Handling invalid or empty values

For each attribute in a new data set, you can indicate how to handle invalid or empty values. Invalid values can only occur to attributes with a type other than String, and are values whose format does not match the attribute data type, and cannot be converted to that data type. For example, for a numerical attribute, some records might have "None" or "null" as the value.

To configure how to handle the invalid and empty values for an attribute:

  1. On the Add Data Set page, click Advanced Options.
    Advanced Options for data set attributes
  2. In the Adjustment Rules column, click the Edit Rules button.
  3. Under Fix non-matching data type values, click a radio button to indicate how to handle values that cannot be converted to the selected data type. You can either:
    • Replace the invalid values with a blank value
    • Replace the invalid values with a custom value
    • Remove records that have invalid values

    Dialog for managing mismatched and missing values in a new data set

    Note that for string attributes, you cannot configure rules for adjusting invalid values. String attributes never have non-matching values.

  4. Under Fix missing values, click a radio button to indicate how to handle empty values. You can either:
    • Leave the blank values as is
    • Provide a custom value to use wherever a value is missing
    • Remove records that have empty values
  5. To save the configuration, click Apply.