Oracle® Fusion Middleware
API Gateway OAuth User Guide
11g Release 2 (11.1.2.2.0)

August 2013

ORACLE

Oracle API Gateway OAuth User Guide, 11g Release 2 (11.1.2.2.0)
Copyright © 1999, 2013, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and dis-
closure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or al-
lowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, per-
form, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of
this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any
errors, please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered
to U.S. Government customers are "commercial computer software" or "commercial technical data" pursuant to the ap-
plicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication, dis-
closure, modification, and adaptation shall be subject to the restrictions and license terms set forth in the applicable Gov-
ernment contract, and, to the extent applicable by the terms of the Government contract, the additional rights set forth in
FAR 52.227-19, Commercial Computer Software License (December 2007). Oracle USA, Inc., 500 Oracle Parkway,
Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not developed or in-
tended for use in any inherently dangerous applications, including applications which may create a risk of personal injury.
If you use this software in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use of this software. Oracle Corporation and its affiliates disclaim
any liability for any damages caused by use of this software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks of their re-
spective owners.

This software and documentation may provide access to or information on content, products, and services from third
parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with
respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any
loss, costs, or damages incurred due to your access to or use of third-party content, products, or services. This docu-
mentation is in prerelease status and is intended for demonstration and preliminary use only. It may not be specific to the
hardware on which you are using the software. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to this documentation and will not be responsible for any loss, costs, or
damages incurred due to the use of this documentation.

The information contained in this document is for informational sharing purposes only and should be considered in your
capacity as a customer advisory board member or pursuant to your beta trial agreement only. It is not a commitment to
deliver any material, code, or functionality, and should not be relied upon in making purchasing decisions. The develop-
ment, release, and timing of any features or functionality described in this document remains at the sole discretion of Or-
acle.

This document in any form, software or printed matter, contains proprietary information that is the exclusive property of
Oracle. Your access to and use of this confidential material is subject to the terms and conditions of your Oracle Soft-
ware License and Service Agreement, which has been executed and with which you agree to comply. This document
and information contained herein may not be disclosed, copied, reproduced, or distributed to anyone outside Oracle
without prior written consent of Oracle. This document is not part of your license agreement nor can it be incorporated in-
to any contractual agreement with Oracle or its subsidiaries or affiliates.

28 August 2013

Contents

1. Introduction to API Gateway OAULN 2.0o e 1
OVEBIVIBW ettt ettt ettt ettt ettt e 1
(@ AN 11 7 0 @] [o1=T o £ 2
APl Gateway OAULN FEALUIESttt ettt et ettt e e et e aaaaans 2
OAuUth 2.0 AUthentiCatioN FIOWS e e e e e e ns 3
LU g T=T) o] . =1 1o o T 3
2. Setting Up API Gateway OAULN 2.0iu e 5
OVEBIVIBW ittt ettt ettt ettt ettt ettt e 5
Enabling OAUth 2.0 MaNAGEIMENTttt e e ettt ettt e e e aaans 5
Importing Client APPLICALIONSt e e et aaans 6
Migrating Client APPICALIONS vt et e 7
Upgrading APl Gateway CONfIQUIALIONt 8
I\ =T =T T To @ AYU 11 g W2 01N o] o] o%= 4o] = 9
L Y= T 9
Managing Registered Client APPIICALIONSuii e aas 9
Running the Sample Client APPIICALIONSei et naeaas 10
Managing Access Tokens and AUthOriZation COUESc.oviiiiiiiii e 11
Querying OAUth 2.0 MeSSage AtrIDULESiuiriti e e e e 13
Relational Database-Backed Client Application REQISIIYo.iiiiiiiiiiiiiie e 18
Generating a Certificate and Private Key for a Client Applicationc.coiiiiiiiiiiiiieeee 19
4. AP| Gateway OAuth 2.0 Authentication FIOWS ... e 20
L YT 1= 20
Authorization Code (0r Web Server) FIOW 20
Implicit Grant (0r USer AQENt) FIOW ... e e 25
Resource Owner Password CredentialS FIOW ... e 29
Client Credentials Grant FIOW ... et eeaes 31
JSON WeD TOKEN (JWT) FIOW .. oeeeeict et et ettt e 33
=30 (= I 1o] = o PP 35
TOKEN INFO SEIVICE ...ttt 37
5. OAuth Access TOKEN INTOIMELIONui e e e et ens 40
(O YT 1= PP 40
ACCESS TOKEN INTO SEHINGS ... cetieeii ettt ettt e 40
¥ o] o1 (o] 11T R PP PRI 40
AGVANCEU ..o 41
6. Access Token Using AUthOFZation COOEiuiiiiniiii e 42
(O YT 1= PR 42
APPIICAtIoN ValIdAtiONe e e et aas 42
ot ot TS I] (T o P 42
Y o] a1 (o] 11T R PO P TP 43
7. Access Token Using Client Credentialscc.oiuiiiiirii e e eaes 44
(O 0T 1= PR 44
APPICAtIoN ValidAtiONe e e et aas 44
A CCESS TOKBIN .ttt e ettt et aaans 44
Y o] o1 (o] 11T PO P PP 45
8. ACCESS TOKEN USING JWV T Lottt ettt e e e e e et et et et et et e e e e e et e n e et e et e e aanans 46
L= T 46
APPICALION ValIAAtIONt e et aas 46
A CCESS TOKBIN .ttt e ettt ettt aaaas 46
¥ o] o1 (o] 11T R PP PEPRPPR a7
9. AULNONIZALION COUE FIOW ...uuiiiii ettt e 48
OVEBIVIEW ittt ettt ettt ettt ettt ettt ettt e 48
ValidatioN/TEMPIALES ettt ettt ettt aas 48

AULNZ €O DBLAIISeeiniii i e et e e e e e 49

Oracle® Fusion Middleware

ACCESS TOKEN DEBLAIIS ...viviiiitiiit i e ettt et ettt ees 49
1Y/ [o] 11 (o] 10T PPN 50
IO TR 01 oY =Y I = 1YV 1 o o 51
(@ Y= Y/ =Y/ 51
ValidatioN/ TEMPIALESttt e et e et 51
P 11 g4 e To [N D= - P 51
ACCESS TOKEN DEIAIIS ...ttt e e e e e et ettt ettt et 52
1Y/ To] 71 4o ¢ 1o T [P PP 53
1. RE BN ACCESS TOKEN ...ttt e et et ettt et e e e 54
(@ Y= Y/ =Y 54
APPICAtION ValidAtiONttt e e et aas 54
Aol o YT I o] (=Y o 54
1Y/ To] 71 (o] 1o T PPN 55
12. ReSOUICe OWNET CreAENTIAIScviiriiti ittt e e ettt et e et et et et e e teeaenaanenn 56
(@ Y= Y/ =, 56
APPICAtION ValidAtioNiuitit e e e e e et e aas 56
P oo oYL o] (=Y o P 56
1Y/ [o] 11 (o] 10T PPN 57
T ==Y o] (ST T 1o (= o 58
(@ Y= Y/ =, 58
REVOKE TOKEN SEIINGS ... ettt ettt et ettt et ettt e et e e e et e n e naenes 58
1Yo 11 7o 4 T [P PSPPSR 58
T4, Validate ACCESS TOKEBIM ...ttt ittt ettt ettt ettt e et e e et e et et et e et et et e e ettt eaeeteateareaeanean 59
(@ V7= Y/ =S 59
(00101 T[] = 11 o] H PP 59

Introduction to APl Gateway OAuth 2.0

Overview

OAuth is an open standard for authorization that enables client applications to access server resources on behalf of a
specific Resource Owner. OAuth also enables Resource Owners (end users) to authorize limited third-party access to
their server resources without sharing their credentials. For example, a Gmail user could allow LinkedIn or Flickr to have
access to their list of contacts without sharing their Gmail username and password.

The Oracle API Gateway can be used as an Authorization Server and as a Resource Server. An Authorization Server is-
sues tokens to client applications on behalf of a Resource Owner for use in authenticating subsequent API calls to the
Resource Server. The Resource Server hosts the protected resources, and can accept or respond to protected resource
requests using access tokens.

The following diagram shows the main OAuth components:

Resource Server

Client Application

Access data

é "h“

- lssue authz code/!

. Delegate
~, access loken
-

authentication
authorization

Access service

- -csiccccnccaa

.)
-
-
-
L]

sssssssssssssssssssssssss===]

Grant access

td
#
*
) 'm

Resource Owner -
Authorization Server
This guide assumes that you are already familiar with the terms and concepts of The OAuth 2.0 Authorization Framework

specification:
http://tools.ietf.org/html/rfc6749

http://tools.ietf.org/html/rfc6749

Introduction to APl Gateway OAuth 2.0

OAuth 2.0 Concepts
The API Gateway uses the following definitions of basic OAuth 2.0 terms:

* Resource Owner:
An entity capable of granting access to a protected resource. When the resource owner is a person, it is referred to
as an end user.

* Resource Server:
The server hosting the protected resources, and which is capable of accepting and responding to protected resource
requests using access tokens. In this case, the APl Gateway acts as a gateway implementing the Resource Server
that sits in front of the protected resources.

e Client Application:
A client application making protected requests on behalf of the resource owner and with its authorization.

e Authorization Server:
The server issuing access tokens to the client application after successfully authenticating the Resource Owner and
obtaining authorization. In this case, the API Gateway acts both as the Authorization Server and as the Resource
Server.

e Scope:
Used to control access to the Resource Owner's data when requested by a client application. You can validate the
OAuth scopes in the incoming message against the scopes registered in the APl Gateway. An example scope is
https://1 ocal host: 8090/ aut h/ useri nfo. emai | .

The following diagram shows the roles of the API Gateway as an OAuth 2.0 Resource Server and Authorization Server:

Client
Application
PP Protected Resources
I l _ Accesses Protected i
Resources = jcati
Authorization Server ‘ i Applications
Resource Server i
=
Issues Access i j Dat
Tokens Authorized Access to [aa
Protected Resources |]
Accesses
Services

Application
Servers

_\g Service Bus
/ Cloud-Based
Q T —— Services

User l—
{(Resource Owner) ' |

Authenticates,
Grants Access

Monitoring and
Control

APl Gateway OAuth Features

Introduction to APl Gateway OAuth 2.0

The API Gateway ships with the following features to support OAuth 2.0:

Web-based client application registration
Generation of authorization codes, access tokens, and refresh tokens
Support for the following OAuth flows:

e Authorization Code

e Implicit Grant

¢ Resource Owner Password Credentials

e Client Credentials

e JWT

¢ Refresh Token

*« Revoke Token

e Token Information Service

Sample client applications for all supported flows

These API Gateway features are explained in the topics that follow.

OAuth 2.0 Authentication Flows

The API Gateway supports the following authentication flows:

OAuth 2.0 Authorization Code Grant (Web Server):

The Web server authentication flow is used by applications that are hosted on a secure server. A critical aspect of
the Web server flow is that the server must be able to protect the issued client application's secret.

OAuth 2.0 Implicit Grant (User-Agent):

The user-agent authentication flow is used by client applications residing in the user's device. This could be imple-
mented in a browser using a scripting language such as JavaScript or Flash. These client applications cannot keep
the client application secret confidential.

OAuth 2.0 Resource Owner Password Credentials:

This username-password authentication flow can be used when the client application already has the Resource
Owner's credentials.

OAuth 2.0 Client Credentials:

This username-password flow is used when the client application needs to directly access its own resources on the
Resource Server. Only the client application's credentials are used in this flow. The Resource Owner's credentials
are not required.

OAuth 2.0 JWT:

This flow is similar to OAuth 2.0 Client Credentials. A JSON Web Token (JWT) is a JSON-based security token en-
coding that enables identity and security information to be shared across security domains.

OAuth 2.0 Refresh Token:

After the client application has been authorized for access, it can use a refresh token to get a new access token.
This is only done after the consumer already has received an access token using the Authorization Code Grant or
Resource Owner Password Credentials flow.

OAuth 2.0 Revoke Token:

A revoke token request causes the removal of the client application permissions associated with the particular token
to access the end-user's protected resources.

OAuth 2.0 Token Information Service:

The OAuth Token Info service responds to requests for information on a specified OAuth 2.0 access token.

Further Information

For more details on the APl Gateway OAuth 2.0 support, see the following topics:

Introduction to APl Gateway OAuth 2.0

e Setting up API Gateway OAuth 2.0
* Managing OAuth 2.0 Applications
« APl Gateway OAuth 2.0 Authentication Flows

For more details on OAuth 2.0, see The OAuth 2.0 Authorization Framework:
http://tools.ietf.org/html/rfc6749

http://tools.ietf.org/html/rfc6749

Setting up API Gateway OAuth 2.0

Overview

This chapter describes how to configure the OAuth 2.0 support provided with the API Gateway. It describes how to en-
able the OAuth 2.0 endpoints used to manage client applications, and how to import the pre-registered examples

provided with

the API Gateway. It how explains how to migrate existing OAuth 2.0 applications.

Enabling OAuth 2.0 Management

The API Gateway provides the following endpoints used to manage OAuth 2.0 client applications:

Description

URL

Authorization Endpoint (REST API) htt ps: // GATEWAY: 8089/ api / oaut h/ aut hori ze

Token Endpoint (REST API) htt ps: // GATEWAY: 8089/ api / oaut h/ t oken
Token Info Endpoint (REST API) htt ps: // GATEWAY: 8089/ api / oaut h/ t okeni nfo
Revoke Endpoint (REST API) htt ps: // GATEWAY: 8089/ api / oaut h/ r evoke

Oracle Client Application Registry|https:// GATEWAY: 8089
(HTML Interface)

(REST API)

Oracle Client Application Registry|htt ps:// GATEWAY: 8089/ api / kps/ Cl i ent Appl i cati onRegi stry

In this table, GATEWAY refers to the machine on which the API Gateway is installed.

A

Important

You must first enable the OAuth listener port in the API Gateway before these endpoints are available.

Enabling OAuth endpoints
To enable the OAuth management endpoints on your APl Gateway, perform the following steps:

CAREIE A

In the Policy Studio tree, select Listeners -> API Gateway -> OAuth 2.0 Services -> Ports.
Right-click the OAuth 2.0 Interface in the panel on the right, and select Edit.

Select Enable Interface in the dialog.

Click the Deploy button in the toolbar.

Enter a description and click Finish.

Note

On Linux-based systems, such as Oracle Enterprise Linux, you must open the firewall to allow external ac-
cess to port 8089. If you need to change the port number, set the value of the
env. PORT. CAUTH2. SERVI CES environment variable. For details on setting external environment vari-

Setting up API Gateway OAuth 2.0

ables for APl Gateway instances, see the APl Gateway Deployment and Promotion Guide.

Importing Client Applications

The API Gateway ships with a number of pre-registered sample client applications. This section explains how to import
these applications into the Client Application Registry.

Note

The sample client applications are for demonstration purposes only and should be removed before moving
the Authorization Server into production.

For example, the default example client applications include the following:

Client ID Client Secret
Sanpl eConfi denti al App 6808d4b6- ef 09- 4b0d- 8f 28- 3b05da9c48ec
Sanpl ePubl i cApp 3b001542- €348- 443b- 9ca2- 2f 38bd3f 3e84

Importing the sample client applications
To import the pre-registered example client applications, perform the following steps:

1. Access the Client Application Registry Web interface at the following URL:
https:/ /1 ocal host: 8089

2. Enter the default username/password of adm n/ changene. Alternatively, if you have installed the APl Management
Solution Pack, enter api adm n@ ocal host / changene.

Click the Import button at the top right of the screen.
4. Select the following sample file in the dialog:

w

$VDI STDI R/ sanpl es/ scri pt s/ oaut h/ sanpl eapps. dat

VDI STDI R specifies the directory in which the API Gateway is installed.
5. You can also enter a Decryption Secret in the dialog. However, the sanpl eapps. dat file is in plaintext format,
and does not require a password.

6. Click OK to import the two sample applications. The following screen shows these applications imported into the Cli-
ent Application Registry:

Setting up API Gateway OAuth 2.0

Client Application Registry

Manage applications
Manage all portal applications

New application £ Refresh Import

Sample Confidential App Sample Confidential Application

Sample Public App Sample Public Application

Alternatively, you can use the following script to import the sample client application data without using the Client Applic-
ation Registry Web interface:

$VDI STDI R/ sanpl es/ scri pt s/ oaut h/ i npor t Sanpl eDat a. py

You can edit this script to configure your user credentials and file location.
Migrating Client Applications

If you are migrating from API Gateway version 11.1.2.0.x, you can use the following script to migrate your existing OAuth
client applications:

$VDI STDI R/ sanpl es/ scri pt s/ oaut h/ m gr at eFron71. py

This script enables you to first export your existing client application data, which you can then import as described in the
section called “Importing Client Applications”. This script has a - - passwor d parameter if you wish to encrypt the expor-
ted data for transport.

Migrating your existing client applications
To migrate your existing client applications, perform the following steps:

1. After installing APl Gateway 11.1.2.2.0, copy the $VDI STI R/ sanpl es/ oaut h/ mi gr at eFronv1. py file to the
same location in your existing APl Gateway 11.1.2.0.x installation:

$VDI STI R/ sanpl es/ oaut h/ mi gr at eFr on71. py

2. In your existing APl Gateway 11.1.2.0.x installation, ensure that $VDI STl R/ sanpl es/ scri pt s/ conmon. py has
the correct def Ser ver Nanme and def G oupNane variables set for your existing topology.

3. Run the ni gr at eFron¥1. py script against your running version 11.1.2.0.x Admin Node Manager and API Gate-
way. The script outputs the following file:

$VDI STI R/ sanpl es/ oaut h/ appr egi st ry/ encodedapps. dat

Note

If you wish to encrypt the data, run the script with the - - passwor d parameter.

4. Check the encodedapps. dat file to ensure that the export has been successful.
5. Import the encodedapps. dat output by the script into a running APl Gateway 11.1.2.2.0 using the Client Applica-

~

Setting up API Gateway OAuth 2.0

tion Registry web interface. For more details, see the section called “Importing Client Applications”. When importing
encrypted data, you must enter a password in the Decryption Secret field.

Upgrading API Gateway Configuration

If you are migrating from a previous AP| Gateway version, you must upgrade your APl Gateway configuration. To gener-
ate an upgraded API Gateway version 11.1.2.2.0 configuration, perform the following steps:

1. Run the following script from your version 11.1.2.2.0 installation directory:

<11.1.2.2.0_install>/platformn bi n/upgradeConfig --groups -d <previous-version-install>
-0 pat h/to/upgrade/ out put/

2. In Policy Studio, select File -> Open File.
3. Specify the following file:

pat h/ t o/ upgr ade/ out put / gr oups/ gr oup- 2/ conf / <gui d>/ confi gs. xm

4. In the open configuration in the Policy Studio tree, under Key Property Stores, delete ApiKeyStore and ClientAp-
plicationRegistry.

5. Select File -> Save -> Deployment Package to export a . f ed file.

6. Start the version 11.1.2.2.0 Admin Node Manager and AP| Gateway instance.

7. In Policy Studio, close the connection to the file, and connect to the now running 7.2 Admin Node Manager. Before
connecting to the API Gateway instance, click Deploy.

8. Click Browse for .fed, and select the . f ed file exported previously in step 4.

9. Import the client applications using the the web-based portal on htt ps:/ /| ocal host: 8089 by clicking Import,
and browsing to the file created in the previous section:

<11.1.2.2.0_install >/ sanpl es/ oaut h/ appr egi stry/ encodedapps. dat >

For more details on upgrading APl Gateway configuration, see the AP| Gateway Installation and Configuration Guide.

Managing OAuth 2.0 Applications

Overview

Client applications that send OAuth requests to the APl Gateway’s Authorization Server must be registered with the Au-
thorization Server. This chapter describes the registry used to store these client applications, and how to manage them
using a REST API-based HTML interface. This topic also includes details on the relational database schema, and SSL
commands used for the example client applications.

Note

This topic assumes that you have already performed the steps described in Setting up APl Gateway OAuth
2.0. These include enabling the OAuth endpoints, importing sample applications, and migrating existing cli-
ent applications.

Managing Registered Client Applications

Every client application that sends OAuth requests to the APl Gateway's OAuth Authorization Server must be registered
with the Client Application Registry. The APl Gateway provides the Client Application Registry Web-based HTML inter-
face for managing registered client applications. If you have the APl Management Solution Pack installed, the Client Ap-
plication Registry is available in the API Portal web-based interface. The APl Gateway also provides the Client Applica-
tion Registry REST API to enable you to manage registered clients on the command line.

Accessing the Client Application Registry Web Interface
You can access the Client Application Registry Web interface at the following URL:

https://1 ocal host : 8089
The default username/password is adnmi n/ changene. Alternatively, if you have installed the APl Management Solution
Pack, enter api adm n@ ocal host/ changene.

You can select a client registration entry to update its details. For example, you can can configure API keys, OAuth cre-
dentials, and protected resources:

Managing OAuth 2.0 Applications

Client Application Registry

Manage applications
Manage all partal applications

Sample Confidential App

Sample Confidential Applicaton
¥ AP| KEYS
Mew API key Rermove
AP KEY
eeSbBRde-a 3R 2-Af5 - bhiet-28d4%900b 3206 Show sacrat

T DAUTH CREDENTIALS
MNew dient 1D Rérmove

LIENT ID
tampleConfidentialdpp Show secret

T OAUTH PROTECTED RESOURCES

Add DAuth resource = Rermove
STEMER EMABLED
fapifoauthiprotected
fapifoauthiprotected?

ON

Editing application
Phane 012348678
Email sam pedsampleann. com
1] CH5bTcT0-fed1-de31-81 Lo ddoTT 81245
Enabled ON

Created By APl Admin
Created 17 April 2013, 0846

REATED

25 Seplember 2012, 10:49

DIRECT URLS RE ATED TYPE
niipa Slocalhostioautn_ca.. 31 May 2013, 1047 Confidential Edit

By default, the Client Application Registry is backed by an embedded Apache Cassandra database.

Running the Sample Client Applications

The API Gateway includes sample Jython client applications for all supported OAuth flows in the following directory your

API Gateway installation:

I NSTALL_DI R/ sanpl es/ scri pt s/ oaut h

To run a sample script, open a UNIX shell or DOS command prompt in the following directory:

I NSTALL_DI R/ sanpl es/ scripts

10

Managing OAuth 2.0 Applications

Windows
For example, run the following command:

> run. bat oauth\inplicit_grant.py
Linux/Solaris
For example, run the following command:

> sh run.sh oauth/inplicit_grant.py

Managing Access Tokens and Authorization Codes

The API Gateway can store generated authorization codes and access tokens in its caches, in an embedded database,
or in a relational database. The Authorization Server issues tokens to clients on behalf of a Resource Owner to use when
authenticating subsequent API calls to the Resource Server. These issued tokens must be persisted so that subsequent
client requests to the Authorization Server can be validated.

The following screen shows the OAuth stores in the Policy Studio:

type Filter text € Access Token Stores 2
b &5 External Connections =/| & Access Token Stores
b gﬂesources ~ Access Token Stores
~ Libraries
) — || 4 Add Access token store
[id Black list
[@ White list [Child 1tems |
) schedules € Access Token Store
[#] caches
© Alerts)
7| Key Property Stores

~ & OAuth2 Stores

v [23 Access Token Stores

& Authorization Code Stores

The Authorization Server can cache authorization codes and access tokens depending on the OAuth flow. The steps for
adding an authorization code cache are similar to adding an access token cache.

The Authorization Server offers the following persistent storage options for access tokens and authorization codes:

« API| Gateway cache (default)
* Relational Database Management System (RDBMS)
¢ Embedded Apache Cassandra database

The following screen shows these options in the Policy Studio:

11

Managing OAuth 2.0 Applications

Choose persistence type

@ Store in a cache

CAuth Authy Code Cache

Purge expired tokens every 60 SECS

Store in a database

Store in Cassandra

OMNE

ANY

The Purge expired tokens every 60 secs setting enables you to configure the time in seconds that a background pro-
cess polls the cache or database looking for expired access/refresh tokens or authorization codes.

Storing in a cache
Perform the following steps:

1. Right-click Access Token Stores in the Policy Studio tree, and select Add Access Token Store.

2. In dialog that enables you to choose the persistence type, select Store in a cache, and select the browse button to
display the cache configuration dialog.

3. Add a new cache (for example, QAut h Access Token Cache). For more details, see the APl Gateway User
Guide.

Storing in arelational database
Perform the following steps:

1. Right-click Access Token Stores in the Policy Studio tree, and select Add Access Token Store.

2. In the dialog that enables you to choose the persistence type, select Store in a database, and select the browse
button to display a database configuration dialog.

3. Complete the database configuration details. The following example uses a MySQL instance named oaut h_db. For
more details, see the AP| Gateway User Guide.

12

Managing OAuth 2.0 Applications

Name: |Acce55 Token DB Cache hd |

URL: |jr.:lhc:mysql:ﬁlocalhnstl:SSDﬁfﬂauth_d|

User Name: |root |

Password:

@ Enter Password |******** |

) Wildcard Password

Note

On first use of the database for caching access tokens, the following tables are created automatically: oau-
th_access_t oken and oaut h_refresh_t oken. A table named oaut h_aut hz_code is created for

caching authorization codes.

For more details, see the section called “Relational Database-Backed Client Application Registry”.

Storing in Cassandra
Perform the following steps:

1. Right-click Access Token Stores in the Policy Studio tree, and select Add Access Token Store.

2. This displays the dialog that enables you to choose the persistence type. Select Store in Cassandra.

3. You can configure Read and Write consistency levels for the Cassandra database. These control how up-to-date
and synchronized a row of data is on all of its replicas. The default Read setting of ONE means that the database re-
turns a response from the closest replica. The default Write setting of ANY means that a write must be written to at
least one replica node. For more details, see http://www.datastax.com/docs/0.8/dml/data_consistency.

Querying OAuth 2.0 Message Attributes

Most of the OAuth 2.0 policy filters in the APl Gateway generate message attributes that can be queried further using
API Gateway selector syntax. The message attributes generated by the OAuth filters are as follows:

e accesstoken

e accesstoken. aut hn

e authzcode

e authentication.subject.id
e oauth.client.details

accesstoken methods
The following methods are available to call on the accesst oken message attribute:

13

http://www.datastax.com/docs/0.8/dml/data_consistency

Managing OAuth 2.0 Applications

accesst oken. get Val ue() }

accesst oken. get Expiration()}

accesst oken. get Expi resin()}
accesst oken. i sExpired()}

accesst oken. get TokenType()}

accesst oken. get Ref reshToken() }

accesst oken. get QAut h2Ref r eshToken() . get Val ue() }
accesst oken. get QAut h2Ref r eshToken() . get Expi rat i on(
accesst oken. get QAut h2Ref r eshToken() . get Expi resl n()
accesst oken. get QAut h2Ref r eshToken() . hasExpi red() }
accesst oken. hasRefresh()}

accesst oken. get Scope() }

accesst oken. get Addi ti onal | nformati on()}

)}
}

AARAPAPARAAAARPAAARSD

The following example shows output from querying each of the accesst oken methods:

S00H JYASr nXgn2f L2VWji unaLf SBhW/6W JMomOal131HoQz ZB1r NJ
Fri Oct 05 17:16:54 |ST 2012

3599

fal se

Bear er

xi f 9oNH 83NAETQLxn5CGoqf u9dKe Re FnmBkx Tkbc 6y HDf K
xi f 9oNH 83NAETQLxnS5CGoqf u9dKe Rc FmBkx Tkbc 6y HDf K
Sat Oct 06 04:16:54 | ST 2012

43199

fal se

true

https://1 ocal host: 8090/ aut h/ useri nf 0. enai
{depart nent =engi neeri ng}

accesstoken.authn methods
The following methods are available to call on the accesst oken. aut hn message attribute:

${accesst oken. aut hn. get User Aut henti cati on()}

${accesst oken. aut hn. get Aut hori zati onRequest () . get Scope() }
${accesst oken. aut hn. get Aut hori zati onRequest ().getd ientld()}
${accesst oken. aut hn. get Aut hori zati onRequest (). get State()}
${accesst oken. aut hn. get Aut hori zat i onRequest (). get Redirect Uri ()}
${accesst oken. aut hn. get Aut hori zat i onRequest () . get Par anet er s() }

The following example shows output from querying each of the accesst oken. aut hn methods:

admi n

[https://|ocal host: 8090/ aut h/ useri nfo. emai |]

Sanpl eConfi denti al App

343dgak32ksl a

https:/ /1 ocal host/oaut h_cal | back

{cl1ent_secret=6808d4b6- ef 09- 4b0d- 8f 28- 3b05da9c48ec,
scope=https://| ocal host: 8090/ aut h/ useri nfo.email, grant_type=authorization_code
redirect _uri=https://I|ocal host/oauth_cal | back, state=null
code=FOT4nudbgl Qouuj Rl 8oH3EOWzad QP, client _i d=Sanpl eConfi denti al App}

authzcode methods
The following methods are available to call on the aut hzcode message attribute:

${ aut hzcode. get Code() }

${ aut hzcode. get St at e() }

${aut hzcode. get Appl i cati onNare() }
${aut hzcode. get Expi rati on() }
${aut hzcode. get Expi resin() }

14

Managing OAuth 2.0 Applications

${ aut hzcode
${ aut hzcode
${ aut hzcode
${ aut hzcode

.getRedirect URI ()}

. get Scopes() }
.getUserldentity()}

.get Addi tional I nformation()}

The following example shows output from querying each of the aut hzcode methods:

F8aHby7zct NRknmW p3voe61H20Mi1

sds12dsd334
Sanpl eConfi
Fri COct 05

599 (expiry

3ddsd

dent i al App
15:47:39 | ST 2012
in secs)

https://1 ocal host/ oaut h_cal | back
[https://1ocal host: 8090/ aut h/ userinfo. enail]

adm n
{costunit=h

r}

oauth.client.details methods
The following methods are available to call on the oaut h. cl i ent . det ai | s message attribute:

${ aut hzcode.
${ aut hzcode.
${ aut hzcode.
${ aut hzcode.
${ aut hzcode.
${ aut hzcode.
${ aut hzcode.
${ aut hzcode.

get Code()}
getState()}

get Appl i cati onNanme() }
get Expi ration()}

get Expi resin()}

get Redi rect URI ()}

get Scopes()}

get Userl dentity()}

The following example shows output from querying each of the oaut h. cl i ent . det ai | s methods:

F8aHby7zct NRknmW p3voe61H20Mi1
sds12dsd3343ddsd
Sanpl eConfi denti al App

Fri

599 (expiry

Cct 05 15:47:39 | ST 2012

in secs)

https:/ /1 ocal host/ oaut h_cal | back
[https://|ocal host: 8090/ aut h/ useri nfo. enai |]

adm n

Example of querying message attribute
If you add additional access token parameters to the OAuth 2.0 Access Token Info filter, you can return a lot of addi-
tional information about the token. For example:

"audi ence" " Sanpl eConfi denti al App",

"user _id" "adm n",

"scope" "https://|ocal host: 8090/ aut h/ useri nfo. email",
"explres_in" 3567,

"Access Token Expiry Date"
"Aut henti cati on paraneters”

"Wed Aug 15 11:19:19 | ST 2012",
"{user namre=adm n,

client_secret=6808d4b6- ef 09- 4b0d- 8f 28- 3b05da9c48ec,

scope=https:/ /| ocal host: 8090/ aut h/ useri nfo. emai | ,
redi rect _uri=null,

gr ant _t ype=passwor d,

state=null, client_id=Sanpl eConfidenti al App,

passwor d=changene} ",

"Access Token Type:"

You also have

" Bearer"

the added flexibility to add extra name/value pair settings to access tokens upon generation.The OAuth

15

Managing OAuth 2.0 Applications

2.0 access token generation filters provide an option to store additional parameters for an access token. For example, if
you add the name/value pair Depar t ment / Engi neeri ng to the Client Credentials filter:

Access Token using Client Credentials ‘_J
_
The client can request an Access Token using only its Client Credentials
Mame: | Access Token using Client Credentials
application Yalidation | #ccess Token | Manitoring
Access Token will be stored here: E]

Access Token Details

Access Token Expiry(in secs) | 3600 Access Token Length | 54 Access Token Type | Bearer

Refresh Token Details
[]include Refresh Token

Store additional meta data with the access token which can subsequently be retrigved,

Marne Yalle
Department Engineering

You can then update the Access Token Info filter to add a name/value pair using a selector to get the following value:
Depart ment / ${ accesst oken. get Addi ti onal I nf ornati on() . get (" Departnment ")}

For example:

16

Managing OAuth 2.0 Applications

Access Token Information ._J
_
For a given Access Token, return a json description of the token
Mame: | Access Token Information
Access Token Info Settings | Monitaring | Advanced
Feturn additional Access Token parameters
Marme Yalue
iDepartrment 44 accesstoken, getddditionalInformation)), get" Department™
Then the JSON response is as follows:
{ , . :
"audi ence" : " Sanpl eConfi denti al App"”,
"user_id" : "Sanpl eConfidential App",
"scope" : "https://|ocal host: 8090/ aut h/ useri nfo.email",
"expires_in" : 3583,
"Access Token Type:" : "Bearer",
"Aut henti cati on paranmeters" :
"{client_secret=6808d4b6- ef 09- 4b0d- 8f 28- 3b05da9c48ec,
scope=https://| ocal host: 8090/ aut h/ useri nfo. emai |, grant_type=client_credential s,
redirect _uri=null, state=null, client_id=Sanpl eConfi denti al App}",
"Departnent” : "Engi neering",
"Access Token Expiry Date" : "Wd Aug 15 12:10:57 | ST 2012"

You can also use APl Gateway selector syntax when storing additional information with the token. For more details on
selectors, see the API Gateway User Guide.

OAuth scope attributes

In addition, the following message attributes are used by the OAuth filters to manage OAuth scopes. The scopes are
stored as a set of strings (for example, https://|ocal host: 8090/ auth/user. photos ht -
tps:/ /1 ocal host: 8090/ aut h/ useri nfo. email):

e scopes.in.token
Stores the OAuth scopes that have been sent in to the Authorization Server when requesting the access token.

e scopes.for.token
Stores the OAuth scopes that have been granted for the access token request.

e scopes.required
Used by the Validate Access Token filter only. If there is a failure accessing an OAuth resource due to incorrect
scopes in the access token, an i nsuf fi cent _scope exception is sent back in the WWW¥ Aut hent i cat e header.
When Get scopes by calling a policy is set, the configured policy can set the scopes. r equi r ed message attrib-
ute. This enables the OAuth Resource Server to properly interact with client applications and provide useful error re-

17

Managing OAuth 2.0 Applications

sponse messages. For example:

WNV Aut henti cate Bearer real m="Defaul t Real ni', error="i nsuffici ent _scope",
error_descripti on="scope(s) associated with access token are not valid
to access this resource", scope="Scopes nust match Al of these scopes:
https://1 ocal host: 8090/ aut h/ user. photos https://| ocal host: 8090/ aut h/ useri nf o. enai | "

Relational Database-Backed Client Application Registry

By default, the Oracle Client Application Registry Key Property Store (KPS) is backed by an Apache Cassandra data-
base. The Oracle Client Application Registry KPS can also be backed by a relational database such as Oracle, MySQL,
DB2, or Microsoft MySQL Server. For more details, see the Key Property Store User Guide, available from Oracle Sup-
port.

OAuth relational database schemas
For example, the OAuth relational database schemas displayed by example mysqgl commands are as follows:

oauth_access_token schema
The following shows the result from the show col utms from aut h_access_t oken; command:

ocococcoacooooo ococoosooooooe oo oo oo o ococooooo ococaos +
| Field | Type | Null | Key | Default | Extra |
Fococoosoocooooo Fococoosooooooo oo oo oo oo o Fococooooo Fococooo +
id	wvarchar (2	NO	PRI	NULL	
auth_request	blob	NO		NuULL	
client_id	varchar(255	NO		NuULL	
expiry_ti	datetine	NO		NuULL	
token	blob	NO		NULL	
refresh_token	varchar (2	YES		NULL	
user_auth	varchar(255	NO		NuULL	
user_name	varchar(255	NO		NuULL	
ocococsoocoooo=o fecocoocooocooos b oo=os s o= = ecocoo=os o= oos +

oauth_refresh_token schema
The following shows the result from the show col utms from oaut h_r ef resh_t oken; command:

o o e ool +-i-i-i- R F-ioioioiol- +
| Field | Type | Null | Key | Default | Extra |
o o ool F-i--ci- R Foioioiooal- +
token_id	varchar(255)	NO	PRI	NULL	
auth_request	blob	NO		NULL	
expiry tine	datetine	NO		NUL	
token	bl ob	NO		NULL	
user_name	varchar(255)	NO		NULL	
P P Fo-ome- +----- oo S +

oauth_refresh_token schema
The following shows the result from the show col utms from oaut h_ref resh_t oken; command:

S S deoeen- teme-- o o +
| Field | Type | Null | Key | Default | Extra |
T T T e eemm-- teme - o o +
id	varchar(255)	NO	PRI	NULL	
authorization	blob	NO		NuULL	
expiry_tine	datetine	NO		NuULL	
ocococcoacooooo ococoosooooooe oo oo oo oo o ococooooo Fococaoo +

18

Managing OAuth 2.0 Applications

Generating a Certificate and Private Key for a Client Application

The following example openssl command shows generating a client application certificate and private key:

$ openssl req -x509 -nodes -days 365 -newkey rsa: 1024 -keyout nykey.pem
-out mycert.pem
Generating a 1024 bit RSA private key

You are about to be asked to enter information that will be incorporated
into your certificate request.

What you are about to enter is what is called a Distinguished Nane or a DN
There are quite a few fields but you can | eave sone bl ank.

For sonme fields there will be a default val ue.

If you enter '.', the field will be Ieft blank.

Country Name (2 letter code) [AU]:US

State or Province Nane (full nane) [Sone-State]: VA

Locality Nane (eg, city) []:New on

Organi zati on Nanme (eg, conpany) [Internet Wdgits Pty Ltd]: Oracle

Organi zational Unit Name (eg, section) []: APl Gateway

Conmon Nane (eg, YOUR nane) []: Sanpl eConfi denti al App

Emai | Address []:support@v dgits.com

19

APl Gateway OAuth 2.0 Authentication Flows

Overview

The API Gateway can use the OAuth 2.0 protocol for authentication and authorization. The API Gateway can act as an
OAuth 2.0 Authorization Server and supports several OAuth 2.0 flows that cover common Web server, JavaScript,
device, installed application, and server-to-server scenarios. This topic describes each of the supported OAuth 2.0 flows
in detail, and shows how to run example client applications.

Authorization Code (or Web Server) Flow

The Authorization Code or Web server flow is suitable for clients that can interact with the end-user's user-agent
(typically a Web browser), and that can receive incoming requests from the authorization server (can act as an HTTP
server). The Authorization Code flow is also known as the Three-Legged OAuth flow.

The Authorization Code flow is as follows:

1.

The Web server redirects the user to the APl Gateway acting as an Authorization Server to authenticate and author-
ize the server to access data on their behalf.

After the user approves access, the Web server receives a callback with an authorization code.

After obtaining the authorization code, the Web server passes back the authorization code to obtain an access token
response.

After validating the authorization code, the API Gateway passes back a token response to the Web server.
After the token is granted, the Web server accesses their data.

20

AP| Gateway OAuth 2.0 Authentication Flows

Web Server

UserAgent (Browser)

(Client App) Authorization Server

Resource Server

Enter LURL
-

Open URL .

™

Start OAuth Process

- Redirect to AuthZ Server

P

Present Autharization U1

-

Present credentials and authorise or deny o
P

-

Redirect to Web Server with Authorzation Code

Opens redirect URL >
T
Fresent Authorization UT
-
Present submitted data from user =
\Verify and create Authorization code

Follow redirect to Web Server

User UserAgent (Browser)

Obtaining an access token

-

Presant Authorization Code

[
{

. Return Access Token
.|

Call protected resource with Access Token

T
| Refurm protecied resource
.l

Y

! |
=D ks Authorization Server

(Client App)

The detailed steps for obtaining an access token are as follows:

1. Redirect the user to the authorization endpoint with the following parameters:

Resource Server

Parameter Description

response_t ype

Required. Must be set to code.

client_id

Required. The Client ID generated when the application was registered in the
Oracle Client Application Registry.

redirect _uri

Optional. Where the authorization code will be sent. This value must match one
of the values provided in the Oracle Client Application Registry.

ing the callback.

scope Optional. A space delimited list of scopes, which indicate the access to the Re-
source Owner's data being requested by the application.
state Optional. Any state the consumer wants reflected back to it after approval dur-

The following is an example URL:

21

API Gateway OAuth 2.0 Authentication Flows

htt ps:// api gat eway/ oaut h/ aut hori ze?cl i ent _i d=Sanpl eConfi denti al App&
response_t ype=code&&r edi rect _uri =htt p¥8AYRFY¥2F| ocal host ¥%8A8090%2Faut h92Fr edi rect . ht m &
scope=ht t ps¥BAYRFY2FI| ocal host ¥8A8090%2Faut h%2Fuseri nf 0. emai |

Note

During this step the Resource Owner user must approve access for the application Web server to access
their protected resources, as shown in the following example screen.

Confidential App

is requesting permission to access:

+ Access and change your email contacts

Learn more

Allow Access Mo thanks

2. The response to the above request is sent to the redi rect _uri . If the user approves the access request, the re-
sponse contains an authorization code and the st at e parameter (if included in the request). If the user does not ap-

prove the request, the response contains an error message. All responses are returned to the Web server on the query
string. For example:

https://1 ocal host/oaut h_cal | back& ode=9sr N6sqnj r vG5bWNB42PCG u0TFW

3. After the Web server receives the authorization code, it may exchange the authorization code for an access token and
a refresh token. This request is an HTTPS PGST, and includes the following parameters:

Parameter Description

grant _type Required. Must be set to aut hori zat i on_code.

code Required. The authorization code received in the redirect above.

redirect _uri F\’_equir_ed. The redirect URL registered for the application during application re-
gistration.

22

API Gateway OAuth 2.0 Authentication Flows

Parameter Description

client_id* Optional. The cl i ent _i d obtained during application registration.
client_secret* Optional. The cl i ent _secr et obtained during application registration.

f or mat Optional. Expected return format. The default is j son. Possible values are:

. url encoded
e json
e xni

* Iftheclient _idandclient_secret are not provided as parameters in the HTTP POST, they must be provided in
the HTTP Basic Authentication header (Aut hori zati on base64Encoded(client _id:client_secret)).

The following example HTTPS POST shows some parameters:

POST / api / oaut h/t oken HTTP/ 1.1
Cont ent - Type: application/ x-wwform url encoded

client i d=Sanpl eConfi denti al App&cl i ent _secr et =6808d4b6- ef 09- 4b0d- 8f 28- 3b05da9c48ec
&code=9sr N6sqnj r vG5bW/NB42PCG uOTFWe&r edi rect _uri =ht t p%8A%2F%2F| ocal host ¥3A809
0%2Faut h92Fr edi rect . ht ml &gr ant _t ype=aut hori zati on_code&f or mat =query

4. After the request is verified, the APl Gateway sends a response to the client. The following parameters are in the re-
sponse body:

Parameter Description

access_t oken The token that can be sent to the Resource Server to access the protected re-
sources of the Resource Owner (user).

refresh_t oken A token that may be used to obtain a new access token.

expires The remaining lifetime on the access token.

type Indicates the type of token returned. At this time, this field always has a value of
Bearer.

The following is an example response:

HTTP/ 1.1 200 OK

Cache-Control : no-store

Cont ent - Type: application/json

Pragma: no-cache{
"access_token": “091G451HZ0V830pz6udi SEj chPynd2Ss9.
"token_type": "Bearer",
"expires_in": "3600",

23

API Gateway OAuth 2.0 Authentication Flows

5. After the Web server has obtained an access token, it can gain access to protected resources on the Resource Server
by placing it in an Aut hori zati on: Bear er HTTP header:

CGET /oauth/protected HTTP/ 1.1
Aut hori zati on: Bearer (Q1G451HZ0V830pz6udi SEj chPynd2Ss9
Host: api gat eway. com
For example, the cur | command to call a protected resource with an access token is as follows:
curl -H "Authorization: Bearer 91G451HZ0V830opz6udi SEj chPynd2Ss9"
htt ps: // api gat eway. coni oaut h/ pr ot ect ed

Running the sample client
The following Jython sample client creates and sends an authorization request for the authorization grant flow to the Au-
thorization Server:

I NSTALL_DI R/ sanpl es/ scri pt s/ oaut h/ aut hori zati on_code. py

To run the sample, perform the following steps:

1. Open ashell prompt at | NSTALL_DI R/ sanpl es/ scri pt s, and execute the following command:

> run oaut h/ aut hori zati on_code. py

The script outputs the following:

> G to the URL here:

http://127.0.0. 1: 8080/ api / oaut h/ aut hori ze?cl i ent _i d=Sanpl eConfi denti al App
&r esponse_t ype=code&scope=ht t ps¥BAYRFY2FI| ocal host ¥8A8090%2Faut h%2Fuser i nf 0. enai |
& edirect _uri =htt ps¥BA%RFY%2F| ocal host %2Foaut h_cal | back

Ent er Aut horization code in dial og

L |

Enter Authorization Code @

- Enter Authorization Code:

OK Cancel

2. Copy the URL output to the command prompt into a browser, and perform the following steps as prompted:
a. Provide login credentials to the authorization server. The default values are:
e Username: adm n
e Password: changene
b. When prompted, grant access to the client application to access the protected resource.

3. After the Resource Owner has authorized and approved access to the application, the Authorization Server redirects
a fragment containing the authorization code to the redirection URI. For example:

24

API Gateway OAuth 2.0 Authentication Flows

https://1 ocal host/ oaut h_cal | back& ode=Aal 50 3RYB2uQOgi yqVsLs1ATI YOI | O
In this example, the authorization code is:

Aal 50r 3RYB2uQgi yqVsLs1ATI YOI | 0

Enter this value into the Enter Authorization Code dialog. The script will exchange the authorization code for an
access token, and then access the protected resource using the access token. For example:

Enter Authorization code in dial og

Aut hZ code: Aal 50 3RYB2uQgi yqVsLs1ATI YOI | O

Exchange authZ code for access token

Sendi ng up access token request using grant_type set to authorization_code
Response from access token request: 200

Parsing the json response

**********************ACCESS TG(EN RESPO\ISE***********************************
Access token received from aut hori zati on server i cPgKP2uVUD2t hvAZ5ENhs Qb66f f nZEC
XHy RQEz5zP8aGzcobLV3AR

Access token type received from authorizati on server Bearer

Access token expiry tine: 3599

Refresh token: NpNbzl VWj 8MiMtWk2zsawxxJ3YADf cOXI x| ZvwOt | hh8

EEE R R R R EEEEREEEEEEEEEEEEEEREEE]
Now we can try access the protected resource using the access token

Executing get request on the protected url

Response from protected resource request is: 200

<ht ml >Congrats! You've hit an QAuth protected resource</htm >

Further information
For details on API Gateway filters that support this flow, see the following topics:

Access Token Using Authorization Code
Authorization Code Flow
Authorize Transaction

Implicit Grant (or User Agent) Flow

The Implicit Grant (User-Agent) authentication flow is used by client applications (consumers) residing in the user's
device. This could be implemented in a browser using a scripting language such as JavaScript, or from a mobile device
or a desktop application. These consumers cannot keep the client secret confidential (application password or private

key).

The User Agent flow is as follows:

1.

2.

The Web server redirects the user to the APl Gateway acting as an Authorization Server to authenticate and author-
ize the server to access data on their behalf.

After the user approves access, the Web server receives a callback with an access token in the fragment of the re-
direct URL.

After the token is granted, the application can access the protected data with the access token.

25

AP| Gateway OAuth 2.0 Authentication Flows

m User Agent [Browser) Javaseript client Authorization Server Web Server

Enters LIRL .
i Pacge with javesri
Execute javascoript
-—)
g fedirect to AuthZ response_type=token
) Opens redirect URL >
= Present Al.rﬂlurlz,a':llnn UL
< Presant Author zation UL -

Present credentals end authorise or deny

Present subrritted data from user n
T

L

Verify and create Access Token :

F 3

Redirect to Wi Serder with Acoess Token In 7 fragment
I
Fedlow redirect bo Web Server with oul fragrmert
|

¥

page with javascript

rF 3

Ewtract access token fram fragment Z

Caill protected resource with Access Token >
- Reeturn protecied resource
-
m User Agent (Browser) Javascript client Authorization Server m

Obtaining an access token
The detailed steps for obtaining an access token are as follows:

1. Redirect the user to the authorization endpoint with the following parameters:

Parameter Description
response_type Required. Must be set to token.
client_id Required. The Client ID generated when the application was registered in the

Oracle Client Application Registry.

redirect _uri Optional. Where the access token will be sent. This value must match one of
the values provided in the Oracle Client Application Registry.

scope Optional. A space delimited list of scopes, which indicates the access to the
Resource Owner's data requested by the application.

state Optional. Any state the consumer wants reflected back to it after approval dur-
ing the callback.

The following is an example URL:

htt ps:// api gat eway/ oaut h/ aut hori ze?cl i ent _i d=Sanpl eConfi dent i al App&r esponse_t ype=
t oken&&r edi rect _uri =ht t p¥BA%RF%2F| ocal host ¥%8A8090%2Faut h92Fr edi r ect . ht m &cope=
ht t ps%BAYRFY2FI ocal host %8A8090%2Faut h92Fuser i nf o. emai |

26

API Gateway OAuth 2.0 Authentication Flows

Note

During this step the Resource Owner user must approve access for the application (Web server) to access
their protected resources, as shown in the following example screen.

Confidential App

is requesting permission to access:

¢ Access and change your email contacts

Learn more

Mo thanks

2. The response to the above request is sent to the redi rect _uri . If the user approves the access request, the re-
sponse contains an access token and the state parameter (if included in the request). For example:

https://1 ocal host/oaut h_cal | back#access_t oken=19437j hj 2781FQd44AzqT3Zg
&t oken_t ype=Bear er &expi r es_i n=3600

If the user does not approve the request, the response contains an error message.

3. After the request is verified, the APl Gateway sends a response to the client. The following parameters are contained
in the fragment of the redirect:

Parameter Description

access_t oken The token that can be sent to the Resource Server to access the protected re-
sources of the Resource Owner (user).

expires The remaining lifetime on the access token.

type Indicates the type of token returned. At this time, this field will always have a
value of Bear er .

state Optional. If the client application sent a value for state in the original authoriza-
tion request, the state parameter is populated with this value.

27

API Gateway OAuth 2.0 Authentication Flows

4. After the application has obtained an access token, it can gain access to protected resources on the Resource Server
by placing it in an Aut hori zati on: Bear er HTTP header:

CGET /oauth/protected HTTP/ 1.1
Aut hori zati on: Bearer 91G451HZ0V830pz6udi SEj chPynd2Ss9
Host: api gat eway. com

For example, the cur | command to call a protected resource with an access token is as follows:

curl -H "Authorization: Bearer 091G451HZ0V830opz6udi SEj chPynd2Ss9"
htt ps:// api gat eway. coni oaut h/ pr ot ect ed

Running the sample client
The following Jython sample client creates and sends an authorization request for the implicit grant flow to the Authoriza-
tion Server:

I NSTALL_DI R/ sanpl es/ scri pts/oauth/inplicit_grant. py

To run the sample, perform the following steps:

1. Open ashell prompt at | NSTALL_DI R/ sanpl es/ scri pt s, and execute the following command:

> run oauth/inplicit_grant.py

The script outputs the following:

> Go to the URL here:
http://127.0.0. 1: 8080/ api / oaut h/ aut hori ze?cl i ent _i d=Sanpl eConfi dent i al App&
response_t ype=t oken&scope=ht t ps9BAYRFY&FI ocal host ¥%8A8090%R2Faut h9%2Fuser i nfo. emai | &
redirect _uri =htt ps%BAYRFY2F| ocal host ¥2Foaut h_cal | back&st at e=1956901292
Enter Access Token code in dial og

Enter Access Token from fragment lé

L] Enter Access Token from fragment:

Ok Cancel

L -5
2. After the Resource Owner has authorized and approved access to the application, the Authorization Server redirects
to the redirection URI a fragment containing the access token. For example:

https:/ /1 ocal host/ oaut h_cal | back#access_t oken=
40wz Gyokz LLQB5FH4At OVK 7Eqf 1w Y ENEDXZ1nmGvN7u7a2Xexy20U9&8expi res_i n=
3599&st at e=1956901292&t oken_t ype=Bear er

In this example, the access token is:

4owz Gyokz LLQB5FHAt OVk 7Eqf 1wqYf ENEDXZ1nGvN7u7a2Xexy 2009

28

AP| Gateway OAuth 2.0 Authentication Flows

Enter this value into the Enter Access Token from fragment dialog, and the script attempts to access the protec-
ted resource using the access token. For example:

**********************ACCESS TG(EN RESPO\ISE******************************
Access token received from authorization server 4owzGyokzLLQB5FH4t OVK7EqQf 1wqYf EN
EDXZ1nGvN7u7a2Xexy20U9

LR R R R RS SRR E R SRR R SRS EEEEEEREEEEEEEEEEEEEEEEEREEEEEEREERESEEEEREREEEEEEREEEEEEERSES]

Now we can try access the protected resource using the access token
Executing get request on the protected url

Response from protected resource request is: 200

<ht ml >Congrats! You've hit an QAuth protected resource</htm >

Further information
For details on the API Gateway filter that supports this flow, see the Authorization Code Flow filter.

Resource Owner Password Credentials Flow

The Resource Owner password credentials flow is also known as the username-password authentication flow. This flow
can be used as a replacement for an existing login when the consumer already has the user’s credentials.

The Resource Owner password credentials grant type is suitable in cases where the Resource Owner has a trust rela-
tionship with the client (for example, the device operating system or a highly privileged application). The Authorization
Server should take special care when enabling this grant type, and only allow it when other flows are not viable.

This grant type is suitable for clients capable of obtaining the Resource Owner's credentials (username and password,
typically using an interactive form). It is also used to migrate existing clients using direct authentication schemes such as
HTTP Basic or Digest authentication to OAuth by converting the stored credentials to an access token.

Resource Owner Password Credentials flow

Resource Owner's -:redentlals-_

Resource Owner's credentials

-
Authenticate Resource Owner :

Authenticate Client D

< Access token with optional refresh token

Access protected resource with access token >
T

> Protected resource response

Authorization Server Resource Server

The client token request should be sent in an HTTP POST to the token endpoint with the following parameters:

Resource Owner Client

Requesting an access token

Parameter Description

grant _type Required. Must be set to passwor d

29

API Gateway OAuth 2.0 Authentication Flows

Parameter Description

user nane Required. The Resource Owner's user name.

password Required. The Resource Owner's password.

scope Optional. The scope of the authorization.

f or mat Optional. Expected return format. The default is j son. Possible values are:
e urlencoded
e json
e xm

The following is an example HTTP POST request:

POST / api / oaut h/ t oken HTTP/ 1.1

Content - Lengt h: 424

Cont ent - Type: application/ x- ww« f or m url encoded; charset =UTF-8

Host: 192. 168. 0. 48: 8080

Aut hori zation: Basic czZCaGRSa3FOMzpnVDFnQTFOM2IWgr ant _t ype=passwor d&user name=
j ohndoe&passwor d=A3ddj 3w

Handling the response
The API Gateway will validate the resource owner’s credentials and authenticate the client against the Oracle Client Ap-
plication Registry. An access token, and optional refresh token, is sent back to the client on success. For example, a val-
id response is as follows:
HTTP/ 1.1 200 K
Cache-Control : no-store
Cont ent - Type: application/json
Pragma: no-cache
"access_t oken": “O91G451HZ0V830pz6udi SEj chPynd2Ss9.
"t oken_type": "Bearer",
"expires_in": "3600",
“refresh_token”: “8722¢gffy2229220002i uueee7GP........... !

Running the sample client

The following Jython sample client sends a request to the Authorization Server using the Resource Owner password cre-
dentials flow:

I NSTALL_DI R/ sanpl es/ scri pt s/ oaut h/ r esour ceowner _password_credenti al s. py

To run the sample, open a shell prompt at | NSTALL_DI R/ sanpl es/ scri pt s, and execute the following command:

> run oaut h/ resour ceowner _password_credenti al s. py

The script outputs the following:

Sendi ng up access token request using grant_type set to password

30

AP| Gateway OAuth 2.0 Authentication Flows

Response from access token request: 200

Parsing the json response

**********************A@ESS TG(EN RESPO\ISE***********************************
Access token received from authorization server |rGHhFhFwSmycXSt| zaljj vXl Saac9
JNI gvi F70Pi V8OnxI| Sl sr xVA

Access token type received from authorizati on server Bearer

Access token expiry time: 3600

REE R R ok kS S S R R S O S kR R S R R O Rk R R R Rk bk o kS R O R

Now we can try access the protected resource using the access token
Executing get request on the protected url

Response from protected resource request is: 200

<ht ml >Congrats! You've hit an QAuth protected resource</htmnl >

Further information
For details on the API Gateway filter that supports this flow, see Resource Owner Credentials.

Client Credentials Grant Flow

The client credentials grant type must only be used by confidential clients. The client can request an access token using
only its client credentials (or other supported means of authentication) when the client is requesting access to the protec-
ted resources under its control. The client can also request access to those of another Resource Owner that has been
previously arranged with the Authorization Server (the method of which is beyond the scope of the specification).

Client Credentials flow

Authorization Server Resource Server

Client credentials

-

Authenticate Client :

Access token with NO refresh token

»

Access protected resource with access token -
1

< Protected resource response

Client Authorization Server Resource Server

Requesting an access token
The client token request should be sent in an HTTP POST to the token endpoint with the following parameters:

Parameter Description
grant _type Required. Must be settocl i ent _credenti al s.
scope Optional. The scope of the authorization.

31

API Gateway OAuth 2.0 Authentication Flows

Parameter Description

f or mat Optional. Expected return format. The default is j son. Possible values are:

e url encoded
e json
o xmi

The following is an example POST request:

POST / api / oaut h/ t oken HTTP/ 1.1

Cont ent - Lengt h: 424

Cont ent - Type: application/ x-ww-form url encoded; charset=UTF-8
Host: 192.168. 0. 48: 8080

Aut hori zati on: Basic czZCaGRSa3FOMzpn\VDFnQTFOM2IW

grant _type=client_credentials

Handling the response
The API Gateway authenticates the client against the Oracle Client Application Registry. An access token is sent back to
the client on success. A refresh token is not included in this flow. An example valid response is as follows:

HTTP/ 1.1 200 K

Cache-Control : no-store

Cont ent - Type: application/json

Pragma: no-cache

{ "access_t oken": "“091(451HzZ0V8B30opz6udi SEj chPynd2Ss9.
"token_type": "Bearer",
"expires_in": "3600"

Running the sample client
The following Jython sample client sends a request to the Authorization Server using the client credentials flow:

I NSTALL_DI R/ sanpl es/ scri pts/ oauth/client_credenti al s. py
To run the sample, open a shell prompt at | NSTALL_DI R/ sanpl es/ scri pt s, and execute the following command:

> run oaut h/client_credentials. py

The outputs the following:

Sendi ng up access token request using grant_type set to client_credentials
Response from access token request: 200

Parsing the json response

**********************ACCESS TO(EN RESPO\ISE***********************************
Access token received from authorization server

O t WNusLg2uj y3a6l XHhavqdEPt K7qSmn j 9f LI 8qywPy X8bKEsj qF

Access token type received from authorizati on server Bearer

Access token expiry tine: 3599

EEEEERE RS EEEEEEEEEEEEEEEEEREEEEEEEEEEEEEEEEEEEREEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE]
Now we can try access the protected resource using the access token

Response from protected resource request is: 200

<ht ml >Congrats! You've hit an QAuth protected resource</htm >

32

AP| Gateway OAuth 2.0 Authentication Flows

Further information
For details on the API Gateway filter that supports this flow, see Access Token Using Client Credentials.

JSON Web Token (JWT) Flow

A JSON Web Token (JWT) is a JSON-based security token encoding that enables identity and security information to be
shared across security domains.

Server Application Authorization Server Resource Server

Token Reguest (with JWT)

< Token Response
|
Call APT with Access Token

Server Application Authorization Server Resource Server

In the OAuth 2.0 JWT flow, the client application is assumed to be a confidential client that can store the client applica-
tion’s private key. The X.509 certificate that matches the client’s private key must be registered in the Oracle Client Ap-
plication Registry. The API Gateway uses this certificate to verify the signature of the JWT claim. For information on cre-
ating a private key and certificate, see the section called “Generating a Certificate and Private Key for a Client Applica-
tion”.

For more details on the OAuth 2.0 JWT flow, see
http://self-issued.info/docs/draft-ietf-oauth-jwt-bearer-00.html

Creating a JWT bearer token
To create a JWT bearer token, perform the following steps:

1. Construct a JWT header in the following format:

{"al g": "RS256"}

2. Base64url encode the JWT Header as defined here, which results in the following:

eyJhbGei G JSUzI 1N J9

3. Create a JWT Claims Set, which conforms to the following rules:

e« The issuer (i ss) must be the OAuth cl i ent _i d or the remote access application for which the developer re-
gistered their certificate.

e The audience (aud) must match the value configured in the JWT filter. By default, this value is as follows:

http://api gat eway/ api / oaut h/ t oken

* The validity (exp) must be the expiration time of the assertion, within five minutes, expressed as the number of
seconds from 1970- 01- 01T0: 0: 0Z measured in UTC.

e The time the assertion was issued (i at) measured in seconds after 00: 00: 00 UTC, January 1, 1970.
e The JWT must be signed (using RSA SHA256).
e The JWT must conform with the general format rules specified here:

33

http://self-issued.info/docs/draft-ietf-oauth-jwt-bearer-00.html

API Gateway OAuth 2.0 Authentication Flows

http://tools.ietf.org/html/draft-jones-json-web-toke.
For example:

i ss": "Sanpl eConfi denti al App",
"aud": "http://api gat eway/ api / oaut h/ t oken",
"exp": "1340452126",
"iat": "1340451826"

}

4. Base64url encode the JWT Claims Set, resulting in:

eyJpc3M O JTYWLwbGVDb25maWRI bnRp YW BcHAI LCIhdWQ G JodHRwWO 8v YXBpc2VydnV
yL2FwaS9vYXV0aC90b2t | bi | sl mv4cCl 61] EzZNDAONTI xM Yi LCIpYXQ O | xMz QMNDUx QDI 2| n0=

5. Create a new string from the encoded JWT header from step 2, and the encoded JWT Claims Set from step 4, and

append them as follows:

Base64URLEncode(JWI Header) + . + Base64URLEncode(JWIr C ai ns Set)

This results in a string as follows:

eyJhbGei O JSUzI INi J9. eyJpc3M O Ai U2Ft cGx ngluzm kZWs0aWFs QXBW i wgl mF1ZCl 61 CJodHRw

cGxl
Q 8vYXBpc2VydmvyL2FwaS9v YXV0aCo0b2t | bi | sI CJI eHAI O Al MTMOMIMLNDYWNSI s1 CIpYXQ O Ai
MT'MD MTMLNDMMNSJ 9

6. Sign the resulting string in step 5 using SHA256 with RSA. The signature must then be Base64url encoded. The sig-
nature is then concatenated with a . character to the end of the Base64url representation of the input string. The

result is the following JWT (line breaks added for clarity):

{Base64ur| encoded header}.
{Base64ur| encoded cl ai m set}.

This results in a string as follows:

eyJhbGeci O JSUzI 1N J9. eyJpc3M O Al U2Ft cCxl Q9uZm kzZWs0aWFs QXBW i wgl nF1ZCl 61 CJodHR
wOi 8vYXBpc2VydmvyL2FwaS9v YXV0aC90b2t | bi | sl CJl eHAi G Al MTMOMIMLNDYWNSI s1 CIpYXQ G A
i MTMOMTMLNDMAMNSJ9. i | WRBOBA bQt T5zBad @ veOZFI WGTkdVC6Lof J8dNOakvvDONn7| vUZt Pp4dx3
KdEDj 4YcsyCEAPhf opU ZGBLE- i NPl bxB5dsmi zbFl c20GZr 7Z041 | Df 920J Hg9DCGqwQos J- s9CGc| RQK
- | UPF41 VWy1Q7Pi dPVWKR9ohnBc2gt 8

Requesting an access token
The JWT bearer token should be sent in an HTTP POST to the Token Endpoint with the following parameters:

Parameter Description

grant _type Required. Must be set to
urn:ietf:parans: oauth:grant-type:jw-bearer.

assertion Required. Must be set to the JWT bearer token, base64url-encoded.

f or mat Optional. Expected return format. The default is j son. Possible values are:

e url encoded
e json
e xm

34

http://tools.ietf.org/html/draft-jones-json-web-toke

API Gateway OAuth 2.0 Authentication Flows

The following is an example POST request:

PGST / api / oaut h/ t oken HTTP/ 1.1

Cont ent - Lengt h: 424

Cont ent - Type: application/ x-ww-formurl encoded; charset=UTF-8

Host: 192.168. 0. 48: 8080

grant _t ype=ur n%BAi et f ¥8Apar ans¥8Aoaut h%8Agr ant - t ype%BAj wt - bear er &asserti on=eyJhbGci G JS
Uzl 1Ni J9. eyJpc3M O Al U2Ft cGxl @29uZni kZWs0aWFs QXBw i wgl nF1ZCl 61 CJodHRwWO 8vYXBpc2Vy
dmVyL2FwaS9v YXV0aC90b2t | bi | sl CJI eHAI G Ai MTMOMIMLNDYWNSI s1 CIpYXQ G Ai MTMDMTMLNDMMN
SJ9.i | WRBGBA bQ T5zBaG @ veOZFI WGTkdVC6Lof J8dNOakvvDONn71 vUZt Pp4dx3KAED] 4YcsyCEAPh
f opU ZG3LE- i NPl bxB5dsmi zbFI c20GZr 7Zo4l | Df 92QJ Hg9DGgwQos J- s9Ge| RQk- | UPF41 Vy1Q7Pi dP
VWKR9ohnBc2gt 8

Handling the response
The API Gateway returns an access token if the JWT claim and access token request are properly formed, and the JWT
has been signed by the private key matching the registered certificate for the client application in the Oracle Client Ap-
plication Registry.
For example, a valid response is as follows:
HTTP/ 1.1 200 OK
Cache-Control: no-store
Cont ent - Type: application/json
Pragma: no-cache
"access_t oken": “1&451HZ0V830pz6udi SEj chPynd2Ss9.

"token_type": "Bearer",
"expires_in": "3600",

Running the sample client
The following Jython sample creates and sends a JWT Bearer token to the Authorization Server:

I NSTALL_DI R/ sanpl es/ scri pt s/ oaut h/ j wt . py
To run the sample, open a shell prompt at | NSTALL_DI R/ sanpl es/ scri pt s, and execute the following command:
> run oaut h/jwt . py

Further information
For details on the API Gateway filter that supports this flow, see Access Token Using JWT.

Revoke Token
In some cases a user may wish to revoke access given to an application. An access token can be revoked by calling the

AP| Gateway revoke service and providing the access token to be revoked. A revoke token request causes the removal
of the client permissions associated with the particular token to access the end-user's protected resources.

35

AP| Gateway OAuth 2.0 Authentication Flows

Revoke Token

Client Authorization Server

Client authentication with token to be revoked

-

Verify client can revoke token :

< Revoke token response

Client Authorization Server

The endpoint for revoke token requests is as follows:
https://<APl Gat eway>: 8089/ api / oaut h/ r evoke

The token to be revoked should be sent to the revoke token endpoint in an HTTP POST with the following parameter:

Parameter Description
t oken Required. A token to be revoked (for example,
4ecl EUXIN60VI CoZBbaDTI 977SV3T9KgJ3ay Ovs4gqhGA4).

The following is an example POST request:

PCOST / api / oaut h/ revoke HTTP/ 1.1

Cont ent - Type: application/ x-ww-form url encoded; charset=UTF-8
Host: 192.168. 0. 48: 8080

Aut hori zation: Basic U2Ft cGxl @Q9uzZm kZWs0aWFs QXBwG YANMDhkNG 2LW/mvVDkt NG wZC04Zj | 4L T
Ni MDVKYTI j NDhl Yw==t oken=4ec| EUX1N60VI CoZBbaDTI| 977SV3T9KqJ3ayOvs4gghGA4

Running the sample client

The following Jython sample client creates a token revoke request to the Authorization Server:

I NSTALL_DI R/ sanpl es/ scri pt s/ oaut h/ r evoke_t oken. py

To run the sample, open a shell prompt at | NSTALL_DI R/ sanpl es/ scri pt s, and execute the following command:

> run oaut h/ revoke_t oken. py

36

API Gateway OAuth 2.0 Authentication Flows

£ Enter token value £

- Enter the token to be revoked:

oK Cancel

When the Authorization Server receives the token revocation request, it first validates the client credentials and verifies
whether the client is authorized to revoke the particular token based on the client identity.

Note

Only the client that was issued the token can revoke it.

The Authorization Server decides whether the token is an access token or a refresh token:

. If it is an access token, this token is revoked.

. If it is a refresh token, all access tokens issued for the refresh token are invalidated, and the refresh token is re-
voked.

Response codes
The following HTTP status response codes are returned:

« HTTP 200 if processing is successful.
. HTTP 401 if client authentication failed.
« HTTP 403 if the client is not authorized to revoke the token.

The following is an example response:

Token to be revoked: 3eXnUZzkCODNGhID94Qk5Xhi VAWIguINuZ56VAYoZi ot 4WAhI Z72D3
Revoking token...............

Response from revoke token request is: 200

Successful ly revoked t oken

Further information
For details on the API Gateway filter that supports this flow, see Revoke a Token.

Token Info Service

You can use the Token Info Service to validate that an access token issued by the APl Gateway. A request to the
t okenl nf o service is an HTTP GET request for information in a specified OAuth 2.0 access token.

37

AP| Gateway OAuth 2.0 Authentication Flows

User Agent Authorization Server

Token Info Reguest

-

Check token validity :

Token Info Response
< po

User Agent Authorization Server

The endpoint for the token information service is as follows:

htt ps: // <api gat eway>: 8089/ api / oaut h/ t okeni nf o

Getting information about a token from the Authorization Server only requires a CET request to the tokeninfo endpoint.
For example:

CET / api / oaut h/ t okeni nfo HTTP/ 1.1

Host: 192. 168. 0. 48: 8080
access_t oken=4ecl EUX1N60VI OoZBbaDTI 977SV3T9KgJ3ayOvs4gqhGAd

This request includes the following parameter:

Parameter Description
access_t oken Required. A token that you want information about (for example:
4ecl EUX1IN60VI QoZBbaDTIl 977SV3T9KgJ3ayOvs4gqhGAd)

The following example uses this parameter:

https:// api gat eway/ api / oaut h/ t okeni nf o?access_t oken=4ecl EUX1N6oVI CoZBba
DTI 977SV3T9KqJ3ayOvs4gqhGA4

Running the sample client

The following Jython sample client creates a token revoke request to the Authorization Server:

I NSTALL_DI R/ sanpl es/ scri pt s/ oaut h/ t oken_i nf 0. py

To run the sample, open a shell prompt at | NSTALL_DI R/ sanpl es/ scri pt s, and execute the following command:

> run oaut h/token_i nfo. py

38

API Gateway OAuth 2.0 Authentication Flows

This displays the following dialog:

E2 Enter token value [

- Get information about this token:

OK Cancel

When the Authorization Server receives the Token Info request, it first ensures the token is in its cache (EhCache or
Database), and ensures the token is valid and has not expired.

The following is an example response:

Cet token info for this token: BcYG POQSCrt bEc1FOag8zf 60T9r CaM.i | 1dYj FLT5zhxz3x5Scr dN

Response from token info request is: 200
**********************TmEN | NFO RESPO\ISE***********************************

Token audi ence received from authorization server: Sanpl eConfidential App
Scopes user consented to: https://Ilocal host: 8090/ aut h/ useri nf o. eri |
Token expiry tinme: 3566

User id : admin

LR R R R R R R R R R R R R R R R EEEREEEEEEREEEEEEEEREEEEEEEEEEEEEEEERES]

Response codes
The following HTTP Status codes are returned:

e 200 if processing is successful
e 400 on failure

The response is sent back as a JSON message. For example:

{
"audi ence" : "Sanpl eConfi denti al App",
"user_id" : "admin",
"scope" : "https://|ocal host: 8090/ aut h/ useri nfo. emai | ",

"expires_in" : 2518

You can get additional information about the access token using message attributes. For more details, see the section
called “Querying OAuth 2.0 Message Attributes”.

Further information
For details on the API Gateway filter that supports this flow, see OAuth Access Token Information.

39

OAuth Access Token Information

Overview

The OAuth 2.0 Access Token Information filter is used to return a JSON description of the specified OAuth 2.0 access
token. OAuth access tokens are used to grant access to specific resources in an HTTP service for a specific period of
time (for example, photos on a photo sharing website). This enables users to grant third-party applications access to their
resources without sharing all of their data and access permissions.

An OAuth access token can be sent to the Resource Server to access the protected resources of the Resource Owner
(user). This token is a string that denotes a specific scope, lifetime, and other access attributes. For details on supported
OAuth flows, see APl Gateway OAuth 2.0 Authentication Flows.

Access Token Info Settings
Configure the following fields on this tab:

Token to verify can be found here:

Click the browse button to select the location of the access token to verify (for example, in the default OAuth Access
Token Store). To add a store, right-click Access Token Stores, and select Add Access Token Store. You can store
tokens in a cache, in a relational database, or in an embedded Cassandra database. For more details, see the section
called “Managing Access Tokens and Authorization Codes”.

Where to get access token from?:
Select one of the following:

e In Query String:
This is the default setting. Defaults to the access_t oken parameter.

¢ In aselector:
Defaults to the ${ ht t p. cl i ent . get Cgi Argurment (' access_t oken')} selector. For more details on API Gate-
way selectors, see the API Gateway User Guide.

Monitoring

The settings on this tab configure service-level monitoring options such as whether to store usage metrics data to a data-
base. This information can be used by the web-based APl Gateway Manager tool to display service use, and by the API
Gateway Analytics tool to produce reports on how the service is used.

* Monitor service usage:
Select this option if you want to store message metrics for this service.

e Monitor service usage per client:
Select this option if you want to generate reports monitoring which authenticated clients are calling which services.

e Monitor client usage:
If you want to generate reports on authenticated clients, but are not interested in which services they are calling, se-
lect this option and deselect Monitoring service usage per client.

e Which attribute is used to identify the client?:
Enter the message attribute to use to identify authenticated clients. The default is aut henti cati on. subj ect. i d,
which stores the identifier of the authenticated user (for example, the username or user's X.509 Distinguished
Name).

e Composite Context:
This setting enables you to select a service context as a composite context in which multiple service contexts are
monitored during the processing of a message. This setting is not selected by default.

For example, the APl Gateway receives a message, and sends it to ser vi ceA first, and then to ser vi ceB. Monit-

40

OAuth Access Token Information

oring is performed separately for each service by default. However, you can set a composite service context before
servi ceAand ser vi ceB that includes both services. This composite service passes if both services complete suc-
cessfully, and monitoring is also performed on the composite service context.

Advanced

The settings on this tab include the following:

Return additional Access Token parameters:
Click Add to return additional access token parameters, and enter the Name and Value in the dialog. For example, you
could enter Depar t ment in Name, and the following selector in Value:

${accesst oken. get Addi ti onal I nf ormati on() . get (" Department")

41

Access Token Using Authorization Code

Overview

The OAuth 2.0 Access Token using Authorization Code filter is used to get a new access token using the authoriza-
tion code. This supports the OAuth 2.0 Authorization Code Grant or Web server authentication flow, which is used by ap-
plications that are hosted on a secure server. A critical aspect of this flow is that the server must be able to protect the is-
sued client application's secret. For more details on supported OAuth flows, see APl Gateway OAuth 2.0 Authentication
Flows.

OAuth access tokens are used to grant access to specific resources in an HTTP service for a specific period of time (for
example, photos on a photo sharing website). This enables users to grant third-party applications access to their re-
sources without sharing all of their data and access permissions. An OAuth access token can be sent to the Resource
Server to access the protected resources of the Resource Owner (user). This token is a string that denotes a specific
scope, lifetime, and other access attributes.

Application Validation

Configure the following fields on this tab:

Use this store to validate the Authorization Code:

Click the browse button to select the store in which to validate the authorization code (for example, in the default Authz
Code Store). To add a store, right-click Authorization Code Stores, and select Add Authorization Code Store. You
can store codes in a cache, in a relational database, or in an embedded Cassandra database. For more details, see the
section called “Managing Access Tokens and Authorization Codes”.

Find client application information from message:
Select one of the following:

¢ In Authorization Header
This is the default setting.
e In Query String:
The Client Id defaults to cl i ent _i d, and Client Secret defaults to cl i ent _secret.

Access Token
Configure the following fields on the this tab:

Access Token will be stored here:

Click the browse button to select where to store the access token (for example, in the default OAuth Access Token
Store). To add an access token store, right-click Access Token Stores, and select Add Access Token Store. You can
store tokens in a cache, in a relational database, or in an embedded Cassandra database. For more details, see the sec-
tion called “Managing Access Tokens and Authorization Codes”.

Access Token Expiry (in secs):
Enter the number of seconds before the access token expires. Defaults to 3600 (one hour).

Access Token Length:
Enter the number of characters in the access token. Defaults to 54.

Access Token Type:

Enter the access token type. This provides the client with information required to use the access token to make a protec-
ted resource request. The client cannot use an access token if it does not understand the token type. Defaults to
Bear er .

42

Access Token Using Authorization Code

Include Refresh Token:
Select whether to include a refresh token. This is a token issued by the Authorization Server to the client that can be
used to obtain a new access token. This setting is selected by default.

Refresh Token Expiry (in secs):
When Include Refresh Token is selected, enter the number of seconds before the refresh token expires. Defaults to

43200 (twelve hours).

Refresh Token Length:
When Include Refresh Token is selected, enter the number of characters in the refresh token. Defaults to 46.

Store additional Access Token parameters:
Click Add to store additional access token parameters, and enter the Name and Value in the dialog (for example, De-
part nent, Engi neeri ng).

Monitoring

The settings on this tab configure service-level monitoring options such as whether to store usage metrics data to a data-
base. This information can be used by the web-based API Gateway Manager tool to display service use, and by the API
Gateway Analytics tool to produce reports on how the service is used. For details on the fields on this tab, see the sec-
tion called “Monitoring” in OAuth Access Token Information.

43

Access Token Using Client Credentials

Overview

The OAuth 2.0 Access Token using Client Credentials filter enables an OAuth client to request an access token using
only its client credentials. This supports the OAuth 2.0 Client Credentials flow, which is used when the client application
needs to directly access its own resources on the Resource Server. Only the client application's credentials or public/
private key pair are used in the this flow. The Resource Owner's credentials are not required. For more details on sup-
ported OAuth flows, see API Gateway OAuth 2.0 Authentication Flows.

OAuth access tokens are used to grant access to specific resources in an HTTP service for a specific period of time (for
example, photos on a photo sharing website). This enables users to grant third-party applications access to their re-
sources without sharing all of their data and access permissions. An OAuth access token can be sent to the Resource
Server to access the protected resources of the Resource Owner (user). This token is a string that denotes a specific
scope, lifetime, and other access attributes.

Application Validation

Configure the following fields on this tab:

Find client application information from message:
Select one of the following:

¢ In Authorization Header:
This is the default setting.
e In Query String:
The Client Id defaultsto cl i ent _i d, and Client Secret defaultsto cl i ent _secret.

Access Token
Configure the following fields on the this tab:

Access Token will be stored here:

Click the browse button to select where to store the access token (for example, in the default OAuth Access Token
Store). To add an access token store, right-click Access Token Stores, and select Add Access Token Store. You can
store tokens in a cache, in a relational database, or in an embedded Cassandra database. For more details, see the sec-
tion called “Managing Access Tokens and Authorization Codes”.

Access Token Expiry (in secs):
Enter the number of seconds before the access token expires. Defaults to 3600 (one hour).

Access Token Length:
Enter the number of characters in the access token. Defaults to 54.

Access Token Type:

Enter the access token type. This provides the client with information required to use the access token to make a protec-
ted resource request. The client cannot use an access token if it does not understand the token type. Defaults to
Bearer.

Include Refresh Token:
Select whether to include a refresh token. This is a token issued by the Authorization Server to the client that can be
used to obtain a new access token. This setting is selected by default.

Refresh Token Expiry (in secs):
When Include Refresh Token is selected, enter the number of seconds before the refresh token expires. Defaults to

44

Access Token Using Client Credentials

43200 (twelve hours).

Refresh Token Length:
When Include Refresh Token is selected, enter the number of characters in the refresh token. Defaults to 46.

Store additional Access Token parameters:
Click Add to store additional access token parameters, and enter the Name and Value in the dialog (for example, De-
part nent and Engi neeri ng).

Generate Token Scopes:

When requesting a token from the Authorization Server, you can specify a parameter for the OAuth scopes that you wish
to access. When scopes are sent in the request, you can select whether the access token is generated only if the scopes
in the request match all or any scopes registered for the application. Alternatively, for extra flexibility you can get the
scopes by calling out to a policy.

Select one of the following options to configure how access tokens are generated based on specified scopes:

* Get scopes from aregistered application:
Select whether the scopes must match Any or All of the scopes registered for the application in the Client Applica-
tion Registry. Defaults to Any. If no scopes are sent in the request, the token is generated with the scopes re-
gistered for the application.

e Get scopes by calling policy:
Select a pre-configured policy to get the scopes, and enter the attribute that stores the scopes in the Scopes ap-
proved for token are stored in the attribute textbox. Defaults to scopes. f or. t oken. The configured filter re-
quires the scopes as set of strings on the message whiteboard.

Monitoring

The settings on this tab configure service-level monitoring options such as whether to store usage metrics data to a data-
base. This information can be used by the web-based APl Gateway Manager tool to display service use, and by the API
Gateway Analytics tool to produce reports on how the service is used. For details on the fields on this tab, see the sec-
tion called “Monitoring” in OAuth Access Token Information.

45

Access Token Using JWT

Overview

The OAuth 2.0 Access Token using JWT filter enables an OAuth client to request an access token using only a JSON
Web Token (JWT). This supports the OAuth 2.0 JWT flow, which is used when the client application needs to directly ac-
cess its own resources on the Resource Server. Only the client JWT token is used in this flow, the Resource Owner's
credentials are not required. A JWT token is a JSON-based security token encoding that enables identity and security in-
formation to be shared across security domains. For more details on supported OAuth flows, see API Gateway OAuth
2.0 Authentication Flows.

OAuth access tokens are used to grant access to specific resources in an HTTP service for a specific period of time (for
example, photos on a photo sharing website). This enables users to grant third-party applications access to their re-
sources without sharing all of their data and access permissions. An OAuth access token can be sent to the Resource
Server to access the protected resources of the Resource Owner (user). This token is a string that denotes a specific
scope, lifetime, and other access attributes.

Application Validation

Configure the following fields on this tab:

Audience (aud) must contain the following URI:

Enter the JWT aud (intended audience). The JWT must contain an aud URI that identifies the Authorization Server, or
service provider domain, as an intended audience. The Authorization Server must also verify that it is an intended audi-
ence for the JWT. Defaults to ht t p: / / api server/ api / oaut h/ t oken.

Access Token

Configure the following fields on the this tab:

Access Token will be stored here:

Click the browse button to select where to cache the access token (for example, in the default OAuth Access Token
Store). To add an access token store, right-click Access Token Stores, and select Add Access Token Store. You can
store tokens in a cache, in a relational database, or in an embedded Cassandra database. For more details, see the sec-
tion called “Managing Access Tokens and Authorization Codes”

Access Token Expiry (in secs):
Enter the number of seconds before the access token expires. Defaults to 3600 (one hour).

Access Token Length:
Enter the number of characters in the access token. Defaults to 54.

Access Token Type:

Enter the access token type. This provides the client with information required to use the access token to make a protec-
ted resource request. The client cannot use an access token if it does not understand the token type. Defaults to
Bearer.

Include Refresh Token:
Select whether to include a refresh token. This is a token issued by the Authorization Server to the client that can be
used to obtain a new access token. This setting is unselected by default.

Refresh Token Expiry (in secs):
When Include Refresh Token is selected, enter the number of seconds before the refresh token expires. Defaults to
43200 (twelve hours).

Refresh Token Length:

46

Access Token Using JWT

When Include Refresh Token is selected, enter the number of characters in the refresh token. Defaults to 46.

Store additional Access Token parameters:
Click Add to store additional access token parameters, and enter the Name and Value in the dialog (for example, De-
part ment and Engi neeri ng).

Generate Token Scopes:

When requesting a token from the Authorization Server, you can specify a parameter for the OAuth scopes that you wish
to access. When scopes are sent in the request, you can select whether the access token is generated only if the scopes
in the request match all or any scopes registered for the application. Alternatively, for extra flexibility, you can get the
scopes by calling out to a policy.

Select one of the following options to configure how access tokens are generated based on specified scopes:

« Get scopes from aregistered application:
Select whether the scopes must match Any or All of the scopes registered for the application in the Client Applica-
tion Registry. Defaults to Any. If no scopes are sent in the request, the token is generated with the scopes re-
gistered for the application.

e Get scopes by calling policy:
Select a pre-configured policy to get the scopes, and enter the attribute that stores the scopes in the Scopes ap-
proved for token are stored in the attribute textbox. Defaults to scopes. f or. t oken. The configured filter re-
quires the scopes as set of strings on the message whiteboard.

Monitoring

The settings on this tab configure service-level monitoring options such as whether to store usage metrics data to a data-
base. This information can be used by the web-based APl Gateway Manager tool to display service use, and by the API
Gateway Analytics tool to produce reports on how the service is used. For details on the fields on this tab, see the sec-
tion called “Monitoring” in OAuth Access Token Information.

a7

Authorization Code Flow

Overview

The OAuth 2.0 Authorization Code Flow filter is used to consume OAuth authorization requests, and is also known as
the Authorization Request filter. This filter supports the OAuth 2.0 Authorization Code Grant (Web server) authentica-
tion flow, which is used by applications hosted on a secure server. A critical aspect of this flow is that the server must be
able to protect the issued client application's secret. The Web server flow is suitable for clients capable of interacting with
the end-user’s user-agent (typically a Web browser), and capable of receiving incoming requests from the Authorization
Server (acting as an HTTP server). The Authorization Code Grant flow is also known as the Three-Legged OAuth Flow.

The OAuth 2.0 Authorization Code Grant flow is as follows:

1. The Web server redirects the user to the API Gateway acting as an Authorization Server to authenticate and author-
ize the server to access data on their behalf.

2. After the user approves access, the Web server receives a callback with an authorization code.

3. After obtaining the authorization code, the Web server passes back the authorization code to obtain an access token
response.

4. After validating the authorization code, the API Gateway passes back a token response to the Web server.

5. After the token is granted, the Web server accesses their data.

OAuth access tokens are used to grant access to specific resources in an HTTP service for a specific period of time (for
example, photos on a photo sharing website). This enables users to grant third-party applications access to their re-
sources without sharing all of their data and access permissions. An OAuth access token can be sent to the Resource
Server to access the protected resources of the Resource Owner (user). This token is a string that denotes a specific
scope, lifetime, and other access attributes.

The OAuth 2.0 Authorization Request filter also supports the Implicit Grant (User Agent) flow. This is used by client ap-
plications (consumers) residing in the user's device (for example, in a browser using JavaScript, or from a mobile device
or desktop application). These consumers cannot keep the client secret confidential (application password or private

key).

For more details on supported OAuth flows, see APl Gateway OAuth 2.0 Authentication Flows.
Validation/Templates

Configure the following fields on this tab:

Authorize Resource Owner:
Select one of the following:

e Useinternal flow
Uses the internal API Gateway flow to authorize the Resource Owner. This is the default setting. The internal flow
authenticates the user against the APl Gateway user store, and redirects the user to the Authorize Transaction fil-
ter to use sample template files for login and Resource Owner scope authorization.

Note

If you wish to store additional information with the authorization code (for Authorization Code flow), or
with an access token (for Implicit Grant flow), you must set additional parameters in the Authorize
Transaction flow filter.

e Call this policy
Click the browse button to select a policy to authorize the Resource Owner. You can use the Policy will store sub-

48

Authorization Code Flow

ject in selector text box to specify where the policy is stored. Defaults to the ${ aut henti cat i on. subj ect . i d}
message attribute. For more details on selectors, see the API Gateway User Guide.

Note

If you wish to store additional information with the authorization code (for Authorization Code flow), or
with an access token (for Implicit Grant flow), you must set additional parameters in the Authorization
Code Flow filter.

Authz Code Details

Configure the following fields on the this tab:

Authorization Code will be stored here:

Click the browse button to select where to cache the access token (for example, in the default Authz Code Store). To
add an access token store, right-click Authorization Code Stores, and select Add Authorization Code Store. You can
store codes in a cache, in a relational database, or in an embedded Cassandra database. For more details, see the sec-
tion called “Managing Access Tokens and Authorization Codes”.

Location of Access Code redirect page:
Enter the full path to the HTML page used for the access code HTTP redirect. Defaults to the following:

${envi ronnent . VDI STDI R}/ sanpl es/ oaut h/ t enpl at es/ showAccessCode. ht ni

VDI STDI R specifies the directory in which the APl Gateway is installed.

Length:
Enter the number of characters in the authorization code. Defaults to 30.

Expiry (in secs):
Enter the number of seconds before the authorization code expires. Defaults to 600 (ten minutes).

Additional parameters to store for this Authorization Code:

If you wish to store additional metadata with the authorization code, click Add, and enter the Name and Value in the dia-
log (for example, Depart ment and Engi neeri ng). When additional data is set, it is then available in the Access
Token using Authorization Code filter when the authorization code is exchanged for an access token. You can also
specify the fields in this table using selectors. For more details, see the API Gateway User Guide.

Note

If you entered parameters for the authorization code and parameters for the access token, the data will be
merged. Data in the Access Token using Authorization Code filter may overwrite parameters stored with
the authorization code. For example, if you set Narme: John and Depart ment : Engi neeri ng in the Au-
thorization Request filter, and set Depar t nent : HR in the Access Token using Authorization Code fil-
ter, the token is created with Nanme: John and Depart ment : HR.

Access Token Details
Configure the following fields on the this tab:
Access Token will be stored here:
Click the browse button to select where to cache the access token (for example, in the default QAut h Access Token

St or e). To add an access token store, right-click Access Token Stores, and select Add Access Token Store. You
can store tokens in a cache, in a relational database, or in an embedded Cassandra database. For more details, see the

49

Authorization Code Flow

section called “Managing Access Tokens and Authorization Codes”.

Expiry (in secs):
Enter the number of seconds before the access token expires. Defaults to 3600 (one hour).

Length:
Enter the number of characters in the access token. Defaults to 54.

Type:

Enter the access token type. This provides the client with information required to use the access token to make a protec-
ted resource request. The client cannot use an access token if it does not understand the token type. Defaults to
Bearer.

Additional parameters to store for this Access Token:
Click Add to store additional access token parameters, and enter the Name and Value in the dialog (for example, De-
par t ment , Engi neeri ng).

Generate Token Scopes:

When requesting a token from the Authorization Server, you can specify a parameter for the OAuth scopes that you wish
to access. You can select whether the access token is generated only if the scopes in the request match all or any
scopes registered for the application. Alternatively, for extra flexibility you can get the scopes by calling out to a policy.

Select one of the following options to configure how access tokens are generated based on specified scopes:

* Get scopes from aregistered application:
Select whether the scopes must match Any or All of the scopes registered for the application in the Client Applica-
tion Registry. Defaults to Any. If no scopes are sent in the request, the token is generated with the scopes re-
gistered for the application.

e Get scopes by calling policy:
Select a pre-configured policy to get the scopes, and enter the attribute that stores the scopes in the Scopes ap-
proved for token are stored in the attribute textbox. Defaults to scopes. f or. t oken. The configured filter re-
quires the scopes as set of strings on the message whiteboard.

Monitoring

The settings on this tab configure service-level monitoring options such as whether to store usage metrics data to a data-
base. This information can be used by the web-based APl Gateway Manager tool to display service use, and by the API
Gateway Analytics tool to produce reports on how the service is used.

Monitoring Options
For details on the Monitoring Options fields on this tab, see the section called “Monitoring” in OAuth Access Token In-
formation.

Record Outbound Transactions

Select whether to record outbound message traffic. You can use this setting to override the Record Outbound Transac-
tions setting on the System Settings -> Traffic Monitor screen. This setting is selected by default.

50

Authorize Transaction

Overview

The OAuth 2.0 Authorize Transaction filter is used to authorize the Resource Owner and grant (allow/deny) client ac-
cess to the resources. This supports the OAuth 2.0 Authorization Code Grant or Web server authentication flow, which is
used by applications hosted on a secure server. A critical aspect of this flow is that the server must be able to protect the
issued client application's secret. The Web server flow is suitable for clients capable of interacting with the end-user’s
user-agent (typically a Web browser), and capable of receiving incoming requests from the Authorization Server (acting
as an HTTP server).

For more details on supported OAuth flows, see APl Gateway OAuth 2.0 Authentication Flows.

Validation/Templates
Configure the following fields on this tab:

HTML Templates:
Specify the following templates for HTML forms:

* Login Form:
Enter the full path to the HTML form that the Resource Owner can use to log in. Defaults to the following:

${envi ronnent . VDI STDI R}/ sanpl es/ oaut h/ t enpl at es/ | ogi n. ht m

e Authorization Form:
Enter the full path to the HTML form that the Resource Owner can use to grant (allow/deny) client access to the re-
sources. Defaults to the following:

${envi ronment . VDI STDI R}/ sanpl es/ oaut h/ t enpl at es/ r equest Access. ht m

VDI STDI R specifies the directory in which the APl Gateway is installed.
Authz Code Details

Configure the following fields on the this tab:

Authorization Code will be stored here:

Click the browse button to select where to cache the access token (for example, in the default Aut hz Code Store). To
add an access token store, right-click Authorization Code Stores, and select Add Authorization Code Store. You can
store codes in a cache, in a relational database, or in an embedded Cassandra database. For more details, see the sec-
tion called “Managing Access Tokens and Authorization Codes”.

Location of Access Code redirect page:
Enter the full path to the HTML page used for the access code HTTP redirect. Defaults to the following:

${envi ronnent . VDI STDI R}/ sanpl es/ oaut h/ t enpl at es/ showAccessCode. ht ni

Length:
Enter the number of characters in the authorization code. Defaults to 30.

Expiry (in secs):
Enter the number of seconds before the authorization code expires. Defaults to 600 (ten minutes).

51

Authorize Transaction

Additional parameters to store for this Authorization Code:

If you wish to store additional metadata with the authorization code, click Add, and enter the Name and Value in the dia-
log (for example, Depart nment and Engi neeri ng). When additional data is set, it is then available in the Access
Token using Authorization Code filter when the authorization code is exchanged for an access token. You can also
specify the fields in this table using selectors. For more details, see the API Gateway User Guide.

Note

If you entered parameters for the authorization code and parameters for the access token, the data will be
merged. Data in the Access Token using Authorization Code filter may overwrite parameters stored with
the authorization code. For example, if you set Nanme: John and Depart nent : Engi neeri ng in the Au-
thorize Transaction filter, and set Depart nent : HR in the Access Token using Authorization Code fil-
ter, the token is created with Nane: John and Depart nent : HR.

Access Token Details
Configure the following fields on the this tab:

Access Token will be stored here:

Click the browse button to select where to cache the access token (for example, in the default QAut h Access Token
St ore). To add an access token store, right-click Access Token Stores, and select Add Access Token Store. You
can store tokens in a cache, in a relational database, or in an embedded Cassandra database. For more details, see the
section called “Managing Access Tokens and Authorization Codes”.

Expiry (in secs):
Enter the number of seconds before the access token expires. Defaults to 3600 (one hour).

Length:
Enter the number of characters in the access token. Defaults to 54.

Type:

Enter the access token type. This provides the client with information required to use the access token to make a protec-
ted resource request. The client cannot use an access token if it does not understand the token type. Defaults to
Bearer.

Additional parameters to store for this Access Token:
Click Add to store additional access token parameters, and enter the Name and Value in the dialog (for example, De-
part ment, Engi neeri ng).

Generate Token Scopes:

When requesting a token from the Authorization Server, you can specify a parameter for the OAuth scopes that you wish
to access. When scopes are sent in the request, you can select whether the access token is generated only if the scopes
in the request match all or any scopes registered for the application. Alternatively, for extra flexibility you can get the
scopes by calling out to a policy.

Select one of the following options to configure how access tokens are generated based on specified scopes:

e Get scopes from aregistered application:
Select whether the scopes must match Any or All of the scopes registered for the application in the Client Applica-
tion Registry. Defaults to Any. If no scopes are sent in the request, the token is generated with the scopes re-
gistered for the application.

e« Get scopes by calling policy:
Select a pre-configured policy to get the scopes, and enter the attribute that stores the scopes in the Scopes ap-
proved for token are stored in the attribute textbox. Defaults to scopes. f or. t oken. The configured filter re-
quires the scopes as set of strings on the message whiteboard.

52

Authorize Transaction

Monitoring

The settings on this tab configure service-level monitoring options such as whether to store usage metrics data to a data-
base. This information can be used by the web-based API Gateway Manager tool to display service use, and by the API
Gateway Analytics tool to produce reports on how the service is used. For details on the fields on this tab, see the sec-
tion called “Monitoring” in OAuth Access Token Information.

53

Refresh Access Token

Overview

The OAuth 2.0 Refresh Access Token filter enables an OAuth client to get a new access token using a refresh token.
This filter supports the OAuth 2.0 Refresh Token flow. After the client consumer has been authorized for access, they
can use a refresh token to get a new access token (session ID). This is only done after the consumer already has re-
ceived an access token using either the Web Server or User-Agent flow. For more details on supported OAuth flows, see
API Gateway OAuth 2.0 Authentication Flows.

Application Validation
Configure the following fields on this tab:

Find client application information from message:
Select one of the following:

e In Authorization Header:
This is the default setting.
e In Query String:
The Client Id defaults to cl i ent _i d, and Client Secret defaults to cl i ent _secret.

Access Token
Configure the following fields on the this tab:

Access Token will be stored here:

Click the browse button to select where to cache the access token (for example, in the default OAuth Access Token
Store). To add an access token store, right-click Access Token Stores, and select Add Access Token Store. You can
store tokens in a cache, in a relational database, or in an embedded Cassandra database. For more details, see the sec-
tion called “Managing Access Tokens and Authorization Codes”.

Access Token Expiry (in secs):
Enter the number of seconds before the access token expires. Defaults to 3600 (one hour).

Access Token Length:
Enter the number of characters in the access token. Defaults to 54.

Access Token Type:

Enter the access token type. This provides the client with information required to use the access token to make a protec-
ted resource request. The client cannot use an access token if it does not understand the token type. Defaults to
Bearer.

Include Refresh Token:

Select whether to include a refresh token. This is a token issued by the Authorization Server to the client that can be
used to obtain a new access token. This setting is selected by default.

Refresh Token Expiry (in secs):

When Include Refresh Token is selected, enter the number of seconds before the refresh token expires. Defaults to
43200 (twelve hours).

Refresh Token Length:
When Include Refresh Token is selected, enter the number of characters in the refresh token. Defaults to 46.

Store additional Access Token parameters:

54

Refresh Access Token

Click Add to store additional access token parameters, and enter the Name and Value in the dialog (for example, De-
part ment and Engi neeri ng).

Monitoring

The settings on this tab configure service-level monitoring options such as whether to store usage metrics data to a data-
base. This information can be used by the web-based APl Gateway Manager tool to display service use, and by the API
Gateway Analytics tool to produce reports on how the service is used. For details on the fields on this tab, see the sec-
tion called “Monitoring” in OAuth Access Token Information.

55

Resource Owner Credentials

Overview

The OAuth 2.0 Resource Owner Credentials filter is used to directly obtain an access token and an optional refresh
token. This supports the OAuth 2.0 Resource Owner Password Credentials flow, which can be used as a replacement for
an existing login when the consumer client already has the user’s credentials. For more details on supported OAuth
flows, see API Gateway OAuth 2.0 Authentication Flows.

OAuth access tokens are used to grant access to specific resources in an HTTP service for a specific period of time (for
example, photos on a photo sharing website). This enables users to grant third-party applications access to their re-
sources without sharing all of their data and access permissions. An OAuth access token can be sent to the Resource
Server to access the protected resources of the Resource Owner (user). This token is a string that denotes a specific
scope, lifetime, and other access attributes.

Application Validation
Configure the following fields on this tab:

Authenticate Resource Owner
Select one of the following:

e Authenticate credentials using this repository:
Select one of the following from the list:
e Sinple Active Directory Repository
e Local User Store

e Call this policy:
Click the browse button to select a policy to authenticate the Resource Owner. You can use the Policy will store
subject in selector text box to specify where the policy is stored. Defaults to the
${aut henti cati on. subj ect . i d} message attribute. For more details on selectors, see the APl Gateway User
Guide.

Find client application information from message:
Select one of the following:

¢ In Authorization Header:
This is the default setting.
e In Query String:
The Client Id defaults to cl i ent _i d, and Client Secret defaults to cl i ent _secret.

Access Token
Configure the following fields on the this tab:
Access Token will be stored here:
Click the browse button to select where to cache the access token (for example, in the default OAuth Access Token
Store). To add an access token store, right-click Access Token Stores, and select Add Access Token Store. You can
store tokens in a cache, in a relational database, or in an embedded Cassandra database. For more details, see the sec-

tion called “Managing Access Tokens and Authorization Codes”.

Access Token Expiry (in secs):
Enter the number of seconds before the access token expires. Defaults to 3600 (one hour).

56

Resource Owner Credentials

Access Token Length:
Enter the number of characters in the access token. Defaults to 54.

Access Token Type:

Enter the access token type. This provides the client with information required to use the access token to make a protec-
ted resource request. The client cannot use an access token if it does not understand the token type. Defaults to
Bearer.

Include Refresh Token:
Select whether to include a refresh token. This is a token issued by the Authorization Server to the client that can be
used to obtain a new access token. This setting is selected by default.

Refresh Token Expiry (in secs):
When Include Refresh Token is selected, enter the number of seconds before the refresh token expires. Defaults to
43200 (twelve hours).

Refresh Token Length:
When Include Refresh Token is selected, enter the number of characters in the refresh token. Defaults to 46.

Store additional Access Token parameters:
Click Add to store additional access token parameters, and enter the Name and Value in the dialog (for example, De-
part ment and Engi neeri ng).

Generate Token Scopes:

When requesting a token from the Authorization Server, you can specify a parameter for the OAuth scopes that you wish
to access. You can select whether the access token is generated only if the scopes in the request match all or any
scopes registered for the application. Alternatively, for extra flexibility you can get the scopes by calling out to a policy.

Select one of the following options to configure how access tokens are generated based on specified scopes:

*« Get scopes from aregistered application:
Select whether the scopes must match Any or All of the scopes registered for the application in the Client Applica-
tion Registry. Defaults to Any. If no scopes are sent in the request, the token is generated with the scopes re-
gistered for the application.

e Get scopes by calling policy:
Select a pre-configured policy to get the scopes, and enter the attribute that stores the scopes in the Scopes ap-
proved for token are stored in the attribute textbox. Defaults to scopes. f or. t oken. The configured filter re-
quires the scopes as set of strings on the message whiteboard.

Monitoring

The settings on this tab configure service-level monitoring options such as whether to store usage metrics data to a data-
base. This information can be used by the web-based APl Gateway Manager tool to display service use, and by the API
Gateway Analytics tool to produce reports on how the service is used.

Monitoring Options
For details on the Monitoring Options fields on this tab, see the section called “Monitoring” in OAuth Access Token In-
formation.

Record Outbound Transactions

Select whether to record outbound message traffic. You can use this setting to override the Record Outbound Transac-
tions setting on the System Settings -> Traffic Monitor screen. This setting is selected by default.

57

Revoke a Token

Overview

The OAuth 2.0 Revoke a Token filter is used to revoke a specified OAuth 2.0 access or refresh token. A revoke token
request causes the removal of the client permissions associated with the specified token used to access the user's pro-
tected resources. For more details on supported OAuth flows, see APl Gateway OAuth 2.0 Authentication Flows.

OAuth access tokens are used to grant access to specific resources in an HTTP service for a specific period of time (for
example, photos on a photo sharing website). This enables users to grant third-party applications access to their re-
sources without sharing all of their data and access permissions. OAuth refresh tokens are tokens issued by the Author-
ization Server to the client that can be used to obtain a new access token.

Revoke Token Settings
Configure the following fields on this tab:

Token to be revoked can be found here:

Click the browse button to select the cache to revoke the token from (for example, the default OAuth Access Token
Store). To add an access token store, right-click Access Token Stores, and select Add Access Token Store. You can
store tokens in a cache, in a relational database, or in an embedded Cassandra database. For more details, see the sec-
tion called “Managing Access Tokens and Authorization Codes”.

Find client application information from message:
Select one of the following:

¢ In Authorization Header:
This is the default setting.
e In Query String:
The Client Id defaultsto cl i ent _i d, and Client Secret defaultsto cl i ent _secret.

Monitoring
The settings on this tab configure service-level monitoring options such as whether to store usage metrics data to a data-
base. This information can be used by the web-based APl Gateway Manager tool to display service use, and by the API

Gateway Analytics tool to produce reports on how the service is used. For details on the fields on this tab, see the sec-
tion called “Monitoring” in OAuth Access Token Information.

58

Validate Access Token

Overview

The OAuth 2.0 Validate Access Token filter is used to validate a specified access token contained in persistent storage.
OAuth access tokens are used to grant access to specific resources in an HTTP service for a specific period of time (for
example, photos on a photo sharing website). This enables users to grant third-party applications access to their re-
sources without sharing all of their data and access permissions.

For more details on supported OAuth flows, see APl Gateway OAuth 2.0 Authentication Flows.

Configuration

Configure the following fields on this tab:

Name:
Enter a suitable name for this filter.

Verify access token is in cache:

Click the browse button to select the cache in which to verify access token (for example, in the default OAuth Access
Token Store). To add an access token store, right-click Access Token Stores, and select Add Access Token Store.
You can store tokens in a cache, in a relational database, or in an embedded Cassandra database. For more details, see
the section called “Managing Access Tokens and Authorization Codes”.

Location of access token:
Select one of the following:

In Authorization Header with prefix:

The access token is in the Authorization header with the selected prefix. Defaults to Bear er . This is the default op-
tion.

In query string/form body with name:

The access token is in the HTTP query string with the name specified in the text box.

In Attribute:

The access token is in the APl Gateway message attribute specified in the text box.

Validate Scopes:
Select one of the following options to configure how access tokens are accepted based on the validation of specified
OAuth scopes:

Get scopes from list:
Select whether scopes match Any or All of the configured scopes in the table, and click Add to add an OAuth
scope. The default scopes are found in ${ ht t p. request . uri}.

Get scopes by calling policy:
Select a pre-configured policy to get the scopes, and enter the attribute that stores the scopes in the Scopes re-
quired to access the resource are stored in the attribute textbox. Defaults to ${ scopes. r equi r ed} .

Because the access token is in a message attribute on the whiteboard, you can use this policy to get the scopes for
the access token and validate them against a scope list. In the event of a scope validation failure, you can set the
${scopes. requi r ed} message attribute. This ensures that the end-user sees a list of required scopes to access
the resource in the response.

For example, the default scopes used in the OAuth demos are as follows:

/1l ocal host : 8090/ aut h/ user . phot os
/ /'l ocal host : 8090/ aut h/ useri nf o. emai |

59

Validate Access Token

60

	Oracle® Fusion Middleware
	Contents
	Introduction to API Gateway OAuth 2.0
	Overview
	OAuth 2.0 Concepts
	API Gateway OAuth Features
	OAuth 2.0 Authentication Flows
	Further Information

	Setting up API Gateway OAuth 2.0
	Overview
	Enabling OAuth 2.0 Management
	Importing Client Applications
	Migrating Client Applications
	Upgrading API Gateway Configuration

	Managing OAuth 2.0 Applications
	Overview
	Managing Registered Client Applications
	Running the Sample Client Applications
	Managing Access Tokens and Authorization Codes
	Querying OAuth 2.0 Message Attributes
	Relational Database-Backed Client Application Registry
	Generating a Certificate and Private Key for a Client Application

	API Gateway OAuth 2.0 Authentication Flows
	Overview
	Authorization Code (or Web Server) Flow
	Implicit Grant (or User Agent) Flow
	Resource Owner Password Credentials Flow
	Client Credentials Grant Flow
	JSON Web Token (JWT) Flow
	Revoke Token
	Token Info Service

	OAuth Access Token Information
	Overview
	Access Token Info Settings
	Monitoring
	Advanced

	Access Token Using Authorization Code
	Overview
	Application Validation
	Access Token
	Monitoring

	Access Token Using Client Credentials
	Overview
	Application Validation
	Access Token
	Monitoring

	Access Token Using JWT
	Overview
	Application Validation
	Access Token
	Monitoring

	Authorization Code Flow
	Overview
	Validation/Templates
	Authz Code Details
	Access Token Details
	Monitoring

	Authorize Transaction
	Overview
	Validation/Templates
	Authz Code Details
	Access Token Details
	Monitoring

	Refresh Access Token
	Overview
	Application Validation
	Access Token
	Monitoring

	Resource Owner Credentials
	Overview
	Application Validation
	Access Token
	Monitoring

	Revoke a Token
	Overview
	Revoke Token Settings
	Monitoring

	Validate Access Token
	Overview
	Configuration

