
Oracle FLEXCUBE Direct Banking
Developers Guide

Release 12.0.2.0.0

 Part No. E50108-01

 September 2013

2 Oracle FLEXCUBE Direct Banking Developers Guide

Developers Guide
September 2013

Oracle Financial Services Software Limited
Oracle Park
Off Western Express Highway
Goregaon (East)
Mumbai, Maharashtra 400 063
India
Worldwide Inquiries:
Phone: +91 22 6718 3000
Fax:+91 22 6718 3001
www.oracle.com/financialservices/
Copyright © 2008, 2013, Oracle and/or its affiliates. All rights reserved.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation,
delivered to U.S. Government end users are “commercial computer software” pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on
the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous
applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take
all appropriate failsafe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use
of this software or hardware in dangerous applications.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws.
Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.
The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

This software or hardware and documentation may provide access to or information on content, products and services from third parties. Oracle Corporation and its affiliates
are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not
be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.

http://www.oracle.com/financialservices/

3 Oracle FLEXCUBE Direct Banking Developers Guide

 CONTENTS
1. Preface

1.1. Intended Audience……………………………………………………………………………….. ……………………………………………………………………………………………………4
1.2. Documentation Accessibility………..4
1.3. Access to OFSS Support……..4
1.4. Structure………4

1.5. Related Information Sources………4
2. Glossary Of Terms .. 7
 2.1 LICENSEE .. 7
 2.2 IMPLEMENTER ... 7

2.3 TERMINOLOGY ... 8
2.4 Abbreviations ... 9
2.5 Conventions ... 10

3 Guide for CREATING Application components ... 11
4 New BUSINESS Functionality .. 13

4.1 Create Front END Screen ... 14
4.1.1 Open Development Workbench .. 14

4.2 Add New Transaction (TXN) ... 15
4.2.1 Sample Database Entries ... 15

4.3 Create New Java Endpoint Service and Interface .. 18
4.3.1 Interfaces ... 18
4.3.2 Data Transfer Objects .. 18
4.3.3 Endpoints ... 18
4.3.4 Data Transfer Objects .. 21
4.3.5 Sample Database Entries ... 22
4.3.6 Testing the service interface .. 26

4.4 INVOKE EXISTING Java Endpoint Service and Interface ... 28
4.5 LINK the FRONT SCREENS to JAVA BUSINESS SERVICE .. 30

4.5.1 SERVICE XSL .. 30
4.5.2 Sample Database Entries ... 31

4.6 LINK the BUSINESS SERVICES TO HOST COMPONENTS ... 34
5 Modify BUSINESS Functionality .. 36

4 Oracle FLEXCUBE Direct Banking Developers Guide

5.1 MODIFY Front END Screen ... 37
5.1.1 MODIFY USING Open Development Workbench ... 37
5.1.2 MODIFY USING XSL .. 37

5.2 Extending EXISTING Java Endpoint Service .. 41
5.2.1 Create a NEw Business Service caLling EXISITNG BUSINESS .. 41
5.2.2 Data Transfer Objects .. 42
5.2.3 USING PRE service HELPERS ... 44
5.2.4 USING IN service LIFE CYCLE HANDLERS .. 44
5.2.5 USING IN EXTENDED HANDLERS .. 45

5.3 LINK the BUSINESS SERVICES TO HOST COMPONENTS ... 47
6 Modify Web Archive ... 48
7 Plugins / Extensions Available .. 49
8 Developer Tools .. 50
9 APPENDIX: Entity Maintenance .. 51

9.1 Adding multiple entities in same single setup ... 52
10 APPENDIX: Adding A New User Type .. 53

10.1 Adding multiple USERTYPEs in same ENTITY ... 54
11 APPENDIX: Adding A New Language .. 55
12 APPENDIX: List Of Devices / Channels ... 56
13 APPENDIX: List Of Content Generators .. 58
14 APPENDIX: References ... 73
15 APPENDIX: Payments Design ... 75

5 Oracle FLEXCUBE Direct Banking Developers Guide

1. Preface

1.1. Intended Audience
This document is primarily targeted at
• Oracle FLEXCUBE Direct Banking Development Teams
• Oracle FLEXCUBE Direct Banking Implementation Teams
• Oracle FLEXCUBE Direct Banking Implementation Partners

1.2. Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

1.3. Access to OFSS Support
https://flexsupp.oracle.com/

1.4. Structure

This document, termed Oracle FLEXCUBE Direct Banking Developers’ Guide, is a single reference for the product information which can be
managed, configured, extended, by external parties, to implement, customize or rollout the product to a financial institution.

This is not an Implementation Guide but a Developers Guide to explain low level details of how certain key features are implemented within the
solution and how these could be extended, customized as appropriate to meet the requirements of the implementation.

This document is intended to provide a set of principles, guidelines and parameters for configuration and extending Oracle FLEXCUBE Direct
Banking to meet the . As such, this document does not go into detail regarding the context and background of a number of design decisions but
explains the extensibility features and provides insight into the design guidelines and principles for external parties to leverage and develop the
required extensions in a non invasive way to the primary features and functionality of the application.

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
https://flexsupp.oracle.com/GSTOOLSSL/ENG/login_non.htm

6 Oracle FLEXCUBE Direct Banking Developers Guide

1.5. Related Information Sources

For more information on Oracle FLEXCUBE Direct Banking Release 12.0.2.0.0, refer to the following documents:

 Oracle FLEXCUBE Direct Banking Licensing Guide

7 Oracle FLEXCUBE Direct Banking Developers Guide

2 GLOSSARY OF TERMS
The following terms are some of the key terms used within the document for identifying the actor for the various actions mentioned within this
document.

2.1 LICENSEE

The LICENSEE is the Financial Institution, Application Services Provider or the Bank which has licensed the Oracle FLEXCUBE Direct Banking
application and shall rollout the solution to its customers as an internet and / or mobile banking channel.

2.2 IMPLEMENTER

The IMPLEMENTER is the Implementation Partner, Vendor, Application Service Provider or the LICENSEE themselves who is responsible for
rolling out, configuring, extending or developing on Oracle FLEXCUBE Direct Banking.

8 Oracle FLEXCUBE Direct Banking Developers Guide

2.3 TERMINOLOGY

The following terms and terminology is used within the documents to explain underlying processes, components, actions, actors etc.

Term Definition

Business Service A Business Service or a Transaction Service is a coarse-grained component that delivers a particular
service contract. The Service Interfaces and that make up the contract are each implemented by
their particular Service Endpoints.

POJO A Plain Old Java Object (POJO) is exactly what it says. The term is used to differentiate these simple
objects from more specific or complex types such as EJB classes.

For example, when creating an EJB, a specific class must implement the SessionBean interface.
However, that class will often delegate much of its functionality to one or more POJOs to aid
maintainability and reuse of functionality.

Service Implementation or Service
Endpoint

A Service Implementation is a concrete implementation of a Service Interface.

Service Interface A Service Interface is a cohesive set of Service Methods that are grouped together in the
anticipation that they will be commonly used together by a consumer.

For example, the Service Interface for the FundsTransferService would contain a set of Service
Methods that perform different types of immediate money transfer between two accounts.

Service Method A Service Method takes the form of a Java method implemented by the Service Implementation
and the Service Delegate. The consumer of the service will invoke one or more Service Methods to
help perform part of a business process.

Extension Schema The Extension Schema is a term used for the separate database schema as deployed by Oracle
FLEXCUBE Direct Banking to allow IMPLEMENTERS to extend the Oracle FLEXCUBE Direct Banking
application as per their needs.

9 Oracle FLEXCUBE Direct Banking Developers Guide

2.4 ABBREVIATIONS

FCDB / FC DB / FC Direct Banking / Direct Banking Oracle FLEXCUBE Direct Banking

Java EE / JEE Java Enterprise Edition

Java SE / JSE Java Standard Edition

Java ME / JME Java Mobile Edition

DBA Database Administrator

XML Extensible Markup Language

XSL XML Stylesheets

TCP Transmission Control Protocol

HTTP Hypertext Transmission Protocol

HTTPS Secured Hypertext Transmission Protocol

SSL Secured Socket Layer

IDS Intrusion Detection System

API Application Programming Interface

10 Oracle FLEXCUBE Direct Banking Developers Guide

2.5 CONVENTIONS

 The diagrams and / or text in this document may contain colour to communicate or highlight additional information. However, the content
of this document is retained when rendered without colour. Specific references to colour can be ignored if necessary.

 The technical terminology relating to the Oracle FLEXCUBE Direct Banking solution is aligned as much as possible to standard definitions or

should be defined in the Glossary of Terms. Any deviations from standard terminology are either noted in the Terminology Section, or in
context of usage.

 Some sections may contain additional notes and caveats included with the body text. For general and contextual information, these notes

are contained within document footnotes. Any notes that have important implications or detailed recommendations are denoted by the
information symbol (). Important caveats are denoted with the warning symbol ().

 Some sections may contain examples included with the body text. Such examples are denoted by the use of shading and the introductory

word “EXAMPLE”.

11 Oracle FLEXCUBE Direct Banking Developers Guide

3 GUIDE FOR CREATING APPLICATION COMPONENTS
This will provide the DNA components by which one would be able to do the following

Term Definition

New Business Functionality A developer or a implementer wants to create a new business functional
service which is not existing as part of the Oracle FLEXCUBE Direct Banking
product.

Modify Existing Business Functionality A developer or a implementer wants to modify the existing business
functional service which exists as part of the Oracle FLEXCUBE Direct
Banking product. One would need to either modify the following

 GUI component

 Business component

 Host Interfacing component

Extend Existing Business Functionality A developer or a implementer wants to extend the existing business
functional service which exists as part of the Oracle FLEXCUBE Direct
Banking product. One would need to either extend the following

 GUI component

 Business component

 Host Interfacing component

Plugins / Extensions Available A developer or a implementer may want to extend the existing business
functional service which exists as part of the Oracle FLEXCUBE Direct
Banking product by taking advantage of the following extensions

 Gui Layers

 CSS

12 Oracle FLEXCUBE Direct Banking Developers Guide

 LEAP data structures

 Channel Layer

 Configure a specific Audit Handler

 Business Layer

 Pre Business Service Helper

 In Service Helper

 Extended Handlers

 Host Interfacing Layer

 Host Interfacing Adaptors

 Host Mappers

 Host Transforming GUI components

 It can use the following core services to build this new functionality

Term Reference Document

LEAP Data Structure for GUI rendering

Oracle FLEXCUBE Open Development Workbench for Direct and Mobile
Banking.pdf

CSS modification Oracle FLEXCUBE Direct Banking UI Developer Guide.pdf

Channel Extensions Oracle FLEXCUBE Direct Banking System Handbook.pdf

Business Services Oracle FLEXCUBE Direct Banking System Handbook.pdf

Host Services Oracle FLEXCUBE Direct Banking Host Interfacing.pdf

13 Oracle FLEXCUBE Direct Banking Developers Guide

4 NEW BUSINESS FUNCTIONALITY
Oracle FLEXCUBE Direct Banking product gives the facility add new business functionality by piggy banking on the core framework components
mentioned above.

Typically new business functionality could be broken down into the following components

1. Create new Front Screen and Client Side Javascript.

2. To create a new Transaction in FCDB Application one needs to register the transaction in the application. Refer to section 3.2, Add new

Transaction below.

3. Create new Java Endpoint Service and Interface and DTO.

4. Invocation of existing Business Service from Service Catalogue

5. Link the Front End Screens to the Business Service via Service XSL’s as well as Validation Entries to validate these Business Services.

6. If Any Host Interfacing Component then Create Host Adaptors or use exiting Host Adaptors.

14 Oracle FLEXCUBE Direct Banking Developers Guide

4.1 CREATE FRONT END SCREEN

Oracle FLEXCUBE Direct Banking uses XML-XSLT technology to generate the User Interface. The Framework follows a standard screen design
XML (LEAP/mLEAP) to paint the screen. Oracle FLEXCUBE Direct Banking provides GUI designing tool (refer section above) for creating and
modifying LEAP XML’s for Internet and mLEAP XML’s for mobile apps and browsers.

Each front screen would need the following components which would need to be created

4.1.1 OPEN DEVELOPMENT WORKBENCH

The developer would need to create the following

 LEAP and mLEAP Data Structures

 Javascript to be created

15 Oracle FLEXCUBE Direct Banking Developers Guide

4.2 ADD NEW TRANSACTION (TXN)

Oracle FLEXCUBE Direct Banking needs the following entries to be updated for a successful transaction to be appearing for a particular user type
and entity and channel combination.

4.2.1 SAMPLE DATABASE ENTRIES

These are the sample database entries which would need to be applied on the ADMIN schema

4.2.1.1 TABLE: MSTTXN

insert into msttxn (IDTXN, DESCRIPTION, TXNGROUP, IDSEQ, FLAGSERVICEREQUEST, GIFNAME, ISMENUTXN, TOKEN1, TOKEN2,
TOKEN3, TOKEN4, TOKEN5, IDPROXYREQD, IDAPP, ENABLETXNBLACKOUT, LIMITSALLOWED, TYPECUST, CODTXN, IDMODULE, TYPETXN,
AUTHPARAM, ADTNL_PARAMS, REF_ACCTTYPE, PROXYTXNID, LAYOUT_TYPE, ALLOWED_PRIVILEGES, ISEXTERNAL, LIVEHELPMODULEID)
values
('LOT', 'LOAN ORIGINATION', '000', 3, 'N', '', 'Y', '1', 'M', '05.08', '', '08', 'Y', 'RR', 'Y', 'N', '', 'LNIN', '', 'I', '00000', '', 'L', '', '', '', 'N', 'NON');

4.2.1.2 TABLE: MSTUSERTYPETXN

insert into mstusertypetxn (ID_ENTITY, USERTYPE, IDTXN, INITAUTHID, IDCHANNEL, TYPECUST, LIMITSALLOWED, TXNGROUP, IDSEQ,
FLAGSERVICEREQUEST, GIFNAME, ISMENUTXN, TOKEN1, TOKEN2, TOKEN3, TOKEN4, TOKEN5, ENABLETXNBLACKOUT, INITREQUESTID,
CODTXN, IDMODULE, AUTHALERTREQUIRED, REF_USERTYPE, ALERTPARAM, ISENABLED, CUTOFFALLOWED, ALLOWED_PRIVILEGES,
ISEXTERNAL, QUICKTASK, ISTOOL, USERAGENTREQID, ISDEFAULTNAV)
values
('B001', 'ECU', 'LOT', '', '01', '', 'N', '000', null, 'N', '', 'Y', '', 'M', '', '', '1', 'Y', '', '', '', 'N', '', '', 'Y', 'N', 'I', 'N', 'N', 'Y', '', 'N');

4.2.1.3 TABLE: MSTCHANNELATS

insert into mstchannelats (IDREQUEST, TYPPLUGIN, AUDITREQUIRED, IDCHANNEL, IDTXN, REQUIRESLOGIN, CONTENTSTYLE,
NAMRESOURCE, IDSERVICE, IDAPP, FLAGPREPROCESS, FLAGPOSTPROCESS, NAMEOTRESOURCE, NAMEOSRESOURCE,

16 Oracle FLEXCUBE Direct Banking Developers Guide

ISONLYVALIDATEREQUEST, IDSERVICE_EOT, IDSERVICE_EOS, IDREQUEST_EOT, AUTHREQUIRED, TXNPWDREQUIRED, FLAGPAGINATION,
ADTNL_PARAMS, FLGORCH, ISONLYAUTHVALIDATE, ISGENERICTEMPLATE, HASEXTENDEDRESPONSE, ALERTREQUIRED, VALID_IDREQUEST,
TOKEN1, TOKEN2, TOKEN3, TYPE_REQUEST)
values
('RRLOT01', 'C', 'N', '01', 'LOT', 'Y', 'DHTML', 'genericscreentemplate.xsl', 'prepareloanorigination.xsl', 'RR', '', '', 'eot.xsl', 'eos.xsl', 'N', '', '', '',
'N', 'N', null, '', 'C', 'N', 'N', 'Y', 'N', '', '', '', '', 'T');

insert into mstchannelats (IDREQUEST, TYPPLUGIN, AUDITREQUIRED, IDCHANNEL, IDTXN, REQUIRESLOGIN, CONTENTSTYLE,
NAMRESOURCE, IDSERVICE, IDAPP, FLAGPREPROCESS, FLAGPOSTPROCESS, NAMEOTRESOURCE, NAMEOSRESOURCE,
ISONLYVALIDATEREQUEST, IDSERVICE_EOT, IDSERVICE_EOS, IDREQUEST_EOT, AUTHREQUIRED, TXNPWDREQUIRED, FLAGPAGINATION,
ADTNL_PARAMS, FLGORCH, ISONLYAUTHVALIDATE, ISGENERICTEMPLATE, HASEXTENDEDRESPONSE, ALERTREQUIRED, VALID_IDREQUEST,
TOKEN1, TOKEN2, TOKEN3, TYPE_REQUEST)
values
('RRLOT02', 'C', 'N', '01', 'LOT', 'Y', 'DHTML', 'genericscreentemplate.xsl', 'initiateloanorigination.xsl', 'RR', '', '', 'genericscreentemplate.xsl',
'eos.xsl', 'N', 'prepareloanorigination.xsl', '', 'RRLOT01', 'N', 'N', null, '', 'C', 'N', 'N', 'Y', 'N', '', '', '', '', 'T');

Following are the sample database entries which would need to be applied on the ADMIN schema for using UI Download feature of FCDB.

4.2.1.4 TABLE: MSTUIDOWNLOAD

insert into mstuidownload (ID_ENTITY, TYPEUSER, IDTXN, TYPEDOWNLOAD, TYPEFORMAT, PATH, IDREQUEST, RECORDSPERPAGE,
SORTCOLUMN, SORTORDER, ADTNL_PARAMS, IDCHANNEL)
values
('B001', 'ECU', 'ITB', 'UD', 'PDF,XLS,HTML,RTF', '/faml/response/beneficiaryresponsedto/beneficiarydto/beneficiarydto', 'RRBTG04', 10, '2',
'A',
'FIXED.COLUMN.TYPE=C;FIXED.COLUMN.ID.PARAM=0;FIXED.COLUMN.ID.PARAM=1;FIXED.COLUMN.ID.PARAM=2;FIXED.COLUMN.ID.PARAM
=3;FIXED.COLUMN.ID.PARAM=4;FIXED.COLUMN.ID.PARAM=5;FIXED.COLUMN.ID.PARAM=6;FIXED.COLUMN.ID.PARAM=7;FIXED.COLUMN.ID
.PARAM=8;FIXED.COLUMN.ID.PARAM=9;FIXED.COLUMN.ID.PARAM=10;FIXED.COLUMN.ID.PARAM=11;FIXED.COLUMN.ID.PARAM=12;FIXED.
COLUMN.DELIMITER=~;FIXED.COLUMN.DISABLE=//faml/response/beneficiaryresponsedto/extendedresponse/extendedresponsedto/user/u
serdto/iduser!=//faml/response/beneficiaryresponsedto/beneficiarydto/beneficiarydto/idcreator', '01');

17 Oracle FLEXCUBE Direct Banking Developers Guide

4.2.1.5 TABLE: MSTUIDOWNLOADPARAM

 insert into mstuidownloadparams (ID_ENTITY, TYPEUSER, IDTXN, IDPARAM, NAMPARAM, PARAMSEQ, TYPEPARAM, ISENABLED, ISFIXED,
NAMPATH, ISLINK, NAMFUNCTION, ARGFUNCTION, ALIGN, IDREQUEST, FIELDLENGTH, DYNAMICNAMPATH, REFIDPARAM,
ADTNL_PARAMS, TYPEFIELD, IDCHANNEL)
values
('B001', 'ECU', 'ITB', 0, 'K_BENEFICIARY_ID', 0, 'S', 'Y', 'Y', 'beneficiaryid', 'Y', 'viewRecords', '0~^5~^6', 'L', 'RRBTG04', null, '*', '', '', 'S', '01');

Following are the sample database entries which would need to be applied on the ADMIN schema for registering transaction as widgets in FCDB.

4.2.1.6 TABLE: MSTWIDGET

insert into mstwidget (ID_ENTITY, USERTYPE, WIDGET_LOCATION, WIDGET_TYPE, WIDGET_SEQ, IDREQUEST, EXTERNAL_INFO,
HASNAVIGATION, MINIMIZABLE, REFRESHABLE, CUSTOM_CONTENT_CLASS, UDF1, UDF2, UDF3, UDF4, UDF5, ISENABLED, IDTXN,
IDCHANNEL, WIDGET_HEIGHT, MORELINK, ISMANDATORY)
values
('B001', 'ECU', 'R', 'I', 1, 'RRIMS08', '', 'Y', 'Y', 'Y', '', '', '', '', '', '', 'Y', 'IMS', '01', 160, 'Y', 'N');

18 Oracle FLEXCUBE Direct Banking Developers Guide

4.3 CREATE NEW JAVA ENDPOINT SERVICE AND INTERFACE

Each ‘Service’, within the Oracle FLEXCUBE Direct Banking Services Architecture, defines an interface or a method within an existing interface
that provides the business definitions for that function. The business definitions always define and exchange of DTOS (Request DTO and
Response DTO) that require to be implemented by the implementation component or the endpoint

The endpoint provides the implementations for the business definitions to access data from various ‘host data sources’ using appropriate
interface mechanisms. Based on the functionality the developer would need to create the following

4.3.1 INTERFACES

The Business Definitions are represented as Java Interfaces. The business definitions method signatures that provide the required business
definitions for data exchange.

4.3.2 DATA TRANSFER OBJECTS

The Data Transfer Objects or DTOs are the data carriers within and external to the system. The DTOs provide transparent access to the
underlying data (either incoming in the request or outgoing in the response).

The DTOs within the Services Architecture support specific data types as indicated below. All DTOs should define only the following data types.

Data Types

 All Primitive Java Types are supported as data types.

 Arrays of all Primitive Java Types are supported

 Other than primitive data types, only java.util.Date and java.lang.String instances are allowed to be used.

 DTOs can contain other DTOs extending from the BaseDTO, RequestDTO or ResponseDTO.

4.3.3 ENDPOINTS

Service Endpoints are implementation components for the given service interface definitions. The endpoints are the plug-in components which
adapt to the changing business requirements by host, region, implementation specific parameters etc.

Steps to create a new service

1) Create a new Interface with definition of all the services to implement.

19 Oracle FLEXCUBE Direct Banking Developers Guide

2) The new Interface should extend com.iflex.fcat.services.TransactionService if the expected service will be
transactional. If the expected service will be singleton, extend com.iflex.fcat.services.SingletonService

package com.iflex.fcat.services.apps.interfaces;

import com.iflex.fcat.services.TransactionContext;
package com.iflex.fcat.services.apps.interfaces;

import com.iflex.fcat.services.TransactionContext;
import com.iflex.fcat.services.TransactionService;
import com.iflex.fcat.services.apps.dtos.LoanOriginationRequestDTO;
import com.iflex.fcat.services.apps.dtos.LoanOriginationResponseDTO;
import com.iflex.fcat.services.apps.dtos.NullRequestDTO;
import com.iflex.fcat.services.apps.dtos.PrepareLoanOriginResponseDTO;

public interface
 LoanOriginationInterface
extends
 TransactionService
{

 public PrepareLoanOriginResponseDTO prepareLoanOrigin(
 TransactionContext p_ctx
 , NullRequestDTO p_req
)throws Exception;
 public LoanOriginationResponseDTO initiateLoanOrigin(
 TransactionContext p_ctx
 , LoanOriginationRequestDTO p_req
)throws Exception;

}

20 Oracle FLEXCUBE Direct Banking Developers Guide

3) Create required Request/Response DTOs.

4) New RequestDTOs should extend com.iflex.fcat.services.RequestDTO
5) New ResponseDTOs should extend com.iflex.fcat.services.ResponseDTO
6) Create a new endpoint implementing the above created Interface.
7) Implement the services in the endpoint.

package com.iflex.fcat.services.apps.endpoints;

import com.iflex.fcat.services.ServiceConstants;

import com.iflex.fcat.services.TransactionContext;

import com.iflex.fcat.services.apps.dtos.LoanOriginationRequestDTO;

import com.iflex.fcat.services.apps.dtos.LoanOriginationResponseDTO;

import com.iflex.fcat.services.apps.dtos.NullRequestDTO;

import com.iflex.fcat.services.apps.dtos.PrepareLoanOriginResponseDTO;

import com.iflex.fcat.services.apps.interfaces.LoanOriginationInterface;

import com.iflex.fcat.services.hostinterface.dtos.HostRequestDTO;

import com.iflex.fcat.services.hostinterface.dtos.HostResponseDTO;

public final class

 LoanOriginationService

implements

 LoanOriginationInterface

{

 public PrepareLoanOriginResponseDTO prepareLoanOrigin(

 TransactionContext p_context

 , NullRequestDTO p_request

) throws Exception {

 PrepareLoanOriginResponseDTO l_resp = new PrepareLoanOriginResponseDTO();

 //Implement your Business Logic for this method

 l_resp.result.returnCode = ServiceConstants.RESULT_CODE_SUCCESS;

 return l_resp;

 }

21 Oracle FLEXCUBE Direct Banking Developers Guide

 public LoanOriginationResponseDTO initiateLoanOrigin(

 TransactionContext p_context

 , LoanOriginationRequestDTO p_request

) throws Exception {

 HostRequestDTO l_hreq = new HostRequestDTO();

 HostResponseDTO l_hresp = null;

 LoanOriginationResponseDTO l_resp = new LoanOriginationResponseDTO();

 //Implement your Business Logic for this method

 l_resp.result.returnCode = ServiceConstants.RESULT_CODE_SUCCESS;

 return l_resp;

 }

}

8) A service is made available in the application by registering it in table MSTSERVICES.
9) Add validation information for the service in table TXN_DATA_MASTER and TXN_DATA.

10) Add service mapping information if needed in table MSTSERVICESMAP.

4.3.4 DATA TRANSFER OBJECTS

The Data Transfer Objects or DTOs are the data carriers within and external to the system. The DTOs provide transparent access to the
underlying data (either incoming in the request or outgoing in the response).

The DTOs within the Services Architecture support specific data types as indicated below. All DTOs should define only the following data types.

Data Types

 All Primitive Java Types are supported as data types.

 Arrays of all Primitive Java Types are supported

 Other than primitive data types, only java.util.Date and java.lang.String instances are allowed to be fined.

22 Oracle FLEXCUBE Direct Banking Developers Guide

 DTOs can contain other DTOs extending from the BaseDTO, RequestDTO or ResponseDTO.

4.3.5 SAMPLE DATABASE ENTRIES

These are the sample database entries which would need to be applied on the ADMIN schema

4.3.5.1 TABLE: MSTSERVICES

insert into mstservices
(NAMSERVICE, INTERFACE, ENDPOINT, VERSION, ISENABLED, ISMULTIPHASE, ISROLLBACKONLY, CUSTOM_HELPER, NAMMETHOD,
NAMTXNCONTEXT, ISAPI, ISAUDITREQUIRED, AUTHDTOMAPPER, TXNAUTHDTOMAPPER, VALIDATIONVERSION,
EXTENDEDRESPONSEHANDLER)
values
('LoanOriginationInterface.LoanOriginationService.initiateLoanOrigin', 'com.iflex.fcat.services.apps.interfaces.LoanOriginationInterface',
'com.iflex.fcat.services.apps.endpoints.LoanOriginationService', 0, 'Y', 'N', 'N', '', 'initiateLoanOrigin', '', 'N', 'N', '', '', 0, '');

4.3.5.2 TABLE: MSTSERVICESMAP

insert into MSTSERVICESMAP
(ID_ENTITY, TYPEUSER, NAMSERVICE, ISENABLED, INPUTVERSION, OUTPUTVERSION)
values
('B001', 'ECU', 'InternationalAccountTransferServiceInterface.InternationalAccountTransferService.internationalTransfer', 'Y', 0, 100);

4.3.5.3 TABLE: TXN_DATA_MASTER

insert into txn_data_master
(IDREQUEST, TXN_DESC, CUSTOM_VALIDATOR, NAMSCHEMA, TYPEREQUEST, REFREQUEST, COMMENTS, ISFINREQUEST, TOTALFIELDS,
MODEREQUEST, SEPSTRING, ENCODING, PREFIX, POSTFIX, TERMINATOR, ADJUSTMENT, BIZTYPE, FREETEXT, ISLENIENT)
values

23 Oracle FLEXCUBE Direct Banking Developers Guide

('LOANORIGINATIONINTERFACE.LOANORIGINATIONSERVICE.INITIATELOANORIGIN', 'Initiate Loan Origination', '', '', 'S', '', '', 'N', 0, 0, '', '', '',
'', '', null, '', '', 'N');

insert into txn_data_master (IDREQUEST, TXN_DESC, CUSTOM_VALIDATOR, NAMSCHEMA, TYPEREQUEST, REFREQUEST, COMMENTS,
ISFINREQUEST, TOTALFIELDS, MODEREQUEST, SEPSTRING, ENCODING, PREFIX, POSTFIX, TERMINATOR, ADJUSTMENT, BIZTYPE, FREETEXT,
ISLENIENT)
values
 ('LOANORIGINATIONINTERFACE.LOANORIGINATIONSERVICE.INITIATELOANORIGIN.CUSTDETAILS', 'Initiate Loan Origination', '', '', 'S', '', '',
'N', 0, 0, '', '', '', '', '', null, '', '', 'N');

insert into txn_data_master (IDREQUEST, TXN_DESC, CUSTOM_VALIDATOR, NAMSCHEMA, TYPEREQUEST, REFREQUEST, COMMENTS,
ISFINREQUEST, TOTALFIELDS, MODEREQUEST, SEPSTRING, ENCODING, PREFIX, POSTFIX, TERMINATOR, ADJUSTMENT, BIZTYPE, FREETEXT,
ISLENIENT)
values
('LOANORIGINATIONINTERFACE.LOANORIGINATIONSERVICE.INITIATELOANORIGIN.PRESENTADDR', 'Initiate Loan Origination', '', '', 'S', '', '',
'N', 0, 0, '', '', '', '', '', null, '', '', 'N');

insert into txn_data_master (IDREQUEST, TXN_DESC, CUSTOM_VALIDATOR, NAMSCHEMA, TYPEREQUEST, REFREQUEST, COMMENTS,
ISFINREQUEST, TOTALFIELDS, MODEREQUEST, SEPSTRING, ENCODING, PREFIX, POSTFIX, TERMINATOR, ADJUSTMENT, BIZTYPE, FREETEXT,
ISLENIENT)
values
 ('LOANORIGINATIONINTERFACE.LOANORIGINATIONSERVICE.INITIATELOANORIGIN.PERMADDR', 'Initiate Loan Origination', '', '', 'S', '', '', 'N',
0, 0, '', '', '', '', '', null, '', '', 'N');

insert into txn_data_master (IDREQUEST, TXN_DESC, CUSTOM_VALIDATOR, NAMSCHEMA, TYPEREQUEST, REFREQUEST, COMMENTS,
ISFINREQUEST, TOTALFIELDS, MODEREQUEST, SEPSTRING, ENCODING, PREFIX, POSTFIX, TERMINATOR, ADJUSTMENT, BIZTYPE, FREETEXT,
ISLENIENT)
values
 ('LOANORIGINATIONINTERFACE.LOANORIGINATIONSERVICE.INITIATELOANORIGIN.EMPADDR', 'Initiate Loan Origination', '', '', 'S', '', '', 'N',
0, 0, '', '', '', '', '', null, '', '', 'N');

24 Oracle FLEXCUBE Direct Banking Developers Guide

4.3.5.4 TXN_DATA

insert into txn_data
(IDREQUEST, FIELDNAME, REFFIELDNAME, FIELDFORMAT, VAL_ENUM, DEFAULT_VALUE, CUSTOM_VALIDATOR, ISREQUESTFLD,
VALIDATION_REQUIRED, ISMANDATORY, ERRORCODE, FLD_NUMSEQUENCE, TOKEN1, TOKEN2, TOKEN3, LENGTH, FIXEDLENFLAG,
JUSTIFICATION, FILLCHAR, DELIMITER, PREFIXLEN, POSTFIXLEN, TYPFIELD, NUMOCC, IDOCCFIELD, ISPARAMFIELD, ISPLACEHOLDER,
ENRICHMENT, ISAGGREGATE, MULTIPLIER, MINOCCUR, MAXOCCUR, ISHASHFIELD, FREETEXT, DIVIDER, ENPARAMFIELDS)
values
('LOANORIGINATIONINTERFACE.LOANORIGINATIONSERVICE.INITIATELOANORIGIN', 'AMOUNT', 'loanAmount', '', '', '', '', 'Y', 'Y', 'Y',
'9100011', 0, 'fldloanamt', '', '', null, '', '', '', '', null, null, '', null, null, 'N', 'N', '', 'N', null, 1, 1, 'N', '', -1, '');

4.3.5.5 CONFIGURING NEW PRE ENDPOINT HELPER SERVICES

insert into mstservices (NAMSERVICE, INTERFACE, ENDPOINT, VERSION, ISENABLED, ISMULTIPHASE, ISROLLBACKONLY, CUSTOM_HELPER,
NAMMETHOD, NAMTXNCONTEXT, ISAPI, ISAUDITREQUIRED, AUTHDTOMAPPER, TXNAUTHDTOMAPPER, VALIDATIONVERSION,
EXTENDEDRESPONSEHANDLER)
values
('MultipleFundsTransferServiceInterface.MultipleFundsTransferService.doMultipleInternalTransfer',
'com.iflex.fcat.services.apps.interfaces.MultipleFundsTransferServiceInterface',
'com.iflex.fcat.services.apps.endpoints.MultipleFundsTransferService', 100, 'Y', 'N', 'N',
'com.iflex.fcat.services.MultiTransactionServiceHelper', 'doMultipleInternalTransfer', '', 'N', 'N',
'com.iflex.fcat.services.apps.auth.authdtomapper.MultipleFundTransferAuthDTOMapper', '', 0, '');

4.3.5.6 CONFIGURING IN MSTENTITYUSERTYPES USER LIFE CYCLE HANDLERS

insert into MSTENTITYUSERTYPES (ID_ENTITY, TYPEUSER, DESCRIPTION, ISENABLED, NAMAUTHENTICATOR, LIMITSALLOWED, IDSORT,
REF_USERTYPE, IS_ROLE_CUSTPROF_ALLOWED, TXNINITFLOWHANDLER, IS_ROLE_DEFAULT_ALLOWED, TYPUSERTOKEN,
USERLIFECYCLEEXTHANDLER, TYPEROLE, PROXYUSERTYPE, LOOKUPTYPE, HASCUSTOMER, HOSTTYPE, ISACTIVEFLAG, TOKEN1, TOKEN2,
TOKEN3, TOKEN4, TOKEN5, TOKEN6, TOKEN7, TOKEN8, TOKEN9, TOKEN10)
values
('B001', 'ECU', 'CORPORATE USER ', 'Y', 'com.iflex.fcat.services.apps.DefaultPasswordAuthenticator', 'Y', 201, '', 'Y',
'com.iflex.fcat.services.apps.handlers.DefaultTransactionPinInitHandler', 'Y', 'S',
'com.iflex.fcat.services.apps.handlers.DefaultUserLifeCycleAlertHandler', 'B', '', 'N', 'A', '', 'Y', null, null, 'Y', 'N', 10, 'Y', '', 'Y', '', '');

25 Oracle FLEXCUBE Direct Banking Developers Guide

4.3.5.7 CONFIGURING IN SERVICE ENDPOINT EXTENDED HANDLERS

insert into mstservices (NAMSERVICE, INTERFACE, ENDPOINT, VERSION, ISENABLED, ISMULTIPHASE, ISROLLBACKONLY, CUSTOM_HELPER,
NAMMETHOD, NAMTXNCONTEXT, ISAPI, ISAUDITREQUIRED, AUTHDTOMAPPER, TXNAUTHDTOMAPPER, VALIDATIONVERSION,
EXTENDEDRESPONSEHANDLER)
values
('UserServiceInterface.UserService.getListCustomer', 'com.iflex.fcat.services.apps.interfaces.UserServiceInterface',
'com.iflex.fcat.services.apps.endpoints.UserService', 0, 'Y', 'N', 'N', '', 'getListCustomer', '', 'N', 'N', '', '', 0,
'com.iflex.fcat.services.apps.CompleteExtResponseHandler');

4.3.5.8 USING GENERIC PAYMENT SERVICE AUTHORIZATION

insert into mstservices (NAMSERVICE, INTERFACE, ENDPOINT, VERSION, ISENABLED, ISMULTIPHASE, ISROLLBACKONLY, CUSTOM_HELPER,
NAMMETHOD, NAMTXNCONTEXT, ISAPI, ISAUDITREQUIRED, AUTHDTOMAPPER, TXNAUTHDTOMAPPER, VALIDATIONVERSION,
EXTENDEDRESPONSEHANDLER)
values
('GenericPaymentServiceInterface.GenericPaymentService.initiateGenericPaymentDetails',
'com.iflex.fcat.services.apps.interfaces.GenericPaymentServiceInterface', 'com.iflex.fcat.services.apps.endpoints.GenericPaymentService',
0, 'Y', 'N', 'N', '', 'initiateGenericPaymentDetails', '', 'N', 'N',
'com.iflex.fcat.services.apps.auth.authdtomapper.GenericPaymentsDTOMapper', '', 0, '');

1.1.1.1 CONFIGURING AUTHORIZATION

insert into mstchannelats (IDREQUEST, TYPPLUGIN, AUDITREQUIRED, IDCHANNEL, IDTXN, REQUIRESLOGIN, CONTENTSTYLE,
NAMRESOURCE, IDSERVICE, IDAPP, FLAGPREPROCESS, FLAGPOSTPROCESS, NAMEOTRESOURCE, NAMEOSRESOURCE,
ISONLYVALIDATEREQUEST, IDSERVICE_EOT, IDSERVICE_EOS, IDREQUEST_EOT, AUTHREQUIRED, TXNPWDREQUIRED, FLAGPAGINATION,
ADTNL_PARAMS, FLGORCH, ISONLYAUTHVALIDATE, ISGENERICTEMPLATE, HASEXTENDEDRESPONSE, ALERTREQUIRED, VALID_IDREQUEST,
TOKEN1, TOKEN2, TOKEN3, TYPE_REQUEST)
values
('RROAT01', 'C', 'N', '01', 'OAT', 'Y', 'DHTML', 'genericscreentemplate.xsl', 'genericpaymentprepare.xsl', 'RR', '', '', 'eot.xsl', 'eos.xsl', 'N', '', '',
'', 'N', 'N', null, '', 'C', 'N', 'Y', 'Y', 'N', '', '', '', '', 'T');

26 Oracle FLEXCUBE Direct Banking Developers Guide

insert into mstchannelats (IDREQUEST, TYPPLUGIN, AUDITREQUIRED, IDCHANNEL, IDTXN, REQUIRESLOGIN, CONTENTSTYLE,
NAMRESOURCE, IDSERVICE, IDAPP, FLAGPREPROCESS, FLAGPOSTPROCESS, NAMEOTRESOURCE, NAMEOSRESOURCE,
ISONLYVALIDATEREQUEST, IDSERVICE_EOT, IDSERVICE_EOS, IDREQUEST_EOT, AUTHREQUIRED, TXNPWDREQUIRED, FLAGPAGINATION,
ADTNL_PARAMS, FLGORCH, ISONLYAUTHVALIDATE, ISGENERICTEMPLATE, HASEXTENDEDRESPONSE, ALERTREQUIRED, VALID_IDREQUEST,
TOKEN1, TOKEN2, TOKEN3, TYPE_REQUEST)
values
('RROAT02', 'C', 'N', '01', 'OAT', 'Y', 'DHTML', 'genericscreentemplate.xsl', 'genericpaymentinit.xsl', 'RR', '2', '2', 'genericscreentemplate.xsl',
'eos.xsl', 'Y', 'genericpaymentprepare.xsl', '', 'RROAT01', 'Y', 'N', null, '', 'C', 'Y', 'Y', 'Y', 'N',
'RROAT01,RROAT99,RRDDT01,RRDDT02,RRDDT03', '', '', '', 'T');

insert into mstchannelats (IDREQUEST, TYPPLUGIN, AUDITREQUIRED, IDCHANNEL, IDTXN, REQUIRESLOGIN, CONTENTSTYLE,
NAMRESOURCE, IDSERVICE, IDAPP, FLAGPREPROCESS, FLAGPOSTPROCESS, NAMEOTRESOURCE, NAMEOSRESOURCE,
ISONLYVALIDATEREQUEST, IDSERVICE_EOT, IDSERVICE_EOS, IDREQUEST_EOT, AUTHREQUIRED, TXNPWDREQUIRED, FLAGPAGINATION,
ADTNL_PARAMS, FLGORCH, ISONLYAUTHVALIDATE, ISGENERICTEMPLATE, HASEXTENDEDRESPONSE, ALERTREQUIRED, VALID_IDREQUEST,
TOKEN1, TOKEN2, TOKEN3, TYPE_REQUEST)
values
('RROAT03', 'C', 'Y', '01', 'OAT', 'Y', 'DHTML', 'genericscreentemplate.xsl', 'genericpaymentinit.xsl', 'RR', '6', '', 'genericscreentemplate.xsl',
'eos.xsl', 'N', 'genericpaymentprepare.xsl', '', 'RROAT01', 'Y', 'N', null, '', 'C', 'N', 'Y', 'Y', 'N', 'RROAT02,RRDTD03', '', '', '', 'T');

4.3.6 TESTING THE SERVICE INTERFACE

A utility ‘TestService’ is provided with the product for the purpose of unit testing a new / modified service. This utility accepts the service request
XML and returns the service response XML, for scrutiny. If there are any issues in this request-response process, they can be identified and
rectified at this stage easily, even if the corresponding screens have not been designed yet.

4.3.6.1 PRE-REQUISITES:

 The application server hosting Oracle FLEXCUBE Direct Banking must be running

 The ‘A1’ data source must be correctly defined in your application server.

For the details of data source setting, please refer to Oracle FLEXCUBE Direct Banking installation guide.

27 Oracle FLEXCUBE Direct Banking Developers Guide

 The ‘FNDI.A1.java.naming.factory.initial’ and ‘FNDI.A1.java.naming.provider.url’ properties in

fcat.properties file must be correctly defined, as per the settings applicable to your environment

4.3.6.2 PROCESS

 Create a new text file (location, file name and extension does not matter). This file will be used as an input for the service testing utility

 Write a valid service request XML in this file. You can either write it manually, if you have knowledge of FCDB’s XML structure, or follow

the steps below to ‘wire-tap’ a service request from the running application:

 Open the logger.properties file located in application’s ‘home’ folder (<FCDB base directory>/system/home)

 Go to the log4j.category.com.iflex.fcat.channels.plugins.FLEXCUBEConnectHostPlugin property

 Set the logging level to ‘DEBUG’ and provide appropriate location for log file

 Restart the application server

 The log file will be named FLEXCUBEConnectHostPlugin.log will be generated at location specified above. FCDB application will log

all service requests and service responses in this file.

 Pick up the required service request string and copy it to the plain-text file you had created

 Save the plain-text file

 Run TestService tool with the following arguments, in sequence and separated by a space

 Base directory location of Oracle FLEXCUBE Direct Banking application

 Complete path of the file containing service request XML

Note that the file path must not contain any spaces

 Text-encoding (UTF-8, if you don’t know what to use)

 If you are using a demo certificate (in Weblogic environment), you are additionally required to specify the following JVM argument:

 -Dweblogic.security.TrustKeyStore=DemoTrust

4.3.6.3 RESULT

The service response XML will be displayed on screen. You can copy this to a text-file for analysis

28 Oracle FLEXCUBE Direct Banking Developers Guide

4.4 INVOKE EXISTING JAVA ENDPOINT SERVICE AND INTERFACE

Each ‘Service’, within the Oracle FLEXCUBE Direct Banking Services Architecture, defines an interface or a method within an existing interface
that provides the business definitions for that function. The business definitions always define and exchange of DTOS (Request DTO and
Response DTO) that require to be implemented by the implementation component or the endpoint

Oracle FLEXCUBE Direct Banking Service Catalogue gives a list of all such Business Services with their signatures.

A Sample Invocation of a Existing Business Service is as follows

public InformationResponseDTO getInformation(

 TransactionContext p_context

, InformationResponseDTO p_request

) {

//------------ account number list initialization -----------------

 l_actresp = new GetAccountsResponseDTO();

 l_actresp = (GetAccountsResponseDTO)ServiceManager.invokeService(

 S_GET_ACCOUNT_LIST

 , p_request

 , null

 , p_context

 , true

);

 if(!ServiceUtils.isSuccess(l_actresp)) {

 l_resp.result = l_actresp.result;

 return l_resp;

 }

 l_resp.custAcctDetails = l_actresp.custAccounts;
}

The above example shows how to invoke the out of the box Account Service.

29 Oracle FLEXCUBE Direct Banking Developers Guide

A Sample Invocation of a Host Adaptor from the Business Service is as follows
public InformationResponseDTO getInformation(

 TransactionContext p_context

, InformationResponseDTO p_request

) {

//------------ account number list initialization -----------------

 l_actresp = new GetAccountsResponseDTO();

 l_actresp = (GetAccountsResponseDTO)ServiceManager.invokeService(

 “AccountsServiceInterface.AccountsService.getCasaAccounts”

 , p_request

 , null

 , p_context

 , true

);

 if(!ServiceUtils.isSuccess(l_actresp)) {

 l_resp.result = l_actresp.result;

 return l_resp;

 }

 l_resp.custAcctDetails = l_actresp.custAccounts;

 l_hreq = HostAdapterHelper.buildHostRequest (

 p_request

 , p_context

);

 l_hresp = HostAdapterManager.processRequest (

 l_hreq

);

 l_resp = (NullResponseDTO) l_hresp.response;

}

The above example shows how to invoke the out of the Host Manager .processRequest.

30 Oracle FLEXCUBE Direct Banking Developers Guide

4.5 LINK THE FRONT SCREENS TO JAVA BUSINESS SERVICE

Each ‘Service’, within the Oracle FLEXCUBE Direct Banking Services Architecture can be linked to the front end screens via a GUI components
called SERVICE XSL

4.5.1 SERVICE XSL

This “SERVICE XSL” is configured as part of the Channel ATS entries mentioned below. This links the request which is submitted from the client
side to be linked to Request DTO.

A sample Request XSL showing the following

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" xml:space="default" version="1.0">

<xsl:output doctype-public="-//W3C//DTD HTML 4.01 Transitional//EN" method="xml" indent="yes" />

<xsl:template match="/">

<ServiceRequest>

<serviceName>LoanOriginationInterface.LoanOriginationService.initiateLoanOrigin</serviceName>

<request>

<LoanOriginationRequestDTO>

 <loanProduct><xsl:value-of select="//faml/request/fldselloancat"/></loanProduct>

 <loanProductDesc></loanProductDesc>

 <loanPurpose><xsl:value-of select="//faml/request/fldloanpurpose"/></loanPurpose>

 <loanAmount><xsl:value-of select="//faml/request/fldloanamt"/></loanAmount>

 <loanCurrency><xsl:value-of select="//faml/request/fldloancurr"/></loanCurrency>

 <loanTenor><xsl:value-of select="//faml/request/fldtenor"/></loanTenor>

 <custDetails>

 <CustomerDetailDTO>

 <fullName><xsl:value-of select="substring-after(//faml/request/fldcustname,'~')"/></fullName>

 <idCustomer><xsl:value-of select="substring-before(//faml/request/fldcustname,'~')"/></idCustomer>

 <sex><xsl:value-of select="//faml/request/fldgender"/></sex>

 <maritalStatusType><xsl:value-of select="//faml/request/fldmaritalstat"/></maritalStatusType>

 <nationality><xsl:value-of select="//faml/request/fldnationality"/></nationality>

 <birthdate><xsl:value-of select="//faml/request/flddob"/></birthdate>

 <email><xsl:value-of select="//faml/request/fldemail"/></email>

 </CustomerDetailDTO>

 </custDetails>

 <mobileno><xsl:value-of select="//faml/request/fldmobno"/></mobileno>

 <income><xsl:value-of select="//faml/request/fldincamt"/></income>

31 Oracle FLEXCUBE Direct Banking Developers Guide

 <presentAddr>

 <AddressDTO>

 <line1><xsl:value-of select="//faml/request/fldaddr1"/></line1>

 <line2><xsl:value-of select="//faml/request/fldaddr2"/></line2>

 <line3><xsl:value-of select="//faml/request/fldaddr3"/></line3>

 </AddressDTO>

 </presentAddr>

 <empName><xsl:value-of select="//faml/request/fldempname"/></empName>

 <empDesgination><xsl:value-of select="//faml/request/flddesignation"/></empDesgination>

</LoanOriginationRequestDTO>

</request>

</ServiceRequest>

</xsl:template>

</xsl:stylesheet>

4.5.2 SAMPLE DATABASE ENTRIES

These are the sample database entries which would need to be applied on the ADMIN schema

4.5.2.1 TABLE: MSTCHANNELATS

insert into mstchannelats
(IDREQUEST, TYPPLUGIN, AUDITREQUIRED, IDCHANNEL, IDTXN, REQUIRESLOGIN, CONTENTSTYLE, NAMRESOURCE, IDSERVICE, IDAPP,
FLAGPREPROCESS, FLAGPOSTPROCESS, NAMEOTRESOURCE, NAMEOSRESOURCE, ISONLYVALIDATEREQUEST, IDSERVICE_EOT, IDSERVICE_EOS,
IDREQUEST_EOT, AUTHREQUIRED, TXNPWDREQUIRED, FLAGPAGINATION, ADTNL_PARAMS, FLGORCH, ISONLYAUTHVALIDATE,
ISGENERICTEMPLATE, HASEXTENDEDRESPONSE, ALERTREQUIRED, VALID_IDREQUEST, TOKEN1, TOKEN2, TOKEN3, TYPE_REQUEST)
values
('RRLOT01', 'C', 'N', '01', 'LOT', 'Y', 'DHTML', 'genericscreentemplate.xsl', 'prepareloanorigination.xsl', 'RR', '', '', 'eot.xsl', 'eos.xsl', 'N', '', '', '', 'N',
'N', null, '', 'C', 'N', 'N', 'Y', 'N', '', '', '', '', 'T');

insert into mstchannelats
(IDREQUEST, TYPPLUGIN, AUDITREQUIRED, IDCHANNEL, IDTXN, REQUIRESLOGIN, CONTENTSTYLE, NAMRESOURCE, IDSERVICE, IDAPP,
FLAGPREPROCESS, FLAGPOSTPROCESS, NAMEOTRESOURCE, NAMEOSRESOURCE, ISONLYVALIDATEREQUEST, IDSERVICE_EOT, IDSERVICE_EOS,
IDREQUEST_EOT, AUTHREQUIRED, TXNPWDREQUIRED, FLAGPAGINATION, ADTNL_PARAMS, FLGORCH, ISONLYAUTHVALIDATE,
ISGENERICTEMPLATE, HASEXTENDEDRESPONSE, ALERTREQUIRED, VALID_IDREQUEST, TOKEN1, TOKEN2, TOKEN3, TYPE_REQUEST)

32 Oracle FLEXCUBE Direct Banking Developers Guide

values
('RRLOT02', 'C', 'N', '01', 'LOT', 'Y', 'DHTML', 'genericscreentemplate.xsl', 'initiateloanorigination.xsl', 'RR', '', '', 'genericscreentemplate.xsl',
'eos.xsl', 'N', 'prepareloanorigination.xsl', '', 'RRLOT01', 'N', 'N', null, '', 'C', 'N', 'N', 'Y', 'N', '', '', '', '', 'T');

4.5.2.2 CONFIGURING UI PAGINATION

insert into mstchannelats (IDREQUEST, TYPPLUGIN, AUDITREQUIRED, IDCHANNEL, IDTXN, REQUIRESLOGIN, CONTENTSTYLE, NAMRESOURCE,
IDSERVICE, IDAPP, FLAGPREPROCESS, FLAGPOSTPROCESS, NAMEOTRESOURCE, NAMEOSRESOURCE, ISONLYVALIDATEREQUEST,
IDSERVICE_EOT, IDSERVICE_EOS, IDREQUEST_EOT, AUTHREQUIRED, TXNPWDREQUIRED, FLAGPAGINATION, ADTNL_PARAMS, FLGORCH,
ISONLYAUTHVALIDATE, ISGENERICTEMPLATE, HASEXTENDEDRESPONSE, ALERTREQUIRED, VALID_IDREQUEST, TOKEN1, TOKEN2, TOKEN3,
TYPE_REQUEST)
values
('RRBTG04', 'C', 'N', '01', 'BTG', 'Y', 'HTML', 'genericbeneficiarymaintenanceprepareinitial.xsl', 'beneficiarydetailsservice.xsl', 'RR', '', '2',
'genericbeneficiarymaintenanceprepareinitial.xsl', 'eos.xsl', 'N', 'beneficiarymaintenanceprepareinitialservice.xsl', '', 'RRBTG01', 'N', 'N', 1, '', 'C',
'N', 'N', 'Y', 'N', '', '', '', '', 'T');

4.5.2.3 CONFIGURING CHANNEL REQUEST STORAGE

 insert into mstchannelats (IDREQUEST, TYPPLUGIN, AUDITREQUIRED, IDCHANNEL, IDTXN, REQUIRESLOGIN, CONTENTSTYLE, NAMRESOURCE,
IDSERVICE, IDAPP, FLAGPREPROCESS, FLAGPOSTPROCESS, NAMEOTRESOURCE, NAMEOSRESOURCE, ISONLYVALIDATEREQUEST,
IDSERVICE_EOT, IDSERVICE_EOS, IDREQUEST_EOT, AUTHREQUIRED, TXNPWDREQUIRED, FLAGPAGINATION, ADTNL_PARAMS, FLGORCH,
ISONLYAUTHVALIDATE, ISGENERICTEMPLATE, HASEXTENDEDRESPONSE, ALERTREQUIRED, VALID_IDREQUEST, TOKEN1, TOKEN2, TOKEN3,
TYPE_REQUEST)
values
('RROAT01', 'C', 'N', '01', 'OAT', 'Y', 'DHTML', 'genericscreentemplate.xsl', 'genericpaymentprepare.xsl', 'RR', '', '', 'eot.xsl', 'eos.xsl', 'N', '', '', '', 'N',
'N', null, '', 'C', 'N', 'Y', 'Y', 'N', '', '', '', '', 'T');

insert into mstchannelats (IDREQUEST, TYPPLUGIN, AUDITREQUIRED, IDCHANNEL, IDTXN, REQUIRESLOGIN, CONTENTSTYLE, NAMRESOURCE,
IDSERVICE, IDAPP, FLAGPREPROCESS, FLAGPOSTPROCESS, NAMEOTRESOURCE, NAMEOSRESOURCE, ISONLYVALIDATEREQUEST,
IDSERVICE_EOT, IDSERVICE_EOS, IDREQUEST_EOT, AUTHREQUIRED, TXNPWDREQUIRED, FLAGPAGINATION, ADTNL_PARAMS, FLGORCH,
ISONLYAUTHVALIDATE, ISGENERICTEMPLATE, HASEXTENDEDRESPONSE, ALERTREQUIRED, VALID_IDREQUEST, TOKEN1, TOKEN2, TOKEN3,

33 Oracle FLEXCUBE Direct Banking Developers Guide

TYPE_REQUEST)
values
('RROAT02', 'C', 'N', '01', 'OAT', 'Y', 'DHTML', 'genericscreentemplate.xsl', 'genericpaymentinit.xsl', 'RR', '2', '2', 'genericscreentemplate.xsl',
'eos.xsl', 'Y', 'genericpaymentprepare.xsl', '', 'RROAT01', 'Y', 'N', null, '', 'C', 'Y', 'Y', 'Y', 'N', 'RROAT01,RROAT99,RRDDT01,RRDDT02,RRDDT03', '', '',
'', 'T');

34 Oracle FLEXCUBE Direct Banking Developers Guide

4.6 LINK THE BUSINESS SERVICES TO HOST COMPONENTS

This is the component where the Response from the Business Service gets transformed as a XML over which a Host Interfacing GUI XSL gets
applied to interfacing with the Core Banking system. Oracle FLEXCUBE Direct Banking support the following communication protocols
 JMS

 EJB

 WebService

It can use the following parameterization available in the Host Interfacing Layer

Term Reference Document

FLEXML_MODE_EJB This decides that the EJB mode gets called from the out of the box
<<FlexmlHostAdapter>> implemented for transactions traversing
towards the host.

FLEXML_MODE_JMS This decides that the JMS mode gets called from the out of the box
<<FlexmlHostAdapter>> implemented for transactions traversing
towards the host

FLEXML_MODE_JWS This decides that the Webservices mode gets called from the out of the
box <<FlexmlHostAdapter>> implemented for transactions traversing
towards the host

FLEXML.REQUSET.XSL This decides that the which Request XSL to apply and gets called from
the out of the box <<FlexmlHostAdapter>> implemented for
transforming FCDB Request DTO XML to an xml which the Host
understands.

FLEXML.RESPONSE.XSL This decides that the which Response XSL to apply on the response
received from host and gets called from the out of the box
<<FlexmlHostAdapter>> implemented for transforming Host XML in
FCDB Response DTO XML

35 Oracle FLEXCUBE Direct Banking Developers Guide

RESPONSE.CLASS.NAME This decides that the which Response Class Name to cast the response
coming <<FlexmlHostAdapter>>

FLEXML.EODCHECK This decides whether a particular transaction needs EOD check or no.
The default values are

 Y: check EOD; if EOD in process, put the request for retry post EOD

 N: Do not check EOD and initiate; passthrough

 T: Check EOD: If EOD in process, terminate request with exception

FLEXML.RETRY.FLAG This decides whether a particular transaction needs Retry or no. The
default values are Y/N. If Retry is Enabled then the transaction is tanked
and later retried via a Java Timer.

36 Oracle FLEXCUBE Direct Banking Developers Guide

5 MODIFY BUSINESS FUNCTIONALITY
Oracle FLEXCUBE Direct Banking product gives the facility modify new business functionality by piggy banking on the core framework
components mentioned above.

Typically when a existing business functionality needs to be modified or extended, the following would be the key element by which they can be
classified

1. Modify new Front Screen and Client Side Javascript

2. Extend new Java Endpoint Service and Interface or add UDF fields to Existing DTO

3. Modify Any Host Interfacing GUI Component and Create New Host Adaptors

37 Oracle FLEXCUBE Direct Banking Developers Guide

5.1 MODIFY FRONT END SCREEN

Oracle FLEXCUBE Direct Banking provides GUI rendering tool (refer section above) for creating and modifying LEAP Data Structure for Internet
and mLEAP Data Structures for mobile apps and browsers.

There are also functionalities which do not follow the LEAP methodology of creating screens. We will see how to manage both of them in the
coming sections

5.1.1 MODIFY USING OPEN DEVELOPMENT WORKBENCH

The developer would need to do the following

 Identify from the MSTCHANNEL ATS which screen is being modified

 Ensure that the Style ID is “DHTML” to ensure that it is a LEAP structure

 The name of the XML would correspond to the IDREQUEST eg. RROAT01.xml

 Open RROAT01.xml in Development Workbench and modify the layout as well as javascript as needed

5.1.2 MODIFY USING XSL

The developer would need to do the following

 Identify from the MSTCHANNEL ATS which screen is being modified

 Ensure that the Style ID is not “DHTML” to ensure that it is a a plain XML/XSL transformation

 The name of the XSL would be available in IDRESOURCE column

 Modify the XSL appropriately and ensure while deploying you override that XSL by maintaining the same in the ENTITY FOLDER. Eg if the

original XSL was in the gui/ECU/01/eng, one would put the same in gui/ECU/01/eng

A sample UI XSL showing the following

38 Oracle FLEXCUBE Direct Banking Developers Guide

 <xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" xml:space="default" version="1.0"
xmlns:java="http://xml.apache.org/xslt/java" exclude-result-prefixes="java">

<xsl:import href="common.xsl" />

<xsl:include href="dateformatter.xsl"/><xsl:output doctype-public="-//W3C//DTD HTML 4.01 Transitional//EN"

method="html" encoding="UTF-8" indent="yes" />

<xsl:template match="/">

<xsl:apply-imports />

<html>

<head>

<META http-equiv="Content-Type" content="text/html; charset=UTF-8" />

<meta HTTP-EQUIV="no-cache" />

<link HREF="css/default.css" TYPE="text/css" REL="STYLESHEET"/>

<script type="text/JavaScript" src="jsdir/Calendar.js" language="JavaScript"></script>

<script language="JavaScript" type="text/JavaScript" src='jsdir/common.js'></script>

<script language="JavaScript" type="text/JavaScript" >

//---

var fldCustData = '<xsl:value-of select="/faml/request/fldcustlist"/>'.split('~');

//---

function bulkFileViewLink (p_filerefno) {

 document.frmmain.fldbtid.value = '<xsl:value-of select="/faml/request/fldfileuploadtype"/>' ;

 document.frmmain.fldfilerefno.value = p_filerefno;

 document.frmmain.fldallcustomerflag.value = "Y";

 document.frmmain.target = "";

 SendTxnRequest('02','BVF');

 return false;

}

//---

</script>

</head>

<body class="workarea" onload="displayStatusMessage ();">

<xsl:variable name="idlang">

 <xsl:value-of select="//faml/response/sessioninfo/@idlang"/>

</xsl:variable>

<form action="internet" method="post" name="frmmain">

<table id="mainbox" class="mainbox" cellpadding="0" cellspacing="0" border="0"><tr><td>

39 Oracle FLEXCUBE Direct Banking Developers Guide

 <div class="toppanel"></div>

 <div class="middlepanel"> <!--mainbox middlepanel start-->

 <table cellspacing="0" cellpadding="0" border="0" id="maintable" class="maintable">

 <tr>

 <td valign="top">

 <div id="pageheadingpanel">

 <div id="pageheading" nowrap="true">%%K_FILE_UPLOAD%%</div>

 <div id="pageheadingdate"><xsl:call-template

name="formatted_date"/></div>

 </div>

 </td>

 </tr>

 <tr>

 <td height="100%" valign="top">

 <div class="y_scroll" id="contentarea"> <!--y_scroll start-->

 <div class="contentarea"><!--contentarea start-->

 <!--rounded curve/border start-->

 <div class="toppanel"></div>

 <div class="middlepanel"> <!--contentarea box middlepanel

start-->

 <table border="0" cellspacing="1" cellpadding="1" class="infotable">

 <tr>

 <td class="labeltext col1">%%K_BUFILEREFNO%%:</td>

 <td class="col80"><a href="javascript:void(0)" title="{btidsearch}"

onclick="return bulkFileViewLink('{/faml/response/bulkfileuploadprepareresponsedto/filerefno}');"

class="NavBold"><xsl:value-of select="/faml/response/bulkfileuploadprepareresponsedto/filerefno"/></td>

 </tr>

 </table>

 </div> <!--contentarea box middlepanel end-->

 <div class="bottompanel"></div>

 <!--rounded curve/border end-->

 <!--rounded curve/border start-->

 <div class="toppanel"></div>

 <div class="middlepanel"> <!--contentarea box middlepanel

start-->

 <table border="0" cellspacing="1" cellpadding="1" class="infotable">

 <tr>

 <td class="labeltext col1">%%K_FILE_UPLOAD_TYPE%%:</td>

 <td class="col80"><xsl:value-of

select="/faml/request/fldfileuploadtypetext"/></td>

 </tr>

 <tr>

40 Oracle FLEXCUBE Direct Banking Developers Guide

 <td class="labeltext">%%K_ENCODINGTYPEFORFILEUPLOAD%%:</td>

 <td><xsl:value-of select="/faml/request/fldencodingtypetext"/></td>

 </tr>

 <tr>

 <td class="labeltext">%%K_UPLOADFILE%%:</td>

 <td><xsl:value-of select="/faml/request/flduploadfilename"/></td>

 </tr>

 </table>

 </div> <!--contentarea box middlepanel end-->

 <div class="bottompanel"></div>

 <!--rounded curve/border end-->

 <div class="buttonarea">

 <input alt=" %%K_OK%% " name="fldok" onClick="SendRequest('01','BFU');"

value="%%K_OK%%" class="buttons" size="16" type="button" maxlength="16" />

 </div>

 </div>

 </div>

 </td>

 </tr>

</table>

 </div><!--mainbox middlepanel end-->

 <div class="bottompanel"></div>

 </td>

 </tr>

</table>

<input type="hidden" name="fldRequestId" value=""/>

<input type="hidden" name="fldSessionId" value="{//faml/request/fldSessionId}"/>

<input type="hidden" name="fldServiceType" value="{//faml/request/fldServiceType}"/>

<input type="hidden" name="fldDataId" value="{//faml/request/fldDataId}"/>

<input type="hidden" name="fldSectionId" value="{//faml/request/fldSectionId}"/>

<input type="hidden" name="fldfilerefno" value=""/>

<input type="hidden" name="fldallcustomerflag" value=""/>

<input type="hidden" name="fldbtid" value=""/>

</form>

</body>

</html>

</xsl:template>

</xsl:stylesheet>

41 Oracle FLEXCUBE Direct Banking Developers Guide

5.2 EXTENDING EXISTING JAVA ENDPOINT SERVICE

For a existing Business ‘Service’, within the Oracle FLEXCUBE Direct Banking Services Architecture, one can extend this functionality by either of
the following ways

5.2.1 CREATE A NEW BUSINESS SERVICE CALLING EXISITNG BUSINESS

The Business Definitions are represented as Java Interfaces. The business definitions method signatures that provide the required business
definitions for data exchange. The steps would be as follows

1) Identify the MSTCHANNELATS for which functionality needs to be changed
2) Create a New Service XSL by keeping the existing SERVICE XSL as a base
3) Modify the Existing MSTCHANNELATS entry ID_SERVICE entry to point to this new SERVICE XSL created above.
4) Create a NEW DTO and ensure that the existing Business Service Request / Response DTO are variable inside your new DTO.
5) A new validation entry would also need to be made.

A Sample Invocation of a Existing Business Service is as follows (assuming that the existing business service was called using “getInformation”.

42 Oracle FLEXCUBE Direct Banking Developers Guide

public NewInformationResponseDTO getInformation(

 TransactionContext p_context

, NewInformationRequestDTO p_request

) {

//------------ account number list initialization -----------------

 l_newInfo = new NewInformationRequestDTO ();

 l_oldresp = (InformationResponseDTO)ServiceManager.invokeService(

 “InformationServiceInterface.InformationService.getInformation”

 , p_request

 , null

 , p_context

 , true

);

 if(!ServiceUtils.isSuccess(l_actresp)) {

 l_resp.result = l_actresp.result;

 return l_resp;

 }

 l_newInfo.businessInfoDTO = l_oldresp;
}

Please note that 2 new DTO NewInformationResponsDTO and New

The above example shows how to invoke the out of the box Account Service.

5.2.2 DATA TRANSFER OBJECTS

All Data Transfer Objects or DTOs are the data carriers within and external to the system. All DTO objects have UDF DTO which can be used by
the developers to add to functionalities. The Request DTO as well as Response DTO have UDF DTO capability are available to extend

One could add to the UDF DTO with a new UDF field name and field value by adding the same through the SERVICE XSL without modifying the
existing business service.
A sample Request XSL showing the following

43 Oracle FLEXCUBE Direct Banking Developers Guide

<ServiceRequest>

<serviceName>GenericPaymentServiceInterface.GenericPaymentService.initiateGenericPaymentDetails</serviceName>

<serviceAction><xsl:value-of select="/faml/request/fldnextaction"/></serviceAction>

<referenceNo><xsl:value-of select="/faml/request/fldreferenceno"/></referenceNo>

<stateBit><xsl:value-of select="/faml/request/fldstatebit"/></stateBit>

<request>

 <GenericPaymentRequestDTO>

 <srcAccount>

 <AccountNoInputDTO>

 <nbrAccount><xsl:value-of select="//faml/request/fldsrcacctno"/></nbrAccount>

 <refIdEntity><xsl:value-of select="//faml/request/fldsrccodcountry"/></refIdEntity>

 <idCustomer><xsl:value-of select="//faml/request/fldsrccustid"/></idCustomer>

 <ccyDesc><xsl:value-of select="//faml/request/fldsrcaccntcurr"/></ccyDesc>

 <codBranch><xsl:value-of select="//faml/request/fldsrcbankcode"/></codBranch>

 <namBranch><xsl:value-of select="//faml/request/fldsrcnambranch"/></namBranch>

 <codSwift><xsl:value-of select="//faml/request/fldsrcswiftid"/></codSwift>

 </AccountNoInputDTO>

 </srcAccount>

 <destAccount>

 <AccountNoInputDTO>

 <nbrAccount><xsl:value-of select="//faml/request/flddestacctno"/></nbrAccount>

 <refIdEntity><xsl:value-of select="//faml/request/fldsrccodcountry"/></refIdEntity>

 <idCustomer><xsl:value-of select="//faml/request/flddestcustid"/></idCustomer>

 <ccyDesc><xsl:value-of select="//faml/request/flddestaccntcurr"/></ccyDesc>

 <codBranch><xsl:value-of select="//faml/request/flddestbankcode"/></codBranch>

 <namBranch><xsl:value-of select="//faml/request/flddestnambranch"/></namBranch>

 <codSwift><xsl:value-of select="//faml/request/flddestswiftid"/></codSwift>

 </AccountNoInputDTO>

 </destAccount>

 <txnAmount><xsl:value-of select="//faml/request/fldtxnamount"/></txnAmount>

 <txnCurrency><xsl:value-of select="//faml/request/fldtxncurrency"/></txnCurrency>

 <idUserRefNo><xsl:value-of select="/faml/request/flduserrefno"/></idUserRefNo>

 <isOnlineRateReq><xsl:value-of select="/faml/request/fldisonlineratereq"/></isOnlineRateReq>

 <isNextStatusAuth><xsl:value-of select="/faml/request/fldnextstatusauth"/></isNextStatusAuth>

 <xsl:if test="/faml/request/fldudf">

 <udfFields>

 <xsl:for-each select="/faml/request/fldudf">

 <UDFDTO>

44 Oracle FLEXCUBE Direct Banking Developers Guide

 <xsl:variable name="udfname"><xsl:value-of select="concat ('/faml/request/',

.)"/></xsl:variable>

 <udfName><xsl:value-of select="."/></udfName>

 <udfValue><xsl:value-of select="dyn:evaluate($udfname)"/></udfValue>

 </UDFDTO>

 </xsl:for-each>

 </udfFields>

 </xsl:if>

 </GenericPaymentRequestDTO>

</request>

</ServiceRequest>

5.2.3 USING PRE SERVICE HELPERS

Oracle FLEXCUBE Direct Banking provides capability to call a pre-service helper which is configured at the SERVICE level.

This helper should implement interface com.iflex.fcat.services. ServiceHelper and provided concrete implementation for
below mentioned callback methods viz.

 processRequest – called before the service is called

 processResponse – called after the service is called

5.2.3.1 SAMPLE DATABASE ENTRIES

These are the sample database entries which would need to be applied on the ADMIN schema

5.2.3.1.1 TABLE: MSTSERVICES

update mstservices set custom_helper= '<<Custom_helper class full qualified name>>' where namservice =

'<<Interface.service.method>>'

5.2.4 USING IN SERVICE LIFE CYCLE HANDLERS

Oracle FLEXCUBE Direct Banking provides capability to extended processing behavior of certain milestones in user’s lifecycle.

45 Oracle FLEXCUBE Direct Banking Developers Guide

The handler should implement the interface com.iflex.fcat.services.apps.UserLifeCycleExtendedHandler and provided
concrete implementation for below mentioned callback methods.

The handler can be optionally configured in table MSTENTITYUSERTYPES.USERLIFECYCLEHANDLER for each user type.

A default handler com.iflex.fcat.services.apps.handlers.DefaultUserLifeCycleAlertHandler provides out-of-box
implementation of the above interface. This handler should be explicitly configured in the table if the extension is needed.

Extension available Implementation in DefaultUserLifeCycleAlertHandler
Create User Generate alert

Create Channel User Generate alert containing channel user id

Modify User Generate alert

Modify Channel User Generate alert containing modified channel user

Create User – Login Password generation Generate alert containing generated password

Create User – Transaction Pin generation Generate alert containing generated pin

Change Login password Generate alert containing changed password

Change Transaction pin Generate alert containing changed pin

Reset Login password Generate alert containing generated password

Reset Transaction pin Generate alert containing generated pin

Change activation code Generate alert containing activation code

5.2.5 USING IN EXTENDED HANDLERS

Oracle FLEXCUBE Direct Banking provides capability to extended processing behavior of responses given by the Business Service.

The handler should implement the interface com.iflex.fcat.services.ExtResponseHandler and provided concrete
implementation for below mentioned callback methods.

 processExtendedResponseDetails : which provide capability to change the Response DTO based on business needs.

46 Oracle FLEXCUBE Direct Banking Developers Guide

A default handler com.iflex.fcat.services.apps.handlers.ExtResponsHandler provides out-of-box implementation of the
above interface. This handler should be explicitly configured in the table if the extension is needed.

Extensions available Implementation in ExtResponsHandler
LoginExtnResponseHandler This is to be added when accounts need to be populated during Login.

NullExtResponseHandler This is to be added against a service when no responses is needed

CompleteExtResponseHandler This is to be added against a service when needs extended responses. The extended responses
include
 Entity Time Zone

 UI Download Definition

 Screen Hints

 Local Currency

 Business Calendar Dates

 Dependant Transaction

47 Oracle FLEXCUBE Direct Banking Developers Guide

5.3 LINK THE BUSINESS SERVICES TO HOST COMPONENTS

The developer and implementor can modify the following components inside the Host Interfacing Layer using the following ways

 Modify the Host Adaptor Class

 Modify the Host Interfacing XSL which transforms the DTO into a XML the core banking understands

 Modify the Communication protocols as mentioned in the Host Interfacing Section above.

48 Oracle FLEXCUBE Direct Banking Developers Guide

6 MODIFY WEB ARCHIVE
Oracle FLEXCUBE Direct Banking product comes with a web archive (.war file) per entity. The web archive contains images, Java script files,
cascaded style sheets, static and dynamic web pages etc. Various configuration files are also available under the WEB-INF folder of web archive.

The web archive is optimized so as to improve content delivery. These optimizations include
1. Minification of Java script files

2. Minification of cascaded style sheets

3. Data URI conversion of cascaded style sheets

4. Compression of static and dynamic data using GZIP

Please refer to following documents for doing any modifications in the web archive contents

Document Name Description
Oracle_FLEXCUBE_Direct_Banking_UI_Content_Delivery_Optimization_Guide This document provides details on the process of modifying

contents of web archive. It also provides details on the UI
content optimization utility

Oracle_FLEXCUBE_Direct_Banking_User_Interface_Guide This document provides the guidelines for the User
Interface of Oracle FLEXCUBE Direct Banking with the
options of choosing the correct User Interface Layout,
Theme or updating them.

49 Oracle FLEXCUBE Direct Banking Developers Guide

7 PLUGINS / EXTENSIONS AVAILABLE
Oracle FLEXCUBE Direct Banking provides various extensions which can be tweaked to customize products based on banks specific requirement.

Layers Available Extensions
Presentation Layer  Configurable Widgets as part of DAY Zero.

 Configurable Menu Structures

 Configurable Layout Structures.

 Out of box Theming capability.

 Open Development Workbench Available to create and modify GUI screens

Channel Layer  Custom Audit Handler

 Separation of GUI and Channel Layer

 Configurable communication protocol to call Business Layer

 Inbuilt security feature to store Request and Response.

 Wizard capability.

Business Layer  WebServices available for all function in FCDB.

 New Services Easily Configured.

 Extending Existing WebServices.

 User Defined Fields available for DTO (Request and Response)

 Facility to call

o Pre Service – Ability to call helper for every service

o In-Service – Default LifeCycle Handler can be called for in service calls.

o Post Service – Custom Extended Handler after every service.

 Configurable Validation Engine.

 Configurable Modules can be linked Transaction Specific logic.

Host Layer  Ability to communicate with disparate Communication protocols.

50 Oracle FLEXCUBE Direct Banking Developers Guide

8 DEVELOPER TOOLS
Oracle FLEXCUBE Direct Banking is a Java SE and Java EE based platform and any standard development environment for Java applications can be
used. The following are the recommended developer tools for developing on Oracle FLEXCUBE Direct Banking.

Java Editors and Tools - Eclipse IDE 3.3 (Europa,Indigo)
Browsers - Please refer the version specific Release Note

Database - Oracle 11g

Database Tools - Oracle 11g Client

JDBC Driver - Oracle JDBC Thin Driver for 10g
- 11g

Operating System Windows XP, Windows 7 Professional Workstations, Oracle Enterprise Linux

51 Oracle FLEXCUBE Direct Banking Developers Guide

9 APPENDIX: ENTITY MAINTENANCE
Entity can be use to represent a business units as banks, segments, partners. Oracle FLEXCUBE Direct Banking supports multiple entity scenario
setups as following:

Oracle FLEXCUBE Direct Banking provides an out of the box utility to clone a entity.

52 Oracle FLEXCUBE Direct Banking Developers Guide

9.1 ADDING MULTIPLE ENTITIES IN SAME SINGLE SETUP

1) Register the new entity in table MSTENTITY.
2) Map allowed user type for this entity. If required a new user type can also be defined. The user type for the new entity are registered in

table MSTENTITYUSERTYPES.
3) Map allowed channels for the user types on the new entity in table MSTENTITYUSERCHANNEL.
4) Map allowed languages to the user type on the new entity in table MSTENTITYUSERTYPELANG.

5) Define transactional access, map transactions for the new entity, user type(s) & channel in table MSTUSERTYPETXN.

6) Add allowed preference option for the new entity and user types in table MSTENTITYUSERTYPEPREF.

7) Add service version mapping for the new entity, user type in table MSTSERVICESMAP
8) Add optionally user type information in tables MSTENTITYACCOUNTACCESS, MSTACCTTYPES, MSTENTITYCUSTTYPES,

MSTENTITYUSERTYPEPREF.
9) In application server, deploy web-application to serve the requests. The web.xml of the application should be modified to change the

parameter “FCAT.INTERNETSERVLET.DAEMON.NAME” to entity identifier.
10) A new presentation tier property file should be created named as < FCAT.INTERNETSERVLET.DAEMON.NAME>.xml

 Application server restart will be required post above steps for new user type change to take effect.

53 Oracle FLEXCUBE Direct Banking Developers Guide

10 APPENDIX: ADDING A NEW USER TYPE

Entity can be use to represent a business units as banks, segments, partners. Oracle FLEXCUBE Direct Banking supports multiple entity scenario
setups as following:

Oracle FLEXCUBE Direct Banking provides an out of the box utility to clone a user type.

54 Oracle FLEXCUBE Direct Banking Developers Guide

10.1 ADDING MULTIPLE USERTYPES IN SAME ENTITY

To add new user type to the application please follow below mentioned steps

1) Add the new user type information to table MSTUSERTYPES.
2) Map the new user type for relevant entity in table MSTENTITYUSERTYPES.
3) Map allowed channels to the new user type in table MSTENTITYUSERCHANNEL

4) Map allowed languages to the user type in table MSTENTITYUSERTYPELANG

5) Define transactional access, map transactions for the entity, new user type & channel in table MSTUSERTYPETXN.
6) Add allowed preference option for the new user type in table MSTENTITYUSERTYPEPREF
7) Update access of base user types on the new user type being added in table MSTENTITYUSERTYPES

8) Add service version mapping for the user type in table MSTSERVICESMAP
9) Add optionally user type information in tables MSTENTITYACCOUNTACCESS, MSTACCTTYPES, MSTENTITYCUSTTYPES,

MSTENTITYUSERTYPEPREF.
10) Add branding information for the new user type.

 Application server restart will be required post above steps for new user type change to take effect.

55 Oracle FLEXCUBE Direct Banking Developers Guide

11 APPENDIX: ADDING A NEW LANGUAGE
To add new language to the application please follow below mentioned steps

1) Details of the new language should be added to table MSTLANG.
2) Details of the new language should be added to table MSTENTITYUSERTYPELANG.
3) Application messages specific to the new language should be added to table APPLICATIONMESSAGE.
4) UI Labels and application data for the new language should be added to table APPLDATA.
5) Add CSS in war for the new language. The CSS name includes language code.

 Application server restart will be required post above steps for new language change to take effect.

56 Oracle FLEXCUBE Direct Banking Developers Guide

12 APPENDIX: LIST OF DEVICES / CHANNELS

Device ID Device Description
01 Internet

This channel is used for all Business User Types like Retail User, Corporate User, Corporate Administration etc. Also, as an
exception, this is also used as a channel for the Helpdesk Users operating on behalf of the Business Users.

This channel also supports specific user agents viz

User Agent Device

IPAD / Android Tablet

11 Intranet

This channel is used for all Administration User type typically Internal User within the bank.

41 SMS Banking

This channel identifies all transactions originating from the SMS Banking channel. This is currently applicable only to Business
User Types like Retail and Corporate Users.

42 Browser based Mobile Banking

This channel identifies all transactions originating from the Brower based Banking channel. This is currently applicable only
to Business User Types like Retail and Corporate Users.This channel also supports specific user agents viz

User Agent Device

Iphone Browser

Non Javascript Browser

57 Oracle FLEXCUBE Direct Banking Developers Guide

43 Application based Mobile Banking

This channel identifies all transactions originating from the Brower based Banking channel. This is currently applicable only
to Business User Types like Retail and Corporate Users.This channel also supports specific user agents viz

User Agent Device

Iphone / Android Phone

IPAD / Android Tablet

J2Me / Blackberry

58 Oracle FLEXCUBE Direct Banking Developers Guide

13 APPENDIX: LIST OF CONTENT GENERATORS

Sr.
No.

Style ID Class Name Description

1 ACQ com.iflex.fcat.gui.content.ApachePOIACQExcelContentGenerator This class provides the content generation capabilities
based on XSL Transformation to generate content
output in Excel format.

Apache POI library is used to generate the Excel
output. This content generator is specific to the
'Account Overview' transaction as it uses
CMN/acq_download_template.xsl for transformation
of data.

2 ACSV com.iflex.fcat.gui.content.ApachePOIExcelContentGenerator This class provides the content generation capabilties
based on XSL Transformation to generate content
output in Excel format.

Apache POI library is used to generate the Excel
output.

3 AHTML com.iflex.fcat.gui.content.DownloadContentGenerator This class provides the content generation capabilities
based on XSL
Transformation. The generated content is in HTML
format and sent as an attachment in the HTTP
response and hence can be downloaded by the
browser.

The flag ATTACHMENT.FLAG decides if the response
data is to be sent as an attachment or as inline data.

The parameter ATTACHMENT.EXT provides file

59 Oracle FLEXCUBE Direct Banking Developers Guide

extension for the attachment

4 ATTCH com.iflex.fcat.gui.content.FileAttachmentContentGenerator This content generator is used to set file attachment in
the response.

5 AUDIT com.iflex.fcat.gui.content.AuditViewContentGenerator This content generator is specific for viewing the
audited data.

It is applied on the audited data XML and uses XSL
transformation to generate the exact response that
was displayed to user when the transaction was
performed by user.

For mobile application channel, the output of this XSL
transformation is either XML or JSON data. Hence is it
again converted to HTML using another XSL
transformation.

6 CSV com.iflex.fcat.gui.content.DownloadDataContentGenerator This content generator is used to download the data
using uidownload framework. It uses a common XSL
download_template.xsl for transformation to
generate the content.

The flag ATTACHMENT.FLAG decides if the response
data is to be sent as an attachment or as inline data.

The parameter ATTACHMENT.EXT provides file
extension for the attachment

60 Oracle FLEXCUBE Direct Banking Developers Guide

7 DHTML com.iflex.fcat.gui.content.DynamicHTMLContentGenerator This content generator is used for all transactions that
are developed using the Channel Workbench tool. It
generates HTML output using XSL transformation of
the channel response.

This content generator caters to Internet as well as
Mobile Browser channels. The data is HTML entity
encoded before transformation.

It is expected to apply the common XSL
(genericscreentemplate.xsl) irrespective of
transaction. It performs following steps:
1. adds the Javascript code available in
<IDREQUEST>.js file into this XSL at runtime. The
generated XSL template is cached for better
performance
2. appends the screen layout metadata available in
<IDREQUEST>.xml file into channel response and
applies the XSL template created i step 1 on the
resultant XML

The XSL file is looked in folders as specified in the
refPathUI configuration. If this configuration is not
available, then the XSL file is first looked at currnet
user type level, if not found it is looked at the base
user type level.

61 Oracle FLEXCUBE Direct Banking Developers Guide

8 DPDF com.iflex.fcat.gui.content.DownloadDataContentGenerator This content generator is used to download the data
using UIDownload framework. It uses a common XSL
download_template.xsl for transformation to
generate the content.

The flag ATTACHMENT.FLAG decides if the response
data is to be sent as an attachment or as inline data.

The parameter ATTACHMENT.EXT provides file
extension for the attachment

9 EMAIL com.iflex.fcat.gui.content.EmailContentGenerator This content generator is used to email the generated
output to user's email ID.

10 GPDF com.iflex.fcat.gui.content.GenericPDFContentGenerator This class provides the content generation capabilities
based on XSL Transformation. This is a generic class
which uses XSL transformation to generate the HTML
of the screen for which the PDF needs to be
generated. Once the HTML output is fetched in output
stream, this output stream is being used by
FOProcessor to generate the PDF file.

62 Oracle FLEXCUBE Direct Banking Developers Guide

11 HTML com.iflex.fcat.gui.content.HTMLContentGenerator This content generator is used to generate HTML
output using XSL transformation of the channel
response.

This content generator can set the Content-Type
header of HTTP response dynamically, based on the
list of possible values passed. It matches the possible
values one by one with 'Accepts' header received in
HTTP request.

This content generator can be used for generating
HTML or XHTML data. The data is HTML entity
encoded before transformation.

The XSL file is looked in folders as specified in the
refPathUI configuration. If this configuration is not
available, then the XSL file is first looked at current
user type level, if not found it is looked at the base
user type level.

12 HTMLD com.iflex.fcat.gui.content.DownloadDataContentGenerator This content generator is used to download the data
using UIDownload framework. It uses a common XSL
download_template.xsl for transformation to
generate the content.

The flag ATTACHMENT.FLAG decides if the response
data is to be sent as an attachment or as inline data.

The parameter ATTACHMENT.EXT provides file
extension for the attachment

63 Oracle FLEXCUBE Direct Banking Developers Guide

13 MDHTML com.iflex.fcat.gui.content.DynamicHTMLContentGenerator This content generator is used for all transactions that
are developed using the Channel Workbench tool. It
generates HTML output using XSL transformation of
the channel response.

This content generator caters to Internet as well as
Mobile Browser channels. The data is HTML entity
encoded before transformation.

It is expected to apply the common XSL
(genericscreentemplate.xsl) irrespective of
transaction. It performs following steps:
1. adds the Javascript code available in
<IDREQUEST>.js file into this XSL at runtime. The
generated XSL template is cached for better
performance
2. appends the screen layout metadata available in
<IDREQUEST>.xml file into channel response and
applies the XSL template created i step 1 on the
resultant XML

The XSL file is looked in folders as specified in the
refPathUI configuration. If this configuration is not
available, then the XSL file is first looked at current
user type level, if not found it is looked at the base
user type level.

64 Oracle FLEXCUBE Direct Banking Developers Guide

14 MJSON com.iflex.fcat.gui.content.MLEAPXSLTContentGenerator This content generator is used for all 'Mobile
Application' transactions that are developed using the
Channel Workbench tool. It generates JSON output
using XSL transformation of the channel response.

It is expected to apply the common XSL
(genericjsontemplate.xsl) irrespective of transaction. It
appends the screen layout metadata available in
<IDREQUEST>.xml file into channel response and
applies the XSL template on the resultant XML.

User-Agent specific screen metadata is given priority
over generic screen metadata.

15 MPXML com.iflex.fcat.gui.content.MLEAPXSLTContentGenerator This content generator is used for all 'Mobile
Application' transactions that are developed using the
Channel Workbench tool. It generates JSON output
using XSL transformation of the channel response.

It is expected to apply the common XSL
(genericjsontemplate.xsl) irrespective of transaction. It
appends the screen layout metadata available in
<IDREQUEST>.xml file into channel response and
applies the XSL template on the resultant XML.

User-Agent specific screen metadata is given priority
over generic screen metadata.

65 Oracle FLEXCUBE Direct Banking Developers Guide

16 OFX com.iflex.fcat.gui.content.DownloadContentGenerator This class provides the content generation capabilities
based on XSL
Transformation. The generated content is in OFX
format and sent as an attachment in the HTTP
response and hence can be downloaded by the
browser.

The flag ATTACHMENT.FLAG decides if the response
data is to be sent as an attachment or as inline data.

The parameter ATTACHMENT.EXT provides file
extension for the attachment

17 PDF com.iflex.fcat.gui.content.DownloadDataContentGenerator This content generator is used to download the data
using UIDownload framework. It uses a common XSL
download_template.xsl for transformation to
generate the content.

The flag ATTACHMENT.FLAG decides if the response
data is to be sent as an attachment or as inline data.

The parameter ATTACHMENT.EXT provides file
extension for the attachment

18 PDFV com.iflex.fcat.gui.content.DownloadDataContentGenerator This content generator is used to download the data
using UIDownload framework. It uses a common XSL
download_template.xsl for transformation to
generate the content.

The flag ATTACHMENT.FLAG decides if the response
data is to be sent as an attachment or as inline data.

The parameter ATTACHMENT.EXT provides file

66 Oracle FLEXCUBE Direct Banking Developers Guide

extension for the attachment

19 PLHTML com.iflex.fcat.gui.content.PreLoginHTMLContentGenerator This content generator is specific to the Pre-Login
functionality. It extends the
DynamicHTMLContentGenerator.

20 PPDF com.iflex.fcat.gui.content.OraclePDFContentGenerator This class provides the content generation capabilities
based on XSL
Transformation. The generated content is in PDF
format and sent as an attachment in the HTTP
response and hence can be downloaded by the
browser.

The flag ATTACHMENT.FLAG decides if the response
data is to be sent as an attachment or as inline data.

21 PRNT com.iflex.fcat.gui.content.OraclePDFContentGenerator This class provides the content generation capabilities
based on XSL
Transformation. The generated content is in PDF
format and sent as an attachment in the HTTP
response and hence can be downloaded by the
browser.

The flag ATTACHMENT.FLAG decides if the response
data is to be sent as an attachment or as inline data.

67 Oracle FLEXCUBE Direct Banking Developers Guide

22 PXML com.iflex.fcat.gui.content.XMLXSLTContentGenerator This class provides the content generation capabilities
based on XSL
Transformation. This is the default mechanism of
generating content for the FCDB Presentation Layer.
The XML data returned by the appropriate business
processing components undergoes
XSLT to generate the required output. The different
outputs from this content
generator are HTML, WML, CHTML, PDF, TXT and CSV.
The implementation provides the capability to define
and configure the
appropriate content type for the output.

23 QIF com.iflex.fcat.gui.content.DownloadContentGenerator This class provides the content generation capabilities
based on XSL
Transformation. The generated content is in QIF
format and sent as an attachment in the HTTP
response and hence can be downloaded by the
browser.

The flag ATTACHMENT.FLAG decides if the response
data is to be sent as an attachment or as inline data.

The parameter ATTACHMENT.EXT provides file
extension for the attachment

68 Oracle FLEXCUBE Direct Banking Developers Guide

24 RHTML com.iflex.fcat.gui.content.ReportContentGenerator This content generator is used to download the report
data. The channel response is supposed to have report
data in Base64 encoded format. The data is sent in
Zipped format.

The flag ATTACHMENT.FLAG decides if the response
data is to be sent as an attachment or as inline data.

The parameter ATTACHMENT.EXT provides file
extension for the attachment

25 RPDF com.iflex.fcat.gui.content.ReportContentGenerator This content generator is used to download the report
data. The channel response is supposed to have report
data in Base64 encoded format.

The flag ATTACHMENT.FLAG decides if the response
data is to be sent as an attachment or as inline data.

The parameter ATTACHMENT.EXT provides file
extension for the attachment

26 RXLS com.iflex.fcat.gui.content.ReportContentGenerator This content generator is used to download the report
data. The channel response is supposed to have report
data in Base64 encoded format.

The flag ATTACHMENT.FLAG decides if the response
data is to be sent as an attachment or as inline data.

The parameter ATTACHMENT.EXT provides file
extension for the attachment

69 Oracle FLEXCUBE Direct Banking Developers Guide

27 RZIP com.iflex.fcat.gui.content.ReportContentGenerator This content generator is used to download the report
data. The channel response is supposed to have report
data in Base64 encoded format. The data is sent in
Zipped format.

The flag ATTACHMENT.FLAG decides if the response
data is to be sent as an attachment or as inline data.

The parameter ATTACHMENT.EXT provides file
extension for the attachment

28 TCSV com.iflex.fcat.gui.content.DownloadContentGenerator This class provides the content generation capabilities
based on XSL
Transformation. The generated content is in CSV
format and sent as an attachment in the HTTP
response and hence can be downloaded by the
browser.

The flag ATTACHMENT.FLAG decides if the response
data is to be sent as an attachment or as inline data.

The parameter ATTACHMENT.EXT provides file
extension for the attachment

70 Oracle FLEXCUBE Direct Banking Developers Guide

29 TEXT com.iflex.fcat.gui.content.XMLXSLTContentGenerator This class provides the content generation capabilities
based on XSL
Transformation. This is the default mechanism of
generating content for the FCDB Presentation Layer.
The XML data returned by the appropriate business
processing components undergoes
XSLT to generate the required output. The different
outputs from this content
generator are HTML, WML, CHTML, PDF, TXT and CSV.
The implementation provides the capability to define
and configure the
appropriate content type for the output.

30 TIMG com.iflex.fcat.gui.content.TuringImageContentGenerator This content generator is used for Captcha image
generation

31 TXT com.iflex.fcat.gui.content.DownloadContentGenerator This class provides the content generation capabilities
based on XSL
Transformation. The generated content is in plain text
format and sent as an attachment in the HTTP
response and hence can be downloaded by the
browser.

The flag ATTACHMENT.FLAG decides if the response
data is to be sent as an attachment or as inline data.

The parameter ATTACHMENT.EXT provides file
extension for the attachment

71 Oracle FLEXCUBE Direct Banking Developers Guide

32 TXTD com.iflex.fcat.gui.content.XMLDataContentGenerator This content generator is used to convert the XML
data into Text output. It uses XSL transformation for
the same. It parses the channel response for
xmldatadownloadresponsedto/data and applies XSLT
on this data element only.

The flag ATTACHMENT.FLAG decides if the response
data is to be sent as an attachment or as inline data.

The parameter ATTACHMENT.EXT provides file
extension for the attachment

33 VPDF com.iflex.fcat.gui.content.FODownloadDataContentGenerator This class provides the content generation capabilities
based on XSL
Transformation. The generated content is in PDF
format and sent as an attachment in the HTTP
response and hence can be downloaded by the
browser.

The XSL file is first looked at user type leven. If not
found, it is looked at base user type level. If not found
there also, then looked at common folder.

The flag ATTACHMENT.FLAG decides if the response
data is to be sent as an attachment or as inline data.

The parameter ATTACHMENT.EXT provides file
extension for the attachment

72 Oracle FLEXCUBE Direct Banking Developers Guide

34 XHTML com.iflex.fcat.gui.content.HTMLContentGenerator This content generator is used to generate HTML
output using XSL transformation of the channel
response.

This content generator can set the Content-Type
header of HTTP response dynamically, based on the
list of possible values passed. It matches the possible
values one by one with 'Accepts' header received in
HTTP request.

This content generator can be used for generating
HTML or XHTML data. The data is HTML entity
encoded before transformation.

The XSL file is looked in folders as specified in the
refPathUI configuration. If this configuration is not
available, then the XSL file is first looked at currnet
user type level, if not found it is looked at the base
user type level.

35 XML com.iflex.fcat.gui.content.XMLContentGenerator This content generator is to be used when the
response is expected in XML format.

73 Oracle FLEXCUBE Direct Banking Developers Guide

14 APPENDIX: REFERENCES
The following material is useful for any documentation

Installation

Document Name Description
Oracle_FLEXCUBE_Direct_Banking_Environment The document provides the list of hardware and software environments on

which the platform is available.

Oracle_FLEXCUBE_Direct_Banking_Installer_UserGuide The document provides guide on using Installer toolkit for installation.

Oracle_FLEXCUBE_Direct_Banking_Installation_Steps The document provides step-by-step installation guide.

Database

Document Name Description
Oracle_FLEXCUBE_Direct_Banking_Database_Setup The document provides detail information on database setup.

Oracle_FLEXCUBE_Direct_Banking_Database_Design The document provides database object design.

Oracle_FLEXCUBE_Direct_Banking_Database_Data_Model The document provides data model for local database schema.

Reports/BI Publisher

Document Name Description
Oracle_FLEXCUBE_Direct_Banking_Reports_Setup_and_Confi
guration

The document provides installations, setup and Configuration guidelines for
integrating the reports available within the Oracle FLEXCUBE Direct Banking
platform.

Oracle_FLEXCUBE_Direct_Banking_Customer_Reports_Defini
tion

Provides details on the various canned reports and the details of the fields.

Development

Document Name Description
Oracle_FLEXCUBE_Direct_Banking_User_Interface_Guide.doc This document provides the guidelines for the User Interface of Oracle

FLEXCUBE Direct Banking with the options of choosing the correct User
Interface Layout, Theme or updating them.

Oracle_FLEXCUBE_Direct_Banking_Security_Guide Oracle FLEXCUBE Direct Banking Security Best Practices Guide

74 Oracle FLEXCUBE Direct Banking Developers Guide

Oracle_FLEXCUBE_Direct_Banking_Program_Specs.zip This is the API documentation (Program specifications) of the product. Please
extract this zip and open index.html

75 Oracle FLEXCUBE Direct Banking Developers Guide

15 APPENDIX: PAYMENTS DESIGN
All payments modules (except Multiple Internal Transfer) and their Beneficiary Maintenance Transactions have been developed through LEAP
Framework.

 Refer the Oracle FLEXCUBE Direct Banking Generic Payments Design document for further details on configurations of Generic Payments Design.

