

[1] Oracle® Communications Services Gatekeeper
OAuth Guide

Release 6.0

E50767-02

November 2015

Oracle Communications Services Gatekeeper OAuth Guide, Release 6.0

E50767-02

Copyright © 2012, 2015, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users
are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the programs, including any operating system, integrated software, any programs installed on
the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to
the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content,
products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and
expressly disclaim all warranties of any kind with respect to third-party content, products, and services
unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its
affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services, except as set forth in an applicable agreement between you and
Oracle.

iii

Contents

Preface .. vii

Audience.. vii
Documentation Accessibility .. vii
Related Documents .. vii

1 Using OAuth With Services Gatekeeper

About Services Gatekeeper Support for OAuth Authentication Server 1-1
Using SAML Assertions to Access Resources.. 1-1

Understanding OAuth 2.0 Concepts... 1-2
Understanding OAuth Terminology... 1-2
About the OAuth/Services Gatekeeper Entities and Their Relationships 1-4
About the OAuth Protocol Endpoints... 1-4

Understanding How Services Gatekeeper Works with OAuth .. 1-5
OAuth Component to Services Gatekeeper Component Mapping.. 1-5
Understanding the OAuth Endpoints... 1-6
Authentication of Network Flows ... 1-7

Authenticating RESTful APIs Acting on Application-Initiated Traffic 1-7
Authenticating REST APIs Acting on Network-Initiated Traffic .. 1-8

Mapping a Resource to a Services Gatekeeper Method ... 1-9
Securing Resources with Multiple Owners .. 1-10
Support For SAML Assertions .. 1-11
Support for Anonymous Customer References.. 1-12
Accessing the OAuth Log Messages .. 1-13

Understanding OAuth Specification Compliance.. 1-13
Supported Communication Services.. 1-13
Supported OAuth Server Roles... 1-13
Supported Authorization Grant Types.. 1-13
Extension Grant Flows Enabled Through Supported Grant Types... 1-13
Supported Token Types ... 1-14
Supported Client Profiles... 1-14
OAuth Flows Supported by Services Gatekeeper .. 1-14

Authorization Code Grant.. 1-14
Implicit Grant ... 1-15
Refresh Token Grant.. 1-16

Supported URIs (Subscribers) ... 1-17

iv

2 Protecting Services Gatekeeper Resources with OAuth

Managing OAuth Resources .. 2-1
Understanding Resource Mapping ... 2-1

Understanding the Services Gatekeeper Resource Server .. 2-1
Understanding the Services Gatekeeper Authorization Server ... 2-2
Understanding the Services Gatekeeper Authentication Server ... 2-2

Provisioning Mapped Resources ... 2-2
Managing Clients ... 2-2
Mapping Resources to Resource Owners... 2-3
Authenticating Subscribers... 2-3

About the MBeans Used to Provide OAuth Functionality .. 2-3
Understanding OAuth EAR Files .. 2-3
EDRs and Alarms... 2-3

Deploying and Configuring OAuth Functionality.. 2-4
Configuring OAuth.. 2-4
Creating Protected Resources... 2-4

Protecting RESTful Communication Services... 2-4
Protecting Subscription Resources ... 2-5

Configuring Authentication ... 2-5
Using the Default Subscriber Manager.. 2-5
Using Delegated Authentication .. 2-5

Configuring Resource Rules to Protect Resources .. 2-5
Creating Individual Resource Owners .. 2-5
Creating a Resource Rules File Using Regular Expressions ... 2-6
Uploading the Resource Rules to Services Gatekeeper... 2-6

Configuring Clients to Protect Access to Resources ... 2-6
Configuring SAML (Optional) .. 2-7
Protecting Resources in a Custom Communication Service.. 2-7
Example: Protecting the OneAPI Payment Service with OAuth .. 2-8

Steps to Protecting the OneAPI Payment Service with OAuth.. 2-8
Adding a Client in Services Gatekeeper.. 2-8
Configuring the Authentication URL .. 2-9
Adding One API Payment Communication Service as an OAuth resource 2-9
Adding a New Subscriber.. 2-9
Assigning the Resource to the Subscriber to Act as Resource owner 2-9

Understanding the OAuth Resource Format ... 2-10
Resource Representation Example... 2-12

3 Monitoring OAuth Services in Service Gatekeeper

Understanding OAuth Runtime Actions... 3-1
Issuing OAuth Tokens... 3-1

Default Authentication and Authorization... 3-1
Authorization for Group URIs.. 3-1

Understanding Token Validation .. 3-2
Managing Tokens... 3-2
EDRs Generated by the OAuth Service ... 3-2
OAuth/Services Gatekeeper Errors and Exceptions .. 3-4

v

4 Developing Services Gatekeeper Services Using OAuth

Understanding How to Apply SAML Tokens.. 4-1
Understanding Token Request Messages... 4-1
Understanding Token Response Messages .. 4-2
Understanding SAML Assertion Validation Messages.. 4-3

Understanding OAuth Customization... 4-4
Implementing a Third-Party Authentication Service ... 4-4

Authentication Process Flow... 4-5
Creating an OAuth Interceptor .. 4-7

Examples: Using a Custom OAuth Interceptor to Retrieve OAuth Information 4-8
Integrating a Third-Party Subscriber Repository .. 4-9
Creating an OAuth Extension Handler... 4-9
Customizing OAuth Resource Grant Tests ... 4-9

OAuth Application Developer Guide.. 4-9
Interacting with the Services Gatekeeper OAuth Service .. 4-9
OAuth Access Flow In Services Gatekeeper ... 4-10

vi

vii

Preface

This guide explains how to use the Open Authorization Protocol (OAuth) features
with Oracle Communications Services Gatekeeper.

Audience
This document is intended for developers who create applications for use with
Services Gatekeeper that allow access to protected resources.

This includes:

■ Third-party application developers who want to integrate telephony-based
functionality into their products

■ Operator-based system developers who want to extend the functionality of
Services Gatekeeper or to integrate it with Partner Relationship Management
(PRM) or Operations Support Systems (OSS) tools

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing
impaired.

Related Documents
For more information, see the following documents in the Services Gatekeeper
documentation:

■ Oracle Communications Services Gatekeeper Application Developer's Guide

■ Oracle Communications Services Gatekeeper Security Guide

■ Oracle Communications Services Gatekeeper Communication Service Reference Guide

■ Oracle Communications Services Gatekeeper OAM Java API Reference

■ Oracle Communications Services Gatekeeper Platform Test Environment User's Guide

viii

1

Using OAuth With Services Gatekeeper 1-1

1Using OAuth With Services Gatekeeper

This chapter provides an overview of how Oracle Communications Services
Gatekeeper uses the Open Authorization Protocol v2.0 (OAuth) to protect resources.

About Services Gatekeeper Support for OAuth Authentication Server
The Services Gatekeeper OAuth implementation allows service providers to offer
authorized third-party applications access to protected resource owner resources over
HTTP.

OAuth is an additional layer of security, in addition to the SLAs and policy control
security features that Services Gatekeeper already offers. These security features all
work together.

You map the instanceIds defined in Services Gatekeeper to the client_ids defined in
OAuth to seamlessly integrate Oauth resources into SLAs. Because OAuth is enforced
as a security mechanism, OAuth security is enforced before a Services Gatekeeper
SLA.

For more information on the communication services that support OAuth security, see
the Services Gatekeeper Application Developer's Guide.

For traditional communication services, OAuth security mechanism can only be
enforced for REST-based APIs deployed on Services Gatekeeper. For REST and SOAP
based APIs created in the Partner and API Management Portal, both SOAP and REST
APIs can use OAuth.

OAuth security supports Transport Layer Security (TLS) if required by a client. See
"Configuring OAuth" for the required configuration setting.

 See "OAuth Compliance” in Services Gatekeeper Statement of Compliance for the exact
OAuth specifications supported.

Using SAML Assertions to Access Resources
You can use Security Assertion Markup Language (SAML) credentials to gain access to
resources protected by OAuth 2.0 in Services Gatekeeper. This enables you to combine
the centralized identity management of Access Manager and an existing trust
relationship with identity management.

You can create single sign on (SSO) features that provide your subscribers with one
authorized SAML token (federated identity) for use in accessing multiple third-party
resources that you support. Services Gatekeeper acts as the SSO authorization server
for SSOs that you create using an identity management system such as Oracle Identity
Management (OIM). OIM is a subset of the Oracle Fusion Middleware Identity and
Access Management product.

Understanding OAuth 2.0 Concepts

1-2 Services Gatekeeper OAuth Guide

See "Support For SAML Assertions", "Understanding the Services Gatekeeper
Authorization Server", and "Configuring SAML (Optional)" for details.

The Oracle Fusion Middleware WebLogic server provides the underlying support for
SAML capabilities. For details see “Security Assertion Markup Language (SAML)” in
Oracle Fusion Middleware Understanding Security for Oracle WebLogic Server 12c here:

http://docs.oracle.com/cd/E24329_01/web.1211/e24446/security.htm#INTRO232

Understanding OAuth 2.0 Concepts
OAuth is an open standard for authorization. It allows your subscribers to share their
private resources with a third party without having to provide their own security
credentials. These resources could be photos, videos, contact lists, location and billing
capability, and so on, and are usually stored with another service provider. For
example, photos stored on a dedicated photo Web storage site.

OAuth does this by granting requesting (client) applications a token, once access is
approved by the resource owner. Each token grants access to a specific resource for a
specific period. The requesting application uses the token for access to resources stored
with another service provider, instead of the owner’s credentials.

A resource can be:

■ A single file such as a photo or video.

■ Access to a website, such as the services of a video editing website.

■ Personal information such as their location or billing capability.

Services Gatekeeper can also act as a SAML authorization server for applications
(service providers) that require it. Services Gatekeeper accepts SAML assertions from
Oracle Identity Manager (as the identity provider), and returns SAML access tokens to
it. Application can use these SAML access tokens for SSO authentication or to provide
enhanced security profiles required for using derived values such as signatures or
hash-method authentication codes (HMACs). SAML access tokens are also useful for
client-server integration scenarios where the subscriber may not be present.

Understanding OAuth Terminology
Table 1–1 lists OAuth terminology and definitions.

Table 1–1 OAuth Terminology and Definitions

Term Definition

Application Client An application making protected resource requests on behalf of
the resource owner and with the resource owner's
authorization.

The term client does not imply any particular implementation
characteristics (for example, whether the application executes
on a server, a desktop, or other devices).

applicationInstanceID String that uniquely identifies the ApplicationInstance. One
applicationInstanceId can be mapped with one OAuth2 Client
Identifier, so that SLA can be proceed for OAuth2 based traffic.

Authentication Server Server that validates resource owner identity (defined by
Services Gatekeeper).

Authorization Endpoint Used to obtain authorization from the resource owner using
user-agent redirection.

Understanding OAuth 2.0 Concepts

Using OAuth With Services Gatekeeper 1-3

Authorization Grant Represents the authorization given by the resource owner to a
client application. An authorization grant is a credential
representing the resource owner's authorization (to access its
protected resources) used by the client to obtain an access token.

Authorization Server Server that issues authorization codes and access token.

Access Token Access tokens are credentials used to access protected resources.
An access token is a string representing an authorization issued
to the client.

Client Identifier A unique string representing the registration information
provided by the client.

Custom Subscriber
Manager

Component that authenticates resource owner's username and
password with a custom identity store (such as LDAP).

Delegated Authentication Authentication mode supported by Services Gatekeeper to
integrate with 3rd party authentication systems.

Grant Endpoint URI supported by Services Gatekeeper to post the
authentication result to issue the authorization code (defined by
Services Gatekeeper).

Group Owner Owner of the Group URI. Issues authorization token on behalf
of the group members.

Group URI URI that represents a group of Resource Owners.

OAuth Open Authorization Protocol

Protocol Endpoint Network URI representing the location of a service to:

■ obtain an authorization code and other values

■ obtain an access token

■ submit a grant.

■ access a resource

Redirection Endpoint After completing its interaction with the resource owner, the
Authorization Server directs the resource owner's user-agent
back to the client. The Authorization Server redirects the
user-agent to the client's redirection endpoint previously
established with the Authorization Server during the client
registration process or when making the authorization request.

Refresh Token Refresh tokens are credentials used to re-obtain access tokens.

Resource The Web resource protected by OAuth Protocol.

Resource Owner An entity capable of granting access to a protected resource. In
the operator context this is defined as Resource owner URI (tel:
or sip:)

Resource Server Server that hosts protected resources and validates access token
during resource access.

scopeId Unique string that identifies a resource and used as part of
scope-token by application client.

Subscriber Manager Component in Services Gatekeeper to validate subscribers
provisioned in Services Gatekeeper database.

Table 1–1 (Cont.) OAuth Terminology and Definitions

Term Definition

Understanding OAuth 2.0 Concepts

1-4 Services Gatekeeper OAuth Guide

About the OAuth/Services Gatekeeper Entities and Their Relationships

Figure 1–1 OAuth Flow and Entity Relationships

Figure 1–1 shows an example OAuth protocol flow for a resource access request:

(A) The client requests authorization from the resource owner. The authorization
request can be made directly to the resource owner (as shown), or preferably indirectly
using the Authorization Server as an intermediary.
(B) The client receives an authorization grant, including a credential representing the
resource owner's authorization, expressed using one of four grant types defined in this
specification or using an Extension grant type. The authorization grant type depends
on the method used by the client to request authorization and the types supported by
the Authorization Server.
(C) The client requests an access token by authenticating with the Authorization
Server and presenting the authorization grant.
(D) The Authorization Server authenticates the client and validates the authorization
grant, and if valid issues an access token.
(E) The client requests the protected resource from the resource server and
authenticates by resending the access token.
(F) The resource server validates the access token, and if valid, serves the request.

About the OAuth Protocol Endpoints
The OAuth specification defines three types of protocol endpoints.

■ Redirection Endpoint: The redirection endpoint is a URI used by Authorization
Server to return authorization credentials responses from the Authorization Server
to the client using the resource owner user-agent.

■ Authorization Endpoint: The authorization endpoint interacts with the resource
owner (typically the subscriber) and obtain an authorization grant which will be
issued to an application client by the resource owner. The Authorization Server
must first verify the identity of the resource owner before granting the
authorization grant. This authorization grant will be exchanged by the application
client for an access token.

Understanding How Services Gatekeeper Works with OAuth

Using OAuth With Services Gatekeeper 1-5

■ Token Endpoint: The client uses the token endpoint to obtain an access token by
presenting its authorization grant (the authorization code) or refresh token. The
token endpoint is used with every authorization grant except for the implicit grant
type (since an access token is issued directly).

Understanding How Services Gatekeeper Works with OAuth
This section explains how the Services Gatekeeper functionality is mapped to the
OAuth specification.

OAuth Component to Services Gatekeeper Component Mapping
OAuth defines the following terms that map to the Services Gatekeeper concepts
listed:

■ resource: Defined by the OAuth specification. In Services Gatekeeper, a resource
maps to the API(s) and methods protected by the OAuth token. This is a
combination of communication service application-facing interface (Plug-in)
name, method name, token expiration period, parameters, and the subResource.
resource uniquely identified by scopeId.

For more information, see "Understanding Resource Mapping".

■ scope request parameter: Defined by the OAuth 2.0 specification and specified by
the authorization server. Determines the limits of an OAuth token. A scope
parameter defining these limits is submitted as part of obtaining an authorization
grant.

The format of the scope is defined in the OAuth specification as:

scope = scope-token *(SP scope-token)
scope-token = 1*(%x21 / %x23-5B / %x5D-7E)

Services Gatekeeper maps the scope-token parameter to:

<scopeId>[?<param>=<[&<param>>=<value]*]+

Where:

scopeId identifies a resource.

param is a custom parameter defined as part of resource.

value is the value for the resource.

Parameter values submitted as part of the scope can be interpreted by custom
interceptors.

For example:

scope=chargeAmount?MaxAmount=5&itemId=123SPgetLocation?Accuracy=5
where
SP=blank space

■ scopeId: A unique identifier that represents an OAuth resource during resource
mapping and determines the access scope of a resource during an authorization
grant.

Defined as part of mapping a communication service method as an OAuth
resource, scopeId is used as the value of the id attribute of the resource tag. Each
resource is indicated as owned by a resource owner by creating an association
between the resource owner (subscriber URI) and the scopeId. The scopeId is

Understanding How Services Gatekeeper Works with OAuth

1-6 Services Gatekeeper OAuth Guide

submitted as part of scope-token parameter within the authorization grant
request.

For example:

1. As part of resource configuration, the oracle.Services
Gatekeeper.parlayrest.plugin.PaymentPlugin (communication service)
method amountTransaction is created as a resource with scopeId
chargeAmount:

<resource id="chargeAmount" name="Charge or refund"
interfaceName="oracle.Services Gatekeeper.parlayrest.plugin.PaymentPlugin"
methodName="amountTransaction"
tokenExpirePeriod="3600">
<parameter name="code" description="billable item id"/>
</resource>

2. The chargeAmount resource is mapped to tel:1234 as the resourceOwner.

3. During the authorization grant, the application sends scope=chargeAmount
as part of the authorization request.

■ resource owner: Defined by the OAuth2.0 specification. Represented as the target
address used in the REST API (communication service), and typically represented
as one MSISDN. The MSISDN serves as the connection between the resource
defined during configuration time, and the resource protected during resource
authorization and access time.

– The resource owner (MSISDN) and the scopeId (collection of resources) are
mapped during configuration time.

– Depending on the grant type, the OAuth authorization code/access token is
issued by the resource owner (MSISDN).

■ subResource: A subResource protects and authorizes multiple resources (API
methods) with a single token. Resources can have one or more subResources
defined as part of resource definition. Authorization grants to a resource also
applies to its subResources.

For example, for a payment communication service, a resource called
amountTransaction can be created for charging transactions. A subResource called
checkTransactionStatus is a method used to query the status of a charging
transaction. When a resource owner issues a token for resource
amountTransaction, it can be automatically used against the
checkTransactionStatus subResource as well.

■ Application Client: You map a Services Gatekeeper Application Instance Id to an
OAuth application client ID during client creation with the OAuthclientMBean.
See "Managing Clients" for details.

Services Gatekeeper relies on the authentication endpoint to validate the resource
owner. In the Services Gatekeeper default implementation of the authentication
endpoint, the validation is handled by the Subscriber Manager. See "Mapping
Resources to Resource Owners" for more information.

Understanding the OAuth Endpoints
Service Gatekeeper supports the standard endpoints defined in the OAuth 2.0
specification.

OAuth generates these endpoints that Services Gatekeeper uses:

Understanding How Services Gatekeeper Works with OAuth

Using OAuth With Services Gatekeeper 1-7

■ Redirection endpoint: Provided by an application client during the authorization
grant.

■ Authorization endpoint: The default authorization endpoint is configured to the
following URL:

https://Gatekeeper_server_IP:port/oauth2/authorize

■ Token endpoint: By default, the token endpoint is configured to the following
URL:

https://Gatekeeper_server_IP:port/oauth2/token

In addition to the standard endpoints, Services Gatekeeper supports two custom
endpoints to facilitate integration with external/custom Authentication Servers:

■ Authentication Endpoint: Verifies the identity of a resource owner. The
authentication endpoint is an extension point offered by Services Gatekeeper
handling resource owner authentication and authorization grant collection.

This endpoint interacts with a resource owner, assuring that the subscriber’s
identity is valid and providing necessary information for the resource owner to
authorize an application to obtain an authorization grant.

By default, the authentication endpoint uses the following URL:

https://Gatekeeper_server_IP:port/oauth2/auth.jsp

This URL can be updated by editing the following MBean property:

OauthService.OauthCommonMBean.AuthenticationURL

■ Grant Endpoint: The callback URI supported by Services Gatekeeper to process
the successful authenticated requests and issue authorization grants to application
clients.

After a resource owner grants access to protected resources through
authentication, the authorization request is submitted to the grant endpoint, which
sends the resource requester to a redirect URI provided by the application along
with the authorization code.

By default, the grant endpoint uses the following URL:

https://Gatekeeper_server_IP:port/oauth2/grant

This URL can be updated by editing the following MBean property:

OauthService.OauthCommonMBean.GrantURL

For more information about the interactions between these endpoints, see
"Implementing a Third-Party Authentication Service".

Authentication of Network Flows
Services Gatekeeper provides OAuth security for RESTful Web services required by
application-initiated or network-initiated traffic when the requests call API
management APIs.

Authenticating RESTful APIs Acting on Application-Initiated Traffic
OAuth security for application-initiated traffic operates in the following way:

1. A network operator creates an API in Partner Manager portal.

At that time, the network operator does the following:

Understanding How Services Gatekeeper Works with OAuth

1-8 Services Gatekeeper OAuth Guide

a. Selects to apply OAuth security on the API.

b. Specifies that the API is to be called when the traffic flows from the
application to the network.

c. Specifies REST API as the exposure for the interface in the
application-initiated flow.

d. Provides valid URIs for the authorization endpoint, token endpoint, and
redirection endpoint as the values for Authorization URI, Token URI, and
Client Redirect URI.

e. Configures a resource list consisting of API methods that the operator exposes
for use by applications valid for traffic flows from the application to the
network.

Each method exposed by the operator is termed a resource. Services
Gatekeeper identifies each resource using the API identifier and the method
name.

Every method selected by the operator comes under the protection of OAuth2
security.

2. An authorized application developer subscribes to this API when the developer
creates an application in Partner portal.

3. When the network operator approves the application in Partner Manager portal,
Services Gatekeeper generates an OAuth2 access token which is stored with the
application data and used by the application during its active state.

4. When the application is in use, the API is called. The application sends the
OAuth2 access token in the Authorization header field of the message it sends to
the network.

5. Services Gatekeeper checks the OAuth2 token in that message and does one of the
following:

■ If the token is valid, Services Gatekeeper adds the relevant data about the end
user such as the application instance id, the application group name, the
service provider and the service provider group to the current subject.

■ If the token is invalid, the authorization fails for that message.

Authenticating REST APIs Acting on Network-Initiated Traffic
OAuth security for network-initiated traffic operates in the following way:

1. A network operator creates an API in Partner Manager portal. The network
operator does the following:

a. Selects to apply OAuth security on the API.

b. Specifies that the API is to be called when the traffic flows from the network to
the application.

c. Specifies REST API as the exposure for the interface in the network-initiated
flow.

Note: The access token is valid for a designated period. The
application developer can refresh the access token in Partner portal.

Understanding How Services Gatekeeper Works with OAuth

Using OAuth With Services Gatekeeper 1-9

d. Provides valid URIs for the authorization endpoint, token endpoint, and
redirection endpoint as the values for Authorization URI, Token URI, and
Client Redirect URI.

e. Configures a resource list consisting of API methods that the operator exposes
for use by applications valid for traffic flows from the network to the
application.

Each method exposed by the operator is termed a resource. Services
Gatekeeper identifies each resource using the API identifier and the method
name.

Every method selected by the operator comes under the protection of OAuth2
security.

2. An authorized application developer subscribes to this API when the developer
creates an application in Partner portal.

3. When the network operator approves the application in Partner Manager portal,
Services Gatekeeper generates an OAuth2 access token which is stored with the
application data and used by the application during its active state.

4. When the application is in use, the API is called. The message that the network
sends to the application contains the following information:

■ In the Proxy-Authorization: header field, the northbound authorization
information. For example:

Proxy-Authorization: Basic ZGFmcGFydG5lcl9hcHAxOmRhZnBhcnRuZXJfYXBwMQ==

■ In the Authorization: header field, the southbound OAuth2 token access
information.

Authorization: Bearer 6de54688-d10b-43ad-a994-0be2c978fe2d

5. When the traffic is initiated by the network, Services Gatekeeper does not attempt
to validate the credentials.

Before sending the message out, Services Gatekeeper does the following:

■ It retains the Authorization field containing the OAuth2 token access
information.

■ It removes the Proxy-Authorization header field.

Mapping a Resource to a Services Gatekeeper Method
You can use OAuth token-based security to protect any RESTful communication
service, including a customized communication service method, as long as the
specified method is configured as a protected resource.

Figure 1–2 illustrates the relationship between:

■ Communication service and an OAuth resource

■ Resource and resource owner

■ Scope and the resource

Note: The access token is valid for a designated period. The
application developer can refresh the access token in Partner portal.

Understanding How Services Gatekeeper Works with OAuth

1-10 Services Gatekeeper OAuth Guide

Figure 1–2 OAuth Service and Resource Entities Relationships

The communication service-to-resource mapping is explained in detail in "Managing
OAuth Resources".

The scope (defined in the OAuth 2.0 specification) consists of one or more
scope-tokens. Each scope-token contains a scopeId (which identifies the resource) and
a list of parameter name-values pairs associated with this scopeId. The scope is
submitted as part of the authorization grant request. The scopeId, submitted as part of
the scope-token, is interpreted and enforced by the default Services Gatekeeper OAuth
interceptor. By default the OAuth interceptor allows all resources to pass. You can also
filter these resources to meet the needs of your implementation. If the OAuth
interceptor does not meet your implementations’s needs, you can replace it with a
custom interceptor. For details on modifying the OAuth interceptor or creating a
custom interceptor see “Using Service Interceptor to Manipulate Requests” in Services
Gatekeeper Extension Developer's Guide.

See "OAuth Component to Services Gatekeeper Component Mapping" for more details
on the scope.

Securing Resources with Multiple Owners
Some APIs require authorization from multiple resource owners. For example:

A Sales Manager may want to expose the location of his sales associates to a location
tracking application. This use case requires using the getGroupLocation method in the
Location API with multiple resource owner addresses.

With Services Gatekeeper, you can create a group of resource owners and associate
them with a group URI. You then create a group owner to issue an authorization grant
on behalf of the group members. The group owner is represented by an address
(Group URI), loginId and password much like a resource owner. The authorization
grant issued by a group owner can be easily used with APIs that accept the URIs of
group members as one of the request parameters.

Understanding How Services Gatekeeper Works with OAuth

Using OAuth With Services Gatekeeper 1-11

The relationships between resources, resource owner(s), groups, group URI and group
owner are illustrated in Figure 1–3:

Figure 1–3 Resource and Group Relationships

Figure 1–3 show Tel: URIs, but you can also use SIP: URIs.

Use these general steps to protect an API that takes group URIs:

1. Create a group with a group URI using the Parlay X 3.0 AddressListManagement.

2. Add members to the group using the Parlay X 3.0 AddressListManagement.

3. Create a group owner related to this group URI and password for the group
owner.

4. Communicate the group URI and password to a group owner (outside the scope
of Services Gatekeeper).

5. The group owner issues an authorization grant to an application to use the
member URI as part of API method that requires multiple URIs.

6. Subscribers access the resource (invoking an API method) that accepts multiple
resource owners as method parameters.

The default Subscriber Manager supports a mechanism to provision the group owner
represented by the group URI. Services Gatekeeper supports this requirement by using
the Parlay X 3.0 AddressListManagement communication service to create groups.
See the 3GPP specificaton for more information about address list management:.

 http://www.3gpp.org/ftp/specs/archive/29_series/29.199-13/29199-13-702.zip

Support For SAML Assertions
In order to use SAML assertions, the application must have a trusted relationship with
the identity provider, and be able to request end user authorization assertions. Services
Gatekeeper is pre-configured to trust the identity provider with accounts and policies
for the application.

Figure 1–4 shows how traffic flows Services Gatekeeper interacts with the identity
provider (Oracle IDM) to support an SSO application. First the identity provider and
Services Gatekeeper (as the authorization server) exchange metadata and the OAuth

Understanding How Services Gatekeeper Works with OAuth

1-12 Services Gatekeeper OAuth Guide

client registration information. Once that trusted relationship is set up, the service
provider can request a SAML assertion from the identity provider. The service
provider then presents the SAML assertion together with an application identifier to
Services Gatekeeper as the authorization server. Services Gatekeeper then exchanges
the end user authentication assertion and application identity for an access token. The
access token can then be used as evidence of authentication when accessing 3rd party
resources through Services Gatekeeper. You can also apply any policies associated
with the API access.

Figure 1–4 SSO Traffic Flow

See "Understanding the Services Gatekeeper Authorization Server" and "Configuring
SAML (Optional)" for details on configuring SAML.

Support for Anonymous Customer References
In addition to basic and session ID authentication, Services Gatekeeper also supports
OAuth authentication of applications requesting or querying Anonymous Customer

Understanding OAuth Specification Compliance

Using OAuth With Services Gatekeeper 1-13

References (ACR) identifiers. Services Gatekeeper can use OAuth to provide
subscribers SSO-like access to resources such as photos or websites.

Services Gatekeeper supports allowing OAuth access to subscriber resources using
ACRs. Requests can use a valid accessToken to retrieve or update ACR information
when submitted. The Services Gatekeeper OAuth Interceptor uses the provided
accessToken to confirm a subscriber’s identity before releasing ACR information.

For more information adding anonymous customer references, see "Adding RESTful
Anonymous Customer Reference Support" in Services Gatekeeper Application Developer's
Guide.

Accessing the OAuth Log Messages
OAuth stores logged output messages in the Middleware_home/user_
projects/domains/domain_name/oauth2_log/oauth2.log file.

Understanding OAuth Specification Compliance
This section describes Services Gatekeeper compliance with the OAuth 2.0
specification.

For more information, see "OAuth Compliance" in Services Gatekeeper Statement of
Compliance for the specifications that Services Gatekeeper OAuth supports.

Supported Communication Services
The OAuth security mechanism can be used with the REST-based communication
services provided with Services Gatekeeper, and any custom REST-based API that you
deploy.

See “Part II Creating Applications Using the RESTful Interface” in Services Gatekeeper
Application Developer's Guide for the list of REST-based communication services.

Supported OAuth Server Roles
By default, Services Gatekeeper supports the following OAuth server roles:

■ Authorization Server: Issuing authorization grant and access tokens.

■ Resource Server: Protecting resources and enforcing OAuth token-based access to
resources.

Supported Authorization Grant Types
An authorization grant is a credential representing the resource owner's authorization
(to access its protected resources) used by the client to obtain an access token.

By default, Services Gatekeeper supports the following grant types:

■ Authorization Code Grant

■ Implicit Grant

Extension Grant Flows Enabled Through Supported Grant Types
Services Gatekeeper facilitates customizing authorization flow by supporting the
custom Endpoints described in "Understanding the OAuth Endpoints".

Understanding OAuth Specification Compliance

1-14 Services Gatekeeper OAuth Guide

Instead of authenticating with the default Subscriber Manager, it is possible to define a
custom authentication URL that authenticates and obtains user's consent and posts the
authorization result back to Services Gatekeeper to issue the authorization code.

This delegated authentication is only supported with the authorization code grant
type.

See "Implementing a Third-Party Authentication Service" for more information.

Supported Token Types
Services Gatekeeper supports the following token types defined in OAuth2
specification:

■ bearer

■ MAC

■ saml-bearer

Supported Client Profiles
Services Gatekeeper supports Web-based, user-agent-based, and native application
profiles.

OAuth Flows Supported by Services Gatekeeper
The following sections illustrate the OAuth authorization grant flows that Services
Gatekeeper supports:

■ Authorization Code Grant

■ Implicit Grant

■ Refresh Token Grant

Authorization Code Grant
Figure 1–5 shows an OAuth authorization code grant sequence flow diagram.

Understanding OAuth Specification Compliance

Using OAuth With Services Gatekeeper 1-15

Figure 1–5 OAuth Authorization Code Grant

Implicit Grant
Figure 1–6 shows an Oauth implicit grant sequence flow diagram.

Understanding OAuth Specification Compliance

1-16 Services Gatekeeper OAuth Guide

Figure 1–6 OAuth Implicit Grant

Refresh Token Grant
Figure 1–7 shows a refresh token grant flow diagram. If the client has way of
recognizing when the access token expires (smart client), it skips steps E and F in this
diagram. Clients without this knowledge (dumb clients) execute steps E and F.

Understanding OAuth Specification Compliance

Using OAuth With Services Gatekeeper 1-17

Figure 1–7 OAuth RefreshToken Grant

Supported URIs (Subscribers)
Services Gatekeeper supports the following resource owner URIs for use with OAuth:

■ tel: URI (as described in RFC 2806)

■ sip: URI (as described in RFC3261)

Understanding OAuth Specification Compliance

1-18 Services Gatekeeper OAuth Guide

2

Protecting Services Gatekeeper Resources with OAuth 2-1

2Protecting Services Gatekeeper Resources
with OAuth

This chapter explains how to protect Oracle Communications Services Gatekeeper
resources with the Open Authorization Protocol (OAuth). It starts with information
you need to understand about the OAuth technology, then explains the deployment
procedure, and finally lists some examples to help you understand the process.

Managing OAuth Resources
This section describes OAuth resource management as supported by Services
Gatekeeper.

Understanding Resource Mapping
You protect Service Gatekeeper communication services by mapping those
communication services to OAuth resources.

In order to protect an API with OAuth, you model the API method as an OAuth
resource, one API to one resource. Resource mapping involves creating a unique
scopeId to represent the resource, and then mapping the scopeId to the API and
method names.

You can also define additional context parameters for the resource to use as targets for
custom interceptors. These parameters may or may not map directly to the API
method parameters.

You can create multiple resources for a single communication service. In this case,
resources are aggregated and defined as XML elements in a single XML file. The
scopeId defined in this XML file is used as part of the scope submitted during an
authorization grant request. Created resources need to be mapped to the resource
owners (identified by subscriber tel:/sip: URIs). Resource owners then issue
authorization grants to the scopeIds (resources) that they own.

See "Understanding the OAuth Resource Format" for details on the resource format
and a resource example.

Understanding the Services Gatekeeper Resource Server
As an OAuth Resource Server, Services Gatekeeper manages the protected resources
contained within a service provider’s network and accepts and responds to third-party
application requests for access to protected resources.

In Services Gatekeeper, a resource is considered to be a communication service
method. Resources can have subresources, each of which is represented by a method

Managing OAuth Resources

2-2 Services Gatekeeper OAuth Guide

derived from the resource. Authorization grants to a resource also apply to its
subresources. For example, for a payment communication service, a resource called
amountTransaction can be created for charging transactions. A subresource called
checkTransactionStatus is a method used to query the status of a charging transaction.

Understanding the Services Gatekeeper Authorization Server
As an OAuth Authorization Server, Services Gatekeeper obtains a subscriber’s
permission for access to protected resources when an application makes a request.
Services Gatekeeper issues a token to the client application, which is used to access
protected resources without requiring the resource owner to provide actual
credentials.

When a client application requests access to a protected resource, the Services
Gatekeeper REST handler initially checks the request, ensuring that the body contains
the needed authorization information. If the request is valid, Services Gatekeeper
forwards the request onto the proper communication service. An OAuth interceptor
verifies that the token contained in the request is valid before completing the request.
Services Gatekeeper then sends a response back to the client application.

Services Gatekeeper can also act as a SAML identity manager that accepts SAML token
requests and grants the corresponding SAML tokens. You can use these tokens to
supply permission to use resources protected by OAuth. You also have the ability to
grant access to resources with federated identities such as single sign-ons (SSOs). You
create the SSOs using an identity manager such as Oracle Fusion Middleware Identity
and Access Management product (which contains Oracle Identity Manager), or
another identity access management product. The SSO authorizations then allow the
subscriber access to all resources protected by the SSO.

Understanding the Services Gatekeeper Authentication Server
As an Authentication Server, Services Gatekeeper maintains a subscriber database
used to store the owners of protected resources. OAuth 2.0 resource owners in Services
Gatekeeper must be setup as subscribers in the Authentication Server first. The
Authentication Server is used to authenticate subscribers, as resource owners, before
initiating authorization to protected resources.

The included Authentication Server is intended for OAuth 2.0 demonstration and
development purposes.

Provisioning Mapped Resources
Services Gatekeeper contains a JMX interface for uploading resource mapping files.
The interface name is included in the OAuthResourceMBean MBean, which you can
access using MBean browser, such as the WebLogic Administration Console, the
Oracle Access Manager (OAM) interface (a part of the Oracle Fusion Middleware
Identity and Access Management product), the Services Gatekeeper Platform Test
Environment (PTE). You load or retrieve resources using this MBean.

For more information on the fields and methods of OAuthResourceMBean, see the
"All Classes" section of Services Gatekeeper OAM Java API Reference.

Managing Clients
You can map a client to an existing Services Gatekeeper application instanceId. This
mapping lets you use existing SLA enforcement with OAuth security. You manage
application clients using the OAuthClientMBean, which is available from the OAM

About the MBeans Used to Provide OAuth Functionality

Protecting Services Gatekeeper Resources with OAuth 2-3

WebLogic interface or the PTE. You use this MBean to search for clients or return a list
of them. You can also add, remove, or update clients.

For more information on the fields and methods of OAuthClientMBean, see the "All
Classes" section of Services Gatekeeper OAM Java API Reference.

Mapping Resources to Resource Owners
You must define a resource owner for each resource that Services Gatekeeper protects.
You manage resource owners using the OAuthResourceOwnerMBean. You use this
MBean to add, remove, or update resource owners. For all operations, the format of a
resourceScope is space separated scopeId list.

For more information on the fields and methods of OAuthResourceOwnerMBean, see
the "All Classes" section of Services Gatekeeper OAM Java API Reference.

Authenticating Subscribers
Services Gatekeeper acts as an authentication server. You create and authenticate
subscribers in the Services Gatekeeper database.

To authenticate users, Services Gatekeeper supports a component called the Subscriber
Manager which provisions subscribers, authenticates them, and expands GroupURIs.
You manage subscribers using the SubscriberMBean MBean.

For more information on the fields and methods of SubscriberMBean, see the "All
Classes" section of Services Gatekeeper OAM Java API Reference.

About the MBeans Used to Provide OAuth Functionality
You administer the Services Gatekeeper OAuth server using these MBeans in domain_
home/ocsg/container_services/OAuthService:

■ OAuthCommonMBean

■ OAuthClientMBean

■ OAuthresourceMBean

■ TokenManagerMBean

For more information on the fields and methods of these MBeans, see the "All Classes"
section of Services Gatekeeper OAM Java API Reference. For more information about
Services Gatekeeper administration, see Services Gatekeeper System Administrator's
Guide.

Understanding OAuth EAR Files
The OAuth EAR files are deployed as part of the Services Gatekeeper installation.

EDRs and Alarms
The Services Gatekeeper OAuth implementation functions as an application running
on the WebLogic application server host. You can configuration EDRs and alarms
manually if needed. See the chapter on “Managing and Configuring EDRs, CDRs and
Alarms” in Services Gatekeeper System Administrator's Guide for more information.

Deploying and Configuring OAuth Functionality

2-4 Services Gatekeeper OAuth Guide

Deploying and Configuring OAuth Functionality
To deploy and configure the Services Gatekeeper OAuth functionality:

1. Confirm that the OAuth EAR files are deployed.

2. Configure OAuth.

See "Configuring OAuth" for more information.

3. Create the protected resources in Services Gatekeeper.

See "Configuring Resource Rules to Protect Resources" for more information.

4. Configure the Authentication URL.

See "Configuring Authentication" for more information.

5. Configure resource rules to protect the usage of your resources.

See "Configuring Resource Rules to Protect Resources" for more information.

6. Create the client identifier(s) and credentials in Services Gatekeeper that will
request access to protected resources.

See "Configuring Clients to Protect Access to Resources" for more information.

See:

■ "Example: Protecting the OneAPI Payment Service with OAuth" for an example of
the configuration steps.

■ "OAuth Access Flow In Services Gatekeeper" for an example of how Services
Gatekeeper accesses a resource.

Configuring OAuth
To configure OAuth, use the methods of the OAuthCommonMBean MBean to update
(or configure) Services Gatekeeper for use with OAuth.

For more information on the fields and methods of OAuthCommonMBean, see the
"All Classes" section of Services Gatekeeper OAM Java API Reference.

Creating Protected Resources
Create protected resources by doing the following:

■ Protecting RESTful Communication Services

■ Protecting Subscription Resources

Protecting RESTful Communication Services
To enable OAuth protection for RESTful communication services (including custom
communication services), you map communication services to OAuth resources. You
then use the OAuthResourceMBean to upload resource mapping to Services
Gatekeeper.

For more information on the fields and methods of OAuthResourceMBean, see the
"All Classes" section of Services Gatekeeper OAM Java API Reference.

Deploying and Configuring OAuth Functionality

Protecting Services Gatekeeper Resources with OAuth 2-5

Protecting Subscription Resources
Services Gatekeeper uses operations in the OAuthResourceMBean to protect
subscription resources. See “Services Gatekeeper OAuth 2.0 Authorization and
Resource Servers” in Services Gatekeeper Communication Service Reference Guide.

Configuring Authentication
In order to grant an authorization code, a resource owner must be authenticated and
authorize the scope of the grant. The resource owner can be authenticated using these
methods:

■ Using the Default Subscriber Manager

■ Using Delegated Authentication

A resource owner controls its resources and can allow a client to access them. For each
resource, one or more resource owners need to be defined using the
SubscriberMBean.

Using the Default Subscriber Manager
Services Gatekeeper offers a built-in subscriber repository to authenticate subscribers.
To use the default Subscriber Manager to authenticate subscribers, do the following:

1. Create the subscribers in Services Gatekeeper using the SubscriberMBean Mbean.
Use the methods of this MBean to configure and maintain subscribers. Access the
SubscriberMBean MBean through the OAM Console or the PTE Tools MBean
browser.

For more information on the fields and methods of SubscriberMBean, see the "All
Classes" section of Services Gatekeeper OAM Java API Reference.

2. Verify that the AuthenticationURL property of OAuthCommonMbean is set to:

https://app_server_IP:app_server_port/oauth2/auth.jsp

Using Delegated Authentication
Instead of provisioning users in the Services Gatekeeper database, you can delegate
authentication to a custom authentication server.

See "Implementing a Third-Party Authentication Service" for more information.

See "Understanding the OAuth Resource Format" for details on the resource format.

Configuring Resource Rules to Protect Resources
Protecting resources with resource rules comprises the following tasks:

■ Creating Individual Resource Owners

■ Creating a Resource Rules File Using Regular Expressions

■ Uploading the Resource Rules to Services Gatekeeper

Creating Individual Resource Owners
Create the individual resource owners using the methods of the
OAuthResourceOwnerMBean MBean. For more information on the fields and
methods of this MBean, see the "All Classes" section of Services Gatekeeper OAM Java
API Reference.

Deploying and Configuring OAuth Functionality

2-6 Services Gatekeeper OAuth Guide

Creating a Resource Rules File Using Regular Expressions
You map resource owners to their resources using regular expressions. To do so, you
create an XML rules file that defines the resource owner/resource mapping and save
this file.

See resource_rule.xsd for the schema definition.

The rules file that you create maps resource owner addresses, represented by a regular
expression, to a list of one or more resources. The rules file is interpreted when OAuth
grants the authorization, and rules must be defined in order of priority from most
specific to most general.

In the following example, owner/resource mapping rules are defined with the most
specific rules at the beginning of the file, proceeding to the most general rules at the
end. Placing a more specific rule, with a regular expression such as ^1390.*$, at the
start of the file ensures that the expected cases are caught and correctly interpreted
first. Then the rules with more general regular expressions, such as ^.*$, toward the
end of the file serves as a stop gaps to catch the unexpected or rarer cases.

Example 2–1 Regular Expression Rules File

<?xml version="1.0" encoding="UTF-8"?>
<tns:addressResourceRules
xmlns:tns="http://oracle/ocsg/oauth2/management/resource_rule"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<!-- numbers start with '1390' own the 'location' and 'payment' services -->
<tns:rule addressPattern="^1390.*$" resources="location payment"/>
<!-- numbers start with '139' own the 'location' service -->
<tns:rule addressPattern="^139.*$" resources="location"/>
<!-- All other resources are protected and no resource owners are defined. -->
<!-- Any request with a scope not defined in this xml file will be rejected. -->
<tns:rule addressPattern="^.*$" resources=""/>
</tns:addressResourceRules>

Uploading the Resource Rules to Services Gatekeeper
Upload the saved resource rules XML file to Services Gatekeeper using the
loadResourceRuleXml method in OAuthResourceMBean MBean.

To retrieve the current rules XML file, you use the retrieveResourceRuleXml method.

For more information on the fields and methods of the OAuthResourceMBean
MBean, see the "All Classes" section of Services Gatekeeper OAM Java API Reference.

Configuring Clients to Protect Access to Resources
Services Gatekeeper enables you to create an application client to support the
authorization code grant type. A client registers with its password and the allowed
redirect URI in Services Gatekeeper.

Use the fields and methods of the OAuthClientMBean MBean to configure and
maintain application clients. You can access this MBean using an MBean browser, such
as the OAM Console, WebLogic Administration Console, or the Platform Test
Environment (PTE).

For more information on the fields and methods of the OAuthResourceMBean
MBean, see the "All Classes" section of Services Gatekeeper OAM Java API Reference.

Deploying and Configuring OAuth Functionality

Protecting Services Gatekeeper Resources with OAuth 2-7

Configuring SAML (Optional)
This section explains how to configure Services Gatekeeper as a SAML authorization
server. It is an optional step.

To configure Services Gatekeeper to use SAML federated identities follow these
general steps:

1. Configure Oauth in Services Gatekeeper. See these sections for details:

■ Configuring OAuth

■ Creating Protected Resources

■ Configuring Authentication

■ Configuring Resource Rules to Protect Resources

■ Configuring Clients to Protect Access to Resources

2. Import the certifications from your identity provider using the keytool program.

See “Adding Certificates to the Application Tier Servers and Applications” in
Services Gatekeeper System Administrator’s Guide for details.

3. Set up a trusted relationship between the requesting application and your identity
provider. See your identity provider documentation for instructions.

4. Configure your SAML application to add and remove excess tokens. To do so, use
the OauthSamlMbean methods. For more information on the fields and methods
of the OauthSamlMbean MBean, see the "All Classes" section of Services Gatekeeper
OAM Java API Reference.

Protecting Resources in a Custom Communication Service
You can create a custom RESTful communication service using the Platform
Development Studio (PDS) wizard and deploy the service on the Services Gatekeeper
platform. This service is automatically protected by OAuth.

The service must be provisioned as an OAuth2.0 resource as described in the following
steps:

1. Deploy the service into the Services Gatekeeper server.

For example:

Interfacename=com.foo.Demo
Method=bar

2. Execute the loadResourceXml operation in the OAuthResourceMbean to create a
resource element. For example, use the following XML:

<resource id="foo_id " name="Demo
 Service" interfaceName=" com.foo.Demo" methodName=" bar"
 tokenExpirePeriod="3600"></resource>

3. Execute the addResourceOwner operation in the OAuthResourceOwnerMbean
with the following values (where the resource_owner_address is the TEL:/SIP: URI):

address=${resource_owner_address}
resourceScope=foo_id

After completing the above steps, the custom RESTful communication service can be
accessed if a resource owner grants access to any application client.

Figure 2–1 illustrates the above steps.

Deploying and Configuring OAuth Functionality

2-8 Services Gatekeeper OAuth Guide

Figure 2–1 Protecting a Custom Communication Service

Example: Protecting the OneAPI Payment Service with OAuth
This section explains how to protect the OneAPI Payment Service with OAuth.

Steps to Protecting the OneAPI Payment Service with OAuth
1. Adding a Client in Services Gatekeeper

2. Configuring the Authentication URL

3. Adding One API Payment Communication Service as an OAuth resource

4. Adding a New Subscriber

5. Assigning the Resource to the Subscriber to Act as Resource owner

Adding a Client in Services Gatekeeper
1. Open the MBean browser in PTE or use the OAM WebLogic interface to access the

addclient operation in the OAuthClient MBean at:

 Wlng, OauthServer, OauthClientMBean, addClient()

2. Use the following parameters for the addclient operation:

■ Id: app123

■ Name: App123_name

■ Password: password

■ Description: Demo Application

Deploying and Configuring OAuth Functionality

Protecting Services Gatekeeper Resources with OAuth 2-9

■ AllowRedirectURI: https://localhost/app/redirect.php

■ AppInstanceId: domain_user

3. Submit the parameters to add the new client.

Configuring the Authentication URL
1. Open the MBean browser in PTE or use the OAM WebLogic interface to access the

AuthenticationURL configuration setting in the OAuthCommon MBean at:

 Wlng, OauthServer, OauthCommonMBean, AuthenticationURL

2. Use the following parameter for the AuthenticationURL field:

 AuthenticationURL: https://app_tier_host:app_tier_port/oauth2/auth.jsp

3. Submit the parameter to set the authentication URL.

Adding One API Payment Communication Service as an OAuth resource
1. Open the MBean browser in PTE or use the OAM to access the loadResourceXml

operation in the OAuthResourceMBean at:

Wlng, OauthServer, OauthResourceMBean, loadResourceXml()

2. Use the following sample XML content for the FileContent parameter field:

<?xml version="1.0" encoding="UTF-8"?>
<resources xmlns="http://oracle/Services Gatekeeper/oauth2/management/xml"
 mlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <!-- OneAPI Payment amountTransaction -->
 <resource id="POST-/payment/acr:Authorization/transactions/amount"
 name="Charge or refund" interfaceName="oracle.Services
 Gatekeeper.parlayrest.plugin.PaymentPlugin" methodName="amountTransaction"
 tokenExpirePeriod="3600">
 <parameter name="code" description="billable item id"/>
 </resource>
</resources>

3. Submit the parameter to add the payment service as an OAuth resource.

Adding a New Subscriber
1. Open the MBean browser in PTE or use the OAM WebLogic interface to access the

addSubscriber operation in the SubscriberMBean at:

Wlng, SubscriberService, SubscriberMBean, addSubscriber()

2. Use the following parameters for the addSubscriber operation:

■ Address: tel:888

■ LoginID: Jack

■ Password: password

3. Submit the parameters to create a subscriber.

Assigning the Resource to the Subscriber to Act as Resource owner
1. Open the MBean browser in PTE or use the OAM WebLogic interface to access the

addResourceOwner operation in the OAuthResourceOwnerMBean at:

Wlng, OauthServer, OauthResourceOwnerMBean, addResourceOwner()

2. Use the following parameters for the addResourceOwner operation:

Understanding the OAuth Resource Format

2-10 Services Gatekeeper OAuth Guide

■ Address: tel:888

■ resourceScope: POST-/payment/acr:Authorization/transactions/amount

3. Submit the parameters to create a subscriber.

Understanding the OAuth Resource Format
The Services Gatekeeper OAuth resource format is defined in the oauth_resource.xsd
file located in the middleware_home/ocsg_6.0/applicationsoauth2_nt.ear file. To view
the resource schema definition use an archive manager to expand wlng_nt_oauth2.ear.

Example 2–2 shows the contents of the oauth_resource.xsd file:

Example 2–2 oauth_resource.xsd file

<?xml version="1.0" encoding="UTF-8"?>
<schema xmlns="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://oracle/ocsg/oauth2/management/xml"
 xmlns:tns="http://oracle/ocsg/oauth2/management/xml"
 elementFormDefault="qualified">
 <element name="resources">
 <complexType>
 <complexContent>
 <extension base="tns:OAuthResources">
 </extension>
 </complexContent>
 </complexType>
 <unique name="resourceIdUnique">
 <selector xpath="tns:resource"/>
 <field xpath="@id"/>
 </unique>
</element>

<complexType name="ResourceParameter">
 <annotation>
 <documentation>
 Parameter of resource.
 </documentation>
 </annotation>
 <attribute name="name" type="string" use="required">
 <annotation>
 <documentation>
 Parameter name.
 </documentation>
 </annotation>
 </attribute>
 <attribute name="description" type="string" use="required">
 <annotation>
 <documentation>
 Parameter description.
 </documentation>
 <annotation>
 </attribute>
 </complexType>

 <complexType name="OAuthResources">
 <annotation>
 <documentation>
 All supported OAuth2.0 resources in the resource server of OCSG.

Understanding the OAuth Resource Format

Protecting Services Gatekeeper Resources with OAuth 2-11

 </documentation>
 </annotation>
 <sequence>
 <element name="resource" type="tns:OAuthResource" minOccurs="0"
maxOccurs="unbounded"></element>
 </sequence>
 </complexType>

 <complexType name="OAuthResource">
 <annotation>
 <documentation>
 Define a OAuth2.0 resource.
 </documentation>
 </annotation>
 <sequence>
 <element name="parameter" type="tns:ResourceParameter" minOccurs="0"
maxOccurs="unbounded"></element>
 <element name="subResource" type="string" minOccurs="0"
maxOccurs="unbounded"></element>
 </sequence>
 <attribute name="id" type="string" use="required">
 <annotation>
 <documentation>
 Resource identifier.
 </documentation>
 </annotation>
 </attribute>
 <attribute name="name" type="string" use="required">
 <annotation>
 <documentation>
 Resource name.
 </documentation>
 </annotation>
 </attribute>
 <attribute name="interfaceName" type="string" use="required">
 <annotation>
 <documentation>
 Plug-in north interface name of the resource.
 </documentation>
 </annotation>
 </attribute>
 <attribute name="methodName" type="string" use="required">
 <annotation>
 <documentation>
 Plug-in north method name of the resource.
 </documentation>
 </annotation>
 </attribute>
 <attribute name="tokenExpirePeriod" type="int" use="optional" default="3600">
 <annotation>
 <documentation>
 Token expire period by seconds.
 </documentation>
 </annotation>
 </attribute>
 </complexType>
</schema>

Table 2–1 lists the resource structure and attributes.

Resource Representation Example

2-12 Services Gatekeeper OAuth Guide

Resource Representation Example
The following is an example XML representation of the OAuth resource mapping for a
OneAPI communication service:

<?xml version="1.0" encoding="UTF-8"?>
<resources xmlns="http://oracle/Services Gatekeeper/OAuth2.0 /management/xml"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <!-- amountTransaction -->
 <resource id="chargeAmount" name="Charge or refund"
 interfaceName="oracle.Services Gatekeeper.parlayrest.plugin.PaymentPlugin"
methodName="amountTransaction"
 tokenExpirePeriod="3600">
 <parameter name="code" description="billable item id"/>
 <subResource>checkTransactionStatus</subResource>
 </resource>

 <!-- list amount transactions -->
 <resource id="listAmount" name="List amount transactions"

Table 2–1 oauth_resource.xml Resource Structure and Attributes

Attributes Type Description

id String Unique identifier for the resource scope (required). As part of an
authorization grant, the Id (as the scopeId), is submitted as part
of the scope-token parameter value.

name String Resource name (required). A concise description of a resource
which can be used for display purposes.

interfaceName String Plug-in north interface name of the resource (required).

methodName String Plug-in north method name of the resource (required).

tokenExpirePeriod Int Number of seconds until a token expires (optional). If multiple
resources (scopes) are granted with a single token, the earliest
token expiration period will be enforced on the token. If the
resource has subResources, then the earliest token expiration
period configured among all resources will be used.

subResource String One or more resources that can exist within the scope of the
resource (optional). The value of this field should be an id of
another resource.

parameter ResourceParameter One or more parameters valid for the resource (optional). These
parameter(s) are submitted as part of the OAuth authorization
grant. During an authorization grant, a resource may accept
several parameters, and each of the parameters can have two
attributes, name and description. Parameters defined as part of
the resource do not need to be directly related to the method
parameters of an API.

The semantics of the parameters can be interpreted by a custom
interceptor by examining the RequestContext.

For example, for the following scope value:

chargeAmount?code=123

The chargeAmount is the scopeId mapped in Services
Gatekeeper, the code represents the parameter name and 123
represents the parameter value.

As part of communication service access (resource access), a
custom interceptor can be written to interpret the OAuth token
scope and RequestContext and validate the token usage against
the authorization scope.

Resource Representation Example

Protecting Services Gatekeeper Resources with OAuth 2-13

 interfaceName="oracle.Services Gatekeeper.parlayrest.plugin.PaymentPlugin"
methodName="listTransaction"
 tokenExpirePeriod="3600">
 <subResource>checkTransactionStatus</subResource>
 </resource>

 <!-- get amount transaction -->
 <resource id="checkTransactionStatus" name="Get amount transaction"
 interfaceName="oracle.Services Gatekeeper.parlayrest.plugin.PaymentPlugin"
methodName="checkTransactionStatus"
 tokenExpirePeriod="3600"/>
</resources>

The following resources are defined in this example:

■ chargeAmount: a token can be obtained for this resource, but this restricts the
access of the resource (OneAPI charging API) to the code specified as part of the
scope parameter value.

■ listAmount

■ checkTransactionStatus

In addition, one subResource is also defined. The checkTransactionStatus
subResource is defined as a subResource for the chargeAmount and listAmount
resources. By defining checkTransactionStatus as a subResource, Services Gatekeeper
facilitates using the same access token obtained for chargeAmount while accessing the
checkTransactionStatus resource.

Resource Representation Example

2-14 Services Gatekeeper OAuth Guide

3

Monitoring OAuth Services in Service Gatekeeper 3-1

3Monitoring OAuth Services in Service
Gatekeeper

This chapter explains how to manage an Oracle Communications Services Gatekeeper
implementation that uses Open Authorization Protocol v2.0 (OAuth) features.

Understanding OAuth Runtime Actions
This section describes the Services Gatekeeper runtime OAuth actions and token
management, and lists the EDRs and errors that OAuth generates.

Issuing OAuth Tokens
This section explains how Services Gatekeeper manages Oauth tokens.

Default Authentication and Authorization
Services Gatekeeper includes an authorization JSP page to enter resource owner
information and validate the scope requested by an application. This page displays the
scope and resource details that a resource owner uses to issue an authorization grant
to an application.

The Auth.jsp that handles the default authentication is located in oauth2_service.war
at the following location:

 middleware_home/ocsg_6.0/applications/wlng_at_oauth2.ear

Authorization for Group URIs
The default Subscriber Manager treats a group owner with a group URI as a normal
resource owner, so a group owner with a group URI has its own password.

When Services Gatekeeper issues an authorization grant for a given group URI as a
resource owner, the token can access a resource on behalf of any of the group
members.

The group owner’s URI and password authorize an application to access resources
that are owned by all member in the group.

You enable or disabled this feature using the groupUriEnabled Mbean property in the
OauthCommonMbean.

For more information on the fields and methods of OauthCommonMbean, see the
"All Classes" section of Services Gatekeeper OAM Java API Reference.

Managing Tokens

3-2 Services Gatekeeper OAuth Guide

Understanding Token Validation
Services Gatekeeper supplies an interceptor to validate access tokens. The interceptor
must be configured with a minimum index value in the interceptor chain to allow
validation requests to be handled properly. By default, it is the second interceptor.

The token validation interceptor checks the following:

■ Whether the access token is expired.

■ Whether the resource owner matches the end user ID in the RESTful API request.

– An exact match for a resource owner.

– If token is issued for group URI, then request URI should be a member of the
same group.

■ Whether requested resource is within the scope of a token.

If the token is a MAC type, additional checks are required for the following:

■ Body hash

■ Nonce

■ Mac

Custom interceptors can be developed and deployed for parameter value checking
and token type checking (if MAC Type) of requests.

Managing Tokens
To manage OAuth tokens, use the JMX interfaces TokenManagementMBean which
you access from an MBean browser, such as the OAM WebLogic interface or the
Services Gatekeeper Platform Test Environment (PTE).

For more information on the fields and methods of TokenManagementMBean, see the
"All Classes" section of Services Gatekeeper OAM Java API Reference.

EDRs Generated by the OAuth Service
Table 3–1 describes the EDRs that can be generated by the OAuth service.

EDRs Generated by the OAuth Service

Monitoring OAuth Services in Service Gatekeeper 3-3

Table 3–1 OAuth Service EDRs

EDR ID Class Method Description
Additional Attributes in the
EDR

20001 oracle.ocsg.oauth2.intercepto
r.OAuth2AppListener

postStart Generated when the
OAuth service is
started.

None

20002 oracle.ocsg.oauth2.intercepto
r.OAuth2AppListener

preStop Generated when the
OAuth service is
stopped.

None

20003 oracle.ocsg.oauth2.ejb.server.
OAuthServiceBean

authorize Generated when an
authorization code is
issued to an
application.

OAuth2ClientId

OAuth2ResourceOwner

OAuth2Scopes

OAuth2AuthorizeType

If the response is a code:

OAuth2AuthorizationCode

If the response is a token:

OAuth2AccessToken

OAuth2TokenType

20004 oracle.ocsg.oauth2.ejb.server.
OAuthServiceBean

applyToken Generated when an
access token is issued
to an application.

OAuth2ClientId

OAuth2ResourceOwner

OAuth2GrantType

OAuth2AuthorizationCode

OAuth2AccessToken

OAuth2TokenType

If a refresh token is generated:

OAuth2RefreshToken

20005 oracle.ocsg.oauth2.ejb.server.
OAuthServiceBean

refreshToken Generated when an
application requests a
refresh token.

OAuth2ClientId

OAuth2ResourceOwner

OAuth2GrantType

OAuth2OrignalRefreshToken

OAuth2AccessToken

OAuth2TokenType

If a refresh token is
generated:OAuth2RefreshToke
n

20006 oracle.ocsg.oauth2.intercepto
r.OAuth2Interceptor

invoke Generated when an
application accesses a
resource with an
OAuth access token.

OAuth2ClientId

OAuth2ResourceOwner

OAuth2AccessToken

OAuth2TokenType

OAuth2ResourceClass

OAuth2ResourceMethod

OAuth/Services Gatekeeper Errors and Exceptions

3-4 Services Gatekeeper OAuth Guide

OAuth/Services Gatekeeper Errors and Exceptions
Table 3–2 describes the error conditions and resulting operation responses provided by
the Services Gatekeeper OAuth 2.0 authorization server.

Table 3–2 Exception Scenarios

Type Error Response

invalid_
request

The request is missing a required parameter, includes an
invalid parameter value, or is otherwise malformed.

HTTP/1.1 400 Bad Request
Content-Type: application/json
Cache-Control: no-store
{
"error":"invalid_request"
}

invalid_realm No authentication header with the default Services
Gatekeeper realm

HTTP/1.1 401 Unauthorized
WWW-Authenticate:
realm="default"

invalid_grant The provided authorization grant (for example
authorization code or resource owner credentials) is
invalid, expired, revoked, and does not match the
redirection URI used in the authorization request, or was
issued to another client.

HTTP/1.1 400 Bad Request
Content-Type: application/json
Cache-Control: no-store
{
"error":"invalid_grant"_
}

invalid_client Client authentication failed (for example, unknown
client, no client authentication included, or unsupported
authentication method). The authorization server may
return an HTTP 401 (Unauthorized) status code to
indicate which HTTP authentication schemes are
supported. If the client attempted to authenticate using
the authorization request header field, the authorization
server must respond with an HTTP 401 (Unauthorized)
status code, and include the WWW-Authenticate
response header field matching the authentication
scheme used by the client.

HTTP/1.1 400 Bad Request
Content-Type: application/json
Cache-Control: no-store
{
"error":"invalid_client"_
}

unauthorized
_client

The client is not authorized to request an authorization
code using this method.

HTTP/1.1 401 Unauthorized

unauthorized
_owner

Invalid resource owner credential in the authorization
request

HTTP/1.1 401 Unauthorized

insufficient_
scope

Insufficient scope in the authorization request HTTP/1.1 403 Forbidden

invalid_token Invalid resource owner's credential the authorization
request

HTTP/1.1 401 Unauthorized

invalid_token Duplicated authorization code in the authorize request HTTP/1.1 401 Unauthorized

insufficient_
scope

Invalid scope in the refresh token request HTTP/1.1 403 Forbidden

invalid_token Discarded refresh token in the refresh token request HTTP/1.1 401 Unauthorized

OAuth/Services Gatekeeper Errors and Exceptions

Monitoring OAuth Services in Service Gatekeeper 3-5

invalid_token No authenticate header When using MAC-type access
token to access resource

HTTP/1.1 401 Unauthorized
WWW-Authenticate: MAC
 error="invalid_token",

invalid_token Invalid MAC-type access token When accessing resource HTTP/1.1 401 Unauthorized
WWW-Authenticate: MAC

invalid_token No Authenticate header When using Bearer-type access
token to access resource

HTTP/1.1 401 Unauthorized
WWW-Authenticate:
 error="invalid_token",

invalid_token Invalid Bearer-type access token when accessing resource HTTP/1.1 401 Unauthorized
WWW-Authenticate:
 error="invalid_token",

insufficient_
scope

The request requires higher privileges (scope) than
provided by the access token

HTTP/1.1 403 Forbidden

access denied The resource owner or authorization server denied the
request.

HTTP/1.1 302 Found
Location:
https://client.example.com/cb?e
rror=access_denied&state=xyz

unsupported
response
type

The authorization server does not support obtaining an
authorization code using this method.

HTTP/1.1 302 Found
Location:
https://client.example.com/cb?e
rror=unsupported_response_type

unsupported
_grant_type

The authorization grant type is not supported by the
authorization server.

HTTP/1.1 400
Location:
https://client.example.com/cb?e
rror=unsupported_grant_type

invalid_scope The requested scope is invalid, unknown, or malformed. HTTP/1.1 302 Found
Location:
https://client.example.com/cb?e
rror=invalid_scope

Table 3–2 (Cont.) Exception Scenarios

Type Error Response

OAuth/Services Gatekeeper Errors and Exceptions

3-6 Services Gatekeeper OAuth Guide

server_error The authorization server encountered an unexpected
condition which prevented it from fulfilling the request.

HTTP/1.1 400
error="server_error",

The HTTP response code for
server_error depends on which
endpoint is responding.

The Authorization and Grant
endpoints return 302 error
responses as defined by the OAuth
specification.

The Services Gatekeeper Token
endpoint returns a 400 error
response.

 temporarily_
unavailable

The authorization server is currently unable to handle
the request due to a temporary overloading or
maintenance of the server.

Not Supported

other Undetermined HTTP/1.1 500
Content-Type: application/json
Cache-Control: no-store
{
 "error":"500"
}

Table 3–2 (Cont.) Exception Scenarios

Type Error Response

4

Developing Services Gatekeeper Services Using OAuth 4-1

4Developing Services Gatekeeper Services
Using OAuth

This chapter explains the options you have for customizing the Open Authorization
Protocol v2.0 (OAuth) functionality for use with Oracle Communications Services
Gatekeeper.

Understanding How to Apply SAML Tokens
The network-originated request message that applies a SAML token must use the
structure explained in this section.

Understanding Token Request Messages
Method Type: POST

URL: http://Gatekeeper_IPaddress:Gatekeeper_port/oauth2/saml

Request Parameters:

■ grant_type - Required. Must use this value:
urn:ietf:params:oauth:grant-type:saml2-bearer

■ client_id - Optional. The client identifier. BA

■ scope - Optional. A value defined by the authorization server.

■ assertion - Required. The assertion being used as an authorization grant.The
serialization must be encoded for transport within HTTP forms. Oracle
recommends that you use base64url (defined in RFC 4648) to avoid unnecessarily
long strings.

Example 4–1 shows an example SAML token request message.

Example 4–1 SAML Token Request Message Example

 POST /token HTTP/1.1
 Host: server.example.com
 Content-Type: application/x-www-form-urlencoded

 client_id=s6BhdRkqt3&
 grant_type=urn%3Aoasis%3Anames%sAtc%3ASAML%3A2.0%3Aassertion&
 assertion=PHNhbWxwOl...[omitted for brevity]...ZT4

Example 4–2 shows a sample SAML assertion string before encoding.

Understanding How to Apply SAML Tokens

4-2 Services Gatekeeper OAuth Guide

Example 4–2 SAML Token Assertion String Example

<Assertion IssueInstant="2010-10-01T20:07:34.619Z"
ID="ef1xsbZxPV2oqjd7HTLRLIBlBb7"
Version="2.0"
xmlns="urn:oasis:names:tc:SAML:2.0:assertion">
 <Issuer>https://saml-idp.example.com</Issuer>
 <ds:Signature xmlns:ds="http://www.w3.org/2000/09/xmldsig#">
 [...omitted for brevity...]
 </ds:Signature>
 <Subject>
 <NameID
 Format="urn:oasis:names:tc:SAML:1.1:nameid-format:emailAddress">
 brian@example.com
 </NameID>
 <SubjectConfirmation
 Method="urn:oasis:names:tc:SAML:2.0:cm:bearer">
 <SubjectConfirmationData
 NotOnOrAfter="2010-10-01T20:12:34.619Z"
 Recipient="https://authz.example.net/token.oauth2"/>
 </SubjectConfirmation>
 </Subject>
 <Conditions>
 <AudienceRestriction>
 <Audience>https://saml-sp.example.net</Audience>
 </AudienceRestriction>
 </Conditions>
 <AuthnStatement AuthnInstant="2010-10-01T20:07:34.371Z">
 <AuthnContext>
 <AuthnContextClassRef>
 urn:oasis:names:tc:SAML:2.0:ac:classes:X509
 </AuthnContextClassRef>
 </AuthnContext>
 </AuthnStatement>
</Assertion>

Understanding Token Response Messages
Method type: HTTP/1.1 200 OK

Response Parameters:

■ access_token - Required. The access token issued by the authorization server.

■ token_type - Requried. Normally bearer or mac. But in the SAML flow, the token
type could be extended to be bearer or saml-bearer.

■ expires_in - Required. The amount of time, in seconds, that the access token is
valid.

■ scope - Required if different from the request message scope. Otherwise optional.

Example 4–3 shows an exmaple SAML token resposne message.

Example 4–3 SAML Token Response Message

 HTTP/1.1 200 OK
 Content-Type: application/json;charset=UTF-8
 Cache-Control: no-store
 Pragma: no-cache

 {
 "access_token":"2YotnFZFEjr1zCsicMWpAA",

Understanding How to Apply SAML Tokens

Developing Services Gatekeeper Services Using OAuth 4-3

 "token_type":"bearer",
 "expires_in":3600
 }

Understanding SAML Assertion Validation Messages
Table 4–1 lists the SAML assertion validation check point processing rules that your
applications send.

Example 4–4 shows an example SAML assertion validation message.

Example 4–4 Example SAML Assertion Validation Message

<Assertion IssueInstant="2010-10-01T20:07:34.619Z"
ID="ef1xsbZxPV2oqjd7HTLRLIBlBb7"
Version="2.0"
xmlns="urn:oasis:names:tc:SAML:2.0:assertion">
 <Issuer>https://saml-idp.example.com</Issuer>
 <ds:Signature xmlns:ds="http://www.w3.org/2000/09/xmldsig#">
 [...omitted for brevity...]
 </ds:Signature>
 <Subject>
 <NameID
 Format="urn:oasis:names:tc:SAML:1.1:nameid-format:emailAddress">
 brian@example.com
 </NameID>

Table 4–1 SAML Assertion Validation Check Point Processing Rules

Checkpoint Processing Rule

Issuer The assertion validation <Issuer> element must contain a
unique identifier for the entity that issued the assertion. Services
Gatekeeper confirms that the value for this checkpoint is
included in the trusted issuers list.

Audience The assertion must contain a <Conditions> element which
includes an <AudienceRestriction> element, which in turn,
contains an <Audience> element with a URI reference. The token
endpoint URL of the authorization server may be used as an
acceptable value for an <Audience> element. The authorization
server must verify that it is an intended audience for the
assertion.

Subject The assertion must contain a <Subject> element. The <Subject>
element may identify the resource owner for whom the access
token is being requested.

NotOnORAfter The assertion must have an expiration time that limits the time
window during which it can be used. The time limit can be
expressed either as the NotOnOrAfter attribute of the
<Conditions> element or as the NotOnOrAfter attribute of a

suitable <SubjectConfirmationData> element.

Method The <Subject> element must contain at least one
<SubjectConfirmation> element that allows the authorization
server to confirm it as a bearer assertion. The
<SubjectConfirmation> element must have a Method attribute
with a value of urn:oasis:names:tc:SAML:2.0:cm:bearer.

Signature The assertion must be digitally signed by the issuer and the
authorization server MUST verify the signature. Services
Gatekeeper validates the signature and confirm that the trusted
certificate is identical to the attached certificate in the assertion.

Understanding OAuth Customization

4-4 Services Gatekeeper OAuth Guide

 <SubjectConfirmation
 Method="urn:oasis:names:tc:SAML:2.0:cm:bearer">
 <SubjectConfirmationData
 NotOnOrAfter="2010-10-01T20:12:34.619Z"
 Recipient="https://authz.example.net/token.oauth2"/>
 </SubjectConfirmation>
 </Subject>
 <Conditions>
 <AudienceRestriction>
 <Audience>https://saml-sp.example.net</Audience>
 </AudienceRestriction>
 </Conditions>
 <AuthnStatement AuthnInstant="2010-10-01T20:07:34.371Z">
 <AuthnContext>
 <AuthnContextClassRef>
 urn:oasis:names:tc:SAML:2.0:ac:classes:X509
 </AuthnContextClassRef>
 </AuthnContext>
 </AuthnStatement>
</Assertion>

Understanding OAuth Customization
This chapter contains information on customizing Service Gatekeeper’s OAuth
functionality. It starts by explaining the customization options are covered:

■ Implementing a Third-Party Authentication Service

■ Creating an OAuth Interceptor

■ Integrating a Third-Party Subscriber Repository

■ Creating an OAuth Extension Handler

■ Customizing OAuth Resource Grant Tests

This chapter also explains how to develop applications using OAuth:

■ OAuth Application Developer Guide

– Interacting with the Services Gatekeeper OAuth Service

– OAuth Access Flow In Services Gatekeeper

Implementing a Third-Party Authentication Service
You can delegate authentication to a third-party authentication service provider
instead of with the default Subscriber Management Service. The authentication
provider is responsible for the resource owner identity validation and handling the
grant collection flow.

A delegated authentication service used with Services Gatekeeper is responsible for:

1. Hosting the Authentication Endpoint.

2. Presenting the expanded scope and authenticating a resource owner.

3. Redirecting the resource owner to the grant endpoint hosted by Services
Gatekeeper upon successful authentication of the resource owner.

See "Understanding the OAuth Endpoints" for more information.

Understanding OAuth Customization

Developing Services Gatekeeper Services Using OAuth 4-5

Authentication Process Flow
This section describes the flow of requests between Services Gatekeeper and a
delegated authentication service. Sample responses to the requests along with a
description of the flow are provided.

1. An application sends a standard OAuth Authorization request to Services
Gatekeeper in a format that looks like this:

GET /oauth2/authorize?client_id=client123&redirect_
uri=https://www.google.com/asdf&response_
type=code&scope=POST-/payment/acr:Authorization/transactions/amount&state=123
HTTP/1.1

After receiving the OAuth2 authorization request, Services Gatekeeper add more
detailed information to it using the client_id and scope request parameters. This
additional information is appended to the location header in the 302 redirect
response directed to the configured authentication endpoint.

The location header contains these elements:

■ The delegating authentication endpoint

■ The original OAuth Authentication request parameters

■ The Grant endpoint

■ Detailed information for the client_id and scope parameters.

This is an example 302 response:

HTTP/1.1 302 Moved Temporarily
Location: https://authentication_url?client_
id=client123&redirect_uri=https://www.google.com/asdf&response_
type=code&scope=POST-/payment/acr:Authorization/transactions/
amount&state=123&grant_url=grant&client_
info=%7B%22clientId%22%3A%22client123%22%2C%22clientName
%22%3A%22client123%22%2C%22clientDescription
%22%3A%22client123+desc%22%7D&scopes_info=%5B%7B
%22scopeId%22%3A%22POST-%2Fpayment
%2Facr%3AAuthorization%2Ftransactions
%2Famount%22%2C%22scopeDescription
%22%3A%22Charge+or+refund%22%2C%22parameters
%22%3A%5B%7B%22code%22%3A%22billable+item+id%22%7D%5D%7D%5D

In addition to the original OAuth authorization request parameters, the detailed
format specs of all additional parameters are defined in Table 4–2:

Table 4–2 OAuth Authorization Request Parameters

Parameter Description

grant_url The URL can be submitted later according resource owner's
approval. See "Understanding the OAuth Endpoints" for more
information.

Understanding OAuth Customization

4-6 Services Gatekeeper OAuth Guide

2. The resource owner's browser continues to access the authentication endpoint
identified in the Location Header.

The Authentication endpoint should accept the redirected request, authenticate
the resource owner for proper credentials and render an interactive graphical
interface for authorization. The resource owner can use the information in the
interface to understand the scope and client information of the authorization
request and determine if the request should be authorized.

After the resource owner authorizes the scope the Authentication endpoint
redirects the resource owner to the Grant endpoint with following parameters
through an HTTP POST operation. The OAuth flow continues normally after
redirecting the resource owner toward the grant endpoint. The client then receives
the authorization code at the Redirect endpoint.

Table 4–3 lists the OAuth grant endpoint POST parameters.

client_info Client information will be constructed into a JSON Object as
shown below. Encoding complies with the following
specification:

 http://www.w3.org/Addressing/URL/url-spec.html

{
 "clientId":"client123",
 "clientName":"Oracle",
 "clientDescription":"Oracle Description"
}

scopes_info scope information will be constructed into a JSON Object as
shown below. Encoding complies with the following
specification:

 http://www.w3.org/Addressing/URL/url-spec.html

[
 {
 "scopeId":"POST- payment acr:Authorization
transactions amount",
 "scopeDescription":"Charge+or+refund",
 "parameters":[{"code":"billable+item+id"}]
 }
]

Table 4–3 OAuth Grant Endpoint POST Parameters

Parameter Description

user_address Address of resource owner

Table 4–2 (Cont.) OAuth Authorization Request Parameters

Parameter Description

Understanding OAuth Customization

Developing Services Gatekeeper Services Using OAuth 4-7

Creating an OAuth Interceptor
This section describes the basic principles for creating a custom OAuth interceptor.

As described in "Implementing a Third-Party Authentication Service", it is possible to
add additional parameters to the scope-token so that custom interceptors can be
created for fine-grained resource access and traffic control.

Table 4–4 lists the OAuth parameters available in the RequestContext object for an
OAuth enabled communication service. Customized interceptors can make use of
these parameters to further fine tune authorized access to protected resources.

For information on creating custom interceptors, see Services Gatekeeper Extension
Developer's Guide.

grant_scopes The scope that the resource owner grants to the application. The
value of the scope parameter is expressed as a list of
space-delimited strings. Each string adds an additional access
range to the selected scope parameter.

According to the resource owner decisions at the Authentication
endpoint, the granted scope can be narrower than the originally
requested scope. Services Gatekeeper will reject a granted scope
that is wider than originally requested scope.

Based on the implementation of the Authentication endpoint
and the resource owner interaction, additional parameter may
be appended to each scope id. These scope parameters will be
available to an interceptor so that stricter enforcement can be
applied according to different parameters.

The scope format is:

 scopeId?[<param>=<value>[&<param>=<value>]*].

For example:

grant_scopes=chargeAmount?maxAmount=100&minAmount=100
getLocation?requestedAccuracy=100 sendSMS

response_type As in the first authorization request

client_id As in the first authorization request

redirect_uri As in the first authorization request

state As in the first authorization request

scope As in the first authorization request

Table 4–4 OAuth RequestContext Parameters

Attribute Name Access Type Description

OAUTH2_SCOPE_PARAMETER read only java.util.Map Contains all parameters of the current
request scope.

Table 4–3 (Cont.) OAuth Grant Endpoint POST Parameters

Parameter Description

Understanding OAuth Customization

4-8 Services Gatekeeper OAuth Guide

Examples: Using a Custom OAuth Interceptor to Retrieve OAuth Information
Below is an example for retrieving and using OAuth associated information from the
requestContext within a customized interceptor.

To retrieve the MSIDN of an OAuth resource owner:

/**
* The following example shows a way to retrieve Oauth2 resource owner MSIDN
*/
@Override
public Object invoke(final Context context) throws Exception {
 String currentResourceOwner = (String) context.getRequestContext()
.get(“CONTEXT_OAUTH2_RESOURCE_OWNER”);
 If (currentResourceOwner == null)
throw new DenyPluginException(“Not a OAuth based request!”);
 else
System.out.println(“Current Oauth2 resource owner is:” + currentResourceOwner);
 context.invokeNext(this);
}

To control the maximum charged value using an additional scope parameter called
maxAmount:

/**
* The following example shows a way to control the maximum charged value using
additional scope parameter
* "maxAmount".
*/
@Override
public Object invoke(final Context context) throws Exception {
if (context.getType().equals(AmountCharingPlugin.class)) {
Map<String, String> scopeParameters = (Map<String,
String>)context.getRequestContext().get("OAUTH2_SCOPE_PARAMETER");
int maxAmount = Integer.parseInt(scopeParameters.get("maxAmount").toString());

if (((ChargeAmount)context.getArguments()[0]).getAmount() > maxAmount)
 throw new DenyPluginException("Specified chargeAmount request exceed
 limitation.");
 }
 context.invokeNext(this);
}

CONTEXT_OAUTH2_RESOURCE_
OWNER

read only java.lang.String The resource owner of the token, which
is usually the same as the address in the
request. When the resource owner is a
group URI or the scheme of address in
request is ACR, they may be different.

CONTEXT_OAUTH2_PARAMETER read only java.util.Map Contains all endpoint parameters of this
request. This parameter must start with
oracle_ or ocsg_.

CONTEXT_OAUTH2_STATE read/write java.util.Map Values of this attribute will be available
during the lifecycle of one OAuth
access token.

Table 4–4 (Cont.) OAuth RequestContext Parameters

Attribute Name Access Type Description

OAuth Application Developer Guide

Developing Services Gatekeeper Services Using OAuth 4-9

Integrating a Third-Party Subscriber Repository
Service Gatekeeper offers the flexibility to integrate with custom subscriber
repositories for user authentication. You can develop a customized Subscriber
Manager to authenticate users against external subscriber repositories such as LDAP.

Developing a custom Subscriber Manager involves the following steps:

1. Implementing oracle.Services Gatekeeper.subscriber.SubscriberManager, and
customizing the implementation of this interface

2. Registering the custom implementation with the OAuth security framework with
this method.

void oracle.Services
Gatekeeper.subscriber.SubscriberManager.registerInstance("default",
SubscriberManager instance);

For additional information on customizing the default SubscriberManager,
including method details, see SubscriberManager in the “All Classes” section of
the Services Gatekeeper Java API Reference.

Creating an OAuth Extension Handler
Services Gatekeeper supports a rich set of credential types that OAuth uses for
security. However, if your implementation uses new or evolving credential standards
that Services Gatekeeper does not support, you have the option to create a customized
extension handler to use them. The Platform Development Studio enables you to
customize endpoint parameters, grant types, response types, or errors using the
OAuth2 Extension Handlers wizard.

For details see Services Gatekeeper Extension Developer's Guide.

Customizing OAuth Resource Grant Tests
Services Gatekeeper enables you to add your own customized tests to OAuth resource
requests. For example, you may want to restrict access to a resource to just subscribers
from a specific block of email addresses. There are two ways to add the customized
tests:

■ Using an auth.jsp file which you then reference using a REGEX_MATCH
parameter in the resource XML file. Services Gatekeeper then perform any tests
(regular expressions) that you have added to the jsp file. Each subscriber must
pass the tests in this file to get access to the resource.

■ Creating a custom services interceptor.

For details on both of these methods, see Services Gatekeeper Extension Developer's Guide.

OAuth Application Developer Guide
This section contains information useful for Application Developers using OAuth with
Services Gatekeeper.

Interacting with the Services Gatekeeper OAuth Service
This section describes the available OAuth endpoints, the steps are involved in
obtaining an access token, and how applications use access tokens to access a REST
resource in Services Gatekeeper.

OAuth Application Developer Guide

4-10 Services Gatekeeper OAuth Guide

The following endpoints are available in the OAuth Service:

■ Authorization endpoint

■ Token endpoint

■ Authentication endpoint

■ Grant endpoint

Figure 4–1 demonstrates the end to end flow to obtain an access token and use the
access token to access the resource.

Figure 4–1 OAuth Endpoints and Functional Responsibility

OAuth Access Flow In Services Gatekeeper
This procedure describes the OAuth access flow:

1. A resource owner visits an application website and initiates a request that requires
granting access to protected resources to an application.

2. The application redirects the resource owner to the Authorization Endpoint with
the application information including the client id and scope id.

For example, the application can provide a link to trigger a HTTP GET request
where the following information is included in the HTTP query string:

■ HTTP Request: GET

■ URI: https://host:port/oauth2/authorize

OAuth Application Developer Guide

Developing Services Gatekeeper Services Using OAuth 4-11

■ Parameters:

– response_type -- Supported values are code or token

– client_id. -- The client identifier

– redirect_uri -- Required

– scope -- The scope of the access request expressed as a list of
space-delimited, case sensitive strings. The Services Gatekeeper
Authorization Server accepts zero to multiple scope-tokens in the
following format for scope-token:

 <scopeId>[?<param>=<value>[&<param>=<value>]*]+

where scopeId is the resource identifier and param is the name of one of
the allowed parameters defined as part of resource.

For example:

chargeAmount?code=1976

An example scope would look like:

GET /oauth2/authorize?response_type=code&client_id=app123&state=xyz
&redirect_uri=https%3A%2F%2Fclient%2Eexample%2Ecom%2Fcb HTTP/1.1
Host: server.Services Gatekeeper.com

3. Services Gatekeeper validates the resource owner identity and obtains the resource
owner's consent on the requested scope.

4. The application exchanges the authorization code for an authorization token using
the Token Endpoint. Services Gatekeeper server returns the token directly.

The request can be described as follows:

■ HTTP Request: POST

■ URI: https://<AT_HOST>:<AT_PORT>/oauth2/token

■ Parameters:

– grant_type: Value can be set to authorization_code, if the request is not a
SAML assertion.

– code: The authorization code received from the Authorization Server.

– redirect_uri: The redirection URI used by the Authorization Server to
return the authorization response in the previous step.

– client_id: The client identifier.

– client_secret: The client password.

■ Authorization Header:

The client application may use the http Basic authentication scheme as defined
in RFC2617 to authenticate with the Services Gatekeeper server. The client_id
is used as the username and the client_secret is used as the password.

For example:

Authorization: Basic czZCaGRSa3F0MzpnWDFmQmF0M2JW

Alternatively, the Authorization Server may support including the client
credentials in the request body using the following parameters:

– client_id: The client identifier.

OAuth Application Developer Guide

4-12 Services Gatekeeper OAuth Guide

– client_secret: The application password.

■ HTTP Response:

– access_token: The authorization code generated by Services Gatekeeper.

– token_type: The Bearer or MAC authorization code received from
Services Gatekeeper.

– expires_in: The duration in seconds of the access token lifetime.

– refresh_token: The refresh token which you use to obtain new access
tokens using the same authorization grant.

– scope: The scope of the access request expressed as a list of
space-delimited, case sensitive strings.

– anonymous_id: Uniquely identifies the resource owner.

– mac_key: The MAC key verifies the later request of access protect
resource. (MAC-Type access token).

– mac_algorithm: The MAC algorithm used to calculate the request MAC.
The value must be either hmac-sha-1 or hmac-sha-256.

The response will be different depending on the token type submitted in the
request.

This is an example for a Bearer-Type Access Token with HTTP Basic
Authentication:

Request:

POST /oauth2/token HTTP/1.1
Host: localhost:7999
Content-length: 128
Authorization: Basic YXBwMTIzOmFwcDEyMw==
Content-Type: application/x-www-form-urlencoded
Connection: Close

grant_type=authorization_
code&code=75dfe1c9-9784-4545-846f-e1493f087017&redirect_
uri=http%3A%2F%2Flocalhost%2Fapp%2Fredirect.php

Response:

HTTP/1.1 200 OK
Cache-Control: no-store
Connection: close
Content-Length: 327
Content-Type: application/json

{"access_token":"44fb85f8-e400-41b3-9bd4-68617d131039","token_
type":"MAC","expires_
in":3600,"scope":"POST-/payment/acr:Authorization/transactions/amount",
"mac_algorithm":"hmac-sha-1","mac_
key":"-3677656698299327487","secret":"-3677656698299327487",
"anonymousid":"1debde44-f9d4-41d6-88fe-bbb77fea37c8",
"algorithm":"hmac-sha-1"}

The following example is for a MAC-Type Access Token with included client
credentials in the request body.

Request:

OAuth Application Developer Guide

Developing Services Gatekeeper Services Using OAuth 4-13

POST /oauth2/token HTTP/1.1
Host: server.Services Gatekeeper.com
Content-Type: application/x-www-form-urlencoded
 grant_type=authorization_code&client_id=app123&client_secret=
app123&code=i1WsRn1uB1&redirect_
uri=https%3A%2F%2Fclient%2Eexample%2Ecom%2Fcb
Response:

HTTP/1.1 200 OK
Content-Type: application/json
Cache-Control: no-store

{ "access_token":"SlAV32hkKG","token_type":"mac", "expires_in":3600,
"refresh_token":"8xLOxBtZp8","secret":"23sasd#adf@#"
"algorithm":"hmac-sha-1"}

5. The application can now access the protected resource.

The application needs to add an HTTP Authorization Header when accessing the
granted resource. The value of authorization head depends on the access token
type.

For a Bearer token, the application can directly transmit the access token using an
HTTP authorization header in the request.

For a MAC token, the application constructs the HTTP authorization header using
a MAC key with the access token. For more information, see:

http://tools.ietf.org/html/draft-ietf-oauth-v2-http-mac-00.

Below is a sample PHP code snippet illustrating the insertion of the token in the
HTTP Authorization Header:

$body_hash=base64_encode(hash('sha1',$http_body,true));
$payload=$nonce."\n".$http_method."\n".$request_path."\n".$host_
name."\n".$host_port."\n".$body_hash."\n".$ext."\n";
$mac = base64_encode(hash_hmac('sha1', $payload, $mac_key, true));
$oauth2_header='MAC id="'.$mac_key_
id."\",nonce=\"".$nonce."\",bodyhash=\"".$body_hash."\",mac=\"".$mac.'"';

Following is an example of a request containing a Bearer authorization token:

POST /oneapi/1/payment/acr%3AAuthorization/transactions/amount HTTP/1.1
 Host: localhost:7999
 Content-Type: application/x-www-form-urlencoded
 Authorization: Bearer vF9dft4qmT

{"amountTransaction":{"endUserId":"acr:Authorization",
"paymentAmount":{"chargingInformation":{"description":"chargeAmount",
"currency":"USD",
"amount":"2","code":""},
"chargingMetaData":{"onBehalfOf":"Example Games Inc",
"purchaseCategoryCode":"Game",
"channel":"",
"taxAmount":"0",
"mandateId":"",
"serviceId":"",
"productId":""}},
"transactionOperationStatus":"Charged",
"referenceCode":"REF-12345",
"clientCorrelator":""}
}

OAuth Application Developer Guide

4-14 Services Gatekeeper OAuth Guide

Following is an example of a request containing a MAC authorization token:

POST /oneapi/1/payment/acr%3AAuthorization/transactions/amount HTTP/1.1
Host: localhost:7999
Content-length: 415
Authorization: MAC id="176c04f0-d4d4-4385-b2d6-b19649f21b78",
nonce="273156:di3hvdf8",
bodyhash="junEVZu4M9q1qVaxAByY7lYQun8=",
mac="TudmT3bM5UgqvkL8nq1EuhcZ6O8="
Content-Type: application/json
X-Session-ID: app:-7562122823730178188
Connection: Close

{"amountTransaction":{"endUserId":"acr:Authorization",
"paymentAmount":{"chargingInformation":{"description":"chargeAmount",
"currency":"USD",
"amount":"2",
"code":""},
"chargingMetaData":{"onBehalfOf":"Example Games Inc",
"purchaseCategoryCode":"Game",
"channel":"",
"taxAmount":"0",
"mandateId":"",
"serviceId":"",
"productId":""}},
"transactionOperationStatus":"Charged",
"referenceCode":"REF-"
}

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents

	1 Using OAuth With Services Gatekeeper
	About Services Gatekeeper Support for OAuth Authentication Server
	Using SAML Assertions to Access Resources

	Understanding OAuth 2.0 Concepts
	Understanding OAuth Terminology
	About the OAuth/Services Gatekeeper Entities and Their Relationships
	About the OAuth Protocol Endpoints

	Understanding How Services Gatekeeper Works with OAuth
	OAuth Component to Services Gatekeeper Component Mapping
	Understanding the OAuth Endpoints
	Authentication of Network Flows
	Authenticating RESTful APIs Acting on Application-Initiated Traffic
	Authenticating REST APIs Acting on Network-Initiated Traffic

	Mapping a Resource to a Services Gatekeeper Method
	Securing Resources with Multiple Owners
	Support For SAML Assertions
	Support for Anonymous Customer References
	Accessing the OAuth Log Messages

	Understanding OAuth Specification Compliance
	Supported Communication Services
	Supported OAuth Server Roles
	Supported Authorization Grant Types
	Extension Grant Flows Enabled Through Supported Grant Types
	Supported Token Types
	Supported Client Profiles
	OAuth Flows Supported by Services Gatekeeper
	Authorization Code Grant
	Implicit Grant
	Refresh Token Grant

	Supported URIs (Subscribers)

	2 Protecting Services Gatekeeper Resources with OAuth
	Managing OAuth Resources
	Understanding Resource Mapping
	Understanding the Services Gatekeeper Resource Server
	Understanding the Services Gatekeeper Authorization Server
	Understanding the Services Gatekeeper Authentication Server

	Provisioning Mapped Resources
	Managing Clients
	Mapping Resources to Resource Owners
	Authenticating Subscribers

	About the MBeans Used to Provide OAuth Functionality
	Understanding OAuth EAR Files
	EDRs and Alarms

	Deploying and Configuring OAuth Functionality
	Configuring OAuth
	Creating Protected Resources
	Protecting RESTful Communication Services
	Protecting Subscription Resources

	Configuring Authentication
	Using the Default Subscriber Manager
	Using Delegated Authentication

	Configuring Resource Rules to Protect Resources
	Creating Individual Resource Owners
	Creating a Resource Rules File Using Regular Expressions
	Uploading the Resource Rules to Services Gatekeeper

	Configuring Clients to Protect Access to Resources
	Configuring SAML (Optional)
	Protecting Resources in a Custom Communication Service
	Example: Protecting the OneAPI Payment Service with OAuth
	Steps to Protecting the OneAPI Payment Service with OAuth
	Adding a Client in Services Gatekeeper
	Configuring the Authentication URL
	Adding One API Payment Communication Service as an OAuth resource
	Adding a New Subscriber
	Assigning the Resource to the Subscriber to Act as Resource owner

	Understanding the OAuth Resource Format
	Resource Representation Example

	3 Monitoring OAuth Services in Service Gatekeeper
	Understanding OAuth Runtime Actions
	Issuing OAuth Tokens
	Default Authentication and Authorization
	Authorization for Group URIs

	Understanding Token Validation

	Managing Tokens
	EDRs Generated by the OAuth Service
	OAuth/Services Gatekeeper Errors and Exceptions

	4 Developing Services Gatekeeper Services Using OAuth
	Understanding How to Apply SAML Tokens
	Understanding Token Request Messages
	Understanding Token Response Messages
	Understanding SAML Assertion Validation Messages

	Understanding OAuth Customization
	Implementing a Third-Party Authentication Service
	Authentication Process Flow

	Creating an OAuth Interceptor
	Examples: Using a Custom OAuth Interceptor to Retrieve OAuth Information

	Integrating a Third-Party Subscriber Repository
	Creating an OAuth Extension Handler
	Customizing OAuth Resource Grant Tests

	OAuth Application Developer Guide
	Interacting with the Services Gatekeeper OAuth Service
	OAuth Access Flow In Services Gatekeeper

