracle Customer Support through Oracle's Support portal, My Oracle Support at

https://support.oracle.com.

Oracle® Endeca Information Discovery Integrator: Integrator

Acquisition System API Guide

Version 3.2.0 « January 2016

https://support.oracle.com

s g Chapter 1
e'in :
. Introduction to the IAS APIs
This section introduces each API in the Integrator Acquisition System.

The IAS APIs

Generating client stubs for the IAS Web services

The IAS APIs

The Integrator Acquisition System includes the following APIs:

* |AS Server APl — A WSDL-based API that controls crawling operations against a variety of file systems,
delimited files, JDBC databases, and custom data sources.

» Component Instance Manager APl — A WSDL-based API that creates, lists, and deletes Record Store
instances.

* Record Store APl — A WSDL-based API that modifies and controls a variety of reading, writing, and utility
operations against Record Store instances.

» |AS Extension APl — A Java-based API to build extensions to the Integrator Acquisition System such as
data sources and manipulators. This APl is for plugin developers and it is documented in the Integrator
Acquisition System Extension API Guide.

The rest of this guide documents the WSDL-based APIs. Each WSDL-based API in the Integrator Acquisition
System can be used with any programming language that has Web services support, and developers can
write crawl functions in their preferred language (Java, .NET, etc.) as a Web service.

Name and location of the WSDL files

You can find the following WSDL files in <i nst al | pat h>\| AS\ <ver si on>\ doc\ wsdl :
* IAS Server APl — | asCraw er Servi ce. wsdl .
» Component Instance Manager APl — Conponent | nst anceManager . wsdl .

* Record Store APl — Recor dSt or e. wsdl .

Java convenience classes
For convenience, Java versions of each API are included in <i nst al | pat h>\| AS\ <version>\Ilib:
* IAS Server APl —ias-apil\eidi-api-3.2.0.jar.

» Component Instance Manager APl — conponent - manager - api \ conponent - nanager - api -
3.2.0.jar.

* Record Store APl —recordstore-api\recordstore-api-3.2.0.jar.

Oracle® Endeca Information Discovery Integrator: Integrator Version 3.2.0 « January 2016
Acquisition System API Guide

Introduction to the IAS APIs 8

Each API also includes utility (helper) classes in its JAR file.

If desired, you can use the Java version of the API rather than generate client stubs from the WSDL files. The
Java versions were generated using Apache CXF. For other languages (such as .NET), you must generate
the client stubs in your programming language.

Java examples in the guide

Examples in this guide use the Java versions of the APIs mentioned above. This convention has an important
implication in the code examples:

Most types of identifiers are set in the constructor rather than in a setter method. For example:
Modul el d nodul el d = new Mbdul el d("File Systent);

If you are generating client stubs, most types of identifiers are set using a setter method. For example:

Modul el d nodul el d = new Mbdul el d();
nmodul el d. set1d("File Systent);

The specific setter usage depends on the application you use to generate client stubs. For example, setter
usage varies in stubs generate with Apache Axis and Apache CXF.

Reference documentation (Javadoc) for the IAS APIs

The Javadoc provides reference documentation for both the core and utility classes. You can find the Javadoc
in <i nstal | pat h>\I AS\ <ver si on>\ doc:

» |AS Server APl Reference — i as- server -j avadoc
» Component Instance Manager APl Reference — conponent - manager - j avadoc

» Record Store API Reference — r ecor dst or e- j avadoc

Generating client stubs for the IAS Web services
To create a client application that consumes any of the IAS Web services, you need the particular Web
service's WSDL file to generate client stubs.

A WSDL file specifies value types, exceptions, and available methods in a Web service in a programmatic
fashion. Typically, a client developer uses a tool that parses the WSDL file and generates client-side stubs
(also called proxy classes) and value types. These generated files include all the code necessary to serialize
and deserialize SOAP messages and make the SOAP layer transparent to the client developer. The IAS
WSDL files can be used with any language that has Web services support.

Among the tools that generate client stub code from the WSDLs are the following:
e Apache CXF 2.2 or later
» Java Web Services Developer Pack (Java WSDP), version 1.4 or later

» Web Services Description Language Tool (wsdl.exe), available as part of the Microsoft .NET Framework
SDK

Specify the appropriate choice below as the package name when you generate stubs for a particular Web
service:

e com endeca. eidi.ias. api

Oracle® Endeca Information Discovery Integrator: Integrator Version 3.2.0 « January 2016
Acquisition System API Guide

Introduction to the IAS APIs 9

 com endeca. ei di . conponent . manager
e com endeca. ei di . recordstore

For example, the CXF wsdl 2j ava utility takes the WSDL file and generates fully annotated Java code with
one of the following commands:

* wsdl 2j ava -p com endeca. ei di . i as.api -client | asCrawl er Servi ce. wsdl

* wsdl 2j ava - p com endeca. ei di . conponent . manager -cli ent
Conponent | nst anceManager . wsdl

* wsdl 2j ava - p com endeca. ei di . recordstore -client RecordSt ore. wsdl
For details on using a WSDL code-generation utility, refer to the utility's documentation.

Keep in mind that the exact syntax of a class member depends on the output of the WSDL tool that you are
using. Therefore, check the client stub classes that are generated by your WSDL tool for the exact syntax of
the class members.

Oracle® Endeca Information Discovery Integrator: Integrator Version 3.2.0 « January 2016
Acquisition System API Guide

. s Chapter 2
.1-..E
R g IAS Server API

This section describes the IAS Server API.

IAS Server core operations
Connecting to the IAS Server
Creating crawls

Listing crawls

Starting a crawl

Stopping a crawl

Deleting crawls

Listing modules available to a crawl
Retrieving crawl configurations
Updating crawl configurations
Getting crawl metrics

Getting the status of a crawl

Retrieving IAS Server information

IAS Server core operations

This topic describes the IAS Server APl core methods.

The following methods are provided by the API:

e createCraw creates and stores a new crawl.

e startCraw starts a crawl.

e |istCraw s lists all the crawls that have been created.

* stopCraw stops a crawl that is currently running.

» del eteCraw deletes an existing crawl.

e get St at us returns the status of a specified crawl.
* get Metrics retrieves crawl statistics for a specified crawl.

» get Craw Confi g gets the configuration settings of a specified crawl.

» |istMdul es returns a list of the available module IDs for data sources or manipulators. Module IDs may
include any custom data source extensions or custom manipulator extensions that you installed using the

IAS Extension API.

Oracle® Endeca Information Discovery Integrator: Integrator
Acquisition System API Guide

Version 3.2.0 « January 2016

IAS Server API 11

e updat eCrawl updates the configuration settings for an existing crawl.

» get Server | nf o returns a list of the IAS Server properties.

/7

Note: The syntax descriptions for these operations use Java conventions. The examples in this guide
use client stubs generated with Apache CXF 2.2. However, the exact syntax of a class member
depends on the output of the WSDL tool that you are using.

Connecting to the IAS Server

Call the I asCrawl er Locat or. cr eat e() method to connect to the IAS Server.

The 1 asCrawl er Locat or class establishes a connection with the IAS Server. In particular, the
I asCrawl er Locat or . get Servi ce() method is the call that makes the connection. The Ser vi ceAddr ess
stores connection information including the host, and port, and context path of the IAS Server.

To create a connection to the IAS Server:

1.

Create a Ser vi ceAddr ess object and specify the host and port of the server running the IAS Server
and also specify the cont ext Pat h of WebLogic. If you are installing into Jetty, not WebLogic, the
cont ext Pat h can be set to an empty string.

Create an | asCrawl er Locat or by calling creat e() and specifying the Ser vi ceAddr ess object. For
example:

Servi ceAddr ess address = new Servi ceAddress("l ocal host", 8401, contextPath);
lasCrawl er Locator | ocator = |asCraw erLocator. creat e(address);

Create an | asCr awl er object and call get Ser vi ce() to establish a connection to the server and the
Endeca IAS Service. For example:

lasCrawl er crawl er = | ocator.get Service();

You now have a connection to the IAS Server that can perform crawling operations.

Creating crawls

Use the | asCraw er. creat eCraw () method to create a new crawl of any type (for example, file system,
delimited file, or custom data source).

The syntax of the method is:
| asCrawl er. createCraw (Craw Config craw Confi g)

The cr awl Confi g parameter is a Cr awl Conf i g object that has the configuration settings of the crawl.

To create a new crawl:

1. Make sure that you have created a connection to the IAS Server.
2. Instantiate a Crawl | d object and set the Id for the crawl in the constructor.
You can create an ID with alphanumeric characters, underscores, dashes, and periods. All other
characters are invalid for an ID.
For example:
/] Create a newcraw IDwth the nane set to Denp.
Oracle® Endeca Information Discovery Integrator: Integrator Version 3.2.0 « January 2016

Acquisition System API Guide

IAS Server API 12

Craw Id craw | d = new Craw | d(" Denp") ;

3. Instantiate a Cr awl Confi g object and pass in the Crawl | d object .

For example:

// Create a crawl configuration.
Craw Config craw Config = new Craw Config(craw | d);

4. Instantiate a Sour ceConfi g object

For example:

/'l Create source configuration.
Sour ceConfi g sourceConfig = new SourceConfig();

5. Set the source properties and seeds in the Sour ceConf i g object. Detailed information on source
properties is provided in other topics.
6. Set the Sour ceConfi g on the Craw Confi g.

For example:

/'l Set source configuration.
craw Confi g. set Sour ceConfi g(sourceConfig);

7. Optionally, you can set configuration options for such features as document conversion, logging, and
filters for files and directories. Detailed information on these options is provided in other topics.

8. Create the crawl by calling I asCrawl er. creat eCrawl () and passing the Cr awl Confi g (the
configuration) object:

For example:
craw er. createCraw (craw Config);

If the | asCraw er. creat eCraw () method fails, it throws an exception:
e Craw Al readyExi st sExcept i on occurs if a crawl of the same name already exists.

* InvalidCraw Confi gExcepti on occurs if the configuration is invalid. You can call
get Crawl Val i dati onFai | ures() to return the list of crawl validation errors.

To catch these exceptions, use at ry block when you issue the method.

If the new crawl is successfully created, it can be started with the | asCraw er. start Craw () method.

About the source properties for crawls

The Sour ceConfi g class allows a client to specify information about the data source that is being crawled.
The Sour ceConfi g class uses two methods to set data source properties: set Modul el d() and
set Modul eProperties().

Module ID

The set Mbdul el d() method sets the module ID of the data source for this crawl. A module ID is a Modul el d
object.

The string Fi | e Syst emis the module ID for a file system crawl (whose source is a file system). You must
specify this module ID when you create a file system crawl.

Oracle® Endeca Information Discovery Integrator: Integrator Version 3.2.0 « January 2016
Acquisition System API Guide

IAS Server API

13

Each crawl type has its own unique module ID. Use the | asCraw er. | i st Modul es() method to find out the
module IDs that are available to the IAS Server.

A plug-in developer specifies the Modul el d for a custom data source. An IAS data developer can determine
the Modul el d for a custom data source by running the | i st Modul es and task in the IAS Server Command-

line Utility.

Module Properties

Each Modul eProperty is a key/value pair or a key/multi-value pair that provides configuration information
about this data source. You specify a Modul eProperty by calling set Key() to specify a string representing the
key and by calling set Val ues() to set one or more corresponding values.

You then set each Modul eProperty on the Sour ceConfi g object by calling addMbdul eProperty().

File system source properties and example

The Sour ceConf i g object for a file system crawl requires a Modul el d that specifies "Fi | e Systent, a
Modul eProperty to specify the seeds, and additional Modul ePr operty objects for any optional source

properties.

Table 2.1: Module Properties for file system data sources

File System Module Property Key
Name

Key Value Description

seeds

The seeds property is a key/multi-value pair. The key is seeds
and the multi-value pair is one or more strings to a file or folder.
File paths used as seeds must be absolute paths. Required.

gather Nati veFi | eProperties

The gat her Nati veFi | eProperti es property (if settotrue)
enables the crawl to gather operating system-level properties,
such as Windows ACL properties (e.g.,

Endeca. Fi | eSyst em ACL. Al | owRead) or UNIX owner,
group, and readable properties (e.g.,

Endeca. Fi | eSyst em | sOwmer Readabl e). The default is
fal se.

Optional.

expandAr chi ves

The expandAr chi ves property (if set to t r ue) enables the
crawl to expand archived entries. Enabling this property creates
an Endeca record for each archived entry and populates its
properties. Enabling the document conversion option extracts
text. Note that the crawl does not gather native file properties for
archived entries even if that option is enabled. The default is

f al se. Optional.

Here is an example of the source properties for a file system crawl.

/| Connect to the | AS Server.

Servi ceAddr ess address = new Servi ceAddress("l ocal host", 8401, contextPath);
| asCrawl er Locator | ocator = |asCraw erLocator. create(address);

Oracle® Endeca Information Discovery Integrator: Integrator Version 3.2.0 « January 2016

Acquisition System API Guide

IAS Server API

14

lasCrawl er crawl er = | ocator.getService();

/|l Create a newcrawl Id with the nanme set to Deno.
Crawl Id crawIld = new Craw | d(" Demp") ;

/'l Create the crawl configuration.
Crawl Config craw Config = new Craw Config(craw |d);

/'l Create the source configuration.
Sour ceConfi g sourceConfig = new SourceConfig();

/]l Create a file system nodul e |D.
Modul el d nodul eld = new Mobdul el d("File Systent);

// Set the nodule IDin the source config.
sour ceConfi g. set Modul el d(nodul el d) ;

/] Create a nodul e property object for the seeds.

Modul eProperty seeds = new Mbdul eProperty();

/1 Set the key for seeds.

seeds. set Key("seeds");

/1 Set multiple values for seeds.

seeds. set Val ues("C:\\tnp\\i asdocset”,"C:\\tnp\\et| docset");

// Set the seeds nodul e property on the source config.
sour ceConfi g. addModul ePr operty(seeds);

/'l Create a nodul e property for gathering native file props.
Modul eProperty nativeFil eProps = new Mbdul eProperty();

/1 Set the key for gathering native file properties.

nati veFi | eProps. set Key("gat her Nati veFi | eProperties");

/'l Set the value to enable gathering native file properties.
nati veFi | eProps. set Val ues("true");

/1 Set the nativeFileProps nodul e property on the source config.
sour ceConfi g. addModul eProperty(nativeFi | eProps);

/] Create a nodul e property object for expandi ng archives.
Modul eProperty extractArchi ves = new Mbdul eProperty();

/1 Set the key for extracting archive files.

extract Archi ves. set Key("expandAr chi ves");

/'l Set the value to enabl e expandi ng archives.

extract Archi ves. set Val ues("true");

/] Set the extractArchives nodul e property on the source config.
sour ceConfi g. addModul ePr operty(extractArchi ves);

/] Set the source configuration in the craw configuration.
craw Confi g. set Sour ceConfi g(Sour ceConfi g);

/] Create the craw .
crawl er.createCrawl (craw Confi g);

Note that if you retrieve a Sour ceConf i g object from a configured crawl, you can call the get Modul el d()
method to get the module ID and the get Modul eProperti es() method to retrieve the list of module
properties.

Oracle® Endeca Information Discovery Integrator: Integrator Version 3.2.0 « January 2016

Acquisition System API Guide

IAS Server API 15

Source properties for a custom data source

The Sour ceConfi g for a custom data source crawl contains a mandatory Modul el d and Modul ePr operty
objects that define the custom data source to crawl and any other optional properties that are necessary for a
custom data source.

Module ID for a custom data source
A plug-in developer specifies the Modul el d for a custom data source. An IAS data developer can determine
the Modul el d for a custom data source by running the | i st Modul es and task in the IAS Server Command-
line Utility:
1. Start a command prompt and navigate to <i nstal | pat h>\| AS\ <ver si on>\ bi n.
2. Type i as- cnd and specify the | i st Modul es task with the module type (- t) option and specify and
argument of SOURCE. For example:

i as-cnd. bat |istMdules -t SOURCE

Sanpl e Data Source

*]d: Sanpl e Data Source

*Type: SOURCE

*Description: Sanple Data Source for Testing

3. In the list of data sources returned by | i st Modul es, locate the custom data source and Id value.

Module Properties for a custom data source

Custom data sources can use any number of module properties. A plugin developer determines what module
properties are necessary for a custom data source and whether the module properties are required or
optional.

An IAS data developer can check the available module properties for a custom data source by running the
get Mbdul eSpec task of the IAS Server Command-line Utility:

1. Start a command prompt and navigate to <i nst al | pat h>\| AS\ <ver si on>\ bi n.

2. Type i as- cnd and specify the get Modul eSpec task with the ID of the module whose source properties
you want to see. For example:

i as-cnd. bat get Modul eSpec -id "Sanpl e Data Source"
Sanpl e Data Source

[Modul e | nformati on]

*| d: Sanple Data Source

*Type: SOURCE

*Description: Sanple Data Source for Testing

[Sanpl e Data Source Configuration Properties]
Group: Basic Settings

User nane:

*Name: user nane

*Type: {http://ww. w3. org/ 2001/ XM_Schena} stri ng
*Required: true

*Max Length: 256

*Description: The nanme of the user used to log on to the repository
*Mul tiple Values: false

*Mul tiple Lines: false

*Password: false

*Al ways Show true

Oracle® Endeca Information Discovery Integrator: Integrator Version 3.2.0 « January 2016
Acquisition System API Guide

IAS Server API

16

Passwor d:

*Nane: password

*Type: {http://ww.w3. org/ 2001/ XM_.Schena}stri ng

*Required: true

*Max Length: 256

*Description: The password used to log on to the repository
*Mul tiple Values: false

*Mul tiple Lines: false

*Password: true

*Al ways Show true

Here is an example of the source properties for a custom data source crawl.

/1 Connect to the |IAS Server.

Servi ceAddr ess address = new Servi ceAddress("l ocal host", 8401, contextPath);
| asCrawl er Locator | ocator = |asCraw erLocator. creat e(address);

lasCrawl er crawl er = | ocator. get Service();

/| Create a newcrawl Id with the nane set to Deno.
Craw Id craw | d = new Craw | d(" Denp") ;

/'l Create the crawl configuration.
Crawl Config crawl Config = new Craw Config(craw | d);

/| Create the source configuration.
Sour ceConfi g sourceConfig = new SourceConfig();

I/l Create a nodule ID for a Sanple Data Source repository.
// Set the nodule IDin the constructor.
Modul el d nodul el d = new Mdul el d(" Sanpl e Data Source");

/l Create a list for the nodul e property objects.
Li st <Mbdul eProperty> cnmsPropsLi st = new ArraylLi st <Modul eProperty>();

/] Create a nodul e property for usernane.
/'l Set key/values of the nodule property as strings in the constructor.
Modul eProperty unane = new Modul eProperty("usernanme", "SALES\\usernane");

/1 Set the nodul e property in the nbodul e property list.
cnsPropslLi st. add(unane) ;

/'l Create a nodul e property for password.
/'l Set key/values of the nodule property as strings in the constructor.
Modul eProperty upass = new Mdul eProperty("password", "endeca");

// Set the nodul e property in the nodule property list.
crsPropsLi st. add(upass) ;

/] Set the nodule property list in the source configuration.
sour ceConfi g. set Modul eProperti es(cnsPropsList);

/'l Set the source configuration in the crawl configuration.
crawl Confi g. set Sour ceConfi g(Sour ceConfi g);

/] Create the craw .
craw er.createCraw (craw Config);

Oracle® Endeca Information Discovery Integrator: Integrator
Acquisition System API Guide

Version 3.2.0 « January 2016

IAS Server API 17

Source properties for a manipulator

The Mani pul at or Confi g for a manipulator contains a mandatory Modul el d and Modul ePr oper t y objects that
define the manipulator to run and any other optional properties that are necessary for a manipulator.

Module ID for a manipulator

A plugin developer specifies the Modul el d for a manipulator. An IAS data developer can determine the
Modul el d for a manipulator by running the | i st Modul es and task in the IAS Server Command-line Utility:

1. Start a command prompt and navigate to <i nstal | pat h>\| AS\ <ver si on>\ bi n.
2. Type i as- cnd and specify the | i st Modul es task with the module type (- t) option and specify and
argument of MANI PULATOR. For example:

ias-cnd |istMdules -t MANI PULATOR
Subst ri ng Mani pul at or
*| d: com endeca. i as. ext ensi on. sanpl e. mani pul at or. subst ri ng. Subst ri ngMani pul at or

*Type: MANI PULATOR
*Description: Generates a new property that is a substring of another property
val ue

3. In the list of manipulators returned by | i st Modul es, locate the manipulator and its ID value. That
becomes the Modul el d.

Module Properties for a manipulator

Manipulators can use any number of module properties. A plugin developer determines what module
properties are necessary for a manipulator and whether the module properties are required or optional.

An IAS data developer can check the available module properties for a manipulator by running the
get Mbdul eSpec task of the IAS Server Command-line Utility:

1. Start a command prompt and navigate to <i nst al | pat h>\| AS\ <ver si on>\ bi n.
2. Type i as- cnd and specify the get Modul eSpec task with the ID of the module whose source properties

you want to see. For example:

i as-cnd get Mbdul eSpec -id
com endeca. i as. ext ensi on. sanpl e. mani pul at or. subst ri ng. Subst ri ngMani pul at or
Substring Mani pul at or

[Modul e | nformati on]
*| d: com endeca. i as. ext ensi on. sanpl e. mani pul at or. subst ri ng. Subst ri ngMani pul at or

*Type: MANI PULATOR
*Description: CGenerates a new property that is a substring of another property
val ue

[Substring Manipul ator Configuration Properties]
G oup:
Source Property:
*Nane: sourceProperty
*Type: {http://ww. w3. org/ 2001/ XM_Schena}stri ng
*Requi red: true
*Defaul t Val ue:
*Max Length: 255
*Descri ption:
*Mul tiple Values: false
*Mul tiple Lines: false
*Password: false

Oracle® Endeca Information Discovery Integrator: Integrator Version 3.2.0 « January 2016
Acquisition System API Guide

IAS Server API 18

*Al ways Show false

Target Property:
*Nane: targetProperty
*Type: {http://ww. w3. org/ 2001/ XM_Schena}stri ng
*Requi red: true
*Defaul t Val ue:
*Max Length: 255
*Descri ption:
*Mul tiple Values: false
*Mul tiple Lines: false
*Password: false
*Al ways Show false

Substring Length:
*Nanme: |ength
*Type: {http://wwm. w3. or g/ 2001/ XM_Schenm}i nt eger
*Requi red: true
*Defaul t Val ue: 2147483647
*Mn Val ue: -2147483648
*Max Val ue: 2147483647
*Description: Substring |ength
*Mul tiple Values: false
*Mul tiple Lines: false
*Password: fal se
*Al ways Show fal se

Substring Start |ndex:
*Nane: start!| ndex
*Type: {http://ww.w3. org/ 2001/ XM_Schenm}i nt eger
*Required: false
*Default Value: O
*Mn Val ue: -2147483648
*Max Val ue: 2147483647
*Description: Substring start index (zero based)
*Mul tiple Values: fal se
*Mul tiple Lines: false
*Password: false
*Al ways Show false

Here is an example of the source properties for a crawl that includes the manipulator in the above example.

/1l Connect to the | AS Server.

Servi ceAddr ess address = new Servi ceAddress("l ocal host", 8401, contextPath);
| asCrawl er Locat or | ocator = |asCraw erLocator. creat e(address);

lasCrawl er crawl er = | ocator. get Service();

/| Create a newcrawl Id with the nane set to Deno.
Crawm Id craw | d = new Craw | d(" Denp") ;

/] Create the crawl configuration.
Crawl Config crawl Config = new Craw Config(craw | d);

/] Create a list for manipulator configurations, even if
/'l there is only one.
Li st <Mani pul at or Confi g> nani pul at orLi st = new ArrayLi st <Mani pul at or Confi g>();

/]l Create a nodule ID for a Substring Mni pul at or.

/1 Set the nodule IDin the constructor.

Modul el d nodul el d

= new Modul el d("com endeca. i as. ext ensi on. sanpl e. mani pul at or. substri ng. Substri ngMani pul ator");

// Create a nmanipul ator configuration.
Mani pul at or Confi g mani pul at or = new Mani pul at or Conf i g(nodul el d) ;

/]l Create a list for the nodul e property objects.
Li st <Mbdul eProperty> nani pul at or PropsLi st = new ArrayLi st <Mbdul eProperty>();

Oracle® Endeca Information Discovery Integrator: Integrator Version 3.2.0 « January 2016
Acquisition System API Guide

IAS Server API 19

I/l Create a nodul e property for sourceProperty.
/'l Set key/values of the nodul e property as strings in the constructor.
Modul eProperty sp = new Mbdul eProperty("sourceProperty", "Endeca.Docunent.Text");

/] Set the nodul e property in the nodule property list.
mani pul at or PropsLi st . add(sp) ;

/] Create a nodul e property for targetProperty.
/'l Set key/values of the nodule property as strings in the constructor.
Modul eProperty tp = new Mdul eProperty("target Property", "Truncated. Text");

/'l Set the nodul e property in the nodule property list.
mani pul at or PropsLi st. add(tp);

// Create a nodul e property for |ength.
/'l Set key/values of the nodule property as strings in the constructor.
Modul eProperty | ength = new Mbdul eProperty("length", "20");

// Set the nodul e property in the nodule property list.
mani pul at or PropsLi st. add(| engt h) ;

/'l Set the nodule property list in the manipul ator configuration.
mani pul at or . set Mbdul eProperti es(nmani pul at or PropsLi st);
mani pul at or Li st . add(mani pul at or) ;

/1 Set the list of manipulator configurations in the crawl configuration.
craw Confi g. set Mani pul at or Confi gs(mani pul at or Li st);

/] Create the craw .
craw er. createCraw (craw Config);

Setting text extraction options

The Text Extracti onConfi g class specifies document conversion parameters to override default values.

/,.s Note: The phrases text extraction and document conversion mean the same thing.

The Text Extracti onConfi g class has methods to set these document conversion options:

e Whether document conversion should be performed. The default for file system crawls is t r ue. The
default for custom data source extensions defaults to f al se unless the extension developer implements
an interface that supports binary content. If set to t r ue, the next options can be used.

» Whether to use local file copies to perform the text extraction (file system crawls only).

* The time that IAS Server waits for text extraction results from the IAS Document Conversion Module
before retrying.

To set the text-extraction options:

1. Make sure that you have already created a Sour ceConfi g, a Crawl Confi g, and set the name and the
seeds (if required for the source type) for the crawl.

2. Instantiate an empty Text Ext racti onConfi g object
For example:
Text Extracti onConfi g text Options = new Text Extracti onConfi g();
3. Call the set Enabl ed() method to set a Boolean value to enable text extraction:

/] Enable text extraction for this craw .

Oracle® Endeca Information Discovery Integrator: Integrator Version 3.2.0 « January 2016
Acquisition System API Guide

IAS Server API 20

t ext Opti ons. set Enabl ed(true);

4. For file system crawls, you can use the set MakeLocal Copy() method to set a Boolean indicating
whether files should be copied to a local temporary directory before text is extracted from them. The
default for set MakeLocal Copy() is f al se. Custom data source extensions may also make local
copies if the extension developer implemented the Bi nar yCont ent Fi | ePr ovi der interface of the IAS
Extension API.

/'l Enabl e use of local file copying.
t ext Opti ons. set MakeLocal Copy(true);

5. If desired, call the set Ti meout () method and specify an integer to set amount of time (in seconds)
IAS waits for text extraction on a document to finish before attempting again. The default is 90
seconds.

/] Set timeout to 120 seconds.
t ext Opti ons. set Ti neout (120) ;

6. Call the Crawl Confi g. set Text Ext racti onConfi g() method to set the populated
Text Ext racti onConfi g object in the Crawl Confi g object:

/] Set the text extraction options in the configuration
craw Confi g. set Text Extracti onConfi g(textOptions);

7. Create the file system crawl:
craw er. createCraw (craw Config);

Note that if you retrieve a Text Ext ract i onConf i g object from a configured crawl, each of the set methods
has a corresponding get method, such as the get Ti neout () method.

Filtering files and folders

The API provides classes to specify inclusion and exclusion filters for files and folders.

You add include and exclude filters to the crawl configuration to ensure that the IAS Server processes the
proper files and folders when running a crawl.

f Note: Custom data sources built using the IAS Extension APl do not support filters.

Keep in mind that if you use both include and exclude filters, the exclude filters take precedence. For
additional detailed information about how filters interact with each other and Endeca properties, see the
"About filters" topic in the Integrator Acquisition System Developer's Guide.

The filter classes are the following:
W/ dcardFilter for filtering based on a wildcard value.
* RegexFil ter for filtering based on a regular expression value.
» DateFilter for filtering based on a datetime value.
* LongFi Il ter for filtering based on a long value.

For all filters, you must specify a property against which the filter is applied. The property is typically a
standard property generated by IAS (such as the Endeca. Fi | eSyst em Nane property), but it can also be a

custom property.

Oracle® Endeca Information Discovery Integrator: Integrator Version 3.2.0 « January 2016
Acquisition System API Guide

IAS Server API 21

Some of the classes used for creating filters are the following:

Conpari sonOper at or provides comparison operators, such as EQUAL, NOT_EQUAL, LESS, and
GREATER.

Fi | ter is the base type for all filters, providing for an optional filter scope property.

Fi | t er Scope provides enumerations for the FILE and DIRECTORY filter scopes.

After you create a filter, you must set it in a Sour ceConf i g object, which in turn is set in the Crawl Confi g
configuration object.

Creating wildcard filters

The W dcar dFi | t er class specifies a wildcard as an inclusion or exclusion filter.

A W dcardFilter is a filter that applies a wildcard to a particular property. The wildcard matcher uses the
guestion-mark (?) character to represent a single wildcard character and the asterisk (*) to represent multiple
wildcard characters. Matching is case insensitive: this is not configurable (If case sensitivity is required,
consider using a regular expression). In the example below, the filter applies to the

Endeca. Fi | eSyst em Nane property.

To create a wildcard filter:

1.
2.

Make sure that you have created a Sour ceConfi g and a Cr awl Confi g.
Instantiate a new, empty W | dcar dFi | t er object:

Wl dcardFilter filter = new WldcardFilter();

Call the set Proper t yName() method (inherited from the Fi | t er class) to set the name of the property
against which the filter is applied:

/1 filter on the file nane
filter.setPropertyNane("Endeca. Fil eSystem Nane") ;

Use the set Wi dcar d() method to set the wildcard:

/1 exclude Word files
filter.setWIdcard("*.doc");

Use the set Scope() method (inherited from the Fi | t er class) to set the filter scope. You can set the
scope to files (as in the following example), or to folders (Fi | t er Scope. DI RECTORY).

/] set the scope of the filter for only files
filter.setScope(FilterScope.FlLE);

Create a list of Fi | t er objects and use the add() method (inherited from the Li st interface) to add
the wildcard filter.

List<Filter> filterList = new ArrayList<Filter>();
filterList.add(filter);

Use the Sour ceConfi g. set Excl udeFi | t er s() method to set the populated list in the Sour ceConfi g
configuration object. If this were an inclusion filter, you would use the
Sour ceConfi g. set I ncl udeFil ters() method instead.

/'l Set the filter in the source configuration.
sour ceConfi g. set Excl udeFil ters(filterList);

Oracle® Endeca Information Discovery Integrator: Integrator Version 3.2.0 « January 2016
Acquisition System API Guide

IAS Server API 22

8. Use the Craw Confi g. set Sour ceConfi g() method to set the populated Sour ceConfi g in the main
Craw Confi g configuration object.

/1l Set the source config in the crawl configuration.
craw Confi g. set Sour ceConfi g(sourceConfig);

Note that the Wl dcar dFi | t er class has a get W1 dcard() method to retrieve a wildcard value. In addition,
the Sour ceConf i g class has the get Excl udeFi I ters() and get I ncl udeFi | ter s() methods to retrieve the
filters from the source configuration.

Creating regular expression filters

The RegexFi | t er class specifies a regular expression as an inclusion or exclusion filter.

A RegexFi | ter is a filter that applies a regular expression to a particular record property. Matching is case
sensitive by default (this is not configurable through the API). In the example below, the filter applies to the
Endeca. Fi | eSyst em Nane property.

IAS implements Sun’s j ava. uti | . r egex package to parse and match the pattern of the regular expression.
Therefore, the supported regular-expression constructs are the same as those in the documentation page for
thejava. util.regex. Pattern class:

http://java. sun. coni javase/ 6/ docs/ api /javal/ util/regex/ Pattern. htm
This means that you can use any of the following constructs:
» Escape characters, such \t for the tab character.

» Character classes (simple, negation, range, intersection, subtraction). For example, [*abc] means match
any character except a, b, or ¢, while [a-zA-Z] means match any upper- or lower-case letter.

» Predefined character classes, such as \d for a digit or \s for a whitespace character.

» POSIX character classes (US-ASCII only), such as \p{Alpha} for an alphabetic character, \p{Alnum} for
an alphanumeric character, and \p{Punct} for punctuation.

» Boundary matchers, such as ” for the beginning of a line, $ for the end of a line, and \b for a word
boundary.

» Logical operators, such as X|Y for either X or Y.
For a full list of valid constructs, see the Pattern class documentation page referenced above.
To create a regex filter:
1. Make sure that you have created a Sour ceConfi g (see the following example) and a Cr awl Confi g.

Sour ceConfi g sourceConfig = new SourceConfig();

2. Instantiate a new, empty RegexFi | t er object:

RegexFilter filter = new RegexFilter();

3. Use the set PropertyNane() method (inherited from the Fi | t er class) to set the name of the property
against which the filter will be applied:
For example:

/1 Filter on the file nane.
filter.setPropertyNane("Endeca. Fi | eSystem Nane");

Oracle® Endeca Information Discovery Integrator: Integrator Version 3.2.0 « January 2016
Acquisition System API Guide

http://java.sun.com/j2se/1.5.0/docs/api/java/util/regex/Pattern.html

IAS Server API 23

4. Call the set Regex() method to set the regular expression:

For example:
/| Exclude executable and help files.
filter.setRegex(".*\. (exe|bin|dlI|hlp)$");

5. Use the set Scope() method (inherited from the Fi | t er class) to set the filter scope. You can set the
scope to files (as in the following example), or to directories (Fi | t er Scope. DI RECTORY).
For example:
/'l Set the scope of the filter for only files.
filter.setScope(FilterScope.FlLE);

6. Create a list of Fi | t er objects and add the regex filter to it.

For example:
List<Filter> filterList = new ArrayList<Filter>();
filterList.add(filter);

7. Use the Sour ceConfi g. set Excl udeFi | t er s() method to set the populated list in the Sour ceConfi g
configuration object. If this were an inclusion filter, you would use the
Sour ceConfi g. set | ncl udeFil ters() method instead.

For example:
/1 Set the filter in the source configuration.
sour ceConfi g. set Excl udeFil ters(filterList);

8. Use the Craw Confi g. set Sour ceConfi g() method to set the populated Sour ceConfi g in the main
Crawl Confi g configuration object.

/'l Set the source config in the crawl configuration.
craw Confi g. set Sour ceConfi g(sourceConfig);

Note that the RegexFi | t er class has a get Regex() method to retrieve a regex value. In addition, the
Sour ceConfi g class has the get Excl udeFi | ters() and get I ncl udeFi | t ers() methods to retrieve the filters
from the source configuration.

Creating date filters

The Dat eFi | t er class specifies a date against which files and folders can be filtered.

A Dat eFi | t er uses a datetime value to filter temporal-based properties, such as the

Endeca. Fi | eSyst em Modi fi cat i onDat e property (used in the example below).

The filter also uses a comparison operator that specifies how the operands are compared, using the
enumerations:

 BEFORE
* AFTER

For example, if you create a date exclude filter that performs a BEFORE comparison against the
Endeca. Fi | eSyst em Modi fi cat i onDat e property, then files that have been modified before the date
reference are excluded.

Oracle® Endeca Information Discovery Integrator: Integrator Version 3.2.0 « January 2016
Acquisition System API Guide

IAS Server API 24

To create a date filter:

1. Make sure that you have created a Sour ceConfi g and a Crawl Confi g.
For example:
Sour ceConfi g sourceConfig = new SourceConfig();

2. Instantiate a new, empty Dat eFi | t er object:
DateFilter filter = new DateFilter();

3. Use the set PropertyNane() method (inherited from the Fi | t er class) to set the name of the property
against which the filter will be applied:
I/l Filter on the |ast-nodified date.
filter.setPropertyNanme("Endeca. Fi | eSystem Modi fi cati onDate");

4. Use the set Ref erenceVal ue() method to set the date/time value. Note that the Java API takes a
Dat e object as its parameter and the WSDL-generated classes take a XMLG egor i anCal endar object:
For example:
/|l Create a Date object.
Date date = new Date();
/'l set the tine to noon on May 1, 2009
dat e. set Year (2009) ;
dat e. set Mont h(5) ;
dat e. set Day(1);
date. set Ti ne(12, 0, 0) ;
filter.setReferenceVal ue(date);

5. Call the set Oper at or () method to specify that the filter will exclude files that have an earlier
modification date:
For example:
/'l Exclude files with an earlier nodification date.
filter.setOperator(Dat eConpari sonOper at or. BEFORE) ;

6. Call the set Scope() method (inherited from the Fi | t er class) to set the filter scope. You can set the
scope to files or to directories (Fi | t er Scope. DI RECTCRY).
For example:
/'l Set the scope of the filter for only files.
filter.setScope(FilterScope.FlLE);

7. Create alist of Fi | t er objects and use the add() method to add the date filter.
For example:
List<Filter> filterList = new ArrayList<Filter>();
filterList.add(filter);

8. Use the Sour ceConfi g. set Excl udeFi | t er s() method to set the populated list in the Sour ceConfi g
configuration object. If this were an inclusion filter, you would use the
Sour ceConfi g. set | ncl udeFil ters() method instead.
For example:
/1 Set the filter in the source configuration.
sour ceConfi g. set Excl udeFil ters(filterList);

Oracle® Endeca Information Discovery Integrator: Integrator Version 3.2.0 « January 2016

Acquisition System API Guide

IAS Server API 25

9. Use the Craw Confi g. set Sour ceConfi g() method to set the populated Sour ceConfi g in the main
Craw Confi g configuration object.

For example:

/'l Set the source config in the crawl configuration.
craw Confi g. set Sour ceConfi g(sourceConfig);

Note that the Dat eFi | t er class has a get Ref er enceVal ue() method to retrieve the XM_.Gr egor i anCal endar
object. In addition, the Sour ceConfi g class has the get Excl udeFi | ters() and get | ncl udeFi | ters()
methods to retrieve the filters from the source configuration.

Creating long filters

The LongFi | t er class specifies a long value against which files can be filtered. LongFi | t er extends the
Conpar abl eVal ueFi | ter class.

A LongFi | t er is a comparison filter that specifies a value (as a long) to be compared against a numerical
property, such as the Endeca. Fi | e. Si ze property (used in the example below).The filter uses a comparison
operator that specifies how the operands are compared, using the enumerations:

.« EQUAL
. GREATER

« GREATER EQUAL
. LESS

. LESS_EQUAL

« NOT_EQUAL

For example, if you create a long exclusion filter that performs a GREATER comparison against the
Endeca. Fi | e. Si ze property, then files whose size is greater than the reference value are excluded.

To create a long filter:

1. Make sure that you have created a Sour ceConfi g and a Cr awl Confi g.

For example:

Sour ceConfi g sourceConfig = new SourceConfig();

2. Instantiate a new, empty LongFi | t er object:

LongFilter filter = new LongFilter();

3. Use the set PropertyNane() method (inherited from the Fi | t er class) to set the name of the property
against which the filter will be applied:

/1 filter on the file size, which is in bytes
filter.setPropertyNane("Endeca. File. Size");

4. Use the set Ref erenceVal ue() method to set the long value to compare against the property:

/] exclude files |arger than ~1GB
filter.setReferenceVal ue(1000000000) ;

5. Call the set Oper at or () method (inherited from the Conpar abl eVal ueFi | t er class) to specify that the
filter will apply only to files that have a size greater than the reference value:

Oracle® Endeca Information Discovery Integrator: Integrator Version 3.2.0 « January 2016
Acquisition System API Guide

IAS Server API 26

/1 exclude files with a size larger than the reference val ue
filter.setOperator(Conpari sonOperat or. GREATER) ;

6. Call the set Scope() method (inherited from the Fi | t er class) to set the filter scope. You can set the
scope to files or to directories (Fi | t er Scope. DI RECTCRY).

For example:

/'l set the scope of the filter for only files
filter.setScope(FilterScope.FlLE);

7. Create alist of Fi | t er objects and use the add() method to add the filter.

List<Filter> filterList = new ArrayList<Filter>();
filterList.add(filter);

8. Use the Sour ceConfi g. set Excl udeFi | t er s() method to set the populated list in the Sour ceConfi g
configuration object. If this were an inclusion filter, you would use the
Sour ceConfi g. set | ncl udeFil ters() method instead.

/'l set the filter in the source config
sour ceConfi g. set Excl udeFil ters(filterlList);

9. Use the Craw Confi g. set Sour ceConfi g() method to set the populated Sour ceConfi g in the main
Crawl Confi g configuration object.

/'l set the source config in the nain config
craw Confi g. set Sour ceConfi g(sourceConfig);

Note that the LongFi | t er class has a get Ref er enceVal ue() method to retrieve the long value and a

get Propert yName() method to retrieve the Endeca property. In addition, the Sour ceConfi g class has the
get Excl udeFi | ters() and get | ncl udeFi | t er s() methods to retrieve the filters from the source
configuration.

About the output properties for crawls
The Qut put Confi g class specifies whether the output from a crawl is stored in a Record Store instance or an
output file.

The Qut put Confi g class uses two methods to set the properties: set Modul el d() and
set Modul eProperties().

Module ID

The set Modul el d() method sets the module ID of the output type. You specify a string value to indicate the
type of output. You can set the string to Fi | e Syst emif you want the crawl output to go to a file system or set
it to Recor d St or e if you want the output to go to a Record Store instance.

You can set one output option per crawl configuration.

Module Properties

Each Mobdul eProperty is a key/value pair or a key/multi-value pair that provides configuration information
about this an output type.

You specify a Modul eProperty by calling set Key() to specify a string representing the key and by calling
set Val ues() to set one or more corresponding values.

Oracle® Endeca Information Discovery Integrator: Integrator Version 3.2.0 « January 2016
Acquisition System API Guide

IAS Server API 27

You then set eachModul eProperty on the Sour ceConfi g object by calling addModul eProperty().

Record Store output properties and example

The Qut put Confi g class configures a crawl to write crawl output to a Record Store instance.

Table 2.2: Module Properties for Record Store output

Record Store Property Key Name Key Value Description

host The name of the host on which the Record Store is running. The
defaultis | ocal host .

port The port number on which the Record Store is listening. The
default is 8510.

cont ext Pat h The WebLogic context path of the service location. This path is
required for IAS installed into WebLogic. The path should be an
empty string for IAS installed into Jetty. The default is an empty
string.

i sPort Ssl Specify how to interpret the port setting.

A value of t r ue means that port is an SSL port and the API
uses HTTPS for connections.

A value of f al se means that port is a non-SSL port and the
API uses HTTP for connections. The default is f al se.

Specify f al se if you enabled HTTPS redirects.

i nst anceNane The name of the Record Store instance that you want to write
output to. The default is <cr awl | D>.

i sManaged A Boolean value that indicates whether the Record Store
instance is managed or not. Management ties a Record Store
instance to its corresponding crawl configuration. Specifying

t r ue indicates that a Record Store instance is created if you
run a crawl and a Record Store instance does not already exist.
Specifying t r ue also indicates that a Record Store instance is
deleted if you delete the corresponding crawl configuration. The
default is t r ue (is managed).

Here is an example of the output properties for a crawl writing to a Record Store instance.

/'l Create the output configuration.
Qut put Confi g out put Config = new Qut put Config();

/'l Create a Record Store nodule |ID.
Modul el d nodul el d = new Mbdul el d(" Record Store");

// Set the nodule ID in the output configuration.
out put Confi g. set Modul el d(nodul el d) ;

// Create a nodul e property object.

Oracle® Endeca Information Discovery Integrator: Integrator Version 3.2.0 « January 2016
Acquisition System API Guide

IAS Server API 28

Modul eProperty host = new Mbdul eProperty();
/| Set the key for specifying the host nane.
host . set Key("host");

host . set Val ues("l ocal host ") ;

/| Create a nodul e property object.

Modul eProperty port = new Mbdul eProperty();

/1 Set the key for specifying the port nunber.
port.set Key("port");

port.setVal ues("8401");

/| Create a nodul e property object.

Modul eProperty context Path =new Mbdul eProperty();
cont ext Pat h. set Key(" cont ext Pat h") ;

cont ext Pat h. set Val ues("");

// Create a nodul e property object.

Modul eProperty instanceNane = new Modul eProperty();

/1 Set the key for specifying the instance nane of the Record Store.
i nst anceNane. set Key("i nst anceNane") ;

i nst anceNane. set Val ues("RS1");

// Create a nodul e property object.

Modul eProperty i sManaged = new Mbdul eProperty();

/'l Set the key for specifying whether the Record Store is nanaged.
i sManaged. set Key("i sManaged") ;

i sManaged. set Val ues("true");

/l Create a list for the nodul e property objects.
Li st <Mbdul ePr operty> out put PropsLi st = new ArrayLi st <Mbdul eProperty>();

/] Set the nodul e property objects in the Iist.
out put PropsLi st. add(host) ;

out put PropsLi st.add(port);

out put Pr opsLi st. add(cont ext Pat h) ;

out put PropsLi st. add(i nst anceNan®) ;

out put PropsLi st. add(i sManaged) ;

/] Set the nodule property in the output config (if not already done).
out put Conf i g. set Mbdul eProperti es(out put PropsLi st);

/] Set the output configuration in the nain crawl configuration.
craw Confi g. set Qut put Confi g(out put Confi g);

/] Create the craw .
crawl er.createCrawl (craw Confi g);

Record file output properties and example

The Qut put Confi g class configures a crawl to write output to a record output file.

Table 2.3: Module Properties for record output files

File System Property Key Name Key Value Description

out put Prefi x The prefix of the output file (Cr awl er Qut put is the default
prefix). Optional.

Oracle® Endeca Information Discovery Integrator: Integrator Version 3.2.0 « January 2016
Acquisition System API Guide

IAS Server API

29

File System Property Key Name Key Value Description

outputDirectory The name and path of the output directory under the IAS
Server's workspace directory. The default name of

out put Di rect ory is out put and the default name of
<crawlID> is used to create a subdirectory for each crawl. This
ensures each crawl has a unique subdirectory for its output. For
example, if you use the default value for out put Di r ect ory
and have a <crawlID> of Fi | eSyst enCr awl , the resulting

directory structure is

I AS\ wor kspace\ out put\ Fi | eSystenCraw \.

out put Xni A Boolean value that sets the output format to either XML or
binary. Specifying t r ue sets the output to XML. Specifying
f al se sets the output to binary. The default is f al se.

out put Conpr essed A Boolean value that indicates whether the output file should be
compressed. Specifying t r ue compresses the output. The
default is f al se (not compressed). Optional.

Here is an example of the output properties for a file system crawl.

// Create the output configuration.
Qut put Confi g out put Config = new Qut put Config();

/]l Create a file system nodul e |D.
Modul el d nodul eld = new Mbdul el d("File Systent);

/] Set the nodule ID in the output configuration.
out put Conf i g. set Mbdul el d(nodul el d) ;

/| Create a nodul e property object.

Modul eProperty output Prefix = new Mbdul eProperty();
/'l set the key for the output prefix

out put Prefi x. set Key("out put Prefix");

out put Prefi x. get Val ues() . add(" newPrefix");

/] Set the outputPrefix nodul e property on the output config.
out put Confi g. addModul ePr operty(out put Prefi x);

// Create a nodul e property object.

Modul eProperty outputDirectory = new Mdul eProperty();
// Set the key for the output directory.
outputDirectory. set Key("outputDirectory");

out put Di rectory. set Val ues("out put");

/] Set the outputDirectory nodul e property on the output config.
out put Conf i g. addivbdul eProperty(out putDi rectory);

/| Create a nodul e property object.

Modul eProperty out put XmMl = new Mbdul eProperty();

/] Set the key for specifying whether output is in XM format.
out put Xm . set Key (" out put Xm ") ;

out put Xml . set Val ues("true");

/] Set the outputXm npdule property on the output config.
out put Confi g. addModul ePr operty(out put Xm) ;

// Create a nodul e property object.
Modul eProperty out put Conpressed = new Mdul eProperty();
/'l Set the key for specifying whether output is conpressed.

Oracle® Endeca Information Discovery Integrator: Integrator
Acquisition System API Guide

Version 3.2.0 « January 2016

IAS Server API 30

out put Conpr essed. set Key(" out put Conpr essed") ;
out put Conpr essed. set Val ues("true");

/'l Set the output Conpressed nodul e property on the output config.
out put Confi g. addModul ePr opert y(out put Conpr essed) ;

/'l Set the output config in the nmain crawl configuration.
craw Confi g. set Qut put Confi g(out put Confi g);

/] Create the craw .
craw er.createCraw (craw Config);

Listing crawls

Call the 1asCraw er. | i st Craw s() method to list the existing crawls.
The syntax of the method is:

lasCrawl er. listCraw s()

The method returns a Li st <Cr awl | d> object, which has zero or more Cr awl | d objects. Each Crawl | d has the
name of a crawl.

To list the set of existing crawls:

1. Make sure that you have created a connection to the IAS Server. (An | asCr aw er object named
crawl er is used in this example.)

2. UsethelasCraw er.listCraw s() method to return a list of crawl names.

For example:
List<Crawl | d> crawl List = craw er.listCraw s();

3. Callthe Crawi I d. get1d() method to get the actual name (as a string) of each crawl.

You can also use the following to print out the number of crawls:
Systemout.println("There are " + cramer.listCrams().size() + " craws configured");

The I asCraw er. | istCraw s() method does not throw an exception if it fails.

Starting a crawl

Call the 1 asCraw er.start Craw () method to start a crawl.

The syntax of the method is:
lasCrawl er.startCrawl (Crawl Id crawl I d, Crawl Mbde craw Mode)

The crawl | d parameter is a Cr awl | d object that has the crawl ID set. The cr awl Mode parameter is one of
the following Cr awl Mode data types:
e Craw Mode. FULL_CRAW. performs a full crawl and creates a crawl history.

e Craw Mode. | NCREMENTAL CRAW. performs an incremental crawl and updates the crawl history. There are
several cases in which the Cr awl Mode automatically switches over from | NCREMENTAL _CRAW. to run a

FULL_CRAW.. A full crawl runs in the following cases:

» |f a crawl has not been run before.

Oracle® Endeca Information Discovery Integrator: Integrator Version 3.2.0 « January 2016

Acquisition System API Guide

IAS Server API

31

If the document conversion option has changed - either by being enabled or disabled.
If the repository properties have changed.

If any filters have been modified, added, or removed.

If any seeds have been removed.

If you are writing records to a Record Store instance that contains no generations.

This method does not return a value.

To start a crawl:

1.

Make sure that you have created a connection to the IAS Server. (An | asCrawl er object named
craw er is used in this example.)

Instantiate a Cr awl | d object and then set its ID in the constructor.

For example:
/|l Create a newcrawl IDwth the name set to Deno.
Crawl Id crawld = new Craw | d(" Demp") ;

Call the lasCrawl er. start Craw () method with the crawl ID and the appropriate crawl mode. To
catch exceptions, use a t ry block with the appropriate cat ch clauses.

For example:

try {
cram er.startCraw (craw | d, Craw Mode. | NCREMENTAL_CRAW.) ;

}
catch (Craw Not FoundException e) {
System out . println(e.getLocal i zedMessage());

}

If the asCraw er. start Craw () method fails, it throws an exception:

e Crawl I nProgressException occurs if the IAS Server is already running the specified crawl.

* Craw Not FoundExcepti on occurs if the specified crawl (the cr awl | d parameter) does not exist or is
otherwise not found.

e InvalidCraw Confi gExcepti on occurs if the configuration is invalid. You can call
get Crawl Val i dati onFai | ures() to return the list of crawl validation errors.

e Ei di Excepti on occurs if other problems prevent the crawl from running.

Stopping a crawl

Call the I asCraw er. st opCrawl () method to stop a crawl.

The syntax of the method is:
lasCrawl er.stopCrawl (Crawl I d craw | d)

The crawl | d parameter is a Crawl | d object that contains the name of the crawl to stop.

To stop a crawl:

1.

Oracle® Endeca Information Discovery Integrator: Integrator

Make sure that you have created a connection to the IAS Server. (An | asCrawl er object named
craw er is used in this example.)

Acquisition System API Guide

Version 3.2.0 « January 2016

IAS Server API 32

2. Set the name for the crawl to stop by first instantiating a Cr aw | d object and then its ID.

For example:

/| Create a newcrawl Id with the nanme set to Deno.
Crawl Id crawld = new Craw | d(" Dermp") ;

3. Callthe I asCraw er. st opCraw () method with the crawl ID. To catch an exception, use a t ry block
with the appropriate cat ch clause.

For example:

try {
craw er.stopCraw (craw | d);

}
catch (Craw Not FoundException e) {

System out . println(e.getLocal i zedMessage());
}

The 1 asCrawl er. st opCrawl () method throws a Cr awl Not FoundExcept i on if the specified crawl (the
crawl | d parameter) does not exist or is otherwise not found.

When the stop request is issued, the crawl first goes into a STOPPI NG state and then (when it finally stops) into
a NOT_RUNNI NG state.

f Note: Stopping a crawl means that:

e The IAS Server produces no record output for the stopped crawl (and all Record Store
transactions roll back).

e Crawl history returns to its previous state before the crawl started.

» Metrics do not roll back to their state before the crawl started.

Deleting crawls

Call the 1 asCraw er. del et eCraw () method to delete an existing crawl.

The syntax of the method is:
| asCrawl er. del eteCrawl (Crawl I d craw | d)

The crawl | d parameter is a Crawl | d object that contains the name of the crawl to be deleted.

f Note: You cannot delete a crawl that is running.

To delete a crawl:
1. Make sure that you have created a connection to the IAS Server. (An | asCr aw er object named
crawl er is used in this example.)

2. Set the name for the crawl to be deleted by first instantiating a Cr awl | d object and then setting Id in
the constructor.

For example:

/]l Create a newcrawl |Id with the name set to Denp.
Craw Id craw | d = new Craw | d(" Denp");

Oracle® Endeca Information Discovery Integrator: Integrator Version 3.2.0 « January 2016
Acquisition System API Guide

IAS Server API 33

3. Callthe I asCraw er. del et eCraw () method with the Crawl | d object. To catch exceptions, use a
t ry block with the appropriate cat ch clauses, as in this example:

try {
craw er. del eteCraw (craw | d);

}
catch (Craw Not FoundException e) {

System out . println(e.getLocal i zedMessage());
}

If the I asCrawl er. del et eCrawl () method fails, it throws an exception:
e Craw I nProgressExcepti on occurs if the crawl is running.

* Craw Not FoundExcepti on occurs if the specified crawl (the cr awl | d parameter) does not exist or is
otherwise not found.

e Ei di Exception occurs if a problem is encountered that prevents the crawl from being deleted.

Listing modules available to a crawl

Call the 1 asCraw er. | i st Modul es() method to return a list of modules you can include in a crawl. Modules
include the default crawl types provided by IAS and any data source extensions and manipulator extensions
you may have created using the IAS Extension API.

The syntax of the method is:
| asCrawl er. | i st Modul es(Modul eType nodul eType)

where nodul eType is an enumeration value of either:
» SOURCE to return data sources
e MANI PULATOR to return manipulators

The method returns a Li st <Mbdul el nf 0> object, which has zero or more Modul el nf o objects. Each
Modul el nf o has the name and ID of a data source or manipulator.

To list the modules available to a crawl:

1. Make sure that you have created a connection to the IAS Server. (An | asCr aw er object named
crawl er is used in this example.)

2. CallthelasCraw er. |istMdul es() method and specify an enumeration value to return either data
sources or manipulators.

For example:
Li st <vbdul el nfo> nodul es = crawl er.|i st Modul es(Modul eType. SOURCE) ;

3. For each Modul el nf o object:

(a) Call the Modul el nf 0. get Mbdul el d() method to get the ID of the module (the data source or
manipulator).

(b) Call the Modul el nf 0. get Modul eType() method to get the type of the module (the data source or
manipulator).

(c) Call the Mbdul el nf o. get Descri ption() method to get the description of the module (the data
source or manipulator).

Oracle® Endeca Information Discovery Integrator: Integrator Version 3.2.0 « January 2016
Acquisition System API Guide

IAS Server API 34

(d) Call the Modul el nf 0. get Di spl ayName() method to get the display name of the module (the data
source or manipulator).

For example:

Li st <Mbdul el nf o> nodul el nfoLi st = npdul es. get Mbdul el nfo();

for (Modul el nfo nodul el nfo : nodul el nfoList) {
System out . printl n(nodul el nf o. get Di spl ayNane()) ;
Systemout.println(" *lId: "+ nodul el nfo. get Modul el d().getld());
Systemout. println(" *Type: "+ nopdul el nfo. get Modul eType());
Systemout.println(" *Description: " + nodul el nfo. getDescription());
System out. println();

}

The I asCraw er. | i st Modul es() method does not throw checked exceptions if it fails.

Retrieving crawl configurations

Call the I asCr awl er. get Cr awl Confi g() method to retrieve the configuration settings of a crawl.

The syntax of the method is:
lasCrawl er. get Crawl Config(Crawl Id crawl 1 d, Boolean filllnDefaults)

Where:

crawl | d is a Craw | d object that contains the name of the crawl for which the configuration is to be
returned.

filllnDefaults isaBoolean flag that, if settot r ue, fills in the default value for any setting that has
not been specified. If a setting is a password, t r ue returns the name but not the value. If the flag is set to
f al se, it does not modify the value for any setting.

If you retrieve a crawl configuration that contains a Modul ePr opert y for a password property, the crawl
configuration retrieves the value as a zero length list.

The method returns a Cr awl Conf i g object, which contains the following:

sour ceConfi g - a Sour ceConf i g object that contains the seeds, filters, and specific information about
the systems from which content is fetched or whether file properties from the native file system should be
gathered for file system crawls.

mani pul at or Confi g - a list of Mani pul at or Confi g objects. Each Mani pul at or Confi g specifies a
manipulation that is performed in a particular crawl.

t ext Ext racti onConfi g - a Text Extracti onConfi g object that contains the text extraction options,
such as whether text extraction should be enabled and the number of retry attempts.

out put Confi g - an Qut put Confi g object that contains the output options, such as whether the records
are written to a Record Store instance or a record output file, the path of the output directory and the
output format (binary or XML).

crawl t hr eads - a property indicating the number of threads per crawl.

| oggi ngLevel - a property indicating the logging level.

To get the configuration settings of a crawl:

1. Make sure that you have created a connection to the IAS Server. (An | asCr aw er object named
crawl er is used in this example.)

Oracle® Endeca Information Discovery Integrator: Integrator Version 3.2.0 « January 2016
Acquisition System API Guide

IAS Server API 35

4,

Set the name for the crawl by first instantiating a Cr awi | d object and then setting its Id.

For example:

/| Create a newcrawl Id with the nanme set to Deno.
Crawl Id crawld = new Craw | d(" Dermp") ;

Call the I asCrawl er . get Cr awl Confi g() method with the crawl ID and the default settings Boolean
flag.

For example:
Craw Config craw Config = craw er. get Craw Config(craw I d, true);

Process the returned Cr awl Confi g according to the requirements of your application.

The | asCrawl er. get Crawl Confi g() method throws a Craw Not FoundExcept i on if the specified crawl (the
crawl | d parameter) does not exist or is otherwise not found. To catch an exception, use at ry block with the
appropriate cat ch clause.

Updating crawl configurations

Call the I asCr awl er . updat eCr awl () method to change the configuration settings for an existing crawl.

The syntax of the method is:
| asCrawl er. updat eCrawl (Crawl Confi g craw Confi g)

The cr awl Confi g parameter is a Cr awl Confi g object that has the configuration settings of the crawl.

If you update a crawl configuration and specify an empty Modul ePr operty for a password property, the
crawl configuration reuses the password stored on IAS Server.

/

Note: You cannot change the configuration if the crawl is running.

To update the configuration settings of an existing crawil:

1. Make sure that you have created a connection to the IAS Server. (An | asCr awl er object named
craw er is used in this example.)

2. Set the name for the crawl to be modified by first instantiating a Cr aw | d object and then setting its ID
in the constructor.
For example:
/] Create a newcraw |d with the nane set to Denp.
Crawl Id craw I d = new Craw | d(" Demp") ;

3. Callthe lasCraw er. get Craw Confi g() method to retrieve the current configuration.
For example:
Craw Config craw Config = craw er. get Craw Config(craw | d, false);

4. Change the configuration settings as desired.
Update the file system crawl by using the | asCr awl er . updat eCrawl () method with the previously
created cr awl Confi g.
For example:

Oracle® Endeca Information Discovery Integrator: Integrator Version 3.2.0 « January 2016

Acquisition System API Guide

IAS Server API 36

craw er. updat eCraw (craw Confi g);

If the I asCr awl er . updat eCr awl () method fails, it throws an exception:
e Craw I nProgressExcepti on occurs if the crawl is running.

* Craw Not FoundExcepti on occurs if the specified crawl (the cr awl | d parameter) does not exist or is
otherwise not found.

e InvalidCraw Confi gExcepti on occurs if the configuration is invalid.

To catch these exceptions, use a t ry block when you call the method.

Getting crawl metrics

Call the I asCraw er. get Met ri cs() method to return the metrics of a crawl. Metrics can be returned for a
running crawl or (if the crawl is not running) for the last complete crawl.

The syntax of the method is:
lasCrawl er.get Metrics(Crawl I d craw | d)

The crawl | d parameter is a Crawl | d object that contains the name of the crawl for which metrics are to be
returned.

The method returns a Li st <Met ri ¢c> object, which (if not empty) will have one or more Met ri ¢ objects. A
Metri c is a key-value pair that holds the value of a particular metric. The keys are the metric's ID (a Metri cl d
enum class). See the IAS Server API Reference (Javadoc) for the list of Met ri cl d enumerations.

The CRAW._STOP_CAUSE Met ri cl d has one of the following values:
e COMPLETED
* FAILED
* ABORTED

If a crawl fails, the CRAW._FAI LURE_REASON Met ri cl d provides a message from the IAS Server explaining the
failure.

Your application can print out all or some of the metric values.
To get the metrics of a crawl:

1. Make sure that you have created a connection to the IAS Server. (An | asCr aw er object named
craw er is used in this example.)

2. Set the name for the crawl by first instantiating a Cr awl | d object and then setting its ID.

For example:

/|l Create a newcrawl IDwth the nanme set to Deno.
Crawl Id crawIld = new Craw | d(" Demp") ;

3. CallthelasCraw er. get Metrics() method with the crawl ID.

For example:
Li st<Metric> netriclList = crawl er.getMetrics(craw |d);

4. Print the metrics by retrieving the values from the Met ri ¢ objects. For example, if you want to print the
number of records that have been processed so far by a running crawl, the code would be:

Oracle® Endeca Information Discovery Integrator: Integrator Version 3.2.0 « January 2016
Acquisition System API Guide

IAS Server API 37

if (craw er.getStatus(dennCrawl Id). getState().equal s(Crawl er State. RUNNI NG) {
Li st<Metric> netriclList = crawl er.getMetrics(craw |d);
for (Metric metric : netricList) {
Metricld id = netric.getMetricld();
if (id.equals(Metricld. TOTAL_RECORDS)) {
Systemout.println("Total records: " + nmetric.toString());
}

}

The I asCraw er. get Metri cs() method throws a Craw Not FoundExcept i on if the specified crawl (the
crawl | d parameter) does not exist or is otherwise not found.

Getting the status of a crawl

Call the I asCraw er. get St at us() method to retrieve the status of a crawl.

The syntax of the method is:
lasCrawl er. get Status(Crawl I d crawl | d)

The crawl | d parameter is a Cr awl | d object that contains the name of the crawl for which status is to be
returned.
The method returns a St at us object, which will have the status of the crawl as a Cr awl er St at e simple data
type:

* NOT_RUNNING

e STOPPING

* RUNNING
To get the status of a crawl:

1. Make sure that you have created a connection to the IAS Server. (An | asCr aw er object named
crawl er is used in this example.)

2. Set the name for the crawl by first instantiating a Cr awl | d object and then setting its ID in the
constructor.
For example:
/] Create a newcraw IDwth the nane set to Denop.
Craw Id craw | d = new Craw | d(" Denp");

3. Declare a Craw er St at e variable and initialize it by calling the | asCrawl er . get St at us() method with
the crawl ID. Note that the status is actually returned by the St at e. get St at e() method.

For example:

Craw er State state;
state = craw er.getStatus(craw | d).getState();

4. Print the status.

For example:
Systemout.println("Crawl status: " + state);
Oracle® Endeca Information Discovery Integrator: Integrator Version 3.2.0 « January 2016

Acquisition System API Guide

IAS Server API 38

The 1 asCraw er. get St at us() method throws a Cr awl Not FoundExcept i on if the specified crawl (the
crawl | d parameter) does not exist or is otherwise not found. To catch an exception, use at ry block with the
appropriate cat ch clause.

Retrieving IAS Server information

Call the I as. get Ser ver I nf o() method to get the server properties of the IAS Server.
The syntax of the method is:

I asCrawl er. get Server | nfo()

The method returns a Li st <Pr opert y> object, which contains Pr oper ty objects with host machine and IAS
Server information.

To retrieve information about the IAS Server:

1. Make sure that you have created a connection to the IAS Server. (An | asCr aw er object named
crawl er is used in this example.)

2. UsethelasCraw er. get Serverlnfo() method to return the server information.

For example:

Li st <Property> serverlnfo = craw er. get Serverlnfo();
3. Callthe Property. getKey() and Property. get Val ue() methods to get the property key-value pairs.

The returned server properties (Property objects) contain the following key-value information:

Property key Property value

eidi.version The version of the IAS Server.

eidi.workspace The path of the IAS Server workspace directory

os.arch The hardware architecture on which the operating system is running (such as

and64), as specified in the IAS Server's JVM.

0s.name The operating system of the machine on which the IAS Server is running (such
as W ndows 2003), as specified in the IAS Server's JVM.

os.version The version of the operating system of the machine on which the IAS Server is
running (such as 5. 2), as specified in the IAS Server's JVM.

The | as. get Server | nf o() method does not throw an exception if it fails.

Oracle® Endeca Information Discovery Integrator: Integrator Version 3.2.0 « January 2016
Acquisition System API Guide

'._..-.g Chapter 3
i Component Instance Manager API

This section documents the Component Instance Manager (CIM) API.

Component Instance Manager client utility classes

Component Instance Manager core operations

Component Instance Manager client utility classes

The Component Instance Manager API provides client utility classes for the manipulation of objects.

ComponentinstanceManagerLocator class

The Conponent | nst anceManager Locat or class creates a connection to a Component Instance Manager
server. The steps to create a connection are:

1. Create a Ser vi ceAddr ess object and specify the host and port of the server running the Component
Instance Manager, and if you installed IAS into WebLogic, also specify the cont ext Pat h. If you installed
IAS into Jetty, set the cont ext Pat h to an empty string.

2. Call the creat e() method on Conponent | nst anceManager Locat or and pass in the Ser vi ceAddr ess
object. For example:

Servi ceAddr ess address = new Servi ceAddress("l ocal host", 8401, contextPath);
Conponent | nst anceManager Locat or | ocat or = Conponent | nst anceManager Locat or . cr eat e(addr ess) ;

3. Call the get Ser vi ce() method to make a connection to the Component Instance Manager service on that
server:

Conponent | nst anceManager cim = | ocat or. get Servi ce();

Component Instance Manager core operations

The Component Instance Manager API has a Conponent | nst anceManager interface, which is used to create,
list, and delete Record Store instances. In this release, Record Store components are the only supported
component type.

The following Component Instance Manager core operations are provided by methods in the
Conponent | nst anceManager interface:

e createConponent | nstance() creates a component instance of the given type with the given ID.
e del et eConponent I nst ance() deletes the given component instance.

e |istConponentlnstances() lists all component instances defined in the system.

e |istConponent Types() lists all component types defined in the system.

Oracle® Endeca Information Discovery Integrator: Integrator Version 3.2.0 « January 2016
Acquisition System API Guide

Component Instance Manager API 40

/s Note: The syntax descriptions for these operations use Java conventions. The exact syntax of a class
/ member depends on the output of the WSDL tool that you are using.

Creating a component

Call the Conponent I nst anceManager . cr eat eConponent | nst ance() method to create a component instance
of the given type (a Recor dSt or e) with the given ID (a Record Store instance name).

The syntax of the method is:

Conponent | nst anceManager . cr eat eConponent | nst ance(Conponent Typel d conponent Typel d,
Conponent | nst ancel d conponent | nst ancel d)

The conponent Typel d parameter is a Conponent Typel d that should be set to " Recor dSt or e" .
The conponent | nst ancel d parameter is a Conponent | nst ancel d that is the Record Store instance name.
To create a component:

1. Create a Servi ceAddr ess object and specify the host and port of the server running the Component
Instance Manager, and if you installed IAS into WebLogic, also specify the cont ext Pat h. If you
installed IAS into Jetty, set the cont ext Pat h to an empty string.

2. Call the creat e() method on Conponent | nst anceManager Locat or and pass in the Ser vi ceAddr ess
object. For example:

Servi ceAddr ess address = new Servi ceAddress("l ocal host", 8401, contextPath);
Conponent | nst anceManager Locat or | ocat or = Conponent | nst anceManager Locat or . cr eat e(addr ess) ;

3. Create a Conponent | nst anceManager object and call get Ser vi ce() to establish a connection to the
server and the Component Instance Manager service. For example:

Conponent | nst anceManager cim = | ocator. get Service();

4. Create a Record Store instance by calling cr eat eConponent | nst ance() and specifying
Recor dSt or e and a Record Store instance name. For example:

ci m cr eat eConponent | nst ance(new Conponent Typel d(" RecordStore"),
new Conponent | nstancel d("rsl1"));

Deleting a component

Call the Conponent | nst anceManager . del et eConponent | nst ance() method to delete a specified component
instance (a Record Store).

The syntax of the method is:

Conponent | nst anceManager . del et eConponent | nst ance(Conponent | nst ancel d conponent | nst ancel d)

The conponent | nst ancel d parameter is a Conponent | nst ancel d that is the Record Store instance name
that you want to delete.

To delete a component:

1. Create a Servi ceAddr ess object and specify the host and port of the server running the Component
Instance Manager, and if you installed IAS into WebLogic, also specify the cont ext Pat h. If you
installed IAS into Jetty, set the cont ext Pat h to an empty string.

Oracle® Endeca Information Discovery Integrator: Integrator Version 3.2.0 « January 2016
Acquisition System API Guide

Component Instance Manager API 41

2. Call the creat e() method on Conponent | nst anceManager Locat or and pass in the Ser vi ceAddr ess
object. For example:

Servi ceAddr ess address = new Servi ceAddress("l ocal host", 8401, contextPath);
Conponent | nst anceManager Locat or | ocat or = Conponent | nst anceManager Locat or . cr eat e(addr ess) ;

3. Create a Conponent | nst anceManager object and call get Ser vi ce() to establish a connection to the
server and the Component Instance Manager service. For example:

Conponent | nst anceManager cim = | ocator. get Service();

4. Delete a Record Store instance by calling del et eConponent I nst ance() and specifying a Record
Store instance name. For example:

ci m del et eConponent | nst ance(new Conponent | nst ancel d("rs1");

If the Conponent | nst anceManager . del et eConponent | nst ance() method fails, it will throw an exception:

e Conponent I nst anceNot FoundExcept i on is thrown if the Component Instance Manager does not contain
the component instance.

e Conponent Manager Except i on is thrown if there was an error stopping the component instance.

To catch these exceptions, use a t ry block when you call the method.

Listing component instances

Call the Conponent | nst anceManager . | i st Conponent | nst ances() method to list all component instances in
the Endeca IAS Service. In this release, components are Record Store instances that are running in the
Endeca IAS Service.

The syntax of the method is:

Conponent | nst anceManager . | i st Conponent | nst ances()

The method returns a list of Conponent | nst anceDescri pt or objects. Each Conponent | nst anceDescr i pt or
object represents a single component (that is, a Record Store instance) and is made up of the following:

* Typel d object. This is the component type. For example, in this release, it is always Recor dSt or e.
* Instancel d object. This is the user-specified hame of an instance.

* InstanceSt at us object. This is the status of a Record Store instance. This value can be one of the
following constants: RUNNI NG, FAI LED, or STOPPED.

To list component instances:

1. Create a Servi ceAddr ess object and specify the host and port of the server running the Component
Instance Manager, and if you installed IAS into WebLogic, also specify the cont ext Pat h. If you
installed IAS into Jetty, set the cont ext Pat h to an empty string.

2. Call the creat e() method on Conponent | nst anceManager Locat or and pass in the Ser vi ceAddr ess
object. For example:

Servi ceAddr ess address = new Servi ceAddress("l ocal host", 8401, contextPath);
Conponent | nst anceManager Locat or | ocat or = Conponent | nst anceManager Locat or . cr eat e(addr ess) ;

3. Create a Conponent | nst anceManager object and call get Ser vi ce() to establish a connection to the
server and the Component Instance Manager service. For example:

Oracle® Endeca Information Discovery Integrator: Integrator Version 3.2.0 « January 2016
Acquisition System API Guide

Component Instance Manager API 42

Conponent | nst anceManager cim = | ocat or. get Servi ce();

4. Callli st Component I nst ances() and then create a f or loop to loop over all component instances.
Inside the loop, get the Typel d, I nst ancel d, and | nst anceSt at us and print them to system out (or
elsewhere). For example:
for (ConponentlnstanceDescriptor desc : cimlistConponentlnstances()) {

System out. println(desc. getlnstanceld() + " of type " + desc.get Typel d()
+ " has status " + desc.getlnstanceStatus());

}

Listing component types

Call the Conponent I nst anceManager . | i st Conponent Types() method to list all component types in the
Endeca IAS Service. In this release, there are only components of type Recor dSt or e.

The syntax of the method is:

Conponent | nst anceManager . | i st Conponent Types()

The method returns a list of Conponent TypeDescri pt or objects. Each Conponent TypeDescri pt or object is
made up of a Typel d object and an | nst al | Pat h object.

Each Typel d has the component type, for example, Recor dSt or e. Each I nstal | Pat h is a string
representing the absolute path to the WAR file implementing the component itself, for example,
C.\ O acl e\ Endeca\ | AS\ <ver si on>\ conponent s\ Recor dSt or e. war .

To list component types:

1. Create a Servi ceAddr ess object and specify the host and port of the server running the Component
Instance Manager, and if you installed IAS into WebLogic, also specify the cont ext Pat h. If you
installed IAS into Jetty, set the cont ext Pat h to an empty string.

2. Call the creat e() method on Conponent | nst anceManager Locat or and pass in the Ser vi ceAddr ess
object. For example:

Servi ceAddr ess address = new Servi ceAddress("l ocal host", 8401, contextPath);
Conponent | nst anceManager Locat or | ocat or = Conponent | nst anceManager Locat or. cr eat e(addr ess) ;

3. Create a Conponent | nst anceManager object and call get Ser vi ce() to establish a connection to the
server and the Component Instance Manager service. For example:

Conponent | nst anceManager cim = | ocat or. get Servi ce();

4. Callli st Component Types() and then create a f or loop to loop over all component types in the
system. Inside the loop, get the Typel d and | nst al | Pat h and print them to system out (or
elsewhere). For example:

for (Conponent TypeDescriptor desc : cimlistConponent Types()) {
System out. println(desc.get Typeld() + " installed at " + desc.getlnstallPath());
}

Oracle® Endeca Information Discovery Integrator: Integrator Version 3.2.0 « January 2016
Acquisition System API Guide

_.1..-.3 Chapter 4

einl

. Record Store API
This section documents the Record Store API.

Record Store client utility classes
Record Store core operations
Sample Writer client example

Sample Reader client example

Record Store client utility classes

The Record Store API provides client utility classes to manage a Record Store and perform read/write
operations.

The Record Store API includes a set of client utility classes that are useful for working with objects, such as
the creation of record collections. Java versions of these classes are included in the r ecor dst or e- api -
3.2.0.jar library.

A brief overview of these classes is given below. For details on the signatures and arguments, refer to the
Record Store API Reference (Javadoc).

RecordStoreLocator class

The Recor dSt or eLocat or class creates a connection to a Record Store server. The steps for obtaining a
connection are:
1. Create a Ser vi ceAddr ess object and specify the host and port of the server running the Record Store,

and if you installed IAS into WebLogic, also specify the cont ext Pat h. If you installed IAS into Jetty, set
the cont ext Pat h to an empty string.

2. Call the creat e() method on Conponent | nst anceManager Locat or and pass in the Ser vi ceAddr ess
object. For example:
Servi ceAddr ess address = new Servi ceAddress("l ocal host", 8401, contextPath);

Recor dSt oreLocat or | ocator = RecordStorelLocator.create(address, "M/Craw ");

3. Call the Servi ceLocat or . get Ser vi ce() method to make a connection to the Record Store service on
that server:

RecordStore rs = | ocator.getService();

The class also has other getter and setter methods for configuring communication with a Record Store
instance.

Oracle® Endeca Information Discovery Integrator: Integrator Version 3.2.0 « January 2016
Acquisition System API Guide

Record Store API 44

RecordStoreWriter class
The Recor dSt oreWi ter class provides methods for writing records to a Record Store instance.
The class has two wri t e() methods that allow you to write one record at a time or a list of records all at once.

You can create a baseline writer with this method:

RecordStoreWiter witer = RecordStoreWiter.createWiter(
recordStore, tld, 100);

RecordStoreReader class

The Recor dSt or eReader class provides methods for reading baseline and delta records from a Record Store
instance.

The Recor dSt or eReader class does not have a reader for reading individual records by their ID. To perform
this type of read, use the Recor dSt or e. readRecor dsByl d() method from the WSDL (core operations).

You can create a reader with this method:

Recor dSt or eReader reader = Recor dSt or eReader . cr eat eBasel i neReader (
recordStore, tld, gld, 100);

The RecordSt oreWiter and Recor dSt or eReader classes are useful because they handle batching and un-
batching of records.

Record Store core operations

This topic presents an overview of the Record Store API core methods.
The Record Store APl has a Recor dSt or e interface, which is used to make calls to a Record Store instance.
The following Record Store core operations are provided by methods in the Recor dSt or e interface:

e startTransaction() starts a transaction of type READ or READ_WRITE and returns the transaction ID.

» startBasel i neRead() creates a read cursor for reading a baseline generation from a Record Store
instance.

» startDel taRead() creates a read cursor for an incremental read from a Record Store instance.

» readRecords() performs the actual read operation for a read cursor set up by either the
st art Basel i neRead() or the startDel taRead() method.

* endRead() ends a baseline or incremental read operation performed by a r eadRecor ds() method.

» readRecordsByl d() reads specific records from a Record Store instance, based on a list of their record
IDs.

* witeRecords() writes a set of records to a Record Store instance. The method returns an integer that
indicates how many records were actually written.

e commit Transaction() commits an active (uncommitted) transaction.
* rollbackTransaction() rolls back an active (uncommitted) transaction.

e listActiveTransactions() returns a Li st of Transacti onl nf os that contain the ID, type, status, and
generation ID of each active transaction.

Oracle® Endeca Information Discovery Integrator: Integrator Version 3.2.0 « January 2016
Acquisition System API Guide

Record Store API 45

| i st Generations() returns a Li st of Gener ati onl nf os for each record generation currently in the
Record Store.

get Last Conmi t t edGener ati onl d() gets the ID of the last-committed record generation.
get Wi teGenerationld() gets the ID of the current generation.

set Last ReadGener ati onl d() sets state for a specific client by setting the ID of the last generation read
by the client.

get Last ReadGener ati onl d() gets the ID of the last-read generation that was set for a specific client.

listCdientStates() returns aList of Cient Statel nfos for each client. Each C i ent St at el nf o object
contains a client ID, a transaction ID, a generation ID of the last read generation, and a Boolean to
indicate if the state is committed.

get Confi gur ati on() returns the configuration settings of a specified Record Store instance.
set Confi guration() sets the configuration settings of a specified Record Store instance.

cl ean() runs the Record Store Cleaner, which removes all records that are no longer necessary. This
method allows cleaning to occur on an external schedule.

f Note: The examples in this guide use client stubs generated with Apache CXF 2.2. However, the

exact syntax of a class member depends on the output of the WSDL tool that you are using.

Getting and setting a Record Store instance configuration

Use

the get Confi guration() and set Confi gurati on() methods to get a Record Store instance

configuration and configure settings for the Record Store instance.

To get and set a Record Store instance configuration:

1.

Exal

Create a connection to a Record Store server by calling the cr eat e() method and passing in a
Ser vi ceAddr ess object and a Record Store Instance name:

Servi ceAddr ess address = new Servi ceAddr ess(host, port, contextPath);
Recor dSt oreLocat or | ocator = RecordStorelLocator. create(address, instanceNane);

Create a Record Store instance by calling the get Servi ce() method:

RecordStore recordStore = | ocator.get Service();

Return the confi g object for the new Record Store instance by calling the get Confi gur ati on()
method:

Recor dSt oreConfi guration config = recordStore. get Configuration(false);
Enable compression by calling the set Recor dConpr essi onEnabl ed() method:

confi g. set Recor dConpr essi onEnabl ed(true);

Set the modified configuration for the Record Store instance by calling the set Confi gurati on()
method:

recordSt ore. set Confi guration(config);

mple of getting and setting a Record Store instance configuration

Oracle® Endeca Information Discovery Integrator: Integrator Version 3.2.0 « January 2016

Acqu

isition System API Guide

Record Store API 46

Servi ceAddress address = new Servi ceAddr ess(host, port, contextPath);
Recor dSt oreLocat or | ocator = RecordStorelLocator. create(address, instanceNane);

RecordStore recordStore = | ocator.get Service();
Recor dSt or eConfi guration config = recordStore. get Configuration(false);
confi g. set Recor dConpr essi onEnabl ed(true);

recordSt ore. set Confi guration(config);

Running a baseline read of the last-committed generation

Call the st art Basel i neRead() method to create a cursor for a baseline read to be consumed by the
readRecor ds() method.

To run a baseline read of the last-committed generation:

1. Create a connection to a Record Store server by calling the cr eat e() method and passing in a
Ser vi ceAddr ess object and a Record Store Instance name:

Servi ceAddr ess address = new Servi ceAddr ess(host, port, contextPath);
Recor dSt oreLocat or | ocator = RecordStorelLocator. create(address, instanceNane);

2. Create a Record Store instance by calling the get Ser vi ce() method:
RecordStore recordStore = | ocator.get Service();
3. Start a READ transaction by calling the st art Transacti on() method:

Transactionld transactionld = recordStore. startTransacti on(Transacti onType. READ) ;

4. Return a ReadCur sor | d object by calling the st ar t Basel i neRead() method:
ReadCursor|ld readCursorld = recordStore. startBasel i neRead(transactionld, null);

5. Loop over the records returned by r eadRecor ds() until all records from the read cursor are read:
Li st <Recor d> records;

do {

records = recordStore.readRecords(readCursorld, nunRecordsPerFetch);
/1 do sonething with the records
} while (!records.isEnpty());
6. End the READ transaction by calling the endRead() method:
recor dSt or e. endRead(r eadCur sor | d);
7. Commit the transaction by calling the comni t Tr ansacti on() method:

recordSt ore. conmi t Transacti on(transactionl d);

Example of running a baseline read

Servi ceAddr ess address = new Servi ceAddr ess(host, port, contextPath);
Recor dSt oreLocat or | ocator = RecordStorelLocator. create(address, instanceNane);

Oracle® Endeca Information Discovery Integrator: Integrator Version 3.2.0 « January 2016

Acquisition System API Guide

Record Store API a7

RecordStore recordStore = | ocator. getService();
Transactionld transactionld = recordStore. startTransacti on(Transacti onType. READ) ;
ReadCursorld readCursorld = recordStore. startBasel i neRead(transactionld, null);
Li st <Recor d> records;
do {
records = recordStore.readRecords(readCursorld, nunRecordsPerFetch);
/1 do sonething with the records
} while (!records.isEnpty());
recordsSt ore. endRead(readCursorl d);

recordStore. conmi t Transacti on(transactionld);

Running a delta read

Call the st art Del t aRead() method to create a cursor for a delta (incremental) read to be consumed by the
readRecor ds() method.

To run a delta read:

1. Create a connection to a Record Store server by calling the cr eat e() method and passing in a
Ser vi ceAddr ess object and a Record Store Instance name:

Servi ceAddress address = new Servi ceAddr ess(host, port, contextPath);
Recor dSt oreLocat or | ocator = RecordStorelLocator. create(address, instanceNane);

2. Create a Record Store instance by calling the get Ser vi ce() method:

RecordStore recordStore = | ocator. getService();
3. Start a READ transaction by calling the st art Transacti on() method:

Transactionld transactionld = recordStore. start Transacti on(Transacti onType. READ) ;
4. Create a ReadCur sor | d object by calling the st art Del t aRead() method:

ReadCur sor |l d readCursorld
= recordStore. startDel taRead(transacti onld, startGeneration, endGeneration);

5. Loop over the records returned by r eadRecor ds() until all records from the read cursor are read:
Li st <Record> records;

do {

records = recordStore.readRecords(readCursorld, nunRecordsPerFetch);
/1 do sonething with the records
} while (!records.isEnpty());
6. End the READ transaction by calling the endRead() method:

recor dSt or e. endRead(r eadCur sor | d);

Oracle® Endeca Information Discovery Integrator: Integrator Version 3.2.0 « January 2016
Acquisition System API Guide

Record Store API 48

7. Commit the transaction by calling the comni t Tr ansacti on() method:

recordSt ore. conmi t Transacti on(transactionl d);

Example of running a delta read

Servi ceAddr ess address = new Servi ceAddr ess(host, port, contextPath);
Recor dSt oreLocat or | ocator = RecordStorelLocator. create(address, instanceNane);

RecordStore recordStore = | ocator. get Service();
Transactionld transactionld = recordStore. startTransacti on(Transacti onType. READ) ;

ReadCursorld readCursorld = recordStore. startDeltaRead(transactionld, startGeneration, endGeneration)

1

Li st <Recor d> records;

do {

records = recordStore.readRecords(readCursorld, nunRecordsPerFetch);
// do sonething with the records

} while (!records.isEnpty());

recor dSt or e. endRead(r eadCur sor | d);

recordSt ore. conmi t Transacti on(transactionld);

Maintaining client read state in the Record Store

Use the get Last Commi tt edGener ati onl d() and set Last ReadGener ati onl d() methods to store the
Gener ati onl d that the client last read.

To maintain client read state in the Record Store:

1. Create a connection to a Record Store server by calling the cr eat e() method and passing in a
Ser vi ceAddr ess object and a Record Store Instance name:

Servi ceAddr ess address = new Servi ceAddr ess(host, port, contextPath);
Recor dSt oreLocat or | ocator = RecordStorelLocator. create(address, instanceNane);

2. Create a Record Store instance by calling the get Ser vi ce() method:
RecordStore recordStore = | ocator.get Service();

3. Start a READ transaction by calling the st art Transacti on() method:

Transactionld transactionld = recordStore. startTransacti on(Transacti onType. READ) ;

4. Get the last-committed generation by calling the get Last Conmi t t edGener at i onl d() method:
Generationld gid = recordStore. getLast Conm ttedGenerationld(transactionld);
5. Return a ReadCur sor | d object by calling the st art Basel i neRead() method:

ReadCursorld readCursorld = recordStore. startBasel i neRead(transactionld, gid);

6. Loop over the records returned by r eadRecor ds() until all records from the read cursor are read:

Oracle® Endeca Information Discovery Integrator: Integrator Version 3.2.0 « January 2016
Acquisition System API Guide

Record Store API 49

Li st <Recor d> records;
do {

records = recordStore.readRecords(readCursorld, nunRecordsPerFetch);
// do sonething with the records

} while (!records.isEmty());

7. End the READ transaction by calling the endRead() method:
recordst ore. endRead(readCursorl d);

8. Set the last-read generation ID by calling the set Last ReadGener at i onl d() method:
recordStore. set Last ReadGener ati onld(transactionld, clientld, gid);

9. Commit the transaction by calling the comni t Tr ansacti on() method:

recordSt ore. conmi t Transacti on(transactionl d);

10. At a later point, start a new READ transaction for an incremental read by calling the
start Transacti on() method:

Transactionld transactionld = recordStore. start Transacti on(Transacti onType. READ) ;

11. Get the last-committed generation by calling the get Last Conmi tt edGener at i onl d() method:
Generationld gid = recordStore. getLast Conmi ttedGenerationld(transactionld);

12. Create a ReadCur sor | d object by calling the st art Del t aRead() method:

ReadCur sor | d readCursorld
= recordStore. startDel taRead(transactionld, startGeneration, endGeneration);

13. Loop over the records returned by r eadRecor ds() until all records from the read cursor are read:
Li st <Recor d> records;
do {
records = recordStore.readRecords(readCursorld, nunRecordsPerFetch);
// do sonething with the records
} while (!records.isEnpty());
14. End the READ transaction by calling the endRead() method:
recordst ore. endRead(readCursorl d);
15. Set client state by calling the set Last ReadGener ati onl d() method:
recordStore. set Last ReadGener ati onl d(transactionld, clientld, endGenerationld);
16. Commit the transaction by calling the commi t Tr ansacti on() method:

recordSt ore. conmi t Transacti on(transactionl d);

Example of maintaining client read state in the Record Store

Servi ceAddr ess address = new Servi ceAddress(host, port, contextPath);

Oracle® Endeca Information Discovery Integrator: Integrator Version 3.2.0 « January 2016
Acquisition System API Guide

Record Store API

50

Recor dSt oreLocat or | ocator = RecordStorelLocator. create(address, instanceNane);

RecordStore recordStore = | ocator.get Service();
/'l Run a baseline read

Transactionld transactionld = recordStore. startTransacti on(Transacti onType. READ) ;
Generationld gid = recordSt ore. get Last Conmi tt edGenerati onl d(transactionld);
ReadCursorld readCursorld = recordStore. startBasel i neRead(transactionld, gid);
Li st <Recor d> records;
do {
records = recordStore.readRecords(readCursorld, nunRecordsPerFetch);
/1 do sonething with the records
} while (!records.isEnpty());
recordst ore. endRead(readCursorl d);
recordSt ore. set Last ReadGenerati onld(transactionld, clientld, gid);

recordStore. conmit Transacti on(transactionld);

/!l Run a delta read at a |ater point

Transactionld transactionld = recordStore. startTransacti on(Transacti onType. READ) ;

Cenerationld startGenerationld = recordStore. get Last ReadGenerationld(transactionld, clientld);

Generationld endGenerationld = recordSt ore. get Last Conmi ttedGenerationld(transactionld);

ReadCur sor | d readCursorld
= recordStore. startDel taRead(transactionld, startGenerationld, endGenerationld);

Li st <Recor d> records;
do {
records = recordStore.readRecords(readCursorld, nunRecordsPerFetch);
// do sonething with the records
} while (!records.isEnpty());
recor dSt or e. endRead(r eadCur sor | d);
recordStore. set Last ReadGener ati onl d(transactionld, clientld, endGenerationld);

recordSt ore. conmi t Transacti on(transactionld);

Oracle® Endeca Information Discovery Integrator: Integrator Version 3.2.0 « January 2016

Acquisition System API Guide

Record Store API 51

Performing an incremental write
Use the wri t eRecor ds() method to write an incremental set of records to the Record Store.

To perform an incremental write:

1. Create a connection to a Record Store server by calling the cr eat e() method and passing in
Ser vi ceAddr ess object and a Record Store Instance name:

QD

Servi ceAddress address = new Servi ceAddr ess(host, port, contextPath);
Recor dSt oreLocat or | ocator = RecordStorelLocator. create(address, instanceNane);

2. Create a Record Store instance by calling the get Ser vi ce() method:
RecordStore recordStore = | ocator. get Service();

3. Start a READ WRI TE transaction by calling the st art Tr ansacti on() method:

Transactionld transactionld = recordStore. startTransacti on(Transacti onType. READ_ WRI TE) ;

4. Write a batch of records by calling the wri t eRecor ds() method:
recordStore. witeRecords(recordBatchl);
Repeat this step to write other batches of records to the Record Store.
5. Commit the transaction by calling the comni t Tr ansacti on() method:

recordSt ore. conmi t Transacti on(transactionl d);

Example of performing an incremental write

Servi ceAddr ess address = new Servi ceAddr ess(host, port, contextPath);
Recor dSt oreLocat or | ocator = RecordStorelLocator. create(address, instanceNane);

RecordStore recordStore = | ocator. get Service();

Transactionld transactionld = recordStore. startTransacti on(Transacti onType. READ_WRI TE) ;
recordStore. witeRecords(recordBatchl);

recordStore.witeRecords(recordBatch2);

recordSt ore. conmi t Transacti on(transactionl d);

Performing a baseline write
Create a del et eAl | Recor d, then use the wri t eRecor ds() method to write a baseline set of records to the
Record Store.

To perform a baseline write:

1. Create a connection to a Record Store server by calling the cr eat e() method and passing in a
Ser vi ceAddr ess object and a Record Store Instance name:

Servi ceAddress address = new Servi ceAddr ess(host, port, contextPath);
Recor dSt oreLocat or | ocator = RecordStorelLocator. create(address, instanceNane);

2. Create a Record Store instance by calling the get Ser vi ce() method:

Oracle® Endeca Information Discovery Integrator: Integrator Version 3.2.0 « January 2016

Acquisition System API Guide

Record Store API 52

RecordStore recordStore = | ocator.get Service();

3. Start a READ WRI TE transaction by calling the st art Tr ansacti on() method:

Transactionld transactionld = recordStore. start Transacti on(Transacti onType. READ_WRI TE) ;

4. Create a new record called del et eAl | Recor d with a property value of DELETE:
Record del et eAl | Record = new Record();

del et eAl | Recor d. addPr opertyVal ue(new PropertyVal ue("Endeca. Acti on", "DELETE"));

5. Add del et eAl | Recor d as the first record in a record batch:

recor dBat chl. addFi r st (del et eAl | Record) ;

6. Write the first batch of records by calling the wri t eRecor ds() method:

recordStore.witeRecords(recordBatchl);

Repeat this step to write other batches of records to the Record Store.
7. Commit the transaction by calling the comni t Tr ansacti on() method:

recordSt ore. conmi t Transacti on(transactionl d);

Example of performing a baseline write

Servi ceAddr ess address = new Servi ceAddr ess(host, port, contextPath);
Recor dSt oreLocat or | ocator = RecordStorelLocator. create(address, instanceNane);

RecordStore recordStore = | ocator. get Service();

Transactionld transactionld = recordStore. startTransacti on(Transacti onType. READ_WRI TE) ;
Record del et eAl | Record = new Record();

del et eAl | Recor d. addPr opertyVal ue(new PropertyVal ue("Endeca. Action", "DELETE"));

recor dBat chl. addFi r st (del et eAl | Record) ;

recordStore. witeRecords(recordBatchl);

recordStore.witeRecords(recordBatch2);

recordSt ore. conmi t Transacti on(transactionl d);

Sample Writer client example

This sample program shows how to write records to the Record Store.

The Sanpl eWiter.java class is an example of how to use the core and client utility classes to write records.
The sample Java program creates one record and writes it to the Record Store.

The code works as follows:

1. The PROPERTY_ID variable uses the setting of the Record Store instance i dPr opert yNane
configuration property, which is used to identify the records.

public static final String PROPERTY_ID = "Endeca. Fi | eSystem Pat h";

Oracle® Endeca Information Discovery Integrator: Integrator Version 3.2.0 « January 2016
Acquisition System API Guide

Record Store API 53

A sample record is created with the Recor d class and added to the records Collection.

Col | ecti on<Record> records = new Li nkedLi st <Record>();
Record record = new Record();
record. addPr opert yVal ue(new PropertyVal ue(PROPERTY_I D, "idl"));
record. addPr opertyVal ue(new PropertyVal ue("property. nane", "property.value"));
records. add(record);

Using the Recor dSt or eLocat or utility class, a connection is made to the Record Store Server.

Servi ceAddr ess address = new Servi ceAddress(i asHost, iasPort, contextPath);
Recor dSt oreLocat or | ocator = RecordStorelLocator. create(address, "rsl");
RecordStore recordStore = | ocator.get Service();

Inatry block, a READ_WRITE transaction was created by the Recor dSt ore. start Transacti on()
core method and the RecordStoreWiter.createWiter() method is used to create a writer. This
example writer writes a maximum of 100 records per transfer.

try {

Systemout.println("Setting record store configuration ...");
recordSt ore. set Configuration(config);

Systemout.println("Starting a new transaction ...");
tld = recordStore. start Transacti on(Transacti onType. READ_WRI TE) ;

RecordStoreWiter witer = RecordStoreWiter.createWiter(recordStore, tld, 100);

The writer first writes a "Delete All" record, then writes the sample record, and finally closes the writer.
Note that the record is written twice (the first time as part of a collection and the second as an
individual record), in order to demonstrate both methods.

Systemout.println("Witing records ...");
witer.deleteAl();
witer.wite(records);
witer.close();

The client program uses the Recor dSt or e. conmi t Transacti on() core method to commit the write
transaction.

Systemout.println("Conmmtting transaction ...");
recordStore. conmit Transaction(tld);

System out . println("DONE");

After the transaction is committed, the Record Store contains a new record generation.

SampleWriter.java

package com endeca. ei di . recordstore. sanpl e;

i nport com endeca. ei di . Ei di Const ant s;

i mport com endeca. ei di . record. PropertyVal ue;

i nport com endeca. ei di . record. Recor d;

i mport com endeca. ei di . recordst ore. Recor dSt or e;

i nport com endeca. ei di . recor dst or e. Recor dSt or eExcepti on;
i mport com endeca. ei di . recor dst ore. RecordSt oreLocat or;

i nport com endeca. ei di . recordstore. RecordStoreWiter;

i mport com endeca. ei di . recordstore. Transacti onl d;

i nport com endeca. ei di . recordstore. Transacti onType;

i mport com endeca. ei di . servi ce. Servi ceAddr ess;

/**

Oracle® Endeca Information Discovery Integrator: Integrator Version 3.2.0 « January 2016

Acquisition System API Guide

Record Store API

54

* SanpleWiter is an exanple of how to use the Record Store core and client

* utility classes to wite records. It creates records and wites themto the
* Record Store.

*/

public class SanpleWiter {

/1 This should match the idPropertyNane in your record store configuration.
public static final String | D PROPERTY_NAME = "Endeca. |l d";

public static void main(String[] args) {
if (args.length !'= 2 & args.length != 3) {

System out. println("Usage: <ias host> <ias port> [ias context path]");

Systemexit(-1);
}

String iasHost = args[O0];
int iasPort = Integer.parselnt(args[1]);

String contextPath = (args.length == 3) ? args[2] : E di Constants. DEFAULT_CONTEXT_PATH;

Servi ceAddr ess address = new Servi ceAddr ess(i asHost, iasPort, contextPath);

Recor dSt oreLocat or | ocator = RecordStorelLocator.create(address, "rsl");
RecordStore recordStore = | ocator. getService();

Transactionld transactionld = null;

try {
Systemout.println("Starting a new transaction ...");

transactionld = recordStore.start Transacti on(Transacti onType. READ WRI TE) ;

RecordStoreWiter witer = RecordStoreWiter.createWiter(recordStore, transactionld);

Systemout.println("Witing records ...");

// Start by deleting all records in the new Record Store generation.

/1 This should be done when doing a baseline wite to the Record Store.
/1 It should not be done when doing an increnental inport into the Record

/] Store.
witer.deleteAll();

// Wite a record to the Record Store
witer.wite(createRecord(
| D PROPERTY_NAME, “recordl",
"fruit", "apple",
"color", "red"));

/'l Wite another record to the Record Store
witer.wite(createRecord(
| D PROPERTY_NAME, “record2",
"fruit", "banana",
"color", "yellow"));

/] Close the RecordStoreWiter. This will flush the client
/1 side record buffer.
writer.close();

Systemout.println("Commtting transaction ...");
recordStore. conmi t Transacti on(transactionld);

System out . println("DONE");
} catch (RecordStoreException exception) {
exception. printStackTrace();
if (transactionld !'= null) {
try {
recordStore.rol | backTransacti on(transactionld);
} catch (RecordStoreException anot her Exception) {
Systemout.println("Failed to roll back transaction.");
anot her Excepti on. pri nt St ackTrace() ;

Oracle® Endeca Information Discovery Integrator: Integrator
Acquisition System API Guide

Version 3.2.0 « January 2016

Record Store API 55

}
}
private static Record createRecord(String... nanmeVal uePairs) {
if (naneVal uePairs.length %2 != 0) {
throw new |11 egal Argunent Excepti on("M ssing property value for property " +
naneVal uePai r s[naneVal uePai rs. | engt h-1]);
}
Record record = new Record();
for (int i =0; i < nameValuePairs.length; i =i + 2) {
record. addPr opertyVal ue(new PropertyVal ue(naneVal uePairs[i], naneValuePairs[i + 1]));
}
return record;
}

Sample Reader client example

This sample program shows how to read records from the Record Store.

The Sanpl eReader . j ava class is an example of how to use the core and client utility classes to read
records. The sample program gets the ID of the last-committed generation and reads its records from the
Record Store.

The code works as follows:
1. Using the Recor dSt or eLocat or utility class, a connection is made to the Record Store Server.

Servi ceAddr ess address = new Servi ceAddress(i asHost, iasPort, contextPath);
Recor dSt oreLocat or | ocator = RecordStorelLocator. create(address, "rsl");
RecordStore recordStore = | ocator.get Service();

2. Inatry block, the RecordStore. start Transacti on() core method creates a READ transaction and
then the Recor dSt or e. get Last Conmi t t edGener ati onl d() core method gets the ID of the last
generation that was committed to the Record Store.

Transactionld tid = null;

try {
Systemout.println("Starting a new transaction ...");

tld = recordStore. start Transacti on(Transacti onType. READ) ;

Systemout.println("Getting the |last commtted generation ...");
CGenerationld gld = recordStore. get Last Cormi ttedGenerationld(tld);

3. The Recor dSt or eReader . cr eat eBasel i neReader () utility method is used to create a baseline
reader. The reader transfers a maximum of 100 records per transfer.

System out. println("Reading records ...");
Recor dSt or eReader reader

= Recor dSt or eReader . creat eBasel i neReader (recordStore, tld, gld, 100);
int count = O;

4. Inawhil e loop, the hasNext () method tests whether the reader has another record to read. If true,
the next () method retrieves the record, the record is written out, and the record-read count is
increased by one. When there are no more records to read, the cl ose() method closes the reader,
and the number of records is printed out.

whi | e (reader. hasNext()) {
Record record = reader.next();
Systemout.println(" RECORD: " + record);
count ++;

Oracle® Endeca Information Discovery Integrator: Integrator Version 3.2.0 « January 2016
Acquisition System API Guide

Record Store API 56

reader. cl ose();
Systemout. println(count + " record(s) read");

5. The client program uses the Recor dSt or e. conmi t Tr ansacti on() core method to commit the read
transaction.

Systemout.println("Commtting transaction ...");
recordStore. conmi t Transaction(tld);

System out. println("DONE");

SampleReader.java

package com endeca. ei di . recor dst ore. sanpl e;

i nport com endeca. ei di . Ei di Const ant s;

i mport com endeca. ei di . record. Record;

i nport com endeca. ei di . recordstore. Generationl d;

i mport com endeca. ei di . recordst ore. RecordSt or e;

i nport com endeca. ei di . recor dst or e. Recor dSt or eExcepti on;
i mport com endeca. ei di . recor dstore. RecordSt oreLocat or;

i nport com endeca. ei di . recordst or e. Recor dSt or eReader ;

i mport com endeca. ei di . recordstore. Transacti onl d;

i nport com endeca. ei di . recordstore. Transacti onType;

i mport com endeca. ei di . servi ce. Servi ceAddr ess;

/**

* Sanpl eReader is an exanple of how to use the Record Store core and client
* utility classes to read records. It gets the ID of the |last-conmitted

* generation and reads its records fromthe Record Store.

*/

public class Sanpl eReader {

public static void nain(String[] args) {
if (args.length =2 && args.length = 3) {
System out. println("Usage: <ias host> <ias port> [ias context path]");
Systemexit(-1);
}

String iasHost = args[O0];
int iasPort = Integer.parselnt(args[1]);
String contextPath = (args.length == 3) ? args[2] : Eidi Constants. DEFAULT_CONTEXT_PATH;

Servi ceAddr ess address = new Servi ceAddress(i asHost, iasPort, contextPath);
Recor dSt oreLocat or | ocator = RecordStorelLocator. create(address, "rsl");
RecordStore recordStore = | ocator.get Service();

Transactionld transactionld = null;

try {
System out . pri ntI n("Starting a new transaction ...");
transactionld = recordStore. startTransacti on(Transacti onType. READ) ;

Systemout.println("Getting the |last conmtted generation ...");
Generationld gld = recordStore. getLast Conm ttedGenerationld(transactionld);

System out. println("Reading records ...");
Recor dSt or eReader reader
= Recor dSt or eReader . cr eat eBasel i neReader (recordStore, transactionld,
gld);
int count = 0;
whi |l e (reader. hasNext()) {
Record record = reader. next();
System out.println(" RECORD: " + record);
count ++;

Oracle® Endeca Information Discovery Integrator: Integrator Version 3.2.0 « January 2016
Acquisition System API Guide

Record Store API 57

Oracle® Endeca Information Discovery Integrator: Integrator Version 3.2.0 « January 2016
Acquisition System API Guide

Index

A

archives, enabling expansion of 13

baseline records
reading with API 46

CIM
deleting Record Store 40
listing components 41

client utility classes of the API 43

Component Instance Manager API
supported operations 40

components
listing existing 41
content sources
custom 15
module IDs for 12

core operations of the API 44

crawls
connecting to IAS Server 11
creating 11
date filters 23
deleting 32
getting metrics 36
getting status 37
listing existing 30
long filters 25
module properties for crawls 12, 26
regex filters 22
retrieving configuration 34
setting text extraction options 19
starting 31
stopping 31
updating configuration 35
wildcard filters 21

date filters, adding 23
deleting crawls 32, 40

exclude filters, adding 20
expanding archives, enabling 13

file system crawls
expanding archives 13

Oracle® Endeca Information Discovery Integrator: Integrator
Acquisition System API Guide

gathering native file properties 13

filters
date 23
long 25
overview 20
regular expression 22
wildcard 21

helper classes, APl 43

IAS Component Instance Manager API
generating client stubs 8

IAS Record Store API
generating client stubs 8

IAS Server
connecting to 11
creating crawls 11
deleting crawls 32
getting crawl configuration 34
getting crawl metrics 36
getting crawl status 37
listing crawls 30
retrieving version information Server 38
starting a crawl 31
stopping a crawl 31
updating crawl configuration 35

IAS Server API
generating client stubs 8
overview 7

include filters, adding 20

listing
content sources 33
existing crawls 30
manipulators 33

long filters, adding 25

manipulators
listing 33
manipulators, module properties for 17

methods
createCrawl() 11
deleteComponentinstance() 40
deleteCrawl() 32
getCrawlConfig() 34
getMetrics() 36

Version 3.2.0 « January 2016

Index

59

getServerinfo() 38
getStatus() 37
listCrawls() 30
listModules() 33
overview of available 10
startCrawl() 31
stopCrawl() 31
updateCrawl() 35

metrics for crawls, getting 36
module ID, getting available 33
module properties for crawls 12, 26

N
native file properties, gathering 13
O
output types
module IDs for 26
R

Record Store API
client utility classes 43
core operations 39, 44
getting configuration 45
setting configuration 45
supported operations 44

Record Stores

Oracle® Endeca Information Discovery Integrator: Integrator
Acquisition System API Guide

deleting 40
regular expression filters, adding 22
retrieving crawl configuration 34

starting a crawl 31
status of crawls, getting 37
stopping a crawl 31

text extraction options, setting 19

updating crawl configurations 35
utility classes, client 43

version of IAS Server, displaying 38

wildcard filters, adding 21

WSDL file
generating client stubs 8
location of 7

Version 3.2.0 « January 2016

	Copyright and disclaimer
	Table of Contents
	Preface
	About this guide
	Who should use this guide
	Conventions used in this guide
	Contacting Oracle Customer Support

	Chapter 1: Introduction to the IAS APIs
	The IAS APIs
	Generating client stubs for the IAS Web services

	Chapter 2: IAS Server API
	IAS Server core operations
	Connecting to the IAS Server
	Creating crawls
	About the source properties for crawls
	File system source properties and example
	Source properties for a custom data source
	Source properties for a manipulator
	Setting text extraction options

	Filtering files and folders
	Creating wildcard filters
	Creating regular expression filters
	Creating date filters
	Creating long filters

	About the output properties for crawls
	Record Store output properties and example
	Record file output properties and example

	Listing crawls
	Starting a crawl
	Stopping a crawl
	Deleting crawls
	Listing modules available to a crawl
	Retrieving crawl configurations
	Updating crawl configurations
	Getting crawl metrics
	Getting the status of a crawl
	Retrieving IAS Server information

	Chapter 3: Component Instance Manager API
	Component Instance Manager client utility classes
	Component Instance Manager core operations
	Creating a component
	Deleting a component
	Listing component instances
	Listing component types

	Chapter 4: Record Store API
	Record Store client utility classes
	Record Store core operations
	Getting and setting a Record Store instance configuration
	Running a baseline read of the last-committed generation
	Running a delta read
	Maintaining client read state in the Record Store
	Performing an incremental write
	Performing a baseline write

	Sample Writer client example
	Sample Reader client example

	Index

