
Agile Product Lifecycle Management
SDK Developer Guide - Developing PLM Extensions

Release 9.3.3

E39308-02

January 2014

Agile Product Lifecycle Management SDK Developer Guide – Developing PLM Extensions, Release 9.3.3

E39308-02

Copyright © 2010, 2014, Oracle and/or its affiliates. All rights reserved.

Primary Author: Oracle Corporation

Contributing Author: F. Tabibzade

Contributor:

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users
are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the programs, including any operating system, integrated software, any programs installed on
the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to
the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your
access to or use of third-party content, products, or services.

iii

Contents

Preface .. ix

Audience.. ix
Documentation Accessibility .. ix
Related Documents .. ix
Conventions .. ix

1 Introduction

About this Guide - Developing PLM Extensions ... 1-1
PLM Extensions ... 1-2

SDK Components... 1-2
Client-Side Components ... 1-2

Documentation .. 1-2
Installation.. 1-3
Server-Side Components .. 1-3

SDK Architecture ... 1-3
System Requirements.. 1-4
Java Requirements ... 1-4

JVM Parameters for Preventing Out of Memory Exceptions ... 1-4
Agile SDK Installation Folders ... 1-5
Checking Your Agile PLM System ... 1-5
Agile PLM Business Objects.. 1-5

2 Developing Web Service Extensions

About Web Service Extensions.. 2-1
Key Features ... 2-2
WSX Architecture .. 2-2

Web Services Technology... 2-3
Web Services Architecture .. 2-3
Security.. 2-4
Tools .. 2-5
Finding Additional Information About Web Services .. 2-5

Developing and Deploying a Web Service ... 2-5
About Deployment Descriptors ... 2-6
Reserved Web Service Names .. 2-6

Using a Web Service .. 2-7

iv

Defining a Web Service Entry Point ... 2-7
Authenticating Users ... 2-7

Using Single Sign-On Cookies for Client-Server Access.. 2-8
Deployment Architecture .. 2-8
Invoking the Web Service Client with a Single Sign-on Cookie .. 2-9
Retrieving the Single Sign-On Cookie .. 2-9
Modifying the SOAP Binding Stub Code ... 2-9

Preparing the Environment for MyFirstWebService .. 2-9
Downloading Tools to Build the Sample .. 2-10
Installing the Java SDK .. 2-10
Installing Ant .. 2-10

Building MyFirstWebService Sample... 2-11
About Web Service Clients ... 2-12

Client Programming Languages.. 2-12
Accessing a Web Service... 2-13

Creating a Web Service Client .. 2-13
Generating the SOAP Request .. 2-13
Submitting the SOAP Request .. 2-14
Processing the SOAP Response .. 2-14
Running the Sample on the Web Service Client ... 2-15
Creating an Agile Session inside WSX .. 2-15

Microsoft .NET Interoperability... 2-15
Web Service Extensions FAQs .. 2-16

3 Developing Process Extensions

About Process Extensions ... 3-1
Developing Custom Autonumber Sources ... 3-2

Defining a Custom Autonumber Source .. 3-3
Packaging and Deploying a Custom Autonumber Source ... 3-3

Configuring Custom Autonumber Sources in Java Client .. 3-4
Assigning Autonumber Sources to a Subclass.. 3-5

Developing Custom Actions .. 3-5
Defining a Custom Action... 3-5

Formatting New Lines (Line Breaks) in PLM Clients... 3-6
Custom Actions and User Sessions ... 3-6
Packaging and Deploying a Custom Action .. 3-7
Roles and Privileges for Custom Actions ... 3-7

User Privileges for Configuring Process Extensions... 3-7
Configuring Custom Actions in Agile Java Client ... 3-8

Using the Process Extension Library.. 3-8
Assigning Process Extensions to Classes .. 3-9
Assigning Process Extensions to Workflow Statuses ... 3-10

Working with AutoView Extensions... 3-10
About AutoVue and AutoVue Viewer... 3-11
PX Interfaces for AutoVue Extension... 3-11

Actions Performed by the Calling PX ... 3-12
Displaying Results of PX Actions.. 3-12

v

Defining and Deploying URL-Based Process Extensions... 3-13
Before Building a URL-Based Process Extension .. 3-14
Defining a URL-Based Process Extension ... 3-14
Setting Cookie Expiration Properties for URL Process Extensions...................................... 3-14
Passing Encoded Agile PLM Information to Other Applications .. 3-15
Creating an Agile PLM Session from the Target System... 3-16
Retrieving an Agile PLM Object from an HTTP Request ... 3-17
Identifying Attributes for Agile PLM Classes ... 3-17

Creating an External Report .. 3-19
Deploying Process Extensions in Clustered Environments.. 3-20
Best Practices for Copying third Party JAR Files .. 3-20

Process Extensions FAQs .. 3-23

4 Developing Dashboard Management Extensions

About Dashboard Management Extensions ... 4-1
Roles and Privileges in Dashboard Management Extensions.. 4-1

Developing Custom Chart Dashboard Management Extensions ... 4-2
Understanding ChartDataModel and ChartDataSet.. 4-2
Defining a Custom Chart DX Data Source .. 4-2
Packaging and Deploying a Custom Chart DX Source ... 4-3
Configuring Chart DXs in Java Client .. 4-4

Displaying Optional Tabs in Agile Web Client .. 4-4
Developing Custom Table Dashboard Management Extensions... 4-5

Understanding Collections and CustomTableConstants.. 4-5
Defining a Custom Table DX Data Source .. 4-6

Configuring the Link Data Type for Objects Created in Custom Table DXs................ 4-8
Invoking Advanced Search in a Custom Table DX Data Source.. 4-9
Enabling Quick View in a Custom Table DX Data Source .. 4-10
Displaying Quick View with Mouseover ... 4-11
Opening the Selected Object in the Right Pane ... 4-11

Packaging and Deploying a Custom Table DX Source ... 4-12
To package and deploy a Table DX source: ... 4-12

Configuring Table DXs in Java Client ... 4-12
To Add a Table to a Tab: ... 4-12

Defining Custom (URL) Extensions ... 4-14

5 Working with Agile PLM Events and Event Context Objects

Understanding Agile PLM Events and Event Framework ... 5-1
Key Components of an Agile PLM Event.. 5-1

Event Types .. 5-2
Event Handler and Handler Types ... 5-3
Event Subscribers.. 5-3

Event Trigger and Trigger Types .. 5-3
Event Trigger Types .. 5-4
Synchronous and Asynchronous Execution Modes.. 5-4
Synchronous and Asynchronous Operations in OAS Clusters.. 5-4

vi

Event Error Handling Rule... 5-5
Event Order ... 5-5
Event FAQs.. 5-5

Working with Event Context Objects... 5-8
Understanding Event Context Objects ... 5-8

Persistent and Transient Data ... 5-8
Event Information Objects ... 5-9
Event Script Objects ... 5-10

Working with Event Information and Event Script Objects .. 5-12
Working with Base Event Actions .. 5-12

Base Event Information Object - Java PX ... 5-12
Base Event Script Objects - Script PX .. 5-13

Working with General Object Actions .. 5-15
General Object Actions - Java PX... 5-15

Create Object ... 5-15
Update Title Block.. 5-17
Save As Object .. 5-17
Delete Object... 5-17
Export Object.. 5-17
General Object Actions - Script PX.. 5-17
Create Object .. 5-18
Update Title Block .. 5-19
Save As Object .. 5-19
Delete Object... 5-19
Export Object.. 5-19

Working with Table and Relationship Actions ... 5-20
Table and Relationship Actions - Java PX ... 5-20
Update Table... 5-20
Update Relationship... 5-22
Table and Relationship Actions - Script PX .. 5-22
Update Table ... 5-22

Working with Variant Management Events ... 5-24
Variant Management Events - Java PX ... 5-25
Variant Management Events - Script PX .. 5-25

Working with Workflow Object Actions .. 5-26
Change Status for Workflow ... 5-26
Approve for Workflow.. 5-28

Reject for Workflow .. 5-28
Escalation for Workflow.. 5-28

Reminder for Workflow ... 5-29
Audit for Workflow... 5-29
Promotion Failure for Workflow ... 5-29
Comment for Workflow... 5-29
Change Approvers or Observers for Workflow ... 5-29

Workflow Object Actions - Script PX .. 5-29
Change Status for Workflow.. 5-29
Approve for Workflow.. 5-30

vii

Reject for Workflow .. 5-30
Escalation for Workflow.. 5-31
Reminder for Workflow... 5-31
Audit for Workflow... 5-31
Promotion Failure for Workflow... 5-31
Comment for Workflow... 5-31
Change Approvers or Observers for Workflow.. 5-31

Working with Specific Object-Based Actions .. 5-31
Specific Object-Based Actions - Java PX .. 5-31
Incorporate Item and Unincorporate Item.. 5-32
Change Status for Sourcing Project ... 5-32
Specific Object-Based Actions - Script PX .. 5-32
Incorporate Item and Unincorporate Item.. 5-32
Change Status for Sourcing Project ... 5-32

Working with Files and Attachments Objects Actions .. 5-32
Files and Attachments Objects Actions - Java PX... 5-32
Purge File Version .. 5-32
Files and Attachments Objects Actions - Script PX... 5-32
Get File, Check Out Files, Check In Files, Cancel Check Out Files ... 5-32
Purge File Version .. 5-33

Working with Product Governance and Compliance Actions .. 5-33
Product Governance and Compliance Actions - Java PX .. 5-34
Compliance Rollup On Object.. 5-34
Product Governance and Compliance Actions - Script PX.. 5-34
Compliance Rollup On Object.. 5-34

Working with Miscellaneous Object Actions .. 5-34
Miscellaneous Object Actions - Java PX ... 5-34
Transfer Authority.. 5-34
Miscellaneous Object Actions - Script PX... 5-34
Transfer Authority ... 5-34

Working with Event Integration Points in PLM Clients .. 5-34
Event Integration Points - Java PX .. 5-35
Extend Actions Menu... 5-35
Extend Tools Menu... 5-35
Scheduled Event.. 5-35
Event Integration Points - Script PX.. 5-35
Extend Actions Menu... 5-35
Extend Tools Menu... 5-35
Scheduled Event.. 5-35

Guidelines for Java PX and Script PX Handlers .. 5-35
Working with Agile PLM Administrator ... 5-36
Testing Event Java PX and Event Script PX ... 5-37
Triggering Guidelines for Java PX, Script PX, and Notification Handlers...................... 5-37
General Object Actions.. 5-37
Create Object Event and SaveAs Event ... 5-37
Update Title Block Event .. 5-38
Update Table Event .. 5-38

viii

Workflow Actions.. 5-38
Promotion Failure for Workflow Event .. 5-38
Create Automatic Transfer Object Action (ATO) ... 5-38
Files and Attachments Actions .. 5-39
Check In File Event... 5-39
Check Out File Action .. 5-39
Cancel Check Out File Event.. 5-39
Get File Event ... 5-39

A Migrating Custom Process Extensions to Event Framework

Understanding Custom PXs and Java PXs.. A-1
Custom PXs in PX Framework ... A-1
Process Extensions in Event Framework ... A-1
Custom PXs You Can Migrate to Event Framework.. A-2

Migration Task List... A-2
Task - 1: Modify the Custom PX Code ... A-2

Custom PX Code.. A-2
Java PX Code .. A-2

Task - 2: Package and Deploy the Modified Code .. A-3
Task - 3: Configure Event in Event Framework .. A-3

Create Event ... A-3
Create Event Handler ... A-5
Create Event Subscriber... A-6
Configure Trigger Type, Execution Mode, Order, and Error Handling Rule................... A-8
Trigger Type Field .. A-8
Execution Mode Field.. A-8
Order Field.. A-9
Error Handling Rule .. A-9

Task - 4: Test the Migrated PX in Event Framework ... A-10
Task - 5: Remove Custom PX from Process Extension Library ... A-10
Task - 6: Inform PLM Administrator.. A-10

B Groovy Implementation in Event Framework

What Is Groovy? .. B-1
Sources of Information ... B-1
Script PX or Java PX? ... B-1

Event Framework Implementation .. B-2
Key implementation considerations .. B-2
Starting a Script .. B-2
Accessing SDK with Scripts .. B-2
Use Cases ... B-3

C Variant Management Configuration Graph Schema

The XML Schema .. C-1

ix

Preface

Agile PLM is a comprehensive enterprise PLM solution for managing your product
value chain.

Audience
This document is intended for administrators and users of the Agile PLM products.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For
information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or
visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing
impaired.

Related Documents
Oracle's Agile PLM documentation set includes Adobe® Acrobat PDF files. The Oracle
Technology Network (OTN) website
http://www.oracle.com/technetwork/documentation/agile-085940.html contains
the latest versions of the Agile PLM PDF files. You can view or download these
manuals from the website, or you can ask your Agile administrator if there is an Agile
PLM Documentation folder available on your network from which you can access the
Agile PLM documentation (PDF) files.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

x

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Convention Meaning

1

Introduction 1-1

1Introduction

This chapter includes the following:

■ About this Guide - Developing PLM Extensions

■ SDK Components

■ SDK Architecture

■ System Requirements

■ Java Requirements

■ Agile SDK Installation Folders

■ Checking Your Agile PLM System

■ Agile PLM Business Objects

About this Guide - Developing PLM Extensions
Oracle's Agile Software Development Kit (SDK) is a collection of Java application
programming interfaces (APIs), sample applications, and documentation that enable
building custom applications to access, or extend the functionalities of the Agile
Application Server. Using the SDK, you can create programs that extend the
functionality of the Agile product lifecycle management system (PLM) and can
perform tasks against the PLM system.

The SDK enables the following operations:

■ Integrate the Agile PLM system with enterprise resource planning (ERP)
applications or other custom applications

■ Develop applications to process product data

■ Perform batch operations against the Agile Application Server

■ Extend the functionality of the Agile PLM system

The SDK Developer Guide is published in the following two books.

■ SDK Developer Guide - Using Agile APIs - This component of the SDK
Developer Guide provides information to develop batch operations against the
PLM Server, integrate the PLM with other application, and process PLM data. This
information is described and documented in SDK Developer Guide - Using Agile
APIs.

■ SDK Developer Guide - Developing Extensions - This component of the SDK
Developer Guide provides background and procedural information to create

SDK Components

1-2 Agile Product Lifecycle Management SDK Developer Guide – Using Extensions

additional PLM clients (extend Agile PLM functionalities) and work with PLM
Frameworks. This information is described and documented in this book.

PLM Extensions
This component of the SDK Developer Guide documents the following extension
frameworks that are developed with the Java APIs, and tools such as Java or Groovy
scripts:

■ Process extensions (Custom PXs) - This framework enables Agile PLM customers
to extend the functionality of Agile PLM. The functionality can be server-side
extensions, such as custom workflow actions and custom autonumbering, or
extensions to client-side functionalities, such as external reports, or new
commands added to the Actions menu or the Tools menu. These PXs are
implemented using the Java programming language.

■ Event Framework - This framework supports Java process extensions (Java PXs),
and Script process extensions (Script PXs). Similar to Custom PXs, they help PLM
customers to extend the functionality of PLM clients to manage events by
extending the function of an action taken by a user, an interface, or the system
when the Event is triggered. Java PXs are implemented using Java and Script PXs
are implemented using a scripting language called Groovy. Groovy is an
object-oriented programming language for the Java Platform as an alternative to
the Java programming language.

■ Web service extensions (WSX) - This is a framework that allows Agile PLM
customers to extend the functionality of the PLM system and expose the
customer-specific solutions as a Web service.

■ Dashboard Management extensions (DX) - DXs extend the functionality of the
Agile PLM system. They provide the data, Dashboard Tabs, and the required
formats to display the data (tables, charts, and URLs) that are configured in Agile
Java Client and in Agile Web Client for authorized users.

SDK Components
The Agile SDK has the following Client-side and Sever-side components.

Client-Side Components
The contents of the Agile SDK Client-side components are:

Documentation
■ SDK Developer Guide (this manual)

■ API Reference files (these are the Javadoc generated HTML files that document the
API methods)

■ Sample applications

Note: The API HTML reference files and Sample applications are in
the SDK_samples.zip folder. You can find this folder at
http://www.oracle.com/technetwork/indexes/samplecode/agilepl
m-sample-520945.html. For more information and procedures to
access its contents, contact your system administrator, or refer to your
PLM installation guide.

SDK Architecture

Introduction 1-3

Installation
■ Agile API library (AgileAPI.jar)

■ Java Process Extensions API library (pxapi.jar)

■ Apache Axis library (axis.jar)

Server-Side Components
Oracle's Agile Application Server contains the following SDK server-side components:

■ Agile API implementation classes

■ Java and Scripting process extensions framework

■ Web service extensions frameworks

SDK Architecture
The SDK facilitates developing different types of programs to connect to the Agile
Application Server. If you are using only the Agile APIs, these programs connect
directly to the server. For information to develop these types of programs, refer to SDK
Developer Guide - Using Agile APIs.

If you are using WSX to develop Web service extensions, you can deploy the Web
services inside the Agile Application Server container. The Web server used for WSX is
accessible from inside or outside the company's demilitarized computing zone (DMZ)
or perimeter network. Information for developing Web service extensions is provided
in this document.

When the Agile PLM Client initiates a custom action, it either runs a program that is
deployed on the server, or connects to an external resource such as a URL. WSX, Java
PX and Script PX extensions can also use the Agile APIs. You can develop extensions
using APIs that are not provided by Agile. This information is also provided in this
document.

Note: Agile API programs connect to the Agile Application Server
using non-secure means. Consequently, it is recommended that you
run the Agile API programs only from within the corporate firewall.
Web service Clients, however, can connect to the server through the
corporate firewall using standard HTTP(S) technology.

System Requirements

1-4 Agile Product Lifecycle Management SDK Developer Guide – Using Extensions

System Requirements
For Agile SDK system requirements, refer to PLM Capacity Planning and Deployment
Guide.

Java Requirements
The Agile API must be compatible with the version of Java that the application server
supports. To avoid problems, an Agile API Client must use the same version of Java
that the connecting application server is using. Oracle Application Server 10g must use
Sun Java Runtime Environment (JRE) 1.5.0_06 and Oracle WebLogic Server 10.3 must
use Sun Java Runtime Environment (JRE) 1.6 for interoperability and 2007 Daylight
Saving Time compliance.

Important: SDK code running under JRE 7 cannot connect to a Proxy
URL protected by Oracle Application Server Single Sign-On (SSO). To
establish this connection, you must directly connect your SDK code to
server nodes with actual Weblogic ports, or setup a second proxy that
is not protected by SSO.

The following table lists the recommended Java Runtime Environment (JRE) to use
with Agile API Clients on different application servers that Agile PLM supports.

Application Server Operating System
Required Java Version for Agile
API clients

Oracle Application Server 10g Windows 2003 Sun JRE 1.5.0

Oracle WebLogic Server 10.3 Windows 2003 Sun JRE 1.6

JVM Parameters for Preventing Out of Memory Exceptions
To prevent out of memory errors, add the following Java Virtual Memory (JVM)
parameter options in the indicated locations.

Note: This workaround is only applicable to single-threaded SDK
programs.

■ If the Client is a standalone SDK Client, add the JVM option as shown below:
java -Ddisable.agile.sessionID.generation=true pk.sample

■ If the Client is a PX and out of memory occurs in Agile Server, add the JVM option
in: <OAWorkaroundS_HOME>/opmn/conf/opmn.xml
<category id="start-parameters">
<data id="java-options" value="-Xrs -server -XX:MaxPermSize=256M -ms1280M
-mx1280M -XX:NewSize=256M -XX:MaxNewSize=256M -XX:AppendRatio=3
-Doracle.xdkjava.compatibility.version=10.1.0 -Djava.security.policy=$ORACLE_

Agile PLM Business Objects

Introduction 1-5

HOME/j2ee/home/config/java2.policy -Dagile.log.dir=$ORACLE_
HOME/j2ee/home/log -Dcom.sun.management.jmxremote
-Dcom.sun.management.jmxremote.port=9899
-Dcom.sun.management.jmxremote.authenticate=false
-Dcom.sun.management.jmxremote.ssl=false -Djava.awt.headless=true
-Dhttp.webdir.enable=false -Duser.timezone=GMT
-Ddisable.agile.sessionID.generation=true"/>
<data id="oc4j-options" value="-verbosity 10 -userThreads"/>
</category>

■ If the Client is a URL PX, add the following JVM option in the Server Start up
(This is similar to catalina.bat in Tomcat.):
-Ddisable.agile.sessionID.generation=true

Note: For more information about URL Process Extensions, or URL
PXs, including how to set the Cookie Expiration Properties for URL
PXs, refer to SDK Developer Guide - Developing PLM Extensions.

Agile SDK Installation Folders
The Agile SDK files use the following folder structure on your computer:

lib - The \agile_home\integration\sdk\lib folder contains the following libraries:

Important: Do not include the axis.jar file and AgileAPI.jar file in the
same classpath. The SDK classpath does not support this setting and
the SDK will not function properly.

■ AgileAPI.jar - Agile API library, which contains Agile API classes and interfaces

■ axis.jar - An Oracle-modified version of the Apache Axis library required for
Web service Clients

■ pxapi.jar - PX API library, which contains interfaces used to develop custom
autonumber sources and custom actions

Checking Your Agile PLM System
Before trying to run the Agile SDK Clients on your Agile PLM system, make sure the
system is configured and working properly. In particular, make sure the HTTP ports
for your application server are set correctly. For more information, refer to the Agile
PLM Installation Guide.

Agile PLM Business Objects
With any enterprise software system, you work with business objects to manage the
company's data. The following table lists the Agile PLM business objects and their
related Agile API interfaces.

Object Related Agile API Interface

Changes IChange

Customers ICustomer

Agile PLM Business Objects

1-6 Agile Product Lifecycle Management SDK Developer Guide – Using Extensions

* Agile does not support the API interfaces in the current release of the software.

The business objects that you can view and actions that you can perform on these
objects are determined by the server components installed on your Agile Application
Server and the assigned privilege roles to that are assigned to your user account.
Privilege levels can vary from field to field. In addition to Users and User Groups,
Agile PLM administrators work with administrative objects, such as administrative
nodes and Agile PLM classes.

Note: Not all Agile PLM business objects are exposed in the Agile
API. For example, some Report objects are not accessible through the
Agile API.

Declarations IDeclaration

Design IDesign

Discussions IDiscussion

File Folders IFileFolder

Items IItem

Manufacturer parts IManufacturerPart

Manufacturers IManufacturer

Packages IPackage

Part Groups (Commodity or Part Family) ICommodity

Prices IPrice

Product Service Request IServiceRequest

Projects IProgram

Sourcing Project IProject

Quality Change Request IQualityChangeRequest

Reports IProductReport

Requests for Quote (RFQ) IRequestForQuote

RFQ Responses ISupplierResponse*

Sites IManufacturingSite

Specifications ISpecification

Substances ISubstance

Suppliers ISupplier

Transfer Order ITransferOrder

User Groups IUserGroup

Users IUser

Object Related Agile API Interface

2

Developing Web Service Extensions 2-1

2Developing Web Service Extensions

This chapter includes the following:

■ About Web Services Extensions

■ Web Services Technology

■ Developing and Deploying a Web Service

■ Using a Web Service

■ Authenticating Users

■ Preparing the Environment to Implement a WebService Sample

■ About Web Service Clients Creating a

■ Creating a Web Service Client

■ Microsoft.NET Interoperability

■ Web Service Extensions FAQs

About Web Service Extensions
Web service extensions (WSX) is a Web service engine enabling communication
between Agile PLM and disparate systems both internal and external including
Enterprise Resource Planning (ERP) systems, Customer Resource Management (CRM)
systems, Business-to-Business Integration systems (B2Bi), other Agile PLM systems,
and supply chain partners. WSX can streamline the process for new product
introduction (NPI), product changes, and rapid ramp-up of manufacturing resources.
It can also simplify the process for aggregating raw product content and making
critical product content available in real time to other core systems. WSX contains the
tools and framework to develop new Agile PLM Web services.

You can use WSX to:

■ Make product content available to Enterprise Application Integration (EAI)
systems, which can then feed the data to a broad array of internal applications.

■ Share product content with product design, manufacturing planning, shop floor,
Enterprise Resource Planning (ERP), and Customer Relationship Management
(CRM) applications.

■ Make product content available to Business-to-Business (B2B) systems, which can
transfer Agile Application server data across corporate boundaries to a wide range
of external applications.

■ Provide content to exchanges, reports, and custom applications and import
Product content data from ERP and other supply chain applications.

Note: Agile Integration Services (AIS) is a set of Web services that is
built with WSX technology to provide programmatic import and
export capabilities for the Agile PLM system. AIS is a separately
licensed product. For more information about AIS, refer to the Agile
Integration Services Developer Guide.

About Web Service Extensions

2-2 Agile Product Lifecycle Management SDK Developer Guide – Using Extensions

Key Features
WSX includes the following key features:

■ Programmatic access to data - WSX provides programmatic access to data stored
in Agile PLM systems and other data resources, allowing you to create custom
applications to automate content transfer.

■ Accessibility - WSX provides accessibility of Agile PLM product content outside
the corporate firewall using standard HTTP(S) technology.

■ Multiple programming language support - WSX supports any language that can
create and understand both Simple Object Access Protocol (SOAP) and Web
Services Description Language (WSDL).

■ Multiple output format support - WSX supports aXML and PDX 1.0. You can also
use XSL to transform XML data into any format, or develop Web services that
return data in any format.

■ Security - WSX communicates with XML-compliant applications using
Internet-standard communication and security protocols (HTTP and SSL), so the
interface is both firewall-friendly and secure.

WSX Architecture
To connect to Agile PLM and the WSX framework, you use standard Web service
invocation methodologies.

Figure 2–1 WSX architecture

Web Services Technology

Developing Web Service Extensions 2-3

Web Services Technology
Web services is a technology for building distributed applications. These services,
which can be made available over the Internet, use a standardized XML messaging
system and are not tied to any one operating system or programming language.
Through Web services, companies can encapsulate existing business processes, publish
them as services, search for and subscribe to other services, and exchange information
throughout and beyond the enterprise. Web services are based on universally agreed
upon specifications for structured data exchange, messaging, discovery of services,
interface description, and business process design.

A Web service makes remote procedure calls across the Internet. It uses HTTP(S) or
other protocols to transport requests and responses and the Simple Object Access
Protocol (SOAP) to communicate request and response information.

The key benefits provided by Web services are:

■ Service-oriented Architecture - Unlike packaged products, Web services can be
delivered as streams of services that allow access from any platform. Components
can be isolated; only the business-level services need be exposed.

■ Interoperability - Web services ensure complete interoperability between systems.

■ Integration - Web services facilitate flexible integration solutions, particularly if
you are connecting applications on different platforms or written in different
languages.

■ Modularity - Web services offer a modular approach to programming. Each
business function in an application can be exposed as a separate Web service.
Smaller modules reduce errors and result in more reusable components.

■ Accessibility - Business services can be completely decentralized. They can be
distributed over the Internet and accessed by a wide variety of communications
devices.

■ Efficiency - Web services constructed from applications meant for internal use can
be used externally without changing code. Incremental development using Web
services is relatively simple because Web services are declared and implemented
in a human readable format.

Like any technology, Web services have some limitations. When developing Web
services, you should consider the following:

■ SOAP is a simple mechanism for handling data and requests over a transport
medium. It is not designed to handle advanced operations such as distributed
garbage collection, object activation, or call by reference.

■ Because Web services are network-based, they are affected by network traffic. The
latency for any Web service invocation can often be measured in hundreds of
milliseconds. Thus, the amount of functionality provided by the service should be
significant enough to warrant making a high-latency call.

■ Web services are not good at conversational programming. Thus, when designing
services to be exposed, you should try to make the service as independent as
possible.

Web Services Architecture
You can view Web services architecture in terms of roles and the protocol stack:

■ Web service roles:

Web Services Technology

2-4 Agile Product Lifecycle Management SDK Developer Guide – Using Extensions

– Service provider - This provides the service by implementing it and making it
available on the Internet.

– Service requestor - This is the user of the service who accesses the service by
opening a network connection and sending an XML request.

– Service registry -This is a centralized directory of services where developers
can publish new services or find existing ones.

■ Web services protocol stack:

– Service transport layer - uses HTTP to transport messages between
applications. Other transports will be supported in future AIS releases.

– XML messaging layer - encodes messages in XML format by using SOAP, a
platform-independent XML protocol used for exchanging information
between computers. It defines an envelope specification for encapsulated data
being transferred, the data encoding rules, and Remote Procedure Call (RPC)
conventions.

– Service description layer -describes the public interface to a specific Web
service by using the Web Service Description Language (WSDL) protocol.
WSDL defines an XML grammar for describing network services as collections
of communication endpoints capable of exchanging messages, which contain
either document-oriented or procedure-oriented information. The operations
and messages are described abstractly, and then bound to a network protocol
and message format. WSDL enables describing the endpoints and their
messages independent of the message formats or network protocols. A WSDL
document defines services as collections of network endpoints (called ports).
A port is defined by associating a network address with a reusable binding,
and a collection of ports define a service.

– Service discovery layer - centralizes services into a common registry by using
the Universal Description, Discovery, and Integration (UDDI) protocol.

Note: WSX does not currently support UDDI or other service
discovery layers.

Security
WSX communicates with XML-compliant applications using Internet-standard
communication and security protocols (HTTP and SSL). Communication between
WSX and its clients (through the Web server) may be encrypted through Secure
Sockets Layer (SSL) and a server-side certificate, thus providing authentication,
privacy, and message integrity. Using standard Java cryptography libraries, you can
encrypt and decrypt files, create security keys, digitally sign a file, and verify a digital
signature.

The Web service extensions framework forces any invocation request received from
outside the firewall to be secure. In other words, all external requests to WSX must be
secured using HTTPS or an equivalent protocol. Internal requests to WSX can be
conducted insecurely, that is, using HTTP.

There are several ways to enforce username and password security when invoking a
Web service. If you are using the Agile API to develop your Web service, you can
specify the username and password in the createSession() parameters just as you
would with any API program.

Developing and Deploying a Web Service

Developing Web Service Extensions 2-5

For more information about Java security and cryptography support, see
http://docs.oracle.com/javase/1.3/docs/guide/security/index.html.

Tools
There is no single set of tools needed to access Web services. The tools you choose
depend very much on the environment you use to develop clients. Basically, you'll
need tools that enable you to generate and process XML, and process HTTP
request/responses messages.

The WSX framework is based on the Apache eXtensible Interaction System (AXIS),
which is a SOAP processor. However, you can use other implementations of SOAP
tools, regardless of source language, to build Web service clients.

Note: The WSX Java samples included with the Agile SDK show
how to use AXIS. For detailed information about AXIS, its features,
and how to use it, refer to the AXIS website:
http://xml.apache.org/axis

Finding Additional Information About Web Services
This is a list of some websites to explore:

■ WebServices.Org - http://www.webservices.org/

■ Web Services Architect - http://www.webservicesarchitect.com/

■ Web Services Journal -
http://www.informatik.uni-trier.de/~ley/db/journals/jwsr/jwsr8.html

■ webservices.xml.com -
http://www.xml.com/pub/a/ws/2001/04/04/webservices/index.html

■ Apache Axis - http://ws.apache.org/axis/

■ Java Web Services Developer Pack -
http://www.oracle.com/technetwork/java/javasebusiness/downloads/java-ar
chive-downloads-jwsdp-419428.html

■ Sun ONE Web Services Platform Developer Edition -
http://dsc.sun.com/appserver/reference/techart/webservice.html

■ Microsoft .Net Framework - http://msdn.microsoft.com/netframework/

■ SOAP::Lite for Perl - http://www.soaplite.com/

■ Soap Tutorial - http://www.w3schools.com/soap/default.asp

Developing and Deploying a Web Service
Writing your own Web service is a simple task, consisting of a few steps:

1. Define your Web service's entry point(s). A Web service entry point (or operation)
corresponds to a public method in a Java class.

2. Code your Web service operation's logic. You need not follow any special rules
when coding the logic for your Web service operation. You can also use third party
code libraries in addition to the Agile-provided libraries, including the Agile API.

3. Compile your Java code as you normally would.

Developing and Deploying a Web Service

2-6 Agile Product Lifecycle Management SDK Developer Guide – Using Extensions

4. Copy the compiled JAR file(s) to AGILE_HOME\integration\sdk\extensions on
the Agile Application Server computer. The deployment descriptor for the Web
service should also be in the JAR file(s) in a file named
META-INF/services/com.agile.wsx.Deployment.wsdd.

Note: If you have several application servers in a clustered
environment, you must deploy Web service files on each server in the
cluster.

The Agile Application Server automatically deploys all Web services listed in the
deployment descriptor, ensuring that your latest changes have been applied.

About Deployment Descriptors
The Web service deployment descriptor file (Deployment.wsdd) is an XML file that is
formatted according to Axis's Web Service Deployment Descriptor (WSDD) format. It
declares and describes the set of Web services and Web service operations that are to
be exposed through WSX. The WSDD file also defines any additional behavior that is
necessary when processing incoming SOAP requests (such as authentication, and so
on) or responses (such as reformatting outgoing data).

The Axis documentation provides a good introduction to the WSDD format and its
use. However, before consulting the Axis documentation, please be aware of the
following constraints within WSX:

■ The Web service deployment descriptor should not contain global WSX
configuration information. The configuration information declared within
Deployment.wsdd should be restricted to service-specific declarations.

■ WSX does not support the Axis.jws-based Web services. While these sound good
on paper, the Oracle mechanism for redeploying Web services is more robust and
easier to work with in a development environment.

■ For security reasons, WSX does not include the Axis AdminServlet.

For more information about Axis deployment descriptors, refer to the following Axis
documentations:

■ Axis User's Guide - http://ws.apache.org/axis/java/user-guide.html

See the sections entitled “Custom Deployment - Introducing WSDD” and “Service
Styles - RPC, Document, Wrapped, and Message.”

■ Axis Reference Guide - http://ws.apache.org/axis/java/reference.html

See the sections entitled “Deployment (WSDD) Reference.”

Note: These sites are subject to periodic change. In that event, use
your favorite search engine to locate these documents.

Reserved Web Service Names
The following Web service names are reserved for use by the Agile Integration
Services (AIS). Do not use them to name a Web service that you've created.

■ Export

■ Importer

Authenticating Users

Developing Web Service Extensions 2-7

■ Reserved Service names:

– FSHelper, DmsService (File manager and Viewer)

– Export, Importer (AIS)

– ResponseService, PackageService, AcsStatusService (ACS)

Using a Web Service
Once you have developed and deployed your custom Web service, you will want to
use it. You can access your Web service using a URL of the form
http://hostname:port#/virtualPath/integration/ws/WebServiceName

Note: You must use the Agile-modified axis.jar file that is included
with the Agile API.This file gets installed in the following location
when you install Agile's API component:
agile_Home\integration\sdk\lib\axis.jar

Defining a Web Service Entry Point
A Web service entry point (or operation) corresponds to a public method in a Java
class. Not all public methods in a class need be exposed as an operation, but all
operations correspond to public methods. Thus, if you have a Java class (such as
MyClass), that exposes two public methods (such as methodOne and methodTwo), it
is possible for you to expose either or both methods as Web service operations.

As a general rule, the simpler the datatypes used for your parameter and return types,
the more interoperable your Web service operation will be. More complex datatypes
will require either custom serializers/deserializers or additional support from the Web
service framework. More information on the additional serializers/deserializers
provided by Axis can be found at:
http://ws.apache.org/axis/java/apiDocs/org/apache/axis/encoding/Serializer
.html

and
http://ws.apache.org/axis/java/apiDocs/org/apache/axis/encoding/Deserializ
er.html

These sites are periodically changed. In this case, invoke your favorite search engine to
locate the latest information on these interfaces.

Note: As a rule, do not try to return an Agile API object, such as
IAgileSession or IItem, from a Web service. Web services should only
return data structures.

Authenticating Users
All default out-of-box Web services and user customized versions are protected by the
application server. To access a protected Web service, add the following lines in your
Web service client stub code:

Example 2–1 Accessing a protected Web Service

// Configure the stub with the necessary authentication information
stub.setUsername(cl.getOptionValue(USER_SHRT));
stub.setPassword(cl.getOptionValue(PASSWORD_SHRT));

Authenticating Users

2-8 Agile Product Lifecycle Management SDK Developer Guide – Using Extensions

stub.setMaintainSession(true);

To remove the Web container protection for a specific Web service, add the lines in the
following applications:

application.ear#application.war/WEB-INF/web.xml

and

application.ear#integration.war/WEB-INF/web.xml files:
<security-constraint>
<web-resource-collection>
<web-resource-name>Unprotect web services</web-resource-name>
<url-pattern>/ws/<web service name></url-pattern>
<url-pattern>/services/<web service name></url-pattern>
</web-resource-collection>
</security-constraint>

Using Single Sign-On Cookies for Client-Server Access
After a user on the WSX client is authenticated by the Agile 9.X server which is
protected by third party single sign-on products, the browser is granted a Single
sign-on cookie. This cookie is sent to the custom j2ee Web application, provided this
application is in the same DNS domain as the Agile 9.X server. Now, to invoke the Web
service deployed on Agile 9.X server, you can pass the single sign-on cookie instead of
username and password as a valid credential.

Note: If you are using both username and or password and single
sign-on cookies, the single sign-on cookie has precedence over
username or password.

Deployment Architecture
Interactions and the request flow between the Agile server and WSX client is
summarized in the following illustration.

Preparing the Environment for MyFirstWebService

Developing Web Service Extensions 2-9

Invoking the Web Service Client with a Single Sign-on Cookie
This is accomplished by first, retrieving the single sign-on cookie from the HTTP
request followed by modifying the SOAP binding stub code.

Retrieving the Single Sign-On Cookie
Before invoking the Web service client stub, you must retrieve the single sign-on
cookie in the HTTP request. By default, the single sign-on cookie provided by
SiteMinder is called SMSESSION. Modify the cookie to the format specified in
RFC2965 available at http://www.ietf.org/rfc/rfc2965.txt. The simplest format is
name=value where you can access both name and value by calling the
javax.servlet.http.Cookie object method.

Modifying the SOAP Binding Stub Code
Find the Web service SOAP binding stub class the wsdl2java utility of axis generates.
It is usually called service-name.SoapBindingStub.java. Add a variable named
cookies and a method to set the value as shown below.

To modify the SOAP binding stub code:
1. Add the following lines in the SOAP stub class:

private String cookies = "";
public void setCookies(String cookies) {
this.cookies = cookies;
}

2. Add the line in bold font in createCall() method.

if (super.cachedPortName != null) {
_call.setPortname(super.cachedPortName);
} _call.setProperty(org.apache.axis.transport.http.HTTPConstants.HEADER_COOKIE,
this.cookies);
java.util.Enumeration keys = super.cachedProperties.keys();

3. Recompile this class and follow the sample below to invoke the Web service stub.
((soaping binding stub class name)stub).setCookies(sso cookies you
retrieved in step 2);
stub.setMaintainSession(true);

4. Compare with the documented sample that requires username and password as
valid credentials.

stub.setUsername(username);
stub.setPassword(password);
stub.setMaintainSession(true);

5. Test the Web service client as part of the j2ee Web.

Preparing the Environment for MyFirstWebService
To explain developing a Web service, a sample that highlights the development
process is provided. The sample, called MyFirstWebService, is a simple example that
demonstrates how to create a Web service that can use the Agile SDK to retrieve
information about a particular Item and return the Item as the result of the Web service
operation.

To support the desired operation, the following entry point is defined:

Preparing the Environment for MyFirstWebService

2-10 Agile Product Lifecycle Management SDK Developer Guide – Using Extensions

public String getItemField(String[] args) throws RemoteException

MyFirstWebService sample uses a third party library called Jakarta Commons CLI and
parses args as a set of command line arguments. Based on these arguments, the results
are returned as a String. You can find more information on implementation details in
the SDK_samples.zip folder described in "Client-Side Components" on page 1-2. The
path to MyFirstWebService is in samples\wsx\src\first. The remaining paragraphs in
this section describe the deployment process and do not address implementation
details.

Downloading Tools to Build the Sample
To build and deploy the MyFirstWebService sample, you must download the
following tools:

Tool Download Site

Java 2 SDK SE Version 1.5 http://www.oracle.com/technetwork/java/
archive-139210.html

Apache Project's Ant build tool, version 1.6.5 http://archive.apache.org/dist/ant/bina
ries/

Installing the Java SDK
This section provides the instructions to install the Java SDK on Windows and on
Solaris platforms. You can skip this section if you already have the proper version of
Java installed.

To install the Java SDK on Windows:
1. Double-click the distribution and follow the installation procedures.

2. Set the system variable JAVA_HOME to point to the home directory of your Java
SDK installation (for example, D:\j2sdk150).

To install the Java SDK on Solaris:
1. Execute the distribution (for example, $./ j2sdk-1_5_0-solaris-sparc.sh) and follow

the installation procedures.

2. Set the environment variable JAVA_HOME to point to the home directory of your
Java SDK installation (for example, /home/user/j2sdk150).

3. Execute your .profile or .cshrc (depending on your shell) file to re-initialize your
environment settings.

Installing Ant
This section provides the necessary instructions to install Ant on Windows and Solaris
environments. Use the information in "Downloading Tools to Build the Sample" on
page 2-10. to download the Ant tool.

To install the Ant on Windows:
1. Extract the contents of the Zip archive to a local directory and follow the

installation procedures.

The Ant distribution for Windows is a zip file (for example,
apache-ant-1.6.5-bin.zip).

Building MyFirstWebService Sample

Developing Web Service Extensions 2-11

2. Open a command prompt window and verify that Ant can be invoked by typing
this command %ANT_HOME%\bin\ant -version.

The following message is displayed:

Apache Ant version 1.6.5 compiled on <date>

To install Ant on Solaris:
1. Extract the contents of the tar archive to a local directory (for example,

/home/user/ant).

The ANT distribution for UNIX is a tar file (for example,
apache-ant-1.6.2-bin.tar.gz).

2. Execute your .profile or .cshrc (depending on your shell) file to set up your
environment.

3. From a command prompt, verify that Ant can be invoked by typing this command
$ANT_HOME/bin/ant -version.

The following message appears:

Apache Ant version 1.6.5 compiled on compilation_date

Building MyFirstWebService Sample
Agile provides several sample programs for the SDK, including a sample Web service
program called MyFirstWebService. To download the sample program, refer to the
Note in "Client-Side Components" on page 1-2. The MyFirstWebService sample is in
the wsx folder in SDK Samples.

The Ant tool reads the build.xml script and builds all targets in the following sequence
on the server that is running the WSX samples:

■ Compiles the Java code for the Web service into MyFirstWebService.jar.

■ Copies the resulting MyFirstWebService.jar file, which includes the
Deployment.wsdd file, and the commons-cli.jar file into the .../sdk/extensions
folder.

■ Generates a script (either runner.bat or runner.sh) to run the client. (It conveniently
sets the CLASSPATH needed to run the client.)

■ Generates client-side stub files and places them in the following folder:

sdk\samples\wsx\built\src\client located in Oracle Agile PLM Event and Web
Services Samples. To access this folder, see the Note in"Client-Side Components"
on page 1-2.

■ Compiles the client classes and places them in your local server.

To build the WSX sample on the server platform:
1. Copy the SDK_samlpes (ZIP) file. For information to access this file, see the Note

in "Client-Side Components" on page 1-2.

2. Go to samples/WSX folder.

If there is no AgileAPI.jar in this folder, you are not able to compile the WSX
sample. In that case, do as follows:

1. Go to $AGILE_HOME/sdk/samples/wsx on the server.

About Web Service Clients

2-12 Agile Product Lifecycle Management SDK Developer Guide – Using Extensions

2. Download wsdl4j-1.5.1.jar from http://archive.apache.org/dist/ws/axis/1_2/
(axis-bin-1_2.zip#/lib), and copy it to lib folder and rename the file to wsdl4j.jar.

3. Build the MyFirstWebService sample using the sample's build.xml file:

■ On Windows - %ANT_HOME%/bin/ant

■ On Solaris/Linux - $ANT_HOME/bin/ant

Important: If you are not building the Web service sample under
$AGILE_HOME/sdk/samples/wsx, then upload the
wsx/built/MyFirstWebService.jar into $AGILE_
HOME/integration/sdk/extensions. This directory is configurable in
agile.properties on the server. Because the SDK will not generate
WSDL files or WSXs when you invoke
http://hostname:port/virtualPath/services/MyFirstWebService?
wsdl, it will not return the required WSDL file. To generate these files,
do as shown in the next step.

4. Copy the package wsdl4j.jar file described above into Agile
application.ear#APP-INF/lib folder and redeploy the ear file.

Note: This step is necessary to access the WSDL file.

5. In the WSX folder, invoke the applicable command below to generate the WSX
stub.

Note: This step is necessary to access the WSDL file.

■ On Windows - %ANT_HOME%/bin/ant-Dwsx.url=http:
//webserver/virtualPath/services -Dusername=username -Dpassword=password

■ On Solaris/Linux - $ANT_HOME/bin/antDwsx.url=http://webserver
/virtualPath/services -Dusername=username -Dpassword=password

About Web Service Clients
This section describes the tools that you can use to develop client applications and
languages that can generate and process XML files and HTTP request/response
messages.

Client Programming Languages
Although Agile tests and certifies Java for use in developing AIS clients, SOAP
messages are platform- and language-independent, which means you can use virtually
any client programming language that can generate and process XML and process
HTTP request/response messages. For example, you can develop clients in Java,
Visual Basic.Net, C++, C, or Perl.

There are helpful libraries for Java, .Net, Perl, Python, C++, and C, and for other
environments as well. Here are some websites where you can find more information:

■ Apache Axis - Open source SOAP implementation for Java:
http://ws.apache.org/axis/

Creating a Web Service Client

Developing Web Service Extensions 2-13

■ Java Web Services Developer Pack (JWSDP) - Sun's Java implementation of the
SOAP
protocol:http://www.oracle.com/technetwork/java/index-jsp-136025.html

■ Microsoft .Net - An XML Web services platform for Microsoft Windows that you
can use to create Web service clients: http://msdn.microsoft.com/net

■ SOAP::Lite for Perl - A Perl implementation of the SOAP protocol:
http://www.soaplite.com/

Note: For a comprehensive list of other SOAP implementations, refer
to the following website: http://www.soapware.org/

Accessing a Web Service
In general, to access a Web service, you need to do the following:

1. Generate a SOAP request - In many cases, a Web-service-aware code library will
be able to generate client-side stubs that generate an appropriately formatted
SOAP request.

2. Submit that request to WSX through HTTP or HTTPS - Once an appropriate set
of client-side stubs has been generated, a client application can use these stubs to
submit a request.

3. Process the SOAP response - The client-side stubs usually are responsible for
processing the SOAP response and converting the response into an appropriate set
of return objects.

The WSX samples provide examples of how SOAP and Web service-related libraries
can make this process simple. The following sections illustrate, using the
MyFirstWebService sample, the above steps in greater detail.

Creating a Web Service Client
When you build and deploy MyFirstWebService, you also automatically generate the
client-side stubs and the client classes. This section uses MyFirstClient as an example
to describe some general aspects of how to create a Web service client.

Generating the SOAP Request
In most cases, generating an appropriate SOAP request is as simple as making use of
client-side stubs. Many Web-service-aware code libraries are able to generate
client-side stubs for you. This entails using a code generation utility along with the
WSDL for the desired Web service.

Axis provides a WSDL2Java utility that you can use to generate client-side stubs.
Other Web-service-aware libraries have their own client-side stub generation facility.
Microsoft.Net includes a wsdl.exe utility. In the case of the WSX samples, the
client-side stub generation occurs during the sample’s build process.

Within the build.xml file, you will find the following Ant target:

<target name="generate-stubs" depends="init" unless="stubs.present">
<fail unless="wsx.url">wsx.url must be defined</fail>
<axis-wsdl2java output="${built.dir}/src"
url="${wsx.url}/MyFirstWebService?wsdl">
<mapping namespace="http://www.agile.com/ws/SampleWsx" package="client"/>
</axis-wsdl2java>

Creating a Web Service Client

2-14 Agile Product Lifecycle Management SDK Developer Guide – Using Extensions

</target>

This Ant target is responsible for generating the client-side stubs for
MyFirstWebService. This invocation retrieves the MyFirstWebService WSDL from
${ws.url}/MyFirstWebService?wsdl, generates Java code in the client Java package,
and places the source code within the ${built.dir}/src directory. For more information
on the WSDL2Java utility, consult the Axis documentation that you can find on the
Axis website at http://xml.apache.org/axis.

Once the client-side stubs have been generated, the user can use the generated object
definitions to easily generate the appropriate SOAP request. Rather than requiring the
user to understand how to construct a valid SOAP request, these stubs allow the user
to focus on the capabilities of the target Web service operation. Looking at the
MyFirstClient.java sample found within ..\samples\wsx\src\client, note that the
main method contains all the code used to generate the SOAP request.

Submitting the SOAP Request
The next step in a Web service operation is to properly submit the generated SOAP
request to the Web service engine. When dealing with generated client-side stubs, this
step is usually as simple as pointing the stubs to the desired server and invoking a
method on the stubs. You do not need to worry about opening a connection. Instead,
the generated stubs handle these details for you.

The MyFirstClient.java sample found within ..\samples\wsx\src\client illustrates
how to submit the SOAP request in two places:

■ The getStub() method is responsible for pointing the client-side stubs to the
desired Web service engine.

■ The stub.getItemField() method invocation found within the main method is
responsible for submitting the request to the Web service engine. That is, stubs
themselves manage the submission of requests and

The submitting of the request is managed by the stubs themselves; you do not
need to worry about the . Stubs themselves manage the submission of the request,
and you do need to perform the connection or marshaling particulars

The details on how you point the stubs to the desired Web service engine and submit
the request varies for different code libraries. To this end, Oracle recommends that you
consult the documentation for your Web-service-aware code library for the necessary
information.

Processing the SOAP Response
The processing of the SOAP response is usually handled through the generated
client-side stubs. Without these generated stubs, you would be responsible for parsing
the XML-based SOAP response and dealing with the many formatting and
un-marshaling issues that arise. However, when dealing with generated stubs, all of
these details are taken care of for you, allowing you to receive properly typed Java
objects. Rather than require you to parse an XML document and discern what the
returned data is, the stubs automatically do this for you.

The details on how SOAP responses are processed will vary from code library to code
library. Some SOAP servers expect the client to know the datatype through some other
means (perhaps WSDL). Consult the documentation for your Web-service-aware code
library for more information.

Microsoft .NET Interoperability

Developing Web Service Extensions 2-15

Running the Sample on the Web Service Client
To build and deploy the MyFirstWebService sample, use the CLASSPATH
initialization information in the runner.sh (UNIX) or runner.bat (Windows) to run
sample on the Web service client. You can find these files in the SDK_samples.zip. To
access SDK_samples.zip, see the Note in "Client-Side Components" on page 1-2.

To print a usage statement for MyFirstClient, type the following command:

> runner client.MyFirstClient

The following usage statement returns the “Title Block.Description“field for part
1000-02:

> runner client.MyFirstClient -T 15000 -a "attribute_name"
-e virtual_path -h host -l port_no. -n item_number -p password -u username

> runner client.MyFirstClient -T 15000 -a "Title Block.Description"
-e Agile -h localhost -l 80 -n 1000-02 -p agile -u jeffp

Creating an Agile Session inside WSX
By default, the Web container protects the WSX. Therefore, you must specify user
credentials when creating an Agile Session inside the WSX. The following example
creates an Agile session within a protected WSX.

Example 2–2 Setting up a session inside a WSX

AgileSessionFactory factory = AgileSessionFactory.getInstance(null);
IAgileSession session = factory.createSession(null);

Note: Do not override the implicit session.

To have a different user, you must make an explicit SDK session as if connecting from
a remote client. That is, provide an argument to the AgileSessionFactory.getInstance()
method as shown in the following example.

Example 2–3 Creating an explicit session independent of the implicit session

AgileSessionFactory factory = AgileSessionFactory.getInstance ("http://...");
params.put(AgileSessionFactory.USERNAME, ...);
params.put(AgileSessionFactory.PASSWORD, ...);
IAgileSession session = factory.createSession(params);

Microsoft .NET Interoperability
Microsoft's .NET framework technology is a development framework that provides an
application programming interface (API) to the services and APIs of classic Windows
operating systems, while bringing together several disparate technologies that
emerged from Microsoft in the late 1990s: ASP, COM+, XML, SOAP, to name a few.

.NET also brings together all the languages provided by the Visual Studio
environments provided by Microsoft such as Visual Basic, J++, and C++. Also, new
languages have been developed - such as C# (read C Sharp) and the relatively new
language to the .NET family, J# (read J Sharp). J# is actually Java in Microsoft disguise
providing integration of Java into the .NET framework. Yet, J# will not work with the
Java VM. J#, in essence, acts as a wrapper to contain Java-enabled code to be executed

Web Service Extensions FAQs

2-16 Agile Product Lifecycle Management SDK Developer Guide – Using Extensions

by the .NET Common Language Runtime (CLR), Microsoft's own virtual machine
(VM).

The CLR is probably the most important component to the .NET framework. The CLR
provides for the activation of objects, security checks, memory management, object
execution, and memory cleanup (garbage-collection) when objects are no longer being
used.

Another factor behind .NET is that it not only provides for the writing of
Windows-based applications or Web-based applications (throughASP.NET) by using
any of the languages mentioned, it can also integrate these languages into one
common API. Thus, developers can write language independent code that inherit from
classes, catch exceptions, and take full advantage of polymorphism across differing
languages across the .NET framework.

Important: Although the WSX framework (the AXIS SOAP
processor) works fine with AXIS Web service clients, it is not
completely compatible with .Net. Neither Microsoft nor the Apache
group have conducted interoperability tests for AXIS and .Net. For
simple data types, AXIS-based Web services should work fine with
.Net-based Web service clients. For some complex data types (such as
binary attachments), you may experience interoperability problems.
For interoperability information about non-AXIS Web service
implementations deployed outside of the Agile Application Server,
contact the specific Web service vendor.

Web Service Extensions FAQs
This section answers common questions about Web service extensions.

What is Web service extensions (WSX)?

WSX is a framework for Agile customers to extend the functionality of the Agile PLM
server using Web services.

What are Web services?

Web services use the SOAP messaging protocol to provide software services over the
Internet, allowing software components to interact with each other around the world.
Web services are not tied to any one operating system or programming language. They
use WSDL to describe a service's public interface, essentially making Web services
self-describing and therefore relatively easy to use.

What can I do with WSX that I cannot do solely with Agile's Java API?

WSX provides firewall-friendly, XML-based integration with Agile PLM data using the
standard HTTP(S) protocol. It supports any SOAP-compliant programming language.
For example, you can create Perl or .Net clients for a Web service. WSX enables
systems in different companies to interact with each other easily and securely. Services
deployed within WSX take advantage of all the scalability, failover, and clustering
features provided by the application server. There are also compelling performance
benefits to services that run on the application server.

Does WSX support both secured and unsecured connections?

Yes. Requests that come to a Web service from outside the firewall are subject to
different security requirements from requests that originate within the firewall. Two
separate entry points are provided for each WSX, external (outside the firewall) or
internal. External requests are made against a proxy server and then forwarded to the

Web Service Extensions FAQs

Developing Web Service Extensions 2-17

application server. The proxy server resides in the DMZ. Internal requests can be made
against the same secure proxy server, another proxy server that does not reside in the
DMZ, or directly against the application server, as shown in the following figure.

Figure 2–2 How Web service clients connect to the Agile PLM server

What user authentication services are provided by WSX?

By default, WSX is protected by the application server. Username and password
security is enforced whenever a WSX client invokes a service that is protected. For
more information, see "Authenticating Users" on page 2-7.

What SOAP engine does WSX use?

WSX is based on Apache Axis, an open-source implementation of SOAP. For more
information about Axis, refer to the Axis website at http://ws.apache.org/axis/.

Does WSX handle SOAP attachments?

Yes. In fact, Agile Integration Services provides export Data and import Data services
that let you export and import binary attachment files.

Does WSX support stateful sessions?

Yes. The Axis Web services engine at the heart of WSX maintains session state between
connections. Sessions can be based on HTTP cookies or on SOAP headers. This is
useful for generating server-side code that supports more persistent applications
instead of simple, one-shot processes. For more information about Web services
sessions, refer to Axis documentation. You can start with the Axis FAQ located at
http://ws.apache.org/axis/faq.html.

Does WSX support protocols other than HTTP?

No. WSX supports only HTTP-related protocols. For additional security, you can
connect to a Web service using HTTPS and SSL. Over time, WSX may support
additional protocols as needed.

Does WSX support Perl, Python, PHP, or other Web scripting languages?

Web Service Extensions FAQs

2-18 Agile Product Lifecycle Management SDK Developer Guide – Using Extensions

WSX supports any client programming language that can send a SOAP message.
Although the Agile SDK does not provide WSX client examples in Perl, Python, or
PHP, those scripting languages are certainly capable of sending SOAP messages.

Does WSX support UDDI?

No. UDDI is a specification for a universal business registry of Web services that's
designed to enable software to automatically discover and integrate with other
services. It's currently unnecessary to register Agile PLM Web services on the Internet
using UDDI. Agile PLM Web services are typically created for integration with internal
software systems or to exchange data with partners or suppliers. However, Agile may
consider supporting UDDI as the technology matures.

How do I deploy a Web service?

Place the service's JAR files in the agile_home/integration/sdk/extensions folder on the
application server computer. Included with the Web service's JAR file(s) is a
deployment descriptor file called:
META-INF/services/com.agile.wsx.Deployment.wsdd.

The deployment descriptor file is an XML file formatted according to Axis' Web
Service Deployment Descriptor (WSDD) format. It declares and describes the set of
Web services and Web service operations that are exposed throughWSX. The WSDD
file also defines any additional behavior that is necessary when processing incoming
SOAP requests (such as user authentication) or responses (such as reformatting
outgoing data). For more information about WSDD format, refer to the Axis Reference
Guide at http://ws.apache.org/axis/.

When I deploy a Web service and its JAR file(s), do I need to update the application
server classpath?

No. The classpath is updated automatically by a special-purpose classloader. The
classloader extends the application server classpath with any classes located in agile_
home/integration/sdk/extensions (or the location specified for the sdk.extensions
property in the agile.properties file).

If I make changes to a Web service and redeploy it, do I need to restart the
application server?

No. A special-purpose handler ensures that the Web services stack is updated with the
latest files that have been deployed. Whenever a Web service request is made, the
handler checks whether any JAR files located in agile_home/integration/sdk/services
is updated, added, or removed. If so, the entire Web services stack is reset. This feature
enables you recompile your code and redeploy a Web service without having to restart
the application server, saving you precious development time.

Are there any Agile products that use the WSX framework?

Yes. Agile Content Service (ACS) and Agile Integration Services (AIS) both rely on
WSX framework to exchange data with the Agile PLM server.

What are Agile Integration Services?

Agile Integration Services (AIS) are Web services that provide import, export, and
partlist functionality. Included with these Web services are sample Java Clients, but
you can create other SOAP-compliant AIS clients in other programming languages.

What is basic authentication?

Basic authentication is a simple method of authentication. It allows a client program to
provide credentials in the form of an un-encrypted user name and password when
making a request. There is a new Web module that uses basic authentication for
deploying Web service listeners. You can find information to access Web services with

Web Service Extensions FAQs

Developing Web Service Extensions 2-19

basic authentication at:
http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp?topic=%2Fc
om.ibm.websphere.express.doc%2Finfo%2Fexp%2Fae%2Ftwbs_auwschta.html

For example, use this URL for the MyFirstWebService sample files:

http://hostname/Agile/integration/ws/MyFirstWebService?wsdl

Web Service Extensions FAQs

2-20 Agile Product Lifecycle Management SDK Developer Guide – Using Extensions

3

Developing Process Extensions 3-1

3Developing Process Extensions

This chapter includes the following:

■ About Process Extensions

■ Developing Custom Autonumber Sources

■ Configuring Custom Autonumber Sources in Java Client

■ Developing Custom Actions

■ Working with AutoView Extensions

■ Defining and Deploying URL-Based Process Extensions

■ Creating an External Report

■ Deploying Process Extensions in Clustered Environments

■ Best Practices for Copying third Party JAR Files

■ Process Extensions FAQs

About Process Extensions
Process extension (PX) is a framework for extending the functionality of the Agile
PLM system. The functionality can be server-side extensions, such as custom
workflow actions and custom auto numbering, or extensions to client-side
functionality, such as external reports or new commands added to PLM's Actions
menu or the Tools menu. Regardless of the type of functionality that a process
extension provides, all custom actions are invoked on the Agile Application Server
rather than the local client.

Note: In addition to server-side functionalities that you can develop
in the PX framework, Agile PLM's Event framework also supports
developing extensions using Java and Groovy Script, called Java PXs
and Script PXs respectively. Although you can a subset of the custom
actions developed in the PX framework to the Events framework, the
two frameworks have their own unique interfaces and are different.

A process extension is either a Java class deployed on the Agile Application Server, or
a link to a URL. The URL can be a simple website or the location of a Web-based
application. Process extensions enable the Agile PLM server and Agile PLM users to
connect to external systems. You can also use process extensions to add functionalities
that are not provided by the standard Agile PLM client. Using a simple yet powerful

Developing Custom Autonumber Sources

3-2 Agile Product Lifecycle Management SDK Developer Guide – Using Extensions

approach, process extensions open the Agile PLM system, allowing you to tailor the
application to your specific business requirements.

You can use process extensions to create:

■ Custom reports

■ User-driven and workflow-triggered custom actions

■ Custom tools accessible through Agile PLM clients

■ Custom auto numbering

Multiple process extensions can be linked together within a workflow, with each
process extension performing a discrete business function. Process extensions can also
be used to make requests to Web services, such as services built with Agile's Web
service extensions framework.

There are five integration points for process extensions available in Agile PLM clients.
You can invoke process extensions from the following areas:

■ External reports

■ Actions menu

Note: The user can not select the PX from the Action menu in the
Web Client when the current object is in the edit mode.

■ Tools menu

■ Workflow Status

■ Autonumber sources

The additive value, extensibility, and increased usability enabled by custom actions are
innumerable. Oracle Consulting Services (OCS) can help your organization develop
process extensions, including reporting, data import/export, process automation,
validation, and other areas across different Agile modules (PC, PG&C, PPM, PCM,
EC). For more information and to purchase these PXs, please contact your Oracle
representative, Oracle Agile Consulting Services, or you can attend Process Extension
training through Oracle University.

Developing Custom Autonumber Sources
Most Agile PLM object classes have at least one default autonumber source that lets
you create a new object and automatically number it with the next number in the
sequence. Autonumbers can have both an alphanumeric prefix or suffix. You can also
specify the length of the autonumber (a string) and which alpha-numeric characters to
use.

Despite the flexibility that autonumbers provide, some companies have specific
numbering requirements that are not accommodated by Agile PLM's standard
autonumbering capabilities. Such companies can define custom autonumber sources
and add them to the Agile PLM system using the process extensions framework.

If you have administrator privileges, you can define autonumber sources in Agile Java
Client. An autonumber source can use the client's standard numbering capabilities, or
it can be associated with a custom autonumber source. When an Agile PLM client uses
a custom autonumber source to create a new object, the Agile Application Server
invokes the custom Java code to generate the number.

Developing Custom Autonumber Sources

Developing Process Extensions 3-3

Defining a Custom Autonumber Source
To define a custom autonumber source, create a Java class that implements the
ICustomAutoNumber interface, a server-side API in the com.agile.px package. The
code should define the autonumbering logic, for example, prefix, suffix, number of
digits, character set, and so on, and the persistence mechanism. Regarding persistence,
the location where your custom autonumber source stores numbers is entirely up to
your program. For example, you can store numbers in a SQL database like Oracle or in
a file.

The Agile PLM server gets the next number from the custom autonumber source by
calling the getAutoNumber() method, which must be provided in your class. The
following example shows how to implement a Java class for a custom autonumber
source.

Example 3–1 Defining the class for a custom autonumber source

package autonumbers;

import com.agile.px.*;
import com.agile.api.*;

public class ResistorNumber implements ICustomAutoNumber{
public ActionResult getAutoNumber(IAgileSession session, INode actionNode)
{
String num;

// Write your code here to define the custom autonumber source for
Resistors

return new ActionResult(ActionResult.STRING, num);
}

}

Packaging and Deploying a Custom Autonumber Source
After you develop classes for a custom autonumber source, follow these instructions to
properly package and deploy them.

To package and deploy a custom autonumber source:

1. Use your Java development environment or the Java Archive tool (or JAR tool) to
create one or more JAR files for the custom autonumber source. Make sure the JAR
file(s) includes a META-INF/services directory that contains a file named
com.agile.px.ICustomAutoNumber which is a text file that lists the fully qualified
Java class names, one class per line, for the custom autonumber source.

Multiple custom autonumber sources can be included in one package. For
example, the com.agile.px.ICustomAutoNumber file could look like this:

autonumbers.ResistorNumber
autonumbers.CapacitorNumber
autonumbers.DiodeNumber

Note: Paths within a JAR file are case-sensitive. Therefore, make sure
the META-INF folder contained within the JAR file has a name with
all uppercase or all lowercase characters. Otherwise, the custom
autonumber source will not be deployed.

Configuring Custom Autonumber Sources in Java Client

3-4 Agile Product Lifecycle Management SDK Developer Guide – Using Extensions

2. Place the JAR file(s) in the agile_home/integration/sdk/extensions folder on the
same computer where the Agile Application Server is installed.

Note: If you have several application servers in a clustered
environment, you must deploy process extension files on each server
in the cluster.

Configuring Custom Autonumber Sources in Java Client
In Agile Java Client, you can define autonumber sources in the Admin module. To
configure Agile PLM system settings, you must have an administrator account.

To add a custom autonumber source:

1. Log in to Agile Java Client as an administrator.

2. Click the Admin tab.

3. Go to Settings > Data Settings > AutoNumbers.

4. Click the AutoNumbers node.

5. In the AutoNumbers window, click the New button. The Define the Autonumber
dialog box appears.

Figure 3–1 The Define Autonumber dialog box

6. Provide the following information:

■ Name - Type the name of the autonumber source.

■ API Name - This field is automatically filled in after completing the Name
field. Refer to Accessing PLM Metadata with APIName Field in SDK Developer
Guide - Using the APIs.

■ Description - Type a brief description of the autonumber source.

■ Enabled - Select Yes or No.

■ AutoNumber type - Select Custom. This activates the Custom AutoNumber
field.

■ Where Used - Select the subclass(es) that can use this autonumber source.

Developing Custom Actions

Developing Process Extensions 3-5

■ Custom AutoNumber - Select a custom autonumber source from the list (this
is where your class will appear).

7. Click OK to save the autonumber definition.

Assigning Autonumber Sources to a Subclass
When you define an autonumber source, you can specify the subclasses where it is
used in the Where Used field. You can also assign an autonumber source to a subclass
in the Classes node.

To assign autonumber sources to a subclass:
1. Log in to Agile Java Client as an administrator.

2. Click the Admin tab.

3. Open the Data Settings folder.

4. Open the Classes node.

5. In the Classes window, double-click a subclass. The subclass window appears.

6. In the Autonumber Source field, click the Down Arrow button. A popup window
appears.

7. Select autonumber sources in the Choices list, and then click the Right Angle
Button to move them into the Selected list. When you are finished, click OK.

8. Click Save to save settings.

Developing Custom Actions
This section describes how to develop custom actions in Java classes. The Agile PLM
clients can make direct method calls to these classes to perform the actions.

You can initiate a custom action from the following areas of Agile PLM clients:

■ Actions menu

■ Tools menu

■ External reports

■ Workflow Status

Defining a Custom Action
To define a custom action, create a Java class that implements the ICustomAction
interface, a server-side API in the com.agile.px package. The code should define the
action to perform. The Agile PLM server initiates the action by calling the doAction()
method, which must be provided in your class.

The following example shows the code for a HelloWorld class. When the doAction()
method is called, the method returns “Hello World.” If you invoke the HelloWorld
custom action from Actions menu, the string “Hello World” will be logged to the
object's History table. If you invoke the HelloWorld custom action from a workflow,
the string “HelloWorld” will be logged to the change order's History table when it
enters the appropriate Workflow status.

Example 3–2 Defining a HelloWorld class for a custom action

package actions;

Developing Custom Actions

3-6 Agile Product Lifecycle Management SDK Developer Guide – Using Extensions

import com.agile.px.*;
import com.agile.api.*;

public class HelloWorld implements ICustomAction
{

public ActionResult doAction(IAgileSession session, INode actionNode,
IDataObject affectedObject)

{
return new ActionResult(ActionResult.STRING, "Hello World");

}
}

The above HelloWorld class does not perform a useful action, it simply demonstrates
how to implement the class for a custom action.

Formatting New Lines (Line Breaks) in PLM Clients
You can configure new lines in ActionResult outputs in Web and Java clients using the
'\n' character.

Note: SDK only supports the character '\n' for new lines in both Web
and Java clients.

TO format new Line Breaks in PLM:
1. Create a Process Extension that includes with the following ActionResult string.

return ActionResult(ActionResult.STRING, "Hello \n This example tests
formatting new lines \n in the SDK");

2. Run the Process Extension in the Web and Java clients from Actions menu and
Tools menu.

The output should be as shown below:
Hello
This example tests formatting new lines in the SDK.

Custom Actions and User Sessions
When an Agile PLM client invokes a process extension, it does so within the current
user's session. Therefore, the process extension should not create any additional
IAgileSession objects using the Agile API within the process extension code or any
code directly invoked from the process extension. Stated simply, process extensions
never directly create new Agile PLM sessions.

If you have written a Web service extension (WSX) and want to use that code from
within a process extension, you can directly invoke Java methods contained in WSX
classes without using the Web services infrastructure, provided those methods do not
create a new IAgileSession object.

Do not mix Process extension (PX) invocations with Web service extension (WSX)
invocations. The PX code must not invoke any WSX code directly, especially when the
PX and WSX reside in the same application container. If a process extension uses Web
services, WSX could create a new Agile PLM session that is distinct from the session
that the process extension uses.

URL-based process extensions can call an external application that communicates with
the Agile PLM server and performs some action upon the currently selected business

Developing Custom Actions

Developing Process Extensions 3-7

object. To perform such an action, the external application can use the Agile API to
create another Agile PLM session. For more information, see "Creating an Agile PLM
Session from the Target System" on page 3-16.

Packaging and Deploying a Custom Action
After you develop classes for a custom action, follow these instructions to properly
package and deploy them.

To package and deploy a custom action:

1. Use your Java development environment or the Java Archive tool (or JAR tool) to
create one or more JAR files for the custom action. Make sure the JAR file(s)
includes a META-INF/services directory that contains a file named
com.agile.px.ICustomAction, which is a text file that lists the fully qualified Java
class names, one class per line, for the custom action.

You can include multiple custom actions in one package. For example, the
com.agile.px.ICustomAction file can look like this:

actions.HelloWorld
actions.RFQConsolidation
actions.RefreshCustomerFromCRM
actions.StartMfg
actions.ObsoletePartReplacer
actions.WorkflowConflictResolver

Note: Paths within a JAR file are case-sensitive. Therefore, make sure
the META-INF folder contained within the JAR file has a name with
all uppercase or all lowercase characters. Otherwise, the custom action
will not be deployed.

2. Place the JAR file(s) in the agile_home/integration/sdk/extensions folder on the
same computer where the Agile Application Server is installed.

Note: If you have several application servers in a clustered
environment, you must deploy process extension files on each server
in the cluster.

Roles and Privileges for Custom Actions
When you configure a custom action in Agile Java Client, you can specify the roles it
uses. By default, a custom action uses the roles of the current user. However, you can
configure a custom action to have expanded privileges. This is an important feature of
process extensions. In effect, you can enforce the business logic of a custom action by
granting it more privileges than those given to ordinary users. When a custom action
is invoked in the Agile PLM client, its roles and privileges contained within the roles
override the privileges of the current user. Once the custom action is completed, the
client reverts to the user's privileges.

User Privileges for Configuring Process Extensions
To configure a Process Extension, you must have necessary user privileges to get the
user's language setting. If a PX fails, the error message should display in the user's
current language. If the user's roles are not set to include the privilege to load current
user object info, the server will display all messages in the default system language.

Developing Custom Actions

3-8 Agile Product Lifecycle Management SDK Developer Guide – Using Extensions

Configuring Custom Actions in Agile Java Client
In Agile Java Client, you can define custom actions in the Admin module. To configure
Agile PLM system settings, you must log in as a user with administrator privileges.

Using the Process Extension Library
The Process Extension Library is where you define the custom actions that can be used
in Agile PLM clients. When you add a custom action to the Process Extension Library,
you specify how to initiate that action from the client.

To add a custom action to the Process Extension Library:

1. Log in to Agile Java Client as an administrator.

2. Click the Admin tab.

3. Open the Data Settings folder.

4. Open the Process Extensions node.

5. The Process Extension Library

Figure 3–2 The Process Extension Library

6. In the Process Extension Library window, click the Add Process Extension button
to open the Add Process Extension dialog box.

Figure 3–3 The Add Process Extension dialog

7. Type the following information:

■ Name - Type the name of the process extension.

Developing Custom Actions

Developing Process Extensions 3-9

■ API Name - This field is automatically filled in after completing the Name
field. Refer to Accessing PLM Metadata with APIName Field in SDK Developer
Guide - Using the APIs.

■ Description - Type a brief description of the process extension.

■ Type - Select Internal Custom Action. This activates the Internal Custom
Actions field.

■ Internal Custom Action - Select a custom action from the list (your classes
should appear here).

■ Initiate From - Select one or more locations from which the process extension
can be initiated. Choose from the following options:

– Actions menu - Enables you to select the custom action from the Actions
menu of a properly configured class.

– External report - Enables you to generate a report by accessing an external
resource or URL. If the process extension is an internal custom action, the
External Report option is unavailable.

– Tools menu - Enables you to select the custom action from the Tools
menu.

– Workflow status - Invokes the custom action whenever a properly
configured workflow enters a particular status.

If you specify that a process extension is initiated from the Actions menu
or a workflow status, you can configure subclasses or workflows to use it.
If you specify a process extension to generate an external report, you can
use Agile Web Client to create the report. If you specify that a process
extension is initiated from the Tools menu, it is always available in the
Agile PLM client.

■ Roles - Select one or more roles to use for the custom action. To use the roles of
the current user, leave this field blank. To temporarily override roles of the
current user, select one or more roles. Once the custom action is completed, the
client reverts to the current user's roles.

■ Enabled - Select Yes or No.

8. Click OK to save the new process extension.

Assigning Process Extensions to Classes
To add custom actions to the Actions menu of an Agile PLM object (such as a Part or
an ECO), you configure the object's class. Each base class, class, and subclass has a
Process Extensions tab. The custom actions that you assign to a class must be
previously defined in the Process Extension Library.

Process Extensions are inherited from classes and base classes. Consequently, if you
assign a process extension to a base class, it is also assigned to classes and subclasses
beneath the base class.

Note: Process extensions can be assigned to only one level in a class
hierarchy. For example, if a process extension is assigned to the Part
subclass, you cannot assign it to the Item base class.

To assign process extensions to a class:
1. Log in to Agile Java Client as an administrator.

Working with AutoView Extensions

3-10 Agile Product Lifecycle Management SDK Developer Guide – Using Extensions

2. Click the Admin tab.

3. Open the Data Settings folder.

4. Open the Classes node.

5. In the Classes window, double-click a base class, class, or subclass.

6. Click the Process Extensions tab.

7. In the toolbar, click the Assign button. The Assign Process Extension dialog box
appears.

8. Select custom actions in the Choices list, and then click to move them into the
Selected list. When you are finished, click OK.

9. Click OK to save settings.

Assigning Process Extensions to Workflow Statuses
For each workflow status except the Pending status, you can assign one or more
custom actions that are initiated when the workflow enters that status. The custom
actions you assign to a workflow status must be previously defined in the Process
Extension Library.

Note: Automated Transfer Orders (ATOs) do not support
workflow-triggered process extensions.

To assign process extensions to a workflow status:
1. Log in to Agile Java Client as an administrator.

2. Click the Admin tab.

3. Open the Workflow Settings folder.

4. Open the Workflows node.

5. In the Workflows window, double-click a workflow, for example, a Default
Workflow.

6. Click the Status tab.

7. Select a status other than Pending. The selected status updates the Workflow
Criteria properties table that appears below the status table.

8. Double-click the selected status criterion in the Workflow Criteria properties table.

9. In the Process Extensions list, click the Down Arrow button. A popup window
appears.

10. Select custom actions in the Choices list, and then click to move them into the
Selected list. When you are finished, click OK.

11. Click Save to save settings.

Working with AutoView Extensions
This section describes AutoVue, AutoVue's Augmented Business Visualization (ABV),
and shows using AutoVue's ABV to view PLM Change objects in AutoVue.

Working with AutoView Extensions

Developing Process Extensions 3-11

About AutoVue and AutoVue Viewer
AutoVue is a solution that enables viewing and marking up documents, drawings, and
CAD files using a Web browser. AutoVue's ABV is an integration of Autovue and
Agile PLM that supports executing context-based operations in Agile by selecting a
part in AutoVue Viewer applet and choosing a related operation. For a list of functions
that are supported by AutoVue Viewer, refer to
https://blogs.oracle.com/enterprisevisualization/entry/context_is_
everything.

The overall solution that enables this interaction, involves Javascript and PX code to
interact with Agile APIs.

■ The Javascript and PX code are authored, tested, and maintained by the AutoVue
team. The Javascript component is bundled as part of the standard Agile install,
and connected to the standard initialization process for the AutoVue Client in
Agile.

■ The APIs required for this solution are authored, tested, and maintained by the
Agile team.

Note: The focus of this SDK Guide is IAutoVueExtension and the
other PLM Java interfaces that supports this interaction.

PX Interfaces for AutoVue Extension
The IAutoVueExtension interface in the PX framework supports PLM interactions with
AutoVue Viewer.

public interface IAutoVueExtension {
public String getDefinition(IAgileSession session);
public AutoVueActionResult doAction(IAgileSession session, Map param);
}

The getDefinition method returns the hotspot definitions used by the AutoVue Viewer
applet. A hotspot definition is a string of semicolons that are separated by key-value
pairs and contain attributes such as “Create ECO” or “Create ECR”.

Example 3–3 A string of semicolon separated key-value pairs in Java

String def =
"DEFINITION_REGEX=server;" +
"DEFINITION_MATCHCASE=false;" +
"DEFINITION_TOOLTIP=AutoVue 2D Professional;" +
"DEFINITION_COLOR=(0,0,255,128);" +
"DEFINITION_ACTIONS=Menu1, Menu2;" +
"DEFINITION_TYPE=DEFINITION_TYPE_TEXT;DEFINITION_KEY=agileDef";

With the exception of the DEFINITION_TYPE and DEFINITION_TYPE keys, all other
keys are defined in Augmented Business Visualization Developer's Guide. The
DEFINITION_TYPE and DEFINITION_KEYS are added by this design to pass
definition type and definition key information from the PX to setHotSpotHandler
method in the AutoVue viewer applet.

The doAction method performs the action invoked in AutoVue viewer applet's popup
menu item. The param argument contains the following information about the
selected hotspot and action:

Working with AutoView Extensions

3-12 Agile Product Lifecycle Management SDK Developer Guide – Using Extensions

■ definitionKey - definition key returned in the definition string, for example,
agileDef

■ hotspotKey - hotspot key

■ action - the selected caption in the menu item

■ properties - properties of the selected hotspot

Note: It is not necessary to configure the AutoVue extension PX in
Java Client, because the PX runs with the user's roles/privilege and is
not granted additional roles/privileges.

Actions Performed by the Calling PX
The Agile Web Client acts as a middleman between AutoVue Viewer Applet and the
PX.

■ When the Viewer applet is initialized, Web Client gets the metadata used by
viewer from the PX.

■ When an action is triggered, Web Client collects the data from the Viewer and
passes it to the PX. Upon completion of PX functions, Web Client gets the result of
PX operations and performs the required task in Web Client. For example, displays
a newly created object in Web Client.

■ When an exception occurs in the PX, Web Client will take the applicable action
and displays the result.

Note: There should be only one AutoVue PX in the system. If there
are more than one AutoVue PXs, the system will the first one defined
in file META-INF\services\com.agile.px.IAutoVueExtension.

Displaying Results of PX Actions
An ActionResult() method directs the behavior of the Client upon completion of
AutoVue PX processes and the corresponding UI behavior.

Three Client actions upon completion of PX processes are:

■ Display message - A message is displayed in the browser's window.

■ Display exception - When exceptions occur upon completion PX processes, they
are displayed in the browser window

■ Display object - An object is displayed in Web Client's browser window

Example 3–4 Defining Hotspots for a PDF file

public class ABVActions implements IAutoVueExtension
{

public String getDefinition(IAgileSession session) {
String def =
"DEFINITION_REGEX=server;" +
"DEFINITION_MATCHCASE=false;" +
"DEFINITION_TOOLTIP=AutoVue 2D Professional;" +
"DEFINITION_COLOR=(0,0,255,128);" +
"DEFINITION_ACTIONS=Display Message,Display Object,Display Exception;" +
"DEFINITION_TYPE=DEFINITION_TYPE_TEXT;DEFINITION_KEY=agileDef";

return def;
}

Defining and Deploying URL-Based Process Extensions

Developing Process Extensions 3-13

public AutoVueActionResult doAction(IAgileSession session, Map params) {
String action = (String) params.get("action");
if ("Display Message".equalsIgnoreCase(action)) {

return new AutoVueActionResult(AutoVueActionResult.DISPLAY_MESSAGE,
"Message from PX - Display Message is clicked.");

} else if ("Display Object".equalsIgnoreCase(action)) {
try {
IItem item = (IItem) session.getObject(IItem.OBJECT_TYPE, "1000-02");
return new AutoVueActionResult(AutoVueActionResult.DISPLAY_OBJECT,

item.getId());
} catch (APIException e) {

e.printStackTrace();
}

} else if ("Display Exception".equalsIgnoreCase(action)) {
return new
AutoVueActionResult(AutoVueActionResult.SHOW_EXCEPTION,

"Message from PX - Display Exception is clicked.");
}
return new
AutoVueActionResult(AutoVueActionResult.DISPLAY_MESSAGE,

"Message from PX - " + action + " is performed.");
}

}

Defining and Deploying URL-Based Process Extensions
The Agile Web Client uses the URL-Based Process Extensions to provide access from
the Web Client to external applications.When the Agile PLM Web Client invokes a
process extension that references a URL, the client displays the Web page in a new
browser window.

What types of Web-based applications could be used for URL-based process
extensions? Again, there are few limitations. One example might be a Web-based
application that performs business rules validation for an Agile PLM object and
updates the object accordingly. The following figure shows the program flow of such a
process extension.

Figure 3–4 Process flow for a URL-based process extension

You can also use URL-based process extensions to reference a Web-based report
engine. To create an external report that uses a URL-based process extension, choose
Create >Report > External in Agile Web Client. For more information, see "Creating an
External Report" on page 3-19.

Note: Agile Java Client does not support URL PXs.

Defining and Deploying URL-Based Process Extensions

3-14 Agile Product Lifecycle Management SDK Developer Guide – Using Extensions

Before Building a URL-Based Process Extension
Please note the following requirements and constraints when building a URL-based
process extension:

■ URL-based process extensions cannot be initiated by a change in a workflow,
because an Agile PLM client may not be active to trigger the change in status

■ URL-based process extensions are not supported for Sourcing projects (IProject)

Defining a URL-Based Process Extension
Following procedure defines a URL-based Process Extension.

To define a URL-based process extension do as follows:
1. Log into the Agile Java Client as an administrator.

2. Click the Admin tab.

3. Open the Data Settings folder.

4. Open the Process Extensions node.

5. In the Process Extension Library window, click the New button. The Add Process
Extension dialog box appears.

Type the following for different fields:

■ Name - Type the name of the process extension.

■ Description - Type a brief description of the process extension.

■ Type - Select the URL.

■ Address - Specify the address of a Web page. You must specify the complete
URL, including the protocol. For example, to specify the Oracle Corporation
website, you would type http://www.oracle.com, not www.oracle.com.

■ Initiate From - Select one or more locations from which the Web page can be
initiated. Choose from the following options:

– Actions menu - Enables you to select the Web page from the Actions
menu of a properly configured class.

– Dashboard - See Developing Dashboard Management Extensions.

– External report - Use this to generate a report by accessing the Web page.

– Tools menu - Use this to select the Web page from the Tools menu.

If you specify that a process extension is initiated from the Actions menu,
you can configure subclasses to use it. If you specify that the process
extension to generate an external report, you can use the Agile Web Client
to create the report. If you specify that the process extension is initiated
from the Tools menu, which is always available in the Agile PLM client.

■ Enabled - Select Yes or No.

6. Click OK to save the new process extension.

Setting Cookie Expiration Properties for URL Process Extensions
Navigating the URL PX generates a Cookie, and once created, the Cookie can be
reused to intrude the PLM System. The Cookie Expiration feature is implemented to
protect the PLM System from harmful intrusion by unauthorized user. This feature

Defining and Deploying URL-Based Process Extensions

Developing Process Extensions 3-15

generates a unique token that is passed inside the j_password cookie which you can
use only once. The following two attributes in the agile.properties file control the
settings for these properties:

■ agile.sso.checkOneTimePXToken - This property enables/disables the feature.

■ agile.sso.expirationTime - This property controls the duration of the token and
once the set duration expires, the token is invalidated and the Cookie is no longer
reusable.

The default settings for these properties are (true) and 120 seconds respectively, and
the PLM Administrator can reset both properties:

■ agile.sso.checkOneTimePXToken = 'true'

■ agile.sso.expirationTime = 120

Passing Encoded Agile PLM Information to Other Applications

Note: Agile SDK does not support single sign-on through password
protected external application servers. However, Agile Web Client can
propagate encoded user credentials, and the SDK can reuse these
credentials when your PX application uses the Agile SDK. To provide
password protected access to an external Application Server, you must
hard code the username and password to access the external servlet
into your code.

If a URL-based process extension is initiated from an object's Actions menu, the
object's composite key and class ID, as well as the current username, are encoded in
the URL using the GET method. The client encodes the data as ID=value pairs and
appends it to the end of the URL. Each ID is prefixed with “agile,” as shown in the
following example.

http://www.acoolwebsite.com/?agile.username=wangsh&agile.classId=10141&agile.100=1
000-02&agile.1014=A&agile.siteName=Taipe

Note: Unlike the Actions menu, there isn't an Agile PLM object
associated with commands on the Tools menu. Consequently, if a
URL-based process extension is initiated from the Tools menu, the
URL is not augmented with encoded object data.

In addition to information encoded in the URL of a URL-based process extension, the
encrypted username and its associated password are available from the j_username
and j_password cookies, respectively, which are automatically passed to the target
system if the following conditions are met:

■ The user initiates a URL-based process extension from Agile Web Client.

Note: Your Web application must reside in the domain specified in
the cookie.domain property of agile.properties. Otherwise, security
cookies will not propagate.

■ The target system is permitted to receive cookies.

■ The target system is in the same domain as the Agile PLM system.

Note: If the target system is located outside the company firewall, it
should be a secure Web server using SSL.

Defining and Deploying URL-Based Process Extensions

3-16 Agile Product Lifecycle Management SDK Developer Guide – Using Extensions

Creating an Agile PLM Session from the Target System
Using authentication information contained in the HTTP request received from a
URL-based process extension initiated from Agile Web Client, the target application
can use the Agile API to create an IAgileSession. The Agile API client can then retrieve
and configure the Agile PLM object referenced by the HTTP request.

When a user logs into Agile Web Client, the authentication process creates a pair of
cookies (j_username and j_password) on the server computer that store the user's
encrypted user name and password.

Note: These cookies will expire after the duration set by the Agile
PLM Administrator.

When you initiate a URL-based process extension from Agile Web client, the target
system can use cookies to create an Agile PLM session. In effect, Agile Web client and
the Agile API client on the target system can share a single sign-on.

Note: The Agile Java Client, unlike the Web client, does not create
client-side cookies. Therefore, it does not support the single sign-on
feature for process extensions.

Cookies are designed to be shared among computers within the same domain. For
example, if during installation of Agile PLM, you configure the domain to be
“.agile.agilesoft.com”, then all computers ending with “.agile.agilesoft.com” can use
the j_username and j_password cookies.

For more information, see http://cookiescache.tripod.com/.

The following example shows how to use the Agile API to extract cookie information
from the HTTP servlet request and use that information to generate an IAgileSession.
The value of the AgileSessionFactory.PX_REQUEST field, which is the key used to
create the session, is set to be equal to the servlet request.

Example 3–5 Creating IAgileSessions from servlet requests with PX_REQUEST

private IAgileSession connect(HttpServletRequest request) throws ServletExceptio
{
HashMap params = new HashMap();
params.put(AgileSessionFactory.PX_REQUEST, request);
session = factory.createSession(params);
return session;

}

If the target application is not servlet-based, there is another way to use the cookie
information to create a session. Rather than using AgileSessionFactory.PX_REQUEST,
you can use AgileSessionFactory.PX_USERNAME and AgileSessionFactory.PX_
PASSWORD fields as keys for the HashMap. The values of these fields are the values
of the j_username and j_password cookies, respectively.

Defining and Deploying URL-Based Process Extensions

Developing Process Extensions 3-17

Example 3–6 Creating IAgileSessions with PX_USERNAME and PX_PASSWORD fields

private IAgileSession connect(Cookie[] cookies) throws Exception {
factory = AgileSessionFactory.getInstance("http://agileserver/Agile");

HashMap params = new HashMap();
String username = null;
String pwd = null;
for (int i = 0; i < cookies.length; i++) {

if (cookies[i].getName().equals("j_username"))
username = cookies[i].getValue();

else if (cookies[i].getName().equals("j_password"))
pwd = cookies[i].getValue();

}
params.put(AgileSessionFactory.PX_USERNAME, username);
params.put(AgileSessionFactory.PX_PASSWORD, pwd);
session = factory.createSession(params);
return session;

}

Retrieving an Agile PLM Object from an HTTP Request
If you invoke a URL-based process extension from an object's Actions menu, you may
want the target application to retrieve the Agile PLM object and modify it. The object's
composite key and class ID are encoded in the URL using the GET method. To help the
target application to retrieve the referenced IAgileObject, the Agile API provides an
overloaded use of the IAgileSession.getObject() method, as shown in the following
example. The SDK extracts the object ID information from the request and uses it to
retrieve the specified object.

Example 3–7 Retrieving an Agile PLM object from an HTTP request

private IAgileObject getAgileObject(HttpServletRequest request)
throws ServletException {

IAgileObject obj = session.getObject(null, request);
return obj;

}
If the target application is not servlet-based, you can use the normal
IAgileSession.getObject() methods to retrieve the referenced object. For the params
parameter of getObject(), specify a HashMap containing all required attributes for the
object's class; the necessary attribute/value pairs are contained in the encoded URL.
For a list of identifying attributes for each Agile PLM class, see the following section.

Identifying Attributes for Agile PLM Classes
Each Agile PLM class has a different set of identifying attributes that could be passed
as parameters in an encoded URL. For example, a Change object would pass its class
ID and Cover Page.Number attribute. The following table lists the identifying
attributes for each Agile PLM class.

Class Parameter Description

Change agile.classID Class ID of selected object

Change agile.1047 Cover Page.Number

Customer agile.classID Class ID of selected object

Customer agile.5110 General Info.Customer
Number

Defining and Deploying URL-Based Process Extensions

3-18 Agile Product Lifecycle Management SDK Developer Guide – Using Extensions

Commodity agile.classID Class ID of selected object

Commodity agile.agile.2000004284 Title Block.Name

Declaration agile.classID Class ID of selected object

Declaration agile.agile.2000002615 Title Block.Name

Discussion agile.classID Class ID of selected object

Discussion agile.18417 Cover Page.Number

File Folder agile.classID Class ID of selected object

File Folder agile.6173 Title Block.Number

File Folder agile.7951 Title Block.Version

Item agile.classID Class ID of selected object

Item agile.1001 Title Block.Number

Item agile.1014 Title Block.Rev

Item agile.siteName Site name - If All is selected,
this parameter is omitted

Manufacturer Part agile.classID Class ID of selected object

Manufacturer Part agile.1647 General Info.Manufacturer
Name

Manufacturer Part agile.1648 General Info.Manufacturer
Part Number

Manufacturer agile.classID Class ID of selected object

Manufacturer agile.1754 General Info.Manufacturer
Name

Package agile.classID Class ID of selected object

Package agile.3110 Cover Page.Package Number

Price agile.classID Class ID of selected object

Price agile.10355 General Information.Number

Price agile.10357 General Information.Rev

Program agile.classID Class ID of selected object

Program agile.18041 General Info.Number

Sourcing Project agile.classID Class ID of selected object

Sourcing Project agile.14824 General Info.Number

PSR agile.classID Class ID of selected object

PSR agile.4856 Cover Page.Number

QCR agile.classID Class ID of selected object

QCR agile.4029 Cover Page.QCR Number

Report1 agile.classID Class ID of selected object

Report1 agile.8071 General Info.Name

RFQ agile.classID Class ID of selected object

RFQ agile.13925 CoverPage.RFQ Number

Class Parameter Description

Creating an External Report

Developing Process Extensions 3-19

Creating an External Report
In Agile Web Client, you can connect to an external resource or URL to generate an
external report. Before you create an external report, you must add the URL associated
with the report to the Process Extension Library. For more information, see "Defining a
URL-Based Process Extension" on page 3-14.

To create reports in Agile Web Client, you must have the Create Reports privilege.

To create an external report:
1. Log in to Agile Web Client.

Note: You cannot create external reports in Agile Java Client.

2. Choose Create > Report > External. The Report Creation Wizard appears.

3. Type the name of the report. Click Next.

4. Type the following General Information:

■ Description - Type a brief description of the report.

RFQ Response agile.classID Class ID of selected object

RFQ Response agile.14472 CoverPage.RFQ Number

RFQ Response agile.14452 CoverPage.SupplierName

Site agile.classID Class ID of selected object

Site agile.11882 General Info.Name

Specification agile.classID Class ID of selected object

Specification agile.2000001969 Title Block.Name

Substances agile.classID Class ID of selected object

Substances agile.2000001124 Title Block.Name

Supplier agile.classID Class ID of selected object

Supplier agile.17761 General Info.Number

Transfer Order agile.classID Class ID of selected object

Transfer Order agile.12673 Cover Page.Transfer Order
Number

User agile.classID Class ID of selected object

User agile.11617 General Info.Username

User Groups agile.classID Class ID of selected object

User Groups agile.12077 General Info.Name

Note: Although the process extensions framework can encode
Report information in a URL, Report objects are not supported by the
Agile API. Therefore, you cannot use the Agile API to retrieve Report
objects referenced in a URL.

Class Parameter Description

Deploying Process Extensions in Clustered Environments

3-20 Agile Product Lifecycle Management SDK Developer Guide – Using Extensions

■ Process Extension - Select a process extension. The process extension you
select is associated with a URL, such as the location of Web-based report
engine.

■ Folder - Select the report's parent folder.

5. Click Finish.

Deploying Process Extensions in Clustered Environments
If the Agile PLM installer was not run on a server in the application server cluster, the
/agile_home/integration/sdk/extensions folder will not exist on that server. In this
case, you must create the folder manually and copy any process extension JAR files
into that folder as shown below.

To manually create deployment folders for process extensions:
1. Create the following folder on all application servers in the cluster (if it does not

exist): /agile_home/integration/sdk/extensions

2. Load all process extension JAR files in the /agile_
home/integration/sdk/extensions folder on each server in the cluster.

Best Practices for Copying third Party JAR Files
If your PX code uses 3rd party JAR files such as axis.jar, you can copy them in the
shared library and add them to classpath using the following procedures.

Use the following procedure to configure your shared libraries

To configure shared libraries in Oracle Application Server:
1. Place all 3rd party JAR files in a folder, for example, D:\commonLib.

2. Stop the Agile server.

3. Navigate to OAS_HOME\j2ee\home\application-deployments\Agile.

4. Open orion-application.xml in a text editor.

5. Append a line to specify your library path:

library path="ABSOLUTE_PATH_TO_YOUR_LIBRARY" /

Specify the absolute path to the folder having those required JAR files.

For example, library path="D:\commonLib“after these two lines:

library path="../APP-INF/lib" /
library path="../APP-INF/classes"/

6. Start the Agile Server.

Procedures in this section show how to deploy the following dependent JAR files:

■ The dependent JAR file from 3rd party JAR files that do not dependent on Agile
JAR files

■ Any dependent JAR file from 3rd party JAR files that are dependent or not
dependent on Agile JAR files

To deploy the 3rd party JAR files on WebLogic:
1. Stop all servers in the domain.

Best Practices for Copying third Party JAR Files

Developing Process Extensions 3-21

2. Copy the shared JAR file(s) to the lib subdirectory of the domain directory.

For example, cp c:\3rdpartyjars\utility.jar AGILE_HOME\agileDomain\lib

Note: The WebLogic Server must have read access to the lib
directory during startup.

Note: The Administration Server does not automatically copy files in
the lib directory to Managed Servers on remote machines. If you have
Managed Servers that do not share the same physical domain
directory with the Administration Server, you must manually copy the
JAR file(s) to the domain_name/lib directory on the Managed Servers.

3. Start the Administration Server and all Managed Servers in the domain. WebLogic
Server appends JAR files found in the lib directory to the system classpath.
Multiple files are added in alphabetical order.

To deploy the dependent JAR files from a WebLogic Admin console:
1. In WLS Administration console, select Deployments > Control > Install.

2. Select the JAR file and then click

3. In Install Application Assistant accept the default settings and click Finish.

Best Practices for Copying third Party JAR Files

3-22 Agile Product Lifecycle Management SDK Developer Guide – Using Extensions

4. Make sure the library pointed to the Agile Server/cluster.

5. Create a file called weblogic-application.xml with the following content:

<?xml version="1.0" encoding="UTF-8"?>
<wls:weblogic-application xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:wls=http://www.bea.com/ns/weblogic/weblogic-application
xsi:schemaLocation="http://www.bea.com/ns/weblogic/weblogic-application
http://www.bea.com/ns/weblogic/weblogic-application.xsd
http://java.sun.com/xml/ns/j2ee http://java.sun.com/xml/ns/j2ee/j2ee_1_4.xsd">
<wls:library-ref>
<wls:library-name><Shared Library Jar file name></wls:library-name>
</wls:library-ref>
</wls:weblogic-application>

6. Place the weblogic-application.xml file in Agile_
Home\agiledomain\applications\application.ear\META-INF folder in the
Administration server.

7. Restart the Administration and all the Managed servers.

To deploy the properties files on WebLogic
1. Stop all servers in the domain.

2. Copy the properties file(s) to a directory as in AGILE_HOME/pxConfig in each
server.

Note: WebLogic Server must have read access to the directory
during startup. The Administration Server does not automatically
copy files in the directory to Managed Servers that are on remote
machines. If you have Managed Servers that do not share the same
physical domain directory that the Administration Server uses, you
must manually copy the properties files to the AGILE_
HOME/pxConfig directory on the Managed Servers.

3. Add the directory containing the properties file(s), for example, AGILE_
HOME/pxConfig to the WebLogic CLASSPATH as shown below:

a. Edit AGILE_HOME/agileDomain/bin/setEnv.bat in all Managed Servers

b. Add AGILE_HOME/pxConfig folder to the CLASSPATH

set CLASSPATH=%JAVA_HOME%/lib/tools.jar
set CLASSPATH=%CLASSPATH%;%LIB_HOME%/ojdbc14.jar

Best Practices for Copying third Party JAR Files

Developing Process Extensions 3-23

setCLASSPATH=%CLASSPATH%;%WLS_HOME%/server/lib/
weblogic_sp.jar;%WLS_HOME%/server/lib/weblogic.jar
set ClASSPATH=%CLASSPATH%;%LIB_HOME%/agbase.jar
set CLASSPATH=%CLASSPATH%;%LIB_HOME%/wlsauth.jar
set CLASSPATH=%CLASSPATH%;%LIB_HOME%/crypto.jar +
set CLASSPATH=%CLASSPATH%;%LIB_HOME%/xercesImpl.jar
set CLASSPATH=%CLASSPATH%;%LIB_HOME%/jdom.jar;
set CLASSPATH=%CLASSPATH%;%LIB_HOME%/log4j.jar;
set CLASSPATH=%CLASSPATH%;%LIB_HOME%/jobaccess.jar;
set ClASSPATH=%CLASSPATH%;%LIB_HOME%/colt.jar
set ClASSPATH=%CLASSPATH%;%LIB_HOME%/jms.jar
set ClASSPATH=%CLASSPATH%;%LIB_HOME%/jndi.jar
set ClASSPATH=%CLASSPATH%;%LIB_HOME%/tibjms.jar
set ClASSPATH=%CLASSPATH%;%LIB_HOME%/oc4jclient.jar
set ClASSPATH=%CLASSPATH%;%LIB_HOME%/oc4j.jar
set CLASSPATH=%CLASSPATH%;../ldaplib/ldaputil.jar
set CLASSPATH=%CLASSPATH%;D:\Agile931b28/agileDomain/config
set CLASSPATH=%CLASSPATH%;AGILE_HOME/pxConfig

4. Start the Administration Server and all Managed Servers in the domain

Process Extensions FAQs
This section answers common questions about process extensions.

What are process extensions?

Process extensions extend the functionality of Agile PLM clients through custom
actions, external reports, and custom autonumbering, thus tailoring the system to fit a
customer's business. You can use Process extensions to connect the Agile PLM server
and Agile PLM users to external systems.

What types of actions can you define with process extensions?

Process extensions support two types of process extensions actions. They are custom
autonumber sources and custom actions. Custom autonumber sources define the
numbering sequences used by classes of objects. Custom actions are programs that can
be run from Agile PLM clients.

A process extension can also be a reference to a URL. The URL can be a simple website
or the location of a Web-based application.

Can Process Extensions support asynchronous operations?

Agile Process Extensions only support synchronous operations. If your Process
Extension requires asynchronous behavior, you must modify your PX code to
implement asynchronous solutions of your choice. For example, you can spawn a
thread.

Can I use Agile's Java API within a process extension program?

Yes. You can use Agile's Java API and other external Java APIs. The only requirement
is that you implement either the ICustomAutoNumber or the ICustomAction
interface, depending on the type of extension.

How do you initiate a process extension in an Agile PLM client?

Custom actions can be triggered in the following ways:

■ A change to a Workflow status.

■ Selecting a custom action from the Tools menu.

■ Selecting a custom action from the object's Actions menu.

Best Practices for Copying third Party JAR Files

3-24 Agile Product Lifecycle Management SDK Developer Guide – Using Extensions

■ Selecting an external report that uses a custom action.

■ Creating an object of a class that uses a custom autonumber source.

Do process extensions have special security requirements?

No. The process extensions stack sits on the Agile Application Server, so custom
actions and custom autonumber sources operate within an environment where the
user has already been authenticated and authorized.

How are roles defined for custom actions?

By default, a custom action uses the roles of the current user. However, to configure a
custom action to have expanded privileges, you can specify the roles required for a
custom action in the Process Extension Library of Agile Java Client. When you use a
custom action in the Agile PLM client, roles that are specified for the custom action,
override the privileges of the current user. Once the custom action is completed, the
client reverts to the user's original privileges.

How do I configure and deploy a process extension?

Place the JAR file(s) for a process extension in the agile_
home/integration/sdk/extensions folder on the application server. Included with the
JAR file(s) should be a file named com.agile.px.ICustomAutoNumber or
com.agile.px.ICustomAction in the META-INF/services directory. The contents of
these files are the fully qualified Java class names, one class per line, for a custom
autonumber source or a custom action, respectively.

After I deploy a process extension program on the application server, how do I
enable it?

Once process extensions have been deployed, you can configure them for use within
Agile PLM clients. In Agile Java Client, you can add custom actions to the Process
Extension Library and custom autonumbers to the Autonumbers node table.

After I've deployed JAR file(s) for a custom action or custom autonumber source, do
I need to update the application server classpath?

No. The classpath is updated automatically by a special-purpose classloader. The
classloader extends the application server classpath with any classes located in agile_
home/integration/sdk/extensions (or the location specified for the sdk.extensions
property in the agile.properties file).

How do you create a custom autonumber source?

Create a Java class that implements the ICustomAutoNumber interface, a server-side
API in the com.agile.px package. The code defines the autonumbering logic, for
example, prefix, suffix, number of digits, and so on, and the persistence mechanism.
The Agile PLM system gets the next number from the custom autonumber source by
calling the getAutoNumber() method.

How do you assign custom autonumber sources in Agile Java Client?

In the Classes node, you assign autonumber sources to specific subclasses. In the
AutoNumbers node, you can also assign subclasses to an autonumber source.

How do you create a custom action?

Create a Java class that implements the ICustomAction interface, a server-side API in
the com.agile.px package. The code defines the custom action, whether to modify the
current object, create an external report, integrate the Agile PLM client with an
external system, or perform some other business logic. When an Agile PLM client
initiates a custom action, the Agile PLM system calls the doAction() method.

Best Practices for Copying third Party JAR Files

Developing Process Extensions 3-25

How do you associate custom actions with the Tools menu, the Actions menu, Status
of a Workflow, and external reports?

In Agile Java Client, open the Process Extensions node to add and configure custom
actions. You can associate custom actions with a given Workflow status, the Tools
menu and Actions menu for classes. A custom action associated with a Workflow
status is initiated automatically when the Workflow assumes that status. A custom
action appears on the Tools menu when it is invoked From property and is set to the
Tools menu. A custom action appears on the Actions menu for an object when you add
it to the Process Extensions tab of the subclass. As indicated earlier in this Guide,
external reports can only use URL PXs. As such, a custom action associated with an
external report is triggered automatically when that report is executed.

In what order do process extensions appear on the Tools menu or Actions menu of
Agile PLM clients?

If you add process extensions to either the Tools menu or an object's Actions menu,
they are listed after standard menu commands in the order they were created. You
cannot reorder or otherwise manage commands on the Tools menu or Actions menu.

What is the inheritance model of custom actions that are assigned to classes?

Custom actions can be defined at the base class level, the class level, or the subclass
level. A custom action defined at the base class level is available to all classes and
subclasses beneath the base class. A custom action defined at the subclass level is
available only to that subclass.

Where do I put PX and WSX configuration property files?

After deployment changes in Agile PLM Release 9.2.2.2, the agileDomain\config
directory is no longer in the classpath. You can put PX and WSX property files in this
directory: \oas\j2ee\home\applications\Agile\APP-INF\classes\.

Best Practices for Copying third Party JAR Files

3-26 Agile Product Lifecycle Management SDK Developer Guide – Using Extensions

4

Developing Dashboard Management Extensions 4-1

4Developing Dashboard Management
Extensions

This chapter includes the following:

■ About Dashboard Management Extensions

■ Developing Custom Chart Dashboard Management Extensions

■ Developing Custom Table Dashboard Management Extensions

About Dashboard Management Extensions
Similar to Process Extensions, Dashboard Management Extensions (DX) extend the
functionality of the Agile PLM system. The Extensions support the following formats
to access and display PLM data on the Agile PLM Dashboard:

■ ChartDataModel for charts

■ Collections for tables

When data is defined using these formats, Agile servers can interpret and process this
data, and Agile Java Client users with administrator privileges can define Dashboard
Tabs and display them in one of the following views or layouts:

■ Chart

■ Table

■ Custom (URL)

The SDK provides the API's that enable connecting the Agile PLM server to internal
Agile databases to get the required content, format it as required by the DXs, and
display the data in the Agile PLM Dashboard. Similarly, you can use other Java API's
such as JDBC to connect to external databases for content.

Briefly, DXs provide the data, Dashboard Tabs and the formats to display the data
(tables, charts, and URLs) are configured in Agile Java Client. Finally, Agile PLM users
with proper privileges can view the Dashboard Tab and displays in Agile Web Client.

This chapter provides both background information and procedures to develop these
methods.

Roles and Privileges in Dashboard Management Extensions
You must set the Dashboard Tab View privilege in Admin>UserSettings>Privileges so
that PLM users can view the Tabs and the related data in Web Client. In addition,
Dashboard Tabs are controlled by privileges, and Agile PLM users must have the

Developing Custom Chart Dashboard Management Extensions

4-2 Agile Product Lifecycle Management SDK Developer Guide – Using Extensions

necessary roles and privileges to view the data on the Tab. Procedures to configure the
views and assign privileges are fully documented in Agile PLM Administrator Guide.

Developing Custom Chart Dashboard Management Extensions
The ICustomChart interface enables creating the necessary DXs that will display the
required data in chart formats. This interface exposes the method which returns an
instance of the public ChartDataModel getChart(IAgileSession session, Map params)

Note: Implementations of this interface must have no-arg
constructors and they must be reentrant.

Understanding ChartDataModel and ChartDataSet
The ChartDataModel class organizes the input data in a chart format. It is a concrete
class that is exposed to the DXs and It contains one or more ChartDataSet(s) that you
need to construct the chart.

A ChartDataSet is another concrete class that is exposed to the DXs. It contains the
data required to plot a chart. For example, X-axis and Y-axis values and labels. The
ChartDataModel is a placeholder for all the data sets.

Note: The ChartDataModel and ChartDataSet classes are exposed in
com.agile.px package.

Defining a Custom Chart DX Data Source
As indicated above, chart DXs display the data in chart formats. The code in
Example 4–1, "Defining a DX to display data in a chart format" uses ICustomChart and
the exposed classes (ChartDataModel and ChartDataSet) to display the differences
between morning and evening temperatures for every day of the week, using
predefined input data in a chart format.

Example 4–1 Defining a DX to display data in a chart format

package dashboard.chart;

public ChartDataModel getChart(IAgileSession session,Map params) throws Exception{
import java.util.Map;
import com.agile.api.IAgileSession;
import com.agile.px.ICustomChart;
import com.agile.px.ChartDataModel;
import com.agile.px.ChartDataSet;

/**
* A Sample Dashboard DX for Charts with predefined data.
* This Example displays a comparison chart between
* Morning and Evening Temperatures for each day of the
* week with predefined data.
*/
public class TemperatureComparisionChart implements ICustomChart(

/**
* Returns custom ChartDataModel. ChartDataModel
* is a placeholder to hold all the
* ChartDataSet(s) and any other relevant information related to the charts.

Developing Custom Chart Dashboard Management Extensions

Developing Dashboard Management Extensions 4-3

* @param session current user session.
* @param params
* @return com.agile.px.ChartDataModel

*/
public ChartDataModel getChart(IAgileSession session,Map params) throws
Exception{

// Create a ChartDataModel
ChartDataModel chartDataModel = new ChartDataModel("Temperatures");

// Create a ChartDataSet for Morning and Evening Temperatures
ChartDataSet chartdataSet[] = new ChartDataSet[2];

// Create a ChartDataSet for Morning Temperatures
chartdataSet[0] = new ChartDataSet("Morning Temperatures",7);

// Fill in the Morning Temperatures
double[] morTempValues = {10, 8, 12, 19, 10, 14, 13};
chartdataSet[0].setValues(morTempValues); // or setYValues that can be used

instead

// Set the Labels
String[] labels =
{"Monday", "Tuesday", "Wednesday", "Thursday", "Friday", "Saturday", "Sunday"};
chartdataSet[0].setLabels(labels);

// Create a ChartDataSet for Evening Temperatures
chartdataSet[1] =
new ChartDataSet("Evening Temperatures",7);

// Fill in the Evening Temperatures
double[] eveTempValues = {16, 12, 20, 15, 18, 24, 26};
chartdataSet[1].setValues(eveTempValues);
chartdataSet[1].setLabels(labels);

// Set the ChartDataSets in the Chart Model
chartDataModel.setDataSets(chartdataSet);

return chartDataModel;
}
}

Packaging and Deploying a Custom Chart DX Source
After developing the necessary classes for a new Chart, package and deploy them
using the following procedure.

To package and deploy a Chart DX source:
1. Use your Java development environment or the Java Archive tool (or JAR tool), to

create one or more JAR files for the custom action. Make sure the JAR file(s)
includes a META-INF/services directory that contains the file
com.agile.px.ICustomChart. This is a text file that lists the fully qualified Java class
names, one class per line, for the custom action.

You can include multiple charts in one package. For example,
com.agile.px.ICustomChart can resemble this:

dashboard.chart.TemperatureComparisionChart
dashboard.chart.AgileObjectsCountChart
dashboard.chart.ActualVsBudgetedLaborCostChart

Note: Paths within a JAR file are case-sensitive. Therefore, make sure
the META-INF folder contained within the JAR file name are either all
uppercase or all lowercase characters. Otherwise, the custom action
will fail to deploy.

Developing Custom Chart Dashboard Management Extensions

4-4 Agile Product Lifecycle Management SDK Developer Guide – Using Extensions

2. Place the JAR file(s) in the agile_home/integration/sdk/extensions folder on the
same computer where the Agile Application Server is installed.

Note: If you have several application servers in a clustered
environment, you must deploy the Dashboard Extension files on each
server in the cluster.

Configuring Chart DXs in Java Client
In Agile Java Client, you can define Chart data sources in the Admin module. To
configure the Agile PLM system settings, you must have an administrator account.
This is briefly documented in the sequel below. For more information, refer to the Agile
PLM Administrator Guide.

The data that you provide for a DX, regardless of the layout, is viewed in a Dashboard
Management Tab. Because you cannot define a new Table in the Out of Box Tabs such
as Executive or Financial, you must define a new Tab and then a Table within the Tab
to configure a DX.

To add an optional Dashboard Management tab:
1. In Java Client, select Admin > Systems Settings > Dashboard Management and

click the New Dashboard Tab icon in Dashboard Management.

2. In the Create Dashboard Tab dialog, complete the name (For example, call it
Dashboard Extensions) and description fields, set the Visible field to Yes, and
then click OK. Dashboard Extensions appears as an entry in the Dashboard
Management.

3. Click the Order Tabs for Dashboard icon to reorder the tabs as required in Java
Client.

Displaying Optional Tabs in Agile Web Client
You can display the new optional Tab in Agile Web Client and users satisfying the
privileges requirement can view the tabs and the corresponding data. You can find the
necessary procedures in Agile PLM Administrator Guide.

To configure a Chart type table in the optional tab:

1. Define a new tab, for example, Dashboard Extensions as shown above.

2. In the new tab (Dashboard Extensions), click the Tables icon. The Dashboard
Management - Dashboard Extensions page appears.

3. In this page, click the New Dashboard Table icon to open the Create Dashboard
Table dialog and define the new table.

4. Select Chart from the View List Type drop-down list. The following fields appear.

Dashboard Table Description/Purpose Possible Settings

Name Type the name of the table String

Developing Custom Table Dashboard Management Extensions

Developing Dashboard Management Extensions 4-5

5. Complete the fields and then click OK. The name of the new Chart appears in
Dashboard Management - Dashboard Extensions view.

Developing Custom Table Dashboard Management Extensions
The ICustomTable interface is defined to create DXs to display the required data in
tabular formats. This interface exposes the getTable(IAgileSession session, Map
params) method which returns an instance of the Collection class.

public Collection getTable(IAgileSession session, Map params);
import java.util.*;

Note: Implementations of this interface must have a no-arg
constructor and they must be reentrant.

Understanding Collections and CustomTableConstants
The Tabular Data in a DX is a “collection” of Java HashMaps. Each Map key represents
an attribute in the Table View and the Map represents a row in the table.

The property “Attribute” of a column in View defines the mapping between the data
model and the Table View. The value of this property corresponds to the key of a
HashMap entry.

■ HashMap keys - For HashMap entries, an attribute is defined in the Table view.
For example, a HashMap entry with “name” as its key value, the property

API Name The Name typed above, converted
to CamelCase naming convention
by Agile PLM

String

Description Type the description of the table String (optional)

View List Type Lists the types of table. Select
Chart (when you select Chart,
additional options are displayed).

Chart, Table, Custom, Advance
Search

Dashboard Extension Lists all process extensions created
for chart type list. Select the chart
process extension you want.

Empty cell

Visible To enable viewing in Web Client Yes/No

Chart Type Select the type of chart you want
displayed

Area, Bar, Line, Pie, Polar, Scatter,
Stacked Area, Stacked Bar, Table

X axis Type the X axis label (optional)

Y axis Type the Y axis label (optional)

Show Legend To display the chart legend on
screen

Yes/ No

Legend Position Select the position where the
Legend should be displayed

Bottom, default, left, right, top

3D Style To view the graph in 3D Yes/ No

Header Enter a header note if required (optional)

Footer Enter a footer note if required (optional)

Dashboard Table Description/Purpose Possible Settings

Developing Custom Table Dashboard Management Extensions

4-6 Agile Product Lifecycle Management SDK Developer Guide – Using Extensions

“Attribute” of this attribute will have the value “name.” The get('name') method
will provide the display data for this attribute.

■ Link, Image, Money, Text, Date and Numeric Data - These data types are
supported in Tabular DX formats and return objects with the following properties.

– Text - Date, and Numeric Data types do not require any additional properties.

– Link - A valid URL (as String) serves as the target and label for the display.
The properties expected for a link data type are the same for the internal and
external links. The DX users resolve the URL for internal links and add them
to the URL property. The DX users can specify the target property as “Right
Pane” for internal links. By default, the links will be targeted to a new
window.

– Image - Images are expected to return an image URL (as String) and label to
be displayed as a tool tip on the Image.

– Money - Currency code (String) and Value (Number) are necessary for Money
Data types.

Note: Keys that support the Link, Money and Image data properties
are provided as constants in the class CustomTableConstants. A
constant SERVER_URL is provided in this class. You can use it get the
Server URL in the DX's from the params.

Defining a Custom Table DX Data Source
The sample Dashboard DX in the following example creates a collection of rows with
predefined data for display in the Dashboard. Each row is a Java Map object with
key-value pairs that correspond to each column in the table. This value appears in
each cell of the column in the table. The key is the mapping Attribute name in the
View. When creating new Attributes (columns) in the View, it is necessary to supply
this key in the Attribute field. Attribute Names and the corresponding Data type for
this DX are as follows:

Attribute Corresponding Data Type

myString Text

myExternalLink Link

myDate Date

myMoney Money

myNumber Numeric

myImage Image

Example 4–2 Defining a Dashboard extension to display data in tabular format

package dashboard.table;
import com.agile.api.IAgileSession;
import com.agile.px.ICustomTable;
import com.agile.px.CustomTableConstants;

/** This Sample Dashboard DX creates a collection
* of rows with predefined data
* in the format to be displayed in the Dashboard.
* Each row is a Java Map object which has

Developing Custom Table Dashboard Management Extensions

Developing Dashboard Management Extensions 4-7

* key-value pairs corresponding to each column in the Table.
* The value is displayed in each Cell of the
* column in the table. The key is the
* mapping Attribute name in the View.
* While creating new Attributes (Columns) in the View,
* you must supply this key in the Attribute field.
* The corresponding Attribute Names and
* Data type for this DX are listed below.
* <table border="1">
* <tr><td>Attribute </td><td>Data Tye</td></tr>
* <tr><td>myString </td><td>Text </td></tr>
* <tr><td>myExternalLink </td><td>Link </td></tr>
* <tr><td>myDate </td><td>Date </td></tr>
* <tr><td>myMoney </td><td>Money </td></tr>
* <tr><td>myNumber </td><td>Numeric </td></tr>
* <tr><td>myImage </td><td>Image </td></tr>
* </table>
*
*/

public class DashboardSampleTable implements ICustomTable {
/**

* Returns custom table data in form of collection of rows.
* Row is assumed to be a java Map object.
* @param session the user session
* @param params
* @return : java.util.Collection
*/

public Collection getTable (IAgileSession session,Map params) throws Exception{
String serverUrl =

(String)params.get(CustomTableConstants.SERVER_URL);

String baseUrl =
serverUrl.substring(0,serverUrl.lastIndexOf('/'));
ArrayList result = new ArrayList();

// 1st Row Entry
HashMap row1 = new HashMap();

// For Text type
row1.put("myString","Manoj Yeturu");

// For Numeric type
row1.put("myNumber",new Double(10000));

// For Date Type
row1.put("myDate",new Date());

// For Image Type. The url for image and label (for tooltip) properties are set
HashMap hm1Image = new HashMap();
hm1Image.put(CustomTableConstants.URL,baseUrl+"/images/action_noshad.gif");

// Tool Tip
hm1Image.put(CustomTableConstants.LABEL,"Action_Noshad");
row1.put("myImage",hm1Image);

// For Money Type. The Currency and value properties are set
HashMap hm1Money = new HashMap();
hm1Money.put(CustomTableConstants.MONEY_CURRENCY_CODE,"USD");
hm1Money.put(CustomTableConstants.MONEY_VALUE,new Integer(3000));

Developing Custom Table Dashboard Management Extensions

4-8 Agile Product Lifecycle Management SDK Developer Guide – Using Extensions

row1.put("myMoney",hm1Money);

// For External Link, url, label (display string) and target
// (Rightpane,_new etc) are set

HashMap externalLink1 = new HashMap();
externalLink1.put(CustomTableConstants.URL,"http://www.agile.com");
externalLink1.put(CustomTableConstants.LABEL,"Agile");
externalLink1.put(CustomTableConstants.TARGET,"_new");
row1.put("myExternalLink",externalLink1);
result.add(row1);

// 2nd Row Entry
HashMap row2 = new HashMap()

// For Text type
row2.put("myString","Venkat Tipparam");

// For Numeric type
row2.put("myNumber",new Double(50000));

// For Date Type
row2.put("myDate",(new Date()));

// For Image Type
HashMap hm2Image = new HashMap();
hm2Image.put(CustomTableConstants.URL,baseUrl + "/images/addressdown.gif");

// Tool Tip
hm2Image.put(CustomTableConstants.LABEL,"Addressdown");
row2.put("myImage",hm2Image);

// For Money Type
HashMap hm2Money = new HashMap();
hm2Money.put(CustomTableConstants.MONEY_CURRENCY_CODE,"INR");
hm2Money.put(CustomTableConstants.MONEY_VALUE,new Integer(4000));
row2.put("myMoney",hm2Money);

// For External Link
HashMap externalLink2 = new HashMap();
externalLink2.put(CustomTableConstants.URL,

"http://www.agile.com/services/support.asp");
externalLink2.put(CustomTableConstants.LABEL,"Supprt");
externalLink2.put(CustomTableConstants.TARGET,"_new");
row2.put("myExternalLink",externalLink2);
result.add(row2);
return result;
}

}

Configuring the Link Data Type for Objects Created in Custom Table DXs
The Link data type is defined as follows in "Understanding Collections and
CustomTableConstants" on page 4-5.

■ A valid URL string that serves as the target and label for the display

And

■ DX users can specify the target property as “Right Pane” for internal links which
are targeted to a new window by default

Developing Custom Table Dashboard Management Extensions

Developing Dashboard Management Extensions 4-9

When Web Client users retrieve an Agile Object in a Dashboard table by invoking
Advanced Search, they automatically get the Number with a Link and Quick View as
shown in Figure 4–1 below.

Figure 4–1 The Quick View option in a Dashboard

The SDK supports configuring the URL in the Link data type to display and open the
selected object in the Right Pane for Agile Objects that are generated through
user-defined Dashboard table DXs with ICustomeTable. To perform these
configurations, you must first invoke the Advanced Search function to retrieve the
Object.

Invoking Advanced Search in a Custom Table DX Data Source
The following code snippet returns the specified Agile Object and enables the Quick
View pop-up for that Object.

Example 4–3 Invoking Advanced Search in a Custom Table DX Data Source

public class DashboardTableContainsQuickView implements ICustomTable{
public Collection getTable(IAgileSession session, Map params){

try
{

IQuery query = null;
query = (IQuery)session.createObject

(-5, ProgramConstants.CLASS_ACTIVITIES_CLASS);
query.setCaseSensitive(false);
query.setCriteria("[General Info.Name] contains 'Dashboard'");
Iterator iter = query.execute().iterator();
ArrayList result = new ArrayList();
while (iter.hasNext())
{
IRow row = (IRow)iter.next();
HashMap rowMap = new HashMap();
IProgram program = (IProgram)row.getReferent();
program.getId()String number = program.getName();
rowMap.put("number", number);
String name = (String)program.getCell

(ProgramConstants.ATT_GENERAL_INFO_NAME).getValue();
HashMap internalLinkMap = new HashMap();
internalLinkMap.put("label", name);
internalLinkMap.put("target", "RightPane");
rowMap.put("name", internalLinkMap);
result.add(rowMap);
}
return result;

}
catch (Exception e)
{

e.printStackTrace();

Developing Custom Table Dashboard Management Extensions

4-10 Agile Product Lifecycle Management SDK Developer Guide – Using Extensions

}return null;
}

}

Enabling Quick View in a Custom Table DX Data Source
The following example enables Quick View for the Object returned by the search
function. Code in the shaded area enables Quick View. To display Quick View, you
must specify the correct Object Class ID(getClassId()) and Object ID (getObjectId)
attributes. In this example, ActivityHandler is hard coded, because this is the object
type that the user wants to open. For other types of object, for example a Part object,
you can use itemhandler. The output of this DX is displayed in Figure 4–2, "Sample
output generated by the DX".

Example 4–4 Enabling Quick View in a Custom Table DX Data Source

public class DashboardTableContainsQuickView implements ICustomTable{
public Collection getTable(IAgileSession session, Map params)

{
try
{

IQuery query = null;
query = (IQuery)session.createObject

(-5, ProgramConstants.CLASS_ACTIVITIES_CLASS);
query.setCaseSensitive(false);
query.setCriteria("[General Info.Name] contains 'Dashboard'");
Iterator iter = query.execute().iterator();
ArrayList result = new ArrayList();
while (iter.hasNext())
{

IRow row = (IRow)iter.next();
HashMap rowMap = new HashMap();
IProgram program = (IProgram)row.getReferent();
program.getId();
String number = program.getName();
rowMap.put("number", number);
String name = (String)program.getCell

(ProgramConstants.ATT_GENERAL_INFO_NAME).getValue();
HashMap internalLinkMap = new HashMap();

// Generate Quick View - Object ID and Class ID are necessary
int objClsId = ((Integer)row.getClassId()).intValue();
int objId = ((Integer)program.getObjectId()).intValue();
int objVersion = ((Integer)program.getObjectVersion()).intValue();
String urlStr =

"javascript:displayObject('ActivityHandler',
'" + objClsId + "', '" + objId + "', '0');
\"onmouseover=\"showQuickViewLink(event, this)\"
onmouseout=\"cancelQuickViewTimer(this);
\" infourl=\"showObjectInfo('" + objClsId + "',
'" + objId + "', '', '', '', 'true', '',
'"+ objVersion +"');\"\");";
internalLinkMap.put("url", urlStr);

internalLinkMap.put("label", name);
internalLinkMap.put("target", "RightPane");
rowMap.put("name", internalLinkMap);
result.add(rowMap);

}
return result;

}

Developing Custom Table Dashboard Management Extensions

Developing Dashboard Management Extensions 4-11

Figure 4–2 Sample output generated by the DX

Displaying Quick View with Mouseover
To display Quick View when moving the mouse over the Object ID, set the URL
parameter as shown in the following code snippet. Make sure you are using correct
values for classid and objectid parameters.

Example 4–5 URL parameters to display Quick View

HashMap internalLinkMap = new HashMap();
internalLinkMap.put("url","javascript:displayDesignObject

('AttachmentHandler', '2000008297','21335435',
'0', 'RightPane', '0', '', '4');"

onmouseover="showQuickViewLink(event, this)" onmouseout=
"cancelQuickViewTimer(this);" infourl=

"showObjectInfo('2000008297', '21335435', '1', '6173', 'R0', 'true',
'DASHBOARD_DXTABLE_2488764_GRID', '4');"");

internalLinkMap.put("label", name);
internalLinkMap.put("target", "RightPane");
rowMap.put("name", internalLinkMap);

Note: In this example, 2000008297 is the object's classId, 21335435 is
the object's ID, and so on. These values were defined in the code
snippet in "Enabling Quick View in a Custom Table DX Data Source"
on page 4-10.

Opening the Selected Object in the Right Pane
By default, when you use the Link option to open the selected object, the object is
displayed in a new Window. The following syntax opens the referenced object in the
right pane of the same window for an object retrieved using Advanced Search shown
above.

Note: You must specify the correct Class ID and object ID attributes.
In this case,18022 and 4555 respectively. Also, this link does not enable
Quick View. It is a quick way to put a link in your code. The Quick
View option creates a link that enables the Quick View popup.

Example 4–6 Opening the selected object in the right pane

String name =
(String)program.getCell(ProgramConstants.ATT_GENERAL_INFO_NAME)get.Value();

HashMap internalLinkMap = newHashMap();
internalLinkMap.put("url","/web/PCMServlet?module=ActivityHandler&opcode=

displayObject&classid=18022&objid=4555");
internalLinkMap.put("label",name);
internalLinkMap.put("target","RightPane");

Developing Custom Table Dashboard Management Extensions

4-12 Agile Product Lifecycle Management SDK Developer Guide – Using Extensions

rowMap.put("name",internalLinkMap);

Packaging and Deploying a Custom Table DX Source
After developing the required classes for a new Table, package and deploy them as
shown below.

To package and deploy a Table DX source:
1. Use your Java development environment, or the Java Archive tool (or JAR tool), to

create one or more JAR files for the custom action. Make sure the JAR file(s)
includes a META-INF/services directory that contains a file named
com.agile.px.ICustomTable. This is a text file that lists the fully qualified Java class
names, one class per line, for the custom action.

You can include multiple charts in one package. For example, the
com.agile.px.ICustomTable file could look like this:

dashboard.chart.ActualVsBudgetedLaborCostTable
dashboard.chart.DashboardSampleTable
dashboard.chart.QueryDashboardPrograms

Note: Paths within a JAR file are case-sensitive. Therefore, make
sure the META-INF folder contained within the JAR file has a name
with all uppercase or all lowercase characters. Otherwise, the custom
action is not deployed.

2. Place the JAR file(s) in the <agile_home>/integration/sdk/extensions folder on
the same computer where the Agile Application Server is installed.

Note: If you have several application servers in a clustered
environment, you must deploy the Dashboard Extension files on each
server in the cluster.

Configuring Table DXs in Java Client
Similar to Chart type DXs, you can use an existing Dashboard Management tab, or
create your own optional tab to add your Table DXs.

To Add a Table to a Tab:
1. Define a new tab. For example, Dashboard Extensions as shown above.

2. In the new tab (Dashboard Extensions), click the Tables icon. The Dashboard
Management - Dashboard Extensions page appears.

3. In this page, click the New Dashboard Table icon to open the Create Dashboard
Table dialog and define the new table.

4. Select Table from the View List Type drop-down list. The Create Dashboard Table
dialog displaying the necessary fields appears.

5. Complete these fields and then click OK. The new table is created.

Dashboard Table Description/Purpose Possible Settings

Name Type a name for the table String

Developing Custom Table Dashboard Management Extensions

Developing Dashboard Management Extensions 4-13

To Add Data to Tables:
1. Double-click the new table that you created in "To Add a Table to a Tab:" on

page 4-12.

2. Click Attributes and then the Add an Attribute icon to create the new attribute.

Note: Agile currently supports Text, Numeric, Image, Date, Money,
and Link type data as table attributes. They are listed and defined in
Packaging and Deploying a Custom Table DX Source

Figure 4–3 A Dashboard Table DX

3. In the General Information tab, map the Attribute field to the attribute name in the
DX.

Note: You are now defining the attributes (columns) that will appear
in the table on the Dashboard Tab. The property “Attribute” defines
the mapping between the data model and the view. For example, if the
attribute name in the DX is myStringy and the selected attribute type is
Text, map the attribute field whose attribute name is myStringy.

4. For more information, refer to the Agile PLM Administrator Guide.

API Name The Name field typed above, converted to
CamelCase naming convention by AgilePLM

String

Description Type a description of the table String

View List Type Lists the types of table. Select Table Chart, Table, Custom,
Advance Search

Dashboard Extension Lists all the process extensions created for the
type of Table in view

These are the
attributes that were
defined in the
"Packaging and
Deploying a Custom
Chart DX Source" on
page 4-3.

Variable To enable in Web client Yes/No

Developing Custom Table Dashboard Management Extensions

4-14 Agile Product Lifecycle Management SDK Developer Guide – Using Extensions

Defining Custom (URL) Extensions
A Dashboard PX of the type URL is configured to initiate from Dashboard
Management. When defining Custom extensions, simply select Custom as the table
type. See "To Add a URL to a Tab:" below. No other mapping is required for
Dashboard PX's of type URL.

Note: URL Process Extensions are defined in the Process Extensions
Library to initiate from Dashboard Management.

To Add a URL to a Tab:
1. Define a new tab, for example, Dashboard Extensions as shown above.

2. In the new tab (Dashboard Extensions), click the Tables icon. The Dashboard
Management - Dashboard Extensions page appears.

3. In this page, click the New Dashboard Table icon to open the Create Dashboard
Table dialog and define the new table.

4. Select Custom from View List Type drop-down list. The Create Dashboard Table
dialog displaying fields listed in the following appears.

5. Complete the Create Dashboard Table dialog fields and then click OK.

Dashboard Table Description Possible Settings

Name Type a name for the URL String

Description Type a description String

View List Type Lists types of table. Select
Custom

Chart, Table, Custom,
Advance Search

Dashboard Extension Lists all process extensions
created for Custom type list.

Employee Portal, Yahoo,
Google, Process Extension_
URLs

Visible To enable in Web Client Yes/No

5

Working with Agile PLM Events and Event Context Objects 5-1

5Working with Agile PLM Events and Event
Context Objects

This chapter includes the following:

■ Understanding Agile PLM Events and Event Framework

■ Key Components of an Agile PLM Event

■ Working with Event Context Objects

■ Working with Event Information and Event Script Objects

Understanding Agile PLM Events and Event Framework
In Agile PLM, Events act as trigger points for generating an automation action within
the PLM application. Every Event is generated from a source within Agile PLM
applications. The source can be a business action triggered by a user, a UI action, or
system initiated source such as a timer. These sources can signal other PLM modules
that something (an event) has occurred within the application and it may require an
action. The required action can be taken by a user or the PLM module. Event-driven
applications greatly facilitate the management of event-based integrations and
complex event analysis in real time modes.

In the Agile SDK environment, Event framework extends the PX framework which
facilitated automating and extending the Agile PLM Applications. Event framework
provides a flexible environment for rapid development and deployment of
event-driven applications. To support this environment, Event framework provides a
comprehensive set of data parameters to create, configure, and execute different types
of Agile PLM Events.

Key Components of an Agile PLM Event
Event framework empowers users to configure Events and Event subscribers. The
basic components of Event framework are shown in the following illustration and
described in the following paragraphs.

Key Components of an Agile PLM Event

5-2 Agile Product Lifecycle Management SDK Developer Guide – Using Extensions

Figure 5–1 Event Components

Event Types
In Agile PLM, Event type refers to a particular action, for example, Create Object, Delete
Object, Audit for Workflow. Agile PLM provides a list of pre-defined Event types for
which an event can occur.

For each Event type, depending on its Handler type, there is a corresponding Java and
Script interface for its Event Context object. For example, for Create Object, there is the
ICreateEventInfo Java interface and ICreateScriptObj Script interface respectively.

Event type is selected from the drop-down list in Java Client's Create Event dialog
when the Event is created. To access this dialog, refer to Agile PLM Administrator Guide.
Default Event types and their descriptions is shown in the figure below.

Figure 5–2 Default Event types and descriptions

Note: You can neither create, or delete these Event types.

Key Components of an Agile PLM Event

Working with Agile PLM Events and Event Context Objects 5-3

Event Handler and Handler Types
An Event Handler represents a custom action that is called when the Event is raised.
They extend the function of an action taken by a user, interface, or the system when
the Event is triggered. Information about the Event is passed from the Event to the
Handler by the Event Context object. Handlers are invoked by Event Triggers.

The SDK and Event framework support the following Event Handler types:

■ Java PX - Java PXs are Java process extensions that implement the IEventAction
interface in com.agile.px package and trigger the compiled Java code. See "Event
Information Objects" on page 5-9.

■ Script PX - Script PXs are Script process extensions based on Groovy script
language.

The Groovy script code is directly stored in Agile PLM databases. Event Script objects
(Event Script PX handlers) that you develop are text files that are deployed on the
Agile PLM server using the Event Management Node in Java Client. For information
on submitting the text files, see "Working with Agile PLM Administrator" on
page 5-36. For information about Groovy implementation in Event framework and
Event Script PX development process, see Appendix B, "Groovy Implementation in
Event Framework."

■ Notification - Agile PLM can send notifications to users, either when the user is
required to act, or to notify the user of actions that have occurred. Notifications
can be triggered from the SDK and Script. Event Notifications are addressed in the
Agile PLM Administrator Guide. To use the SDK to programmatically send
Notifications, refer to “Sending Notifications with Agile SDK” in SDK Developer
Guide - Using Agile APIs.

Note: SDK developers use the Java PX and Script PX to extend the
capabilities of Agile PLM. The Agile PLM Administrator uses the
Notification templates to define and configure Notifications for action
or information.

Event Subscribers
An Event Subscriber links an Event Handler to a specific Event. Thus, when a
particular event occurs, Event Handlers associated with the Event through Event
Subscribers are initiated in the order requested by the configuration. The Handler
action includes invoking a Java Process Extension, a Script Process Extension, or
sending Notifications.

Event Trigger and Trigger Types
Event Trigger determines when an Event Extension is raised. The Event framework
provides the hooks to automate actions when an incident happens. For example, when
a change of status occurs, a CEO approval is required, the trigger signals the
occurrence of an action which will subsequently notify all Event subscribers for that
Event. Most Agile PLM Events are associated with business actions. Examples are:

■ Create Object Event - associated with the object creation action

Key Components of an Agile PLM Event

5-4 Agile Product Lifecycle Management SDK Developer Guide – Using Extensions

■ Change Status for Workflow Event - associated with the Workflow status change
action

Event Trigger Types
■ Pre - This trigger type signals a point before the occurrence of an action. The Pre

trigger is commonly used for events that require data validation or other
preparations for the upcoming action. Event Handlers are invoked synchronously
from the Pre trigger point.

■ Post - This trigger type signals a point immediately after the action's changes are
committed to the database. The post trigger is commonly used for Events that
perform auditing tasks, notifications, and integration tasks with external systems
related to the completed action. Event Handlers are invoked synchronously or
asynchronously from the Post trigger point.

Synchronous and Asynchronous Execution Modes
Event Handlers are invoked synchronously or asynchronously. In general, the term
synchronous means it is run as part of the application within the current action. A
synchronous operation blocks a process until the operation completes, while an
asynchronous operation is nonblocking and only initiates the operation.

In Agile PLM, the difference between the two modes is:

■ Synchronous - In this mode, the Event Handler is executed in the same thread (as
part of the execution of the action taken) as the Agile PLM thread that triggers the
event (for example, a change in a Workflow status). The original Agile PLM action
will resume after the handler action is completed.

■ Asynchronous - In this mode, the Event Handler has its own thread (runs
independent of the execution of the action taken) and it cannot be stopped once it
is started. This transaction is either committed or rolled back based on its own
status. The Agile PLM thread that triggers the event will continue to run
independently regardless of the Handler action has finished or not (Non-block).
Notifications are always handled asynchronously.

Synchronous and Asynchronous Operations in OAS Clusters
PLMs that are configured for operation in clusters, use the Java Message Service (JMS)
for messaging purposes within the cluster. JMS is a Java Message Oriented
Middleware (MOM) API for sending messages between two or more clients.

In OAS clusters, JMS resources are hosted only on the primary node, or JMS-host. If
the primary node is down, asynchronous Events are still triggered on the secondary
node and are set to queued status, but they are never executed. Once the primary node
is recovered, depending on the implementation of OAS, asynchronous Events can
execute and cause the final result, provided they can pick up the queued JMS
messages at the time the system went down. Otherwise, these Events remain in the
queue and are never executed.

In these situations, you must stop and restart the cluster, starting with the primary
node. If you cannot recover the primary, you must configure the primary (the
JMS-host) on another node before starting the cluster. Queued Events do not execute if
you drop the primary and continue to use the application on the secondary nodes.

Note: This constraint is only applicable to the operation of
asynchronous Events in OAS clusters. It does not apply to WLS
clusters, because WLS supports clustered JMS and has no single
“primary” or “JMS-host” node.

Key Components of an Agile PLM Event

Working with Agile PLM Events and Event Context Objects 5-5

Event Error Handling Rule
Event Error Handling Rule is used with Event Handlers that are executed
synchronously. Options are Continue and Stop. The selected option determines the
behavior of Agile PLM when an error is encountered while executing the Event
Handler. For more information on error handling rules, refer to Agile PLM
Administrator Guide.

■ Continue - In case of error, Handlers with synchronous execution mode will
ignore the error during execution.

■ Stop - If there is an error during the execution of a Handler with synchronous
execution mode, the original action and the Event Subscription is ceased.

Event Order
Event Order is a positive integer that determines the sequential “Order” in which the
Event handler is invoked. Thus, you can control the execution order of Event Handlers
when there are multiple Event Subscribers for the same Event type on the same Agile
object.

Note: If you have both Custom PXs and Java synchronous PXs
configured for a Workflow Change Status action, Java PXs always
execute before Custom PXs.

Event FAQs
This section answers common questions about the Event framework and Java and
Script process extensions.

What are the differences between Custom process extensions and Java process
extensions (Java PX)?

Similar to Custom process extensions, Java PXs also extend the functionality of Agile
PLM clients through custom actions. This is done by implementing the IEventAction
interface in com.agile.px in Event framework. You can use Process extensions to
connect the Agile PLM server and Agile PLM users to external systems. In addition,
Java PXs contain Event Context objects which provide more information than Custom
PXs.

Can I use Agile's Java API within a Java process extension program?

Yes. You can use Agile's Java API and other external Java APIs as you did with
Custom PXs.

Do Java PXs have special security requirements?

No, similar to Custom PXs.

How are roles and privileges defined for Java PXs/Script PXs?

By default, a custom action (a Handler) uses the roles of the current user. However, to
configure a custom action to have expanded privileges, you can specify the roles
required for the Handler in the Java Client. When the Handler is executed, the roles

Key Components of an Agile PLM Event

5-6 Agile Product Lifecycle Management SDK Developer Guide – Using Extensions

specified for the Handler override those of the current user. Once the Handler is
completed, the client reverts to the user's original roles and privileges.

Do user assigned roles override roles assigned to a Java or Script PX during
configuration?

No. Roles assigned to a Java or Script PX override the user's original roles. Thus all
actions that occurred inside the PX Handler are subject to privileges based on these
roles. However, the access of the event context object does not need the privilege
check, including the getXXX and setXXX method calls.

How do I configure and deploy a Java process extension?

Similar to Custom PXs, place the JAR file(s) for a process extension in the agile_
home/integration/sdk/extensions folder on the application server. Included with the
JAR file(s) should be a file named com.agile.px.IEventAction in the
META-INF/services directory. The contents of these files are the fully qualified Java
class names, one class per line, for an Event action.

After deploying a Java PX on the application server, how do I enable it?

Once Java PX codes are deployed, you can configure them for use within Agile PLM in
Java Client by selecting Admin > Settings > System Settings > Event Management >
Event Handlers > New > Create Event Handler > Java PX > Event Action.

After deploying JAR file(s) for a Java PX Handler, is it necessary to update the
application server classpath?

No. The classpath is updated automatically by a special-purpose classloader. The
classloader extends the application server classpath with any classes located in agile_
home/integration/sdk/extensions (or the location specified for the sdk.extensions
property in the agile.properties file).

Which Custom PXs can I migrate to the Event framework?

The Event framework supports migrating only Custom Action PXs. These are PXs that
are initiated from the Actions Menu, Tools Menu, and Change Status for Workflow.

The corresponding Event types are: Extend Actions Menu, Extend Tools Menu, and
Change Status for Workflow.

What error handling rules must the developer/user specify?

For Synchronous Handler, the user must specify the error handling rule to determine
how the system reacts if it encounters an error while processing this subscription. The
error handling rule only applies to synchronous Handlers. It supports the following
two choices, Stop and Continue.

Agile PLM stops any further event processing, and then returns to the originator who
raises the event. All remaining synchronous subscribers are not called.

In the case of pre-event, upon receiving the error from the subscriber, the originator
simply throws the error to the client that initiates the action and the original action is
not performed. The system may also rollback changes made by Handlers. However,
whether the transaction can be rolled back or not depends on the Handler type. If it is
a Java PX Handler, no transaction rollback is performed because the Handler is the
SDK program which has its own transaction.

Do I need to deploy script PXs?

No, Scripts are pasted in the editor in the Script Handler and Agile PLM will store the
code in the database. Consequently, programs are delivered in plain text files and not
in object code.

Key Components of an Agile PLM Event

Working with Agile PLM Events and Event Context Objects 5-7

Can I send Notifications using Event Handler?

Yes, you can send a Notification from a Java PX and a Script PX.

When should I use scripting?

Use Scripts for prototyping, simple operations, and test driven developments.

Do I need to compile my Script code?

No, Script code is validated for syntax errors when you save it in the Handler and will
be compiled when the Event is triggered.

What are Dirty files and related methods and interfaces?

They are documented in the Javadoc generated SDK documentation folder under
IEventDirtyRowFileUpdate. To access the SDK samples folder, see the Note in
"Client-Side Components" on page 1-2.

Can a single action trigger multiple Events?

Yes, for some actions such as Update Multiple Attachment Rows, a single action will
trigger multiple Events. In addition, if there are Subscribers for Pre and Post trigger
types, then the order in which the Subscribers are invoked can vary depending on the
PLM client, the action, and the object type. For example, if you are deleting three rows
from an Attachment Table with one Subscriber for the Pre trigger and one Subscriber
for the Post trigger, the behavior in PLM clients are as follows:

■ Web Client - A single Update Table Event is triggered

■ Java Client - Three Update Table Events are triggered and one Event for each
deleted row as shown below:

– For Changes, Items, Transfer Orders, MFR Parts, Suppliers, Sites, Customers,
and Package objects, the sequence of the Event Subscribers that are invoked is:

* Pre (handler from the pre trigger subscriber - for the first row)

* Pre (handler from the pre trigger subscriber - for the second row)

* Pre (handler from the pre trigger subscriber - for the third row)

* Post (handler from the post trigger subscriber - for the first row)

* Post (handler from the post trigger subscriber - for the second row)

* Post (handler from the post trigger subscriber - for the third row)

– For Product Service Requests, Quality Change Requests, MFRs, Users and
User Groups, the sequence is: Pre - Post - Pre - Post - Pre - Post

Best Practices?

■ What should we avoid in Handlers for Pre-Event?

Use Pre-Event mainly for validation. Although you can modify the Context object,
you should avoid direct object updates using SDK calls. (Sometimes, using SDK
calls in Pre-Event may cause object version mismatch?

■ Subscriber ordering?

Sometimes, for the same event type, you can have the Event Subscribers at Base
Class level, Class level, and Subclass level. For example, you may have several
Event Subscribers for Create Object Event Type. One at Item Base Class level, one
at the Part Class level, and one at the Part Subclass level. If you prefer to execute
the Subscribers based on Class hierarchy, it is recommended to allocate an order

Working with Event Context Objects

5-8 Agile Product Lifecycle Management SDK Developer Guide – Using Extensions

range for the Base Class, each Class, and each Subclass. For example, you can
assign the following range for different Hierarchy levels:

Base Class 0 – 99; Class 100 – 199; Subclass 200 – 299

■ Can I mix Agile SDK calls and Script PX within Script PX?

You can mix the two as long as you don't use both SDK calls and script PX calls to
update Agile objects in the same Handler code. To update the Agile object, you can
either use SDK calls or update APIs that are supported by Script Context object,
but not both.

What are the differences between Variant Management events and other system
events?

■ Variant Management does not have “Pre” or “Post” trigger types. Once an
event is enabled, it replaces the system behavior instead of extending it.

■ Variant Management event types are only applicable to the Model part
subtype.

■ The Variant Management event types are not linked to a specific action only.

■ Variant Management event types support only one specific execution mode
(Synchronous) and error handling rule (Stop).

Working with Event Context Objects
The flowing paragraphs describe the role of Event Context objects, their creation,
different Event types, and the information they maintain.

Understanding Event Context Objects
The Context object passes information from the Event to the Handler and between
Handlers. When an Event is raised, an Event context object is created. Information
maintained by the context object includes Event type, pre- and post-Event triggers,
plus business-related data for the given Event, such as the Agile object for which the
Event occurred. The business-related data varies based on Event type.

Different Event types have different Context objects. Interfaces for Context objects are
documented in Event Information Objects and Event Script Objects. These interfaces
are documented in the Javadoc HTML files as Event Information objects (Java interfaces)
and Event Script objects (Script interfaces). To find the Javadoc HTML files in the SDK_
samples.zip folder, see the Note in "Client-Side Components" on page 1-2.

Persistent and Transient Data
In Event framework, objects passed to Event Handlers (Java PX or Script PX) by
Context objects contain “Persistent" and “Transient” data.

Note: For Variant Management all Context objects contain
“Transient” data only.

■ Persistent data - This is data that is already in PLM databases. All Agile SDK APIs
and Process Extensions including Web or URL extensions deal with this type of
data. When you use getDataObject() to get the values of an IDataObject object, the
data you get is already in the database, hence “Persistent.”

Note: Only the getDataObject()method returns Persistent data. Other
context object get data methods will return Transient data unless
stated otherwise in the Javadoc API definition.

Working with Event Context Objects

Working with Agile PLM Events and Event Context Objects 5-9

■ Transient data - This is data that is not in the PLM database as yet and is in a state
of change. Transient data contains information about user requests for the action
that triggered the Event.

When the Event is triggered, Agile PLM creates Transient data in the Event Context
object. The same Transient data is passed on by the Context object to all Handlers for
“Pre” and “Post” unless specified otherwise in the Javadoc API definition.

Note: You must not modify Transient data in the “Post” Event
triggering instance. If modified, it will throw an exception. Variant
Management events do not have “Pre” or “Post” trigger types. Once a
Variant Management event is enabled, it replaces the system behavior
instead of extending it.

Event Information Objects
These are the interfaces for the Java PXs.

Event Type Event Information Object

“Approve for Workflow” and “Reject for Workflow” ISignOffEventInfo

“Audit for Workflow” IAuditStatusEventInfo

“Change Approvers or Observers for Workflow” IChangeAppObserverEventInfo

“Change Status for Sourcing Object” ISourcingObjectChangeStatusEv
entInfo

“Change Status for Workflow” IWFChangeStatusEventInfo

“Comment for Workflow” IRoutableObjectCommentEventI
nfo

“Create Object” ICreateEventInfo

“Create Variant Instance”, “Derive Variant Model Option
BOM”, “Update Variant Configuration”, “Validate Variant
Configuration”, “Validate Variant Instance Selections”, and
“Validate Variant Model Option BOM”,

IVMEventObj

“Delete Object” IDeleteEventInfo

“Escalation for Workflow” IEscalationEventInfo

“Export Object” IExportEventInfo

“Extend Tools Menu” and “Scheduled Event” and the base
interface for all Event information objects

IEventInfo

“Get File”, “Check In Files”, “Check Out Files”, and
“Cancel Check Out Files”

IFileEventInfo

“Incorporate Item”, “Unincorporate Item”, “Extend
Actions Menu”, and “Compliance Rollup on Object”

IObjectEventInfo

“Promotion Failure for Workflow” IPromotionFailureEventInfo

“Purge Version Files” IPurgeFileEventInfo

Working with Event Context Objects

5-10 Agile Product Lifecycle Management SDK Developer Guide – Using Extensions

Figure 5–3 Event information objects class hierarchy

Event Script Objects
These are the interfaces for the Script PXs.

“Reminder for Workflow” IReminderEventInfo

“Save As Object” ISaveAsEventInfo

“Transfer Authority” ITransferAuthorityEventInfo

“Update Table” and “Update Relationship” IUpdateTableEventInfo

“Update Title Block” IUpdateTitleBlockEventInfo

Event Type Script Object Interface

“Approve for Workflow” and “Reject for
Workflow”

ISignoffScriptObj

“Audit for Workflow” IAuditStatusScriptObj

“Change Approvers or Observers for
Workflow”

IChangeApproverObserverScriptObj

“Change Status for Sourcing Object” ISourcingObjectChangeStatusScriptObj

Event Type Event Information Object

Working with Event Context Objects

Working with Agile PLM Events and Event Context Objects 5-11

Figure 5–4 Event script objects class hierarchy

“Change Status for Workflow” IChangeStatusScriptObj

“Comment for Workflow” IRoutableObjectCommentScriptObj

“Create Object” ICreateScriptObj

“Create Variant Instance”, “Derive Variant
Model Option BOM”, “Update Variant
Configuration”, “Validate Variant
Configuration”, “Validate Variant Instance
Selections”, and “Validate Variant Model
Option BOM”,

IVMScriptObj

“Delete Object” IDeleteScriptObj

“Escalation for Workflow” IEscalationScriptObj

“Export Object” IExportScriptObj

“Extend Tools Menu” and “Scheduled Event
“Event Script objects, also the base interface
for all Event Script objects

IBaseScriptObj

“Get File', “Check In Files”, 'Check Out Files'
and “Cancel Check Out Files”

IFileEventScriptObj

“Incorporate Item”, “Unincorporate Item”,
“Extend Actions Menu”, and “Compliance
Rollup on Object”

IBaseObjectScriptObj

“Promotion Failure for Workflow” IPromotionFailureScriptObj

“Purge Version File Folder” IPurgeFileScriptObj

“Reminder for Workflow” IReminderScriptObj

“Save As Object” ISaveAsScriptObj

“Transfer Authority” ITransferAuthorityScriptObj

“Update Table” and “Update Relationship” IUpdateTableScriptObj

“Update Title Block” IUpdateTitleBlockScriptObj

Note: In a Script PX, you can invoke any SDK or Java call. You can
also access any third party Java or Groovy Libraries if they are
deployed in the SDK extensions directory.

Working with Event Information and Event Script Objects

5-12 Agile Product Lifecycle Management SDK Developer Guide – Using Extensions

Working with Event Information and Event Script Objects
Information provided in this section uses the Event Information objects and Event
Script Objects to develop PX Handlers for Event-related actions, for example, general
object actions such as Create Object, Delete Object; Workflow actions such as Change
Status for Workflow.

Descriptions and samples for Event Information objects and Event Script objects
appear in the following paragraphs. Other information includes code samples using
these objects and guidelines to ensure proper handling of special instances of Events in
Agile PLM.

Working with Base Event Actions
All Event Information objects use the Base Event Information objects that. are Java
interfaces. See the illustration in "Event Information Objects" on page 5-9.

Base Event Information Object - Java PX
The Base Event Information object is IEventInfo.

■ Purpose and function - This is the interface for the Scheduled Event and Extended
Tools Menu Event Information objects. In addition, I Sign Off Event Info is the
inherited interface for all Event Information objects. It maintains information on
Event type, Event trigger type, Event name, Event Subscriber name, Event
Handler name, and user defined Maps.

User defined Maps serve as a place holder for any user defined data and provide a
communication channel between subscribers. They are set in the Synchronous Java
PXs and read by subsequent Synchronous Java PXs and Asynchronous Java PXs. Maps
set inside Asynchronous PXs cannot be used by other Java PXs. If the Java PX fails, the
Map is still accepted by Agile PLM and is passed to the next Java PX but all other
changes in the Event Context objects are discarded.

IObjectEventInfo is the base event information object for object-related events.

■ Purpose and function - IEventInfo contains the Agile object for which the Event is
triggered. Also, it is the interface for Incorporate Item, Unincorporate Item, Extend
Actions Menu, and Compliance Rollup on object Event Information objects, and
inherits from IEventInfo.

■ Inherited interface: IEventInfo

These examples show using IEventInfo and IObjectEventInfo.

Example 5–1 Using IEventInfo

private void testIEventInfo(IEventInfo req)throws APIException{

// getEventTriggerType()
int evtTriggerType = req.getEventTriggerType();

// getEventName()
String eventName = req.getEventName();

// getEventSubscriberName()
String subscriberName = req.getEventSubscriberName();

// getEventHandlerHame()
String handlerName = req.getEventHandlerName();

Working with Event Information and Event Script Objects

Working with Agile PLM Events and Event Context Objects 5-13

// setUserDefinedMap()
Map map = new HashMap();
map.put("METHOD", "setUserDefinedMap()");
req.setUserDefinedMap(map);

// getUserDefinedMap()
Map map2 = new HashMap();
map2 = req.getUserDefinedMap();
String mapValue = map2.get("METHOD").toString();

}

Example 5–2 Call made by IObjectEventInfo

private void testIObjectEventInfo(IEventInfo req)throws APIException{
String objNumber = "";
IObjectEventInfo info = (IObjectEventInfo)req;

// getDataObject()
IDataObject obj = info.getDataObject();
if (obj==null)

objNumber = "NULL";
else

objNumber = obj.getName();
}

Base Event Script Objects - Script PX
Base Event Script object is IBaseScriptObj.

■ Purpose and function - This is the interface for the Scheduled Event and Extend Tools
Menu Event Script objects. IBaseScriptObj is the inherited interface for all Event
Script objects. IBaseScriptObj maintains information on Event type, Event trigger
type, Event name, Event Subscriber name, Event Handler name, and User Defined
Maps.

Note: This interface provides a Script method for sending Agile PLM
Notifications.

IBaseObjectScriptObj is the base event information object for object-related events.

■ Purpose and function - IBaseObjectScriptObj contains the Agile object for which
the Event is triggered. Also, it is the interface for Incorporate Item, Unincorporate
Item, Extend Actions Menu, and Compliance Rollup on object Event Information
objects and inherits from IBaseScriptObj.

■ Inherited interface: IBaseScriptObj

The following examples use IBaseScriptObj and IBaseObjectScriptObj.

Example 5–3 Using IBaseScriptObj

This example opens the SDK session and retrieves information pertaining to the Event.

void invokeScript(IBaseScriptObj obj){

// getEventType()
int evttype = obj.getEventType();

// getEventTriggerType()
int evtTriggerType = obj.getEventTriggerType();

Working with Event Information and Event Script Objects

5-14 Agile Product Lifecycle Management SDK Developer Guide – Using Extensions

// getEventName()
String eventName = obj.getEventName();

// getEventSubscriberName()
String subscriberName = obj.getEventSubscriberName();

// getEventHandlerHame()
String handlerName = obj.getEventHandlerName();

//logMonitor ()
obj.logMonitor("Status is Passed");

//getAgileSDKSession()
IAgileSession session = obj.getAgileSDKSession();

//getPXEventInfo ()
IEventInfo req = obj.getPXEventInfo();

//sendNotification()
obj.sendNotification("Test", true, ["admin"],

" passed from BaseScriptObj" + eventName);

// setUserDefinedMap()
obj.setUserDefinedMap

(['Agile 93' : 'PLM Product', 'Scripting':'Is a Fun Tool']);

// getUserDefinedMap()
Map myMap = obj.getUserDefinedMap ();

}

Example 5–4, "Using IBaseObjectScriptObject" retrieves Class ID and object number
and sets the P1, P2, and P3 attribute values of the object.

Example 5–4 Using IBaseObjectScriptObject

void testIBaseObjectScriptObj
(IBaseObjectScriptObj obj){

String objNumber = "";

//Disable all the warning exceptions raised
obj.disableAllWarnings();

//get class ID
int classID = obj.getClassId();

//get object number
objNumber = obj.getObjectNumber();

//set attributes
obj.setValueByAttId(CommonConstants.ATT_PAGE_TWO_TEXT01,"Text Value");

// setValueByAttId one from each attribute type
/*
* Date: Page Two.Date01
* Text: page Two.Text01
* MultiText: Page Three.MultiText10
* List: Page Two.List01
* MultiList: Page Three.MultiList01
* Numeric: Page Two.Numeric 01

Working with Event Information and Event Script Objects

Working with Agile PLM Events and Event Context Objects 5-15

* Money: Page Three.Money01
*/
// get attribute value

obj.getValueByAttId(CommonConstants.ATT_PAGE_TWO_TEXT01);

//log information to handler monitor
obj.logMonitor

("Object Number:" + objNumber); obj.logMonitor("Class Id :" + classID);
}

Working with General Object Actions
General Object actions are actions such as Create, Delete, Save As, and Update Title
block. Information objects and Script Event objects for these Events are grouped and
described according to their inherited interfaces.

General Object Actions - Java PX
The following paragraphs document the applicable methods and procedures.

Create Object

The Information object for this Event is ICreateEventInfo.

■ Purpose and function - ICreateEventInfo retrieves the number and Subclass
identifier of the requested new object. It can also overwrite the number and
Subclass set by the clients.

■ Inherited interfaces - IUpdateEventInfo, IObjectEventInfo, IEventInfo. The
IUpdateEventInfo retrieves the Array of Dirty attributes that users can overwrite,
or set with new attributes and values.

The following examples show using ICreateEventInfo and IUpdateEventInfo

Example 5–5 Using ICreateEventInfo

private void testICreateEventInfo(IAgileSession session, IEventInfo req)
throws APIException {

ICreateEventInfo info = (ICreateEventInfo)req;
String number = "";
Integer subclass = null;
String newNumber = getNewNumber(info); // user defined method

// user defined method
Integer newSubclassId = getNewSubclassId(session, req);
Integer newSubclass = null;

// getNewNumber()
number = info.getNewNumber();

// getNewSubclassId()
subclass = info.getNewSubclassId()

// setNewNumber()
info.setNewNumber(newNumber);

// setNewSubclassId()
info.setNewSubclassId(newSubclassId);
newSubclass = info.getNewSubclassId();

}

Working with Event Information and Event Script Objects

5-16 Agile Product Lifecycle Management SDK Developer Guide – Using Extensions

Example 5–6 Using IUpdateEventInfo

private void testIUpdateEventInfo(IAgileSession session, IEventInfo
req) throws Exception {

// Interface methods
IUpdateEventInfo info = (IUpdateEventInfo)req;

//getCells()
IEventDirtyCell[] cells = info.getCells();

// getAttributeIds()
Integer[] attrs = info.getAttributeIds();

// setCell() and Get class specific P1 attribute
Integer p1attrId = getP1Attribute(session, info);

// Override client value
info.setCell(p1attrId, "set desc from CO");

// Add new Dirty value
info.setCeldirtyl(CommonConstants.ATT_PAGE_TWO_TEXT02, "setCell()");
String value2 = info.getValue(CommonConstants.ATT_PAGE_TWO_TEXT02).toString();

// setCell() one from each attribute type
* Date: Page Two.Date01
* Text: already cover
* MultiText: Page Three.MultiText10
* List: Page Two.List01
* MultiList: Page Three.MultiList01
* Numeric: Page Two.Numeric 01
* Money: Page Three.Money01

*/

Integer subClassId = getSubclassId(info);
IAttribute attr1 =

session.getAdminInstance().getAgileClass
(subClassId).getAttribute(CommonConstants.ATT_PAGE_TWO_LIST01);

IAttribute attr2 =
session.getAdminInstance().getAgileClass(subClassId).getAttribute

(CommonConstants.ATT_PAGE_THREE_MULTILIST01);

IAgileList list1 =
(IAgileList)attr1.getAvailableValues();

list1.setSelection(new Object[]{"b"});
IAgileList list2 = null;
if (attr2!=null){

list2 = (IAgileList)attr2.getAvailableValues();
list2.setSelection(new Object[]{"a", "b", "e"});

}
SimpleDateFormat df = new SimpleDateFormat("MM/dd/yyyy");
String d = "1/31/2009";
Date date = df.parse(d);
info.setCell(CommonConstants.ATT_PAGE_TWO_DATE01, date);
String multitext = "set multitext field in CO";
info.setCell(CommonConstants.ATT_PAGE_TWO_LIST01, list1);
info.setCell(CommonConstants.ATT_PAGE_TWO_LIST02, list1);

// To test IEventDirtyCell
info.setCell(CommonConstants.ATT_PAGE_TWO_NUMERIC01, 888.66);

Working with Event Information and Event Script Objects

Working with Agile PLM Events and Event Context Objects 5-17

if (attr2!=null){
info.setCell(CommonConstants.ATT_PAGE_THREE_MULTITEXT10, multitext);
info.setCell(CommonConstants.ATT_PAGE_THREE_MULTILIST01, list2);

}
Money money = new Money (new Integer(100), "USD");

// removeCell()
info.removeCell(CommonConstants.ATT_PAGE_THREE_TEXT01);

}

Update Title Block
The Information object for this Event is IUpdateTitleBlockEventInfo.

■ Purpose and function - IUpdateTitleBlockEventInfo is the interface for Update
Title Block Event information object. Checks whether this is a redline update or
undo-redline update on the Title Block of IItem object which has originated from
the Affected Items table of the Change object

■ Inherited interfaces - IUpdateEventInfo, IObjectEventInfo, IEventInfo

Save As Object
The Information object for this Event is ISaveAsEventInfo.

■ Purpose and function - ISaveAsEventInfo performs the following tasks:

■ Retrieves the number and Subclass of the newly saved object

■ Overwrites the number and Subclass that are set by PLM clients

■ Inherited interfaces - IUpdateEventInfo, IObjectEventInfo, IEventInfo

Delete Object
The Information object for this Event is IDeleteEventInfo.

■ Purpose and function - IDeleteEventInfo is the interface for Delete Event
information object. It performs the following tasks:

■ Retrieves the number and Subclass of the newly saved object

■ Overwrites the number and Subclass that are set by PLM clients

■ Inherited interfaces -IObjectEventInfo, IEventInfo

Export Object
The Information object for this Event is IExportEventInfo.

■ Purpose and function - IExportEventInfo performs the following tasks:

– Retrieves the format of the export file

– Returns the array of objects that are exported

– Returns the tables for exporting the object

■ Inherited interfaces - IEventInfo

General Object Actions - Script PX
This section lists and describes Script PXs that support General Action Objects

Working with Event Information and Event Script Objects

5-18 Agile Product Lifecycle Management SDK Developer Guide – Using Extensions

Create Object
The Script Event object for this Event is ICreateScriptObj.

■ Purpose and function - The same as ICreateScriptObj

■ Inherited interfaces - IUpdateScriptObj, IBaseObjectScriptObj, IBaseScriptObj

■ Purpose and function of the inherited interfaces - The same as IUpdateEventInfo,
IObjectEventInfo and IEventInfo

The following examples use ICreateScriptObjand IUpdateScriptObj.

Example 5–7 Using ICreateScriptObj

// In this example, ICreateScriptObj modifies the number and class ID of the new
object.

void testICreateScriptObj(IBaseScriptObj obj){

String origNumber = "";
String newNumber = "";
int newSubclassId =

ItemConstants.CLASS_DOCUMENT ;

// new subclass ID of choice
int newSubclass ;
int subclass;

// getNewNumber()
origNumber = obj.getNewNumber();
newNumber = origNumber +"new";

// setNewNumber()
obj.setNewNumber(newNumber);
newNumber = obj.getNewNumber();

// getNewSubclassId()
subclass = obj.getNewSubclassId();

// setNewSubclassId()
obj.setNewSubclassId(newSubclassId);
newSubclass = obj.getNewSubclassId();

// log new object number and new subclass ID in to handler monitor
obj.logMonitor("new object number is:" + newNumber);
obj.logMonitor("new subclass ID is:" + newSubclass);

}

In Example 5–8, "Using IUpdateScriptObj"the IUpdateScriptObj method Gets the ID
and value of Dirty attributes. It then sets the Dirty attribute values obtained from the
context object, and removes the value of Dirty attributes.

Example 5–8 Using IUpdateScriptObj

void testIUpdateScriptObj(IBaseScriptObj obj){
String dirtyAttr = "";
String dirtyValue = "";

// get Attribute Ids
int[] attrs = obj.getAttrIds();

Working with Event Information and Event Script Objects

Working with Agile PLM Events and Event Context Objects 5-19

attrs.each {attr->

// get Attribute value
dirtyAttr = obj.getDirtyAttr(attr);

// log attribute Id and value in to handler monitor
obj.logMonitor("Dirty Attr Id :" + attr);
obj.logMonitor(" dirty Attr value:" + dirtyAttr);
}

// Overwrite client value
obj.setDirtyAttrValue(CommonConstants.ATT_PAGE_TWO_TEXT02,

"set text value from CO");

//Remove Dirty Attribute value
obj.removeDirtyAttr(CommonConstants.ATT_PAGE_TWO_TEXT02);

// get dirty attribute value after removing value from CO
dirtyValue = obj.getDirtyAttrValue(CommonConstants.ATT_PAGE_TWO_TEXT02);

}

Update Title Block
The Script Event object for this Event is IUpdateTitleBlockScriptObj.

■ Purpose and function - IUpdateTitleBlockScriptObj checks whether this is a
redline update or undo-redline update on the Title Block of the IItem object which
has originated from the Affected Items table of Change object

■ Inherited interfaces - IUpdateScriptObj, IBaseObjectScriptObj, IBaseScriptObj

Save As Object
Script Event object for this Event is ISaveAsScriptObj.

■ Purpose and function - ISaveAsScriptObj retrieves the name or number for the
new object.

■ Inherited interfaces - ISaveAsScriptObj, IBaseObjectScriptObj, IBaseScriptObj

Delete Object
The Information object for this Event is IDeleteScriptObj.

■ Purpose and function - ISaveAsScriptObj deletes the Event Script object.

■ Inherited interfaces - IBaseObjectScriptObj, IBaseScriptObj

Export Object
Script Event object for this Event is IExportScriptObj.

■ Purpose and function - IExportScriptObj retrieves the format for the export object.

■ Inherited interfaces - IBaseScriptObj

Example 5–9, "Using IExportScriptObj" retrieves information about the object that is
exported.

Example 5–9 Using IExportScriptObj

void testIExportScriptObj(IBaseScriptObj obj){
int format;
int[] selectedTables =

Working with Event Information and Event Script Objects

5-20 Agile Product Lifecycle Management SDK Developer Guide – Using Extensions

String objects ="";
String user = "";

String objectNumber =
"P00002" ; // the object number being exported

// get current user
obj.getCurrentUser();

// get file format for the export.
format = obj.getExtractedFormat();

// get list of Object Names being exported
objects = obj.getExtractedObjects();

// get tables selected for export
selectedTables = obj.getSelectedTables(objectNumber);

// log current user, extracted format, object names and tables which
exported into handler monitor

obj.logMonitor("current user is:" + user);
obj.logMonitor("file format is:" + format);
obj.logMonitor("Object Names are:" + objects);
obj.logMonitor("Selected Tables are:" + selectedTables);

}

Working with Table and Relationship Actions
These actions include updating the supported object tables for specific business
objects.

Table and Relationship Actions - Java PX
This section lists and describes the applicable Java PXs.

Update Table
The Information object for this Event is IUpdateTableEventInfo.

■ Purpose and function - IUpdateTableEventInfo is the interface for Update Table
and Update Relationship. It retrieves the Dirty table for the affected object.

■ Inherited interfaces - IObjectEventInfo and IEventInfo.

■ Related interfaces:

– IEventDirtyFile is the interface for a Dirty file associated with
IEventDirtyRowFileUpdate or IFileEventInfo. It represents a single row in a
file table and retrieves the checkout date of the Dirty file.

– IEventDirtyTable is the interface for a Dirty table associated with
IUpdateTableEventInfo or IEventDirtyRow. The Dirty table contains a
collection of modified rows. It provides access to transient table information
for modified tables.

– IEventDirtyCell is the interface for a Dirty cell associated with
IEventDirtyRowUpdate or IUpdateEventInfo. Represents a single cell in a row.
It returns the attribute identifier corresponding to this Dirty cell.

– IEventDirtyRowFileUpdate retrieves the Dirty file. It is the interface for a
Dirty row used to perform Dirty Row Actions (Add file, Replace file).

Working with Event Information and Event Script Objects

Working with Agile PLM Events and Event Context Objects 5-21

– IEventDirtyRowUpdate retrieves the Dirty row for which the update occurs.
This interface is used by the update on all tables except the attachment table.

Note: You can find information on "Dirty" objects in the SDK
samples Documentation folder. To access this folder, see the Note in
"Client-Side Components" on page 1-2.

These examples use IEventDirtyTable and IEventDirtyRowUpdate on an Item BOM
table.

Example 5–10 Using IEventDirtyTable

private void testIEventDirtyTable(IAgileSession session,
IEventDirtyTable table, IDataObject obj, int evtTriggerType) throws Exception {

//Get TableId()
String tableName = getTableName(obj, table);

// size()
int size = table.size();

//iterator()
Iterator it = table.iterator();
while (it.hasNext()){

IEventDirtyRow row = (IEventDirtyRow)it.next();
if(row.getAction()!=

EventConstants.DIRTY_ROW_ACTION_ADD_FILE&&row.getAction()!=
EventConstants.DIRTY_ROW_ACTION_REPLACE_FILE)

//user defined method
testIEventDirtyRowUpdateCommon(session, row, obj, evtTriggerType);

else
testIEventDirtyRowFileUpdate(row);// user defined method

}
}

Example 5–11 IEventDirtyRowUpdate on Item BOM table

private void testIEventDirtyRowUpdate_ItemBOM_Update
(IEventDirtyRowUpdate row, IDataObject obj) throws Exception {

readCells(cells1);

// user defined method
/* setCell() - Override

* List01 ==> c
* MultiText30 ==> setCell() on update
* Text01 ==> setCell()on update
* Numeric01 ==> 888.66
* BOM Notes ==> setCell() from CO

*/

//List01
IAttribute attrList =
obj.getAgileClass().getAttribute(ItemConstants.ATT_BOM_BOM_LIST01);
IAgileList list =

(IAgileList)attrList.getAvailableValues();
list.setSelection(new Object[]{"c"});
row.setCell(ItemConstants.ATT_BOM_BOM_LIST01, list);

Working with Event Information and Event Script Objects

5-22 Agile Product Lifecycle Management SDK Developer Guide – Using Extensions

//MultiText30
row.setCell(ItemConstants.ATT_BOM_BOM_MULTITEXT30, "setCell() MT30 update");
row.setCell(ItemConstants.ATT_BOM_BOM_TEXT01, "setCell() T01 update");

//Text01
row.setCell(ItemConstants.ATT_BOM_BOM_TEXT01, "setCell() T01

//Numeric01
row.setCell(ItemConstants.ATT_BOM_BOM_NUMERIC01, 888.66);

//BOM Notes
row.setCell(ItemConstants.ATT_BOM_BOM_NOTES, "setCell() Notes update")

/*
* setCell() - New
* List02 ==> a
* Text02 ==> setCell() on update

*/

// List02
row.setCell(ItemConstants.ATT_BOM_BOM_LIST02, list);

//Text02
row.setCell(ItemConstants.ATT_BOM_BOM_TEXT02, "setCell() T02 update");

// Qty
row.setCell(ItemConstants.ATT_BOM_QTY, new Integer(2));

//removeCell() ==> Date01 & Find Num
row.removeCell(ItemConstants.ATT_BOM_BOM_DATE01);
row.removeCell(ItemConstants.ATT_BOM_FIND_NUM);

// getCell()
EventDirtyCell cell = row.getCell(ItemConstants.ATT_BOM_BOM_LIST02)

}

Update Relationship
See Update Table in "Table and Relationship Actions - Java PX" on page 5-20.

Table and Relationship Actions - Script PX
This section lists and describes the Script PXs that support Table and Relationships
action.

Update Table
The Script Event object for this Event is IUpdateTableScriptObj.

■ Purpose and function - IUpdateTableScriptObj is the interface for Update Table
and Update Relationship. It retrieves the dirty table for the affected object.

■ Inherited interfaces - IBaseObjectScriptObj. See "Base Event Script Objects - Script
PX" on page 5-13.

■ Related interfaces

– IEventDirtyRow is the base interface for a dirty row associated with
IUpdateTableScriptObj. It represents a single row in a table. There is an action
associated with the row.

Working with Event Information and Event Script Objects

Working with Agile PLM Events and Event Context Objects 5-23

– IEventDirtyRowFileUpdate retrieves the dirty file row. It is the interface for a
dirty file row used to perform Dirty File Row Actions (Add file, Replace file).

– IEventDirtyRowUpdate retrieves the Dirty row. It is the interface for a Dirty
row used to perform Dirty Row Actions (Add, Delete, Update, Redline Add,
Redline Delete, Redline Update, Undo Redline.)

– IEventDirtyFile is the interface for a Dirty file associated with
IEventDirtyRowFileUpdate or IFileEventInfo. It represents a single row in a
file table and retrieves the checkout date of the Dirty file.

The following examples show using IEventDirtyTable and IEventDirtyRowUpdate on
an Item BOM table.

Example 5–12 Using IEventDirtyTable

// IUpdateTableScriptObj: get table id and Dirty row ids
void testIUpdateTableScriptObj(IBaseScriptObj obj)

{
//getTableId()

int table_id= obj.getTableId();
obj.logMonitor("Table Id" + table_id);

// getDirtyRowIds()
rowIDs =obj.getDirtyRowIds();
rowIDs.each{rID-> //loop through Dirty rows
obj.logMonitor("rowID is " + rID);

//getDirtyRow()
row = obj.getDirtyRow(rID);

// getAction
action = row.getAction();
obj.logMonitor ("Action" + action);
if ((action == EventConstants.DIRTY_ROW_ACTION_ADD_FILE) || (action

== EventConstants.DIRTY_ROW_ACTION_REPLACE_FILE))
testIEventDirtyRowFileUpdate(obj,row,rID); // user method

else
testIEventDirtyRowUpdate(obj,row,rID); // user method

The following Item BOM table example gets the object number and action for a single
row associated with IUpdateTableScriptObj). shows using

Example 5–13 Using IEventDirtyRowUpdate

IUpdateTableScriptObj.void testIEventDirtyRowUpdate
(IBaseScriptObj obj,IEventDirtyRow row, int rID) {

//getRowId()
int rid = row.getRowId();

// getObjectNumber()
int rnumber = row.getObjectNumber();
obj.logMonitor("row object" + rnumber);

// getDirtyRow
dirtyRow = obj.getDirtyRow(rID);

//from client, update following attributes in Bom table
// find number,Bom notes, Multi Text01,List01,date01, Text01, numeric0
//getDirtyAttrIds()

Working with Event Information and Event Script Objects

5-24 Agile Product Lifecycle Management SDK Developer Guide – Using Extensions

dirtyRow = obj.getDirtyRow(rID);
dirtyAttrs = dirtyRow.getDirtyAttrIds();
def sort_attrs = dirtyAttrs as List;

//sort attribute Ids
sort_attrs.sort();

// getDirtyAttrValue()
sort_attrs.each {dirtyAttr->
attrValue = dirtyRow.getDirtyAttrValue(dirtyAttr);
obj.logMonitor('***'+"attribute value" +'=' + attrValue);
}

// array of vlues to overwrite attributes from Context object
//[find number,Bom notes, Multi Text01,List01,date01, Text01, numeric01]
set_dirty_value = ["5","Bom Note","Multi text 03","e","2009-01-30 08:00:00","Text
01","224466"];

//setDirtyAttrValue , overwrite attribute values
int indexy =0;
sort_attrs.each{att->
dirtyRow.setDirtyAttrValue(att , set_dirty_value[indexy++]);
}

// getDirtyAttrValue() after overwrite in CO
int indexB=0;
sort_attrs.each {dirtyAttr->
attrValue2 = dirtyRow.getDirtyAttrValue(dirtyAttr);
all_attrValue2[indexB++]= attrValue2;
}

// removetDirtyAttr() remove dirty attributes and rollback changes
sort_attrs.each {dirtyAttr->
dirtyRow.removetDirtyAttr(dirtyAttr);

}
}

Working with Variant Management Events
Variant Management events include:

■ Create Variant Instance

The event handler creates the derived Instance BOM.

■ Derive Variant Model Option BOM

The event handler creates the logical structure of the Instance BOM without
actually creating new items or changing the BOM tab of an item.

■ Update Variant Configuration

The event handler adds or removes configuration options and runs propagations
and pre-selections.

■ Validate Variant Configuration

The event handler checks the consistency of the Configuration Graph and the
Model Option BOM.

■ Validate Variant Instance Selections

The event handler checks validation rules for the configuration, for example,
minimum/maximum violations, or if an Option Class has enough valid child
options.

Working with Event Information and Event Script Objects

Working with Agile PLM Events and Event Context Objects 5-25

■ Validate Variant Model Option BOM

The event handler checks validation rules on the Model Option BOM. For
example, if the minimum quantity value is smaller/equal to the maximum
quantity value, or if an Option Class has valid child options.

These events can only be triggered on Model part subtype. Once the event is enabled,
it replaces the system behavior instead of extending it.

Note: You can download the Variant Management SPX and JPX
default scripts from Oracle Agile PLM's Event and Web Services
Samples website. For information to access this site, see the Note in
"Client-Side Components" on page 1-2.

Variant Management Events - Java PX
The information object for these Events is IVMEventObj:

■ Create Variant Instance

■ Derive Variant Model Option BOM

■ Update Variant Configuration

■ Validate Variant Configuration

■ Validate Variant Instance Selections

■ Validate Variant Model Option BOM

IVMEventObj is the interface for the Variant Management events information object. It
provides access to the Configuration Graph, the Model Option BOM and the Instance
BOM (if available).

Note: You can find more information on the purpose and function of
these Events and when they are triggered, in the Agile PLM
Administrator Guide and the chapter entitled "Configuring Variant
Management" in Agile PLM Product Collaboration User Guide.

Inherited interfaces - IObjectEventInfo, IEventInfo

The following example shows how to use IVMEventObj

private void testIVMEventObj(IVMEventObj req) {
IConfigurationGraph graph = req.getConfigurationGraph();
// get Model Option BOM
IModelOptionBOM mob = req.getModelOptionBOM();
// getting unique id of item that has been selected/deselected/modified
// by the user
IUniqueId currentId = req.getCurrentUniqueId();
IModelOptionBOMItem item = mob.findItem(currentId);
graph.selectOption(item);

}

Variant Management Events - Script PX
The information object for these Events is IVMScriptObj:

■ Create Variant Instance

■ Derive Variant Model Option BOM

Working with Event Information and Event Script Objects

5-26 Agile Product Lifecycle Management SDK Developer Guide – Using Extensions

■ Update Variant Configuration

■ Validate Variant Configuration

■ Validate Variant Instance Selections

■ Validate Variant Model Option BOM

IVMScriptObj is the interface for the Variant Management events information object. It
provides access to the Configuration Graph, the Model Option BOM and the Instance
BOM (if available).

Note: You can find more information on the purpose and function of
these Events and when they are triggered, in the Agile PLM
Administrator Guide and the chapter entitled "Configuring Variant
Management" in Agile PLM Product Collaboration User Guide.

Inherited interfaces - IBaseObjectScriptObj, IBaseScriptObj

The following is a usage example of IVMScriptObj method.

Example 5–14 Using the IVMScriptObj method

void testIVMEventObj(IBaseScriptObj obj)
{
// get configuration graph

IConfigurationGraph graph = obj.getConfigurationGraph();
// get Model Option BOM
IModelOptionBOM mob = obj.getModelOptionBOM();
for (IConfigurationOption option in graph) {
IModelOptionBOMItem mobItem = mob.findItem(

option.getUniqueId());
if (option.getQuantity() > mobItem.getMaxQuantity()) {

obj.addErrorMessage(option, "Quantity must not be greater than
max. quanity())

}
}

Working with Workflow Object Actions
These are Workflow-related actions such as, Change Status for Workflow, Change
Approvers or Observers for Workflow, and change the status of Product Cost
Management's Sourcing Project.

This section lists and describes the Java PXs that support Workflow object actions.

Change Status for Workflow
The Information object for this Event is IWFChangeStatusEventInfo.

■ Purpose and function - IWFChangeStatusEventInfo retrieves changes in
Workflow status of the object and assigned notifiers and checks whether the
"auto-promote" flag is set or not set.

■ Inherited interfaces - IRoutingSlipEventInfo , IRoutableObjectEventInfo,
IObjectEventInfo, IEventInfo

■ Inherited interfaces purpose and function:

Working with Event Information and Event Script Objects

Working with Agile PLM Events and Event Context Objects 5-27

– IRoutingSlipEventInfo - Is the inherited interface for all Event Information
objects that contain the Routing slip Object and provides methods to set/get
approvers, observers, comments, and urgent flags

– IRoutableObjectEventInfo - Is the inherited interface for all Event Information
objects related to workflow actions and provides methods such as get/set
approvers or observers

The following examples use IWFChangeStatusEventInfo, IRoutingSlipEventInfo and
IRoutableObjectEventInfo.

Example 5–15 Using IWFChangeStatusEventInfo

private void testIWFChangeStatusEventInfo(IAgileSession session, IEventInfo req)
throws APIException {

IWFChangeStatusEventInfo info = (IWFChangeStatusEventInfo)req;

//getNotifiers()
IDataObject[] notifiers = info.getNotifiers();

// isAutoPromote()
boolean isAutoPromote = info.isAutoPromote();

// setNotifiers()
IUser user = getUser(session, "yvonnec");
IUserGroup ug = getUserGroup(session, "SOA");
Collection col = new ArrayList();
col.add(user);
col.add(ug);
info.setNotifiers(col);

// getFromStatus()
IStatus fromStatus = info.getFromStatus();

// getToStatus()
IStatus toStatus = info.getToStatus();

}

Example 5–16 Using IRoutingSlipEventInfo

private void testIRoutingSlipEventInfo(IAgileSession session,
IEventInfo req) throws APIException {
IRoutingSlipEventInfo info = (IRoutingSlipEventInfo)req;
Collection colAppvrs = new ArrayList();
Collection colObsvrs = new ArrayList();
Collection colNewAppvrs = new ArrayList();
Collection colNewObsvrs = new ArrayList();
String newComments = "Override in context object.";

//getApprovers()
IDataObject[] approvers = info.getApprovers();
String approverList = arrayToString(approvers);

//getObservers()
IDataObject[] observers = info.getObservers();

//getComments()
String comments = info.getComments();

//isUrgent()
boolean isUrgent = info.isUrgent();

Working with Event Information and Event Script Objects

5-28 Agile Product Lifecycle Management SDK Developer Guide – Using Extensions

//setApprovers()
IUser user1 = getUser(session, "badriv");
IUser user2 = getUser(session, "albertl");
IUser user3 = getUser(session, "brucec");
IUserGroup ug1 = getUserGroup(session, "SOA");
info.setApprovers(colAppvrs);
IDataObject[] newApprovers = info.getApprovers();

//setObservers()
info.setObservers(colObsvrs);
IDataObject[] newObservers = info.getObservers();

//setComments()
info.setComments(newComments);
String latestComments = info.getComments();

//setUrgent()
boolean newUrgent = getOppositeBoolean(isUrgent);
info.setUrgent(newUrgent); boolean latestUrgent = info.isUrgent();

}

Example 5–17 Using IRoutableObjectEventInfo

private void testIRoutableObjectEventInfo(IEventInfo req) throws APIException {
IRoutableObjectEventInfo info = (IRoutableObjectEventInfo)req;

//getWorkFlow()
IWorkflow wf = info.getWorkFlow();

}

Approve for Workflow
The Information object for this Event is ISignOffEventInfo.

■ Purpose and function - ISignOffEventInfo is the interface for Approve for
Workflow and Reject for Workflow. It returns and overwrites information about
status, approvers (users), approver groups, and checks the status of the signoff
flag.

■ Inherited interfaces - IRoutableObjectCommentEventInfo,
IRoutableObjectEventInfo, IObjectEventInfo, IEventInfo

■ Inherited interfaces purpose and function - IRoutableObjectCommentEventInfo
is the interface for Comment for Workflow. It retrieves and overwrites Comment
type data provided for Workflow, Approve for Workflow, and Reject for Workflow
Events.

Reject for Workflow
See "Approve for Workflow" on page 5-28.

Escalation for Workflow
The Information object for this Event is IEscalationEventInfo.

■ Purpose and function - IEscalationEventInfo retrieves the following information
about the Escalation for Workflow Event:

– Sign-off user, escalated to users, escalation period, and status of the workflow

■ Inherited interfaces - IRoutableObjectEventInfo, IObjectEventInfo, IEventInfo

Working with Event Information and Event Script Objects

Working with Agile PLM Events and Event Context Objects 5-29

■ Inherited interfaces purpose and function - See "Approve for Workflow" on
page 5-28.

Reminder for Workflow
The Information object for this Event is IReminderEventInfo.

■ Purpose and function - IReminderEventInfo returns notifiers assigned to the
Workflow reminder.

■ Inherited interfaces - IRoutableObjectEventInfo, IObjectEventInfo, IEventInfo

Audit for Workflow
The Information object for this Event is IAuditStatusEventInfo.

■ Purpose and function - IAuditStatusEventInfo retrieves the type of Workflow
Audit Action that is performed.

■ Inherited interfaces - IAuditResultEventInfo, IRoutableObjectEventInfo,
IObjectEventInfo, IEventInfo

■ Inherited interfaces purpose and function - IAuditResultEventInfo is the
interface for Audit for Workflow and Promotion Failure for Workflow. It retrieves
error messages for the audit or promotion failure.

Promotion Failure for Workflow
See "Audit for Workflow" on page 5-31.

Comment for Workflow
The Information object for this Event is IRoutableObjectCommentEventInfo. See
"Approve for Workflow" on page 5-28.

Change Approvers or Observers for Workflow
The Information object for this Event is IChangeAppObserverEventInfo.

■ Purpose and function - IChangeAppObserverEventInfo retrieves the action type,
status, and the applied to status of the Change Approvers or Observers for the
Workflow Event plus the change action by the approver or observer on the
Workflow state.

■ Inherited interfaces - IRoutingSlipEventInfo

Workflow Object Actions - Script PX
This section lists and describes the Script PXs that support Workflow object actions.

Change Status for Workflow
The Information object for this Event is IChangeStatusScriptObj.

■ Purpose and function - IChangeAppObserverEventInfo retrieves changes in the
Workflow status of the object, the assigned notifiers, and checks whether the
"auto-promote" flag is set or not set.

■ Inherited interfaces - IRoutingSlipScriptObj , IRoutableScriptObj,
IBaseObjectScriptObj, IBaseScriptObj

■ Inherited interfaces purpose and function:

Working with Event Information and Event Script Objects

5-30 Agile Product Lifecycle Management SDK Developer Guide – Using Extensions

– IRoutingSlipScriptObj - Inherited interface for all Event Script objects that
contain the Routing slip Object

– IRoutableScriptObj - Inherited interface for all Event Script objects related to
workflow actions

The following examples use the IChangeStatusScriptObj, IRoutingSlipScriptObj, and
IRoutableObjectScriptObj scripts.

Example 5–18 Using IChangeStatusScriptObj

IChangeStatusScriptObj: Change Status for Workflow Event script object.
{

// getFromStatus()
String current_status = obj.getFromStatus();

// getToStatus()
String next_status = obj.getToStatus();

// getNotifiers()
String notifiers =obj.getNotifiers();

// setNotifiers()
obj.setNotifiers(["admin", "demo1","weiz", "demo5"]);

// isAutoPromote()
boolean auto = obj.isAutoPromote();

}

Example 5–19 Using IRoutableScriptObj

IRoutableScriptObj : get workflow
void testIRoutableScriptObj(IBaseScriptObj obj)
{

// getWorkflow()
String wf = obj.getWorkflow();

}

Approve for Workflow
The Information object for this Event is ISignOffScriptObj.

■ Purpose and function - ISignOffScriptObj is the interface for Approve for
Workflow and Reject for Workflow. It returns information about status, approvers
(users), approver groups, and checks the status of the signoff flag.

■ Inherited interfaces - IRoutableObjectCommentScriptObj, IRoutableScriptObj,
IBaseObjectScriptObj, IBaseScriptObj

■ Inherited interfaces purpose and function - IRoutableObjectCommentScriptObj.
This is the Interface for Comment for Workflow. It retrieves comments entered for
the Routable object.

Reject for Workflow
See "Approve for Workflow" on page 5-28.

Working with Event Information and Event Script Objects

Working with Agile PLM Events and Event Context Objects 5-31

Escalation for Workflow
The Information object for this Event is IEscalationScriptObj.

■ Purpose and function - IEscalationScriptObj retrieves names of users to whom the
Workflow is escalated to.

■ Inherited interfaces - IRoutableScriptObj, IBaseObjectScriptObj, IBaseScriptObj

■ Inherited interfaces purpose and function - See "Approve for Workflow" on
page 5-28.

Reminder for Workflow
The Information object for this Event is IReminderScriptObj.

■ Purpose and function - IReminderScriptObj returns the notifiers assigned to the
reminder period and Workflow reminder.

■ Inherited interfaces - IRoutableScriptObj, IBaseObjectScriptObj, IBaseScriptObj

Audit for Workflow
The Information object for this Event is IAuditStatusScriptObj.

■ Purpose and function - IReminderScriptObj retrieves the type of Workflow Audit
Action that is performed.

■ Inherited interfaces - IAuditResultScriptObj, IRoutableScriptObj,
IObjectScriptObj, IBaseScriptObj

■ Inherited interfaces purpose and function - IAuditResultScriptObj is the interface
for Audit for Workflow and Promotion Failure for Workflow. It retrieves error or
warning messages and Workflow status information for the audit or promotion
failure.

Promotion Failure for Workflow
See "Audit for Workflow" on page 5-29.

Comment for Workflow
The Information object for this Event is IRoutableObjectCommentScriptObj. See
"Approve for Workflow" on page 5-28.

Change Approvers or Observers for Workflow
The Information object for this Event is IChangeAppObserverScriptObj.

■ Purpose and function - IChangeAppObserverScriptObj retrieves the action type,
status, and the applied to status of the Change Approvers or Observers for the
Workflow Event and the change action by the approver or observer on the
Workflow state.

■ Inherited interfaces - IRoutingSlipScriptObj

Working with Specific Object-Based Actions
These actions support incorporating and unincorprating the Item object in PLM's
Production Collaboration solution and change status for Sourcing projects.

Specific Object-Based Actions - Java PX
The related actions are listed and described below.

Working with Event Information and Event Script Objects

5-32 Agile Product Lifecycle Management SDK Developer Guide – Using Extensions

Incorporate Item and Unincorporate Item
The Information object for this Event is IObjectEventInfo.

Change Status for Sourcing Project
The Information object for this Event is ISourcingObjectChangeStatusEventInfo.

■ Purpose and function - ISourcingObjectChangeStatusEventInfo retrieves the type
of action that is performed on the Sourcing object.

■ Inherited interfaces - IObjectEventInfo and IEventInfo

Specific Object-Based Actions - Script PX
The following paragraphs describe the Script PX that supports Specific Object-Based
Actions.

Incorporate Item and Unincorporate Item
The Script Event object for this Event is IBaseObjectScriptObj.

Change Status for Sourcing Project
The Information object for this Event is ISourcingObjectChangeStatusScriptObj.

■ Purpose and function - ISourcingObjectChangeStatusScriptObj retrieves the type
of action that is performed on the Sourcing object.

■ Inherited interfaces - IBaseObjectScriptObj and IBaseScriptObj

Working with Files and Attachments Objects Actions
These are the file-related actions such as check out file, check in file, and purging
version files.

Files and Attachments Objects Actions - Java PX
The following paragraphs describe the Java PX that supports Files and Attachments
objects actions.

Purge File Version
The Information object for this Event is IPurgeFileEventInfo.

■ Purpose and function - IPurgeFileEventInfo retrieves the version for the purged
file.

■ Inherited interfaces - IObjectEventInfo and IEventInfo

Files and Attachments Objects Actions - Script PX
The following paragraphs describe the Script PX that supports Files and Attachments
objects actions.

Get File, Check Out Files, Check In Files, Cancel Check Out Files
The Event Script object for these Events is IFileEventScriptObj.

■ Purpose and function - IObjectEventInfo retrieves the Dirty files for the selected
file attachments.

■ Inherited interfaces - IBaseObjectScriptObj and IBaseScriptObj

Working with Event Information and Event Script Objects

Working with Agile PLM Events and Event Context Objects 5-33

Purge File Version
The Event Script object for this Event is IPurgeFileScriptObj.

■ Purpose and function - IPurgeFileScriptObj retrieves the version for the purged
file

■ Inherited interfaces - IBaseObjectScriptObj and IBaseScriptObj

The following example shows using IFileEventScriptObj.

Example 5–20 Using IFileEventScriptObj

// FileEventScriptObj: get file for file actions related events
void testIFileEventScriptObj(IBaseScriptObj obj,IEventDirtyRow row)
{

// getFile()
file = row.getFile();
testIEventDirtyFile(obj,file);

}

Example 5–21 Using IEventDirtyFile

IEventDirtyFile: get file information for Dirty file associated with
IEventDirtyRowFileUpdate
void testIEventDirtyFile(IBaseScriptObj obj,IEventDirtyfile file)
{

// getFilename()
String file_name = file.getFilename();

// getSize()
int file_size = file.getSize();

// getType()
file_type = file.getType();

// getFileFolderNumber()
file_folder_num = file.getFileFolderNumber();

// getFileFolderVersionNumber()
file_folder_ver = file.getFileFolderVersionNumber();

//getCheckoutUser()
user = file.getCheckoutUser();

// getCheckoutDate()
date = file.getCheckoutDate();

obj.logMonitor("file name is:" + file_name);
obj.logMonitor("file size is:" + file_size);
obj.logMonitor("file type is:" + file_type);
obj.logMonitor("file folder number is:" + file_folder_num);
obj.logMonitor("file folder version number is:" + file_folder_ver);
obj.logMonitor("checkout user is:" + user);
obj.logMonitor("checkout date is:" + date);

}

Working with Product Governance and Compliance Actions
This action supports checking compliance of PG&C objects.

Working with Event Information and Event Script Objects

5-34 Agile Product Lifecycle Management SDK Developer Guide – Using Extensions

Product Governance and Compliance Actions - Java PX
The following paragraphs describe the Java PXs that support Product Governance and
Compliance actions.

Compliance Rollup On Object
The Information object for this Event is IObjectEventInfo. This interface and the
applicable inherited interfaces are documented in "General Object Actions - Java PX"
on page 5-15.

Product Governance and Compliance Actions - Script PX
The following paragraphs describe the Script PX that supports Product Governance
and Compliance actions

Compliance Rollup On Object
The Information object for this Event is IBaseScriptObj. This interface and the
applicable inherited interfaces are documented in "General Object Actions - Script PX"
on page 5-17.

Working with Miscellaneous Object Actions
These are the file-related actions such as check out file, check in file, and purging
version files.

Miscellaneous Object Actions - Java PX
The following paragraphs describe the Java PXs that support the miscellaneous object
actions

Transfer Authority
The Information object for this Event is ITransferAuthorityEventInfo.

■ Purpose and function - ITransferAuthorityEventInfo contains the data belonging
to Transfer Authority action and retrieves and overwrites data set by the PLM
client for the Transfer Authority action.

■ Inherited interfaces - IExportEventInfo.

Miscellaneous Object Actions - Script PX
The following paragraphs describe the Script PX that supports miscellaneous Object
actions.

Transfer Authority
The Information object for this Event is ITransferAuthorityScriptObj.

■ Purpose and function - ITransferAuthorityScriptObj retrieves and overwrites data
set by the PLM client for the Transfer Authority action.

■ Inherited interfaces - IBaseScriptObj

Working with Event Integration Points in PLM Clients
Events can be invoked from Agile PLM clients' Extend Actions Menu, Extend Tools
Menu, and Scheduled Event described below.

Working with Event Information and Event Script Objects

Working with Agile PLM Events and Event Context Objects 5-35

Event Integration Points - Java PX
The following paragraphs list and describe the Java PX that support Event integration
points in PLM Clients.

Extend Actions Menu
The Information object for this Event is IObjectEventInfo. This interface and the
applicable inherited interfaces are documented in "General Object Actions - Java PX"
on page 5-15.

Extend Tools Menu
The Information object for this Event is IEventInfo. This interface and the applicable
inherited interfaces are documented in "General Object Actions - Java PX" on
page 5-15.

Scheduled Event
The Information object for this Event is IEventInfo. This interface and the applicable
inherited interfaces are documented in "General Object Actions - Java PX" on
page 5-15.

Event Integration Points - Script PX
The following paragraphs list and describe the Script PXs that support Event
integration points in PLM Clients.

Extend Actions Menu
The Information object for this Event is IBaseScriptObj. This interface and the
applicable inherited interfaces are documented in "General Object Actions - Script PX"
on page 5-17.

Extend Tools Menu
The Information object for this Event is IBaseObjectScriptObj. This interface and the
applicable inherited interfaces are documented in "General Object Actions - Script PX"
on page 5-17.

Scheduled Event
The Information object for this Event is IBaseScriptObj. This interface and the
applicable inherited interfaces are documented in "General Object Actions - Script PX"
on page 5-17.

Guidelines for Java PX and Script PX Handlers
These comments and recommendations are intended to ensure the proper
development and implementation of your Java PXs and Script PXs. They include:

■ Information that you need from the Agile PLM Administrator to code the handler
and information that you must convey to the Administrator to configure and
implement the Event

■ Information to ensure proper handling of Events

■ Information to test your PXs

Working with Event Information and Event Script Objects

5-36 Agile Product Lifecycle Management SDK Developer Guide – Using Extensions

Working with Agile PLM Administrator
The Agile PLM Administrator will convey the necessary information to determine the
Event type, execution mode and trigger type. Once you have developed the Java PX or
Script PX handlers, you must inform the Administrator about the Event subscriber.
This information includes Event type, execution mode, trigger type, order, and
applicable error handling rule.

In addition to information about Event subscriber, the Administrator needs the
following specific information to configure the Event Handler.

■ Java PX Handlers - Java PXs are deployed on the server. For procedures, see
"Packaging and Deploying a Custom Autonumber Source" on page 3-3. Once
deployed, the Administrator locates it in Java Client by selecting Admin >
Settings > System Settings > Event Management > Event Handlers > New. The
Create Event Handler dialog box appears. In Event Handler Type field select >
Java PX > Event Action. The Administrator needs to know the name that appears
in the Event Action field, to configure the Handler.

■ Script PX Handlers - The script PX code is a text file. You must send the script text
file to the PLM Administrator. The Administrator will then paste it in the Script
field of the Create Event Handler dialog and proceed to configure the Subscriber.
This field is accessed from Java Client by selecting Administrator > Event
Management > Event Handlers > Create Event Handler > Script PX > Script.

Working with Event Information and Event Script Objects

Working with Agile PLM Events and Event Context Objects 5-37

Testing Event Java PX and Event Script PX
If the Agile PLM Administrator uses your Handlers to configure the Event Subscriber,
you should coordinate testing the PXs with the Administrator. On the other hand, if
you do the configurations, then use the following information for this purpose.

Invoke the new Java PX or Script PX to ensure the action specified in the Handler
(code) executes properly.

If the PX is configured to be invoked by a user action from the Tools menu, you can
test it in Web Client or Java Client as follows:

■ In Web Client tool bar select the Tools and Settings button and then <Event_
name>.

■ In Java Client tool bar select the Process Extensions button or Tools > Process
Extensions ><Event_name>.

Triggering Guidelines for Java PX, Script PX, and Notification Handlers
Use the following guidelines when developing Handlers to ensure proper triggering of
the special instances of these Event types.

General Object Actions
The following paragraphs describe the Java and Script PXs that ensure proper
triggering of general object Events, such as Create and SaveAs Events.

Create Object Event and SaveAs Event
■ Web Client and Java Client behavior - This action will trigger one Create Object

Event (or SaveAs Event) and its Context object will contain all Dirty attributes for
Page 1, Page 2 and Page 3.

■ SDK behavior - This action will trigger one Create object Event (or SaveAs Event).
In addition, depending on table attributes that are updated (Page 1, Page 2 and
Page 3), one to three Update Title Block Events are triggered. The context object
will contain all Dirty attributes belonging to that table.

Working with Event Information and Event Script Objects

5-38 Agile Product Lifecycle Management SDK Developer Guide – Using Extensions

Update Title Block Event
Web Client, Java Client, and SDK behavior - Depending on table attributes that are
updated (Page 1, Page 2 and Page 3), one to three Update Title Block Events are
triggered, one for each table. The context object will contain all Dirty attributes
belonging to that table.

Update Table Event
When you add, modify, or delete more than one row, this action has the following
Event triggering behavior:

■ One Event is triggered and the Context object will contain all applicable rows. The
only exceptions are in Java Client:

– Relationships Table- One Event is triggered for each applicable row and the
Context Object will contain the applicable row

– Attachment Table - For Update and Delete Actions, one Event is triggered for
each applicable row and the Context Object will contain the applicable row

Workflow Actions
The following paragraphs list and describe the Java and Script PXs that support
Workflow-related actions.

Promotion Failure for Workflow Event
The following actions trigger this Event:

■ Failure of Change Status triggered through Relationship

■ Autopromotion Failure - Autopromotion Failure is invoked by the following
object actions when autopromotion conditions are not met after the completion of
these actions. In addition, each triggered Event is tracked in the object History.

– Change Status

– Sign off the change

– Remove Approvers

– Update Cover Page, Page 2, and Page 3 attributes

– Edit Affected Item Table, Relationship, File Attachment Tab

– Cancel checkout attachment

– Checkin attachment

Create Automatic Transfer Object Action (ATO)
ATO creation is enabled when ECO status is changed from Pending to Submitted. The
sequence of Events that are triggered when the ATO is created is:

1. Pre and Post Event Subscribers are created for:

■ ECO Change status

■ ATO Create

■ ATO Change Status

2. An ECO is created

3. Workflow is assigned and status is changed to submitted

Working with Event Information and Event Script Objects

Working with Agile PLM Events and Event Context Objects 5-39

Files and Attachments Actions
The following paragraphs list and describe when File and Attachment Event are
triggered.

Check In File Event
This action will trigger the following Events:

■ Check In File Event on File Folder objects - This Event is triggered when the Check
In file action is performed on File Folder objects.

■ Check In File Event and Update Table Event on Business objects - These Events are
triggered when the Check In file action is performed on Business objects.

Note: Update Table Event on Business objects is triggered after
Check In File Event is triggered. Also, The Event is only triggered if
the folder version of the attachment is not set to [LATEST]. In Web
Client one Event is triggered for all selected rows. In Java Client, one
Event is triggered for each selected row.

Check Out File Action
This action will trigger the following Events:

■ Check Out Files Event and Get File Event on File Folder objects - These Events are
triggered when the Check Out file action is performed on File Folder objects

■ Check Out Files Event and Get File Event on Business objects - These Events are
triggered when the Check Out file action is performed on Business objects in Java
Client,

– If Download files in one ZIP file option is selected, one Get File Event is
triggered and each row triggers a Checkout Event

– If Download files in one ZIP file option is not selected, each row triggers one
checkout Event and each file triggers a Get File event

Note: In Web Client one Event is triggered for all selected rows. In
Java Client, one Event is triggered for each selected row.

Cancel Check Out File Event
This action will trigger the following Events:

■ Cancel Check Out Files Event on File Folder objects - This Event is triggered when
the Cancel Check Out file action is performed on File Folder objects

■ Cancel Check Out Files Event on Business objects - This Event is triggered when
the Cancel Check Out file action is performed on Business objects

Note: In Web Client one Event is triggered for all selected rows. In
Java Client, one Event is triggered for each selected row.

Working with Event Information and Event Script Objects

5-40 Agile Product Lifecycle Management SDK Developer Guide – Using Extensions

Get File Event
The following actions trigger this Event is:

■ Clicking the Get button on the Attachments table of Business objects or Files table
of File Folder objects

■ Clicking Filename on the Attachments table of the object

Note: If the file is viewable, Agile Viewer is launched and no event
will be triggered.

■ Check Out file action

Note: In Java Client, if users choose to download files individually
instead of downloading the .ZIP file, one Event is triggered for each
selected File.

A

Migrating Custom Process Extensions to Event Framework A-1

AMigrating Custom Process Extensions to
Event Framework

This appendix describes Custom and Java PXs and provides information to Modify the
Custom PX Java code created in Developing Process Extensions for use in Event
framework and configure the modified code to function as a Java PX in the Event
framework.

Understanding Custom PXs and Java PXs
The following paragraphs describe the difference between these PXs and lists the
Custom PXs that you can migrate to Event framework and configure as Java PXs in
Working with Events.

Custom PXs in PX Framework
Custom PXs defined and configured in Developing Process Extensions are a Java class
deployed on the Agile Application Server, or a link to a URL. These PXs run in the PX
framework. See the illustration in "SDK Architecture" on page 1-3.The Java class
Custom PXs includes the following types:

■ Custom action PXs that implemented the server-side Java API ICustomAction
interface in com.agile.px package

■ Custom autonumber source PXs that implemented the server-side Java API
ICustomAutoNumber interface in com.agile.px package

Process Extensions in Event Framework
PXs configured in Working with Events are one of the following types:

■ Java process extensions (Java PX) that implemented the server-side API
IEventAction interface in com.agile.px package

■ Script process extensions (Script PX) that implemented the server-side API
invokeScript(IBaseScriptObj obj) interface in com.agile.DSLObj package

Note: To ensure proper operation of all Java process extensions,
Oracle recommends recompiling existing Java-based PXs with the
version of the JDK that is shipped with your application server.

Migration Task List

A-2 Agile Product Lifecycle Management SDK Developer Guide – Using Extensions

Custom PXs You Can Migrate to Event Framework
The Event framework supports migrating only Custom Action PXs. These are PXs that
are initiated from the Actions Menu, Tools Menu, and Workflow State (Status). See
Using the Process Extension Library.

The corresponding Event types are:

Custom PX Java PX

Actions Menu Extend Actions Menu

Tools Menu Extend Tools Menu

Workflow State
(Status)

Change Status for Workflow

Migration Task List
Complete the following tasks to properly migrate a Custom PX to the Event
framework and ensure its proper operation as a Java PX in this environment.

Task - 1: Modify the Custom PX Code
The following code samples show how to change an existing Custom PX code to a Java
PX code in Event framework. The principal difference between a Java PX and a
Custom PX is the interface the PX must implement. Java PXs implement IEventAction
and Custom PXs implement ICustomAction.

Custom PX Code
This is an example of an existing Custom PX that appeared in "Defining a Custom
Action" on page 3-5. To migrate Custom PXs, you must modify the code as shown in
"Java PX Code" on page A-2.

Example A–1 A Custom PX

public class HelloWorld implements ICustomAction
{

public ActionResult doAction(IAgileSession session,
INode actionNode, IDataObject affectedObject)
{

...

return new ActionResult(ActionResult.STRING, "Hello World");
}

}

Java PX Code
The following example is the modified Custom PX to run in the Event framework.
Code modifications that enabled this migration appear in the bold font.

Example A–2 The Custom PX code after modification

public class HelloWorld implements IEventAction
{

public EventActionResult doAction
(IAgileSession session, INode actionNode, IEventInfo request)

{

Migration Task List

Migrating Custom Process Extensions to Event Framework A-3

IObjectEventInfo objectEventInfo = (IObjectEventInfo) request;
IDataObject affectedObject = objectEventInfo.getDataObject();

....

ActionResult actionResult = new ActionResult
(ActionResult.STRING, "Hello World");

return new EventActionResult(request, actionResult);
}

}

Note: Java PXs get their IDataObject values from IEventInfo.

Task - 2: Package and Deploy the Modified Code
Create JAR files to package and deploy the modified Java code for use in the Event
framework. For procedures, see Packaging and "Packaging and Deploying a Custom
Autonumber Source" on page 3-3.This package is the “action” that you will use to
complete "Task - 3: Configure Event in Event Framework" on page A-3.

Task - 3: Configure Event in Event Framework
The Event Types dialog lists the supported Event types in Event framework. The
supported types for Custom PXs you are migrating are Change Status for Workflow,
Extend Actions Menu, and Extend Tools Menu. Procedures to create and configure
these Events appear next. You can find additional information in Working with Events
and in the Agile PLM Administrator Guide.

Figure A–1 The Event Types page

Create Event
To create the Event:

1. Log in to Java Client with Administrator privileges.

2. Select Admin > System Settings > Event Management >Events > New button.
The Create Event dialog appears.

3. In Event Type, click the drop-down arrow and select your Event from the list.

Migration Task List

A-4 Agile Product Lifecycle Management SDK Developer Guide – Using Extensions

Figure A–2 Create an Extend Tools Menu Event

Figure A–3 Change Status for Workflow

Figure A–4 Selecting the Extend Actions Menu

Note: Fields in the Create Event dialog differ for all Event Types. For
example, in Update Title Block, you are assigning the object's class,
but in Approve for Workflow, you select a status for the Workflow. For
information on assigning object classes and Workflow status, see
Assigning Process Extensions to Classes Assigning Process Extensions
to Classes and Assigning Process Extensions to Workflow Statuses.

Migration Task List

Migrating Custom Process Extensions to Event Framework A-5

4. Select your Event Type and provide the required information, for example, as
shown below. For more information on completing this dialog, refer to Agile PLM
Administrator Guide.

Figure A–5 Create an Extend Tools Menu Event

Figure A–6 The Event General Information page

5. Click OK. The Event: Even_Name page appears.

You can modify the Event from this dialog. When you make a change, the Save button
is enabled. Also, this Event is listed in the Events view. To view, select Event
Management > Events. The next task is to create the handler for this Event.

Create Event Handler
The Event Handler enables executing the compiled Java code. The following
procedure guides you through this step.

To create the Event Handler:

Migration Task List

A-6 Agile Product Lifecycle Management SDK Developer Guide – Using Extensions

1. In Java Client with Administrator privileges, select Admin >Systems Settings >
Event Management > Event Handlers > New button. The Create Event Handler
dialog opens.

Figure A–7 The Create event Handler dialog

2. In Create Event Handler dialog, do as follows:

■ In Event Handler drop-down list, select Java PX.

■ In Event Action field, select the class you created in "Task - 2: Package and Deploy
the Modified Code" on page A-3.

■ In Role field, if left blank, Event Handler will use the roles of the current user by
default. However, you can configure a custom action to have override privileges.
Refer to Agile PLM Administrator Guide for information and procedures.

■ Complete the remaining fields and click OK.

Create Event Subscriber
This is a process that binds a Java PX to a specific event. This is done using the Create
Event Subscriber dialog to:

■ Bind the Event with the Event Handler

■ Set the triggering order (sequence)

■ Set the execution mode

To create Event Subscriber:

1. Log in to Java Client with Administrator privileges and select Admin >Systems
Settings > Event Management > Event Subscribers > New button. The Create
Event Subscriber dialog opens.

Migration Task List

Migrating Custom Process Extensions to Event Framework A-7

Figure A–8 Create Event Subscriber dialog

2. In the Create Event Subscriber dialog, do as follows:

■ Select Event for this Event Subscriber: Click the drop-down Arrow in the Event
field. The Select Event dialog opens.

■ In Select Event dialog, locate and select the applicable Event, move it to the
Selected column, and then click OK.

Figure A–9 Select the Event for Event Subscriber

■ Select Event Handler for this Event Subscriber: Click the drop-down Arrow in the
Event Handler field. The Select Event Handler dialog opens. In Select Event
Handler dialog locate and select the applicable Event Handler, move it to the
Selected column, and then click OK.

Migration Task List

A-8 Agile Product Lifecycle Management SDK Developer Guide – Using Extensions

Figure A–10 Select Event Handler for Subscriber

Note: After completing this step, you can configure the grayed out
fields in the Create Event Subscriber dialog. For example, Trigger Type
and Execution Mode.

Configure Trigger Type, Execution Mode, Order, and Error Handling Rule
Event trigger types and Event execution mode plus the order in which the Event is
invoked and error handling rule options that you must set are defined below.

Trigger Type Field
This field has two options as follows:

■ Pre - This trigger type signals a point before the occurrence of an action. The Pre
trigger is commonly used for events that require data or other preparations for the
upcoming action. Event subscribers configured with this trigger type are executed
in the Synchronous Execution Mode only.

■ Post - This trigger type signals a point immediately after the occurrence of an
action. This trigger is used for events that perform auditing tasks based on the
prior action. You can execute Event subscribers configured with this trigger type in
either Synchronous or Asynchronous Execution Modes.

Note: For migrated Custom PXs, always select Post. Custom PXs
always run after the action has occurred.

Execution Mode Field
This field has the Synchronous and Asynchronous options. In general, the term
synchronous means occurring simultaneously and asynchronous means not occurring
simultaneously. A synchronous operation blocks a process until the operation
completes while an asynchronous operation is nonblocking and only initiates the
operation.

In Agile PLM, the difference between the two options are:

Migration Task List

Migrating Custom Process Extensions to Event Framework A-9

■ Synchronous - In this mode, the Event Handler will be executed in the same
thread as the Agile PLM thread that triggers the event (for example, a change in a
Workflow status). The original Agile PLM action will resume after the handler
action finishes (Block).

Note: For migrated PXs always select Synchronous.

■ Asynchronous - In this mode, the Event Handler has its own thread and it cannot
be stopped once it is started. This transaction is either committed or rolled back
based on its own status. The Agile PLM thread that triggers the event will
continue to run independently regardless of the Handler action has finished or not
(Non-block).

Order Field
Order field is a positive integer that determines the “Order” in which the Event
handler is invoked. This is useful when there are multiple Event Subscribers for the
same Event type on the same Agile object.

Note: If you have both Custom PXs and Java PXs configured for a
Workflow Change Status action, Java PXs always execute before
Custom PXs.

Error Handling Rule
This field is set by the user for the Synchronous Execution Mode only. Options are
Continue (the default value) and Stop. The selected option determines the behavior of
Agile PLM when an error is encountered while processing the Event Subscriber. For
more information on error handling rules, refer to Agile PLM Administrator Guide.

■ Continue - This option ignores the error and the Event continues to process the
remaining subscriptions.

■ Stop - This option will stop further Event processing and returns to the originator
that raised the Event.

Note: For migrated PXs, select Continue.

Example: Configure Event Subscriber for Migrated PX:

1. In Java Client select Admin > Event Management > Event Subscribers > New
button. The Event Subscriber dialog appears.

2. Set the options in Trigger Type, Execution Mode, and Error Handling Rule fields
as shown below.

These are the recommended options for migrated PXs.

Migration Task List

A-10 Agile Product Lifecycle Management SDK Developer Guide – Using Extensions

Figure A–11 The Event Subscriber dialog

Task - 4: Test the Migrated PX in Event Framework
Invoke the new Java PX to ensure the action specified in the Handler (code) occurs.
Depending on the Event type, the Java PX can be invoked by a user from the Extend
Actions or Extend Tools menu, or by a Change Status in Workflow. Make sure the
migrated PX's behavior in Event framework is the same as its behavior in PX
framework.

If the PX is configured to be invoked by a user action from the Tools menu, you can
test it in Web Client or Java Client as follows:

■ In Web Client tool bar select the Tools and Settings button, followed by Event_
name.

■ In Java Client tool bar select the Process Extensions button or Tools > Process
Extensions >Event_name.

Task - 5: Remove Custom PX from Process Extension Library
It is a good practice to delete the Custom PX that you have migrated from the Agile
Process Extensions Library. This will prevent any duplicate execution of the Custom
PX and Java PX.

To remove the Custom PX from PX library:

1. Delete all references to the Custom PX.

2. Open Java Client's Process Extensions Library and select and delete the PX.

Task - 6: Inform PLM Administrator
As shown in the Task - 3: Configure Java in Event Framework "Task - 3: Configure
Event in Event Framework" on page A-3. Event configuration is a UI-based Admin
function performed in the Java Client by an Admin user. Depending on your role as
the SDK developer, be sure to inform the PLM Admin as follows:

■ If Event Subscriber creation and configuration is a PLM Admin function, be sure
to inform the cognizant administrator after deploying the modified Custom PX

Migration Task List

Migrating Custom Process Extensions to Event Framework A-11

code in "Task - 2: Package and Deploy the Modified Code" on page A-3. This is to
inform the PLM Admin of the new Event Handler and its specifics to use and
complete the remaining tasks.

■ However, if you perform the UI-based configurations in Java Client, inform your
PLM Admin of the new Java PX, its intended purpose and function and the
necessary information to use the new Java PX in PLM clients.

Migration Task List

A-12 Agile Product Lifecycle Management SDK Developer Guide – Using Extensions

B

Groovy Implementation in Event Framework B-1

BGroovy Implementation in Event Framework

This appendix describes the Groovy scripting language and sources of information
about this tool. Other topics addressed, include procedures to start a script, access the
SDK using scripts, and sample use cases.

What Is Groovy?
Groovy is an object-oriented programming language that can be used as a scripting
language for the Java Platform.

Sources of Information
World Wide Web provides links to many sites that offer information about Groovy.
Publishers and vendors of the print media also offer information on this tool. A few
are listed below.

■ From World Wide Web:

– Groovy Home - Provides links to documentation, downloads, tutorial, user
guide, Eclipse plugin examples, advanced usage guide, and other sites
maintained by Groovy Home (http://groovy.codehaus.org/)

■ From publishers and vendors:

– Publisher: Manning Publications - Groovy in Action by Dierk Koenig,
Andrew Glover, Paul King, and Guillaume Laforge

– Publisher: Morgan Kaufmann - Groovy Programming: An Introduction for
Java Developers by Kenneth Barclay and John Savage

Script PX or Java PX?
Scripts are suitable for rapid development and deployment of applications with simple
business logic. They empower Agile PLM Administrators and power users to develop
extensions unique to their requirements and make rapid modifications when
necessary. Scripts are not suitable for developing complex applications with
performance critical data structures.

Use scripts to:

■ Automate functions with simple business logic such as data validation,
notification, or defaulting field values

■ Implement unique customization for existing applications

■ Build extensions to existing systems

Event Framework Implementation

B-2 Agile Product Lifecycle Management SDK Developer Guide – Using Extensions

■ Rapid prototyping

■ Write test use cases

Event Framework Implementation
Event framework implementation requires running the scripting engine. Key
implementation considerations are summarized below.

Key implementation considerations
■ The scripting engine runs inside the Java 2 Platform Enterprise Edition (J2EE) on

the Agile PLM server and is based on the Groovy language.

■ Groovy is fully embedded in Event framework.

■ Groovy is the only supported scripting language.

■ Script codes are currently stored in CLOB fields in the Agile PLM database.

■ Event Script objects (Event Script PX handlers) that you develop are text files that
are deployed from the Event Management Node by selecting Event Management
> Event Handlers in Java Client.

■ Scripts can call the Script API and Agile SDK.

■ The Agile PLM Administrator Guide provides both background information and
sample procedures to understand and manage Events.

Starting a Script
1. Use void invokeScript(IBaseScriptObj obj) to start your script. InvokeScript is

script's starting point of the execution and IBaseScriptObj is the base interface for
all Event Script Objects.

2. The run time type of the Obj is dynamically resolved based on the type of Event
that invoked this script. For example, if the script is invoked on a Create Event,
then ICreateScriptObj is dynamically resolved as the type of Obj at run time. You
can invoke any method defined on ICreateScriptObj and its super-interfaces on the
instance of this Obj.

3. Use IAgileSession getAgileSDKSession() to access the SDK session and invoke
SDK functions.

4. Use AgileDSLException to return “exception” information from scripts.

Accessing SDK with Scripts
You can access an SDK session and Java PX Event object when writing SDK programs
in a script.

/**
* Returns agile SDK session.
* @return agile SDK session
* @throws AgileDSLException
* if the method fails
* @since \@Agile93@
*/
public IAgileSession getAgileSDKSession() throws AgileDSLException;

/**
* Returns PX eventInfo.

Event Framework Implementation

Groovy Implementation in Event Framework B-3

* @return PX eventInfo
* @throws AgileDSLException
* if the method fails
* @since \@Agile93@
*/
public IEventInfo getPXEventInfo() throws AgileDSLException;

Use Cases
You can find Script PX Handler examples for most Event types in "Client-Side
Components" on page 1-2. These handlers use the Pre/Post triggers and
Synchronous/Asynchronous executions and cause different actions when they are
invoked.

Event Framework Implementation

B-4 Agile Product Lifecycle Management SDK Developer Guide – Using Extensions

C

Variant Management Configuration Graph Schema C-1

CVariant Management Configuration Graph
Schema

The schema in this appendix describes the structure of a Configuration Graph XML
document.

The XML Schema
<?xml version="1.0" encoding="windows-1252"?>
<xsd:schema targetNamespace="http://xmlns.oracle.com/Agile/ABO/Configurator"
xmlns="http://xmlns.oracle.com/Agile/ABO/Configurator"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"

elementFormDefault="qualified" attributeFormDefault="unqualified">
<xsd:element name="ConfiguratorInitReq"

type="ConfiguratorInitReqType"/>
<xsd:complexType name="ConfiguratorInitReqType">
<xsd:annotation>
<xsd:documentation xml:lang="en">
The request ABO for getURL service call in Agile getURL Requester ABCS.
ModelID: The model ID for which the init message has to be created.
Organisation: The organisation that is to be used for this BOM.
ReturnURL: The return URL for the termination message if any from client
side.
</xsd:documentation>
</xsd:annotation>
<xsd:sequence>
<xsd:element name="ModelD" type="xsd:string"/>
<xsd:element name="Organisation" type="xsd:string" minOccurs="0"/>
<xsd:element name="ReturnURL" type="xsd:string" minOccurs="0"/>
<xsd:element name="ConfigHeaderId" type="xsd:string" minOccurs="0"/>
</xsd:sequence>
</xsd:complexType>
<xsd:complexType name="ConfiguratorInitResponseType">
<xsd:annotation>
<xsd:documentation xml:lang="en">
The Response ABO for getURL service call in Agile getURL Requester ABCS.
SDK Developer Guide - Developing PLM Extensions
132 Agile Product Lifecycle Management
URL: url of the target server.
initializePL: Init message to be posted on the URL as a long String.
any: If the init message is XML.
</xsd:documentation>
</xsd:annotation>
<xsd:sequence>
<xsd:element name="URL" type="xsd:string"/>
<xsd:element name="initializePL" minOccurs="0">

The XML Schema

C-2 Agile Product Lifecycle Management SDK Developer Guide – Using Extensions

<xsd:complexType>
<xsd:simpleContent>
<xsd:extension base="xsd:string">
<xsd:attribute name="paramName" type="xsd:string"/>
</xsd:extension>
</xsd:simpleContent>
</xsd:complexType>
</xsd:element>
<xsd:any minOccurs="0"/>
</xsd:sequence>
</xsd:complexType>
<xsd:complexType name="ConfiguratorBOMType">
<xsd:annotation>
<xsd:documentation xml:lang="en">
The configuratorBOM response type.
AppHeader:The App header for agile specific parameters.
ConfigHeader: Configurator Header
BOM: BOM representing the selected option BOM.
</xsd:documentation>
</xsd:annotation>
<xsd:sequence>
<xsd:element name="AppHeader" type="AppHeaderType" minOccurs="0"/>
<xsd:element name="ConfigHeader" type="ConfiguratorHeaderType" minOccurs="0"/>
<xsd:element name="BOM" type="BomType" minOccurs="0"/>
</xsd:sequence>
</xsd:complexType>
<xsd:complexType name="AppHeaderType">
<xsd:annotation>
<xsd:documentation xml:lang="en">
The header for adding agile specific data.
</xsd:documentation>
</xsd:annotation>
<xsd:sequence>
<xsd:element name="UserID" type="xsd:string"/>
</xsd:sequence>
</xsd:complexType>
<xsd:complexType name="ConfiguratorHeaderType">
<xsd:annotation>
<xsd:documentation xml:lang="en">
The header info from Configurator EBO.
ConfigHeaderId: Header ID
ConfigRevision: Confi Revision
ValidConfiguration: Represent ValidConfiguration
CompleteConfiguration: Complete configuration
ExitType: Exit type
PricesCalculatedFlag: Flag to see if the price calculated.
BomQuantity: Quantity of the BOM itself.
</xsd:documentation>
</xsd:annotation>
<xsd:sequence>
<xsd:element name="ConfigHeaderId" type="xsd:string"/>
<xsd:element name="ConfigRevision" type="xsd:string"/>
<xsd:element name="ValidConfiguration" type="xsd:string"/>
<xsd:element name="CompleteConfiguration" type="xsd:string"/>
<xsd:element name="ExitType" type="xsd:string"/>
<xsd:element name="PricesCalculatedFlag" type="xsd:string"/>
<xsd:element name="BomQuantity" type="xsd:int"/>
</xsd:sequence>
</xsd:complexType>
<xsd:complexType name="BomType">

The XML Schema

Variant Management Configuration Graph Schema C-3

<xsd:annotation>
<xsd:documentation xml:lang="en">
The BOM consisting of different options.
ModelID: Model ID
OrganizationCode: Organisation code for the BOM
ConfigParameters: BomParameters for the BOM
Option: The child Options
</xsd:documentation>
</xsd:annotation>
<xsd:sequence>
<xsd:element name="ModelID" type="xsd:string"/>
<xsd:element name="OrganizationCode" type="xsd:string"/>
<xsd:element name="ConfigParameters" type="BomParameters"/>
<xsd:element name="Option" type="OptionType" minOccurs="0" maxOccurs="unbounded"/>
</xsd:sequence>
</xsd:complexType>
<xsd:complexType name="OptionType">
<xsd:annotation>
<xsd:documentation xml:lang="en">
The option line items.
ItemID: The ItemID
ConfigParameters: The Bom parameteres for this Option
Option: The child Options
</xsd:documentation>
</xsd:annotation>
<xsd:sequence>
<xsd:element name="ItemID" type="xsd:string"/>
<xsd:element name="PositionID" type="xsd:string" minOccurs="0"/>
<xsd:element name="ConfigParameters" type="BomParameters"/>
<xsd:element name="Option" type="OptionType" minOccurs="0" maxOccurs="unbounded"/>
</xsd:sequence>
</xsd:complexType>
<xsd:complexType name="BomParameters">
<xsd:annotation>
<xsd:documentation xml:lang="en">
The type representing the Bom parameters.
BomTypeCode: Represents BOM type code
Quantity: Quantity used
Uom: Unit of measurement
</xsd:documentation>
</xsd:annotation>
<xsd:sequence>
<xsd:element name="BomTypeCode" type="xsd:string"/>
<xsd:element name="Quantity" type="xsd:float"/>
<xsd:element name="Uom" type="xsd:string"/>
</xsd:sequence>
</xsd:complexType>
<xsd:simpleType name="ABCSStatus">
<xsd:annotation>
<xsd:documentation xml:lang="en">
Status texts for responses
</xsd:documentation>
</xsd:annotation>
<xsd:restriction base="xsd:string">
<xsd:enumeration value="SUCCESS"/>
<xsd:enumeration value="FAILURE"/>
<xsd:enumeration value="WARNING"/>
<xsd:enumeration value="ERROR"/>
<xsd:enumeration value="FATAL"/>
</xsd:restriction>

The XML Schema

C-4 Agile Product Lifecycle Management SDK Developer Guide – Using Extensions

</xsd:simpleType>
</xsd:schema>

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	1 Introduction
	About this Guide - Developing PLM Extensions
	PLM Extensions

	SDK Components
	Client-Side Components
	Documentation
	Installation
	Server-Side Components

	SDK Architecture
	System Requirements
	Java Requirements
	JVM Parameters for Preventing Out of Memory Exceptions

	Agile SDK Installation Folders
	Checking Your Agile PLM System
	Agile PLM Business Objects

	2 Developing Web Service Extensions
	About Web Service Extensions
	Key Features
	WSX Architecture

	Web Services Technology
	Web Services Architecture
	Security
	Tools
	Finding Additional Information About Web Services

	Developing and Deploying a Web Service
	About Deployment Descriptors
	Reserved Web Service Names

	Using a Web Service
	Defining a Web Service Entry Point

	Authenticating Users
	Using Single Sign-On Cookies for Client-Server Access
	Deployment Architecture
	Invoking the Web Service Client with a Single Sign-on Cookie
	Retrieving the Single Sign-On Cookie
	Modifying the SOAP Binding Stub Code

	Preparing the Environment for MyFirstWebService
	Downloading Tools to Build the Sample
	Installing the Java SDK
	Installing Ant

	Building MyFirstWebService Sample
	About Web Service Clients
	Client Programming Languages
	Accessing a Web Service

	Creating a Web Service Client
	Generating the SOAP Request
	Submitting the SOAP Request
	Processing the SOAP Response
	Running the Sample on the Web Service Client
	Creating an Agile Session inside WSX

	Microsoft .NET Interoperability
	Web Service Extensions FAQs

	3 Developing Process Extensions
	About Process Extensions
	Developing Custom Autonumber Sources
	Defining a Custom Autonumber Source
	Packaging and Deploying a Custom Autonumber Source

	Configuring Custom Autonumber Sources in Java Client
	Assigning Autonumber Sources to a Subclass

	Developing Custom Actions
	Defining a Custom Action
	Formatting New Lines (Line Breaks) in PLM Clients

	Custom Actions and User Sessions
	Packaging and Deploying a Custom Action
	Roles and Privileges for Custom Actions
	User Privileges for Configuring Process Extensions

	Configuring Custom Actions in Agile Java Client
	Using the Process Extension Library
	Assigning Process Extensions to Classes
	Assigning Process Extensions to Workflow Statuses

	Working with AutoView Extensions
	About AutoVue and AutoVue Viewer
	PX Interfaces for AutoVue Extension
	Actions Performed by the Calling PX
	Displaying Results of PX Actions

	Defining and Deploying URL-Based Process Extensions
	Before Building a URL-Based Process Extension
	Defining a URL-Based Process Extension
	Setting Cookie Expiration Properties for URL Process Extensions
	Passing Encoded Agile PLM Information to Other Applications
	Creating an Agile PLM Session from the Target System
	Retrieving an Agile PLM Object from an HTTP Request
	Identifying Attributes for Agile PLM Classes

	Creating an External Report
	Deploying Process Extensions in Clustered Environments
	Best Practices for Copying third Party JAR Files
	Process Extensions FAQs

	4 Developing Dashboard Management Extensions
	About Dashboard Management Extensions
	Roles and Privileges in Dashboard Management Extensions

	Developing Custom Chart Dashboard Management Extensions
	Understanding ChartDataModel and ChartDataSet
	Defining a Custom Chart DX Data Source
	Packaging and Deploying a Custom Chart DX Source
	Configuring Chart DXs in Java Client
	Displaying Optional Tabs in Agile Web Client

	Developing Custom Table Dashboard Management Extensions
	Understanding Collections and CustomTableConstants
	Defining a Custom Table DX Data Source
	Configuring the Link Data Type for Objects Created in Custom Table DXs
	Invoking Advanced Search in a Custom Table DX Data Source
	Enabling Quick View in a Custom Table DX Data Source
	Displaying Quick View with Mouseover
	Opening the Selected Object in the Right Pane

	Packaging and Deploying a Custom Table DX Source
	To package and deploy a Table DX source:

	Configuring Table DXs in Java Client
	To Add a Table to a Tab:

	Defining Custom (URL) Extensions

	5 Working with Agile PLM Events and Event Context Objects
	Understanding Agile PLM Events and Event Framework
	Key Components of an Agile PLM Event
	Event Types
	Event Handler and Handler Types
	Event Subscribers
	Event Trigger and Trigger Types
	Event Trigger Types
	Synchronous and Asynchronous Execution Modes
	Synchronous and Asynchronous Operations in OAS Clusters
	Event Error Handling Rule
	Event Order
	Event FAQs

	Working with Event Context Objects
	Understanding Event Context Objects
	Persistent and Transient Data
	Event Information Objects
	Event Script Objects

	Working with Event Information and Event Script Objects
	Working with Base Event Actions
	Base Event Information Object - Java PX
	Base Event Script Objects - Script PX

	Working with General Object Actions
	General Object Actions - Java PX
	Create Object

	Update Title Block
	Save As Object
	Delete Object
	Export Object
	General Object Actions - Script PX
	Create Object
	Update Title Block
	Save As Object
	Delete Object
	Export Object

	Working with Table and Relationship Actions
	Table and Relationship Actions - Java PX
	Update Table
	Update Relationship
	Table and Relationship Actions - Script PX
	Update Table

	Working with Variant Management Events
	Variant Management Events - Java PX
	Variant Management Events - Script PX

	Working with Workflow Object Actions
	Change Status for Workflow
	Approve for Workflow
	Reject for Workflow
	Escalation for Workflow

	Reminder for Workflow
	Audit for Workflow
	Promotion Failure for Workflow
	Comment for Workflow
	Change Approvers or Observers for Workflow

	Workflow Object Actions - Script PX
	Change Status for Workflow
	Approve for Workflow
	Reject for Workflow
	Escalation for Workflow
	Reminder for Workflow
	Audit for Workflow
	Promotion Failure for Workflow
	Comment for Workflow
	Change Approvers or Observers for Workflow

	Working with Specific Object-Based Actions
	Specific Object-Based Actions - Java PX
	Incorporate Item and Unincorporate Item
	Change Status for Sourcing Project
	Specific Object-Based Actions - Script PX
	Incorporate Item and Unincorporate Item
	Change Status for Sourcing Project

	Working with Files and Attachments Objects Actions
	Files and Attachments Objects Actions - Java PX
	Purge File Version
	Files and Attachments Objects Actions - Script PX
	Get File, Check Out Files, Check In Files, Cancel Check Out Files
	Purge File Version

	Working with Product Governance and Compliance Actions
	Product Governance and Compliance Actions - Java PX
	Compliance Rollup On Object
	Product Governance and Compliance Actions - Script PX
	Compliance Rollup On Object

	Working with Miscellaneous Object Actions
	Miscellaneous Object Actions - Java PX
	Transfer Authority
	Miscellaneous Object Actions - Script PX
	Transfer Authority

	Working with Event Integration Points in PLM Clients
	Event Integration Points - Java PX
	Extend Actions Menu
	Extend Tools Menu
	Scheduled Event
	Event Integration Points - Script PX
	Extend Actions Menu
	Extend Tools Menu
	Scheduled Event

	Guidelines for Java PX and Script PX Handlers
	Working with Agile PLM Administrator
	Testing Event Java PX and Event Script PX
	Triggering Guidelines for Java PX, Script PX, and Notification Handlers
	General Object Actions
	Create Object Event and SaveAs Event
	Update Title Block Event
	Update Table Event
	Workflow Actions
	Promotion Failure for Workflow Event
	Create Automatic Transfer Object Action (ATO)
	Files and Attachments Actions
	Check In File Event
	Check Out File Action
	Cancel Check Out File Event
	Get File Event

	A Migrating Custom Process Extensions to Event Framework
	Understanding Custom PXs and Java PXs
	Custom PXs in PX Framework
	Process Extensions in Event Framework
	Custom PXs You Can Migrate to Event Framework

	Migration Task List
	Task - 1: Modify the Custom PX Code
	Custom PX Code
	Java PX Code

	Task - 2: Package and Deploy the Modified Code
	Task - 3: Configure Event in Event Framework
	Create Event
	Create Event Handler
	Create Event Subscriber
	Configure Trigger Type, Execution Mode, Order, and Error Handling Rule
	Trigger Type Field
	Execution Mode Field
	Order Field
	Error Handling Rule

	Task - 4: Test the Migrated PX in Event Framework
	Task - 5: Remove Custom PX from Process Extension Library
	Task - 6: Inform PLM Administrator

	B Groovy Implementation in Event Framework
	What Is Groovy?
	Sources of Information
	Script PX or Java PX?

	Event Framework Implementation
	Key implementation considerations
	Starting a Script
	Accessing SDK with Scripts
	Use Cases

	C Variant Management Configuration Graph Schema
	The XML Schema

