
 

Agile Product Lifecycle Management 
AIS Developer Guide  

Release  9.3.3 

E39309-02

December 2013



Agile Product Lifecycle Management AIS Developer Guide, Release  9.3.3 

E39309-02

Copyright © 2010, 2013, Oracle and/or its affiliates. All rights reserved.

Primary Author:  F. Tabibzade

Contributing Author:  

Contributor:  

This software and related documentation are provided under a license agreement containing restrictions on 
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your 
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, 
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse 
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is 
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If 
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it 
on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, 
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users 
are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and 
agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and 
adaptation of the programs, including any operating system, integrated software, any programs installed on 
the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to 
the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management 
applications. It is not developed or intended for use in any inherently dangerous applications, including 
applications that may create a risk of personal injury. If you use this software or hardware in dangerous 
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other 
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages 
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of 
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks 
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, 
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced 
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products, 
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly 
disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle 
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your 
access to or use of third-party content, products, or services.



iii 

Contents

Preface .................................................................................................................................................................    v

Audience.......................................................................................................................................................     v
Documentation Accessibility .....................................................................................................................     v
Related Documents .....................................................................................................................................     v
Conventions .................................................................................................................................................     v

1 Introduction

Understanding AIS ..................................................................................................................................   1-1
Key Features........................................................................................................................................   1-1
AIS Architecture .................................................................................................................................   1-2

AIS Folders...................................................................................................................................   1-2
Understanding AIS Web Services.........................................................................................................   1-2

Web Services Architecture ................................................................................................................   1-3
Web Services Operations ........................................................................................................................   1-4
Web Services Extensions.........................................................................................................................   1-6
Security Considerations ..........................................................................................................................   1-6

2 Using AIS Web Services

Tools............................................................................................................................................................   2-1
Client Programming Languages ............................................................................................................   2-1
Accessing AIS Web Services ..................................................................................................................   2-2
Checking Your AIS System ....................................................................................................................   2-2
About AIS Java Samples .........................................................................................................................   2-2

Installing the Java SDK......................................................................................................................   2-2
Installing Ant ......................................................................................................................................   2-3
Building the Java Samples ................................................................................................................   2-3
Running the Java Samples ................................................................................................................   2-5

export.ExportData Usage...........................................................................................................   2-5
export.ExportPartlist Usage ......................................................................................................   2-8
importer.ImportData Usage ......................................................................................................   2-9
importer.ImportSupplierResponse Usage............................................................................    2-11
importer.ValidateData Usage.................................................................................................    2-12

Creating a Web Service Client ............................................................................................................    2-12
Generating the SOAP Request ......................................................................................................    2-12
Agile and Non-Agile Web Service Clients ..................................................................................    2-13



iv

Submitting the SOAP Request ......................................................................................................    2-13
Processing the SOAP Response.....................................................................................................    2-13

3 Exporting Data

Understanding the Web Service Export Function..............................................................................   3-1
Using the exportData Web Service Operation....................................................................................   3-1

Working with Queries .......................................................................................................................   3-2
Specifying Query Criteria ..........................................................................................................   3-2

Working with Sites.............................................................................................................................   3-2
Working with Filters..........................................................................................................................   3-3

Predefined Filters ........................................................................................................................   3-3
Ad Hoc Filters..............................................................................................................................   3-3
An exportData Filter Example ..................................................................................................   3-4

Working with Formats ......................................................................................................................   3-4
An exportData Format Example...............................................................................................   3-4

Working with Tables in Export ........................................................................................................   3-5
Using the exportPartlist Web Service Operation ...............................................................................   3-5

Working with exportPartlist Queries ..............................................................................................   3-6
Working with exportPartlist Filters.................................................................................................   3-6

An exportPartlist Example ........................................................................................................   3-6

4 Importing Data

Overview ....................................................................................................................................................   4-1
Understanding the Web Service Import Feature................................................................................   4-1
Using the importData Web Service Operation...................................................................................   4-2

Specifying Data Types .......................................................................................................................   4-2
Working with Data Sources..............................................................................................................   4-2
Working with Operations .................................................................................................................   4-3
Working with Mappings...................................................................................................................   4-4
Working with Transforms ................................................................................................................   4-4
Working with Options.......................................................................................................................   4-5

ChangeType and ChangeAutoNumber Options ...................................................................   4-5
Options to Import Non-Existing Objects.................................................................................   4-6

Invoking the ImportDataRequest Operation .................................................................................   4-6
Using the validData Web Service Operation .................................................................................   4-7
Importing Supplier Responses .........................................................................................................   4-8
Working with Tables in Import........................................................................................................   4-8

Importing Data Values ............................................................................................................................   4-9
Setting the Preferred Date Format and Time Zone .......................................................................   4-9
Supported Date Formats ...................................................................................................................   4-9
Specifying Time Zones ...................................................................................................................    4-11
aXML and PDX Package Date Formats .......................................................................................    4-11
Importing XLSX File Formats........................................................................................................    4-11



v

Preface

Agile PLM is a comprehensive enterprise PLM solution for managing your product 
value chain. 

Audience
This document is intended for administrators and users of the Agile PLM products.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle 
Accessibility Program website at 
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For 
information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or 
visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing 
impaired.

Related Documents
Oracle's Agile PLM documentation set includes Adobe® Acrobat PDF files. The Oracle 
Technology Network (OTN) Web site 
http://www.oracle.com/technetwork/documentation/agile-085940.html contains 
the latest versions of the Agile PLM PDF files. You can view or download these 
manuals from the Web site, or you can ask your Agile administrator if there is an Agile 
PLM Documentation folder available on your network from which you can access the 
Agile PLM documentation (PDF) files. 

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated 
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for 
which you supply particular values.



vi

monospace Monospace type indicates commands within a paragraph, URLs, code 
in examples, text that appears on the screen, or text that you enter.

Convention Meaning



1

Introduction 1-1

1Introduction

This chapter includes:

■ Understanding AIS

■ Web Services Operations

■ Web Services Extensions

■ Security Considerations

Understanding AIS
The Agile Integration Services (AIS) are a collection of predefined Web Services in the 
Agile Integration Framework that enable communication between the Agile 
Application Server and disparate systems including:

■ Enterprise Resource Planning (ERP) systems

■ Customer Resource Management (CRM) systems

■ Business-to-Business Integration systems (B2B)

■ Other Agile PLM systems and supply chain partners

Using AIS to exchange content with other systems simplifies the process for 
aggregating unprocessed product content, and makes critical product content 
available in real time to other systems. AIS Web Services also provide import and 
export capabilities that you can use to:

■ Make product content available to Enterprise Application Integration (EAI) 
systems

■ Share product content with product design, manufacturing planning, shop floor, 
and ERP and CRM applications

■ Make product content available to B2B systems that can transfer Agile Application 
Server data across corporate boundaries to external applications

■ Provide content to custom applications

■ Import product content data from ERP and other supply-chain applications

Key Features
Key features supported by AIS include:

■ Programmatic access to data -- AIS supports programmatic access to data stored in 
Agile PLM systems.



Understanding AIS Web Services

1-2 Agile Product Lifecycle Management AIS Developer Guide

■ Programmatic validation of imported data-- Using the Agile SDK methods, AIS 
enables checking the imported data for compliance with server rules before they 
are actually imported.

■ Product content accessibility -- AIS provides accessibility to Agile product content 
outside of corporate firewalls using standard HTTP(S) technology.

■ Apache Axis support -- Agile Web Service Extensions (WSX) are based on the 
Apache eXtensible Interaction System (Axis) packages and Agile certifies client 
applications that use the Axis package client.

Note:  Export and Import attachment types are not compatible with 
the .Net attachment types.

■ Multiple output format support -- AIS supports the aXML and Product Data 
eXchange (PDX) 1.0 formats (PDX is defined in Web Services Operations).

■ Internet Security safeguards -- AIS communicates with XML-compliant 
applications using Internet-standard communication and security protocols (HTTP 
and SSL), for a secure and firewall-friendly interface.

■ Multilevel BOM support -- AIS supports converting a multilevel BOM into 
individual parts data in the XML format.

AIS Architecture
Connection to AIS is established using standard Web service invocation methodologies 
shown in the following illustration.

AIS Folders
AIS documentation and source files for sample clients are in the AIS_samples.zip 
folder. You can find this folder in Oracle Oracle Technology Network at: 
http://www.oracle.com/technetwork/indexes/samplecode/agileplm-sample-52094
5.html. For more information, contact your System Administrator, or refer to your 
Agile PLM installation Guide.

The AIS_samples.zip file includes the following folders:

■ documentation - Documents the Web Services that are supported by the Agile 
Import/Export APIs.

■ lib - Contains the common JAR files used by AIS samples.

■ sample - Contains the source code of a sample Import/Export Web service client.

Understanding AIS Web Services
AIS Web Services is a technology for building distributed applications. These services, 
which are available over the Internet, use a standardized XML messaging system and 
are not tied to any one operating system or programming language. Through Web 
Services, you can encapsulate existing business processes, publish them as services, 
search for and subscribe to other services, and exchange information throughout and 
beyond the enterprise. Web Services are based on universally agreed upon 
specifications for structured data exchange, messaging, discovery of services, interface 
description, and business process design.

A Web service makes remote procedure calls (RPC) across the Internet. It uses:



Understanding AIS Web Services

Introduction 1-3

■ HTTP(S) or other transport protocols such as HTTP to transport requests and 
responses.

■ Simple Object Access Protocol (SOAP) to communicate the request and response 
information.

The key benefits of Web Services are:

■ Service-oriented Architecture (SOA) -- Unlike packaged products, Web Services 
can be delivered as streams of services that allow access from any platform. SOAs 
are a new approach to enterprise application integration by building applications 
from software services.

■ Interoperability -- Web Services ensure complete interoperability between systems.

■ Integration -- Web Services facilitate flexible integration solutions, particularly if 
you are connecting applications running on different platforms or written in 
different languages.

■ Modularity -- Web Services offer a modular approach to programming. Each 
business function in an application can be exposed as a separate Web service. 
Smaller modules reduce errors and result in more reusable components.

■ Accessibility -- Business services can be completely decentralized. They can be 
distributed over the Internet and accessed by a wide variety of communications 
devices.

■ Efficiency -- Web Services constructed from applications meant for internal use can 
be used externally without changing code. Incremental development using Web 
Services is relatively simple because Web Services are declared and implemented 
in a human readable format.

Web Services have certain limitations of the technology as it exists today, for example, 
supported software and specifications, problems using certain versions of applications 
or tools. In view of these constraints, consider the following when developing Web 
service applications:

■ When developing Web service applications, avoid advanced operations such as 
distributed garbage collection, object activation, or call by reference. SOAP as a 
simple mechanism for handling data and requests over a transport medium is not 
designed to handle these operations.

■ Web Services are network-based and are therefore affected by network traffic. The 
latency for any Web service invocation can often be measured in hundreds of 
milliseconds. Thus, the extent of functionality provided by the service must be 
significant enough to warrant making a high-latency call.

■ Web Services do not work well with conversational programming languages. Thus, 
when designing services that you want to expose, make the service as 
independent as possible from these development tools.

Web Services Architecture
Web services architecture is best defined in terms of its roles and protocol stack:

■ Web service roles:

– Service provider - The provider of the service by Implementing and making it 
available on the Internet.

–  Service requester - The user of the service who accesses the service by 
opening a network connection and sending an XML request.



Web Services Operations

1-4 Agile Product Lifecycle Management AIS Developer Guide

– Service registry - This is a centralized directory of services where developers 
can publish new services or find existing ones.

■ Web service protocol stack:

–  Service transport layer - Uses HTTP to transport messages between 
applications. Other transports will be supported in future AIS releases.

– XML messaging layer - Encodes messages in XML format by using SOAP, a 
platform-independent XML protocol used to exchange information between 
computers. It defines an envelope specification for encapsulated data being 
transferred, the data encoding rules, and remote procedure call (RPC) 
conventions.

– Service description layer - Describes the public interface to a specific Web 
service by using the Web Service Description Language (WSDL) protocol.

■ WSDL defines an XML grammar for describing network services as collections of 
communication endpoints capable of exchanging messages, which contain either 
document-oriented or procedure-oriented information. The operations and 
messages are described abstractly, and then bound to a network protocol and 
message format.

■ WSDL allows description of endpoints and their messages regardless of what 
message formats or network protocols are used to communicate.

■ A WSDL document defines services as collections of network endpoints (called 
ports). A port is defined by associating a network address with a reusable binding. 
A collection of ports defines a service.

– Service discovery layer - Centralizes services into a common registry by using 
the Universal Description, Discovery, and Integration (UDDI) protocol.

Note: AIS Web services do not currently support UDDI or other 
service discovery layers.

Web Services Operations
AIS enable you to export data programmatically into structured XML documents and 
import data into the Agile PLM system with the following prebuilt Web service 
operations:

■ exportData -- A Web service operation that extracts data from an Agile PLM 
system. The exportDataRequest element encapsulates all the information needed 
to extract data from an Agile PLM system. The ExportData Web service operation 
supports the following formats:

– Product Data eXchange (PDX) -- A standardized XML format for representing 
structured product content. It provides a means for partners in the e-supply 
chain (OEMs, EMS providers, and component suppliers) to exchange product 
content and changes (BOMs, AMLs, ECRs, ECOs).

For more information about PDX, including a link to DTD, visit 
http://webstds.ipc.org/2571/2571.htmhttp://webstds.ipc.org/2571/2571.htm.

■ Agile XML (also known as aXML) -- Agile XML format is an XML representation 
of Agile's business schema. The aXML file contains all product content managed in 
Agile such as items, change details, manufacturer information, cost, drawings and 
other files. As a representation of schema elements across all Agile products, 
aXML will evolve with Agile's business schema over time.



Web Services Operations

Introduction 1-5

The list and location of Agile aXML schema files for different releases of the 
application are available at the following sites:

■ Release 8.5 - 
http://www.oracle.com/technology/products/applications/xml/plm/2003/12/
aXML.xsd

■ Release 9.0 - 
http://www.oracle.com/technology/products/applications/xml/plm/2004/02/
aXML.xsd

■ Release 9.0SP4 - 
http://www.oracle.com/technology/products/applications/xml/plm/2004/12/
aXML.xsd

■ Release 9.1 - 
http://www.oracle.com/technology/products/applications/xml/plm/2004/10/
aXML.xsd

■ Release 9.2, 9.2.0.x - 
http://www.oracle.com/technology/products/applications/xml/plm/2005/11/
aXML.xsd

■ Release 9.2.1, 9.2.1.x - 
http://www.oracle.com/technology/products/applications/xml/plm/2006/03/
aXML.xsd

■ Release 9.2.2, 9.2.2.1, 9.2.2.2, 9.2.2.3 - 
http://www.oracle.com/technology/products/applications/xml/plm/2007/03/
aXML.xsd

■ Release 9.2.2.4, 9.2.2.5, 9.2.2.6, and 9.2.2.7 - 
http://www.oracle.com/technology/products/applications/xml/plm/2008/05/
aXML.xsd

■ Release 9.3 and 9.3.0.1 - 
http://www.oracle.com/technology/products/applications/xml/plm/2009/06/
aXML.xsd

■ Release 9.3.1 and 9.3.1.1 - 
http://www.oracle.com/technology/products/applications/xml/plm/2010/09/
aXML.xsd

■ Release 9.3.1 and 9.3.1.1 - 
http://www.oracle.com/webfolder/technetwork/xml/plm/2010/09/aXML.xsd

■ Release 9.3.2 - 
http://www.oracle.com/webfolder/technetwork/xml/plm/2011/09/aXML.xsd

■ Release 9.3.3 
-http://www.oracle.com/webfolder/technetwork/xml/plm/2013/09/aXML.xsd

■ exportPartList -- A Web service operation that takes a multilevel BOM and 
"flattens" it into a list of the items and associated manufacturer parts, and their 
quantities in the BOM; it then returns the data in aXML format. That is, it enables 
you to extract a rolled up set of parts, and the related Quantities Per Top Level 
Assembly (QPTLA). The exportPartlistRequest element encapsulates all the 
information needed to extract a flattened partlist from an Agile PLM system.



Note: The value of the QPTLA is computed as the sum over 
recursive products starting from the top of the BOM tree. 
exportPartlist calculates the QPTLA for each unique item-revision 
pair, and returns the results in the Part Quantities element of the 
resulting aXML output.

Web Services Extensions

1-6 Agile Product Lifecycle Management AIS Developer Guide

■ importData -- A Web service operation that imports data into the Agile PLM 
system. The importDataRequest element encapsulates all the information needed 
to request an import operation. The source for the import data can be an Agile 
database, a third party Product Data Management (PDM) system, or an Enterprise 
Resource Planning (ERP) system. The Agile server stores information about 
customer-specific items. It also maintains the relationships that assembly parts 
have with BOM components and that parent items have with approved 
manufacturers.

■ importSupplierResponse -- A Web service operation that imports an RFQ 
response from a supplier. The response is associated with an existing RFQ in the 
Agile PLM system.

Note:  The importSupplierResponse Web service operation is 
deprecated and may not be supported in future releases. Use 
importData instead. For more information, see "Importing Supplier 
Responses" on page 4-8.

These Web service operations are invoked by submitting a properly formatted XML 
document to AIS. The contents of the XML document define the parameters that 
determine how the operation should be performed. For more information about using 
the prebuilt AIS Web Services, see  Chapter 2, "Using AIS Web Services."

Web Services Extensions
You can use the Agile SDK to develop Web service extensions (WSX) that leverage the 
functionality of AIS while extending the functionality of the Agile PLM system. For 
example, if you need to extract data from the Agile server and then transform it before 
sending it to another ERP system, you could create a custom Web service that 
leverages the Export web service. For more information about web service extensions, 
refer to the Agile SDK Developer Guide.

Security Considerations
AIS communicates with XML-compliant applications using Internet-standard 
communication and security protocols (HTTP and SSL). Communication between AIS 
and its clients (via the Web server) may be encrypted via Secure Sockets Layer (SSL) 
and a server-side certificate, thus providing authentication, privacy, and message 
integrity. Using standard Java cryptography libraries, you can encrypt and decrypt 
files, create security keys, digitally sign a file, and verify a digital signature.

User name and password security is enforced whenever a client attempts to invoke an 
Agile Integration Service operation.

For more information about Java security and cryptography support, refer to the 
following Web page: 
http://docs.oracle.com/javase/1.5.0/docs/guide/security/index.html.



2

Using AIS Web Services 2-1

2Using AIS Web Services

This chapter includes:

■ Tools that you can use to develop client applications

■ Languages that can generate and process XML and process HTTP 
request/response messages

■ General steps to access the prebuilt AIS Web Services (The examples in the AIS_
sample folder illustrate these steps.)

Tools
There is no single tool set to access Web Services. Tools that you choose are a function 
of the environment that you use to develop your clients. Essentially, you need tools to 
enable generating and processing XML files and HTTP request/response messages.

Although AIS is based on Axis, which is a SOAP processor, you can use other 
implementations of SOAP tools regardless of the source language to build Web service 
clients.

Client Programming Languages
Oracle recommends, tests, and certifies Java to develop AIS clients.

WSDL is only supported with J2EE.

This is a list of some of the Web sites where you can find more information about these 
development tools:

■ Apache Axis -- Open source SOAP implementation for Java. See the following 
Web site: http://ws.apache.org/axis/

■ GlassFish Application Server -- GlassFish is a complete Java EE 5 Application 
Server. See Java Web Services Developer Pack at 
http://glassfish.java.net/public/downloadsindex.html.

■ Microsoft .Net -- An XML Web Services platform for Microsoft Windows that can 
be used to create Web service clients. See the following Web site for more 
information: http://msdn.microsoft.com/en-us/netframework/

AIS was only tested with Java. Other tools and environments such as VB .Net should 
work, but AIS was not tested and is not supported for these tools and environments 
(operability with .Net (Visual C#) was tested with an earlier version of AIS).

■ SOAP::Lite for Perl -- A Perl implementation of the SOAP protocol. See the 
following Web site: http://www.soaplite.com/



Accessing AIS Web Services

2-2 Agile Product Lifecycle Management AIS Developer Guide

Accessing AIS Web Services
In general, to access AIS Web Services, you need to:

1. Generate a SOAP request -- In many cases, a Web-Service-aware code library will 
be able to generate client-side stubs that generate an appropriately formatted 
SOAP request.

2. Submit that request to AIS via HTTP or HTTPS -- Once an appropriate set of 
client-side Java stubs are generated, a client application can use these stubs to 
submit a request.

3. Process the SOAP response -- The client-side stubs usually are responsible for 
processing the SOAP response and converting the response into an appropriate set 
of return objects.

The AIS samples provide comprehensive examples of how SOAP and Web 
service-related libraries can make this process simple. The following sections illustrate 
using the ExportData sample in "Running the Java Samples" on page 2-5 and the 
above steps in greater detail.

Checking Your AIS System
Before compiling and running the AIS Web service client samples, make sure the 
clients are functioning properly on the Agile PLM Application Server. For more 
information, refer to the Agile PLM Installation Guide.

About AIS Java Samples
AIS provide several Java Web service client samples for you to download. These 
samples use Axis to connect with the AIS Web service engine to generate client-side 
stubs. You can use these sample clients to export and import data. They provide 
command-line interfaces to the ExportData, ExportPartlist, and ImportData Web 
service operations.

These AIS Java samples do not expose all AIS functionalities. They are only sample 
clients. For example, they enable running only one query at a time, while AIS supports 
runing multiple queries and then aggregating the results. You may choose to develop 
AIS clients with additional functionality. The samples provide source code that you 
can use to practice developing your own AIS clients. For more information about 
functionalities supported by the Export and Import Web Services, refer to the Export 
and Import XML Schema documentation in Agile PLM's Import/Export User Guide.

Before building and running the AIS samples, download the following required tools:

■ Java 2 SDK SE Version 1.5. You can download this software at: 
http://www.oracle.com/technetwork/java/javasebusiness/downloads/java-ar
chive-downloads-javase5-419410.html

■ The Apache Project's Ant build tool, version 1.6, available at: 
http://ant.apache.org/

Installing the Java SDK
This section provides instructions to install the Java SDK on Windows and on Solaris 
platforms. You can skip this section if you already have the proper version of Java 
installed.



About AIS Java Samples

Using AIS Web Services 2-3

To install the Java SDK on Windows:
1. Double-click the distribution and follow the installation procedures.

2. Set the system variable JAVA_HOME to point to the home directory of your Java SDK 
installation (for example, D:\j2sdk150).

To install the Java SDK on Solaris:

1. Execute the distribution (for example, $ ./ j2sdk-1_5_0-solaris-sparc.sh) and 
follow the installation procedures.

2. Set the environment variable JAVA_HOME to point to the home directory of your 
Java SDK installation (for example, /home/<user>/j2sdk150).

3. Execute your.profile.cshrc or (depending on your shell) file to set up your 
environment.

Installing Ant
This section provides the instructions for installing Ant on Windows and on Solaris.

To install Ant on Windows:
1. Extract the contents of the ZIP archive to a local directory and follow the 

installation procedures.

The Ant distribution for Windows is a ZIP file (for example, 
apache-ant-1.6.0-bin.zip).

2. Open a command prompt window and verify that Ant can be invoked by entering 
the following command: %ANT_HOME%\bin\ant -version

The following output should be displayed: Apache Ant version 1.6.0 compiled 
on <date>

To install the Ant on Solaris:
1. Extract the contents of the tar archive to a local directory (for example, 

/home/user/ant) and follow the procedures.

The ANT distribution for UNIX is a tar file (for example, 
apache-ant-1.6.0-bin.tar.gz).

2. Execute your .profile or .cshrc (depending on your shell) file to set up your 
environment.

3. From a command prompt, verify that Ant can be invoked by entering the 
following command: $ANT_HOME/bin/ant -version

Upon successful installation, the following message appears:

Apache Ant version 1.6.0 compiled on <date>.

Building the Java Samples
Building the Java samples is straightforward. You need the Ant build tool, which is 
available for download at: http://ant.apache.org/. For procedures, see "Installing 
Ant" on page 3. Run Ant within the samples directory, pointing the URL to your AIS 
installation.

If you generated client stubs for the AIS samples from the WSDL, they will run on any 
other computer. Alternately, if you have the WSDL, you can use it to generate the 
client stubs on another computer.



About AIS Java Samples

2-4 Agile Product Lifecycle Management AIS Developer Guide

To build the AIS Java samples on Windows:
1. Download wsdl4j-1.5.1.jar from http://archive.apache.org/dist/ws/axis/1_2/.

2. Copy the contents to the ais/lib folder and rename it to wsdl4j.jar.

3. Open a command prompt window and navigate to the AIS samples folder, which 
contains the file build.xml.

4. Type the following command:

%ANT_HOME%\bin\ant -Dais.url=https://<hostname:port/virtualPath>/ws -Dusername= 
<username> -Dpassword= <password target>
Where:

■ hostname - This is name of the Agile server.

■ port - This is the application server port. If you are using an Oracle 
Application Server to host the Agile PLM system, type 7777. If you are using 
WebLogic Server, type 7001

■ target - This identifies the AIS sample to build. Available build targets are 
export, import, and all. The default target is all. If you do not specify a target, 
all AIS samples will be built.

■ username - This is the Agile PLM user name

■ password - This is the Agile PLM password

5. After you build the samples, use the runner file in the AIS samples directory to run 
the samples. It contains all the necessary CLASSPATH initializations for the 
samples

Note: Agile PLM requires both username and password to build the 
Java samples. The makefile execution will fail if the three parameters 
are not set.

To build the AIS Java samples on Solaris:
1. Navigate to the AIS samples directory and locate the file build.xml and then type 

the following command:

$ANT_HOME/bin/ant -Dais.url=http://<hostname:port/virtualPath/ws target>

2. After you build a sample, use the runner file in the AIS samples directory to run 
the sample. This file contains all the necessary CLASSPATH initializations for the 
samples. For more information, refer to the comments (in Javadoc) for each 
sample.

3. If you are connecting to a secure URL that uses SSL, type the following command 
instead. For descriptions of hostname, port, virtualPath, username, password, and 
target, see the previous section

$$ANT_HOME/bin/ant -Dais.url=http://<hostname:port/virtualPath>/ws 
-Dusername=<username> -Dpassword=<password target>

To build Java AIS samples on servers with Secure Sockets Layer (SSL) enabled:
1. Get the self-signed certificate from the server.

2. Install the self-signed certificate into your Java development environment.

3. Build the sample programs as described above by connecting to the server using 
HTTPS.



About AIS Java Samples

Using AIS Web Services 2-5

4. Run the sample programs as usual but include the command line parameter -P. 
For example:

runner importer.ImportData -P HTTPS <insert other parameters here>

The Readme.txt file that is installed with the AIS samples includes more 
information about obtaining a certificate, installing it in your Java environment, 
and building and running the AIS samples on an SSL-enabled system.

5. After you build the samples, use the runner file in the AIS samples directory to 
run the samples. This file contains the necessary CLASSPATH initializations for 
the samples.

Running the Java Samples
Depending on your operating environment (Windows or Solaris), once you perform 
the build, one of the following files will appear in the AIS samples directory:

■ On Windows, the file is runner.bat

■ On Solaris, the file is runner.sh

These files contain the necessary CLASSPATH initializations and you can use them to 
simplify the process of invoking a sample application.

The invocations below will print out usage statements for each of the examples. You 
can use these usage statements along with the additional documentation provided on 
the samples to determine how to run the samples in a meaningful fashion.

To print out usage statements for the clients, type the following commands:
> runner export.ExportData
> runner export.ExportPartlist
> runner importer.ImportData
> runner importer.ImportSupplierResponse
> runner importer.ValidateData

export.ExportData Usage
Usage: export.ExportData <options>

Option Description

-a axml This selects the aXML output format instead of the default PDX 
output format.

-c criteria This is the search criteria for locating objects to export. The criteria 
must be formatted using the Agile SDK query language. For more 
information, refer to Agile PLM SDK Developer Guide.

-e virtual-path This is the Agile PLM virtual path. For example, if you access Agile 
Web Client via http://www.sample.com/Agile/PLMServlet, the 
virtual path is "Agile". When you install the Agile PLM system, the 
default virtual path is "Agile".

-f filter This is the predefined filter name or ID. If you have administrator 
privileges, you can define Agile PLM filters using the Agile Java 
Client.



About AIS Java Samples

2-6 Agile Product Lifecycle Management AIS Developer Guide

-F filter-flag This is the ad hoc filter flag. The legal values for this argument derive 
from the <filters> element shown in the Export XML Schema 
documentation. The filter flags correspond to child elements with 
names ending in "Filter," like ChangeFilter and ItemFilter. The 
basic pattern for this option is filter-name.attribute.value where:

filter-name corresponds to the name of the XML element, such as 
ItemFilter (the "Filter" suffix may be omitted).

attribute corresponds to the name of the attribute that is defined (for 
example, "PageTwo").

value corresponds to the value for the attribute. If the attribute is a 
boolean, the value is optional and defaults to "true." For the 
Attachments attribute, the value "Tables and Files" causes the 
attachment table and all the referenced files to be exported. 
Following is an example of a filter flag:

-F "Item.TitleBlock" "Item.Attachments.TableAndFiles" 
"Item.BOM.Recurse"

If you are extracting data to PDX files, the filter flag should be a 
superclass filter such as ItemFilter or ChangeFilter. In the 
following example, ChangeFilter is used.

runner export.ExportData -h agilesvr -l 7001 -u aisuser -p 
agile -t ECO -c "[Number] is not null" -F 
"ChangeFilter.CoverPage" -o eco.pdx

In aXML files, the filter flag must be a class filter such as PartFilter 
or ECOFilter. In the following example, ECOFilter is used.

runner export.ExportData -h agilesvr -l 7001 -u aisuser -p 
agile -t ECO -c "[Number] is not null" -F 
"ECOFilter.CoverPage" -o eco.axml -a axml

For a complete list of filter types, refer to the Export XML Schema 
Documentation in Agile PLM's Import/Export User Guide.

-h host This is the Agile PLM server machine. The default is localhost.

-l port This is the port on which the Agile PLM server is listening. The 
default is 80.

-o output-file This is the output file name. It defaults to: either out.pdx or out.axml, 
depending on the output format.

-p password This is the user's password.

-P protocol This is the URL protocol. Valid values are either HTTP (the default) 
or HTTPS.

-s site This is the manufacturing site for which data is extracted. If you do 
not specify a manufacturing site, data is extracted for all sites.

-t type This is the type of the required object. Type either the class name or 
the predefined object type Default:Items. For a list of predefined 
object types, refer to Export XML schema documentation in Agile 
PLM's Import/Export User Guide.

This is the Export XML schema, export.xsd. You can find this file in 
the samples folder described in "AIS Folders" on page 1-2.

Option Description



About AIS Java Samples

Using AIS Web Services 2-7

The export.ExportData client does not have an option to specify an item's revision. 
When you use the client to export items, the latest released revision is exported. 
However, you can develop an AIS client that lets you specify a revision to export. For 
more information, refer to the Export XML Schema documentation in Agile PLM's 
Import/Export User Guide.

These examples show how to run the export.ExportData client.

■ runner export.ExportData -h agilesvr -u aisuser -p e-agile -l 7001 -c 
"[Title Block.Number] equal to 'P00014'" -t Part -F "Item.TitleBlock" 
"Item.PageTwo" "Item.Attachments.TableAndFiles" "Item.BOM.Recurse" -o 
P00014.pdx

■ runner export.ExportData -h agilesvr -u aisuser -p agile -l 7001 -c 
"[Title Block.Number] equal to '1000-02'" -f "Default Item Filter" -t 
Item -s "San Jose" -o D:\data\out.pdx

■ runner export.ExportData -h agilesvr -u aisuser -p e-agile -l 7001 -c 
"[Title Block.Number] equal to '1000-02'" -f "Default Item Filter" -t 
Item -a axml

■ runner export.ExportData -h agilesvr -u aisuser -p e-agile -l 7001 -c 
"[General Info.Name] equal to 'ACT'" -f "Default Manufacturer Filter" 
-t Manufacturer

Substitute appropriate port numbers. For example, for Weblogic use port 7001, and for 
OAS use port 7777. For readability, these examples use attribute name, such as [Title 
Block.Number], instead of IDs. Agile strongly recommends using attribute IDs. If you 
use attribute names, make sure they are fully qualified to avoid ambiguity.

?

The pre-defined types listed in export.xsd maps to Agile PLM classes, 
not subclasses. For example, the predefined ECO object type actually 
maps to the Change Orders class, not the ECO subclass. If you 
specify -t ECO when you run ExportData, objects of the Change 
Orders class will be exported, not objects of the ECO subclass.

If you want to use only your Agile PLM system's class names and 
subclass names for object types instead of the predefined Export 
object types, you can modify the ExportData.java source code and 
disable pre-defined object types by replacing the following lines of 
code:

try {
// Let's try to use a predefined type.
    objType.setPredefined(ObjectTypes.fromString(type));
 } catch (Exception ex) {
    // Fall back to specifying a type by name (i.e., 
user-defined type)
    objType.setTypeName(type);
 }

with this line:

objType.setTypeName(type);

-T timeout This is the time in minutes to wait for a response. The defaults to 15 
minutes.

-u user This is the Agile PLM username.

Option Description



About AIS Java Samples

2-8 Agile Product Lifecycle Management AIS Developer Guide

export.ExportPartlist Usage
Usage: export.ExportPartlist <options>

Option Description

-c criteria This is the search criteria to locate objects you want to export. The 
ExportPartlist command exports data only for items with AMLs 
(approved manufacturer parts and their associated manufacturers). 
The criteria you specify must be formatted using the Agile SDK 
query language. For more information, refer to Agile SDK Developer 
Guide.

-e virtual-path This is the Agile PLM virtual path. For example, if you access Agile 
Web Client via http://www.sample.com/Agile/PLMServlet, the 
virtual path is "Agile". When you install the Agile PLM system, the 
default virtual path is "Agile".

-f filter This is the predefined filter name or ID. If you have administrator 
privileges, you can define Agile PLM filters using the Agile Java 
Client.

-F filter-flag This is the ad hoc filter flag. The valid values for this argument 
derive from the <filters> element shown in the Export XML Schema 
documentation in Agile PLM's Import/Export User Guide. The filter 
flags correspond to child elements with names ending in "Filter," 
such as ChangeFilter and ItemFilter. The basic pattern for this 
option is filter-name.attribute.value. filter-name corresponds to the 
name of the XML element, such as ItemFilter (the "Filter" suffix 
may be omitted). attribute corresponds to name of the attribute being 
defined (for example, "PageTwo"). value corresponds to the value for 
the attribute. If the attribute is a boolean, the value is optional and 
defaults to "True." For the Attachments attribute, the value "Tables 
and Files" causes the attachment table and all the referenced files to 
be exported.

The filter flag should be a class filter such as PartFilter (or Part). 
For a complete list of filter types, see the Export XML Schema 
Documentation in "AIS Folders" on page 1-2.

This is an example of a filter flag:

-F "Part.TitleBlock" "Part.Attachments.TableAndFiles" 
"Part.BOM.Recurse"

-h host This is the Agile PLM server machine. The default is localhost.

-l port This is the port on which the Agile PLM server is listening. The 
default is 80.

-o output-file This is the output file name. The default is out.axml, or out.pdx.

-p password This is the user's password.

-P protocol This is the URL protocol. Valid values are either HTTP (the default) 
or HTTPS.

-r revision This is the item revision to export.

-s site This is the manufacturing site for which data is extracted. If you do 
not specify a manufacturing site, data is extracted for all sites.

-T timeout This is the time to wait for a response (in minutes). It defaults to15 
minutes.

-u user This is the Agile PLM username.

These examples show how to run the export.ExportPartlist client.



About AIS Java Samples

Using AIS Web Services 2-9

■ runner export.ExportPartlist -h agilesvr -u aisuser -p agile -l 7778 -c 
"[Title Block.Number] equal to 'P00408'" -f "Default Item Filter" -o 
D:\out.axml

■ runner export.ExportPartlist -h agilesvr -u aisuser -p agile -l 7001 -c 
"[Title Block.Number] equal to 'P00502'" -r "A" -f "Default Item 
Filter" -o D:\data\out.axml

■ runner export.ExportPartlist -h agilesvr -u aisuser -p agile -l 7778 -c 
"[Title Block.Number] equal to 'P00025'" -f "Default Item Filter" -o 
D:\data\partlist_rev.axml -r "A"

■ runner export.ExportPartlist -h agilesvr -u aisuser -p agile -l 7778 -c 
"[Title Block.Number] equal to 'P00163'" -f "Default Item Filter" 
"Default Manufacturer Filter" "Default Manufacturer Part Filter" -o 
D:\data\partlist_bom.axml -r "B"

importer.ImportData Usage
Usage: importer.ImportData <options>

Option Description

-a mapfile This is a previously saved mapping definition file.

-e virtual-path This is the Agile PLM virtual path. For example, if you access Agile 
Web Client via http://www.sample.com/Agile/PLMServlet, the 
virtual path is "Agile". When you install the Agile PLM system, the 
default virtual path is "Agile".

-f filetype This is the type of file that is imported. If this option is omitted, the 
client determines the filetype based on the MIME type of the import 
source file.

-h host This is the Agile PLM server machine. The default is localhost.

-i input-file This is the source data file.

-l port This is the port on which the Agile PLM server is listening. The 
default is 80.

-m map A textual mapping definition. Arguments should take the form of 
<source-path>=<target-path>.

-n option This is the an import server option. Arguments take the form of 
<group>|<option>=<value>. Please see the Import XML Schema 
documentation for more information on available options.

-o output-file This is the output file name. The default is log.xml.

-p password This is the user's password.

-P protocol This is the URL protocol. Valid values are either HTTP (the default) 
or HTTPS.

-t type This is the type of import operation(s) to run. At least one type must 
be specified. The format of a type argument is type[.<child-type>] 
(for example., items.bom, manufacturerParts.attachments, and 
prices.priceLines). Please see the Import XML Schema 
documentation for a complete set of available import types.

-T timeout This is the time to wait for a response (in minutes). It defaults to 15 
minutes.

-u user This is the Agile PLM username.



About AIS Java Samples

2-10 Agile Product Lifecycle Management AIS Developer Guide

These examples show how to run the importer.ImportData client.

■ runner importer.ImportData -h agilesvr -u aisuser -p agile -l 7778 -i 
D:\data\bom2.txt -f DelimitedTextFile -t items -n 
"BusinessRuleOptions|ChangeMode=Authoring" 
"TextParser|FieldDelimiter=," -o D:\data\result.xml -m 
Parent="Part.Title Block.Number" Child="Part.Title Block.Description"

■ runner importer.ImportData -h agilesvr -u aisuser -p agile -l 7778 -i 
D:\data\bom2.txt -f DelimitedTextFile -t items -n 
"BusinessRuleOptions|ChangeMode=Authoring" 
"TextParser|FieldDelimiter=," -o D:\data\result.xml -m 
Parent="Part.Title Block.Number" Child="Part.Title Block.Description" 
Type="Part.Title Block.Part Type"

■ runner importer.ImportData -h agilesvr -u aisuser -p agile -l 7778 -i 
D:\data\Book1.xls -f ExcelFile -t items -m num="Part.Title 
Block.Number" desc="Part.Title Block.Description" type="Part.Title 
Block.Part Type" -o D:\data\result.xml -n 
"ExcelFileParser|SelectWorksheet=1"

■ runner importer.ImportData -h agilesvr -u aisuser -p agile -l 7778 -i 
D:\SourceFiles\Source\Item\item_tab.txt -a 
D:\SourceFiles\Mapping\Item\item_tab.xml -t items -f DelimitedTextFile 
-o D:\SourceFiles\Baseline\Item\item_tab_import.xml -n 
"BusinessRuleOptions|ChangeMode=Authoring" 
"TextParser|FieldDelimiter=tab"

■ runner importer.ImportData -h agilesvr -u aisuser -p agile -l 7778 -i 
D:\SourceFiles\Source\price_lines_import.xls -a 
D:\SourceFiles\Mapping\price_lines_import.xml -f ExcelFile -t 
prices.priceLines -o D:\SourceFiles\Baseline\price_lines_import.xml -n 
"BusinessRuleOptions|ChangeMode=Redline" 
"BusinessRuleOptions|ChangeNumber=PCO00005"

■ runner importer.ImportData -h agilesvr -u aisuser -p agile -l 7778 -i 
D:\SourceFiles\Source\AML_PC.txt -a D:\SourceFiles\Mapping\AML_PC.xml 
-t items.aml items.bom -f DelimitedTextFile -o 
D:\SourceFiles\Baseline\AML_PC.xml -n 
"BusinessRuleOptions|ChangeMode=Redline" 
"BusinessRuleOptions|ChangeNumber=C00041" 
"Template|TemplateType=com.agile.imp.template.TemplateParentChildFilter
"

■ runner importer.ImportData -h agilesvr -u aisuser -p agile -l 7778 -i 
D:\SourceFiles\Source\bom_RefDelimiter.txt -a 
D:\SourceFiles\Mapping\bom_RefDelimiter.xml -t items.bom -f 
DelimitedTextFile -o D:\SourceFiles\Baseline\new_bom.xml -n 
"BusinessRuleOptions|ChangeMode=Authoring" 
"BusinessRuleOptions|ReferenceDesignatorRangeCharacter=-" 
"BusinessRuleOptions|ReferenceDesignatorDelimiterCharacter=,"

-x transform This is the a previously saved transformation definition file. For 
information on how to use the Import wizard to create a 
transformation definition file, refer to Agile PLM Import and Export 
Guide.

Option Description



About AIS Java Samples

Using AIS Web Services 2-11

■ runner importer.ImportData -h agilesvr -u aisuser -p agile -l 7778 -i 
D:\SourceFiles\Source\bom_Level.txt -a D:\SourceFiles\Mapping\bom_
Level.xml -t items.bom items.aml -f DelimitedTextFile -o 
D:\SourceFiles\Baseline\bom_Level.xml -n 
"BusinessRuleOptions|ChangeMode=Redline" 
"Template|TemplateType=com.agile.imp.template.TemplateLevelFilter" 
"BusinessRuleOptions|ChangeNumber=C00013"

■ runner importer.ImportData -h agilesvr -u aisuser -p agile -l 7778 -i 
D:\SourceFiles\Source\Item\item_comma_category.txt -a 
D:\SourceFiles\Mapping\Item\all_mapping_comma.xml -o 
D:\SourceFiles\Baseline\all_mapping_comma.xml -t items -f 
DelimitedTextFile -n "BusinessRuleOptions|ChangeMode=Authoring" 
"TextParser|FieldDelimiter=," "TextParser|LocationOfHeaderRow=3" 
"TextParser|FileEncoding=ISO8859_1" 
"ParsingAndValidationOptions|MultilistDelimiterCharacter=;" 
"ParsingAndValidationOptions|WhitespaceValidationAction=Reject" 
"ParsingAndValidationOptions|CaseValidationAction=Convert" 
"ParsingAndValidationOptions|LengthValidationAction=Reject" 
"TextParser|TextQualifier='"

importer.ImportSupplierResponse Usage
Usage: importer.ImportSupplierResponse <options>

Option Description

-e virtual-path This is the Agile virtual path. For example, if you access Agile Web 
Client via http://www.sample.com/Agile/PLMServlet, the virtual 
path is "Agile". When you install the Agile PLM system, the default 
virtual path is "Agile".

-h host This is the Agile server machine. The default is localhost.

-i input-file This is the source data file.

-l port This is the port on which the Agile server is listening. The default is 
80.

-o output-file This is the output file name. The default is log.xml.

-p password This is the user's password.

-P protocol This is the URL protocol. Valid values are either HTTP (the default) 
or HTTPS.

-r RFQ-number This is the RFQ into which you are importing the supplier's response.

-s supplier-number This is the supplier number. It is needed only when a buyer imports 
an RFQ response for an off-line supplier. If the supplier number is 
not specified, the import server retrieves the supplier number from 
the specified input file.

-T timeout This is the time to wait for a response (in minutes). It defaults to 15 
minutes.

-u user This is the Agile username.

These examples show running the importer.ImportSupplierResponse client.

■ runner importer.ImportSupplierResponse -h agilesvr -u joesupplier -p 
agile -l 7778 -i D:\SourceFiles\Source\RFQ00256.csv -r RFQ00256



Creating a Web Service Client

2-12 Agile Product Lifecycle Management AIS Developer Guide

■ runner importer.ImportSupplierResponse -h agilesvr -u joebuyer -p agile 
-l 7778 -i D:\SourceFiles\Source\RFQ00013.csv -o 
D:\SourceFiles\Source\Response.xml

importer.ValidateData Usage
Usage: importer.ValidateData <options>

The options are exactly the same as the importer.ImportData Web service. See the 
command "importer.ImportData Usage" on page 2-9.

Creating a Web Service Client
Using the ExportData sample, this section provides the procedures to create a Web 
service client application for AIS.

Generating the SOAP Request
You can generate an appropriate SOAP request using client-side stubs. You can also 
generate client-side stubs. The Web-Service-aware code libraries are able to generate 
client-side stubs on your behalf. This entails using a code generation utility along with 
the WSDL for the desired Web service.

AIS provided samples that make use of Axis in order to connect with the AIS Web 
service engine. Axis provides a WSDL2Java utility that you can use for this purpose; 
other Web-Service-aware libraries will have their own client-side stub generation 
facility (for example, .Net includes a wsdl.exe utility). In the case of the samples, the 
client-side stub generation occurs during the samples' build process. Within the 
build.xml file is the following Ant target:

<target name="generate-export-stubs" depends="init"
unless="exp-stubs.present">
<echo>Generating export Java client-side stubs from
WSDL...</echo>
<java fork="true"
classname="org.apache.axis.wsdl.WSDL2Java"
failonerror="true">
<classpath refid="build.classpath"/>
<arg line="-o ${built.scratch.dir}/gen"/>
<arg line="-p export"/>
<arg line="${ais.url}/Export?wsdl"/>
</java>
</target>

Axis also includes an Ant task definition which you can use instead of the above 
<java> task. For more information, visit the Axis Ant Tasks site by pasting this URL in 
your browser 
http://ws.apache.org/axis/java/ant/ant.htmlhttp://ws.apache.org/axis/java/
ant/ant.html.

The above Ant target is responsible for generating the export-related client-side stubs. 
This invocation retrieves the Export WSDL from ${ais.url}/Export?wsdl, generates 
Java code in the export Java package, and places the source code within the 
${built.scratch.dir}/gen directory. For more information on the WSDL2Java utility, 
refer to Axis documentation on the Axis Website at http://ws.apache.org/axis/.

Once the client-side stubs have been generated, the user can use the generated object 
definitions in order to more easily generate the appropriate SOAP request. These stubs 
enable the user to focus on the capabilities of the target Web service operation without 



Creating a Web Service Client

Using AIS Web Services 2-13

the need to construct a valid SOAP request. In the ExportData.java sample, you can 
see that the run method contains all the code used to generate the SOAP request. 
However, instead of explicitly constructing a SOAP request, the code is concerned 
with setting up a Java data structure, which will be provided as the parameter to a 
stub method invocation. The code is more concerned with functionality than 
formatting, which makes it easier to read, write, and maintain.

Agile and Non-Agile Web Service Clients
The sample.zip folder contains the source code of an Import/Export Web service 
client. If you use this client, there is no need to modify the code for the client to 
connect to Axis v1.4. However if you plan to use an in-house, or a third party client, 
you must modify the code and work with Axis v1.4.

Submitting the SOAP Request
The next step in the Web service operation is to properly submit the generated SOAP 
request to the Web service engine. When dealing with generated client-side stubs, this 
step only requires pointing the stubs to the desired server and invoking a method on 
the stubs. You do not need to worry about opening a connection or manually 
marshaling your data onto the wire (Marshaling is the act of taking data from the 
environment you are in and exporting it to another environment), because the 
generated stubs will handle these details.

The ExportData.java sample illustrates the above statement in two places:

■ The getExportStub method is responsible for pointing the client-side stubs to the 
desired Web service engine.

■ The stub.exportData method invocation found within the run method is 
responsible for actually submitting the request to the Web service engine. The 
actual submitting of the request and all the minutiae that entails are managed by 
the stubs themselves; you do not need to worry about the connecting, submitting, 
or marshaling particulars.

The details on how you point the stubs to the desired Web service engine and submit 
the request will vary from code library to code library. For more information, refer to 
the documentation for your Web-Service-aware code library. XXX

Processing the SOAP Response
Similar to submitting a SOAP request, processing a SOAP response is handled with 
the generated client-side stubs. Without these generated stubs, you must parse the 
XML-based SOAP response and resolve the many formatting and unmarshaling issues 
that arise. However, when working with generated stubs, all these details are taken 
care of so that you will receive the Java objects in a proper form.

The ExportData.java sample illustrates this point clearly. In this sample, you can see 
that the result of the stub.exportData method is a javax.activation.DataHandler, which 
is a convenient way of encapsulating a binary data stream. Rather than requiring you 
to parse an XML document and interpret the returned data, the stubs automatically do 
this and return the response's attachment as a DataHandler object.

The details on how SOAP responses are processed vary from code library to code 
library. For more information, consult the documentation for your Web-Service-aware 
code library.



Creating a Web Service Client

2-14 Agile Product Lifecycle Management AIS Developer Guide



3

Exporting Data 3-1

3Exporting Data

This chapter includes:

■ Understanding the Web Service Export Function

■ Using the exportData Web Service Operation

Understanding the Web Service Export Function
The following two export Web service operations are delivered as part of AIS:

■ exportData - A Web service operation that extracts data from an Agile PLM 
system in one of several data formats.

■ exportPartList - A Web service operation that takes a multilevel BOM and 
flattens it into a list of the manufacturer parts and their quantities in the BOM, and 
returns the data in aXML format.

Using the exportData Web Service Operation
The exportData Web service operation is capable of extracting Agile data in one of 
several structured formats. This operation can be used to provide integration 
functionality between your Agile PLM system and other, third-party systems.

This section illustrates how to format an XML request in order to use the exportData 
Web service operation. For more information on the XML schema that describes an 
exportData request, see the Export XML Schema documentation in"AIS Folders" on 
page 1-2. To view the information, select documentation > schemas > export.htm.

The exportDataRequest XML element describes the XML format that you must use 
when submitting an exportData request to AIS. This enables you to specify the 
following types of data:

■ Queries - One or more queries that define what objects is exported.

■ Filters - One or more filters that define what data from the selected objects is 
exported.

■ Formats - The format that is used for the exported data.

■ Sites - Manufacturing sites for which data should be exported. By default, data for 
all sites is exported.

■ Export - Approval Matrix data is exported.

■ Import - Approval Matrix data is imported.



Using the exportData Web Service Operation

3-2 Agile Product Lifecycle Management AIS Developer Guide

Working with Queries
Using the exportData Web service operation, you can specify parameters related to the 
object query:

■ The query itself (Required)

■ The type of object being queried (Required)

■ The site to apply to all objects matched by the query (Optional)

■ The revision to apply to all objects matched by the query (Optional)

You can specify multiple queries at once, returning multiple result sets. More 
information on query parameters can be found in the Agile API reference 
documentation. However, the following section provides a brief introduction to the 
criteria syntax.

Specifying Query Criteria
This section introduces the basics of Agile SDK query syntax. For complete 
information on how to construct complex search criteria, refer to Agile SDK Developer 
Guide - Using Agile APIs.

The value for the criteria parameter for the exportData and exportPartlist is a single 
string consisting of one or more search conditions. Strings that appear within the 
search criteria should be enclosed in single quotes (').

Working with Sites
Companies that practice distributed manufacturing use several different sites to 
manufacture their products. The exportData Web service operation supports exporting 
data to all manufacturing sites, or to a specific site. Manufacturing sites affect how 
items and changes are exported. In the case of items, BOMs and AMLs can vary per 
site. For changes, the Affected Items table specifies which manufacturing sites are 
affected.

By default, the exportData Web service operation extracts information for all sites. If 
you specify a manufacturing site, only the data associated with that site is exported. 
All objects that are not associated with that manufacturing site are filtered out of the 
query results.

The following examples illustrate using exportData to extract all parts and documents 
in system and exportPartlist to extract only parts with AMLs.

Example: Using exportData to extract all parts and documents in the system

runner export.ExportData-h localhost -u admin -p agile -l 7001 -e Agile -c "[Title 
Block.Number] is not null " -F "Item.TitleBlock" -t Item -o outpart.pdx

Example: Using exportPartlist to extract only parts with AMLs

runner export.ExportPartlist -h localhost -u admin -p agile -l 7001 -e Agile -c 
"[Title Block.Number] is not null " -F "Item.TitleBlock" -o outpart.pdx

The following XML snippets illustrate different ways to specify a manufacturing site:

...
<site>
    <site-name>Taipei</site-name>
  </site>
  ...
  <site>



Using the exportData Web Service Operation

Exporting Data 3-3

    <site-id>6</site-id>
  </site>
  ...
  <!--The following is optional since the default is all sites -->
  <site>
    <all/>
  </site>

...

Working with Filters
The exportData Web service operation enables you to define the information that you 
want to query from the selected objects. These parameters are captured by specifying 
one or more filters. Filters are either predefined in the Agile PLM system, or they are 
defined in an ad hoc fashion by the AIS client.

You can specify multiple filters and their effect is cumulative. The resulting filter is the 
combination of all specified filters. For example, if one filter includes an item's 
PageTwo information and a separate filter includes the item's History information, the 
effective filter includes both PageTwo and History information.

Predefined Filters
Agile provides several predefined filters to refine query results. You can specify a 
predefined filter in one of the following three different ways: --

■ By ID - Specify the numeric ID of a defined filter with the Agile administrative 
data. This information can be found using the Agile API to inspect the Agile 
administrative data. Use the ID of a defined filter to reduce the risk of a name 
change that can adversely affect your code.

■ By name - Specify the name of a defined filter found in the Agile administrative 
data. This is an easy way to reference previously defined filter definitions.

■ By object type -Specify different information sets for each type, from the set of 
available filters, one for each object type.

Note: If you have administrator privileges to the Agile PLM system, 
you can define new filters. Log into Agile Java Client and choose 
Admin > System Settings > Agile Contents Service > Filters.

For more information on predefined filters, see the Export XML Schema 
documentation in AIS Folders. To view the information, select documentation > 
schemas > export.html.

Ad Hoc Filters
Ad hoc filters are defined for a particular purpose and are not stored in the Agile PLM 
system. The Export XML Schema defines several <filters> elements, such as 
ItemFilter, ChangeFilter, ManufacturerFilter, and ManufacturerPartFilter. The 
general usage for ad hoc filters is to specify the filter type, such as ItemFilter, and then 
supply boolean values for each table that you want included by the filter. For example, 
the following ad hoc filter includes the TitleBlock and PageTwo tables for items:

<filters>
<ItemFilter TitleBlock="true" PageTwo="true"/>
  </filters>



Using the exportData Web Service Operation

3-4 Agile Product Lifecycle Management AIS Developer Guide

Most tables require simple boolean values. However, other tables support enumerated 
values that enable you to include the associated objects. For example, the BOM table 
supports the following enumerated values for filters: DoNotInclude (the default), 
TableOnly, SingleLevel, and Recurse.

Note: The filter type that you specify depends on the output format. 
If you extract data to a PDX file, the filter type should be a superclass 
filter such as ItemFilter or ChangeFilter. If you extract data to an 
aXML file, the filter type should be a class filter such as PartFilter or 
ECOFilter.

An exportData Filter Example
The following code segment illustrates how to combine a predefined filter, "Default 
Part Filter," with an ad hoc filter that extracts all Item data, including attachments that 
may result from the query defined in the query example above.

...
<filters>
    <!--The following is a predefined filter specified by name-->
    <filter-name>Default Part Filter</filter-name>
    <!--The following is an ad hoc filter -->
    <ItemFilter TitleBlock="true" PageTwo="true"                
             PageThree="true" History="true"                
             Attachments="TablesAndFiles"                
             BOM="Recurse" Changes="true"                
             WhereUsed="true"                 
             AML="TableOnly" Site="true"/>
 </filters>

...

Working with Formats
The exportData Web service operation can export data in either PDX or aXML format. 
For a description of these formats, see "Web Services Operations" on page 1-4.

For more information on how to specify the supported formats, see the Export XML 
Schema documentation in "AIS Folders" on page 1-2. To view the information, select 
documentation > schemas > export.htm.

An exportData Format Example
The following illustrates how to extract data in PDX format:

...
    <format>PDX</format>
  ...
A Sample exportData Web Service Operation
The following is a sample exportDataRequest, which demonstrates a complete 
exportData Web service operation request:

<exportDataRequest>
  <queries>
    <query>
      <criteria>[Title Block.Number] == '1000-02'</criteria>
    <objectType>
     <predefined>Item</predefined>



Using the exportPartlist Web Service Operation

Exporting Data 3-5

    </objectType>
   </query>
  </queries>
 <site>
    <site-name>Taipei</site-name>
 </site>
 <filters>
 <!--The following is a predefined filter specified by name-->
 <filter-name>Default Part Filter</filter-name>
 <!--The following is an ad hoc filter -->
 <ItemFilter TitleBlock="true" PageTwo="true"
     PageThree="true" History="true"
     Attachments="TablesAndFiles"
     BOM="Recurse" Changes="true"
     AML="TableOnly" Site="true"/>
  </filters>
 <format>PDX</format>
</exportDataRequest>

The above XML sample is not a complete or valid SOAP request. Rather, this XML 
document represents the contents of a SOAP request body. In general, you do not need 
to manually generate the above XML document. Instead, the client-side stubs 
generated by a Web-Service-aware code library take care of creating an appropriately 
formatted XML document and placing it within a SOAP request, and this sample is an 
illustration of what the XML request generated by client-side stubs.

Note: To generate the above XML in PDF format, the code that is 
submitted to the stubs must include at least one such parameter -c 
"[Title Block.Number] == '1000-02' " -f "Default Part 
Filter" -t Item -s Taipei.

Working with Tables in Export
With the exception of the PDX format, the Export operation supports exporting Job 
Function and Functional Team attributes as well as the Acknowledge workflow action. 
Also supports Functional Teams class tables in aXML, Text (csv), and Excel (xls).

Example 3–1 Using exportData to export tables supported by the Functional Teams 
class

runner export.ExportData -h server -l port -e virtualpath -u username -p password 
-c "[General Info.Name] equal to 'AIS_KFUNCTEAM1'" -t UserGroup -F 
"UserGroup.GeneralInfo" "UserGroup.FunctionalTeam" "UserGroup.JobFunction" 
"UserGroup.Discussions" "UserGroup.ActionItems" -o D:\UserGroups.axml -a aXML

Using the exportPartlist Web Service Operation
The exportPartlist Web service operation takes a multilevel BOM and "flattens" it into a 
list of the manufacturer parts in the BOM and their quantities and returns the data in 
aXML format. That is, it enables you to extract a rolled up set of parts, and the related 
Quantities Per Top Level Assembly (QPTLA). The value of the QPTLA is computed as 
the sum over recursive products starting from the top of the BOM tree. This Web 
service calculates the QPTLA for each unique item-revision pair, and returns the 
results in the Part Quantities element of the resulting aXML output.



Note: The exportPartlist Web service exports data only for items 
with AMLs (approved manufacturer parts and their associated 
manufacturers). Items without AMLs are ignored.

Using the exportPartlist Web Service Operation

3-6 Agile Product Lifecycle Management AIS Developer Guide

Working with exportPartlist Queries
The exportPartlist Web service is similar to exportData in the way it accepts query 
definitions. The main difference is that you do not need to specify the object type 
against which the query is operating. This is because the queries related to a part list 
must always be queries against items.

Working with exportPartlist Filters
Filters are specified for the exportPartlist Web service operation similar to the 
exportData Web service operation. The only difference is which filters can be 
specified. Because exportData only operates over items, manufacturer parts (that is, 
AML) and manufacturers (AML's related manufacturers), the object-related filters are 
restricted to those three data types.

An exportPartlist Example
The following is an example of the exportPartlistRequest element. It is a simple 
adaptation of the previous exportData sample and demonstrates a complete 
exportPartlist Web service operation request.

Example 3–2 Using the exportPartlistRequest element

<exportPartlistRequest>
<queries>
<query>
<criteria>[Title Block.Number] == '1000-02'</criteria>
</query>
</queries>
<site>
<site-name>Taipei</site-name>
</site>
<filters>
<!--The following is a predefined filter specified by name-->
<filter-name>Default Part Filter</filter-name>
<!--The following is an ad hoc filter -->
<ItemFilter TitleBlock="true" PageTwo="true" PageThree="true" History="true" 
Attachments="TablesAndFiles" BOM="Recurse" Changes="true" WhereUsed="true" 
AML="TableOnly" Site="true"/>
</filters>
</exportDataRequest>

The following entries are removed from the previous exportData sample to make this 
adaptation:

■ The query element does not include an objectType element. This is because the 
exportPartlist Web service operation only queries against item objects.

■ The format element is not included in the exportPartlistRequest. This is because 
the exportPartlist Web service operation only exports data in the aXML format.

The preceding XML example is not a complete or valid SOAP request. Rather, this 
XML document represents the contents of a SOAP request body. Generally, you do not 
need to generate the above XML document manually. Instead, the client-side stubs 



Using the exportPartlist Web Service Operation

Exporting Data 3-7

generated by a Web-Service-aware code library create an appropriately formatted 
XML document and place it within a SOAP request. The above sample is an 
illustration of what the XML request generated by client-side stubs would resemble.

Note: To generate the above XML in PDF format, the code that is 
submitted to the stubs must include at least one such parameter -c 
"[Title Block.Number] == '1000-02' " -f "Default Part 
Filter" -t Item -s Taipei.



Using the exportPartlist Web Service Operation

3-8 Agile Product Lifecycle Management AIS Developer Guide



4

Importing Data 4-1

4Importing Data

This chapter includes:

■ Overview

■ Understanding the Web Service Import Feature

■ Using the importData Web Service Operation

■ Importing Data Values

Overview
You can use the importData Web service operation of AIS to import data into the Agile 
PLM databases. The source for the import data can be an Agile database, a third party 
Product Data Management (PDM) system, or an Enterprise Resource Planning (ERP) 
system. The Agile server stores information about customer-specific items, such as 
parts that the company uses to build its products. It also maintains the relationships 
that assembly parts have with BOM components and that parent items have with 
approved manufacturers.

For more information on importing data into the Agile PLM system, refer to the Agile 
PLMImport/Export User Guide.

Understanding the Web Service Import Feature
The following Web service import operations are delivered as part of the AIS:

■ importData - A Web service operation that imports data into the Agile PLM 
system.

■ importSupplierResponse - A Web service operation that imports an RFQ response 
from a supplier.

Note The ImportSupplierResponse Web service operation is deprecated as of Agile 9.0 
SP1. Instead, invoke the importData Web service operation and construct a valid 
importSupplierResponseRequestType XML data structure. For more information, see 
"Importing Supplier Responses" on page 4-8. Although the 
oldImportSupplierResponse Web service operation is supported for this release, 
Oracle recommends migrating your code to the new API.

■ validateData - A Web service operation that validates source data with 
compliance rules



Using the importData Web Service Operation

4-2 Agile Product Lifecycle Management AIS Developer Guide

Using the importData Web Service Operation
The importData Web service operation exposes all Import Server functionality through 
a Web service interface that you can access programmatically. This section documents 
formatting an XML request in order to use the importData Web service operation. For 
more information on the XML schema that describes an importData request, refer to 
the Import XML Schema documentation in "AIS Folders" on page 1-2. To view the 
information, select documentation > schemas > import.htm.

The importDataRequest XML element describes the XML format you must use when 
submitting an importData request to AIS. It supports the  XML data structure types.

Example 4–1 Supported data structure types

<importDataRequest xsi:type="importDataRequestType">
...
</importDataRequest>
<importDataRequest xsi:type="importSupplierResponseRequestType">
...
</importDataRequest>

Specifying Data Types
The importDataRequest XML element allows you to specify several different types of 
data, including:

■ Data Source - The source of the data to be imported.

■ Operations - Which import operations should be performed.

■ Mapping - How incoming data should be mapped into the Agile PLM system.

■ Transformation - How incoming data should be transformed before importing into 
the Agile PLM system.

■ Options - Other options that affect the behavior of the import server.

Working with Data Sources
A data source is defined by two pieces of information: the URL that references the data 
to be imported and a data type that defines what kind of data is being imported. The 
URL specified can be a reference to either an attachment sent along with the SOAP 
request, or an external resource. If the URL references an attachment, then the SOAP 
request can follow either the SwA (SOAP With Attachments) or DIME (Direct Internet 
Message Encapsulation) encoding rules. For more information on these parameters, 
refer to the Import XML Schema documentation in "AIS Folders" on page 1-2. To view 
the information, select documentation > schemas > import.htm.

The following XML example illustrates how to specify a PDX data source that is sent 
along with the SOAP request.

Example 4–2 Specifying a PDX data source sent with a SOAP request

<importDataRequest xsi:type="importDataRequestType">
<dataSource>
<attachmentRef href="cid:E36C913548344EDA1B7FC20CEDCEDEB3"/>
typeIPC2571</type>
</dataSource>
...



Using the importData Web Service Operation

Importing Data 4-3

In the above snippet, the value of the HREF attribute is not intuitive, but it is of the 
form expected when referencing an attachment sent as part of the SOAP request.

Note: The HREF value is generated by the stub.

Working with Operations
By specifying one or more import operations, you can define what data is imported 
into the Agile PLM system. The following table lists valid import operations.

Operation Child Attributes

currencyConversion n/a

customers n/a

declarations items, manufacturerParts, partFamilies, itemSubstances, 
mfrpartSubstances, partFamilySubstances, specifications,attachments

items aml, bom, sites, attachments, composition, substances, suppliers, 
specifications, relationships

manufacturerParts attachments, composition, substances, suppliers, specifications, 
relationships

manufacturers attachments, relationships

partgroups parts, suppliers, specifications, relationships, attachments

prices priceLines, attachments

productServiceReque
sts

affectedItems, relatedPSR, relationships, attachments

projectItems aml, bom, attachments

qualityChangeReque
sts

affectedItems, relationships, attachments

quoteHistories quoteHistoryLines

specifications substances, attachments

substances materialCompositions, attachments

suppliers supplier, manufacturerOfferings, commodityOfferings

users usergroup

usergroups user

Depending on what you specify, the import server performs the desired import 
operations and ignores data that is not relevant to the selected import operation. For 
more information on import operations, see the Import XML Schema documentation 
in "AIS Folders" on page 1-2. To view the information, select documentation > 
schemas > import.htm.

The following code snippet illustrates how to import manufacturers, manufacturer 
parts, and items. For items, the BOM and AML tables are also imported.

Example 4–3 Importing manufacturers, manufacturer parts, and items

<operations>
<manufacturers attachments="false"/>
<manufacturerParts attachments="false"/>
<items aml="true" bom="true" sites="false" attachments="false"/>



Using the importData Web Service Operation

4-4 Agile Product Lifecycle Management AIS Developer Guide

</operations>

...

Working with Mappings
The specified mappings determine how the incoming data is mapped into the Agile 
PLM system. You can specify mappings either by referencing a previously defined 
mapping definition file, or by specifying the mappings via the submitted XML data 
structure. Referencing a previously defined mapping definition file occurs in much the 
same way as a data source is referenced (that is, via an HREF attribute on the 
appropriate element). Specifying a mapping via the XML data structure requires 
specifying the source and target attributes in the appropriate format.

For more information on these parameters, see the Import XML Schema 
documentation in "AIS Folders" on page 1-2. To view the information, select 
documentation > schemas > import.htm.

The following snippet illustrates how to map a field from the incoming PDX package 
onto the TitleBlock of an item.

Example 4–4 Mapping a field from incoming PDX package to Item’s TitleBlock

...
<mapping>
<entry>
<source>/ProductDataeXchangePackage/Items/Item@itemIdentifier</source>
<target>Part.Title Block.Number</target>
</entry>
</mapping>
...
The following snippet illustrates how you can reference a previously defined 
mapping definition file.
...
<mapping>
<attachmentRef href="cid:E36C913548344EDA1B7FC20CEDCEBEEF"/>
</mapping>
...

In the above snippet, the HREF attribute which is generated by the stub is not very 
intuitive, but it is of the form expected when referencing an attachment sent as part of 
the SOAP request.

Note: Agile PLM allows you to define an unlimited number of new 
flex fields for each type of business object. Both the Agile Import 
wizard and AIS now support user-defined flex fields. Therefore, you 
can import data to user-defined flex fields.

Working with Transforms
Transforms are used to specify the way data is transformed as it is imported into the 
Agile PLM system. To specify Transforms, use the previously defined transformation 
definition files as shown in the following example.



Using the importData Web Service Operation

Importing Data 4-5

Example 4–5 Specifying a Transform

...
<transform href="cid:E36C913548344EDA1B7FC20CEDCE0123"/>
...

In the above snippet, the HREF attribute which is generated by the stub is not very 
intuitive, but it is of the form expected when referencing an attachment sent as part of 
the SOAP request. For more information on this parameter, see the Import XML 
Schema documentation in "AIS Folders" on page 1-2. To view the information, select 
documentation > schemas > import.htm.

Working with Options
The import server provides several options that you can set in order to alter the 
behavior of the import server. These options are grouped together into related option 
groups, which makes it easier to distinguish the purpose of the related options. For 
more information on these parameters, see the Import XML Schema documentation in 
"AIS Folders" on page 1-2. To view the information, select documentation > schemas 
> import.htm.

The following snippet illustrates how to set several Business Rule, Parsing and 
Validation options:

Example 4–6 Setting usiness Rule, Parsing and Validation options

...
<options>
    <BusinessRuleOptions>
    <ChangeMode value="Authoring"/>
    <MultiRowUpdateMode value="AddUpdateOnly"/>
   </BusinessRuleOptions>
   <ParsingAndValidationOptions>
   <CaseValidationAction value="Convert"/>
   </ParsingAndValidationOptions>
</options>

ChangeType and ChangeAutoNumber Options
The import server supports setting the following ChangeType and ChangeAutoNumber 
options when importing items in the Redline mode. This in addition to setting the 
same for a ChangeAutoNumber. You have the option to specify a non-existing change 
in AIS, and the Import server generates the change for the affected ChangeType, 
ChangeNumber or ChangeAutoNumber. When a change order is initiated, the server 
records a message that includes the type and number of the change in the AIS log file. 
For more information on these parameters, see the Import XML Schema 
documentation in "AIS Folders" on page 1-2. To view the information, select 
documentation > schemas > import.htm.

■ ChangeType - This option supports specifying the subclass name or ID of the 
change order for the ECO,SCO, or MCO. If the change type is invalid, the Import 
server will reject the entire Import operation and will record a fatal message in the 
AIS log file.

■ ChangeAutoNumber - This option supports generating change numbers with the 
specified Autonumber. If the specified ChangeAutoNumber is invalid, the Import 
server will reject the entire import operation and will record a fatal message in the 
AIS log file.



Note:  Do not set the ChangeNumber option if you have already 
invoked the ChangeAutoNumber option.

Using the importData Web Service Operation

4-6 Agile Product Lifecycle Management AIS Developer Guide

The following example illustrates how to set the ChangeMode, ChangeType, and 
ChangeAutoNumber options in the aXML file.

Example 4–7 ChangeMode, ChangeType, and ChangeAutoNumber settings in aXML

...
<options>
   <BusinessRuleOptions>
   <ChangeMode value="Redline"/>
   <ChangeType value="ECO"/>
   <ChangeAutoNumber value="ECO AutoNumber"/>
   <MultiRowUpdateMode value="AddUpdateOnly"/>
   </BusinessRuleOptions>
   <ParsingAndValidationOptions>
   <CaseValidationAction value="Convert"/>
   </ParsingAndValidationOptions>
</options>
...

The parameter in the client-side code that is submitted to generate this XML must 
contain:

-n "BusinessRuleOptions|ChangeMode=Redline" "BusinessRuleOptions|ChangeType=ECO" 
"BusinessRuleOptions|ChangeAutoNumber=ECO AutoNumber" 
"BusinessRuleOptions|MultiRowUpdateMode=AddUpdateOnly" 
"ParsingAndValidationOptions|CaseValidationAction=Convert"

Options to Import Non-Existing Objects
You have the option to accept or reject importing non-existing objects during an 
import operation. This behavior is supported by the 
BehaviorUponNonExistingObjects option. This option has two values, Accept and 
Reject. Accept creates the non-existing objects during import and Reject skips creating 
these objects.

You can find detailed information about BehaviorUponNonExistingObjects in the 
documentation folder in the AIS_samples.zip file. To access this file, see "AIS Folders" 
on page 1-2. To view the information, select documentation > schemas > import.htm.

Invoking the ImportDataRequest Operation
The following is a complete example of invoking importDataRequest. It shows what a 
fully configured importData operation request will resemble.

Example 4–8 An ImportData Example

<importDataRequest xsi:type="importDataRequestType">
<dataSource>

<attachmentRef href="cid:E36C913548344EDA1B7FC20CEDCEDEB3"/>
<type>IPC2571</type>
</dataSource>

<operations>



Using the importData Web Service Operation

Importing Data 4-7

<manufacturers attachments="false"/>
    <manufacturerParts attachments="false"/>
    <items aml="true" bom="true" sites="false" attachments="false"/>
  </operations>
  <mapping>
    <attachmentRef href="cid:E36C913548344EDA1B7FC20CEDCEBEEF"/>
  </mapping>
  <options>
    <BusinessRuleOptions>
      <ChangeMode value="Authoring"/>
      <MultiRowUpdateMode value="AddUpdateOnly"/>
    </BusinessRuleOptions>
    <ParsingAndValidationOptions>
      <CaseValidationAction value="Convert"/>
    </ParsingAndValidationOptions>
  </options>
</importDataRequest>

The above XML document is not a complete or valid SOAP request. Rather, this XML 
document represents the contents of a SOAP request body. Generally, you do not need 
to generate the above XML document by manually. Instead, the client-side stubs 
generated by a Web-Service-aware code library will usually create an appropriately 
formatted XML document and places it within a SOAP request. The above sample is 
simply an illustration of what the XML request generated by client-side stubs might 
look like.

Following is the client-side code that is submitted to generate this XML. For additional 
examples, see "importer.ImportSupplierResponse Usage" on page 2-11.

runner importer.ImportData -p http -h localhost -e web -u admin -p agile -l 8888 
-f ExcelFile -i D: \source.xls -a D: \mapFile.xml -t items.aml items.bom 
manufacturers manufacturerParts -n "BusinessRuleOptions|ChangeMode=Authoring" 
"BusinessRuleOptions|MultiRowUpdateMode=AddUpdateOnly" 
"ParsingAndValidationOptions|CaseValidationAction=Convert"

Using the validData Web Service Operation
This operation exposes the validation service through a Web service interface that you 
can invoke programmatically. This operation validates the source data for compliance 
with server rules that govern length, size, and other formats before importing them 
into the Agile PLM system. For information on programmatic support, refer to the 
Agile PLM SDK Developer Guide. For information on the UI implementation, refer to 
Agile PLM Import/Export User Guide.

The validateData operation uses the same importDataRequestType used by the 
importData Web service operation. For procedures to specify the 
importDataRequestType, see "Using the importData Web Service Operation" on 
page 4-2. For more information on the XML schema that describes the importData 
request, refer to the Import XML Schema.

Note: The validateDataReqeustType is a subclass of the 
importDataRequestType, but it does not define any additional 
methods. In that way, the two are exactly the same. In future releases, 
the validateData operation will use validateDataReqeustType instead 
of importDataRequestType.



Using the importData Web Service Operation

4-8 Agile Product Lifecycle Management AIS Developer Guide

Importing Supplier Responses
To import supplier responses using the importDataRequest Web service operation, 
specify "importSupplierResponseRequestType" for the xsi:type element. The 
importSupplierResponseRequestType is much simpler than importDataRequestType 
because it is much more constrained. You don't need to specify import operations, 
mapping files, transformation files, or options to import an RFQ response. The 
importSupplierResponseRequestType XML element allows you to specify three types 
of data:

■ Data Source - This is the source of the data to be imported.

■ RFQ Number - This is the alphanumeric identifier of the RFQ that is associated 
with the response.

■ Supplier Number - This is the supplier number is needed only when a buyer 
imports an RFQ response for an off-line supplier. If the supplier number is not 
specified, the import server retrieves the supplier number from the specified input 
file.

For more information on importSupplierResponseRequestType parameters, see the 
Import XML Schema documentation in "AIS Folders" on page 1-2.

The following is a complete sample for importSupplierResponseRequest. It 
demonstrates how a fully configured importSupplierResponse operation request can 
appear.

Example 4–9 A fully configured importSupplierResponse request

<importDataRequest xsi:type="importSupplierResponseRequestType">
   <dataSource>
      <attachmentRef href="cid:E36C913548344EDA1B7FC20CEDCEDEB3"/>
   </dataSource>
     <rfqNumber value="RFQ00123"/>
</importDataRequest>

The above XML document is not a complete or valid SOAP request. It is a depiction of 
the XML request that is generated by the client-side stubs.

Working with Tables in Import
The Import operation supports Importing Job Function and Functional Team attributes 
and Functional Teams class tables in aXML, Text (csv), and Excel (xls) formats. The 
only exception is the PDX format which the Import operation does not support.

Example 4–10 Importing a Job Functional Team class Table - Job Functions

Source file: imp_jobfunctions.txt with the following contents:
Name,Type,Status,JobName,Users/User Groups,
AIS_KFUNCTEAM1,Functional Team,Active,Product Manager,kuser1,
AIS_KFUNCTEAM2,Functional Team,Active,Lead Developer,kuser2,
AIS_KFUNCTEAM3,Functional Team,Active,Developer,kuser3,

Solution

runner importer.ImportData -h server -l port -e virtualpath -u username -p 
password -i D:\imp_jobfunctions.txt -f DelimitedTextFile -t usergroups.jobfunction 
-n "TextParser|FieldDelimiter=," -o D:\result_jf.xml -a D:\mapping_jf.xml



Importing Data Values

Importing Data 4-9

Example 4–11 Importing a Functional Team class Table - Discussion 

Source file: imp_discussion.txt with the following contents:
Name,Type,Status,Subject,Number
AIS_KFUNCTEAM1,Functional Team,Active,DISC1,D00001
AIS_KFUNCTEAM2,Functional Team,Active,DISC1,D00001
AIS_KFUNCTEAM3,Functional Team,Active,DISC1,D00001
Solution

runner importer.ImportData -h server -l port -e virtualpath -u username -p 
password -i D:\imp_discussions.txt -f DelimitedTextFile -t usergroups.discussion 
-n "TextParser|FieldDelimiter=," -o D:\result_disc.xml -a D:\mapping_disc.xm

Example 4–12 Importing a Functional Team class Table - Action Items

Source file: imp_actionitems.txt with the following contents:
Name,Type,Status,Subject,AssignedTo
AIS_KFUNCTEAM1,Functional Team,Active,ActionItem1,admin
AIS_KFUNCTEAM2,Functional Team,Active,ActionItem2,admin
AIS_KFUNCTEAM3,Functional Team,Active,ActionItem3,admin

Solution

runner importer.ImportData -h server -l port -e virtualpath -u username -p 
password -i D:\imp_actionitems.txt -f DelimitedTextFile -t usergroups.actionitem 
-n "TextParser|FieldDelimiter=," -o D:\result_action.xml -a D:\mapping_action.xml

Importing Data Values
The Import Web service supports a variety of date formats based on several different 
criteria, including user preferences and locale.

Note: The upper limit for dates is today's date + 150 years. Date 
values later than that are invalid and cannot be imported.

Setting the Preferred Date Format and Time Zone
Each Agile user can select a preferred date format.

To change date format preferences for your Agile account:
1. In Agile Web Client, select Settings > User Profile > Preferences > Edit.

2. Select the desired date format in the Preferred Date Format field.

3. Select a GMT time zone in the Time Zone field.

4. Click Save.

Supported Date Formats
The Import Web service supports all combinations of date and time formats available 
in the java.text.DateFormat class as well as additional formats. DateFormat provides 
many date and time formatting styles based on locale. The following table shows date 
formats available for the U.S. locale, evaluated in order:

Date Format Example

MMM-dd-yyyy HH:mm:ss Jul-10-2001 14:08:35



Importing Data Values

4-10 Agile Product Lifecycle Management AIS Developer Guide

Each date format is specified using a time pattern string where

y = year M = month in year d = day in month h = hour in AM/PM (1~12) m = minute 
in hour s = second in minute E = day in week a = AM/PM marker z = time zone ' = 
escape for text '' = single quote

The count of each letter such as "M" in the time pattern determines the format. For 
example, three "M" characters indicate that the month is represented as text instead of 
a number; less than three "M" characters means that the month is represented by a 
number.

For more information about Java date formats and time pattern syntax, see Oracle 
documentation for the SimpleDateFormat and DateFormat classes at: 
http://docs.oracle.com/javase/1.5/docs/

MMM-dd-yyyy HH:mm Jul-10-2001 14:08

MMM-dd-yyyy hh:mm:ss a Jul-10-2001 02:08:35 PM

MMM-dd-yyyy hh:mm a Jul-10-2001 02:08 PM

MMM-dd-yyyy Jul-10-2001

dd-MMM-yyyy HH:mm:ss 10-Jul-2001 14:08:35

dd-MMM-yyyy HH:mm 10-Jul-2001 14:08

dd-MMM-yyyy hh:mm:ss a 10-Jul-2001 02:08:35 PM

dd-MMM-yyyy hh:mm a 10-Jul-2001 02:08 PM

dd-MMM-yyyy 10-Jul-2001

EEEE, MMMM d, yyyy Thursday, June 25, 1998

EEEE, MMMM d, yyyy h:mm a Thursday, June 25, 1998 1:32 PM

EEEE, MMMM d, yyyy h:mm:ss a Thursday, June 25, 1998 1:32:19 PM

EEEE, MMMM d, yyyy h:mm:ss a z Thursday, June 25, 1998 1:32:19 PM 
GMT-05:00

MMMM d, yyyy June 25, 1998

MMMM d, yyyy h:mm a June 25, 1998 1:32 PM

MMMM d, yyyy h:mm:ss a June 25, 1998 1:32:19 PM

MMMM d, yyyy h:mm:ss a z June 25, 1998 1:32:19 PM GMT-05:00

MMM d, yyyy Jun 25, 1998

MMM d, yyyy h:mm a Jun 25, 1998 1:32 PM

MMM d, yyyy h:mm:ss a Jun 25, 1998 1:32:19 PM

MMM d, yyyy h:mm:ss a z Jun 25, 1998 1:32:19 PM GMT-05:00

M/d/yy 6/25/98

M/d/yy h:mm a 6/25/98 1:32 PM

M/d/yy h:mm:ss a 6/25/98 1:32:19 PM

M/d/yy h:mm:ss a z 6/25/98 1:32:19 PM GMT-05:00

Date Format Example



Importing Data Values

Importing Data 4-11

Specifying Time Zones
Date values can specify a GMT time zone. If a date value omits the time zone, the 
user's time zone preference is used. Time zones must be entered in the following 
format:

GMT Sign hh:mm

where:

GMT = Greenwich Mean Time

Sign = + or -

h = hour in AM/PM (1 to12)

m = minute in hour

For example, "GMT-05:00" and "GMT+02:00" are valid time zones.

Note: Do not use three-character codes (such as PST or PDT) to 
specify time zones. Three-character time zone codes are unreliable 
because some are used for multiple time zones. Consequently, the 
Agile server might resolve a three-character time zone code to an 
incorrect time zone.

aXML and PDX Package Date Formats
For aXML and PDX packages, the Import Web service operation supports a subset of 
the ISO String date format: yyyy/MM/ddTHH:mm:ssZ

Note: The T and Z characters are optional.

Importing XLSX File Formats
The AIS Import function supports importing XLSX or Microsoft 2007/2010 Excel file 
types by using a command similar to the one shown below:

Example 4–13 A sample command to import XLSX file types using AIS

runner importer.ImportData -h server -l port -e
virtualpath -u username -p password -i
D:\Item_BOM_LT_2010.xlsx -f ExcelXLSXFile -t items
-n "BusinessRuleOptions|ChangeMode=Authoring"
"ExcelFileParser|SelectWorksheet=1"


	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	1 Introduction
	Understanding AIS
	Key Features
	AIS Architecture
	AIS Folders


	Understanding AIS Web Services
	Web Services Architecture

	Web Services Operations
	Web Services Extensions
	Security Considerations

	2 Using AIS Web Services
	Tools
	Client Programming Languages
	Accessing AIS Web Services
	Checking Your AIS System
	About AIS Java Samples
	Installing the Java SDK
	Installing Ant
	Building the Java Samples
	Running the Java Samples
	export.ExportData Usage
	export.ExportPartlist Usage
	importer.ImportData Usage
	importer.ImportSupplierResponse Usage
	importer.ValidateData Usage


	Creating a Web Service Client
	Generating the SOAP Request
	Agile and Non-Agile Web Service Clients
	Submitting the SOAP Request
	Processing the SOAP Response


	3 Exporting Data
	Understanding the Web Service Export Function
	Using the exportData Web Service Operation
	Working with Queries
	Specifying Query Criteria

	Working with Sites
	Working with Filters
	Predefined Filters
	Ad Hoc Filters
	An exportData Filter Example

	Working with Formats
	An exportData Format Example

	Working with Tables in Export

	Using the exportPartlist Web Service Operation
	Working with exportPartlist Queries
	Working with exportPartlist Filters
	An exportPartlist Example



	4 Importing Data
	Overview
	Understanding the Web Service Import Feature
	Using the importData Web Service Operation
	Specifying Data Types
	Working with Data Sources
	Working with Operations
	Working with Mappings
	Working with Transforms
	Working with Options
	ChangeType and ChangeAutoNumber Options
	Options to Import Non-Existing Objects

	Invoking the ImportDataRequest Operation
	Using the validData Web Service Operation
	Importing Supplier Responses
	Working with Tables in Import

	Importing Data Values
	Setting the Preferred Date Format and Time Zone
	Supported Date Formats
	Specifying Time Zones
	aXML and PDX Package Date Formats
	Importing XLSX File Formats



