ORACLE

Oracle® Communications Contacts Server
System Administrator's Guide

Release 8.0

E56051-04

May 2021

Oracle Communications Contacts Server System Administrator's Guide, Release 8.0
E56051-04
Copyright © 2015, 2021, Oracle and/ or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users
are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the programs, including any operating system, integrated software, any programs installed on
the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to
the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content,
products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and
expressly disclaim all warranties of any kind with respect to third-party content, products, and services
unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its
affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services, except as set forth in an applicable agreement between you and
Oracle.

Contents

PUrOIACE ... e e e ettt aen iX
AN S Lo 1= V< T SSRRRTT ix
REIATEA DIOCUIMICIES ...ttt ettt e e et e s et e e s ateee st e eseaseesssaeessaseessnsseesastessssseesssseessnanenan ix
JANfe) s V=) aTel F=X a0 5 SR X
Documentation AccesSibility ..o X

1 Contacts Server System Administration Overview

ADOUL CONLACES SEIVETooiiiiiiiceieieeteeee ettt ettt st ae et e be e e et e ess e beessesteessesseessesrsensesseansesseans 1-1
Managing Address BOOKScccccvviiiiiiiiiiiiiiiiiiicicc e 1-1
Managing CONACESccovuiiiiiiiiiiiii s 1-2
Contacts Server Support for Corporate DireCtOory........cocoiiruiieiiiicicieiicciciecce e 1-2
Contacts Server Support for Industry Standardsooeoeeveiiiinie, 1-2

Overview of Contacts Server Administration TaskKs.........ccccecveieviriieniniienenceneeeeeee e 1-3

About Contacts Server Administration TOOIScoceoiiiiiiiiiiiiinieeeee e 1-3

Directory Placeholders Used in This Guidecccocooiviiiiiinninncc, 1-3

2 Stopping and Starting Contacts Server

Overview of Stopping and Starting Contacts Server ..o, 2-1
Stopping and Starting Contacts SErver..............ccccovviiiiiiiiiiiii s 2-1
Stopping and Starting the Remote Document Store Server ..., 2-2

3 Managing Users, Accounts, Address Books, and Contacts

Provisioning Contacts Server USerIs..............ccocooiiiiiiiiiiiiiiiiiccccc et 3-1
Provisioning Contacts Server OVerVIEW ..o 3-1
Denying Users Access t0 SEIVICEScceuiiiurieiiiiiiieiiicieie e s 3-2

About Migrating USeTSccceviiiiiiiiiiiiiiiiiiiiiic s 3-2
Provisioning Contacts Server Users by Using Delegated Administrator.........ccccccoevovveveicnce. 3-2
About Controlling Access to Address BoOKS.............ccccooviiiiiiiiniiiiii 3-2
Managing ACCOUNLESc.c.couiiiiiiiiiiic s 3-3
Enabling and Disabling Automatic Account Creationcococcvvivivinnininininnniinincecceae, 3-4

To Enable Automatic Account Creation.........ccceeeveeeieieinieiiiiiiiin, 3-4

To Disable Automatic Account Creation............cccovvviiiiininiini 3-4
Creating Accounts with Default Properties Automatically Upon Login.........ccccocoveiveinnnnn. 3-4
Manually Creating ACCOUNLS.........coeuiuiiiiiiiiiiiiiicc e 3-4
LiSting ACCOUNTSoviviiiiiiiciciiiceccc e 3-5

TO LISE ALL ACCOUNLS ..ottt ettt e et e e s eaa e e eaaesssaaeesenneeesnneeesnnees 3-5

To List Properties of an ACCOUNt ..ot 3-5
Managing Email NOtifiCationscccccovurririririririiiiirerr e 3-5

To Enable Email NOtificationcccceviiiiiiiiiiiiiiiiicccccccc e, 3-6

To Disable Email Notificationcccciiiiiiiiiiiiiiiii s 3-6

To Add or Remove Email Notification Recipients..........cccccovvververnnnnnnnnrnnecerreenee 3-6
Deleting ACCOUNEScooviiiiiec e 3-7
Subscribing to and Unsubscribing from Address BoOKscccooeiiiiiiiiiiiiicc 3-7

To Subscribe to an Address BOOKc.ccooiiiiiiiniiiiicce s 3-7

To Unsubscribe From an Address BooK ..., 3-8
Managing Address BOOKS..............cccccoviiiiiiiiiiiii 3-8
Creating Address BOOKS.ccciuiuiiiiiiiiiicccicc et 3-9
Removing Address BOOKS..........ccoiiiiiiiiiicicc 3-9
Modifying Address BOOKS ... 3-10

To Modify an Address BOOKc.ccccociiiiiiiiiiiicceceeceeeee s 3-10

To Set an Address Book ACE ... 3-10

To Remove an Address Book ACE..........cccccooviiiiiiiniiniiiniiines 3-10

Listing Address BOOKS.......c.cceuiuiiiiiiiiiiiiiicecceceeeeeeeeeee e eeees 3-10

To List an Account's Address BOOKS...........cccoeueieiiiiiiiiiiiiiiiiccccs 3-10

To List an Address Book's Properties ..o 3-11
Managing Contactscccciviiiiiiiiiiiiii s 3-11
Listing Contact Properties ... 3-11
Deleting CONtACESccueviiiiieiiiccie e 3-11
Managing Contact GIOUPSccccovvviiiiiiiiiiiiii s 3-12
Creating Contact GIOUPScooiiurieiiicie ettt 3-12
Listing Contact GIOUPScoeiuiuiiiiiiiicictitctiicitt s 3-13
Deleting COntact GrOUPS.......cccueucuiueueuiuimiieieicieeieieieieiee ettt aeae e aeaeaseeeees 3-13
Modifying Contact GIOUPS.......cocovurueiiiicieieiiicie i 3-13
Importing Contact GIOUPS.......coeuiiriiiiiiiiicicicic s 3-14
Exporting Contact GIOUPS.......cccceiiiiiiiiiiiiii s 3-15

4 Managing Contacts Server

Supported APPlication SEIVETccocciriiiriiiniiineirctee et 4-1
Monitoring Contacts Server by Using Application Server............ccccocovviviinnnninnnnnne, 4-1
Monitoring Application Server JDBC Connection Poolsc.ccoveeieieiirniiiiicecceeena 4-2
Monitoring GlassFish Server JDBC Connection Poolscccccccvuveviviirrnnvrrnrcrnene. 4-2
Monitoring WebLogic Server JDBC Connection Poolscccceueviiiiiiiiceicce 4-2
Checking Contacts Server STatus ..o 4-3
Checking Contacts Server Status with the Administration Console for GlassFish Server

4-3
Checking Contacts Server Status with the asadmin Command for GlassFish Server...... 4-3
Checking Contacts Server Status with the Administration Console for WebLogic Server

4-3
Managing LOGGINGcccoouiiiiiiiiiiiiiii 4-3
LOZZING OVEIVIEW ..ottt 4-3
Logging Contacts Server Information to the Application Server Log File..........cccc.cccceeninne. 4-4
Configuring LOZGINEc.ceeuimiiiiiiiiiiiiiiieeieeeeee et 4-4

Viewing Document Store Log Files ... 4-5

Modifying the Contacts Server Configuration.............ccocooviviniinninni, 4-5
Viewing the Contacts Server Configurations..............cccccocoiiviiiiin, 4-6
Managing Contacts Server Back-End Databasesccccocovvniiniiinnne, 4-6
Adding an Additional Contacts Server Back-End Databasecccccooooiiiiiiiiii, 4-6
Renaming the Default Contacts Server Back End Database..........ccccccceeucuiuniiniicniicnnens 4-8
Listing the Back-End Databases for a Contacts Server Deployment.............cccoooeueiiiiirieieiinnne. 4-9
Purging a Contacts Server Back-End Databasec.coooeiiiiiiiiiie, 4-9
Clearing the Contacts Server Cachec.cccccociiiiiiiiiiiiiccceceeee e 4-9
Managing Contacts Server LDAP POOISccccccovviiiiiiiiiiiiiicccs 4-10
Creating an LDAP POOL ..o 4-10
Deleting an LDAP POOLc.ccooiiiiiiiiiciicccceeeeteeeeeee e seees 4-10
Listing LDADP POOIS.........coooiiiiiiiieie ettt 4-11
Modifying an LDAP POOL ... 4-11
Managing the Contacts Server Document Store passfile.............cccccccovviiiiniiinnnii, 4-11
Creating @ Passfile..........o.oiiiiiiiii e 4-11
Listing @ passfilecoeiiiiiic e 4-12
MOdIfying @ PASSIILEc.cueuiuiiiiiiiiiiiiciciceccccee s 4-12
Managing Virus SCANNINE..........ccccoovviiiiiiiiiiiiiiiiiic s 4-12
Configuring Contacts Server for Virus SCanning ..o 4-13
Installing and Configuring the MTA ... 4-13
Configuring the MTA for Spam and Virus Filtering ..o, 4-13
Configuring Contacts Server Parameters for Virus Scanning...........cccccooveeiiineninnes 4-14

Virus Scanning Example Commands............ccccciiiiiiiiiiiiiieeeeeeeeenenereenenenenenenenenens 4-14
About Logging for Virus SCANNiNg..........cceeuoiriciiiiiicieiiic e 4-15
Managing Logging for the MTAccooii e 4-15
About Proxy Authentication ... 4-16
Managing the Corporate Directory ..o 4-16
Configuring Contacts Server to Use the Corporate Directory..........ccccooevoiirieieiiccicieinicnen, 4-16
Configuring a Domain-Specific Corporate Directory...........cccccoececeiecieiceieciecceeeenennees 4-16
Disabling the Corporate Directory for a Domain..........ccceiicieinioiiciiiinceec 4-17

5 Monitoring Contacts Server

About Monitoring Contacts SErVer............cccocoviiiiiiiiiii 5-1
Contacts Server Monitoring Attributes................ccccocoiiiiiiiii 5-1
General Monitoring AttriDULESc.cccciiiiiiiiiiicccee e 5-1
Back-End Database Schedule Queue AttribUtes........cc.ecveeiieieriieierieieeeieee e 5-2
Back-End Database Average Response Times Attributes...........cccoooveiiiiiiiiiiiicice, 5-2
LDAP Response Time Monitoring Attributes ..o, 5-2
Using a Java Management Extension Client to Access the Monitoring Data.............................. 5-3
Using the reSponsetime SCriPt ..ottt 5-4
responsetime SCript SYNtaX........ccccoiviviiiiiiiniiiiii s 5-4
LOCAtION ..ottt s 5-4
General SYNEAXcccuiiiiiiiiiiiii s 5-4
responsetime Script Error COdesccciviiiiiiiiiiiiiiiiiiccccrceeeeee e 5-5
responsetime Script EXample ... 5-5
Creating a Dedicated User Account for the responsetime Scriptc.ccoeoveeieiiciiiiiicineinines 5-6

Improving Contacts Server Performance

Tuning Contacts Server LOgZing.............cccooviiiiiiiiiiiiccc e 6-1
Tuning Oracle GlassFish Server...........ccccooviiiiiiiiii s 6-1
Tuning Java Virtual Machine Options ... 6-1
Tuning JDBC POOL ... 6-2
Tuning HTTP Service and LIStENETcccoouririririiiiiiirincrccccr e 6-2
Tuning Oracle WebLOgic SeIVer ..o 6-3
Tuning JVM Options for WebLogic SEIVETcooiiiiiiiiiiiiiiiiiiccceenas 6-3
Tuning JDBC Pool for WebLOZIC SEIVETc.ccciuiiiiiiiiiiiiiicicieieiciccicieteieieieeeeeeeee e 6-3
Tuning HTTP Service and Listener for WebLogic Server..........ccoovvvviininnnnnnine, 6-4
Tuning MySQL SeIVETccooiiiiiiiiiiiiccc s 6-5
Tuning Oracle Solaris CIMT SeIVer ..o 6-6
Tuning Reference ... 6-6

Migrating Information to Contacts Server

Introduction to Migrating to Contacts Server...............cccociiiiiiiiniiia, 7-1
About the Personal Address Bookccccooviiiniiiiiiiiiii 7-2
About the Migration Process..............ccooeiiiiiiiiiiiiiiii e 7-3
davadmin migration Command ..o 7-3
Migration Logging and Status ..o 7-4
Troubleshooting the Migration ..o 7-4
Back-End Database EITOTcccccoiiiiiiiiiiiiiiiiicicccc e 7-4
LDAP EITOT .ottt b st n s 7-4
Read Timed Out EITOTcccoviiiiiiiii s 7-5

Managing the Contacts Server Database

Administering the MySQL Server Database...............ccccccociiiiniiiiiiiiiie 8-1
Administering the Oracle Databasecccccooiiiiiiiiii e, 8-1

Backing Up and Restoring Files and Data

About Contacts Server Backup ..o 9-1
Contacts Server Backup and Restore Techniques............ccccocooiiiiiiiiiiiiicccees 9-1
Using the davadmin db Commands ... enenenenes 9-1
Using ZFS SNAPSNOtSoiiiiii 9-2
MySQL Server Backup and Restore Techniques..............cccccooviviiininnnnninncc, 9-2
Oracle Database Backup and Restore Techniquescccocccooeoiriniinininnennineeneeeeeeeeeee 9-2

10 Troubleshooting Contacts Server

vi

Troubleshooting Contacts Server Initial Configurationccccooovniiiii, 10-1
Troubleshooting Application Server and Java...........cccocooviiiiiiii 10-1
Troubleshooting TiPs ... s 10-1
Using the asadmin Command to Specify GlassFish Server Port ..o 10-2
Using GlassFish Server to Check Contacts Server Status.........ccccuevieeieiiicciciicee, 10-2
Using the WebLogic Server Administration Console to Check Contacts Server Status....... 10-2
Troubleshooting Contacts Server nabserver Process.............cccceecccecicciceeereeeenenenennns 10-3

Troubleshooting a Failing davadmin Command. ..o 10-3

Troubleshooting Back-end Database EXrors...........cccoueiiiiiiiiiiiciecccc e 10-5
Refreshing Domain INfOrmation ...t 10-7
Tuning Directory SEIVeT........ooiiiiiiiiiici 10-7
Enabling Telemetry LOZEING ... 10-7
Using the Browser Servlet in GlassFish Server Deployments.............ccccccccocooniiiiniiinnnnne 10-8

11 Using Contacts Server Notifications

Overview of Notification Architectureccooooiiiiiii 11-1
About Server Email Notifications.............cccocovviiiiiiiiiiiiii 11-2
Enabling Contacts Server Notifications ..o 11-3
Enabling Notifications on an ACCOUNTc.cccvueuriiiiurirririiirerirreree e 11-3
Modifying Notifications on an ACCOUNt..........cccouiiiiiiiiiiicic 11-3
Managing Notification Templates............ccccocoviiiiiiiiiiiiis 11-4
INOHHICAION TYPES.....vmiiiiiiiiiieiiiiicicieeece ettt seees 11-4
Templates, Resource Bundle, and Other Configuration Filesccccocevviiiiiiiinnnnn 11-5
Notification Configurationcoociiiiiiiiiiic s 11-5
Resource BUNAIES ... 11-5
Template Files.......ccoooiiiiiiiiiiiic s 11-5
Customizing TemPIatescooiriiiiiiii e 11-6
Preserving Customized Template Files During Upgrade..........ccccocovueivnnnnnnnnnnnncenes 11-6
Writing a Java Messaging Service CONSUMETccccevvviiiiiiiiiiiiiiiiniiics 11-7
Managing Contacts Server Java Messaging Server Destinations...............cccococoovinn 11-7

A Contacts Server Command-Line Utilities

Overview of the Command-Line Utilities.............cccccooooiiiiiiiis A-1
AavVadimin SECUTTEYcvcveviuiieieiiiciccice e eees A-1
Environment Variables...........coiiiiiiiiiiiii s A-1

davadmin ACCOUNLcciiiiiiiiii e A-2
LOCAION 1. s A-2
SYTUEAX ..ttt A-2
ACCOUNE OPETAtION ..ottt A-2
Options for accoOUNt OPEration.........cccceuiuiuiuiuiieuiiiueieieieieeieieeieieeiete et ea e neeeaes A-2

davadmin addressbOook ... A-4
LOCALION 11 e A-4
SYIMEAX .t A-4
addressbook OpPeration ... A-4
Options for addressbook Operation............cceevecueieiiiciiiiiee s A-4

davadmin CONtACE............occcoiiiiiiiii s A-5
LOCAtION c.viiiiiciii s A-5
SYINEAX .ttt A-5
CONtACt OPEIAtIONcvviiiiiiiii s A-6
Options for contact OPeration...........ciiiiiiiiiiiii s A-6

davadmin CEGIOUPccooiiiiiiiiii e A-7
LOCAION 1. s A-7
SYTEAX ..ttt A-7

Vii

B

viii

CEGTOUP OPOIAtiON....vviviiiiiiiiciicic s A-7

Options for ctgroup OPeration ... e A-7
CEGTOUP EXAMPLES.....viiiiiiiiicccce s A-8
davadmin db..........ccoii e A-9
SYIUAX 11ttt A-9
AD OPEIationc.vviiiiiiiiieiiiccee e A-9
Options for db Operation...........cciiiiiiiiiiiiiiiii s A-10
davadmin db EXamples...........coruiiiiiii A-11
davadmin migration ... A-12
LOCAtION .ttt A-13
SYIUAX 1ttt s A-13
Migration OPeration ... A-13
Options for migrate OPeration...........ccoeiiuiiiiuiiiiiiiii s A-13

Contacts Server Configuration Parameters

davserver.properties File........ .ottt B-1
Document Store Configuration Parameters...............cccccocovviiniiiiniin B-1
davadmin.properties File ...t B-2
corpdirnames-lang.properties File ... B-2
Contacts Server Configuration Parametersccccoooiiiiiiiiiiies B-3

Preface

This guide explains how to administer Oracle Communications Contacts Server and
its accompanying software components.

Audience

This document is intended for system administrators whose responsibility includes
Contacts Server. This guide assumes you are familiar with the following topics:

Oracle Communications Calendar Server

Oracle Communications Messaging Server

Oracle GlassFish Server or Oracle WebLogic Server
Oracle Directory Server Enterprise Edition and LDAP
System administration and networking

General deployment architectures

Related Documents

For more information, see the following documents in the Contacts Server
documentation set:

Contacts Server Installation and Configuration Guide: Provides instructions for
installing and configuring Contacts Server.

Contacts Server Release Notes: Describes the new features, fixes, known issues,
troubleshooting tips, and required third-party products and licensing.

Contacts Server Security Guide: Provides guidelines and recommendations for
setting up Contacts Server in a secure configuration.

Contacts Server RESTful Protocol Guide: Describes the RESTful protocol that enables
HTTP clients to fetch, add, and edit address book related data that is stored by
Contacts Server.

Nomenclature

The following nomenclature is used throughout the document.

Convention

Meaning

Application Server

The term Application Server or application server is
used in this document to refer to either GlassFish
Server or WebLogic Server.

Supported Application Server: Oracle
Communications Contacts Server 8.0.0.4.0 and
previous releases were deployed on GlassFish Server,
which is no longer supported by Oracle. For that
reason, Contacts Server 8.0.0.5.0 and beyond are only
supported on Oracle WebLogic Server. Oracle
strongly recommends that you upgrade your
Contacts Server environments to release 8.0.0.5.0 or
higher and migrate to WebLogic Server to receive full
Oracle support.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle

Accessibility Program website at

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing

impaired.

1

Contacts Server System Administration
Overview

This chapter provides an overview of Oracle Communications Contacts Server, and
describes the basic administration tasks and tools used to perform those tasks.

About Contacts Server

Contacts Server enables end users to store and retrieve contact information such as
name, email address, photo, birthdays, and any other information that relates to the
contact. Contacts Server supports all properties defined in the vCard specification,
RFC 6350, available on the IETF website at:

http://tools.ietf.org/html/rfc6350

Contacts Server provides a Network Address Book that facilitates centralized storage
and access of contacts for a large number of users. Being full-featured, it not only
provides contact creation, management and searching capabilities along with multiple
group and multiple address book support, but includes features that enterprises
demand, such as Global Address List integration and address book sharing.

The following sections describe Contacts Server in more detail:
= Managing Address Books

= Managing Contacts

= Contacts Server Support for Corporate Directory

= Contacts Server Support for Industry Standards

Managing Address Books

Contacts Server enables end users to own multiple address books. Each address book
requires a display name when created. You can list, modify, and delete address book
entries and their properties. Contacts Server creates the user's default address book
with a special contact called the personal contact card (PCC). The PCC is the single
personal contact entry for the user. Each user's PCC is populated by Contacts Server
with the user's first and last name. Only the user can view or modify the PCC.

Users can share their address books for other users to subscribe to. Contacts Server
uses Access Control Lists (ACLs) to control subscription. ACLs consist of one or more
Access Control Entries (ACEs), which are strings that grant a particular level of access
to a particular entity. Access rights can be specified for an individual or an LDAP
group. A share notification email is sent to the address book subscriber when access

Contacts Server System Administration Overview 1-1

About Contacts Server

rights are granted. For more information about address book subscription and access
rights, see "About Controlling Access to Address Books".

Managing Contacts

Contacts Server enables users to manage their contacts according to their individual
needs. Contacts Server users can create contact groups, classify contacts, and perform
actions on those groups. Groups consist of contacts from that address book, another
local address book, a shared address book, or a corporate address book. Groups can
also consist of external members. Contacts Server represents contacts by using URIs.
Contacts Server uses a UID for contacts defined on the same server, and email
addresses for external members, including those in a corporate directory.

Note: Contacts Server allows only one photo per contact, as opposed
to multiple photos per contact.

In addition, Contacts Server provides the capability to import and export contact
information.

Contacts Server supports the following formats for importing contacts:
= Outlook CSV

s Thunderbird CSV

» Thunderbird LDIF

= vCard 3.0

Contacts Server supports the vCard 3.0 and CSV formats for exporting contacts.

Note: The recommended export format is vCard 3.0. Only use CSV
if vCard 3.0 is unavailable.

For more information on importing and exporting contacts, see "Importing Contact
Groups" and "Exporting Contact Groups".

Contacts Server Support for Corporate Directory

Contacts Server supports read-only access to corporate directory listings stored in
Oracle Directory Server Enterprise Edition (Directory Server). You can configure
Contacts Server for a default corporate directory. In addition, you can define
additional per-domain corporate directories. LDAP data is translated to vCard format
for output. For more information on configuring the corporate directory, see
"Managing the Corporate Directory".

Contacts Server Support for Industry Standards

Contacts Server is based on standards. Table 1-1 lists the standards that Contacts
Server uses.

These are internet standards, published in RFCs approved by the Internet Engineering
Task Force (IETF).

1-2 Contacts Server System Administrator's Guide

Directory Placeholders Used in This Guide

Table 1-1 Contacts Server Supported Standards

Standard Name Standard Details
vCard s vCard (RFC6350)
= vCard 3.0 (RFC2426)
CardDAV = Based on RFC6352 for access control

= Supports draft about CardDAV directory

= Supports RFC6764, Locating Services for CardDAV
Other » HTTP and HTTP Auth (RFC 2616 & RFC2617)

= WebDAV (RFC4918, RFC5689 & RFC3744)

= Collection Synchronization for WebDAV (RFC6578)

Overview of Contacts Server Administration Tasks

A Contacts Server administrator is responsible for the day-to-day tasks of maintaining
and managing Contacts Server and its users. The tasks also include managing Contacts
Server components, application server, and potentially other Unified Communications
Suite components.

You perform the following tasks as a Contacts Server administrator:
= Stopping and starting Contacts Server

= Managing user accounts, address books, and contacts

= Monitoring Contacts Server

= Tuning Contacts Server performance

= Migrating data to Contacts Server

= Managing the Contacts Server back-end database

= Backing up and restoring files

= Troubleshooting Contacts Server

About Contacts Server Administration Tools
Contacts Server is deployed on an application server domain.

When GlassFish Server is used as the container, you can use the GlassFish Server
Administration Console and asadmin command to manage the Contacts Server web
container. See the GlassFish Server documentation for more information.

When WebLogic Server is used as a container, you can use WebLogic Server
Administration Console to manage the Contacts Server web container. See the
WebLogic Server documentation for more information.

Contacts Server provides a number of command-line utilities for administering the
server. These utilities run under the parent command, davadmin. For more
information, see "Contacts Server Command-Line Utilities".

Directory Placeholders Used in This Guide
Table 1-2 lists the placeholders that are used in this guide:

Contacts Server System Administration Overview 1-3

Directory Placeholders Used in This Guide

Table 1-2 Contacts Server Directory Placeholders

Placeholder

Directory

ContactsServer_home

Specifies the installation location for the Contacts Server
software. The default is /opt/sun/comms/nabserver.

GlassFish_home

Specifies the installation location for the Oracle GlassFish Server
software. The default is /opt/glassfish3/glassfish.

WebLogic_home

The base directory in which Oracle WebLogic Server software is
installed.

GlassFish_Domain

Oracle GlassFish Server domain in which Contacts Server is
deployed. For example, GlassFish_home/domains/domain1

WebLogic_Domain

Oracle WebLogic Server domain in which Contacts Server is
deployed. For example, WebLogic_home/user_
projects/domains/base_domain.

Note: In case of WebLogic Server, it must have at least one
Managed Server instance configured and the Managed Server
instance must be hosting the Contacts Server.

AppServer_Domain

Domain of the application server in which Contacts Server will
be deployed.

Domain refers to either Glassfish_Domain or Weblogic_Domain.

1-4 Contacts Server System Administrator's Guide

2

Stopping and Starting Contacts Server

This chapter explains how to stop and start Oracle Communications Contacts Server.

Overview of Stopping and Starting Contacts Server

Stopping and starting Contacts Server involves stopping and starting processes and
databases on the Contacts Server front-end and back-end hosts.

To stop and start the Contacts Server process on the front-end hosts, you must stop
and start the application server domain in which Contacts Server is deployed.

To stop and start the Contacts Server database on the back-end hosts, you use the
appropriate MySQL or Oracle Database command. See the following documentation
for more information:

= "Starting and Stopping MySQL Automatically” in MySQL 5.5 Reference Manual

= "Stopping and Starting Oracle Software" in Oracle Database Administrator’s
Reference 19c for Linux and UNIX-Based Operating Systems

When you start Contacts Server, you must first start the Contacts Server back-end
database hosts, as well as the remote document stores, before starting the Contacts
Server front-end hosts.

Stopping and Starting Contacts Server

The following examples show how to stop and start Contacts Server deployed on
GlassFish Server and WebLogic Server.

For GlassFish Server:

Example of a default GlassFish Server installation with Contacts Server deployed in
domain1:

s To stop Contacts Server:

GlassFish_home/bin/asadmin stop-domain domainl

s To start Contacts Server:

GlassFish home/bin/asadmin start-domain domainl

For WebLogic Server:

You can stop or start the domains in WebLogic Server Administration Console. You
can also stop or start the domains using the scripts provided in the bin directory of the
domain. You should restart the Administration Server and Managed Server on which
Contacts Server is deployed. For more information, see the discussion about starting

Stopping and Starting Contacts Server 2-1

Stopping and Starting the Remote Document Store Server

and stopping servers in Administering Server Startup and Shutdown for Oracle
WebLogic Server.

Stopping and Starting the Remote Document Store Server

The Contacts Server document store is used to store and retrieve large data, such as
photos and logos.

To stop and start the Contacts Server remote document store server, use the stop-as
and start-as commands.

= To stop the remote document store server:

ContactsServer_home/sbin/stop-as

s To start the remote document store server:

ContactsServer._home/sbin/start-as

2-2 Contacts Server System Administrator's Guide

https://docs.oracle.com/en/middleware/fusion-middleware/weblogic-server/12.2.1.4/start/overview.html#GUID-762370A1-00C4-4EBB-92FC-5E33B97B6716
https://docs.oracle.com/en/middleware/fusion-middleware/weblogic-server/12.2.1.4/start/overview.html#GUID-762370A1-00C4-4EBB-92FC-5E33B97B6716

3

Managing Users, Accounts, Address Books,
and Contacts

This chapter describes how to set up and manage Oracle Communications Contacts
Server users, accounts, address books, and contacts.

Provisioning Contacts Server Users

This section describes how to provision Contacts Server users and contains the
following topics:

= Provisioning Contacts Server Overview

= Provisioning Contacts Server Users by Using Delegated Administrator

Provisioning Contacts Server Overview

Contacts Server uses Directory Server to store and retrieve user and resource
information and to perform authentication. Contacts Server does not add or modify
LDAP data. Contacts Server data (such as address book and contact information) is
stored in an SQL database, which can be either MySQL Server or Oracle Database.

By default, Contacts Server automatically creates the necessary entries in the SQL
database for users upon their initial Contacts Server login. However, you must also
perform some basic LDAP user provisioning for users to be able to access Contacts
Server services, and for Contacts Server automatic account creation to work. You can
provision Contacts Server users in the Directory Server LDAP by using either
Delegated Administrator or LDAP tools.

You must provision Contacts Server users so that Contacts Server can automatically
create accounts and users can access Contacts Server services. You must provision
users with the following attributes:

s An email attribute, such as mail.

= A unique ID attribute corresponding to the value of the server configuration
parameter, davcore.uriinfo.permanentuniqueid. The default value is
davUniqueld. Be sure to also index the attribute used for
davcore.uriinfo.permanentuniqueid, as Contacts Server performs searches on it.

To define these attributes, the corresponding object classes must be present in the
Directory Server LDAP. The Communications Suite comm_dssetup script adds the
necessary object classes. The davEntity object class defines the davUniqueld attribute.
If your deployment consists of multiple back-end databases, you must also define the
store ID attribute. The nabUser object class defines the default store ID attribute. The
default value of the store ID is nabStore.

Managing Users, Accounts, Address Books, and Contacts 3-1

About Controlling Access to Address Books

For more information, see the topic on Contacts Server LDAP object classes and
attributes in Communications Suite Schema Reference.

Denying Users Access to Services

By default, if you provision Contacts Server users for email and unique ID attributes
(and the store ID attribute when multiple back-end databases are deployed), users
have a status of active. The active status enables users to access Contacts Server
services. To deny Contacts Server services to users, you specify a value of either
inactive or deleted for the user's nabStatus attribute.

About Migrating Users

If you have a co-existent deployment of both Contacts Server and Convergence WABP,
and are migrating users to Contacts Server, you must update the user's LDAP data
once the user is marked for migration and taken offline for migration. You can only
migrate the user at that point. Contacts Server uses an LDAP attribute to determine if a
user has been migrated. By default, the nabStore attribute is used, but you can choose
another attribute if desired. In a single back-end deployment, this attribute must be
added with the value of defaultbackend. In a multiple back-end deployment, the
value must be the logical back-end ID for the database where the user's data resides
after migration. Again, the object class that defines the nabStore attribute is nabUser.

Provisioning Contacts Server Users by Using Delegated Administrator

Starting with version 7.0.0.10.0, Oracle Communications Delegated Administrator
enables you to provision Contacts Server users. See Delegated Administrator System
Administrator’s Guide for more information.

About Controlling Access to Address Books

Contacts Server uses Access Control Lists (ACLs) that you define to control access to
address books. (ACLs are also used to control access to accounts.) An ACL applies to a
single address book (or account). An ACL consists of one or more Access Control
Entries (ACEs), which are strings that grant a particular level of access such as
read-only access or read and write access. ACEs collectively apply to the same address
book. Multiple ACE strings can apply to a single address book.

You can also define ACEs for LDAP groups. Groups and users are each represented by
a mail address. An access right granted to a group is effective for all members of the

group.
Access to address books is denied unless explicitly granted. Some access rights are

predefined and cannot be changed. For example, Contacts Server gives users full
access to their own address books.

ACEs are specified in the following format:
ace_principal:right
where:
= ace_principal can be one of the following values:
- @ grants access to all users.
— @domain grants access to all users on a specific domain. Example:
@example.com

- user@domain grants access to a specific user. Example:

3-2 Contacts Server System Administrator's Guide

Managing Accounts

Bob@example.com

- group@domain grants access to a set of users who belong to a defined group.
Example:

MyGroup@example.com
» rights can be one of the following values:
— n (none) denies access
- r(read) grants read-only access
- w (write) grants read and write access
— a(all) grants all levels of access

You set Contacts Server access rights by using the davadmin command with the acl
property on the command line, or buy using the Convergence client. The acl property
is a semicolon-separated list of ACE strings.

ACEs function in the following way:

= More specific access rights override less specific access rights. For example, access
rights granted to a particular user are more specific than rights granted to a user as
member of a group. The user-specific access rights override the access rights
granted through group membership.

» Access rights granted to all users (using the @ value) are considered least specific.

= When a user is a member of multiple groups, that user is given the highest level of
access granted by any one of the groups.

= Contacts Server access control ignores nesting levels within each group.

When determining group membership for access rights, Contacts Server considers
only the users' domain name (DN) defined in the LDAP directory. The DN value may
be set in the uniquemember attribute, or set in the memberur] attribute as a URL that
resolves to the DN of the group.

Managing Accounts
This section describes tasks related to managing Contacts Server accounts.
Managing accounts includes:
= Enabling and Disabling Automatic Account Creation
» Creating Accounts with Default Properties Automatically Upon Login
= Manually Creating Accounts
» Listing Accounts
» Managing Email Notifications
s Deleting Accounts
= Subscribing to and Unsubscribing from Address Books

You manage Contacts Server accounts by using the davadmin command. You
authenticate the davadmin command with the application server administrative user
name and password to allow to communicate with the server or database. You can use
the davadmin passfile operation to store the necessary passwords in an encrypted
wallet for use by subsequent davadmin commands. If you do not store passwords in
the wallet, then you must enter them by using a no-echo prompt on the command line.

Managing Users, Accounts, Address Books, and Contacts 3-3

Managing Accounts

See the discussion about passfile operation in Contacts Server System Administrator’s
Guide for more information.

Enabling and Disabling Automatic Account Creation

You can enable or disable, on a system-wide basis, automatic account creation. When
automatic account creation is enabled, users' accounts are automatically created for
them when they first log in to Contacts Server.

To Enable Automatic Account Creation
1. Log in to the Contacts Server host as root.

2. Change to the ContactsServer_home/sbin directory.
3. Run the following davadmin command:

davadmin config modify -o davcore.autocreate.enableautocreate -v true

To Disable Automatic Account Creation
1. Log in to the Contacts Server host as root.

2. Change to the ContactsServer_home/sbin directory.
3. Run the following davadmin command:

davadmin config modify -o davcore.autocreate.enableautocreate -v false

Creating Accounts with Default Properties Automatically Upon Login

To create accounts with default contacts properties automatically when users log in:

1. Provision users in LDAP with the minimum functionality that Contacts Server
requires.

See "Provisioning Contacts Server Overview" for more information.

2. Use the davadmin config command to set any of the following autocreate
parameters to customize your deployment:

= davcore.autocreate.displaynameattr
s davcore.autocreate.emailnotificationaddressattr
s davcore.autocreate.enableemailnotification

For more information about these parameters, see "Contacts Server Configuration
Parameters".

3. Enable account autocreation.
See "To Enable Automatic Account Creation."

4, Provide users instructions for logging in to Contacts Server.

Manually Creating Accounts

Use the davadmin account create command to create Contacts Server accounts. You
can specify certain account properties on the command line. You can create accounts
one at a time or in batch mode by using the -f file option. When you use -f, you specify
a file of accounts that you create. The file format is account:property_list, where
property_list is optional and contains a comma separated list of property=value fields.

3-4 Contacts Server System Administrator's Guide

Managing Accounts

Users must be already provisioned in the LDAP Directory Server before you can create
the Contacts Server account. See "Provisioning Contacts Server Overview" for more
information.

Tip: You can customize accounts by configuring them with specific
properties before users initially log in to access Contacts Server.

To manually create a single account:

1. Log in to the Contacts Server host as root.

2. Change to the ContactsServer_home/sbin directory.

3. Run the following davadmin command:

davadmin account create -a account

Where:
account is the user account.
For example, to create the account john.smith@example.com:

davadmin account create -a john.smith@example.com

See "davadmin account” for more information on creating an account with specific
account properties.

Listing Accounts

Use the davadmin account list command to view all accounts or properties of a
specific account.

To List All Accounts

1. Log in to the Contacts Server host as root.
2. Change to the ContactsServer_home/sbin directory.
3. Run the following davadmin command:

davadmin account list

To List Properties of an Account
1. Log in to the Contacts Server host as root.

2. Change to the ContactsServer_home/sbin directory.
3. Run the following davadmin command:

davadmin account list -a account

Where:
account is the user account.
For example, to list the properties of the account johnsmith@example.com:

davadmin account list -a johnsmith@example.com

Managing Email Notifications

Use the davadmin account modify command to manage account email notifications.

Managing Users, Accounts, Address Books, and Contacts 3-5

Managing Accounts

To Enable Email Notification

When email notification is enabled, Contacts Server sends and email to the account
owner when changes to the account are made.

To enable email notification:

1. Log in to the Contacts Server host as root.

2. Change to the ContactsServer_home/sbin directory.
3. Run the following davadmin command:

davadmin account modify -a account -y notifemail=1

Where:
account is the user account.
For example, to enable email notifications for the account john.smith@example.com:

davadmin account modify -a john.smith@example.com -y notifemail=1

To Disable Email Notification
1. Log in to the Contacts Server host as root.

2. Change to the ContactsServer_homel/sbin directory.
3. Run the following davadmin command:

davadmin account modify -a account -y notifemail=0

Where:
account is the user account.
For example, to disable email notifications for the account john.smith@example.com:

davadmin account modify -a john.smith@example.com -y notifemail=0

To Add or Remove Email Notification Recipients

Recipients of email notifications are users who have Contacts Server accounts. You add
users as recipients of email notification for an account by specifying the account (email
addresses) of the users to add. You remove users as recipients of email notification by
specifying the accounts of the users to keep; any existing recipients you do not specify
are removed.

Important: When adding recipients, be sure to also specify all existing recipients you
want to keep. If you do not, they will be removed.

To add or remove recipients for email notifications for an account:
1. Log in to the Contacts Server host as root.

2. Change to the ContactsServer_home/sbin directory.

3. Run the following davadmin command.

davadmin account modify -a account -y notifrecipients="recipientl recipient2

Where:
account is the user account.

recipient1 and recipient2 are Contacts Server accounts to receive email notifications.

3-6 Contacts Server System Administrator's Guide

Managing Accounts

For example, to add jane.jones and sam.taylor so that they receive email notifications
for the account john.smith@example.com:

davadmin account modify -a john.smith@example.com -y
notifrecipients="jane.jones@example.com sam.taylor@example.com"

Deleting Accounts

Use the davadmin account delete command to remove accounts.

Note: The davadmin account delete command removes the account
from the Contacts Server database but does not remove the user from
the LDAP directory.

To delete an account:

1. Log in to the Contacts Server host as root.

2. Change to the ContactsServer_home/sbin directory.
3. Run the following davadmin command:

davadmin account delete -a account

Where:
account is the user account.
For example, to delete an account named john.smith@example.com:

davadmin account delete -a john.smith@example.com

Subscribing to and Unsubscribing from Address Books

For a user to subscribe to another account's address book, you first use the davadmin
addressbook modify command to give the subscribing user's account access rights to
the other account’s address book. The access level must be at least read permission.
You then use the davadmin account subscribe command to set up the subscription
itself.

To Subscribe to an Address Book
1. Log in to the Contacts Server host as root.

2. Change to the ContactsServer_home/sbin directory.

3. Give the subscribing account access rights to the address book of the other
account. Set the access rights in the form of an ACL:

davadmin addressbook modify -a subscribed to_account -y acl=ace_principal:right

Where:

subscribed_to_account is the user account being subscribed to.

ace_principal is the account that is subscribing to the address book.

right is the ACL being granted to the subscribing account.

See "About Controlling Access to Address Books" for more information on ACI's.
4. Subscribe to the account's address book:

davadmin account subscribe -a subscribing account -c URI_of subscribed to_

Managing Users, Accounts, Address Books, and Contacts 3-7

Managing Address Books

account

Where:
subscribing_account is the account making the subscription request.
URI_of_subscribed_to_account is the URI of the account being subscribed to.

For example, to give cal196@example.com read access to cal200@example.com, then to
subscribe cal196@example.com to cal200@example.com:

davadmin addressbook modify -a cal200@example.com -y acl=call96@example.com:r

davadmin account subscribe -a call96@example.com -c
/home/caltest200@example.com/addressbook/

To Unsubscribe From an Address Book
1. Log in to the Contacts Server host as root.

2. Change to the ContactsServer_home/sbin directory.

3. Remove the permission, in the form of an ACL, from the subscribing-account, by
setting it to none (n). See "About Controlling Access to Address Books" for more
information on ACLs.

davadmin addressbook modify -a subscribed_to_account -y acl=subscribing
account:n

Where:

subscribed_to_account is the account being subscribed to.

subscribing_account is the account that has subscribed.
4. Unsubscribe from the account:

davadmin account unsubscribe -a subscribing account -c¢ URI_of_ subscribed to_
account

For example:

davadmin account modify -a caltest200@example.com -y acl=caltestl96@example.com:n

davadmin account unsubscribe -a call96@example.com -cC
/home/caltest200@example.com/addressbook/

Managing Address Books

Use the davadmin addressbook command to create, list, modify, and delete address
books.

Managing address books includes:
= Creating Address Books

= Removing Address Books

= Modifying Address Books

= Listing Address Books

3-8 Contacts Server System Administrator's Guide

Managing Address Books

Creating Address Books

Contacts Server automatically creates a user's default address book upon login, when
you have set the davcore.autocreate.enableautocreate configuration parameter to true.
By default, Contacts Server adds a single person contact entry (PCC) for the user to the
default address book. You can create additional address books for users. When
creating an address book, you can specify a display name, description, and access
control instructions. If you do not supply a display name, it defaults to the address
book name supplied for the -n option.

To manually create an address book:

1. Log in to the Contacts Server host as root.

2. Change to the ContactsServer_home/sbin directory.
3. Run the following davadmin command:

davadmin addressbook create -a account -n name

Where:
account is the user account.
name is the name of the address book.

For example, to create an address book named socialab for the account
john.smith@example.com:

davadmin addressbook create -a john.smith@example.com -n socialab

Removing Address Books

Use the davadmin addressbook delete command to remove address books from
accounts. To remove multiple address books, use the -f filename option. Create filename
with the list of address books to be deleted. In this file, do not include any blank lines,
otherwise the delete command will fail.

To remove an address book:

1. Log in to the Contacts Server host as root.

2. Change to the ContactsServer_home/sbin directory.
3. Run the following davadmin command:

davadmin addressbook delete -a account -n name

Where:
account is the user account.
name is the name of the address book.

For example, to delete an address book named socialab from the account
john.smith@example.com:

davadmin addressbook delete -a john.smith@example.com -n socialab

For example, to delete multiple address books specified in the file
addressbooktodelete.txt from the account john.smith@example.com:

davadmin addressbook delete -f addressbooktodelete.txt -a john.smith@example.com

Managing Users, Accounts, Address Books, and Contacts 3-9

Managing Address Books

Modifying Address Books

Use the davadmin addressbook modify command to modify an address book's
display name, description, and ACLs. In addition, you can set or remove one or more
ACEs from the ACL.

To Modify an Address Book

1. Log in to the Contacts Server host as root.
2. Change to the ContactsServer_home/sbin directory.
3. Run the following davadmin command:

davadmin addressbook modify -a account -y property=value

Where:

account is the user account.

property is an address book property to set.
value is the value of the property to set.

You can specify multiple property=value pairs by separating them with a comma.
See "davadmin addressbook" for information about the possible properties.

For example, to give john.smith@example.com read (r) access to the account
james.jones@example.com:

davadmin addressbook modify -a james.jones@example.com -y
acl=john.smith@example.com:r

To Set an Address Book ACE

The following example shows how to set the ACE to read (r) access for james.jones on
the address book socialab owned by john.smith:

davadmin addressbook modify -a john.smith@example.com -n socialab -y
set-ace=james.jones@example.com:r

To Remove an Address Book ACE

The following example shows how to remove the ACEs for james.jones and
sam.taylor from the address book named socialab owned by john.smith.

davadmin addressbook mofify -a john.smith@example.com -n socialab -y
remove-ace=Jjames.jones@example.com; sam. taylor@example.com

Listing Address Books

Use the addressbook list command to display the properties of an address book,
including its ACLs, number of contacts, and number of contact groups.

To List an Account's Address Books
1. Log in to the Contacts Server host as root.

2. Change to the ContactsServer_home/sbin directory.
3. Run the following davadmin command:

davadmin addressbook list -a account

Where:

3-10 Contacts Server System Administrator's Guide

Managing Contacts

account is the user account.
For example, to list the address books for the account john.smith@example.com:

davadmin addressbook list -a john.smith@example.com

To List an Address Book's Properties
1. Log in to the Contacts Server host as root.

2. Change to the ContactsServer_home/sbin directory.
3. Run the following davadmin command:

davadmin addressbook list -a account -n name

Where:
account is the user account.
name is the name of the address book.

For example, to list the properties of an address book named socialab for the account
john.smith@example.com:

davadmin addressbook list -a john.smith@example.com -n socialab

Managing Contacts

Use the davadmin contact command to list contact properties and to delete contacts.
Managing contacts includes:
= Listing Contact Properties

s Deleting Contacts

Listing Contact Properties

Use the davadmin contact list command to list contact properties, including vCard
information and the address book to which the contact belongs.

To list a contact's properties:

1. Log in to the Contacts Server host as root.

2. Change to the ContactsServer_home/sbin directory.
3. Run the following davadmin command:

davadmin contact list -a account

Where:
account is the user account.

For example, to list the properties of contacts belonging to the account
john.smith@example.com:

davadmin contact list -a john.smith@example.com

Deleting Contacts

Use the davadmin contact delete command to delete contacts.

To delete a contact:

Managing Users, Accounts, Address Books, and Contacts 3-11

Managing Contact Groups

For

Log in to the Contacts Server host as root.
Change to the ContactsServer_home/sbin directory.
Run the following davadmin command:

davadmin contact delete -a account -c contact

Where:
account is the user account.
contact is the name of the contact to delete.

example, to delete the contact 1406701074936-0-.vcf from the account

john.smith@example.com:

davadmin contact delete -a john.smith@example.com -c 1406701074936-0-.vcf

Managing Contact Groups

Contact groups enable users to organize their contacts, making it easier to work with a
specific set of people. For example, a user might want to organize contacts by family,
work, and soccer team. Use the davadmin ctgroup command to manage contact
groups.

Managing groups includes:

Creating Contact Groups
Listing Contact Groups
Deleting Contact Groups
Modifying Contact Groups
Importing Contact Groups
Exporting Contact Groups

Creating Contact Groups

You

can create multiple contact groups per address book. When you create a contact

group, you can also add members to it by using the -M option.

To create a contact group:

1.
2.
3.

For

Log in to the Contacts Server host as root.
Change to the ContactsServer_home/sbin directory.
Run the following davadmin command:

davadmin ctgroup create -a account -n name -g groupname

Where:

account is the user account.

name is the name of the address book.
groupname is the name of the contact group.

example, to create a contact group named myctgroup in the socialab address book

for the account john.smith@example.com:

davadmin ctgroup create -a john.smith@example.com -n socialab -g myctgroup

3-12 Contacts Server System Administrator's Guide

Managing Contact Groups

Listing Contact Groups

Use the davadmin ctgroup list command to list an address book's contact groups.
To list contact groups:

1. Log in to the Contacts Server host as root.

2. Change to the ContactsServer_home/sbin directory.

3. Run the following davadmin command:

davadmin ctgroup list -a account -n addressbook

Where:
account is the user account.
addressbook is the name of the address book.

For example, to list contact groups for the account john.smith@example.com in the
address book socialab:

davadmin ctgroup list -a john.smith@example.com -n socialab

Deleting Contact Groups

Use the davadmin ctgroup delete command to delete a contact group.
To delete a contact group:

1. Log in to the Contacts Server host as root.

2. Change to the ContactsServer_home/sbin directory.

3. Run the davadmin ctgroup list command to list the contact groups, and note the
URI of the contact to delete. See "Listing Contact Groups" for more information
about listing groups.

4. Run the following davadmin command:

davadmin ctgroup delete -a account -c contactgroup uri

Where:
account is the user account.
contactgroup_uri is the contact URI that you retrieved in the previous step.

For example, to delete the contact group 410448708259-29-.vcf from the account
johnsmith@example.com:

davadmin ctgroup delete -a john.smith@example.com -c 410448708259-29-.vcf

Modifying Contact Groups

Use the davadmin ctgroup modify command to modify the contact group name,
members, and email addresses of members.

To modify a contact group:
1. Log in to the Contacts Server host as root.
2. Change to the ContactsServer_home/sbin directory.

3. Run the davadmin ctgroup list command to list the contact groups, and note the
vCard file that identifies the contact group to modify. See "Listing Contact Groups"

Managing Users, Accounts, Address Books, and Contacts 3-13

Managing Contact Groups

for information about listing groups. The output will show the full WebDAV URL,
for example:

/dav/home/john.smith@example.com/addressbook/1384904616388-1758.vcf

The part that you use in the modify command appears after the "addressbook/"
string; in this example, 1384904616388-1758.vcf.

4. Run the davadmin command to modify the contact group. For example, to add
members to a contact group, run the following command:

davadmin ctgroup modify -a account -n name -c contactgroup -M members

Where:
account is the user account.
name is the name of the address book.

contactgroup is the vCard file that identifies the contact group to be modified,
which you retrieved in the previous step.

members is a list of comma-separated list of members to add to the contact group.

For example, to add two members to the contact group 1384904616388-1758.vcf in the
address book socialab for the account john.smith@example.com:

davadmin ctgroup modify -a john.smith@example.com -n socialab -c
1384904616388-1758-GROUP.vcf, -M 1413320201700-4-.vcf,1413320035573-3-.vcf

Importing Contact Groups

Contacts Server enables you to import contact groups from CSV, LDIF, and vCard 3.0
formats. Use the davadmin ctgroup import command to import contact groups to an
address book.

Note: The recommended format is vCard 3.0. Only use CSV if vCard
3.0 is unavailable.

To import a contact group:

1. Log in to the Contacts Server host as root.

2. Change to the ContactsServer_home/sbin directory.
3. Run the following davadmin command:

davadmin ctgroup import -a account -n name -m path

Where:

account is the user account.

name is the name of the address book.

path specifies the file and its path on the host that contains data to be imported.

For example, to import a contact group to the account john.smith@example.com and
the address book socialab using the file /temp/ctgroup/red_team_group.vcf:

davadmin ctgroup import -a john.smith@example.com -n socialab -m
/temp/ctgroup/red_team_group.vct

The sample data for the red_team_group.vcf file is:

3-14 Contacts Server System Administrator's Guide

Managing Contact Groups

BEGIN:VCARD

VERSION:3.0

FN:RedTeam

KIND:group
UID:urn:uuid:cd97370b-63a7-4fbf-9d82-fb2aflad602c
MEMBER:1413320201700-4-.vcf
MEMBER:1413320035573-3-.vcf

END:VCARD

Exporting Contact Groups

Contacts Server enables you to export contact groups in vCard 3.0 format. Use the
davadmin ctgroup export command to export contact groups. The davadmin ctgroup
export command exports only the group vCard and not individual members.

To export a contact group:
1. Log in to the Contacts Server host as root.
2. Change to the ContactsServer_home/sbin directory.

3. Run the davadmin ctgroup list command to list the contact groups, and note the
vCard file that identifies the contact group to export. See "Listing Contact
Properties" for more information about listing contact information. The output will
show the full WebDAV URL, for example:

/dav/home/john.smith@example.com/addressbook/1384904616388-1758.vcf

The part that you use in the export command appears after the "addressbook /"
string, in this example, 1384904616388-1758.vcf.

4. Run the following davadmin command:

davadmin ctgroup export -a account -c contactgroup -xX path

Where:
account is the user account.

contactgroup is the vCard file that identifies the contact group to be exported,
which you retrieved in the previous step.

path is the file and path that the contact group would be exported to.

For example, to export the contact group1384904616388-1758-GROUP.vcf for the
account john.smith@example.com to the file /tmp/export.vcf:

davadmin ctgroup export -a john.smith@example.com -c 1384904616388-1758-GROUP.vcf
-x /tmp/export.vct

Managing Users, Accounts, Address Books, and Contacts 3-15

Managing Contact Groups

3-16 Contacts Server System Administrator's Guide

4

Managing Contacts Server

This chapter provides information and guidelines to help you manage the day-to-day
operation of Oracle Communications Contacts Server.

Supported Application Server

Oracle Communications Contacts Server 8.0.0.4.0 and previous releases were deployed
on GlassFish Server, which is no longer supported by Oracle. For that reason, Contacts
Server 8.0.0.5.0 and beyond are only supported on Oracle WebLogic Server. Oracle
strongly recommends that you upgrade your Contacts Server environments to release
8.0.0.5.0 or higher and migrate to WebLogic Server to receive full Oracle support.

Monitoring Contacts Server by Using Application Server

Contacts Server depends on Oracle GlassFish Server or Oracle WebLogic Server
deployed as a web container. You monitor Contacts Server by using tools and
commands of an application server.

For more information on administering GlassFish Server, see the Oracle GlassFish
Server 3.0 documentation.

» Administering system security in GlassFish Server Security Guide.
s The asadmin utility subcommands in GlassFish Server Reference Manual.

s Overview of GlassFish Server administration in GlassFish Server Administration
Guide.

For more information on administering Oracle WebLogic Server, see the Oracle
WebLogic Server documentation.

» Configuring Keystores in Administering Security for Oracle WebLogic Server 12.1.3.

» Configure keystores in Oracle Fusion Middleware Administration Console Online
Help for Oracle WebLogic Server 12.2.1.3.0.

= Administration Console Online Help in Oracle Fusion Middleware Administration
Console Online Help for Oracle WebLogic Server 12.2.1.3.0.

Creating, exporting, and importing SSL Certificates in Calendar Server Security Guide.
(The same concepts that apply to Calendar Server also apply to Contacts Server.)

Monitoring Contacts Server includes:
= Monitoring Application Server JDBC Connection Pools

s Checking Contacts Server Status

Managing Contacts Server 4-1

Monitoring Contacts Server by Using Application Server

Monitoring Application Server JDBC Connection Pools

You can monitor GlassFish Server and WebLogic Server JDBC connection pools.

Monitoring GlassFish Server JDBC Connection Pools

If you use GlassFish Server JDBC connection pools, the following GlassFish Server
statistics for JDBC Connection Pools are helpful in monitoring Contacts Server:

numConnFailedValidation (count): Number of connections that failed validation.
numConnUsed (range): Number of connections that have been used.
numConnFree (count): Number of free connections in the pool.

numConnTimedOut (bounded range): Number of connections in the pool that
have timed out.

To get the statistics:

1.

Check whether the JDBC connection pool service module is enabled:
asadmin get "server.monitoring-service.module-monitoring-levels.*"
server.monitoring-service.module-monitoring-levels. jdbc-connection-pool=0FF
If it is not enabled, start the JDBC connection pool service module, setting the

monitoring level to HIGH to retrieve all statistics:

asadmin set
server.monitoring-service.module-monitoring-levels.jdbc-connection-pool=HIGH
server.monitoring-service.module-monitoring-levels. jdbc-connection-pool=HIGH
Command set executed successfully.

Get statistics for all connection pools:

asadmin get --monitor "server.resources.*"

Monitoring WebLogic Server JDBC Connection Pools

You can monitor a variety of statistics for each data source instance in your domain,
such as the current number of database connections in the connection pool, the current
number of connections in use, and the longest wait time for a database connection.

To view the current statistics for a JDBC data source:

1.
2
3.

In the Domain Structure tree, expand Services, then select Data Sources.
On the Summary of JDBC Data Sources page, click the data source name.
Select the Monitoring tab and then select the Statistics tab.

Statistics are displayed for each deployed instance of the data source.

For more information about these statistics, see Configuration Options.

(Optional) Click Customize this table to change the columns displayed in the
statistics table. To make changes, you must select the Lock & Edit option. After the
modifications, click Activate Changes.

For more information on Monitoring WebLogic JDBC Resources, refer to
Administering JDBC Data Sources for Oracle WebLogic Server.

4-2 Contacts Server System Administrator's Guide

https://docs.oracle.com/middleware/12213/wls/JDBCA/monitor.htm#JDBCA236
https://docs.oracle.com/middleware/12213/wls/WLACH/pagehelp/JDBCjdbcdatasourcesjdbcdatasourcemonitorstatisticstitle.html#attributes

Managing Logging

Checking Contacts Server Status

You can use either the application server's Administration Console or the
command-line utilities to check the Contacts Server status.

Checking Contacts Server Status with the Administration Console for GlassFish
Server

1.
2.
3.
4.

Log in to the GlassFish Server host as root.
Start the GlassFish Server Administration console.
Navigate to Web Applications under the Applications tab.

Ensure that the process nabserver is deployed and enabled.

Checking Contacts Server Status with the asadmin Command for GlassFish Server

1.
2.
3.

Log in to the GlassFish Server host as root.
Change to the GlassFish_home/bin directory.
Obtain the name of the nabserver component:

asadmin list-components -p admin-port
nabserver <ejb,web>
Command list-components executed successfully.

Show the status of the nabserver component:

asadmin show-component-status -p admin-port nabserver
Status of nabserver is enabled.
Command show-component-status executed successfully.

Checking Contacts Server Status with the Administration Console for WebLogic
Server
To check Contacts Server status with the WebLogic Administration Console:

1.

2
3.
4

Log in to WebLogic Administration Console.
Navigate to Deployments under the domain.
Ensure that the nabserver process is deployed and enabled.

Under Deployments, ensure that Health of the nabserver deployment is OK.

Managing Logging

Managing logging includes:

Logging Overview

Logging Contacts Server Information to the Application Server Log File
Configuring Logging

Viewing Document Store Log Files

Contacts Server maintains the following log files:

commands: Stores information about requests that are sent to the server and
information related to each operation performed that satisfies those requests. The
commands log file contains servlet and core operation class entries that are
designed to help you monitor requests to the server and help diagnose problems.

Managing Contacts Server 4-3

Managing Logging

= errors: Stores error and debug-level information that is supplied by the server for
use in diagnosing problems.

n telemetry: Stores entire Contacts Server servlet request and response transcripts.
= scan: Stores information on virus scanning actions.

Each log file has its own configuration parameters that controls the log file location,
maximum size, log level, and number of files allowed.

Log files are created with a suffix of .number, for example, commands.0, commands.1,
and so on. The log file numbered .0 is the newest, the log file numbered .1 is next
newest, and so on. When a log file is filled to its maximum configured size, the logging
system increments each of the existing log file suffixes to the next higher number,
starting with the highest. If the number of log files reaches the configured maximum,
the highest numbered log file is deleted and the next higher takes its place.

For example, Contacts Server is started for the first time and you have configured the
maximum number of log files at 10. The logging system begins writing messages to
the log file with the .0 suffix. When the .0 log file is filled to capacity, the logging
system increments its suffix to the next higher number and the file becomes .1. The
logging system then creates a new .0 log file and begins writing messages to it. When
the .0 file become full, the logging system increments the .1 file to .2, increments the .0
file to .1, and creates a a new .0 file. This process continues until the maximum number
of configured log files is reached. When that happens, the logging system deletes the
highest numbered (oldest) log file, .9, increments each of the lower numbered files'
suffixes, and creates a new .0 log file.

The Contacts Server log files are kept separate from the application server log files.

The GlassFish Server log files are stored in the GlassFish_home/domains/domain_
namel/logs directory, for example, /opt/glassfish3/glassfish//domains/domain1/logs.

The WebLogic Server log files are stored in the Weblogic_Domain /servers/managed_
server_name/logs directory.

Even though the container's log file is the root log file, by default, information that is
stored in the Contacts Server's log files is not logged to the container's log file.

Logging Contacts Server Information to the Application Server Log File

By default, the Contacts Server logToParent flag is set to false. It prevents logging of
information to the application server log file.

To log the Contacts Server information to the application server log file (server.log for
GlassFish Server and managed_server_name.log for WebLogic Server) and the Contacts
Server log file (commands.0), set the log.dav.commands.logtoparent parameter to
true:

davadmin config -u admin -o log.dav.commands.logtoparent -v true

Configuring Logging

Use the davadmin command to configure Contacts Server logging parameters as
shown in Table 4-1.

name can be commands, errors, scheduling, telemetry, or scan, depending on the type
of logging you want to configure; use error to configure Contacts Server error logging.
SEVERE and WARNING messages need immediate attention. FINE, FINER, and
FINEST messages are usually informational only, but can provide more context for
troubleshooting when accompanying SEVERE and WARNING messages.

4-4 Contacts Server System Administrator's Guide

Modifying the Contacts Server Configuration

Table 4-1 Contacts Server Log File Configuration Parameters

Parameter

Description

log.dav.name.logdir

Specifies the log file directory path

log.dav.name.loglevel

Specifies the log level:

OFF: No information is logged.
SEVERE: Logs catastrophic errors.

WARNING: Logs major errors or exceptions with the
system.

INFO: Logs general informational messages. This is the
default level.

FINE: Logs general debugging and tracing information to
show the higher level flow through the code or more
detailed information about a problem.

FINER: Logs more details than FINE.

FINEST or ALL: Logs the finest grain details about code
flow or problem information. Enabling this level can
result in massive amounts of data in the log file, making
it hard to parse.

log.dav.name.logtoparent

Enables or disables logging of the application server log file.
When set to true, messages are stored in the application server
log file and the Contacts Server log file. Set this parameter to
false to disable logging to the application server log file.

log.dav.name.maxlogfiles

Specifies the maximum number of log files

log.dav.name.maxlogfilesize

Specifies the log file's maximum size

For more information about the logging configuration parameters and their default
values, see "Contacts Server Configuration Parameters."

Viewing Document Store Log Files

The document store logs are named astore.number, and are located in the
ContactsServer_homellogs directory. Change to this directory to view the log files.

Modifying the Contacts Server Configuration

Modifying the Contacts Server configuration involves changing items such as LDAP
operations, how Access Control List (ACL) entries are cached, automatic account
creation, whether notifications are generated, and so on. You use the davadmin config
modify command with configuration parameters to implement configuration changes.
See "Contacts Server Configuration Parameters" for more information on individual

parameters.

To modify the Contacts Server configuration:

1. Log in to the Contacts Server host as root.

2. Change to the ContactsServer_home/sbin directory.

3. Run the following davadmin command:

davadmin config modify -o configuration parameter -v value

Where:

configuration_parameter is a specific Contacts Server configuration parameter.

Managing Contacts Server 4-5

Viewing the Contacts Server Configurations

value is an allowed value for the specific configuration parameter.
For example, to modify error logging to use the FINE level:

davadmin config modify -o log.dav.errors.loglevel -v FINE

Viewing the Contacts Server Configurations
Use the davadmin config list command to view Contacts Server configurations.
To view a configuration:
1. Log in to the Contacts Server host as root.
2. Change to the ContactsServer_home/sbin directory.
3. Run the following davadmin command:

davadmin config list -o configuration_parameter

Where:
configuration_parameter is a Contacts Server configuration parameter.
For example, to view the current setting for the log.dav.errors.loglevel parameter:

davadmin config list -o log.dav.errors.loglevel

Managing Contacts Server Back-End Databases

A standard Contacts Server installation consists of a single default back-end database
that contains contact data. Perform the procedures in this section to add or modify
back-end databases within your deployment.

Each back-end database must have its own document store. When you use multiple
front-end hosts, all document stores must be available to all front-end hosts. You
cannot make a document store local to a front-end host in a multiple front-end
deployment. For more information, see the topic on configuring Contacts Server with
multiple hosts in Contacts Server Installation and Configuration Guide.

Managing Contacts Server back-end databases includes:

= Adding an Additional Contacts Server Back-End Database

= Renaming the Default Contacts Server Back End Database

» Listing the Back-End Databases for a Contacts Server Deployment
s Purging a Contacts Server Back-End Database

» Clearing the Contacts Server Cache

Adding an Additional Contacts Server Back-End Database

A standard Contacts Server installation consists of a default back-end database that
contains user data. Over time, you might want to add additional back-end user
databases to your deployment.

In the case of multiple Contacts Server front ends, configure each to use the same
initial default database back end. Then, you add additional back ends to each front
end.

To add a new Contacts Server back-end database:

1. Install the database software on each back-end host.

4-6 Contacts Server System Administrator's Guide

Managing Contacts Server Back-End Databases

See either the topic on installing a MySQL database or the topic on installing and
creating an Oracle Database instance in Contacts Server Installation and
Configuration Guide.

If you installed a MySQL database, do the following:

a. If the Contacts Server software is not installed on the back-end host, copy the
config-mysql and Util.pm scripts from an installed Contacts Server host and
adjust the path to those scripts as shown in Steps b and ¢ accordingly.

b. Do one of the following:

— If this is first database on the host, set up the database instance, and create
the user and database by running the following command.

ContactsServer_home/tools/unsupported/bin/config-mysgl -s -u -c
— If there is already a database on the host, just create the contact database
by running the following command.
ContactsServer_home/tools/unsupported/bin/config-mysql -c
If you installed Oracle Database 11g Release 2 or Oracle Database 12c not
pluggable (non-CDB), do the following:

a. If the Contacts Server software is not installed on the back-end host, copy the
config-oracle and Util.pm scripts from an installed Contacts Server host and
adjust the path to those scripts as shown in Steps b and ¢ accordingly.

b. To create the Oracle database user and schema, run the following command.
ContactsServer_home/tools/unsupported/bin/config-oracle -c

If you installed Oracle Database 12c Container Database (that is, one that uses a

pluggable database), see the topic on preparing Oracle Database 12¢ container

database in the Contacts Server Installation and Configuration Guide. You cannot use
the config-oracle script and must manually create the database user and schema.

Run the config-backend script on each front-end host.

Note: If you use WebLogic Server, you cannot run the
config-backend script. See the discussion about installing and
configuring multiple Contacts Server back-end hosts for WebLogic
Server manually in Contacts Server Installation and Configuration Guide.

This script creates a JDBC connection pool and a JDBC resource on the GlassFish
Server, and a nabserver attributed back-end configuration.

ContactsServer_home/sbin/config-backend

» If current deployment is using MySQL, you are prompted for the following
information:

Remote database server host name
Remote database server port

Contact db name on remote server
Contact db user name

Contact db user password

Verifying the database input...
Database input is verified

Backend identifier for the remote db

Managing Contacts Server 4-7

Managing Contacts Server Back-End Databases

Document store directory (leave blank if store is remote)
Document store host (leave blank if store is local)
Document store port (leave blank if store local)
Application Server admin user password

Make sure the value for "Contact db name on remote server" is the one that
you used for the config-mysql -c command.

» If current deployment is using Oracle Database, you are prompted for the
following information:

Remote database server host name

Remote database server port

Oracle database service name on remote server
Contact db user name

Contact db user password

Verifying the database input...

Database input is verified

Backend identifier for the remote db

Document store directory (leave blank if store is remote)
Document store host (leave blank if store is local)
Document store port (leave blank if store local)
Application Server admin user password

6. Enter Y when prompted to perform the tasks for creating the JDBC connection
pool and resource, and nabserver back-end identifier.

The system responds that the database back-end configuration is configured
successfully.

7. Restart the application server.

Renaming the Default Contacts Server Back End Database

The init-config script creates the JDBC connection pool and resource, and adds the
information to the davserver.properties file, for the one back-end host specified
during the front-end host configuration. The JDBC resource for the back-end database
is defaultbackend.

To rename this JDBC resource, to match other naming conventions, do the following
on each front-end application server:

1. Create a JDBC resource associated with the nabPool connection Pool.
For example, you might use db1 as the resource name.
2. Save this change, and restart the application server.

3. Add the following two lines to each front-end host's ContactServer_
homelconfig/davserver.properties file.

store.dav.dbl.backendid=JDBC_resource
store.dav.dbl.jndiname=jdbc/JDBC_resource

For example, if your resource name is db1, then you would add:

store.dav.dbl.backendid=dbl
store.dav.dbl.jndiname=jdbc/dbl

The new resource name can be used in nabStore attribute values.

4-8 Contacts Server System Administrator's Guide

Managing Contacts Server Back-End Databases

Note: Once your Contacts Server deployment is up and running, do
not change the user back-end ID as defined by the nabStore attribute.

Listing the Back-End Databases for a Contacts Server Deployment

Use the davadmin backend list command to view the back ends configured for your
Contacts Server deployment.

To list the back-end databases:

1. Log in to the Contacts Server host as root.

2. Change to the ContactsServer_home/sbin directory.
3. Run the following davadmin command:

davadmin backend list -u id

Where:

id is the application server administrator user name.

Purging a Contacts Server Back-End Database

The davadmin backend purge command immediately purges contact data marked for
expiration from Contacts Server back-end database(s).

To purge a back-end database:

1. Log in to the Contacts Server host as root.

2. Change to the ContactsServer_home/sbin directory.
3. Run the following davadmin command:

davadmin backend purge -n name

Where:
name is the name of the back-end database.
For example, to purge a Contacts Server back end named defaultbackend:

davadmin backend purge -n defaultbackend

Clearing the Contacts Server Cache

Items that Contacts Server caches include ACLs, domain maps, LDAP authentication
information, and URIs. Clear this cache if you made changes to your Directory Server,
and you want Contacts Server to reflect those changes. Or, clear the cache so that any
changes to ACLs immediately take effect.

1. Log in to the Contacts Server host as root.
2. Change to the ContactsServer_home/sbin directory.
3. Run the following davadmin command:

davadmin cache clear

Managing Contacts Server 4-9

Managing Contacts Server LDAP Pools

Managing Contacts Server LDAP Pools

You can configure a group of Directory Server hosts for use with Contacts Server. This
group is referred to as an LDAP pool. Use the davadmin ldappool command to create,
modify, delete, and list Contacts Server LDAP pools.

Managing LDAP pools includes:
s Creating an LDAP Pool

s Deleting an LDAP Pool

» Listing LDAP Pools

= Modifying an LDAP Pool

Creating an LDAP Pool

Use the davadmin ldappool create command to create an LDAP pool of Directory
Servers.

To create an LDAP pool:

1. Log in to the Contacts Server host as root.

2. Change to the ContactsServer_home/sbin directory.
3. Run the following davadmin command:

davadmin ldappool create -n poolname -y property

Where:
poolname is the name of the LDAP pool.

property is a comma-separated list of all property=value options for the specified
LDAP pool.

For example, to create an LDAP pool named myldap and the property=value options
Idaphost=hostl.example.com, ldapport=389, binddn="cn=Directory Manager'
,bindpassword=mypassword:

davadmin ldappool create -n myldap -y
"ldaphost=hostl.example.com, ldapport=389, binddn="'cn=Directory
Manager',bindpassword=mypassword"

Deleting an LDAP Pool

Use the davadmin ldappool delete command to remove an LDAP pool.
To delete an LDAP pool:

1. Log in to the Contacts Server host as root.

2. Change to the ContactsServer_home/sbin directory.

3. Run the following davadmin command:

davadmin ldappool delete -n poolname

Where:
poolname is the name of the LDAP pool.
For example, to delete an LDAP pool named myldap:

davadmin ldappool delete -n myldap

4-10 Contacts Server System Administrator's Guide

Managing the Contacts Server Document Store passfile

Listing LDAP Pools

Use the davadmin ldappool list command to view LDAP pools.
To list existing LDAP pools:

1. Log in to the Contacts Server host as root.

2. Change to the ContactsServer_home/sbin directory.

3. Run the following davadmin command:

davadmin ldappool list

Modifying an LDAP Pool

You might need to modify properties of an existing LDAP pool, for example, if a host
name or port changes. Use the davadmin ldappool modify command to change the
properties of an existing LDAP pool.

To modify an LDAP pool:

1. Log in to the Contacts Server host as root.

2. Change to the ContactsServer_home/sbin directory.
3. Run the following davadmin command:

davadmin ldappool modify -f file

Where:

file is the local input file containing the modifications. You use one line for each
account, for batch operation. Lines are in the form pool_name:property_list. The
properties are the same ones available for the -y option. For delete operations,
only pool_name is used. For more information, see the description of the ldappool
-y property option in Calendar Server System Administrator’s Guide.

For example, to modify an LDAP pool by using the file /tmp/update_pool.input:

davadmin ldappool modify -f /tmp/update_pool.input

Managing the Contacts Server Document Store passfile

The remote document store mechanism provides storage of contact data on remote
hosts. If you add additional document stores to your deployment, you must configure
password authentication of the connection between the remote document store server
(which runs on the remote host where the store is located), and the document store
client (which runs on every Contacts Server front end). The password must be known
by both the document store client and the remote document store server. The
password is stored in a password file (called a wallet) on both the local and remote
hosts.

Managing the document store passfile includes:
s Creating a passfile
= Listing a passfile

= Modifying a passfile

Creating a passfile

Use the davadmin passfile create command to create a passfile.

Managing Contacts Server 4-11

Managing Virus Scanning

To create a passfile:

1.
2.
3.

4.

Log in to the Contacts Server host as root.
Change to the ContactsServer_home/sbin directory.
Run the following davadmin command:

davadmin passfile create

Respond to the password prompts.

For more information, see the topic on remote document store authentication in
Contacts Server Installation and Configuration Guide.

Listing a passfile

Use the davadmin passfile list command to list the passwords stored in a passfile.

To list a passfile:

1.
2.
3.

Log in to the Contacts Server host as root.
Change to the ContactsServer_home/sbin directory.
Run the following davadmin command:

davadmin passfile list

Modifying a passfile

Use the davadmin passfile modify command to modify the passwords in a passfile.

To modify a passfile:

1.
2.
3.

Log in to the Contacts Server host as root.
Change to the ContactsServer_home/sbin directory.
Run the following davadmin command:

davadmin passfile modify

Respond to the password prompts.

Managing Virus Scanning

To enhance security within your deployment, you can use Contacts Server virus
scanning of files, such as photos, attached to a contact. Contacts Server virus scanning

can
can

examine files in real time to test and optionally reject incoming infected data. You
also choose to scan and optionally delete infected existing data on demand.

Virus scanning is not performed by Contacts Server itself. Instead, you configure an
Oracle Communications Messaging Server's Message Transfer Agent (MTA) to filter
the contact data. You can configure Contacts Server to share an existing MTA that has
already been configured for Messaging Server virus scanning. Or, you can configure a
standalone MTA that functions only for Contacts Server virus scanning.

Contacts Server reports all virus scanning activities and detected viruses in its log file
for both real-time and on-demand scanning.

Managing virus scanning includes:

Configuring Contacts Server for Virus Scanning

4-12 Contacts Server System Administrator's Guide

Managing Virus Scanning

= Virus Scanning Example Commands
= About Logging for Virus Scanning
= Managing Logging for the MTA

Configuring Contacts Server for Virus Scanning

The high-level steps to prepare your deployment to perform virus scanning for
Contacts Server include:

1. Installing and Configuring the MTA
2. Configuring the MTA for Spam and Virus Filtering

3. Configuring Contacts Server Parameters for Virus Scanning

Installing and Configuring the MTA

It is possible that your deployment alread includes Messaging Server and an MTA for
performing email virus scanning. If so, you can reuse the existing MTA to also scan
contact attachments for viruses. If you do not have an existing MTA, you can install
and configure a standalone MTA.

The general steps to install an MTA include:

1. Installing the Messaging Server software

2. Running the Messaging Server configure script
3. Disabling the Message Store and Webmail Server

For details, see the topic on installing a Messaging Transfer Agent in Unified
Communications Suite Installation and Configuration Guide.

When configuring Messaging Server, the "configure" step requires a valid LDAP host
that is used to include configuration data such as the default mail domain and
messaging administrator account. The LDAP host that you specify must be available
during virus scanning operations. However, due to MTA caching of LDAP data, this
server is not heavily utilized.

Configuring the MTA for Spam and Virus Filtering

The MTA itself does not check for viruses. You configure the MTA to communicate
with the desired virus scanning software, also referred to as the AVS. For instructions,
refer to the vendor-specific sections in the topic on integrating spam and virus filtering
programs in Messaging Server System Administrator’s Guide.

The filter should use a Sieve rule to "refuse" the message from Contacts Server if a
virus is found by the virus scanning software. The Sieve rule should return
FilterVerdictPositive. Contacts Server checks SMTP return values for this exact string,
which is defined in the Messaging Server option.dat file. For more information, see the
topic on MTA configuration for virus scanning in Calendar Server System
Administrator’s Guide.

Note: You configure the MTA to perform a Sieve refuse action if
there is a virus, which returns an SMTP code 5xy and the
MTA-configured target string FilterVerdictPositive. Contacts Server
responds to the target string, where other errors are considered
failures in service.

Managing Contacts Server 4-13

Managing Virus Scanning

After you configure the MTA to communicate with the desired virus scanning
software, you create a new incoming SMTP port in Messaging Server's dispatcher.cnf
file, strictly for Contacts Server virus scanning use. In this way, Contacts Server traffic
is tracked. In addition, a separate SMTP port makes it easier to destroy all data being
scanned. You associate this incoming SMTP port with a new MTA channel in the
imta.cnf file. Finally, you configure the receiving channel to use the sourcespamfiltern
that is configured with the desired virus scan software, so that incoming contact data
is tested.

After creating the SMTP channel, you configure the MTA to detect the chosen email

address. (The Contacts Server host sends the attachment data as an email with a user
recipient email address.) The email address is set up to use the MTA's host name and
domain, so that the MTA does not need to perform a lookup for the domain. The user
email address itself is not significant because incoming data is not actually delivered.

For instructions on configuring the Messaging Server MTA, refer to Messaging Server
System Administrator’s Guide.

Configuring Contacts Server Parameters for Virus Scanning

Use the davadmin config modify command to configure Contacts Server parameters
for virus scanning. Some parameters are required; others are optional.

To configure Contacts Server for virus scanning:

1. Use the davadmin config modify command to configure each of the following
required parameters:

s davcore.virusscan.emailaddress

s davcore.virusscan.host

= davcore.virusscan.port

s davcore.viruscan.onlineenable

s davcore.virusscan.onlinevirusaction
For example:

davadmin config modify -o "davcore.virusscan.emailaddress" -v
"myvirususer@mymachine.example.com"

The email address' domain must match the MTA's domain. The user name itself is
not significant.
2. Configure optional davcore.virusscan.” parameters.

See "Contacts Server Configuration Parameters" for more information on the
optional davcore.virusscan.” parameters.

Virus Scanning Example Commands

To scan for viruses, use the davadmin vscan scan command. This command operates
through the application server, and therefore, it can operate on any of the Contacts
Server back-end hosts.

m To list the back ends:

davadmin backend list

Normally you would want to scan the defaultbackend because that is where
Contacts Server user's attachments are stored.

4-14 Contacts Server System Administrator's Guide

Managing Virus Scanning

s To scan the entire default back end:

davadmin vscan scan -n defaultbackend

= To scan a single user's data given their Contacts Server registered email address:

davadmin vscan scan -a user@domain

= Touse an LDAP base (the distinguished name of the search base object) and filter
to specify one or more users to scan:

davadmin vscan scan -B "o=dav" -R "(|(uid=caluser222) (uid=caluser11l))"
Finished Virus Scan Set of 2 Users.

User Login issues or data not found: 0

Scanned = 0

Virus hits = 0

Scan Service Failures = 0
See scan log for more information.

Note: In this example, using only a uid filter might not be specific
enough when there are multiple domains. You can use the ldapsearch
command to test the specificity of the filter.

» Toscan data at or after February 14th, 2015, 1 am Zulu:
davadmin vscan scan -n defaultbackend -T 20150214T010000Z

Specifying a -T scans data only at the specified time and later,. Additionally, -T
saves time by ignoring older data already scanned. In the scan log, the time just
before the scan began is printed after the run so it can be used with the -T option
in the next scan if no new virus rules are relevant.

Note: The davadmin vscan command uses the same virus scan
configuration as when online virus scan is enabled
(davcore.virusscan.onlineenable is set to true). However it does not
use the onlineenable variable. Thus, you can run command-line scans
without needing to affect incoming data.

About Logging for Virus Scanning

Virus scan activity for both online scanning and scanning from the command line is
printed in the Contacts Server scan log. Found viruses are reported in the log. If
actions against viruses are configured, those actions taken are reported in the log.
Accounts that reference data that is found to be a virus are reported. The time just
before a davadmin vscan scan command is started is printed after a scan. This can be
used with the -T option in future scans.

Because the davadmin vscan scan command runs on the application server and not
the davadmin client, most useful information is printed in the Contacts Server scan
log, not always in the standard output of the davadmin command. The scan log also
provides a central repository for all historical virus scan-related information and
tracking.

Managing Logging for the MTA

For information about managing logging for the MTA, see Messaging Server System
Administrator’s Guide.

Managing Contacts Server 4-15

About Proxy Authentication

To view and test channel traffic, add the keyword logging to the defaults channel in
the imta.cnf file. Add LOG_CONNECTION=255 and LOG_FILTER=1 to the
Messaging Server option.dat file. Refer to the MTA documentation to interpret
channel operations such as "E" enqueue and "D" dequeue, "O" open connection, "C"
close connection. View messages coming in on the tcp_vscan channel, and dequeue
onto the bitbucket channel.

About Proxy Authentication

Contacts Server uses a proxy user to bind to the Directory Server when making
requests to search the directory. The LDAP entry for this user resembles the following:

uid=nab-admin-hostfqdn-timestamp,ou=People,orgdn

This user typically belongs to the cn=Contacts End User Administrators Group
group. This special Contacts Server user makes Directory Server requests on behalf of
the end user for whom the request is being carried out. The proxy process takes into
account the Directory Server Access Control Instructions (ACIs) for that particular end
user. The DN (Distinguished Name) of this newly created user is added to the server
configuration as the base.ldapinfo.ugldap.binddn. For information on sample AClIs
that show the attributes that Contacts Server needs for granting end users permission
to search the LDAP directory, see Contacts Server Security Guide.

Managing the Corporate Directory

Contacts Server supports the use of a corporate directory, that is, a company-wide
listing of user information made available to all Communications Suite users.

Managing the corporate directory involves:
= Configuring Contacts Server to Use the Corporate Directory

= Configuring a Domain-Specific Corporate Directory

Configuring Contacts Server to Use the Corporate Directory

To configure Contacts Server to use the corporate directory:
1. Log in to the Contacts Server host as root.
2. Change to the ContactsServer_homel/sbin directory.

3. Use the davadmin config modify command to set the following configuration
parameters:

davadmin config modify -o davcore.ldapattr.corpdirectoryurl -v corpDirectoryUrl
davadmin config modify -o store.corpdir.useldapproxyauth -v true

davadmin config modify -o store.corpdir.enablecorpdir -v true

davadmin config modify -o store.corpdir.defaultcorpdirectoryurl -v
'ldap://ugldap/??sub? (objectclass=*)?2vlv'

Configuring a Domain-Specific Corporate Directory

If you need access to multiple corporate directories, or need a corporate directory that
is different from the server-wide default, use the multi-valued corpdirectoryurl LDAP
attribute in the domain entry.

To configure Contacts Server to use a domain-specific corporate directory:

1. Log in to the Contacts Server host as root.

4-16 Contacts Server System Administrator's Guide

Managing the Corporate Directory

Change to the ContactsServer_homel/sbin directory.

If you have not already done so, use the davadmin ldappool create command to
create an LDAP pool, if the corporate directory resides on a different host than the
one configured for the default user/group LDAP pool.

See "Creating an LDAP Pool" for more information.
Add a corpdirectoryurl value to the LDAP attribute in the domain entry.

For example, the following ldapmodify command adds the corpdirectoryurl
value for an LDAP pool named varriuspool:

ldapmodify -h ugldap.example.net -D "cn=Directory Manager" -w ugadminpass
dn: o=varrius.com,o=dav

changetype: modify

add: corpdirectoryurl

corpdirectoryurl: ldap://varriuspool/??sub? (objectclass=*)?proxyauth=true

To have the change take effect immediately, clear the server domain cache:

cd ContactsServer_home/sbin
davadmin cache clear -t domainmap

Disabling the Corporate Directory for a Domain

To disable the corporate directory for a specific domain:

1.

2.

Add a corpdirectoryurl value to the LDAP attribute in the domain entry with the
enabled=false URL extension.

For example, the following ldapmodify command adds the corpdirectoryurl
value for an LDAP pool named varriuspool:

ldapmodify -h ugldap.example.net -D "cn=Directory Manager" -w ugadminpass
dn: o=varrius.com,o=dav

changetype: modify

add: corpdirectoryurl

corpdirectoryurl: ldap://varriuspool/??sub? (objectclass=*)?enabled=false

Note: If you have already defined the corpdirectoryurl attribute for
a domain, then for each value that should be disabled, add the
enabled=false to the LDAP URL extension.

To have the change take effect immediately, clear the server domain cache:

cd ContactsServer_home/sbin
davadmin cache clear -t domainmap

Managing Contacts Server 4-17

Managing the Corporate Directory

4-18 Contacts Server System Administrator's Guide

O

Monitoring Contacts Server

This chapter provides details on monitoring Oracle Communications Contacts Server.

About Monitoring Contacts Server

Contacts Server uses a managed bean (MBean) created in an application server to
collect monitoring data. By using the application server's Java Management Extension
(JMX) interface and a JMX-compliant client, you can access the monitoring data. The
JMX client connects to the platform's MBeanServer by using a JMX Service URL. Once
a client connects to the MBeanServer, it uses the Contacts Server monitoring MBean
object name to access the MBean's attributes.

Contacts Server Monitoring Attributes

This section describes the attributes of the Contacts Server monitoring MBean object
name, com.sun.comms.davserver:type=monitor.

General Monitoring Attributes

Table 5-1 describes the general monitoring attributes.

Table 5-1 General Monitoring Attributes

Name Type Description
ContactsCreated Integer The number of contacts and groups created since the
server was started.
FailedLogins Integer The number of failed login attempts since the server
was started.
BackendMonitorScheduleQData | CompositeData[] | The calendar schedule queue length per back-end
database. For more information, see "Back-End
Database Schedule Queue Attributes".
BackendMonitorARTData CompositeDatal] The average response time per back-end database. For
more information, see "Back-End Database Average
Response Times Attributes".
BackendRTData TabularType A dynamic collection of response time data of LDAP
Map<K.V> connections, provided in a Map interface, that is,
p<% Map<String backendID, BackendRTData rtData>.
TabularData Both the UG lookup and LDAP authentication
(BackendRTData) | connections are monitored. For more information, see

"LDAP Response Time Monitoring Attributes".

Monitoring Contacts Server 5-1

Contacts Server Monitoring Attributes

Back-End Database Schedule Queue Attributes

Table 5-2 describes the back-end database schedule queue monitoring attributes.

Table 5-2 Back-End Database Schedule Queue Monitoring Attributes

Name Type Description

backendID String Name ID of this back-end database as defined on this front-end host.

message String Optional exception or informational message from this back-end database.

activeCount Long The count of resources on the schedule queue that are scheduled for immediate
processing. A value of -1 means no data is available.

retryCount Long The count of resources on the schedule queue that initially failed and are waiting
for a later retry. The default retry time period is 1 hour. The maximum retry default
is 24.

Back-End Database Average Response Times Attributes

The average response time for a back-end database is passively calculated during
normal work load and reported in milliseconds. The sample duration period is
approximately 60 seconds. Numerical fields may have a value of -1 if no data can be
returned from that back-end database. However, if there is no activity, then the last
good value is retained if possible. The data is measured by taking samples of real
client requests. Thus, if no clients are active or are not making requests, there is no data
to be measured.

Table 5-3 describes the back-end database average response time monitoring
attributes.

Table 5-3 Back-End Database Average Response Times Monitoring Attributes

Name Type Description

backendID String Name ID of this back-end database as defined on this front-end host.

message String Optional exception or informational message from this back-end database.

ART Long The average response time for a random sampling of simple database requests in

milliseconds over approximately a previous 60 seconds time frame. A value of -1
means no data.

NSamples Long The number of samples taken in this average.

startTime Long The system time in milliseconds of the first sample.

endTime Long The system time in milliseconds of the last sample.

status Long The back-end database status as known by this front-end host. The possible values
are:

= 0-Database is okay
s -1-Database is down
s -2 - Database failed to start

statusTime Long The system time at which this JMX request was issued.

LDAP Response Time Monitoring Attributes

Table 54 describes the LDAP response time monitoring attributes.

5-2 Contacts Server System Administrator's Guide

Using a Java Management Extension Client to Access the Monitoring Data

Table 5-4 LDAP Response Times Monitoring Attributes

Name Type Description

backendID String Key. Name ID of this LDAP host, in format, BackendType-HostName, for example,
LDAPUg-01.example.com.

RT Long The response time of simple back-end requests in milliseconds.

message String Optional information about the connection, for example, "Exception occurred during
LDAP healthCheck()."

timestamp Long The system timestamp that was issued by this request.

Using a Java Management Extension Client to Access the Monitoring

Data

Contacts Server itself does not provide a client to access the monitoring data. Instead,
you can use any Java Management Extension (JMX) client.

To access the monitoring data, a JMX client needs the following information:

Application server host name or IP address

Application server port number (GlassFish Administration port or WebLogic
Managed Server port)

Application server administrative user name and password
MBean ObjectName, which is com.sun.comms.davserver:type=monitor

Attribute names

If you use GlassFish Server:

You connect a JMX client to the GlassFish Server's MBeanServer by using a JMX
Service URL of the following form:

service:jmx:rmi:///jndi/rmi://host:port/jmxrmi

where:

host is the name or IP address of GlassFish Server

port is the GlassFish Server administration port number

If you use WebLogic Server:

Oracle recommends that you use the T3/T3S protocol support provided in the
wlthint3client.jar library for a remote access.

See Accessing WebLogic Server MBeans with JMX section in Developing Custom
Management Utilities Using JMX for Oracle WebLogic Server.

You can connect a JMX client to the WebLogic Server's MBeanServer by using a JMX
Service URL of the following form:

service:jmx:t3s://host:port/jndi/weblogic.management .mbeanservers.runtime

where:

host is the name or IP address of the WebLogic Server

port is the WebLogic Server administration port number

Monitoring Contacts Server 5-3

https://docs.oracle.com/middleware/12213/wls/JMXCU/accesswls.htm#JMXCU144
https://docs.oracle.com/middleware/12213/wls/JMXCU/accesswls.htm#JMXCU144

Using the responsetime Script

Note: Ensure to provide SSL Port when using t3s protocol in the
URL.

More information on J]MX and JMX clients is available on the Java documentation web
site at:

https://docs.oracle.com/javase/8/docs/technotes/guides/jmx/

Using the responsetime Script

In addition to using monitoring data gathered by the Contacts Server monitoring
MBean, you can also check the health of your hosts by using the Contacts Server
supplied responsetime script. This script sends a set of basic requests to Contacts
Server and measures the amount of time needed to process those requests. When the
responsetime script shows a spike or a large increase in response time, this indicates a
potential issue with Contacts Server that needs to be addressed.

To run the responsetime script, you must provide the server type (contacts), the
application server host name and port, and an LDAP user account to run the script.
When the script finishes, it displays the number of milliseconds needed to run the
series of requests to stdout. When the script encounters no problemes, it returns an exit
status of 0. If the script encounters a problem, it returns an exit status of 1 to stderr. See
"responsetime Script Error Codes" for a list of error codes and descriptions.

responsetime Script Syntax

Use the responsetime script to check the health of your Contacts Server hosts.

Location
ContactsServer_homelsbin

General Syntax

responsetime -t contacts -H host -p port [-s path of truststore]
[-x context_root] [-L locale] [-h]

Table 5-5 describes the options.

Table 5-5 Options for responsetime Script

Option Description
-t Specifies to monitor Contacts Server (contacts).
-H Specifies the application server host name.
-p Specifies the application server administrative port.
-S Specifies the path to the truststore file, if a secure connection is used.
-X Specifies the context root for Contacts Server. The default is / (root).
-L Specifies the language locale to use to display messages. The format is LL_CC_
VV, where:
= LLis the language code.
= CCis the country code.
s VVis the variant.

5-4 Contacts Server System Administrator's Guide

Using the responsetime Script

Table 5-5 (Cont.) Options for responsetime Script

Option

Description

-h Displays usage help.

The responsetime script requires that you stream the following user name and
password, each on a separate line, to the script by using stdin:

s RT_USER=user

s RT_PWD=password

For information on creating a dedicated user account for RT_USER, see "Creating a
Dedicated User Account for the responsetime Script".

responsetime Script Error Codes

Table 5-6 describes the responsetime script error codes and descriptions.

Table 5-6 responsetime Script Error Codes
Error Code | String Description
211 Invalid option: An invalid option was entered on the command line.
212 The "{0}" option is A required option was not entered on the command line. The "{0}"
required. string is replaced in the message with the name of the missing
option.
500 Ok The request succeeded and the amount of time, in milliseconds, is
displayed to stdout.
501 Application server is The responsetime script cannot connect to the application server
down. host.
502 Contacts Server is down or | The responsetime program had trouble sending a request to the
server path not found. application server host.
504 Login failure. A problem occurred when trying to log in to the application server
host.
505 Invalid user name or Either the user name or the password was invalid.
password.
510 Unable to locate or open A problem occurred when accessing the localization resource bundle.

messages resource bundle.

responsetime Script Example

The following example shows how to invoke the responsetime script and run it by
using csrtuser as RT_USER.

#!/bin/sh
#
echo "RT_USER=csrtuser\nRT_PWD=password" | sbin/responsetime -t contacts -H

scll.example.com -p 8080 -x /nabserver

bash> example_csrt.sh

1374
bash>

Monitoring Contacts Server 5-5

Using the responsetime Script

Creating a Dedicated User Account for the responsetime Script

The responsetime script requires a user account in LDAP to be specified in the RT_
USER variable. You should create a dedicated user account for the responsetime script
to use. Create this user by using the Contacts Server config-rtuser script, which is
located in the ContactsServer_home/sbin directory. The config-rtuser script both creates
the user in LDAP and runs the davadmin command to create the user in the Contacts
Server database.

To create a dedicated user for the responsetime script by using the config-rtuser
script:

1. Log in to the Contacts Server host as root.
2. Change to the ContactsServer_homelsbin directory.
3. Run the config-rtuser script:

config-rtuser

4. Respond to the prompts for user account and password, Directory Manager
password, and application server administrative password.

5. When prompted to proceed, type Y.

The script runs the ldapmodify command to create the user account.

5-6 Contacts Server System Administrator's Guide

6

Improving Contacts Server Performance

This chapter describes how to tune your Oracle Communications Contacts Server
deployment.

Tuning Contacts Server Logging

The Contacts Server logging function is I/O intensive. For optimal performance,
decrease the log level to WARNING. Another option is to store the log directory on a
fast storage device, such as a solid-state (SSD) system.

To change the log level on the errors and commands log files to WARNING:
1. Log in as root.

2. Change to the ContactsServer_home/sbin directory.

3. Run the following davadmin commands:

davadmin config modify -o log.dav.errors.loglevel -v WARNING
davadmin config modify -o log.dav.commands.loglevel -v WARNING

Tuning Oracle GlassFish Server

Because Contacts Server runs in an Oracle GlassFish Server container, it is important to
correctly tune GlassFish Server. The GlassFish Server items that you tune include the
Java Virtual Machine (JVM), JDBC pool, and HTTP settings.

This section provides GlassFish Server tuning recommendations for a medium-sized
Contacts Server deployment. Use the following topics to adjust the values for the
various configuration settings to suit your deployment:

» Tuning Java Virtual Machine Options
s Tuning JDBC Pool
s Tuning HTTP Service and Listener

Tuning Java Virtual Machine Options

The Java Virtual Machine (JVM) runs the byte codes in a compiled Java program. The
JVM translates the Java byte codes into the native instructions of the host machine.
GlassFish Server is Java process that requires a JVM to run and support the Java
applications running on it. JVM settings are part of a GlassFish Server configuration.

You set the JVM options either by using the asadmin command or the GlassFish Server
Administration Console.

Improving Contacts Server Performance 6-1

Tuning Oracle GlassFish Server

Use the following JVM option values as a starting point for your Contacts Server
deployment:

-XX:+UseParallelO1ldGC
-XX:ParallelGCThreads=6

-Xms3200m

-XX:MaxPermSize=192m

-server
-Dsun.rmi.dgc.server.gcInterval=1800000
-Dsun.rmi.dgc.client.gcInterval=1800000
-Xmx3200m

-XX:NewRatio=2

Tuning JDBC Pool

A JDBC connection pool is a group of reusable connections for a particular database.
Because creating each new physical connection is time consuming, GlassFish Server
maintains a pool of available connections.

A JDBC resource is created by specifying the connection pool with which the resource
is associated. Multiple JDBC resources can specify a single connection pool. Some
common connection pool properties are the database name (URL), the user name, and
the password.

You administer the JDBC Pool settings by using the GlassFish Server asadmin
command.

Use the following JDBC option values as a starting point for your Contacts Server
deployment:

max-pool-size=200
cachePrepStmts=true
prepStmtCacheSize=512

Tuning HTTP Service and Listener

Tuning the monitoring settings for the HTTP server instances that handle client
requests is important for ensuring peak GlassFish Server performance. You can enable
or disable monitoring statistics collection for the HTTP service by using either the
Administration Console or asadmin subcommands.

See the topic on administering the monitoring service in Oracle GlassFish Server
Administration Guide for more information.

Table 6-1 shows the GlassFish Server HTTP service tuning settings to use as a starting
point.

Table 6-1 HTTP Service Tuning

HTTP Setting Attribute Value
keep-alive max-connections 250
NA timeout-in-seconds 30
request-processing header-buffer-length-in-bytes 16384
NA request-timeout-in-seconds 20
NA thread-increment 10
connection-pool max-pending-count 4096
NA queue-size-in-bytes 4096

6-2 Contacts Server System Administrator's Guide

Tuning Oracle WebLogic Server

Table 6-1 (Cont.) HTTP Service Tuning

HTTP Setting Attribute Value
NA receive-buffer-size-in-bytes 4096
NA send-buffer-size-in-bytes 8192

Table 6-2 shows the HTTP listener tuning settings to use as a starting point.

Table 6-2 HTTP Listener Tuning

HTTP Listener Setting Value

acceptor-threads 1

accessLoggingEnabled false

xpowered-by false

Tuning Oracle WebLogic Server

The WebLogic Server configuration described in this section is for a medium-sized
deployment. Adjust the values according to your deployment. You should perform
modifications in the managed domain in which Contacts Server is deployed.

= Tuning JVM Options for WebLogic Server
s Tuning JDBC Pool for WebLogic Server
s Tuning HTTP Service and Listener for WebLogic Server

Tuning JVM Options for WebLogic Server

For details about setting the JVM options in Oracle WebLogic Server see the discussion
about setting Java parameters for starting WebLogic Server and specifying Java
options for a WebLogic Server instance in the following documents:

s Oracle Fusion Middleware Tuning Performance of Oracle WebLogic Server

s Oracle Fusion Middleware Administering Server Startup and Shutdown for
Oracle WebLogic Server

JVM options:

-XX:+UseG1GC

-XX:ParallelGCThreads=6

-Xms3200m

-XX:MaxPermSize=192m

-server
-Dsun.rmi.dgc.server.gcInterval=1800000
-Dsun.rmi.dgc.client.gcInterval=1800000
-Xmx3200m

-XX:NewRatio=2

Tuning JDBC Pool for WebLogic Server

WebLogic Server instance uses a self-tuned thread-pool. The best way to determine the
appropriate pool size is to monitor the current size of the pool, shrink counts, grow
counts, and wait counts.

Configure the parameters related to JDBC Pool using WebLogic Administration
Console:

Improving Contacts Server Performance 6-3

https://docs.oracle.com/middleware/12213/wls/PERFM/title.htm
https://docs.oracle.com/middleware/12213/wls/PERFM/wls_tuning.htm#PERFM174
https://docs.oracle.com/middleware/12213/wls/START/overview.htm#START138
https://docs.oracle.com/middleware/12213/wls/START/overview.htm#START138
https://docs.oracle.com/middleware/12213/wls/START/overview.htm#START138

Tuning Oracle WebLogic Server

Log in to WebLogic Server Administration Console.
Click Lock & Edit.

From the Domain Structure section, click the domain name. For example,
domainl.

Navigate to Services and then Data Sources.
JDBC Datasources - defaultbackend is displayed in the Configuration tab.

Select the JDBC Data Source name from the list, navigate to the Connection Pool
tab, and then perform the following modifications:

s Change the value of Initial Capacity to 200. The default value is 1.
= Change the value of Maximum Capacity to 200. The default value is 15.
= Change the value of Statement Cache Size to 512. The default value is 10.

Note: Setting the size of the statement cache to 0 turns Off the
statement caching. Therefore, setting this parameter to a non-zero
value is equivalent to setting cachePrepStmts=true in GlassFish
Server.

Click Save.
Click Activate Changes.

Restart WebLogic Server Administration Server and Managed server.

Note: For more information, see the discussions about self-tuning
thread pool, tune the number of database connections, tune pool sizes,
and tuning data sources in the Oracle WebLogic Server
documentation.

Tuning HTTP Service and Listener for WebLogic Server

WebLogic Server is enabled with self-tuning for most of the HTTP parameters. Ensure
that the following parameters are set by default. If the parameters are not set, you can
set them using the WebLogic Server Administration Console.

1.
2.
3.

Log in to WebLogic Server Administration Console.
From the Domain Structure section, click the domain name.

Click Environment, Servers, Managed Server Name, and Tuning tab.

Note: The Enable Native 10 option is selected by default.
You should set the Accept Backlog value to 300.

Select Environment, Servers, Managed Server Name, Tuning Tab, and Advanced
section.

Set the Self-Tuning Thread Minimum Pool Size value to 1 and Self-Tuning Thread
Maximum Pool Size value to 400.

Select Environment, Servers, Protocols tab, and then HTTP tab.

6-4 Contacts Server System Administrator's Guide

Tuning MySQL Server

Note: The Keep-Alive option is enabled by default.

7. Select Services, Messaging, and JMS Servers.
8. Click JMS Server that Contacts Server has created. For example, J]MSServer-DAV.

9. Navigate to the Configuration tab, General tab, Advanced section, and verify the
following:

= Message Buffer Size: -1, which indicates that the server automatically
determines a size based on the maximum heap size of JVM. This default value
is set to either one-third of the maximum heap size or 512 megabytes,
whichever is smaller.

For more information, refer to Fusion Middleware Tuning Performance of
Oracle WebLogic Server.

Tuning MySQL Server

For MySQL Server, configure the parameters that affect cache size and maximum
connection size. For example, use the following values as a starting point:

back_log = 50
max_connections = 200
binlog_cache_size = 1M
max_heap_table_size = 64M
sort_buffer_size = 8M
join_buffer size = 8M
thread_cache_size = 8
thread_concurrency = 8
query_cache_size = 64M
query_cache_limit = 2M

ft_min _word_len = 4

memlock

thread_stack = 192K

transaction_isolation = REPEATABLE-READ
tmp_table_size = 64M

log-bin=mysqgl-bin

expire_logs_days=1

binlog_format=mixed

slow-query-log = 1

long_query_time = 2

log_long_format

tmpdir = /tmp
innodb_additional_mem_pool_size = 16M
innodb_buffer pool_size = 2G
innodb_data_file_path = ibdatal:10M:autoextend
innodb_file_io_threads = 4
innodb_thread_concurrency = 16
innodb_flush_log_at_trx commit = 1
innodb_log_buffer_size = 8M
innodb_log_file_size = 256M
innodb_log_files_in_group = 3
innodb_max_dirty_pages_pct = 90
innodb_lock_wait_timeout = 120
innodb_flush_method=0_DIRECT #UFS only

See MySQL Server Administration for more information on how to change these
settings.

Improving Contacts Server Performance 6-5

https://docs.oracle.com/middleware/12213/wls/PERFM/toc.htm
https://docs.oracle.com/middleware/12213/wls/PERFM/toc.htm

Tuning Oracle Solaris CMT Server

Caution: You can view contents of the back-end store by using
standard MySQL tools. Do not use MySQL tools to modify your data.

Tuning Oracle Solaris CMT Server

This section provides tuning recommendations for Chip Multi-threading (CMT)
architectures such as Sun servers with CoolThreads technology.

Set the following parameters and values in the /etc/system file.

set rlim fd _max=260000

set hires_tick=1

set sg_max_size=0

set ip:ip_squeue_bind=0

set ip:ip_squeue_fanout=1
set ip:ip_soft_rings_cnt=16

Set the following parameters for TCP tuning:

ndd -set /dev/tcp tcp_time_wait_interval 60000
ndd -set /dev/tcp tcp_conn_req max_g 3000

ndd -set /dev/tcp tcp_conn_req max_g0 3000
ndd -set /dev/tcp tcp_max buf 4194304

ndd -set /dev/tcp tcp_cwnd_max 2097152

ndd -set /dev/tcp tcp_xmit_hiwat 400000

ndd -set /dev/tcp tcp_recv_hiwat 400000

For Sun Fire T1000 and T2000 systems with 1.0GHz CPU, interrupt fencing by setting
the following parameter:

psradm -i 1-3 5-7 9-11 13-15 17-19 21-23
For ZFS, set the recordsize variable to 16 K (same as innoDB block size) by running the
following commands:

zfs create rpool/data
zfs set recordsize=16K rpool/data

Tuning Reference

Use the following documentation to find more information on tuning GlassFish Server,
MySQL Server, and network performance for Contacts Server:

s Optimizing MySQL Server:

For more information, refer to the Optimizing the MySQL Server section in MySQL
documentation.

= MySQL benchmarks:
http://www.mysqgl.com/why-mysqgl/benchmarks/
= Scaling MySQL, T5440, ZFS:

https://downloads.mysqgl.com/presentations/MySQL_Perfornance_ Tuning_
Overview_jp.pdf

https://learn.oracle.com/ols/course/mysql-57-performance-tuning/51871/6
1185

= Tuning network performance:

6-6 Contacts Server System Administrator's Guide

https://learn.oracle.com/ols/course/mysql-57-performance-tuning/51871/61185
https://learn.oracle.com/ols/course/mysql-57-performance-tuning/51871/61185
https://downloads.mysql.com/presentations/MySQL_Perfornance__Tuning_Overview_jp.pdf
https://downloads.mysql.com/presentations/MySQL_Perfornance__Tuning_Overview_jp.pdf

Tuning Reference

Refer to the TCP/IP Tunable Parameters section in Solaris Tunable Parameters Reference
Manual for more information.

Tuning GlassFish Server:
http://docs.oracle.com/cd/E18930_01/html/821-2431/
WebLogic Server:

https://docs.oracle.com/middleware/12213/wls/PERFM/toc.htm

Improving Contacts Server Performance 6-7

https://docs.oracle.com/middleware/12213/wls/PERFM/toc.htm

Tuning Reference

6-8 Contacts Server System Administrator's Guide

7

Migrating Information to Contacts Server

This chapter describes how to migrate information from Oracle Communications
Convergence Personal Address Book (PAB) to Oracle Communications Contacts
Server.

Introduction to Migrating to Contacts Server

Contacts Server stores users' contact information in either a MySQL Server or Oracle
database. Convergence stores Personal Address Book (PAB) data in LDAP in Directory
Server. To use PAB contact data in Contacts Server, you must migrate it by using the
davadmin migration command.

The davadmin migration command migrates Convergence PAB contacts and contact
groups to the Contacts Server back-end database in vCard format. The migration
transfers whatever information is found in the LDAP directory to the Contacts Server
back-end database. Additionally, if you migrate the same PAB address book multiple
times, the user does not end up with duplicate data in the migrated address book.

Note: Original PAB LDAP entries remain the same after migration.
Keep these entries in the short term while diagnosing any migration
issues.

The data migration process assumes the following conditions:
= You can take a reasonable amount of downtime to complete the migration.
= You can perform a trial run to check results before doing the actual migration.

= You can examine and fix address books that failed to migrate, by examining the
master_log and user_log files for errors, then rerunning the migration on those
address books that failed.

= If your deployment consists of multiple domains, you have configured AClIs to
allow the Contacts Server administrator ID search and read access to non-default
domains.

Note: You can also have a coexistent deployment of Contacts Server
and PAB hosts. For more information, see the topic on address book
co-existence in Contacts Server Installation and Configuration Guide.

Migrating Information to Contacts Server 7-1

About the Personal Address Book

About the Personal Address Book

The Convergence PAB stores users' contact information in the Directory Server LDAP
directory under the distinguished name o=PiServerDb. The following example shows
the directory structure in which the address book entries for user jsmith are located:

o=PiServerDb
o=example.com
o=piPStoreOwner=jsmith

The following sample LDIF file shows the LDAP entries that store address book data
for the user jsmith under the o=piPStoreOwner entry. The example includes entries
for the user's personal address book, corporate directory, and personal store:

dn: piPStoreOwner=jsmith, o=example.com, o=PiServerDb
piDefaultAB: e10976£864e00

lastPurgeDate: 20060217T0745237

piPStoreOwner: jsmith

objectClass: piPStoreRoot

objectClass: top

dn: piEntryID=el0976£864e00,piPStoreOwner=jsmith, o=example.com, o=PiServerDb
displayName: Personal Address Book

objectClass: PITYPEBOOK

objectClass: piLocalBook

objectClass: top

piEntryID: e10976£864e00

multiLineDescription: This is your Business Address Book

piBookType: abook

dn: piEntryID=el0976£865771,piPStoreOwner=jsmith, o=example.com, o=PiServerDb
displayName: Corporate Directory

objectClass: PITYPEBOOK

objectClass: piRemoteBook

objectClass: top

piEntryID: e10976£865771

multiLineDescription: This is your Corporate Directory

piRemotePiURL: ldap://corpdirectory

piBookType: abook

dn: piEntryID=e10976£8659f2,piPStoreOwner=jsmith, o=example.com, o=PiServerDb
displayName: Applications

objectClass: PITYPEBOOK

objectClass: top

piEntryID: e10976£8659f2

piBookType: pbook

dn: piEntryID=el0976£865bd3,piPStoreOwner=jsmith, o=example.com, o=PiServerDb
displayName: Personal Store

objectClass: PITYPEPROFILE

objectClass: piEntry

objectClass: top

piEntryID: e10976£865bd3

memberOfPIBook: e10976£8659f2

dn: piEntryID=e10976£8665f4,piPStoreOwner=jsmith, o=example.com, o=PiServerDb
displayName: Applications

objectClass: PITYPEPROFILE

objectClass: piEntry

objectClass: top

piEntryID: e10976£8665f4

7-2 Contacts Server System Administrator's Guide

About the Migration Process

memberOfPIBook: €10976£8659f2

Each PAB address book becomes a corresponding address book in the Contacts Server
back-end database for the user, except for the Corporate Directory and Certificate
Book. The migration does not migrate those entities. The migration uses the PAB
address book's piEntryID as the URI of the address book, except for the default
address book. Because a Contacts Server account is created with a default URI of
addressbook, the migrated default PAB address book uses its piEntryID as the URI.

About the Migration Process
The migration process involves the following high-level steps:

1. The davadmin migration command locates the user's PAB address book and
retrieves its LDAP entry.

2. To determine the search base for the user and address books under the
o=PiServerDD tree, the migration process uses either the psRoot attribute, or, if it
is empty, constructs a lookup of the user's uid and email domain.

3. The migration process performs an LDAP search on the base piPStoreOwner=uid,
o=domain, o=PiServerDb using the filter
(&(objectclass=PITYPEBOOK)(piBookType=abook)) to return the list of address
books for the user.

4. The migration process makes each address book into a corresponding collection in
the Contacts Server back-end database for the user, except for the Corporate
Directory and Certificate Book, which are not migrated.

5. To get the list of contacts for each address book, the migration process performs an
LDAP search on the base piPStoreOwner=uid, o=domain, o=PiServerDb using the
filter
(&(objectclass=PITYPEPERSON)(objectclass=piEntry)(memberOfPIBook="book
entryid")) where bookentryid is the piEntryID of the address book.

6. The migration process transforms the LDAP entry of the contact into vCard format
for storing in the Contacts Server back-end database. This transformation uses an
LDIF-to-vCard import mechanism translation file. This translation file defines the
mapping of various PAB LDAP attributes to their vCard counterparts.

7. Each transformed contact becomes a node under the address book collection using
the URI formed by the piEntryID, which is appended with a .vcf file extension.

davadmin migration Command

To migrate PAB information to Contacts Server, run the davadmin migration migrate
command. For more information, see "Contacts Server Command-Line Utilities".

Note: You must use the davadmin migration command to migrate
contacts from the Convergence PAB to Contacts Server. Do not export
and import contacts as CSV files as a way of migrating the contacts.

For example, to migrate the address books and contacts for a single user
john.smith@example.com:

davadmin migration migrate -a john.smith@example.com -X "cn=Directory Manager" -L
pab-ds.example.com:636 -1 /tmp -S
Enter Admin password:

Migrating Information to Contacts Server 7-3

Migration Logging and Status

Enter Migration Admin password:
log tag = /tmp/nabserver_migration/2012-11-05_113142/master_log

Migration Logging and Status

Each migration creates a migration log file (master_log), which logs the list of users
migrated, along with a success or failure status. This log file name is returned as the
log tag value when the davadmin migration command completes. You can use this
log tag to display the migration status by running the davadmin migration status
command.

Each migration also creates a separate migration log per user (user_log) located in a
subdirectory named with the user's email address. This log shows each address book
processed and the contact entries of the migrated address book.

For example, to check on the status of the migration:

davadmin migration status -G /tmp/nabserver_migration/2012-11-05_113142/master_log
Enter Admin password:

[john.smith@example.com] Migration begin

[john.smith@example.com] Migration completed

Troubleshooting the Migration
Troubleshooting the migration involves looking at the following errors:
= Back-End Database Error
s LDAP Error
= Read Timed Out Error

Back-End Database Error

If your migration produces errors similar to the following:

[user@host.example.com] Validation exception: backend throws an error
(com.sun.comms.nabserver.backends.BackendException: SQL
error: Error in allocating a connection. Cause: In-use
connections equal max-pool-size and expired max-wait-time.
Cannot allocate more connections. (INTERNAL_STORE_ERROR)) while doing nodeExists on
dav/home/user@host.example.com/addressbook/dropbox/00000000000
000000000000000000000405¢ce44e000063da0000003100004aa0/ while storing:
00000000000000000000000000000000405¢ce44e000063da0000003100004aa0
then you might need to do the following:
1. Reduce the value of davcore.serverlimits.maxmigrationthreads.

The default value is 2. Try changing the value to 2*(number of CPUs).
2. Change the MySQL connection pool size.

The default is 32. Change this value to 4*(number of threads). To change this
value, edit the /etc/my.cnf file and increase the MySQL max_connection setting,
for example, max_connections = 200.

LDAP Error
If your migration using an LDAP filter produces an error like:

LDAP search failure: error result

7-4 Contacts Server System Administrator's Guide

Troubleshooting the Migration

then your filter might be too broad and you might be running into an LDAP search
limit exceeded issue. Try narrowing down your filter. For example, if your filter was:

davadmin migration -X calmaster -L cs6.example.com:8080 -B "o=dirbase" -R
"objectclass=icscalendaruser"

change it so that it resembles the following;:
davadmin migration -X calmaster -L cs6.example.com:8080 -B "o=dirbase" -R

"(&(uid="a*") (objectclass=icscalendaruser))"

If you use this approach, you need to run multiple migration commands to complete
the migration for the entire directory.

Read Timed Out Error
If your migration produces errors similar to the following:
2010-04-19_151418/master_log: [user@host.example.com] Exception on creation of

http://host-cs.example.com:80: Read timed out

then you might need to increase the timeout period for HTTP connections. To do so,
change the davcore.serverlimits.httpconnecttimeout and
davcore.serverlimits.httpsockettimeout parameters by using the davadmin config
command.

Migrating Information to Contacts Server 7-5

Troubleshooting the Migration

7-6 Contacts Server System Administrator's Guide

8

Managing the Contacts Server Database

This chapter provides information about managing your Oracle Communications
Contacts Server database.

Administering the MySQL Server Database

The following documentation provides information about administering MySQL.

Starting and Stopping MySQL Automatically in MySQL 5.5 Reference Manual
MySQL Server and Server-Startup Programs in MySQL 5.5 Reference Manual

MySQL Server SQL Administrative and Utility Programs in MySQL 5.5 Reference
Manual

Backing Up and Restoring Files and Data

Caution: You can view contents of the back-end database by using
standard MySQL tools. Do not use MySQL tools to modify your data.

Administering the Oracle Database

The following documentation provides information about administering Oracle
Database.

Stopping and Starting Oracle Software in Oracle Database Administrator’s Reference
for Linux and UNIX-Based Operating Systems

Administering Oracle Database in Oracle Database Administrator’s Reference for
Linux and UNIX-Based Operating Systems

Backing Up and Restoring Files and Data

Caution: You can view contents of the back-end database by using
standard Oracle Database tools. Do not use Oracle Database tools to
modify your data.

Managing the Contacts Server Database 8-1

Administering the Oracle Database

8-2 Contacts Server System Administrator's Guide

9

Backing Up and Restoring Files and Data

This chapter describes the backing up and restoring files and data in Oracle
Communications Contacts Server.

About Contacts Server Backup

Contacts store backup and restore is one of the most important administrative tasks for
your Contacts Server deployment. You must implement a backup and restore policy
for your contacts store to ensure that data is not lost if problems such as system
crashes, hardware failures, or accidental deletion of information occur.

This chapter describes the options for backing up and restoring the Contacts Server

database (either MySQL database or Oracle Database), and the document store. You
need to understand the pros and cons of these options to make the proper choice for
your deployment.

This information also assumes that you are backing up your LDAP Directory Server.
Contacts Server uses Directory Server to authenticate users, groups, and resources.
Contacts Server uses the davUniqueld LDAP attribute to map each contacts entry (in
LDAP) to a unique account in the contacts store. The unique identifier links various
entries from different database tables for a user, group, and resource. You must use a
unique identifier, and one that does not change, for user, group, and resource entries
stored in LDAP.

Contacts Server Backup and Restore Techniques

The section describes the ways to back up the Contacts Server data store.

Note: You cannot back up Contacts Server by backing up the active
contacts database and the Contacts Server data directory while
Contacts Server is running. If you do so, bad data results. Thus, you
must use one of the methods described in this section.

Using the davadmin db Commands

Contacts Server provides the davadmin db backup and davadmin db restore
commands to back up and restore the Contacts Server data.

Pros:
= Supports partial backup and restore.

= You can also use backup and restore to migrate data from one Contacts Server
host to another.

Backing Up and Restoring Files and Data 9-1

MySQL Server Backup and Restore Techniques

Cons:
s The davadmin db backup command is relatively slow.

s The davadmin db restore command might take longer than the backup
command, as it needs to rebuild the database and indexes.

Using ZFS Snapshots

You can use Oracle Solaris ZFS snapshots to produce an atomic snapshot of the file
system containing the MySQL database or Oracle Database and the document store.
Then use zfs send or third-party file system backup software to back up the snapshot.
See ZFS Administration Guide for more information.

Pros:
» Performance is better than davadmin db backup.
Cons:

s This method does not support partial backup and restore.

MySQL Server Backup and Restore Techniques

The following methods back up the MySQL Server database only. For general
information about MySQL Server backup and restore, see the MySQL Server database
documentation at:

http://dev.mysqgl.com/doc/refman/5.5/en/backup-and-recovery.html
= MySQL Async Replication

Use MySQL replication to replicate the databases. See the MySQL Async
Replication documentation at:

http://dev.mysqgl.com/doc/refman/5.5/en/replication.html
= MySQL database dump

Use mysqldump to dump the databases for backup or transfer to another SQL
server. See documentation about mysqldump at:

http://dev.mysqgl.com/doc/refman/5.5/en/mysqgldump.html
s Point-in-time backup and recovery using the binary log.

The binary log files provide you with the information you need to replicate
changes to the database. See the documentation about point-in-time backup and
recovery documentation using the binary log at:

http://dev.mysqgl.com/doc/refman/5.5/en/point-in-time-recovery.html

Oracle Database Backup and Restore Techniques

For general information about Oracle Database backup and restore, see the Oracle
Database documentation at:

http://docs.oracle.com/cd/E11882_01/nav/portal_14.htm#backup_and_recovery

9-2 Contacts Server System Administrator's Guide

10

Troubleshooting Contacts Server

This chapter describes troubleshooting strategies for Oracle Communications Contacts
Server.

Troubleshooting Contacts Server Initial Configuration

If you experience trouble configuring Contacts Server while running the init-config
initial configurator script and you receive an error from the application server, ensure
that you are running the recommended Java version based on the JDK support
available for the container and that your environment is configured appropriately.

Note: If you use GlassFish Server 3.x, use the JDK version 1.7 and if
you use WebLogic Server 12.x, use the JDK version 1.8. For more
information, see the installation guide of the corresponding
application server.

Troubleshooting Application Server and Java

If you upgrade your Java SE to Java SE Development Kit 7, Update 7 (JDK 7u?) or
later, you must also upgrade GlassFish Server to the recommended patch level. If you
use WebLogic Server, upgrade Java to the recommended JDK8 update version as
suggested by the WebLogic Server version. Otherwise, you may encounter problems
running the davadmin command.

Troubleshooting Tips

Begin troubleshooting by ensuring that the application server web container is
running and that Contacts Server is deployed. You can use either the application
server's Administration Console or the command-line utilities.

Topics in this section:

s GlassFish Server
- Using the asadmin Command to Specify GlassFish Server Port
- Using GlassFish Server to Check Contacts Server Status

= WebLogic Server:

- Using the WebLogic Server Administration Console to Check Contacts Server
Status

s Generic:

Troubleshooting Contacts Server 10-1

Troubleshooting Tips

— Troubleshooting Contacts Server nabserver Process
— Troubleshooting a Failing davadmin Command

— Troubleshooting Back-end Database Errors

— Refreshing Domain Information

— Tuning Directory Server

Using the asadmin Command to Specify GlassFish Server Port

If you have more than one GlassFish Server instance installed, use the asadmin -p
command to specify the instance's administrative port number.

Using GlassFish Server to Check Contacts Server Status

You can use either the GlassFish Server Administration Console or the asadmin
command to check Contacts Server status.

To use the Administration Console to check status:

1. Start the GlassFish Server Administration Console.

2. Navigate to Web Applications under the Applications tab.
3. Ensure that the nabserver process is deployed and enabled.
To use the asadmin command to check status:

1. Log in to the GlassFish Server host as root.

2. Change to the GlassFish_home/bin directory.

3. Run the following commands:

asadmin list-components -p admin-port

nabserver <ejb,web>

Command list-components executed successfully.
asadmin show-component-status -p admin-port nabserver
Status of nabserver is enabled.

Command show-component-status executed successfully.

If the nabserver is not enabled, check the log files specified in "Troubleshooting
Contacts Server nabserver Process".

Using the WebLogic Server Administration Console to Check Contacts Server Status

To check the Contacts Server status by using the WebLogic Server Administration
console:

1. Start the WebLogic Server Administration Console.
2. In the Domain Structure section, click the domain name. For example, domain1.

3. Navigate to Environment, Servers, and then to the Configuration tab.

Note: Ensure that the Administration Server and Managed Server in
which Contacts Server is deployed are up and running.

4. Navigate to Deployments.

5. Ensure that nabserver is deployed under the Configuration tab.

10-2 Contacts Server System Administrator's Guide

Troubleshooting Tips

Troubleshooting Contacts Server nabserver Process

To troubleshoot when Contacts Server is not starting or not allowing clients to connect:

1. If the nabserver process is not enabled, check the application server log in which
Contacts Server is deployed.

= On GlassFish Server:
Check server.log in the GlassFish_home/domains/domain1/logs directory.
= On WebLogic Server:

Check managed_server_name.log in Weblogic_Domain /servers /managed_server_
name/logs directory.

2, If the nabserver process is deployed and enabled but Contacts Server clients have
trouble connecting, check the Contacts Server log, error.*, in the
/var/opt/sun/comms/nabserver/logs directory. To increase the Contacts Server log
level to collect more information to help to troubleshoot the problem, run the
following command:

davadmin config -o log.dav.errors.loglevel -v FINEST

Troubleshooting a Failing davadmin Command

For GlassFish Server:

If a davadmin command fails to run, use the -e option to get more details about the
failure. For example:

davadmin version
Enter Admin password:*****xx¥x*
DAV server connection failed. Is the server running?

davadmin version -e

Enter Admin password:****xxxk*

JMXconnection exception for url
service:jmx:rmi:///jndi/rmi://commsuite.example.com:46633/jmxrmi

- Exception creating connection to: 1.1.1.1; nested exception is:
java.net.SocketException: java.security.NoSuchAlgorithmException: Error
constructing implementation (algorithm: Default, provider: SunJSSE, class:
com.sun.net.ssl.internal.ssl.DefaultSSLContextImpl)

This example shows SSL errors. In this case, ensure that the truststore file is valid. The
default truststore file, .asadmintruststore, is located in the Contacts Server config
directory.

To verify that the truststore file is valid:
1. Log in to the GlassFish Server host as root where Contacts Server is deployed.
2. Run an asadmin command.

GlassFish Server creates a new .asadmintrustore file located under the root (/)
directory.

3. Ensure that this file is the same as the one in the Contacts Server config directory.
See also "Troubleshooting Application Server and Java".
For WebLogic Server:

If you use WebLogic Server and when davadmin command is successful, the
following output is displayed:

Troubleshooting Contacts Server 10-3

Troubleshooting Tips

/opt/sun/comms/nabserver/sbin/davadmin version

Enter Admin password: ***xxxxi*

Handshake succeeded: TLSvl.2

Oracle Communications Contacts Server version: 8.0.0.5.0 (built yyyy-mm-dd-Time)

The following example shows the output when the davdmin command fails:

/opt/sun/comms/nabserver/sbin/davadmin version

Enter Admin password: ***xxxxi*

Handshake failed: TLSv1.2, error = sun.security.validator.ValidatorException: PKIX
path building failed: sun.security.provider.certpath.SunCertPathBuilderException:
unable to find valid certification path to requested target

Handshake failed: TLSvl.l, error = sun.security.validator.ValidatorException: PKIX
path building failed: sun.security.provider.certpath.SunCertPathBuilderException:
unable to find valid certification path to requested target

Handshake failed: TLSvl, error = Received fatal alert: handshake_failure

Handshake failed: TLSv1.2, error = sun.security.validator.ValidatorException: PKIX
path building failed: sun.security.provider.certpath.SunCertPathBuilderException:
unable to find valid certification path to requested target

Handshake failed: TLSvl.l, error = sun.security.validator.ValidatorException: PKIX
path building failed: sun.security.provider.certpath.SunCertPathBuilderException:
unable to find valid certification path to requested target

Handshake failed: TLSvl, error = Received fatal alert: handshake_failure

Server unavailable at url:
service:jmx:t3s://commsuite.example.com:46633/jndi/weblogic.management .mbeanserver
s.runtime

In the example, 46633 is the secure port of the managed server in which Contacts
Server is deployed.

This example shows SSL errors. In this case, check the following to troubleshoot the
issue:

s WebLogic Server is configured in Secure mode using the supported keystores

s WebLogic Administration Console is accessible as https:/ /hostname:secure_
port/console

» The extractSSLArgs.sh script runs successfully in a secure mode before doing
initial configuration.

sh ./extractSSLArgs.sh -u weblogic_admin_user -p weblogic_admin_user_password
-1 t3s://weblogic_server_host:SSL_port

» If there is a problem in running the above script successfully, try to use WLST
command to connect to the server.

wls:/offline> connect (weblogic_admin_user,weblogic_admin user
password, t3s://weblogic_server_host:SSL _port");

» WebLogic_Domain/config contains a valid .wls_sslargs file and the contents
correspond to the same keystore options that is configured at the WebLogic Server
Side Secure Configuration.

» davadmin.properties file under ContactsServer_home/config folder contains proper
details.

For example:
port=managed_server_port

secure=location of truststore used in configuring WebLogic Server in secure mode

10-4 Contacts Server System Administrator's Guide

Troubleshooting Tips

For more information, see the discussion about running extractSSLArgs.sh to
validate and store WebLogic Server SSL details in the Contacts Server Installation
and Configuration Guide.

Troubleshooting Back-end Database Errors

If you find a back-end error, do one of the following to ensure that the database is
running by pinging the JDBC connectionpool.

If you use GlassFish Server:

1.
2.

Start the GlassFish Server Administration Console.
Select JDBC Resources from Resources, then select Connection Pools.

Choose the nabPool and perform a ping.

Note: If the ping fails, check the Pool properties to ensure they are
correct.

You can also perform a command-line ping as follows:

asadmin list-jdbc-connection-pools -p admin-port

_ CallFlowPool

__TimerPool

DerbyPool

nabPool

Command list-jdbc-connection-pools executed successfully.

asadmin ping-connection-pool -p admin-port nabPool
Command ping-connection-pool executed successfully.

Even if you ping the pool, sometimes Contacts Server is not able to load the back
end. In this case, you see errors similar to the following:

SEVERE [2009-09-03T22:00:53.310-0700] <...JdbcBackend.getDataSource> Cannot
lookup DataSource: javax.naming.NameNotFoundException: defaultbackendl not
found

SEVERE [2009-09-03T22:00:53.313-0700] <...nabserver.loadBackend> failed to
instantiate or create backend

com. sun.comms . nabserver.backends.BackendException: Cannot get DataSource:
javax.naming.NameNotFoundException: defaultbackendl not found(OPERATION_NOT_
SUPPORTED)

To see the pool and resource data clearly, view the GlassFish Server configuration
file:

GlassFish_home/domains/domainl/config/domain.xml

If the cause of the error is not clear, delete and recreate the connection pool and
JDBC resource by using the asadmin command. If you recreate the JBDC resource,
be sure to use the same user name and password that you initially used to create
the resource.

s MySQL Server:

asadmin delete-jdbc-connection-pool -p admin-port nabPool

asadmin create-jdbc-connection-pool -p admin-port --user admin
--datasourceclassname com.mysql.jdbc.jdbc2.optional.MysglDataSource
--restype javax.sqgl.DataSource --property

Troubleshooting Contacts Server 10-5

Troubleshooting Tips

8.

"DatabaseName=nab: serverName=mysglhost :user=nab:password=mysqglpass : por tNumb
er=3306:networkProtocol=jdbc" nabPool

asadmin create-jdbc-resource -p admin-port --user admin --connectionpoolid
nabPool jdbc/defaultbackend

s Oracle Database:

asadmin delete-jdbc-connection-pool -p admin-port nabPool

asadmin create-jdbc-connection-pool --user admin --port admin-port
--restype javax.sqgl.DataSource --datasourceclassname
oracle.jdbc.pool.OracleDataSource --isconnectvalidatereg=true
--validationmethod table --validationtable DUAL --property
\"url=jdbc\\\:oracle\\\\:thin\\\:@//${dbhost}\\\:${dbport}/${sid} :user=${na
buser} :password=${nabuserpw}\" nabPool

asadmin create-jdbc-resource -p admin-port --user admin --connectionpoolid
nabPool jdbc/defaultbackend

Restart GlassFish Server after recreating the connectionpool and resource.

If you use WebLogic Server:

1.
2.
3.

Start the WebLogic Server Administration Console.

In the left pane of the Console, under Domain Structure, select the domain name.
Click Services and Data Sources.

JDBC DataSources - defaultbackend is displayed in the Configuration tab.

Select the defaultbackend JDBC Data Source name from the list.

Select Configuration and General tab.

The settings for defaultbackend are displayed.

Navigate to the Connection Pool tab and ensure that the properties are correct.
Navigate to Monitoring, and then click the Testing tab.

Select the listed managed server name and click the Test Data Source button.

Success or Error message displays in the Administration Console.

Note: If the connection fails, verify the Pool properties from the
Connection Pool tab to ensure all properties are correct.

Occasionally, Contacts Server may not load the backend even though the
connection to pool succeeds. To see the pool and resource data clearly, view the
WebLogic Server configuration file. For example, Weblogic_

Domain /config/config.xml

Delete and recreate the Connection Pool and JDBC resource from WebLogic Server
Administration Console if the cause of the error is unclear.

a. Click Lock & Edit before making changes to the configuration.

b. Click Activate Changes after making the changes and saving the
configuration.

10-6 Contacts Server System Administrator's Guide

Enabling Telemetry Logging

Note: If you recreate the JDBC resource, ensure to use the same user
name and password that you initially used to create the resource.

If you use WebLogic Server as a container, for creating the JDBC
resource, see the discussion about installing and configuring multiple
Contacts Server back-end hosts for WebLogic Server manually in the
Contacts Server Installation and Configuration Guide.

c. Restart WebLogic Server after recreating the connection pool and resource.

10. Verify the MySQL logs for any errors.

Refreshing Domain Information

Contacts Server fetches and caches some domain information that is stored in the
LDAP directory, such as domain status. The system does not periodically refresh
domain information, unlike user and group information.

If you need to refresh domain information, use one of the following methods:
= Restart the application server.

= Using the davadmin command, make a change to any of the LDAP-related
configuration options (base.ldapinfo.*), which causes the server to refresh all
cached LDAP data.

s Use the davadmin cache clear command to clear the acl, domainmap, auth, and
uri caches.

Tuning Directory Server

When your Oracle Directory Server Enterprise Edition contains many tens of
thousands of entries, it might become necessary to tune how the directory performs
searches. For example, you might experience search time outs or failures from
Contacts Server. For more information, see the topic on configuring search limit in
Oracle Fusion Middleware Administrator’s Guide for Oracle Directory Server Enterprise
Edition.

Enabling Telemetry Logging

To troubleshoot issues with a particular user or client, it is useful to log all protocol
interactions. You can force all telemetry logs by setting the
service.dav.telemetry.forcetelemetry parameter to true. Do not use this setting unless
required as it generates lots of data.

To set the service.dav.telemetry.forcetelemetry parameter to true:
davadmin config modify -o service.dav.telemetry.forcetelemetry -v true
To enable telemetry logging at a reduced level, set the service.dav.telemetry.filter

parameter. This parameter takes a space-separated list of request URI prefixes that
should be logged. For example:

» /rest/logs all RESTful API access.

» /dav/principals/nabuserl/ /dav/home/nabuserl/ logs all Contacts Server access to
nabuserl's account (both principals and home collections, and all the resources
underneath).

Troubleshooting Contacts Server 10-7

Using the Browser Servlet in GlassFish Server Deployments

To set the service.dav.telemetry.filter parameter:

davadmin config modify -o service.dav.telemetry.filter -v URIs

Using the Browser Servlet in GlassFish Server Deployments

You can use a browser servlet to view address books and contacts information from a
browser. You might find this helpful when troubleshooting Contacts Server problems.

To access this browser servlet, take any valid nab URI and replace the dav prefix
following nabserver with browse. For example, in a browser, change the following:

http://example.com:3080/nabserver/dav/principals/smithj/addressbook/

to:

http://example.com:3080/nabserver/browse/home/smithj/addressbook/

The servlet returns a a view of the address book's properties. You can navigate among
properties and delete them as well. The servlet also has some import function if you
want to use a server-side import instead of a client-side import.

The delete and file import features are enabled only when the logging level is set at
FINE or lower. To specify the logging level, use the log.dav.errors.loglevel
configuration parameter.

Tip: You can log in with Contacts Server administrator credentials
(the default is nabmaster) to view multiple accounts with one login.
Also, when viewing multiple accounts, clear your browser cache
before viewing the next account.

10-8 Contacts Server System Administrator's Guide

11

Using Contacts Server Notifications

This chapter describes the Oracle Communications Contacts Server notification
architecture, how to enable notifications, the different types of notifications, and how
to customize notifications.

Overview of Notification Architecture

Contacts Server is capable of generating notifications for changes to the address book
data in the database, or for some preset trigger. Notifications are published as Java
Message Service (JMS) messages. Contacts Server also includes a JMS consumer
program that consumes the JMS notifications and sends email messages to end users.
A notification is sent by the server when a user, different than the one being notified,
makes a change to the contacts database, for example, by granting an address book
permission.

Contacts Server notification services use a publish/subscribe paradigm. Contacts
Server publishes messages, in this case, notifications. Receiving clients (the
subscribers) receive only those messages that they are interested in.

Contacts Server utilizes the built-in Java Messaging Service (JMS) in the application
server to communicate contact data changes. Contacts Server bundles a consumer
program that "consumes" this information and sends email for certain subset of the
notifications as detailed in "Notification Types." For more information, see the JMS
website at:

http://java.sun.com/products/jms/

Figure 11-1 shows that the Contacts Server notification service consists of two major
components, the Notification Service and Notification Consumer. The Notification Service
component is part of Contacts Server itself, and is the publisher that posts messages of
a pre-configured JMS topic managed by the JMS provider. The Notification Consumer
component is the subscriber or the message consumer of that JMS topic.

Using Contacts Server Notifications 11-1

About Server Email Notifications

Figure 11-1 Contacts Server Notifications Services Architecture

1. HTTP Request

— JZ2EE Container

e

\.

+ Web C::mtaine“
Contacts Server Web Application

Motification Service
- Publisher

2. Notification Published
3. Notification
r * Consumed

JMS Broker Motification

— Consumer MDB

- Subscriber

Email/SM5
handler

Topic

'

4. SMTP Request

The Notification Service component provides interfaces for Contacts Server to publish
JMS messages to a specific JMS topic (DavNotificationTopic) of the JMS broker. The
Notification Service component is part of the main Contacts Server servlet that is
deployed in the application server web container. The Notification Consumer
component listens on the JMS bus for the specific topic (DavNotificationTopic)
notification messages, consumes the messages, and sends notification email to
recipients, if applicable. The consumer checks the notification type and other
instructions provided in the JMS message to determine what action is to be taken. The
Notification Consumer component message-driven bean (MDB) runs in the
application server J2EE container. The consumer MDB is deployed in EMBEDDED
mode, and thus is running in the same JVM of the J2EE container.

You can choose to write your own customized Notification Consumer programs. See
"Writing a Java Messaging Service Consumer".

About Server Email Notifications

Server notifications are used to notify users mostly about changes to their address
books due to actions by other users, such as granting permission to an address book.
To enable email notifications at a server level, both the
notification.dav.enablejmsnotif and notification.dav.enableemailnotif configuration
parameters must be set to true.

11-2 Contacts Server System Administrator's Guide

About Server Email Notifications

Enabling Contacts Server Notifications

Table 11-1 describes the Contacts Server notifications that are controlled by the
configuration parameters.

Table 11-1 Notification Configuration Parameters

Parameter Description

notification.dav.enableemailnotif Controls server-wide email notification. When
this parameter is set to true, Contacts Server
sends email notifications for address book
collection creation and sharing (access change).
End users can choose to receive notifications
either by enabling their own account through
Convergence or by requesting that an
administrator do so by using the davadmin
command. These notifications are text emails
sent to users. If set to false, server-wide email
notification is disabled.

notification.dav.enablejmsnotif Controls server-wide JMS notification. When
set to true, Contacts Server publishes
notifications to the JMS bus. This parameter
must be set to true for any notification to work.

You can enable or disable these parameters by using Jconsole or the davadmin utility.
You do not need to restart the application server for a change to these parameters to
take effect.

The settings are not cumulative. That is, to receive email notification, not only should
notification.dav.enableemailnotif be set to true, so should
notification.dav.enablejmsnotif.

Other notification.dav.* configuration parameters control items such as the SMTP
server to use and its settings, maximum notification payload, location of notification
templates, and so on. The davcore.autocreate.enableemailnotification parameter
determines if notification is enabled by default on a newly created account and the
davcore.autocreate.emailnotificationaddressattr parameter specifies which LDAP
attribute to set as the default notification address when autocreating an account. (The
default value is mail.) For more details, see "Contacts Server Configuration
Parameters".

Enabling Notifications on an Account
To enable notifications for all accounts:

1. Use the davadmin command to set the
davcore.autocreate.enableemailnotification to true.

davadmin config modify -o davcore.autocreate.enableemailnotification -v true

2. If necessary, change the value of the LDAP attribute corresponding to
davcore.autocreate.emailnotificationaddressattr, which is used to set the email
notification address during account autocreation. The default value is mail.

Modifying Notifications on an Account

Contacts Server stores the values for the davcore.autocreate.enableemailnotification
and davcore.autocreate.emailnotificationaddressattr parameters in the database as
properties for each account. You modify these parameters by running the davadmin
account command.

Using Contacts Server Notifications 11-3

Managing Notification Templates

For more information on the davadmin account command see "davadmin account".

Managing Notification Templates

This section describes the Contacts Server notification service in more detail and how
to customize notification templates for your deployment.

Topics in this section:

= Notification Types

s Templates, Resource Bundle, and Other Configuration Files

s Customizing Templates

» Preserving Customized Template Files During Upgrade

Notification Types

Table 11-2 describes the notification types. It also lists the payload data, which is the
resource content (for example, contact data) in byte array format. Attachments are not

included.

Table 11-2 Notification Types

Contacts Server Consumer

Notification Type Description Payload | Action
AUTOCREATECARD Initial creation of a user's None Email sent if creation happened.
home collection (and its Creation due to user login or
default sub-collections) explicit account creation by using
the davadmin command does not
trigger an email.
CREATE_COLLECTION Creation of a address book None None.
collection
CREATE_CARD_RESOURCE | Creation of an entry in a Contact None.
address book collection data
DELETE_COLLECTION Deletion of a address book None None.
collection
DELETE_CARD_RESOURCE | Deletion of an entry in an Contact None.
address book collection data
MODIFY_CARD_ Modification of an entry in an | Contact None.
RESOURCE address book collection data
MOVE_COLLECTION An address book collection None None.
was moved
MOVE_RESOURCE An entry in an address book | None None.
collection was moved
SHARE_ACCOUNT An account was shared None An email is sent if additional
permission was granted.
SHARE_CARD_ An address book collection None An email is sent if additional
COLLECTION was shared permission was granted.
NONE Undefined type Contact Not applicable.
data

The notification message contains a type field that indicates what action triggered the
notification and thus helps the consumer decide how to process it.

11-4 Contacts Server System Administrator's Guide

Managing Notification Templates

Templates, Resource Bundle, and Other Configuration Files

This section contains the following topics:
= Notification Configuration
= Resource Bundles

= Template Files

Notification Configuration

You enable or disable notifications and set the values of the SMTP server used by the
notification consumer by using the davadmin command or Jconsole. See "Contacts
Server Configuration Parameters" for details on each of the configuration properties
that you can set for notifications.

Resource Bundles

The value of the user's locale/preferred language attribute (defined by the
davcore.ldapattr.preferredlang configuration parameter) in the user's directory entry
is used to localize notification email. The attribute is retrieved from LDAP every time a
notification is triggered and is then passed along as part of the notification object being

published. If the user does not have any preferred locale/language, it defaults to the
consumer module's system's default.

Template Files
Notification templates are files that contain pre-formatted notification messages.

Table 11-3 describes the available notification email templates. In a deployed
production environment, by default the templates should be located in the
/config/templates sub-directory, for example,
/opt/sun/comms/nabserver/config/templates/. The location of the templates directory
is defined by the notification.dav.configdir configuration parameter.

Table 11-3 Scenarios That Trigger Notifications and Templates Files Used

Message Notification
Type Type Template Files From To Description
Auto AUTOCRE | autocreatecard.fmt | User's User's Notifies of auto creation of user's
creation ATECARD address address home collection due to login.
Address CREATE_ createaddressbook. | User's User's Notifies of an address book being
book COLLECTI | fmt address address created.
creation ON
Contact CREATE_ | createcontact.fmt User's User's Notifies of a contact being created.
creation CARD_ address address

RESOURC

E
Address DELETE_ deleteaddressbook. | User's User's Notifies of an address book being
book CARD_ fmt address address deleted.
deletion COLLECTI

ON

Using Contacts Server Notifications 11-5

Managing Notification Templates

Table 11-3 (Cont.) Scenarios That Trigger Notifications and Templates Files Used

Message Notification
Type Type Template Files From To Description
Contact DELETE_ | deletecontact.fmt User's User's Notifies of a contact being deleted.
delection CARD_ address address
RESOURC
E
Share SHARE_ share_account.fmt | Sharer's Sharee's | Notifies of an address book account
contact ACCOUNT email email being shared.
address address
Share SHARE_ shareaddressbook.f | Sharer's Sharer's Notifies of an address book
address CARD_ mt email email collection being shared.
book COLLECTI address address
collection ON
A recipient list stored in the property, SUN_NOTIFRECIPIENT. By default, it's the
scheduling address of the LDAP user on behalf of whom the operation is processed. It
can be modified through interfaces provided by WCAP or by using the davadmin
command.
Customizing Templates

Because JavaMail has interfaces to parse an entire string into a MIME message, a
notification template file is designed to be a well-formatted email MIME message that
contains character sequences denoted by a starting "%{", and an ending "}".

A template contains the following trinket types:

= Resource bundle key: A place holder for locale-specific resource, in the format of

${key};

For example, trinket ${summary} contains a key "summary" that uniquely
identifies a locale-specific object in the resource bundle.

= Value trinket: A place holder for notification field value, in the format of
%{trinket};

For a complete list of keys, refer to the email.properties file.

For more information on values and trinkets, and template examples, see the topic on
customizing templates in Calendar Server System Administrator’s Guide. Though that
guide is written for Calendar Server, the topic also applies to Contacts Server.

Preserving Customized Template Files During Upgrade

Customized notification template files are preserved during a Contacts Server
upgrade. Normally, there should be no problem merging customized notification
template files during the upgrade. If the upgrade encounters a problem with merging
these files, the following message is displayed:

log_msg "There are conflicts in merging $file customization"
log_msg "Please finish the merge by manually resolving the conflicts in
ScfgFileNew"

The $file and $cfgFileNew are substituted with actual file names.

11-6 Contacts Server System Administrator's Guide

Managing Contacts Server Java Messaging Server Destinations

Writing a Java Messaging Service Consumer

Contacts Server Notification Services use a publish/subscribe paradigm. All Contacts
Server notification messages are posted to a pre-defined JMQ Topic called
DavNotificationTopic. Each message consists of the associated contact data as the
message body and some additional information passed in as properties.

For more information, see the topic on notification message format and sample code in
Calendar Server System Administrator’s Guide. Though that guide is written for Calendar
Server, the topic also applies to Contacts Server.

Managing Contacts Server Java Messaging Server Destinations

You can manage Java Messaging Server (JMS) destinations in Contacts Server by using
the imqemd command. For a complete list of imqemd options, see the "Command
Utility" chapter in Sun Java System Message Queue 4.1 Administration Guide.

For more information, see the topic on managing JMS destinations in Calendar Server
System Administrator’s Guide. Though that guide is written for Calendar Server, the
topic also applies to Contacts Server.

Using Contacts Server Notifications 11-7

Managing Contacts Server Java Messaging Server Destinations

11-8 Contacts Server System Administrator's Guide

A

Contacts Server Command-Line Utilities

This appendix provides information about the Oracle Communications Contacts
Server command-line utilities.

Overview of the Command-Line Utilities

You use the davadmin command to administer Contacts Server. The davadmin
command is installed in the ContactsServer_home/sbin directory with user or group
bin/bin permissions.

The Contacts Server davadmin command is identical to the Calendar Server
davadmin command, with a few changes and enhancements described in this
appendix. The Contacts Server davadmin command does not include the calendar and
calcomponent commands, nor the delcomponent and upgrade actions. It also does
not include the -d option for the account command. Finally, the Contacts Server
migration command is slightly different, as it does not include the -T or -c options. For
complete information about the davadmin command, see Calendar Server System
Administrator’s Guide.

Note: The davadmin command-line utilities administer aspects of
the server and do not affect any LDAP entries.

davadmin Security

The davadmin command requires you to authenticate with a user name and password
to be able to communicate with the server or database. You can use the davadmin
passfile operation to store the necessary passwords in an encrypted wallet for use by
subsequent davadmin commands. If you do not store passwords in the wallet, then
you must enter them by using a no-echo prompt on the command line. See the topic
on the passfile operation in Calendar Server System Administrator’s Guide for more
information.

Environment Variables

Table A-1 describes the environment variables that you can use with the various
davadmin commands.

Table A-1 davadmin Environment Variables

Environment Variable Description

DAVADMIN_CLIFILE Specifies the path to the bootstrap file. Can be used instead of
the -F option.

Contacts Server Command-Line Utilities A-1

davadmin account

Table A-1 (Cont.) davadmin Environment Variables

Environment Variable Description

DAVADMIN_ACCOUNT | Specifies the account. Can be used instead of the -a option.

davadmin account

Use this command to administer Contacts Server user accounts in the database.

davadmin account [create | delete | list | modify | repair | subscribe |

unsubscribe]
-u 1id] [-W] [-F clifile] [-H hostname]
-p port] [-s path] [-a account] [-g uniqueid (delete only)]

-B ldapbaseuri] [-R ldapfilter]
-c collection path | -C collections_file path]

[
[
[~y property=valuel,property=value...]] [-f file]
[
[
[-m] [-o] [-v (list only)] [-e] [-r] [-q] [-h]

Location

ContactsServer_homelsbin
Syntax
account Operation

Table A-2 describes the actions for the account operation.

Table A-2 Actions for account Operation

Action

Description

create

Creates an account for user who has been provisioned in the
LDAP Directory Server. The user must have an email address.

delete

Deletes an account.

list

Lists properties of an account.

modify

Modifies an account.

repair

Repairs the user's email address in the database entries after an
LDAP email change occurs. When used with the -o option,
repair updates the owner lists of all accounts.

subscribe

Subscribes to an address book belonging to another user. That
other user must grant the requesting user access before this can
be done.

unsubscribe

Removes an address book from a user's subscription list.

Options for account Operation

Table A-3 describes the options for the account operation.

A-2 Contacts Server System Administrator's Guide

davadmin account

Table A-3 Options for account Operation

Short Option

Long Option

Description

-u

--userid

Specifies the application server administrator
user name.

W

--usepasswordfile

Specifies the password file, if available.

-F

--clifile

Specifies the file containing bootstrap
information.

-H

--hostname

Specifies the server's host name. The default is
localhost.

P

--port

Specifies the server's administrative port
number.

-S

--secure

Specifies the path and name of the trustStore
file for a secure connection (HTTPS).

-a

--account

Specifies the account.

8

--uniqueid

Specifies the account described by uniqueid.
Used only for delete, if the -a option fails.

Yy

--property

Specifies a comma-separated list of
property=value fields. Possible address book
properties are:

= notifemail - Email notification enable flag.
0 = disabled, 1 = enabled

= notifrecipients - Recipients of email
notifications. Multiple values are separated
by a space.

-C

--collectionuri

Specifies a collection path in which to subscribe
or unsubscribe.

-C

--collectionuris

Specifies a local input file with collection paths,
one per line, in which to subscribe or
unsubscribe.

--file

Specifies a local input file with one line for each
account, for batch operation. Format is
account:property_list,where property_list is
optional and contains a comma separated list of
property=value fields.

--lIdapbaseuri

Specifies a base URI in LDAP.

-R

--ldapbaseuri

Specifies a user search filter in LDAP. Default is
(objectClass=nabuser).

-m

--email

Used only for the repair action. Updates the
email addresses due to an email change for
users specified with -a or -f options.

-0

--ownerlists

Used only for the repair action. Updates the
owner lists for all accounts.

-V

--verbose

Used for account list command. If true, outputs
details of each account found. This option is
implied if the -a option is used.

-

--detail

Prints detailed output.

Contacts Server Command-Line Utilities A-3

davadmin addressbook

Table A-3 (Cont.) Options for account Operation

Short Option Long Option Description

-r --force Forces the operation. Does not prompt for
confirmation.

-q --quiet Quiet mode.

-h --help Displays help.

davadmin addressbook

Use this command to create, modity, list, and delete user address books.

Location
ContactsServer_homelsbin
Syntax
davadmin addressbook [create | delete | list | modify]
[-u id] [-W] [-F clifile] [-H hostname]
[-p port] [-s path] [-a account] [-n name]
[-y property=valuel, property=value...]] [-f file]
[-e] [-r] [-q] [-h]
addressbook Operation

Table A—4 describes the actions for the addressbook operation.

Table A-4 Actions for addressbook Operation

Action Description

create Creates an address book for user who has been provisioned in
the LDAP Directory Server. The user must have an email
address.

delete Deletes an address book.

list Lists properties of an address book.

modify Modifies an address book.

Options for addressbook Operation
Table A-5 describes the options for the addressbook operation.

Table A-5 Options for addressbook Operation

Short Option Long Option Description

-u --userid Specifies the application server administrator
user name.

-W --usepasswordfile Specifies the password file, if available.

-F --clifile Specifies the file containing bootstrap
information.

-H --hostname Specifies the server's host name. The default is
localhost.

A-4 Contacts Server System Administrator's Guide

davadmin contact

Table A-5 (Cont.) Options for addressbook Operation

Short Option

Long Option

Description

P

--port

Specifies the server's administrative port
number.

--secure

Specifies the path and name of the trustStore
file for a secure connection (HTTPS).

-a

--account

Specifies the account.

-n

--name

Specifies the name of the address book
collection.

Y

--property

Specifies a comma-separated list of
property=value fields. Possible address book
properties are:

= displayname - The name of the address
book. Defaults to name given with the -n
option.

= description - Description string. No
default.

= acl - The access control string set on the
address book.

= set-ace - Set one or more individual ACEs
in the ACL. A semi-colon separated list of
ACEs.

= remove-ace - Remove one or more
individual ACEs from the ACL. A
semi-colon separated list of ACE
principals. For example: @, @domain,
group@domain, or user@domain.

-f

--file

Specifies a local input file with
account:addressbook_name:property_list, for batch
operation, where property_list is optional and
contains a comma separated list of
property=value fields.

-e

--detail

Prints detailed output.

-r

--force

Forces the operation. Does not prompt for
confirmation.

-q

--quiet

Quiet mode.

-h

--help

Displays help.

davadmin contact

Use this command to list, import, and export address book contacts.

Location

Syntax

ContactsServer_homelsbin

davadmin contact

delete | list | import | export]

[

[-u id] [-W] [-F clifile] [-H hostname]

[-p port] [-s path] [-a account] [-n name]
[-c contact] [-f format] [-L lang] [-m path]
[-x path] [-1 logpath] [-r] [-e] [-q] [-h]

Contacts Server Command-Line Utilities A-5

davadmin contact

contact Operation
Table A-6 describes the actions for the contact operation.

Table A-6 Actions for contact Operation

Action Description

delete Deletes a contact.

list Lists properties of a contact.
import Imports a contact.

export Exports a contact.

Options for contact Operation
Table A-7 describes the options for the contact operation.

Table A-7 Options for contact Operation

Short Option Long Option Description

-u --userid Specifies the application server administrator
user name.

-W --usepasswordfile Specifies the password file, if available.

-F --clifile Specifies the file containing bootstrap
information.

-H --hostname Specifies the server's host name. The default is
localhost.

-p --port Specifies the server's administrative port
number.

-s --secure Specifies the path and name of the trustStore
file for a secure connection (HTTPS).

-a --account Specifies the account that owns the address
book.

-n --name Specifies the name of the address book
collection.

-c --contact Specifies the contact URI for which to request
content.

-f --format Specifies the export format (vcard3 or csv). The
default is vcard3.

-L --language Specifies the export language.

-m --import-path Specifies the path to the file on the host that
contains data to be imported.

-X --export-path Specifies the path to the file on the host to
receive the exported data.

-1 --logpath Specifies the path to the location of the log
directory.

-r --force Forces the operation. Does not prompt for
confirmation.

-e --detail Prints detailed output.

-q --quiet Quiet mode.

-h --help Displays help.

A-6 Contacts Server System Administrator's Guide

davadmin ctgroup

davadmin ctgroup

Use this command to create, modify, list, import, export, and delete contact groups
from a user's address book.

Location

ContactsServer_homelsbin

Syntax

create | delete | list | modify | import | export]
-u id] [-W] [-F clifile] [-H hostname]

davadmin ctgroup

[
[
[
[-c contactgroup] [-g groupname
[
[

-p port] [-s path] [-a account] [-n name]
] [-M members]
-E email_addresses] [-f format] [-L lang]
10

-m path] [-x path] [-1 Iogpath -r] [-h]

ctgroup Operation
Table A-8 describes the actions for the ctgroup operation.

Table A-8 Actions for ctgroup Operation

Action Description

create Creates an address book contact group.

delete Deletes an address book contact group.

list Lists properties of an address book contact group.
modify Modifies the properties of an address book contact group.
import Imports an address book contact group.

export Exports an address book contact group.

Options for ctgroup Operation
Table A-9 describes the options for the ctgroup operation.

Table A-9 Options for ctgroup Operation

Short Option Long Option Description

-u --userid Specifies the application server administrator
user name.

-W --usepasswordfile Specifies the password file, if available.

-F --clifile Specifies the file containing bootstrap
information.

-H --hostname Specifies the server's host name. The default is
localhost.

P --port Specifies the server's administrative port
number.

-S --secure Specifies the path and name of the trustStore
file for a secure connection (HTTPS).

-a --account Specifies the account that owns the address
book.

Contacts Server Command-Line Utilities A-7

davadmin ctgroup

Table A-9 (Cont.) Options for ctgroup Operation

Short Option Long Option Description

-n --name Specifies the name of the address book
collection.

-c --contactgroup Specifies the contact URI for which to request
content.

-8 --groupname Specifies the contact group name.

-M --members Specifies a comma-separated list of contact
group members.

-E --email_addresses Specifies a comma-separated list of contact
group members' email addresses.

-f --format Specifies the export format (vcard3).

-L --language Specifies the export language.

-m --import_path Specifies the path to the file on the host that
contains data to be imported.

-X --export_patch Specifies the path to the file on the host to
receive the exported data.

-1 --logpath Specifies the path to the location of the log
directory.

-r --force Forces a delete operation.

-h --help Displays help.

ctgroup Examples

The following examples show how to use the davadmin ctgroup command.

To create a contact group in the personal address book with the name group1:
davadmin ctgroup create -a john.smith@example.com -g groupl -n personal

To create a contact group in the personal address book with the name group1 plus an
email address and two members:

davadmin ctgroup create -a john.smith@example.com -g groupl -n personal -E
my.group@example.com -M "urn:uuid:aaaaaaaaa,urn:uuid:bbbbbbbbbb"

To list all the contact groups in the user's default address book:

davadmin ctgroup list -a john.smith@example.com

To list the details of a contact group:

davadmin ctgroup list -a john.smith@example.com -c 1384904616388-1758-GROUP.vcE

To delete a contact group:

davadmin ctgroup delete -a john.smith@example.com -c 1384904616388-1758-GROUP.vct
To remove all the current members of a group, replace them with one member, and
change the group name to newgroup:

davadmin ctgroup modify -a john.smith@example.com -c 1384904616388-1758-GROUP.vcf
-M "urn:uuid:cccccccccc" -g newgroup

A-8 Contacts Server System Administrator's Guide

davadmin db

davadmin db

Syntax

db Operation

Use this command to perform database related operations, such as backing up and
restoring the database, and upgrading the database schema.

Unlike other davadmin commands that communicate with the application server, the
davadmin db commands communicate directly with the back-end database, and thus
require that you specify the database host name, port, and password.

Although the davadmin db commands are not related to the application server like
the other davadmin commands, davadmin db commands do still use parameter
values in the davadmin.properties file if applicable.

Because each database back end is associated with a database host name, port,
document store, and so on, in a multiple back-end deployment, use a unique clifile
(specified with the -F option) for each back end in the deployment.

In a non-default deployment or multiple back-end deployment, properly define
options such as (-d database) and (-u dbuser), which might need to use specific and not
default values.

davadmin db [backup | init | list | restore | schema version |
schema_fullupgrade | schema_preupgrade]
-h] [-e] [-W] [-t dbtype] [-H dbhost] [-p dbport] [-F clifile]

[

[-u dbuserid] [-d database] [-s truststore] [-b blockfactor]
[-D domain] [-a account_mail] [-T token] [-0O] [-1 path]

[-¢] [-A docstore] [-z preupgradefunction] [-k backup_ file]

Table A-10 describes the actions for the davadmin db operation.

Table A-10 Actions for db Operation

Command Description
backup Backs up a database.
init Completely initializes the database.

Caution: All data will be lost.

list List contents of a backup file. This is the default action if not included on
the command line.

restore Restores the contents of a database.

schema_version Displays version information for the database, connector, and product
schema number.

schema_ Provides an optional way to perform a full upgrade of the database
fullupgrade schema. For more information about upgrading database schema and
upgrading Contacts Server, see "Upgrading Contacts Server" in Contacts
Server Installation and Configuration Guide.

schema_ Provides an optional way to perform a pre-upgrade on the database
preupgrade schema. For more information about upgrading database schema and
upgrading Contacts Server, see "Upgrading Contacts Server" in Contacts
Server Installation and Configuration Guide.

Contacts Server Command-Line Utilities A-9

davadmin db

Caution: Do not run either the schema_fullupgrade or schema_
preupgrade without fully understanding the impact on your Contacts
Server deployment.

The davadmin db backup, list, and restore commands require that you specify the
associated document store by using the -A option, or the docstore option in the clifile.

Note: If you are using a remote document store, you must set the
document store password on the Contacts Server host by using the
davadmin passfile command and that password must match the one
set for the remote document store. This password is used whenever
the backup or restore commands access the remote document store.

Options for db Operation

Table A-11 describes the options for the db operation (in addition to the common

options).
Table A-11 Options for db Operation
Available for Following
Short Option Long Option Description Actions
-d --database Specifies the name of the Contacts Server | backup, restore, list
store to be saved or updated. The default
is nab. For MySQL Server, this is the
database name. For Oracle Database, this
is the network service name (not SID nor
pdb name).
-H --dbhost Specifies the database host. The defaultis | All
localhost.
-p --dbport Specifies the database port. The defaultis | All
3306.
-u --dbuserid Specifies the database user. For MySQL All
Server, this is the connecting user name.
For Oracle DB, this is the user/schema
name.
-k --bkfile Specifies the path of the file where the backup, restore, list
database information is to be saved.
Required.
-b --bkfactor Specifies blocking factor used during backup, restore, list
backup. The default is 20.
-T --token Specifies the incremental backup token or | backup
start time in milliseconds.
-D --domain Domain name for per domain backup. backup
-a --account User account email value for per user backup
backup.
-i --ipath Specifies the internal path for partial list or | restore, list
restore.
-C --contents Lists the resources and header. list

A-10 Contacts Server System Administrator's Guide

davadmin db

Table A-11 (Cont.) Options for db Operation

Available for Following

Short Option Long Option Description Actions

-A --docstore Specifies the document store (remote store | backup, restore, list
specified as host:port or local store by fully
qualified path to root of document store).

-t --dbtype Specifies the type of database, either All
mysql or oracle. The default is mysq]l.

-0 --overwrite Overwrites existing data. backup, restore

-S --dbsecure Supplies the path to the trustStore file that | backup, restore
contains the SSL certificate for secure
communications with the remote
document store.

-z --dbupgradefunction | Specifies to run the pre-upgrade schema_preupgrade

function(s) on the database.

Caution: Do not run schema_preupgrade
without fully understanding the impact on
your Contacts Server deployment. For
more information, see "Upgrading
Contacts Server" in Contacts Server
Installation and Configuration Guide.

The pre-upgrade functions are:

= services-up - Processes all
pre-upgrade functions that can be run
with old services up. (Online DDL)
Otherwise and most commonly,
pre-upgrade functions must be run
with services shut down.

= services-down - Processes all
pre-upgrade functions that cannot be
run with services up.

» all - Processes all available
pre-upgrade functions. Services
should be shut down.

For a list of available functions by release,
see "Preupgrade Functions" in Contacts
Server Installation and Configuration Guide.

Unless otherwise specified, never run
pre-upgrade functions with services up. In
addition, always back up your database
before upgrading.

Preupgrade functions are listed for each
release. Some function names process
multiple preupgrade functions.

davadmin db Examples
s To perform a full database backup:

davadmin db backup -k backup_file

s To perform a full backup for a particular user:

davadmin db backup -k backup_file -a john.smith@example.com

s To perform an incremental backup:

Contacts Server Command-Line Utilities A-11

davadmin migration

davadmin db backup -k backup_file -T token obtained from last full backup

s To perform a full backup for a particular domain:

davadmin db backup -k backup_file -D sesta.com

s To list the contents of the backup file:
davadmin db list -c backup_file
When the davadmin db list -c command retrieves backup file content, it goes

through the checksums and is thus a way to verify the structure of the backup file
itself.

s To perform a restore from a backup file:

davadmin db restore -k backup_file

= To restore an entire user from a backup file:

davadmin db restore -0 -e -W -k /export-filepath -i
"hosted.domain/mail:given.surname@hosted.domain/" -H mysglcalhost -A matching_
document_store_host:8007 > /log_output_file

s Torestore only the default 'addressbook:'

davadmin db restore -0 -e -W -k /export-filepath -i
"hosted.domain/mail:given.surname@hosted.domain/addressbook/" -H mysglcalhost
-A matching document_store_host:8007 > /log_output_file

= To restore only an addressbook named Soccer:

davadmin db restore -0 -e -W -k /export-filepath -i
"hosted.domain/mail:given.surname@hosted.domain/Soccer/" -H mysqglcalhost -A
matching document_store_host:8007 > /log_output_file

» Toback up using SSL and the trustStore file:

davadmin db backup -k /tmp/backup_file -O -A docstore_host.example.com:8008 -s
/my_home/my_truststore -u mysql

= To process a database schema preupgrade:

davadmin db schema_preupgrade -z preupgrade_function

This command processes one preupgrade function. A preupgrade function is an
upgrade change to the database, which can be run before the formal upgrade. This
command does not change the database schema version.

s To process all available preupgrade functions:

davadmin db schema_preupgrade -z all

Prior to running this command, ensure that all services are shut down.
s To process all preupgrade functions that cannot be run with services down:

davadmin db schema_preupgrade -z services-down

davadmin migration

Use this command to migrate a user's Personal Address Book (PAB) to Contacts
Server.

A-12 Contacts Server System Administrator's Guide

davadmin migration

Location

ContactsServer_homelsbin

Syntax

davadmin migration

migration Operation

[
[
[
(-
(-

migrate | status]

-u id] [-W] [-F clifile] [-H hostname]

-p port] [-s path] [-a account] [-X migrationadminuser]
-f file] [-L migrationserver] [-8]

-B ldapbaseuri] [-R ldapfilter] [-1 logpath] [-G] [-h]

Table A-12 describes the actions for the migration operation.

Table A-12 Actions for migration Operation

Action Description

migrate Migrates the address book from the Personal Address Book host
to the Contacts Server host.

status Provides a status on the migration.

Options for migrate Operation

Table A-13 describes the options for the migration operation.

Table A-13 Options for migration Operation

Short Option Long Option Description

-u --userid Specifies the application server administrator
user name.

-W --usepasswordfile Specifies the password file, if available.

-F --clifile Specifies the file containing bootstrap
information.

-H --hostname Specifies the server's host name. The default is
localhost.

p --port Specifies the server's administrative port
number.

-5 --secure Specifies the path and name of the trustStore
file for a secure connection (HTTPS).

-a --account Specifies the account.

-X --migrationadminuser Specifies the LDAP auth user for the Personal
Address Book Directory Server host.

-f --file Specifies a local input file with one line for each
user to be migrated, for batch operation.

-L --migrationserver Specifies the Personal Address Book Directory
server host's name and port number as
server:port.

-S --clientssl Specifies to use SSL when making client
connections.

-B --ldapbaseuri Specifies a base URI in LDAP.

Contacts Server Command-Line Utilities A-13

davadmin migration

Table A-13 (Cont.) Options for migration Operation

Short Option Long Option Description

-R --ldapbaseuri Specifies a user search filter in LDAP. Default is
(objectClass=nabuser).

-1 --logpath Specifies the path to use for the migration log
file.

-G --tag Specifies the tag to use to access the migration
status.

-h --help Displays help.

A-14 Contacts Server System Administrator's Guide

B

Contacts Server Configuration Parameters

This appendix provides information about the Oracle Communications Contacts
Server configuration parameters.

davserver.properties File

The ContactsServer_homelconfig/davserver.properties file contains the main
configuration settings. It consists of configuration parameters and their current values.

Caution: Do not edit this file by hand. Always use the davadmin
command to set configuration parameters.

The format of the davserver.properties file is:

parameter=value
parameter=value

Document Store Configuration Parameters

The ContactsServer_homel/config/ashttpd.properties file contains the document store
configuration parameters. Table B-1 describes the parameters in the
ashttpd.properties file.

Table B-1 ashttpd.properties File Parameters

Parameter Description Default Value
service.host Specifies the server host. *
service.port Specifies the server port 8008

number.
store.datadir Specifies the data directory. /var/opt/sun/comms/nabserver
store.lockdir Specifies the lock directory. /var/opt/sun/comms/nabserver/lock
store.loglevel Log level INFO
store.sslkeystorepa | Keystore for the server /var/opt/sun/comms/nabserver/config/d
th private key skeystore.jks
store.sslprotocols | SSL protocols TLSv1 TLSv1.1 TLSv1.2
store.usessl Use SSL to communicate with | false

document store client.

Contacts Server Configuration Parameters B-1

davadmin.properties File

The format of the ashttpd.properties file is the following:

key=value
key=value

Each line in the ashttpd.properties file stores a single property. Do not include a space
before and after key and value. When the host uses multiple network interfaces, and the
host should bind to only one, specify that interface with the service.host configuration
parameter.

davadmin.properties File

You can provide options to the davadmin command by including them in the
ContactsServer_homel/config/davadmin.properties file.

Table B-2 describes the parameters in the davadmin.properties file.

Table B-2 davadmin.properties File Parameters

Parameter Description

userid Specifies the application server Administrator user ID.

hostname Specifies the application server host name.

port Specifies the application server administration port (JMX connector
port).

secure Specifies the path to the truststore file used for a secure connection
(HTTPS) to the application server.

dbtype Specifies the type of database, either mysql or oracle.

dbhost Specifies the database host.

dbport Specifies the database port.

dbuserid Specifies the MySQL Server or Oracle Database user ID for database
commands.

sslprotocols Specifies the supported SSL protocols (TLSv1, TLSv1.1, and TLSv1.2)
for the JMX proxy to communicate with the management beans in the
server.

The format of the davadmin.properties file is:

parameter=value
parameter=value

corpdirnames-/ang.properties File

You can customize the corporate directory displayname extension by using the
ContactsServer_homel/config/corpdir/corpdirnames-lang.properties file. The
displayname extension enables you to provide a localized customized name for the
corporate directory.

To change the default value, edit the idtag in the corpdirnames-lang.properties file.
An idtag lookup is performed to a map of corporate directory names in various
languages.

B-2 Contacts Server System Administrator's Guide

Contacts Server Configuration Parameters

The following languages are supported:

= English
s French
= Spanish

s German

= Japanese

s Korean

= Simplified Chinese
» Traditional Chinese

For example, in the following URL, the directory name corresponding to the idtag
"id2" in the corpdirnames-lang.properties file is returned when querying a list of
public directories for the deployment in the given language:

ldap://virtuallistpool/o=HQ, 0=isp??sub? (objectclass=*)?displayname="id2"

If you do not set the displayname in the URL, the URL uses the default idtag of "id1,"
which has the value "Corporate Directory,” when performing the lookup in the English
language.

Contacts Server Configuration Parameters

Table B-3 lists the configuration parameters and descriptions for Contacts Server.

Table B-3 Contacts Server Configuration Parameters

Minimum | Maximum

Parameter Type Description Default value Value Value Version
base.ldapinfo.cachesize | integer Size of the LDAP 1000 1 1000000 8.0
authentication cache.
base.ldapinfo.cachettl integer Time to live (in seconds) of | 60 1 Maximum | 8.0
(seconds) | cached LDAP int value

authentication info.

base.ldapinfo.dcroot string Root of DC tree (Schema 1) | o=isp N/A N/A 8.0
or of the domain and users
tree (Schema 2) in
Directory Server.

base.ldapinfo.defaultdo | string Default domain. demo.example.com N/A N/A 8.0
main
base.ldapinfo.domainat | string Space separated list of nabStatus N/A N/A 8.0
trs LDAP attributes to use nabDomainNames
when retrieving domain nabDomainAcl
information. external AuthPreUrlT
emplate
external AuthPostUrl
Template
corpDirectoryUrl
base.ldapinfo.loginsepa | string Characters to be used as @ N/A N/A 8.0
rator login separator (between
user ID and domain).
base. ldapinfo.schemale | integer Schema level. 2 1 2 8.0
vel

Contacts Server Configuration Parameters B-3

Contacts Server Configuration Parameters

Table B-3 (Cont.) Contacts Server Configuration Parameters

Minimum | Maximum

Parameter Type Description Default value Value Value Version
base.ldapinfo.searchfilt | string Search filter to look up (uid=%U) N/A N/A 8.0
er users during

authentication when none

is specified in the

inetDomainSearchFilter

for the domain. The syntax

is the same as

inetDomainSearchFilter

(see Communications Suite

Schema Reference).
base.ldapinfo.servicead | string DN of single admin in N/A N/A N/A 8.0
mindn LDAP in absence of admin

group.
base.ldapinfo.servicead | string DN of service admins N/A N/A N/A 8.0
minsgroupdn group in LDAP.
base.ldapinfo.userattrs | string Space separated list of mail ismemberof N/A N/A 8.0

LDAP attributes to retrieve

from user entries during

the authentication phase.
base.ldapinfo.authldap. | string DN to use when N/A N/A N/A 8.0
binddn authenticating.
base. ldapinfo.authldap. | password | Password to use when N/A N/A N/A 8.0
bindpassword authenticating.
base.ldapinfo.authldap. | string Space-delimited list of host | localhost:389 N/A N/A 8.0
Idaphost names. Each host name

can include a trailing colon

and port number.
base.ldapinfo.authldap. | integer Length of elapsed time 1 1 60 8.0
Idappoolrefreshinterval | (minutes) | until the failover Directory

Server reverts back to the

primary Directory Server.

If set to -1, do not refresh.
base ldapinfo.authldap. | integer Maximum number of 10 1 100 8.0
ldappoolsize connections for this pool.
base ldapinfo.authldap. | integer Port number to which to 389 0 65535 8.0
ldapport connect. Ignored for any

host name that includes a

colon and port number.
base ldapinfo.authldap. | integer Timeout for all LDAP 60 1 3600 8.0
ldaptimeout (seconds) | operations.
base ldapinfo.authldap. | boolean Use SSL to connect to the | false N/A N/A 8.0
ldapusessl LDAP host.
baseldapinfo.authldap. | string Specifies a space-delimited | TLSv1 TLSv1.1 N/A N/A 8.0.0.1
sslprotocols list of the supported SSL TLSv1.2

protocols to communicate

with the back-end LDAP

service.
base.ldapinfo.ugldap.bi | string DN to use when N/A N/A N/A 8.0
nddn authenticating.
base.ldapinfo.ugldap.bi | password | Password to use when N/A N/A N/A 8.0
ndpassword authenticating.
base.ldapinfo.ugldap.ld | string Space-delimited list of host | localhost:389 N/A N/A 8.0
aphost names. Each host name

may include a trailing
colon and port number.

B-4 Contacts Server System Administrator's Guide

Contacts Server Configuration Parameters

Table B-3 (Cont.) Contacts Server Configuration Parameters

Minimum | Maximum

Parameter Type Description Default value Value Value Version
base.ldapinfo.ugldap.ld | integer Length of elapsed time 1 1 60 8.0
appoolrefreshinterval (minutes) | until the failover Directory

Server reverts back to the

primary Directory Server.

If set to -1, do not refresh.
base.ldapinfo.ugldap.ld | integer Maximum number of 10 1 100 8.0
appoolsize connections for this pool.
base.ldapinfo.ugldap.ld | integer Port number to which to 389 0 65535 8.0
apport connect. Ignored for any

host name that includes a

colon and port number.
base.ldapinfo.ugldap.ld | integer Timeout for all LDAP 60 1 3600 8.0
aptimeout (seconds) | operations.
base ldapinfo.ugldap.ld | boolean Use SSL to connect to the | false N/A N/A 8.0
apusessl LDAP host.
base.ldapinfo.ugldap.ss | string Specifies a space-delimited | TLSv1 TLSv1.1 N/A N/A 8.0.0.1
Iprotocols list of the supported SSL TLSv1.2

protocols to communicate

with the back-end LDAP

service.
base.ldappool.*binddn | string DN to use when N/A N/A N/A 8.0

authenticating.
base ldappool.*.bindpa | password | Password to use when N/A N/A N/A 8.0
ssword authenticating.
base.ldappool.*.ldapho | string Space-delimited list of host | localhost:389 N/A N/A 8.0
st names. Each host name

can include a trailing colon

and port number.
base.ldappool.*.ldappo | integer Length of elapsed time 1 1 60 8.0
olrefreshinterval (minutes) | until the failover Directory

Server reverts back to the

primary Directory Server.

If set to -1, do not refresh.
base.ldappool.* ldappo | integer Maximum number of 10 1 100 8.0
olsize connections for this pool.
base.ldappool.* Idappor | integer Port number to which to 389 0 65535 8.0
t connect. Ignored for any

host name that includes a

colon and port number.
base.ldappool.* ldaptim | integer Timeout for all LDAP 60 1 3600 8.0
eout (seconds) | operations.
base.ldappool.* ldapuse | boolean Use SSL to connect to the | false N/A N/A 8.0
ssl LDAP host.
base.ldappool.*.sslproto | string Specifies a space-delimited | TLSv1 TLSv1.1 N/A N/A 8.0.0.1
cols list of the supported SSL TLSv1.2

protocols for the LDAP

pool to communicate with

the back-end LDAP

service.
davcore.acl.aclcachesiz | integer Maximum number of ACL | 1000 0 Maximum | 8.0
e entries kept in cache. int value

Entries are removed from

the cache only when this

maximum is reached or

when ACL configuration

parameters are changed. If

set to 0, indicates no cache.

Contacts Server Configuration Parameters B-5

Contacts Server Configuration Parameters

Table B-3 (Cont.) Contacts Server Configuration Parameters

Parameter

Type

Description

Default value

Minimum
Value

Maximum
Value

Version

davcore.acl.aclcachettl

integer
(seconds)

Maximum amount of time
(in seconds) that an ACL
entry can be kept in cache.

60

1

Maximum
int value

8.0

davcore.attachment.ena
ble

boolean

Enable or disable
attachments.

true

N/A

N/A

8.0

davcore.auth.cert.enabl
e

boolean

Enable certificate-based
client authentication.

false

N/A

N/A

8.0

davcore.auth.cert.fallba
ck

boolean

Fallback to user name and
password authentication

true

N/A

N/A

8.0

davcore.autocreate.disp
laynameattr

string

LDAP attribute, whose
value is used to set display
name, during autocreation.
Default setting used on
autocreation.

cn

N/A

N/A

8.0

davcore.autocreate.ema
ilnotificationaddressattr

string

LDAP attribute, whose
value is used to set email
notification address,
during autocreation.
Default setting used on
autocreation.

mail

N/A

N/A

8.0

davcore.autocreate.ena
bleautocreate

boolean

Enable autocreate
operation. Default setting
used on autocreation.

true

N/A

N/A

8.0

davcore.autocreate.ena
bleemailnotification

boolean

Enable email notification.
Default setting used on
autocreation.

true

N/A

N/A

8.0

davcore.homeuri.* back
endid

string

When it is determined that
a URI matches the pattern,
this backendid template is
used to identify the back
end hosting this resource.
The template can reference
the variables $1, $2, and so
on, saved during the
pattern matching. The
template can also reference
LDAP attributes of the
subject matching the
subjectfilter attribute
using the $ {attrname}
syntax or the
${attrname,defaultvalue
} syntax. If this parameter
is not set, the
uriinfo.backendidtemplat
e parameter is used.

N/A

N/A

N/A

8.0

davcore.homeuri.*.rank

integer

When multiple URL
patterns are configured,
this value determines the
order in which to evaluate
those URI patterns. A
lower number indicates
that this pattern should be
evaluated first.

Maximum
int value

8.0

B-6 Contacts Server System Administrator's Guide

Contacts Server Configuration Parameters

Table B-3 (Cont.) Contacts Server Configuration Parameters

Parameter

Type

Description

Default value

Minimum
Value

Maximum
Value

Version

davcore.homeuri.*.subj
ectdomain

string

When it is determined that
a URI matches the pattern,
this domain template is
used to identify the subject
owning this resource. The
template can reference the
variables $1, $2, and so on,
saved during the pattern
matching. For example, if
subjectdomain is set to $2,
and using the URI in the
uripattern example, the
domain of the subject is
example.com. If empty,
indicates the default
domain.

$2

N/A

N/A

8.0

davcore.homeuri.*.subj
ectfilter

string

When it is determined that
a URI matches the pattern,
this LDAP filter template
is used to identify the
subject owning this
resource. The template can
reference the variables $1,
$2, and so on, saved
during the pattern
matching. For example, if
subjectfilter is set to
(mail=$1@$2), and using
the URI in the uripattern
example, the LDAP filter
becomes
(mail=john@example.com
). If empty, indicates that
this namespace is not
associated with a
particular subject.

(mail=$1@$2)

N/A

N/A

8.0

davcore.homeuri.*.urip
attern

string

Regex pattern to be
matched by the URI. This
pattern can contain regex
groups (identified by ()
parenthesis) that are saved
into $1, $2, and so on. The
last regex group identifies
the local path if there is
any. For example, if the
pattern is
home/([]+)@(["1+)(/\
z1/.%), the URI
/home/john@example.com
/addressbook/ matches
that pattern. $1 is set to the
value john, $2 is set to the
value example.com, and
the local path is
/addressbook.

Afhome/([M]+H)@([M]+
IAVAVAS)

N/A

N/A

8.0

davcore.ldapattr.comm
onname

string

Common name attribute.

cn

N/A

N/A

8.0

davcore.ldapattr.corpdi
rectoryurl

string

LDAP attribute to locate a
custom external corporate
directory for this domain.

corpDirectoryUrl

N/A

N/A

8.0

davcore.ldapattr.davsto
re

string

Logical back-end id
attribute.

nabStore

N/A

N/A

8.0

davcore.ldapattr.dngro
upmember

string

Attributes for members in
an LDAP group.

uniquemember

N/A

N/A

8.0

Contacts Server Configuration Parameters B-7

Contacts Server Configuration Parameters

Table B-3 (Cont.) Contacts Server Configuration Parameters

Minimum | Maximum

Parameter Type Description Default value Value Value Version
davcore.ldapattr.extern | string LDAP attribute that externalAuthPostUrl | N/A N/A 8.0
alauthposturltemplate determines whether Template

external authentication

should do a post auth

lookup against this

domain.
davcore.ldapattr.extern | string LDAP attribute that external AuthPreUrlT | N/A N/A 8.0
alauthpreurltemplate determines whether emplate

external authentication

should be used against this

domain.
davcore.ldapattr.group | string Space separated list of groupofuniquenames | N/A N/A 8.0
object object class values groupofurls

indicating an LDAP group. | inetmailgroup
davcore.ldapattr.inetres | string LDAP attribute for global | inetresourcestatus N/A N/A 8.0
ourcestatus status of resources.
davcore.ldapattr.inetus | string LDAP attribute for status inetuserstatus N/A N/A 8.0
erstatus of user's account with

regards to global service

access.
davcore.ldapattr.mail string Mail attribute. mail N/A N/A 8.0
davcore.ldapattr.mailalt | string Space separated list of mailAlternateAddres | N/A N/A 8.0
ernateaddress alternate mail attributes. s
davcore.ldapattr.mailgr | string Attributes for members in | mgrprfc822mailmem | N/A N/A 8.0
oupmember an LDAP group. ber
davcore.ldapattrmemb | string LDAP attribute listing the | ismemberof N/A N/A 8.0
erattr groups of which the entry

is a member.
davcore.ldapattrnabsta | string Contacts Server status nabstatus N/A N/A 8.0
tus attribute.
davcore.ldapattr.preferr | string Language attribute. preferredLanguage N/A N/A 8.0
edlang
davcore.ldapattr.resour | string LDAP attribute to use to kind N/A N/A 8.0
cetype determine the CUTYPE

(ROOM versus

RESOURCE) of a resource.

The CUTYPE of users and

groups is not based on this

attribute. The attribute

value can take the

following values: *

location and room are

mapped to a CUTYPE of

ROOM. * thing and

resource are mapped to a

CUTYPE of RESOURCE. *

other values are mapped

to RESOURCE.
davcore.ldapattr.uid string User ID attribute. uid N/A N/A 8.0
davcore.ldapattr.urlgro | string Attributes for members in | memberurl N/A N/A 8.0

upmember

an LDAP group.

B-8 Contacts Server System Administrator's Guide

Contacts Server Configuration Parameters

Table B-3 (Cont.) Contacts Server Configuration Parameters

Minimum | Maximum

Parameter Type Description Default value Value Value Version
davcore.otheruri.*.back | string When it is determined that | N/A N/A N/A 8.0
endid a URI matches the pattern,

this backendid template is
used to identify the back
end hosting this resource.
The template can reference
the variables $1, $2, and so
on, saved during the
pattern matching. The
template also references
LDAP attributes of the
subject matching the
subjectfilter, using the
${attrname} syntax or the
${attrname,defaultvalue
} syntax. If this parameter
is not set, the
uriinfo.backendidtemplat
e parameter is used.

davcore.otheruri.*.rank | integer When multiple URIL 1 0 Maximum | 8.0
patterns are configured, int value
this value determines the
evaluation order. A lower
number indicates that this
pattern should be
evaluated first.

davcore.otheruri.*.subje | string When it is determined that | $2 N/A N/A 8.0
ctdomain a URI matches the pattern,
this domain template is
used to identify the subject
owning this resource. The
template can reference the
variables $1, $2, and so on,
saved during the pattern
matching. For example, if
the subjectdomain is set to
$2, and using the URI in
the uripattern example, the
domain of the subject is
example.com. If empty,
indicates the default

domain.
davcore.otheruri.*.subje | string When it is determined that | (mail=$1@$2) N/A N/A 8.0
ctfilter a URI matches the pattern,

this LDAP filter template
is used to identify the
subject owning with this
resource. The template can
reference the variables $1,
$2, and so on, saved
during the pattern
matching. For example, if
the subjectfilter is set to
(mail=$1@$2), and using
the URI in the uripattern
example, the LDAP filter
becomes
(mail=john@example.com
). Can be empty, indicating
that this namespace is not
associated with a
particular subject.

Contacts Server Configuration Parameters B-9

Contacts Server Configuration Parameters

Table B-3 (Cont.) Contacts Server Configuration Parameters

Parameter

Type

Description

Default value

Minimum
Value

Maximum
Value

Version

davcore.otheruri.*.urip
attern

string

Regex pattern to be
matched by the uri. This
pattern can contain regex
groups (identified by ()
parenthesis) which is
saved into $1, $2, and so
on. The last regex group
identifies the local path if
there is any. For example,
if the pattern is
Afhome/([M1+H)@([N]+) U\ z
[/.*), the URI
/home/john@example.com
/addressbook/ matchws
that pattern. $1 is set to the
value john, $2 is set to the
value example.com, and
the local path is
/addressbook.

Afhome/([M]+)@([M]+
Y/\z1/.%)

N/A

N/A

8.0

davcore.principalsuri.*.

backendid

string

When it is determined that
a URI matches the pattern,
this backendid template is
used to identify the back
end hosting this resource.
The template can reference
the variables $1, $2, and so
on, saved during the
pattern matching. The
template can also reference
LDAP attributes of the
subject matching the
subjectfilter, using the
${attrname} syntax or the
${attrname,defaultvalue}
syntax. If this parameter is
not set, the
uriinfo.backendidtemplat
e parameter is used.

N/A

N/A

N/A

8.0

davcore.principalsuri.*.

rank

integer

When multiple URL
patterns are configured,
this value determines the
evaluation order. A lower
number indicates that this
pattern should be
evaluated first.

Maximum
int value

8.0

davcore.principalsuri.*.

subjectdomain

string

When it is determined that
a URI matches the pattern,
this domain template is
used to identify the subject
owning with this resource.
The template can reference
the variables $1, $2, and so
on, saved during the
pattern matching. For
example, if the
subjectdomain is set to $2,
and using the URI in the
uripattern example, the
domain of the subject is
example.com. Can be
empty to indicate the
default domain.

$2

N/A

N/A

8.0

B-10 Contacts Server System Administrator's Guide

Contacts Server Configuration Parameters

Table B-3 (Cont.) Contacts Server Configuration Parameters

Minimum | Maximum

Parameter Type Description Default value Value Value Version
davcore.principalsuri.*. | string When it is determined that | (mail=$1@$2) N/A N/A 8.0
subjectfilter a URI matches the pattern,

this LDAP filter template
is used to identify the
subject owning with this
resource. The template can
reference the variables $1,
$2, and so on, saved
during the pattern
matching. For example, if
the subjectfilter is set to
(mail=$1@$2), and using
the URI in the uripattern
example, the LDAP filter
becomes
(mail=john@example.com
). Can be empty, to indicate
that this namespace is not
associated with a
particular subject.

davcore.principalsuri.*. | string Regex pattern to be AThome/([NMI+)@([M]+ | N/A N/A 8.0
uripattern matched by the URL This |)(/\zI/.*)
pattern can contain regex
groups (identified by ()
parenthesis) which are
saved into $1, $2, and so
on. The last regex group
identifies the local path if
there is any. For example,
if the pattern is
Afhome/([M1+)@([M]+)(\z
[/1.*), the URI
/home/john@example.com
/addressbook/ matches
that pattern. $1 is set to the
value john, $2 is set to the
value example.com, and

the local path is

/addressbook.
davcore.reverseuri.*.ba | string Back-end id on which to N/A N/A N/A 8.0
ckendid apply this reverse

mapping. There should be
only one mapping per

back end.
davcore.reverseuri.*.uri | string Canonical form of the URI | N/A N/A N/A 8.0
template prefix for this back end.

This template should have
a corresponding
uripattern. It should not
end with a slash. The
template can reference
LDAP attributes of the
subject, using the
${attrname} syntax or the
${attrname,defaultvalue}
syntax. The ${domain}
syntax can be used to
reference the domain of
the subject. If no template
is defined for a given back
end, the
uriinfo.defaulthomeurite
mplate parameter is used.

davcore.serverdefaults. | filepath Directory path for export | config/export N/A N/A 8.0
exportconfigdir XSL transformation files.

Contacts Server Configuration Parameters B-11

Contacts Server Configuration Parameters

Table B-3 (Cont.) Contacts Server Configuration Parameters

Minimum | Maximum

Parameter Type Description Default value Value Value Version
davcore.serverdefaults.i | filepath Directory path for import | config/import N/A N/A 8.0
mportconfigdir properties and translation

files.
davcore.serverdefaultsj | string Default prefix to append to | {}&& N/A N/A 8.0
sonprefix all JSON output.
davcore.serverdefaults. | string Specifies a space-delimited | TLSv1 TLSv1.1 N/A N/A 8.0.0.1
sslprotocols list of the supported SSL TLSv1.2

protocols as the default for

the various back-end

services' sslprotocols

configuration. That is, if

the specific sslprotocols

parameter is not set, it is

set to the value of

davcore.serverdefaults.ssl

protocols.
davcore.serverlimits.htt | integer HTTP connection timeout | 5000 500 100000 8.0
pconnecttimeout value (in milliseconds),

when connecting to

another server.
davcore.serverlimits.htt | integer HTTP Socket timeout 5000 500 100000 8.0
psockettimeout value (in milliseconds),

when connecting to

another server, and

waiting for data.
davcore.serverlimits.m | long Maximum size of a 10000000 0 Maximum | 8.0
axaddressbookcontentl | (bytes) contacts resource. long value
ength
davcore.serverlimits.m | long Maximum size of a 10000000 0 Maximum | 8.0
axcontentlength (bytes) resource. Might be long value

overwritten for certain

types of content (for

example text/vcard).
davcore.serverlimits.m | integer Maximum nested level of |3 0 -1 8.0
axgroupexpansion group expansion.
davcore.serverlimits.m | integer Maximum number of 3 0 10 8.0
axhttpredirects HTTP redirects to follow,

when connecting to

another server.
davcore.serverlimits.m | integer Maximum number of 2 1 20 8.0
axmigrationthreads threads to create when

running migration.
davcore.serverlimits.m | long Maximum number of 10000 -1 Maximum | 8.0
axnumberofresourcesin | (bytes) resources allowed in a long value
collection collection. A value of -1

means no limit.
davcore.serverlimits.m | integer Maximum number of 10000 0 Maximum | 8.0
axresults resources returned by a int value

single fetch operation. A

value of 0 means no limit.

Administrator users are

not affected by this limit.
davcore.serverlimits.m | long Maximum bounded search | 3660 0 366000 8.0
axsearchtimerange (days) range in days.

B-12 Contacts Server System Administrator's Guide

Contacts Server Configuration Parameters

Table B-3 (Cont.) Contacts Server Configuration Parameters

Minimum | Maximum

Parameter Type Description Default value Value Value Version
davcore.serverlimits.m | long Maximum size when 20000000 0 Maximum | 8.0
axuploadcontentlength | (bytes) uploading data. This long value

affects operations that let
you create multiple
resources in one request
(for example import). It
does not affect regular

PUT.
davcore.serverlimits.mi | integer Maximum number of 8 1 100 8.0
grationtimeout hours to wait before

terminating a migration.
davcore.serverlimits.mi | integer Minimum number of 3 0 256 8.0
nsearchcharacters characters allowed in a

text filter search.

davcore.serverlimits.te | integer Maximum number of 20 1 Maximum | 8.0
mplockretry attempts to acquire a int value
temporary lock when

doing write operations.

davcore.serverlimits.te | integer Maximum amount of time | 60 1 Maximum | 8.0
mplocktimeout (seconds) | to wait for a temporary int value

lock when doing write

operations.
davcore.serverlimits.te | boolean If true, temporary locks are | false N/A N/A 8.0
mplockusebackend ensured at the back-end

level instead of staying
local to a server instance.

davcore.uriinfo.backen | string The backendid template is | ${nabStore,defaultba | N/A N/A 8.0
didtemplate used to identify the back ckend}
end hosting the home of a
given subject. The
template can reference
LDAP attributes of the
subject, using the
${attrname} syntax or the
${attrname,defaultvalue}

syntax.
davcore.uriinfo.default | string Canonical form of DAV /dav N/A N/A 8.0
davuriprefix URI prefix for WebDAV

based protocols. This
prefix corresponds to one
of the DavServlet specific
path (for example /dav) as
defined in theweb.xml file.

It should not end with a

slash.
davcore.uriinfo.default | string Canonical form of a /home/${mail} N/A N/A 8.0
homeuritemplate subject home URI prefix.

This template should have
a corresponding
uripattern. It should not
end with a slash The
template can reference
LDAP attributes of the
subject, using the
${attrname} syntax or the
${attrname,defaultvalue}
syntax. The ${domain}
syntax can be used to
reference the domain of
the subject.

Contacts Server Configuration Parameters B-13

Contacts Server Configuration Parameters

Table B-3 (Cont.) Contacts Server Configuration Parameters

Parameter

Type

Description

Default value

Minimum
Value

Maximum
Value

Version

davcore.uriinfo.default
principaluritemplate

string

Canonical form of a
subject principal URI
prefix. This template
should have a
corresponding uripattern.
It should not end with a
slash. The template can
reference LDAP attributes
of the subject, using the
${attrname} syntax or the
${attrname,defaultvalue}
syntax. The ${domain}
syntax can be used to
reference the domain of
the subject.

Iprincipals/${mail}

N/A

N/A

8.0

davcore.uriinfo.defaultr
esturiprefix

string

Canonical form of REST
URI prefix for WebDAV
based protocols. This
prefix corresponds to one
of the RESTfulServlet
specific path as defined in
the web.xml file. It should
not end with a slash.

[rest

N/A

N/A

8.0

davcore.uriinfo.director
yrootcollection

string

Defines the root collection
of all directory collections
(without any prefix).

/directory/

N/A

N/A

8.0

davcore.uriinfo.emailse
archfiltertemplate

string

LDAP Filter used when
searching a subject by
email address. The %s
token is replaced by the
email value to search.

| (mail=%s)(mailalter
nateaddress=%s)

N/A

N/A

8.0

davcore.uriinfo.fullurip
refix

string

Full URL prefix to use
wherever a full URL is
required. It should not end
with a slash. This prefix is
used to construct
attachment URLs
embedded in resources.
Modifying this parameter
does not change full URLs
in already existing
resources. If SSL is used,
the host name part of this
prefix should match the
host name associated with
the certificate.

http://localhost

N/A

N/A

8.0

davcore.uriinfo.ldapcac
hesize

integer

Maximum number of
subjects (LDAP users,
resources, and groups)
kept in cache when
mapping URIs and
subjects. Entries are
removed from the cache
only when this maximum
is reached or when any of
the uriinfo configuration
parameter is changed. Can
be set to 0, indicating no
cache.

1000

Maximum
int value

8.0

davcore.uriinfo.ldapcac
hettl

integer
(seconds)

Maximum time (in
seconds) that subjects
(LDAP users, resources,
and groups) are kept in
cache when mapping URIs
and subjects.

60

Maximum
int value

8.0

B-14 Contacts Server System Administrator's Guide

Contacts Server Configuration Parameters

Table B-3 (Cont.) Contacts Server Configuration Parameters

Minimum | Maximum

Parameter Type Description Default value Value Value Version
davcore.uriinfo.perman | string Name of an LDAP davuniqueid N/A N/A 8.0
entuniqueid attribute present in the

LDAP entry of all subjects
(users, groups, resources,
and so on) and defining a
permanent and unique
identifier for each subject.
The attribute value is used
internally to do the
mapping between the
subject LDAP entry and its
repository. As such, it
should remain constant for
the lifetime of the subject
LDAP entry and it should
be unique (at least within
the subject domain).
Changing this
configuration parameter
results in data loss when
the user repositories have
been created.

davcore.uriinfo.princip | string Defines the root collection | /principals/ N/A N/A 8.0
alsrootcollection of all principals in their
canonical form. (without
any prefix). This parameter
is used to return the

WebDAV
DAV:principal-collection-s
et property.
davcore.uriinfo.subjecta | string Space separated list of cn nabstore nabstatus | N/A N/A 8.0
ttributes LDAP attribute names to mail
retrieve when doing a mailalternateaddress
search for users, groups, or | davuniqueid owner
resources. preferredlanguage
uid objectclass
ismemberof
uniquemember
memberurl
mgrprfc822mailmem
ber kind
davcore.uriinfo.subjects | string LDAP Filter used whena | (I (uid=%s*)(cn=*%s* | N/A N/A 8.0
earchfilter user is searching for other |)(mail=*%s*))
users. The %s token is
replaced by the search
string.
davcore.uriinfo.subjects | integer The minimum number of | 3 -21474836 | Maximum | 8.0
earchfilterminimum characters allowed for the 48 int value
search string.
davcore.uriinfo.uricach | integer Maximum number of 10000 0 Maximum | 8.0
esize resolved URIs kept in int value
cache. Entries are removed
from the cache only when
this maximum is reached
or when any of the uriinfo
configuration parameter is
changed. Can be set to 0,
indicating no cache.
davcore.uriinfo.uricach | integer Maximum time (in 60 1 Maximum | 8.0
ettl (seconds) | seconds) that resolved int value

URIs are kept in cache.

Contacts Server Configuration Parameters B-15

Contacts Server Configuration Parameters

Table B-3 (Cont.) Contacts Server Configuration Parameters

Parameter

Type

Description

Default value

Minimum
Value

Maximum
Value

Version

davcore.uriinfo.useldap
proxyauth

boolean

If true, use proxy
authorization for any
LDAP search on behalf of
a user. If false, use
administrator credentials
for all LDAP searches.

true

N/A

N/A

8.0

davcore.virusscan.auth

boolean

Determines if the virus
scan connection should
use user and password
authorization.

false

N/A

N/A

8.0

davcore.virusscan.clivir
usaction

string

Action to be performed
when a virus is detected
during command-line
operation. Value is empty
or delete.

N/A

N/A

N/A

8.0

davcore.virusscan.debu

g

boolean

Determines if the virus
scan SMTP connection
should use debug.

false

N/A

N/A

8.0

davcore.virusscan.emai
laddress

string

Sets the email recipient
address that the MTA uses
to trigger a custom virus
scan. (Requires MTA
configuration).

N/A

N/A

N/A

8.0

davcore.virusscan.host

string

Host of the MTA
configured to accept virus
scans.

N/A

N/A

N/A

8.0

davcore.virusscan.onlin
eenable

boolean

Enable and disable online
virus scan.

false

N/A

N/A

8.0

davcore.virusscan.onlin
efailureaction

string

Action to be performed
when virus service fails
during an online
submission. Value is
empty or reject.

N/A

N/A

N/A

8.0

davcore.virusscan.onlin
evirusaction

string

Action to be performed
when a virus is detected
during an online
submission. Value is
empty or reject.

N/A

N/A

N/A

8.0

davcore.virusscan.pass

password

The SMTP authorization
password for the SMTP
virus scan connection.

N/A

N/A

N/A

8.0

davcore.virusscan.port

string

Port of the MTA host that
is configured to accept
virus scans.

25

N/A

N/A

8.0

davcore.virusscan.startt
Is

boolean

Determines if the virus
scan connection should
use starttls.

false

N/A

N/A

8.0

davcore.virusscan.time
out

string

Timeout value (in
milliseconds) for the
connection to the MTA
host during a virus scan
operation.

10000

N/A

N/A

8.0

davcore.virusscan.user

string

The SMTP authorization
user for the SMTP virus
scan connection.

N/A

N/A

N/A

8.0

davcore.virusscan.usess
1

boolean

Determines if the virus
scan connection should
use SSL.

false

N/A

N/A

8.0

B-16 Contacts Server System Administrator's Guide

Contacts Server Configuration Parameters

Table B-3 (Cont.) Contacts Server Configuration Parameters

Minimum | Maximum

Parameter Type Description Default value Value Value Version
log.dav.commands.logd | logdatefor | Specifies the date format yyyy-MM-dd'T'HH: | N/A N/A 8.0
ateformat mat pattern for the log. mm:ss.SSSZ
log.dav.commands.logd | filepath Directory path for log files. | logs N/A N/A 8.0
ir
log.dav.commands.logl | loglevel Specifies the log level. INFO N/A N/A 8.0
evel Valid levels are OFF (no

information is logged),

SEVERE, WARNING,

INFO, CONFIG, FINE,

FINER, FINEST, and ALL

(all information is logged).

The FINEST and ALL

levels produce a large

amount of data.
log.dav.commands.logt | boolean Flag to enable logging to false N/A N/A 8.0
oparent the application server

log file, in addition to the

Contacts Server logs.
log.dav.commands.max | integer Maximum number of log | 10 1 100 8.0
logfiles files.
log.dav.commands.max | integer Maximum size of each log | 2097152 2097152 Maximum | 8.0
logfilesize (bytes) file. int value
log.dav.errors.logdatefo | logdatefor | Specifies the date format yyyy-MM-dd'T'HH: | N/A N/A 8.0
rmat mat pattern for the log. mm:ss.SSSZ
log.dav.errors.logdir filepath Directory path for log files. | logs N/A N/A 8.0
log.dav.errors.loglevel | loglevel Specify the log level. Valid | INFO N/A N/A 8.0

levels are OFF (no

information is logged),

SEVERE, WARNING,

INFO, CONFIG, FINE,

FINER, FINEST, and ALL

(all information is logged).

The FINEST and ALL

levels produce a large

amount of data.
log.dav.errors.logtopare | boolean Flag to enable logging to false N/A N/A 8.0
nt the application server

log file, in addition to the

Contacts Server logs.
log.dav.errors.maxlogfil | integer Maximum number of log | 10 1 100 8.0
es files.
log.dav.errors.maxlogfil | integer Maximum size of each log | 2097152 2097152 Maximum | 8.0
esize (bytes) file. int value
log.dav.scan.logdatefor | logdatefor | Specifies the date format yyyy-MM-dd'T'"HH: | N/A N/A 8.0
mat mat pattern for the log. mm:ss.SSSZ
log.dav.scan.logdir filepath Directory path for log files. | logs N/A N/A 8.0
log.dav.scan.loglevel loglevel Specifies the log level. INFO N/A N/A 8.0

Valid levels are OFF (no

information is logged),
SEVERE, WARNING,
INFO, CONFIG, FINE,
FINER, FINEST, and ALL
(all information is logged).
The FINEST and ALL
levels produce a large
amount of data.

Contacts Server Configuration Parameters B-17

Contacts Server Configuration Parameters

Table B-3 (Cont.) Contacts Server Configuration Parameters

Minimum | Maximum

Parameter Type Description Default value Value Value Version
log.dav.scan.logtoparen | boolean Flag to enable logging to false N/A N/A 8.0
t the application server

log file, in addition to the

Contacts Server logs.
log.dav.scan.maxlogfile | integer Maximum number of log | 10 1 100 8.0
s files
log.dav.scan.maxlogfile | integer Maximum size of each log | 2097152 2097152 Maximum | 8.0
size (bytes) file int value
log.dav.telemetrylogda | logdatefor | Specifies the date format yyyy-MM-dd'T'HH: | N/A N/A 8.0
teformat mat pattern for the log. mm:ss.SSSZ
log.dav.telemetrylogdir | filepath Directory path for log files. | logs N/A N/A 8.0
log.dav.telemetry.loglev | loglevel Specifies the log level. INFO N/A N/A 8.0
el Valid levels are OFF (no

information is logged),

SEVERE, WARNING,

INFO, CONFIG, FINE,

FINER, FINEST, and ALL

(all information is logged).

The FINEST and ALL

levels produce a large

amount of data.
log.dav.telemetry.logto | boolean Flag to enable logging to false N/A N/A 8.0
parent the application server

log file, in addition to the

Contacts Server logs.
log.dav.telemetry.maxlo | integer Maximum number of log | 10 1 100 8.0
gfiles files.
log.dav.telemetry.maxlo | integer Maximum size of each log | 2097152 2097152 Maximum | 8.0
gfilesize (bytes) file. int value
notification.dav.configd | filepath Directory path for config/templates N/A N/A 8.0
ir notification configuration

files or format files
notification.dav.datefor | dateformat | Specifies the date format EEE MMMMM dd, N/A N/A 8.0
mat pattern for notification. yYYyy

For example, EEE

MMMMM dd, yyyy.
notification.dav.enablee | boolean Enables server-wide email | true N/A N/A 8.0
mailnotif notification
notification.dav.enablej | boolean Enables server-wide JMS true N/A N/A 8.0
msnotif notification
notification.dav.maxpa | integer Maximum payload size in | 10000000 -21474836 | Maximum | 8.0
yload bytes. 48 int value
notification.dav.smtpau | string SMTP-AUTH access false N/A N/A 8.0
th control mechanism flag.
notification.dav.smtpde | string Specifies SMTP debug flag. | false N/A N/A 8.0
bug
notification.dav.smtpho | string Specifies SMTP host. N/A N/A N/A 8.0
st
notification.dav.smtppa | password | Specifies SMTP password. | N/A N/A N/A 8.0
ssword
notification.dav.smtppo | string Specifies SMTP port. 25 N/A N/A 8.0
rt
notification.dav.smtpsta | string Use SMTP starttls flag. true N/A N/A 8.0

rttls

B-18 Contacts Server System Administrator's Guide

Contacts Server Configuration Parameters

Table B-3 (Cont.) Contacts Server Configuration Parameters

Minimum | Maximum

Parameter Type Description Default value Value Value Version
notification.dav.smtpus | string Specifies SMTP user. user N/A N/A 8.0

er

notification.dav.smtpus | string Specifies SMTP to use SSL | false N/A N/A 8.0

essl flag.

notification.dav.timefor | timeforma | Specifies the time format hh:mm:ss aaa N/A N/A 8.0

mat t pattern for notification.

Use 'a' for AM/PM
marker. For example,
hh:mm:ss aaa.

notification.dav.timezo | timezonef | Specifies the time zone z N/A N/A 8.0
neformat ormat format pattern for
notification. Use 'z’ for
general time zone, or 'Z'
for RFC822 time zone.

service.dav.blacklist string List of clients to be denied | N/A N/A N/A 8.0
of service, expressed as a
space separated list of
regular expressions. Any
client whose User-Agent
HTTP header contains any
of the regex is denied

access.
service.dav.propfindda | string Value of the HTTP Dav 1, 3, access-control, N/A N/A 8.0
vheadervalue header value to return in addressbook

all PROPFIND responses.
service.dav.telemetry.fil | string Space separated list of N/A N/A N/A 8.0
ter request URIs that a

particular request should
match (start with) to be
logged by telemetry. For
example:
/dav/home/jsmith/address
book/
/dav/home/jdoe/addressb
ook/

service.dav.telemetry.fo | boolean Force telemetry for all false N/A N/A 8.0
rcetelemetry users. Use with caution, as
it causes lots of data to be
generated.

store.corpdir.defaultcor | string Default corporate 1dap:/fugldap/??sub?(| N/A N/A 8.0
pdirectoryurl directory information to objectclass=inetorgpe
use when performing rson)

searches. Can be
overwritten by domain
specific information
(corpDirectoryUrl LDAP
attribute in the domain
entry). If no baseDN is
provided, the user's
domain baseDN for users
and group is used. The list
of attributes to retrieve is

ignored.
store.corpdir.enablecor | boolean Enable or disable true N/A N/A 8.0
pdir corporate directory

lookups.

Contacts Server Configuration Parameters B-19

Contacts Server Configuration Parameters

Table B-3 (Cont.) Contacts Server Configuration Parameters

Parameter

Type

Description

Default value

Minimum
Value

Maximum
Value

Version

store.corpdir.useldappr
oxyauth

boolean

If true, uses LDAP proxy
authorization to issue
LDAP searches on behalf
of the logged-in user. If
false, uses the LDAP Pool
credentials for all LDAP
searches. This parameter
applies only to the default
corporate directory
configuration.

true

N/A

N/A

8.0

store.dav.*.attachstoreh
ost

string

Specifies document store
host.

N/A

N/A

N/A

8.0

store.dav.*.attachstorep
ort

integer

Specifies document store
port.

8008

-21474836
48

Maximum
int value

8.0

store.dav.*.backendid

string

Specifies back-end
identifier.

N/A

N/A

8.0

store.dav.*.dbdir

filepath

Specifies directory path for
nabstore.

data/db

N/A

N/A

8.0

store.dav.*.jndiname

string

JNDI name pointing to this
back end's JDBC
DataSource, as defined in
the J2EE container (for
example,
jdbc/defaultbackend).

N/A

N/A

N/A

8.0

store.dav.*.purgedelay

long
(seconds)

Sets the delay between
deletion of a resource and
its actual removal (purge)
from the back end. Setting
this value too low might
cause synchronization
clients to perform a full
resynchronization too
often.

2592000

Maximum
long value

8.0

store.document.passwo
rd

password

Password to use when
authenticating to a remote
document store.

N/A

N/A

N/A

8.0

store.document.timeout

integer

The HTTP(S) connection
and read timeout value.

10000

-21474836
48

Maximum
int value

8.0

store.document.usessl

boolean

Use SSL for
communications with
remote document store.

false

N/A

N/A

8.0

B-20 Contacts Server System Administrator's Guide

	Contents
	Preface
	Audience
	Related Documents
	Nomenclature
	Documentation Accessibility

	1 Contacts Server System Administration Overview
	About Contacts Server
	Managing Address Books
	Managing Contacts
	Contacts Server Support for Corporate Directory
	Contacts Server Support for Industry Standards

	Overview of Contacts Server Administration Tasks
	About Contacts Server Administration Tools
	Directory Placeholders Used in This Guide

	2 Stopping and Starting Contacts Server
	Overview of Stopping and Starting Contacts Server
	Stopping and Starting Contacts Server
	Stopping and Starting the Remote Document Store Server

	3 Managing Users, Accounts, Address Books, and Contacts
	Provisioning Contacts Server Users
	Provisioning Contacts Server Overview
	Denying Users Access to Services
	About Migrating Users

	Provisioning Contacts Server Users by Using Delegated Administrator

	About Controlling Access to Address Books
	Managing Accounts
	Enabling and Disabling Automatic Account Creation
	To Enable Automatic Account Creation
	To Disable Automatic Account Creation

	Creating Accounts with Default Properties Automatically Upon Login
	Manually Creating Accounts
	Listing Accounts
	To List All Accounts
	To List Properties of an Account

	Managing Email Notifications
	To Enable Email Notification
	To Disable Email Notification
	To Add or Remove Email Notification Recipients

	Deleting Accounts
	Subscribing to and Unsubscribing from Address Books
	To Subscribe to an Address Book
	To Unsubscribe From an Address Book

	Managing Address Books
	Creating Address Books
	Removing Address Books
	Modifying Address Books
	To Modify an Address Book
	To Set an Address Book ACE
	To Remove an Address Book ACE

	Listing Address Books
	To List an Account's Address Books
	To List an Address Book's Properties

	Managing Contacts
	Listing Contact Properties
	Deleting Contacts

	Managing Contact Groups
	Creating Contact Groups
	Listing Contact Groups
	Deleting Contact Groups
	Modifying Contact Groups
	Importing Contact Groups
	Exporting Contact Groups

	4 Managing Contacts Server
	Supported Application Server
	Monitoring Contacts Server by Using Application Server
	Monitoring Application Server JDBC Connection Pools
	Monitoring GlassFish Server JDBC Connection Pools
	Monitoring WebLogic Server JDBC Connection Pools

	Checking Contacts Server Status
	Checking Contacts Server Status with the Administration Console for GlassFish Server
	Checking Contacts Server Status with the asadmin Command for GlassFish Server
	Checking Contacts Server Status with the Administration Console for WebLogic Server

	Managing Logging
	Logging Overview
	Logging Contacts Server Information to the Application Server Log File
	Configuring Logging
	Viewing Document Store Log Files

	Modifying the Contacts Server Configuration
	Viewing the Contacts Server Configurations
	Managing Contacts Server Back-End Databases
	Adding an Additional Contacts Server Back-End Database
	Renaming the Default Contacts Server Back End Database
	Listing the Back-End Databases for a Contacts Server Deployment
	Purging a Contacts Server Back-End Database
	Clearing the Contacts Server Cache

	Managing Contacts Server LDAP Pools
	Creating an LDAP Pool
	Deleting an LDAP Pool
	Listing LDAP Pools
	Modifying an LDAP Pool

	Managing the Contacts Server Document Store passfile
	Creating a passfile
	Listing a passfile
	Modifying a passfile

	Managing Virus Scanning
	Configuring Contacts Server for Virus Scanning
	Installing and Configuring the MTA
	Configuring the MTA for Spam and Virus Filtering
	Configuring Contacts Server Parameters for Virus Scanning

	Virus Scanning Example Commands
	About Logging for Virus Scanning
	Managing Logging for the MTA

	About Proxy Authentication
	Managing the Corporate Directory
	Configuring Contacts Server to Use the Corporate Directory
	Configuring a Domain-Specific Corporate Directory
	Disabling the Corporate Directory for a Domain

	5 Monitoring Contacts Server
	About Monitoring Contacts Server
	Contacts Server Monitoring Attributes
	General Monitoring Attributes
	Back-End Database Schedule Queue Attributes
	Back-End Database Average Response Times Attributes
	LDAP Response Time Monitoring Attributes

	Using a Java Management Extension Client to Access the Monitoring Data
	Using the responsetime Script
	responsetime Script Syntax
	Location
	General Syntax

	responsetime Script Error Codes
	responsetime Script Example
	Creating a Dedicated User Account for the responsetime Script

	6 Improving Contacts Server Performance
	Tuning Contacts Server Logging
	Tuning Oracle GlassFish Server
	Tuning Java Virtual Machine Options
	Tuning JDBC Pool
	Tuning HTTP Service and Listener

	Tuning Oracle WebLogic Server
	Tuning JVM Options for WebLogic Server
	Tuning JDBC Pool for WebLogic Server
	Tuning HTTP Service and Listener for WebLogic Server

	Tuning MySQL Server
	Tuning Oracle Solaris CMT Server
	Tuning Reference

	7 Migrating Information to Contacts Server
	Introduction to Migrating to Contacts Server
	About the Personal Address Book
	About the Migration Process
	davadmin migration Command

	Migration Logging and Status
	Troubleshooting the Migration
	Back-End Database Error
	LDAP Error
	Read Timed Out Error

	8 Managing the Contacts Server Database
	Administering the MySQL Server Database
	Administering the Oracle Database

	9 Backing Up and Restoring Files and Data
	About Contacts Server Backup
	Contacts Server Backup and Restore Techniques
	Using the davadmin db Commands
	Using ZFS Snapshots

	MySQL Server Backup and Restore Techniques
	Oracle Database Backup and Restore Techniques

	10 Troubleshooting Contacts Server
	Troubleshooting Contacts Server Initial Configuration
	Troubleshooting Application Server and Java
	Troubleshooting Tips
	Using the asadmin Command to Specify GlassFish Server Port
	Using GlassFish Server to Check Contacts Server Status
	Using the WebLogic Server Administration Console to Check Contacts Server Status
	Troubleshooting Contacts Server nabserver Process
	Troubleshooting a Failing davadmin Command
	Troubleshooting Back-end Database Errors
	Refreshing Domain Information
	Tuning Directory Server

	Enabling Telemetry Logging
	Using the Browser Servlet in GlassFish Server Deployments

	11 Using Contacts Server Notifications
	Overview of Notification Architecture
	About Server Email Notifications
	Enabling Contacts Server Notifications
	Enabling Notifications on an Account
	Modifying Notifications on an Account

	Managing Notification Templates
	Notification Types
	Templates, Resource Bundle, and Other Configuration Files
	Notification Configuration
	Resource Bundles
	Template Files

	Customizing Templates
	Preserving Customized Template Files During Upgrade

	Writing a Java Messaging Service Consumer
	Managing Contacts Server Java Messaging Server Destinations

	A Contacts Server Command-Line Utilities
	Overview of the Command-Line Utilities
	davadmin Security
	Environment Variables

	davadmin account
	Location
	Syntax
	account Operation
	Options for account Operation

	davadmin addressbook
	Location
	Syntax
	addressbook Operation
	Options for addressbook Operation

	davadmin contact
	Location
	Syntax
	contact Operation
	Options for contact Operation

	davadmin ctgroup
	Location
	Syntax
	ctgroup Operation
	Options for ctgroup Operation
	ctgroup Examples

	davadmin db
	Syntax
	db Operation
	Options for db Operation
	davadmin db Examples

	davadmin migration
	Location
	Syntax
	migration Operation
	Options for migrate Operation

	B Contacts Server Configuration Parameters
	davserver.properties File
	Document Store Configuration Parameters
	davadmin.properties File
	corpdirnames-lang.properties File
	Contacts Server Configuration Parameters

