Oracle® Communications Application
Session Controller

Web Services SOAP/REST API
Release 3.7.0

May 2016

ORACLE

Copyright ©2016, 2005, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or
decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of
the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any
programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are "commercial
computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any
operating system, integrated software, any programs installed on the hardware, and/or documentation, shall be subject
to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their
respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo,
and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products, and services
from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of
any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or
services.

Contents

ADBOULt ThiS GUITE e e e Xi
OV IV . . ettt e e e e xi
AUAIBNCE xi
About Net-Net OS-E Documentation i e xi
About the Web Service Interface. i, 13
INtrodUCHION . . o 13
What IS the ASC 7 . ..o 13
What Are SOAP-Based Web Services? 13
What IS WS DL ? .. 13

WAt 1S RE ST oottt e e 13
What IS WA DL ? 14
Specifying Outputand Callback e 14
ACCESSING The ASC . . oo 14
Supported ASC Functionality 15
TermMINOIOgY . . . o oot 15
AULNENLICALION. o 15
CONFIGUIING ACCESS . o v o ittt e et e e e e e e 15
Legacy and New Schema i e 17
Legacy and Custom EVENt MESSAgESo vttt ettt e e e e 18
WeD Services ReQUESTS. oo 19
Get CoNfIgUIAtION oo 19

SO AP 19

REST . it 20

Set ConfigUration o e 20
SO AP 20

RE ST . it 20

Gl SHaLUS . . ottt 21

SO AP 21

REST . it 22

QUEY SEatUS . . . ottt 22

SO AP 22

CONTENTS

REST i 22
EXECULE ACHION. L .ot 23

SO AP 24

REST it e 24
Configuring the ASCo e e e 24
Instructions and EXamplesot e 25
Configuring the ASC as an Embedded Web Server 27

2 Using ASC Callouts e e 33
Web Service Callouts. o 33
ExXternal POliCY SEIVICEo 33
Configuring External Policy Service e 34
External EVENt SErVICE.ot 37
Configuring External EVENt SErviceo e 37
Executing dynamiC-eVent-SEIVICEttt 40
Generating EVent MeSSA0ES vttt ettt e e e 45
Sending SIP EVENt IMIBSSa0ES . . .« v v vttt ettt et e e e 46
EVENIPUSN SEIVICEot 46

3 ASCCall Control Action. e e 53
Web Service Call Control 53
Identifying Calls and SeSSIONS.o ot 53
REQUEST IS . ot e e 53
SBSSION IS, . ot e e 53

Call Leg Handleso e e e 53

SIP Call-IDs . . o e 53
Configuring Toand From URIS. o e e 54
ACtioN RESUISo e 54
Configuring Call EVents. e 55
Common Call EVENES . .. oo e e 57
Call-Control ACLIONS oot 62
Call-control-acCeptot 62
call-control-annotate. o 62
call-control-attach. 62
call-control-call e 62
call-control-call-to-SeSSIONot 63
Call-coNtrol-Create-SESSION o\ttt e 63
call-control-CoNNECt e 64
call-control-CUSIOM.o e 64
call-control-destroy-S8SSI0N\ttt 65
call-control-detach 65

iv Oracle Communications ASC 3.7.0

CONTENTS

call-control-detach-t0-SeSSIONot 65
call-control-diSCONNECt i 65
call-control-drop-file. e 66
call-control-fork e 66
call-control-get-annotation e 66
call-control-hold 67
call-control-info-request 67
call-control-insert-atmf e 67
call-control-INterCept. e 67
call-control-Join.o 68
call-control-media-pause.ot 68
call-control-media-resumeot 68
call-control-media-scanner-start 68
call-control-media-SCanner-stopot 69
call-control-media-Seek. 69
call-control-media-Stopo ot 70
call-control-memo-begin. 70
call-control-memo-end e 70
Call-CONtrOl-MESS Qe . . o vt ottt 70
call-control-message-reqUESE ottt 71
call-control-modify 71
call-control-monitor-file e 71
call-control-monitor-SeSSiONot 72
call-control-mute-off. e 72
call-control-muUte-0ono 72
call-control-notify oo 72
call-control-notify-request i 73
call-control-optionS-reqUESEot 73
call-control-park 73
call-control-park-t0-Session 74
call-control-persiSteNCe o e 74
call-control-play oo 74
call-control-record-start e 75
call-control-record-Stop.ot 75
call-control-redirect. o 75
call-control-reJect o 76
call-control-retrieve. o e 76
call-control-ringingo 76
call-control-SeNd-MeSSagE.\ vttt e 77
call-control-subscribe-request. 77
call-control-terminate e 77
call-control-transfer. 78
Media FOrKiNg. . . .ot e 78

Oracle Communications ASC 3.7.0 v

CONTENTS

Attended Voice INSEITIONo 78
On-Demand Call Monitoringand Recording.ttt i 79
Rendezvous SesSion SUPPOITot e 82
Manually Attaching and Detaching From an Endpoint. 83
Appendix AASC AP Examples. 85
et ONTIg. . o oo 85
SO A P L 85
REQUEST. . . .ottt e 85
RESPONSE. . . ottt 85

REST o 87
REUEST. . . .o 87
RESPONS. . . ot 87

=] (@0 01 T [90
SO A P L 90
REUEST. . . .o 90
RPN, . . ot ittt e 90

RE ST o 90
REOUESE. . . ot 90
RESPONSE. . . e 91
QOACTION « . 91
SO A P L 91
REQUEST. . . .ot 91
UnStructured RESPONSE. oo ittt e e e e e 91
StrUCTUNEd RESPONSE. . . o ot it ettt e e e 92

RE ST 92
Flat REQUESE . . o ottt 92
Hierarchical ReqUeSt i 92
UNStruCtUred RESPONSE. . . o\ vttt e ettt e e e et 92
SHrUCTUrEd RESPONSE. . . o o ittt e e e e 92

OOl AUS . . . o 93
SO A P L 93
REQUEST. . . .o e 93
RESPONSE. . . ot 94

REST ot 94
Flat ReqUESTo 94
Hierarchical ReqUESt o e e 94
RESPONSE. . . e 94
QUEBNYSTATUS. . . .ottt et e e e e e e 94
SO AP L 94
REQUEST. . . .o e 94

vi Oracle Communications ASC 3.7.0

CONTENTS

RS PONSE . . oot 95

RE ST . o 95
Flat ReqUEST. . . o o 95
Hierarchical Request. 95
RESPONSE . . . 95
Appendix BEvent Message Examples i 97
New Schema / Legacy CONtent. i 97
New Schema / Custom CONENtottt e 98
Appendix CASC Web ServicesSamples i i 99
INtrodUCHION . .. 99
Acme Voice Message Manager Web Application i 99
o 0] o 99
ASC Status CheCKer o 99
o 0] o 99
ASCServer Sample WAR 99
o 0] 99
ASC Voice Message Managerottt e e 99
o 0] o 99
Banking Call Center o 99
2 0] o 100
Banking StOreo 100
2 0] o 100
Call MONITOT . . . 100
2 0] o 100
Call Monitoring and Conferencing Web Application. 100
2 0] o 100
Call Transfer Web Application. 100
2 0] o 100
Click-to-Call Internet Explorer Toolbar. o s 100
2 P 0] o 100
Configuration Wizard Sample 101
2 0] o 101
Download Serviet 101
o 0] o 101
Emergency Call Example 101
2 0] o 101
EVent Processor EJB. o 101
2 0] o 101
KPML PIUGIN © e e e e e e 101

Oracle Communications ASC 3.7.0 vii

CONTENTS

PlatfOrm . . e e 101
Media Scanner Web Application.ot e 101
Plat Orm . . e e 102
Mobile Dialer. e e 102
Plat oI . . e e e 102
Outlook Click to Call Toolbar e e e 102
Plat oI . . 102
Pet Store Post Dial e 102
Plat oI . . e e 102
PIN RSB . . . ot e 102
Plat oI . . e 102
Pre-Call Authorization. e e e 102
Plat oI . . e 102
RCSE . ot 103
Plat oI . . 103
Request Proxy/Event Demultiplexing Client. i 103
Plat oI . . e 103
Request Proxy/Event Demultiplexing Service. i 103
Plat Orm . . 103
RTP Status Example o 103
Plat Orm . . e e 103
Session Policy Web Application e 103
Plat oI . . e 103
Simple Flex Based Embedded Dialer i 103
Plat Orm . . e 103
Simple Flex Based Embedded Phone i 104
Plat oI . . e e 104
V0ICE MEMO MaNAgET . . . ottt ettt e e e 104
Plat oI . . e 104
V0iCe MESSage ManNager . ..ottt e e e 104
Plat oI . . e 104
WCF Auto-Mute EXample. o 104
Plat oI . . e e 104
WCEF Interface Sample Client e e e 104
Plat oI . . e 104
Web Phone Example 104
Plat oI . . e 104
Web Services DemO SUITEot e 105
Plat oI . . e 105
Appendix DASC Call Reconnect SDK 107
INErOdUCHION . . o 107

viii Oracle Communications ASC 3.7.0

CONTENTS

Call Reconnect Distribution 108
Constructing Your Call Reconnect Application 109
ReconnectApplication Class. o 109
ConfigUIAtioNo 109
Dynamic Configuration Update e 109
Configured Default Commandst 109

Web Services Connection and Event Subscription., 110
Event Handlingo e 110
Load Balancer SUPPOItot e 110
Enabling and Disabling Event Registration i 111
Call SeSSION SHCKINESSot e 111
Call Management 112
CallSESSION . . ot 112
CallLeg . . oo 112
CallSessionCoNtroller. 113
Call Information EVent Processing.vuii e e e 113
DefaultMediaLostHandler 113
Configured Custom CallSessionListenert e 114
Using Default Media Loss Handler With Custom Call Session Listener................ 114
Command ProCeSSINgottt 114
RedirectingaCall LegtoaNew SIPURI i i e 114
Including SIP Header With Named Variable Support, 115
Throttlingo e 115
Default QUEUE . . . oot 115
Additional QUBUES.ot e e 115
Redirecting Call Legs Using Park and Attach i, 115
Selecting Which Leg Attaches TOaSessiont 116
PlayingaFile ToaCall Leg.o e 116
Terminatinga Call Leg. e e 116
Stopping Playinga File ToaCall Legot e 116
Command Success and Failure Notifications. o i 117
SIP Header Content EXIractionttt 117
Generating Call Session Reporting Files i 118
WIHEEC SV LIS ENer . . o 118
ADStractWIriterLiStener oo 118
Enterprise Cache SUPPOIT o 119
Cache Interface Classesttt e 119
XML Serialization Classeso vt 119
CallSession XML Serializerot 119
CallConnectThrottlerQueue XML Serializer 119

Oracle Communications ASC 3.7.0 ix

CONTENTS

Specifying Cache Store Implementation i 120
Properties File 120
Configuration Interface i 120

Customizing Functionality i e 120
EXteNded EVENES. . . oot 120
Integration With External Applications. i e 120

Troubleshooting the SDK 120

Updating the ASC Configuration. i e e 121

Including Call Reconnect Properties and Log FilesinCollect 121
Storing Call Log Files o 122

Enabling SIP and Web Service TraCesttt 122
Enabling SIP Trace Files i e e e e 123
Enabling Web Services Trace FileS oo 123

Terminating Traces and Saving Trace Files i, 123

Collecting Debugging Information 124
Obtainingthe Call Logs File i e 124
Collecting Troubleshooting Files.o e 124
Troubleshooting an External Call Continuation Application. 125

Checking Relevant Status REpPOITS.ot 125

x Oracle Communications ASC 3.7.0

Overview

About This Guide

Audience

Net-Net ASC Web Service is a WSDL/REST Application Programming Interface (API)
enabling enterprises, service providers, and third-party developers to streamline business
processes by integrating their applications with IP communications services.

This guide is written for application developers and network administrators, and provides
information about the Net-Net ASC WSDL/REST-based Web Services implementation.

For information about Net-Net system training, contact your Oracle sales representative
directly or email support@acmepacket.com

About Net-Net OS-E Documentation

The Net-Net OS-E references in this documentation apply to the Net-Net OS-E operating
system software that is used for the following Oracle and third-party SBC products:

e Oracle Communications Application Session Controller (ASC)
e Oracle Communications WebRTC Session Controller (WSC)

* Oracle Communications OS-E Session Director (SD) Session Border Controller
(SBC)

¢ Oracle Communications 2600 Session Director (SD) Session Border Controller
(SBC)

e Third-party products that license and use Net-Net OS-E software on an OEM basis

Unless otherwise stated, references to Net-Net OS-E in this document apply to all of the
Oracle and third-party vendor products that use Net-Net OS-E software.

The following documentation set supports the current release of the OS-E software.

e Oracle Communications Application Session Controller System and Installation
Commissioning Guide

e Oracle Communications Application Session Controller System and Installation
Commissioning Guide Release 3.7.0M4

¢ Oracle Communications Application Session Controller Management Tools

e Oracle Communications Application Session Controller System Administration
Guide

e Oracle Communications Application Session Controller Session Services
Configuration Guide

e Oracle Communications Application Session Controller Objects and Properties
Reference

Oracle Communications ASC 3.7.0xi

ABOUT THIS GUIDE

¢ Oracle Communications Application Session Controller System Operations and
Troubleshooting

e Oracle Communications Application Session Controller Release Notes

e Oracle Communications Application Session Controller Single Number Reach
Application Guide

e Oracle Communications Application Session Controller Web Services SOAP REST
API

¢ Oracle Communications WebRTC Session Controller Installation Guide

Revision History

This section contains a revision history for this document.

Revision L
Date Number Description
June 28, 2013 Revision < Initial release of the OS-E 3.7.0 software.
1.00
October 31, 2013 Revision = Adds Appendix C ASC Web Services Samples.
1.10
February 27, Revision = Updates “Specifying Output and Callback” and “Set
2015 1.11 Configuration” sections to include more thorough
descriptions.
October 27, 2015 Revision « Adds Appendix C ASC Call Reconnect SDK.
1.20
May 17, 2016 Revision = Adds Oracle Communications Application Session
1.21 Controller System Installation and Commissioning

Guide Release 3.7.0M4 to the 3.7.0 doc set.

<« Adds a note to Appendix C ASC Web Services Samples
regarding sample support in release 3.7.0M4.

« Adds a note regarding a necessary argument with the
mix-session and mix-session-threaded actions in the
context of on-demand recording.

xii Oracle Communications ASC 3.7.0

1

Introduction

About the Web Service Interface

What is the ASC?

What Are SOAP-
Based Web
Services?

What is WSDL?

What is REST?

Applications

The Net-Net ASC Web Service is a SOAP/REST Application Programming Interface
(API) which enables enterprises, service providers, and third-party developers to
streamline business processes by integrating their applications with IP communications
services.

A web service is a software system that supports interoperable machine-to-machine
interaction over a network using HTTP/HTTPS transport.

This document provides a full description of the individual interface definitions that make
up the ASC API.

The Net-Net ASC is a programming platform that enables enterprises, service providers,
and third-party developers to streamline business processes by integrating their
applications with IP communications services. The ASC implements both a SOAP-based
web service interface, as well as a RESTful web service interface for invoking remote
web services.

Net-Net

Application
Session Controller IP Communications

-
P>
IP Communication @

Protocols

Web Services
APls

Web 2.0 IP Communications
Business Applications Infrastructure

SOAP is a protocol that uses XML for exchanging structured information in the
implementation of web services. A SOAP message consists of three parts:

« Anenvelope that defines what is included in the message and how to process it.
« Aset of encoding rules which define data objects and types.

e The convention that is used to represent call and response procedures.

The ASC uses Web Service Description Language (WSDL) to define its available actions
and types for SOAP-based web service.

REST is an API style supported by the ASC for web service which implements a URI
using HTTP and a collection of resources with three defined aspects:

Oracle Communications ASC 3.7.0 13

ABOUT THE WEB SERVICE INTERFACE

What is WADL?

Specifying Output and
Callback

Accessing the ASC

* The base URI for the web service.

e The format of the data returned by the REST URL. This is usually either XML or
JavaScript Object Notation (JSON).

* Asetof ASC web service operations.

There are two action and status report request formats available when using RESTful web
service, flat and hierarchical. When possible, Oracle recommends using the hierarchical
format, which is a simpler way to encode REST requests.

For RESTful web service, the ASC uses Web Application Description Language
(WADL) to define its available actions and types.

When you are using REST, the default format returned by the REST URL is XML.
However, you can request to receive the output in the JavaScript Notation (JSON) format
instead by specifying this in the URI.

To specify the format in which you want the responses to REST requests:
output=<response_format>

Options are:

e json: Use JSON format

e xml: (default) Use XML format

If you choose JSON, the ASC supports Javascript callbacks when using REST. To
configure a callback, specify the JavaScript method name in the URI. The JavaScript
method is called with the JSON output string as a parameter.

callback=<JavaScript_method name>

If you choose XML, you must specify an XML output format.
_format=<xml_format>

Options are:

e simplified

« legacy (default)

Note: For more information on legacy and simplified schema, see “Legacy and New
Schema” on page 1-17.

The ASC web service interfaces are platform-agnostic. Any application environment,
programming language, or development environment capable of sending HTTP requests
may be used, including:

e Programming languages (ie., C#, Java)

< Mobile platforms (ie., iOS, Android)

» Purely web-based languages (ie., JavaScript, PHP, Python)
To access the web services homepage, the default is

http://x.x.x.x:8080
where x.x.x.Xx is the IP static-address where the web-services configuration is enabled.

14 Oracle Communications ASC 3.7.0

Supported ASC
Functionality

Terminology

Authentication

Configuring Access

ABOUT THE WEB SERVICE INTERFACE

The ASC web services homepage is where all user documentation and samples are
located.

The ASC API supports retrieving and setting all configuration objects, invoking all
actions, and retrieving all status reports available on the Net-Net OS-E. Configuration,
action, and status objects are referred to in this document and in the API as objects and
sub-objects.

The following terms are used throughout the document:
¢ Object — Configuration, status, or action data.

« Property — Attribute of an object

e Alias — Display name of an object or property

The ASC requires authentication of client endpoints for security purposes. When a
request is sent by a web services application to the ASC, a session cannot be established
without authentication being performed.

The ASC can perform either basic authentication, which requires HTTP basic
authentication for client connections, or it can perform certificate-based authentication.
This requires an HTTPS certificate for authentication of client connections. Upload a
unique certificate via the vsp > tls object.

NOTE: In order for authentication information to be encrypted, you must be using
HTTPS.

When SOAP-based messages are used to send requests to the ASC and access
permissions have been configured, the SOAP client endpoint sending the request must
also send the username and password with the request. Basic HTTP authentication is
supported, as well as certificate-based HTTPS authentication.

REST requests can be authenticated using basic HTTP authentication, or can use the
REST-specific login action, defined in all WADLSs published by the ASC.

The ASC communicates with web services applications in “sessions”. A session timeout
is not configurable and is hard-coded to 30 minutes.

For authentication to work, you must have at least one user configured under the access
object, with access > permissions > web-services set to enabled.

NOTE: Users with the web-services permission enabled have access to the entire
ASC system (all configuration objects, statuses, and actions).

The first step is to create a permission set with web-services enabled. Once this has been
done, create a user and assign that user the web-services enabled permission set.

To create a web-services permission set:

1. Click the Access tab and select access.

Oracle Communications ASC 3.7.0 15

ABOUT THE WEB SERVICE INTERFACE

2. Click Add permissions.

Access Permissions
acme /¢ packet

Stetus Summary _ Logout admin “Home" “Configuration “Statis " Call Logs " EVent Logs" Actions' " Services " Reys i

Access Permissions: Configure access Help Index
all
Set Reset Delete
|Conﬁgurati0n| Setup View ‘
B et permissions Add permissions
users
directories directories | admin
Edit Delete |users enabled

Add enterprise
Add radius

Add users

permission-filters confiqurs

E Reset

3. Name the permission set and click Create. The page listing all available permissions
appears. This example shows a permission set named “Web-services admin.”

Access Permissions
acme /¢ packet

Status Summary Looout sdmin [PHOTIESSCONMOUPEIOTSSEEtes Call Logs | Access bl
Access Permissions: all Configure access\permissions "Web-services admin” Help Index
‘ Configuration ‘ Setup | View | Set RESE“I BECkJ COW] Delete I
El access
permissions "Web-senices admin” * name Web-senvices admin
users
cli |normal ¥| (Standard CLI access)
gui |Bﬂab\8d ‘il (Full access to the NNOS-E GUL)
user-portal |Taab\ed V| (No portal access)
L
config |enabled | (readiwrite configuration access)
status W‘ (Resource is active)
- T s OB
actions |enabled ¥| (Resource is active)

call-logs Ienab\ed ¥ | (Resource is active)
1 lat i vy

ETRERES @‘ (Resource is active)
troubleshoeting |ﬂab\ed *| (Resource is active)

web-services Ienab\ed ‘_’J {Resource is active)

debug im (Resource is active)

lerimport [enabled ¥ (read/write configuration access)

login-attempts enter [unimited (fom 3t0 12 default=unlimited) or select from ,WL,BM
{no limit on the number of failed login attempts)

permitted-views Edit permitted-views

configfilter I] Create

action-filter E Create

gui-tools-update- [enabled + (Resource is active)

software &

gui-tools-upload-files [e?ag\e_dq (Resource is active)

fg_:.li-t00|5-dDWH|0ﬂd- [enabled v (Resource is active)
iles

4. Enable web-services and click Set. The permission set is created.

16 Oracle Communications ASC 3.7.0

ABOUT THE WEB SERVICE INTERFACE

5. Update and save the running configuration.
6. Click users and select Add user.

* —

Access Permissions

acme /¢ packet

Status Summary Logout admin Home™Configuration™ = Status=Call Logs P Event Logs™ACons " Services™ ReyS™ [ty = To0ls™]

Access Permissions: all Configure accesslusers Help Index

| Configuration | Setup ‘ View | Set Reset I Back | Delete

El access 2 i

permissions "Web-senices admin” admin enabled | (Resource is active)

users

password-policy Configure

user Add user

ﬂ Reset Back

7. Enter the user name and password.

8. Select the permission set just created with web-services enabled. This example
shows a user named Admin.

*

Access Permissions
acme /¢ packet
Status Summary Logout admin | HomeET T CoRgUranon T Stas e Al Logs T Event Logs T ACHonS T SEIces T REYS Access | TooiS
Access Permissions: all Create accesslusersiuser - Step 1 of 1: Edituser Help Index

| Configuration | Setup ‘ S | Please provide some basic information for user. Then press "Create”.

E access

*
R X . name
permissions "Web-senices admin o
users .
password e

confirm [
* permissions | access\permissions "Web-senices admin” % | Create

Createl Reset1 Cancel |

9. Click Create.
10. Click Set. The user is created.

11. Save and update the configuration.

Legacy and New Schema

There are two types of schema the ASC supports, legacy and new. The schema is the
WSDL’s .xsd file’s specification of all configuration, status, action, and event objects on
the ASC. These schemas are equivalent and support the same functionality. The ASC
supports the existing legacy format for backwards compatibility and in the cxc.wsdl file,
generates verbose Java and C# code.

The new format is much more compact and concise than the legacy. The file name for the
new format is AcmePacketASCManagement.wsdl.

NOTE: Oracle recommends you use the new schema, particularly if you are
implementing a new ASC application. Existing ASC applications may continue to
use the legacy format for backwards compatibility purposes only.

Oracle Communications ASC 3.7.0 17

ABOUT THE WEB SERVICE INTERFACE

Legacy and Custom Event Messages

The ASC includes certain standard information in the event messages it sends. However,
you can choose to include new information not included in the standard format. You can
configure the ASC to include custom content in these event messages.

See Appendix B: Event Message Examples for examples of both legacy and new format
and legacy and custom content event messages.

To include custom information in event messages:

1. Click the Configuration tab and select either default-session-config or session-
config-pool > entry.
2. Click on the third-party-call-control object.

3. Set admin to enabled.

I 5
Configuration
acme@ﬁ'scket

e i O O O s i ittt o i
~
Configuration: all Configure vspl\default-session-config\third-party-call-control Show basic Help
Index

‘Conﬁguration‘ Setup | View

Set Reset Back Delete
cluster —] | | |
El vsp

B default-session-config

authentication admiln |enabled ¥/ (Resource is active)
accounting i
third-party-call-contral SRS EVE TS | both ¥| (both call-legs)
tls .
static-stack-settings handle-refer-locally |enabled %| (Resource is active)
H session-config-poal 2 0
= enterprise forward-unresolved-replaces | disabled +| (Resource is inactive)

accounting

4. Select custom from the call-control-events-version drop-down box. The default is
legacy.

5. Click Configure next to custom-event-fields to set the custom event fields to
include in the event messages.

* .
Configuration
acme /¢ packet
Stalye Summary Loaout admi i~ st et it it e o ik st et
Configuration: all 5 e Browse System Files

allow-lcrfor-refer [disab i . :
[Configuration | Setup | View |disabled | (Resource is inactive)

inhibi isional i [di j
Bl cluster it prov Tesp alter- disabled ¥ (Resource is inactive)
prack 2
box 1
B wsp call-control-events-version

. custom ¥ v ¥ v W Cl)
B default-session-config | {the events generated will have new custom fields)

authentication custom-event-fields

accounting Configure
third-party-call-control L.
tls propagate-reinvite from-header | disabled | (Resource is inactive)
static-stack-settings : .
session-config-pool dtmf.-detected-events | disabled B

enterprise

For more information on configuring named variables and regular expressions, see
Using Regular Expressions in Chapter 1: How to Use the ACLI of the Oracle
Communications OS-E Objects and Properties Reference Guide.

6. Click Set.

7. Update and save the configuration.

18 Oracle Communications ASC 3.7.0

ABOUT THE WEB SERVICE INTERFACE

Web Services Requests

Get Configuration

SOAP

A web service request is a request made by a web services application sent via
HTTP/HTTPS to the ASC web services server. When the server receives a request, it
processes it and sends back a response.

The response that the ASC sends back contains a code number and a message. If the
action was successful, the code is 0. If there is an error with the request, the code will be
a value other than 0. The error message describes what error occurred.

When processed successfully, the response can contain:
* Information requested via the following top-level APIs
» get configuration
* get status
e query status
e Status for an operation being performed via the following top-level APIs
» set configuration

e execute action

Request

Web Service Web Service
Application Response Server

The ASC “Get configuration” API is a request to the server to receive all or a portion of
the configuration. Specify the configuration objects or properties you want returned. If
you specify no parameters, the entire configuration is returned.

The internal names for the top level configuration objects are:
e cluster—Cluster

e services—Services

e master-services—MasterServices

e vsp—SCP

e external-services—EXxternalServices

e preferences—Preferences

e access—CXCAccess

« features—Features

e box—Box

The SOAP “Get configuration” request name is getConfig.

Response Content:

Oracle Communications ASC 3.7.0 19

ABOUT THE WEB SERVICE INTERFACE

REST

Set Configuration

SOAP

REST

XML Format: The configuration. The schema is defined in cxc.xsd (legacy) or
AcmePacketASCManagement.xsd (new).

The REST “Get configuration” request resource path is
/cms/config

using the HTTP GET method.

If parameters are specified, include the path of the configuration under the top level object
to be retrieved.

Response Content:

XML or JSON format (XML is the default if no format is specified): ExtPageL.ist
structure. This includes:

e objects—Configuration objects
¢ resultCode—O if success; error code if error occurs

e resultStr—"Success” if success; error message if error occurs

The ASC “Set configuration” API is a request to the server to change all or a portion of
the configuration.

The SOAP “Set configuration” name is setConfig. Specify the configuration parameters
you want to set, then specify a mode. The valid modes are:

¢ merge—Merges the configuration in the request with the existing configuration on
the ASC.

« replace-full—Replaces the entire existing configuration on the ASC with the
configuration in the request.

* replace-partial—Replaces only top-level existing ASC configuration wiht top-level
configuration objects in the request.

Note: Setting the mode parameter to replace-full deletes the entire existing
configuration and leaves only the request configuration in its place and therefore
should be used with caution.

Response Content:

XML Format: setConfigResponse structure. This includes:
e Code—"Success” or “Error”

e Text—Error code if error occurs

The REST “Set Configuration” API request resource path is
/cms/config
using the HTTP POST method.
The setConfig API syntax is:
setConfig <operation> [xmlIconfig] [pathl [add.property] [mode]
The valid parameters are:

20 Oracle Communications ASC 3.7.0

Get Status

SOAP

ABOUT THE WEB SERVICE INTERFACE

e operation: Specifies the action you want the API to take on the configuration. Valid
values are:

< modify <xmlconfig> [mode]—Modifies the configuration with the configuration
you specify in xmlconfig.

« add <xmlconfig> <path> <add.property> [mode]—Adds an xmlconfig to the
specific property (add.property) of a parent configuration object (path).

« delete <path>—Deletes a configuration object specified by the path.

« xmlconfig: (Applicable to the add and modify operations only.) Specifies the XML
format of the configuration to either be added or modified.

Note: Oracle recommends using the simplified schema, specified at
http://x.x.x.x:8080/mgmt?xsd=cxc_simplified.xsd.

« path: (Applicable to the add and delete operations only.) Specifies the path for the
configuration being added or deleted. Use backslashes (\) to separate the list when
there are multiple objects in a path (for example, \cluster\box 1\interface eth0). You
can find an object’s path either in the CLI or at the top of the web management
configuration page.

Note: The ASC returns an error if you attempt to delete an object required by another
part of the configuration.

e add.property: (Applicable to the add operation only.) Specifies which property from
the parent object to add to the configuration.

< mode: When modifying or adding, this property specifies how to apply the
xmlconfig to the existing configuration.

* merge—(default) Merges the configuration in the request with the existing
configuration on the ASC.

« replace-partial—Replaces only the parts of the existing configuration with those
specified in the request configuration.

 replace-full—Replaces the entire existing configuration on the ASC with the
configuration in the request.

Note: Setting the mode parameter to replace-full deletes the entire existing
configuration and leaves only the request configuration in its place and therefore
should be used with caution.

Response Content:
XML or JSON format (XML is the default if no format is specified): structure
* Result code—0 if success; non-zero if error occurs

¢ Result string—"Success” if success; error message if error occurs

The ASC “Get status” API is a request to the server to receive all or a portion of the
statuses on the ASC. When working with SOAP, you cannot specify a filter and must
receive the entire status report. When working with REST, you can specify a filter to
return a subset of the status report. If no filter is specified, the entire status report is
returned.

The SOAP “Get status” request name is getStatus.

Oracle Communications ASC 3.7.0 21

ABOUT THE WEB SERVICE INTERFACE

REST

Query Status

SOAP

REST

Response Content:

XML format: getStatusResponse structure

The REST “Get status” request resource path is
/cms/status/<status alias>

using the HTTP GET method.

Specify the pageSize. This is the number of entries returned per page. This is only sent
on the first request.

Specify the page. This is the page number to retrieve. This value always starts with 1.
Response Content:

XML or JSON format (XML is the default if no format is specified).

« objects—A list of status objects being returned.

« totalPages—The number of pages of status objects.

e pageSize—The number of entries on each page.

« currentPage—The page number for the current page. This number always starts with
1.

e resultCode—The result code. This number is 0 if the request is successful and a non-
zero if an error occurs.

e resultStr—The result string. This string is “Success” if the request is successful and
an error message if an error occurs.

The ASC “Query status” API is a request to the server to retrieve the status report from
the server.

The SOAP “Query status” request name is queryStatus.

Specify the status you want to retrieve in XML format. The following example returns
the entire show processes status report:

<status><Processstatus/>

You can also specify a property value in the status object to filter the results further. To
do this, include

<condition>condition</condition>

in the request where condition is the status filter you want to use.
Response Content:

XML format: queryStatusResponse structure

The REST “Query status” request source path is
/cms/status/<status alias>

using the HTTP GET method.

Specify the pageSize. This is the number of entries returned per page. This is only sent
on the first request.

22 Oracle Communications ASC 3.7.0

Execute Action

ABOUT THE WEB SERVICE INTERFACE

Specify the page. This is the page number to retrieve. This value always starts with 1.

You can further narrow the status results by using the search.x parameter, where x is the
property used for filtering status results.

Response Content:
XML or JSON format (XML is the default if no format is specified).

objects—A list of status objects being returned.
totalPages—The number of pages of status objects.
pageSize—The number of entries on each page.

currentPage—The page number for the current page. This number always starts with
1.

resultCode—The result code. This number is 0 if the process is a success and a hon-
zero if an error occurs.

resultStr—The result string. This string is “Success” if the process is a success and
an error code if an error occurs.

The ASC “Execute action” API is a request to the server to perform an action. The ASC
can return action data in one of two ways, unstructured or structured. The majority of
ASC actions only support unstructured data.

The following actions return structured data:

arp request
call-control-attach
call-control call
call-control connect
call-control-create-session
call-control disconnect
call-control fork
call-control hold
call-control join
call-control-monitor-session
call-control park
call-control annotate
call-control-redirect
call-control retrieve
call-control terminate
call-control transfer
call-control-intercept
call-control-send-message

config validate

Oracle Communications ASC 3.7.0 23

ABOUT THE WEB SERVICE INTERFACE

SOAP

REST

* file-info
e file-play
s ping

e dynamic-event-service

For information on the structured information returned by each of these actions, access
the Actions > Response Structures in the web services on-line REST documentation.

The ASC supports two SOAP APIs for “Execute action”, doAction and doActionEx. The
doAction APl is used for returning unstructured data and the doActionEx API is used for
actions that return structured data.

Specify the action you want performed in XML format, including all properties.
Response Content:

XML format: doActionResponse structure. This includes:

e Code—"Success” or “Failure”

e Text—Error message if error occurs

e Message—Informational text

« Structured Content if a structured response is being provided.

The REST “Execute action” request resource path is
/cms/action/<action alias>
using the HTTP GET method.
The parameters you must specify vary depending on the action. To view this information
see the web services on-line REST documentation. To do this:
1. Type http://<ip:port> into the browser.
2. Click on REST in the left panel of the screen.
3. Click on the Actions link on the REST documentation page.
Response Content:

XML or JSON format (XML is the default if no format is specified): structure. This
includes:

e resultCode—o if success; non-zero if error occurs

« resultString—"Success” if success; error message if error occurs
* Info—Informational text

e Structured Content if a structured response is being provided.

Configuring the ASC

This section describes how to configure the web-service object. This is necessary for the
ASC to function properly.

24 Oracle Communications ASC 3.7.0

ABOUT THE WEB SERVICE INTERFACE

Instructions and Examples

To access web-service on the ASC:

1. Click on the Configuration tab and select web-services. This can be done via the
box object using the following path.

Configuration: all

Conguration

B cluster
B box 1
B interface eth0
Hipa
telnat
ssh
‘f‘feb
web-senice
icmp
routing
cli

Or it can also be done via the vrrp object using the following path.

Configuration: all

|Cnnﬁguratmn| Setup | View

B cluster
box 1
= virp
Bl vinterface vx0
B ip "IP Int1"
web-service

2. admin—Set this property to enabled to start the ASC web services process. This
property is enabled by default.

3. protocol—Select the protocol you want to use. After selecting the protocol, select
the web services listening port (or accept the default). This is the port the server
listens on for HTTP(S) requests. If HTTPS is specified, specify the vsp > tls
certificate to use with encryption.

The default values for this property are http 8080 or https 8443. The valid values
are:

« http [port]—Sets an insecure (unencrypted) protocol for use in web transmission.
Optionally, you can configure a listening port different than the default.

« https [port] <certificate> [alias]—Sets a secure transmission of data by using
HTTP over SSL. Optionally, you can configure a listening port different than the
default. Enter the vsp\tls certificate to use with encryption along with an optional
alias value.

4. max-threads—Enter the number of threads available to process a request. This
includes the number of simultaneous requests and users for your application. The
default setting is 10. The valid values are:

¢ Minimum—1
¢ Maximum—50

5. min-spare-threads—Leave this value at 1, the default. This is the minimum number
of idle threads for processing requests.

6. max-spare-threads—Leave this value at 5, the default. This is the maximum
number of idle threads for processing requests.

7. max-message-process-threads—Enter the maximum number of threads used by the
web services process to receive messages from other ASC processes. The default
setting is 10. The valid values are:

¢ Minimum—10

Oracle Communications ASC 3.7.0 25

ABOUT THE WEB SERVICE INTERFACE

¢ Maximum—200

8. max-http-connections—Enter the maximum number of outbound connections for
callbacks from the ASC to the web services application for external event
notification and external policy processing. The default value is 100.

¢ Minimum—100

¢ Maximum—300

9. max-http-client-connections—Enter the maximum number of outbound
connections to any single host running web services application for callbacks such
as external event notification and external policy processing. The default value is 10.

¢ Minimum—5

¢ Maximum—100

10. authentication—Select the type of authentication you want to use for the ASC web
service. The default setting for this property is certificate.

e Basic—This requires the ASC to use HTTP basic authentication for client

connections.

* Certificate—Uses HTTPS SSL certificates authentication for client connections.

NOTE: You must have at least one user configured under the access object with
access > permission > web-services set to enabled in order for authentication to
work. Users with the web-services permission enabled have access to the entire
system (all configuration, statuses, and actions).

acmtﬁfacket

Configuration

Sl Do LT et O IO it i i i i it i
jon: Configure clusteribox 1\interface eth0lip a\web-service Help Index
onriguration: a
| Configuration | Setup | View ‘ Set Reset ‘ Back ‘ Delete
= cluster Press "Set” to keep these values.
B box 1
E interface eth(
Hips admin |enabled ¥| (Resource is active)
telnet = e
SE:;: * protocol
wi = e v
web-service n https &8
icm *
] rDulf’ng plor 8787 (at minimum 1 default=8443)
cli i 1
virp certificate vsp\isicertificate cet00 % | Edit Create
B vsp
default-session-config alias
tls
i;a;‘;‘;tico:?%monogls authentication
enterprise P type certificate | (Use HTTPS 8SL certificates authentication for client
accounting connections)
h323-zettings o G
certificate vapitis\certificate cert1 VQ Create
application | Bl create
max-threads 10 (from 1 to 500.default=10)
min-spare-threads 1 (from 0 to 50, default=1)
max-spare-threads 5 {from 0 to 50,default=5)
max.maesenia-process: 10 {from 10 to 200, default=10)
threads
max ip-contactions 100 (from 100 to 300.default=100)
max-http-client- 10 (from & to 100 default=10)

connections

11. Update and save the running configuration.

26 Oracle Communications ASC 3.7.0

ABOUT THE WEB SERVICE INTERFACE

Configuring the ASC as an Embedded Web Server

The OS-E supports an embedded Tomcat web server which allows users to host some
simple Java-based web applications directly on the OS-E.

The OS-E is able to do this by means of virtual hosting. A virtual host is simply an
alternate DNS name for an IP address. The OS-E uses a Tomcat server to process requests
on a per-domain basis. Based on the configuration, you can select which virtual hosts the
OS-E responds to.

NOTE: Because HTTP DNS-based virtual hosting requires distinct names, two
names are needed for the v.irtual host to work properly. You need one name to map
to the OS-E web services server and the other to map to the applications virtual host.

For example, “ose.example.com” and “oseapps.example.com both point to the same IP.
Applications are available on the virtual host oseapps.example.com name, while the
applications are configured to use OS-E web services available on the asc.example.com
name.

For the embedded web server to work, you must specify a directory in the virtual host
configuration on which to copy Web Application Resource (WAR) files you want to
deploy.

NOTE: The directory onto which you copy WAR files is always under the
cxc_common directory and cannot be changed.

To configure an embedded web server on the web services server, you must configure a
virtual-host with web-app-config, role-mapping, and access-logging configuration
objects.

To configure a virtual host:

1. Select the Configuration tab and click the cluster > box > interface > ip > web-
service object on which you are configuring the virtual host.

Click Add virtual-host next to the virtual-host object.

Enter a host name or IP address as the name of this virtual-host.

Set admin to enabled.

o > WD

Click Create. The virtual-host object and properties appear.

ra -
Configuration
acmeﬁfacket

Status Summary ~ Logout admin Buduly Configuration pgeic Ca

Configuration: all Configure cluster\box 1\interface ethO\ip a\web-servicelvirtual-host host1 Help Index
| Configuration | Setup ‘ View | Set Reset Back Delete
Bl cluster

L2 game host1 (host name or n.n.n.n}

B vsp

+ - ion-C * i
ﬁ:fauh session-config admin enabled ¥/ (Resaurce is active)

static-stack-settings - P —_—
H session-config-poal "V |webapp

enterprise

accounting web-app-config Add web-app-config
location-service
h323-settings role-mapping Add role-mapping
access-logging Configure

6. Enterthe name of the applications-directory on which you are placing the WAR file
for this virtual host. By default, this is webapps.

To configure a web-app-config object:

Oracle Communications ASC 3.7.0 27

ABOUT THE WEB SERVICE INTERFACE

1. Click Add web-app-config. Itis here that you configure the web application running
on this virtual host.

2. Enter the path to where this application is being deployed.
Click Create.

Click Add context-parameter. A context-parameter is an application-level
configuration property.

5. Enter the name of the context-parameter.
6. Enter the value of the context-parameter.

7. Click Add servlets. For information about servlets, see
http://docs.oracle.com/javaee/6/tutorial/doc/bnafd.html.

8. Enter a name for this servlet.

9. Click Add init-parameter.

10. Enter a name for this init-parameter.

11. Enter a value for this init-parameter.

12. Click Create. Do this for as many init-parameters you are creating for this servlet.

13. Click Set when you are done adding init-parameters.

14. Click Create. Click Set. You are returned to the virtual-host object.

To configure a role-mapping object:

1. Click Add role-mapping. This object assigns application roles configured for
security to permissions specified in the access > permissions configuration.

For information on configuring access permissions on the OS-E, see Configuring
Access in the Oracle Communications OS-E Management Tools Guide.

2. Enter a name for the role to assign this permission. For information about roles, see
http://docs.oracle.com/javaee/6/tutorial/doc/gijrp.html.

3. Select a pre-configured permission from the drop-down box to assign to the role.
Click Create if no permissions have been created. Click Edit if you want to edit an
existing permission.

4. Click Create. You are returned to the virtual-host object.

The following is an example of a properly configured role-mapping object.

Configure cluster\box dinardolinterface ethO\ip a\web-servicelvirtual-host www.apps.dinardo Help Index

ﬂ Reset Back Delete

" name [wanw apps dinardo (host name or n.n.n.n)

* admin disabled ~ (Resource is inactive)

applications-directory W

web-app-config weh-app-config context-parameter | serviets
Edit Delete | web-app-config /groupblast Configure

role-mapping role |permission

Edit Delete [admin | access'\permissions calling-tree-admin

Edit Delete |user |access\permissions calling-tree-user

Edit Delete user |access\permissions calling-tree-admin

Add role-mapping

[FHaccess-logging
[Delete]

28 Oracle Communications ASC 3.7.0

ABOUT THE WEB SERVICE INTERFACE

To configure access-logging:

1.

a > DN

8.

Click Configure next to access-logging. This object configures a log file to record
all requests and responses to and from this virtual host.

Set admin to enabled.

Enter the directory on which to write the log files.

Enter the prefix of the file name for the logging files.

Select the pattern, or format, to use to log the requests. This can either be:
common—A basic common format.

combined—A combined format that extends the common format.

See http://tomcat.apache.ort/tomcat-5.5-doc/config/valve.html#Access_Log_Valve
for more information on patterns.

Set buffered to true if you want log messages to be buffered before writing. Leave
as false (the default) if you do not.

Enter the maximum-file-age. This is the maximum number of days to keep the log
in the directory before deleting. The default is 7. The minimum is 0 and the
maximum is 4294967296.

Click Set. Update and save the configuration.

Five status show actions have been created to provide information regarding virtual hosts.

The show web-services-virtual-hosts action provides information about all virtual hosts
configured on the OS-E.

NNOS-E>show web-services-virtual-hosts

name state applications-directory
hostl STARTED webapps
Field Description
name The name of the virtual host.
state The state of the virtual host.
applications-directory The directory where this virtual host's WAR files
are located.

The show web-services-virtual-host-application-parameters action provides
information about application context parameters.

NNOS-E>show web-services-virtual-host-application-parameters

name path context-parameter-name context-parameter-value
mSapps.com /citi codec pcmu
mSapps.com /citi flashVersion 1100

mSapps.com /sim contextConfigLocation /WEB-
INF/applicationContext.xml

m5apps.com /sim default._operator.sipurl
sip:*17813284400@fo0; postd=0
m5apps.com /sim default_timeOut.response 45

Oracle Communications ASC 3.7.0 29

ABOUT THE WEB SERVICE INTERFACE

m5apps.com /sim
m5apps.com /sim
m5apps.com /sim

default.voiceMail .sipUrl sip:*17813284444@foo
Extract.sipUrl.replacement sip:*$0@foo
Extract.user.group 2

Field Description
name The name of the virtual host.
path The path where this web application is deployed.

context-parameter-name

The name of the context-parameter for this servlet.

context-parameter-value

The value of the context-parameter for this servlet.

The show web-services-virtual-host-applications action provides information about all
web applications configured on each virtual host on the OS-E.

NNOS-E>show web-services-virtual-host-applications

name path display-name state applications-directory
available
davisapps.com STARTED /cxc_common/webapps true
davisapps.com /acme Acme Packet STARTED /cxc_common/webapps
true
davisapps.com /axa Acme Packet STARTED /cxc_common/webapps
true
davisapps.com /group STARTED /cxc_common/webapps true
davisapps.com /rtp Acme Packet STARTED /cxc_common/webapps
true
davisapps.com /web Acme Packet STARTED /cxc_common/webapps
true

Field Description

name The name of the virtual host.

path The path where this web application is deployed.

display-name The display name used within the web application.

state The state of the web application.

applications-directory The directory where this virtual host's WAR files

are located.
available The availability of the web application.

The show web-services-virtual-host-application-servlets action provides information
on servlets configured for all web applications on each virtual hosts on the OS-E.

NNOS-E>show web-services-virtual-host-application-servlets

name

davisapps.acmepacket.com Zacme-packet

true

davisapps.acmepacket.com /acme-packet

true

davisapps.acmepacket.com /acme-packet

true

davisapps.acmepacket.com /axa-tech

true

path

servlet state available
ConfigServlet STARTED
default STARTED
jsp STARTED
ConfigServlet STARTED

30 Oracle Communications ASC 3.7.0

davisapps.acmepacket.com /axa-tech
true

davisapps.acmepacket.com /rtpstats
/cxc_common/webapps true

davisapps.acmepacket.com /webphone
/cxc_common/webapps true

ABOUT THE WEB SERVICE INTERFACE

default STARTED

Acme Packet RTP Stats STARTED

Acme Packet Web Phone STARTED

Field Description

name The name of the virtual host.

path The path where the web application is deployed.
servlet The name of the servlet.

state The state of the servlet.

available The availability of the servlet.

The show web-services-virtual-host-application-servlets-parameters action provides
information on servlet parameter settings for each web applications on each virtual host
on the OS-E.

NNOS-E>show web-services-virtual-host-application-servlet-parameters

name path
init-parameter-value

davisapps.acmepacket.com /axa-tech
disabled https://davis:8443

davisapps.acmepacket.com /axa-tech
rtmp://davis.acmepacket.com/live

davisapps.acmepacket.com /axa-tech
sip:{0}@davis.acmepacket.com

davisapps.acmepacket.com /groupblast
admin

davisapps.acmepacket.com /webphone
disabled https://davis:8443

davisapps.acmepacket.com /webphone
rtmp://davis.acmepacket.com/live

davisapps.acmepacket.com /webphone
sip:{0}@davis.acmepacket.com

servilet

init-parameter-name

ConfigServlet ascBaseUrl-
ConfigServlet rtmpBaseUrl
ConfigServlet uriFormat

1GroupBlastService adminRole

ConfigServlet ascBaseUrl-
ConfigServlet rtmpBaseUrl
ConfigServlet uriFormat

Field Description

name The name of the virtual host.

path The path where the web application is deployed.
servlet The name of the servlet.

init-parameter-name

The servlet’s init-parameter name.

init-parameter-value

The servlet’s init-parameter value.

Oracle Communications ASC 3.7.0 31

ABOUT THE WEB SERVICE INTERFACE

32 Oracle Communications ASC 3.7.0

Web Service Callouts

Using ASC Callouts

The Net-Net ASC supports web service callouts. A callout is when the ASC initiates
contact with the web service client. Web service callouts are only supported in WSDL.

Request

Neb Services
Web Services ASC
Application

The ASC API supports two uses of callouts.

External Policy Service

External policy service—Sends policies when the ASC processes SIP messages
External event service—Sends event notifications

The external policy service sends a request to the web services application whenever the
ASC is processing a SIP message. The web services application examines information
about the SIP message and based on that information, returns the policy that it wants
applied to the SIP message.

The WSDL request hame is getAuthSessionPolicy.

Policies are configured and applied on the ASC in a specific order. The following is the
hierarchy of session-config and normalization application:

default-session-config

policy

server inbound session-config

server inbound normalization
dial-plan/registration-plan > normalization
dial-plan/registration-plan > arbiter > session-config
dial-plan/registration-plan > route normalization
dial-plan/registration-plan > route > session-config

Policy sent from the web services application to the ASC via the
getAuthSessionPoalicy request

server outbound session-config
server outbound normalization

server outbound normalization session-config

Oracle Communications ASC 3.7.0 33

USING ASC CALLOUTS

Configuring External To configure the ASC so that the external policy service works properly, you must
Policy Service configure a policy-group with a policy-service. Then, you must configure an
authorization policy.

To configure policy-group and policy-service objects:

1. Click the Services tab and select external-services.

2. Select new from the policy-services-type drop-down box.

* Services
3cmeﬁf3cket

Siatussum‘mgg Logout admin | HomeTronnguration™SiatusT e 0gs™"Eve ogs™ | ACHons™| Services ["Keys™ T Access ™ Too
Services: all Configure external-services Help Index
‘ Configuration ‘ Setup | View | Set Reset Delete
El semvices
event-log policy-services-type [new v/ ew style)
El master-senvices ?
delitin policy-group Add palicy-group
route-server
extemnal-services K
El preferences locafion-grooy Add location-group
qui-preferences
features event-grouy Add event-group

3. Click Set.
4. Click Add policy-group.
5. Enter a name for the policy-group you are creating.

* Services
acme /¢ packet

Status Summary Logout admin HomeT L onguration ™ Statls L alriegs CLOGS T TAConS) Services [REYSTTACTESST T TO0IST
Services: all Create external-services\policy-group - Step 1 of 1: Edit policy-group Help _Index

| i | I ‘ e Please provide some basic information for policy-group. Then press "Create”.

B senices -
name
event-log group |
=l master-senices
database
e b Create | Reset] Cancel]

external-senices

6. Click Create.

7. failover-detection—Leave this value at none, the default. The ASC performs no
failover detection. If a request is not serviced, the system continues to send requests
until a configured timeout value is reached or the request is manually withdrawn.

8. max-queue-length—Leave this value at 64, the default. This is the maximum
number of WSDL requests that can be queued for a policy group (awaiting
assignment to a server). If the queue grows to this humber, subsequent requests are
rejected, with the result “queue-clipped,” until the queue drops below this level.

9. connection-mode—Specify the manner in which connections between the ASC and
WSDL client are established and maintained. The default value is persistent 10
/covws,callouts?wsdl. The valid values are:

« persistent [seconds][page]—Connections are initiated at boot time, and
maintained using periodic keepalives. Specify an inactivity timeout, between 2
and 120 seconds, and a keepalive page.

« lingering—Connections are made on demand, then linger until broken by the
remote server.

« transient—Connections are made on demand, then broken when a response is
received.

34 Oracle Communications ASC 3.7.0

USING ASC CALLOUTS

10. overall-request-timeout—Leave this value at 5, the default. This specifies the
number of seconds a request can remain in the queue for a policy server before it is
timed out by the ASC.

11. Click Set.

& -
Services
acme /¢ packet
Status Summary _Logout admin i it i ol o szl 1OEY it e
Services: all Configure external-services\policy-group group Show advanced Help Index
| Configuration | Setup ‘ View | Set Reset Back Copy Delete
E services
& event-log > nanme ,—
B master-senices group
[database . -
[ER g mE. failover-detection
B siemal s anaces type |mone ™| (Do not detect or react to external senice failures)
policy-group group1
B preferences max-queue-length 64 {from 1 to 512 default=64)
gui-preferences
et connection-mode
95'1;‘9‘:“0”' persistent % | (Connection is made immediately. and kept active with
HIgCE periodic keepalive messages)
inactivity-time 10 seconds(from 2 to 120 default=10)
keepalive- fcovws/callouts ?wsd
page
overall-request- {5— seconds(from 1 to 30 default=5)

timeout

policy-service Add policy-senice

request-format |legacy ¥| (use the legacy format)

12. Click Add policy-service.
13. Enter a name for the policy-service.

14. Enter the service-url. This is the web service client’s endpoint URL.

* Services
acme /¢ packet

Status Summary Logout admin Home™"Configuration™ ™ Status™ " Call'Cogs™"Event'Logs ™" Actions™| Services ["Keys™ "Access Tools™|
Services: all Create external-services\policy-group group1\policy-service - Step 1 of 1: Edit policy-service Help
Index

‘Cnnﬁguraﬂun‘ Setup | View

Please provide some basic information for policy-senice. Then press "Create”.

El senices
event-log .
storage-device name servicel
El master-services . .
database service-url http://10.0.1.10:8081

route-server
El external-services

policy-group group1 Createl Reset| Cancel |
El preferences

gui-preferences

15. Click Create.

16. admin—Leave this enabled, the default. This enables this policy service for use.

17. connect-timeout—L eave this value at 500, the default. This specifies the length of
time, in milliseconds, that the ASC allows to complete a connection to the external
policy service before cancelling the request.

18. read-timeout—Leave this value at 2000, the default. This specifies the length of
time, in milliseconds, that the ASC waits for a response from the external policy
service before cancelling the request.

19. priority—Leave this value at 1, the default. This specifies the priority of this server
within the policy group. The lower the number, the higher the priority.

Oracle Communications ASC 3.7.0 35

USING ASC CALLOUTS

20. connection-count—Leave this value at 1, the default. This specifies the number of
simultaneous connections allowed to this server.

*

Services
acme /¢ packet
Status Summary Logout admin -Home™ T Lonfiguration™Status e o6gs™ ogs™Actions” ELELULELE “Keys ™ "Access [Tools |
Services: all Configure external-services\policy-group group1\policy-service servicel Help Index
| Configuration | Setup ‘ View | Set Reset ‘ Back ‘ Copy | Delete |
El senvices
event-log * name senicel

storage-device
El master-senices

database B enabled |%| (Resource is active)
route-senver * service.url
E external-senices - http://10.0.1.10:8081
policy-group groupd
B preferences heartheat-url 1
gui-preferences
features Connec iSheoit 500 ms(from 100 to 30,000 default=500)
LT LTS 2000 ms(from 100 to 30,000, default=2000)
priority 1 (from 1 to 99 default=1)

connection-count 1 (from 1 to 16 default=1)

21. Click Set. Update and save the configuration.
To configure the authorization policy object:

1. Click the Configuration tab and select vsp.

2. Select either default-session-config or session-config-pool > entry. (If you
configure entry, you must reference it.)

Click Configure beside the authorization property.

4. mode—Select WSDL from the drop-down box. The ASC sends the request for
authorization data retrieval to the external services policy server specified in the
policy-group object. The default is None.

When you select WSDL, the following properties appear.

» PolicyServices—Select the previously configured policy-group object from the
drop-down box. If it is not there, you can create it by clicking Create and entering
the path to the policy group.

« send-sip-message-headers—Select true. This allows SIP message headers to be
sent to the web services client.

* send-sip-message-content—Select true. This allows SIP message content to be
sent to the web services client.

« routing-mode—Leave this set to override, the default. This means any routes
returned by authorization override the dial plan results.

* Priority—Leave this set to 100, the default.

5. always-perform-lookup—Leave this set to true, the default. This means the ASC
retrieves authorization data regardless of other configuration settings.

36 Oracle Communications ASC 3.7.0

USING ASC CALLOUTS

6. apply-to-methods—Select the SIP messages to which the ASC applies
authorization processing. The default is INVITE.

=* :
Configuration
acme /¢ packet
Status Summary Logout admin Home™ Qe LU TE TN Statis™ | Call Cogs™ "EventCogs™ “Actions™| "Services” | "Keys | Access Tools |
Configuration: all Configure vsp\default-session-configlauthorization Help Index
[Configuration | Setwp [View | Set Reset ‘ BECkJ Delete

= cluster

B vsp

box 1

default-ses
tls

static-stack-settings

session-co
enterprise
accounting

h323-settings

Press "Set"” to keep these values.

= external-services

policy-grou,

sion-config mode) i
type ;WSDL ¥|| (Perform WSDL authorization)
nfig-pool * Policy Services E__ex_te_rng_—s_e_ry\c_e_s!\po_\\cy-gmup groupl ¥ | Edit Create
send-sip-message- |true
headers
p groupt send-sip-message- |true &
content i
routing-mode | override + {Any routes return by authorization override the dial
plan results)
priority {100
always-perform- :true v
lookup = &5
apply-to-methods INVITE ~
REFER :
MESSAGE
INFO .
Select All | Unselect All ‘
sequence [~ Create

7. Click Set. Save and activate the configuration.

External Event Service

Configuring External
Event Service

The external event service sends, or “pushes,” notifications of all events generated by the
ASC to a web services application. These events are all available as SNMP traps,
however, this service allows you to receive events without having to use SNMP.

The WSDL request name for this service is processEvent.

Using Cometd 2.0, the OS-E supports channels, a dynamic, path-like hierarchy
describing the topic of an event. Third-party applications can subscribe to events on
specific channels and, thus, narrow the scope of events to process.

In releases prior to 36.0m5, users could subscribe only to specific, hard-coded, request-
ID based channels. By default, the OS-E still emits the legacy channels, however, you can
disable them if they are no longer used. To stop the OS-E from using the legacy channels,
set the eventpush-service > legacy-events property to disabled.

There are two ways to enable web services event processing, configuring external-event-
groups or via the dynamic-event-service action.

To configure the ASC so that the external event service works properly, you must
configure an event-group with an event-service. Then reference the event-group in the
vsp > external-event-group object. You must also set the third-party-call-control >
status-events property to both.

To configure event-group and event-service objects:

Oracle Communications ASC 3.7.0 37

USING ASC CALLOUTS

1. Click the Services tab and select external-services.
2. Click Add event-group.

* Services
acme /¢ packet

TR TRy L O By [PHTOTTIC S COTUT AHOT Sttt AT COU= “CVCI COs = RCHONS ™~ BEL L PREY S PACCCSS T 0015
Services: all Configure external-services Help Index
| Configuration | Setup ‘ View | Set Reset Delete
B semices ; -
event-log policy-services-type _v_| (01d style (via Java))

= master-senices
database
route-server
external-senices
= preferences
gui-preferences
features event-group

policy-group Add policy-group

location-group Add location-group

Enter a name for the event-group and click Create.

4. Click Edit trap-filter. A list of categories appears. If you don’t select any categories,
all events are sent.

To receive events only pertaining to calls, set trap-filter to csta.

Services
acme /¢ packet

S oy L O A oo i i s et sl sl 7100 i i s
Services: all Configure external-services\event-group group1 trap-filter
‘ Configuration ‘ Setup | View | Back | view option list
El senices I™ generic
event-log [hta
El master-senvices
database I dos
route-server I™ h323
El external-services b
event-group groupl :
El preferences I sip
gui-preferences I system
features I tls
Select all I Unselect all
OKi
5. Click OK.
6. Click Add event-service.
7. Enter a name for the event-service.
8.

Enter a service-url for this event-service. This is the web services client endpoint.

Services
acme /¢ packet
Status Summary Logout admin Home™ " Configuration™ " Status™ " Call"Cogs™"Event Logs™ " Actions™] Services | "Keys™["Access™Tools™|
Services: all Create external-services\event-group groupilevent-service - Step 1 of 1: Edit event-service Help

Index

|Conﬁgural\on| Setup ‘ View

Please provide some basic information for event-service. Then press "Create”.

El services
event-log a
storage-device name senvicel
El master-senices . .
database service-url http://10.0.10.10:8080

route-server
E external-senices

policy-group groupd Create | Resat | Cancel |
event-group group1

38 Oracle Communications ASC 3.7.0

USING ASC CALLOUTS

9. Click Create. Update and save the configuration.

To reference the event-group to the vsp > external-policy-group:

1. Click the Configuration tab and select vsp.

2. Click Edit external-event-group next to the external-event-group property.

Note: This is an Advanced property. You must click the Show advanced button at
the top of the page to see this property.

other properties:

displayname-character-set-info
access

phones

presence-database

database

admission-control
oci-settings
external-event-group
authorization-settings
dtmf-generation
codec-payload-type-bindings
sip-manipulation-pool

multimedia-streaming-config

Configure
Configure
Configure
Configure
Configure
Configure
Configure
Edit external-event-group
Configure
Configure
Configure
Configure

Configure

3. Select the previously created event-group you are referencing. A list of all event-
groups configured on the box appear. If no event-groups have been created you can

create one.
Configuration
acme/¢ packet
Status Summary Logout admin FHome™| Configuration [“Status™"Call Cogs™ "Event Cogs™ MACtions™"Services ™ "Keys™"ACCess™ " Tools |

Configuration: all

Back

|Conﬁguration| Setup | View ‘

= cluster
box 1
B vsp M

default-session-config

session-config-pool

enterprise
accounting

h323-settings Pt

Configure vsp external-event-group

¥ external-sernvices\event-group groupd

Enter a path for: external-serices\event-group

Create

4. Click OK. Update and save the configuration.

To receive call-control events:

1. Click the Configuration tab and select vsp.

2. Select either the default-session-config or the session-config-pool > entry property.

3. Click Configure next to third-party-call-control. The third-party-call-control

object appears.

4. Select both from the status-events drop-down box.

Click OK. Update and save the configuration.

Oracle Communications ASC 3.7.0 39

USING ASC CALLOUTS

Executing dynamic-
event-service

Field

A web application can register itself by using the web service REST and SOAP clients to
call the dynamic-event-service register action. Using the dynamic-event-service
keepalive action you can keep current registrations alive, and via the dynamic-event-
service unregister action, the web application can unregister itself. The action syntax is:

dynamic-event-service register <enadpoint> [channels) [xmlI-format]
[time-to-1ive] [connect-timeout] [read-timeout] [character-set]
[request-style] [include-channels-in-events]

dynamic-event-service keepalive <registration-ia>
dynamic-event-service unregister <registration-ia>

Valid arguments for the dynamic-event-service register action are:

<endpoint>—The application endpoint that receives events.
[channels]—The channels for which the endpoint is getting events.

[xml-format]—The XML format used by this server. This can be either simplified
(the default) or legacy.

[time-to-live]—The time to live, in minutes, for the keepalive on this registration.
The default is untilRestart, meaning the registration stays alive until the system is
restarted.

[connect-timeout]—The connect timeout, in milliseconds, for the endpoint. The
default is 1000.

[read-timeout]—The read timeout, in milliseconds, for the endpoint. The default is
1000.

[character-set]—The character set to use when forming requests to this endpoint.
This can be utf-8 (the default) or iso-8859-1.

[request-style]—The style to use when sending events to this listener. This can be
SOAP (the default), XML, or JSON.

[include-channels-in-events]—Whether channels are included in events. This is
enabled by default.

Once an application has registered itself to receive events, you can view information
about the registration via the show dynamic-event-services status provider.

NNOS-E>show dynamic-event-services

endpoint: 10.0.0.10

registration-id:
created:
time-to-live:
last-keepalive:
channels:
connect-timeout:
read-timeout:
character-set:
request-style:
requests:
failures:

d710c03c-70b3-454d-9ee2-c1b6F60dd5b7
12:10:20.857000 Thu 2012-03-01
untilRestart seconds

12:10:20.857000 Thu 2012-03-01

1000 ms
1000 ms
utf-8
soap

0]

0]

Description

endpoint

The application endpoint being called out.

registration-id

The registration identifier.

created

The date and time this registration was created.

40 Oracle Communications ASC 3.7.0

Field

USING ASC CALLOUTS

Description

time-to-live

The configured time to live, in minutes, on this
registration.

last-keepalive

The date and time that the last keep alive was
received.

channels

The channels for which the endpoint is getting
events.

connect-timeout

The configured connect timeout, in milliseconds,
for the endpoint.

read-timeout

The configured read timeout, in milliseconds, for
the endpoint.

character-set

The character set used when forming requests to
this endpoint. This can be either utf-8 or is0-8859-
1.

request-style

The style used when sending events to this
listener. This could be either XML, JSON, or SOAP.

requests The number of requests that have been made to
the endpoint.
failures The number of requests that have failed to reach

the endpoint.

The session-config > event-settings object configures events and user-specified event
channels on the OS-E.

The event-settings > channel property configures user-specified channels on the OS-E.
Each time the OS-E needs to emit an event for a session, the event configuration
component dynamically regenerates all of the appropriate channels specified by the user
based on the this property.

This property consists of an array of strings used to compose channel paths. These strings
can contain named-variables that are replaced with a value extracted from the current
state of the session. Named-variables must start and end with percent (%) characters.

Named variables can be added to sessions on the OS-E in multiple ways. They can be
added via the session-config > named-variables object. For more information on
configuring named-variables in the session-config, see Configuring Session
Configuration Objects in the Oracle Communications OS-E Objects and Properties
Reference Guide.

Named-variables can also be added via the named-variable-add action. For information
on this action, see the Named Variable Actions section of this guide.

Under the event-settings object you can insert named-variables into events. This is done
via the named-variable-entry property.

NOTE: In order for named-variables to work in either the event-settings > channel
or named-variable-entry properties, named-variables must be configured elsewhere
on the OS-E, either within the session-config > named-variables object or via the
named-variables-add action.

The following example shows adding one variable called my-variable with a value of
my-value to the default-session-config > named-variable object.

NNOS-E>config vsp
config vsp>config default-session-config

Oracle Communications ASC 3.7.0 41

USING ASC CALLOUTS

config default-session-config>config named-variables
config named-variables>config named-variable my-variable
Creating "named-variable my-variable*

config named-variable my-variable>set value my-value
config named-variable my-variable>return

config named-variables>return

This next example shows the event-settings object configured with a channel and
named-variable-entry that correspond with the session-config > named-variables
configuration in the above example.

Specific-channel-name is a static channel name and the OS-E does not attempt to look
up the value of this string. Because it is enclosed in percentage signs, the /%my-
variable%o value signifies a named-variable channel name. The named-variable-entry
property’s my-variable my-variable-name value represents the inclusion of the named-
variable configured in the first example in the contents of the events. My-variable-name
is the name that is shown inside the events for this variable.

NNOS-E>config vsp

config vsp>config default-session-config

config default-session-config>config event-settings
config event-settings>set channel /specific-channel-name
config event-settings>set channel /%my-variable%

config event-settings>set named-variable-entry my-variable my-
variable-name

config event-settings>return

Here is an example of an event for a session that has the above configuration. Note the
two channels: specific-channel-name and my-value. There is also an <nvpData> entry
(which stands for named-value-pair) for my-variable-name and my-value.
<Event box="1" process="SIP" timestamp="16:41:26.000001 Wed 2012-03-
21" channel=""">
<object>
<CalICreatedEvent>
<cal lEvent>
<Cal lIEvent>
<requestlD/>
<handle>15217493</handle>
<sessionlD>343475565090092753</session|D>
<calllD>1-11664@10.33.5.10</callID>
<to>sip:service®10.33.80.65:5060</to>
<from>sip:sipp@10.33.5.10:6021</from>
<nvpData>
<name>my-var iable-name</name>
<value>my-value</value>
</nvpData>
</CallEvent>
</cal lEvent>
</CallCreatedEvent>
</object>
<channels>/specific-channel-name</channels>
<channels>/my-value</channels>
<userData>0x00000000</userData>
</Event>

The same named variables can be used to configure both the channel and named-
variable-entry properties.

42 Oracle Communications ASC 3.7.0

USING ASC CALLOUTS

NOTE: Named variables used in the channel property must start and end with
percentage (%) characters to work properly.

These variables can be broken down into three types: event, session, and call, in-leg, and
out-leg.

Event named variables are derived from the current event being published. The object of
these variables can be any of the events the OS-E can generate. To view the full list of
OS-E events, see Events in the web services home page’s REST documentation.

You can retrieve a property in the event object by specifying $event.<property> where
<property> is the name or alias of a property in the event object being generated.

For example, for a call control event with a requestID of 123456, specifying
Ireq/%$event.requestiD% results in the channel /req/123456 being created.

Specifying /event-name/%$event._alias% results in the channel /event-name/call-
terminated being created for call-terminated events.

Available variables for the event class are:
* $event—Event-based named variables.
« S$event._alias—Alias for a generated event.

Session named variables are derived from the current session for the events being
published. Available variables for this class are:

e $session-session-id—Session ID for this session.

« $session.request-id—Request ID for this session.

e $session.caller-id—Caller ID for this session.

* $session.diversion-header—Diversion-header for this session.
» $session.pcharging-vector—P-charging-vector for this session.
» $session.digest-realm—Digest realm for this session.

» $session.source-Inp—Source-Inp for this session.

« $session.destination-Inp—Destination-Inp for this session.

Call, in-leg, and out-leg named variables are derived from the call legs of the current
session for events being published. Call events are generated on a specific leg. Therefore
the call variables provide access to the leg on which the event is being generated.

Each call session has one or two legs, deemed the in-leg and out-leg based on call
direction. In-leg variables use the in-leg for the session that generated this event and out-
leg variables use the out-leg for the session that generated this event.

Available variables for these classes are:

e $call.request-id—Request ID for this call.

« S$call.to—To: URI for this call.

e $call.to.user—User portion of the To: URI for this call.

» $call.to.host—Host portion of the To: URI for this call.

e $call.from—From: URI for this call.

» $call.from.user—User portion of the From: URI for this call.
e $call.from.host—Host portion of the From: URI for this call.
e $call.request—Request: URI for this call.

Oracle Communications ASC 3.7.0 43

USING ASC CALLOUTS

e $call.request.user—User portion of the Request: URI for this call.

* $call.request.host—Host portion of the Request: URI for this call.

e $call.call-id—Call-id for this call.

« $call.to-contact—Local endpoint for this call.

» $call.to-contact.user—User portion of the local endpoint for this call.

» $call.to-contact.host—Host portion of the local endpoint for this call.

e $call.from-contact—Remote endpoint for this call.

* $call.from-contact.user—User portion of the remote endpoint for this call.

e $call.from-contact.host—Host portion of the remote endpoint for this call.

» $call.p-assert—P-asserted-identity header for this call.

» $call.p-assert-user—User portion of the p-asserted-identity header for this call.
» $call.p-assert-host—P-asserted-identity header for this call.

e $in-leg.request-id—Request-id for the in-leg.

e Sin-leg.to—To: URI for the in-leg.

e $in-leg.to.user—User portion of the To: URI for the in-leg.

* $in-leg.to.host—Host portion of the To: URI for the in-leg.

* $in-leg.from—From: URI for the in-leg.

* $in-leg.from.user—User portion of the From: URI for the in-leg.

e $in-leg.from.host—Host portion of the From: URI for the in-leg.

e $in-leg.request—Request: URI for the in-leg.

e $in-leg.request.user—User portion of the Request: URI for the in-leg.

* $in-leg.request.host—Host portion of the Request: URI for the in-leg.

* Sin-leg.call-id—Call-id for the in-leg.

* $in-leg.to-contact—Local endpoint for the in-leg.

* $in-leg.to-contact.user—User portion of the local endpoint for the in-leg.

* $in-leg.to-contact.host—Host portion of the local endpoint for the in-leg.

e $in-leg.from-contact—Remote endpoint for the in-leg.

* $in-leg.from-contact.user—User portion of the remote endpoint for the in-leg.
* $in-leg.from-contact.host—Host portion of the remote endpoint for the in-leg.
* $in-leg.p-assert—P-asserted-identity header for the in-leg.

» $in-leg.p-assert.user—User portion of the p-asserted-identity header for the in-leg.
e $in-leg.p-assert.host—Host portion of the p-asserted-identity header for the in-leg.
e $out-leg.request-id—Request ID for the out-leg.

» $out-leg.to—To: URI for the out-leg.

» $out-leg.to.user—User portion of the To: URI for the out-leg.

* S$out-leg.to.from—Host portion of the To: URI for the out-leg.

e $out-leg.from—From: URI for the out-leg.

e $out-leg.from.user—User portion of the From: URI for the out-leg.

44 QOracle Communications ASC 3.7.0

USING ASC CALLOUTS

$out-leg.from.host—Host portion of the From: URI for the out-leg.
$out-leg.request—Request: URI for the out-leg.

$out-leg.request.user—User portion of the Request: URI for the out-leg.
$out-leg.request.host—Host portion of the Request: URI for the out-leg.
$out-leg.call-id—Call-id for the out-leg.

$out-leg.to-contact—Local endpoint for the out-leg.
$out-leg.to-contact.user—User portion of the local endpoint for the out-leg.
$out-leg.to-contact.host—Host portion of the local endpoint for the out-leg.
$out-leg.from-contact—Remote endpoint for the out-leg.
$out-leg.from-contact.user—User portion of the remote endpoint for the out-leg.
$out-leg.from-contact.host—Host portion of the remote endpoint for the out-leg.
Sout-leg.p-assert—P-asserted-identity header for the out-leg.

Sout-leg.p-assert.user—User portion of the p-asserted-identity header for the out-
leg.

$out-leg.p-assert.host—Host portion of the p-asserted-identity header for the out-
leg.

To configure channels on the OS-E:

1.

2
3
4.
5

Select the Configuration tab and click the vsp > default-session-config or vsp >
session-config-pool > entry object.

Click the event-settings object.
Click Edit channel.
Enter the string to use to generate events for this session. Click Add. Click OK.

Click Set. Update and save the configuration.

To configure named-variable-entries on the OS-E.

1.

N oo gk~ wDN

Select the Configuration tab and click the vsp > default-session-config or vsp >
session-config-pool > entry object.

Click the event-settings object.

Click Add named-variable-entry.

Enter a variable or select one from the drop-down list.

Click Create. You are returned to the event-settings object.

To give the variable a display-name, click Edit next to the variable name.

Enter the display-name. This is the name that will be displayed within the event
instead of the actual named-variable name.

Click Set. Update and save the configuration.

Generating Event Messages

Two of the most common types of event messages that the ASC can generate are SIP
event messages and call-control event messages. To enable the ASC to generate SIP event
messages, see the following section. To work with call-control event messages, see
Chapter 3, Configuring Events.

Oracle Communications ASC 3.7.0 45

USING ASC CALLOUTS

Sending SIP Event
Messages

You can configure the ASC to send SIP message events when the ASC receives and
transmits SIP messages. The event-settings > inbound-sip-messages and outbound-

sip-messages objects configure the ASC to send SIP message events for incoming and
outgoing SIP messages.

To configure the ASC to send SIP event messages:

1.

acmeﬁﬁa*cket

Status Summary Logout admin

Select the Configuration tab and click the vsp > default- session-config or vsp >
session-config-pool > entry object.

Click the event-settings object.

Click Configure next to inbound-sip-messages to enable events for incoming SIP
messages. Click Configure next to outbound-sip-messages to enable events for
outgoing SIP messages.

Configuration

Rkl Configuration oy RS L 0gsFACtions 3 | "Reys-FAccess | Tools|

Configuration: all

|Cunﬁguratmn| Setup | View ‘

= cluster
box 1
= vsp
El default-session-config
authentication
accounting
event-settings
tls
static-stack-settings
session-config-pool
enterprise
accounting
location-senice
h323-settings

Eventpush Service

Configure vsp\default-session-configlevent-settingslinbound-sip-messages Show basic
Help Index

Set Reset | Back | Delete |

admin enabled ¥| (Resource is active)

apply-to-methods-for-events INVITE ~

REFER.

MESSAGE

INFO g

Select All ‘ Unselect All
apply-toresponses
“type no ¥ (Do not apply to responses (requests only))

apply-to-dialog both ¥ | (Apply to both inbound and outbound dialogs)

cseq

—

NOTE: Inbound-sip-messages and outbound-sip-messages are advanced
properties. To see advanced properties, click the Show advanced button at the top
of the window.

admin—Set to enabled.

apply-to-methods-for-events—Select the SIP methods you want the OS-E to create
events for.

Click Set. Update and save the configuration.

The ASC supports a web services application called eventpush service. Eventpush
service is a solution which allows you to forward event information from the ASC to
clients on external web applications which are unable to implement a SOAP/WSDL
endpoint.

46 Oracle Communications ASC 3.7.0

USING ASC CALLOUTS

Eventpush service is configured as its own process within the ASC under the eventpush-
service object.

JE:;%:Q?IN JavaScri.pt Event SOAP XML ASC
Client Object Event | Call Created
Bizah s WS Process
— Web
App

Eventpush service supports a publish/subscribe interface using Cometd. There is a
JavaScript API that wraps the Cometd technology. The customer application subscribes
by indicating that it only wants to receive call events for calls with a specific requestID.

External Register Request Subscribe
JavaScript »! | Eventpush Web Comet
Client App Client Side

Call-Control with
Request ID WS Process

The eventpush web application then publishes, or sends, only the events with that
subscribed requestID.

Call Event for Call Event for
External - :
JavaScript Sibserbed 1D Eventpush Web | SPecificlD I Comet
Client App Client Side
All Call Events
Eventpush Web | 5 call Events
App Server Side = WS Process

To enable cross-domain communication between the eventpush application and the
customer web service application, the ASC’s eventpush service DNS suffix must be the
same as the customer web service application’s.

To test the publish/subscribe interface, access the ASC eventpush service page. The URI
for this page is:
http(s):// ip: port/cometapp/comet_test.html

Enter either http or https, the IP and port you have configured under the eventpush-
service object.

Oracle Communications ASC 3.7.0 47

USING ASC CALLOUTS

Specify the requestID to which you are subscribing. This tells the ASC to publish only
call events with that requestiD.

X Backet Acme Packet Push Event Application Test
Event Type: @ Call © Presence
Reguest ID: [foo123 |
Events

of Events received:

subscribed to /call/fool23

For more information on publish/subscribe technology, see
http://en.wikipedia.org/wiki/Publish/subscribe.

For more information on cometd technology, see http://cometdproject.dojotoolkit.org.

To configure eventpush-service:

1. Click the Configuration tab and select Cluster.

2. Select the box, interface, and ip address on which you want to configure the
eventpush-service.

3. Click Configure next to eventpush-service.

£ -
Configuration
acmeﬂﬁa'cket

T [P 7 e oo et s st i o st
Configuration: all
g telnet Configure
| Configuration | Setup ‘ View | ssh Cirbaia
=
dr;ﬁ;x " snmp Configure
interface eth(b Z
El interface eth1 e, Configure
Eip1111
web-senice [Elweb-service
routing [Delets]
cli
® vsp eventpush-service Configure

48 Oracle Communications ASC 3.7.0

USING ASC CALLOUTS

4. Set the protocol type and port and click Create.

i Configuration
acme /¢ packet

Status Summary Logout admin | HOmEe™| Co

Conﬁguration: all Create cluster\box 1\interface eth1lip 1.1.1.1\eventpush-service - Step 1 of 1: Edit eventpush-
service Help Index

|Conﬁguration| Setup | View

Please provide some basic information for eventpush-senice. Then press "Create”.

= cluster

B box 1 .
interface eth(profocol * type [hito 8
E interface eth1 P E.JLP____J
Bip11.11 5
’ web-senice ot 8081 {at minimum 1.default=6080)
routing
cli
VSp Create] Reset I Cancel I

5. Set the page-domain to the domain name of the ASC.

* -
Configuration
3cmeﬂﬁ:’cket

Status Symmary _ Logout admin Home™ gellL L EU LI = StattsTHCaIMogs ™ Event Togs T ACons - Services T Reys ™ FACCessToo1s ™
Configuration: all onfigure clusteribox 1\interface eth1\ip 1.1.1.1\eventpush-service Help Index
Confi lusteribox 1\interf: th1lip 1.1.1.1\event, h Help Ind
‘ Configuration ‘ Setup | View | Set Reset | BECK| Deleta ‘
=l cluster "
B box 1 admin !E‘HENE‘d "‘ (Resource is active}
E interface eth0 TR AL
= mterf_ace eth1 * protocol
2 ip1111 “ype [np |
web-service e
re;'jtl;;zush—ser;lce “port 8081 (at minimum 1_default=8080)
cli
Sl vsp) max-threads 10 (from 1 to 500, defautt=10)
default-session-config
g min-spare-threads 1 {from 0 to 50 default=1)

static-stack-settings
session-config-pool

enterprise max-spare-threads 5 (from 0 to 50 default=5)
accounting .
h323-settings page-domain ,—

6. Click Set. Update and save the configuration.
Two status providers provide information on the current set of active cometd channels.

The show cometd-channel-summary action provides a summary of channel information
for the cometd server.

NNOS-E>show cometd-channel-summary

name subscriber-count
/**

/call

/call/to
/call/to0/019785551212
/cometd

/cometd/meta

/meta

/meta/connect
/meta/disconnect
/metashandshake
/meta/subscribe
/meta/unsubscribe

O OO0 O0OO0OO0Okr OFr OO0 PR

Oracle Communications ASC 3.7.0 49

USING ASC CALLOUTS

Field Description
name The name of the channel.
subscriber-count The number of subscribers on this channel.

The show cometd-channel-detail action provides more detailed channel information,
specifically, on the subscribers to each of the channels.

Note that if a channel appears in the summary but not in the details, it means that the
channel exists without any active cometd client subscriptions.

NNOS-E>show cometd-channel-details

name remote-address remote-port id user-agent
/** 10.1.21.57 49804 372tj5ikmvga8ant2b6m2wcjs
Mozilla/5 -0 (Windows NT 6.1; WOW64)

AppleWebKit/535.11 (KHTML, like Gecko) Chrome/17.0.96
3.79 Safari/535.11

/call/to/019785551212 10.1.21.57 49728
21sxpszu2lkikclpnadtOmdfzvg Mo zilla/5.0
(WindowsNT6.1; WOW64) AppleWebKit/535.11 (KHTML, likeGecko) Chrome/
17.0.963.79 Safari/535.11

/cometd/meta 10.1.21.57 49804 372tj5ikmvga8ant2b6m2wcjs
Mozilla/5 -0 (Windows NT 6.1; WOW64)
AppleWebKit/535.11 (KHTML, like Gecko) Chrome/17.0.96

3.79 Safari/535.11

Field Description

name The name of the channel.

remote-address The remote address for this subscriber.

remote-port The remote port for this subscriber.

id The identifier assigned internally by the OS-E for
this publisher.

user-agent The user agent the subscriber used to establish
the session.

Two status providers have been added to provide information on the current set of active
cometd subscribers.

The show cometd-subscriber-summary action provides high-level information about
the subscribers.

NNOS-E>show cometd-subscriber-summary

remote-address remote-port id channel-count message-count
user-agent

10.1.21.57 49728 21sxpszu2lkikclpnadtOmdfzvg 1 0
Mozilla/s5.0 (Windows NT 6.1; WOW64) AppleWebKit/535.11 (KHTML, like
Gecko) Chromes/17.0.963.79 Safari/535.11

10.1.21.57 49804 372tj5ikmvga8ant2b6m2wcjs 2 0
Mozillas5.0 (Windows NT 6.1; WOW64) AppleWebKit/535.11 (KHTML, like
Gecko) Chromes/17.0.963.79 Safari/535.11

50 Oracle Communications ASC 3.7.0

Field

USING ASC CALLOUTS

Description

remote-address

The remote address for the subscriber.

remote-port

The remote port for the subscriber.

id

The identifier assigned internally by the OS-E for
this publisher.

channel-count

The number of channels to which the subscriber is
currently subscribed.

message-count

The number of messages a subscriber has
currently been sent.

user-agent

The user agent the subscriber used to establish
the session.

Field

The show cometd-subscriber-details action provides more detailed information,
specifically on the channels subscribed to by each subscriber.

Note that if a subscriber appears in the summary but not the details, it means that the
subscriber exists without any active cometd channel subscriptions.

NNOS-E>show cometd-subscriber-details

remote-address
10.1.21.57
10.1.21.57
10.1.21.57

remote-port channel

49728 /call/to/019785551212
49804 /**
49804 /cometd/meta

Description

remote-address

The remote address for the subscriber.

remote-port

The remote port for the subscriber.

channel

The name of the channel.

Oracle Communications ASC 3.7.0 51

USING ASC CALLOUTS

52 Oracle Communications ASC 3.7.0

ASC Call Control Action

Web Service Call Control

Many of the applications you can create via the Net-Net ASC will use the call-control
action. This chapter describes how to use call-control, its parameters, as well as the
results and event messages that are subsequently generated.

Identifying Calls and Sessions

Request IDs

Session IDs

Call Leg Handles

SIP Call-IDs

When the Net-Net ASC creates calls, it uses several elements to identify specific calls and
portions of calls. These unique markers are request I1Ds, session 1Ds, call leg handles, and
SIP call-IDs.

For more information on which elements appear in what event messages and which are
parameters for call-control actions, see

When creating new calls, an application identifies the endpoints involved using their SIP
URIs. An application may also supply a request ID to the ASC. If it does supply a request
ID, the ASC labels the resulting session with that request ID. This ID is returned in the

subsequent responses to the request and any events pertaining to that session. In actions
which add new call legs mid-call, like call-control fork and conference, each new leg

creates a new session between it and the originating leg. These new sessions inherit the
original request ID.

The request ID is an obscure string as far as the ASC is concerned. Any interpretation of
its contents is solely a matter for the application writer.

Each session in the ASC is given a session 1D, internally represented as a 64-bit number,
which functions as a globally unique ID (GUID). This means session IDs are not repeated
even after the ASC reboots and are unique between multiple ASCs. The session ID is
returned in response to all call creation, disconnection and manipulation actions, and in
all events pertaining to the session.

Each leg of a call is identified by a handle, internally represented as a 32-bit number. You
must reference a call leg handle in all actions performed on calls after they have been
created.

Within SIP, calls are identified by Call-1Ds, which functions as a GUID. Every call leg
has a unique call 1D, and these are reported in the CallCreated, CallConnected, and
CallTerminated events. The call-1D should be used when you need to correlate calls with
other systems. If this is not sufficient, you can populate call events with custom
parameters that can be obtained from arbitrary SIP headers.

Oracle Communications ASC 3.7.0 53

ASC CALL CONTROL ACTION

Configuring To and From URIs

When you use the call-control call action, you need to include to and from properties.
You can configure the ASC so that you don’t have to include the SIP scheme and domain
parts every time you place a call. By configuring a condition list and header
normalization, then adding them to a policy rule, the ASC looks for the absence of a host
portion in the To URI in a call-control action, and adds the necessary components to the
To and From URIs.

The following example displays a configuration where the ASC applies the condition list
to the call-control action. It creates four header-normalization rules which prepend sip:
to the call-control to and from properties and append @acmepacket.com to these
properties.

config rule check-for-host
config condition-list
set to-uri-condition host match "$
set action-condition call-control
return
config session-config
config header-settings
config header-normalization 1
set destination To
set value prepend sip:
return
config header-normalization 2
set destination From
set value prepend sip:
return
config header-normalization 3
set destination To
set value append @acmepacket.com
return
config header-normalization 4
set destination From
set value append @acmepacket.com
return
return
return
return

For more information about configuring condition lists and normalization, see the Oracle
Communications OS-E Object and Properties Reference Guide.

Action Results

When the call-control action is executed, you receive an XML result containing
information about whether the action was successful or not.

The following is an example of an XML result generated from a successful call-control
action:

<ExtActionResponse>
<resultCode>0</resultCode>
<resultStr>Success</resultStr>
<info0>343196502737231705

54 Oracle Communications ASC 3.7.0

ASC CALL CONTROL ACTION

14490500:14490499</info>
<structure>
<CallControlCallResult>
<requestld>fool123</requestld>
<sessionld>343196502737231705</sessionld>
<inCallLegHandle>14490500</inCal lLegHandle>
<outCal lLegHandle>14490499</outCal lLegHandle>
</CallControlCallResult>
</structure>
</ExtActionResponse>

A <resultCode> of zero indicates the action was successful. Any other value indicates a
failure, which is described by the <resultStr> object.

The <info> element provides supplementary information about the executed call-control
action. In the case of a successful call the first line is the session ID. The second line
consists of the two call-leg handles, separated by a colon.

Structured information equivalent to the content of the <info> element is also returned for
some of the call-control actions, making the extraction of the required fields easier. If it
was provided in the original request, the requestld is returned in the structured
information.

NOTE: Not all call-control actions return structured data. This only happens when the
<info> element contains useful information that needs parsing.

When using a RESTful API, you can request the result in a simplified XML format by
adding &_format=simplified to the URL. The following is an example of a simplified
XML result.

<object xsi:type="ExtActionResponseType">
<resultCode>0</resultCode>
<resultStr>Success</resultStr>
<info0>343196530540399894
14490520:14490519</info>
<structure xsi:type="CallControlCallResultType">
<request-id>foo0l23</request-id>
<session-id>343196530540399894</session-id>
<in-call-leg-handle>14490520</in-call-leg-handle>
<out-call-leg-handle>14490519</out-call-leg-handle>
</structure>
</object>

Configuring Call Events

When enabled to do so, the ASC can generate event messages, two of the most common
types being call-control event messages and SIP event messages. To enable the ASC to
generate call-control event messages, see the following section. To work with SIP event
messages, see Chapter 2, Sending SIP Event Messages.

To generate call-control event messages:

1. Select the Configuration tab and click the vsp > default- session-config or vsp >
session-config-pool > entry object.

Oracle Communications ASC 3.7.0 55

ASC CALL CONTROL ACTION

2. Click the event-settings object.

*

3cmcﬁﬁmket

Status Summary ~ Logout admin

Configuration: all

‘Conﬁgural\on| Setup ‘ View |

=l cluster
box 1
B vsp
= default-session-config
authentication
accounting
event-settings
tls
static-stack-settings
session-config-pool
enterprise
accounting
location-senvice
h323-settings

3. call-control-events—Set to enabled for the OS-E to send call-control events.

Configuration

S S e
Configure vspldefault-session-configlevent-settings Show basic Help Index

Set Reset ‘ Back ‘ Delete |

call-control-events enabled | (Resource is active)

media-control-events (Resaurce is active)

channel call

Edit channel

4. Click Set. Update and save the configuration.

The ASC includes certain standard information in the event messages it sends. However,
if you want to include information not included in the standard format, you can configure

the ASC to include custom content in the CallCreated, CallConnected, and
CallTerminated event messages.

See Appendix B: Event Message Examples for examples of both legacy and new format

and legacy and custom content event messages.

To include custom information in event messages:

1. Click the Configuration tab and select third-party-call-control.

2. Select custom from the call-control-events-version drop-down box. The default is

legacy.

3. Click Configure next to custom-event-fields to set the custom event fields to

include in the event messages.

acm%a*cket

Status Summary Logout admin

A -
Configuration: all SRt | wessistemibies
3 allow lcr-forrefer [v @ e
| Configuration | Setup | View 1® (Resource I3 Inactive)
= cluster i"hibk“'va. fonatresh EHEC (Resource is inactive)
rac
box 1 P
B vsp call-control-events-version |

B default-session-config L=
authentication

accounting

custom-event-fields Configure
third-party-call-contral . s =
propagate-reinvite-from-header | disabled (Resource is inactive)

tls

static-stack-settings
session-config-pool dtmf-detected-events

enterprise

For more information on configuring named variables and regular expressions, see
Using Regular Expressions in Chapter 1: How to Use the ACLI of the Oracle

Communications OS-E Objects and Properties Reference Guide.
4. Click Set.

5. Update and save the configuration.

56 Oracle Communications ASC 3.7.0

Configuration

i O ST i st e s s e oot

=l
n ™| (the events generated will have new custom fields)

Common Call Events

ASC CALL CONTROL ACTION

The call-control actions create call events. The following table lists and describes

common call events.

Event Name

CallCreated

CallCreatedEventCustom

CallConnected

CallConnectedEventCustom

CallTerminated

CallTerminatedEventCustom

Description

Generated every time a call leg is
created.

Generated every time a call leg is
created and the ASC is configured
to include custom event fields in
event messages.

Generated every time a call leg is
connected.

Generated every time a call leg is
connected and the ASC is
configured to include custom event
fields in event messages.

Generated when a party hangs up
and every time a call leg is
terminated.

Generated when a party hangs up
and every time a call leg is
terminated.

Parameters

< [requestid]

= handle

= sessionID

< calllD

- 1o

< from

= sessConfig (legacy schema
only)

= dtmfCapability (legacy
schema only)

< [requestid]

= handle

= sessionID

< calllD

- 1o

< from

= sessConfig (legacy schema
only)

= dtmfCapability (legacy
schema only)

= customField

= [requestid]
< handle

« sessionlD
« calllD

- to

« from

« content

= [requestid
< handle

« sessionlD
« calllD

L (0]

« from

« content

« customField

« [requestid]
« handle

« callDuration
« reason

« sessionlD
« calllD

= [requestid]
< handle

« callDuration
« reason

« sessionlD
« calllD

« customField

Oracle Communications ASC 3.7.0 57

ASC CALL CONTROL ACTION

Event Name

CallHeld

CallRetrieved

Playlnitiated

PlayComplete

PlayPaused

PlayResumed

PlayStopped

PlayFailed

RecordComplete

FileInformation

MessageSend

Description

Generated every time a call leg is
placed on hold.

Generated every time a call leg is
retrieved from being on hold.

Generated whenever an audio file
has finished playing or when it has
been stopped.

Generated every time an audio
message is paused.

Generated every time you resume
playing an audio message.

Generated every time you stop
playing an audio message.

Generated every time the
recording of an audio message is
finished.

Generated every time you request
file information.

Generated every time you
manually send a message.

Parameters

= [requestID]

= handle

= heldByRemote—can be
true or false

= [requestID]
= handle

« [requestID]
=« handle
« scanTime

= [requestID]
= handle
= fileTime
= playedTime

= [requestID]
= handle
= fileTime
= playedTime

= [requestID]
= handle
= fileTime
= playedTime

< [requestID]
= handle
= fileTime
= playedTime

< [requestID]
< handle
« reason
« scanTime

< [requestID]
< handle
= fileName

« [requestID]
« fileTime

< [requestID]

= sessionID

= responseCode—the SIP
response code from the
message recipient

= responseString—the
corresponding string

< calllD

- to

= from

= ContentType

= body

58 Oracle Communications ASC 3.7.0

Event Name

MessageReceived

IncomingDtmfDigitStart

IncomingDtmfDigitUpdate

OutgoingDtmfDigitStart

OutgoingDtmfDigitUpdate

Description

Generated every time SIP
MESSAGE messages are received.

Generated when the start of a
DTMF digit is received on a call leg.
Every digits receives its own event.
You must set session-config > in-
dtmf-preferences to detect DTMF
methods of choice. For parked
calls, you must set nnos-call-policy
> apply-policy-to-nnos-calls to
enabled.

Generated when the end of a DTMF
digit is detected on a call leg.

Generated when the start of a
DTMF digit is sent on a call leg.
You must set session-config > out-
dtmf-preferences to detect DTMF
methods of choice. The actual
method used depends on the
capabilities of the endpoint.

Note that you cannot send DTMF
digits to a parked endpoint.

Generated when the end of a DTMF
digit is sent on a call leg.

ASC CALL CONTROL ACTION

Parameters

[requestID]

sessionID

calllD

to

from
contentType—normally has
the value of text/plain
body—content of the
message

[requestID]

handle

method—identifies the
method used to receive
DTMF

digit

volume

duration—the initial
duration in milliseconds;
reflects how many
milliseconds were are
received in the first packet
if received as an RFC 2833
event in the media stream

[requestID]

handle

method

digit

volume
duration—reflects the
duration of the entire
DTMF tone.

[requestID]

handle

method—identifies the
method used to receive
DTMF

digit

volume

duration—the initial
duration in milliseconds;
reflects how many
milliseconds were are
received in the first packet
if received as an RFC 2833
event in the media stream

[requestID]

handle

method

digit

volume
duration—reflects the
duration of the entire
DTMF tone.

Oracle Communications ASC 3.7.0 59

ASC CALL CONTROL ACTION

Event Name

CallRedirected

AttachedEvent

DetachedEvent

MediaStartedEvent

MediaCompleteEvent

MediaStoppedEvent

MediaPausedEvent

MediaResumedEvent

Description

Generated when a party redirects a
call leg.

Generated when a call leg is
attached to a session.

Generated when a call leg is
detached from a session.

Generated when a media event is
started, such as playing a file.

Generated when a media event is
complete.

Generated when a media event is
stopped.

Generated when media playback is
paused.

Generated when a media playback
is resumed.

Parameters

requestld
handle
sessionID
calllD

to

from

handle
sessionlD
calllD

to

from
requestiD

handle
sessionID
calllD

to

from
requestiD

handle
sessionID

calllb

to

from

requestiD
capabilities
media-file-status

handle
sessionID

calllD

to

from

requestiD
media-file-status

handle
sessionID

calllD

to

from

requestiD
media-file-status

handle
sessionID

calllD

to

from

requestiD
media-file-status

handle
sessionID

calllD

to

from

requestiD
media-file-status

60 Oracle Communications ASC 3.7.0

ASC CALL CONTROL ACTION

Event Name Description Parameters

MediaSeekEvent Generated when the location in a « handle
media source is changed. « sessionlD
< calllD
- to
= from
= requestlD
= media-file-status

RecordCompleteEvent Generated when a recording event = handle
has completed. « sessionlD
= calllD
- 1o
= from
= requestlD
= filename

RecordingStartedEvent Generated when on demand = handle
recording is started. « sessionlD
< calllb
- 1o
= from
= requestiD
= filename

RecordingStoppedEvent Generated when on demand = handle
recording is stopped. « sessionlD
< calllb
- 1o
- from
= requestlD
« filename

The following is a list of elements commonly found in event messages:

« requestiD—The ID provided by the call-control caller. This element only appears if
it was originally provided.

« handle—The call leg handle, expressed as a decimal number.

» sessionlD/session-id—The internally applied session ID, expressed as a decimal
number.

e calliD/call-id—The call-1D field from the SIP message. Each call leg should have
distinct Call-I1Ds.

e to—The To URL.
e from—The From URI.
» sessConfig/session-config—The session configuration that was applied to the call.

e callDuration—The length of a call, expressed as an I1SO 8601-format time duration.
This may either look like PnDTnHNMNS (legacy format) or PnYnMnDTnHnMn.nS
(simplified format), where n represents the integer.

e reason—The reason a call was terminated, based on the SIP response message (200
for normal termination, 404 for not found, 500 for internal error, etc.)

« fileTime—The length of an audio file, in milliseconds.
e playTime—The number of milliseconds of an audio file that was played.
» fileName—The name of the file that was recorded.

Oracle Communications ASC 3.7.0 61

ASC CALL CONTROL ACTION

Call-Control Actions

call-control-accept

call-control-annotate

call-control-attach

call-control-call

This section describes all of the call-control actions, their parameters, structure of their
result XML, and events generated.

Parameters surrounded by brackets ([]) are optional.

Accepts an incoming call from an offering endpoint.

Note: You must specify content-type as application/sdp and body as the SDP for the
call.

Syntax
call-control-accept <handle> [content-type] [bodyl

Arguments

« <handle>—Identifies the leg of a session. Handles are returned as part of the <info>
element of call-control results and can be used to manipulate each leg of a call
independently.

* [content-type]—Specifies the Content-Type: for the indication.
* [body]—Specifies the body for the indication.

Annotates the text you specify to a call leg.

Syntax
call-control-annotate <handle> <text>

Arguments

e <handle>—Identifies the handle of the call to which you want to add annotated
information.

e <text>—The annotated text you are providing to the call leg.

Attaches a call leg to an existing SIP session.
Syntax
call-control-attach <handle> <session-iad>
Arguments
¢ <handle>—The handle of the endpoint to be attached.
e <session-id>—The session to which the endpoint is being attached.

Initiates a call using To and From SIP URIs you provide.

You can set the ASC to add post-dial digits to a call-control call action. Append the
string postd=digits to the user portion of the to parameter. The following example shows
the ASC adding post-dial digits 12345@acmepacket.com to a call.

Syntax

call-control-call <to> <from> [requestld] [originatorFirst] [async] [
transport] [config]

Arguments
¢ <to>—The destination SIP URI of the call.

62 Oracle Communications ASC 3.7.0

call-control-call-to-
session

call-control-create-
session

ASC CALL CONTROL ACTION

<from>—The originating SIP URI of the call.

[requestld]—A unique identifier provided by an external application. This value can
be used to identify the call in subsequent events and actions. If a requestld is
specified, there is a corresponding XML element in the event messages generated for
the session.

[originatorFirst}l—When enabled (the default), the originating party is connected
first. When disabled, the called party is connected first.

[async]—When enabled, causes the ASC to return a response immediately without
waiting for the action to complete. When disabled (the default), the ASC waits for
the action to complete before returning a response.

[transport]—The transport method to use for the call. This can be set to any, TCP,
UDP, or TLS.

[config]—The session-config on the ASC to use to process a call. Use the full path
to the session-config. For example:

vsp\session-config-pool\entry MyConfig

Enclose the value in quotation marks when using the CLI.

Initiates a call to an existing session.

Syntax

call-control-call-to-session <to> <from> <session-id> [requestld]
[originatorFirst] [asyncl [transport] [config] [content-type]l [body]

Arguments

<to>—The destination SIP URI of the session.
<from>—The originating SIP URI of the session.
<session-id>—The optional session ID for the session.

[requestld]—A unique identifier provided by an external application. This value can
be used to identify the call in subsequent events and actions. If a requestld is
specified, there is a corresponding XML element in the event messages generated for
the session.

[originatorFirst]l—When enabled (the default), the originating party is connected
first. When disabled, the called party is connected first.

[async]—When enabled, causes the OS-E to return a response immediately without
waiting for the action to complete. When disabled, (the default) the OS-E waits for
the action to complete before returning a response.

[transport]—The transport method to use for the call. This can be set to any, TCP,
UDP, or TLS.

[config]—The session-config on the OS-E to use to process a call. Use the full path
to the session-config. For example:

vsp\session-config-pool\entry MyConfig

[content-type]—Specifies the Content-Type: for the indication.
[body]—Specifies the body for the indication.

Creates a rendezvous session to which you can then add call-legs, add named-variables,
or destroy the session. The OS-E automatically assigns the session a unique 64-bit session

ID.

Oracle Communications ASC 3.7.0 63

ASC CALL CONTROL ACTION

call-control-connect

call-control-custom

Syntax
call-control-create-session [requestld] [to] [from]

Arguments

e [requestld]—A unique identifier provided by an external application. This value can
be used to identify the call in subsequent events and actions. If a requestld is
specified, there is a corresponding XML element in the event messages generated for
the session.

e [to]—The To URI for the rendezvous session.
e [from]—The From URI for the rendezvous session.

Connects an existing parked call leg to a given endpoint. If the called party ends the call,
the original call reverts back to a parked state.
Syntax

call-control-connect <handle> <endpoint> [async]l [requestld] [park]
[config]

Arguments

» <handle>—Identifies the leg of a call. Handles are returned as part of the <info>
element of call-control results and can be used to manipulate each leg of a call
independently.

« <endpoint>—The URI of the call’s destination.

« [async]—When enabled, causes the OS-E to return a response immediately without
waiting for the action to complete. When disabled, (the default) the OS-E waits for
the action to complete before returning a response.

e [requestld]— A unique identifier provided by an external application. This value can
be used to identify the call in subsequent events and actions. If a requestld is
specified, there is a corresponding XML element in the event messages generated for
the session.

« [park]—When enabled, the outgoing call leg persists and reverts to a parked state
when its peer is terminated.

¢ [config]—The session-config on the OS-E to use to process a call. Use the full path
to the session-config. For example:

vsp\session-config-pool\entry MyConfig

Creates and controls established calls and overrides specific session configuration
settings.

Syntax

call-control-custom <call> <to> <from> [requestld] [originatorFirst]
[async]l [transport]l [config] [session-id]

Arguments

e <call>—lInitiates a call using provided To and From SIP URIs.
e <to>—The To URI for the session.

o <from>—The From URI from the session.

e [requestld]—A unique identifier provided by an external application. This value can
be used to identify the call in subsequent events and actions. If a requestld is
specified, there is a corresponding XML element in the event messages generated for
the session.

64 Oracle Communications ASC 3.7.0

call-control-destroy-
session

call-control-detach

call-control-detach-to-
session

call-control-
disconnect

ASC CALL CONTROL ACTION

e [originatorFirst}—When enabled (the default), the originating party is connected
first. When disabled, the called party is connected first.

e [async] —When enabled, causes the OS-E to return a response immediately without
waiting for the action to complete. When disabled, (the default) the OS-E waits for
the action to complete before returning a response.

e [transport]—The transport method to use for the call. This can be set to any, TCP,
UDP, or TLS.

« [config]—The session-config on the OS-E to use to process a call. Use the full path
to the session-config. For example:

vsp\session-config-pool\entry MyConfig

Enclose the value in quotation marks when using the CLI.

e [session-id] —The optional session ID for the session.

Destroys a rendezvous session.

Syntax
call-control-destroy-session <session-iad>

Arguments

e <session-id>—The session-id for the rendezvous session you are destroying. This is
the unique 64 bit session ID given to the session by the OS-E when it was created.

Detaches a call leg from an existing SIP session. If you do not specify a session 1D, the
OS-E creates a new parked session with that call leg. If you specify a session 1D, the OS-
E parks the call leg to that existing session.

Syntax
call-control-detach <handle> [session-id]

Arguments
e <handle>—The handle of the endpoint to be detached.

e <session-id>—The optional session 1D to which you are parking this call leg. If you
do not provide a session 1D, the ASC creates a new session.

Detaches a call leg and parks it to an existing specified session.

Syntax
call-control-detach-to-session <handle> <session-id>

Arguments
¢ <handle>—The handle of the endpoint from which you are detaching.
e <session-id>—The session ID to which you are parking this call leg.

Disconnects all legs of a call. The handle parameter can be the handle of either call leg.

Syntax
call-control-disconnect <handle>

Arguments

Oracle Communications ASC 3.7.0 65

ASC CALL CONTROL ACTION

call-control-drop-file

call-control-fork

call-control-get-
annotation

« <handle>—Identifies the leg of a call. Handles are returned as part of the <info>
element of call-control results and can be used to manipulate each leg of a call
independently.

Plays the specified audio file to the party connected to the call leg. When finished, the
ASC terminates the call leg.
Syntax
call-control-drop-file <handle> <filename> [async]
Arguments
» <handle>—Identifies the leg of a call. Handles are returned as part of the <info>

element of call-control results and can be used to manipulate each leg of a call
independently.

« <filename>—The name of the audio file where a message is recorded or from where
a message is played. Audio files must be .wav files in 44.1 kHz, 16-bit mono PCM
format. If you give an invalid filename, it is placed in or taken from the /cxc
directory.

* [async]—When enabled, causes the OS-E to return a response immediately without
waiting for the action to complete. When disabled (the default), the OS-E waits for
the action to complete before returning a response.

Adds a new endpoint’s SIP URI to the parked call. The endpoint can receive media but
cannot send it. Multiple endpoints can be added using this action.
Syntax

call-control-fork <handle> <endpoint> [async]l [requestld] [config]
Arguments

» <handle>—Identifies the leg of a call. Handles are returned as part of the <info>
element of call-control results and can be used to manipulate each leg of a call
independently.

« <endpoint>—The URI of the call’s destination.

« [async]—When enabled, causes the ASC to return a response immediately without
waiting for the action to complete. When disabled (the default), the ASC waits for
the action to complete before returning a response.

« [requestld]—A unique identifier provided by an external application. This value can
be used to identify the call in subsequent events and actions. If a requestld is
specified, there is a corresponding XML element in the event messages generated for
the session.

« [config]—The session-config on the ASC to use to process a call. Use the full path
to the session-config. For example:

vsp\session-config-pool\entry MyConfig

Enclose the value in quotation marks when using the CLI.

Retrieves the annotated text given to the call leg.
Syntax

call-control-get-annotation <handle>

Arguments

66 Oracle Communications ASC 3.7.0

call-control-hold

call-control-info-
request

call-control-insert-
dtmf

call-control-intercept

ASC CALL CONTROL ACTION

¢ <handle>—Identifies the leg of a call. Handles are returned as part of the <info>
element of call-control results and can be used to manipulate each leg of a call
independently.

Places the specified call leg on hold. This puts the media of that call leg into send-only
mode. The media of the other call leg, if present, is put into receive-only mode.

Syntax
call-control-hold <handle>

Parameters

» <handle>—Identifies the leg of a call. Handles are returned as part of the <info>
element of call-control results and can be used to manipulate each leg of a call
independently.

Sends an INFO on an existing call.
Syntax

call-control-info-request <handle> [info-package] [content-type]
[body]

Arguments

« <handle>—Identifies the leg of a call. Handles are returned as part of the <info>
element of call-control results and can be used to manipulate each leg of a call
independently.

« [info-package]—The INFO message to send to the existing call.
¢ [content-type]—Specifies the Content-Type: for the indication.
e [body]—Specifies the body for the indication.

Inserts DTMF digits into the call leg. DTMF is inserted only into the call leg specified,;
the other party does not hear it.

Note also that DTMF insertion is currently only supported for two-legged calls, not
parked calls.

Syntax
call-control-insert-dtmf <handle> <digits> [volumel [duration]
Arguments

» <handle>—Identifies the leg of a call. Handles are returned as part of the <info>
element of call-control results and can be used to manipulate each leg of a call
independently.

« <digits>—Specifies the digits inserted into the call leg.

e [volume]—The volume of the DTMF digits, in decimals from -36 to 0. The value 1
is the default.

e [duration]—The duration of each digit in milliseconds, from 100 to 10000. The
value 0 is the default.

Connects an incoming call to an existing parked call.
Syntax

call-control-intercept <handle> <target>

Oracle Communications ASC 3.7.0 67

ASC CALL CONTROL ACTION

call-control-join

call-control-media-
pause

call-control-media-
resume

call-control-media-
scanner-start

Arguments

* <handle>—Identifies the leg of a session. Handles are returned as part of the <info>
element of call-control results and can be used to manipulate each leg of a call
independently.

e <target>—The handle of the parked call.

Connects the parties of two separate calls together. The original call legs, identified by
handlel and handle2, are disconnected.
Syntax
call-control-join <handlel> <handle2>
Arguments
« <handlel>—Identifies the leg of the first call. Handles are returned as part of the

<info> element of call-control results and can be used to manipulate each leg of a
call independently.

* <handle2>—Identifies the leg of the second call. Handles are returned as part of the
<info> element of call-control results and can be used to manipulate each leg of a
call independently.

Pauses the playing of an audio file on an active call leg.
Syntax

call-control-media-pause <handle>
Parameters
« <handle>—Identifies the leg of a call. Handles are returned as part of the <info>

element of call-control results and can be used to manipulate each leg of a call
independently.

Resumes the playing of an audio file on an active call leg.
Syntax

call-control-media-resume <handle>

Parameters

¢ <handle>—Identifies the leg of a call. Handles are returned as part of the <info>
element of call-control results and can be used to manipulate each leg of a call
independently.

Attaches a media scanner to a call-leg (in-leg or out-leg) and begins analyzing the signal
strength of the received audio. The media scanner reports events when the signal
strengths detected cross from the low-threshold property settings to the high-threshold
property settings, or vice-versa, and based on the configuration for the media-scanner
settings. The media-scanner configuration is retrieved from the session-config associated
with the target call. You can specify a named session config, which overrides the session
config. The media-scanner settings configuration applied is based on the following
precedence:

* in-media-scanner-settings—media scanner settings per in-leg call
» out-media-scanner-settings—out media scanner settings per out-leg call

» session-config-media-scanner-settings—media scanner settings per session-config

68 Oracle Communications ASC 3.7.0

call-control-media-
scanner-stop

call-control-media-
seek

ASC CALL CONTROL ACTION

¢ default-media-scanner-settings—default property settings
The media scanner will report one of the following events when a transition has occurred:

e Short-pause—When a transition (for example, from stable tone to quiet) takes less
time than the low-long-duration property setting, such as less than 200 milliseconds

« Long-pause—When a transition (for example, from stable tone to quiet) takes more
time than the low-long-duration property setting, such as more than 200 milliseconds

e Short-talk—When the media-scanner detects talk less than the high-long-duration
property setting, such as less than 900 milliseconds

e Long-talk—When the media-scanner detects talk longer than the high-long-duration
property setting, such as longer than 900 milliseconds

» Stable-tone—When the media-scanner detects a constant signal over a sample
interval as determined by the averaging window.

Syntax
call-control-media-scanner-start <handle> [config]

Arguments

» <handle>—Identifies the leg of a session. Handles are returned as part of the <info>
element of call-control results and can be used to manipulate each leg of a call
independently.

¢ [config]—The session-config on the OS-E to use to process a call. Use the full path
to the session-config. For example:

vsp\session-config-pool\entry MyConfig

Detaches a media scanner from a call leg.

Syntax
call-control-media-scanner-stop <handle>

Arguments

« <handle>—Identifies the leg of a session. Handles are returned as part of the <info>
element of call-control results and can be used to manipulate each leg of a call
independently.

Seeks a specific point in a monitored recording file.
Syntax

call-control-media-seek <handle> <seek-offset> [position]
Arguments

¢ <handle>—Identifies the leg of a session. Handles are returned as part of the <info>
element of call-control results and can be used to manipulate each leg of a call
independently.

o <seek-offset>—The offset, in milliseconds, to begin seeking. A negative value seeks
backwards. Seeking starts at the spot specified by the position parameter.

* [position]—Indicates the position to begin seeking:
» start—Seek from the start of the file. This is the default behavior.
e current—Seek from the current position of the file.
e end—Seek from the end of the file.

Oracle Communications ASC 3.7.0 69

ASC CALL CONTROL ACTION

call-control-media-
stop

call-control-memo-
begin

call-control-memo-end

call-control-message

Stops the playing of an audio file on an active call leg.

Syntax
call-control-media-stop <handle>
Arguments
» <handle>—Identifies the leg of a call. Handles are returned as part of the <info>

element of call-control results and can be used to manipulate each leg of a call
independently.

Records a message from the parked party, identified by a call leg handle, and stores it in
a file you specify.

Note: When cluster is enabled, master-service > file-mirror must be enabled for
it to work properly.

Syntax

call-control-memo-begin <handle> <filename> [greeting] [cluster]
Arguments
» <handle>—Identifies the leg of a call. Handles are returned as part of the <info>

element of call-control results and can be used to manipulate each leg of a call
independently.

« <filename>—The name of the audio file where a message is recorded or from where
a message is played. Audio files must be .wav files in 44.1 kHz, 16-bit mono PCM
format. If you give an invalid filename, it is placed in or taken from the /cxc
directory.

¢ [greeting]—A greeting file that may be applied first as a prompt.

e [cluster]—When enabled, the file is available to all ASCs in the cluster. When
disabled (the default), the file is only available on the local ASC.

Ends a recording on the specified call leg.

Syntax
call-control-memo-end <handle>
Arguments
» <handle>—Identifies the leg of a call. Handles are returned as part of the <info>

element of call-control results and can be used to manipulate each leg of a call
independently.

Connects to a given endpoint, plays the file you specify, then disconnects the call. If you
specify a From URI, that appears in the From header as the calling party; if no URI is
specified, the To URI is used as the From header.

Syntax

call-control-message <filename> <endpoint> [fron] [requestld] [async]
[conTig]

Arguments

« <filename>—The name of the audio file where a message is recorded or from where
a message is played. Audio files must be .wav files in 44.1 kHz, 16-bit mono PCM
format. If you give an invalid filename, it is placed in or taken from the /cxc
directory.

70 Oracle Communications ASC 3.7.0

call-control-message-
request

call-control-modify

call-control-monitor-
file

ASC CALL CONTROL ACTION

¢ <endpoint>—The URI of the call’s destination.
e [from]—The originating SIP URI of the call.

e [requestld]—A unique identifier provided by an external application. This value can
be used to identify the call in subsequent events and actions. If a requestld is
specified, there is a corresponding XML element in the event messages generated for
the session.

* [async]—When enabled, causes the ASC to return a response immediately without
waiting for the action to complete. When disabled (the default), the ASC waits for
the action to complete before returning a response.

e [config]—The session-config on the ASC to use to process a call. Use the full path
to the session-config. For example:

vsp\session-config-pool\entry MyConfig

Enclose the value in quotation marks when using the CLI.

Sends a MESSAGE on an existing call.
Syntax
call-control-message-request <handle> [content-type] [body]

Arguments

* <handle>—Identifies the leg of a session. Handles are returned as part of the <info>
element of call-control results and can be used to manipulate each leg of a call
independently.

e [content-type]—Specifies the Content-Type: for the indication.
* [body]—Specifies the body for the indication.

Sends a re-INVITE on an existing call leg.
Syntax
call-control-modify <handle> [content-type] [bodyl

Arguments

e <handle>—Identifies the leg of a session. Handles are returned as part of the <info>
element of call-control results and can be used to manipulate each leg of a call
independently.

e [content-type]—Specifies the Content-Type: for the indication.
* [body]—Specifies the body for the indication.

Attaches a monitor session to a recording file. A recording file can be a live session
currently being recorded, an old session that was recorded, an on-demand recording of a
session, or a memo actively being recorded.

Syntax

call-control-monitor-file <handle> <session-id> <monitor-target>
[seek-offset] [position]

Arguments
¢ <handle>—Identifies the leg of a session. Handles are returned as part of the <info>

element of call-control results and can be used to manipulate each leg of a call
independently.

Oracle Communications ASC 3.7.0 71

ASC CALL CONTROL ACTION

call-control-monitor-
session

call-control-mute-off

call-control-mute-on

call-control-notify

e <session-id>—The optional session ID for the session.

e <monitor-target>—The filename of the file to be played. This can be:
« session—A session recording file is going to be monitored.
* memo—A memo actively being recorded is going to be monitored.

* name—The on-demand filename specified in the call-control-record-start action
is being monitored.

» [seek-offset]—The offset, in milliseconds, to begin seeking. A negative value seeks
backwards. Seeking starts at the spot specified by the position parameter.

« [position]—Indicates the position to begin seeking

Attaches a monitor session to a live target session. The monitor session must join the
target session in-progress as it has no ability to seek forward or backward during a live
recording.

Syntax
call-control-monitor-session <handle> <session-id>

Arguments

» <handle>—Identifies the leg of a session. Handles are returned as part of the <info>
element of call-control results and can be used to manipulate each leg of a call
independently.

e <session-id>—The optional session ID for the session.

Turns off the mute functionality for a call leg.

Syntax
call-control-mute-off <handle>

Arguments

» <handle>—Identifies the leg of a session. Handles are returned as part of the <info>
element of call-control results and can be used to manipulate each leg of a call
independently.

Turns on the mute functionality for a call leg.

Syntax
call-control-mute-on <handle>

Arguments

» <handle>—Identifies the leg of a session. Handles are returned as part of the <info>
element of call-control results and can be used to manipulate each leg of a call
independently.

Causes a SIP NOTIFY message to be sent to the party you specify in the handle
parameter, with the value of the Event header set by the event parameter.

Syntax

call-control-notify <handle> <event>

Arguments

72 Oracle Communications ASC 3.7.0

call-control-notify-
request

call-control-options-
request

call-control-park

ASC CALL CONTROL ACTION

¢ <handle>—Identifies the leg of a call. Handles are returned as part of the <info>
element of call-control results and can be used to manipulate each leg of a call
independently.

* <event>—The content of the Event header.

Sends a NOTIFY on an existing call.
Syntax

call-control-notify-request <handle> <event> [async]l [content-type]
[body]

Arguments

» <handle>—Identifies the leg of a session. Handles are returned as part of the <info>
element of call-control results and can be used to manipulate each leg of a call
independently.

* <event>—The content of the event header.

« [async]—When enabled, causes the OS-E to return a response immediately without
waiting for the action to complete. When disabled, (the default) the OS-E waits for
the action to complete before returning a response.

* [content-type]—Specifies the Content-Type: for the indication.
e [body]—Specifies the body for the indication.

Sends an OPTIONS on an existing call.
Syntax
call-control-options-request <handle> [content-type] [body]

Arguments

» <handle>—Identifies the leg of a session. Handles are returned as part of the <info>
element of call-control results and can be used to manipulate each leg of a call
independently.

¢ [content-type]—Specifies the Content-Type: for the indication.
e [body]—Specifies the body for the indication.

Creates a call to an endpoint from a given SIP URI. If you specify a From URI, it is used
as the From URI in the SIP message; if you specify no From URI, the From URI is that
of the given endpoint.

Syntax

call-control-park <endpoint> [fron) [requestld] [async]l [sessioniD]
[persist] [config]

Arguments
« <endpoint>—The URI of the call’s destination.
e [from]—The originating SIP URI of the call.

e [requestld]—A unique identifier provided by an external application. This value can
be used to identify the call in subsequent events and actions. If a requestld is
specified, there is a corresponding XML element in the event messages generated for
the session.

Oracle Communications ASC 3.7.0 73

ASC CALL CONTROL ACTION

call-control-park-to-
session

call-control-
persistence

call-control-play

[async]—When enabled, causes the ASC to return a response immediately without
waiting for the action to complete. When disabled (the default), the ASC waits for
the action to complete before returning a response.

[sessionld]—The optional session ID for a rendezvous session.

[persistl—When enabled, a connected session remains parked even when the
remote endpoint disconnects.

[config]—The session-config on the ASC to use to process a call. Use the full path
to the session-config. For example:

vsp\session-config-pool\entry MyConfig
Enclose the value in quotation marks when using the CLI.

Parks a call to an existing session.

Syntax

call-control-park-to-session <endpoint> <sessionlD> [fron] [requestlid]
[async]l Lpersist] [config]

Arguments

<endpoint>—The handle of call leg on the existing session.
<session-id>—The optional session ID for the session.
[from]—The From URL of the parked call.

[requestld]—A unique identifier provided by an external application. This value can
be used to identify the call in subsequent events and actions. If a requestld is
specified, there is a corresponding XML element in the event messages generated for
the session.

[async]—When enabled, causes the OS-E to return a response immediately without
waiting for the action to complete. When disabled, (the default) the OS-E waits for
the action to complete before returning a response.

[persistl—When enabled, a connected session remains parked even when the
remote endpoint disconnects.

[config]—The session-config on the OS-E to use to process a call. Use the full path
to the session-config. For example:

vsp\session-config-pool\entry MyConfig

Makes a call-leg persist in a parked state even when its peer is terminated.

Syntax

call-control-persistence <handle> <persist>

Arguments

<handle>—Identifies the leg of a session. Handles are returned as part of the <info>
element of call-control results and can be used to manipulate each leg of a call
independently.

<persist>—When enabled, a connected session remains parked even when the
remote endpoint disconnects.

Plays a given audio file to the specified call leg. If two call legs are connected, the file is
played to both parties.

74 Oracle Communications ASC 3.7.0

call-control-record-
start

call-control-record-
stop

call-control-redirect

ASC CALL CONTROL ACTION

If the session-config > media-scanner-settings is configured, the ASC waits until the
recipient (or an answering machine) has finished speaking before delivering the message.
If the media scanner times out waiting for the recipient to finish speaking, the file is not
played.

Syntax
call-control-play <handle> <filename> [startTime] [async]
Arguments

» <handle>—Identifies the leg of a call. Handles are returned as part of the <info>
element of call-control results and can be used to manipulate each leg of a call
independently.

« <filename>—The name of the audio file where a message is recorded or from where
a message is played. Audio files must be .wav files in 44.1 kHz, 16-bit mono PCM
format. If you give an invalid filename, it is placed in or taken from the /cxc
directory.

e [startTime]—The number of milliseconds the ASC waits before playing the file.

* [async]—When enabled, causes the ASC to return a response immediately without
waiting for the action to complete. When disabled (the default), the ASC waits for
the action to complete before returning a response.

Starts the on-demand recording or a target session to a specific <filename> file. This
recording can then be monitored via the call-control-monitor-file action. You can
execute this command one or more times for a given target session, provided you give it
a different <filename> each time. If a <filename> already exists for a given target
session, the existing <filename> is preserved and the action fails.

Syntax
call-control-record-start <session-id> <filename>

Arguments
e <session-id>—The optional session ID for the session.

« <filename>—The name of the recording for this particular target session.

Stops the on-demand recording or a target session to a specific <filename>.

Syntax
call-control-record-stop <session-iad> <filename>

Arguments
e <session-id>—The optional session ID for the session.
« <filename>—The name of the recording for this particular target session.

Redirects an initiated call to a new endpoint, prior to the call being answered. This creates
a new call leg and cancels the original one.

Syntax

call-control-redirect <handle> <endpoint> [config]

Arguments

Oracle Communications ASC 3.7.0 75

ASC CALL CONTROL ACTION

call-control-reject

call-control-retrieve

call-control-ringing

¢ <handle>—Identifies the leg of a call. Handles are returned as part of the <info>
element of call-control results and can be used to manipulate each leg of a call
independently.

« <endpoint>—The URI of the call’s destination.

e [config]—The session-config on the ASC to use to process a call. Use the full path
to the session-config. For example:

vsp\session-config-pool\entry MyConfig

Enclose the value in quotation marks when using the CLI.

Rejects an incoming call from an offering endpoint.
Syntax
call-control-reject <handle> [response-code] [responseText]

Arguments

« <handle>—Identifies the leg of a session. Handles are returned as part of the <info>
element of call-control results and can be used to manipulate each leg of a call
independently.

» [response-code]—The SIP response code to return in response.

e [responseText]—Text text to return in the response.

Retrieves the held call leg you specify by call handle. This reconnects the call’s media for
that call leg and, if present, the other call leg.

Syntax
call-control-retrieve <handle>
Arguments

« <handle>—Identifies the leg of a call. Handles are returned as part of the <info>
element of call-control results and can be used to manipulate each leg of a call
independently.

Redirects an initiated call to a new endpoint, prior to the call being answered. This creates
a new call leg and cancels the original one.

Syntax
call-control-redirect <handle> <endpoint> [config]

Arguments

¢ <handle>—Identifies the leg of a session. Handles are returned as part of the <info>
element of call-control results and can be used to manipulate each leg of a call
independently.

e <endpoint>—The URI of the call’s destination.

e [config]—The session-config on the OS-E to use to process a call. Use the full path
to the session-config. For example:

vsp\session-config-pool\entry MyConfig

Enclose the value in quotation marks when using the CLI.

76 Oracle Communications ASC 3.7.0

call-control-send-
message

call-control-subscribe-
request

call-control-terminate

ASC CALL CONTROL ACTION

Sends a message to the endpoint specified by the To URI. If you specify a From URI, it
is used for the From URI. If a From URI is not specified, the From URI is the same as the
To URL.

Syntax
E?J(IJ:/)_/(]:OEEZ% ;E—’_zz?nd—message <to> <from> [requestld] [content-type]
Arguments
e <to>—The destination SIP URI of the call.
o <from>—The originating SIP URI of the call.

e [requestld]—A unique identifier provided by an external application. This value can
be used to identify the call in subsequent events and actions. If a requestld is
specified, there is a corresponding XML element in the event messages generated for
the session.

e [content-type]—Should be set to text/plain.
e [body]—The content of the message.

* [config]—The session-config on the ASC to use to process a call. Use the full path
to the session-config. For example:

vsp\session-config-pool\entry MyConfig

Enclose the value in quotation marks when using the CLI.

Sends a SUBSCRIBE on an existing call.
Syntax

call-control-subscribe-request <handle> [pkgl [expires] [content-type]
[boay]

Arguments

» <handle>—Identifies the leg of a session. Handles are returned as part of the <info>
element of call-control results and can be used to manipulate each leg of a call
independently.

e [pkg]—Specifies the package for the SUBSCRIBE.

e [expires]—The expiration value for the SUBSCRIBE.

e [content-type]—Specifies the Content-Type: for the indication.
* [body]—Specifies the body for the indication.

Terminates the call leg indicated by the handle you specify. This parameter is only
available for calls with a parked status.

Syntax
call-control-terminate <handle>
Arguments

« <handle>—Identifies the leg of a call. Handles are returned as part of the <info>
element of call-control results and can be used to manipulate each leg of a call
independently.

Oracle Communications ASC 3.7.0 77

ASC CALL CONTROL ACTION

call-control-transfer

Media Forking

Transfers the specified call leg to the specified To SIP URI. The original call leg, referred
to by its handle, is disconnected. Handle can be thought of as belonging to the party doing
the transfer, even though the transfer is done via a third-party action.

Syntax

call-control-transfer <handle> <to>
Arguments

» <handle>—Identifies the leg of a call. Handles are returned as part of the <info>
element of call-control results and can be used to manipulate each leg of a call
independently.

e <to>—The destination SIP URI of the call.

The OS-E now supports audio and video media forking, meaning a source endpoint can
fork media to one or more target endpoints. The source endpoint is a one-legged call
which initiates a call to the OS-E. The OS-E then initiates a call to each forked target. In
this type of media forking, the media flows in one direction only, from the source
endpoint, through the OS-E, to each of the targets.

Media forking is initiated via the call-control-fork action. This action establishes a call
from the source endpoint and replicates the media to the newly established target
sessions. The action syntax is:

call-control-fork <handle> <endpoint> [async]l [requestlD] [config]
Valid arguments for this action are:
* <handle>—The call-leg handle of the source endpoint.
« <endpoint>—The URL of the target endpoint.

* [async]—When enabled, this action returns immediately as opposed to waiting for
the action to complete the call.

e [requestID]—This call’s request identifier. If included, this value is returned in all of
this action’s events.

e [config]—The session-config to use when calling the endpoint.

To end a media forking session, use the call-control disconnect action. If you disconnect
a target endpoint, the call from the source and remaining targets is still active. If you
disconnect the source endpoint, all call-legs to the target endpoints are disconnected. The
action syntax is:

call-control disconnect <handle>

Valid arguments for this action are:

e <handle>—The handle of the call-leg to disconnect.

Attended Voice Insertion

This feature allows a caller to play a pre-recorded message that both the caller and callee
can hear. The caller can start playing the message at any point, pause, resume, or stop
playing the message.

The OS-E allows the caller to begin playing a file with the option of seeking to a specified
point via the call-control play action. The action syntax is:

78 Oracle Communications ASC 3.7.0

ASC CALL CONTROL ACTION

call-control play <handle> <filename> [startTime] [async]
Valid arguments for this action are:
» <handle>—The call-leg handle on which the file is played.
« <filename>—The .wav file being played.

e [startTime]—The optional start time in milliseconds. This is used if the caller does
not want to begin playing the file right at the beginning. The default value is 0.

* [async]—When enabled, this action completes immediately as opposed to waiting
for the action to complete the call.

The OS-E stops the playing of a file via the call-control media-stop action. The action
syntax is:

call-control-media-stop <handle>
Valid arguments for this action are:
e <handle>—The call-leg handle where the file is stopped.

The OS-E pauses the playing of a file via the call-control media-pause action. The
action syntax is:

call-control-media-pause <handle>
Valid arguments for this action are:
e <handle>—The call-leg handle where the file is paused.

The OS-E resumes the playing of a file via the call-control media-resume action. The
action syntax is:

call-control-media-resume <handle>
Valid arguments for this action are:
¢ <handle>—The call-leg handle where the file is resumed.

You can configure the OS-E to send events regarding the status of the file being played
by the call-control play action. For more information on call-control events, see Chapter
3 of this guide.

When configured, the OS-E sends the following events:
e Playlnitiated—The file has begun to play.

e PlayPaused—The file has been paused.

e PlayResumed—The file has resumed playing.

* PlayStopped—The file has stopped playing.

e PlayCompleted—The file has completed playing.

On-Demand Call Monitoring and Recording

The OS-E now supports on-demand call monitoring, meaning an endpoint, known as the
monitor session, has the ability to attach itself to either a live target session or recording
file, for the purpose of listening.

When monitoring a live target session, you have the ability to start and stop monitoring.
Any time a monitor session starts listening, it joins the session in-progress.

You can configure one or more locations to which the OS-E writes files for on-demand
recording files via the services > data-locations > rtp-on-demand-recorded

Oracle Communications ASC 3.7.0 79

ASC CALL CONTROL ACTION

<directory> [directory] property. By default the OS-E writes on-demand recording files
to the /cxc_common/rtp_on_demand_recorded directory.

Once you have the rtp-on-demand-recorded property configured, you can set a rotation
scheme for writing on-demand recorded files to a directory using the services > data-
locations > rtp-on-demand-recorded-rotation property. This property can be set to
either first-available or round-robin. First-available means the OS-E writes to the first
directory that has enough space to hold the recording listed under the rtp-on-demand-
recorded property and continues to write to that directory until the disk is full and then
moves onto the next directory on the list. Round-robin means the OS-E rotates through
all configured directories in a round-robin manner. This allows for an increase in the
volume of simultaneous on-demand recorded calls by spreading the load across multiple
disks.

There are four types of monitoring you can perform when working with a recording file:
a live target session currently being recorded, a previously recorded session, an on-
demand recording session, and a memo actively being recorded. When monitoring a
recording file, the monitor session does have the ability to pause, resume, and seek
forward or backward to a particular point in the file.

The OS-E attaches a monitor session to a live target session via the call-control-monitor-
session action. The monitor session must join the target session in-progress as it has no
ability to seek forward or backward during a live recording.

NOTE: The session-config > nnos-call-policy > apply-policy-to-nnos-calls property
must be enabled for this feature to work.

The call-control-monitor-file action attaches a monitor session to a recording file. A
recording file can be a live session currently being recorded, an old session that was
recorded, an on-demand recording of a session, or a memo actively being recorded.

NOTE: The session-config > nnos-call-policy > apply-policy-to-nnos-calls
property must be enabled for this feature to work.

To stop monitoring a target session or a recording file, use the call-control media-stop
file. The action syntax is:

call-control-media-stop <handle>
Valid arguments for this action are:
e <handle>—The monitor session handle to stop listening.

The call-control media-pause action pauses the monitor of a recording file. The action
syntax is:

call-control-media-pause <handle>
Valid arguments for this action are:
¢ <handle>—The monitor session handle to pause listening.

To resume monitoring a stopped or paused recording file, use the call-control media-
resume action. The monitoring resumes from the point at which the monitoring was
stopped or paused. The action syntax is:

call-control-media-resume <handle>
Valid arguments for this action are:
¢ <handle>—The monitor session handle to resume listening.

To seek to a specific point in a monitored recording file, use the call-control media-seek
action. This action can also be used to seek to a certain point of a file when the call-
control play action is used to play a file.

80 Oracle Communications ASC 3.7.0

ASC CALL CONTROL ACTION

The call-control-record-start action starts the on-demand recording of a target session
to a specific file. This recording can then be monitored via the call-control-monitor-file
action. You can execute this command one or more times for a given target session,
provided you give it a different <filename> each time. If a <filename> already exists for
a given target session, the existing <filename> is preserved and the action fails.

The call-control-record-stop action stops the on-demand recording of a target session to
a specific <filename>.

The media-on-demand-delete command deletes on-demand recording files by
specifying a session-id and filename. The action syntax is:

media-on-demand-delete <session-id> <filename>

Valid arguments for this action are:
e <session-id>—The session-id of the on-demand recording file to delete.
« <filename>—The on-demand recording filename to delete.

The media-on-demand-delete-old action deletes all on-demand recording files that are
older than the specified time. The time units can be specified in days or seconds. The
default value in which to purg3e old on-demand recording files is 7 days. The action
syntax is:

media-on-demand-delete-old <age> [units]

Valid arguments for this action are:
e <age>—The age at which to delete on-demand recordings. The default is 7 days.

e [units]—This optional parameter allows you to specify the units in which the age is
measured. This can be either days or seconds. If you do not specify, the default is
days.

You can archive on-demand recordings using the existing archiving support when the
session-config > media > recording-policy object is configured. This existing archiver
has been extended to support the archiving of one or more on-demand recordings per
session. Note that multiple on-demand recordings can be created for the same session.
The archiver also supports mixing the ras media files to a .wav file and archiving that file.

The on-demand-mixed-media command can be configured under either the vsp >
accounting > archive-local > path <name> object or vsp > accounting > archive-
external > url <url> object. It has been created to control whether the on-demand
recordings associated with a session are mixed to a .wav file and included in the archive
for a call. It also determines whether the raw on-demand recordings are included in the
archive if the mixing of the on-demand recording fails.

The on-demand-mixed-media syntax is:
on-demand-mixed-media <include> <include-raw-media-on-mix-fail>
Valid arguments for this property are:

¢ <include>—Can be set to true or false and determines whether on-demand mixed
media is included in the archive.

* <include-raw-media-on-mix-fail>—Can be set to true or false and determines
whether on-demand raw media is included in the archive if the mixing fails.

To always include raw media in the archive use the include-on-demand-raw-media
property configured under either the vsp > accounting > archive-local > path <name>
object or vsp > accounting > archive-external > url <url> object. This property can be
set to either true or false.

Oracle Communications ASC 3.7.0 81

ASC CALL CONTROL ACTION

Field

The mix-session-threaded action has been extended to support the mixing of on-demand
recorded files. A new <recorded-filename> argument has been added to this action to
indicate the on-demand recording filename that is being mixed. For more information on
the mix-session-threaded action see the Oracle Communications OS-E Objects and
Properties Reference Guide.

Note: When using the mix-session and mix-session-threaded actions after
executing the call-control-record-start and call-control-record-stop commands in
the context of on-demand recording, you must include the <recorded-filename>
argument.

Two status show commands have been created to allow you to view on-demand call
monitoring information.

The show media-on-demand-recordings status displays the on-demand recording files
for a given session. This information displayed with this status provider can be used with
the call-control monitor-file command to listen to these on-demand recording files.

NNOS-E>show media-on-demand-recordings

session-id filename start-time

0x4c42b6e0e5a6577 ro 15:57:30.798092 Tue 2011-12-06

0x4c42bela934be68 rio 12:12:17.890681 Thu 2011-12-08
Description

session-id

The session-id of the session that is recorded.

filename

The on-demand recording filename.

start-time

The date and time the on-demand recording was
started.

Field

The show media-memo-recordings status provider displays the sessions that are
actively recording memos. The information displayed with this status provider can be
used with the call-control monitor-file command to listen to these memaos as they are
being recorded.

NNOS-E>show media-memo-recordings

session-id filename start-time

0x4c43a6bb77329a3 frank.wav 15:00:04.295810 Mon 2012-02-06

Description

session-id

The session-id of the session that is recording a
memo.

filename

The filename of the memo recording

start-time

The date and time the memo recording file was
started.

Rendezvous Session Support

The OS-E now supports rendezvous sessions. Rendezvous sessions are useful for
accumulating information in named variables before attaching call legs. They have

82 Oracle Communications ASC 3.7.0

ASC CALL CONTROL ACTION

unique 64 bit session IDs as with other OS-E sessions but do not have any call-legs
attached. Once a rendezvous session is created, you can add call-legs, remove call-legs,
destroy the session, or add named-variables.

Using the call-control-create-session action, you can create a rendezvous session to
which you can then add call-legs, add named-variables, or destroy the session. The OS-E
automatically assigns the session a unique 64 bit session ID. The action syntax is:

call-control-create-session

To destroy a rendezvous session manually, use the call-control-destroy-session action. .

The OS-E also destroys a rendezvous session if you have the session-config > sip-
settings > session-duration-max property set. This property specifies how many
seconds the OS-E maintains a session after the session has been successfully established.
It puts a timer on the session and forces it to close upon expiration. If set to 0 (the default),
the session remains open until it is complete and does not timeout. This property applies
to all sessions on the OS-E, including rendezvous sessions.

To add call-legs to a rendezvous session dynamically, use the call-control park and call-
control call actions. These have been enhanced to include an optional [session-id]
argument. Once a rendezvous session has a call-leg attached, it is “promoted” to a
connected session. All subsequent interactions can be accomplished using the call control
handles as you would with a normal session.

Manually Attaching and Detaching From an Endpoint

The OS-E supports functionality which provides control over managing session
endpoints. The call-control-attach and call-control-detach actions allow you to attach
and detach from rendezvous sessions and endpoints manually.

Rendezvous sessions can be created by one of two ways. Via the call-control-create-
session action or by detaching an endpoint from a single endpoint session. For more
information on rendezvous sessions, see the Rendezvous Session Support section in this
guide.

Endpoints can be created in a few different ways. You can create an outbound call-leg via
the call-control park action, enable the third-party-call-control > park-incoming-
calls property, or use the call-control-detach command during a rendezvous session.

You can manually attach an endpoints to either rendezvous sessions or sessions resulting
from a SIP DIALOG. When attached to a rendezvous session, an endpoint remains in a
PARKED state. When attached to a single endpoint session, the OS-E joins the two
endpoints and two-way communication can take place. When the call is terminated, a
previously PARKED endpoint reverts back to PARKED and the session remains active.

When you attach an endpoint to a session already containing two endpoints, a three-way
conference call is created and three-way communication can take place. When one
endpoint terminates the call, the remaining two endpoints remain joined and two-way
communication commences.

To attach an endpoint to an existing session, use the call-control-attach action. The
action syntax is:

call-control-attach <handle> <session-id>

Valid arguments for this action are:

« <handle>—The handle of the endpoint to be attached.

Oracle Communications ASC 3.7.0 83

ASC CALL CONTROL ACTION

e <session-id>—The session to which the endpoint is being attached.

Just as you can manually attach endpoints, you can also manually detach endpoints. If you
detach a PARKED endpoint from a session that is not a rendezvous session, the endpoint
is terminated. If you detach a CONNECTED endpoint, both endpoints from the two-way
session are placed in a PARKED state. If you detach a CONFERENCED endpoint, the
detached endpoint is placed in a PARKED state and the remaining two endpoints
continue as a two-way call.

To detach an endpoint from a session, use the call-control-detach action.

84 Oracle Communications ASC 3.7.0

Appendix A ASC APl Examples

This appendix provides examples for the ASC top-level APIs. Included are both SOAP
and REST web services requests and responses. REST actions are broken down to include
both flat and hierarchical request examples.

ASC top-level APIs are:

* getConfig
« setConfig
e doAction

e getStatus
e (ueryStatus

getConfig

The ASC getConfig API uses the HTTP GET Method.

The following examples display a getConfig API request from the server for the cluster
object. The responses received from the client include the cluster configuration,
including all of its subobject configurations.

SOAP

Request <soapenv:Envelope
xmIns:soapenv="http://schemas.xmlsoap.org/soap/envelope/""
xmIns:mgmt="http://www.acmepacket.com/asc/ws/mgmt">

<soapenv:Header/>
<soapenv:Body>
<mgmt:getConfig>
<l--Zero or more repetitions:-->
<config homogeneous=""false">
<I--Zero or more repetitions:-->

<object xsi:type="MasterServicesType"
xmlns="http://www.acmepacket.com/asc/ws/common"’
xmIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance'>

<I--Optional:-->

</object></config>
<l--Zero or more repetitions:-->
</mgmt:getConfig>
</soapenv:Body>
</soapenv:Envelope>

Response <cov:getConfigResponse
xmIns:cov="http://www.acmepacket.com/asc/ws/mgmt"'>

<config>

Oracle Communications ASC 3.7.0 85

ASC APl EXAMPLES

<object xsi:type=""data:MasterServicesType" revision="1"
xmlns:data="http://www.acmepacket.com/asc/ws/common"
xmIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance'>

<cluster-master>
<admin>enabled</admin>
<host-box name="cluster\box 1"/>
<group>0</group>
<preempt>false</preempt>
<takeover-timer-value>1000</takeover-timer-value>
</cluster-master>
<directory>
<admin>disabled</admin>
<host-box name="cluster\box 1"/>
<group>0</group>
<preempt>false</preempt>
<takeover-timer-value>1000</takeover-timer-value>
</directory>
<accounting>
<admin>disabled</admin>
<host-box name="cluster\box 1"/>
<group>0</group>
<preempt>false</preempt>
<takeover-timer-value>1000</takeover-timer-value>
</accounting>
<database>
<admin>enabled</admin>
<host-box name="cluster\box 1"/>
<group>0</group>
<preempt>false</preempt>
<takeover-timer-value>1000</takeover-timer-value>
<maintenance>
<time-of-day>
<time>2012-01-30T03:00:00.000-05:00</time>
</time-of-day>
</maintenance>
<database-threads-max>4</database-threads-max>
<sip-cache-size>30000</sip-cache-size>
<performance>call-detai ls</performance>
<dos-tcp-connect-multiplier>5</dos-tcp-connect-multiplier>
<dos-tls-connect-multiplier>10</dos-tls-connect-multiplier>
<sip-registers>enabled</sip-registers>
<max-queue-depth>4000</max-queue-depth>
<caching-threshold>3500</caching-threshold>
<media>enabled</media>
<wr ite-mode>copy</write-mode>
</database>
<registration>
<admin>enabled</admin>
<host-box name="cluster\box 1"/>
<group>0</group>
<preempt>false</preempt>
<takeover-timer-value>1000</takeover-timer-value>
<mirror-all-entries>enabled</mirror-all-entries>
<mirror-location-cache>enabled</mirror-location-cache>
<force-regdb-lookup>disabled</force-regdb-lookup>

86 Oracle Communications ASC 3.7.0

ASC API EXAMPLES

<cache-poll-interval>86400</cache-poll-interval>
<max-poll-duration>1000</max-poll-duration>
<max-entries-per-pol1>100</max-entries-per-pol >
</registration>
<route-server>
<admin>enabled</admin>
<host-box name="cluster\box 1"/>
<group>0</group>
<preempt>false</preempt>
<takeover-timer-value>1000</takeover-timer-value>
<max-routes>automatic</max-routes>
<client-request-sender>only-master</client-request-sender>
<simple-updates>enabled</simple-updates>
</route-server>
<sampling>
<admin>enabled</admin>
<host-box name="cluster\box 1"/>
<group>0</group>
<preempt>false</preempt>
<takeover-timer-value>1000</takeover-timer-value>
<SamplingTarget xsi:type="data:SamplingDatabaseType">
<admin>enabled</admin>
<duration>7</duration>
<status>
<cpu-usage>
<admin>enabled</admin>
<interval>POYOMODTOH5MO0.000S</interval>
</cpu-usage>
</status>
</SamplingTarget>
</sampling>
<jtapi>
<admin>disabled</admin>
<host-box name="cluster\box 1"/>
<group>0</group>
<preempt>false</preempt>
<takeover-timer-value>1000</takeover-timer-value>
</jtapi>
<advertisement-interval>60</advertisement-interval>
<boot-interval>30</boot-interval>
</object>
</config>
</cov:getConfigResponse>

REST
Request http://172.30.80.24:8080/cms/config?name=MasterServices
Response <?xml version="1.0"?>

<object xsi:type="ExtPagelListType"
xmIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance'>

<version>E3.6.0.M5P0</version>

Oracle Communications ASC 3.7.0 87

ASC APl EXAMPLES

<resultCode>0</resultCode>
<resultStr>Success</resultStr>
<objects revision="1" xsi:type="MasterServicesType'>
<cluster-master>
<admin>enabled</admin>
<host-box name="cluster\box 1"/>
<group>0</group>
<preempt>false</preempt>
<takeover-timer-value>1000</takeover-timer-value>
</cluster-master>
<directory>
<admin>disabled</admin>
<host-box name="cluster\box 1"/>
<group>0</group>
<preempt>false</preempt>
<takeover-timer-value>1000</takeover-timer-value>
</directory>
<accounting>
<admin>disabled</admin>
<host-box name="cluster\box 1"/>
<group>0</group>
<preempt>false</preempt>
<takeover-timer-value>1000</takeover-timer-value>
</accounting>
<database>
<admin>enabled</admin>
<host-box name="cluster\box 1"/>
<group>0</group>
<preempt>false</preempt>
<takeover-timer-value>1000</takeover-timer-value>
<maintenance>
<time-of-day>
<time>2012-01-30T03:00:00.000-05:00</time>
</time-of-day>
</maintenance>
<database-threads-max>4</database-threads-max>
<sip-cache-size>30000</sip-cache-size>
<performance>call-detai ls</performance>
<dos-tcp-connect-multiplier>5</dos-tcp-connect-multiplier>
<dos-tls-connect-multiplier>10</dos-tls-connect-multiplier>
<sip-registers>enabled</sip-registers>
<max-queue-depth>4000</max-queue-depth>
<caching-threshold>3500</caching-threshold>
<media>enabled</media>
<write-mode>copy</write-mode>
</database>
<registration>
<admin>enabled</admin>
<host-box name="cluster\box 1"/>
<group>0</group>
<preempt>false</preempt>
<takeover-timer-value>1000</takeover-timer-value>
<mirror-all-entries>enabled</mirror-all-entries>
<mirror-location-cache>enabled</mirror-location-cache>

88 Oracle Communications ASC 3.7.0

ASC API EXAMPLES

<force-regdb-lookup>disabled</force-regdb-lookup>
<cache-poll-interval>86400</cache-poll-interval>
<max-poll-duration>1000</max-poll-duration>
<max-entries-per-pol1>100</max-entries-per-pol >
</registration>
<route-server>
<admin>enabled</admin>
<host-box name="cluster\box 1"/>
<group>0</group>
<preempt>false</preempt>
<takeover-timer-value>1000</takeover-timer-value>
<max-routes>automatic</max-routes>
<client-request-sender>only-master</client-request-sender>
<simple-updates>enabled</simple-updates>
</route-server>
<sampling>
<admin>enabled</admin>
<host-box name="cluster\box 1"/>
<group>0</group>
<preempt>false</preempt>
<takeover-timer-value>1000</takeover-timer-value>
<SamplingTarget xsi:type="data:SamplingDatabaseType">
<admin>enabled</admin>
<duration>7</duration>
<status>
<cpu-usage>
<admin>enabled</admin>
<interval>POYOMODTOH5MO0.000S</interval>
</cpu-usage>
</status>
</SamplingTarget>
</sampling>
<jtapi>
<admin>disabled</admin>
<host-box name="cluster\box 1"/>
<group>0</group>
<preempt>false</preempt>
<takeover-timer-value>1000</takeover-timer-value>
</jtapi>
<advertisement-interval>60</advertisement-interval>
<boot-interval>30</boot-interval>
</objects>
</object>

Oracle Communications ASC 3.7.0 89

ASC APl EXAMPLES

setConfig

This API uses the HTTP POST Method.

The following examples display a setConfig APl request from the server, configuring a
CLI banner via the cli object’s banner property. The responses received from the client
indicate the action was successful.

SOAP

Request <soapenv:Envelope
xmIns:soapenv=""http://schemas.xmlsoap.org/soap/envelope/""

xmIns:cal="http://www.covergence.com/ws/cal louts">
<soapenv:Header/>
<soapenv:Body>
<cal :setConfig mode="merge">
<config>
<Cluster>
<box>
<Box number="1">
<cli>
<CLI>

<banner>The Acme Packet Application Session
Controller sure has Web Service

interfaces!</banner>
</CLI>
</cli>
</Box>
</box>
</Cluster>
</config>
</cal :setConfig>
</soapenv:Body>
</soapenv:Envelope>

Response <soapenv:Envelope
xmIns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">

<soapenv:Body>
<setConfigResponse xmIns="http://www.covergence.com/ws/callouts'>
<Code>success</Code>
<Text>Success</Text>
</setConfigResponse>
</soapenv:Body>
</soapenv:Envelope>

REST

Request POST
http://172.44.10.59:8080/cms/config?operation=modi fy&output=xml&mode=
merge&_ format=legacy HTTP/1.1

90 Oracle Communications ASC 3.7.0

Response

doAction

ASC API EXAMPLES

Accept-Encoding: gzip,deflate
Content-Type: application/xml

User-Agent: Jakarta Commons-HttpClient/3.1
Host: 172.44.10.59:8080

Content-Length: 34

<SCP><admin>disabled</admin></SCP>

HTTP/1.1 200 OK
Server: Apache-Coyote/1.1

Set-Cookie: JSESSIONID_WS=3C747DF0159B1E36714096B99FE2A7EA; Path=/;
HttpOnly

Cache-Control: no-cache
Content-Type: text/xml
Transfer-Encoding: chunked

Date: Thu, 13 Oct 2011 16:50:35 GMT

<ExtActionResponse>
<resultCode>0</resultCode>
<resultStr>Success</resultStr>

</ExtActionResponse>

SOAP

Request

Unstructured
Response

This API uses the HTTP GET Method.

Included are two examples for each SOAP and REST, the first example includes an

unstructured response and the second example is a structured example. These examples
display an API request from the server, performing the PING action. The ASC is pinging
host 169.55.3.5. The responses received from the client indicate the action is a success.

Unstructured:

<soapenv:Envelope
xmIns:soapenv="http://schemas.xmlsoap.org/soap/envelope/""

xmIns:cal="http://www.covergence.com/ws/callouts">
<soapenv:Header/>
<soapenv:Body>
<cal :doAction>
<action>
<PingAction>
<host>169.55.3.5</host>
</PingAction>
</action>
</cal :doAction>
</soapenv:Body>
</soapenv:Envelope>

<soapenv:Envelope
xmIns:soapenv=""http://schemas.xmlsoap.org/soap/envelope/">

Oracle Communications ASC 3.7.0 91

ASC APl EXAMPLES

<soapenv:Body>
<doActionResponse xmlns="http://www.covergence.com/ws/callouts'>
<Code>success</Code>
<Text>Success</Text>
<message>3 packets sent, 3 packets received, 0 packets lost (0%)
roundtrip minimum/average/maximum: 0.588/0.825/1.291 ms</message>
</doActionResponse>
</soapenv:Body>
</soapenv:Envelope>

Structured Response <env:Envelope xmlns:env="http://schemas.xmlsoap.org/soap/envelope/*">
<env:Body>

<cov:doActionExResponse xsi:type="data:ActionResultsType"
xmlIns:cov="http://www.acmepacket.com/asc/ws/mgmt"
xmIns:data="http://www.acmepacket.com/asc/ws/common"
xmIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance'>

<result-code>0</result-code>
<message>Success!</message>
<info>28 bytes from 169.55.3.5: 0.134 milliseconds
28 bytes from 169.55.3.5: 0.107 milliseconds
28 bytes from 169.55.3.5: 0.102 milliseconds
3 packets sent, 3 packets received, 0 packets lost (0%)

Round trip minimum/average/maximum: 0.102/0.114/0.134
milliseconds</info>

<structure xsi:type="data:ActionResultsPingType">
<requests-sent>3</requests-sent>
<replies-lost>0</replies-lost>
<replies-received>3</replies-received>
<round-trip-minimum>102</round-trip-minimum>
<round-trip-average>114</round-trip-average>
<round-trip-maximum>134</round-trip-maximum>
</structure>
</cov:doActionExResponse>
</env:Body>
</env:Envelope>

REST
FIatF?eqlJest GET http://175.66.15.95:8080/cms?action=PingAction&Host=169.55.3.5
HTTP/1.1
Hierarchical Request GET http://175.66.15.95:8080/cms/action/ping?host=169.55.3.5 HTTP/1.1
Unstructured <ExtActionResponse>
Response <Code>Success</Code>
<Text>Success</Text>
<message>3 packets sent, 3 packets received, 0 packets lost (0%)
roundtrip minimum/average/maximum: 0.588/0.825/1.291 ms</message>
</ExtActionResponse>
Structured Response <?xml version="1.0"?>

92 Oracle Communications ASC 3.7.0

getStatus

SOAP

Request

ASC API EXAMPLES

<ExtActionResponse>
<resultCode>0</resultCode>
<resultStr>Success</resultStr>

<info>28 bytes from 169.55.3.5: 0.103 milliseconds 28 bytes from
169.55.3.5: 0.111 milliseconds 28 bytes from 169.55.3.5: 0.102
milliseconds 3 packets sent, 3 packets received, 0 packets lost (0%)
Round trip minimum/average/maximum: 0.102/0.105/0.111
milliseconds</info>

<structure>

<ActionResultsPing>
<RequestsSent>3</RequestsSent>
<RepliesLost>0</RepliesLost>
<RepliesReceived>3</RepliesReceived>
<RoundTripMinimum>102</RoundTripMinimum>
<RoundTripAverage>105</RoundTripAverage>
<RoundTripMaximum>111</RoundTr i pMaximum>
</ActionResultsPing>

</structure>

</ExtActionResponse>

This ASC API uses the HTTP GET Method.

The following examples display a getStatus API request sent from the server, requesting
the status of all current processes. The responses received from the client indicate the
action was successful.

POST http://172.44.10.59:8080/ws HTTP/1.1
Accept-Encoding: gzip,deflate
Content-Type: text/xml;charset=UTF-8
SOAPAction: "‘getStatus"

User-Agent: Jakarta Commons-HttpClient/3.1
Host: 172.44.10.59:8080

Content-Length: 324

<soapenv:Envelope
xmIns:soapenv="http://schemas.xmlsoap.org/soap/envelope/""

xmIns:cal="http://www.covergence.com/ws/callouts">
<soapenv:Header/>
<soapenv:Body>
<cal :getStatus>
<status>
<ClusterStatus />
</status>
</cal :getStatus>
</soapenv:Body>
</soapenv:Envelope>

HTTP/1.1 200 OK
Server: Apache-Coyote/1.1

Oracle Communications ASC 3.7.0 93

ASC APl EXAMPLES

Response

REST

Flat Request
Hierarchical Request

Response

queryStatus

Set-Cookie: JSESSIONID_WS=35AC602AAB7ADC597C9BAFD27653FB5F; Path=/;
HttpOnly

Content-Type: text/xml
Transfer-Encoding: chunked
Date: Thu, 13 Oct 2011 17:47:12 GMT

<?xml version="1.0" encoding="UTF-8"?><env:Envelope

xmIns:env="http://schemas.xmlsoap.org/soap/envelope/'><env:Body><cov:
getStatusResponse

xmIns:cov="http://www.covergence.com/ws/callouts'><status><ClusterSta
tus

IPAddress="0.0.0.0"><boxID>1</box1D><bGetsConfig>false</bGetsConfig><
bGotConfig>false</bGotConfig></ClusterStatus></status></cov:getStatus
Response></env:Body></env:Envelope>

GET http://175.66.15.95:8080/cms?status=ProcessStatus HTTP/1.1

GET http://175.66.15.95:8080/cms/status/processes HTTP/1.1

<ExtPageList><version>E3.6.0.M5P0</version><resultCode>0</resultCode>
<resultStr>Success</resultStr><objects><ClusterStatuslPAddress="0.0.0
.0"><boxI1D>1</box1D><bGetsConfig>false</bGetsConfig><bGotConfig>false
</bGotConfig></ClusterStatus></objects><totalPages>1</totalPages><cur
rentPage>1</currentPage><pageSize>1l</pageSize></ExtPageList>

SOAP

Request

This ASC API uses the HTTP GET Method.

The following examples display a queryStatus API request sent from the server for the
status of all running processes. The responses from the client server indicate the action
was successful.

<soapenv:Envelope
xmIns:soapenv="http://schemas.xmlsoap.org/soap/envelope/""
xmIns:mgmt="http://www.acmepacket.com/asc/ws/mgmt">

<soapenv:Header/>
<soapenv:Body>
<mgmt:queryStatus>
<I--1 or more repetitions:-->
<status homogeneous=""false">
<I--Zero or more repetitions:-->

<object xsi:type=""ns574:ProcessStatusType"
xmIns:ns574="http://www.acmepacket.com/asc/ws/common"
xmIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance' process="ws">

<I--Optional:-->

94 Oracle Communications ASC 3.7.0

Response

REST

Flat Request

Hierarchical Request

Response

ASC API EXAMPLES

<I--Optional:-->

<I--Optional:-->
</object></status>
</mgmt:queryStatus>
</soapenv:Body>
</soapenv:Envelope>

<cov:queryStatusResponse
xmIns:cov="http://www.acmepacket.com/asc/ws/mgmt"'>

<status>

<object xsi:type="data:ProcessStatusType' process="WS"
xmIns:data="http://www.acmepacket.com/asc/ws/common"
xmIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance'>

<id>14817</id>
<condition>running</condition>
<run-level>7</run-level>
<state>sleeping</state>
<starts>1</starts>
<uptime>POYOM4DT18H5M32.000S</uptime>
<fds>198</fds>
</object>
</status>
</cov:queryStatusResponse>

http://172.30.80.24:8080/cms?status=ProcessStatus&_format=simplified&
search.process=WS

http://172.30.80.24:8080/cms/status/processes?search._process=WS&_ form
at=simplified

<?xml version="1.0"?>

<object xsi:type="ExtPagelListType"
xmIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"'>

<version>E3.6.0_M5P0</version>
<resultCode>0</resultCode>
<resultStr>Success</resultStr>
<objects xsi:type="ProcessStatusType" process="WS">
<id>14817</id>
<condition>running</condition>
<run-level>7</run-level>
<state>sleeping</state>
<starts>1</starts>
<uptime>POYOM4DT18HIM7 .008S</uptime>
<fds>195</fds>
</objects>
<totalPages>l</totalPages>
<current-page>1</current-page>
<page-size>l</page-size>
</object>

Oracle Communications ASC 3.7.0 95

ASC APl EXAMPLES

96 Oracle Communications ASC 3.7.0

Appendix B Event Message Examples

This appendix provides examples of the different types of event messages that can be sent
by the ASC. The following examples are given:

¢ New Schema / Legacy Content
¢ New Schema / Custom Content

For more information on the different types of event message formatting and content, see
the Legacy and New Schemas section of Chapter 1.

New Schema/ Legacy Content

The following example shows a CallConnected event message sent from an ASC that is
using the new schema and is configured to include the legacy content.

With the new simplified format, some of the names of the event attributes are hyphenated,
rather than using “camelCase”. The SOAP message use a different namespace, and the
event name is an attribute of the <object> element.

<env:Envelope xmlns:env="http://schemas.xmlsoap.org/soap/envelope/>
<env:Body>

<cov:processEvent
xmlns:cov="http://www.acmepacket.com/asc/ws/mgmt'*>

<cov:event>

<object xmlns:data="http://www.acmepacket.com/asc/ws/common"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

xsi:type="data:CallConnectedType'>
<handle>14287669</handle>
<session-i1d>343194204702856025</session-id>
<cal 1-1d>ZDk2MTQWOGFKNTYOZmMyMTV i YmUyNGImMN2EZNmVKNTY .</cal l-

<to>sip:1001@acmepacket.com</to>
<from>sip:2001@acmepacket.com</from>
<content>v=0

0=3cxVCE 49342965 311118690 IN IP4 192.168.220.1

s=3cxVCE Audio Call

c=IN IP4 192.168.220.1

t=0 0

m=audio 40030 RTP/AVP 0 8 101

a=rtpmap:0 PCMU/8000

a=rtpmap:8 PCMA/8000

a=rtpmap:101 telephone-event/8000

a=fmtp:101 0-15

</content>
</object>
</cov:event>
</cov:processEvent>
</env:Body>
</env:Envelope>

Oracle Communications ASC 3.7.0 97

EVENT MESSAGE EXAMPLES

New Schema / Custom Content

The following example shows a CallConnectedEventCustom event message sent from an
ASC that is using the new schema and is configured to include custom content.

<env:Envelope xmlns:env="http://schemas.xmlsoap.org/soap/envelope/ >
<env:Body>

<cov:processEvent
xmIns:cov="http://www.acmepacket.com/asc/ws/mgmt"'>

<cov:event>

<object xmlns:data=""http://www.acmepacket.com/asc/ws/common"
xmIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance""

xsi:type="data:CallConnectedEventCustomType''>
<handle>14287667</handle>
<session-i1d>343194196653337756</session-id>

<call-1d>CXC-103-4b6001b8-8d14010a-13c4-4eaeffed-c6764eb-
53cedbcc</call-id>

<cookie>3389006614</cookie>
<to>sip:2001@acmepacket.com</to>
<from>sip:1001@acmepacket.com</from>

<customField>user-agent=X-Lite 4 release 4.1 stamp
63214 ;</customField>

<content>v=0
0=- 12964565220154654 1 IN 1P4 192.168.220.1
s=CounterPath X-Lite 4.1
c=IN IP4 192.168.220.1
t=0 0
m=audio 51518 RTP/AVP 107 0 8 101
a=rtpmap:107 BVvV32/16000
a=rtpmap:101 telephone-event/8000
a=fmtp:101 0-15
a=sendrecv

</content>
</object>
</cov:event>
</cov:processEvent>
</env:Body>
</env:Envelope>

98 Oracle Communications ASC 3.7.0

Appendix C ASC Web Services Samples

Introduction

This chapter provides a list and brief description of sample applications created using the
Net-Net ASC. Access these samples by clicking on the Samples link of the ASC
homepage.

Note: As of release 3.7.0M4, the ASC’s samples are no longer included in the
installation file or supported.

Acme Voice Message Manager Web Application

Broadcasts or drops voice messages to your contacts.

Platform JavaScript

ASC Status Checker

Polls a configured ASC for utilization statistics and allows the user to issue ICMP and
SIP pings from the ASC using REST.

Platform Google Android (Java)

ASCServer Sample WAR

Using the ASC SDK JAR, this sample implements a basic service handling processEvent
requests, getAuthSessionPolicy, and hosts a JSP capable of executing Call Control
requests. This sample is an ant-based project that can be deployed without modification
to JBoss, GlassFish, or Tomcat.

Platform Java

ASC Voice Message Manager

Records, broadcasts, or drops a message to selected contacts using REST.

Platform Google Android (Java)

Banking Call Center

Simulates a call center application that manages call center agents. This web application
works with the Banking Store application in the Adobe Flash section. When a user using

Oracle Communications ASC 3.7.0 99

ASC WEB SERVICES SAMPLES

the Banking Store application requires service, this application connects the user to the
appropriate agent.

Platform IBM Websphere Community Edition (Java)

Banking Store

Provisions the user the ability to get connected with an appropriate call center agent who
can service his banking service needs. This application works with the sample Banking
Call Center web application in the Websphere Application Server Community Edition
section and is an Adobe AIR application that runs on iOS devices.

Platform Adobe Flash

Call Monitor

Provisions the user the ability to silently monitor active calls, conference into active calls,
record on-demand, and review active calls. Also provisions the user the ability to review
previously recorded calls, whether recorded through session-policy or on-demand.

This sample is an Adobe AIR application that runs on iOS, Android, and Blackberry
devices.

Platform Adobe Flash

Call Monitoring and Conferencing Web Application

Either conferences into a call or monitors calls and recordings.

Platform JavaScript

Call Transfer Web Application

Either transfers or conferences calls during the duration or a session.

Platform JavaScript

Click-to-Call Internet Explorer Toolbar

Enables call control on phone numbers in any web page displayed in Microsoft Internet
Explorer.

Platform JavaScript with BestToolbars Toolbar Studio

100 Oracle Communications ASC 3.7.0

ASC WEB SERVICES SAMPLES

Configuration Wizard Sample

Platform

Download Servlet

Platform

Executes a configuration template using ASC web services and a Java Swing user
interface.

NetBeans (Java)

Exposes a directory hierarchy for downloading. By default, this sample exposes the
/cxc_common/export directory where recordings may have been stored.

Java

Emergency Call Example

Platform

Event Processor EJB

Platform

KPML Plugin

Platform

Records and sends messages to groups viaa GWT/GXT web application. For each person
in a group, multiple phone numbers are tried in succession.

Google Web Tookit/GXT (Java)

Demonstrates the use of EJB 3.1 to implement an event processor. The event processor
uses the new dynamic event service registration to hook itself into the ASC event system
and uses simple plugin jars to process the received events from the ASC. A sample plugin
jar is included in the project. The project builds an Enterprise Application Resource
(EAR) that can be deployed on a J2EE container that implements EJB 3.1. Servers that
support this sample are Glassfish (3.x) and JBOSS (6 and 7).

Java

An Ant-based project that uses the ASC SDK JAR to implement a basic sample service
to handle processEvent requests and getAuthSessionPolicy and to host a JSP capable of
executing Call Control requests.

This sample can be deployed without modification to JBoss, GlassFish, or Tomcat.

Java

Media Scanner Web Application

Demonstrates ASC on-demand media scanning on a call leg to detect voice activity. This
sample plays a media file when it detects voice inactivity on a call leg.

Oracle Communications ASC 3.7.0 101

ASC WEB SERVICES SAMPLES

Platform

Mobile Dialer

Platform

Java

An embedded Adobe Flex-based dialer that allows inbound and outbound calls from the
web application, as well as the ability to redirect calls from an external number to the
Mobile Dialer app. This sample also features conference and transfer capabilities.

Adobe Flash

Outlook Click to Call Toolbar

Platform

Pet Store Post Dial

Platform

PIN Reset

Platform

Pre-Call Authorization

Platform

This is an Outlook add-on that recognizes phone numbers from senders. You can then
press a button to execute a click-to-call action to that selected phone number.

Microsoft .NET (Outlook 2007 or Outlook 2010)

Demonstrates a retail web site communicating with an IVR. On a specific page, a
customer can click a button to initiate a call with customer support. The web application
appends post-dial digits dialed into the I\VR after the call is established. The customer is
immediately directed to the appropriate representative skipping several levels of IVR
menus.

IBM WebSphere Application Server Community Edition (Java)

The ASC plays pre-recorded files as prompts and sends events for DTMF tones to an
application. This sample walks you through a script for resetting a PIN number for an
account.

NetBeans (Java)

Demonstrates the ASC’s pre-call authorization by requiring a pin to use the click to call
action. Enter the from and to phone numbers in the form. The application calls the “from”
number and asks for a PIN before proceeding to make the call.

Java

102 Oracle Communications ASC 3.7.0

ASC WEB SERVICES SAMPLES

RCSE
Externally manages video streaming, forking, and chat roulette via a java-based set of
web applications.

Platform Java

Request Proxy/Event Demultiplexing Client

Demonstrates sending web service requests to the WSDemux service while handling
synchronous request responses and asynchronous events.

Platform Microsoft NET

Request Proxy/Event Demultiplexing Service

Demonstrates the ASC handling web service requests and supporting the demultiplexing
of processEvent notifications to the appropriate client endpoint.

Platform Microsoft .NET

RTP Status Example

A GWT/GXT web application that creates a simple RTP status monitoring tool. It uses a
GWT CometD library to do cross-domain script-tag injection for gathering statistics.

Platform Google Web Tookit/GXT (Java)

Session Policy Web Application

Implements the ASC’s session-config policy that allows you to dynamically modify the
session. Through configuration, this sample allows you to include a named variable that
was retrieved from an LDAP server using a component of a SIP URI.. These named
variables can later be used to do things such as modify the headers in the SIP message and
modify routing.

Platform Java

Simple Flex Based Embedded Dialer

Demonstrates an embedded flex-based dialer that allows the user to place an audio call to
any phone number via the ASC.

Platform Adobe Flash

Oracle Communications ASC 3.7.0 103

ASC WEB SERVICES SAMPLES
Simple Flex Based Embedded Phone
Demonstrates an embedded flex-based phone that can call a pre-defined customer support

number via the ASC. Supports bi-directional audio and incoming video directly in the
browser.

Platform Adobe Flash

Voice Memo Manager

Allows you to record messages on the ASC and send them either in the middle of a call
to a contact or broadcast it to multiple contacts simultaneously.

Platform Apple iOS (Objective C)

Voice Message Manager
Rcords a message on the ASC and sends that message to a single person or group in a

contact list.

Platform RIM Blackberry (Java), Google Android (Java), JavaScript, Apple Objective C

WCF Auto-Mute Example
Utilizes ASC media scanning to detect when a party in a phone conversation is too loud

and automatically mutes that caller’s phone.

Platform Microsoft.NET

WCF Interface Sample Client

Sends web services requests to an ASC and processes their responses using WCF classes.

Platform Microsoft .NET

Web Phone Example

Creates a fully web-based dialer viaa GWT/GXT web application. Flash components are
utilized to manage the browser-based media.

Platform Google GWT/GXT web application (Java)

104 Oracle Communications ASC 3.7.0

ASC WEB SERVICES SAMPLES

Web Services Demo Suite

Consists of a Java server running on the Metro Web Server stack that features several call
control features. This sample uses Java, the Metro Web Services Stac, the JavaMail API,
JavaScript, JQuery, cross-domain XML HTTP requests using JSONP, SOAP over HTTP
requests, and Comet long-polling. It also features a web-based user interface accessible
from ASC-based user authentication.

Platform Java

Oracle Communications ASC 3.7.0 105

ASC WEB SERVICES SAMPLES

106 Oracle Communications ASC 3.7.0

Appendix D

Introduction

ASC Call Reconnect SDK

The ASC Call Reconnect Software Development Kit (SDK) is a Java library containing
a Java API that supports processing calls that experience media loss due to network
failures. This Java API calls the ASC Web Services API. You can use these Java classes
to more quickly construct a Java call continuation application.

Note: The Call Reconnect SDK supports ASC versions 3.7.0M3P0 and newer.

The Call Reconnect API:

Acts as a service proxy for ASC API calls
Subscribes to ASC events, including media loss and media resumption

Supports storing and querying call continuation information and state pertaining to
specific calls

Supports playing .wav files to specific calls, reconnecting call legs to new SIP URIs,
and terminating calls

Extracts information from SIP headers and stores that information in the
application’s call information storage

Preserves SIP header information into the redirected call

Throttles the redirection of call legs to other phone numbers so that phone systems
are not overwhelmed.

Additionally, by extending existing Call Reconnect classes or adding new classes to your
application, you can implement storage of Call Reconnect data in a high availability (HA)
enterprise cache of your choice, sending events to external applications, and integrating
with external applications.

Note: The Call Reconnect SDK supports only calls with two parties such as a
customer calling an agent and does not support conference calls.

Oracle Communications ASC 3.7.0 107

ASC CALL RECONNECT SDK

The following diagram shows the Call Reconnect SDK’s main classes. The Call
Reconnect classes are displayed in white rectangles.

G Call Sl Evemt
v et L By o
e Ervvirsnmean P Toceing ey Loy

[} [
= =T
1 aberas appbe aizmu recong aeentn asd seed | ommante
[[oaE - —g—
Cal Seshon Evert Hands
e Lisleres Classes =T]
| I, S0 p mesLaes
Bts by ¢oomal
Reponmed -
App CalComraiCommand
{connodt, bermnate
PEh
ha T
Call B « Bl Configuabon
Fimurworh Toothis
A7 ety a8 Flike e Wb
[| TR T —
Vi AR YieR Letves
- : 5IF = |
Frruve o -
[Tiashing y A -
' F @ —
o

W anding b SN olemnis
anchanging WP call iaflic
ety A ST slamemd

il e with &

The Call Reconnect SDK library includes Java classes to:
« Coordinate application-wide resources

¢ Read and apply application configuration information
e Manage ASC clusters

« Register for and receive ASC events

Call Reconnect Distribution

The Call Reconnect SDK library is distributed in a zip file and includes:
e Full configuration template for setting up a single ASC

e Merge configuration template for updating an already running ASC
e Full configuration template for setting up an ASC cluster

Note: While you may use a single ASC for testing purposes, Oracle strongly
recommends using an ASC cluster for production.

« call_reconnect.properties: Configuration for the Call Reconnect sample application
(sample code that illustrates the use of the Call Reconnect SDK API)

e call_reconnect_binaries.zip: Includes the callreconnect.jar file for inclusion in your
application; this jar file contains the binaries for the Call Reconnect application

< call_reconnect_sources.zip: Contains the Call Reconnect SDK sources and
instructions on how to build the Call Reconnect SDK sources

e call_reconnect_javadoc.zip: Contains the HTML Javadoc files for the Call
Reconnect API

e call_reconnect_sample_binaries.zip: Contains the .war file of the sample web
application, instructions on how to deploy and configure the binary .war (properties
file information), and information on securing web services; deployment and
configuration instructions are in the Call Reconnect Sample Deployment Guide,
CallReconnectSampleDeploymentGuide.docx

108 Oracle Communications ASC 3.7.0

ASC CALL RECONNECT SDK

« call_reconnect_sample_sources.zip: Contains the source files for the sample and
instructions on how to build it

Constructing Your Call Reconnect Application

The Call Reconnect SDK contains Java classes and interfaces to help you construct and
manage your Call Reconnect application.

ReconnectApplication Class

Configuration

Dynamic
Configuration Update

Configured Default
Commands

The ReconnectApplication class reads configurations, initializes storage for call sessions,
and manages ASC cluster web services endpoints.

For more information, see the Javadoc for ReconnectApplication in the
call_reconnect_javadoc.zip file.

The Configuration interface specifies an API for retrieving Call Reconnect configuration
information. The PropertiesConfiguration class implements the Configuration interface
and reads configuration settings from a Java properties file.

The ASC’s Call Reconnect configuration interface also specifies an API for managing all
ASC cluster web services endpoints.

Note: The Call Reconnect SDK supports alternate implementations of the
Configuration interface that may use other configuration technologies such as Java
Naming and Directory Interface.

For more information, see the Javadoc for the Configuration interface and the
PropertiesConfiguration class in the call_reconnect_javadoc.zip file.

The ConfigurationController class updates configuration information so that you can
update the Call Reconnect properties file without having to restart your application. You
may implement a listener in your application to receive notifications when the Call
Reconnect configuration has changed.

For more information, see the ConfigurationController and
ConfigurationChangedListener classes in call_reconnect_javadoc.zip file.

The Call Reconnect SDK supports configuring a set of commands to handle media loss
in any configuration implementation (for example, PropertiesConfiguration).

The following is an example of default configured commands:

OutLegCmdOnMedialLost.1.name=Terminate
OutLegCmdOnMedialLost.1.order=1
OutLegCmdOnMedialLost.1.param.waitCompletion=false
OutLegCmdOnMedialLost.1.param.callLeg=0UT

For more information, see the Javadoc for the CommandConfiguration class in
call_reconnect_javadoc.zip file.

Oracle Communications ASC 3.7.0 109

ASC CALL RECONNECT SDK

Web Services Connection and Event Subscription

Event Handling

The ASCClient class allows you to access all ASC Web Services via SOAP and register
for ASC events using primary and secondary event callback endpoints to support HA.
The backup endpoint is implemented in another instance of your Call Reconnect
application running on another server on a separate Java Virtual Machine (JVM).

ASCClient communicates with an ASC cluster that has Web Services and SIP support
configured on a Virtual Routing Redundancy Protocol (VRRP) interface. The ASC
VRRP transparently supports failover for Web Services and SIP calls.

For more information, see Javadoc for the ASCClient class in the
call_reconnect_javadoc.zip file.

The ASCEventProcessingService class receives and handles ASC events, passing the
received event to an instance of the CallSessionEventDispatcher class, which queues the
event in the relevant CallSession instance’s event queue to await processing.

When configured, the application receives media loss and media resumption events
directly from the ASC. These events can be enabled by adding the following
configuration to the appropriate vsp > session-config-pool > entry.

Enable media loss events and set interval
config out-media-loss-detection
set admin enabled
interval for checking media loss
set interval "0 days 00:00:05"
return

The rate at which the media sessions are checked is based on the configured interval. The

above example shows that the interval is 5 seconds. Once the ASC detects a media loss
that lasts for the media loss interval time you specify, it issues a media loss event.

For more information, see Javadoc for the ASCEventProcessingService class in the
call_reconnect_javadoc.zip file.

Load Balancer Support

To balance the load of handling ASC events among Call Reconnect application nodes,
you can use a load balancer between one or more ASC clusters and one or more externally
running Call Reconnect application instances.

110 Oracle Communications ASC 3.7.0

ASC CALL RECONNECT SDK

You can also disable event registration within the Call Reconnect application and use an
alternative ASC event registration scheme that registers the load balancer as the direct
recipient of ASC events.

ASCEmniPocrinsgSanecs ASCE Py Serare AL E et ProcansmgSarace

Load balnCar

Contact Camsd com infrastructune
s lmimmss §VIL, &CTI, CNWY, PEX)
msclimngisg 5IP Call mallic with K50 alomesn

et A5 slemmm

When it receives an event, the Call Reconnect application must decide which ASC the
event came from. When the application receives an event, the
ASCEventProcessingService class determines the ASC sender’s IP address by examining
the X-Forwarded-For (XFF) HTTP Header. If the XFF header is missing (because there
is no proxy or load balancer intermediary), the sender’s IP address is retrieved via the
javax.servlet.http.HttpServletRequest getRemoteAddr() method.

Enabling and Disabling Event Registration

Via the isEventRegistrationEnable and setEventRegistrationEnable methods, you can
disable event registration in the Call Reconnect application, either in the
call_reconnect.properties file or in an implementation of the Configuration interface such
as the PropertiesConfiguration class. You can also enable or disable event registration in
the call_reconnect.properties file by setting the ADVANCED.eventRegistration.enable
entry to true or false (by default this value is true).

If the application’s event registration is disabled in a load balancer deployment, you must
either configure static registration on the ASC clusters to point to the load balancer, or
create an ASC application that dynamically registers the load balancer with all ASC
clusters.

For more information, see the Javadoc for the AdvancedConfiguration methods in the
call_reconnect_javadoc.zip file.

Call Session Stickiness

When deploying a call continuation application on more than one system for HA support,
Oracle recommends directing all events for any specific call to the same application
instance to reduce hits on the enterprise cache. This makes all of the processing for a call
session “stick” to the same application instance.

To do this the load balancer must use one of the following methods:

« Examine the HTTP header and extract the sender’s ASC IP address. Forward events
from the same sender’s ASC IP address to a specific Call Reconnect application

Oracle Communications ASC 3.7.0 111

ASC CALL RECONNECT SDK

Call Management

instance. Assuming there is a SIP load balancer in front of the ASC clusters, this
approach results in a balanced load until a Call Reconnect application instance fails.

< Examine the SOAP message and extract the session ID from the event content. Send
events with the same session ID to the same Call Reconnect application instance,
ensuring that any given SIP call session is processed by only one Call Reconnect
application instance until that instance fails and another instance takes over
processing.

CallSession

CallLeg

The call management classes in the Call Reconnect SDK manage each call being
processed by any of the ASC clusters with which your application is communicating.

The Call Reconnect SDK contains several Java classes to:

« Store information about all the calls being processed by the ASC clusters with which
your application is communicating

¢ Query information about these calls
e Process ASC call events

The CallSession class maintains information about live calls on an ASC cluster including
a hash map that stores attribute names and values from the SIP headers of these calls. The
Call Reconnect application maintains the following information in the CallSession:

e ASC IP (The Web Services IP address for the ASC cluster handling the call, letting
the application know which cluster is handling the call)

» Session ID
* Out-leg information (party receiving call)
* In-leg information (party initiating call)

« Reconnect leg information if applicable (the new party that replaces the leg
experiencing media loss)

e In-leg or out-leg media loss if applicable

You may use custom code to call the API to store more information in the CallSession to
add more attribute names and values to the hash map.

For more information, see the Javadoc for the CallSession class in the
call_reconnect_javadoc.zip file.

The CallSession class contains CallLeg data representing the in-leg, out-leg, and
reconnect-leg in a call session. Each CallLeg instance contains information not limited to
the following:

e CallID
e SIP URI for “from” and “to” endpoints

e Leg type: in-leg (the party that initiated the call; the “from” endpoint), out-leg (The
party receiving the call; the “to” endpoint), or reconnect leg

112 Oracle Communications ASC 3.7.0

ASC CALL RECONNECT SDK

For more information, see the Javadoc for the CallLeg class in the
call_reconnect_javadoc.zip file.

CallSessionController

The CallSessionController class maintains a map of CallSession instances keyed by a
combination of the ASC Web Services IP and session 1D of the ASC handling the call. It
calls registered listeners when any CallSession instance is added, removed, or updated.

For more information, see the Javadoc for the CallSessionController class in the
call_reconnect_javadoc.zip file.

Call Information Event Processing

CallSessionListener is an interface that provides an API to receive notifications for the
following events related to an ASC call:

e CallSession instance created

» CallSession instance removed

e Call leg created

e Call leg in the process of connecting to call session
e Call leg connected to call session

e Call leg terminated

e Call leg held

e Call leg attached

e Command invoked or completed on call leg
* Media lost on call leg

e Media resumed on call leg

Every CallSessionListener’s method contains a parameter that is the entire ASC event
object for further use by the CallSessionListener implementation. You can use the
CallSessionListener’s onCallLegOtherEvent method to examine ASC events that are not
explicitly handled by the Call Reconnect application.

For more information, see the Javadoc for the CallSessionListener’s method in the
call_reconnect_javadoc.zip file.

DefaultMediaLostHandler

The DefaultMedialostHandler class executes commands that are configured in your Call
Reconnect application’s configuration when the application receives media lost events. If
your application is using the PropertiesConfiguration class, you can configure these
commands for your Call Reconnect application in the call_reconnect.properties file.

For more information, see the Javadoc for the DefaultMedialostHandler class in the
call_reconnect_javadoc.zip file.

Oracle Communications ASC 3.7.0 113

ASC CALL RECONNECT SDK

Configured Custom CallSessionListener

The Call Reconnect SDK allows you to optionally configure custom call session listeners,
which are instantiated during the application initialization.

The custom call session listeners must meet the following requirements:
e Have a public no-argument constructor
« Implement the oracle.asc.reconnect.call.listener.CallSessionListener interface

When configured, the application instantiates the specified listener and adds the listener
to the list of CallSessionListener maintained by the SessionController.

If your application is using the PropertiesConfiguration class, you may specify multiple

classes in call_reconnect.properties in the format:
CallSessionListener.</>.class=com.foo.bar.MyCallSessionListener

where <n> is a positive number.

For more information, see the CallSessionListener interface and PropertiesConfiguration
class in the call_reconnect_javadoc.zip file.

Using Default Media The Call Reconnect SDK allows you to use both a default media loss handler and a

Loss Handler With custom call session listener. This is useful if there are commands you execute regularly

Eilé?(te(r)]rgr Call Session to handle media loss and you must determine further processing programmatically based
on other information.

Command Processing

The Call Reconnect SDK includes several Java classes to:
» Redirect a call leg to a new SIP URI

e Playafiletoacall leg

e Terminate a call leg

e Stop playing a file to a call leg

To execute a command, create a list of one or more of the command class instances and
invoke CallSession.startCommandInvocation on the CallSession instance for the SIP call
session you are processing.

Note: All Call Reconnect command classes have an option to wait for
completion.When true, the Call Reconnecct application waits until it receives the
events from the ASC indicating the command is complete before executing the next
command in the command list. When false, the application executes the next
command in the list immediately after receiving a success status for executing the
command. If this option is not provided, the default behavior is false.

Redirecting a Call Leg to a New SIP URI

The CallControlConnectCommand redirects a call leg to a new SIP URI.
The CallControlConnectCommand class contains support to:

e Preserve SIP Header content in SIP messages for a new call, preserving custom SIP
Header content

e Throttle redirect commands sent to the ASC, including parameters to specify a queue
name. The application retrieves the number of calls to be sent at a time and the

114 Oracle Communications ASC 3.7.0

Including SIP Header
With Named Variable
Support

Throttling

Default Queue

Additional Queues

ASC CALL RECONNECT SDK

amount of time to wait before sending the next batch of call redirects from the
application configuration.

For more information, see the Javadoc for the CallControlConnectCommand class in the
call_reconnect_javadoc.zip file.

The CallControlConnectCommand class has support to inject a new SIP header into the
INVITE message in a SIP session with a specified SIP header name and value.

This class also supports using named variables specified in the properties file as the
source of SIP header information to inject into the INVITE message. The application calls
the CallControlConnectCommand methods to generate the new SIP header with the
named variable name as the SIP header name and the named variable value as the SIP
header value.

For more information, see the Javadoc for the CallControlConnectCommand and
CommandConfiguration classes in the call_reconnect_javadoc.zip file.

Throttling allows you to control the rate at which calls are redirected. Enable throttling
by setting the maximum number of calls per second (Queue.default.maxCallsPerSec) for
the default queue. The throttling system does not send the maximum calls per second all
at once, but divides the calls into batches using the check-interval configuration property
(Queue.default.checkinterval).

By default, all calls to be redirected are placed into a single queue. If not specified, the
check-interval property (Queue.default.checkinterval) defaults to 100 milliseconds. The
throttling system sends a portion of the calls on the queue, sleeps for the specified check-
interval time, and then sends the next batch of calls. The batch size is the maximum
number of calls (Queue.default.maxCallsPerSec) * (check interval/1000 milliseconds).

If your Call Reconnect application redirects calls to more than one I'VR system, you can
specify additional numbered queues. For each additional queue, you must specify its
redirect SIP URI. Calls to be redirected to those SIP URIs go to that queue.

Note: If you do not specify a maximum number of calls per second or batch interval,
the application defaults to the default queue maxinum number of calls and check
intervals, respectively.

You may specify additional queues in call_reconnect.properties in the following format:

Queue.<r>_phones
Queue.<n>.maxCallsPerSec
Queue.<n>.checklInterval

where <n> is a positive humber.
For more information, see the Javadoc for the ThrottleQueueConfiguration,

CallConnectThrottler, and CallConnectThrottlerQueue classes in the
call_reconnect_javadoc.zip file.

Redirecting Call Legs Using Park and Attach

The CallControlParkAttachCommand class is an alternative to using the
CallcontrolConnectCommand. CallControlParkAttachCommand processes the new
agent leg first and then the customer leg by issuing the following ASC actions:

Oracle Communications ASC 3.7.0 115

ASC CALL RECONNECT SDK

Selecting Which Leg
Attaches To a Session

¢ The call-control-custom action parks the new agent SIP URI and sends the Cisco-
Guid value in the INVITE to the new agent

< The call-control-attach action either parks the new agent call leg handle to the
customer session or parks the customer leg to the new agent session.

CallControlParkAttachCommand supports injecting a SIP Header with the value of a
named variable as well as throttling.

For more information, see the Javadoc for the CallControlParkAttachCommand class in
the call_reconnect_javadoc.zip file.

The Call Reconnect SDK supports an advanced configuration option in the
call_reconnect.properties file, called ADVANCED.attachAgentLegTolnLeg. When true
(the default), the application attaches the new agent leg to the customer session. When
false, the application attaches the customer leg to the new agent session.

This allows you to affect the order in which the customer leg and the reconnected agent
leg are negotiated.

For more information, see the Javadoc for the AdvancedConfiguration class in the
call_reconnect_javadoc.zip file.

Playing a File To a Call Leg

CallControlPlayMediaCommand class plays a .WAV file stored on an ASC cluster to a
call leg. You have the option to play the file in a loop until a StopMediaCommand is
issued.

¢ Note: When this command’s “waitCompletion” and “loop” options are set to true,
the application ensures that the file is played through completely once before
aborting subsequent repeats due to reconnecting to a new SIP URI.

For more information, see the Javadoc for the CallControlPlayMediaCommand class in
the call_reconnect_javadoc.zip file.

Terminating a Call Leg

CallControlTerminateCommand terminates a call leg, leaving the other call leg on the
ASC in a parked state.

For more information, see the Javadoc for the CallControlTerminateCommand class in
the call_reconnect_javadoc.zip file.

Stopping Playing a File To a Call Leg

CallControlStopMediaCommand aborts the playing of a .WAV file in progress to a call
leg.

For more information, see the Javadoc for the CallControlStopMediaCommand class in
the call_reconnect_javadoc.zip file.

116 Oracle Communications ASC 3.7.0

ASC CALL RECONNECT SDK

Command Success and Failure Notifications

The CallSessionListener interface includes a method for notifying you of command
success and failure. The onCommandStatusChanged method notifies the listener of one
of the following:

A command in the queue for a CallSession has been invoked and whether the
command invocation was successful or returned an error

A command was completed successfully or was aborted due to a specific error

SIP Header Content Extraction

The Call Reconnect SDK supports retrieving the content of any SIP Header and storing
it in the CallSession attribute hash map for the related ASC session.

The following examples show the steps you must take on both the ASC and Call
Reconnect application to extract SIP Header content.

ASC:

1.

Configure the ASC to extract the SIP header value from the SIP 200 OK response
header and add the name value pair (name=<value>) into the event.

¢ Ensure you have the vsp > default-session-config > third-party-call-control >
admin property set to enabled.

< Inthe vsp > default-session-config object, configure the inbound-header-
setting object and add a named-variable-collector. This configuration selects
the entire <SIP header name> from the received 200 OK response and store it in
the named variable called “example-name”. For example:

config inbound-header-settings
config named-variable-collector 1
set named-variable example-name
set create Accept (-*) “\1” custom
set apply-to-responses yes 200
return

return

« Inthe vsp > default-session-config object, configure the event-settings object
to insert the value of the “example-name” named variable into the events with the
value of the specified SIP header. For example:

config event-settings
set named-variable-entry example-name <display-name>
return

Call Reconnect Application:

1.

Add the “display-name” named variable to the Call Reconnect property file. When
Call Reconnect application restarts, the property file is read and the “example-name”
named variable is stored internally.

When a call event arrives, the event contains the name value pair (display-
name=<value>). The event processor extracts display-name=<value> from the event
and stores the value in the CallSession instance with the attribute name “display-
name”.

Oracle Communications ASC 3.7.0 117

ASC CALL RECONNECT SDK

Generating Call Session Reporting Files

The Call Reconnect SDK supports generating files containing information about call
sessions with media loss. The SDK supports basic Comma Separated Value (CSV) file
generation through the WriteCSVListener class as well as other file formats through
custom inplementations of the AbstractWriterListener interface.

WriteCSVListener

The Call Reconnect SDK contains an implementation of AbstractWriterListener called
WriteCSVListener. When this class is specified in the Call Reconnect WriterListener
configuration, the application generates a CSV file in the specified directory on the
system running the application. The application creates one CSV file for all calls
experiencing media loss each day.

The CSV file contains the following information about a session:
e Session key

e From-leg call URI

e To-leg call URI

* Reconnect leg call URI

e Media lost time

¢ From-leg connected time

e To-leg connected time

e Reconnect leg connected time

You must remove the CSV files from the system for further processing or the files will
continue to be generated, taking up disk space.

For more information, see the Javadoc for the WriteCSVListener class in the
call_reconnect_javadoc.zip file.

AbstractWriterListener

You can use the AbstractWriterListener interface to implement a Java class that writes
any kind of file on the system running the application. For example, it could be used to
write XML files containing call sessions with media loss information. The Call
Reconnect configuration allows you to configure a list of classes.

For more information, see the Javadoc for the getWriterListenerConfigurations method,
PropertiesConfiguration class, and AbstractWriterListener interface in the
call_reconnect_javadoc.zip file.

118 Oracle Communications ASC 3.7.0

ASC CALL RECONNECT SDK

Enterprise Cache Support

The Call Reconnect SDK supports storing call session and connect throttle queue
information in a cache that can be used to connect several application instances for HA
and scalability. By coding your own class that implements the EntityStore API, you can
integrate your choice of an enterprise cache into your Call Reconnect application.

Any time the application creates, updates, or deletes CallSession or
CallConnectThrottleQueue instances, the application calls the appropriate EntityStore
method and updates the corresponding item.

Cache Interface Classes

The cache interface class is oracle.asc.reconnect.store.EntityStore, which contains the
following methods for cache access.

e Add or update item to the cache

e Retrieve item from the cache

e Remove item from the cache

» Seeif item is contained in the cache

e Lock item in the cache so that calling thread has exclusive access

¢ Unlock item in cache so any thread in any Call Reconnect application node can
access item

The lock and unlock methods support a scenario where there are two Call Reconnect
application nodes actively handling calls, throttling is enabled and there is only the
default throttling queue. Call Reconnect nodes 1 and 2 each place a call on the queue. The
application calls the EntityStore lock method so that the Call Reconnect node processing
the call has exclusive access to it and then calls the EntityStore.unlock method when the
processing is done. The cache needs to take care of locking because the Call Reconnect
nodes are in separate JVMs.

For more information, see the Javadoc for the EntityStore interface in the
call_reconnect_javadoc.zip file.

XML Serialization Classes

CallSession XML
Serializer

CallConnectThrottlerQ
ueue XML Serializer

The Call Reconnect SDK calls EntityStore to be stored in the cache. If you want to store
these objects in XML form, call the CallSessionXML Serializer and
ConnectQueueXML Serializer classes in your EntityStore interface implementation.

The Call Reconnect SDK includes a class called CallSessionXMLSerializer that supports
de-marshaling a CallSession instance to an XML string or marshaling a correctly
structured XML string into a CallSession instance.

For more information, see the Javadoc for the CallSessionXMLSerializer class in the
call_reconnect_javadoc.zip file.

The Call Reconnect SDK includes a class called ConnectQueueXMLSerializer that
supports converting a CallConnectThrottlerQueue instance into an XML format and from
XML into a CallConnectThrottlerQueue instance.

Oracle Communications ASC 3.7.0 119

ASC CALL RECONNECT SDK

For more information, see the Javadoc for the ConnectQueueXML Serializer in the
call_reconnect_javadoc.zip file.

Specifying Cache Store Implementation

You can specify your cache store implementation in the Call Reconnect properties file or
in any implementation of the oracle.asc.reconnect.config.Configuration interface (if you
are not using the properties file).

Properties File In the call_reconnect.properties file, specify the following:

EntityStore.class=com.<mycompany.-MyEntityStore>

where <mycompany.MyEntityStore> is the class name of your EntityStore
implementation.

Configuration The oracle.asc.config.Configuration interface contains a getEntityStoreClassName()
Interface method to return the class name of your EntityStore implementation.

Customizing Functionality

For extended events and integration with external applications, you can code and
configure customized functionality.

Extended Events

Implement the CallSessionEventListener class to generate your own custom events based
on information in the ASC event being processed. For massive failure events, the
CallSession Controller getSessionCountByAttributeValue returns counts of calls that
have experienced media loss for failure size subscription.

Integration With External Applications

Sending events to and receiving instructions from external applications is custopm code
that you must add to the application to integrate with your Call Reconnect application.

Troubleshooting the SDK

This section describes troubleshooting techniques to help you gather relevant data when
issues arise with your Call Reconnect application.

Call Reconnect SDK troubleshooting steps include:

« Updating the ASC configuration to make collecting troubleshooting data easier
« Enabling SIP and Web Services traces to capture relevant data

¢ Reproducing the problem and terminating the traces

e Gathering the troubleshooting data

120 Oracle Communications ASC 3.7.0

ASC CALL RECONNECT SDK

Updating the ASC Configuration

Prior to even encountering a situation requiring troubleshooting, Oracle recommends
updating your ASC configuration that makes collecting troubleshooting information
easier.

Oracle recommends the following updates:

When running your Call Reconnect application on the ASC Web Services virtual
host, configure a services > collect > collect-group to automatically collect the local
Call Reconnect properties and Call Reconnect log files

Enable call logs to be collected in the ASC database and add Web Services and other
event logs

Including Call Reconnect Properties and Log Files in Collect

Using the ASC collect action, you can gather various files, logs, and traces on the ASC
into a compressed file. When running your Call Reconnect application on the ASC
cluster, you can configure your system so that running the collect action automatically
includes the Call Reconnect properties and log files in the resulting tar.gz file.

To include Call Reconnect properties and log files in your collect file:

1.
2.

N oo o &

Launch the ASC web GUI and log in.
Select the Services tab.
Click the services object and click collect.

Note: The ASC creates a default collect configuration object. Oracle recommends
using the default values.

Click Add collect-group. A one-page wizard appears.
Specify tag as app-group and click Create.
Leave the default values and click Edit directory.

Add the following file names one at a time, clicking the Add button after adding each
file specification.

» /cxc/call_reconnect.log

» /cxc/call_reconnect.logl
¢ [cxclcall_reconnect.log2
« /cxclcall_reconnect.log3

Oracle Communications ASC 3.7.0 121

ASC CALL RECONNECT SDK

e /cxc_common/call_reconnect.properties

|Conﬁguraﬁun| Setup| View |

= services
event-log
instrument
storage-device
= collect
collect-group app-group
= master-services
cluster-master
database
events
external-services

Set Reset | Back | Copy | Delete

config enabled j (Resource is active)
enabled x| (Resource is active)
status enabled j (Resource is active)

status-class

certificates

Edit status-class

Storing Call Log Files

= preferences

gui-preferences)
features crash-files

enabled j (Resource is active)
log-files enabled j (Resource is active)

database
Edit database

"cxcicall_reconnectlog

fcxcicall_reconnectlog.l

directory

fexe/call_reconnectlog 2

fexcleall_reconnectlog.3

fcxc_common/call_reconnectprope \Tg

Edit directory

lm (Resource is active)
W E
app-group

Set Reset |

trace-files

license-files

* tag

descriptiol

Back

Help Index

8. Click Set. Update and save the configuration.

To configure the ASC to store call logs in the ASC database:

1. Launch the ASC web GUI and log in.
2. Select the Configuration tab.
3. Select the vsp > default-session-config > log-alert object.
* message-alert—Set to enabled.
« apply-to-methods-for-filtered-logs—Click Select All.
4. Click Set.
Select the Services tab.

Select the master-services > database object (if the object has not already been
configured) and configure it.

7. Click Set. Update and save the configuration.

Enabling SIP and Web Service Traces

You must enable two traces for Call Reconnect SDK troubleshooting: the SIP trace file
to gather information about the SIP process and the Web Services trace to gather
information about the Web Services WS process.

122 Oracle Communications ASC 3.7.0

Enabling SIP Trace
Files

Enabling Web
Services Trace Files

ASC CALL RECONNECT SDK

By default, the ASC’s collect-group > traces property is enabled so that SIP traces are
collected as part of the collect-tar.gz file when you run the collect action.

To enable the SIP trace:

1
2.

Launch a PuTTY (or equivalent client) session and log into the ASC.
Specify the settings in the following example for trace source, filter, and severity.

Note: When prompted with Do you want to start tracing for this target (y or n)?,
if you answer y, tracing begins immediately and n does not start tracing.

shell sip

SIP>trace source <source>

trace app_sip>trace *error

trace app_sip>trace sip_traffic info

trace app_sip>trace scale_call debug

trace app_sip>trace media debug

trace app_sip>trace event debug

trace app_sip>exit

Do you want to save the settings for this target (y or n)? y
Do you want to start tracing for this target (y or n)? n
SIP>exit

Use the following ASC CLI commands to start and stop tracing. Trace <source> is
the name specified in the previous step.

e trace start <source>

* trace stop <source>

To enable the Web Services Trace:

1.

Launch a PuTTY (or equivalent client) session and log into the ASC.

Note: Ensure the Window lines of scrollback for your PUTTY (or equivalent client)
configuration is set to a large number (for example, 99999).

Issue the following commands:

shell ws

log tofile start /cxc_common/log/wsdebug. txt
log last

log on

log stack on

log level debug

Note: If you do not specify log tofile start, copy the PUTTY output to a file on your
system when the test is complete.

When you reproduce the problem, the Web Services debug information is printed out in
the PUTTY screen and is stored on the ASC in the /cxc_common/log/wsdebug.txt file.

Terminating Traces and Saving Trace Files

To stop the SIP trace:

1.

Type the following command:

trace stop <source>

The SIP trace file is automatically saved in the /cxc_common/log directory.

Oracle Communications ASC 3.7.0 123

ASC CALL RECONNECT SDK

To stop the Web Services trace:

2.

Note: It is important to terminate the Web Services trace file with the log tofile stop
command. If you allow the trace to continue, the file will continue to grow,
consuming disk space.

Type the following command:

log tofile stop /cxc_common/log/wsdebug.txt

Note: If you did not execute the log tofile start command, copy the output of the
PUTTY session to a file on your system and SCP this file to /cxc_common/log.

Type exit to exit the ws shell.

The /cxc_common/log/wsdebug.txt file is automatically included in the collect.tar.gz if
you do not change the collect-group > app-group > log-files property collect default
value (enabled).

Collecting Debugging Information

To collect debugging information:

1. Getthe Call Logs file and copy it to a specific directory on the ASC.
2. Execute the collect action.
Note: Follow instructions for the collect carefully to ensure the collect includes the
configured app-group and is run on the cluster.
Obtaining the Call To obtain the Call Logs file for a particular call:
Logs File
1. Launch the ASC web GUI and log in.
2. Select the Call Logs tab.
3. Click Sessions and click on Session Diagram for your call.
The Call Sequence is displayed for the selected session.
Call Logs [
Sessions [T e Rekws |
& Datsbase Asthives .’.-nmcm“”“i I From To (i:nlll)mm. Session ID Type |
4. Click Save as text. This file contains SIP messages for the call flow and is saved in
your local file system.
5. Rename the saved file to call_flow.txt and, using a utility such as SCP, push the file
to your ASC directory /cxc_common/log/call_flow.txt.
Collecting Prior to collecting troubleshooting files, ensure the SIP and Web Services debug log files

Troubleshooting Files are in the directory /cxc_common/log/.

Once the call or test is complete, manually copy the SIP and Web Services debug log files
to the primary ASC and issue the following command:

124 Oracle Communications ASC 3.7.0

Troubleshooting an
External Call
Continuation
Application

ASC CALL RECONNECT SDK

collect app-group cluster
Files for Call Reconnect troubleshooting are collected automatically and added to the
collect set. When done, the file /cxc_common/collect/collect.tar.gz is created in both the
primary and standby ASCs.

Note: Ensure you run the collect action with these exact arguments. If not, the collect
misses information from the standby box and does not include the Call Reconnect
properties and log files.

When the collect action is complete, send the files /cxc_common/collect/collect.tar.gz
from both the primary and standby ASCs to support for troubleshooting.

When you are working with Oracle field personnel or support to troubleshoot an external
application using the Call Reconnect SDK, send the following files in addition to the
cxc_common/collect/collect.tar.gz files:

« call_reconnect.properties
e call_reconnect.log

« Application server log (for example, Tomcat, IBM WebSphere, or Oracle
WebLogic)

Checking Relevant Status Reports

The following status reports are helpful in diagnosing issues. You can either execute these
status reports via the CLI with a show command or in the web management Ul by clicking
on the Status tab and clicking on the status report link.

To view ASC event handling information use the following show command:

show dynamic-event-services -v
Note: If you do not see the Web Services SOAP endpoint for your application in this
list, your application is not registered and is not receiving media loss events.

To view if your application is running on the Web Services virtual host, use the following
show commands:

show web-services-virtual-hosts
show web-services-virtual-hosts-applications

Oracle Communications ASC 3.7.0 125

ASC CALL RECONNECT SDK

126 Oracle Communications ASC 3.7.0

	About This Guide
	Overview
	Audience

	About Net-Net OS-E Documentation

	1 About the Web Service Interface
	Introduction
	What is the ASC?
	What Are SOAP- Based Web Services?
	What is REST?
	Accessing the ASC
	Terminology
	Authentication
	Legacy and New Schema
	Legacy and Custom Event Messages

	Web Services Requests
	Get Configuration
	Set Configuration
	Get Status
	Query Status
	Execute Action

	Configuring the ASC
	Instructions and Examples
	Configuring the ASC as an Embedded Web Server

	2 Using ASC Callouts
	Web Service Callouts
	External Policy Service
	External Event Service
	Generating Event Messages
	Eventpush Service

	3 ASC Call Control Action
	Web Service Call Control
	Identifying Calls and Sessions
	Configuring To and From URIs
	Action Results
	Configuring Call Events
	Common Call Events
	Call-Control Actions
	Media Forking
	Attended Voice Insertion
	On-Demand Call Monitoring and Recording
	Rendezvous Session Support
	Manually Attaching and Detaching From an Endpoint

	Appendix A ASC API Examples
	getConfig
	SOAP
	REST

	setConfig
	SOAP
	REST

	doAction
	SOAP
	REST

	getStatus
	SOAP
	REST

	queryStatus
	SOAP
	REST

	Appendix B Event Message Examples
	New Schema / Legacy Content
	New Schema / Custom Content

	Appendix C ASC Web Services Samples
	Introduction
	Acme Voice Message Manager Web Application
	ASC Status Checker
	ASCServer Sample WAR
	ASC Voice Message Manager
	Banking Call Center
	Banking Store
	Call Monitor
	Call Monitoring and Conferencing Web Application
	Call Transfer Web Application
	Click-to-Call Internet Explorer Toolbar
	Configuration Wizard Sample
	Download Servlet
	Emergency Call Example
	Event Processor EJB
	KPML Plugin
	Media Scanner Web Application
	Mobile Dialer
	Outlook Click to Call Toolbar
	Pet Store Post Dial
	PIN Reset
	Pre-Call Authorization
	RCSE
	Request Proxy/Event Demultiplexing Client
	Request Proxy/Event Demultiplexing Service
	RTP Status Example
	Session Policy Web Application
	Simple Flex Based Embedded Dialer
	Simple Flex Based Embedded Phone
	Voice Memo Manager
	Voice Message Manager
	WCF Auto-Mute Example
	WCF Interface Sample Client
	Web Phone Example
	Web Services Demo Suite

	Appendix D ASC Call Reconnect SDK
	Introduction
	Call Reconnect Distribution
	Constructing Your Call Reconnect Application
	ReconnectApplication Class
	Configuration
	Web Services Connection and Event Subscription

	Event Handling
	Load Balancer Support
	Enabling and Disabling Event Registration
	Call Session Stickiness

	Call Management
	CallSession
	CallLeg
	CallSessionController

	Call Information Event Processing
	DefaultMediaLostHandler
	Configured Custom CallSessionListener

	Command Processing
	Redirecting a Call Leg to a New SIP URI
	Redirecting Call Legs Using Park and Attach
	Playing a File To a Call Leg
	Terminating a Call Leg
	Stopping Playing a File To a Call Leg
	Command Success and Failure Notifications

	SIP Header Content Extraction
	Generating Call Session Reporting Files
	WriteCSVListener
	AbstractWriterListener

	Enterprise Cache Support
	Cache Interface Classes
	XML Serialization Classes
	Specifying Cache Store Implementation

	Customizing Functionality
	Extended Events
	Integration With External Applications

	Troubleshooting the SDK
	Updating the ASC Configuration
	Including Call Reconnect Properties and Log Files in Collect
	Enabling SIP and Web Service Traces
	Terminating Traces and Saving Trace Files
	Collecting Debugging Information
	Checking Relevant Status Reports

