

[1] Oracle® Communications Services Gatekeeper
Application Developer’s Guide

Release 6.0

E50769-02

April 2015

Oracle Communications Services Gatekeeper Application Developer's Guide, Release 6.0

E50769-02

Copyright © 2007, 2015, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users
are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the programs, including any operating system, integrated software, any programs installed on
the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to
the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content,
products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and
expressly disclaim all warranties of any kind with respect to third-party content, products, and services
unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its
affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services, except as set forth in an applicable agreement between you and
Oracle.

iii

Contents

Preface .. xvii

Audience.. xvii
Documentation Accessibility .. xvii
Related Documents .. xvii

Part I Overview of Creating Applications for Services Gatekeeper

1 About Creating Applications that Interact with Services Gatekeeper

Basic Concepts .. 1-1
Understanding the Interfaces ... 1-1
Understanding Communication Services... 1-1
Understanding Traffic Types ... 1-2
Understanding Mobile Applications... 1-3
Understanding Management Structures .. 1-5
Understanding How to Test Applications ... 1-5

2 Managing Communication Sessions

Understanding the Session Manager Web Service.. 2-1
Session Management for SOAP, RESTful, and OneAPI Interfaces... 2-1

About Sessions.. 2-2
Changing the Session Mode ... 2-3

Session Manager WSDL File.. 2-3
SessionManager Interface Reference ... 2-3

Operation: getSession .. 2-3
Operation: changeApplicationPassword.. 2-4
Operation: getSessionRemainingLifeTime... 2-4
Operation: refreshSession ... 2-5
Operation: destroySession .. 2-5

Session Manager Examples .. 2-6

Part II Creating Applications Using the RESTful Interfaces

3 Using the RESTful Interfaces

Supported RESTful Interfaces... 3-1

iv

Understanding RESTful Operations .. 3-1
Request-URI and HTTP Methods .. 3-1
Status-Line... 3-4
Headers.. 3-4
Message Body ... 3-7
Example of a Request and Response... 3-8

RESTful Authentication and Security.. 3-9
RESTful Notifications and Publish/Subscribe... 3-9

Supported Endpoint Addresses... 3-9
Using the Bayeux Protocol to Communicate with the Server ... 3-9

Understanding RESTful Errors and Exceptions.. 3-10

4 Adding RESTful Third Party Call Support

About the RESTful Third Party Call Interface ... 4-1
REST Service Descriptions Available at Runtime .. 4-1

RESTful Third Party Call Interface Reference ... 4-1
Make Call ... 4-2
Get Call Information ... 4-5
Cancel Call .. 4-8
End Call ... 4-10

5 Adding RESTful Anonymous Customer Reference Support

About Anonymous Customer References ... 5-1
Configuring ACR Support in Services Gatekeeper .. 5-1

Creating an ACR Plug-in Instance... 5-1
Setting ACR Plug-in Parameters.. 5-2
Creating Multiple ACRs for a Single Subscriber ... 5-2

RESTful APIs for ACR Support .. 5-3
Create ACR .. 5-4
Query ACR .. 5-6
Change ACR Status.. 5-8
Errors and Exceptions ... 5-10
EDRs .. 5-11

6 Adding RESTful Application Subscription Management Support

About Application Subscription Management .. 6-1
REST Service Descriptions Available at Run-time .. 6-1

Subscribe.. 6-2
Unsubscribe... 6-4
Suspend .. 6-5
Unsuspend ... 6-7
Notify .. 6-9
Confirm ... 6-11
queryBySubscriberAddress .. 6-13
queryByApplicationName... 6-15
queryBySubscriptionID ... 6-17

v

7 Adding RESTful Call Notification Support

About the Call Notification Interface... 7-1
REST Service Descriptions Available at Run-time .. 7-1
Common Data... 7-1

Start Call Notification ... 7-3
Stop Call Notification.. 7-6
Start Call Direction Notification ... 7-7
Stop Call Direction Notification .. 7-12

8 Adding RESTful Short Messaging Support

About the Short Messaging Interface... 8-1
REST Service Descriptions Available at Run-time .. 8-1

Send SMS... 8-2
Send SMS Ringtone... 8-4
Send SMS Logo... 8-7
Get Received SMS... 8-10
Get SMS Delivery Status ... 8-12
Start SMS Notification ... 8-14
Stop SMS Notification ... 8-18

9 Adding RESTful Multimedia Messaging Support

About the Multimedia Messaging Interface ... 9-1
REST Service Descriptions Available at Run-time .. 9-1

Send Message.. 9-2
Get Received Messages ... 9-6
Get Message .. 9-8
Get Message Delivery Status ... 9-9
Start Message Notification .. 9-11
Stop Message Notification .. 9-15

10 Adding RESTful Email Communication Service Support

About the Email Communication Interface ... 10-1
REST Service Descriptions Available at Run-time ... 10-1

Send Message... 10-2
Get Received Messages .. 10-6
Get Message ... 10-8
Get Message Delivery Status .. 10-9
Start Message Notification .. 10-11
Stop Message Notification .. 10-15

11 Adding RESTful Terminal Status Support

About the Terminal Status Interface ... 11-1
REST Service Descriptions Available at Run-time ... 11-1

Get Status .. 11-2
Get Status For Group .. 11-4

vi

Status Notification .. 11-7
End Notification .. 11-12

12 Adding RESTful Terminal Location Support

About the Terminal Location Interface .. 12-1
REST Service Descriptions Available at Run-time ... 12-1

Get Location ... 12-2
Get Location for Group .. 12-6
Get Terminal Distance ... 12-11
Start Geographical Notification ... 12-13
Start Periodic Notification ... 12-20
End Notification .. 12-24

13 Adding RESTful Payment Support

About the Payment Interface .. 13-1
REST Service Descriptions Available at Run-time ... 13-1

Charge Amount.. 13-2
Refund Amount ... 13-4
Charge Split Amount.. 13-6
Reserve Amount .. 13-8
Reserve Additional Amount ... 13-10
Charge Volume .. 13-12
Refund Volume ... 13-14
Charge Split Volume .. 13-16
Get Amount .. 13-18
Charge Reservation ... 13-20
Release Reservation .. 13-22
Reserve Volume... 13-23
Reserve Additional Volume .. 13-25
Get Amount Reserve Charging... 13-27

14 Adding RESTful Audio Call Support

About the Audio Call Interface .. 14-1
REST Service Descriptions Available at Run-time ... 14-1

Play Audio Message.. 14-2
Play Text Message ... 14-5
Play VoiceXML Message.. 14-8
Get Message Status ... 14-11
End Message... 14-13

15 Adding RESTful Quality of Service Support

About the QoS Interface .. 15-1
REST Service Descriptions Available at Run-time ... 15-1

Example QoS Scenario ... 15-1
Configuring QoS for Services Gatekeeper... 15-3
Using OAuth with QoS .. 15-3

vii

Apply QoS .. 15-4
Apply Template-Based QoS.. 15-14
Modify QoS .. 15-21
Template-Based Modify QoS.. 15-23
Get QoS Status ... 15-25
Remove QoS ... 15-27
Register for QoS Notifications ... 15-28
Unregister for QoS Notifications ... 15-31
QoS Event Notification .. 15-32
List QoS Event Notifications... 15-35

16 Adding RESTful Presence Support

About the Presence Interface .. 16-1
REST Service Descriptions Available at Run-time ... 16-1
About Presentities and Watchers.. 16-1

Data Common to Operations in RESTful Presence Interface... 16-1
attributes... 16-1
presenceAttribute.. 16-2
unionElement... 16-2
activity .. 16-2
place ... 16-2
privacy .. 16-3
sphere.. 16-3
type.. 16-3
communication .. 16-3
means .. 16-4
typeAndValue.. 16-4
other .. 16-5

Get Open Subscriptions... 16-6
Get My Watchers ... 16-8
Update Subscription Authorization .. 16-9
Subscribe Presence.. 16-11
Block Subscription .. 16-13
Start Presence Notification .. 16-14
End Presence Notification ... 16-19
Get User Presence .. 16-20
Publish... 16-22

17 Adding RESTful Device Capabilities Support

About the Device Capabilities Interface .. 17-1
REST Service Descriptions Available at Run-time ... 17-1

Get Capabilities ... 17-2
Get Device Id.. 17-4

18 Adding RESTful Binary Short Messaging Support

About the Binary Short Messaging Interface .. 18-1

viii

REST Service Descriptions Available at Runtime ... 18-1
RESTful Binary SMS Interface Reference.. 18-1
Send Binary Sms.. 18-2
Start Binary Sms Notification ... 18-4
Stop Binary Sms Notification ... 18-7

19 Adding RESTful Session Manager Support

About the Session Manager Interface ... 19-1
REST Service Descriptions Available at Run-time ... 19-1

Get Session ... 19-2
Get Session Remaining Lifetime ... 19-3
Destroy Session ... 19-4

20 Adding RESTful Subscriber Profile Support

About the Subscriber Profile Interface ... 20-1
REST Service Descriptions Available at Run-time ... 20-1

Get .. 20-2
Get Profile... 20-4

21 Adding RESTful WAP Push Support

About the WAP Push Interface... 21-1
REST Service Descriptions Available at Run-time ... 21-1

Send Push Message... 21-2

Part III Creating Applications Using the OneAPI RESTful Interfaces

22 Using the OneAPI RESTful Interfaces

About the OneAPI Facade Architecture.. 22-1
Support for Anonymous Customer References.. 22-1
Components of the RESTful Facade ... 22-2

Supported OneAPI Interfaces... 22-2
SMS.. 22-3
MMS .. 22-3
Terminal Location ... 22-3
Payment .. 22-3

About Configuring OneAPI Server Functionality ... 22-3
General Format of an Operation .. 22-4

Request-URI and HTTP Methods ... 22-4
Headers... 22-6
Status Line .. 22-8
Message Body .. 22-9
Example of a Request and Response.. 22-9

Authentication and Security ... 22-10
Notifications ... 22-10
Errors and Exceptions ... 22-10

ix

Part IV Creating Applications Using the SOAP Interfaces

23 Using the SOAP Interfaces

Understanding the SOAP Interfaces ... 23-1
Requirements for Using the SOAP-Based Interfaces... 23-1

Understanding SOAP-Based Authentication.. 23-2
Setting Callback Timeout Limits... 23-6
Understanding How Service Correlation Orchestrates Services ... 23-6
Understanding Parameter Tunneling .. 23-7
Understanding SOAP Payload Attachments .. 23-7

Managing SOAP Headers and Attachments Programmatically .. 23-8

24 Adding a SOAP2SOAP Communication Services

About SOAP2SOAP Communication Services ... 24-1

25 Adding SOAP-Based Quality of Service Support

About the SOAP-Based QoS Interface .. 25-1
SOAP-Based Service Descriptions Available at Run-time ... 25-1
Example Parlay X 4.0 Application-Driven QoS/Diameter Scenario.. 25-1
Configuring Services Gatekeeper to Use the QoS Communication Services 25-2

26 About the Supported SOAP Parlay X 2.1 Facades

Parlay X 2.1 Part 2: Third Party Call... 26-1
Interface: ThirdPartyCall ... 26-1
Error Codes .. 26-1

Parlay X 2.1 Part 3: Call Notification.. 26-2
Interface: CallDirection ... 26-2
Interface: CallNotification.. 26-2
Interface: CallNotificationManager ... 26-3
Interface: CallDirectionManager .. 26-3
Error Codes .. 26-3

Parlay X 2.1 Part 4: Short Messaging ... 26-3
Interface: SendSms .. 26-4
Interface: SmsNotification.. 26-5
Interface: ReceiveSms ... 26-5
Interface: SmsNotificationManager ... 26-5
Sending Custom Message Content for Split and Submit Messaging Requests 26-6
Error Codes .. 26-7

Parlay X 2.1 Part 5: Multimedia Messaging.. 26-7
Interface: SendMessage ... 26-7
Interface: ReceiveMessage ... 26-8
Interface: MessageNotification.. 26-9
Interface: MessageNotificationManager ... 26-9
Error Codes .. 26-10

Parlay X 2.1 Part 8: Terminal Status ... 26-10

x

Interface: TerminalStatus ... 26-10
Interface: TerminalStatusNotificationManager .. 26-11
Interface: TerminalNotification... 26-11
Error Codes .. 26-11

Parlay X 2.1 Part 9: Terminal Location... 26-12
Understanding Parlay X 2.1 Terminal Location Precision .. 26-12
Interface: TerminalLocation... 26-13
Interface: TerminalLocationNotificationManager.. 26-14
Interface: TerminalLocationNotification ... 26-15
Error Codes .. 26-16

Parlay X 2.1 Part 11: Audio Call .. 26-16
Interface: PlayAudio ... 26-16
Error Codes .. 26-16

Parlay X 2.1 Part 14: Presence .. 26-17
Interface: PresenceConsumer ... 26-17
Interface: PresenceNotification ... 26-17
Interface: PresenceSupplier .. 26-18
Error Codes .. 26-19

About Notifications .. 26-19
General Exceptions ... 26-19
General Error Codes.. 26-20
Code Examples ... 26-23

Example: sendSMS.. 26-23
Example: startSmsNotification.. 26-23
Example: getReceivedSms ... 26-23
Example: sendMessage... 26-24

Example: getReceivedMessages and getMessage ... 26-24
Example: getLocation ... 26-25

27 About the Supported SOAP Parlay X 3.0 Facades

Parlay X 3.0 Part 6: Payment .. 27-1
Interface: AmountCharging... 27-1
Interface: VolumeCharging ... 27-4
Interface: ReserveAmountCharging... 27-5
Interface: ReserveVolumeCharging ... 27-9

Parlay X 3.0 Part 13: Address List Management .. 27-10
Interface: GroupManagement ... 27-10
Interface: Group... 27-10
Interface: Member ... 27-11

Parlay X 3.0 Part 18: Device Capabilities and Configuration.. 27-12
Interface: DeviceCapabilities ... 27-12
Interface: DeviceCapabilitiesNotificationManager .. 27-12
Interface: DeviceCapabilitiesNotification.. 27-13
Interface: DeviceConfiguration ... 27-13

General Exceptions ... 27-13

xi

28 About the Supported SOAP Parlay X 4.0 Facades

Parlay X 4.0 Part 17 Application-Driven QoS .. 28-1
Interface: Application-driven QoS.. 28-1
Interface: ApplicationQoSNotificationManager... 28-10

29 About the Supported SOAP Native Facade

About the Native Interfaces .. 29-1
MM7 ... 29-1

Supported MM7 Operations.. 29-1
SMPP.. 29-2

Bind PDUs and Sessions .. 29-3
Error Handling .. 29-3
Supported Operations .. 29-4

UCP .. 29-7
Error Handling .. 29-7
Native UCP Operations: Application-Facing Interface ... 29-7
Native UCP Operations: Network-Facing Interface .. 29-8

Part V Creating Applications Using Extended Web Service Interfaces

30 Understanding the Extended Web Services Common Definitions

Namespace .. 30-1
XML Schema Datatype Definition... 30-1

AdditionalProperty Structure ... 30-1
ChargingInformation structure... 30-1
SimpleReference structure ... 30-2

Fault Definitions ... 30-2
ServiceException ... 30-2
PolicyException ... 30-3

31 Adding Extended Web Service Binary SMSs Support

Understanding the Binary SMS Web Service.. 31-1
Namespaces .. 31-1
Endpoints .. 31-1
Sequence Diagram .. 31-2

Send SMS.. 31-2
Receive SMS ... 31-3

XML Schema data type definition ... 31-4
BinaryMessage structure.. 31-4
BinarySmsMessage structure .. 31-4
Interface: BinarySms ... 31-5
Interface: BinarySmsNotificationManager .. 31-7
Interface: BinarySmsNotification.. 31-9

Configuring Automatic Chunking of Binary SMSs... 31-10
WSDLs ... 31-10

xii

Error Codes ... 31-10
Sample Send Binary SMS.. 31-11

32 Adding WAP Push Extended Web Service Message Support

Understanding the WAP Push Extended Web Service Interface... 32-1
Namespaces .. 32-1
Endpoint.. 32-2
Sequence Diagram .. 32-2
XML Schema Data Type Definition .. 32-3

PushResponse Structure... 32-3
ResponseResult structure... 32-4
ReplaceMethod enumeration .. 32-5
MessageState enumeration .. 32-5

WAP Push Extended Web Service Interface Descriptions.. 32-5
Interface: PushMessage .. 32-6
Interface: PushMessageNotification... 32-8

WSDLs ... 32-10
Sample Send WAP Push Message ... 32-10

33 Adding Subscriber Profile Extended Web Service Support

Understanding the Subscriber Profile Extended Web Service Interface 33-1
Namespaces .. 33-1
Endpoint.. 33-2
Address schemes ... 33-2
XML Schema data type definition ... 33-2

PropertyTuple Structure .. 33-2
WAP Push Extended Web Service Interface Descriptions.. 33-3

Interface: SubscriberProfile.. 33-3
WSDLs ... 33-5

Part VI Testing Applications with the Application Test Environment

34 Understanding the Application Test Environment

Understanding the ATE ... 34-1
Understanding the ATE Graphical Interface ... 34-1
Supported Interfaces... 34-3
Supported Communication Services ... 34-3

35 Testing Applications with the Application Test Environment

Starting the ATE .. 35-1
Starting the ATE on UNIX ... 35-1
Starting the ATE on Windows .. 35-1
Starting the ATE on Mac OS X .. 35-1

Stopping the ATE .. 35-1
Understanding Application Testing.. 35-2

Basic Testing... 35-2

xiii

Test with Virtual Communication Service Configuration Settings ... 35-3
Test with Account Credentials .. 35-3
Test Policy Enforcement... 35-3

Substituting ATE Endpoints in Your Application ... 35-3
Substituting Credentials in Your Application .. 35-3
Setting Up and Using Map Elements .. 35-4

Adding and Using Phone Elements ... 35-5
Adding and Using Mobile Elements That Are Not Phones.. 35-9
Adding and Using Circular Notification Area Elements .. 35-9

Displaying a Custom Map ... 35-11
Configuring, Starting and Stopping the VCS.. 35-12

Starting/Stopping a VCS ... 35-13
VCS MBean Object and Class Names .. 35-13
Configuring VCS Settings .. 35-13

Troubleshooting .. 35-20
Simple Mobile-Terminated Test .. 35-20
Simple Mobile-Originated Test ... 35-21
Managing Accounts .. 35-21
Managing Service-Level Agreements.. 35-22

Managing Value Enforcements ... 35-22
Managing Rate Enforcements ... 35-24

Monitoring Payment Accounts ... 35-24
Example Module.. 35-25

36 Customizing the Application Test Environment

Understanding Customizing the ATE... 36-1
Understanding the ATE Configuration File .. 36-1

Example Startup Configuration File... 36-1
Configuration Element Order ... 36-2
When Configuration Elements Are Read .. 36-2

Customizing ATE General Characteristics... 36-3
Customizing a VCS ... 36-4

Showing/Hiding a VCS Module .. 36-4
Changing a VCS Title ... 36-5
Reconfiguring the Default VCS MBean Attributes .. 36-5

Customizing the Account Manager ... 36-6
Showing and Hiding the Account Manager ... 36-6
Creating Accounts... 36-7

Customizing the SLA Manager .. 36-7
Showing and Hiding the SLA Manager... 36-7
Creating Policy Enforcements ... 36-8

Showing And Hiding Payment Accounts Panels ... 36-9

A ATE Endpoints

ATE Endpoints for SOAP-Based Interfaces ... A-1
Session Manager.. A-1

xiv

Parlay X 2.1 Short Messaging Service/SMPP ... A-1
Parlay X 2.1 MultiMedia Messaging Service... A-2
Parlay X 2.1 Terminal Location ... A-2
Parlay X 2.1 Terminal Status.. A-3
Parlay X 3.0 Payment.. A-3
Parlay X 2.1 Third Party Call .. A-4
EWS Binary SMS ... A-4

ATE Endpoints for RESTful Interfaces... A-4
Session Manager.. A-4
Short Messaging ... A-5
Multimedia Messaging... A-6
Terminal Location ... A-7
Terminal Status.. A-7
Payment .. A-8
Third Party Call ... A-9
Binary SMS .. A-10

ATE Endpoints for Example Communication Service ... A-10

B Virtual Communication Services Exception Codes

Short Messaging Exception Codes... B-1
SendSms.sendSms... B-1
SendSms.getSmsDeliveryStatus.. B-1
ReceiveSms.getReceivedSms... B-1
SmsNotificationManager.startSmsNotification.. B-2

Multimedia Messaging Exception Codes ... B-2
SendMessage.sendMessage ... B-2
SendMessage.getMessageDeliveryStatus.. B-2
ReceiveMessage.getMessage ... B-2
ReceiveMessage.getReceivedMessage ... B-2
MessageNotificationManager.startMessageNotification .. B-2
MessageNotitifcationManager.stopMessageNotification ... B-3

Terminal Location Exception Codes .. B-3
TerminalLocation.getLocation .. B-3
TerminalLocation.getTerminalDistance ... B-3
TerminalLocationNotificationManager.startGeographicalNotification B-4
TerminalLocationNotificationManager.startPeriodicNotification .. B-5
TerminalLocationNotificationManager.endNotification .. B-5

Terminal Status Exception Codes .. B-5
TerminalStatus.getStatus ... B-5
TerminalStatus.getStatusForGroup.. B-6
TerminalStatusNotificationManager.startNotification.. B-6
TerminalStatusNotificationManager.endNotification... B-7

Third Party Call Exception Codes .. B-7
ThirdPartyCallImpl.cancelCallRequest ... B-7
ThirdPartyCallImpl.endCall.. B-7
ThirdPartyCallImpl.getCallInformation.. B-8
ThirdPartyCallImpl.makeCall... B-8

xv

ThirdPartyCallImpl.sendMessage .. B-8
ReceiveMessage.makeCall ... B-8

Payment Exception Codes.. B-8
AmountCharging.ChargeAmount ... B-9
AmountCharging.RefundAmount ... B-9
AmountCharging.ChargeSplitAmount ... B-9
VolumeCharging.ChargeVolume... B-10
VolumeCharging.RefundVolume... B-10
ReserveAmountCharging.ReserveAmount .. B-11
ReserveAmountCharging.ReserveAdditionalAmount ... B-11
ReserveAmountCharging.ChargeReservation ... B-11
ReserveAmountChargingReleaseReservation.. B-12
VolumeCharging.ChargeSplitVolume... B-12
ReserveVolumeCharging.ReserveVolume.. B-12
ReserveVolumeCharging.ReserveAdditionalVolume... B-13
ReserveVolumeCharging.ChargeReservation .. B-13
ReserveVolumeCharging.ReleaseReservation.. B-13

Binary SMS Exception Codes ... B-13
SendBinarySms.sendMessage ... B-13
BinarySmsNotificationManager.startMessageNotification .. B-14

xvi

xvii

Preface

This document describes how to integrate functionality provided by telecom networks
into applications by using the SOAP and REST-based facades offered by Oracle
Communications Services Gatekeeper. It includes a high-level overview of the
application development process, including the login and security procedures, and a
description of the interfaces and operations.

This document covers the SOAP and RESTful interfaces and the native interfaces
available in Services Gatekeeper.

Audience
This book is intended for software developers who will integrate functionality
provided by telecom networks into their applications using the SOAP-based, RESTful,
and native interfaces.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing
impaired.

Related Documents
The following documents provide information related to creating applications that
interact with Services Gatekeeper:

■ Oracle Communications Services Gatekeeper Concepts

■ Oracle Communications Services Gatekeeper Portal Developer's Guide

■ Oracle Communications Services Gatekeeper Alarms Handling Guide

■ Oracle Communications Services Gatekeeper Communication Service Reference Guide

■ Oracle Communications Services Gatekeeper Extension Developer's Guide

■ Oracle Communications Services Gatekeeper Platform Test Environment User's Guide

xviii

Part I
Part I Overview of Creating Applications for

Services Gatekeeper

Part I provides an overview of Oracle Communication Services Gatekeeper, and
explains its capabilities and features.

Part I contains the following chapters:

■ About Creating Applications that Interact with Services Gatekeeper

■ Managing Communication Sessions

1

About Creating Applications that Interact with Services Gatekeeper 1-1

1About Creating Applications that Interact with
Services Gatekeeper

This chapter presents an overview of how you can develop applications that interact
with Oracle Communications Services Gatekeeper.

See Services Gatekeeper Concepts for a complete description of the Services Gatekeeper
structure and functionality.

Basic Concepts
These are the basic concepts you should understand before creating applications that
can interact with Services Gatekeeper:

■ Understanding the Interfaces

■ Understanding Communication Services

■ Understanding Traffic Types

■ Understanding Application-Initiated Traffic

■ Understanding Network-Triggered Traffic

■ Understanding Mobile Applications

■ Understanding Management Structures

■ Understanding How to Test Applications

Understanding the Interfaces
In order to interact with Services Gatekeeper, applications use SOAP-based, RESTful,
OneAPI, or native interfaces. For details about using these interfaces, see:

■ Using the RESTful Interfaces

■ Using the SOAP Interfaces

■ Using the OneAPI RESTful Interfaces

■ Understanding the Extended Web Services Common Definitions

Understanding Communication Services
The basic functional unit in Services Gatekeeper is the communication service. A
communication service consists of a service type (Short Messaging, User Location, and
so on), an application-facing interface (also called a north interface), and a
network-facing interface (also called a south interface). See "Understanding Traffic

Basic Concepts

1-2 Services Gatekeeper Application Developer's Guide

Types" for details about these traffic types.

A request for service enters the communication service through one interface, is
processed internally, including evaluation for policy actions and protocol translation,
and then sent on using the other interface.

For an overview of communication services, see Services Gatekeeper Concepts.

For details about the communication services that Services Gatekeeper includes, see
Services Gatekeeper Communication Service Reference Guide.

For details about administering and deploying communication services see Services
Gatekeeper System Administrator's Guide.

For information about creating your own custom communication services see Services
Services Gatekeeper Extension Developer's Guide.

Understanding Traffic Types
In some communication services, request traffic can travel in two directions: from the
application to the underlying network and from the underlying network to the
application.

Understanding Application-Initiated Traffic
In application-initiated traffic, the application sends a request to Services Gatekeeper,
the request is processed, and a response is returned synchronously. For example, an
application could use the Third Party Call interface to set up a call. The initial request,
MakeCall, is sent to Services Gatekeeper (which sends it on to the network). A string,
the callIdentifier, is returned to the application synchronously. To find out the status
of the call, the application makes a new request, GetCallInformation, using
callIdentifier to identify the specific call. The application then receives the requested
information back from Services Gatekeeper synchronously.

Understanding Network-Triggered Traffic
In many cases, application-initiated traffic provides all the functionality necessary to
accomplish the desired tasks. But there are certain situations in which useful
information may not be immediately available for return to the application. For
example, the application might send an SMS to a mobile phone that the user has
turned off. The network won’t deliver the message until the user turns the phone back
on, which might be hours or even days later. The application can poll to find out
whether the message has been delivered by using the GetSmsDeliveryStatus request
which functions such as GetCallInformation for application-initiated traffic. But it
would be more convenient to have the network notify the application when the
message has been delivered to the mobile phone. To do this, two things must happen:

■ The application must inform Services Gatekeeper that it wants to receive
information that originates from the network. It does this by subscribing or

Note: A single application-facing interface may be using multiple
protocols and hardware types in the underlying telecom network.
However, an application is communicating, finally, with a specific
communication service, and not only with the application-facing
interface. So in some cases it is possible to send an application request
to two different carriers that use different underlying network
structures where the request behaves in slightly different ways, even
though the initial request uses the same application-facing interface.

Basic Concepts

About Creating Applications that Interact with Services Gatekeeper 1-3

registering for notifications using an application-initiated request. (In certain cases,
registering can also be accomplished by the operator, using Oracle Access
Manager (OAM) procedures.) Often this subscription includes filtering criteria
that describes exactly what kinds of traffic the application wants to receive.
Depending on the underlying network configuration, Services Gatekeeper itself,
or the operator using manual steps, informs the underlying network about the
kind of data that is requested. These notifications may be status updates or, in
some instances, may even include short or multimedia messages from a terminal
on the telecom network.

■ The application must arrange to receive the network-triggered information, either
by implementing a Web service endpoint on its own site to which Services
Gatekeeper dispatches the notifications, or by polling Services Gatekeeper to
retrieve them. Notifications are kept in Services Gatekeeper for retrieval.

Securing Applications from Malicious Traffic
See “Securing Applications Against Malicious Traffic” in Services Gatekeeper Security
Guide for details on how to protect Services Gatekeeper from malicious REST and
SOAP traffic.

Adding Proxy Servers for Callbacks and Notifications
You can specify proxy servers to receive notifications or callback messages by adding
them to the service provider or application SLA. Use the <proxyhost> and
<proxyport> elements to specify the IP address and port number to listen on.

For details and an example, see the <proxyhost> and <proxyport> elements in
Services Gatekeeper Accounts and SLAs Guide.

Understanding Mobile Applications
Application developers can create mobile applications running on devices such as
smartphones and tablets that communicate with the Services Gatekeeper interfaces.
Generally, the software development kit (SDK) for a mobile operating system,
provided by the operating system vendor, includes the required tools for an
application to communicate with Services Gatekeeper.

The following general guidelines list the basic steps used when developing a mobile
application that communicates with Services Gatekeeper. The example provided uses
the Google Android SDK. Though methods for interacting with web interfaces vary by
operating system, the general procedure for other operating systems, such as Apple
iOS or Microsoft Windows Phone, are similar.

To develop mobile applications that interface with Services Gatekeeper, consult the
following sections:

■ Preparing a Development Environment

■ Creating a Mobile Application

■ Testing a Mobile Application

■ Distributing a Mobile Application

Preparing a Development Environment
You must set up a development environment before developing a mobile application
for use with Services Gatekeeper. You mus includes downloading and configuring the
appropriate mobile operating system SDK, JDK and integrated development

Basic Concepts

1-4 Services Gatekeeper Application Developer's Guide

environment (IDE) such as Eclipse. For example, download the Android application
development tools needed at the following web sites:

■ Google Android Developer Tools (ADT) bundle:
http://developer.android.com/sdk/index.html

The link above also provides a bundle for use with an existing IDE.

■ Java Platform (JDK):
http://www.oracle.com/technetwork/java/javase/downloads/index.html

■ Eclipse IDE: http://www.eclipse.org/downloads/

Configure your application development environment according to the requirements
listed by your mobile operating system vendor. After setting up your development
environment, create a project in your IDE where you will develop your application.

Creating a Mobile Application
This section explains the general steps required for interfacing with Services
Gatekeeper from an Android mobile application. Application requirements vary
depending on the mobile operating system you are using and the functionality you are
providing. See the documentation for your mobile operating system SDK for
procedures and examples for developing mobile application elements such as the user
interface and security.

The following steps show how to call a Services Gatekeeper API RESTful interface
from an Android application. This example creates a RESTful POST method in the IDE
mobile application project and sends the request to Services Gatekeeper. You interact
with other Services Gatekeeper interfaces in a similar way.

To create a POST operation to Services Gatekeeper using the Android SDK and Eclipse
IDE:

1. In the application project, create a JSON object using the org.json.JSONObject
provided in the Android SDK.

2. Populate the fields of this JSON object using the Services Gatekeeper
communication service (or plugin) resource WADL file. See Communication Service
Resource Guide for details on the communication services.

3. Create an instance of the org.apache.http.client.methods.HttpPost object from the
android.jar using the Services Gatekeeper RESTful service resource URL endpoint
and the JSON object created in step 1 as the message parameters in the object.

4. Create an org.apache.http.impl.client.DefaultHttpClient object used to send the
object created in step 3.

5. Send the HttpPost object using the DefaultHttpClient object to the Services
Gatekeeper RESTful interface (or ATE endpoint). Services Gatekeeper (or ATE)
provides a returned value as an object of org.apache.http.HttpResponse.

6. Extract the JSON string included in the HttpResponse object returned by Service
Gatekeeper.

7. Create a JSON object from the extracted JSON string.

Note: When testing your application with the Application Test
Environment (ATE), use the appropriate endpoint for the URL. See
"Testing a Mobile Application" for more information on ATE and "ATE
Endpoints" for a list of available endpoints.

Basic Concepts

About Creating Applications that Interact with Services Gatekeeper 1-5

8. Extract the desired fields required by your application from this JSON object.

Testing a Mobile Application
You must test your mobile application ensuring that it functions correctly. Mobile OS
SDKs include emulators that can be used for testing the application against Services
Gatekeeper. Alternatively, you can install the mobile application on a mobile device
connected to your network for testing. See the mobile OS SDK documentation for
more information about running your application for testing.

See "Understanding How to Test Applications" for information about testing your
mobile application with Services Gatekeeper.

Distributing a Mobile Application
After completing sufficient testing of your application you distribute it to subscribers
for use. Mobile OS vendors typically provide a store for application distribution.
Alternative methods for distributing your application may also be available
depending on mobile OS.

Understanding Management Structures
To help telecom operators organize their relationships with application providers,
Services Gatekeeper uses a hierarchical system of accounts. Each application is
assigned a unique application instance ID that is associated with an application
account. Applications are assigned to service provider accounts. Each application
account is associated with a service provider account. Application accounts with
similar requirements are put into application groups, and service provider accounts
with similar requirements are put into service provider groups. Each application
group is associated with one application group service level agreement (SLA) and zero
or more custom application group SLAs. Each service provider group is associated
with one service provider group SLA and zero or more custom service provider group
SLAs. These SLAs define and regulate the contractual agreements between the telecom
operator and the application service provider. SLAs cover such things as which
services the application may access and the maximum bandwidth available for use.

For more information about management structures, see Services Gatekeeper Portal
Developer's Guide.

Understanding How to Test Applications
You test Applications in a telecom environment in stages. First, applications you run
against simulators such as the Application Test Environment (ATE). The ATE emulates
both Services Gatekeeper and the underlying network, and allows developers to
evaluate basic functional issues without connecting to a network or network simulator.
After basic functional issues are resolved, you can connect the application to an
instance of Services Gatekeeper that is connected to the Platform Test Environment
(PTE) network simulator for further testing. Next, the application is tested against a
test network to eliminate any network related issues. Finally, the application can be
placed into production on a live network.

Figure 1–1, "Application Testing Cycle" shows the application test flow, from the
functional tests to deployment in a live network. Services Gatekeeper simulator-based
tests can be performed in-house by an application service provider, however, the other
tests require the cooperation of the target network operator.

Basic Concepts

1-6 Services Gatekeeper Application Developer's Guide

Figure 1–1 Application Testing Cycle

See "Understanding the Application Test Environment" for details about using the ATE
to test how your application functions with Services Gatekeeper.

See Services Gatekeeper Platform Test Environment User's Guide for details testing how
your application works with a network simulator.

2

Managing Communication Sessions 2-1

2Managing Communication Sessions

This chapter explains how to use the Oracle Communications Services Gatekeeper
Session Manager Web service to manage the sessions that your applications use to
communicate with Services Gatekeeper.

Understanding the Session Manager Web Service
The Session Manager Web service contains operations for managing a session with
Services Gatekeeper, including establishing the session, changing the application’s
password, querying the amount of time remaining in the session, refreshing the
session, and terminating the session.

When an operator requires it, an application must establish a session with Services
Gatekeeper before the application can perform any operations using the Parlay X or
Extended Web Services interfaces. When a session is established, a session ID is
returned, which must be used in each subsequent operation toward Services
Gatekeeper.

Session Management for SOAP, RESTful, and OneAPI Interfaces
In order to interact with Services Gatekeeper, applications use SOAP-based, RESTful,
OneAPI, or SOAP native interfaces. Those applications using SOAP-based interfaces
must manipulate the SOAP messages that they use to make requests in certain
specialized ways. They must add specific information to the SOAP header, and, if they
are using Multimedia Messaging, they must send their message payload as a SOAP
attachment. Applications using the native interfaces use the normal, native interface
mechanisms, which are not covered in this document.

How developers program applications to manipulate SOAP messages depend on the
environment in which the application is being developed.

Note: Not all installations of Services Gatekeeper require session
management. The contents of this chapter apply only to those
installations that do.

Note: Clients created using Axis 1.2 or older do not work with some
communication services. Developers should use Axis 1.4 or newer if
they wish to use Axis.

Session Management for SOAP, RESTful, and OneAPI Interfaces

2-2 Services Gatekeeper Application Developer's Guide

For examples of using the Oracle WebLogic Server environment manipulate SOAP
messages, see "Managing SOAP Headers and Attachments Programmatically".

You can configure whether SOAP, REST, or OneAPI-based applications must provide
credentials and apply for a session ID before they can communicate with Services
Gatekeeper. The default setting requires that these types of applications establish a
session using the Session Manager Web service before they are allowed to run traffic
through Services Gatekeeper. You can also make a session optional, or simply remove
session checking completely.

The session requirement is useful as a security mechanism because it requires all
applications to authorize themselves, and it allows Services Gatekeeper to keep track
of all traffic for a session.

About Sessions
An application establishes a session in Services Gatekeeper by invoking the
getSession() operation in the Session Manager Web service. The getSession()
operation is the only operation that does not require a session ID to be invoked. This
operation returns a string representing the session ID to the client, and Services
Gatekeeper establishes a session identified by the ID string. See "Operation:
getSession" for details about this operation.

Sessions last until they time out or until the application closes the session. You
configure the timeout interval. Each session is valid for the entire Services Gatekeeper
domain, across clusters, and covers all communication services to which the
application has contractual access. Once established, the session ID must appear in the
wlng:Session element in the header of every subsequent SOAP request.

Example 2–1 Example of a Session Header element

<Session>
<SessionId>app:-2810834922008400383</SessionId>

</Session>

You can configure the session mode that determines whether session IDs are required.
The mode has these possible values:

■ Required - The default value. Requires that all applications authorize themselves
with credentials before requesting a session ID. Services Gatekeeper validates
session IDs and rejects communication attempts if the IDs are invalid. If the mode
is Required, a session ID is required for all communication through Services
Gatekeeper.

■ Disabled (sessionless) - Services Gatekeeper does not check whether a session ID
exists. If applications successfully authenticate themselves, they receive a session
ID string of sessionless, which is used in all communication within the session. If
they do not authenticate, no session ID is provided or required. In this case the
application uses whichever Web services Security (WS-Security) mechanism is
required by the Services Gatekeeper operator for security.

■ Optional - Services Gatekeeper does not require that an application log on or
request a session ID. If the application successfully authenticates, it is provided
with a session ID that is checked for validity. If found invalid, the request is
rejected. If the application passes in a header with a session ID of sessionless, or
if no session ID is passed in, the request is accepted.

SessionManager Interface Reference

Managing Communication Sessions 2-3

Changing the Session Mode
To change the Services Gatekeeper session mode:

1. Start the MBean browser that you use to configure Services Gatekeeper.

You can browse MBeans by using JConsole or PTE, which are supplied with
Services Gatekeeper.

2. Navigate to wlng, then AccountService, then ApplicationSessionMBean, and
then SessionRequired.

3. Check the box representing the session behavior that your implementation
requires:

■ Required

■ Disabled

■ Optional

See "About Sessions" for details on the different options.

Session Manager WSDL File
The WSDL file for the Session Manager Web service can be found here:

http://host:port/session_manager/SessionManager

where host and port are the host name and port of the system on which Services
Gatekeeper is installed.

SessionManager Interface Reference
The Session Manager Web service interface includes these operations:

■ Operation: getSession

■ Operation: changeApplicationPassword

■ Operation: getSessionRemainingLifeTime

■ Operation: refreshSession

■ Operation: destroySession

Operation: getSession
Establishes a session using WS-Security. Authentication information must be provided
according to WS-Security. See "Understanding SOAP-Based Authentication" for more
information.

Input message: getSession

Table 2–1 Input Message: getSession

Part name Part type Optional Description

N/A N/A N/A N/A

SessionManager Interface Reference

2-4 Services Gatekeeper Application Developer's Guide

Output message: getSessionResponse

Referenced faults
GeneralException

Operation: changeApplicationPassword
Changes the password for an application.

Input message: changeApplicationPassword

Output message: changeApplicationPasswordResponse

Referenced faults
None

Operation: getSessionRemainingLifeTime
Gets the remaining lifetime of an established session. The default lifetime is configured
in Services Gatekeeper.

Input message: getSessionRemainingLifeTime

Table 2–2 Output Message: getSessionResponse

Part name Part type Optional Description

getSessionReturn xsd:String N The session ID to use in subsequent requests.

Table 2–3 Input Message: changeApplicationPassword

Part name Part type Optional Description

sessionId xsd:string N The ID of an established session.

oldPassword xsd:string N The current password.

newPassword xsd:string N The new password.

Table 2–4 Output Message: changeApplicationPasswordResponse

Part name Part type Optional Description

N/A N/A N/A N/A

Table 2–5 Input Message: getSessionRemainingLifeTime

Part name Part type Optional Description

sessionId xsd:string N The ID of an established session.

SessionManager Interface Reference

Managing Communication Sessions 2-5

Output message: getSessionRemainingLifeTimeResponse

Referenced faults
None

Operation: refreshSession
Refreshes the lifetime of a session. The session can be refreshed during a time interval
after the session has expired. This time interval is configured in Services Gatekeeper.

Input message: refreshSession

Output message: refreshSessionResponse

Referenced faults
None

Operation: destroySession
Destroys an established session.

Input message: destroySession

Output message: destroySessionResponse

Table 2–6 Output Message: getSessionRemainingLifeTimeResponse

Part name Part type Optional Description

getSessionRemainingLifeTimeReturn xsd:string N The remaining lifetime of
the session.

Given in milliseconds.

Table 2–7 Input Message: refreshSession

Part name Part type Optional Description

sessionId xsd:string N The ID of an established session.

Table 2–8 Output Message: refreshSessionResponse

Part name Part type Optional Description

refreshSessionReturn xsd:string N The session ID to be used in
subsequent requests. The same ID as
the original session ID is returned.

Table 2–9 Input Message: destroySession

Part name Part type Optional Description

sessionId xsd:string N The ID of an established session.

Table 2–10 Output Message: destroySessionResponse

Part name Part type Optional Description

destroySessionReturn xsd:boolean N True if the session was destroyed.

Session Manager Examples

2-6 Services Gatekeeper Application Developer's Guide

Referenced faults
None

Session Manager Examples
Example 2–2 illustrates how to get the Session Manager Web service and how to
prepare the generated stub with WS-Security information. The stub is generated from
the Session Manager Web service.

Example 2–2 Get the Session Manager Web Service

protected ClientSessionManImpl(String sessionManagerURL, PolicyBase pbase) throws Exception {
SessionManagerService accessservice =
new SessionManagerService_Impl(sessionManagerURL+"?WSDL");

port = accessservice.getSessionManager();
pbase.prepareStub((Stub)port);

 }
Example 2–3 illustrates how to prepare the Session Manager Web service stub with
username token information according to WS-Policy.

Example 2–3 Prepare the Session Manager with Username Token information

package com.bea.wlcp.wlng.client.access.wspolicy;
import weblogic.wsee.security.unt.ClientUNTCredentialProvider;
import weblogic.xml.crypto.wss.WSSecurityContext;
import javax.xml.rpc.Stub;
import java.util.ArrayList;
import java.util.List;
public class UsernameTokenPolicy implements PolicyBase {

 private String username;
 private String password;

public UsernameTokenPolicy(String username, String password) {
 this.username = username;
 this.password = password;
 }

 public void prepareStub(Stub stub) throws Exception {
 List<ClientUNTCredentialProvider> credProviders = new ArrayList<ClientUNTCredentialProvider>();
 credProviders.add(new ClientUNTCredentialProvider(username.getBytes(),
 password.getBytes()));
 System.out.println("setting standard wssec");
 stub._setProperty(WSSecurityContext.CREDENTIAL_PROVIDER_LIST,
 credProviders);
 }

}

Part II
Part II Creating Applications Using the RESTful

Interfaces

Part II describes how to use the interfaces in the RESTful facade to create applications
that interact with Oracle Communications Services Gatekeeper.

Part II contains the following chapters:

■ Using the RESTful Interfaces

■ Adding RESTful Third Party Call Support

■ Adding RESTful Anonymous Customer Reference Support

■ Adding RESTful Application Subscription Management Support

■ Adding RESTful Call Notification Support

■ Adding RESTful Short Messaging Support

■ Adding RESTful Multimedia Messaging Support

■ Adding RESTful Email Communication Service Support

■ Adding RESTful Terminal Status Support

■ Adding RESTful Terminal Location Support

■ Adding RESTful Payment Support

■ Adding RESTful Audio Call Support

■ Adding RESTful Quality of Service Support

■ Adding RESTful Presence Support

■ Adding RESTful Device Capabilities Support

■ Adding RESTful Binary Short Messaging Support

■ Adding RESTful Session Manager Support

■ Adding RESTful Subscriber Profile Support

■ Adding RESTful WAP Push Support

3

Using the RESTful Interfaces 3-1

3Using the RESTful Interfaces

This chapter presents an overview of Oracle Communications Services Gatekeeper
RESTful interfaces, and explains how to use them to create applications that interact
with Services Gatekeeper.

Supported RESTful Interfaces
The RESTful interfaces provide applications with the operations they use to interact
with Services Gatekeeper.

See Services Gatekeeper Concepts for a complete list and short description of the RESTful
interfaces supported by Services Gatekeeper. These interfaces are explained in detail in
the chapters that follow.

Understanding RESTful Operations
The following basic elements are present in the requests that an application makes to
the RESTful interfaces and the responses it receives from the interface:

■ Request-URI and HTTP Methods in requests

■ Status-Line in responses

■ Headers

Sometimes messages (for example, multimedia messages) contain attachments.
Special headers are provided to specify the attachment details when a message has
multiple parts. See "Headers for Multipart Messages with Attachments".

■ Message Body

Request-URI and HTTP Methods
Applications use one of four methods, "GET", "POST", "PUT", or "DELETE", to request
a required action to be performed on an abstract or physical resource. The resource has
a specific Uniform Resource Identifier (URI). The Request-URI identifies the abstract
or physical resource that an HTTP method acts upon or uses and is therefore the most
important part of any request that an application makes to the RESTful interfaces.

Here is the GET method used to query for the status of a terminal:

GET /rest/terminal_status/status?query="%7B%22address%22%3A%22tel%3A123%22%7D"
HTTP/1.1

where, the string %7B%22address%22%3A%22telA123%22%7D is the address of the
terminal (or the {"address":"tel:123"} JavaScript Object Notation (JSON) object).

Understanding RESTful Operations

3-2 Services Gatekeeper Application Developer's Guide

General Format of a Request-URI
A fully qualified Request-URI consists of a sequence of concatenated sections that are
each separated by a forward slash. For example:

https://host:port/rest_facade_context_root/URI/path_info_param/query-string

where,

■ host:port: The hostname or IP address and port of your Services Gatekeeper
installation; for example, 127.0.0.1 and 8001.

■ rest_facade_context_root: The location of the set of resources that the particular
interface uses; for example, rest, in the following example query for the status of a
terminal:

GET /rest/terminal_status/status?query="%7B%22address%22%3A%22tel%3A123%22%7D"
HTTP/1.1

In Services Gatekeeper, the rest_facade_context_root entry is always rest.

■ URI: The location of a specific kind of functionality within the interface; for
example, terminal_status.

■ path_info_param: An identifier of a specific resource, for example, calls. This is
seen in the Make Call request, POST /rest/third_party_call/calls HTTP/1.1.
See Example 3–8. The path-info-param entry does not occur in all URIs.

■ query_string: A set of name-value pairs that describes what is being requested; for
example, status?query="%7B%22address%22%3A%22tel%3A123%22%7D, in the above
GET query for rest_facade_context_root. The query-string entry is not seen in every
URI.

POST
The POST method accesses a resource factory to create a resource that does not yet
have a URI. Multiple requests to a resource factory can create multiple new resources.

The following example statement will set up a call between two parties:

Example 3–1 POST Statement

POST /rest/third_party_call/calls HTTP/1.1

For the POST method:

■ The URI in the request represents the factory resource accessed to create a
resource. In Example 3–1, /rest/third_party_call/calls is the factory resource
accessed to create a resource.

■ The request body contains the information required to create the resource. See
Example 3–6.

■ If the resource is created, the response body will contain the identifier for the new
resource. See Example 3–7. If the operation fails, the response body will contain
the error response.

PUT
The PUT method creates a resource that has a predetermined URI. This method can be
used to update a resource (or to start a stateful process). For example, an application
uses the following statement to start notifications on a specific terminal:

Understanding RESTful Operations

Using the RESTful Interfaces 3-3

Example 3–2 PUT Statement

PUT /rest/terminal_location/periodic_notification HTTP/1.1

For the PUT method:

■ The URI in the request represents the resource to update or the resource for which
to start a stateful process. In Example 3–2, /rest/terminal_location/periodic_
notification represents the resource accessed to start periodic notifications on a
terminal’s location.

■ The request body will contain the required information. (The JSON object will
contain, for example, information on the terminal, the criteria to monitor, the
frequency and duration of the monitoring, where to place the notification, and the
correlator to identify the session.

■ The Location header in the response will specify the location that contains the
resulting notifications. For example, the application may see the following header
for the above PUT request:

Location://terminalloc_host:port/rest/terminal/notifications

In order to complete the operation, the application must access the specified
location and use the correlator to retrieve the notifications.

■ If the operation fails, the response body will contain the error response.

GET
The GET method retrieves the state of a specific resource that has been previously set
up. The specific resource is identified in the query string as shown in Example 3–3,
where an application attempts to retrieve the status of a terminal whose address is
specified as "tel:123".

Example 3–3 GET Statement

GET /rest/terminal_status/status?query=%7B%22address%22%3A%22tel%3A456%22%7D
HTTP/1.1

For the GET method:

■ The URI in the request represents the query string that uniquely identifies the
resource whose status the application wishes to retrieve. In Example 3–3, the value
for status?query is ({"address":"tel:456"}, the unique address of the terminal in
JSON representation).

■ The request body will be empty.

■ The response will provide information on the state of the resource.

In order to complete the operation, the application must access the specified
location and use the correlator to retrieve the notification.

■ If the operation fails, the response body will contain the error response.

DELETE
The DELETE method removes a specified resource. The application provides the
correlator or the identifier for the resource that must be removed in the Request-UR, as
shown here:

Understanding RESTful Operations

3-4 Services Gatekeeper Application Developer's Guide

Example 3–4 DELETE Statement

DELETE /rest/terminal_status/notifications/6789 HTTP/1.1

For the DELETE method:

■ The URI in the request contains the correlator, which is a value that uniquely
identifies the resource the application wishes to remove. In Example 3–4, 6789 is
the value which the application provided as the correlator when it requested
notifications on a terminal’s status.

■ The request body will be empty.

■ The response body will be empty.

■ If the operation fails, the response body will contain the error response.

Status-Line
The Status-Line is the first line in any response that an application receives when it
interacts with a RESTful interface in Services Gatekeeper. The Status-Line has this
syntax:

HTTP/1.1 Status-Code Reason-Phrase

where,

■ Status-Code: A three-digit indicator of the success or failure to fulfill the request.

■ Reason-Phrase: A brief description of the (successful) action performed, or the
reason for the failure.

For example:

HTTP/1.1 201 Created

Table 3–1 lists some of the status codes and reason-phrases commonly encountered
when interacting with the Services Gatekeeper RESTful interfaces:

For a complete listing of the HTTP status codes and their definitions, see RFC 2616 at:

http://www.ietf.org/rfc/rfc2616.txt

Headers
The requests and responses for RESTful operations include the following header fields:

Table 3–1 A Sampling of Status Codes and Reason Phrases

Status-Code Reason-Phrase Description

200 OK Success. The request has succeeded. The
information returned with the response is
dependent on the method used in the request.

201 Created Success. The requested resource was created.

204 No Content Success. The server has fulfilled the request
but does not need to return an entity-body.

501 Internal Server Error Indicates failure. An unexpected condition
prevented the server from fulfilling the
request.

Understanding RESTful Operations

Using the RESTful Interfaces 3-5

■ Authorization: The Authorization header field is required and is found in all
requests. It indicates the type of authentication and security. For example:

Authorization: Basic QWxhZGRpbjpvcGVuIHNlc2FtZQ==

For more information, see "RESTful Authentication and Security".

■ Session ID: When Services Gatekeeper is running in Session mode, the
X-Session-ID header must be present in all request messages to identify the
application.

In session mode, an application’s first task is to obtain a session ID from the
Session Manager Web service. All traffic requests (for that session) include this
identifier in the key-value pair for the X-Session-ID key. For example:

X-Session-ID: app: -1780934689905632396

The X-Session-ID header is not present when Services Gatekeeper is running in
Sessionless mode. For more information on sessions, see "Adding RESTful Session
Manager Support"

■ Service correlation ID (X-SCID): The X-SCID header will be present if the
application wishes to set up service correlation. This is a key-value pair of the
format key=X-SCID. For more information on service correlation, see "Service
Correlation".

■ Tunneled parameters: Tunneled parameters (also called xparams) are present if the
application wishes to supply parameters that are not supported in the RESTful
interface itself and need to be passed on to the network. The key-value pairs are:

– X-Param-Key and X-Param-Values: The X-Param-Key and X-Param-Values
headers are found in the requests.

– X-Plugin-Param-Key and X-Plugin-Param-Values: The X-Plugin-Param-Key
and X-Plugin-Param-Values headers are returned in the response headers.

See Services Gatekeeper Communication Service Reference Guide for descriptions of the
tunneled parameters that are applicable to your communication service.

■ Location: Location headers are found in responses to certain requests. They are
used to identify a new resource or to redirect the recipient to a location other than
the Request-URI for completion of the request.

For example, the call identifier for a newly-setup call is returned in the Location
header as:

Location: http://local:host:8001/rest/third_party_
call/call/app-1q39oi07wpvjl|e9674e8214447c1663a016d434c@sipcalling_
host|-50d94925ab34bf0

Below, the Location header specifies the location that the application must access
to receive notifications about a terminal (for which the application had previously
initiated a notification request).

Location: http://notificationloc_host:port/rest/terminal_location/notifications

■ Content-Length: The length of the request or response body.

■ Content-Type: The MIME-type value for the Content-Type header field can be
multipart/form-data or application/json. The multipart/form-data value for the
Content-Type header field is described in the next section.

Understanding RESTful Operations

3-6 Services Gatekeeper Application Developer's Guide

Headers for Multipart Messages with Attachments
The RESTful interfaces for Multimedia Messaging and WAP Push use HTTP
attachments to transport their content. Both interfaces support multipart/form-data
POST requests. When you use RESTful interfaces with Services Gatekeeper, multiple
attachments are supported in both application-initiated and network-triggered
messages.

When a request message contains one or more messages embedded within it, a
specified boundary is placed between the parts of the message and at the beginning
and end of the message. For multipart message requests:

■ The MIME-type value for the Content-Type header field can be
multipart/form-data or application/json. If the MIME-type value for the
Content-Type header field is multipart/form-data, the boundary entry is used to
provide a value for the boundary between the message parts.

■ Each message part contains the following:

– Content-Disposition header field that has a value of form-data and a name
attribute with the appropriate value. For example, the message part name is
messagePart.

– Content-Type header field that has a value of application/json and the
charset attribute with the appropriate value.

– Content-Transfer-Encoding field with the appropriate value.

■ If the content of the message is pure ASCII, the response body contains the
message. Otherwise the response body contains an identifier that is used to fetch
the actual message.

Example 3–5 Example of a Multipart Message Request

POST /rest/multimedia_messaging/messages HTTP/1.1
X-Session-ID: app: -123456789012346789
Authorization: Basic ZG9tY1uX3VzZXI6ZG9tYWluX3VzZXI=
X-Param-Keys:
X-Param-Values:
User-Agent: Jakarta Commons-HttpClient/3.0
Host: localhost:8001
Content-Length: 1215
Content-Type: multipart/form-data; boundary=kboiiFPAakDPYKeY7hBAW9I5c0rT48

--kboiiFPAakDPYKeY7hBAW9I5c0rT48
Content-Disposition: form-data; name="messagePart"
Content-Type: application/json; charset=US-ASCII
Content-Transfer-Encoding: 8bit

{
 "addresses":["tel:8765"],
 "subject":"Hello World",
 "priority":null,
 "senderAddress":"tel:1234",
"charging":null

 "receiptRequest":
{
 "correlator":"981234",
 "endpoint":"http://endpt_host:port/jaxws/MessageNotification",
"interfaceName":"interfaceName",

}
 }

Understanding RESTful Operations

Using the RESTful Interfaces 3-7

--kboiiFPAakDPYKeY7hBAW9I5c0rT48
Content-Disposition: form-data; name="Attachment-txt-1"
Content-Type: text/plain; charset=US-ASCII
Content-Transfer-Encoding: 8bit

This sentence represents the attachment text.
--kboiiFPAakDPYKeY7hBAW9I5c0rT48

Service Correlation
In some cases the service that an application provides to its end-users may involve
accessing multiple Services Gatekeeper communication services.

For example, a mobile user might send an SMS to an application asking for a pizza
restaurant nearest to his current location. The application then makes a Terminal
Location request to find the user’s current location, looks up the address of the closest
pizza restaurant, and then sends the user an MMS with all the appropriate
information. Three Services Gatekeeper communication services are involved in
executing what, for the application, is a single service.

Services Gatekeeper uses a service correlation ID to correlate the three communication
service requests. The service correlation ID (SCID) is a string that is captured in all the
charging data records (CDRs) and event data records (EDRs) generated by Services
Gatekeeper. The CDRs and EDRs can then be orchestrated in order to provide special
treatment for a given chain of service invocations, by, for example, applying charging
to the chain as a whole rather than to the individual invocations.

How Service Correlation IDs are Provided Services Gatekeeper does not provide the service
correlation ID. The type of request determines the service correlation ID:

■ Application-Initiated Requests: When the chain of services is initiated by an
application-initiated request, the application must provide and ensure the
uniqueness of the SCID within the chain of service invocations.

In certain circumstances, it is also possible for a custom service correlation service
to supply the SCID, in which case it is the custom service’s responsibility to ensure
the uniqueness of the SCID.

■ Network-Triggered Requests: When the chain of services is initiated by a
network-triggered request, Services Gatekeeper calls an external interface to get
the SCID.

This interface must be implemented by an external system. Integration of such an
external interface must be a part of a system integration project. It is the
responsibility of the external system to provide and ensure the uniqueness of the
SCID.

Message Body
The message body for a request or response is present only when required. The
message body is a JSON object.

Request Body
When present, the request body provides additional data required to complete the
specific request. The following request body for an example Make Call operation
provides the addresses of the called and calling parties and any charges to apply for
the call:

Understanding RESTful Operations

3-8 Services Gatekeeper Application Developer's Guide

Example 3–6 Request Body for Make Call

{"calledParty":"sip:ann@sipcalled_host:port",
"charging":null,
"callingParty":"sip:zach@sipcalling_host:port"
}

Response Body
When present, the response body provides data that the application will need for later
action. The following response body for the Make Call operation provides the
application with the identifier for the call that was set up. The application will use this
identifier to end the call, when necessary.

Example 3–7 Response Body for a Make Call Operation

{"result":"app-1q39oi07wpvjl|e9674e8214447c1663a016d434c@sipcalling_
host|-50d94925ab34bf0"}

Example of a Request and Response
Example 3–8 shows an application’s request to set up a call between two parties using
the Make Call operation in the Service Gatekeeper RESTful interface.

Example 3–8 Request associated with a Make Call Operation

POST /rest/third_party_call/calls HTTP/1.1
X-Session-ID: app: -1780934689905632396
Authorization: Basic ZG9tY1uX3VzZXI6ZG9tYWluX3VzZXI=
X-Param-Keys:
X-Param-Values:
User-Agent: Jakarta Commons-HttpClient/3.0
Host: localhost:8001
Content-Length: 105
Content-Type: application/json

{"calledParty":"sip:alice@sipcalled_host:port",
"charging":

{
"description":"init_call",
"amount":"11",
"code":"1111",
"currency":"rmb"
},

"callingParty":"sip:bob@sipcalling_host:port"
}

Example 3–9 shows the response which the application receives for a successful setup
of the requested call.

Example 3–9 Response associated with a Make Call Operation

HTTP/1.1 201 Created
Date: Wed, 20 Oct 2010 06:58:06 GMT
Location: http://local:host:8001/rest/third_party_
call/call/app-1q39oi07wpvjl|e9674e8214447c1663a016d434c@sipcalling_
host|-50d94925ab34bf0
Content-Length: 96
Content-Type: application/json
X-Plugin-Param-Keys:

RESTful Notifications and Publish/Subscribe

Using the RESTful Interfaces 3-9

X-Plugin-Param-Values:
X-Powered-By: Servlet/2.5 JSP/2.1

{"result":"app-1q39oi07wpvjl|e9674e8214447c1663a016d434c@sipcalling_
host|-50d94925ab34bf0"}

RESTful Authentication and Security
The RESTful interfaces use HTTP basic authentication, using username/password.
SSL is required. For instance:

Authorization: Basic QWxhZGRpbjpvcGVuIHNlc2FtZQ==

For more information on HTTP basic authentication, see RFC 2617 at

http://www.ietf.org/rfc/rfc2617.txt

RESTful Notifications and Publish/Subscribe
When an application needs to receive a notification, (about a message delivery receipt
for example), the application uses the publish/subscribe functionality in Services
Gatekeeper.

An application can subscribe only to its own notifications (that is, to the notifications
associated with its start notification requests). Any attempt to subscribe to notifications
for other applications will be rejected.

Supported Endpoint Addresses
The application provides an endpoint address that resides on a publish/subscribe
server. You can specify one of the following endpoint addresses:

■ RESTful: a Bayeux protocol channel name

■ SOAP: a Web service implemented by the application

A SOAP endpoint for the notification of a message sent using RESTful interfaces in
Services Gatekeeper is valid only if the SOAP and RESTful interfaces reside in the
same cluster.

Endpoint Addresses for RESTful Interfaces
The RESTful interfaces in Services Gatekeeper rely on the publish/subscribe model
supported by the Publish-Subscribe Server functionality of Oracle WebLogic Server
10.3.1.

For more information on the publish/subscribe model, please see the discussion on
"Using the HTTP Publish-Subscribe Server" in Oracle Fusion Middleware Developing Web
Applications, Servlets, and JSPs for Oracle WebLogic Server.

Using the Bayeux Protocol to Communicate with the Server
When using RESTful interfaces, the application client must use the Bayeux protocol to
communicate with the Web server. In this model, clients subscribe to a channel (similar
to a topic in JMS) and receive messages (notifications) as they become available. The
endpoint address resides on a Bayeux server.

For more information about the Bayeux protocol, see the Bayeux specification website:

http://svn.cometd.org/trunk/bayeux/bayeux.html

Understanding RESTful Errors and Exceptions

3-10 Services Gatekeeper Application Developer's Guide

Understanding Bayeux Connections and Subscriptions
The mechanisms for connecting to the Web server and subscribing to a channel are
covered by the Bayeux protocol itself. The Bayeux client manages connections to the
server and subscriptions to a channel. If the channel does not exist when the client
subscribes to it, the channel is created.

Once the Bayeux client connects to the server and subscribes to a channel, the RESTful
client can start sending notifications. It does so by providing the Bayeux protocol
channel name as the endpoint entry in a start notification request.

Understanding the Bayeux Protocol Channel Name
The Bayeux protocol channel name begins with /bayeux/appInstanceID where
appInstanceID is the client application’s application instance account ID. In
Example 3–10, the appInstanceID is domain-user.

An application places the endpoint address for delivery notifications in the body of the
request message. In the following example, it is inside a reference object.

Example 3–10 Example of an Endpoint Address in a Reference Object

...
"reference":

{"interfaceName":"interfaceName",
"correlator":"6789",
"endpoint":"/bayeux/domain-user/ts"
}

...

See Example 11–5 for the complete request body of the status notification request.

For more information on application instances, see the discussion of application
instances in Services Gatekeeper Portal Developer's Guide.

Using the Data at the Endpoint Address
Services Gatekeeper delivers notifications to the Bayeux channel name provided by
the application in the associated request. It is the client’s responsibility to interact with
the publish/subscribe server to access the messages/data placed at the endpoint
address. The mechanisms to do so are outside the scope of the Services Gatekeeper
RESTful facades.

Understanding RESTful Errors and Exceptions
In the case of an error, the Status-Line in the response message indicates the protocol
version, the three-digit status code, and the reason for the request failure.

Service exception and policy exception objects are represented in the response body as
JSON with the following form:

{"error":
 {
 "type":"class name of the error object"
 "message":"error message"
 }
 }

For service exceptions, the value for type is:

"type":"org.csapi.schema.parlayx.common.v2_1.ServiceException"

Understanding RESTful Errors and Exceptions

Using the RESTful Interfaces 3-11

For policy exceptions, the value for type is:

"type":"org.csapi.schema.parlayx.common.v2_1.PolicyException"

For example, when an MMS message sent by an application cannot be delivered to the
multimedia messaging service (MMSC), the response from the MMSC contains the
statusCode and statusText. Services Gatekeeper returns these values to the application
in the requestError object. The requestError object contains the SVC0001
serviceException with the error code MMS-000005.

The format for the error code is

MMS-000005:<StatusCode from MMSC>:<StatusText from MMSC>

The requestError object is:

{"requestError":
 {
 "serviceException":
 {
 "messageId":"SVC0001",
 "text":"A service error occurred. Error code is %1",
 "variables":["MMS-000005:3002:Message rejected"]
 }
 }
}

A variable substitution is performed for PX exceptions in error messages.

Understanding RESTful Errors and Exceptions

3-12 Services Gatekeeper Application Developer's Guide

4

Adding RESTful Third Party Call Support 4-1

4Adding RESTful Third Party Call Support

This chapter describes the operations in the Third Party Call interface of the RESTful
facade provided in Oracle Communications Services Gatekeeper.

About the RESTful Third Party Call Interface
Applications use the RESTful Third Party Call interface in Services Gatekeeper to set
up a call, get information on that call, cancel the call request before it is successfully
completed, or end a call that has been successfully set up.

Additionally, applications use this interface to specify the data required for the billing
operation associated with the call.

REST Service Descriptions Available at Runtime
When the Administration Server for your Services Gatekeeper domain is in the
running state, the REST service descriptions of these operations can be found at:

http://host:port/rest/third_party_call/index.html

Where host and port are the host name and port of the system on which Services
Gatekeeper is installed.

RESTful Third Party Call Interface Reference
The RESTful Third Party Call interface includes these operations:

■ Make Call

■ Get Call Information

■ Cancel Call

■ End Call

Make Call

4-2 Services Gatekeeper Application Developer's Guide

Make Call

To set up a call between two parties (referred to as the calling party and the called
party), provide the SIP-formatted URI of the calling party and the called party in the
body of the request for the call. Optionally, the request can also indicate any
cost-charging parameters to be applied to the call.

If the call setup is successful, the response header will contain the URI of the newly
created resource as the value of the Location header field. Additionally, the response
body will contain the call identifier for the newly created call object. Use this call
identifier to reference the call later.

4Authorization
Basic

4HTTP Method
POST

4URI
http://host:port/rest/third_party_call/calls

where host and port are the host name and port of the system on which Services
Gatekeeper is installed.

4Request Header
The MIME-type for the Content-Type header field is application/json.

4Request Body
The request body for the POST request accepts the following parameters:

■ calledParty: String. Required. The address (URI) of the party to whom the call is
made. Specified as sip:user_name@destination_ip:destination_port.

■ callingParty: String. Required. The address (URI) of the party making the call.
Specified as sip:user_name@origin_ip:origin_port.

■ charging: a JSON object. Optional. This object defines the cost charging
parameters for the call. A call with no charging parameters can be entered as
"charging": null.

If a charge is to be applied, provide values for the following in the charging object:

– description: String. Required if the charging object is present in the body of
the request. The text to be used for information and billing.

– amount: Number (integer, or decimal). Optional. The amount to be charged.

– code: String. Optional. The charging code, from an existing contractual
description.

– currency: String. Optional. The currency identifier as defined in ISO 4217 [9].

The request body for this operation is represented by the following JSON data
structure, where the value part of each name/value pair indicates its data type:

{

Make Call

Adding RESTful Third Party Call Support 4-3

 "calledParty": "URI",
 "callingParty": "URI",
 "charging": {
 "description": "String",
 "amount": "BigDecimal",
 "code": "String",
 "currency": "String"
 }
}

4Response Header
The value in the Location header field is a single absolute URI in the following format:

http://host:port/rest/third_party_call/{${result}

where result is a string-formatted call identifier for the newly-created call. See
Example 4–2.

If the request fails, the Status-Line header field will contain the status code and the
reason for the failure. See "Understanding RESTful Errors and Exceptions".

4Response Body
The response body for the POST request contains the call identifier returned in the
Location header field. The call identifier is the value for the result term in the
response body represented by the following name/value pair structure:

{"result": "String"}

See Example 4–2.

4Examples

Example 4–1 HTTP POST Request to Set Up a Call

POST /rest/third_party_call/calls HTTP/1.1
X-Session-ID: app: -1780934689905632396
Authorization: Basic ZG9tY1uX3VzZXI6ZG9tYWluX3VzZXI=
X-Param-Keys:
X-Param-Values:
User-Agent: Jakarta Commons-HttpClient/3.0
Host: localhost:8001
Content-Length: 105
Content-Type: application/json

{"calledParty":"sip:alice@sipcalled_host:port",
"charging":

{
"description":"testing",
"amount":"11",
"code":"1111",
"currency":"rmb"
},

"callingParty":"sip:bob@sipcalling_host:port"
}

Example 4–2 HTTP POST Response to Setting Up a Call

HTTP:/1.1 201 Created

Make Call

4-4 Services Gatekeeper Application Developer's Guide

Date: Wed, 20 Oct 2010 06:58:06 GMT
Location: http://local:host:8001/rest/third_party_
call/call/app-1q39oi07wpvjl|e9674e8214447c1663a016d434c@sipcalling_
host|-50d94925ab34bf0
Content-Length: 96
Content-Type: application/json
X-Plugin-Param-Keys:
X-Plugin-Param-Values:
X-Powered-By: Servlet/2.5 JSP/2.1

{"result":"app-1q39oi07wpvjl|e9674e8214447c1663a016d434c@sipcalling_
host|-50d94925ab34bf0"}

Get Call Information

Adding RESTful Third Party Call Support 4-5

Get Call Information

The Get Call Information operation retrieves the information on a
previously-established call.

To retrieve the information on a previously-established call, provide the appropriate
call identifier in the HTTP GET request. This call identifier should have been obtained
by the set up request for the call as the value for result in the response received for
the HTTP POST request to set up the call. See Example 4–2.

If the operation is successful, the response body will contain the time the call started
and the current status of the call. Additionally, if the call was terminated, the response
body will indicate the total duration of the call and the reason for its termination.

4Authorization
Basic

4HTTP Method
GET

4URI
http://host:port/rest/third_party_call/call/${callIdentifier}

where:

■ host and port are the host name and port of the system on which Services
Gatekeeper is installed.

■ callIdentifier is the call identifier obtained from the response to the POST request to
set up the call.

4Request Header
The MIME-type for the Content-Type header field is application/json.

4Request Body
There is no request body.

4Response Header
Standard header fields. If the request fails, the Status-Line header field will contain the
status code and the reason for the failure. See "Understanding RESTful Errors and
Exceptions".

4Response Body
When the GET request is successful, the response body contains the appropriate
values for the following parameters that describe the call:

■ callStatus: String. The current status of the call as one of the following values:

– CallInitial: The call is being established.

– CallConnected: The call is active.

– CallTerminated: The call was terminated.

Get Call Information

4-6 Services Gatekeeper Application Developer's Guide

■ duration: Integer. The duration of the call in seconds. Present in the response body
when callStatus is CallTerminated.

■ startTime: String. The start time for the call in the ISO 8601 extended format,
yyyy-mm-ddThh-mm-ss.

■ terminationCause: String. The reason for the termination of the call. Present in the
response body only when callStatus is CallTerminated. Its value can be one of the
following:

– CallAborted

– CalledPartyBusy

– CalledPartyNoAnswer

– CalledPartyNotReachable

– CallHangUp

– CallingPartyBusy

– CallingPartyNoAnswer

– CallingPartyNotReachable

The parameter values are placed in a data structure as the value for result in the
following JSON structure, where the value part of each name/value pair indicates its
data type:

{"result": {
 "callStatus": "CallInitial|CallConnected|CallTerminated",
 "duration": "Integer",
 "startTime": "Calendar",
"terminationCause":"CallingPartyNoAnswer|CalledPartyNoAnswer|CallingPartyBusy|Ca

lledPartyBusy|CallingPartyNotReachable|CalledPartyNotReachable|CallHangUp|CallAbor
ted"
}}

4Examples

Example 4–3 HTTP GET Request

GET /rest/third_party_
call/call/app-1q39oi07wpvjl|e9674e8214447c1663a016d434c@sipcalling_
host|-50d94925ab34bf0 HTTP/1.1
X-Session-ID: app: -123456789012346789
Authorization: Basic ZG9tY1uX3VzZXI6ZG9tYWluX3VzZXI=
X-Param-Keys:
X-Param-Values:
User-Agent: Jakarta Commons-HttpClient/3.0
Host: localhost:8001

Example 4–4 HTTP GET Response

HTTP:/1.1 201 Created
Date: Wed, 20 Oct 2010 06:58:06 GMT
Content-Length: 124
Content-Type: application/json
X-Plugin-Param-Keys:
X-Plugin-Param-Values:
X-Powered-By: Servlet/2.5 JSP/2.1

{"result":

Get Call Information

Adding RESTful Third Party Call Support 4-7

{"startTime":"2010-10-20T4:58:18.254+08:00",
"terminationCause":null,
"duration":"0",
"callStatus":"CallConnected"
}

}

Cancel Call

4-8 Services Gatekeeper Application Developer's Guide

Cancel Call

The Cancel Call operation cancels a previously-requested call that is in its initial state
and not yet active. This operation will have no effect if the call is already established.

To cancel a call before it is established, provide the appropriate call identifier in the
Request-URI for the POST method. This identifier should have been obtained by the
initial setup request for the call.

There is no request or response body for the POST request to cancel a call. If the
request fails, the body of the error response will contain the call identifier and the type
of exception.

4Authorization
Basic

4HTTP Method
POST

4URI
http://host:port/rest/third_party_call/cancel-call/${callIdentifier}

where:

■ host and port are the host name and port of the system on which Services
Gatekeeper is installed.

■ callIdentifier} is the call identifier obtained from the response to the HTTP POST
reqest to set u the call.

4Request Header
The MIME-type for the Content-Type header field is application/json.

4Request Body
There is no request body.

4Response Header
Standard header fields. If the request fails, the Status-Line header field will contain the
status code and the reason for the failure. See "Understanding RESTful Errors and
Exceptions".

4Response Body
There is no response body.

4Examples

Example 4–5 HTTP POST Request to Cancel a Call

The POST command to cancel the call contains the required call identifier.

POST /rest/third_party_

Cancel Call

Adding RESTful Third Party Call Support 4-9

call/cancel-call/app-1q39oi07wpvjl|e9674e8214447c1663a016d434c@sipcalling_
host|-50d94925ab34bf0 HTTP/1.1
X-Session-ID: app: -123456789012346789
Authorization: Basic ZG9tY1uX3VzZXI6ZG9tYWluX3VzZXI=
X-Param-Keys:
X-Param-Values:
User-Agent: Jakarta Commons-HttpClient/3.0
Host: localhost:8001
Content-length: 0

Example 4–6 Response for the HTTP POST Request to Cancel a Call

If the request to cancel the call succeeds, you will see a response similar to the
following:

HTTP:/1.1 204 No Content
Date: Wed, 20 Oct 2010 07:48:14 GMT
Content-Length: 0
X-Plugin-Param-Keys:
X-Plugin-Param-Values:
X-Powered-By: Servlet/2.5 JSP/2.1

Example 4–7 Error Response Example

If the request to cancel the call fails, you will see an error response similar to the
following. The error body will contain the call identifier as the value for the
correlator attribute.

HTTP:/1.1 500 Internal Server Error
Date: Wed, 20 Oct 2010 07:48:26 GMT
Content-Length: 261
Content-Type: application/json
X-Powered-By: Servlet/2.5 JSP/2.1

{"error" :
 {"message":"Invalid input value for message part Could not find a plugin for

this message: correlator:
app-1q39oi07wpvjl|e9674e8214447c1663a016d434c@sipcalling_host|-50d94925ab34bf0",

"type":"org.csapi.schema.parlayx.common.v2_1.ServiceException"
}

}

End Call

4-10 Services Gatekeeper Application Developer's Guide

End Call

The End Call operation ends a call that is active.

To end a call, provide the appropriate call identifier in the Request-URI for this
operation. This identifier should have been obtained by the initial setup request for the
call.

There is no request or response body for this operation. If the request fails, the body of
the error response will contain the call identifier and the type of exception.

4Authorization
Basic

4HTTP Method
POST

4URI
http://host:port/rest/third_party_call/end-call/${callIdentifier}

where:

■ host and port are the host name and port of the system on which Services
Gatekeeper is installed.

■ ${callIdentifier} is the call identifier obtained from the response to the Make Call
request.

4Request Header
The MIME-type for the Content-Type header field is application/json.

4Request Body
There is no request body.

4Response Header
Standard header fields. If the request fails, the Status-Line header field will contain the
status code and the reason for the failure. See "Understanding RESTful Errors and
Exceptions".

4Response Body
There is no response body.

4Examples

Example 4–8 End Call Request

POST /rest/third_party_
call/end-call/app-1q39oi07wpvjl|e9674e8214447c1663a016d434c@sipcalling_
host|-50d94925ab34bf0 HTTP/1.1
X-Session-ID: app: -123456789012346789
Authorization: Basic ZG9tY1uX3VzZXI6ZG9tYWluX3VzZXI=

End Call

Adding RESTful Third Party Call Support 4-11

X-Param-Keys:
X-Param-Values:
User-Agent: Jakarta Commons-HttpClient/3.0
Host: localhost:8001
Content-length: 0

Example 4–9 End Call Response

If the End Call operation succeeds, you will see a response similar to the following:

HTTP:/1.1 204 No Content
Date: Wed, 20 Oct 2010 07:48:14 GMT
Content-Length: 0
X-Plugin-Param-Keys:
X-Plugin-Param-Values:
X-Powered-By: Servlet/2.5 JSP/2.1

End Call

4-12 Services Gatekeeper Application Developer's Guide

5

Adding RESTful Anonymous Customer Reference Support 5-1

5Adding RESTful Anonymous Customer
Reference Support

This chapter describes how you can add RESTful Anonymous Customer References
(ACRs) to provide secure access for Web applications in Oracle Communications
Services Gatekeeper.

About Anonymous Customer References
An Anonymous Customer Reference (ACR) represents a unique identifier that
replaces a subscriber's secure information, such as MSISDN or phone number,
ensuring privacy when the subscriber interacts with Web applications.

According to GSM Association, an ACR is a string issued by the operator, which maps to a
customer (or customers). The operator can pass the ACR in request headers, so you can create
an ACR per application per user, and personalize your application based on the user’s previous
behavior.

Information about ACR API is available at the GSM webs site:

http://www.gsma.com/oneapi/anonymous-customer-reference-restful-netapi/

See the discussion on anonymous customer reference specifications in Services
Gatekeeper Statement of Compliance for supported specification.

A Web application requiring an ACR for a subscriber requests one from Services
Gatekeeper using the RESTful interface. Services Gatekeeper generates and manages
one or more ACRs for the subscriber when requested by the Web application.

Configuring ACR Support in Services Gatekeeper
Services Gatekeeper supports ACR operations by default. After you create an ACR
plug-in instance, applications can create, query and refresh ACRs using the RESTful
interface on a Services Gatekeeper system.

Creating an ACR Plug-in Instance
Services Gatekeeper and the Platform Test Environment MBean interface can be used
to create and manage ACR plug-ins. For information on using the Platform Test
Environment, see Services Gatekeeper Platform Test Environment User's Guide.

To create an instance of the ACR plug-in in Services Gatekeeper:

1. Log in to the Administration Console.

2. Expand the OCSG node under Domain Structure.

Configuring ACR Support in Services Gatekeeper

5-2 Services Gatekeeper Application Developer's Guide

3. Click the name of the administration or managed server on which to create the
ACR plug-in instance.

4. Expand the Container Services node under Oracle Communications Services
Gatekeeper.

5. Select PluginManager.

6. Click Operations.

7. In the Select An Option menu, select createPluginInstsance.

8. Enter Plugin_acr in the PluginServiceId field.

9. Enter a unique name in the PluginInstanceId field.

10. Click Invoke.

11. Add a route to the ACR plug-in using the pluginManager Mbean.

Setting ACR Plug-in Parameters
To configure the ACR plug-in attributes in Table 5–1:

1. Log in to the Administration Console.

2. Expand the OCSG node under Domain Structure.

3. Select the administration or managed server where you created the ACR plug-in.

4. Expand the Communication Services node under Oracle Communications
Services Gatekeeper.

5. Select the ACR plug-in instance to configure.

6. Click Attributes.

7. Select the checkboxes of the attributes you want to change.

8. Enter the new values for the attributes.

9. Click Update Attributes.

Creating Multiple ACRs for a Single Subscriber
You can create multiple ACRs for the same subscriber or MSISDN. Services
Gatekeeper creates a unique ACR for each application. Use this setup to route
application requests containing ACR identifiers to the correct service provider group.

Table 5–1 ACR Plug-in Attributes

Attribute Type Description

Ncc String The network-code of the operator. In Services
Gatekeeper, this is the same as a service provider
group.

AcrExpiredLifeTime Integer The number of seconds that ACR is kept in
Expired state before being deleted. Default
Value: 60

AcrLifeTime Integer The number of seconds a generated or refreshed
ACR is valid. Default value: 3600

TrafficAcrMappingEnabled Boolean Whether to enable ACR mapping in network
traffic. Default value: False

RESTful APIs for ACR Support

Adding RESTful Anonymous Customer Reference Support 5-3

RESTful APIs for ACR Support
You can generate and manage ACRs in Services Gatekeeper using the RESTful API
described below.

■ Create ACR

■ Query ACR

■ Change ACR Status

■ Errors and Exceptions

Create ACR

5-4 Services Gatekeeper Application Developer's Guide

Create ACR

The Create ACR operation creates a new ACR for a subscriber based on the MSISDN.

5Authorization
Basic or OAuth

5HTTP Method
POST

5URI
http://host:port/customerReference/version/address

where:

■ host and port are the host name and port of the system on which Services
Gatekeeper is installed.

■ version is the supported version of the RESTful Network API for Roaming
Provisioning.

■ address is the subscriber identifier MSISDN. Services Gatekeeper supports an
address entry of acr:authorization, where authorization is an OAuth accessToken.

5Request Header
The MIME-type for the Content-Type header field is application/json.

5Request Body
The request body for Create ACR accepts the following parameters:

■ acr: String.

■ status: String.

■ expiry: String.

5Response Header
The response header indicates whether the ACR was successfully created. If the
request fails, the Status-Line header field will contain the status code and the reason
for the failure. See "Errors and Exceptions" for more information.

5Response Body
The response body contains the following parameters:

■ acr: String. The Services Gatekeeper generated ACR.

■ status: String. The current status of the ACR: Valid or Expired.

■ expiry: String. The expiration time of the ACR.

Note: address must be URL-escaped in accordance with RFC 1738.

Create ACR

Adding RESTful Anonymous Customer Reference Support 5-5

5Examples
Example 5–1 shows a sample Create ACR request.

Example 5–1 Create ACR Request Example

POST http://example.com/customerReference/v1/tel%3A%2B7990123456
HTTP/1.1
Host: example.com:80
Accept: application/json

{"acr":{"status":"Valid"}}

Example 5–2 shows a sample Create ACR response.

Example 5–2 Create ACR Response Example

HTTP/1.1 201 Created

Content-Type: application/json
Content-Length: 1234
Date: Thu, 04 Jun 2009 02:51:59 GMT

{"acr": "acr:0123456890123456789;ncc=23415",
"status":"Valid",
"expiry":"Thu 11 Jun 2009 02:51:59 GMT"}

Query ACR

5-6 Services Gatekeeper Application Developer's Guide

Query ACR

The Query ACR operation queries for the ACR status of the referenced subscriber. The
status of the ACR indicates whether the reference is valid or expired.

5Authorization
Basic or OAuth

5HTTP Method
GET

5URI
http://host:port/customerReference/version/address/acr

where:

■ host and port are the host name and port of the system on which Services
Gatekeeper is installed.

■ version is the supported version of the RESTful Network API for Roaming
Provisioning.

■ address is the subscriber MSISDN.

■ acr is the ACR for which the status query is being made, including the
network-code (ncc).

5Request Header
The MIME-type for the Content-Type header field is application/json.

5Request Body
There is no request body.

5Response Header
Standard header fields. If the request fails, the Status-Line header field will contain the
status code and the reason for the failure. See "Errors and Exceptions".

5Response Body
The response body contains the following parameters:

■ acr: String. The Services Gatekeeper generated ACR.

■ status: String. The current status of the ACR: Valid or Expired.

5Examples
Example 5–3 shows a sample Query ACR request.

Note: address and acr must be URL-escaped in accordance with RFC
1738.

Query ACR

Adding RESTful Anonymous Customer Reference Support 5-7

Example 5–3 Query ACR Request Example

GET
http://example.com/customerReference/v1/tel%3A%2B7990123456/acr%3A0123456890123456
789%3Bncc=23415

Example 5–4 shows a sample Query ACR response.

Example 5–4 Query ACR Response Example

{"acr":{"status":"Valid"}}

Change ACR Status

5-8 Services Gatekeeper Application Developer's Guide

Change ACR Status

The Change ACR Status operation refreshes an expired ACR to a valid status.

5Authorization
Sessionless: Basic, Sessionful: Basic and Session ID, or OAuth

5HTTP Method
POST

5URI
http://host:port/customerReference/version/address/acr

where:

■ host and port are the host name and port of the system on which Services
Gatekeeper is installed.

■ version is the supported version of the RESTful Network API for Roaming
Provisioning.

■ address is the subscriber MSISDN.

■ acr is the ACR for which the status query is being made, including the
network-code (ncc).

5Request Header
The MIME-type for the Content-Type header field is application/json.

5Request Body
The request body for Change ACR Status accepts the following parameters:

■ acr: String.

■ status: String.

■ expiry: String.

■ developerId: String. Required. The RESTful developer ID.

■ applicationId: String. Optional. The Services Gatekeeper application ID.

5Response Header
The response header indicates whether the ACR status was successfully changed. If
the request fails, the Status-Line header field will contain the status code and the
reason for the failure. See "Errors and Exceptions" for more information.

5Response Body
The response body contains the following parameters:

Note: address and acr must be URL-escaped in accordance with RFC
1738.

Change ACR Status

Adding RESTful Anonymous Customer Reference Support 5-9

■ acr: String. The Services Gatekeeper generated ACR.

■ status: String. The updated status of the ACR.

■ expiry: String. The new expiration time of the ACR.

5Examples
Example 5–5 shows a sample Change ACR request.

Example 5–5 Change ACR Status Request Example

POST
http://example.com/customerReference/v1/tel%3A%2B7990123456/acr%3A0123456890123456
789%3Bncc=23415
HTTP/1.1
Host: example.com:80
Accept: application/json

{"acr":{"status":"Valid"}}

Example 5–6 shows a sample Change ACR response.

Example 5–6 Change ACR Status Response Example

Content-Type: application/json
Content-Length: 1234
Date: Thu, 04 Jun 2009 02:51:59 GMT

{"acr": "acr:0123456890123456789;ncc=23415",
"status":"Valid",
"expiry":"Thu 11 Jun 2014 02:51:59 GMT"

Errors and Exceptions

5-10 Services Gatekeeper Application Developer's Guide

Errors and Exceptions

The Status-Line in the response message indicates the protocol version, the three-digit
status code, and the reason for the failure of a request. Table 5–2 lists the possible error
codes for failed requests.

Table 5–2 ACR Operations Error Codes

Error Code Cause

303 The request to create the ACR failed, because the ACR for the
MSISDN exists.

400 Bad request. Check the error message and correct the request
syntax.

For example, a request with {address} whose value is "MSISDN
B" is attempting to query/change acr of an {address} whose
value is "MSISDN A"

401 The request from network-code A is attempting to
change/query acr of network-code B

404 The request is attempting to query an invalid or expired ACR

503 Server busy and service unavailable. Retry the request.

EDRs

Adding RESTful Anonymous Customer Reference Support 5-11

EDRs

Table 5–3 lists the EDRs generated by ACR operations.

Table 5–3 ACR Operations EDRs

EDR Service Method Description

408001 oracle.ocsg.parlayrest.plugin.AcrPlugin CreateAcrResp createAcr create acr code for address

408002 oracle.ocsg.parlayrest.plugin.AcrPlugin QueryAcrResp queryAcr query acr code for address

408003 oracle.ocsg.parlayrest.plugin.AcrPlugin ChangeAcrResp ChangeAcr change acr code for address

EDRs

5-12 Services Gatekeeper Application Developer's Guide

6

Adding RESTful Application Subscription Management Support 6-1

6Adding RESTful Application Subscription
Management Support

This chapter describes the operations in the Application Subscription Management
interface of the RESTful facade provided in Oracle Communications Services
Gatekeeper.

About Application Subscription Management
The Services Gatekeeper Application Subscription Management supports Open
Mobile Alliance (OMA) General Service Subscription Management (GSSM)
functionality including subscription management, subscription profile access, and
subscription validation.

For information on the OMA GSSM specification see:

http://technical.openmobilealliance.org/Technical/release_program/gssm_v1_
0.aspx

Application Subscription Management includes both a communication service and
RESTful interfaces for managing and querying service subscription status.
Applications use the RESTful interfaces to manage subscriptions and query
subscription status. Application Subscription Management grants or restricts
application access to a subscriber’s communication services based on the subscription
status. Application Subscription Management also supports OAuth authentication
when required.

For information on using the Application Subscription Management communication
service, including deploying, configuring and monitoring, see Services Gatekeeper
Communication Service Reference Guide.

REST Service Descriptions Available at Run-time
When the Administration Server for your Services Gatekeeper domain is in the
running state, the REST service descriptions of Service Subscription Management
interface operations can be found at

http://host:port/subscription/application.wadl

where host and port are the host name and port of the system on which Services
Gatekeeper is installed.

Subscribe

6-2 Services Gatekeeper Application Developer's Guide

Subscribe

The Subscribe operation creates a new application service subscription request for a
subscriber based on the MSISDN.

6Authorization
Basic or OAuth

6HTTP Method
POST

6URI
http://host:port/subscription

where:

■ host and port are the host name and port of the system on which Services
Gatekeeper is installed.

6Request Header
The MIME-type for the Content-Type header field is application/json.

6Request Body
The request body for Subscribe accepts the following parameters:

■ applicationName: String. The name of the application subscribed to.

■ subscriberAddress: String. The MSISDN of the subscriber making the request.

6Response Header
The response header indicates whether the subscription request was successfully
created. If the request fails, the Status-Line header field will contain the status code
and the reason for the failure. See Services Gatekeeper Communication Service Reference
Guide, for more information on error messages.

6Response Body
The response body contains the following parameters:

■ subscriptionResponse: String. The Services Gatekeeper generated response
containing the subscription ID.

– subscriptionID: String. The ID of the new subscription.

6Examples
Example 6–1 shows a sample Subscribe request.

Example 6–1 Subscribe Request Example

GET /subscription/query/queryBySubscriptionId/e4e3cb51-994b-46e1-b0d1-0757a8bca25f
HTTP/1.1
Host: example.com:80

Subscribe

Adding RESTful Application Subscription Management Support 6-3

Accept: application/json

Example 6–2 shows a sample Subscribe response.

Example 6–2 Subscribe Response Example

HTTP/1.1 201 Created
Content-Type: application/json
Date: Wed, 07 Nov 2012 06:33:13 GMT

{"subscriptionResp":{"subscriptionId":"e4e3cb51-994b-46e1-b0d1-0757a8bca25f"}}

Unsubscribe

6-4 Services Gatekeeper Application Developer's Guide

Unsubscribe

The Unsubscribe operation is used to request a subscription deletion.

6Authorization
Basic or OAuth

6HTTP Method
DELETE

6URI
http://host:port/subscription

where:

■ host and port are the host name and port of the system on which Services
Gatekeeper is installed.

6Request Header
The Unsubscribe request header contains the subscription ID to be deleted. The
MIME-type for the Content-Type header field is application/json.

6Request Body
There is no response body.

6Response Header
The response header indicates whether the ACR status was successfully changed. If
the request fails, the Status-Line header field will contain the status code and the
reason for the failure. See Services Gatekeeper Communication Service Reference Guide, for
more information on error messages.

6Response Body
The response body contains no content.

6Examples
Example 6–3 shows a sample Unsubscribe request.

Example 6–3 Unsubscribe Request Example

DELETE /subscription/e4e3cb51-994b-46e1-b0d1-0757a8bca25f HTTP/1.1
Host: example.com:80
Accept: application/json

Example 6–4 shows a sample Unsubscribe response.

Example 6–4 Unsubscribe Response Example

HTTP/1.1 204 No Content

Suspend

Adding RESTful Application Subscription Management Support 6-5

Suspend

The Suspend operation suspends an existing service subscription for a subscriber
based on the subscription ID.

6Authorization
Basic

6HTTP Method
PUT

6URI
http://host:port/subscription/suspend/subscriptionID

where:

■ host and port are the host name and port of the system on which Services
Gatekeeper is installed.

■ subscriptionID is the ID of the subscription to be suspended.

6Request Header
The Suspend request header contains the ID of the subscription to be suspended. The
MIME-type for the Content-Type header field is application/json.

6Request Body
The request body for Suspend is empty.

6Response Header
The response header indicates whether the subscription was successfully suspended.
If the request fails, the Status-Line header field will contain the status code and the
reason for the failure. See Services Gatekeeper Communication Service Reference Guide, for
more information on error messages.

6Response Body
The response body contains no content.

6Examples
Example 6–5 shows a sample Suspend request.

Example 6–5 Suspend Request Example

PUT /subscription/suspend/e4e3cb51-994b-46e1-b0d1-0757a8bca25f HTTP/1.1
Host: example.com:80
Accept: application/json

Example 6–6 shows a sample Suspend response.

Suspend

6-6 Services Gatekeeper Application Developer's Guide

Example 6–6 Suspend Response Example

HTTP/1.1 204 No Content

Unsuspend

Adding RESTful Application Subscription Management Support 6-7

Unsuspend

The Unsuspend operation unsuspends an existing service subscription for a subscriber
based on subscription ID.

6Authorization
Basic

6HTTP Method
PUT

6URI
http://host:port/subscription/unsuspend/subscriptionID

where:

■ host and port are the host name and port of the system on which Services
Gatekeeper is installed.

■ subscriptionID is the ID of the subscription to be suspended.

6Request Header
The Unsuspend request header contains the subscription ID to be unsuspended. The
MIME-type for the Content-Type header field is application/json

6Request Body
The request body for unsuspend is empty.

6Response Header
The response header indicates whether the subscription was successfully removed
from being suspended. If the request fails, the Status-Line header field will contain the
status code and the reason for the failure. See Services Gatekeeper Communication Service
Reference Guide, for more information on error messages.

6Response Body
The response body contains no content.

6Examples
Example 6–7 shows a sample Unsuspend request.

Example 6–7 Unsuspend Request Example

PUT /subscription/unsuspend/e4e3cb51-994b-46e1-b0d1-0757a8bca25f HTTP/1.1
Host: example.com:80
Accept: application/json

Example 6–8 shows a sample Unuspend response.

Unsuspend

6-8 Services Gatekeeper Application Developer's Guide

Example 6–8 Unsuspend Response Example

HTTP/1.1 204 No Content

Notify

Adding RESTful Application Subscription Management Support 6-9

Notify

The Notify operation notifies a registered application of a subscription management
request.

6Authorization
Basic or OAuth

6HTTP Method
POST

6URI
http://host:port/notify

where:

■ host and port are the host name and port of the system on which Services
Gatekeeper is installed.

6Request Header
The MIME-type for the Content-Type header field is application/json.

6Request Body
The request body for Notify accepts the following parameters:

■ subscriptionNotification. The Services Gatekeeper generated notification
containing the following parameters:

– subscriptionID: String. The ID of the subscription request.

– applicationName: String. The name of the application receiving the request.

– subscriberAddress: String. The MSISDN of the requesting subscriber.

– operation: String. The subscription request type. For example, Subscribe or
Unsubscribe.

6Response Header
Standard header fields. If the request fails, the Status-Line header field will contain the
status code and the reason for the failure. Services Gatekeeper Communication Service
Reference Guide, for more information on error messages.

6Response Body
The response body contains no content.

6Examples
Example 6–9 shows a sample Notify request.

Example 6–9 Notify Request Example

POST /notifysubscription HTTP/1.1

Notify

6-10 Services Gatekeeper Application Developer's Guide

Host: example.com:80
Accept: application/json
Content-Type: application/json
Content-Length: 173
{"subscriptionNotification":{"subscriptionId":
"e4e3cb51-994b-46e1-b0d1-0757a8bca25f","applicationName":"Oracle
News","subscriberAddress":"tel:1111","operation":"Subscribe"}}

Example 6–10 shows a sample Notify response.

Example 6–10 Notify Response Example

HTTP/1.1 204 No Content

Confirm

Adding RESTful Application Subscription Management Support 6-11

Confirm

The Confirm operation is used by applications to confirm subscription requests.

6Authorization
Basic or OAuth

6HTTP Method
PUT

6URI
http://host:port/subscription/confirm

where:

■ host and port are the host name and port of the system on which Services
Gatekeeper is installed.

6Request Header
The MIME-type for the Content-Type header field is application/json.

6Request Body
The request body for Confirm accepts the following parameters:

■ operation: String. The subscription request operation being confirmed. For
example, Subscribe or Unsubscribe.

■ confirmResult: String. The subscription request status. For example, approved.

6Response Header
Standard header fields. If the request fails, the Status-Line header field will contain the
status code and the reason for the failure. See Services Gatekeeper Communication Service
Reference Guide, for more information on error messages.

6Response Body
The response body contains the following parameter:

■ oauthAccessToken: String. If OAuth is required, Services Gatekeeper returns an
OAuth accessToken in the response.

6Examples
Example 6–11 shows a sample Confirm request.

Example 6–11 Confirm Request Example

PUT /subscription/confirm/e4e3cb51-994b-46e1-b0d1-0757a8bca25f HTTP/1.1
Host: example.com:80
Accept: application/json
Content-Type: application/x-www-form-urlencoded
Content-Length: 42
operation=Subscribe&confirmResult=Approved

Confirm

6-12 Services Gatekeeper Application Developer's Guide

Example 6–12 shows a sample Confirm response with an OAuth accessToken.

Example 6–12 Confirm Response Example

HTTP/1.1 200 OK
Content-Type: application/json
Date: Wed, 07 Nov 2012 06:39:50 GMT
{"oauthAccessToken":{"oauthAccessToken":"e4e3cb51-994b-46e1-b0d1-0757a8bca25f"}}

queryBySubscriberAddress

Adding RESTful Application Subscription Management Support 6-13

queryBySubscriberAddress

The queryBySubscriberAddress operation retrieves a user’s subscription information
based on the subscriber address.

6Authorization
Basic

6HTTP Method
GET

6URI
http://host:port/subscription/query/queryBySubscriberAddress

where:

■ host and port are the host name and port of the system on which Services
Gatekeeper is installed.

6Request Header
The queryBySubscriberAddress request header contains the subscriber address
(MSISDN) to be queried. The MIME-type for the Content-Type header field is
application/json.

6Request Body
The request body for queryBySubscriberAddress is empty.

6Response Header
The response header includes the request status. If the request fails, the Status-Line
header field will contain the status code and the reason for the failure. See Services
Gatekeeper Communication Service Reference Guide, for more information on error
messages.

6Response Body
The request body for queryBySubscriberAddress contains the following parameters:

■ subscriptionList. The Services Gatekeeper generated list containing the following
parameters:

– subscriptionInfo. Array. Contains the following parameters for each
subscription.

* applicationName: String. The name of the subscribed application.

* subscriberAddress: String. The MSISDN of the subscriber.

* status: String. The subscription status. For example, Pending.

6Examples
Example 6–13 shows a sample queryBySubscriberAddress request.

queryBySubscriberAddress

6-14 Services Gatekeeper Application Developer's Guide

Example 6–13 queryBySubscriberAddress Request Example

GET /subscription/query/queryBySubscriberAddress/tel:1111?offSet=0&batchSize=2
HTTP/1.1
Host: example.com:80
Accept: application/json

Example 6–14 shows a sample queryBySubscriberAddress response.

Example 6–14 queryBySubscriberAddress Response Example

HTTP/1.1 200 OK
Content-Type: application/json
Date: Wed, 07 Nov 2012 06:56:05 GMT

{"subscriptionList":{"subscriptionInfo":[{"applicationName":"coderslist",
"subscriberAddress":"tel:1111","status":"SubscribePending"},{"applicationName":
"Oracle News","subscriberAddress":"tel:1111","status":"UnSubscribePending"}]}}

queryByApplicationName

Adding RESTful Application Subscription Management Support 6-15

queryByApplicationName

The queryByApplicationName operation retrieves a list of subscribers to an
application based on the application ID.

6Authorization
Basic

6HTTP Method
GET

6URI
http://host:port/subscription/query/queryByApplicationName

where:

■ host and port are the host name and port of the system on which Services
Gatekeeper is installed.

6Request Header
The queryByApplicationName request header contains the application name to be
queried. The MIME-type for the Content-Type header field is application/json.

6Request Body
The request body for queryBySubscriberAddress is empty.

6Response Header
The response header includes the request status. If the request fails, the Status-Line
header field will contain the status code and the reason for the failure. See Services
Gatekeeper Communication Service Reference Guide, for more information on error
messages.

6Response Body
The request body for queryByApplicationName contains the following parameters:

■ subscriptionList. The Services Gatekeeper generated list containing the following
parameters:

– subscriptionInfo. Array. Contains the following parameters for each
subscribed user.

* applicationName: String. The name of the subscribed application.

* subscriberAddress: String. The MSISDN of the subscriber.

* status: String. The subscription status. For example, Pending.

6Examples
Example 6–15 shows a sample queryByApplicationName request.

queryByApplicationName

6-16 Services Gatekeeper Application Developer's Guide

Example 6–15 queryByApplicationName Request Example

GET /subscription/query/queryByApplicationName/Oracle%20News?offSet=0&batchSize=2
HTTP/1.1
Host: example.com:80
Accept: application/json

Example 6–16 shows a sample queryByApplicationName response.

Example 6–16 queryByApplicationName Response Example

HTTP/1.1 200 OK
Content-Type: application/json
Date: Wed, 07 Nov 2012 06:56:05 GMT

{"subscriptionList":{"subscriptionInfo":[{"applicationName":"Oracle
News","subscriberAddress":"tel:1111","status":"UnSubscribePending"},
{"applicationName":"Oracle
News","subscriberAddress":"tel:1112","status":"Active"}]}}

queryBySubscriptionID

Adding RESTful Application Subscription Management Support 6-17

queryBySubscriptionID

The queryBySubscriptionID operation retrieves application subscription information
for a subscriber based on the subscription ID.

6Authorization
Basic

6HTTP Method
GET

6URI
http://host:port/subscription/query/queryBySubscriptionID

where:

■ host and port are the host name and port of the system on which Services
Gatekeeper is installed.

6Request Header
The queryBySubscriptionID request header contains the subscription ID to be queried.
The MIME-type for the Content-Type header field is application/json.

6Request Body
The request body for queryBySubscriptionID is empty.

6Response Header
The response header includes the request status. If the request fails, the Status-Line
header field will contain the status code and the reason for the failure. See Services
Gatekeeper Communication Service Reference Guide, for more information on error
messages.

6Response Body
The request body for queryBySubscriptionID contains the following:

■ subscriptionInfo. The Services Gatekeeper generated list with the following
parameters:

– applicationName: String. The name of the subscribed application.

– subscriberAddress: String. The MSISDN of the subscriber.

– status: String. The subscription status. For example, Pending.

6Examples
Example 6–17 shows a sample queryBySubscriptionID request.

Example 6–17 queryBySubscriptionID Request Example

GET /subscription/query/queryBySubscriptionId/e4e3cb51-994b-46e1-b0d1-0757a8bca25f
HTTP/1.1

queryBySubscriptionID

6-18 Services Gatekeeper Application Developer's Guide

Host: example.com:80
Accept: application/json

Example 6–18 shows a sample queryBySubscriptionID response.

Example 6–18 queryBySubscriptionID Response Example

HTTP/1.1 200 OK
Content-Type: application/json
Date: Wed, 07 Nov 2012 06:56:05 GMT

{"subscriptionInfo":{"applicationName":"Oracle
 News","subscriberAddress":"tel:1111","status":"UnSubscribePending"}}
HTTP/1.1 200 OK

7

Adding RESTful Call Notification Support 7-1

7Adding RESTful Call Notification Support

This chapter describes the operations in the Call Notification interface of the RESTful
facade provided in Oracle Communications Services Gatekeeper.

About the Call Notification Interface
Applications use the RESTful Call Notification interface to set up and remove call
notifications which inform the application about the particular state of a call (such as
busy, unreachable, and so on).

Additionally, applications use this interface to set up and remove call direction
notifications (which require the application to provide further directions on handling a
call that is in a particular state).

For the interface operations, the application client subscribes to and uses the Bayeux
channel to which Services Gatekeeper is subscribed. The application provides the
Bayeux channel name as the location for Services Gatekeeper to publish the
notifications that the application client requires. See "RESTful Notifications and
Publish/Subscribe" for more information about publishing and subscribing to
notifications.

REST Service Descriptions Available at Run-time
When the Administration Server for your Services Gatekeeper domain is in the
running state, the REST service descriptions of these operations can be found at

http://host:port/rest/call_notification/index.html

where host and port are the host name and port of the system on which Services
Gatekeeper is installed.

Common Data
The details the application receives about a call event are identical whether the called
party was busy (Busy), not reachable (NotReachable), or did not answer (NoAnswer),
or the call was still being attempted (CalledNumber).

These details are provided to the application in a JSON object which contains the
following parameters:

■ calledParty: String. Required. The address (URI) of the party to whom the call is
made.

■ callingParty: String. Required. The address (URI) of the party making the call.

About the Call Notification Interface

7-2 Services Gatekeeper Application Developer's Guide

■ correlator: String. Required. The correlator used to identify the notification and
provided in the Start Call Notification request.

■ callingPartyName: String. Optional. The name of the party making the call.

These details are specified in the following structure:

{
 "calledParty": "URI",
 "callingParty": "URI",
 "correlator": "String",
 "callingPartyName": "String"
}

You will find this object in the following operations:

■ Start Call Notification: For this operation, the JSON object is used to provide the
call details in the notifications sent (by Services Gatekeeper) to the application
following a successful Start Call Notification Request. See "Notification Data
Object Delivered to Bayeux Channel Name".

■ Start Call Direction Notification: For this operation, the JSON object is used to
provide the call details in the notifications sent (by Services Gatekeeper) to the
application to request instructions (from the application) on handling a call event
that has occurred. See "Notification Data Object Requesting Instruction from
Application".

Start Call Notification

Adding RESTful Call Notification Support 7-3

Start Call Notification

The Start Call Notification operation sets up call notifications to a specified endpoint
address for call events associated with the addresses specified in the request.

To set up a call notification, provide the SIP-formatted URI of the addresses for which
the application must receive notifications, the criteria that will trigger notifications,
and a reference object for the delivery of the notifications. The criteria can be one or
more of four possible call events: Busy, NotReachable, NoAnswer, and
CalledNumber. If you do not specify any value for criteria, each call event will trigger
a notification.

The reference object (also a JSON object) contains the correlator for the notification, the
endpoint address to which the notifications must be sent and, optionally, the interface
name (a string to identify the notification).

If the Start Call Notification request is successful:

■ The response header will contain the URI of the publish/subscribe server.

■ Notification data objects appropriate to the call event will be sent to the endpoint
address specified in the request body. Each data object will contain the appropriate
notification on the call.

When the application receives such a response, it must access the endpoint address to
retrieve the specific call event notifications.

7Authorization
Basic

7HTTP Method
PUT

7URI
http://host:port/rest/call_notification/call_notification

where host and port are the host name and port of the system on which Services
Gatekeeper is installed.

7Request Header
The MIME-type for the Content-Type header field is application/json.

7Request Body
The request body for Start Call Notification accepts the following parameters:

■ addresses: Array of string values. Required. The set of addresses to be monitored,
provided as a list of URIs separated by commas.

■ criteria: String. Optional. The call event for which the notification is required.

 If you do not specify any value for criteria, all call events will trigger a
notification. The call events are:

– Busy: This entry indicates that the called party is busy.

Start Call Notification

7-4 Services Gatekeeper Application Developer's Guide

– CalledNumber: This entry indicates that a call between the two parties is
being attempted.

– NoAnswer: This entry indicates that the called party does not answer.

– NotReachable: This entry indicates that the called party is not reachable.

■ reference. A JSON object. Required. Use this object to provide the following
information about the endpoint address that is to receive the notification:

– correlator: String. Required. The correlator used to identify the call
notifications for the specified addresses.

– endpoint: String. Required. The endpoint address to which the notification
should be delivered. This string should be a Bayeux protocol channel name
that begins with /bayeux/appInstanceID where appInstanceID is the client
application’s application instance account ID.

For more information on application instances, see the discussion on
managing application instances in Services Gatekeeper Portal Developer's Guide.

– interfaceName: String. Optional. A descriptive string to identify the
notification.

The request body for this operation is represented by the following JSON structure,
where the value part of each name/value pair indicates its data type:

{
 "addresses": ["String"],
 "reference": {
 "correlator": "String",
 "endpoint": "URI",
 "interfaceName": "String"
 },
 "criteria": ["Busy|NotReachable|NoAnswer|CalledNumber"]
}

7Response Header
The Location header field contains the URI of the publish/subscribe server as:

http://host:port/rest/call_notification/notifications

If the request fails, the Status-Line header field will contain the status code and the
reason for the failure. See "Understanding RESTful Errors and Exceptions".

7Response Body
There is no response body. The appropriate notifications are sent to the endpoint
address provided by the application in the request body of this operation. See
"Notification Data Object Delivered to Bayeux Channel Name" for a description of
each type of notification object.

7Notification Data Object Delivered to Bayeux Channel Name
Services Gatekeeper delivers the appropriate notification for each of the following call
events:

■ Busy: When the called party is busy, the notification is sent as the value for
notifyBusy, represented by the following JSON structure:

{"notifyBusy": {
 "calledParty": "URI",

Start Call Notification

Adding RESTful Call Notification Support 7-5

 "callingParty": "URI",
 "correlator": "String",
 "callingPartyName": "String"
}}

■ NotReachable: When the called party is not reachable, the notification is sent as
the value for notifyNotReachable, represented by the following JSON structure:

{"notifyNotReachable": {
 "calledParty": "URI",
 "callingParty": "URI",
 "correlator": "String",
 "callingPartyName": "String"
}}

■ NoAnswer: When the called party does not answer, the notification is sent as the
value for notifyNoAnswer, represented by the following JSON structure:

{"notifyNoAnswer": {
 "calledParty": "URI",
 "callingParty": "URI",
 "correlator": "String",
 "callingPartyName": "String"
}}

■ CalledNumber: When the called party call is being attempted, the notification is
sent as the value for notifyCalledNumber, represented by the following JSON
structure:

{"notifyCalledNumber": {
 "calledParty": "URI",
 "callingParty": "URI",
 "correlator": "String",
 "callingPartyName": "String"
}}

Stop Call Notification

7-6 Services Gatekeeper Application Developer's Guide

Stop Call Notification

The Stop Call Notification operation generates a request that terminates a previously
set up call notification.

To stop a previously set up call notification, use the appropriate correlator in the
DELETE method for this operation. This correlator should have been specified earlier
in the request body of the Start Call Notification operation.

There is no request or response body for the Stop Call Notification operation. If the
request fails, the body of the error response will contain the identifier for the
notification and the type of exception.

7Authorization
Basic

7HTTP Method
DELETE

7URI
http://host:port/rest/call_notification/call_notification/${correlator}

where:

■ host and port are the host name and port of the system on which Services
Gatekeeper is installed.

■ ${correlator} is the correlator for the notification provided in the reference object of
the initial Start Call Notification request.

7Request Header
The MIME-type for the Content-Type header field is application/json.

7Request Body
There is no request body.

7Response Header
Standard header fields. If the request fails, the Status-Line header field will contain the
status code and the reason for the failure. See "Understanding RESTful Errors and
Exceptions".

7Response Body
There is no response body.

Start Call Direction Notification

Adding RESTful Call Notification Support 7-7

Start Call Direction Notification

The Start Call Direction Notification operation initiates notifications to a specified
endpoint for call events associated with the addresses specified in the request. The
notifications provided by Services Gatekeeper will contain the information necessary
for the application to provide instructions on directing the call.

To set up a call direction notification, provide the SIP-formatted URI of the addresses
for which the application must receive notifications, the criteria that will trigger
notifications, and a reference object for the delivery of the notifications. The criteria
can be one more of four possible call events: Busy, NotReachable, NoAnswer, and
CalledNumber. If you do not specify any value for criteria, each event will trigger a
notification.

The reference object (also a JSON object) contains the correlator for the notification, the
endpoint address (a specific Bayeux channel name) to which the call direction
notifications must be sent and, optionally, the interface name (a string to identify the
notification).

If the Start Call Direction Notification request is successful:

■ The response header will contain the URI of the publish/subscribe server.

■ A notification data object appropriate to the call event will be sent to the endpoint
address specified in the request body. This data object will contain the appropriate
notification on the call. It will also contain the reply-to private channel address to
be used by the application to provide further instructions on handling and routing
the call.

When it receives a response, the application:

1. Retrieves the notification data object from the endpoint address. See "Notification
Data Object Requesting Instruction from Application".

2. Sets up a data object with instructions on how the call must be handled (and
charged); and an address to which the call must now be routed. See
"Call-Handling Instructions".

3. Publishes the data object to the reply-to private channel address it received. See
"Application’s Call-Handling Response to Services Gatekeeper".

7Authorization
Basic

7HTTP Method
PUT

7URI
http://host:port/rest/call_notification/call_direction

where host and port are the host name and port of the system on which Services
Gatekeeper is installed.

7Request Header
The MIME-type for the Content-Type header field is application/json.

Start Call Direction Notification

7-8 Services Gatekeeper Application Developer's Guide

7Request Body
The request body for the Start Call Direction Notification accepts the following
parameters:

■ addresses: Array of string values. Required. The set of addresses to be monitored,
provided as a list of SIP-formatted URIs separated by commas.

■ criteria: String. Optional. The call event for which the notification is required.

 If you do not specify any value for criteria, all call events will trigger a
notification. The call events are:

– Busy: This entry indicates that the called party is busy.

– CalledNumber: This entry indicates that a call between the two parties is
being attempted.

– NoAnswer: This entry indicates that the called party does not answer.

– NotReachable: This entry indicates that the called party is not reachable.

■ reference: A JSON object. Required. Use this object to provide the following
information about the call direction notification:

– correlator: String. Required. The correlator used to identify the call direction
notification for the specified addresses.

– endpoint: String. Required. The URI which represents the endpoint address to
which the call direction notification should be delivered. This string should be
a Bayeux protocol channel name that begins with /bayeux/appInstanceID
where appInstanceID is the client application’s application instance account ID.

For more information on application instances, see the discussion on
managing application instances in Services Gatekeeper Portal Developer's Guide.

– interfaceName: String. Optional. A descriptive string to identify the
notification.

The request body for this operation is represented by the following JSON structure,
where the value part of each name/value pair indicates its data type:

{
 "addresses": ["String"],
 "reference": {
 "correlator": "String",
 "endpoint": "URI",
 "interfaceName": "String"
 },
 "criteria": ["Busy|NotReachable|NoAnswer|CalledNumber"]
}

7Response Header
The Location header in the response displays the URI of the publish/subscribe server:

http://host:port/rest/call_notification/notifications

The application must access this location to retrieve the notification or delivery status
information about the request.

If the request fails, the Status-Line header field will contain the status code and the
reason for the failure. See "Understanding RESTful Errors and Exceptions".

Start Call Direction Notification

Adding RESTful Call Notification Support 7-9

7Response Body
There is no response body.

The endpoint address holds the appropriate notification data object containing
information on the type of call event when there is a match for the criteria value
specified in the request body of this operation.

7Notification Data Object Requesting Instruction from Application
When the application needs to take further action on a call event, Services Gatekeeper
provides the application with a corresponding notification data object for the
application to act upon.

Services Gatekeeper places this notification data object at the endpoint address
mentioned in the response header. The notification data object is a nested JSON object
containing the following parameters:

■ reply-to: String. The Bayeux channel address to which the application must
deliver its instructions for handling the call. This is a private Bayeux channel set
up by Services Gatekeeper.

■ data: Nested JSON object. Services Gatekeeper provides the appropriate call
details as the value for handleBusy, handleNotReachable, handleNoAnswer,
handleCalledNumber, which are named for the four types of call events. These
details have been described under "Common Data".

– handleBusy: For a Busy call event, Services Gatekeeper provides the
appropriate call details as the value for the attribute handleBusy in the
following JSON structure:

{"handleBusy": {
 "calledParty": "URI",
 "callingParty": "URI",
 "correlator": "String",
 "callingPartyName": "String"
}}

– handleNotReachable: For a NotReachable call event, Services Gatekeeper
provides the appropriate call details as the value for the attribute
handleNotReachable in the following JSON structure:

{"handleNotReachable": {
 "calledParty": "URI",
 "callingParty": "URI",
 "correlator": "String",
 "callingPartyName": "String"
}}

– handleNoAnswer: For a NoAnswer call event, Services Gatekeeper provides
the appropriate call details as the value for the attribute handleNoAnswer in
the following JSON structure:

{"handleNoAnswer": {
 "calledParty": "URI",
 "callingParty": "URI",
 "correlator": "String",
 "callingPartyName": "String"
}}

Start Call Direction Notification

7-10 Services Gatekeeper Application Developer's Guide

– handleCalledNumber: For a CalledNumber call event, Services Gatekeeper
provides the appropriate call details as the value for the attribute
handleCalledNumber in the following JSON structure:

{"handleCalledNumber": {
 "calledParty": "URI",
 "callingParty": "URI",
 "correlator": "String",
 "callingPartyName": "String"
}}

7Call-Handling Instructions
Whether the call event is Busy, NotReachable, NoAnswer or CalledNumber, the
application needs to specify the following:

■ actionToPerform: String. Required. Specifies the required action to take on the call.
Services Gatekeeper must perform the following actions with respect to the call:

– Route: Re-route the call to a specified address.

– Continue: Handle the call in the normal way.

– EndCall: Terminate the call.

■ charging: A JSON object. Optional. This object defines the cost charging properties
for the call. A call with no charging parameters is entered as "charging: null. If a
charge is to be applied, provide values for the following in the charging object:

– description: String. Required if the charging object is present in the body of
the request. The text to be used for information and billing.

– amount: Number (integer, or decimal). Optional. The amount to be charged.

– code: String. Optional. The charging code, from an existing contractual
description.

– currency: String. Optional. The currency identifier as defined in ISO 4217 [9].

■ routingAddress: String. URI. The address to which the call must be routed.

7Application’s Call-Handling Response to Services Gatekeeper
The application sends the appropriate instruction as the response to the reply-to
address it had retrieved earlier from the endpoint address. See "Notification Data
Object Requesting Instruction from Application".

 The possible responses that the application provides to Services Gatekeeper are:

■ Instructions to handle a Busy call event: The application provides the instruction
data as the value for handleBusyResponse in the following JSON structure:

{"handleBusyResponse": {"result": {
 "actionToPerform": "Route|Continue|EndCall",
 "charging": {
 "description": "String",
 "amount": "BigDecimal",
 "code": "String",
 "currency": "String"
 },
 "routingAddress": "URI"
}}}

Start Call Direction Notification

Adding RESTful Call Notification Support 7-11

■ Instructions to handle a NotReachable call event: The application provides the
instruction data as the value for handleNotReachableResponse in the following
JSON structure:

{"handleNotReachableResponse": {"result": {
 "actionToPerform": "Route|Continue|EndCall",
 "charging": {
 "description": "String",
 "amount": "BigDecimal",
 "code": "String",
 "currency": "String"
 },
 "routingAddress": "URI"
}}}

■ Instructions to handle a NoAnswer call event: The application provides the
instruction data as the value for handleNoAnswerResponse in the following
JSON structure:

{"handleNoAnswerResponse": {"result": {
 "actionToPerform": "Route|Continue|EndCall",
 "charging": {
 "description": "String",
 "amount": "BigDecimal",
 "code": "String",
 "currency": "String"
 },
 "routingAddress": "URI"
}}}

■ Instructions to handle a CalledNumber call event: The application provides the
instruction data as the value for handleCalledNumberResponse call event in the
following JSON structure:

{"handleCalledNumberResponse": {"result": {
 "actionToPerform": "Route|Continue|EndCall",
 "charging": {
 "description": "String",
 "amount": "BigDecimal",
 "code": "String",
 "currency": "String"
 },
 "routingAddress": "URI"
}}}

Stop Call Direction Notification

7-12 Services Gatekeeper Application Developer's Guide

Stop Call Direction Notification

The Stop Call Direction Notification operation terminates a previously set up call
direction notification.

To stop a previously set-up call direction notification, use the appropriate correlator in
the DELETE request for this operation. This correlator should have been specified
earlier in the request body of the Start Call Direction Notification operation.

There is no request or response body for the Stop Call Direction Notification operation.
If the request fails, the body of the error response will contain the identifier for the
notification and the type of exception.

7Authorization
Basic

7HTTP Method
DELETE

7URI
http://host:port/rest/call_notification/call_direction/${correlator}

where:

■ host and port are the host name and port of the system on which Services
Gatekeeper is installed.

■ ${correlator} is the correlator for the notification provided in the reference object of
the initial Start Call Direction Notification request.

7Request Body
There is no request body.

7Response Header
Standard header fields. If the request fails, the Status-Line header field will contain the
status code and the reason for the failure. See "Understanding RESTful Errors and
Exceptions".

7Response Body
There is no response body.

8

Adding RESTful Short Messaging Support 8-1

8Adding RESTful Short Messaging Support

This chapter describes the operations in the Short Messaging interface of the RESTful
facade provided in Oracle Communications Services Gatekeeper.

About the Short Messaging Interface
Applications use the RESTful Short Messaging interface to send an SMS, a ringtone, or
a logo, to fetch SMS messages and delivery status reports; and to start and stop a
notification.

When the request body for an SMS operation contains a request for a delivery receipt,
the application provides a correlator for the message being sent and includes an
endpoint address for returning the delivery notification.

For such operations, the application client subscribes to and uses the Bayeux channel
to which Services Gatekeeper is subscribed. The application provides the Bayeux
channel name as the location for Services Gatekeeper to publish the notifications that
the application client requires. See "RESTful Notifications and Publish/Subscribe" for
more information about publishing and subscribing to RESTful notifications.

REST Service Descriptions Available at Run-time
When the Administration Server for your Services Gatekeeper domain is in the
running state, the REST service descriptions of these operations can be found at

http://host:port/rest/sms/index.html

where host and port are the host name and port of the system on which Services
Gatekeeper is installed.

Send SMS

8-2 Services Gatekeeper Application Developer's Guide

Send SMS

The Send SMS operation delivers a text message.

To send an SMS message, provide the SIP-formatted URI of the addresses which must
receive the message in the request body. If there is to be a charge for the messaging, the
request body should contain the required charging object. If the sender requires a
delivery receipt, specify the required parameters for the receipt.

If the Send SMS operation is successful, the Location header field in the response will
contain the request identifier (which is also provided in the response body for this
operation).

If the application requested a receipt for delivery of the message, the application must
access the endpoint address to retrieve the delivery notifications.

8Authorization
Basic

8HTTP Method
POST

8URI
http://host:port/rest/sms/messages

where host and port are the host name and port of the system on which Services
Gatekeeper is installed.

8Request Header
The MIME-type for the Content-Type header field is application/json.

8Request Body
The request body for the Send SMS operation accepts the following parameters:

■ addresses: Array of string values. Required. The set of addresses of the recipients
as an array of SIP-formatted URIs.

■ message: String. Required. The text of the message.

■ charging: A JSON object. Optional. This object defines the cost charging properties
for the operation. The entry "charging": null indicates no charge. If a charge is
to be applied, provide values for the following in the charging object:

– description: String. Required if the charging object is present in the body of
the request. The text to be used for information and billing.

– amount: Number (integer, or decimal). Optional. The amount to be charged.

– code: String. Optional. The charging code, from an existing contractual
description.

– currency: String. Optional. The currency identifier as defined in ISO 4217 [9].

■ receiptRequest: A JSON object. Optional. If a delivery receipt is required, provide
values for each of the following parameters which define this object:

Send SMS

Adding RESTful Short Messaging Support 8-3

– correlator: String. Required. Used to correlate the receipt with the initial
message.

If the callback reference correlator is defined in the receiptRequest object of
the Send SMS request message, Services Gatekeeper will invoke the Notify
SMS Delivery Receipt operation and discard the delivery status information.

– endpoint: String. Required. The endpoint address (URI) to which the receipt
must be delivered.

– interfaceName: String. Required. A description provided to identify the type
of receipt.

■ senderName: String. Optional. The sender’s name.

The request body for this operation is represented by the following JSON structure,
where the value part of each name/value pair indicates its data type:

{
 "addresses": ["URI"],
 "message": "String",
 "charging": {
 "description": "String",
 "amount": "BigDecimal",
 "code": "String",
 "currency": "String"
 },
 "receiptRequest": {
 "correlator": "String",
 "endpoint": "URI",
 "interfaceName": "String"
 },
 "senderName": "String"
}

8Response Header
The Location header field contains the URI:

http://host:port/rest/sms/delivery_status/result

where, result is the string identifier returned in the response body.

If the request fails, the Status-Line header field will contain the status code and the
reason for the failure. See "Understanding RESTful Errors and Exceptions".

8Response Body
The body of the response contains the request identifier as the string value for the
result object; it is the request identifier returned in the Location header field of the
response message. The application uses this request identifier (in the Get SMS Delivery
Status operation) to retrieve the delivery status for the sent message.

The response body for this operation is represented by the following JSON structure,
where the value part of the name/value pair indicates its data type:

{"result": "String"}

Send SMS Ringtone

8-4 Services Gatekeeper Application Developer's Guide

Send SMS Ringtone

The Send SMS Ringtone operation delivers a ringtone.

To send an SMS Ringtone message, provide the SIP-formatted URI of the addresses
which must receive the message, the ringtone data and its format in the request body
for this operation. If there is to be a charge for the messaging, the request body should
contain the required charging object. If the sender requires a delivery receipt, specify
the required parameters for the receipt.

If the Send SMS Ringtone operation is successful, the Location header field in the
response will contain the request identifier (which is also provided in the response
body for this operation).

If the application requested a receipt for delivery of the message, the application must
access the endpoint address to retrieve the delivery notifications.

8Authorization
Basic

8HTTP Method
POST

8URI
http://host:port/rest/sms/ringtones

where host and port are the host name and port of the system on which Services
Gatekeeper is installed.

8Request Header
The MIME-type for the Content-Type header field is application/json.

8Request Body
The request body is a nested JSON object containing the following parameters:

■ addresses: Array of string values. Required. The set of addresses of the recipients
as an array of SIP-formatted URIs.

■ ringtone: String. Required. The ringtone data in Extended Ringtone (RTX) format.

■ smsFormat: String. Required. The encoding format for the ringtone entered as one
of the following:

– Ems

– SmartMessaging

■ charging: A JSON object. Optional. This object defines the cost charging properties
for the operation. The entry "charging": null indicates no charge. If a charge is
to be applied, provide values for the following in the charging object:

– description: String. Required if the charging object is present in the body of
the request. The text to be used for information and billing.

– amount: Number (integer, or decimal). Optional. The amount to be charged.

Send SMS Ringtone

Adding RESTful Short Messaging Support 8-5

– code: String. Optional. The charging code, from an existing contractual
description.

– currency: String. Optional. The currency identifier as defined in ISO 4217 [9].

■ receiptRequest: A JSON object. Optional. If a delivery receipt is required, provide
values for each of the following parameters which define this object:

– correlator: String. Required. Used to correlate the receipt with the initial
message.

If the callback reference correlator is defined in the receiptRequest object of
the Send SMS request message, Services Gatekeeper will invoke the Notify
SMS Delivery Receipt operation and discard the delivery status information.

– endpoint: String. Required. The endpoint address (URI) to which the receipt
must be delivered.

– interfaceName: String. Required. A description provided to identify the type
of receipt.

■ senderName: String. Optional. The sender’s name.

The request body for this operation is represented by the following JSON structure,
where the value part of each name/value pair indicates its data type:

{
 "addresses": ["URI"],
 "ringtone": "String",
 "smsFormat": "Ems|SmartMessaging",
 "charging": {
 "description": "String",
 "amount": "BigDecimal",
 "code": "String",
 "currency": "String"
 },
 "receiptRequest": {
 "correlator": "String",
 "endpoint": "URI",
 "interfaceName": "String"
 },
 "senderName": "String"
}

8Response Header
http://host:port/rest/sms/delivery_status/result

where, result is the string identifier returned in the request body.

If the request fails, the Status-Line header field will contain the status code and the
reason for the failure. See "Understanding RESTful Errors and Exceptions".

8Response Body
The body of the response contains the result object whose value is the request
identifier returned in the Location header field of the response message. The
application uses this request identifier (in the Get SMS Delivery Status operation) to
retrieve the delivery status for the sent message.

The response body for this operation is represented by the following JSON structure,
where the value part of the name/value pair indicates its data type:

Send SMS Ringtone

8-6 Services Gatekeeper Application Developer's Guide

{"result": "String"}

Send SMS Logo

Adding RESTful Short Messaging Support 8-7

Send SMS Logo

The Send SMS Logo operation delivers a logo.

To send an SMS Logo, provide the SIP-formatted URI of the addresses which must
receive the message, the logo data and its format in the request body for this operation.
If there is to be a charge for the messaging, the request body should contain the
required charging object. If the sender requires a delivery receipt, specify the required
parameters for the receipt.

If the Send SMS Logo operation is successful, the Location header field in the response
will contain the request identifier (which is also provided in the response body for this
operation).

If the application requested a receipt for delivery of the message, the application must
access the endpoint address to retrieve the delivery notifications.

8Authorization
Basic

8HTTP Method
POST

8URI
http://host:port/rest/sms/logo

where host and port are the host name and port of the system on which Services
Gatekeeper is installed.

8Request Header
The MIME-type for the Content-Type header field is application/json.

8Request Body
The request body for the Send SMS operation accepts the following parameters:

■ addresses: Array of string values. Required. The set of addresses of the recipients
as an array of SIP-formatted URIs.

■ image: String. Required. The logo data, a base64-encoded image in GIF, PNG or
JPG format.

■ smsFormat: String. Required. The encoding format for the logo entered as one of
the following:

– Ems

– SmartMessaging

■ charging: A JSON object. Optional. Use this object to define the cost charging
properties for the operation. The entry "charging": null indicates no charge. If a
charge is to be applied, provide values for the following in the charging object:

– description: String. Required if the charging object is present in the body of
the request. The text to be used for information and billing.

– amount: Number (integer, or decimal). Optional. The amount to be charged.

Send SMS Logo

8-8 Services Gatekeeper Application Developer's Guide

– code: String. Optional. The charging code, from an existing contractual
description.

– currency: String. Optional. The currency identifier as defined in ISO 4217 [9].

■ receiptRequest: A JSON object. Optional. If a delivery receipt is required, provide
values for each of the following parameters which define this object:

– correlator: String. Required. Used to correlate the receipt with the initial
message.

If the callback reference correlator is defined in the receiptRequest object of
the Send SMS request message, Services Gatekeeper will invoke the Notify
SMS Delivery Receipt operation and discard the delivery status information.

– endpoint: String. Required. The endpoint address (URI) to which the receipt
must be delivered.

– interfaceName: String. Required. A description provided to identify the type
of receipt.

■ senderName: String. Optional. The sender’s name.

The request body for this operation is represented by the following JSON data
structure, where the value part of each name/value pair indicates its data type:

{
 "addresses": ["URI"],
 "image": "base64Binary",
 "smsFormat": "Ems|SmartMessaging",
 "charging": {
 "description": "String",
 "amount": "BigDecimal",
 "code": "String",
 "currency": "String"
 },
 "receiptRequest": {
 "correlator": "String",
 "endpoint": "URI",
 "interfaceName": "String"
 },
 "senderName": "String"
}

8Response Header
The Location header field contains the URI:

http://host:port/rest/sms/delivery_status/result

where, result is the string identifier returned in the request body.

If the request fails, the Status-Line header field will contain the status code and the
reason for the failure. See "Understanding RESTful Errors and Exceptions".

8Response Body
The response body contains the result object whose value is the request identifier
returned in the Location header field of the response message. The application uses
this request identifier (in the Get SMS Delivery Status operation) to retrieve the
delivery status for the sent message.

Send SMS Logo

Adding RESTful Short Messaging Support 8-9

The response body for this operation is represented by the following JSON data
structure, where the value part of the name/value pair indicates its data type:

{"result": "String"}

Get Received SMS

8-10 Services Gatekeeper Application Developer's Guide

Get Received SMS

The Get Received SMS operation polls Services Gatekeeper for the SMS messages that
have been received from the network for an application.

The request header for the Get Received SMS operation contains the registration
identifier necessary to retrieve the required SMS messages intended for the
application. This registration value should have been set up with the off-line
provisioning step that enables the application to receive notification of SMS reception.

There is no request body.

If the Get Received SMS operation is successful, the response body will contain the
message, the URI of the sender, the SMS service activation number and the date and
time when the message was sent.

8Authorization
Basic

8HTTP Method
POST

8URI
http://host:port/rest/sms/receive-messages/${registrationIdentifier}

where:

■ host and port are the host name and port of the system on which Services
Gatekeeper is installed.

■ registrationIdentifier is the value previously set up to enable the application to
receive notification of SMS reception according to specified criteria.

8Request Header
The MIME-type for the Content-Type header field is application/json.

8Request Body
There is no request body.

8Response Header
Standard header fields. If the request fails, the Status-Line header field will contain the
status code and the reason for the failure. See "Understanding RESTful Errors and
Exceptions".

8Response Body
The response body contains an array of structures as the value for result. Each element
in the array contains values for the following parameters.

■ message: String. The text of the SMS message.

■ senderAddress: String. The SIP-formatted URI of the sender.

Get Received SMS

Adding RESTful Short Messaging Support 8-11

■ smsServiceActivationNumber: String. URI. The number associated with the
invoked message service, that is the destination address used to send the message.

■ dateTime: String. The start time for the call in ISO 8601 extended format,
yyyy-mm-ddThh-mm-ss.

The response body for this operation is represented by the following JSON data
structure, where the value part of each name/value pair indicates its data type:

{"result": [{
 "message": "String",
 "senderAddress": "URI",
 "smsServiceActivationNumber": "URI",
 "dateTime": "Calendar"
}]}

Get SMS Delivery Status

8-12 Services Gatekeeper Application Developer's Guide

Get SMS Delivery Status

The Get SMS Delivery Status operation retrieves the delivery status of a message that
was previously sent using Send SMS, Send SMS Ringtone or Send SMS Logo
operation.

The Get SMS Delivery Status operation is valid only if the correlator callback reference
was not defined in the receiptRequest object of the initial request to send the short
message. In such a scenario, Services Gatekeeper stores the delivery status for a
configurable period.

If the callback reference correlator is defined in the receiptRequest object of the initial
request to send the short message, Services Gatekeeper will invoke the Notify SMS
Delivery Receipt operation and discard the delivery status information.

The request header for Get SMS Delivery Status contains the request identifier from
the initial Send operation for the short message.

If Get SMS Delivery Status is successful, the response body will contain the
SIP-formatted URIs from the address field in the request body of the Send operation
for the short message and corresponding delivery status for each message.

8Authorization
Basic

8HTTP Method
GET

8URI
http://host:port/rest/sms/delivery-status/${requestIdentifier}

where:

■ host and port are the host name and port of the system on which Services
Gatekeeper is installed.

■ requestIdentifier is the identifier returned in the result object of the corresponding
Send operation.

8Request Body
There is no request body.

8Response Header
Standard header fields. If the request fails, the Status-Line header field will contain the
status code and the reason for the failure. See "Understanding RESTful Errors and
Exceptions".

8Response Body
The response body contains an array of structures as the value for result. Each element
in the array contains values for the following parameters.

■ address: String. The SIP-formatted URI to which the initial message was sent.

Get SMS Delivery Status

Adding RESTful Short Messaging Support 8-13

■ deliveryStatus: Enumeration value. Table 8–1 lists the possible status:

The response body for this operation is represented by the following JSON data
structure, where the value part of each name/value pair indicates its data type:

{"result": [{
 "address": "URI",
 "deliveryStatus":
"DeliveredToNetwork|DeliveryUncertain|DeliveryImpossible|MessageWaiting|DeliveredT
oTerminal|DeliveryNotificationNotSupported"
}]}

Table 8–1 Enumeration Values for Delivery Status

Value Description

DeliveredToNetwork Successful delivery to network. For concatenated
messages, returned only when all the SMS-parts
have been successfully delivered to the network.

DeliveryUncertain Delivery status unknown; for example, if the
message was handed off to another network.

DeliveryImpossible Unsuccessful delivery; the message could not be
delivered before it expired.

MessageWaiting The message is still queued for delivery. This is a
temporary state, pending transition to one of the
preceding states.

DeliveredToTerminal Successful delivery to terminal. For concatenated
messages, returned only when all the SMS-parts
have been successfully delivered to the terminal.

DeliveryNotificationNotSupported Unable to provide delivery receipt notification.

Start SMS Notification

8-14 Services Gatekeeper Application Developer's Guide

Start SMS Notification

The Start SMS Notification operation starts a notification for the application.

To set up an SMS notification, provide the criteria which will trigger notifications and
a reference object for the delivery of the notifications. The criteria can be a string
which, when matched, could be the notification of an SMS received or of a delivery
receipt. The reference object (also a JSON object) contains the correlator for the
notification, the endpoint address (a specific Bayeux channel name) to which the call
direction notifications must be sent and, optionally, the interface name (a string to
identify the notification).

If the Start SMS Notification request is successful:

■ The response header will contain the URI of the publish/subscribe server.

■ A data object associated with the result of the short message operation will be sent
to the endpoint address specified in the request body. This data object will contain
the appropriate notification (that the message was received or a delivery receipt
for the call).

When the Start SMS notification request is successful, the application can access the
endpoint address to retrieve the specific call event notifications.

8Authorization
Basic

8HTTP Method
PUT

8URI
http://host:port/rest/sms/notification

where host and port are the host name and port of the system on which Services
Gatekeeper is installed.

8Request Header
The MIME-type for the Content-Type header field is application/json.

8Request Body
The request body for the Start SMS Notification operation accepts the following
parameters:

■ criteria: String. Optional. The text to match against in determining whether or not
the application should receive the notification:

– notifySmsReception

– notifySmsDeliveryReceipt

■ reference. JSON object. Required. Use this object to provide the following
information about the endpoint that is to receive the notification:

– correlator: String. Required. The correlator used to identify the notification.

Start SMS Notification

Adding RESTful Short Messaging Support 8-15

– endpoint: String. Required. The URI which represents the endpoint address to
which the notification should be delivered. This string should be a Bayeux
protocol channel name that begins with /bayeux/appInstanceID where
appInstanceID is the client application’s application instance account ID.

For more information on application instances, see the discussion on
managing application instances in Services Gatekeeper Portal Developer's Guide.

– interfaceName: String. Required. A descriptive string to identify the type of
notification.

■ smsServiceActivationNumber: String. Required. The number associated with the
invoked message service, that is the destination address used to send the message

The request body for this operation is represented by the following JSON data
structure, where the value part of each name/value pair indicates its data type:

 "reference": {
 "correlator": "String",
 "endpoint": "URI",
 "interfaceName": "String"
 },
 "smsServiceActivationNumber": "URI",
 "criteria": "String"
}

8Response Header
The Location header field contains the URI of the publish/subscribe server:

http://host:port/rest/sms/notifications

If the request fails, the Status-Line header field will contain the status code and the
reason for the failure. See "Understanding RESTful Errors and Exceptions".

8Response Body
There is no response body. The appropriate notifications (described below) are sent to
the endpoint address provided by the application in the request body of this
operation.

8Notification Data Object for SMS Reception (notifySmsReception)
When an SMS message is successfully retrieved by the called party and the value for
criteria in the request body is notifySmsReception, Services Gatekeeper will send a
nested JSON data object to the endpoint address.

 notifySmsReception is a nested JSON object and contains the following values:

■ correlator: String. Required. The correlator used to identify the notification.

■ message: Nested JSON object. Required. It contains the following:

– message: String. Required. The contents of the SMS message.

– senderAddress: String. Required. The SIP-formatted URI of the sender of the
SMS message.

– smsServiceActivationNumber: String. Required. The number associated with
the invoked message service, that is the destination address used to send the
message.

Start SMS Notification

8-16 Services Gatekeeper Application Developer's Guide

– dateTime: String. Optional. The time at which the message was sent in ISO
8601 extended format, yyyy-mm-ddThh-mm-ss.

The notification data object delivered to the endpoint address when the criteria is
notifySmsReception is represented by the following JSON data structure, where the
value part of each name/value pair indicates its data type:

{"notifySmsReception": {
 "correlator": "String",
 "message": {
 "message": "String",
 "senderAddress": "URI",
 "smsServiceActivationNumber": "URI",
 "dateTime": "Calendar"
 }
}}

8Notification Data Object for SMS Delivery Receipt (notifySmsDeliveryReceipt)
When an SMS message is successfully retrieved by the called party and the value for
criteria in the request body is , Services Gatekeeper sends a nested JSON data object to
the endpoint address.

notifySmsDeliveryReceipt is a nested JSON object and contains the following values:

■ correlator: String. The correlator used to identify the notification.

■ deliveryStatus. Enumeration value. Table 8–2 lists the possible status values:

The notification data object delivered to the endpoint address when the criteria is
notifySmsDeliveryReceipt is represented by the following JSON data structure,
where the value part of each name/value pair indicates its data type:

{"notifySmsDeliveryReceipt": {
 "correlator": "String",
 "deliveryStatus": {
 "address": "URI",
 "deliveryStatus":
"DeliveredToNetwork|DeliveryUncertain|DeliveryImpossible|MessageWaiting|DeliveredT
oTerminal|DeliveryNotificationNotSupported"
 }

Table 8–2 Enumeration Values for Delivery Status

Value Description

DeliveredToNetwork Successful delivery to network. For concatenated
messages, this is the value only when all the parts
of the SMS message have been successfully
delivered to the network.

DeliveryUncertain Delivery status unknown; for example, if the
message was handed off to another network.

DeliveryImpossible Unsuccessful delivery; the message could not be
delivered before it expired.

DeliveredToTerminal Successful delivery to terminal. For concatenated
messages, this is the value only when all the parts
of the SMS message have been successfully
delivered to the terminal.

DeliveryNotificationNotSupported Unable to provide delivery receipt notification.

Start SMS Notification

Adding RESTful Short Messaging Support 8-17

}}

Stop SMS Notification

8-18 Services Gatekeeper Application Developer's Guide

Stop SMS Notification

The Stop SMS Notification operation terminates a previously set up SMS notification
for the application.

To stop a previously set up SMS notification, provide the correlator for the notification
passed earlier in the Start SMS Notification request.

There is no request or response body for the Stop SMS Notification operation. If the
request fails, the body of the error response will contain the identifier for the
notification and the type of exception.

8Authorization
Basic

8HTTP Method
DELETE

8URI
http://host:port/rest/sms/notification/${correlator}

where:

■ host and port are the host name and port of the system on which Services
Gatekeeper is installed.

■ correlator is the correlator for the notification provided in the reference object of
the initial Start SMS Notification request body.

8Request Body
There is no request body.

8Response Header
Standard header fields. If the request fails, the Status-Line header field will contain the
status code and the reason for the failure. See "Understanding RESTful Errors and
Exceptions".

8Response Body
There is no response body.

8Examples

Example 8–1 Stop Message Notification Request

DELETE /rest/sms/notification/12345 HTTP/1.1
X-Session-ID: app:4130997928482260925
Authorization: Basic ZG9tYWluX3VzZXI6ZG9tYWluX3VzZXI=
X-Param-Keys:
X-Param-Values:
User-Agent: Jakarta Commons-HttpClient/3.0
Host:servgtkpr_host.port

Stop SMS Notification

Adding RESTful Short Messaging Support 8-19

Example 8–2 Stop Message Notification Response

HTTP/1.1 204 No Content
Connection: close
Date: Thu, 04 Nov 2101 09:59:05 GMT
Content-Length: 0
X-Plugin-Param-Keys:
X-Plugin-Param-Values:
X-Powered-By: Servlet/2.5 JSP/2.1

Stop SMS Notification

8-20 Services Gatekeeper Application Developer's Guide

9

Adding RESTful Multimedia Messaging Support 9-1

9Adding RESTful Multimedia Messaging
Support

This chapter describes the operations in the Multimedia Messaging interface of the
RESTful facade provided in Oracle Communications Services Gatekeeper.

About the Multimedia Messaging Interface
Applications use the RESTful Multimedia Messaging interface to send a multimedia
message (MMS message) and to fetch information on MMS messages that have been
received for the applications and stored on Services Gatekeeper.

Applications use the interface to fetch those messages, get delivery status on sent
messages, and start and stop a notification.

The actual message is sent as an attachment. See "Headers for Multipart Messages
with Attachments" for more information.

For an application to be informed that a party has received an MMS message or that a
message delivery receipt has been sent, the application includes an application
endpoint address for such delivery notifications in the body of the request message.
This address resides on a publish/subscribe server. See "RESTful Notifications and
Publish/Subscribe" for more information about publishing and subscribing to RESTful
notifications.

REST Service Descriptions Available at Run-time
When the Administration Server for your Services Gatekeeper domain is in the
running state, the REST service descriptions of these operations can be found at

http://host:port/rest/multimedia_messaging/index.html

where host and port are the host name and port of the system on which Services
Gatekeeper is installed.

Send Message

9-2 Services Gatekeeper Application Developer's Guide

Send Message

The Send Message operation delivers a multimedia message.

To send a multimedia message, provide the SIP-formatted URI of the addresses which
the must receive the message in the request body. If there is to be a charge for the
messaging, the request body should contain the required charging object. If the sender
requires a delivery receipt, specify the required parameters for the receipt and the SIP
formatted URI address of the sender. Also, a priority value, and a subject line can be
provided in the request body.

If the Send Message operation is successful, the response header will contain the URI
of the publish/subscribe server and the request identifier which is also provided in the
response body for this operation.

9Authorization
Basic

9HTTP Method
POST

9URI
http://host:port/rest/multimedia_messaging/messages

where host and port are the host name and port of the system on which Services
Gatekeeper is installed.

9Request Header
The request headers depend on the type of message:

■ If the message content is in the form of an attachment, the request will be
multipart and the request header must contain the header fields that describe the
parts of the message.

■ If the message does not contain an attachment, the special headers associated with
the multipart messaged are not used.

See Example 9–1 for a listing of both types of headers.

9Message Part Content
The Message Part Content for the Send Message operation accepts the following
parameters:

■ addresses: Array of string values. Required. The set of addresses of the recipients
as an array of URIs.

■ subject: String. Optional. The text of the message.

■ priority: String. Optional. The message priority specified as one of the following:

– Default

– Low

– Normal

Send Message

Adding RESTful Multimedia Messaging Support 9-3

– High

■ senderAddress: String. Optional. The sender’s address (URI).

■ charging: A JSON object. Optional. This object defines the cost charging properties
for the operation. The entry "charging":null indicates no charge. If a charge is to
be applied, provide values for the following in the charging object:

– description: String. Required if the charging object is present in the body of
the request. The text to be used for information and billing.

– amount: Number (integer, or decimal). Optional. The amount to be charged.

– code: String. Optional. The charging code, from an existing contractual
description.

– currency: String. Optional. The currency identifier as defined in ISO 4217 [9].

■ receiptRequest: A JSON object. Optional. If a delivery receipt is required, provide
values for each of the following parameters which define this object:

– correlator: String. Required. Used to correlate the receipt with the initial
message.

If the callback reference correlator is defined in the receiptRequest object of
the Send Message request, Services Gatekeeper will invoke Notify Message
Delivery Receipt and discard the delivery status information.

– endpoint: String. The endpoint address (URI) to which the receipt must be
delivered: a Bayeux protocol channel name that is the client application’s
application instance account ID.

– interfaceName: String. Required. A description provided to identify the type
of receipt.

The message part Content for this operation is represented by the following JSON data
structure, where the value part of each name/value pair indicates its data type:

{
 "addresses": ["URI"],
 "charging": {
 "description": "String",
 "amount": "BigDecimal",
 "code": "String",
 "currency": "String"
 },
 "priority": "Default|Low|Normal|High",
 "receiptRequest": {
 "correlator": "String",
 "endpoint": "URI",
 "interfaceName": "String"
 },
 "senderAddress": "String",
 "subject": "String"
}

9Response Header
The Location header field contains the URI of the publish/subscribe server as:

http://host:port/rest/multimedia_messaging/delivery_status/result

Send Message

9-4 Services Gatekeeper Application Developer's Guide

where, result is the string identifier for the request that is returned in the response
body.

If the request fails, the Status-Line header field will contain the status code and the
reason for the failure. See "Understanding RESTful Errors and Exceptions".

9Response Body
The body of the response contains the request identifier returned in the Location
header field of the response message as value for result.

The response body for this operation is represented by the following JSON data
structure, where the value part of the name/value pair indicates its data type:

{"result": "String"}

9Examples

Example 9–1 Send Message Requests (SIngle Part Message)

This first example shows a POST method with a message in a single part.

POST /rest/multimedia_messaging/messages HTTP/1.1
X-Session-ID: app:-7603991555266551180
Authorization: Basic ZG9tY1uX3VzZXI6ZG9tYWluX3VzZXI=
X-Param-Keys:
X-Param-Values:
User-Agent: Jakarta Commons-HttpClient/3.0
Host: localhost:8001
Content-Length: 253
Content-Type: application/json

{
 "addresses":["tel:8765","tel:7654","tel:6543"],
 "subject":"Meeting starts at 2 p.m.",
 "priority":null,
 "senderAddress":"tel:1234",
"charging":null

 "receiptRequest":
{
 "correlator":"981234",
 "endpoint":"http://endpt_host:port/jaxws/MessageNotification",
"interfaceName":"interfaceName",

}
 }

Example 9–2 Send Message Requests (SIngle Part Message)

The second example shows a POST method with a multipart message. Note the use of
header fields to describe the content and the boundary attribute to distinguish the
message parts.

POST /rest/multimedia_messaging/messages HTTP/1.1
X-Session-ID: app: -123456789012346789
Authorization: Basic ZG9tY1uX3VzZXI6ZG9tYWluX3VzZXI=
X-Param-Keys:
X-Param-Values:
User-Agent: Jakarta Commons-HttpClient/3.0
Host: localhost:8001

Send Message

Adding RESTful Multimedia Messaging Support 9-5

Content-Length: 1215
Content-Type: multipart/form-data; boundary=kboiiFPAakDPYKeY7hBAW9I5c0rT48

--kboiiFPAakDPYKeY7hBAW9I5c0rT48
Content-Disposition: form-data; name="messagePart"
Content-Type: application/json; charset=US-ASCII
Content-Transfer-Encoding: 8bit

{
 "addresses":["tel:8765","tel:7654","tel:6543"],
 "subject":"Hello World",
 "priority":null,
 "senderAddress":"tel:1234",
"charging":null,

 "receiptRequest":
{
 "correlator":"981234",
 "endpoint":"http://endpt_host:port/jaxws/MessageNotification",
"interfaceName":"interfaceName"

}
 }
--kboiiFPAakDPYKeY7hBAW9I5c0rT48
Content-Disposition: form-data; name="Attachment-txt-1"
Content-Type: text/plain; charset=US-ASCII
Content-Transfer-Encoding: 8bit

Oracle Communications Services Gatekeeper is a powerful, flexible, secure
interface which provides a simple way for application developers to include
telephony-based functionality in their software applications and guarantee the
security, stability, and performance required by network operators and demanded by
their subscribers.
--kboiiFPAakDPYKeY7hBAW9I5c0rT48

Get Received Messages

9-6 Services Gatekeeper Application Developer's Guide

Get Received Messages

The Get Received Messages operation retrieves an array of network-triggered
messages that have arrived at Services Gatekeeper.

The request body for Get Received Messages contains the registration identifier
necessary to retrieve the required multimedia messages intended for the application
and, optionally, it may also contain a priority for the retrieval. The registration
identifier should have been set up with the off-line provisioning step completed
earlier.

If the Get Received Messages operation is successful, the response body will contain
the data about the message. If the content of the message is pure ASCII, the response
body contains the message. Otherwise the response body contains an identifier that is
used to fetch the actual message.

9Authorization
Basic

9HTTP Method
POST

9URI
http://host:port/rest/multimedia_messaging/receive-messages

where host and port are the host name and port of the system on which Services
Gatekeeper is installed.

9Request Header
The MIME-type for the Content-Type header field is application/json.

9Request Body
The request body for the Get Received Messages operation accepts the following
parameters:

■ registrationIdentifier: String. Required. The value previously set up to enable the
application to receive notification of multimedia message reception according to
specified criteria.

See "Configuring Offline Notifications for MMS Messages" for more information
on provisioning offline notifications.

■ priority: String. Optional. The message priority specified as one of the following:

– Default

– Low

– Normal

– High

The request body for this operation is represented by the following JSON data
structure, where the value part of each name/value pair indicates its data type:

{

Get Received Messages

Adding RESTful Multimedia Messaging Support 9-7

 "registrationIdentifier": "String",
 "priority": "Default|Low|Normal|High"
}

9Response header
Standard header fields. If the request fails, the Status-Line header field will contain the
status code and the reason for the failure. See "Understanding RESTful Errors and
Exceptions".

9Response Body
The response body contains an array of structures as the value for result. Each element
in the array contains values for the following parameters.

■ messageServiceActivationNumber: String. The number associated with the
invoked message service, that is the destination address used to send the message.

■ priority: String. The message priority value from the request.

■ senderAddress: String. The SIP-formatted URI of the sender.

■ dateTime: String. The start time for the call in ISO 8601 extended format,
yyyy-mm-ddThh-mm-ss.

■ message: String. Present if the text of the message is purely ASCII text.

■ messageIdentifier: String. An identifier used to fetch the message, when it is not
pure ASCII text. This value is used in the URI of the request for the "Get Message"
operation.

■ subject: String. The subject line of the multimedia message.

The response body for this operation is represented by the following JSON data
structure, where the value part of each name/value pair indicates its data type:

{"result": [{
 "messageServiceActivationNumber": "String",
 "priority": "Default|Low|Normal|High",
 "senderAddress": "URI",
 "dateTime": "Calendar",
 "message": "String",
 "messageIdentifier": "String",
 "subject": "String"
}]}

Get Message

9-8 Services Gatekeeper Application Developer's Guide

Get Message

The Get Message operation fetches a network-triggered message for the application
from Services Gatekeeper.

To get a message, provide the appropriate message identifier in the URI for the GET
method.

The actual message is returned as an attachment.

9Authorization
Basic

9HTTP Method
GET

9URI
http://host:port/rest/multimedia_messaging/message/${messageRefIdentifier}

where:

■ host and port are the host name and port of the system on which Services
Gatekeeper is installed.

■ messageRefIdentifier is the value for messageIdentifier in:

– The response body of the "Get Received Messages" operation.

– The notifyMessageReception data object. See "Notification Data Object for
Message Reception (notifyMessageReception)".

9Request Header
The MIME-type for the Content-Type header field is application/json.

9Request Body
There is no request body.

9Response Header
The MIME-type for the Content-Type header field is multipart/mixed.

If the request fails, the Status-Line header field will contain the status code and the
reason for the failure. See "Understanding RESTful Errors and Exceptions".

9Response Body
There is no response body.

Get Message Delivery Status

Adding RESTful Multimedia Messaging Support 9-9

Get Message Delivery Status

The Get Message Delivery Status operation retrieves the delivery status of a
previously sent message.

This operation is valid only if the correlator callback reference was not defined in the
receiptRequest object of the initial request to send the multimedia message. In such a
scenario, Services Gatekeeper stores the delivery status for a configurable period. If the
callback reference correlator is defined in the receiptRequest object of the initial
multimedia message request, Services Gatekeeper will invoke the Notify Message
Delivery Receipt operation and discard the delivery status information.

The request header for the Get Message Delivery Status operation contains the request
identifier from result object of the initial request.

If the Get Message Delivery Status operation is successful, the response body will
contain the SIP-formatted URI from the address field in the Send Message request and
corresponding delivery status for the message.

9Authorization
Basic

9HTTP Method
GET

9URI
http://host:port/rest/multimedia_messaging/delivery_status/${requestIdentifier}

where:

■ host and port are the host name and port of the system on which Services
Gatekeeper is installed.

■ requestIdentifier is a string returned in the result object of the initial Send Message
request.

9Request Header
The MIME-type for the Content-Type header field is application/json.

9Request Body
There is no request body.

9Response Header
Standard header fields. If the request fails, the Status-Line header field will contain the
status code and the reason for the failure. See "Understanding RESTful Errors and
Exceptions".

9Response Body
The response body contains an array of structures as the value for result. Each element
in the array contains values for the following parameters.

■ address: String. The SIP-formatted URI to which the initial message was sent.

Get Message Delivery Status

9-10 Services Gatekeeper Application Developer's Guide

■ deliveryStatus. Enumeration value. Table 9–1 lists the possible statuses:

The response body for this operation is represented by the following JSON data
structure, where the value part of each name/value pair indicates its data type:

{"result": [{
 "address": "URI",
 "deliveryStatus":
"DeliveredToTerminal|DeliveryUncertain|DeliveryImpossible|MessageWaiting|Delivered
ToNetwork|DeliveryNotificationNotSupported"
}]}

Table 9–1 Enumeration Values for Delivery Status

Value Description

DeliveredToNetwork Successful delivery to network. For concatenated
messages, returned only when all the MMS parts
have been successfully delivered to the network.

DeliveryUncertain Delivery status unknown; for example, if it was
handed off to another network.

DeliveryImpossible Unsuccessful delivery; the message could not be
delivered before it expired.

MessageWaiting The message is still queued for delivery. This is a
temporary state, pending transition to one of the
preceding states.

DeliveredToTerminal Successful delivery to terminal. For concatenated
messages, returned only when all the MMS parts
have been successfully delivered to the terminal.

DeliveryNotificationNotSupported Unable to provide delivery receipt notification.

Start Message Notification

Adding RESTful Multimedia Messaging Support 9-11

Start Message Notification

The Start Message Notification operation starts a notification for the application.

To set up a multimedia message notification, provide the criteria which will trigger
notifications and a reference object for the delivery of the notifications. The criteria can
be a string which, when matched, could be the notification of a multimedia message
received or of a delivery receipt. The reference object (also a JSON object) contains the
correlator for the notification, the endpoint address (a specific Bayeux channel name)
to which the call direction notifications must be sent and, optionally, the interface
name (a string to identify the notification).

If the Start Message Notification request is successful:

■ The response header will contain the URI of the publish/subscribe server.

■ A data object associated with the result of the short message operation will be sent
to the endpoint address specified in the request body. This data object will contain
the appropriate notification (that the message was received or a delivery receipt
for the call).

When the application receives such a response, it must access the endpoint address to
retrieve the specific call event notifications.

9Authorization
Basic

9HTTP Method
PUT

9URI
http://host:port/rest/multimedia_messaging/notification

where host and port are the host name and port of the system on which Services
Gatekeeper is installed.

9Request Header
The MIME-type for the Content-Type header field is application/json.

9Request Body
The request body is a nested JSON object containing the following parameters:

■ reference. JSON object. Required. Use this object to provide the following
information about the endpoint that is to receive the notification:

– correlator: String. Required. The correlator used to identify the notification.

– endpoint: String. Required. The URI which represents the endpoint address to
which the notification should be delivered. This string should be a Bayeux
protocol channel name that begins with /bayeux/appInstanceID where
appInstanceID is the client application’s application instance account ID.

For more information on managing application instances, see Services
Gatekeeper Portal Developer's Guide.

Start Message Notification

9-12 Services Gatekeeper Application Developer's Guide

– interfaceName: String. Required. A descriptive string to identify the type of
notification.

■ messageServiceActivationNumber: String. Required. The number associated with
the invoked message service, that is the destination address used to send the
message

■ criteria: String. Optional. The text to match against in determining whether or not
the application should receive the notification:

– notifyMessageReception

– notifyMessageDeliveryReceipt

The request body for this operation is represented by the following JSON data
structure, where the value part of each name/value pair indicates its data type:

{
 "messageServiceActivationNumber": "URI",
 "reference": {
 "correlator": "String",
 "endpoint": "URI",
 "interfaceName": "String"
 },
 "criteria": "String"
}

9Response Header
The Location header field contains the URI of the publish/subscribe server:

http://host:port/rest/multimedia_messaging/notifications

If the request fails, the Status-Line header field will contain the status code and the
reason for the failure. See "Understanding RESTful Errors and Exceptions".

9Response Body
There is no response body. The appropriate notifications (described below) are sent to
the endpoint address provided by the application in the request body of this
operation.

9Notification Data Object for Message Reception (notifyMessageReception)
When a multimedia message is successfully retrieved by the called party and the value
for criteria in the request body is notifyMessageReception, Services Gatekeeper sends
a nested JSON data object to the endpoint address.

This nested JSON object contains the following as the value of the attribute name
notifyMessageReception:

■ correlator: String. The correlator used to identify the notification.

■ message. Nested JSON object. It contains the following:

– message: String. The contents of the multimedia message.

– senderAddress: String. The SIP-formatted URI of the sender of the
multimedia message.

Start Message Notification

Adding RESTful Multimedia Messaging Support 9-13

– messageServiceActivationNumber: String. The number associated with the
invoked Message service, that is the destination address used to send the
message.

– dateTime: String. The time at which the message was sent in ISO 8601
extended format, yyyy-mm-ddThh-mm-ss.

The notification data object delivered to the endpoint address when the criteria is
notifyMessageReception is represented by the following JSON data structure, where
the value part of each name/value pair indicates its data type:

{"notifyMessageReception": {
 "correlator": "String",
 "message": {
 "messageServiceActivationNumber": "String",
 "priority": "Default|Low|Normal|High",
 "senderAddress": "URI",
 "dateTime": "Calendar",
 "message": "String",
 "messageIdentifier": "String",
 "subject": "String"
 }
}}

9Notification Data Object for MMS Delivery Receipt (notifyMessageDeliveryReceipt)
When a multimedia message is successfully retrieved by the called party and the value
for criteria in the request body is notifyMessageDeliveryReceipt, Services Gatekeeper
sends a nested JSON data object to the endpoint address.

This nested JSON object contains the following as the value of the attribute name
notifyMessageDeliveryReceipt:

■ correlator: String. The correlator used to identify the notification.

■ deliveryStatus: Enumeration value. Table 9–2 lists the possible statuses:

The notification data object delivered to the endpoint address when the criteria is
notifyMessageDeliveryRecipt is represented by the following JSON data structure,
where the value part of each name/value pair indicates its data type:

{"notifyMessageDeliveryReceipt": {
 "correlator": "String",

Table 9–2 Enumeration Values for Delivery Status

Value Description

DeliveredToNetwork Successful delivery to network. For concatenated
messages, returned only when all the MMS parts
have been successfully delivered to the network.

DeliveryUncertain Delivery status unknown; for example, if it was
handed off to another network.

DeliveryImpossible Unsuccessful delivery; the message could not be
delivered before it expired.

DeliveredToTerminal Successful delivery to terminal. For concatenated
messages, returned only when all the MMS parts
have been successfully delivered to the terminal.

DeliveryNotificationNotSupported Unable to provide delivery receipt notification.

Start Message Notification

9-14 Services Gatekeeper Application Developer's Guide

 "deliveryStatus": {
 "address": "URI",
 "deliveryStatus":
"DeliveredToTerminal|DeliveryUncertain|DeliveryImpossible|MessageWaiting|Delivered
ToNetwork|DeliveryNotificationNotSupported"
 }
}}

Stop Message Notification

Adding RESTful Multimedia Messaging Support 9-15

Stop Message Notification

The Stop Message Notification operation terminates a previously set up multimedia
message notification for the application.

To stop a previously set up multimedia message notification, provide the correlator for
the notification passed earlier in the Start Message Notification request.

There is no request or response body for the Stop Message Notification operation. If
the request fails, the body of the error response will contain the identifier for the
notification and the type of exception.

9Authorization
Basic

9HTTP Method
DELETE

9URI
http://host:port/rest/multimedia_messaging/notification/correlator

where:

■ host and port are the host name and port of the system on which Services
Gatekeeper is installed.

■ correlator is the correlator for the notification provided in the reference object of
the initial Start Message Notification operation.

9Request Body
There is no request body.

9Response Header
Standard header fields. If the request fails, the Status-Line header field will contain the
status code and the reason for the failure. See "Understanding RESTful Errors and
Exceptions".

9Response Body
There is no response body.

9Examples

Example 9–3 Stop Message Notification Request

DELETE /rest/multimedia_messaging/notification/6789 HTTP/1.1
X-Session-ID: app:4130997928482260925
Authorization: Basic ZG9tYWluX3VzZXI6ZG9tYWluX3VzZXI=
X-Param-Keys:
X-Param-Values:
User-Agent: Jakarta Commons-HttpClient/3.0
Host:servgtkpr_host.port

Stop Message Notification

9-16 Services Gatekeeper Application Developer's Guide

Example 9–4 Stop Message Notification Response

HTTP/1.1 204 No Content
Connection: close
Date: Thu, 04 Nov 2101 09:59:05 GMT
Content-Length: 0
X-Plugin-Param-Keys:
X-Plugin-Param-Values:
X-Powered-By: Servlet/2.5 JSP/2.1

10

Adding RESTful Email Communication Service Support 10-1

10Adding RESTful Email Communication Service
Support

This chapter describes the operations in the Email Communication interface of the
RESTful facade provided in Oracle Communications Services Gatekeeper.

About the Email Communication Interface
Applications use the RESTful Email Communication interface to send an email
message and to fetch information on email messages that have been received for the
applications and stored on Services Gatekeeper.

Applications use the interface to fetch those messages, get delivery status on sent
messages, and start and stop a notification.

The actual message is sent as an attachment. See "Headers for Multipart Messages
with Attachments" for more information.

For an application to be informed that a party has received an MMS message or that a
message delivery receipt has been sent, the application includes an application
endpoint address for such delivery notifications in the body of the request message.
This address resides on a publish/subscribe server. See "RESTful Notifications and
Publish/Subscribe" for information on publishing and subscribing to RESTful
notifications.

REST Service Descriptions Available at Run-time
When the Administration Server for your Services Gatekeeper domain is in the
running state, the REST service descriptions of these operations can be found at

http://host:port/rest/multimedia_messaging/index.html

where host and port are the host name and port of the Services Gatekeeper access tier
server.

Send Message

10-2 Services Gatekeeper Application Developer's Guide

Send Message

The Send Message operation delivers an email message.

To send an email message, provide the SIP-formatted URI of the addresses which the
must receive the message in the request body. If there is to be a charge for the
messaging, the request body should contain the required charging object. If the sender
requires a delivery receipt, specify the required parameters for the receipt and the SIP
formatted URI address of the sender. Also, a priority value, and a subject line can be
provided in the request body.

The Plug-In Manager uses the email: prefix in the sender address and destination
address to route the email message to the email plug-in instance.

If the Send Message operation is successful, the response header will contain the URI
of the publish/subscribe server and the request identifier which is also provided in the
response body for this operation.

10Authorization
Basic

10HTTP Method
POST

10URI
http://host:port/rest/multimedia_messaging/messages

where host and port are the host name and port number of the Services Gatekeeper
access tier.

10Request Header
The request headers depend on the type of message:

■ If the message content is in the form of an attachment, the request will be
multipart and the request header must contain the header fields that describe the
parts of the message.

■ If the message does not contain an attachment, the special headers associated with
the multipart messaged are not used.

■ The X-Parameter ContentInFirstAttachment is added to indicate whether or not
there is an email body. If this X-Parameter is set to true or is absent, then the first
attachment contains the email body and remaining attachments are handled as
regular attachments. If this X-Parameter is set to false, then all attachments are
handled as regular attachments and the email body is empty.

See Example 10–1 for a listing of both types of headers.

10Message Part Content
The message part content for the Send Message operation accepts the following
parameters:

Send Message

Adding RESTful Email Communication Service Support 10-3

■ addresses: Array of string values. Required. Use the email: prefix in the sender
address and destination address to indicate to the Plug-in Manager that it is an
email message intended for the email plug-in.

■ subject: String. Optional. The text of the message.

■ priority: String. Optional. The message priority specified as one of the following:

– Default

– Low

– Normal

– High

■ senderAddress: String. Use the email: prefix.

■ receiptRequest: A JSON object. Provide values for each of the following
parameters which define this object:

– correlator: String. Required. Used to correlate the receipt with the initial
message.

If the callback reference correlator is defined in the receiptRequest object of
the Send Message request, Services Gatekeeper will invoke notifyMessage
Delivery Receipt and discard the delivery status information.

– endpoint: String. The endpoint address (URI) to which the receipt must be
delivered. The address is a Bayeux protocol channel name that is the client
application’s application instance account ID.

– interfaceName: String. Required. A description provided to identify the type
of receipt.

The message part content for this operation is represented by the following JSON data
structure, where the value part of each name/value pair indicates its data type:

{
 "addresses": ["URI"],
 "priority": "Default|Low|Normal|High",
 "receiptRequest": {
 "correlator": "String",
 "endpoint": "URI",
 "interfaceName": "String"
 },
 "senderAddress": "String",
 "subject": "String"
}

See Example 10–1 for a listing of the message part.

10Response Header
The Location header field contains the URI of the publish/subscribe server as:

http://host:port/rest/multimedia_messaging/delivery-status/result

where, result is the string identifier for the request that is returned in the response
body.

If the request fails, the Status-Line header field will contain the status code and the
reason for the failure. See "Understanding RESTful Errors and Exceptions".

Send Message

10-4 Services Gatekeeper Application Developer's Guide

10Response Body
The body of the response contains the request identifier returned in the Location
header field of the response message as value for result.

The response body for this operation is represented by the following JSON data
structure, where the value part of the name/value pair indicates its data type:

{"result": "String"}

10Examples

Example 10–1 Send Message Operation (Single Part MMS)

This example shows a POST method with a message.

POST /rest/multimedia_messaging/messages HTTP/1.1
X-Session-ID: app:-7603991555266551180
Authorization: Basic ZG9tY1uX3VzZXI6ZG9tYWluX3VzZXI=
X-Param-Keys: ContentInFirstAttachment
X-Param-Values: false
User-Agent: Jakarta Commons-HttpClient/3.0
Host: localhost:8001
Content-Length: 253
Content-Type: application/json

{

"addresses":["email:sam@example.com","email:john@example.com","email:tom@example.c
om"],
 "subject":"Meeting starts at 2 p.m.",
 "priority":null,
 "senderAddress":"email:bob@example.com",
"charging":null

 "receiptRequest":
{
 "correlator":"981234",
 "endpoint":"http://endpt_host:port/jaxws/MessageNotification",
"interfaceName":"interfaceName",

}
 }

Example 10–2 Send Message Operation (Multipart MMS)

This example shows a POST method with a multipart message. Note the use of header
fields to describe the content and the boundary attribute to distinguish the message
parts.

POST /rest/multimedia_messaging/messages HTTP/1.1
X-Session-ID: app: -123456789012346789
Authorization: Basic ZG9tY1uX3VzZXI6ZG9tYWluX3VzZXI=
X-Param-Keys: ContentInFirstAttachment
X-Param-Values: true
User-Agent: Jakarta Commons-HttpClient/3.0
Host: localhost:8001
Content-Length: 1215
Content-Type: multipart/form-data; boundary=kboiiFPAakDPYKeY7hBAW9I5c0rT48

--kboiiFPAakDPYKeY7hBAW9I5c0rT48

Send Message

Adding RESTful Email Communication Service Support 10-5

Content-Disposition: form-data; name="messagePart"
Content-Type: application/json; charset=US-ASCII
Content-Transfer-Encoding: 8bit

{

"addresses":["email:sam@example.com","email:john@example.com","email:tom@example.c
om"],
 "subject":"Hello World",
 "priority":null,
 "senderAddress":"email:bob@example.com",
"charging":null,

 "receiptRequest":
{
 "correlator":"981234",
 "endpoint":"http://endpt_host:port/jaxws/MessageNotification",
"interfaceName":"interfaceName"

}
 }
--kboiiFPAakDPYKeY7hBAW9I5c0rT48
Content-Disposition: form-data; name="Attachment-txt-1"
Content-Type: text/plain; charset=US-ASCII
Content-Transfer-Encoding: 8bit

Oracle Communications Services Gatekeeper is a powerful, flexible, secure
interface which provides a simple way for application developers to include
telephony-based functionality in their software applications and guarantee the
security, stability, and performance required by network operators and demanded by
their subscribers.
--kboiiFPAakDPYKeY7hBAW9I5c0rT48

Get Received Messages

10-6 Services Gatekeeper Application Developer's Guide

Get Received Messages

The Get Received Messages operation retrieves an array of network-triggered
messages that have arrived at Services Gatekeeper.

The request body for Get Received Messages contains the registration identifier
necessary to retrieve the required email messages intended for the application and,
optionally, it may also contain a priority for the retrieval. The registration identifier
should have been set up with the off-line provisioning step completed earlier.

If Get Received Messages is successful, the response body will contain the data about
the message. If the content of the message is pure ASCII, the response body contains
the message. Otherwise the response body contains an identifier that is used to fetch
the actual message.

10Authorization
Basic

10HTTP Method
POST

10URI
http://host:port/rest/multimedia_messaging/receive-messages

where host and port are the host name and port number of the Services Gatekeeper
access tier.

10Request Header
The MIME-type for the Content-Type header field is application/json.

10Request Body
The request body for the Get Received Messages operation accepts the following
parameters:

■ registrationIdentifier: String. Required. The value previously set up to enable the
application to receive notification of email reception according to specified criteria.

■ priority: String. Optional. The message priority specified as one of the following:

– Default

– Low

– Normal

– High

The request body for this operation is represented by the following JSON data
structure, where the value part of each name/value pair indicates its data type:

{
 "registrationIdentifier": "String",
 "priority": "Default|Low|Normal|High"
}

Get Received Messages

Adding RESTful Email Communication Service Support 10-7

10Response header
Standard header fields. If the request fails, the Status-Line header field will contain the
status code and the reason for the failure. See "Understanding RESTful Errors and
Exceptions".

10Response Body
The response body contains an array of structures as the value for result. Each element
in the array contains values for the following parameters.

■ messageServiceActivationNumber: String. The number associated with the
invoked message service, that is the destination address used to send the message.

■ priority: String. The message priority value from the request.

■ senderAddress: String.

■ dateTime: String. The start time for the call in ISO 8601 extended format,
yyyy-mm-ddThh-mm-ss.

■ message: String. Present if the text of the message is purely ASCII text.

■ messageIdentifier: String. An identifier used to fetch the message, when it is not
pure ASCII text. This value is used in the URI of the request for the "Get Message"
operation.

■ subject: String. The subject line of the email message.

The response body for this operation is represented by the following JSON data
structure, where the value part of each name/value pair indicates its data type:

{"result": [{
 "messageServiceActivationNumber": "String",
 "priority": "Default|Low|Normal|High",
 "senderAddress": "URI",
 "dateTime": "Calendar",
 "message": "String",
 "messageIdentifier": "String",
 "subject": "String"
}]}

Get Message

10-8 Services Gatekeeper Application Developer's Guide

Get Message

The Get Message operation fetches a network-triggered message for the application
from Services Gatekeeper.

To get a message, provide the appropriate message identifier in the URI for the GET
method.

The actual message is returned as an attachment.

10Authorization
Basic

10HTTP Method
GET

10URI
http://host:port/rest/multimedia_messaging/message/${messageRefIdentifier}

where:

■ host and port are the host name and port number of the Services Gatekeeper access
tier.

■ messageRefIdentifier is the value for messageIdentifier in:

– the response body of the "Get Received Messages" operation

– notifyMessageReception data object. See "Notification Data Object for
Message Reception (notifyMessageReception)"

10Request Header
The MIME-type for the Content-Type header field is application/json.

10Request Body
There is no request body.

10Response Header
The MIME-type for the Content-Type header field is multipart/mixed.

If the request fails, the Status-Line header field will contain the status code and the
reason for the failure. See "Understanding RESTful Errors and Exceptions".

10Response Body
There is no response body.

Get Message Delivery Status

Adding RESTful Email Communication Service Support 10-9

Get Message Delivery Status

The Get Message Delivery Status operation retrieves the delivery status of a
previously sent message.

This operation is valid only if the correlator callback reference was not defined in the
receiptRequest object of the initial request to send the email message. In such a
scenario, Services Gatekeeper stores the delivery status for a configurable period.

If the callback reference correlator is defined in the receiptRequest object of the initial
send email request, Services Gatekeeper will invoke the Notify Message Delivery
Receipt operation and discard the delivery status information.

The request header for the Get Message Delivery Status operation contains the request
identifier from result object of the initial request.

If Get Message Delivery Status operation is successful, the response body will contain
the SIP-formatted URI from the address field in the Send Message request and
corresponding delivery status for the message.

10Authorization
Basic

10HTTP Method
GET

10URI
http://host:port/rest/emailmultimedia_messaging/delivery_
status/${requestIdentifier}

where:

■ host and port are the host name and port number of the Services Gatekeeper access
tier.

■ requestIdentifier is a string returned in the result object of the initial Send Message
request.

10Request Header
The MIME-type for the Content-Type header field is application/json.

10Request Body
There is no request body.

10Response Header
Standard header fields. If the request fails, the Status-Line header field will contain the
status code and the reason for the failure. See "Understanding RESTful Errors and
Exceptions".

10Response Body
The response body contains an array of structures as the value for result. Each element
in the array contains values for the following parameters.

Get Message Delivery Status

10-10 Services Gatekeeper Application Developer's Guide

■ address: String. The SIP-formatted URI to which the initial message was sent.

■ deliveryStatus: Enumeration value. Table 10–1 lists the possible status:

The response body for this operation is represented by the following JSON data
structure, where the value part of each name/value pair indicates its data type:

{"result": [{
 "address": "URI",
 "deliveryStatus":
"DeliveredToTerminal|DeliveryUncertain|DeliveryImpossible|MessageWaiting|Delivered
ToNetwork"
}]}

Table 10–1 Enumeration Values for Delivery Status

Value Description

DeliveredToNetwork Successful delivery to network. For concatenated
messages, returned only when all the email-parts
have been successfully delivered to the network.

DeliveryUncertain Delivery status unknown; for example, if it was
handed off to another network.

DeliveryImpossible Unsuccessful delivery; the message could not be
delivered before it expired.

MessageWaiting The message is still queued for delivery. This is a
temporary state, pending transition to one of the
preceding states.

DeliveryNotificationNotSupported Unable to provide delivery receipt notification.

Start Message Notification

Adding RESTful Email Communication Service Support 10-11

Start Message Notification

The Start Message Notification operation starts a notification for the application.

To set up an email message notification, provide the criteria which will trigger
notifications and a reference object for the delivery of the notifications. The criteria can
be a string which, when matched, could be the notification of an email received or of a
delivery receipt. The reference object (also a JSON object) contains the correlator for
the notification, the endpoint address (a specific Bayeux channel name) to which the
call direction notifications must be sent and, optionally, the interface name (a string to
identify the notification).

If the Start Message Notification request is successful:

■ The response header will contain the URI of the publish/subscribe server.

■ A data object associated with the result of the short message operation will be sent
to the endpoint address specified in the request body. This data object will contain
the appropriate notification (that the message was received or a delivery receipt
for the call).

When the application receives such a response, it must access the endpoint address to
retrieve the specific call event notifications.

10Authorization
Basic

10HTTP Method
PUT

10URI
http://host:port/rest/multimedia_messaging/notification

where host and port are the host name and port number of the Services Gatekeeper
access tier.

10Request Header
The request header depends on the type of message:

■ The MIME-type for the Content-Type header field is application/json.

■ The X-Parameter Password to indicate the credential of the email service
activation number. The value should be encrypted by AES (Advanced Encryption
Standard) or 3DES (Triple Data Encryption Standard) algorithm.

■ The X-Parameter SizeLimit to indicate the maximum total size (in kilobyte) of an
email message attachment accepted by Services Gatekeeper.

10Request Body
The request body is a nested JSON object containing the following parameters:

■ reference. JSON object. Required. Use this object to provide the following
information about the endpoint that is to receive the notification:

– correlator: String. Required. The correlator used to identify the notification.

Start Message Notification

10-12 Services Gatekeeper Application Developer's Guide

– endpoint: String. Required. The URI which represents the endpoint address to
which the notification should be delivered. This string should be a Bayeux
protocol channel name that begins with /bayeux/appInstanceID where
appInstanceID is the client application’s application instance account ID.

For more information on application instances, see Services Gatekeeper Portal
Developer's Guide.

– interfaceName: String. Required. A descriptive string to identify the type of
notification.

■ messageServiceActivationNumber: String. Required. The number associated with
the invoked message service, that is the destination address used to send the
message

■ sizeLimit: Integer. The maximum size for the email allowed in Services
Gatekeeper.

The request body for this operation is represented by the following JSON data
structure, where the value part of each name/value pair indicates its data type:

{
 "messageServiceActivationNumber": "URI",
 "reference": {
 "correlator": "String",
 "endpoint": "URI",
 "interfaceName": "String"
 },
 "sizeLimit": "Integer"
}

10Response Header
The Location header field contains the URI of the publish/subscribe server:

http://host:port/rest/multimedia_messaging/notifications

If the request fails, the Status-Line header field will contain the status code and the
reason for the failure. See "Understanding RESTful Errors and Exceptions".

10Response Body
There is no response body. The appropriate notifications (described below) are sent to
the endpoint address provided by the application in the request body of this
operation.

10Notification Data Object for Message Reception (notifyMessageReception)
When an email message is successfully retrieved by the called party and the value for
criteria in the request body is notifyMessageReception, Services Gatekeeper sends a
nested JSON data object to the endpoint address.

This nested JSON object contains the following as the value of the attribute name
notifyMessageReception:

■ correlator: String. The correlator used to identify the notification.

■ message. Nested JSON object. It contains the following:

– message: String. The contents of the email message.

– senderAddress: String.

Start Message Notification

Adding RESTful Email Communication Service Support 10-13

– messageServiceActivationNumber: String. The number associated with the
invoked Message service, that is the destination address used to send the
message.

– dateTime: String. The time at which the message was sent in ISO 8601
extended format, yyyy-mm-ddThh-mm-ss.

The notification data object delivered to the endpoint address when the criteria is
notifyMessageReception is represented by the following JSON data structure, where
the value part of each name/value pair indicates its data type:

{"notifyMessageReception": {
 "correlator": "String",
 "message": {
 "messageServiceActivationNumber": "String",
 "priority": "Default|Low|Normal|High",
 "senderAddress": "URI",
 "dateTime": "Calendar",
 "message": "String",
 "messageIdentifier": "String",
 "subject": "String"
 }
}}

10Notification Data Object for Email Delivery Receipt (notifyMessageDeliveryReceipt)
When an email message is successfully retrieved by the called party and the value for
criteria in the request body is notifyMessageDeliveryReceipt, Services Gatekeeper
sends a nested JSON data object to the endpoint address.

This nested JSON object contains the following as the value of the attribute name
notifyMessageDeliveryReceipt:

■ correlator: String. The correlator used to identify the notification.

■ deliveryStatus. Enumeration value. Table 10–2 lists the possible statuses:

The notification data object delivered to the endpoint address when the criteria is
notifyMessageDeliveryReceipt is represented by the following JSON data structure,
where the value part of each name/value pair indicates its data type:

{"notifyMessageDeliveryReceipt": {
 "correlator": "String",

Table 10–2 Enumeration Values for Delivery Status

Value Description

DeliveredToNetwork Successful delivery to network. For concatenated
messages, returned only when all the email-parts
have been successfully delivered to the network.

DeliveryUncertain Delivery status unknown; for example, if it was
handed off to another network.

DeliveryImpossible Unsuccessful delivery; the message could not be
delivered before it expired.

DeliveredToTerminal Successful delivery to terminal. For concatenated
messages, returned only when all the email-parts
have been successfully delivered to the terminal.

DeliveryNotificationNotSupported Unable to provide delivery receipt notification.

Start Message Notification

10-14 Services Gatekeeper Application Developer's Guide

 "deliveryStatus": {
 "address": "URI",
 "deliveryStatus":
"DeliveredToTerminal|DeliveryUncertain|DeliveryImpossible|MessageWaiting|Delivered
ToNetwork"
 }
}}

Stop Message Notification

Adding RESTful Email Communication Service Support 10-15

Stop Message Notification

The Stop Message Notification operation terminates a previously set up email message
notification for the application.

To stop a previously set up email notification, provide the correlator for the
notification passed earlier in the Start Message Notification request.

There is no request or response body for the Stop Message Notification operation. If
the request fails, the body of the error response will contain the identifier for the
notification and the type of exception.

10Authorization
Basic

10HTTP Method
DELETE

10URI
http://host:port/rest/multimedia_messaging/notification/correlator

where:

■ where host and port are the host and port number of the Services Gatekeeper access
tier.

■ correlator is the correlator for the notification provided in the reference object of
the initial Start Message Notification operation.

10Request Body
There is no request body.

10Response Header
Standard header fields. If the request fails, the Status-Line header field will contain the
status code and the reason for the failure. See "Understanding RESTful Errors and
Exceptions".

10Response Body
There is no response body.

10Examples

Example 10–3 Stop Message Notification Request

DELETE /rest/multimedia_messaging/notification/6789 HTTP/1.1
X-Session-ID: app:4130997928482260925
Authorization: Basic ZG9tYWluX3VzZXI6ZG9tYWluX3VzZXI=
User-Agent: Jakarta Commons-HttpClient/3.0
Host:servgtkpr_host.port

Stop Message Notification

10-16 Services Gatekeeper Application Developer's Guide

Example 10–4 Stop Message Notification Response

HTTP/1.1 204 No Content
Connection: close
Date: Thu, 04 Nov 2101 09:59:05 GMT
Content-Length: 0
X-Plugin-Param-Keys:
X-Plugin-Param-Values:
X-Powered-By: Servlet/2.5 JSP/2.1

11

Adding RESTful Terminal Status Support 11-1

11Adding RESTful Terminal Status Support

This chapter describes the operations in the Terminal Status interface of the RESTful
facade provided in Oracle Communications Services Gatekeeper.

About the Terminal Status Interface
Applications use the RESTful Terminal Status interface to get the status of an
individual terminal or a group of terminals, or to receive notifications of changes in
the status of a terminal.

REST Service Descriptions Available at Run-time
When the Administration Server for your Services Gatekeeper domain is in the
running state, the REST service descriptions of these operations can be found at

http://host:port/rest/terminal_status/index.html

where host and port are the host name and port of the system on which Services
Gatekeeper is installed.

Get Status

11-2 Services Gatekeeper Application Developer's Guide

Get Status

The Get Status operation retrieves the status of a single terminal.

To retrieve the status of a specific terminal, provide its URI as the address value of the
query object in the Request-URI of the GET method. The interface returns an error if
the query object contains more than one address.

If the Get Status operation is successful, the response body contains a JSON data object
indicating whether the specific terminal is reachable, unreachable or busy.

11Authorization
Basic

11HTTP Method
GET

11URI
http://host:port/rest/terminal_status/status?query=${query}

where:

■ host and port are the host name and port of the system on which Services
Gatekeeper is installed.

■ ${query} contains the URI address for the terminal as the string value for URI in the
data object:

{"address":"tel:123"}

For example, the operation to get the status for a terminal identified as "tel:123" is:

GET /rest/terminal_status/status?query="%7B%22address%22%3A%22tel%3A123%22%7D"
HTTP/1.1

11Request Header
The MIME-type for the Content-Type header field is application/json.

11Request Body
There is no request body.

11Response Header
Standard header fields. If the request fails, the Status-Line header field will contain the
status code and the reason for the failure. See "Understanding RESTful Errors and
Exceptions".

11Response Body
The status of the specific terminal is returned in the body of the response as the value
of the result attribute:

■ Reachable

Get Status

Adding RESTful Terminal Status Support 11-3

■ unReachable

■ Busy

The response body for this operation is represented by the following JSON data
structure, where the value part of the name/value pair indicates its data type:

{"result": "String"}

11Examples

Example 11–1 Get Status Request

GET /rest/terminal_status/status?query="%7B%22address%22%3A522tel%3A123%22%7D"
HTTP/1.1
X-Session-ID: app:4130997928482260925
Authorization: Basic ZG9tYWluX3VzZXI6ZG9tYWluX3VzZXI=
X-Param-Keys:
X-Param-Values:
User-Agent: Jakarta Commons-HttpClient/3.0
Host:servgtkpr_host.port

Example 11–2 Get Status Response

HTTP/1.1 200 OK
Date: Thu, 04 Nov 2101 08:12:43 GMT
Content-Length: 22
Content-Type: application/json
X-Plugin-Param-Keys:
X-Plugin-Param-Values:
X-Powered-By: Servlet/2.5 JSP/2.1

{"result":"Reachable"}

Get Status For Group

11-4 Services Gatekeeper Application Developer's Guide

Get Status For Group

The Get Status for Group operation retrieves the status for a group of terminals.

To retrieve the status of a specific terminals, provide their URIs as the address values
of the query object in the Request-URI of the GET method.

If the Get Status for Group operation is successful, the response body contains a JSON
data object indicating the status for each terminal (whether the specific terminal is
reachable, unreachable or busy).

11Authorization
Basic

11HTTP Method
GET

11URI
http://host:port/rest/terminal_status/status?queryForGroup=${query}

where:

■ host and port are the host name and port of the system on which Services
Gatekeeper is installed.

■ ${query} contains the URIs for the terminals as an array of string values in the data
object:

{"addresses":["URI"]}

For example,

GET /rest/terminal_
status/status?queryForGroup="%7B%22address%22%3A%5B%22tel%3A123%22%2C%22tel%3A4562
2tel%3A789%22%5D%7D" HTTP/1.1

11Request Header
The MIME-type for the Content-Type header field is application/json.

11Request Body
There is no request body.

11Response Header
Standard header fields. If the request fails, the Status-Line header field will contain the
status code and the reason for the failure. See "Understanding RESTful Errors and
Exceptions".

11Response Body
The response body contains an array of structures as the value for result. Each element
in the array contains the status for one of the terminals whose address was specified in

Get Status For Group

Adding RESTful Terminal Status Support 11-5

the Request-URI for status?queryForGroup. The following parameters make up the
individual terminal’s status:

■ address: String. The URI of a terminal whose status is required.

■ reportStatus: String. The status of the terminal. It can be one of the following:

– Retrieved. The terminal’s status is available. It is provided in this object as the
current status of the terminal.

– Not Retrieved. The terminal’s status is not available.

– Error: There was an error in the attempt to get the status for this terminal. The
error data is provided in this object.

■ currentStatus: String. This parameter will be present if the value for reportStatus
is Retrieved. The current status of the terminal as one of the following:

– Reachable

– Unreachable

– Busy

■ errorInformation. a JSON object. This object will be present if the value for
reportStatus is Error. It will contain the following error information about the
terminal:

– messageID: String. The error message ID.

– text: String. The text for the error message.

– variables: Array of string values. An Array of variables to substitute into text.

The response body for this operation is represented by the following JSON data
structure, where the value part of the name/value pair indicates its data type:

{"result": [{
 "address": "URI",
 "reportStatus": "Retrieved|NotRetrieved|Error",
 "currentStatus": "Reachable|Unreachable|Busy",
 "errorInformation": {
 "messageId": "String",
 "text": "String",
 "variables": ["String"]
 }
}]}

11Examples

Example 11–3 Get Status for Group Request

GET /rest/terminal_
status/status?queryForGroup="%7B%22address%22%3A%5B%22tel%3A123%22%2C%22tel%3A4562
2tel%3A789%22%5D%7D" HTTP/1.1
X-Session-ID: app:4130997928482260925
Authorization: Basic ZG9tYWluX3VzZXI6ZG9tYWluX3VzZXI=
X-Param-Keys:
X-Param-Values:
User-Agent: Jakarta Commons-HttpClient/3.0
Host:servgtkpr_host.port

Get Status For Group

11-6 Services Gatekeeper Application Developer's Guide

Example 11–4 Get Status for Group Response

HTTP/1.1 200 OK
Date: Thu, 04 Nov 2101 08:12:43 GMT
Content-Length: 22
Content-Type: application/json
X-Plugin-Param-Keys:
X-Plugin-Param-Values:
X-Powered-By: Servlet/2.5 JSP/2.1

{"result":
[{"address":"tel:123",

"errorInformation":null,
"reportStatus":"Retrieved",
"currentStatus":"Reachable"
},
{"address":"tel:456",
"errorInformation":null,
"reportStatus":"Retrieved",
"currentStatus":"Reachable"
},
{"address":"tel:789",
"errorInformation":null,
"reportStatus":"Retrieved",
"currentStatus":"Reachable"
}]

}

Status Notification

Adding RESTful Terminal Status Support 11-7

Status Notification

The Status Notification operation initiates requesting for notifications on the status of a
specified terminal according to a specified frequency and for a maximum number of
notifications over a specified time duration.

To set up for such notifications, provide the URI of the terminal address for which the
application must receive notifications, the criteria to trigger notifications, and a
reference object for the delivery of the notifications. The reference object (also a JSON
object) contains the correlator for the notification, the endpoint address to which the
notifications must be sent and, optionally, the interface name (a string to identify the
notification). You can optionally specify the request frequency, the total number of
notifications and the duration for the notification and whether or not the check must
start immediately.

If the Status Notification request is successful, the endpoint address specified in the
request body receives a notification when:

■ The current status for the terminal status has been retrieved.

■ The maximum number of notifications or the specified duration has been reached.

■ An error has been encountered in obtaining the status.

11Authorization
Basic

11HTTP Method
PUT

11URI
http://host:port/rest/terminal_status/status-notification

where host and port are the host name and port of the system on which Services
Gatekeeper is installed.

11Request Header
The MIME-type for the Content-Type header field is application/json.

11Request Body
The request body for the Status Notification operation is a nested JSON object. It
contains an array of addresses for the terminals in whose status the application is
interested, and the following parameters:

■ address: String. Required. The URI of a terminal to monitor.

■ checkImmediate: String. Required. Boolean value:

– True: The application requires the status notification to start immediately and
as often as required, thereafter.

– False: The application requires the status notification to start at the end of the
time period.

Status Notification

11-8 Services Gatekeeper Application Developer's Guide

■ criteria. A set of strings. Required. The required criteria about the terminal. It can
be one or more of the following:

– Reachable

– UnReachable

– Busy

■ frequency. JSON object. Required. The frequency for checking the status specified
by the following:

– metric: String. Required. The unit of time for the check, specified as
Millisecond, Second, Minute, Hour, Day, Week, Month, or Year.

– units: Integer. Required. The number of times the check must be made within
the specified metric.

■ reference: A JSON object. Required. Use this object to provide the following
information about the endpoint that is to receive the notification:

– correlator: String. Required. The correlator used to identify the notification.

– endpoint: String. Required. The URI which represents the endpoint address to
which the notification should be delivered. This string should be a Bayeux
protocol channel name that begins with /bayeux/appInstanceID where
appInstanceID is the client application’s application instance account ID.

For more information on managing application instances, see Services
Gatekeeper Portal Developer's Guide.

– interfaceName: String. Required. A descriptive string to identify the type of
notification.

■ count. Integer. Required. The maximum number of notifications to be sent to the
application. If this number is reached, the statusEnd notification is delivered to the
endpoint address.

■ duration. JSON object. Required. The total duration before for the count specified
by the following:

– metric: String. Required. The unit of time for the notifications, specified as
Millisecond, Second, Minute, Hour, Day, Week, Month, or Year.

– units: Integer. Required. The duration in the specified metric.

The request body for this operation is represented by the following JSON data
structure, where the value part of each name/value pair indicates its data type:

{
 "addresses": ["URI"],
 "checkImmediate": "Boolean",
 "criteria": ["Reachable|Unreachable|Busy"],
 "frequency": {
 "metric": "Millisecond|Second|Minute|Hour|Day|Week|Month|Year",
 "units": "Integer"
 },
 "reference": {
 "correlator": "String",
 "endpoint": "URI",
 "interfaceName": "String"
 },
 "count": "Integer",
 "duration": {
 "metric": "Millisecond|Second|Minute|Hour|Day|Week|Month|Year",

Status Notification

Adding RESTful Terminal Status Support 11-9

 "units": "Integer"
 }
}

11Response Header
The Location header field contains the URI of the publish/subscribe server:

http://host:port/rest/terminal_status/notifications

If the request fails, the Status-Line header field will contain the status code and the
reason for the failure. See "Understanding RESTful Errors and Exceptions".

11Response Body
There is no response body. The appropriate notifications (described below) are sent to
the endpoint address provided by the application in the request body of this
operation.

11Notification Of Current Terminal Status (statusNotification)
When there is a match for the criteria value specified in the request body, Services
Gatekeeper sends a nested JSON data object to the endpoint address.

This nested JSON object contains the following as the value of the attribute name
statusNotification:

■ correlator: String. The correlator used to identify the notification and provided in
the request body of the Status Notification operation.

■ terminalStatus. An array of JSON objects. Each element in the array contains the
current status of the terminal (based on the criteria) being monitored and defined
by the following:

– address: String. The URI of the terminal being monitored.

– currentStatus: String. The current status which can be Reachable,
unReachable, or Busy.

The notification data object delivered to the endpoint address when the criteria is
statusNotification is represented by the following JSON data structure, where the
value part of each name/value pair indicates its data type:

{"statusNotification": {
 "correlator": "String",
 "terminalStatus": [{
 "address": "URI",
 "currentStatus": "Reachable|Unreachable|Busy"
 }]
}}

11Notification of Error in Retrieving Terminal Status (statusError)
When there is an error in retrieving the status of a terminal, Services Gatekeeper sends
a nested JSON data object to the endpoint address.

This nested JSON object contains the following as the value of the attribute name
statusError:

Status Notification

11-10 Services Gatekeeper Application Developer's Guide

■ correlator: String. The correlator used to identify the notification and provided in
the request body of the Status Notification operation.

■ reason: JSON object. The explanation of the error specified by the following:

– messageID: String. The error message identifier.

– text: String. The error message description.

– variables: An array of strings. The text to string variables.

■ address: String. The URI of a terminal to monitor.

The notification data object delivered to the endpoint address when the criteria is
statusError is represented by the following JSON data structure, where the value part
of each name/value pair indicates its data type:

{"statusError": {
 "correlator": "String",
 "reason": {
 "messageId": "String",
 "text": "String",
 "variables": ["String"]
 },
 "address": "URI"
}}

11Notification Signalling End to Monitoring Terminal (statusEnd)
When the notification count specified as the value for count is reached or when the
duration specified for units in the duration object is reached, Services Gatekeeper
sends a nested JSON data object to the endpoint address.

This nested JSON object contains the following as the value of the attribute name
statusEnd:

■ correlator: String. The correlator used to identify the notification and provided in
the request body of the Status Notification operation.

This notification is not delivered in the case of an error, or if the application ended
the notification using endNotification.

The notification data object delivered to the endpoint address when the criteria is
statusEnd is represented by the following JSON data structure, where the value part of
each name/value pair indicates its data type:

{"statusEnd": {
 "correlator": "String"
}}

11Examples

Example 11–5 Status Notification Request

PUT /rest/terminal_status/status-notification HTTP/1.1
X-Session-ID: app:4130997928482260925
Authorization: Basic ZG9tYWluX3VzZXI6ZG9tYWluX3VzZXI=
X-Param-Keys:
X-Param-Values:
User-Agent: Jakarta Commons-HttpClient/3.0
Host:servgtkpr_host.port

Status Notification

Adding RESTful Terminal Status Support 11-11

Content-Length: 289
Content-Type: application/json

{
"duration":null,
"criteria":["Reachable","Busy","Unreachable"],
"frequency":

{
"metric":"Second",
"units":"5"
},

"checkImmediate":"true",
"addresses":["tel:123","tel:456","tel:789"],
"reference":

{"interfaceName":"interfaceName",
"correlator":"6789",
"endpoint":"/bayeux/domain-user/ts"
}

}

Example 11–6 Status Notification Response

HTTP/1.1 200 OK
Date: Thu, 04 Nov 2101 09:59:05 GMT
Content-Length: 0
X-Plugin-Param-Keys:
X-Plugin-Param-Values:
TerminalStatus: http://terminalloc_host:port/rest/terminal_status/notifications
X-Powered-By: Servlet/2.5 JSP/2.1

End Notification

11-12 Services Gatekeeper Application Developer's Guide

End Notification

The End Notification operation terminates an application’s previously set up
notification to get the status of a specified terminal.

To stop a previously set up Status Notification, provide the correlator for the
notification passed earlier in the Status Notification request.

There is no request or response body for the End Notification operation. If the request
fails, the body of the error response will contain the identifier for the notification and
the type of exception.

11Authorization
Basic

11HTTP Method
DELETE

11URI
http://host:port/rest/terminal_status/notification/${correlator}

where:

■ host and port are the host name and port of the system on which Services
Gatekeeper is installed.

■ correlator is the correlator for the notification provided in the reference object of
the initial Status Notification operation request.

11Request Body
There is no request body.

11Response Header
Standard header fields. If the request fails, the Status-Line header field will contain the
status code and the reason for the failure. See "Understanding RESTful Errors and
Exceptions".

11Response Body
There is no response body.

11Examples

Example 11–7 End Notification Request

DELETE /rest/terminal_status/status-notification/6789 HTTP/1.1
X-Session-ID: app:4130997928482260925
Authorization: Basic ZG9tYWluX3VzZXI6ZG9tYWluX3VzZXI=
X-Param-Keys:
X-Param-Values:
User-Agent: Jakarta Commons-HttpClient/3.0
Host:servgtkpr_host.port

End Notification

Adding RESTful Terminal Status Support 11-13

Example 11–8 End Notification Response

HTTP/1.1 204 No Content
Connection: close
Date: Thu, 04 Nov 2101 09:59:05 GMT
Content-Length: 0
X-Plugin-Param-Keys:
X-Plugin-Param-Values:
X-Powered-By: Servlet/2.5 JSP/2.1

End Notification

11-14 Services Gatekeeper Application Developer's Guide

12

Adding RESTful Terminal Location Support 12-1

12Adding RESTful Terminal Location Support

This chapter describes the operations in the Terminal Location interface of the RESTful
facade provided in Oracle Communications Services Gatekeeper.

About the Terminal Location Interface
Applications use the RESTful Terminal Location interface to get a location for an
individual terminal or a group of terminals; to get the distance of the terminal from a
specific location; and to start and stop notifications, based on geographic location or
on a periodic interval.

REST Service Descriptions Available at Run-time
When the Administration Server for your Services Gatekeeper domain is in the
running state, the REST service descriptions of these operations can be found at

http://host:port/rest/terminal_location/index.html

where host and port are the host name and port of the system on which Services
Gatekeeper is installed.

Get Location

12-2 Services Gatekeeper Application Developer's Guide

Get Location

The Get Location operation retrieves the location of a single terminal. The interface
will return an error if the query object contains more than one address.

To retrieve the location of a specific terminal, provide its URI as the address value of
the query object in the Request-URI of the GET method.

If the Get Location operation is successful, the response body contains a nested JSON
data object containing the physical coordinates of each terminal and the date and time
for when such data was last collected.

12Authorization
Basic

12HTTP Method
GET

12URI
http://host:port/rest/terminal_location/location?${query}

where:

■ host and port are the host name and port of the system on which Services
Gatekeeper is installed.

■ ${query} is a nested JSON data object.

The parameters accepted by query are:

■ acceptableAccuracy: Integer. Required. The range that the application considers
useful. If the location cannot be determined within this range, the application
would prefer not to receive this information.

■ address: String. Required. The address of the terminal whose location is required,
as a URI.

■ requestedAccuracy: Integer. Required. The range over which the application
wants to receive location information. This may influence the choice of location
technology to use (for instance, cell sector location may be suitable for requests
specifying 1000 meters, but GPS technology may be required for requests below
100 meters).

■ tolerance: String. Required. Enumerated value denoting the priority of response
time versus accuracy. Table 12–1 lists the possible values:

Table 12–1 Enumeration Values for Tolerance Attribute

Value Description

NoDelay The server should immediately return any location estimate that
it currently has. If no estimate is available, the server returns a
failure indication. The server may optionally initiate procedures
to obtain a location estimate (for example, to be available for a
later request).

Get Location

Adding RESTful Terminal Location Support 12-3

■ maximumAge: JSON object. Optional. The maximum acceptable age of the
location information. This object is defined by the following:

– metric: String. The unit of time. Required if the maximumAge object is present
in the body of the query. Possible entries are Millisecond, Second, Minute,
Hour, Day, Week, Month or Year.

– units: Integer. Required if the maximumAge object is present in the body of
the query. The number of units for the metric.

■ responseTime: JSON object. Optional. The maximum response time that the
application will accept. This object is defined by the following:

– metric: String. The unit of time. Required if the responseTime object is present
in the body of the query. Possible entries are Millisecond, Second, Minute,
Hour, Day, Week, Month, or Year.

– units: Integer. Required if the maximumAge object is present in the body of
the query. The number of units for the metric.

The maximum duration and interval is 8916039 seconds, which converts to 99 days, 99
hours, 99 minutes, and 99 seconds. Do not enter a value that exceeds the 8916039
second interval. In other words, do not use the Year time metric, and only about three
Months is allowed.

The ${query} object in the URI is represented by the following JSON data structure,
where the value part of each name/value pair indicates its data type:

{
 "acceptableAccuracy": "Integer",
 "address": "URI",
 "requestedAccuracy": "Integer",
 "tolerance": "NoDelay|LowDelay|DelayTolerant",
 "maximumAge": {
 "metric": "Millisecond|Second|Minute|Hour|Day|Week|Month|Year",
 "units": "Integer"
 },
 "responseTime": {
 "metric": "Millisecond|Second|Minute|Hour|Day|Week|Month|Year",
 "units": "Integer"
 }
}

Example 12–1 Request URI for Get Location

GET /rest/terminal_
location/location?query=%7B%22aceptableAccuracy%22%3A%22100%%22%2C%22address%22%3A
%22tel%3A1234%22%2C%22requestAccuracy%22%3A%22100%%22%2C
%22tolerance%22%3A%22NoDelay%22%2C%22maximumAge%22%3Anull%2C%22responseTime%22%3An

LowDelay The response time is more important than the requested
accuracy. The server attempts to fulfil any accuracy
requirement, but not if it adds delay. A quick response with
lower accuracy is more desirable than waiting for a more
accurate response.

DelayTolerant The network is expected to return a location with the requested
accuracy even if this means not complying with the requested
response time.

Table 12–1 (Cont.) Enumeration Values for Tolerance Attribute

Value Description

Get Location

12-4 Services Gatekeeper Application Developer's Guide

ull%7D HTTP/1.1

12Request Header
The MIME-type for the Content-Type header field is application/json.

12Request Body
There is no request body.

12Response Header
Standard header fields. If the request fails, the Status-Line header field will contain the
status code and the reason for the failure. See "Understanding RESTful Errors and
Exceptions".

12Response Body
The location of the specific terminal is returned in the body of the response as the
value of the result JSON object. The parameters in this object are:

■ accuracy: Integer.

■ latitude: Number (floating point).

■ longitude: Number (floating point).

■ timestamp: String. The date and time when the terminal’s geographical
coordinates were collected, given in ISO 8601 extended format,
yyyy-mm-ddThh-mm-ss.

■ altitude: Number (floating point).

The response body for this operation is represented by the following JSON data
structure, where the value part of the name/value pair indicates its data type:

{"result": {
 "accuracy": "Integer",
 "latitude": "Float",
 "longitude": "Float",
 "timestamp": "Calendar",
 "altitude": "Float"
}}

Example 12–2 Response Body for Get Location

{
"result":

{
"accuracy":"10",
"latitude":"37.78843",
"longitude":"-122.4374",
"timestamp":"2010-11-05T21:56:21+08:00"
}

}

12Examples

Example 12–3 Get Location Request

GET /rest/terminal_

Get Location

Adding RESTful Terminal Location Support 12-5

location/location?query=%7B%22aceptableAccuracy%22%3A%22100%%22%2C%22address%22%3A
%22tel%3A1234%22%2C%22requestAccuracy%22%3A%22100%%22%2C
%22tolerance%22%3A%22NoDelay%22%2C%22maximumAge%22%3Anull%2C%22responseTime%22%3An
ull%7D HTTP/1.1
X-Session-ID: app:5198750923966743997
Authorization: Basic ZG9tYWluX3VzZXI6ZG9tYWluX3VzZXI=
X-Param-Keys:
X-Param-Values:
User-Agent: Jakarta Commons-HttpClient/3.0
Host:servgtkpr_host.port

Example 12–4 Get Location Response

HTTP/1.1 200 OK
Date: Thu, 05 Nov 2101 05:52:41 GMT
Content-Length: 131
Content-Type: application/json
X-Plugin-Param-Keys:
X-Plugin-Param-Values:
X-Powered-By: Servlet/2.5 JSP/2.1

{
"result":

{
"accuracy":"10",
"latitude":"37.78843",
"longitude":"-122.4374",
"timestamp":"2010-11-05T21:56:21+08:00"
}

}

Get Location for Group

12-6 Services Gatekeeper Application Developer's Guide

Get Location for Group

The Get Location for Group operation retrieves the location information for a group of
terminals.

To retrieve the location information of a specific terminals, provide their URIs as the
address values of the query object in the Request-URI of the GET method.

If the Get Location for Group operation is successful, the response body contains a
JSON data object indicating the physical location for each terminal (whether or not the
specific terminal is reachable, unreachable or busy).

12Authorization
Basic

12HTTP Method
GET

12URI
http://host:port/rest/terminal_location/location?queryForGroup=${queryForGroup}

where:

■ host and port are the host name and port of the system on which Services
Gatekeeper is installed.

■ ${queryForGroup} is a nested JSON data object.

The parameters accepted by queryForGroup are:

■ acceptableAccuracy: Integer. Required. The range that the application considers
useful. If the location cannot be determined within this range, the application
would prefer not to receive this information.

■ addresses: Array of Strings. Required. The addresses of the terminals whose
location is required, as URIs.

■ requestedAccuracy: Integer. Required. The range over which the application
wishes to receive location information. This may influence the choice of location
technology to use (for instance, cell sector location may be suitable for requests
specifying 1000 meters, but GPS technology may be required for requests below
100 meters).

■ tolerance: String. Required. Enumerated value denoting the priority of response
time versus accuracy. Table 12–2 lists the possible values:

Table 12–2 Enumeration Values for Tolerance Attribute

Value Description

NoDelay The server should immediately return any location estimate that
it currently has. If no estimate is available, the server return a
failure indication. The server may optionally initiate procedures
to obtain a location estimate (for example, to be available for a
later request).

Get Location for Group

Adding RESTful Terminal Location Support 12-7

■ maximumAge: JSON object. Optional. The maximum acceptable age of the
location information. This object is defined by the following:

– metric: String. The unit of time. Required if the maximumAge object is present
in the body of the query. Possible entries are Millisecond, Second, Minute,
Hour, Day, Week, Month, or Year.

– units: Integer. Required if the maximumAge object is present in the body of
the query. The number of units for the metric.

■ responseTime: JSON object. Optional. The maximum response time that the
application will accept. This object is defined by the following:

– metric: String. The unit of time. Required if the responseTime object is present
in the body of the query. Possible entries are Millisecond, Second, Minute,
Hour, Day, Week, Month, or Year.

– units: Integer. Required if the maximumAge object is present in the body of
the query. The number of units for the metric.

The ${queryForGroup} object in the URI is represented by the following JSON data
structure, where the value part of each name/value pair indicates its data type:

{
 "acceptableAccuracy": "Integer",
 "addresses": ["URI"],
 "requestedAccuracy": "Integer",
 "tolerance": "NoDelay|LowDelay|DelayTolerant",
 "maximumAge": {
 "metric": "Millisecond|Second|Minute|Hour|Day|Week|Month|Year",
 "units": "Integer"
 },
 "responseTime": {
 "metric": "Millisecond|Second|Minute|Hour|Day|Week|Month|Year",
 "units": "Integer"
 }
}

Example 12–5 Request URI for Get Location for Group

GET /rest/terminal_
location/location?queryForGroup=%7B%22aceptableAccuracy%22%3A%22100%%22%2C%22addre
sses%22%3A%%5B22tel%3A1234%22%2C%22tel%3A123%22%5D%2C%22requestAccuracy%22%3A%2210
0%%22%2C
%22tolerance%22%3A%22NoDelay%22%2C%22maximumAge%22%3Anull%2C%22responseTime%22%3An
ull%7D HTTP/1.1

LowDelay The response time is more important than the requested
accuracy. The server attempts to fulfil any accuracy
requirement, but not if it adds delay. A quick response with
lower accuracy is more desirable than waiting for a more
accurate response.

DelayTolerant The network is expected to return a location with the requested
accuracy even if this means not complying with the requested
response time.

Table 12–2 (Cont.) Enumeration Values for Tolerance Attribute

Value Description

Get Location for Group

12-8 Services Gatekeeper Application Developer's Guide

12Request Header
The MIME-type for the Content-Type header field is application/json.

12Request Body
There is no request body.

12Response Header
Standard header fields. If the request fails, the Status-Line header field will contain the
status code and the reason for the failure. See "Understanding RESTful Errors and
Exceptions".

12Response Body
The response body is the attribute result whose value consists of an array of JSON
objects. Each element in the array contain the report status, the location information (if
any) and the error information (if any) for the terminals whose addresses were
specified in the Request-URI for status?queryForGroup.

The following parameters make up the information associated with an individual
terminal’s location:

■ address: String. The address of a terminal whose location is required, as a URI.

■ reportStatus: String. The status of the terminal. It can be one of the following:

– Retrieved: The terminal’s location information is available. It is provided in
this object as the current location of the terminal.

– Not Retrieved: The terminal’s location information is not available.

– Error: There was an error in the attempt to get the location information for this
terminal. The error data is provided in this object.

■ currentLocation: String. This parameter will be present if the value for
reportStatus is Retrieved. The current location of the terminal as one of the
following:

– accuracy: Integer.

– latitude: Number (floating point).

– longitude: Number (floating point).

– altitude: Number (floating point).

– timestamp: String. The date and time when the terminal’s geographical
coordinates were collected, in ISO 8601 extended format,
yyyy-mm-ddThh-mm-ss.

■ errorInformation: JSON object. This object will be present if the value for
reportStatus is Error. It will contain the following error information about the
terminal:

– messageID: String. The error message ID.

– text: String. The text for the error message.

– variables: Array of string values. Variables to substitute into text strings.

The response body for this operation is represented by the following JSON data
structure, where the value part of the name/value pair indicates its data type:

{"result": [{

Get Location for Group

Adding RESTful Terminal Location Support 12-9

 "address": "URI",
 "reportStatus": "Retrieved|NotRetrieved|Error",
 "currentLocation": {
 "accuracy": "Integer",
 "latitude": "Float",
 "longitude": "Float",
 "timestamp": "Calendar",
 "altitude": "Float"
 },
 "errorInformation": {
 "messageId": "String",
 "text": "String",
 "variables": ["String"]
 }
}]}

12Examples

Example 12–6 Get Location for Group Request

GET /rest/terminal_
location/location?queryForGroup=%7B%22aceptableAccuracy%22%3A%22100%%22%2C%22addre
sses%22%3A%%5B22tel%3A1234%22%2C%22tel%3A123%22%5D%2C%22requestAccuracy%22%3A%2210
0%%22%2C
%22tolerance%22%3A%22NoDelay%22%2C%22maximumAge%22%3Anull%2C%22responseTime%22%3An
ull%7D HTTP/1.1
X-Session-ID: app:4130997928482260925
Authorization: Basic ZG9tYWluX3VzZXI6ZG9tYWluX3VzZXI=
X-Param-Keys:
X-Param-Values:
User-Agent: Jakarta Commons-HttpClient/3.0
Host:servgtkpr_host.port

Example 12–7 Get Location for Group Response

HTTP/1.1 200 OK
Date: Thu, 04 Nov 2101 08:12:43 GMT
Content-Length: 438
Content-Type: application/json
X-Plugin-Param-Keys:
X-Plugin-Param-Values:
X-Powered-By: Servlet/2.5 JSP/2.1

{"result":
[{"address":"tel:1234",

"errorInformation":null,
"reportStatus":"Retrieved",
"currentLocation":

{
"accuracy":"10",
"latitude":"37.78843",
"longitude":"-122.4374",
"altitude":"0.0"
"timestamp":"2010-11-05T22:13:28+08:00"

},
{"address":"tel:123",
"errorInformation":null,
"reportStatus":"Retrieved",

Get Location for Group

12-10 Services Gatekeeper Application Developer's Guide

"currentLocation":
{
"accuracy":"10",
"latitude":"55.2776",
"longitude":"7.012778",
"altitude":"20.0"
"timestamp":"2010-11-05T22:13:28+08:00"

}
}

Get Terminal Distance

Adding RESTful Terminal Location Support 12-11

Get Terminal Distance

The Get Terminal Distance operation retrieves the distance between a specified
terminal and a required location. The terminal distance is calculated in meters.

To retrieve the distance, provide the URI for the terminal and the geographic
coordinates of the required location in the Request-URI of the GET method.

If the Get Terminal Distance operation is successful, the response body contains a
JSON data object indicating the distance between a specified terminal and a required
location, in meters.

12Authorization
Basic

12HTTP Method
GET

12URI
http://host:port/rest/terminal_distance/distance?query=${query}

where:

■ host and port are the host name and port of the system on which Services
Gatekeeper is installed.

■ ${query} is a nested JSON data object.

The parameters accepted by the query attribute are:

■ address: String. Required. The address of the terminal, as a URI.

■ latitude: Number (floating point). Required. The latitude of the location.

■ longitude: Number (floating point). Required. The longitude of the location

The ${query} object in the URI is represented by the following JSON data structure,
where the value part of each name/value pair indicates its data type:

{
 "address": "URI",
 "latitude": "Float",
 "longitude": "Float"
}

12Request Header
The MIME-type for the Content-Type header field is application/json.

12Request Body
There is no request body.

12Response Header
Standard header fields. If the request fails, the Status-Line header field will contain the
status code and the reason for the failure. See "Understanding RESTful Errors and
Exceptions".

Get Terminal Distance

12-12 Services Gatekeeper Application Developer's Guide

12Response Body
The distance between the specified terminal and the required location is returned as
the value for result in a data object. The unit for the distance is meters and the value is
an integer.

The response body for this operation is represented by the following JSON data
structure, where the value part of the name/value pair indicates its data type:

{"result": "String"}

12Examples

Example 12–8 Get Terminal DIstance Request

GET /rest/terminal_
distance/distance?query=%7B%22address%22%3A%22tel%3A1234%22%2C%22longitude%22%3A%2
237.7707%%22%2C %22latittude%22%3A%22122.4177%227D HTTP/1.1
X-Session-ID: app:5198750923966743997
Authorization: Basic ZG9tYWluX3VzZXI6ZG9tYWluX3VzZXI=
X-Param-Keys:
X-Param-Values:
User-Agent: Jakarta Commons-HttpClient/3.0
Host:servgtkpr_host.port

Example 12–9 Get Terminal Distance Response

HTTP/1.1 200 OK
Date: Thu, 05 Nov 2101 05:52:41 GMT
Content-Length: 131
Content-Type: application/json
X-Plugin-Param-Keys:
X-Plugin-Param-Values:
X-Powered-By: Servlet/2.5 JSP/2.1

{
"result":"9316351"

}

Start Geographical Notification

Adding RESTful Terminal Location Support 12-13

Start Geographical Notification

The Start Geographical Notification operation provides notifications based on whether
terminals enter or leave a specified geographic area. The area to be monitored is
circular with specified latitude and longitude as the center and having a specified
radius.

To set up for such notifications, provide the SIP-formatted URI of the terminal
addresses for which the application must receive notifications, the criteria which will
trigger notifications and a reference object for the delivery of the notifications.
Additionally, you can specify the request frequency, the total number of notifications
and the duration for the notification and whether or not the check must start
immediately or not. The reference object (also a JSON object) contains the correlator for
the notification, the endpoint address (a specific Bayeux channel name) to which the
notifications must be sent and, optionally, the interface name (a string to identify the
notification).

If the request for the Start Geographical Notification operation is successful, the
endpoint address specified in the request body will receive a notification when:

■ The terminal location has been successfully retrieved.

■ The notification limit or the specified duration has been reached.

■ An error has been encountered in obtaining the location of the terminal.

12Authorization
Basic

12HTTP Method
PUT

12URI
http://host:port/rest/terminal_location/geographical-notification

where host and port are the host name and port of the system on which Services
Gatekeeper is installed.

12Request Header
The MIME-type for the Content-Type header field is application/json.

12Request Body
The request body for the Start Geographical Notification operation is a nested JSON
object. It accepts an array of addresses for the terminals in whose geographical
information the application is interested, and the parameters for the check:

■ addresses: Array of string values. Required. Each element in the array is a
SIP-formatted address for a terminal, as a URI.

■ checkImmediate: String. Required. Set to:

– True: The application requires the geographical notification to start
immediately and as often as required thereafter.

Start Geographical Notification

12-14 Services Gatekeeper Application Developer's Guide

– False: The application requires the geographical notification to start at the end
of the time period.

■ count: Integer. Optional. The maximum number of notifications sent to the
application. If this number is reached while notification operation is active a
locationEnd notification is delivered to the endpoint address. If you omit this
option, or set it to 0 there is no limit to the number of notifications.

■ criteria: String. Required. The status of the terminal. It can be one of the following:

– Entering: The notification should be made when the terminal enters the area
being monitored.

– Leaving: The notification should be made when the terminal leaves the area
being monitored.

■ duration: JSON object. Optional. Specifies a time limit for notifications. The
maximum duration period can be limited by the underlying network. Omit this
option, or set it to 0 to specify no time limit.

– metric: String. Required. The unit of time for the duration specified as
Millisecond, Second, Minute, Hour, Day, Week, Month or Year.

– units: Integer. Required. The number of metric units that specify the duration.
If this number is reached (and the application has not ended the notification
operation), the locationEnd notification is delivered to the endpoint address.

■ frequency: JSON object. Required. Specifies the time between notifications. The
value must be in the range of 1-8916039 seconds, which converts to 99 days, 99
hours, 99 minutes, and 99 seconds. Do not enter a value that exceeds the 8916039
second interval. In other words, do not use the Year time metric, and only about
three Months is allowed.

– metric: String. Required. The unit of time for the notification frequency. Can be
specified in Millisecond, Second, Minute, Hour, Day, Week, Month, or Year.

– units: Integer. Required. The number of metric units between notifications.

For example this entry:

metric=second
unik=10

specifies a minimum time between notifications of 10 seconds. However this entry:

metric=month
unit=6

is invalid because it exceeds the 8916039 second (99 day) limit.

■ latitude: Number (floating point). Required. The latitude of the location which
will be the center of the area under surveillance.

■ longitude: Number (floating point). Required. The longitude of the location which
will be the center of the area under surveillance.

■ radius: Number (floating point) in meters. Required. The radius of the circle
around the location (center point), in meters.

■ reference: JSON object. Required. Use this object to provide the following
information about the endpoint that is to receive the notification:

– correlator: String. Required. The correlator used to identify the notification.

Start Geographical Notification

Adding RESTful Terminal Location Support 12-15

– endpoint: String. Required. The URI which represents the endpoint address to
which the notification should be delivered. This string should be a Bayeux
protocol channel name that begins with /bayeux/appInstanceID where
appInstanceID is the client application’s application instance account ID.

For more information on managing application instances, see Services
Gatekeeper Portal Developer's Guide.

– interfaceName: String. Required. A descriptive string to identify the type of
notification.

■ trackingAccuracy: Number (floating point). Required. The acceptable error in the
tracking, in meters.

The request body for this operation is represented by the following JSON data
structure, where the value part of each name/value pair indicates its data type:

{
 "addresses": ["URI"],
 "checkImmediate": "Boolean",
 "criteria": "Entering|Leaving",
 "frequency": {
 "metric": "Millisecond|Second|Minute|Hour|Day|Week|Month|Year",
 "units": "Integer"
 },
 "latitude": "Float",
 "longitude": "Float",
 "radius": "Float",
 "reference": {
 "correlator": "String",
 "endpoint": "URI",
 "interfaceName": "String"
 },
 "trackingAccuracy": "Float",
 "count": "Integer",
 "duration": {
 "metric": "Millisecond|Second|Minute|Hour|Day|Week|Month|Year",
 "units": "Integer"
 }
}

12Response Header
The Location header field contains the URI of the publish/subscribe server:

http://host:port/rest/terminal_location/notifications

If the request fails, the Status-Line header field will contain the status code and the
reason for the failure. See "Understanding RESTful Errors and Exceptions".

12Response Body
There is no response body. The appropriate notifications (described below) are sent to
the endpoint address provided by the application in the request body of this
operation.

Start Geographical Notification

12-16 Services Gatekeeper Application Developer's Guide

12Notification When Terminal Location is Successfully Retrieved (locationNotification)
When there is a match for the criteria value (specified in the request body) and the
terminal’s location is successfully retrieved, Services Gatekeeper sends a nested JSON
data object to the endpoint address.

This nested JSON object contains the following as the value of the attribute name
locationNotification:

■ correlator: String. The correlator used to identify the notification and provided in
the request body of the Start Geographical Notification operation.

■ criteria: String. The state of the terminal. It can be one of the following:

– Entering: The terminal entered the area being monitored.

– Leaving: The terminal left the area being monitored.

■ data: Array of JSON objects. Each element in the array contains the current
location information of a terminal being monitored and contains the following
parameters:

– address: String. The URI of the terminal being monitored.

– reportStatus: String. Retrieval status for this terminal which can be Retrieved,
NotRetrieved, or Error. This allows for partial reports to avoid timeouts, and
so on.

– currentLocation: String. This object will be present only if the reportStatus is
Retrieved. It contains the location information for the terminal, as of the date
and time specified in this object. Table 12–3 lists the attributes in this object:

– errorInformation: JSON object. This object will be present if the value for
reportStatus is Error. Table 12–4 lists the attributes in this object.

The location notification data object delivered to the endpoint address is represented
by the following JSON data structure, where the value part of each name/value pair
indicates its data type:

Table 12–3 Attributes in the currentLocation JSON Object

Attribute Description

accuracy Number (floating point). The accuracy error in arriving at the
terminal’s location, in meters.

latitude Number (floating point). The latitude for the terminal.

longitude Number (floating point). The longitude for the terminal.

timestamp String. The date and time when the terminal’s geographical
coordinates were collected, given in ISO 9601’s extended format.

altitude Number (floating point). The altitude for the terminal.

Table 12–4 Attributes in the errorInformation Object

Attribute Description

messageID String. Message identifier for the fault

text String. The text of the message. If this string contains
replacement variables, the variables entry hold the

variables Array of string values. Optional. An array of variables to
substitute into text strings.

Start Geographical Notification

Adding RESTful Terminal Location Support 12-17

{"locationNotification": {
 "correlator": "String",
 "data": [{
 "address": "URI",
 "reportStatus": "Retrieved|NotRetrieved|Error",
 "currentLocation": {
 "accuracy": "Integer",
 "latitude": "Float",
 "longitude": "Float",
 "timestamp": "Calendar",
 "altitude": "Float"
 },
 "errorInformation": {
 "messageId": "String",
 "text": "String",
 "variables": ["String"]
 }
 }],
 "criteria": "Entering|Leaving"
}}

Example 12–10 locationNotification Object Delivered to the Application

{
"locationNotification":

{
 "correlator":"6789",
 "data":

[{
"address":"tel:123",
"reportStatus":"Retrieved",
"errorInformation":null,
"currentLocation":

{
"accuracy":"8",
"latitude":"37.80",
"longitude":"-122.56",
"altitude":"90",
"timestamp":"2010-11-08T10:29:38"

}
}],

 "criteria":"Entering"
}

}

12Notification of Error in Retrieving Terminal Location (locationError)
When there is an error in retrieving the location for the specified terminal, Services
Gatekeeper sends a nested JSON data object to the endpoint address.

The nested JSON object contains the following as the value of the attribute name
locationError:

■ correlator: String. The correlator used to identify the notification and provided in
the request body of the Status Notification operation.

■ reason: JSON object. The explanation of the error specified by the following:

– messageID: String. The error message identifier.

Start Geographical Notification

12-18 Services Gatekeeper Application Developer's Guide

– text: String. The error message description.

– variables. An array of string values. The array of variables to substitute into
text strings.

■ address: String. The URI of a terminal to monitor.

The location error notification data object delivered to the endpoint address is
represented by the following JSON data structure, where the value part of each
name/value pair indicates its data type:

{"locationError": {
 "correlator": "String",
 "reason": {
 "messageId": "String",
 "text": "String",
 "variables": ["String"]
 },
 "address": "URI"
}}

12Notification Signalling End to Monitoring Terminal’s Location (locationEnd)
When the notification count specified as the value for count is reached or when the
duration specified for units in the duration object is reached, Services Gatekeeper
sends a nested JSON data object to the endpoint address.

The JSON object contains the following as the value of the attribute name locationEnd:

■ correlator: String. The correlator used to identify the notification and provided in
the request body of the Status Notification operation.

Here is the structure of this notification:

{"locationEnd": {"correlator": "String"}}

12Examples

Example 12–11 Start Geographic Notification Request

PUT /rest/terminal_location/geographical-notification HTTP/1.1
X-Session-ID: app:4130997928482260925
Authorization: Basic ZG9tYWluX3VzZXI6ZG9tYWluX3VzZXI=
X-Param-Keys:
X-Param-Values:
User-Agent: Jakarta Commons-HttpClient/3.0
Host:servgtkpr_host.port
Content-Length: 366
Content-Type: application/json

{
"addresses":["tel:123"],
"checkImmediate:"true",
"criteria":"Entering",
"frequency":

{

Note: This notification is not delivered in the case of an error, or if
the application ended the notification using endNotification.

Start Geographical Notification

Adding RESTful Terminal Location Support 12-19

"metric": "Second",
"units": "5"

},
"latitude":"37.7707",
"longitude":"-122.4177",
"radius":"5000.0",
"reference":

{
"correlator":"6789",
"endpoint":"bayeux/app_instance_1/tl",
"interfaceName":"interfaceName"

},
"trackingAccuracy":"10.0",
"count":"5",
"duration":

{
"metric":"Minutes",
"units":"30"

}
}

Example 12–12 Status Notification Response

HTTP/1.1 200 Created
Date: Fri, 05 Nov 2101 09:59:05 GMT
Location: http://terminalloc_host:port/rest/terminal_location/notifications
Content-Length: 0
X-Plugin-Param-Keys:
X-Plugin-Param-Values:
X-Powered-By: Servlet/2.5 JSP/2.1

Start Periodic Notification

12-20 Services Gatekeeper Application Developer's Guide

Start Periodic Notification

The Start Periodic Notification operation provides notifications for the locations of a
set of terminals at a defined interval.

To set up for such location notifications, provide the SIP-formatted URI of the terminal
addresses for which the application must receive notifications, the request frequency,
the total number of notifications and the duration for the notification and whether or
not the check must start immediately. The reference object (also a JSON object)
contains the correlator for the notification, the endpoint address (a specific Bayeux
channel name) to which the notifications must be sent and, optionally, the interface
name (a string to identify the notification).

If the request for the Start Periodic Notification operation is successful, the endpoint
address specified in the request body will receive a notification when:

■ The terminal location has been successfully retrieved.

■ The notification limit or the specified duration has been reached.

■ An error has been encountered in obtaining the location of the terminal.

12Authorization
Basic

12HTTP Method
PUT

12URI
http://host:port/rest/terminal_location/periodic-notification

where host and port are the host name and port of the system on which Services
Gatekeeper is installed.

12Request Header
The MIME-type for the Content-Type header field is application/json.

12Request Body
The request body for the Start Periodic Notification operation is a nested JSON object.
It contains an array of addresses for the terminals in whose information the
application is interested, and the parameters for the check provided by the following:

■ addresses: Array of string values. Required. Each element in the array is a
SIP-formatted address for a terminal, as a URI.

■ duration: JSON object. Optional. Specifies the total time for receiving notifications
The underlying network sometimes limits this count. Omit this setting or set it to 0
to specify no limit.

– metric: String. Required. The unit of time for the notifications specified as
Millisecond, Second, Minute, Hour, Day, Week, Month, or Year.

– units: Integer. Required. The number of metric units that specify the duration.
If this number is reached while this operation is still active, the locationEnd
notification is delivered to the endpoint address.

Start Periodic Notification

Adding RESTful Terminal Location Support 12-21

■ frequency: JSON object. Required. Specifies a minimum time between
notifications:

– metric: String. Required. The unit of time for the frequency specified as
Millisecond, Second, Minute, Hour, Day, Week, Month, or Year.

– units: Integer. Required. The frequency of the specified metric.

– metric: String. Required. The unit of time for the frequency specified as
Millisecond, Second, Minute, Hour, Day, Week, Month, or Year.

– units: Integer. Required. The frequency of the specified metric.

This value must be in the range of 1-8916039 seconds, which converts to 99 days,
99 hours, 99 minutes, and 99 seconds. Do not enter a value that exceeds the
8916039 second interval. In other words, do not use the Year time metric, and only
about three Months is allowed.

■ reference: JSON object. Required. Use this object to provide the following
information about the endpoint that is to receive the notification:

– correlator: String. Required. The correlator identifies the notification.

– endpoint: String. Required. The URI which represents the endpoint address to
which the notification should be delivered. This string should be a Bayeux
protocol channel name that begins with /bayeux/appInstanceID where
appInstanceID is the client application’s application instance account ID.

For more information on managing application instances, see Services
Gatekeeper Portal Developer's Guide.

– interfaceName: String. Required. A descriptive string to identify the type of
notification.

■ requestedAccuracy: Number (floating point). Required. The acceptable error in
the tracking, in meters.

The request body for this operation is represented by the following JSON data
structure, where the value part of each name/value pair indicates its data type:

{
 "addresses": ["URI"],
 "frequency": {
 "metric": "Millisecond|Second|Minute|Hour|Day|Week|Month|Year",
 "units": "Integer"
 },
 "reference": {
 "correlator": "String",
 "endpoint": "URI",
 "interfaceName": "String"
 },
 "requestedAccuracy": "Integer",
 "duration": {
 "metric": "Millisecond|Second|Minute|Hour|Day|Week|Month|Year",
 "units": "Integer"
 }
}

12Response Header
The Location header field contains the URI of the publish/subscribe server:

http://host:port/rest/terminal_location/notifications

Start Periodic Notification

12-22 Services Gatekeeper Application Developer's Guide

If the request fails, the Status-Line header field will contain the status code and the
reason for the failure.

12Response Body
There is no response body. The appropriate notifications (described below) are sent to
the endpoint address provided by the application in the request body of this
operation.

12Examples

Example 12–13 Start Periodic Notification Request

PUT /rest/terminal_location/periodic-notification HTTP/1.1
X-Session-ID: app:4130997928482260925
Authorization: Basic ZG9tYWluX3VzZXI6ZG9tYWluX3VzZXI=
X-Param-Keys:
X-Param-Values:
User-Agent: Jakarta Commons-HttpClient/3.0
Host:servgtkpr_host.port
Content-Length: 366
Content-Type: application/json

{
"addresses":["tel:123"],
"frequency":

{
"metric": "Second",
"units": "5"

},
"reference":

{
"correlator":"6789",
"endpoint":"bayeux/app_instance_1/tl",
"interfaceName":"interfaceName"

},
"requestedAccuracy":"10.0",
"duration":

{
"metric":"Minutes",
"units":"30"

}
}

Example 12–14 Start Periodic Notification Response

HTTP/1.1 200 Created
Date: Fri, 05 Nov 2101 09:59:05 GMT
Location: http://terminalloc_host:port/rest/terminal_location/notifications
Content-Length: 0
X-Plugin-Param-Keys:
X-Plugin-Param-Values:
X-Powered-By: Servlet/2.5 JSP/2.1

Start Periodic Notification

Adding RESTful Terminal Location Support 12-23

12Notification When Terminal Location is Successfully Retrieved (locationNotification)
See "Notification When Terminal Location is Successfully Retrieved
(locationNotification)".

12Notification of Error in Retrieving Terminal Location (locationError)
See "Notification of Error in Retrieving Terminal Location (locationError)".

12Notification Signalling End to Monitoring Terminal (locationEnd)
See "Notification Signalling End to Monitoring Terminal’s Location (locationEnd)".

End Notification

12-24 Services Gatekeeper Application Developer's Guide

End Notification

The End Notification operation terminates an application’s previously set up
notification to get the geographical and periodic information for a specified terminal.

To stop a previously set up Start Geographical Notification or Start Periodic
Notification, provide the correlator for the notification passed earlier in the
appropriate start request.

There is no request or response body for the End Notification operation. If the request
fails, the body of the error response will contain the identifier for the notification and
the type of exception.

12Authorization
Basic

12HTTP Method
PUT

12URI
http://host:port/rest/terminal_location/notification/${correlator}

where:

■ host and port are the host name and port of the system on which Services
Gatekeeper is installed.

■ correlator is the correlator for the notification provided in the reference object of
the initial request for the Start Geographical Notification or Start Periodic
Notification operation.

12Request Body
There is no request body.

12Response Header
Standard header fields. If the request fails, the Status-Line header field will contain the
status code and the reason for the failure.

12Response Body
There is no response body.

12Examples

Example 12–15 End Notification Request

DELETE /rest/terminal_location/status-notification/6789 HTTP/1.1
X-Session-ID: app:4130997928482260925
Authorization: Basic ZG9tYWluX3VzZXI6ZG9tYWluX3VzZXI=
X-Param-Keys:
X-Param-Values:
User-Agent: Jakarta Commons-HttpClient/3.0
Host:servgtkpr_host.port

End Notification

Adding RESTful Terminal Location Support 12-25

Example 12–16 End Notification Response

HTTP/1.1 204 No Content
Connection: close
Date: Thu, 04 Nov 2101 09:59:05 GMT
Content-Length: 0
X-Plugin-Param-Keys:
X-Plugin-Param-Values:
X-Powered-By: Servlet/2.5 JSP/2.1

End Notification

12-26 Services Gatekeeper Application Developer's Guide

13

Adding RESTful Payment Support 13-1

13Adding RESTful Payment Support

This chapter describes the operations in the Payment interface of the RESTful facade
provided in Oracle Communications Services Gatekeeper.

About the Payment Interface
Applications use the RESTful Payment interface to charge an amount to an end-user’s
account using Diameter, refund amounts to that account, and split charge amounts
among multiple end-users. Applications can also reserve amounts, reserve additional
amounts, charge against the reservation or release the reservation.

REST Service Descriptions Available at Run-time
When the Administration Server for your Services Gatekeeper domain is in the
running state, the REST service descriptions of these operations can be found at

http://host:port/rest/payment/index.html

where host and port are the host name and port of the system on which Services
Gatekeeper is installed.

Charge Amount

13-2 Services Gatekeeper Application Developer's Guide

Charge Amount

The Charge Amount operation charges an amount directly to an end-user’s
application using the Diameter protocol.

To charge an amount for a call, provide the SIP-formatted URI of the address of the
end-user, a reference code in case there is any dispute regarding the charges, and the
billing information to charge for the call.

There is no response body for the Charge Amount operation.

13Authorization
Basic

13HTTP Method
POST

13URI
http://host:port/rest/payment/charge-amount

where host and port are the host name and port of the system on which Services
Gatekeeper is installed.

13Request Header
The MIME-type for the Content-Type header field is application/json.

13Request Body
The request body for the Charge Amount operation accepts the following parameters:

■ charging: A JSON object. Optional. This object defines the cost-charging properties
for the call. A call with no charging parameters can be entered as "charging":
null. If a charge is to be applied, provide values for the following in the charging
object:

– description: String. Required if the charging object is present in the body of
the request. The text to be used for information and billing.

– amount. Number (integer, or decimal). Optional. The amount to be charged.

– code: String. Optional. The charging code, from an existing contractual
description.

– currency: String. Optional. The currency identifier as defined in ISO 4217 [9].

■ endUserIdentifier: String. Required. The address of the end-user’s application
that is to be charged.

■ referenceCode: String. Required. A unique identifier in case of disputes with
respect to the charges.

The request body for this operation is represented by the following JSON data
structure, where the value part of each name/value pair indicates its data type:

{
 "charge": {
 "description": "String",

Charge Amount

Adding RESTful Payment Support 13-3

 "amount": "BigDecimal",
 "code": "String",
 "currency": "String"
 },
 "endUserIdentifier": "URI",
 "referenceCode": "String"
}

13Response Header
Standard header fields. If the request fails, the Status-Line header field will contain the
status code and the reason for the failure. See "Understanding RESTful Errors and
Exceptions".

13Response Body
There is no response body.

Refund Amount

13-4 Services Gatekeeper Application Developer's Guide

Refund Amount

The Refund Amount operation refunds an amount directly to an end-user’s
application using Diameter.

To refund an amount for a call, provide the SIP-formatted URI of the address of the
end-use, a reference code in case there is any dispute regarding the charges, and the
billing information to charge for the call. receive the message in the request body.

There is no response body for the Refund Amount operation.

13Authorization
Basic

13HTTP Method
POST

13URI
http://host:port/rest/payment/refund-amount

where host and port are the host name and port of the system on which Services
Gatekeeper is installed.

13Request Header
The MIME-type for the Content-Type header field is application/json.

13Request Body
The request body for the Refund Amount operation accepts the following parameters:

■ charging. a JSON object. Optional. This object defines the cost-charging properties
for the call. A call with no charging parameters can be entered as "charging":
null. If a charge is to be applied, provide values for the following in the charging
object:

– description: String. Required if the charging object is present in the body of
the request. The text to be used for information and billing.

– amount. Number (integer, or decimal). Optional. The amount to be refunded.

– code: String. Optional. The charging code, from an existing contractual
description.

– currency: String. Optional. The currency identifier as defined in ISO 4217 [9].

■ endUserIdentifier: String. Required. The address of the end-user’s application
that is to receive the refund.

■ referenceCode: String. Required. A unique identifier in case of disputes with
respect to the refund.

The request body for this operation is represented by the following JSON data
structure, where the value part of each name/value pair indicates its data type:

{
 "charging": {
 "description": "String",

Refund Amount

Adding RESTful Payment Support 13-5

 "amount": "BigDecimal",
 "code": "String",
 "currency": "String"
 },
 "endUserIdentifier": "URI",
 "referenceCode": "String"
}

13Response Header
Standard header fields. If the request fails, the Status-Line header field will contain the
status code and the reason for the failure. See "Understanding RESTful Errors and
Exceptions".

13Response Body
There is no response body.

Charge Split Amount

13-6 Services Gatekeeper Application Developer's Guide

Charge Split Amount

The Charge Split Amount operation charges an amount directly to multiple end-users
concurrently (for example, for charging multiple participants in a conference.

To split the charge an amount for a call, provide the billing information to charge for
the call, a reference code in case there is any dispute regarding the charges, the address
of the end-user, and the percentage of the charges for which the end-user is liable.

There is no response body for the Charge Split Amount operation.

13Authorization
Basic

13HTTP Method
POST

13URI
http://host:port/rest/payment/charge-split-amount

where host and port are the host name and port of the system on which Services
Gatekeeper is installed.

13Request Header
The MIME-type for the Content-Type header field is application/json.

13Request Body
The request body for the Charge Split Amount operation accepts the following
parameters:

■ charge. a JSON object. Required. Use this object to define the cost-charging
properties for the call. A call with no charging parameters can be entered as
"charging": null. If a charge is to be applied, provide values for the following in
the charging object:

– description: String. Required if the charging object is present in the body of
the request. The text to be used for information and billing.

– amount. Number (integer, or decimal). Optional. The amount to be charged.

– code: String. Optional. The charging code, from an existing contractual
description.

– currency: String. Optional. The currency identifier as defined in ISO 4217 [9].

■ referenceCode: String. Required. A unique identifier in case of disputes with
respect to the charges.

■ splitInfo. An array of JSON objects. Required. For each entry, the end-user
identifier and the method by which the charges must be split.

– endUserIdentifier: String. Required. The address of the end-user.

– percent. Integer. Required. The percentage this end-user should be charged.

Charge Split Amount

Adding RESTful Payment Support 13-7

The request body for this operation is represented by the following JSON data
structure, where the value part of each name/value pair indicates its data type:

{
 "charge": {
 "description": "String",
 "amount": "BigDecimal",
 "code": "String",
 "currency": "String"
 },
 "referenceCode": "String",
 "splitInfo": [{
 "endUserIdentifier": "URI",
 "percent": "Integer"
 }]
}

13Response Header
Standard header fields. If the request fails, the Status-Line header field will contain the
status code and the reason for the failure. See "Understanding RESTful Errors and
Exceptions".

13Response Body
There is no response body.

Reserve Amount

13-8 Services Gatekeeper Application Developer's Guide

Reserve Amount

The Reserve Amount operation reserves an amount for an account specified by the
end-user identifier.

To reserve an amount for a call, provide the address of the end-user and the billing
information for the call.

If the Reserve Amount operation is successful, the response body will contain the
string identifier for the reservation.

13Authorization
Basic

13HTTP Method
POST

13URI
http://host:port/rest/payment/reserve-amount

where host and port are the host name and port of the system on which Services
Gatekeeper is installed.

13Request Header
The MIME-type for the Content-Type header field is application/json.

13Request Body
The request body for the Reserve Amount operation accepts the following parameters:

■ charge. a JSON object. Optional. Use this object to define the cost-charging
properties for the call. A call with no charging parameters can be entered as
"charging": null. If a charge is to be applied, provide values for the following in
the charging object:

– description: String. Required if the charging object is present in the body of
the request. The text to be used for information and billing.

– amount. Number (integer, or decimal). Optional. The amount to be charged.

– code: String. Optional. The charging code, from an existing contractual
description.

– currency: String. Optional. The currency identifier as defined in ISO 4217 [9].

■ endUserIdentifier: String. Required. The address of the end-user against whose
account the reservation is made.

The request body for this operation is represented by the following JSON data
structure, where the value part of each name/value pair indicates its data type:

{
 "charge": {
 "description": "String",
 "amount": "BigDecimal",
 "code": "String",
 "currency": "String"

Reserve Amount

Adding RESTful Payment Support 13-9

 },
 "endUserIdentifier": "URI"
}

13Response Header
Standard header fields. If the request fails, the Status-Line header field will contain the
status code and the reason for the failure. See "Understanding RESTful Errors and
Exceptions".

13Response Body
The response body contains the result attribute whose value is a String-formatted
identifier for the reservation (used as reservationIdentifier in subsequent related
operations).

The response body for this operation is represented by the following JSON data
structure, where the value part of the name/value pair indicates its data type:

{"result": "String"}

Reserve Additional Amount

13-10 Services Gatekeeper Application Developer's Guide

Reserve Additional Amount

The Reserve Additional Amount operation reserves an additional amount for an
account specified by the end-user identifier.

To reserve an additional amount for a call, provide the reservation identifier obtained
from the initial request to reserve an amount for the end-user and the billing
information for the call.

If the Reserve Additional Amount operation is successful, the response body will
contain the string identifier for the reservation.

13Authorization
Basic

13HTTP Method
POST

13URI
http://host:port/rest/payment/reserve-additional-amount

where host and port are the host name and port of the system on which Services
Gatekeeper is installed.

13Request Header
The MIME-type for the Content-Type header field is application/json.

13Request Body
The request body for the Reserve Additional Amount operation accepts the following
parameters:

■ charge. a JSON object. Optional. Use this object to define the cost-charging
properties for the call. A call with no charging parameters can be entered as
"charging":null. If a charge is to be applied, provide values for the following in
the charging object:

– description: String. Required if the charging object is present in the body of
the request. The text to be used for information and billing.

– amount. Number (integer, or decimal). Optional. The amount to be charged.

– code: String. Optional. The charging code, from an existing contractual
description.

– currency: String. Optional. The currency identifier as defined in ISO 4217 [9].

■ reservationIdentifier: String. Required. The string identifier result obtained from
the initial "Reserve Amount" operation for this account.

The request body for this operation is represented by the following JSON data
structure, where the value part of each name/value pair indicates its data type:

{
 "charge": {
 "description": "String",

Reserve Additional Amount

Adding RESTful Payment Support 13-11

 "amount": "BigDecimal",
 "code": "String",
 "currency": "String"
 },
 "reservationIdentifier": "String"
}

13Response Header
Standard header fields. If the request fails, the Status-Line header field will contain the
status code and the reason for the failure. See "Understanding RESTful Errors and
Exceptions".

13Response Body
There is no response body.

Charge Volume

13-12 Services Gatekeeper Application Developer's Guide

Charge Volume

The Charge Volume operation charges the specified volume to the account specified by
the end-user identifier.

13Authorization
Basic

13HTTP Method
POST

13URI
http://host:port/rest/payment/charge-volume

where host and port are the host name and port of the system on which Services
Gatekeeper is installed.

13Request Header
The MIME-type for the Content-Type header field is application/json.

13Request Body
The request body for the Charge Volume operation accepts the following parameters:

■ endUserIdentifier: String. Required. Identifies the end-user account to be charged.

■ volume: Long. Required. Identifies the volume amount to be charged. (This is not
a currency amount.)

■ billingText: String. Required. Textual information to appear on the bill.

■ referenceCode: String. Required. Code to uniquely identify the request.

■ parameters: JSON object. Optional. Additional name/value pairs to use to
perform rating.

The request body for this operation is represented by the following JSON data
structure, where the value part of each name/value pair indicates its data type:

{
 "endUserIdentifier": "URI"
 "volume": "BigDecimal"
 "billingText": "String"
 "referenceCode": "String"
 "parameters": {
 "name": "String",
 "value": "String",
 },
}

13Response Header
Standard header fields. If the request fails, the Status-Line header field will contain the
status code and the reason for the failure. See "Understanding RESTful Errors and
Exceptions".

Charge Volume

Adding RESTful Payment Support 13-13

13Response Body
There is no response body.

Refund Volume

13-14 Services Gatekeeper Application Developer's Guide

Refund Volume

The Refund Volume operation directly applies a refund volume to the account
specified by the end-user identifier.

13Authorization
Basic

13HTTP Method
POST

13URI
http://host:port/rest/payment/refund-volume

where host and port are the host name and port of the system on which Services
Gatekeeper is installed.

13Request Header
The MIME-type for the Content-Type header field is application/json.

13Request Body
The request body for the Refund Volume operation accepts the following parameters:

■ endUserIdentifier: String. Required. Identifies the end-user account to be
refunded.

■ volume: Long. Required. Identifies the volume amount to be refunded.

■ billingText: String. Required. Textual information to appear on the bill.

■ referenceCode: String. Required. Code to uniquely identify the request.

■ parameters: JSON object. Optional. Additional name/value pairs to use to
perform rating.

The request body for this operation is represented by the following JSON data
structure, where the value part of each name/value pair indicates its data type:

{
 "endUserIdentifier": "URI"
 "volume": "BigDecimal"
 "billingText": "String"
 "referenceCode": "String"
 "parameters": {
 "name": "String",
 "value": "String",
 },
}

13Response Header
Standard header fields. If the request fails, the Status-Line header field will contain the
status code and the reason for the failure. See "Understanding RESTful Errors and
Exceptions".

Refund Volume

Adding RESTful Payment Support 13-15

13Response Body
There is no response body.

Charge Split Volume

13-16 Services Gatekeeper Application Developer's Guide

Charge Split Volume

The Charge Split Volume operation applies a split volume charge to multiple end-user
accounts.

The portion of the volume charge applied to each account is expressed as a percentage.

13Authorization
Basic

13HTTP Method
POST

13URI
http://host:port/rest/payment/charge-split-volume

where host and port are the host name and port of the system on which Services
Gatekeeper is installed.

13Request Header
The MIME-type for the Content-Type header field is application/json.

13Request Body
The request body for the Charge Split Volume operation accepts the following
parameters:

■ splitInfo: A JSON object. Required. Use this object to define the end-user accounts
and the percentage of the volume for the request to be billed to each account.
Percentages must total 100:

– endUserIdentifier: String. Required. Identifies an end-user account to be
charged.

– percent: Number (integer, or decimal). Required. The percentage of the
transaction to be charged to the end-user account.

■ volume: Long. Required. Identifies the volume amount to be refunded. (This is not
a currency amount.)

■ billingText: String. Required. Textual information to appear on the bill.

■ referenceCode: String. Required. Code to uniquely identify the request.

■ parameters: JSON object. Optional. Additional name/value pairs to use to
perform rating.

The request body for this operation is represented by the following JSON data
structure, where the value part of each name/value pair indicates its data type:

{
 "splitInfo": {
 "endUserIdentifier": "URI"
 "percent": "BigDecimal",
 },
 "volume": "BigDecimal"
 "billingText": "String"

Charge Split Volume

Adding RESTful Payment Support 13-17

 "referenceCode": "String"
 "parameters": {
 "name": "String",
 "value": "String",
 },
}

13Response Header
Standard header fields. If the request fails, the Status-Line header field will contain the
status code and the reason for the failure. See "Understanding RESTful Errors and
Exceptions".

13Response Body
There is no response body.

Get Amount

13-18 Services Gatekeeper Application Developer's Guide

Get Amount

The Get Amount operation converts a volume to a currency amount for the end-user
account.

13Authorization
Basic

13HTTP Method
POST

13URI
http://host:port/rest/payment/get-amount

where host and port are the host name and port of the system on which Services
Gatekeeper is installed.

13Request Header
The MIME-type for the Content-Type header field is application/json.

13Request Body
The request body for the Get Amount operation accepts the following parameters:

■ endUserIdentifier: String. Required. Identifies the end-user account for the
currency calculation.

■ volume: Long. Required. Identifies the volume to be converted to a currency
amount.

■ parameters: A JSON object. Optional. Additional name/value pairs to use to
perform rating.

The request body for this operation is represented by the following JSON data
structure, where the value part of each name/value pair indicates its data type:

{
 "endUserIdentifier": "URI"
 "volume": "BigDecimal"
 "parameters": {
 "name": "String",
 "value": "String",
 },
}

13Response Header
Standard header fields. If the request fails, the Status-Line header field will contain the
status code and the reason for the failure. See "Understanding RESTful Errors and
Exceptions".

Get Amount

Adding RESTful Payment Support 13-19

13Response Body
A charging object is returned, with the currency element containing the converted
currency amount.

Charge Reservation

13-20 Services Gatekeeper Application Developer's Guide

Charge Reservation

The Charge Reservation operation charges a previously reserved amount against an
end-user account.

To charge a previously reserved amount to an end-user account, provide the
information for billing, the reservation identifier obtained from the initial request to
reserve an amount for the end-user, and the reference code for any possible disputes.

13Authorization
Basic

13HTTP Method
POST

13URI
http://host:port/rest/payment/charge-reservation

where host and port are the host name and port of the system on which Services
Gatekeeper is installed.

13Request Header
The MIME-type for the Content-Type header field is application/json.

13Request Body
The request body for the Charge Reservation operation accepts the following
parameters:

■ charge: A JSON object. Required. Use this object to define the cost-charging
properties for the call. A call with no charging parameters can be entered as
"charging":null. If a charge is to be applied, provide values for the following in
the charge object:

– description: String. Required if the charging object is present in the body of
the request. The text to be used for information and billing.

– amount. Number (integer, or decimal). Optional. The amount to be charged.

– code: String. Optional. The charging code, from an existing contractual
description.

– currency: String. Optional. The currency identifier as defined in ISO 4217 [9].

■ referenceCode: String. Required. A unique identifier in case of disputes with
respect to the charges.

■ reservationIdentifier: String. Required. The string identifier result obtained from
the initial Reserve Amount operation for this account.

The request body for this operation is represented by the following JSON data
structure, where the value part of each name/value pair indicates its data type:

{
 "charge": {
 "description": "String",

Charge Reservation

Adding RESTful Payment Support 13-21

 "amount": "BigDecimal",
 "code": "String",
 "currency": "String"
 },
 "referenceCode": "String",
 "reservationIdentifier": "String"
}

13Response Header
Standard header fields. If the request fails, the Status-Line header field will contain the
status code and the reason for the failure. See "Understanding RESTful Errors and
Exceptions".

13Response Body
There is no response body.

Release Reservation

13-22 Services Gatekeeper Application Developer's Guide

Release Reservation

The Release Reservation operation returns funds left in a reservation to the account
against which this reservation was made.

To returns funds left in a reservation to an account, provide the reservation identifier
obtained from the initial request to reserve an amount for the end-user.

13Authorization
Basic

13HTTP Method
POST

13URI
http://host:port/rest/payment/release-reservation

where host and port are the host name and port of the system on which Services
Gatekeeper is installed.

13Request Header
The MIME-type for the Content-Type header field is application/json.

13Request Body
The request body for the Release Reservation operation accepts the following
parameter:

■ reservationIdentifier: String. Required. The string identifier result obtained from
the initial Reserve Amount operation for this account.

The request body for this operation is represented by the following JSON data
structure, where the value part of each name/value pair indicates its data type:

{"reservationIdentifier": "String"}

13Response Header
Standard header fields. If the request fails, the Status-Line header field will contain the
status code and the reason for the failure. See "Understanding RESTful Errors and
Exceptions".

13Response Body
There is no response body.

Reserve Volume

Adding RESTful Payment Support 13-23

Reserve Volume

The Reserve Volume operation reserves a volume for the account specified by the
end-user identifier.

If the Reserve Volume operation is successful, the response body contains the string
identifier for the reservation.

13Authorization
Basic

13HTTP Method
POST

13URI
http://host:port/rest/payment/reserve-volume

where host and port are the host name and port of the system on which Services
Gatekeeper is installed.

13Request Header
The MIME-type for the Content-Type header field is application/json.

13Request Body
The request body for the Reserve Volume operation accepts the following parameters:

■ endUserIdentifier: String. Required. Identifies the end-user account for which the
reservation should be placed.

■ volume: Long. Required. Identifies the volume amount to be reserved.

■ billingText: String. Required. Textual information to appear on the bill.

■ parameters: A JSON object. Optional. Additional name/value pairs to use to
perform rating.

The request body for this operation is represented by the following JSON data
structure, where the value part of each name/value pair indicates its data type:

{
 "endUserIdentifier": "URI"
 "volume": "BigDecimal"
 "billingText": "String"
 "parameters": {
 "name": "String",
 "value": "String",
 },
}

13Response Header
Standard header fields. If the request fails, the Status-Line header field will contain the
status code and the reason for the failure. See "Understanding RESTful Errors and
Exceptions".

Reserve Volume

13-24 Services Gatekeeper Application Developer's Guide

13Response Body
The response body consists of a String containing an identifier for the newly created
reservation.

Reserve Additional Volume

Adding RESTful Payment Support 13-25

Reserve Additional Volume

The Reserve Additional Volume operation adds or subtracts a volume to or from an
existing volume reservation for the account specified by the end-user identifier.

To reserve an additional volume for a call, provide the reservation identifier obtained
from the initial request to reserve an amount for the end-user and the billing
information for the call.

If the Reserve Additional Volume operation is successful, the response body will
contain the string identifier for the reservation.

13Authorization
Basic

13HTTP Method
POST

13URI
http://host:port/rest/payment/reserve-additional-volume

where host and port are the host name and port of the system on which Services
Gatekeeper is installed.

13Request Header
The MIME-type for the Content-Type header field is application/json.

13Request Body
The request body for the Reserve Additional Volume operation accepts the following
parameters:

■ reservationIdentifier: String. Required. Identifies the reservation to be amended.

■ volume: Long. Required. Identifies the volume amount to be added to or
subtracted from to the existing reservation.

■ billingText: String. Required. Textual information to appear on the bill.

The request body for this operation is represented by the following JSON data
structure, where the value part of each name/value pair indicates its data type:

{
 "reservationIdentifier": "String"
 "volume": "BigDecimal"
 "billingText": "String"
 },
}

13Response Header
Standard header fields. If the request fails, the Status-Line header field will contain the
status code and the reason for the failure. See "Understanding RESTful Errors and
Exceptions".

Reserve Additional Volume

13-26 Services Gatekeeper Application Developer's Guide

13Response Body
There is no response body.

Get Amount Reserve Charging

Adding RESTful Payment Support 13-27

Get Amount Reserve Charging

The Get Amount Reserve Charging operation converts a reserved volume to a
currency amount for the end-user account.

13Authorization
Basic

13HTTP Method
POST

13URI
http://host:port/rest/payment/get-amount-reserve-charging

where host and port are the host name and port of the system on which Services
Gatekeeper is installed.

13Request Header
The MIME-type for the Content-Type header field is application/json.

13Request Body
The request body for the Get Amount Reserve Charging operation accepts the
following parameters:

■ endUserIdentifier: String. Required. Identifies the end-user account for the
currency calculation.

■ volume: Long. Required. Identifies the volume amount to be converted to a
currency amount.

■ parameters: A JSON object. Optional. Additional name/value pairs to use to
perform rating.

The request body for this operation is represented by the following JSON data
structure, where the value part of each name/value pair indicates its data type:

{
 "endUserIdentifier": "URI"
 "volume": "BigDecimal"
 "parameters": {
 "name": "String",
 "value": "String",
 },
}

13Response Header
Standard header fields. If the request fails, the Status-Line header field will contain the
status code and the reason for the failure. See "Understanding RESTful Errors and
Exceptions".

Get Amount Reserve Charging

13-28 Services Gatekeeper Application Developer's Guide

13Response Body
A charging object is returned, with the currency element containing the converted
reserved currency amount.

14

Adding RESTful Audio Call Support 14-1

14Adding RESTful Audio Call Support

This chapter describes the operations in the Audio Call interface of the RESTful facade
provided in Oracle Communications Services Gatekeeper.

About the Audio Call Interface
Applications use the RESTful Audio Call interface to translate a text file or voice XML
file to an audio speech file from an independent location and send it to a terminal.

REST Service Descriptions Available at Run-time
When the Administration Server for your Services Gatekeeper domain is in the
running state, the REST service descriptions of these operations can be found at

http://host:port/rest/audio_call/index.html

where host and port are the host name and port of the system on which Services
Gatekeeper is installed.

Play Audio Message

14-2 Services Gatekeeper Application Developer's Guide

Play Audio Message

The Play Audio Message operation sends an audio file (such as .WAV) to a single
terminal. If the request contains more than one URI, the operation will fail.

To play the audio message at a specific terminal, provide the address of the terminal
that is to receive the message, the URL of the audio (.wav) file, and, optionally, the
information for billing the call. In effect, this is a request to set up a call to the user (the
terminal) and play the audio file.

The call to play the audio file at the terminal is done asynchronously and can be
monitored by retrieving its status. If the Play Audio Message operation is successful,
the response body will contain the call identifier for the call when the audio file is
played at the terminal. Use this call identifier to check on the request status.

14Authorization
Basic

14HTTP Method
POST

14URI
http://host:port/rest/audio_call/audiocalls

where host and port are the host name and port of the system on which Services
Gatekeeper is installed.

14Request Header
The MIME-type for the Content-Type header field is application/json.

14Request Body
The request body for the Play Audio Message operation accepts the following
parameters:

■ address: String. Required. The SIP-formatted URI of the party who must receive
the audio message.

■ audioUrl: String. Required. The URI of the audio file that is to be played.

■ charging: a JSON object. Optional. This object defines the cost charging properties
for the call. A call with no charging parameters can be entered as "charging":
null. If a charge is to be applied, provide values for the following in the charging
object:

– description: String. Required if the charging object is present in the body of
the request. The text to be used for information and billing.

– amount: Number (integer, or decimal). Optional. The amount to be charged.

– code: String. Optional. The charging code, from an existing contractual
description.

– currency: String. Optional. The currency identifier as defined in ISO 4217 [9].

Play Audio Message

Adding RESTful Audio Call Support 14-3

The request body for this operation is represented by the following JSON data
structure, where the value part of each name/value pair indicates its data type:

{
 "address": "URI",
 "audioUrl": "URI",
 "charging": {
 "description": "String",
 "amount": "BigDecimal",
 "code": "String",
 "currency": "String"
 }
}

14Response Header
Standard header fields. If the request fails, the Status-Line header field will contain the
status code and the reason for the failure. See "Understanding RESTful Errors and
Exceptions".

14Response Body
The call identifier for the call when the audio file is played at the terminal is returned
in the body of the response as the value of the result attribute.

The response body for this operation is represented by the following JSON data
structure, where the value part of the name/value pair indicates its data type:

{"result": "String"}

14Examples

Example 14–1 Play Audio Message Request

GET /rest/audio_call/audiocalls HTTP/1.1
X-Session-ID: app:65671150306510708
Authorization: Basic YxBwXzFfdToxMjM0NTY3oA=
X-Param-Keys:
X-Param-Values:
User-Agent: Jakarta Commons-HttpClient/3.0
Host:servgtkpr_host.port
Content-Length: 125
Content-Type: application/json

{
"audioUrl":"file://opt/OC/share/jsr309-TCK-media/dtmfs-1-9.wav",
"address":"sip:alice@sipaudiorecvr_host.port",
"charging":

{
"description":"Message for Alice",
"amount":"11",
"code":"1111",
"currency":"rmb"
}

}

Play Audio Message

14-4 Services Gatekeeper Application Developer's Guide

Example 14–2 Play Audio Message Response

HTTP/1.1 201 Created
Date: Fri, 05 Nov 2010 02:03:09 GMT
Content-Length: 95
Content-Type: application/json
X-Plugin-Param-Keys:
X-Plugin-Param-Values:
X-Powered-By: Servlet/2.5 JSP/2.1

{"result":"app-6nbs6twem41p|5624bd08b079138534263491b78d49e9@sipaudiorecvr_
host|-40d94a935cd12af0"}

Play Text Message

Adding RESTful Audio Call Support 14-5

Play Text Message

The Play Text Message operation sends a text message to a single terminal where it is
converted to speech for the recipient. The text is read through a text to speech engine
and based on a specified format. If the request contains more than one URI, the
operation will fail.

To play the text message at a specific terminal, provide the address of the terminal that
is to receive the message, the text message and its language format, and, optionally, the
information for billing the call. In effect, this is a request to set up a call to the user (the
terminal) and play the text file.

The call to play the text message at the terminal is done asynchronously and can be
monitored by retrieving its status. If the Play Text Message operation is successful, the
response body will contain the call identifier for the call that is to play the text message
at the terminal. Use this call identifier to check on the request status.

14Authorization
Basic

14HTTP Method
POST

14URI
http://host:port/rest/audio_call/textcalls

where host and port are the host name and port of the system on which Services
Gatekeeper is installed.

14Request Header
The MIME-type for the Content-Type header field is application/json.

14Request Body
The request body for the Play Audio Message operation accepts the following
parameters:

■ address: String. Required. The SIP-formatted URI of the party who must receive
the text message.

■ text: String. Required. The text to be read as text-to-speech (the "voice" structure in
Speech Synthesis Markup Language (SSML) format.

■ language: String. Required. The language in which the message is to be played,
using ISO 639 format.

■ charging. a JSON object. Optional. This object defines the cost charging properties
for the call. A call with no charging parameters can be entered as "charging":
null. If a charge is to be applied, provide values for the following in the charging
object:

– description: String. Required if the charging object is present in the body of
the request. The text to be used for information and billing.

– amount. Number (integer, or decimal). Optional. The amount to be charged.

Play Text Message

14-6 Services Gatekeeper Application Developer's Guide

– code: String. Optional. The charging code, from an existing contractual
description.

– currency: String. Optional. The currency identifier as defined in ISO 4217 [9].

The request body for this operation is represented by the following JSON data
structure, where the value part of each name/value pair indicates its data type:

{
 "address": "URI",
 "language": "String",
 "text": "String",
 "charging": {
 "description": "String",
 "amount": "BigDecimal",
 "code": "String",
 "currency": "String"
 }
}

14Response Header
Standard header fields. If the request fails, the Status-Line header field will contain the
status code and the reason for the failure. See "Understanding RESTful Errors and
Exceptions".

14Response Body
The call identifier for the actual call when the text-to-speech file is played at the
terminal is returned in the body of the response as the value of the result attribute.

The response body for this operation is represented by the following JSON data
structure, where the value part of the name/value pair indicates its data type:

{"result": "String"}

14Examples

Example 14–3 Play Text Message Request

GET /rest/audio_call/textcalls HTTP/1.1
X-Session-ID: app:65671150306510708
Authorization: Basic YxBwXzFfdToxMjM0NTY3oA=
X-Param-Keys:
X-Param-Values:
User-Agent: Jakarta Commons-HttpClient/3.0
Host:servgtkpr_host.port
Content-Length: 125
Content-Type: application/json

{
"address":"sip:alice@sipaudiotextrecvr_host.port",
"text":"string in SSML format",
"language":"string",
"charging":

{
"description":"Message for Alice",
"amount":"11",
"code":"1111",

Play Text Message

Adding RESTful Audio Call Support 14-7

"currency":"rmb"
}

}

Example 14–4 Play Text Message Response

HTTP/1.1 201 Created
Date: Fri, 05 Nov 2010 02:03:09 GMT
Content-Length: 95
Content-Type: application/json
X-Plugin-Param-Keys:
X-Plugin-Param-Values:
X-Powered-By: Servlet/2.5 JSP/2.1

{"result":"app-6nbs6twem41p|5624bd08b079138534263491b78d49e9@sipaudiotextrecvr_
host|-40d94a935cd12af0"}

Play VoiceXML Message

14-8 Services Gatekeeper Application Developer's Guide

Play VoiceXML Message

The Play VoiceXML Message operation sets up a request to send specified VoiceXML
content located at a specific voice URL to a single terminal. If the request contains
more than one URI, the operation will fail.

To play the voice XML message at a specific terminal, provide the address of the
terminal that is to receive the message, the location of the VoiceXML file, and,
optionally, the information for billing the call. In effect, this is a request to set up a call
to the user (the terminal) and play the text message in the VoiceXML file.

The call to play the VoiceXML message at the terminal is done asynchronously and can
be monitored by retrieving its status. If the Play VoiceXML Message operation is
successful, the response body will contain the call identifier for the actual call that is to
play the message at the terminal. Use this call identifier to check on the request status.

14Authorization
Basic

14HTTP Method
POST

14URI
http://host:port/rest/audio_call/voicexmlcalls

where host and port are the host name and port of the system on which Services
Gatekeeper is installed.

14Request Header
The MIME-type for the Content-Type header field is application/json.

14Request Body
The request body for the Play Audio Message operation accepts the following
parameters:

■ address: String. Required. The SIP-formatted URI of the party who must receive
the text message.

■ voiceXmlUrl: String. Required. The location of the VoiceXML file.

■ charging. a JSON object. Optional. This object defines the cost charging properties
for the call. A call with no charging parameters can be entered as "charging":
null. If a charge is to be applied, provide values for the following in the charging
object:

– description: String. Required if the charging object is present in the body of
the request. The text to be used for information and billing.

– amount: Number (integer, or decimal). Optional. The amount to be charged.

– code: String. Optional. The charging code, from an existing contractual
description.

– currency: String. Optional. The currency identifier as defined in ISO 4217 [9].

Play VoiceXML Message

Adding RESTful Audio Call Support 14-9

The request body for this operation is represented by the following JSON data
structure, where the value part of each name/value pair indicates its data type:

{
 "address": "URI",
 "voiceXmlUrl": "URI",
 "charging": {
 "description": "String",
 "amount": "BigDecimal",
 "code": "String",
 "currency": "String"
 }
}

14Response Header
Standard header fields. If the request fails, the Status-Line header field will contain the
status code and the reason for the failure. See "Understanding RESTful Errors and
Exceptions".

14Response Body
The call identifier for the actual call when the VoiceXML is played at the terminal is
returned in the body of the response as the value of the result attribute.

The response body for this operation is represented by the following JSON data
structure, where the value part of the name/value pair indicates its data type:

{"result": "String"}

14Examples

Example 14–5 Play VoiceXML Message Request

GET /rest/audio_call/voicexmlcalls HTTP/1.1
X-Session-ID: app:65671150306510708
Authorization: Basic YxBwXzFfdToxMjM0NTY3oA=
X-Param-Keys:
X-Param-Values:
User-Agent: Jakarta Commons-HttpClient/3.0
Host:servgtkpr_host.port
Content-Length: 125
Content-Type: application/json

{
"address":"sip:alice@sipvoicexmlrecvr_host.port",
"voiceXmlUrl":"http://some_url/mesg_recorded.vxml",
"charging":

{
"description":"Message for Alice",
"amount":"11",
"code":"1111",
"currency":"rmb"
}

}

Play VoiceXML Message

14-10 Services Gatekeeper Application Developer's Guide

Example 14–6 Play VoiceXML Message Response

HTTP/1.1 201 Created
Date: Fri, 05 Nov 2010 02:03:09 GMT
Content-Length: 95
Content-Type: application/json
X-Plugin-Param-Keys:
X-Plugin-Param-Values:
X-Powered-By: Servlet/2.5 JSP/2.1

{"result":"app-6nbs6twem41p|5624bd08b079138534263491b78d49e9@sipvoicexmlrecvr_
host|-40d94a935cd12af0"}

Get Message Status

Adding RESTful Audio Call Support 14-11

Get Message Status

The Get Message Status operation retrieves the status of a previously set up request,
which in this case is the status of an audio file bound for a single terminal.

To retrieve the status of the audio file, provide the appropriate correlator. This
correlator is the string value of the result attribute from the response body for the
appropriate Play (Audio/Text/VoiceXML) Message operation.

If the Get Message Status operation is successful, the response body contains a JSON
data object indicating whether the audio file is pending, playing, has played or an
error has occurred.

14Authorization
Basic

14HTTP Method
GET

14URI
http://host:port/rest/audio_call/call?getMessageStatus=${getMessageStatus}

where:

■ host and port are the host name and port of the system on which Services
Gatekeeper is installed.

■ ${getMessageStatus} contains the call identifier from the response body for the
appropriate Play (Audio/Text/VoiceXML) Message operation as the string value
for the correlator attribute.

The ${getMessageStatus} object in the URI is represented by the following JSON data
structure, where the value part of each name/value pair indicates its data type:

{"correlator": "String"}

14Request Header
The MIME-type for the Content-Type header field is application/json.

14Request Body
There is no request body.

14Response Header
Standard header fields. If the request fails, the Status-Line header field will contain the
status code and the reason for the failure. See "Understanding RESTful Errors and
Exceptions".

14Response Body
The status of the specific audio file is returned in the body of the response as the value
of the result attribute:

■ Played

Get Message Status

14-12 Services Gatekeeper Application Developer's Guide

■ Playing

■ Pending

■ Error

The response body for this operation is represented by the following JSON data
structure, where the value part of the name/value pair indicates its data type:

{"result": "Played|Playing|Pending|Error"}

14Examples

Example 14–7 Get Message Status Request

GET /rest/audio_
call/call?getMessageStatus=%7B%22correlator%22%3A%22app-6nbs6twem41p%7c5624bd08b07
9138534263491b78d49e9%40sipatvmsgrecvr_host%7c-40d94a935cd12af0 HTTP/1.1
X-Session-ID: app:6567114150306510708
Authorization: Basic YXBwXzFfdToxMjM0NTY30A=
X-Param-Keys:
X-Param-Values:
User-Agent: Jakarta Commons-HttpClient/3.0
Host:servgtkpr_host.port

Example 14–8 Get Message Status Response

HTTP/1.1 200 OK
Date: Thu, 05 Nov 2101 02:18:18 GMT
Content-Length: 19
Content-Type: application/json
X-Plugin-Param-Keys:
X-Plugin-Param-Values:
X-Powered-By: Servlet/2.5 JSP/2.1

{"result":"Played"}

End Message

Adding RESTful Audio Call Support 14-13

End Message

The End Message operation terminates an application’s previously set up request to
play the specified audio file.

To stop a previously set up request to play an audio file, provide the appropriate
correlator. This correlator is the string value of the result attribute from the response
body for the appropriate Play (Audio/Text/VoiceXML) Message operation.

14Authorization
Basic

14HTTP Method
DELETE

14URI
http://host:port/rest/audio_call/call?endMessage=${endMessage}

where:

■ host and port are the host name and port of the system on which Services
Gatekeeper is installed.

■ endMessage contains the call identifier from the response body for the appropriate
Play (Audio/Text/VoiceXML) Message operation as the string value for the
correlator attribute.

The ${endMessage} object in the URI is represented by the following JSON data
structure, where the value part of each name/value pair indicates its data type:

{"correlator": "String"}

14Request Body
There is no request body.

14Response Header
Standard header fields. If the request fails, the Status-Line header field will contain the
status code and the reason for the failure. See "Understanding RESTful Errors and
Exceptions".

14Response Body
The response body contains a data object with the current status of the audio file as the
value of the result attribute. The value can be one of the following:

■ Played

■ Playing

■ Pending

■ Error

The response body for this operation is represented by the following JSON data
structure, where the value part of the name/value pair indicates its data type:

End Message

14-14 Services Gatekeeper Application Developer's Guide

{"result": "Played|Playing|Pending|Error"}

14Examples

Example 14–9 End Message Request

DELETE /rest/audio_
call/end-call?endMessage=%7B%22correlator%22%3A%22app-gfim8nqt869v%7cb4142a2f38d1d
1e6341c897734c93a91%40sipatvmsgrecvr_host%7c-40d94a935cd12af0%22%7D HTTP/1.1
X-Session-ID: app:6567114150306510708
Authorization: Basic YXBwXzFfdToxMjM0NTY30A=
X-Param-Keys:
X-Param-Values:
User-Agent: Jakarta Commons-HttpClient/3.0
Host:servgtkpr_host.port

Example 14–10 End Message Response

HTTP/1.1 200 OK
Connection: close
DATE: Fri, 05 Nov 2010 02:31:31 GMT
Content-Length: 20
Content-Type: application/json
X-Plugin-Param-Keys:
X-Plugin-Param-Values:
X-Powered-By: Servlet/2.5 JSP/2.1

{"result":"Playing"}

15

Adding RESTful Quality of Service Support 15-1

15Adding RESTful Quality of Service Support

This chapter describes the RESTful interface for the Oracle Communications Services
Gatekeeper Quality of Service (QoS) communication service.

About the QoS Interface
An application can use the QoS RESTful interface to apply a QoS policy, query, modify
and remove that policy and register as well as unregister for QoS-related notifications.
A Policy Control and Charging Rules Function (PCRF) provider can also return QoS
events to registered applications.

See Services Gatekeeper Communication Service Reference Guide for details on using the
Extended Web Service Quality of Service/Diameter communication service.

REST Service Descriptions Available at Run-time
When the Administration Server for your Services Gatekeeper domain is in the
running state, the REST service descriptions of QoS operations can be found at

http://host:port/application.wadl

where host and port are the host name and port of the system on which Services
Gatekeeper is installed.

Example QoS Scenario
A typical QoS scenario involves a subscriber using a handset to access a video feed
using a video application installed on the handset. Initially, because the default QoS is
set to a low bandwidth, the video stops and stutters frequently as it is buffered
repeatedly over the low speed connection. The subscriber requests a faster QoS
through the application, presumably with a corresponding billing charge. Services
Gatekeeper forwards that request to a PCRF which then applies the upgraded QoS.
The subscriber’s video now streams at the upgraded speed, without stuttering.

Figure 15–1 shows a detailed QoS call flow sequence.

Note: While QoS frequently refers to raw bandwidth speed, it can
apply to any factors that affect network performance: for example,
connection latency and time-out.

Example QoS Scenario

15-2 Services Gatekeeper Application Developer's Guide

Figure 15–1 Example QoS Call Sequence

In Figure 15–1:

1. A user logs in to the video server.

2. The video server initiates an initial Credit Check Request (CCR) to the PCRF.

3. The PCRF returns a Credit Check Authorization (CCA) to the video server and the
low bandwidth, 256Kbps, QoS plan is applied.

4. The user plays the video using the low bandwidth QoS plan; video playback is
low quality with stuttering and continual buffering requests.

5. The user requests a better QoS plan using the applyQos RESTful request from the
handset’s host application.

6. Upon receiving the applyQoS request, Services Gatekeeper issues an
Authorization and Authentication Request (AAR) to the PCRF which then returns
an Authorization and Authentication Answer (AAA).

Using OAuth with QoS

Adding RESTful Quality of Service Support 15-3

7. The PCRF issues a Re-Authorization Request (RAR) to Services Gatekeeper, which
then returns a Re-Authorization Answer (RAA), and the high bandwidth, 5Mbps
QoS plan is applied.

8. The user plays the video, and the new 5Mbps QoS plan is enforced. The video
plays smoothly, without stuttering or continued buffering.

Configuring QoS for Services Gatekeeper
Before you can implement QoS functionality, a QoS plug-in must be deployed and
configured in Services Gatekeeper. For information on deploying and configuring QoS
plug-ins, see Services Gatekeeper Communication Service Reference Guide.

Using OAuth with QoS
The Services Gatekeeper QoS communication service fully supports OAuth 2.0
authentication between the QoS communication service itself and an AT application.

To establish OAuth authentication between the QoS communication service and your
application, do the following:

1. From your application, contact the QoS communication service and request an
OAuth token.

The QoS communication service will return an OAuth token to your application.

2. Add the access_token (UUID) to your application’s request header:

access_token: 3ddc24b2-5b17-4d46-8818-6e14726b217c

3. In addition, add the Authorization parameter to your application’s HTTP header:

Authorization: Bearer 3ddc24b2-5b17-4d46-8818-6e14726b217c

For more information on using OAuth authentication, see Services Gatekeeper OAuth
Guide.

Apply QoS

15-4 Services Gatekeeper Application Developer's Guide

Apply QoS

The Apply QoS operation requests that a QoS plan be applied to end user IDs as
specified in a Services Gatekeeper QoS plug-in regular expression matching rule.

15Authorization
Basic or OAuth 2.0

15HTTP Method
POST

15URI
http://host:port/ApplicationQoSService/${endUserId}/qos

where:

■ host and port are the host name and port of the system on which Services
Gatekeeper is installed.

■ endUserId is a valid end user identifier.

15Request Header
The MIME-type for the Content-Type header field is application/json.

15Request Body
The request body for the Apply QoS operation accepts the following parameters:

■ duration: Unsigned Long. Optional. The duration of the applied QoS in seconds. If
no duration is specified, the QoS session will not time out and will end only when
it is explicitly removed.

■ applicationIdentifier: String. Optional. Identifies the service to which the
application-facing service session belongs.

■ mediaComponentDescription: Complex. Optional. Service information for a
single media component within an application-facing session.

See "mediaComponentDescription" for details on each of the
mediaComponentDescription parameters.

■ serviceInfoStatus: Complex. Optional. Indicates the status of the service
information that the application facing interface is providing to the PCRF. If this
parameter is not provided, the value FINAL_SERVICE_INFORMATION is
assumed. The service info status is specified as one of the following:

– FINAL_SERVICE_INFORMATION

– PRELIMINARY_SERVICE_INFORMATION

■ chargingIdentifier: String. Optional. Application facing charging identifier.

■ sipForkingIndication. Enumerated. Optional. Indicates if multiple SIP dialogs are
related to a single Diameter session. If this parameter is not provided, the value
SINGLE_DIALOGUE is assumed. The SIP forking indication is specified as one
of the following:

Apply QoS

Adding RESTful Quality of Service Support 15-5

– SINGLE_DIALOGUE

– SEVERAL_DIALOGUES

■ subscriptionId: Complex. Optional. An end user’s subscription ID.

See "subscriptionID" for details on each of the subscriptionId parameters.

■ supportedFeatures: Complex. Optional. If present, informs the destination host
about the features that the origin host requires to successfully complete the
command exchange.

See "supportedFeatures" for details on each of the supportedFeatures parameters.

■ reservationPriority. Enumerated. Optional. Applies to all IP flows within the
media component and describes the relative importance of the IP flow as
compared to other IP flows. If this parameter is not specified, the default value is
0. The reservation priority is specified as one of the following:

– 0

– 7

■ framedIPAddress: String. Optional. The valid routable IPv4 or IPv6 address that is
applicable for the IP flows toward the user equipment at the PCEF.

■ framedIPv6Prefix: String. Optional. A valid full IPv6 address that is applicable to
one or more IP flows toward the user equipment at the PCEF.

■ calledStationId: String. Optional. If a private IP address is being used, the ID of
the packet data network.

■ serviceURN. Enumerated. Optional. Indicates that the application function (AF)
session is used for emergency traffic. The service URN is specified as one of the
following:

– counseling

– counseling.children

– counseling.mental-health

– counseling.suicide

– sos

– sos.ambulance

– sos.animal-control

– sos.fire

– sos.gas

– sos.marine

– sos.mountain

– sos.physician

– sos.poison

– sos.police

■ sponsoredConnectivityData: Complex. Optional. Indicates the data associated
with the sponsored data connectivity that the AF is providing to the PCRF.

See "sponsoredConnectivityData" for details on each of the
sponsoredConnectivityData parameters.

Apply QoS

15-6 Services Gatekeeper Application Developer's Guide

■ mPSIdentifier: String. Optional. Indicates that an assured-forwarding (AF) session
relates to a Malware Protection Systems (MPS) session. It contains the national
variant for the MPS service name, for example, Next Generation Network
GETS/priority service (NGN GETS).

■ applicationIdentifier: String. Optional. Identifies the particular service to which
the media component belongs. If the parameter is not present, the
applicationIdentifier from the main body of the request is used.

mediaComponentDescription
These are the parameters for the optional mediaComponentDescription.

■ mediaComponentNumber: Unsigned Integer. Required. Ordinal number of the
media component.

■ mediaSubComponent: Complex. Optional. The requested bitrate and filters for
the set of IP flows identified by their common flow identifier.

See "mediaSubComponent" for details on each of the mediaSubComponent
parameters.

■ applicationIdentifier: String. Optional. Identifies the particular service to which
the media component belongs. If the parameter is not present, the
applicationIdentifier from the main body of the request is used.

■ mediaType: Enumerated. Optional. Determines the media type of the session
component. The media type is specified as one of the following:

– AUDIO

– VIDEO

– DATA

– APPLICATION

– CONTROL

– TEXT

– MESSAGE

– OTHER

■ maxRequestedBandwidthUL. Unsigned Integer. Optional. The maximum
requested bandwidth in bits per second for an uplink IP flow.

■ maxRequestedBandwidthDL. Unsigned Integer. Optional. The maximum
requested bandwidth in bits per second for a downlink IP flow.

■ minRequestedBandwidthUL. Unsigned Integer. Optional. The minimum
requested bandwidth in bits per second for an uplink IP flow.

■ minRequestedBandwidthDL. Unsigned Integer. Optional. The minimum
requested bandwidth in bits per second for a downlink IP flow.

■ flowStatus. Enumerated. Optional. Describes whether the IP flows are enabled or
disabled. The flow status is specified as one of the following:

– ENABLED-UPLINK

– ENABLED-DOWNLINK

– ENABLED

– DISABLED

Apply QoS

Adding RESTful Quality of Service Support 15-7

– REMOVED

■ reservationPriority. Enumerated. Optional. Applies to all those IP flows within
the media component and describes the relative importance of the IP flow as
compared to other IP flows. If this parameter is not specified, the value is 0. The
reservation priority is specified as one of the following:

– 0

– 7

■ rSBandwidth. Unsigned Integer. Optional. Indicates the maximum required
bandwidth in bits per second for RTCP sender reports within the session
component.

■ rBBandwidth. Unsigned Integer. Optional. Indicates the maximum required
bandwidth in bits per second for RTCP receiver reports within the session
component.

■ codecData: String. Optional. Codec-related information known at the AF. The
encoding rule should follow 3gpp TS 29.214 [5.3.7].

mediaSubComponent
These are the parameters for the optional mediaSubComponent parameter.

■ flowNumber. Unsigned Integer. Required. Ordinal number of the IP flow.

■ flowDescription: String. Optional. Filters for an IP flow. The format must follow
RFC3588 [4.3] IPFilterRule and 3gpp TS 29.214 [5.3.8].

■ flowStatus. Enumerated. Optional. Describes whether the IP flows are enabled or
disabled. The flow status is specified as one of the following:

– ENABLED-UPLINK

– ENABLED-DOWNLINK

– ENABLED

– DISABLED

– REMOVED

■ flowUsage. Enumerated Optional. Provides information about the usage of IP
flows. The flow usage is specified as one of the following:

– NO_INFORMATION

– RTCP

– AF_SIGNALLING

■ maxRequestedBandwidthUL. Unsigned Integer. Optional. The maximum
requested bandwidth in bits per second for an uplink IP flow.

■ maxRequestedBandwidthDL. Unsigned Integer. Optional. The maximum
requested bandwidth in bits per second for a downlink IP flow

■ signallingProtocol. Enumerated. Optional. Indicates the protocol used for
signalling between the UE and the AF. If this parameter is absent, the value NO_
INFORMATION is assumed. The signalling protocol is specified as one of the
following:

– NO_INFORMATION

– SIP

Apply QoS

15-8 Services Gatekeeper Application Developer's Guide

subscriptionID
These are the parameters for the optional subscriptionID parameter.

■ subscriptionIdType. Enumerated. Required. Type of the end user’s subscription
ID. The subscription ID type is specified as one of the following:

– END_USER_E164

– END_USER_IMSI

– END_USER_SIP_URI

– END_USER_NAI

– END_USER_PRIVATE

■ subscriptionIdData: String. Required. Value of the end user’s subscription ID.

supportedFeatures
These are the parameters for the optional supportedFeatures parameter.

■ vendorId. Unsigned Integer. Required. The vendor ID.

■ featureListID. Unsigned Integer. Required. The feature list ID.

■ featureList. Unsigned Integer. Required. A list of the application’s supported
features.

sponsoredConnectivityData
These are the parameters for the optional sponsoredConnectivityData parameter.

■ sponsorIdentity: String. Optional. String identifying the sponsor.

■ applicationServiceProviderIdentity: String. Optional. String identifying the
application service provider.

■ grantedServiceUnit: Complex. Optional. Provides a usage threshold level to the
PCRF if the volume of traffic allowed during the sponsored data connectivity is
monitored.

See "grantedServiceUnit" for details on each of the grantedServiceUnit parameters.

■ usedServiceUnit: Complex. Optional. Provides the number of used units from the
point at which the service became active, or, if interim measurements are used
during the session, the point at which the previous session ended.

See "grantedServiceUnit" for details on each of the usedServiceUnit parameters.
Note that the parameters are identical to those of grantedServiceUnit.

grantedServiceUnit
These are the parameters for the optional grantedServiceUnit parameter.

■ tariffTimeChange: Enumerated. Optional. Determines the timing of the unit
relative to a tariff time change. The tariff time change parameter can take the
following values:

– UNIT_BEFORE_TARIFF_CHANGE

– UNIT_AFTER_TARIFF_CHANGE

– UNIT_INDETERMINATE

■ cCTime. Unsigned Integer. Optional. Indicates the length of requested, granted or
used time in seconds.

Apply QoS

Adding RESTful Quality of Service Support 15-9

■ cCMoney: Complex. Optional. Specifies the monetary amount in a given currency.
See "cCMoney" for details.

■ cCTotalOctets. Unsigned 64-bit Integer. Optional. Specifies the total number of the
granted, requested or used octets, regardless of the flow direction.

■ cCInputOctets. Unsigned 64-bit Integer. Optional. Specifies the total number of
the granted, requested or used octets, that either can be or have been received
from an end user.

■ cCOutputOctets. Unsigned 64-bit Integer. Optional. Specifies the total number of
the granted, requested or used octets, that either can be or have been sent to an
end user.

■ cCServiceSpecificUnits. Unsigned 64-bit Integer. Optional. Specifies the number
of service specific units provided in a particular service.

cCMoney
These are the parameters for the optional ccMoney parameter.

■ unitValue. Decimal. Required. Specifies a multiplier that converts between units
of a particular unit type and abstract units within the service credit pool.

■ currencyCode. Unsigned Integer. Optional. Specifies in which currency the cost
was given. Must follow the numeric values defined in the ISO 4217 standard.

Custom AVPs in QoS Requests
In addition to the preset elements, Services Gatekeeper QoS requests can
accommodate custom AVP definitions as long as they are supported by the Diameter
server. Such custom AVP definitions can be added to the following elements in any
number:

■ mediaSubComponent

■ supportedFeatures

■ sponsoredConnectivityData

■ grantedServiceUnit

■ usedServiceUnit

Example 15–1 shows a portion of a JSON request specifying a parameter with the
name myCustomDiameterParameter and the value My diameter parameter value.

Example 15–1 Custom JSON AVP Request

 "parameter": {
 "name": "myCustomDiameterParameter"
 "value": "My diameter parameter value"
 }

Request Example
Example 15–2 shows an example of an apply QoS request body.

Example 15–2 Apply QoS Request Body

{
 "qoSFeatureProperties": {
 "duration": 3600,
 "applicationIdentifier": "test_app_id",
 "mediaComponentDescription": [

Apply QoS

15-10 Services Gatekeeper Application Developer's Guide

 {
 "mediaComponentNumber": 1,
 "mediaSubComponent": [
 {
 "flowNumber": 1,
 "flowDescription": [
 "test_flow"
],
 "flowStatus": "ENABLED-UPLINK",
 "flowUsage": "NO_INFORMATION",
 "maxRequestedBandwidthUL": 3300,
 "maxRequestedBandwidthDL": 2200,
 "signallingProtocol": "SIP"
 }
],
 "applicationIdentifier": "test",
 "mediaType": "AUDIO",
 "maxRequestedBandwidthUL": 1000,
 "maxRequestedBandwidthDL": 1000,
 "minRequestedBandwidthUL": 10,
 "minRequestedBandwidthDL": 10,
 "flowStatus": "ENABLED-UPLINK",
 "reservationPriority": 1,
 "rSBandwidth": 10,
 "rRBandwidth": 10,
 "codecData": [
 "codec"
]
 }
],
 "serviceInfoStatus": "FINAL_SERVICE_INFORMATION",
 "chargingIdentifier": "charging_id",
 "sIPForkingIndication": "SINGLE_DIALOGUE",
 "subscriptionId": [
 {
 "subscriptionIdType": "END_USER_E164",
 "subscriptionIdData": "861013388991111"
 }
],
 "supportedFeatures": [
 {
 "vendorId": 1,
 "featureListID": 1,
 "featureList": 333
 }
],
 "reservationPriority": 1,
 "framedIPAddress": "0A987898",
 "calledStationId": "adsf",
 "serviceURN": "counseling",
 "sponsoredConnectivityData": {
 "sponsorIdentity": "1adsf",
 "applicationServiceProviderIdentity": "1ss",
 "grantedServiceUnit": {
 "tariffTimeChange": 122,
 "cCTime": 444,
 "cCMoney": {
 "unitValue": 1,
 "currencyCode": 11
 },

Apply QoS

Adding RESTful Quality of Service Support 15-11

 "cCTotalOctets": 1,
 "cCInputOctets": 1,
 "cCOutputOctets": 1,
 "cCServiceSpecificUnits": 1
 }
 },
 "mPSIdentifier": "mps_id"
 }
}

15Response Header
In addition to the standard header fields, two additional fields are returned:

■ X-Plugin-Param-Keys. Comma-separated keys that map to the values returned in
X-Plugin-Param-Values. Two values are returned:

– AVP_LIST. Key matching the Avp-List XML structure returned in
X-Plugin-Param-Values.

– session-id. Key matching the session ID returned in X-Plugin-Param-Values.

■ X-Plugin-Param-Values. Comma-separated values that are mapped to their
respective keys returned in X-Plugin-Param-Keys.

For the Avp-List XML structure, different Diameter servers may return different
elements and values, the only required element being the Result-Code. For detailed
information on the possible elements and values, see the UMTS Policy and charging
control over Rx reference point (ETSI TS 129 214 V10.6.0) available at .

http://www.etsi.org/deliver/etsi_ts/129200_129299/129214/10.06.00_60/ts_
129214v100600p.pdf

Likewise, the session-id format is dependent upon your Diameter server.

Example 15–3 shows a possible response header.

Example 15–3 Response Header

HTTP/1.1 201 Created
Date: Mon, 11 Mar 2013 03:29:11 GMT
Transfer-Encoding: chunked
Location:
http://localhost:8001/ApplicationQoSService/tel%3A88888888/qos/localhost%3B1362972
174%3B0-1362972554169
Content-Type: application/json
X-Plugin-Param-Keys: AVP_LIST,session-id
X-Plugin-Param-Values:
<Avp-List><Session-Id>localhost;1362972174;0</Session-Id><Origin-Host>MINFXU-CN</O
rigin-Host><Origin-Realm>oracle.com</Origin-Realm><Result-Code>2001</Result-Code><
IP-CAN-Type>0</IP-CAN-Type><RAT-Type>0</RAT-Type></Avp-List>,localhost;1362972174;
0
X-Powered-By: Servlet/2.5 JSP/2.1

If the request fails, the Status-Line header field will contain the status code and the
reason for the failure. See "Understanding RESTful Errors and Exceptions".

15Response Body
The response body contains an array of structures as the value for
applyQoSFeatureResponse. Each element in the array contains values for the
following parameters.

Apply QoS

15-12 Services Gatekeeper Application Developer's Guide

■ requestId: String. The request ID. Used to uniquely identify the QoS session.

■ actualProperties: Complex. Additional properties resulting from the request.

See "actualProperties" for details on each of the actualProperties parameters.

actualProperties
These are the values returned for the actualProperties parameter.

■ accessNetworkChargingIdentifier: Complex. Contains a charging identifier
within the accessNetworkChargingIdentifierValue AVP along with information
about the flows transported within the corresponding bearer within the flows
AVP. If no flows AVP is provided, the accessNetworkChargingIdentifierValue
applies to all flows within the AF session.

■ accessNetworkChargingAddress: String. Indicates the IP address of the network
entity that handles charging within the access network.

■ acceptableServiceInfo: Complex. Contains the maximum bandwidth for an AF
session and/or for specific media components that will be authorized by the
PCRF.

■ iPCANType. Enumerated. Indicates the type of Connectivity Access Network
(CAN) to which a user is connected. The CAN type is specified as one of the
following:

– _3GPP-GPRS

– DOCSIS

– xDSL

– WiMAX

– _3GPP2

– _3GPP-EPS

– Non-3GPP-EPS

■ rATType. Identifies the Radio Access Technology (RAT) that is servicing the user
equipment. The RAT type is specified as one of the following:

– WLAN

– VIRTUAL

– UTRAN

– GERAN

– GAN

– HSPA_EVOLUTION

– EUTRAN

– CDMA2000_1X

– HRPD

– UMB

– EHRPD

■ flows: Complex. Indicates IP flows using their flow identifiers.

See "flows" for details on each of the flows parameters.

Apply QoS

Adding RESTful Quality of Service Support 15-13

■ supportedFeatures: Complex. See "supportedFeatures" for detailed information.

accessNetworkChargingIdentifier
These are the values returned for the accessNetworkChargingIdentifier parameter.

■ accessNetworkChargingIdentifierValue: String. Includes the charging identifier.

■ flows: Complex. Indicates IP flows using their flow identifiers. See "flows" for
details on each of the flows parameters.

flows
These are the values returned for the flows parameter.

■ mediaComponentNumber. Unsigned Integer. Ordinal number of the media
component.

■ flowNumber. Integer. Indicates the number of the flow. If no flowNumber AVPs
are supplied, this refers to all flows matching the media component number.

■ finalUnitAction. Enumerated. When reporting an out of credit condition, the
finalUnitAction indicates the termination action applied to the impacted flows.
Indicates to the credit-control client the action to be taken when a user’s account
cannot cover the service cost. The final unit action is specified as one of the
following:

– TERMINATE

– REDIRECT

– RESTRICT_ACCESS

acceptableServiceInfo
These are the values returned for the acceptableServiceInfo parameter.

■ mediaComponentDescription: Complex. See "mediaComponentDescription" for
detailed information.

■ maxRequestedBandwidthUL. Unsigned Integer. The maximum requested
bandwidth in bits per second for an uplink IP flow.

■ maxRequestedBandwidthDL. Unsigned Integer. The maximum requested
bandwidth in bits per second for a downlink IP flow

Response Body Example
Example 15–4 shows an example of an apply QoS response body.

Example 15–4 Apply QoS Response Body

{"applyQoSFeatureResponse": {
 "requestId": "localhost;1362972174;0-1362972554169",
 "actualProperties": {
 "iPCANType": "_3GPP-GPRS",
 "rATType": "WLAN"
 }
 }
}

Apply Template-Based QoS

15-14 Services Gatekeeper Application Developer's Guide

Apply Template-Based QoS

An operation to apply a template-based QoS requires that a QoS plan based upon a
template stored in Services Gatekeeper be applied to end user IDs. The QoS plan is
specified as a Services Gatekeeper QoS plug-in regular expression matching rule.

15QoS Templates
QoS templates must be formatted according to the XSD found in the xsd subdirectory
in the plugin_qos_diameter.jar file, which itself is contained within the wlng_nt_
qos.ear archive located in Middleware_Home/ocsg_release/applications directory, where
release is the release version of Services Gatekeeper. Example 15–10 shows a reference
template containing all of the possible elements and attributes for a request.

Following is a sample QoS template:

Example 15–5 QoS Template Example

<QoSTemplate xmlns="http://oracle/ocsg/rest/qos/template"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://oracle/ocsg/rest/qos/template ../xsd/qosTemplate.xsd"
 templateId="default_template">
 <applicationIdentifier parameterName="$APP_
ID">4d6f62696c655456</applicationIdentifier>
 <!--Zero or more repetitions: -->
 <mediaComponentDescription>
 <mediaComponentNumber>0</mediaComponentNumber>
 <!--Zero or more repetitions: -->
 <mediaSubComponent>
 <flowNumber parameterName="$FLOW_NUMBER_0">1</flowNumber>
 <!--0 to 2 repetitions: -->
 <flowDescription parameterName="$FLOW_DESCRIPTION_0">
 <![CDATA[permit out 8001 from assigned 34 to 24.2.1.6/18
8000]]></flowDescription>
 </mediaSubComponent>
 <mediaType parameterName="$MED_TYPE">VIDEO</mediaType>
 <flowStatus parameterName="$FLOW_STATUS">ENABLED</flowStatus>
 </mediaComponentDescription>
 <!--Optional: -->M
 <serviceInfoStatus parameterName="$SERV_INFO_STATUS">PRELIMINARY_SERVICE_
INFORMATION</serviceInfoStatus>
 <!--Optional: -->
 <chargingIdentifier parameterName="$CHG_ID">charging-id-555</chargingIdentifier>
 <!--Optional: -->
 <sIPForkingIndication parameterName="$SIP_FORK_IND">SINGLE_
DIALOGUE</sIPForkingIndication>
 <subscriptionId>
 <subscriptionIdType parameterName="$SUB_ID_TYPE">END_USER_
E164</subscriptionIdType>
 <subscriptionIdData parameterName="$SUB_ID_
DATA">14128771501</subscriptionIdData>
 </subscriptionId>
 <serviceURN parameterName="$SERV_URN">sos.police</serviceURN>
</QoSTemplate>

In Example 15–5, each element has a parameterName attribute whose value maps to
the request's parameter name. The parameterName attribute identifier must be unique
throughout the entire template. For example, if you have two instances of the element

Apply Template-Based QoS

Adding RESTful Quality of Service Support 15-15

applicationIdentifier (one for the whole template and one for a sub-component), you
can use the following names for each instance: $APP_ID_0 and $APP_ID_1.

If a parameter is set dynamically in a request, its value replaces the default value
configured in the template. For example, if a request sets the $FLOW_DESCRIPTION_
0 parameter value to "modified flow description", the PCRF will receive that value
rather than the one defined in the template.

Custom AVPs in QoS Templates
In addition to the preset elements, QoS templates can accommodate custom AVP
definitions, both simple and enumerated, as long as they are supported by the
Diameter server. Any number of such custom AVP definitions can be added to the
following elements:

■ mediaSubComponent

■ supportedFeatures

■ sponsoredConnectivityData

■ grantedServiceUnit

■ usedServiceUnit

Example 15–6 shows a simple custom AVP template in which the type of the custom
parameter is set to String, the parameterName is set to $MY_CUSTOM_DIAMETER_
PARAMETER, and the value of the custom parameter is set to My Diameter value.

Example 15–6 Custom AVP Template Element

<avp name="myCustomDiameterParameter" description="This is a sample AVP"
code="234567" may-encrypt="true" mandatory-flag="optional" vendor-id="Oracle
Corporation" constrained="false">
 <type type-name="Integer32"/>
 <value parameterName="$MY_CUSTOM_DIAMETER_PARAMETER">"My Diameter
Value"</value>
</avp>

Example 15–7 shows a custom enumerated AVP element where the AVP name is
myCustomDiameterParameter, and two possible enumerated values are defined:

■ ENUM_1, the logical name associated with the enumerated type, 0.

■ ENUM_2, the logical name associated with the enumerated type, 1.

The parameterName, $ENUM_VAL, can be replaced like any standard template
parameter with a value of either ENUM_1 or ENUM_2.

Example 15–7 Custom Enumerated AVP Template Element

<avp name="myCustomEnumDiameterParameter" description="This is a sample AVP"
code="12345" may-encrypt="true" mandatory-flag="required" vendor-id="Oracle
Corporation" constrained="false">
 <type type-name="Integer32"/>
 <enum name=”ENUM_1” code=”0”/>
 <enum name=”ENUM_2” code=”1”/>
 <value parameterName=”$ENUM_VAL”>ENUM_1</value>
</avp>

Note: For custom enumerated AVPs, the type element’s type-name
attribute is always Integer32.

Apply Template-Based QoS

15-16 Services Gatekeeper Application Developer's Guide

15Managing QoS Templates in Services Gatekeeper
You use the Services Gatekeeper Administration Console or the Platform Test
Environment to load, modify and query QoS templates using MBeans. Table 15–1 lists
the available MBean operations and their descriptions:

For more information on loading, retrieving, listing, and deleting QoS templates, see
Services Gatekeeper Communication Service Reference Guide.

15Authorization
Basic or OAuth 2.0

15HTTP Method
POST

15URI
http://host:port/ApplicationQoSService/${endUserId}/qos/templatebased

where:

■ host and port are the host name and port of the system on which Services
Gatekeeper is installed.

■ endUserId is a valid end user identifier.

15Request Header
The MIME-type for the Content-Type header field is application/json.

15Request Body
The request body for the operation to apply template-based QoS accepts the following
parameters:

■ duration: Unsigned Long. Required. The duration of the applied QoS in seconds.

■ applicationIdentifier: String. Optional. Identifies the service to which the
application-facing service session belongs.

■ framedIPAddress. Hexadecimal Binary. Optional. The valid routable IPv4 or IPv6
address that is applicable for the IP Flows toward the user equipment at the PCEF.

■ framedIPv6Prefix. Hexadecimal Binary. Optional. A valid full IPv6 address that is
applicable to an IP flow or IP flows toward the user equipment at the PCEF.

Table 15–1 QoS Template Management MBean Operations

Operation Description

listQoSRequestTemplateMatchRules Lists all of the match rules that have been defined
for the QoS plug-in.

loadQoSRequestTemplate Loads a QoS template.

retrieveQoSRequestTemplate Retrieves a QoS template associated with a
particular subscriber ID or a range of subscriber
IDs.

deleteQoSRequestTemplate Deletes a QoS template associated with a particular
subscriber ID or a range of subscriber IDs.

Apply Template-Based QoS

Adding RESTful Quality of Service Support 15-17

■ calledStationId: String. Optional. If a private IP address is being used, the ID of
the packet data network.

■ parameter: Complex. Optional. An array of JSON objects that define which
template parameters will be replaced and what the replacement values will be.

The array of JSON objects are a collection of one or more AVPs labeled name and
value that determine which parameters in the QoS template will be replaced and
what the replacement values will be. In Example 15–8, the values for the template
parameters $CHG_ID and $MAX_REQ_BAND_DL will be replaced with the
values "charging_id_test" and 2048 respectively.

Request Body Example
Example 15–8 shows a request body associated with an example Template-based QoS
request.

Example 15–8 Example Request Body when a Template-Based QoS is Applied

{
 "templateQoSFeatureProperties": {
 "duration": 3600,
 "applicationIdentifier": "app_id",
 "framedIPAddress": "0A0B9899",
 "calledStationId": "called_station_id",
 "parameter": [
 {
 "name": "$CHG_ID",
 "value": "charging_id_test"
 },
 {
 "name": "$MAX_REQ_BAND_DL",
 "value": 2048
 }
]
 }
}

15Response Header
For details on the response header, see the Apply QoS "Response Header" section.

15Response Body
The response body parameters for the request to apply template-based QoS are the
same as those for the Apply QoS operation. See the Apply QoS "Response Body"
section for details.

Response Body Example
Example 15–9 shows the response body associated with an example Template-based
QoS request.

Example 15–9 Example Response Body for Template-Based QoS Request

{
 "applyQoSFeatureResponse": {
 "requestId": "localhost;1362972174;1-1362973261091",
 "actualProperties": {
 "iPCANType": "_3GPP-GPRS",
 "rATType": "WLAN"

Apply Template-Based QoS

15-18 Services Gatekeeper Application Developer's Guide

 }
 }
}

15Reference: Complete QoS Template
Example 15–10 is a QoS template containing all of the available elements and
attributes from the reference XSD.

Example 15–10 A Complete QoS Template

<QoSTemplate xmlns="http://oracle/ocsg/rest/qos/template"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://oracle/ocsg/rest/qos/template ../xsd/qosTemplate.xsd"
 templateId="default_template">
 <applicationIdentifier parameterName="$APP_ID">test_
appId</applicationIdentifier>
 <!--Zero or more repetitions: -->
 <mediaComponentDescription>
 <mediaComponentNumber>0</mediaComponentNumber>
 <!--Zero or more repetitions: -->
 <mediaSubComponent>
 <flowNumber parameterName="$FLOW_NUMBER_0">0</flowNumber>
 <!--0 to 2 repetitions: -->
 <flowDescription parameterName="$FLOW_DESCRIPTION_0">flow0_
Description</flowDescription>
 <!--Optional: -->
 <flowStatus parameterName="$FLOW_STATUS_0">ENABLED</flowStatus>
 <!--Optional: -->
 <flowUsage parameterName="$FLOW_USAGE_0">NO_INFORMATION</flowUsage>
 <!--Optional: -->
 <maxRequestedBandwidthUL parameterName="$MAX_REQ_BAND_UL_
0">1000</maxRequestedBandwidthUL>
 <!--Optional: -->
 <maxRequestedBandwidthDL parameterName="$MAX_REQ_BAND_DL_
0">1000</maxRequestedBandwidthDL>
 <!--Optional: -->
 <signallingProtocol parameterName="$SIG_PROTOCOL_0">SIP</signallingProtocol>
 </mediaSubComponent>
 <!--Optional: -->
 <applicationIdentifier parameterName="$MED_DES_APP_ID">test_
appId</applicationIdentifier>
 <!--Optional: -->
 <mediaType parameterName="$MED_TYPE">AUDIO</mediaType>
 <!--Optional: -->
 <maxRequestedBandwidthUL parameterName="$MAX_REQ_BAND_
UL">1000</maxRequestedBandwidthUL>
 <!--Optional: -->
 <maxRequestedBandwidthDL parameterName="$MAX_REQ_BAND_
DL">1000</maxRequestedBandwidthDL>
 <!--Optional: -->
 <minRequestedBandwidthUL parameterName="$MIN_REQ_BAND_
UL">10</minRequestedBandwidthUL>
 <!--Optional: -->
 <minRequestedBandwidthDL parameterName="$MIN_REQ_BAND_
UL">10</minRequestedBandwidthDL>
 <!--Optional: -->
 <flowStatus parameterName="$FLOW_STATUS">ENABLED</flowStatus>
 <!--Optional: -->
 <reservationPriority parameterName="$RES_PRI">0</reservationPriority>

Apply Template-Based QoS

Adding RESTful Quality of Service Support 15-19

 <!--Optional: -->
 <rSBandwidth parameterName="$RS_BAND">1000</rSBandwidth>
 <!--Optional: -->
 <rRBandwidth parameterName="$RR_BAND">1000</rRBandwidth>
 <!--0 to 2 repetitions: -->
 <codecData parameterName="$CODEC_DATA">CODEC</codecData>
 </mediaComponentDescription>
 <!--Optional: -->
 <serviceInfoStatus parameterName="$SERV_INFO_STATUS">FINAL_SERVICE_
INFORMATION</serviceInfoStatus>
 <!--Optional: -->
 <chargingIdentifier parameterName="$CHG_ID">test_charging</chargingIdentifier>
 <!--Optional: -->
 <sIPForkingIndication parameterName="$SIP_FORK_IND">SINGLE_
DIALOGUE</sIPForkingIndication>
 <!--Zero or more repetitions: -->
 <subscriptionId>
 <subscriptionIdType parameterName="$SUB_ID_TYPE">END_USER_
E164</subscriptionIdType>
 <subscriptionIdData parameterName="$SUB_ID_
DATA">13693312888</subscriptionIdData>
 </subscriptionId>
 <!--Zero or more repetitions: -->
 <supportedFeatures>
 <vendorId parameterName="$VENDOR_ID">654321</vendorId>
 <featureListID parameterName="$FEATURE_LIST_ID">654320</featureListID>
 <featureList parameterName="$FEATURE_LIST">654322</featureList>
 <!--Zero or more repetitions: -->
 <avp name="test_supported_feature" description="test supported feature avp"
 code="688788" may-encrypt="true" mandatory-flag="required" vendor-id="87349"
 constrained="false">
 <grouped>
 <!--1 or more repetitions: -->
 <gavp name="grouped_avp" />
 </grouped>
 <avps name="avps_name" code="96785">
 <type type-name="String"/>
 <value parameterName="$customer_avps_name">xmf</value>
 </avps>
 </avp>
 </supportedFeatures>
 <!--Optional: -->
 <reservationPriority parameterName="$RESV_PRI">0</reservationPriority>
 <!--Optional: -->
 <framedIPAddress></framedIPAddress>
 <!--Optional: -->
 <framedIPv6Prefix></framedIPv6Prefix>
 <!--Optional: -->
 <calledStationId></calledStationId>
 <!--Optional: -->
 <serviceURN parameterName="$SERV_URN">sos.fire</serviceURN>
 <!--Optional: -->
 <sponsoredConnectivityData>
 <!--Optional: -->
 <sponsorIdentity parameterName="$SPON_ID">spon_id</sponsorIdentity>
 <!--Optional: -->
 <applicationServiceProviderIdentity
 parameterName="$SPON_APP_SERV_PROV_ID">spon_serv_prov_
id</applicationServiceProviderIdentity>
 <!--Optional: -->

Apply Template-Based QoS

15-20 Services Gatekeeper Application Developer's Guide

 <grantedServiceUnit>
 <!--Optional: -->
 <tariffTimeChange parameterName="$TARIF_TIME_CHG">1</tariffTimeChange>
 <!--Optional: -->
 <cCTime parameterName="$CC_TIME">60</cCTime>
 <!--Optional: -->
 <cCMoney>
 <unitValue parameterName="$UNIT_VAL">6.28</unitValue>
 <!--Optional: -->
 <currencyCode parameterName="$CUR_CODE">80</currencyCode>
 </cCMoney>
 <!--Optional: -->
 <cCTotalOctets parameterName="$CC_TOTAL_OCTS">1000000</cCTotalOctets>
 <!--Optional: -->
 <cCInputOctets parameterName="$CC_INPUT_OCTS">500000</cCInputOctets>
 <!--Optional: -->
 <cCOutputOctets parameterName="$CC_OUTPUT_OCTS">500000</cCOutputOctets>
 <!--Optional: -->
 <cCServiceSpecificUnits parameterName="$CC_SERV_SPEC_
UNIT">1</cCServiceSpecificUnits>
 </grantedServiceUnit>
 </sponsoredConnectivityData>
 <!--Optional: -->
 <mPSIdentifier parameterName="$MPS_ID">mps_id</mPSIdentifier>
 <!--Zero or more repetitions: -->
 <avp name="myRandomAVP" description="This is a sample AVP" code="93222"
may-encrypt="true" mandatory-flag="required" vendor-id="Oracle Corporation"
constrained="false">
 <type type-name="Integer32"/>
 <enum name="ENUM_1" code="0"/>
 <enum name="ENUM_2" code="1"/>
 <value parameterName="$ENUM_VAL">ENUM_1</value>
 </avp>
</QoSTemplate>

Modify QoS

Adding RESTful Quality of Service Support 15-21

Modify QoS

The Modify QoS operation lets you modify the parameters of an existing QoS plan.

15Authorization
Basic or OAuth 2.0

15HTTP Method
PUT

15URI
http://host:port/ApplicationQoSService/qos/${requestId}

where:

■ host and port are the host name and port of the system on which Services
Gatekeeper is installed.

■ requestId is a valid QoS request ID.

15Request Header
The MIME-type for the Content-Type header field is application/json.

15Request Body
To modify a QoS session, create a request body with the parameters you want
changed. See the Apply QoS "Request Body" section for a complete listing of request
body parameters.

Request Body Example
Example 15–11 shows an example of a modify QoS request body.

Example 15–11 Modify QoS Request Body

{
 "qoSFeatureProperties": {
 "applicationIdentifier": "654321"
 }
}

15Response Header
For details on the response header, see the Apply QoS "Response Header" section.

15Response Body
The response body contains an array of structures as the value for actualProperties.
See "actualProperties" for complete details.

Response Body Example
Example 15–12 shows an example of a modify QoS response body.

Modify QoS

15-22 Services Gatekeeper Application Developer's Guide

Example 15–12 Modify QoS Response Body

{
 "actualProperties": {
 "iPCANType": "_3GPP-GPRS",
 "rATType": "WLAN"
 }
}

Template-Based Modify QoS

Adding RESTful Quality of Service Support 15-23

Template-Based Modify QoS

The Template-based Modify QoS operation requests a modification to an existing
template-based QoS plan.

15Authorization
Basic or OAuth 2.0

15HTTP Method
POST

15URI
http://host:port/ApplicationQoSService/qos/${requestId}/templatebased

where:

■ host and port are the host name and port of the system on which Services
Gatekeeper is installed.

■ requestId is a valid QoS request ID.

15Request Header
The MIME-type for the Content-Type header field is application/json.

15Request Body
To modify a template-based QoS session, create a request body with the parameters
you want changed. See the Apply Template-based QoS "Request Body" section for a
complete listing of request body parameters.

Request Body Example
Example 15–13 shows an example of a modify template-based QoS request body.

Example 15–13 Modify Template-Based QoS Request Body

{
 "templateQoSFeatureProperties": {
 "parameter": [
 {
 "name": "$FLOW_DESCRIPTION_0",
 "value": "permit out 8001 from assigned 34 to 24.2.1.6/18 8000"
 }
]
 }
}

15Response Header
For details on the response header, see the Apply QoS "Response Header" section.

Template-Based Modify QoS

15-24 Services Gatekeeper Application Developer's Guide

15Response Body
See "actualProperties" for details on the response body parameters for a Modify
Template-based QoS requests.

Response Body Example
Example 15–14 shows an example of a Modify Template-based QoS response body.

Example 15–14 Modify Template-Based QoS Response Body

{
 "actualProperties": {
 "iPCANType": "_3GPP-GPRS",
 "rATType": "WLAN"
 }
}

Get QoS Status

Adding RESTful Quality of Service Support 15-25

Get QoS Status

The Get QoS Status operation returns detailed information on the currently applied
QoS plan.

15Authorization
Basic or OAuth 2.0

15HTTP Method
GET

15URI
http://host:port/ApplicationQoSService/qos/${requestId}

where:

■ host and port are the host name and port of the system on which Services
Gatekeeper is installed.

■ requestId is a valid QoS session identifier.

15Request Header
Standard header fields.

15Request Body
There is no request body.

15Response Header
Standard header fields. If the request fails, the Status-Line header field will contain the
status code and the reason for the failure. See "Understanding RESTful Errors and
Exceptions".

15Response Body
The response body contains an array of structures as the value for qoSStatus. Each
element in the array contains values for the following parameters.

■ userIsConnected. Boolean. True indicates a user is connected. False indicates a
user is disconnected.

■ actualProperties: Complex. Additional properties resulting from the request.

See "actualProperties" for details on each of the actualProperties parameters.

■ qosFeatureProperties: Complex. Additional properties resulting from the request.

See the "Request Body" section of the "Apply QoS" operation for details on each of
the qosFeatureProperties parameters.

Response Body Example
Example 15–15 shows an example of a QoS status response body.

Get QoS Status

15-26 Services Gatekeeper Application Developer's Guide

Example 15–15 QoS Status Response Body

{
 "qoSStatus": {
 "userIsConnected": true,
 "actualProperties": {
 "iPCANType": "_3GPP-GPRS",
 "rATType": "WLAN"
 },
 "qosFeatureProperties": {
 "duration": 3600,
 "applicationIdentifier": "654321",
 "mediaComponentDescription": [
 {
 "mediaComponentNumber": 0,
 "mediaSubComponent": [
 {
 "flowNumber": 1,
 "flowDescription": [
 "flow_1"
],
 "flowStatus": "ENABLED-UPLINK",
 "flowUsage": "NO_INFORMATION",
 "maxRequestedBandwidthUL": 100,
 "maxRequestedBandwidthDL": 500,
 "signallingProtocol": "NO_INFORMATION"
 }
],
 "applicationIdentifier": "test_app_id",
 "mediaType": "VIDEO",
 "maxRequestedBandwidthUL": 200,
 "maxRequestedBandwidthDL": 1000,
 "minRequestedBandwidthUL": 10,
 "minRequestedBandwidthDL": 100,
 "flowStatus": "ENABLED",
 "reservationPriority": 1
 }
],
 "serviceInfoStatus": "FINAL_SERVICE_INFORMATION",
 "chargingIdentifier": "charging_id",
 "subscriptionId": [
 {
 "subscriptionIdType": "END_USER_E164",
 "subscriptionIdData": "88888888"
 }
],
 "framedIPAddress": "0A999899",
 "calledStationId": "EE-AA-CD-AF-09"
 }
 }
}

Remove QoS

Adding RESTful Quality of Service Support 15-27

Remove QoS

The Remove QoS operation removes a current QoS plan identified by a request ID.

15Authorization
Basic or OAuth 2.0

15HTTP Method
DELETE

15URI
http://host:port/ApplicationQoSService/qos/${requestId}

where:

■ host and port are the host name and port of the system on which Services
Gatekeeper is installed.

■ requestId is a valid QoS session identifier.

15Request Header
The MIME-type for the Content-Type header field is
application/x-www-form-urlencoded.

15Request Body
There is no request body.

15Response Header
For details on the response header, see the Apply QoS "Response Header" section.

15Response Body
There is no response body.

Register for QoS Notifications

15-28 Services Gatekeeper Application Developer's Guide

Register for QoS Notifications

The Register for QoS Notifications operation lets an application to register to receive
QoS events. A QoS event notification is generated by a PCRF when an event is
triggered for which an application has registered to receive notifications.

Table 15–2 shows the events an application can register to receive.

15Authorization
Basic or OAuth 2.0

15HTTP Method
POST

15URI
http://host:port/ApplicationQoSNotification/registration

where:

■ host and port are the host name and port of the system on which Services
Gatekeeper is installed.

Table 15–2 QoS Event Types

Event Type Trigger Condition

QOS_FEATURE_RELEASED Triggered when the AF session times out. Controlled by
the duration parameter in the QoS session request.

CHARGING_CORRELATION_EXCHANGE If different Access Network Charging Information is
applicable to the IP-CAN session, the PCRF will notify
the AF about the Access Network Charging Information
that applies to each authorized flow.

INDICATION_OF_LOSS_OF_BEARER The server reports a loss of a bearer to the AF.

INDICATION_OF_RECOVERY_OF_
BEARER

The server reports a recovery of a bearer to the AF.

INDICATION_OF_RELEASE_OF_
BEARER

The server reports the release of a bearer to the AF.

IP_CAN_CHANGE The server indicates a change in the IP-CAN type or
RAT type (if the IP-CAN type is GPRS).

INDICATION_OF_OUT_OF_CREDIT The PCRF reports to the AF that the SDFs have run out
of credit and that the termination action determined by
the finalUnitAction AVP applies.

INDICATION_OF_SUCCESSFUL_
RESOURCES_ALLOCATION

The PCRF reports that the requested resources have
been successfully allocated.

INDICATION_OF_FAILED_
RESOURCES_ALLOCATION

The PCRF reports that the requested resources could not
be successfully allocated.

INDICATION_OF_LIMITED_PCC_
DEPLOYMENT

The server reports limited PCC
deployment—dynamically allocated resources are not
available.

USAGE_REPORT The PCRF reports accumulated usage volume when the
usage threshold provided by the AF has been reached.

Register for QoS Notifications

Adding RESTful Quality of Service Support 15-29

15Request Header
The MIME-type for the Content-Type header field is application/json.

15Request Body
The request body for the Apply QoS operation accepts the following parameters:

■ reference: Complex. Required. Defines the application endpoint, interfaceName
and correlator used to notify the application.

■ endUserIdentities. Array. Required. Network end users to be monitored for
events. An array of one or more end user IDs.

■ eventCriteria. Array. Required. One or more events to be monitored. Events are
specified by their numeric event ID. Table 15–3 shows the mapping of numeric
event IDs to logical event IDs. For definitions of these events, see Table 15–2.

reference
These are the parameters for the reference parameter.

■ endpoint: String. Required. The notification end point expected by the AF.

■ interfaceName: String. Required. The interface name. Rarely used.

■ correlator: String. Required. A unique ID for the message.

Request Body Example
Example 15–16 shows an example of a Register for QoS Notifications request body.

Example 15–16 Register for QoS Notifications Request Body

{
 "startQoSNotification": {
 "reference": {
 "endpoint": "http://endpt_host:port/jaxrs/QoSNotification",
 "interfaceName": "interfaceName",
 "correlator": "987654321"
 },
 "endUserIdentities": [

Table 15–3 Numeric to Logical QoS Event Mapping

Numeric Event Logical Event Name

1 CHARGING_CORRELATION_EXCHANGE

2 INDICATION_OF_LOSS_OF_BEARER

3 INDICATION_OF_RECOVERY_OF_BEARER

4 INDICATION_OF_RELEASE_OF_BEARER

6 IP-CAN_CHANGE

7 INDICATION_OF_OUT_OF_CREDIT

8 INDICATION_OF_SUCCESSFUL_RESOURCES_ALLOCATION

9 INDICATION_OF_FAILED_RESOURCES_ALLOCATION

10 INDICATION_OF_LIMITED_PCC_DEPLOYMENT

11 USAGE_REPORT

12 QOS_FEATURE_RELEASED

Register for QoS Notifications

15-30 Services Gatekeeper Application Developer's Guide

 "tel:88888888", "tel:123456", "tel:234567"
],
 "eventCriteria": [
 "1", "2", "6", "7"
]
 }
}

15Response header
For details on the response header, see the Apply QoS "Response Header" section.

15Response Body
There is no response body.

Unregister for QoS Notifications

Adding RESTful Quality of Service Support 15-31

Unregister for QoS Notifications

The Unregister for QoS Notifications operation requests that the server cease sending
an application QoS notifications.

15Authorization
Basic or OAuth 2.0

15HTTP Method
DELETE

15URI
http://host:port/ApplicationQoSNotification/registration/${correlator}

where:

■ host and port are the host name and port of the system on which Services
Gatekeeper is installed.

■ correlator is the unique identifier of the original notification request.

15Request Header
The MIME-type for the Content-Type header field is
application/x-www-form-urlencoded.

15Request Body
There is no request body.

15Response Header
Standard header fields. If the request fails, the Status-Line header field will contain the
status code and the reason for the failure. See "Understanding RESTful Errors and
Exceptions".

15Response Body
There is no response body.

QoS Event Notification

15-32 Services Gatekeeper Application Developer's Guide

QoS Event Notification

A QoS event notification is generated by a PCRF when an event is triggered for which
an application has registered to receive notifications.

15Authorization
Basic or OAuth 2.0

15HTTP Method
POST

15URI
http://host:port/QoSNotification

where:

■ host and port are the host name and port of the system on which Services
Gatekeeper is installed.

15Request Header
The MIME-type for the Content-Type header field is application/json.

15Request Body
The request body for the QoS Event Notification operation accepts the following
parameters:

■ correlator: String. Required. The duration of the applied QoS in seconds.

■ endUserIdentities. URI. Required. Identifies the service to which the
application-facing service session belongs.

■ eventType: Complex. Required. The valid routable IPv4 address that is applicable
for the IP Flows toward the user equipment at the PCEF.

■ subscriptionId: Complex. Optional. A valid full IPv6 address that is applicable to
an IP flow or IP flows toward the user equipment at the PCEF.

■ accessNetworkChargingIdentifier: Complex. Optional. Contains a charging
identifier within the accessNetworkChargingIdentifierValue AVP along with
information about the flows transported within the corresponding bearer within
the flows AVP. If no flows AVP is provided, the
accessNetworkChargingIdentifierValue applies to all flows within the AF session.

See "accessNetworkChargingIdentifier" for details on each of the
accessNetworkChargingIdentifier parameters.

■ accessNetworkChargingAddress: String. Optional. Indicates the IP address of the
network entity that handles charging within the access network.

■ iPCANType. Enumerated. Optional. Indicates the type of Connectivity Access
Network (CAN) to which a user is connected. The CAN type is specified as one of
the following:

– _3GPP-GPRS

– DOCSIS

QoS Event Notification

Adding RESTful Quality of Service Support 15-33

– xDSL

– WiMAX

– _3GPP2

– _3GPP-EPS

– Non-3GPP-EPS

■ rATType. Enumerated. Optional. Identifies the Radio Access Technology (RAT)
that is servicing the user equipment. The RAT type is specified as one of the
following:

– WLAN

– VIRTUAL

– UTRAN

– GERAN

– GAN

– HSPA_EVOLUTION

– EUTRAN

– CDMA2000_1X

– HRPD

– UMB

– EHRPD

■ flows: Complex. Indicates IP flows using their flow identifiers.

See "flows" for details on each of the flows parameters.

■ abortCause. Enumerated. Optional. Determines the cause of an Abort Session
Request (ASR) or of a Resource Access Restriction (RAR) indicating a bearer
release. The abort cause is specified as one of the following:

– BEARER_RELEASED

– INSUFFICIENT_SERVER_RESOURCES

– INSUFFICIENT_BEARER_RESOURCES

– PS_TO_CS_HANDOVER

– SPONSORED_DATA_CONNECTIVITY_DISALLOWED

■ sponsoredConnectivityData: Complex. Optional. A set of AVPs that define which
template parameters will be replaced and what the replacement values will be.

See "sponsoredConnectivityData" for details on each of the
sponsoredConnectivityData parameters.

Request Example
Example 15–17 shows an example of a QoS Event Notification request body.

Example 15–17 Notify QoS Event Request Body

{
 "notifyQoSEvent": {
 "correlator": "987654321",
 "eventType": 6,

QoS Event Notification

15-34 Services Gatekeeper Application Developer's Guide

 "accessNetworkChargingAddress": "127.0.0.1",
 "iPCANType": "WiMAX",
 "rATType": "WLAN"
 }
}

15Response header
Standard header fields. If the request fails, the Status-Line header field will contain the
status code and the reason for the failure. See "Understanding RESTful Errors and
Exceptions".

15Response Body
There is no response body.

List QoS Event Notifications

Adding RESTful Quality of Service Support 15-35

List QoS Event Notifications

The List QoS Event Notifications operation returns a list of QoS events that are
registered either to a single correlator, if a correlator is specified in the request, or a
complete list of registered events for all correlators if no correlator is specified.

15Authorization
Basic or OAuth 2.0

15HTTP Method
GET

15URI
http://host:port/ApplicationQoSNotification/registration/[${correlator}]

where:

■ host and port are the host name and port of the system on which Services
Gatekeeper is installed.

■ correlator is the optional unique identifier of the original notification request.

15Request Header
Standard request headers.

15Request Body
There is no request body.

15Response Header
Standard header fields. If the request fails, the Status-Line header field will contain the
status code and the reason for the failure. See "Understanding RESTful Errors and
Exceptions".

15Response Body with No Correlator
The response body for the List QoS Event Notifications operation when an optional
correlator parameter is specified, returns the following parameters:

■ correlators. Array. An array of correlators that are registered to receive QoS events.

Response Body Example
Example 15–18 shows an example of a List QoS Notifications response body when no
correlator is specified in the request.

Example 15–18 List QoS Notifications Response Body Without a Correlator

{
 "correlators": {
 "correlator": [
 "987654321", "12345676", "1272638"
]
 }

List QoS Event Notifications

15-36 Services Gatekeeper Application Developer's Guide

}

15Response Body with Optional Correlator
The response body for the List QoS Event operation when an optional correlator
parameter is specified, returns the following parameters:

■ reference: Complex. Defines the application endpoint, interfaceName and
correlator used to notify the application. See "reference" for detailed information
on the reference parameters.

■ endUserIdentities: Array. Network end users to be monitored for events. An array
of one or more end user IDs.

■ eventCriteria: Array. One or more events to be monitored. Events are specified by
their numeric event ID. Table 15–3 shows the mapping of numeric event IDs to
logical event IDs. Table 15–2 lists these event IDs.

reference
These are the parameters for the reference parameter.

■ endpoint: String. The notification end point expected by the AF.

■ interfaceName: String. The interface name. Rarely used.

■ correlator: String. A unique ID for the message.

Response Body Example
Example 15–19 shows an example of a List QoS Notifications response body when a
correlator is specified in the request.

Example 15–19 List QoS Notifications Response Body with Correlator

{
 "startQoSNotification": {
 "reference": {
 "endpoint": "http://endpt_host:port/jaxrs/QoSNotification",
 "correlator": "987654321"
 },
 "endUserIdentities": [

Table 15–4 Numeric to Logical QoS Event Mapping

Numeric Event Logical Event Name

1 CHARGING_CORRELATION_EXCHANGE

2 INDICATION_OF_LOSS_OF_BEARER

3 INDICATION_OF_RECOVERY_OF_BEARER

4 INDICATION_OF_RELEASE_OF_BEARER

6 IP-CAN_CHANGE

7 INDICATION_OF_OUT_OF_CREDIT

8 INDICATION_OF_SUCCESSFUL_RESOURCES_ALLOCATION

9 INDICATION_OF_FAILED_RESOURCES_ALLOCATION

10 INDICATION_OF_LIMITED_PCC_DEPLOYMENT

11 USAGE_REPORT

12 QOS_FEATURE_RELEASED

List QoS Event Notifications

Adding RESTful Quality of Service Support 15-37

 "tel:88888888"
],
 "eventCriteria": [
 "6", "7", "1", "2"
]
 }
}

List QoS Event Notifications

15-38 Services Gatekeeper Application Developer's Guide

16

Adding RESTful Presence Support 16-1

16Adding RESTful Presence Support

This chapter describes the operations in the Presence interface of the RESTful facade
provided in Oracle Communications Services Gatekeeper.

About the Presence Interface
Applications use the RESTful Presence interface to act as either of two different parties
to a presence interaction: as a presentity or as a watcher.

REST Service Descriptions Available at Run-time
When the Administration Server for your Services Gatekeeper domain is in the
running state, the REST service descriptions of these operations can be found at

http://host:port/rest/presence/index.html

where host and port are the host name and port of the system on which Services
Gatekeeper is installed.

About Presentities and Watchers
A presentity agrees to have certain data (called attributes) such as current activity,
available communication means, and contact addresses made available to others. As a
presentity, an application can publish presence data about itself, check to see if any
new watchers wish to subscribe to its presence data, authorize those watchers it
chooses to authorize, block those it wishes not to have access, and get a list of
currently subscribed watchers.

A watcher is the consumer of current activity, available communication means, and
contact addresses made available by a presentity. As a watcher, an application can
request to subscribe to all or a subset of a presentity’s data, poll for that data, and start
and end presence notifications.

Data Common to Operations in RESTful Presence Interface
This section describes the following parameters that are commonly used in the JSON
data structures in RESTful Presence interface operations.

attributes
The attributes parameter is used to describe the current attributes of a presentity. It
specifies the single Presence attribute or the set of Presence attributes that a watcher
might wish to view for a specified presentity. It is used in the request body for

Data Common to Operations in RESTful Presence Interface

16-2 Services Gatekeeper Application Developer's Guide

Subscribe Presence and Start Presence Notifications, the Request-URI query for Get
User Presence and the response body for Get Open Subscriptions,

The following structure is used to specify the array of values for attributes:

"attributes": ["Activity|Place|Privacy|Sphere|Communication|Other"]

Each element of the array denotes a single Presence attribute and in turn, represented
by a JSON attribute-value pair (or a JSON data object). An empty array indicates that
the watcher is interested in all of the Presence attributes associated with a presentity.

presenceAttribute
The presenceAttribute parameter indicates the type of presentity data that must be
updated or changed for the watcher. It is used in the request body for Update
Subscription Authorization and in subscription notifications.

The values presenceAttribute accepts are specified in the following name/value pair
structure:

"presenceAttribute": ["Activity|Place|Privacy|Sphere|Communication|Other"

unionElement
The unionElement parameter indicates the type of presentity data that is presented. It
is used in the request body for Publish, the response body for Get User Presence and in
notifications for a change in status.

The values unionElement accepts are specified in the following name/value pair
structure:

"unionElement": ["Activity|Place|Privacy|Sphere|Communication|Other"

activity
The activity parameter specifies the presentity’s current activity. It is one of the values
accepted by attributes. The values activity accepts are specified in the following
name/value pair structure:

"activity":
"ActivityNone|Available|Busy|DoNotDisturb|OnThePhone|Steering|Meeting|Away|Meal|Pe
rmanentAbsence|Holiday|Performance|InTransit|Travel|Sleeping|ActivityOther

where:

■ ActivityNone indicates that the value has not been set.

■ ActivityOther refers to any non-listed activity type.

place
The place parameter specifies the current type of location for a presentity. It is one of
the values accepted by the attributes parameter. The values place accepts are specified
in the following name/value pair structure:

"place":
"PlaceNone|Home|Office|PublicTransport|Street|Outdoors|PublicPlace|Hotel|Theatre|R
estaurant|School|Industrial|Quiet|Noisy|Aircraft|Ship|Bus|Station|Mall|Airport|Tra
in|PlaceOther"

Data Common to Operations in RESTful Presence Interface

Adding RESTful Presence Support 16-3

where:

■ PlaceNone indicates that the value has not been set.

■ PlaceOther refers to any other type of place not listed here.

privacy
The privacy parameter specifies the level of privacy in the presentity’s current
environment. It is one of the values accepted by the attributes parameter. The values
privacy accepts are specified in the following name/value pair structure:

"privacy": "PrivacyNone|PrivacyPublic|PrivacyPrivate|PrivacyQuiet|PrivacyOther"

where:

■ PrivacyNone indicates that the value has not been set.

■ PrivacyOther refers to any other level of privacy not listed here.

sphere
The sphere parameter specifies the sphere within which the presentity is currently
acting. It is one of the values accepted by the attributes parameter. The values sphere
accepts are specified in the following name/value pair structure:

"sphere": "SphereNone|SphereWork|SphereHome|SphereOther"

where:

■ SphereNone indicates that the sphere has not been set.)

■ SphereOther is used to refer to any other type of sphere not listed here.

type
The type parameter specifies the type of contact client for a specified or preferred form
of communication. It is one of the values accepted by the means JSON data object. The
values type accepts are specified in the following name/value pair structure:

"type": "Phone|Chat|Sms|Video|Web|Email|Mms|MeansOther"

communication
The communication parameter specifies the connection information for a presentity’s
preferred form of communication. It is one of the values accepted by attributes,
presenceAttribute and unionElement. It accepts only one value, means, specified in
the following structure:

"communication": {"means": [{
 "contact": "URI",
 "priority": "Float",
 "type": "Phone|Chat|Sms|Video|Web|Email|Mms|MeansOther"
 }]
}

Data Common to Operations in RESTful Presence Interface

16-4 Services Gatekeeper Application Developer's Guide

means
The means object specifies the parameters for the preferred form of communication. It
accepts the following parameters:

■ contact: String. Required. The contact address for this particular means or form of
communications, as a URI.

■ priority: Number (floating point). required parameter. The priority of this
particular means. Valid entries start at 0.0 for the lowest priority and range in
increasing order to 1.0 as the value for highest priority.

■ type: Described earlier. See "type".

The following structure is used to specify the array of values for means:

"means": [{
 "contact": "URI",
 "priority": "Float",
 "type": "Phone|Chat|Sms|Video|Web|Email|Mms|MeansOther"
 }]

typeAndValue
The typeAndValue JSON object contains the presence information for a presentity. It is
used in Get User Presence and Publish operations and in the Presence notifications. It
is made up of the following parameters (each of which has been described earlier):

■ unionElement: String. Required. See "unionElement".

■ activity: String. Optional. Present if the value for unionElement is Activity. See
"activity".

■ place: String. Optional. Present if the value for unionElement is Place. See "place".

■ privacy: String. Optional. Present if the value for unionElement is Privacy. See
"privacy".

■ sphere: String. Optional. Present if the value for unionElement is Sphere. See
"sphere".

■ communication: JSON object. Optional. Present if the value for unionElement is
Communication. See "communication".

■ other: JSON object. Optional. See "other".

The following structure is used to specify the values for typeAndValue:

"typeAndValue": {
 "unionElement": "Activity|Place|Privacy|Sphere|Communication|Other",
 "activity":
"ActivityNone|Available|Busy|DoNotDisturb|OnThePhone|Steering|Meeting|Away|Meal|Pe
rmanentAbsence|Holiday|Performance|InTransit|Travel|Sleeping|ActivityOther",
 "communication": {"means": [{
 "contact": "URI",
 "priority": "Float",
 "type": "Phone|Chat|Sms|Video|Web|Email|Mms|MeansOther"
 }]
}

Data Common to Operations in RESTful Presence Interface

Adding RESTful Presence Support 16-5

other
The other JSON object specifies the parameters for arbitrary information. It has the
following parameters:

■ name: String. Required. The name for this specific information.

■ value: String. Required. The specific value to be matched for the name.

The following structure is used to specify the values for typeAndValue:

"other": {
 "name": "String",
 "value": "String"
 }

Get Open Subscriptions

16-6 Services Gatekeeper Application Developer's Guide

Get Open Subscriptions

The Get Open Subscription operation polls for any watchers who wish to subscribe to
this presentity’s data.

To retrieve the information on the applications, the subscription?status=open query
string is included in the Request-URI of the GET method.

If the Get Open Subscription operation is successful, the response body contains the
result JSON data object with the information on the watchers.

16Authorization
Basic

16HTTP Method
GET

16URI
http://host:port/rest/presence/subscription?status=open

where:

■ host and port are the host name and port of the system on which Services
Gatekeeper is installed.

■ the subscription?status=open query string is used to retrieve any watchers who
wish to subscribe to this presentity’s data.

16Request Header
The MIME-type for the Content-Type header field is application/json.

16Request Body
There is no request body.

16Response Header
Standard header fields. If the request fails, the Status-Line header field will contain the
status code and the reason for the failure. See "Understanding RESTful Errors and
Exceptions".

16Response Body
The information on the watchers is returned as an array of values for the result
attribute. Each element in the array contains the following attribute-value pairs.

■ application: String. Information only. A descriptive name for the application that
operates on behalf of the watcher.

■ attributes: String. The array of Presence attributes that the watcher wishes to see.
See "attributes".

■ watcher: String. The address (as a URI) of the watcher making the request.

The response body for this operation is represented by the following JSON data
structure, where the value part of each name/value pair indicates its data type:

Get Open Subscriptions

Adding RESTful Presence Support 16-7

{"result": [{
 "application": "String",
 "attributes": ["Activity|Place|Privacy|Sphere|Communication|Other"],
 "watcher": "URI"
}]}

Get My Watchers

16-8 Services Gatekeeper Application Developer's Guide

Get My Watchers

The Get My Watchers operation retrieves an array of current watchers.

To retrieve the information on the current watchers, include the
subscription?filter=watcher query string in the Request-URI of the GET method.

If the Get My Watchers operation is successful, the response body contains the result
JSON data object with the list of current watchers.

16Authorization
Basic

16HTTP Method
GET

16URI
http://host:port/rest/presence/subscription?filter=watcher

where:

■ host and port are the host name and port of the system on which Services
Gatekeeper is installed.

■ the subscription?filter=watcher query string is used to retrieve the array of
current watchers.

16Request Header
The MIME-type for the Content-Type header field is application/json.

16Request Body
There is no request body.

16Response Header
Standard header fields. If the request fails, the Status-Line header field will contain the
status code and the reason for the failure. See "Understanding RESTful Errors and
Exceptions".

16Response Body
The response body contains a JSON data object as the value for the result entry. The
value for result is an array of URIs which represent the addresses of the set of current
watchers:

{"result": ["URI"]}

Update Subscription Authorization

Adding RESTful Presence Support 16-9

Update Subscription Authorization

The Update Subscription Authorization operation is used to add watchers who have
recently asked for subscriptions or to change permissions for any current watchers.

To add watchers or change permissions, provide the address of the watcher along with
the decision on whether permission must be granted, and the Presence attribute for
which such permission must be granted (or revoked).

If the request fails, the Status-Line header field will contain the status code and the
reason for the failure.

16Authorization
Basic

16HTTP Method
PUT

16URI
http://host:port/rest/presence/subscription/authorization

where host and port are the host name and port of the system on which Services
Gatekeeper is installed.

16Request Header
The MIME-type for the Content-Type header field is application/json.

16Request Body
The request body for the Update Subscription Authorization operation accepts the
following parameters:

■ watcher: String. Required. The URI of the watcher.

■ decisions: Array of JSON objects. Required. Each JSON object in the array contains
the following parameters:

– presenceAttribute: String. Required. The specific Presence attribute for which
permission is to be granted (to a new watcher) or permission must be changed
(for the current watcher). See "presenceAttribute".

– decision: Boolean. Required. If the value is true, permission is granted (to a
new watcher) or permission is changed (for the current watcher).

The request body is represented by the following JSON data structure, where the value
part of each name/value pair indicates its data type:

{
 "decisions": [{
 "decision": "Boolean",
 "presenceAttribute": "Activity|Place|Privacy|Sphere|Communication|Other"
 }],
 "watcher": "URI"
}

Update Subscription Authorization

16-10 Services Gatekeeper Application Developer's Guide

16Response Header
Standard header fields. If the request fails, the Status-Line header field will contain the
status code and the reason for the failure. See "Understanding RESTful Errors and
Exceptions".

16Response Body
There is no response body.

Subscribe Presence

Adding RESTful Presence Support 16-11

Subscribe Presence

The Subscribe Presence operation requests a subscription to a presentity’s data. No
data will be available until the presentity authorizes the watcher using Update
Subscription Authorization.

To request a subscription to a presentity’s data, provide the address of the presentity
or group whose data is being requested, the Presence attributes this watcher wishes to
see. Because the actual data depends on whether the subscription is authorized, a
reference data object must also be provided in the request body. The reference object
(also a JSON object) contains the correlator for the notification, the endpoint address (a
specific Bayeux channel name) to which the notifications must be sent and, optionally,
the interface name (a string to identify the notification).

If the request fails, the Status-Line header field will contain the status code and the
reason for the failure.

16Authorization
Basic

16HTTP Method
PUT

16URI
http://host:port/rest/presence/subscription

where host and port are the host name and port of the system on which Services
Gatekeeper is installed.

16Request Header
The MIME-type for the Content-Type header field is application/json.

16Request Body
The request body for the Subscribe Presence operation accepts the following
parameters:

■ application: String. Required. A descriptive name for the application whose data
the watcher wishes to access. Informational only.

■ presentity: a JSON object. Required. The address of the presentity whose data is
requested (as a URI).

■ attributes. An array of string values. Optional. The set of Presence attributes the
watcher wishes to see. An empty array (or if this attribute is not present) indicates
the watcher wishes to view all the attributes. For a description of the attributes, see
"attributes".

■ reference: JSON object. Required. Use this object to provide the following
information about the endpoint that is to receive the notification:

– correlator: String. Required. The correlator used to identify the notification.

– endpoint: String. Required. The URI which represents the endpoint address to
which the notification should be delivered. This string should be a Bayeux

Subscribe Presence

16-12 Services Gatekeeper Application Developer's Guide

protocol channel name that begins with /bayeux/appInstanceID where
appInstanceID is the client application’s application instance account ID.

For more information on managing application instances, see Services
Gatekeeper Portal Developer's Guide.

– interfaceName: String. Required. A descriptive string to identify the type of
notification.

The request body is represented by the following JSON data structure, where the value
part of each name/value pair indicates its data type:

{
 "application": "String",
 "presentity": "URI",
 "reference": {
 "correlator": "String",
 "endpoint": "URI",
 "interfaceName": "String"
 },
 "attributes": ["Activity|Place|Privacy|Sphere|Communication|Other"]
}

16Response Header
Standard header fields. If the request fails, the Status-Line header field will contain the
status code and the reason for the failure. See "Understanding RESTful Errors and
Exceptions".

16Response Body
There is no response body.

Block Subscription

Adding RESTful Presence Support 16-13

Block Subscription

The Block Subscription operation allows a presentity to block a watcher’s access to the
presentity’s data. The watcher is notified with a Subscription Ended notification.

To block a watcher’s subscription to a presentity’s data, provide the address of the
watcher as a URI in the Request-URI of the DELETE method.

If the request fails, the Status-Line header field will contain the status code and the
reason for the failure.

16Authorization
Basic

16HTTP Method
DELETE

16URI
http://host:port/rest/presence/subscription/${watcher}

where:

■ host and port are the host name and port of the system on which Services
Gatekeeper is installed.

■ the ${watcher} is the URI of the watcher who must be blocked from viewing this
presentity’s data.

16Request Header
The MIME-type for the Content-Type header field is application/json.

16Request Body
There is no request body.

16Response Header
Standard header fields. If the request fails, the Status-Line header field will contain the
status code and the reason for the failure. See "Understanding RESTful Errors and
Exceptions".

16Response Body
There is no response body.

Start Presence Notification

16-14 Services Gatekeeper Application Developer's Guide

Start Presence Notification

The Start Presence Notification operation begins delivering presence data to the
endpoint defined in the reference attribute. This operation is only functional if the
presentity has approved the watcher.

To set up for such notifications, provide the SIP-formatted URI of the presentity for
which the watcher must receive notifications, the Presence attributes which will
trigger the notifications and a reference object for the delivery of the notifications. The
reference object (also a JSON object) contains the correlator for the notification, the
endpoint address (a specific Bayeux channel name) to which the notifications must be
sent and, optionally, the interface name (a string to identify the notification).
Additionally, you can specify the request frequency, the total number of notifications
and the duration for the notification and whether the check must start immediately.

If the Start Presence Notification request is successful, the endpoint address specified
in the request body will receive a notification when:

■ the presentity has authorized the watcher. See "Notification of Subscription to a
Presentity’s Data".

■ the presentity’s status changes. See "Notification of a Status Change for a
Presentity".

■ the notification limit or the specified duration has been reached. See "Notification
Signalling End to Monitoring of Presentity".

■ the subscription has been terminated or blocked by the presentity. See
"Notification of End to a Subscription".

The application accesses the endpoint address to retrieve the specific notifications.

If there is any issue with subscriptions, the response body will contain the address(es)
of the presentity (or presentities) to whose attributes the watcher did not successfully
subscribe.

16Authorization
Basic

16HTTP Method
PUT

16URI
http://host:port/rest/presence/notification

where host and port are the host name and port of the system on which Services
Gatekeeper is installed.

16Request Header
The MIME-type for the Content-Type header field is application/json.

16Request Body
The request body for the Start Presence Notification operation accepts following
parameters:

Start Presence Notification

Adding RESTful Presence Support 16-15

■ presentity: String. Required. The URI of a presentity or group whose data is being
accessed.

■ checkImmediate: String. Required. Boolean value ("true" or "false"). Set to:

– True: The application requires the status notification to start immediately and
as often as required thereafter.

– False: The application requires the status notification to start at the end of the
time period.

■ criteria: String. Required. The status of the terminal. It can be one or all of the
following:

– Reachable

– UnReachable

– Busy

■ frequency: JSON object. Required. This object specifies the frequency for checking
the status (can also be considered minimum time between notifications). In the
case of a group subscription, the service must make sure this frequency is not
violated by notifications for various members of the group, especially in
combination with checkImmediate. It takes the following parameters:

– metric: String. Required. The unit of time for the check specified as
Millisecond, Second, Minute, Hour, Day, Week, Month, or Year.

– units. Integer. Required. The number of times the check must be made within
the specified metric.

■ reference. A JSON object. Required. Use this object to provide the following
information about the endpoint that is to receive the notification:

– correlator: String. Required. The correlator used to identify the notification.

– endpoint: String. Required. The URI which represents the endpoint address to
which the notification should be delivered. This string should be a Bayeux
protocol channel name that begins with /bayeux/appInstanceID where
appInstanceID is the client application’s application instance account ID.

For more information on managing application instances, see Services
Gatekeeper Portal Developer's Guide.

– interfaceName: String. Required. A descriptive string to identify the type of
notification.

■ count. Integer. Required. The maximum number of notifications to be sent to the
watcher. If this number is reached the statusEnd notification is delivered to the
endpoint address.

■ duration. A JSON object. Required. The total duration before for the count,
specified by the following:

– metric: String. Required. The unit of time for the notifications specified as
Millisecond, Second, Minute, Hour, Day, Week, Month, or Year.

– units. Integer. Required. The duration in the specified metric.

The request body is represented by the following JSON data structure, where the value
part of each name/value pair indicates its data type:

{
 "checkImmediate": "Boolean",
 "frequency": {

Start Presence Notification

16-16 Services Gatekeeper Application Developer's Guide

 "metric": "Millisecond|Second|Minute|Hour|Day|Week|Month|Year",
 "units": "Integer"
 },
 "presentity": "URI",
 "reference": {
 "correlator": "String",
 "endpoint": "URI",
 "interfaceName": "String"
 },
 "attributes": ["Activity|Place|Privacy|Sphere|Communication|Other"],
 "count": "Integer",
 "duration": {
 "metric": "Millisecond|Second|Minute|Hour|Day|Week|Month|Year",
 "units": "Integer"
 }
}

16Response Header
The Location header field contains the URI of the publish/subscribe server:

http://host:port/rest/presence/notifications

If the request fails, the Status-Line header field will contain the status code and the
reason for the failure. See "Understanding RESTful Errors and Exceptions".

16Response Body
The requested information is returned in a JSON object as the value for the result
attribute. It is an array of URIs which represent the addresses of the presentities to
whose attributes the watcher did not successfully subscribe:

{"result": ["URI"]}

The actual notifications delivered to the endpoint address are described below.

16Notification of Subscription to a Presentity’s Data
The notifySubscription notification indicates whether the presentity has (or has not)
authorized the watcher and the attributes that are permitted to be viewed.

The notifySubscription is a JSON object containing the following:

■ presentity: String. The URI of the presentity who has (or has not) authorized the
watcher to whom the notification is sent.

■ decisions: Array of JSON objects. Required. Each JSON object in the array contains
the following parameters:

– presenceAttribute: String. Required. The specific Presence attribute for which
permission is to be granted. See "presenceAttribute".

– decision. Boolean. Required. If the value is true, permission is granted or
permission is denied.

The subscription notification is represented by the following JSON data structure,
where the value part of each name/value pair indicates its data type:

{"notifySubscription": {
 "presentity": "URI",
 "decisions": [{
 "decision": "Boolean",

Start Presence Notification

Adding RESTful Presence Support 16-17

 "presenceAttribute": "Activity|Place|Privacy|Sphere|Communication|Other"
 }]
}}

16Notification of a Status Change for a Presentity
The statusChanged JSON object is delivered when there is a change to a specified
attribute.

This object is sent to the Bayeux channel name associated with the application instance
and specified in the request body as the endpoint attribute value.

The statusChanged is a nested JSON object containing the following:

■ correlator: String. The correlator used to identify the notification and provided in
the request body of the Start Presence Notification operation.

■ presentity: String. The URI of the presentity associated with this data.

■ changedAttributes. JSON object. Its value is an array of nested JSON objects and
attributes which represent the aggregated presence data of the presentity. It
contains the following:

– lastChange: String. The date and time when this attribute was last changed in
ISO 8601 extended format.

– typeAndValue. JSON object. The presence information of the presentity. See
"typeAndValue".

– note: String. This optional entry is an explanatory note.

The notification for a status change is represented by the following JSON data
structure, where the value part of each name/value pair indicates its data type:

{"statusChanged": {
 "changedAttributes": [{
 "lastChange": "Calendar",
 "typeAndValue": {
 "unionElement": "Activity|Place|Privacy|Sphere|Communication|Other",
 "activity":
"ActivityNone|Available|Busy|DoNotDisturb|OnThePhone|Steering|Meeting|Away|Meal|Pe
rmanentAbsence|Holiday|Performance|InTransit|Travel|Sleeping|ActivityOther",
 "communication": {"means": [{
 "contact": "URI",
 "priority": "Float",
 "type": "Phone|Chat|Sms|Video|Web|Email|Mms|MeansOther"
 }]},
 "other": {
 "name": "String",
 "value": "String"
 },
 "place":
"PlaceNone|Home|Office|PublicTransport|Street|Outdoors|PublicPlace|Hotel|Theatre|R
estaurant|School|Industrial|Quiet|Noisy|Aircraft|Ship|Bus|Station|Mall|Airport|Tra
in|PlaceOther",
 "privacy":
"PrivacyNone|PrivacyPublic|PrivacyPrivate|PrivacyQuiet|PrivacyOther",
 "sphere": "SphereNone|SphereWork|SphereHome|SphereOther"
 },
 "note": "String"
 }],
 "correlator": "String",

Start Presence Notification

16-18 Services Gatekeeper Application Developer's Guide

 "presentity": "URI"
}}

16Notification Signalling End to Monitoring of Presentity
The statusEnd JSON object is delivered when the notification count specified as the
value for count is reached or when the duration specified for units in the duration
object is reached.

It is sent to the Bayeux channel name associated with the application instance and
specified in the request body as the endpoint attribute value.

The statusEnd is a JSON object containing the following:

■ correlator: String. The correlator used to identify the notification and provided in
the request body of the Start Presence Notification operation.

This notification is not delivered in the case of an error, or if the application ended
the notification using endNotification.

The notification signalling the end of the monitoring of a presentity is represented by
the following JSON data structure, where the value part of each name/value pair
indicates its data type:

{"statusEnd": {"correlator": "String"}}

16Notification of End to a Subscription
The subscriptionEnded JSON object is delivered when the subscription has been
terminated, either blocked by the presentity or because of a timeout or connection
failure.

It is sent to the Bayeux channel name associated with the application instance and
specified in the request body as the endpoint attribute value.

The subscriptionEnded is a JSON object containing the following:

■ presentity: String. The URI of the presentity.

■ reason: String. Required. The string indicates whether there was a timeout or the
presentity blocked the watcher.

The notification signalling the end of the subscription to a presentity is represented by
the following JSON data structure, where the value part of each name/value pair
indicates its data type:

{"subscriptionEnded": {
 "presentity": "URI",
 "reason": "String"
}}

End Presence Notification

Adding RESTful Presence Support 16-19

End Presence Notification

The End Presence Notification operation stops a Presence notification.

To stop a previously set up Presence notification, provide the correlator for the
notification passed earlier in the Start Presence Notification request.

There is no request or response body for the End Presence Notification operation. If
the request fails, the body of the error response will contain the identifier for the
notification and the type of exception.

16Authorization
Basic

16HTTP Method
DELETE

16URI
http://host:port/rest/presence/notification/${correlator}

where:

■ host and port are the host name and port of the system on which Services
Gatekeeper is installed.

■ correlator is a string. It is the correlator for the notification provided in the
reference object within the request body of the initial Start Presence Notification
operation.

16Request Body
There is no request body.

16Response Header
Standard header fields. If the request fails, the Status-Line header field will contain the
status code and the reason for the failure. See "Understanding RESTful Errors and
Exceptions".

16Response Body
There is no response body.

Get User Presence

16-20 Services Gatekeeper Application Developer's Guide

Get User Presence

The Get User Presence operation retrieves the aggregated presence data of a presentity
to whose data the watcher has previously successfully subscribed. Only the attributes
that the watcher is authorized to see are returned.

To retrieve the information, include the URI of the presentity and the required
attributes as a data object in the query string of the Request-URI of the GET method.

If the Get User Presence operation is successful, the response body contains the result
JSON data object with the aggregated presence data of the specified presentity.

16Authorization
Basic

16HTTP Method
GET

16URI
http://host:port/rest/presence/data?filter=${query}

where host and port are the host name and port of the system on which Services
Gatekeeper is installed. ${query} is a data object with the following parameters:

■ presentity: String. Required. The URI of the presentity to whose data the watcher
has previously successfully subscribed.

■ attributes: Array of string values. Optional. The set of Presence attributes the
watcher wishes to see. An empty array (or if this attribute is not present) indicates
the watcher wishes to view all the attributes. For a description of the attributes, see
"attributes".

The following JSON data structure represents this data object in the URI. The value
part of each name/value pair indicates its data type:

{
 "presentity": "URI",
 "attributes": ["Activity|Place|Privacy|Sphere|Communication|Other"]
}

16Request Header
The MIME-type for the Content-Type header field is application/json.

16Request Body
There is no request body.

16Response Header
Standard header fields. If the request fails, the Status-Line header field will contain the
status code and the reason for the failure. See "Understanding RESTful Errors and
Exceptions".

Get User Presence

Adding RESTful Presence Support 16-21

16Response Body
The requested information is returned in a JSON object as the value for the result
attribute. It is an array of nested JSON objects and attributes which represent the
aggregated presence data of a presentity. It contains the following:

■ lastChange: String. The time and date the data last changed in ISO 8601 extended
format.

■ typeAndValue: JSON object. The presence information for a presentity (described
earlier). See "typeAndValue".

■ note: String. This optional entry is an explanatory note.

The response body for this operation is represented by the following JSON data
structure, where the value part of each name/value pair indicates its data type:

{"result": [{
 "lastChange": "Calendar",
 "typeAndValue": {
 "unionElement": "Activity|Place|Privacy|Sphere|Communication|Other",
 "activity":
"ActivityNone|Available|Busy|DoNotDisturb|OnThePhone|Steering|Meeting|Away|Meal|Pe
rmanentAbsence|Holiday|Performance|InTransit|Travel|Sleeping|ActivityOther",
 "communication": {"means": [{
 "contact": "URI",
 "priority": "Float",
 "type": "Phone|Chat|Sms|Video|Web|Email|Mms|MeansOther"
 }]},
 "other": {
 "name": "String",
 "value": "String"
 },
 "place":
"PlaceNone|Home|Office|PublicTransport|Street|Outdoors|PublicPlace|Hotel|Theatre|R
estaurant|School|Industrial|Quiet|Noisy|Aircraft|Ship|Bus|Station|Mall|Airport|Tra
in|PlaceOther",
 "privacy":
"PrivacyNone|PrivacyPublic|PrivacyPrivate|PrivacyQuiet|PrivacyOther",
 "sphere": "SphereNone|SphereWork|SphereHome|SphereOther"
 },
 "note": "String"
}]}

Publish

16-22 Services Gatekeeper Application Developer's Guide

Publish

The Publish operation allows the presentity to publish presence information.

To publish the information, the request body contains the presence JSON data object
with the aggregated presence data of the specified presentity.

If the request fails, the body of the error response will contain the identifier for the
notification and the type of exception.

16Authorization
Basic

16HTTP Method
PUT

16URI
http://host:port/rest/presence/data

where host and port are the host name and port of the system on which Services
Gatekeeper is installed.

16Request Header
The MIME-type for the Content-Type header field is application/json.

16Request Body
The request body for the Publish operation is a nested data object. The value for
presence attribute is an array of nested JSON structures which represent the
aggregated presence data of a presentity. It accepts the following parameters:

■ lastChange: String. The time and date the data last changed in ISO 8601 extended
format.

■ typeAndValue. JSON object. The presence information for a presentity (described
earlier). See "typeAndValue".

■ note: String. This optional entry is an explanatory note.

The request body for this operation is represented by the following JSON data
structure, where the value part of each name/value pair indicates its data type:

{"presence": [{
 "lastChange": "Calendar",
 "typeAndValue": {
 "unionElement": "Activity|Place|Privacy|Sphere|Communication|Other",
 "activity":
"ActivityNone|Available|Busy|DoNotDisturb|OnThePhone|Steering|Meeting|Away|Meal|Pe
rmanentAbsence|Holiday|Performance|InTransit|Travel|Sleeping|ActivityOther",
 "communication": {"means": [{
 "contact": "URI",
 "priority": "Float",
 "type": "Phone|Chat|Sms|Video|Web|Email|Mms|MeansOther"
 }]},
 "other": {
 "name": "String",

Publish

Adding RESTful Presence Support 16-23

 "value": "String"
 },
 "place":
"PlaceNone|Home|Office|PublicTransport|Street|Outdoors|PublicPlace|Hotel|Theatre|R
estaurant|School|Industrial|Quiet|Noisy|Aircraft|Ship|Bus|Station|Mall|Airport|Tra
in|PlaceOther",
 "privacy":
"PrivacyNone|PrivacyPublic|PrivacyPrivate|PrivacyQuiet|PrivacyOther",
 "sphere": "SphereNone|SphereWork|SphereHome|SphereOther"
 },
 "note": "String"
}]}

16Response Header
Standard header fields. If the request fails, the Status-Line header field will contain the
status code and the reason for the failure. See "Understanding RESTful Errors and
Exceptions".

16Response Body
There is no response body.

Publish

16-24 Services Gatekeeper Application Developer's Guide

17

Adding RESTful Device Capabilities Support 17-1

17Adding RESTful Device Capabilities Support

This chapter describes the operations in the Device Capabilities interface of the
RESTful facade provided in Oracle Communications Services Gatekeeper.

About the Device Capabilities Interface
Applications use the RESTful Device Capabilities interface to request and receive the a
terminal’s device ID (such as the IMEI) using getDeviceID, or receive the devices
device ID type, name of the device/model, and a link to the User Agent Profile XML
file using getCapabilities.

REST Service Descriptions Available at Run-time
When the Administration Server for your Services Gatekeeper domain is in the
running state, the REST service descriptions of these operations can be found at

http://host:port/rest/device_capabilities/index.html

where host and port are the host name and port of the system on which Services
Gatekeeper is installed.

Get Capabilities

17-2 Services Gatekeeper Application Developer's Guide

Get Capabilities

The Get Capabilities operation retrieves the unique ID for the device type, name of the
device/model, and a link to the User Agent Profile XML file.

The request includes the device ID of the device, usually a phone number.

17Authorization
Basic

17HTTP Method
GET

17URI
http://host:port/rest/device_capabilities/device_
capabilities?capabilities=${capabilities}

where:

■ host and port are the host name and port of the system on which Services
Gatekeeper is installed.

■ ${capabilities} is a data object which contains the URI (usually, phone number) as
the value of the address attribute.

The following JSON data structure represents this data object in the URI. The
value part of each name/value pair indicates its data type:

{"address": "URI"}

17Request Header
The MIME-type for the Content-Type header field is application/json.

17Request Body
There is no request body.

17Response Header
Standard header fields. If the request fails, the Status-Line header field will contain the
status code and the reason for the failure. See "Understanding RESTful Errors and
Exceptions".

17Response Body
The requested device information is returned in a JSON object as the value for the
result attribute. It contains the following name-value pairs.

■ deviceID: String. The device/model number for the URI provided in the request.

■ name: String. The name of the device.

■ userAgentProfileReference: String. The link to the User Agent Profile XML file.

Get Capabilities

Adding RESTful Device Capabilities Support 17-3

The response body for this operation is represented by the following JSON data
structure, where the value part of the name/value pair indicates its data type:

{"result": {
 "deviceId": "String",
 "name": "String",
 "userAgentProfileReference": "URI"
}}

17Examples

Example 17–1 Get Capabilities Request

GET rest/device_capabilities/device_
capabilities?capabilities=%7B%22address%22%3A%22tel%3A%221234%22%7D HTTP/1.1
X-Session-ID: app:5198750923966743997
Authorization: Basic YXBwX2luc3RhbmNlXzE6d2VibG9naWM=
User-Agent: Jakarta Commons-HttpClient/3.0
Host: servgtkpr_host.port

Example 17–2 Get Capabilities Response

HTTP/1.1 200 OK
Date: Fri, Nov 05 2010 05:23:27 GMT
Content-Length=124
Content-Type=application/json
X-Powered-By: Servlet/2.5 JSP/2.1
Host: servgtkpr_host.port

{"result":
{
"name":"alice.smith.uiii",
"deviceId":"0998",
"userAgentProfileReference":"#1234897897987867gihuyuijlkjlkjllk"
}

}

Example 17–3 Error Response

HTTP/1.1 500 Internal Server Error
Date: Fri, Nov 05 2010 05:32:27 GMT
Content-Length=131
Content-Type=application/json
X-Powered-By: Servlet/2.5 JSP/2.1

{"error":
{
"message":"Invalid input for message part Address",
"type":"org.csapi.schema.parlayx.common.v3_1.ServiceException",
}

}

Get Device Id

17-4 Services Gatekeeper Application Developer's Guide

Get Device Id

The Get Device Id operation retrieves the equipment identifier device/name (for
example the IMEI number) for a given device. The request includes the device ID,
usually a phone number.

The request includes the device ID of the device.

17Authorization
Basic

17HTTP Method
GET

17URI
http://host:port/rest/device_capabilities/device_capabilities?deviceId=${deviceId}

where:

■ host and port are the host name and port of the system on which Services
Gatekeeper is installed.

■ ${deviceId} is a data object which contains the URI (usually, phone number) as the
value of the address attribute.

The following JSON data structure represents this data object in the URI. The
value part of each name/value pair indicates its data type:

{"result": "String"}

17Request Header
The MIME-type for the Content-Type header field is application/json.

17Request Body
There is no request body.

17Response Header
Standard header fields. If the request fails, the Status-Line header field will contain the
status code and the reason for the failure. See "Understanding RESTful Errors and
Exceptions".

17Response Body
The required equipment identifier device/name is returned as the value for the result
attribute. The structure for the response body is

{"result": "String"}

Get Device Id

Adding RESTful Device Capabilities Support 17-5

17Examples

Example 17–4 Get Device Id Request

GET rest/device_capabilities/device_
capabilities?deviceId=%7B%22address%22%3A%22tel%3A%221234%22%7D HTTP/1.1
X-Session-ID: app:5198750923966743997
Authorization: Basic YXBwX2luc3RhbmNlXzE6d2VibG9naWM=
User-Agent: Jakarta Commons-HttpClient/3.0
Host: servgtkpr_host.port

Example 17–5 Get Device Id Response

HTTP/1.1 200 OK
Date: Fri, Nov 05 2010 05:34:51 GMT
Content-Length=17
Content-Type=application/json
X-Powered-By: Servlet/2.5 JSP/2.1
Host: servgtkpr_host.port

{"result":"0998"}

Example 17–6 Error Response

HTTP/1.1 500 Internal Server Error
Date: Fri, Nov 05 2010 05:37:08 GMT
Content-Length=131
Content-Type=application/json
X-Powered-By: Servlet/2.5 JSP/2.1

{"error":
{
"message":"Invalid input for message part Address",
"type":"org.csapi.schema.parlayx.common.v3_1.ServiceException"
}

}

Get Device Id

17-6 Services Gatekeeper Application Developer's Guide

18

Adding RESTful Binary Short Messaging Support 18-1

18Adding RESTful Binary Short Messaging
Support

This chapter describes the operations in the Binary Short Messaging (Binary SMS)
interface of the RESTful facade provided in Oracle Communications Services
Gatekeeper.

About the Binary Short Messaging Interface
Applications use the RESTful Binary Short Messaging interface to send any generic
binary object attachments to the network using SMS. The supported binary content is
broader than the logos and ringtones specified by the Parlay X SMS Web service,
extending to other types of binary content such as vCards (a file format standard for
electronic business cards).

These interfaces also provide operations to start and stop notifications for SMS
messages with binary content.

REST Service Descriptions Available at Runtime
When the Administration Server for your Services Gatekeeper domain is in the
running state, the REST service descriptions of these operations can be found at:

http://host:port/rest/binary_sms/index.html

Where host and port are the host name and port of the system on which Services
Gatekeeper is installed.

RESTful Binary SMS Interface Reference
The RESTful Third Party Call interface includes these operations:

■ Send Binary Sms

■ Start Binary Sms Notification

■ Stop Binary Sms Notification

Send Binary Sms

18-2 Services Gatekeeper Application Developer's Guide

Send Binary Sms

The Send Binary Sms operation sends an SMS that includes content in binary format.

18Authorization
Basic

18HTTP Method
POST

18URI
http://host:port/rest/binary_sms/messages

where host and port are the host name and port of the system on which Services
Gatekeeper is installed.

18Request Header
The MIME-type for the Content-Type header field is application/json.

18Request Body
The request body for the Send Binary Sms operation accepts the following parameters:

■ addresses: String. Required. The set of end-user terminal addresses of the
recipients as an array of SIP-formatted URIs.

■ binaryMessage. An array of JSON objects. Required. The message to be sent as an
array of User Data Header (UDH) elements and message elements. Note that the
entire array must be less than of equal to 141 bytes.

Each element in the array contains:

– message. String in base64Binary. Binary Message data formatted as TP-User
Data (TP-UD) excluding the TP-User-Data-Indicator (TP UDHI).

– udh. String in base64Binary. Specifies if the TP-User Data (TP-UD) field
contains only the short message, or if it also contains the header formatted as
the TP-User-Data-Indicator (TP UDHI).

■ dcs: Byte. Required. The data-encoding scheme for the binaryMessage parameter.

■ protocolId. Byte. Required. TP-Protocol-Identifier according to 3GPP 23.040 6.5.0

■ charging. A JSON object. Optional. This object defines the cost charging properties
for the operation. The entry "charging": null indicates no charge. If a charge is
to be applied, provide values for the following in the charging object:

– description: String. Required if the charging object is present in the body of
the request. The text to be used for information and billing.

– amount. Number (integer, or decimal). Optional. The amount to be charged.

– code: String. Optional. The charging code, from an existing contractual
description.

– currency: String. Optional. The currency identifier as defined in ISO 4217 [9].

Send Binary Sms

Adding RESTful Binary Short Messaging Support 18-3

■ receiptRequest. a JSON object. Optional. Used to notify the application that the
message has been delivered to the terminal, or that delivery is impossible.

If a delivery receipt is required, provide values for each of the following
parameters which define this object:

– correlator: String. Used to correlate the receipt with the initial message.

– endpoint: String. The endpoint address (URI) to which the receipt must be
delivered.

– interfaceName: String. A description provided to identify the type of receipt.

■ senderName: String. Optional. The sender’s name.

■ validityPeriod: String. The validity period of the short message, formatted as a
validity-period parameter as described in SMPP v3.4.

The request body for this operation is represented by the following JSON data
structure, where the value part of each name/value pair indicates its data type:

{
 "addresses":["URI"],
 "binaryMessage":[{
 "message":"base64Binary"
 "udh":"base64Binary"
 }],
 "dcs":"Byte",
 "charging": {
 "description": "String",
 "amount": "BigDecimal",
 "code": "String",
 "currency": "String"
 }
 "protocolId":"Byte",
 "receiptRequest": {
 "correlator": "String",
 "endpoint": "URI",
 "interfaceName": "String"
 },
 "senderName":"String",
 "validityPeriod":"String",
}

18Response Header
Standard header fields. If the request fails, the Status-Line header field will contain the
status code and the reason for the failure. See "Understanding RESTful Errors and
Exceptions".

18Response Body
The response body is a JSON object which contains the result attribute. The identifier
for the delivery request is the string value for result.

{"result":"String"}

Start Binary Sms Notification

18-4 Services Gatekeeper Application Developer's Guide

Start Binary Sms Notification

The Start Binary SMS Notification operation starts a notification for short messages
that contain binary content.

18Authorization
Basic

18HTTP Method
PUT

18URI
http://host:port/rest/binary_sms/notification

where host and port are the host name and port of the system on which Services
Gatekeeper is installed.

18Request Header
The MIME-type for the Content-Type header field is application/json.

18Request Body
The request body for the Start Binary SMS Notification operation accepts the following
parameters:

■ smsServiceActivationNumber: String. Required. The destination address, as URI,
of the short message.

■ reference. JSON object. Required. Use this object to provide the following
information about the endpoint that is to receive the notification:

– correlator: String. Required. The correlator used to identify the notification.

– endpoint: String. Required. The URI which represents the endpoint address to
which the notification should be delivered. This string should be a Bayeux
protocol channel name that begins with /bayeux/appInstanceID where
appInstanceID is the client application’s application instance account ID.

For more information on managing application instances, see Services
Gatekeeper Portal Developer's Guide.

– interfaceName: String. Required. A descriptive string to identify the type of
notification.

The request body for this operation is represented by the following JSON data
structure, where the value part of each name/value pair indicates its data type:

{
 "reference": {
 "correlator": "String",
 "endpoint": "URI",
 "interfaceName": "String"
 },
 "smsServiceActivationNumber":"String",
}

Start Binary Sms Notification

Adding RESTful Binary Short Messaging Support 18-5

18Response Header
The Location header field contains the URI of the publish/subscribe server:

http://host:port/rest/binary_sms/notifications

If the request fails, the Status-Line header field will contain the status code and the
reason for the failure. See "Understanding RESTful Errors and Exceptions".

18Response Body
There is no response body. The appropriate notifications (described below) are sent to
the endpoint address provided by the application in the request body of this
operation.

18Notification of Binary SMS Reception
When a Binary SMS has been received for an application, its designated endpoint
address on the publish/subscribe server receives a nested JSON object.

This nested JSON object contains the following as the value for the attribute
notifyBinarySmsReception:

■ correlator: String. The correlator used in the request body for this operation.

■ message. a nested JSON object. It contains the data-encoding scheme for the set of
messages in the notification, and the messages as an array of User Data Header
(UDH) elements and message elements.

– dcs. Byte. The data-encoding scheme for the binary messages included in this
object.

– message: Array of JSON objects. Table 18–1 lists the contents of each message
object:

■ senderAddress: String. The sender’s address, as a URI.

■ smsServiceActivationNumber: String. The destination address for the binary
message, as a URI.

■ dateTime: String. The date and time the message was received in ISO 8601
extended format, yyyy-mm-ddThh-mm-ss.

■ protocolId. Byte. The TP-Protocol-Identifier according to 3GPP 23.040 6.5.0.

The notification data object delivered to the endpoint address is represented by the
following JSON data structure, where the value part of each name/value pair indicates
its data type:

{"notifyBinarySmsReception": {
 "correlator":"String",
 "message":{
 "dcs":"Byte",
 "message":[{
 "message":"base64Binary"
 "udh":"base64Binary"

Table 18–1 Attributes of Message Object

Attribute Description

message Message data as a string base64Binary format

udh Information specifying the message data format

Start Binary Sms Notification

18-6 Services Gatekeeper Application Developer's Guide

 }],
 "senderAddress":"URI",
 "smsServiceActivationNumber": "URI",
 "dateTime":"Calendar"
 "protocolId":"Byte"
 }
}}

Stop Binary Sms Notification

Adding RESTful Binary Short Messaging Support 18-7

Stop Binary Sms Notification

The Stop Binary Sms Notification operation terminates a previously-started
notification for messages that contain binary content.

To stop a previously set up binary Sms notification, provide the correlator for the
notification passed earlier in the Start Binary Sms Notification request.

There is no request or response body for Stop Binary Sms Notification. If the request
fails, the body of the error response will contain the identifier for the notification and
the type of exception.

18Authorization
Basic

18HTTP Method
DELETE

18URI
The Request-URI used in the DELETE method for Stop Sms Notification is:

http://host:port/rest/binary_sms/notification/${correlator}

where:

■ host and port are the host name and port of the system on which Services
Gatekeeper is installed.

■ correlator is the correlator for the notification provided in the reference object of
the initial Start Binary Sms Notification request.

18Request Body
There is no request body.

18Response Header
Standard header fields. If the request fails, the Status-Line header field will contain the
status code and the reason for the failure. See "Understanding RESTful Errors and
Exceptions".

18Response Body
There is no response body.

Stop Binary Sms Notification

18-8 Services Gatekeeper Application Developer's Guide

19

Adding RESTful Session Manager Support 19-1

19Adding RESTful Session Manager Support

This chapter describes the operations in the Session Manager interface of the RESTful
facade provided in Oracle Communications Services Gatekeeper.

About the Session Manager Interface
Applications use the RESTful Session Manager interface to get a unique session ID.
Each application then adds this session ID to the header of all its requests. Services
Gatekeeper uses this value to keep track of all the traffic that an application sends for
the duration of the session, and to destroy a session.

The GeneralException error will be thrown when any operation in the RESTful
Session Manager interface fails.

REST Service Descriptions Available at Run-time
When the Administration Server for your Services Gatekeeper domain is in the
running state, the REST service descriptions of these operations can be found at

http://host:port/rest/session_manager/index.html

where host and port are the host name and port of the system on which Services
Gatekeeper is installed.

Get Session

19-2 Services Gatekeeper Application Developer's Guide

Get Session

The Get Session operation creates a session with an ID.

If the Get Session operation is successful, the response body will contain the session
ID. This string value is used by the application in the X-Session-ID header of all
subsequent traffic requests.

19Authorization
Basic

19HTTP Method
POST

19URI
http://host:port/rest/session_manager/sessions

where host and port are the hostname and port of the system on which Services
Gatekeeper is installed.

19Request Header
The MIME-type for the Content-Type header field is application/json.

19Request Body
There is no request body.

19Response Header
Standard header fields. If the request fails, the Status-Line header field will contain the
status code and the reason for the failure. See "Understanding RESTful Errors and
Exceptions".

19Response Body
The response body is a JSON object containing the getSession Return attribute whose
value is the session Id, returned as a string.

{"getSessionReturn":"String"}

Get Session Remaining Lifetime

Adding RESTful Session Manager Support 19-3

Get Session Remaining Lifetime

The Get Session Remaining Lifetime operation retrieves the time remaining in this
session, in milliseconds.

The Request-URI for the GET method contains the session ID.

If the Get Session Remaining Lifetime operation is successful, the response body will
contain the time remaining in this session, in milliseconds.

19Authorization
Basic

19HTTP Method
GET

19URI
http://host:port/rest/session_manager/session/${sessionId}

where:

■ host and port are the host name and port of the system on which Services
Gatekeeper is installed.

■ ${sessionID} is the session ID obtained from the response to the Get Session
request.

19Request Header
The MIME-type for the Content-Type header field is application/json.

19Request Body
There is no request body.

19Response Header
Standard header fields. If the request fails, the Status-Line header field will contain the
status code and the reason for the failure. See "Understanding RESTful Errors and
Exceptions".

19Response Body
The response body is a JSON object containing the
getSessionRemainingLifeTimeReturn attribute whose value is an integer
representing the time remaining in this session, in milliseconds.

{"getSessionRemainingLifeTimeReturn":"Integer"}

Destroy Session

19-4 Services Gatekeeper Application Developer's Guide

Destroy Session

The Destroy Session operation destroys this session.

To destroy a session, provide the appropriate session in the Request-URI for this
operation. This identifier should have been obtained by the initial setup for this
session.

There is no request or response body for Destroy Session. If the request fails, the body
of the error response will contain the call identifier and the type of exception.

19Authorization
Basic

19HTTP Method
DELETE

19URI
http://host:port/rest/session_manager/session/${sessionId}

where:

■ host and port are the host name and port of the system on which Services
Gatekeeper is installed.

■ sessionId is the session ID obtained from the response to the Get Session request.

19Request Header
The MIME-type for the Content-Type header field is application/json.

19Request Body
There is no request body.

19Response Body
The response body is a JSON object containing the destroySessionReturn attribute
whose value is a boolean.

{"destroySessionReturn":"Boolean"}

If the value for destroySessionReturn is true, the session was destroyed.

20

Adding RESTful Subscriber Profile Support 20-1

20Adding RESTful Subscriber Profile Support

This chapter describes the operations in the Subscriber Profile interface of the RESTful
facade provided in Oracle Communications Services Gatekeeper.

About the Subscriber Profile Interface
Applications use the RESTful Subscriber Profile interface to query an operator’s
database for individual subscriber profile attributes (such as a user’s terminal type) or
entire subscriber profiles.

REST Service Descriptions Available at Run-time
When the Administration Server for your Services Gatekeeper domain is in the
running state, the REST service descriptions of these operations can be found at

http://host:port/rest/subscriber_profile/index.html

where host and port are the host name and port of the system on which Services
Gatekeeper is installed.

Get

20-2 Services Gatekeeper Application Developer's Guide

Get

The GET operation retrieves specific subscriber profile properties. The properties that
can be accessed are defined in the service provider and application SLAs associated
with the application.

To retrieve specific subscriber profile properties, provide the address the subscriber
and the required subscriber profile properties within the query object in the
Request-URI of the GET method.

If this operation is successful, the response body contains a JSON data object with the
required pathnames and values for the required profile properties associated with the
specified subscriber.

20Authorization
Basic

20HTTP Method
GET

20URI
http://host:port/rest/subscriber_profile/profile?query=${query}

where:

■ host and port are the host name and port of the system on which Services
Gatekeeper is installed.

■ ${query} is a JSON object.

The parameters accepted in the ${query} object are:

■ address: String. Required. The address associated with the subscriber whose data
is being accessed. The supported schemes are:

– tel id

– imsi (International Mobile Subscriber Identity)

– IPv4

■ pathNames: Array of String values. Required. The requested subscriber profile
properties expressed as a relative UNIX path. For example,
serviceName/accessControlId/accessControlId

The ${query} object in the URI is represented by the following JSON data structure,
where the value part of each name/value pair indicates its data type:

{
"address":"URI",

 "pathNames":["String"]
}

Get

Adding RESTful Subscriber Profile Support 20-3

20Response Header
Standard header fields. If the request fails, the Status-Line header field will contain the
status code and the reason for the failure. See "Understanding RESTful Errors and
Exceptions".

20Response Body
The response body is a JSON object which contains the requested properties as an
array value for the properties attribute. Each element in the array contains the
following:

■ pathName: String. The pathname for the requested property.

■ propertyValue: String. The value associated with the requested property.

The response body for this operation is represented by the following JSON data
structure, where the value part of the name/value pair indicates its data type:

{"properties": [{
 "pathName": "String",
 "propertyValue": "String"
}]}

Get Profile

20-4 Services Gatekeeper Application Developer's Guide

Get Profile

The GET Profile operation retrieves the entire profile for a specific subscriber.

To retrieve the entire profile for a specific subscriber, provide the associated subscriber
Id and profile ID within the query object in the Request-URI of the GET method.

If Get Profile is successful, the response body contains a JSON data object with the
required pathnames and values for all the profile properties associated with the
specified subscriber.

20Authorization
Basic

20HTTP Method
GET

20URI
http://host:port/rest/subscriber_profile/profile?id=${id}

where:

■ host and port are the host name and port of the system on which Services
Gatekeeper is installed.

■ ${id} is a JSON object.

The parameters accepted by ${id} object are:

■ profileID: String. Required. The ID of the profile which acts as a set of filters
limiting the attributes that can be accessed based on the SLAs associated with the
application. This entry may be ignored if Services Gatekeeper connects to the
network using certain protocols.

■ subscriberID: String. Required. The ID that uniquely identifies the subscriber
whose profile is being accessed.

The ${id} object in the URI is represented by the following JSON data structure, where
the value part of each name/value pair indicates its data type:

{
"profileID":"a_profileId",}

 "subscriberID":"a_subsc_id"
}

20Response Header
Standard header fields. If the request fails, the Status-Line header field will contain the
status code and the reason for the failure. See "Understanding RESTful Errors and
Exceptions".

20Response Body
The response body is a JSON object which contains the requested properties as an
array value for the result attribute. Each element in the array contains the following:

Get Profile

Adding RESTful Subscriber Profile Support 20-5

■ pathName: String. The pathname for the requested property.

■ propertyValue: String. The value associated with the requested property.

Here is the structure:

{"result": [{
 "pathName": "String",
 "propertyValue": "String"
}]}

Get Profile

20-6 Services Gatekeeper Application Developer's Guide

21

Adding RESTful WAP Push Support 21-1

21Adding RESTful WAP Push Support

This chapter describes the operations in the WAP Push interface of the RESTful facade
provided in Oracle Communications Services Gatekeeper.

About the WAP Push Interface
Applications use the RESTful WAP Push interface to send a Wireless Application
Protocol (WAP) Push message. The content of the message is coded as a Password
Authentication Protocol (PAP) message.

The message payload must adhere to the following:

■ WAP Service Indication Specification, as specified in Service Indication Version
31-July-2001, Wireless Application Protocol WAP-167-ServiceInd-20010731-a.

■ WAP Service Loading Specification, as specified in Service Loading Version
31-Jul-2001, Wireless Application Protocol WAP-168-ServiceLoad-20010731-a.

■ WAP Cache Operation Specification, as specified in Cache Operation Version
31-Jul-2001, Wireless Application Protocol WAP-175-CacheOp-20010731-a.

For links to the specifications, see:

http://www.openmobilealliance.org/tech/affiliates/wap/wapindex.html.

The actual message is sent as an HTTP attachment. See "Headers for Multipart
Messages with Attachments" for more information.

REST Service Descriptions Available at Run-time
When the Administration Server for your Services Gatekeeper domain is in the
running state, the REST service descriptions of these operations can be found at

http://host:port/rest/push_message/index.html

where host and port are the host name and port of the system on which Services
Gatekeeper is installed.

Send Push Message

21-2 Services Gatekeeper Application Developer's Guide

Send Push Message

The Send Push Message operation sends a WAP Push message.

21Authorization
Basic

21HTTP Method
POST

21URI
http://host:port/rest/push_message/messages

where host and port are the host name and port of the system on which Services
Gatekeeper is installed.

21Request Header
The request headers depend on the type of message:

■ If the message content is in the form of an attachment, the request will be
multipart and the request header must contain the header fields that describe the
parts of the message.

■ If the message does not contain an attachment, the special headers associated with
the multipart messaged are not used.

21Message Part Content
The message part content for this operation accepts the following parameters:

■ destinationAddresses: String. Required. An array of terminal addresses.

Each of the addresses in this array should be formatted according to the Push
Proxy Gateway Service Specification (WAP-249-PPGService-20010713-a).

■ pushId: String. Required. A unique identifier provided by the application.
Supported types are PLMN and USER.

■ replaceMethod: String. Required. Valid entries are:

– all

– pendingOnly

replaceMethod is used in conjunction with the pushId parameter and defines
how to replace a previously sent message. This entry will be ignored if
replacePushId is NULL.

■ requesterId: String. Required. The application ID as given by the operator.

■ serviceCode: String. Required. A code for charging purposes.

■ additionalProperties. An array of JSON objects. Optional.

Each element in the array is a JSON object used to add additional properties with
the following parameters:

Send Push Message

Adding RESTful WAP Push Support 21-3

– name: String. Required if the additionalProperties object is present. Valid
entries include pap.priority, pap.delivery-method, pap.network-required,
pap.bearer, and pap.bearer-required.

– value: String. Required if the additionalProperties object is present. The value
associated with the property.

■ deliverAfterTimeStamp: String. Optional. The date and time after which the
content should be delivered to the wireless device. This entry is in ISO 8601
extended format, as yyyy-mm-ddThh-mm-ss.

If the network does not support this parameter, this entry will be rejected.

■ deliverBeforeTimeStamp: String. Optional. The date and time by when the
content should be delivered to the wireless device. This entry is in ISO 8601
extended format, as yyyy-mm-ddThh-mm-ss.

If the network does not support this parameter, this entry will be rejected.

■ progressNoteRequested. Boolean. Optional. If true, the application wishes to
receive progress notes at the address specified by the resultNotificationEndpoint.

■ replacePushId: String. Optional. The Push Id of the message that is to be replaced.
If it is set to NULL, the message is treated as a new message. If it is set to a valid
ID, message replacement will occur for all currently pending messages. Messages
that have already been delivered cannot be canceled, and therefore cannot.

Messages that have already been delivered cannot be canceled, and therefore
cannot be replaced

■ resultNotificationEndpoint: String. Optional. The URI which represents the
endpoint address to which the notification should be delivered. This string should
be a Bayeux protocol channel name that begins with /bayeux/appInstanceID
where appInstanceID is the client application’s application instance account ID.

If the application does not wish to receive notifications, this value should be
NULL.

■ sourceReference: String. Optional. The name of the service provider.

The message part content for this operation is represented by the following JSON data
structure, where the value part of each name/value pair indicates its data type:

{
 "destinationAddresses": ["String"],
 "pushId": "String",
 "replaceMethod": "all|pending-only",
 "requesterID": "String",
 "serviceCode": "String",
 "additionalProperties": [{
 "name": "String",
 "value": "String"
 }],
 "deliverAfterTimestamp": "Calendar",
 "deliverBeforeTimestamp": "Calendar",
 "progressNotesRequested": "Boolean",
 "replacePushId": "String",
 "resultNotificationEndpoint": "URI",
 "sourceReference": "String"
}

Send Push Message

21-4 Services Gatekeeper Application Developer's Guide

21Response Header
Standard header fields. If the request fails, the Status-Line header field will contain the
status code and the reason for the failure. See "Understanding RESTful Errors and
Exceptions".

21Response Body
The response body is a nested JSON object. It contains the result attribute with the
following attributes and data objects:

■ pushId: String. Required. A unique identifier provided by the application.
Supported types are PLMN and USER.

■ result: JSON object. This object contains the outcome code. It contains the
following two entries:

– code: String. The outcome code generated by the network node. Table 21–1
lists the possible values.

– description: String. The textual description for the code.

■ additionalProperties: An array of JSON objects used to add additional properties.

Each element in the array is a JSON object with the following parameters:

– name: String. The name of an additional property. One of: pap.stage,
pap.note, pap.time.

– value: String. The value associated with the property.

■ replyTime: String. The date and time for the reply in ISO 8601 extended format, as
yyyy-mm-ddThh-mm-ss.

■ senderAddress: String. Optional. The sender’s address.

■ senderName: String. Optional. The sender’s name.

Table 21–1 Possible Outcome Codes

Code Description

1000 OK

1001 Accepted for processing

2000 Bad request

2001 Forbidden

2002 Address error

2003 Address not found

2004 Push ID not found

2005 Capabilities mismatch

2006 Required capabilities not supported

2007 Duplicate Push ID

2008 Cancellation not possible

3000 Internal server error

3001 Not implemented

3002 Version not supported

3003 Not possible

Send Push Message

Adding RESTful WAP Push Support 21-5

The response body for this operation is represented by the following JSON data
structure, where the value part of the name/value pair indicates its data type:

{"result": {
 "pushId": "String",
 "result": {
 "code": "String",
 "description": "String"
 },
 "additionalProperties": [{
 "name": "String",
 "value": "String"
 }],
 "replyTime": "Calendar",
 "senderAddress": "String",
 "senderName": "String"
}}

21Result Notification Message Object
The resultNotificationMessage object delivered to the resultNotificationEndpoint
address is a nested JSON object containing the following entries:

■ address: String. The address of the terminal to which this message is sent.

■ code: String. The final state of the message, one of the values listed in Table 21–1.

■ messageState: String. The state of the message. One of:

– rejected

– pending

– delivered

– undelivered

– expired

– aborted

– timeout

– cancelled

3004 Capability matching not possible

3005 Multiple addresses not supported

3006 Transformation failure

3007 Specified delivery method not possible

3008 Capabilities not available

3009 Required network not available

3010 Required bearer not available

3011 Replacement not supported

4000 Service failure

4001 Service unavailable

Table 21–1 (Cont.) Possible Outcome Codes

Code Description

Send Push Message

21-6 Services Gatekeeper Application Developer's Guide

– unknown

■ pushId: String. The unique identifier defined in the initial request, used for
correlation.

■ additionalProperties. An array of JSON objects used to add additional properties.

Each element in the array is a JSON object with the following parameters:

– name: String. The name of an additional property, dependent on the network
node. One of: pap.priority, pap.delivery-method, pap.network-required,
pap.bearer, and pap.bearer-required.

– value: String. The value associated with the property.

■ description: String. A description of the notification provided by the network.
(May not be provided).

■ eventTime: String. The date and time the message reached the destination in ISO
8601 extended format, as yyyy-mm-ddThh-mm-ss.

■ receivedTime: String. The date and time the message was received at the network
node in ISO 8601 extended format, as yyyy-mm-ddThh-mm-ss.

■ senderAddress: String. Optional. The sender’s address.

■ senderName: String. Optional. The sender’s name.

The notification of the result for this operation is represented by the following JSON
data structure, where the value part of the name/value pair indicates its data type:

{"resultNotificationMessage": {
 "address": "String",
 "code": "String",
 "messageState":
"rejected|pending|delivered|undeliverable|expired|aborted|timeout|cancelled|unknow
n",
 "pushId": "String",
 "additionalProperties": [{
 "name": "String",
 "value": "String"
 }],
 "description": "String",
 "eventTime": "Calendar",
 "receivedTime": "Calendar",
 "senderAddress": "String",
 "senderName": "String"
}}

Part III
Part III Creating Applications Using the OneAPI

RESTful Interfaces

Part III describes how to use the interfaces in the OneAPI facade to create applications
that interact with Oracle Communications Services Gatekeeper.

Part III contains the following chapters:

■ Using the OneAPI RESTful Interfaces

Also see these chapters in Services Gatekeeper Communication Service Reference Guide for
details on using the OneAPI-based interfaces:

■ OneAPI Multimedia Messaging/MM7

■ OneAPI Payment/Diameter

■ OneAPI Terminal Location/MLP

■ OneAPI Short Messaging/SMPP

22

Using the OneAPI RESTful Interfaces 22-1

22Using the OneAPI RESTful Interfaces

This chapter provides an overview of how the Oracle Communications Services
Gatekeeper RESTful Web services work with OneAPI operations, and how you can use
this functionality to interact with Services Gatekeeper.

About the OneAPI Facade Architecture
OneAPI operations are processed by the same network-facing interfaces that are used
by the Services Gatekeeper RESTful facade for supported services.

For more information on communication services, see Services Gatekeeper
Communication Service Reference Guide.

Services Gatekeeper supports OneAPI operations by complying with industry
specifications published by the GSMA and the Parlay Group. Services Gatekeeper uses
an implementation of Oracle’s JSR 311 Jersey Java API for RESTful Web services
(JAX-RS) to facilitate communication between applications and network nodes.

See the discussion on OneAPI service facades in Services Gatekeeper Statement of
Compliance for the specifications supported.

For information about Oracle JAX-RS, see the Oracle Fusion Middleware
documentation website:

http://docs.oracle.com/middleware/1213/index.html

For information about JSR 311, see the GlassFish website:

http://jsr311.java.net

The supported OneAPI services include:

■ Multimedia messaging support

■ Payment support

■ Short Messaging support

■ Terminal location support

Support for Anonymous Customer References
Services Gatekeeper supports the use of Anonymous Customer References (ACRs) for
all of the supported OneAPI services it supports. See "Adding RESTful Anonymous
Customer Reference Support" for more information on the RESTFUL APIs.

Also see Services Gatekeeper Statement of Compliance for a link to the supported
specification.

Supported OneAPI Interfaces

22-2 Services Gatekeeper Application Developer's Guide

Components of the RESTful Facade
Figure 22–1 shows the multiple components of the Services Gatekeeper Access Tier
(AT) RESTful facade.

Figure 22–1 RESTful Facade

Network-facing (application-initiated) requests are received by the RESTful Servlet
and then directed to the RESTful handler chain in preparation for delivery by the
JAX-RS. The JAX-RS communicates the RESTful requests to the appropriate service
enabler for execution at the network tier by the correct Service Enabler Enterprise
JavaBean (EJB). Communication between the network-triggered traffic and
applications is handled by the same modules in reverse.

See Services Gatekeeper Communication Service Reference Guide for information on service
enablers.

A Web Application Description Language (WADL) file generates the JAX-RS resource
classes used by a communication service to translate between the RESTful request for
delivery and the appropriate EJB. For information on WADL, see:

http://wadl.java.net

For information on creating communication services from WADL files, see the
discussion on Using Services Gatekeeper with REST Services in Services Gatekeeper
Extension Developer's Guide.

Supported OneAPI Interfaces
Services Gatekeeper supports the following OneAPI Interfaces:

■ SMS

■ MMS

■ Terminal Location

■ Payment

There are a number of communication services for which OneAPI does not provide a
standard interface. Services Gatekeeper supports these services using the proprietary
RESTful interface. See "Creating Applications Using the RESTful Interfaces" for a
complete list of supported services is available

About Configuring OneAPI Server Functionality

Using the OneAPI RESTful Interfaces 22-3

The GSMA provides application developers OneAPI specifications for using these
services when interacting with a OneAPI server. Services Gatekeeper, acting as a
OneAPI server, provides response messages to operations as specified by the OneAPI
specification.

SMS
Applications use the OneAPI RESTful Short Messaging interface (wlng_nt_sms_
px21.ear) over SMPP to send and receive SMS messages, to fetch SMSs and delivery
status reports, and to start and stop a notification.

When the request body for an SMS operation contains a request for a delivery receipt,
the application provides a correlator for the message being sent and includes an
endpoint address for returning the delivery notification.

See “OneAPI Short Messaging/SMPP” in Services Gatekeeper Application Developer's
Guide for a complete description of the OneAPI RESTful SMS interface.

MMS
Applications use the OneAPI RESTful Multimedia Messaging interface over MM7
(wlng_nt_multimedia_messaging_px21.ear) to send a multimedia message (MMS
message) and to fetch information on MMS messages that have been received for the
applications and stored by Services Gatekeeper.

Applications use the interface to fetch those messages, get delivery status on sent
messages, and start and stop a notification.

See “OneAPI Multimedia Messaging/MLP” in Services Gatekeeper Application
Developer's Guide for a complete description of the OneAPI RESTful MMS interface,
including example operations.

Terminal Location
Applications use the OneAPI RESTful Terminal Location interface over MLP (wlng_
nt_terminal_location_px21.ear) to get a location for an individual terminal or a group
of terminals.

See “OneAPI Terminal Location/MLP” in Services Gatekeeper Application Developer's
Guide for a complete description of the OneAPI RESTful Location interface, including
example operations.

Payment
Applications use the OneAPI RESTful Payment interface over Diameter Ro (wlng_nt_
sms_px21.ear) to charge an amount to an end-user’s account, refund amounts to that
account, query charge amount status and list charge amount transactions.
Applications can also reserve amounts, reserve additional amounts, charge against the
reservation and release the reservation.

See “OneAPI Payment/Diameter” in Services Gatekeeper Application Developer's Guide
for a complete description of the OneAPI RESTful Location interfaces.

About Configuring OneAPI Server Functionality
The Services Gatekeeper OneAPI server functionality is embedded in the Parlay X
plug-in, which is installed and deployed by default. No additional OneAPI
configuration is necessary.

General Format of an Operation

22-4 Services Gatekeeper Application Developer's Guide

General Format of an Operation
The following basic elements are present in the requests that an application makes to
the OneAPI RESTful interfaces facade, to the responses it receives from the interfaces
facade, or to both:

■ Request-URI and HTTP Methods in requests and Status-Line in responses

■ Headers

■ Message Body

■ Attachments

Request-URI and HTTP Methods
Applications use one of four methods, "GET", "POST", "PUT", or "DELETE", to request
that a required action be performed on an abstract or physical resource, which is
identified by a Uniform Resource Identifier (URI). The Request-URI is therefore the
most important part of any request that an application makes to the RESTful
interfaces.

Here is an example of the OneAPI POST method used to send an SMS message. The
request URI is contained in the first line of the example.

POST http://example.com/oneapi/1/smsmessaging/outbound/tel%3A%2B5550100/requests
HTTP/1.1
Host: example.com:80
Content-Type: application/x-www-form-urlencoded
Accept: application/json

address=tel%3A%2B15415550100&
address=tel%3A %2B15415550101&
senderAddress=tel:%2B5550100&
message=Hello%20World&
clientCorrelator=123456&
notifyURL=http://application.example.com/notifications/DeliveryInfoNotification&
callbackData=some-data-useful-to-the-requester&
senderName=ACME%20Inc.

See “OneAPI Short Messaging/SMPP” in Services Gatekeeper Application Developer's
Guide for information on the parameters used in this example request.

General Format of a Request-URI
A fully qualified OneAPI Request-URI is made up of a sequence of sections,
concatenated as:

http://host:port/oneapi/api_version/service/service_specific_sections

where,

■ host:port: The hostname and port number of your Services Gatekeeper OneAPI
installation; for example, 127.0.0.1 and 8001.

■ api_version: The version of the OneAPI interface deployed.

In Services Gatekeeper, the current api version is always 1.

■ service: The communication service required by the method. For example,
smsmessaging.

General Format of an Operation

Using the OneAPI RESTful Interfaces 22-5

■ service_specific_sections: One or more sections required by the OneAPI specification
for the method called. See the examples provided in subsequent OneAPI chapters
about specific services.

POST
The POST method accesses a resource factory to create a resource that does not yet
have a URI. Multiple requests to a resource factory can create multiple new resources.

The following statement sets up a subscription to SMS delivery notifications:

POST
http://example.com/oneapi/1/smsmessaging/outbound/tel%3A%2B5550100/subscriptions
HTTP/1.1

For the POST method:

■ The URI in the request represents the factory resource that is accessed to create a
resource. In the above example,
/smsmessaging/outbound/tel%3A%2B5550100/subscriptions is the factory
resource accessed to create a resource.

■ The request body contains the information required to create the resource.

■ If the resource is created, the response body will contain the identifier for the new
resource. If the operation fails, the response body will contain the error response.

PUT
The PUT method creates a resource that has a predetermined URI. This method can be
used to update a resource or to start a stateful process. For example, an application
uses the following statement to release a payment reservation:

PUT
http://example.com/oneapi/1/payment/tel%3A%2B5550100/transactions/amountReservatio
n/abc123

For the PUT method:

■ The URI in the request represents the resource to update or to start a stateful
process on. In the example,
/tel%3A%2B5550100/transactions/amountReservation/abc123 represents the
resource accessed to release the payment reservation.

■ The request body for this operation contains the required information. The JSON
object will contain, for example, information on the description and amount of the
reservation to release.

■ If the operation fails, the response body contains the error response.

GET
The GET method retrieves the state of a specific resource that has been previously
created. The specific resource is identified in the query string. For example, this
statement can be used by an application to retrieve the location of a terminal whose
address is "tel&3A%2B15415550100"::

GET
http://example.com/oneapi/1/location/queries/location?&address=tel&3A%2B1541555010
0&requestedAccuracy=1000

For the GET method:

General Format of an Operation

22-6 Services Gatekeeper Application Developer's Guide

■ The URI in the request represents the query string that uniquely identifies the
resource whose status the application wishes to retrieve. In the example, the value
for (location?&address) is the unique address of the terminal. (It is the address of
the terminal, {"address":"tel:15415550100",} in JSON representation).

■ The request body for this operation is empty.

■ The response provides information on the location of the resource with an
accuracy of 1000 meters. If the operation fails, it contain the error response.

In order to complete the operation, the application must access the specified
location and use the correlator to retrieve the notification.

DELETE
The DELETE method removes a specified resource. The application provides the
correlator or the identifier for the resource to be removed in the Request-URI. An
application stops SMS delivery notifications with the following request:

DELETE http://example.com/oneapi/1/smsmessaging/outbound/subscriptions/abc123

For the DELETE method:

■ The URI in the request contains the correlator, which is a value that uniquely
identifies the resource the application wishes to remove. In the example, abc123 is
the value which the application provided as the correlator when it requested
notifications on a terminal’s status.

■ The request body for this operation is empty.

■ The response body is either empty, or contains the error response if the operation
fails.

Headers
The requests and responses for RESTful operations include the following header fields:

■ Authorization: The Authorization header field is a required field and is found in
all requests. It indicates the type of authentication and security. For example:

Authorization: Basic QWxhZGRpbjpvcGVuIHNlc2FtZQ==

See "Authentication and Security" for more information.

■ Accept: OneAPI only supports JSON as the response format. For example:

Accept: application/json

■ Location: Certain requests include location headers. They identify a new resource
or redirect the recipient to a location other than the Request-URI to complete the
request.

■ Content-Length: Specifies the length of the request (or response) body.

■ Content-Type: The MIME-type value for the Content-Type header field may be
multipart/form-data, application/json, application/x-www-form-urlencoded or
application/xml.

The multipart/form-data value for the Content-Type header field is described in
the next section.

■ X-Session-ID: A session ID is required if transaction sessions are used.

General Format of an Operation

Using the OneAPI RESTful Interfaces 22-7

Headers for Multipart Messages with Attachments
The OneAPI RESTful-based communication services for Multimedia Messaging use
HTTP attachments to transport their content. The OneAPI MMS interface supports
multipart/form-data POST requests. When you use RESTful interfaces with the base
Services Gatekeeper product, multiple attachments are supported in both
application-initiated and network-triggered messages.

When a request message contains one or more messages embedded within it, a
specified boundary is placed between the parts of the message and at the beginning
and end of the message. For multipart message requests:

■ The MIME-type value for the Content-Type header field may be
multipart/form-data or application/json. If the MIME-type value for the
Content-Type header field is multipart/form-data, the boundary entry is used to
provide a value for the boundary between the message parts.

■ Each message part contains the following:

– Content-Disposition header field whose value is form-data and contains a
name attribute with the appropriate value. For example, the message part
name is messagePart. For Multimedia Messages the attribute is attachments.
Multimedia messages contain an additional filename attribute and value.

– Content-Type header field whose value describes the data format included in
the message part.

– Content-Transfer-Encoding field with the appropriate value, if needed.

■ If the content of the message is pure ASCII, the response body contains the
message. Otherwise, the response body contains an identifier that is used to fetch
the message.

Example 22–1 Example of a Multipart Message Request

POST http://example.com/oneapi/1/messaging/outbound/ tel%3A%2B5550100/requests
HTTP/1.1
Content-Length: 12345
Content-Type: multipart/form-data;
boundary="===============123456==";

MIME-Version: 1.0
Host: www.example.com
Date: Thu, 04 Jun 2009 02:51:59 GMT

--===============123456==
Content-Disposition: form-data; name=”root-fields”
Content-Type: application/x-www-form-urlencoded;
address=tel%3A%2B15415550100&
address=tel%3A%2B15415550101&
senderAddress=tel:%2B5550100&
&senderName=ExampleSender
Subject=My%20message&
notifyURL=http://example-application.com/notifications/DeliveryInfoNotification/54
311
&callbackData=
&clientCorrelator=123456
--===============123456==
Content-Disposition: form-data; name=”attachments”; filename=”picture.jpg”
Content-Type: image/gif

GIF89a...binary image data...

General Format of an Operation

22-8 Services Gatekeeper Application Developer's Guide

--===============123456==-

Status Line
The Status Line is the first line in any response that an application receives when it
interacts with the OneAPI RESTful services interface in Services Gatekeeper. It takes
the form:

HTTP/1.1 status_code reason_phrase

where:

■ status_code is a three-digit number that indicates the success or failure to fulfill the
request.

■ reason_phrase is a brief description of the successful action performed; or the reason
for the failure.

For example:

HTTP/1.1 201 Created

Table 22–1 lists some of the status codes and reason-phrases commonly encountered
when interacting with the Services Gatekeeper OneAPI RESTful interfaces:

The Status-Codes used by OneAPI and supported by Services Gatekeeper conform to
Internet Engineering Task Force (IETF) standards. For a complete listing of the HTTP
status codes and their definitions, see RFC 2616 on the IETF website:

http://www.ietf.org/rfc/rfc2616.txt

Table 22–1 A Sampling of Status Codes and Reason Phrases

Status Code Reason Phrase Description

200 OK Success

201 Created Success: The requested resource was created.

204 No Content Success

400 Bad Request The request cannot be processed. Check the
error message for details.

401 Authentication failure The authentication to the protected resource
failed. Check your Services Gatekeeper
OneAPI authentication requirements.

403 Forbidden The authentication credentials provided in the
request are not valid.

404 Not found The resource specified in the URI cannot be
found.

405 Method not supported The method requested is not supported by the
service.

501 Internal Server Error Failure: An unexpected condition prevented
the server from fulfilling the request.

503 Server busy and service
unavailable. Please retry
the request.

The server hosting Services Gatekeeper
OneAPI RESTful interface is busy.

General Format of an Operation

Using the OneAPI RESTful Interfaces 22-9

Message Body
Request or response message bodies are only present if required. A message body is a
JSON object.

Request Body
When present, the request body provides additional data required to complete the
specific request. The following request body for an example Send SMS operation
provides the addresses of the recipients and sending party, and the message text:

Example 22–2 Send SMS Request

address=tel%3A%2B15415550100&
address=tel%3A %2B15415550101&
senderAddress=tel:%2B5550100&
message=Hello%20World&

Response Body
When present, the response body provides data that the application needs for later
action. Example 22–3 shows a response body for the Send SMS operation; it provides
the application with the URI for the sent message.

Example 22–3 Response Body for Send SMS Request

{"resourceReference": {"resourceURL": "
http://example.com/1/smsmessaging/outbound/ tel%3A%2B5415550100/requests/abc123"}}

Example of a Request and Response
Example 22–4 shows an application’s request to query the location of a mobile
terminal in the Service Gatekeeper OneAPI RESTful interface.

Example 22–4 Request Associated with Get Terminal Location

GET
http://example.com/oneapi/1/location/queries/location?&address=tel&3A%2B1541555010
0&requestedAccuracy=1000 HTTP/1.1
Host: example.com:80
Accept: application/json

Example 22–5 shows the response which the application receives containing the
terminal location information for the requested subscriber.

Example 22–5 Response Associated with a Get Terminal Location Operation

HTTP/1.1 200 OKContent-Type: application/json
Content-Type: application/json
Content-Length: 1234
Date: Thu, 04 Jun 2009 02:51:59 GMT

{"terminalLocationList": {"terminalLocation": {
 "address": "tel:15415550100",
 "currentLocation": {
 "accuracy": "100",
 "altitude": "1001.0",
 "latitude": "-80.86302",
 "longitude": "41.277306",
 "timestamp": "2009-06-03T00:27:23.000Z"

Authentication and Security

22-10 Services Gatekeeper Application Developer's Guide

 },
 "locationRetrievalStatus": "Retrieved"
}}}

Authentication and Security
The OneAPI RESTful interfaces in Services Gatekeeper use HTTP basic authentication,
using username and password. SSL is required. For example:

Authorization: Basic QWxhZGRpbjpvcGVuIHNlc2FtZQ==

For more information on HTTP basic authentication, see RFC 2617 on the IETF
website:

http://www.ietf.org/rfc/rfc2617.txt

Services Gatekeeper supports sessionID security with use of the X-SessionID header.

Services Gatekeeper also supports subscriber authentication and authorization for
access to protected resources by supporting OAuth 2.0. For information on using
OAuth 2.0, see Services Gatekeeper OAuth Guide.

Notifications
When an application needs to receive a notification, for example about a message
delivery receipt, the application posts a subscription request containing a
notificationURL location where Services Gatekeeper delivers the notification.

Example 22–6 shows a POST operation subscribing to SMS delivery notifications for a
senderAddress. The notificationURL is included in the message body.

Example 22–6 SMS Delivery Notification Subscription POST Request

POST http://example.com/oneapi/1/smsmessaging/outbound/
tel%3A%2B5550100/subscriptions HTTP/1.1
Host: example.com:80
Content-Type: application/x-www-form-urlencoded
Accept: application/json

notifyURL=http://www.yourURL.here&
criteria="SampleCriteria"&
callbackData=doSomething()

An application can only subscribe to its own notifications (that is, to the notifications
associated with its start notification requests). Any attempt to subscribe to notifications
for other applications is rejected.

Errors and Exceptions
The Status-Line in the response message indicates the protocol version, the three-digit
status code, and the reason for the failure of the request.

In addition, service exception and policy exception objects are represented in the
response body as JSON objects of the following form:

{"requestError":
 {
 "policyException":"class name of the error object"
 {
 "messageID": "System Generated ID:

Errors and Exceptions

Using the OneAPI RESTful Interfaces 22-11

 "text":"error message"
 "variables"""relevant string"
 }
 }
 }

For service exceptions, the value for type is:

"type":"org.csapi.schema.parlayx.common.v2_1.ServiceException"

For Policy Exceptions, the value for type is:

"type":"org.csapi.schema.parlayx.common.v2_1.PolicyException"

Errors and Exceptions

22-12 Services Gatekeeper Application Developer's Guide

Part IV
Part IV Creating Applications Using the SOAP

Interfaces

Part IV describes how to use the interfaces in the SOAP facade and provides details on
the interfaces that it supports to create applications that interact with Oracle
Communications Services Gatekeeper.

Part IV contains the following chapters:

■ Using the SOAP Interfaces

■ Adding a SOAP2SOAP Communication Services

■ Adding SOAP-Based Quality of Service Support

■ About the Supported SOAP Parlay X 2.1 Facades

■ About the Supported SOAP Parlay X 3.0 Facades

■ About the Supported SOAP Parlay X 4.0 Facades

■ About the Supported SOAP Native Facade

23

Using the SOAP Interfaces 23-1

23Using the SOAP Interfaces

This chapter presents a high-level description of the SOAP mechanisms and explains
how to use this functionality to create services that interact with Oracle
Communications Services Gatekeeper (Services Gatekeeper.)

Understanding the SOAP Interfaces
The SOAP-based interfaces are based on the Parlay X standards, and additional
Extended Web Services interfaces that cover functionality which is not supported by
Parlay X.

See Services Gatekeeper Concepts for a complete list of the SOAP-based interfaces
supported by Services Gatekeeper. These interfaces are explained in detail in the
chapters that follow.

Applications using SOAP-based interfaces must manipulate the SOAP messages that
they use to make requests in certain specialized ways.They must add specific
information to the SOAP header, and, if they are using for example Multimedia
Messaging, they must send their message payload as a SOAP attachment.
Applications using the native interfaces use the normal native interface mechanisms,
which are not covered in this document. See "Understanding the Extended Web
Services Common Definitions" for details.

The mechanisms for dealing with these requirements programmatically depend on the
environment in which the application is being developed.

For examples using the Oracle WebLogic Server environment to accomplish these sorts
of tasks, see "Managing SOAP Headers and Attachments Programmatically".

See "Adding a SOAP2SOAP Communication Services" for information on how to
create and deploy a SOAP2SOAP communication service.

Requirements for Using the SOAP-Based Interfaces
If your application is using the SOAP-based interfaces to interact with Services
Gatekeeper, there are four types of elements you may need to add to your
application’s SOAP messages to Services Gatekeeper.

Note: Clients created using Axis 1.2 or older do not work with some
communication services. Developers should use Axis 1.4 or newer if
they wish to use Axis.

Requirements for Using the SOAP-Based Interfaces

23-2 Services Gatekeeper Application Developer's Guide

Understanding SOAP-Based Authentication
In order to secure Services Gatekeeper and the telecom networks to which it provides
access, applications are usually required to provide authentication information in
every SOAP request which the application submits. Services Gatekeeper leverages the
WebLogic Server Web services Security (WS-Security) framework to process this
information.

Services Gatekeeper supports three authentication types:

■ Username/Password Authentication (Username Token)

■ Digital Signatures (X.509 Certificate Token)

■ Encryption (SAML Token)

The type of token that the particular Services Gatekeeper operator requires is indicated
in the Policy section of the WSDL files that the operator makes available for each
application-facing interface it supports. In the following WSDL fragment, for example,
the required form of authentication, indicated by the <wssp:Identity> element, is
Username Token.

Example 23–1 WSDL fragment showing Policy

<s0:Policy s1:Id="Auth.xml">
<wssp:Identity>
<wssp:SupportedTokens>
<wssp:SecurityToken
TokenType="http://docs.example.com/wss/2004/01/oasis200401wssusernametokenprofile1
.0#UsernameToken">
<wssp:UsePassword
Type="http://docs.oasisopen.org/wss/2004/01/oasis200401wssusernametokenprofile1.0#
PasswordText"/>
</wssp:SecurityToken>
<wssp:SecurityToken
TokenType="http://docs.oasisopen.org/wss/2004/01/oasis200401wssx509tokenprofile1.0
#X509v3"/>
</wssp:SupportedTokens>
</wssp:Identity>
</s0:Policy>
<wsp:UsingPolicy n1:Required="true"/>

SOAP Header Element for Authentication
Below are examples of the three types of authentication that can be used with Services
Gatekeeper.

Note: WS-Security provides three modes of providing security
between a Web service client application and the Web service itself for
message level security: Authentication, Digital Signatures, and
Encryption. See "Securing and Administering Web Services" in see
Oracle Fusion Middleware Security and Administrator's Guide for Web
Services for an overview

Note: If the WSDL also has a <wssp: Integrity> element, digital
signing is required (WebLogic Server provides WS-Policy: sign.xml). If
it has a <wssp:Confidentiality> element, encryption is required
(WebLogic Server provides WS-Policy: encrypt.xml).

Requirements for Using the SOAP-Based Interfaces

Using the SOAP Interfaces 23-3

Username/Password Authentication (Username Token) In the Username Token mechanism,
which is specified by the use of the <wsse:UsernameToken> element in the header,
authentication is based on a user name, specified in the <wsse:Username> element
and a password, specified in the <wsse:Password> element.

Two types of passwords are possible, indicated by the Type attribute in the Password
element:

■ PasswordText indicates the password is in clear text format.

■ PasswordDigest indicates that the sent value is a Base64-encoded, SHA-1 hash of
the UTF8 encoded password.

There are two more optional elements in Username Token, introduced to provide a
countermeasure for replay attacks:

■ <wsse:Nonce>, a random value that the application creates.

■ <wsu:Created>, a timestamp.

If either or both the Nonce and Created elements are present, the Password Digest is
computed as: Password_Digest = Base64(SHA-1(nonce+created+password))

When the application sends a SOAP message using Username Token, the WSEE
implementation in Services Gatekeeper evaluates the username using the associated
authentication provider. The authentication provider connects to the Services
Gatekeeper database and authenticates the username and the password. In the
database, passwords are stored as MD5 hashed representations of the actual password.

Example 23–2 Example of a WSSE: Username Token SOAP header element

<wsse:UsernameToken wsu:Id="Example-1">
<wsse:Username> myUsername </wsse:Username>
<wsse:Password Type="PasswordText">myPassword</wsse:Password>
<wsse:Nonce EncodingType="..."> ... </wsse:Nonce>
<wsu:Created> ... </wsu:Created>

</wsse:UsernameToken>
The UserName is equivalent to the application instance ID. The Password part is the
password associated with this UserName when the application credentials was
provisioned in Services Gatekeeper.

For more information on Username Token, see:

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-pro
file-1.0.pdf

Digital Signatures (X.509 Certificate Token) In the X.509 Token mechanism, the
application’s identity is authenticated by the use of an X.509 digital certificate.

Typically a certificate binds the certificate holder’s public key with a set of attributes
linked to the holder’s real world identity – for example the individual’s name,
organization and so on. The certificate also contains a validity period in the form of
two date and time fields, specifying the beginning and end of the interval during
which the certificate is recognized.

The entire certificate is (digitally) signed with the key of the issuing authority.
Verifying this signature guarantees

■ that the certificate was indeed issued by the authority in question

■ that the contents of the certificate have not been forged, or tampered with in any
way since it was issued

For more information on X.509 Token, see:

Requirements for Using the SOAP-Based Interfaces

23-4 Services Gatekeeper Application Developer's Guide

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile
-1.0.pdf

The default identity assertion provider in Services Gatekeeper verifies the authenticity
of X.509 tokens and maps them to valid Services Gatekeeper users.

The x.509 certificate common name (CN) for an application must be the same as the
account user name, which is the string that was referred to as the
applicationInstanceGroupId in previous versions of Services Gatekeeper. This is
provided by the operator when the account is provisioned.

To authenticate using x.509 certificates:

1. Create a web service security configuration.

For details, see "Create a Web service security configuration" in Oracle WebLogic Server
Administration Console Online Help.

2. Generate key pair for the client :

% keytool -genkey -alias client_cert_x509 -keyalg RSA -keysize 1024 -keypass
ClientKey -keystore client_Identity.jks -storepass ClientKey

3. Export the self-signed certificate:

% keytool -genkey -alias server_cert_x509 -keyalg RSA -keysize 1024 -keypass
ServerKey -keystore ServerIdentity.jks -storepass ServerKey

4. Generate the key pair for the server:

keytool -genkey -alias server_cert_x509 -keyalg RSA -keysize 1024 -keypass
ServerKey -keystore ServerIdentity.jks -storepass ServerKey

5. Export the self-signed certificate:

% keytool -export -rfc -alias server_cert_x509 -file ServerCert.cer -keystore
ServerIdentity.jks -storepass ServerKey

6. Import the trust certificates:

% keytool -import -v -trustcacerts -alias client_cert_x509 -file ClientCert.cer
.
-keystore C:\ocsg510ga\JDK160~1\jre\lib\security\cacerts -storepass changeit
keytool -import -v -trustcacerts -alias server_cert_x509 -file ServerCert.cer .

-keystore C:\ocsgversion\JDKversion\jre\lib\security\cacerts -storepass
changeit

7. Configure the certificates in the Administration Console by pointing the server to
the certificates you created in Step 5:

Note: While it is possible to use the out-of-the-box keystore
configuration in Services Gatekeeper for testing purposes, these
should not be used for production systems. The digital certificates in
these out-of-the-box keystores are only signed by a demonstration
certificate authority For information on configuring keystores for
production systems, see the discussion on configuring identity and
trust in Oracle Fusion Middleware Securing Oracle WebLogic Server at:

http://download.oracle.com/docs/cd/E15523_
01/web.1111/e13707/identity_trust.htm

Requirements for Using the SOAP-Based Interfaces

Using the SOAP Interfaces 23-5

C:\ocsgversion\JDKversion\jre\lib\security\ServerCert.cer

8. You can use x.509 certificates to establish identity.

For details, see “Use X.509 certificates to establish identity” in Oracle WebLogic Server
Administration Console Online Help.

Example 23–3 Example of a WSSE: X.509 Certificate SOAP header element

<wsse:Security xmlns:wsse="..." xmlns:wsu="...">
<wsse:BinarySecurityToken wsu:Id="binarytoken"
ValueType="wsse:X509v3"
EncodingType="wsse:Base64Binary">
MIIEZzCCA9CgAwIBAgIQEmtJZc0…

</wsse:BinarySecurityToken>
<ds:Signature xmlns:ds="http://www.w3.org/2000/09/xmldsig#">
<ds:SignedInfo>
<ds:Reference URI="#body">…</ds:Reference>
<ds:Reference URI="#binarytoken">…</ds:Reference>

</ds:SignedInfo>
<ds:SignatureValue>HFLP…</ds:SignatureValue>
<ds:KeyInfo>
<wsse:SecurityTokenReference>
<wsse:Reference URI="#binarytoken" />

</wsse:SecurityTokenReference>
</ds:KeyInfo>

</ds:Signature>
</wsse:Security>

Encryption (SAML Token) Using WebLogic Server’s WSSE implementation, Services
Gatekeeper supports SAML versions 1.0, 1.1, and 2.0. The versions are similar.

See "Using SAML Assertions to Access Resources" in Services Gatekeeper OAuth Guide
for more information on using SAML with OAuth.

For an overview of the differences between versions 1.0 and 1.1, see:

http://www.oasis-open.org/committees/download.php/3412/sstc-saml-diff-1.1-
draft-01.pdf

In SAML, a third party, the Asserting Party, provides the identity information for a
Subject that wishes to access the services of a Relying Party. This information is carried
in an Assertion. In the SAML Token type of Authentication, the Assertion (or a
reference to an Assertion) is provided inside the <WSSE:Security> header in the SOAP
message. The Relying Party (which in this case is Services Gatekeeper, using the
WebLogic Security framework) then evaluates the trustworthiness of the assertion,
using one of two confirmation methods.

■ Holder-of-Key

■ Sender-Voucher

For more information on these confirmation methods, see the discussion on SAML
token profile support in Oracle Fusion Middleware Understanding Security for Oracle
WebLogic Server at:

http://download.oracle.com/docs/cd/E15523_01/web.1111/e13710/archtect.htm

Example 23–4 Example of a WSSE: SAML Token SOAP header element

<wsse:Security>
<saml:Assertion MajorVersion="1" MinorVersion="0"

Requirements for Using the SOAP-Based Interfaces

23-6 Services Gatekeeper Application Developer's Guide

AssertionID="186CB370-5C81-4716-8F65-F0B4FC4B4A0B"
Issuer="www.test.com" IssueInstant="2001-05-31T13:20:00-05:00">

<saml:Conditions NotBefore="2001-05-31T13:20:00-05:00"
NotAfter="2001-05-31T13:25:00-05:00"/>

<saml:AuthenticationStatement AuthenticationMethod="password"
AuthenticationInstant="2001-05-31T13:21:00-05:00">
<saml:Subject>
<saml:NameIdentifier>
<SecurityDomain>"www.bea.com"</SecurityDomain>
<Name>"cn=localhost,co=bea,ou=sales"</Name>

</saml:NameIdentifier>
</saml:Subject>

</saml:AuthenticationStatement>
</saml:Assertion>
...
</wsse:Security>

Setting Callback Timeout Limits
By default Services Gatekeeper AT server waits 3 seconds to establish a connection
with an application endpoint before giving up on the connection, and 30 seconds after
establishing the connection before deciding that a reply will never come. The
-Dwlng.ws.callback.connect_timeout java property setting controls the time limit for
requesting a connection and -Dwlng.ws.callback.read_timeout controls the reply time
limit. Change these settings if your Services Gatekeeper implementation requires
different time limits by adding these Java arguments to your Middleware_Home/user_
projects/domains/domain_name/bin/startWebLogic.sh script:

-Dwlng.ws.callback.connect_timeout=time_in_miliseconds
-Dwlng.ws.callback.read_timeout=time_in_miliseconds

Understanding How Service Correlation Orchestrates Services
In some cases the service that an application provides to its end-users may involve
accessing multiple Services Gatekeeper communication services. For example, a
mobile user might send an SMS to an application asking for the pizza restaurant
nearest to his current location. The application then makes a Terminal Location request
to find the user’s current location, looks up the address of the closest pizza restaurant,
and then sends the user an MMS with all the appropriate information. Three Services
Gatekeeper communication services are involved in executing what for the application
is a single service. In order to be able to correlate the three communication service
requests, Services Gatekeeper uses a service correlation ID, or SCID. This is a string
that is captured in all the CDRs and EDRs generated by Services Gatekeeper. The
CDRs and EDRs can then be orchestrated in order to provide special treatment for a
given chain of service invocations, by, for example, applying charging to the chain as a
whole rather than to the individual invocations.

The SCID is not provided by Services Gatekeeper. When the chain of services is
initiated by an application-initiated request, the application must provide, and ensure
the uniqueness of, the SCID within the chain of service invocations.

When the chain of services is initiated by a network-triggered request, Services
Gatekeeper calls an external interface to get the SCID. This interface must be

Note: In certain circumstances, it is also possible for a custom service
correlation service to supply the SCID, in which case it is the custom
service’s responsibility to ensure the uniqueness of the SCID.

Requirements for Using the SOAP-Based Interfaces

Using the SOAP Interfaces 23-7

implemented by an external system. No utility or integration is provided out-of-the
box; this must be a part of a system integration project. It is the responsibility of the
external system to provide, and ensure the uniqueness of, the SCID.

The SCID is passed between Services Gatekeeper and the application through an
additional SOAP header element, the SCID element. Because not every application
requires the service correlation facility, this is an optional element.

When the scid element is used, it should be on the same level as the session element in
the SOAP header.

Example 23–5 Example of a SCID SOAP header element

<env:Header>
 <wsse:Security
 . . .
 </wsse:Security>
 <session
 . . .
 </session>
 <scid
 . . .
 </scid>
</env:Header>

Understanding Parameter Tunneling
Parameter tunneling is a feature that allows an application to send additional
parameters to Services Gatekeeper and lets a plug-in use these parameters. This
feature makes it possible for an application to tunnel parameters that are not defined
in the application-facing interface and can be seen as an extension to it.

See the discussion on using SOAP parameter tunneling in Services Gatekeeper Extension
Developer's Guide for more information parameter tunneling.

See the appropriate sections in Services Gatekeeper Communication Service Reference Guide
for descriptions of the tunneled parameters that are applicable to your communication
service.

Understanding SOAP Payload Attachments
In some communication services request payloads are sent as SOAP attachments.
Example 23–6 below shows a Multimedia Messaging sendMessage operation that
contains an attachment carrying a jpeg image.

Example 23–6 Example of a SOAP message with attachment (full content is not shown)

POST /parlayx21/multimedia_messaging/SendMessage HTTP/1.1
Content-Type: multipart/related; type="text/xml"; start="<1A07DC767BC3E4791AF25A04F17179EE>";
boundary="----=_Part_0_2633821.1170785251635"
Accept: application/soap+xml, application/dime, multipart/related, text/*
User-Agent: Axis/1.4
Host: localhost:8000
Cache-Control: no-cache
Pragma: no-cache
SOAPAction: ""
Content-Length: 4652
Connection: close
------=_Part_0_2633821.1170785251635
Content-Type: text/xml; charset=UTF-8

Managing SOAP Headers and Attachments Programmatically

23-8 Services Gatekeeper Application Developer's Guide

Content-Transfer-Encoding: binary
Content-Id: <1A07DC767BC3E4791AF25A04F17179EE>
<?xml version="1.0" encoding="UTF-8"?>
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<soapenv:Header>
<ns1:Security ns1:Username="app:-4206293882665579772"
ns1:Password="app:-4206293882665579772"
soapenv:actor="wsse:PasswordToken"
soapenv:mustUnderstand="1" xmlns:ns1="/parlayx21/multimedia_

messaging/SendMessage">
</ns1:Security>

</soapenv:Header>
<soapenv:Body>
<sendMessage xmlns=
"http://www.csapi.org/schema/parlayx/multimedia_messaging/send/v2_4/local">
<addresses>tel:234</addresses>
<senderAddress>tel:567</senderAddress>
<subject>Default Subject Text</subject>
<priority>Normal</priority>
<charging>
<description xmlns="">Default</description>
<currency xmlns="">USD</currency>
<amount xmlns="">1.99</amount>
<code xmlns="">Example_Contract_Code_1234</code>

</charging>
</sendMessage>

</soapenv:Body>
</soapenv:Envelope>

------=_Part_0_2633821.1170785251635
Content-Type: image/jpeg
Content-Transfer-Encoding: binary
Content-Id:
<9FFD47E472683C870ADE632711438CC3>???? JFIF ?? C#%$""!&+7/&)4)!"0A149;>>>%.DIC<H7=>;??

C;("(;;?? ? w" ?? ?? 7
!1AQ"aq2???#?BRr?3Cb????? ?? ' !1"AQ2Raq???? ? ??{?????>?"7B?7!1???????Z
e{????ax??5??CC??-Du?
??X?)Y!??=R@??g?????T??c????f?Wc??eCi?l?????5s??\E???6I??(?x?^???=??d?#?itoi?{;? ??G.......
------=_Part_0_2633821.1170785251635--

Managing SOAP Headers and Attachments Programmatically
This section illustrates how to manage the Services Gatekeeper required SOAP
headers and SOAP attachments when you are using WebLogic Server and WebLogic
Server tools to generate stubs for your Web services clients. If you are using a different
environment, these steps probably do not apply.

For an overview of using Oracle Fusion Middleware to create Web service clients, see
the discussion on Oracle Fusion Middleware in Oracle Fusion Middleware Introducing
Web Services at:

http://download.oracle.com/docs/cd/E15523_01/web.1111/e14294/toc.htm

These examples show how to use a single message handler to add both SOAP Headers
and SOAP attachments.

The WebLogic Server environment relies heavily on using supplied Ant tasks.
Example 23–7 shows the clientgen Ant task added to the standard build.xml file.

Managing SOAP Headers and Attachments Programmatically

Using the SOAP Interfaces 23-9

Example 23–7 Snippet from build.xml

<clientgen
wsdl="${wsdl-file}"
destDir="${class-dir}"
handlerChainFile="SOAPHandlerConfig.xml"
packageName="com.bea.wlcp.wlng.test"
autoDetectWrapped="false"
generatePolicyMethods="true"

/>

A handler configuration file, SOAPHandlerConfig.xml is added as the value for the
handlerChainFile attribute. Example 23–8 show a SOAPHandlerConfig.xml file.

Example 23–8 SOAPHandlerConfig.xml

<weblogic-wsee-clientHandlerChain
xmlns="http://www.example.com/ns/weblogic/90"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:j2ee="http://java.sun.com/xml/ns/j2ee">
<handler>
<j2ee:handler-name>clienthandler1</j2ee:handler-name>
<j2ee:handler-class>
com.bea.wlcp.wlng.client.TestClientHandler

</j2ee:handler-class>
</handler>

</weblogic-wsee-clientHandlerChain>

TestClientHandler provides the following functionality:

■ Adds a Session ID to the SOAP header, see "Session Management for SOAP,
RESTful, and OneAPI Interfaces". The session ID is hardcoded into the member
variable sessionId.

■ Adds a service correlation ID to the SOAP header. See "Understanding How
Service Correlation Orchestrates Services" for more information.

■ Adds a SOAP attachment in the form of a MIME message with content-type
text/plain. See "Understanding SOAP Payload Attachments" for more
information.

The configuration file for the message handler contains the handler-name and the
associated handler-class. The handler class, TestClientHandler, is shown in
Example 23–9.

Example 23–9 TestClientHandler

package com.example.wlcp.wlng.client;
import javax.xml.rpc.handler.Handler;
import javax.xml.rpc.handler.HandlerInfo;
import javax.xml.rpc.handler.MessageContext;
import javax.xml.rpc.handler.soap.SOAPMessageContext;
import javax.xml.soap.*;
import javax.xml.namespace.QName;
public class TestClientHandler implements Handler{
public String sessionId = "myID";
public String SCID = "mySCId";
public String contenttype = "text/plain";
public String content = "The content";

public boolean handleRequest(MessageContext ctx) {
if (ctx instanceof SOAPMessageContext) {

Managing SOAP Headers and Attachments Programmatically

23-10 Services Gatekeeper Application Developer's Guide

try {
SOAPMessageContext soapCtx = (SOAPMessageContext) ctx;
SOAPMessage soapmsg = soapCtx.getMessage();
SOAPHeader header = soapCtx.getMessage().getSOAPHeader();
SOAPEnvelope envelope =
soapCtx.getMessage().getSOAPPart().getEnvelope();

// Begin: Add session ID
Name headerElementName = envelope.createName("session","",
"http://schemas.xmlsoap.org/soap/envelope/");

SOAPHeaderElement headerElement =
header.addHeaderElement(headerElementName);

headerElement.setMustUnderstand(false);
headerElement.addNamespaceDeclaration("soap",
"http://schemas.xmlsoap.org/soap/envelope/");

SOAPElement sessionId = headerElement.addChildElement("SessionId");
sessionId.addTextNode(sessionId);
// End: Add session ID
// Begin: Add Combined Services ID
Name headerElementName = envelope.createName("SCID","",
"http://schemas.xmlsoap.org/soap/envelope/");

SOAPHeaderElement headerElement =
header.addHeaderElement(headerElementName);

headerElement.setMustUnderstand(false);
headerElement.addNamespaceDeclaration("soap",
"http://schemas.xmlsoap.org/soap/envelope/");

SOAPElement sessionId = headerElement.addChildElement("SCID");
sessionId.addTextNode(SCID);
// End: Add Combined Services ID
// Begin: Add SOAP attachment
AttachmentPart part = soapmsg.createAttachmentPart();
part.setContent(content, contenttype);
soapmsg.addAttachmentPart(part);
// End: Add SOAP attachment

} catch (Exception e) {
e.printStackTrace();

}
}
return true;

}
public boolean handleResponse(MessageContext ctx) {
return true;

}
public boolean handleFault(MessageContext ctx) {
return true;

}
public void init(HandlerInfo config) {
}
public void destroy() {
}
public QName[] getHeaders() {
return null;

}
}

24

Adding a SOAP2SOAP Communication Services 24-1

24Adding a SOAP2SOAP Communication
Services

This chapter explains information about creating Oracle Communications Services
Gatekeeper SOAP2SOAP communication services.

About SOAP2SOAP Communication Services
You use the Partner and API Management Portal to create SOAP2SOAP APIs and
services. See “PRM Portals and the Application Development Process” in API
Management Guide for information.

See “Adding a SOAP2SOAP Communication Service” in Extension Developer’s Guide
for details on about the SOAP2SOAP plugin, and the artifacts and properties it
contains.

About SOAP2SOAP Communication Services

24-2 Services Gatekeeper Application Developer's Guide

25

Adding SOAP-Based Quality of Service Support 25-1

25Adding SOAP-Based Quality of Service
Support

This chapter describes how to add Quality of Service (QoS) support to SOAP-based
applications for use with Oracle Communications Services Gatekeeper.

About the SOAP-Based QoS Interface
An application can use the SOAP-based QoS interface to apply a QoS policy, to query,
modify and remove that policy, and to register as well as unregister for QoS-related
notifications. A Policy Control and Charging Rules Function provider (PCRF) can also
return QoS events to registered applications.

SOAP-Based Service Descriptions Available at Run-time
The WADL file to for SOAP-based QoS services is located at http://at_host:at_
port/parlayx40/qos/ApplicationQoS?WSDL.

Example Parlay X 4.0 Application-Driven QoS/Diameter Scenario
A typical QoS scenario involves a subscriber using a handset to access a video feed
using a video application installed on the handset. Initially, because the default QoS is
set to a low bandwidth, the video stops and stutters frequently as it is buffered
repeatedly over the low speed connection. The subscriber requests a faster QoS
through the application, presumably with a corresponding billing charge. Services
Gatekeeper forwards that request to a PCRF which then applies the upgraded QoS.
The subscriber’s video now streams at the upgraded speed, without stuttering.

Figure 25–1 shows a detailed QoS call flow sequence.

Note: While QoS frequently refers to raw bandwidth speed, it can
apply to any factors that affect network performance, for example,
connection latency and time-out.

Configuring Services Gatekeeper to Use the QoS Communication Services

25-2 Services Gatekeeper Application Developer's Guide

Figure 25–1 Example Parlay X 4.0 QoS Call Sequence

Configuring Services Gatekeeper to Use the QoS Communication
Services

Before you can implement QoS functionality, a QoS plug-in must be deployed and
configured in Services Gatekeeper. For information on deploying and configuring QoS

Configuring Services Gatekeeper to Use the QoS Communication Services

Adding SOAP-Based Quality of Service Support 25-3

plug-ins, see the discussion on Parlay X 4.0 Application-driven Quality of Service
(QoS) in Services Gatekeeper Communication Service Reference Guide.

Configuring Services Gatekeeper to Use the QoS Communication Services

25-4 Services Gatekeeper Application Developer's Guide

26

About the Supported SOAP Parlay X 2.1 Facades 26-1

26About the Supported SOAP Parlay X 2.1
Facades

This chapter describes the Oracle Communications Services Gatekeeper interfaces in
the supported Parlay X 2.1 facades and contains information specific to Services
Gatekeeper. For detailed descriptions of the interfaces, methods, and parameters, see
the ETSI OSA Parlay X website for links to the specifications:

http://www.etsi.org/deliver/etsi_es/202300_202399/20239102/01.02.01_60/es_
20239102v010201p.pdf

Parlay X 2.1 Part 2: Third Party Call
This interface is compliant with ETSI ES 202 391-2 V1.2.1 (2006-12) Open Service
Access (OSA); Parlay X Web services; Part 2: Third Party Call (Parlay X 2).

Interface: ThirdPartyCall
The endpoint for the ThirdPartyCall interface is:
http://host:port/parlayx21/third_party_call/ThirdPartyCall

Where values for host and port are the host name and port of the system on which
Services Gatekeeper is installed.

MakeCall
Sets up a call between two parties.

GetCallInformation
Displays information about a call.

EndCall
Ends a call.

CancelCall
Cancels a call setup procedure.

Error Codes
See General Error Codes.

Parlay X 2.1 Part 3: Call Notification

26-2 Services Gatekeeper Application Developer's Guide

Parlay X 2.1 Part 3: Call Notification
This set of interfaces is compliant with ETSI ES 202 391-3 V1.2.1 (2006-12) Open Service
Access (OSA); Parlay X Web services; Part 3: Call Notification (Parlay X 2).

Interface: CallDirection
This interface is implemented by an application, and the consumer of this interface is
Services Gatekeeper. The Web services Description Language (WSDL) file that defines
the interface can be downloaded from:

http://host:port/parlayx21/call_notification/wsdls/parlayx_call_direction_
interface_2_2.wsdl

http://host:port/parlayx21/call_notification/wsdls/parlayx_call_direction_
service_2_2.wsdl

http://host:port/parlayx21/call_notification/wsdls/parlayx_call_
notification_types_2_2.xsd

Where values for host and port are the host name and port of the system on which
Services Gatekeeper is installed.

HandleBusy
 Services Gatekeeper calls this method, which is implemented by an application, when
the called party is busy.

HandleNotReachable
 Services Gatekeeper calls this method, which is implemented by an application, when
the called party is not reachable.

HandleNoAnswer
 Services Gatekeeper calls this method, which is implemented by an application, when
the called party does not answer.

HandleCalledNumber
 Services Gatekeeper calls this method, which is implemented by an application,
before call setup.

Interface: CallNotification
The CallNotification interface is implemented by an application, and the consumer of
this interface is Services Gatekeeper. The WSDL that defines the interface can be
downloaded from:

http://host:port/parlayx21/call_notification/wsdls/parlayx_call_
notification_interface_2_2.wsdl

http://host:port/parlayx21/call_notification/wsdls/parlayx_call_
notification_service_2_2.wsdl

http://host:port/parlayx21/call_notification/wsdls/parlayx_call_
notification_types_2_2.xsd

Where values for host and port are the host name and port of the system on which
Services Gatekeeper is installed.

Parlay X 2.1 Part 4: Short Messaging

About the Supported SOAP Parlay X 2.1 Facades 26-3

NotifyBusy
 Services Gatekeeper calls this method, which is implemented by an application, when
the called party is busy.

NotifyNotReachable
 Services Gatekeeper calls this method, which is implemented by an application, when
the called party is not reachable.

NotifyNoAnswer
 Services Gatekeeper calls this method, which is implemented by an application, when
the called party does not answer.

NotifyCalledNumber
 Services Gatekeeper calls this method, which is implemented by an application,
before call setup.

Interface: CallNotificationManager
The endpoint for the CallNotificationManager interface is:
http://host:port/parlayx21/call_notification/CallNotificationManager

Where values for host and port are the host name and port of the system on which
Services Gatekeeper is installed.

StartCallNotification
Starts a subscription for call notifications.

StopCallNotification
Stops a subscription for call notifications.

Interface: CallDirectionManager
The endpoint for the CallDirectionManager interface is:
http://host:port/parlayx21/call_notification/CallDirectionManager

Where values for host and port are the host name and port of the system on which
Services Gatekeeper is installed.

StartCallDirectionNotification
Starts a subscription for call direction notifications.

StopCallDirectionNotification
Stops a subscription for call direction notifications.

Error Codes
See General Error Codes.

Parlay X 2.1 Part 4: Short Messaging
This set of interfaces is compliant with ETSI ES 202 391-4 V1.2.1 (2006-12) Open Service
Access (OSA); Parlay X Web services; Part 4: Short Messaging (Parlay X 2).

Parlay X 2.1 Part 4: Short Messaging

26-4 Services Gatekeeper Application Developer's Guide

Interface: SendSms
The endpoint for the SendSms interface is:
http://host:port/parlayx21/sms/SendSms

Where values for host and port are the host name and port of the system on which
Services Gatekeeper is installed.

If a backwards-compatible communication service is used:

■ The senderAddress parameter is either of the format tel:mailbox ID\mailbox
password\Sender name or just sender name depending on how the application was
provisioned in Services Gatekeeper.

■ The priority parameter is not supported.

SendSms
Sends an SMS to one or more destinations.

SendSmsLogo
Sends an SMS Logo to one or more destinations.

Logos in SmartMessaging and EMS are supported. The image is not scaled.

Logos in the following raw image formats are supported:

■ bmp

■ gif

■ jpg

■ png

The logos are in pure black and white (gray scale not supported). Animated images are
not supported. Scaling is not supported.

If the logo is converted to SmartMessaging format, the image cannot be larger than
72x14 pixels.

If the logo is sent in EMS format, the following rules apply:

■ If the image is 16x16 pixels, the logo is sent as an EMS small picture.

■ If the image is 32x32 pixels, the logo is sent as an EMS large picture.

■ If the image is of any other size, the logo is sent as an EMS variable picture.

■ Images up to 1024 pixels are supported.

SendSmsRingtone
Sends an SMS Ringtone to one or more destinations.

Ringtones can be in any of these formats:

■ RTX

■ SmartMessaging

■ EMS (iMelody)

GetSmsDeliveryStatus
Gets the delivery status of a previously sent SMS.

Parlay X 2.1 Part 4: Short Messaging

About the Supported SOAP Parlay X 2.1 Facades 26-5

It is possible to query delivery status of an SMS only if a callback reference was not
defined when the SMS was sent. If a callback reference was defined,
NotifySmsDeliveryReceipt is invoked by Services Gatekeeper and the delivery status
is not stored. If the delivery status is stored in Services Gatekeeper, it is stored for a
configurable period.

Interface: SmsNotification
This SmsNotification interface is implemented by an application, and the consumer of
this interface is Services Gatekeeper. The WSDL file that defines the interface can be
downloaded from:

http://host:port/parlayx21/sms/wsdls/parlayx_sms_notification_interface_2_
2.wsdl

http://host:port/parlayx21/sms/wsdls/parlayx_sms_notification_service_2_
2.wsdl

http://host:port/parlayx21/sms/wsdls/parlayx_sms_types_2_2.xsd

Where values for host and port are the host name and port of the system on which
Services Gatekeeper is installed.

NotifySmsReception
Sends an SMS that is received by Services Gatekeeper to an application given that the
SMS fulfills a set of criteria. The criteria is either defined by the application itself, using
startSmsNotification or defined using a provisioning step in Services Gatekeeper.

Shortcode translation, if appropriate, is applied.

NotifySmsDeliveryReceipt
Sends a delivery receipt that a previously sent SMS has been received by its
destination. The delivery receipt is propagated to the application given that the
application provided a callback reference when sending the SMS.

Interface: ReceiveSms
The endpoint for the ReceiveSms interface is:
http://host:port/parlayx21/sms/ReceiveSms

Where values for host and port are the host name and port of the system on which
Services Gatekeeper is installed.

GetReceivedSms
Gets messages that have been received by Services Gatekeeper. The SMS messages are
retrieved using a registrationIdentifier used when the notification was registered using
a provisioning step in Services Gatekeeper.

Interface: SmsNotificationManager
The endpoint for the SmsNotificationManager interface is:
http://host:port/parlayx21/sms/SmsNotificationManager

Where values for host and port are the host name and port of the system on which
Services Gatekeeper is installed.

Parlay X 2.1 Part 4: Short Messaging

26-6 Services Gatekeeper Application Developer's Guide

StartSmsNotification
Initiates notifications to the application for a given service activation number and
criteria.

StopSmsNotification
Ends a previously started notification.

Sending Custom Message Content for Split and Submit Messaging Requests
With Split and Submit Messaging enabled, short messages addressed to many
recipients are split into multiple individually-addressed requests by Services
Gatekeeper. For information on enabling Split and Submit Messaging, see the
discussion on supportBulkRequest in Services Gatekeeper System Administrator's Guide.
For an overview of Split and Submit Messaging, see Services Gatekeeper Communication
Service Reference Guide.

Using DifferentContentForSingleAddressInBulk to Customize Split Messages
You can provide custom content to be sent to particular addresses. To do this, specify
the per-address content in a content attribute for each message element with custom
content. Include an xparam DifferentContentForSingleAddressInBulk, set to true,
with the SOAP request.

Each address in the bulk SMS request must have a content attribute if
DifferentContentForSingleAddressInBulk is set to true.

For example:

<?xml version="1.0" encoding="UTF-8"?>
<messages>
 <message address="1100" content="1100abc"/>
 <message address="1200" content="1200abc"/>
 <message address="2100" content="2100abc"/>
 <message address="3100" content="3100abc"/>
</messages>
The schema is as follows:

<?xml version="1.0"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
targetNamespace="http://www.oracle.com/ocsg/51"
xmlns:wlng="http://www.oracle.com/ocsg/51">
 <xsd:complexType name="messages">
 <xsd:sequence>
 <xsd:element name="message" type="wlng:message" minOccurs="1"
maxOccurs="unbounded"/>
 </xsd:complexType>
 <xsd:complexType name="message">
 <xsd:attribute name="address" type="xsd:string" use="required"/>
 <xsd:attribute name="address" type="xsd:string" use="required"/>
 <xsd:attribute name="content" type="xsd:string" use="required"/>

Note: A Service activation number may be provisioned to handle a
range of numbers using short code translations.

Note: The equivalent of this operation may have been performed as
an off-line provisioning step by the Services Gatekeeper administrator.

Parlay X 2.1 Part 5: Multimedia Messaging

About the Supported SOAP Parlay X 2.1 Facades 26-7

 </xsd:complexType>
</xsd:schema>

Error Codes
See General Error Codes.

Parlay X 2.1 Part 5: Multimedia Messaging
This set of interfaces is compliant with ETSI ES 202 391-5 V1.2.1 (2006-12) Open Service
Access (OSA); Parlay X Web services; Part 5: Multimedia Messaging (Parlay X 2).

See "Sending Custom Message Content for Split and Submit Messaging Requests" for
instructions on how to split messages into multiple individually-addressed requests

Interface: SendMessage
The endpoint for the SendMessage interface is:
http://host:port/parlayx21/multimedia_messaging/SendMessage

Where values for host and port are the host name and port of the system on which
Services Gatekeeper is installed.

SendMessage
Sends a multimedia message. The content of the message is sent as a SOAP
attachment. Sending as email is not supported.

Table 26–1 Exceptions and Error Codes

Exception Error code Reason/Action

SVC0002 n/a Invalid input value for message part %1

Log message:

Parse bulk SMS XML message content failed: This log message
indicates that xparam
DifferentContentForSingleAddressInBulk in the request is set
to true but the XML message content is not well-formed.

Bulk SMS XML message cannot find content for address dest_
address: This log message indicates that xparam
DifferentContentForSingleAddressInBulk in the request is set
to true and the XML is well-formed, but not every address has
content provided for it. The first such address encountered is the
one reported.

Table 26–2 Exceptions and Error Codes

Exception Error code Reason/Action

SVC0001 WNG-000002 Internal problem in Services Gatekeeper.

Contact your Services Gatekeeper administrator.

SVC0001 MMS-000001 Internal problem in Services Gatekeeper.

Contact your Services Gatekeeper administrator.

SVC0001 MMS-000002 Internal problem in Services Gatekeeper.

Contact your Services Gatekeeper administrator.

SVC0001 MMS-000003 Address is utilizing an unsupported address type.

SVC0001 MMS-000005 Message could not be delivered to MMSC.

Parlay X 2.1 Part 5: Multimedia Messaging

26-8 Services Gatekeeper Application Developer's Guide

GetMessageDeliveryStatus
Gets the delivery status of a previously sent MMS.

It is possible to query delivery status of an MMS only if a callback reference was not
defined when the message was sent. If a callback reference was defined,
NotifyMessageDeliveryReceipt is invoked by Services Gatekeeper and the delivery
status is not stored. If the delivery status is stored in Services Gatekeeper, it is stored
for a configurable period.

Interface: ReceiveMessage
The endpoint for this interface is: http://host:port/parlayx21/multimedia_
messaging/ReceiveMessage

Where the values for host and port are the host name and port of the system on which
Services Gatekeeper is installed.

GetReceivedMessages
Polls Services Gatekeeper for received messages.

The registrationIdentifier is required. Received message are stored in Services
Gatekeeper only for a configurable period.

GetMessageURIs
Not supported.

GetMessage
Gets a specific message that was received by Services Gatekeeper and belongs to the
application.

Note: Storing delivery status for an MMS is configurable in Services
Gatekeeper.

Table 26–3 Exceptions and Error Codes

Exception Error code Reason/Action

SVC0001 WNG-000002 Internal problem in Services Gatekeeper.

Contact your Services Gatekeeper administrator.

SVC0002 RequestIdentifier Message is not found.

Table 26–4 Exceptions and Error Codes

Exception Error code Reason/Action

SVC0001 WNG-000002 Internal problem in Services Gatekeeper.

Contact your Services Gatekeeper administrator.

SVC0002 MMS-000002 Internal problem in Services Gatekeeper.

Contact your Services Gatekeeper administrator.

Parlay X 2.1 Part 5: Multimedia Messaging

About the Supported SOAP Parlay X 2.1 Facades 26-9

Interface: MessageNotification
This interface is implemented by an application, and the consumer of this interface is
Services Gatekeeper. The WSDL that defines the interface can be downloaded from:

http://host:port/parlayx21/multimedia_messaging/wsdls/parlayx_mm_
notification_interface_2_4.wsdl

http://host:port/parlayx21/multimedia_messaging/wsdls/parlayx_mm_
notification_service_2_4.wsdl

http://host:port/parlayx21/multimedia_messaging/wsdls/parlayx_mm_types_2_
4.xsd

Where the values for host and port are the host name and port of the system on which
Services Gatekeeper is installed.

NotifyMessageReception
Sends a notification to an application that an MMS destined for the application is
received by Services Gatekeeper.

When an application is notified about an incoming MMS message by an asynchronous
call to NotifyMessageReception from Services Gatekeeper, the application receives a
MessageReference structure containing information about the message.

If the MMS message contains only pure text, the <message> element of the
MessageReference structure contains the entire text content as an ASCII string, and the
message is not stored in Services Gatekeeper. If the message contains any content that
is not pure text, such as an image, sound or video, the MessageReference structure
does not include a <message> element, but instead includes a <messageIdentifer>
element that contains a reference to the message stored in Services Gatekeeper. For
more information about the MessageReference structure, see the Parlay X Web services
Part 5: Multimedia Messaging specification.

NotifyMessageDeliveryReceipt
Sends a notification to an application that a previously sent MMS has been
delivered to its destination.

Interface: MessageNotificationManager
The endpoint for the MessageNotificationManager interface is:
http://host:port/parlayx21/multimedia_messaging/MessageNotificationManager

Where the values for host and port are the host name and port of the system on which
Services Gatekeeper is installed.

Table 26–5 Exceptions and Error Codes

Exception Error code Reason/Action

SVC0001 WNG-00000
2

Internal problem in Services Gatekeeper.

Contact your Services Gatekeeper administrator.

SVC0001 MMS-000004 Correlator does not exist, no notification corresponds to the
correlator.

Note: Supporting delivery notifications is optional for Services
Gatekeeper.

Parlay X 2.1 Part 8: Terminal Status

26-10 Services Gatekeeper Application Developer's Guide

StartMessageNotification
Initiates notifications to the application for a given service activation number and
criteria.

StopMessageNotification
Ends a previously started notification.

Error Codes
See General Error Codes.

Parlay X 2.1 Part 8: Terminal Status
This set of interfaces is compliant with ETSI ES 202 391-8 V1.2.1, Open Service Access
(OSA); Parlay X Web services; Part 8: Terminal Status (Parlay X 2).

Interface: TerminalStatus
The endpoint for the TerminalStatus interface is:

http://host:port/parlayx21/terminal_status/TerminalStatus

Where values for host and port are the host name and port of the system on which
Services Gatekeeper is installed.

Table 26–6 StartMessageNotification Exceptions and Error Codes

Exception Error code Reason/Action

SVC0001 WNG-000002 Internal problem in Services Gatekeeper.

Contact your Services Gatekeeper administrator.

Note: A service activation number may be provisioned to handle a
range of numbers using short code translations.

Note: The equivalent to this operation may have been performed as
an off-line provisioning step by the Services Gatekeeper administrator.

Table 26–7 StartMessageNotification Exceptions and Error Codes

Exception Error code Reason/Action

SVC0001 WNG-000002 Internal problem in Services Gatekeeper.

Contact your Services Gatekeeper administrator.

Table 26–8 StopMessageNotification Exceptions and Error Codes

Exception Error code Reason/Action

SVC0001 WNG-000002 Internal problem in Services Gatekeeper.

Contact your Services Gatekeeper administrator.

SVC0002 correlator Correlator does not exist, no notification corresponds to the
correlator.

Parlay X 2.1 Part 8: Terminal Status

About the Supported SOAP Parlay X 2.1 Facades 26-11

getStatus
Gets the status for a single terminal.

getStatusForGroup
Gets the status for multiple terminals.

Interface: TerminalStatusNotificationManager
The endpoint for the TerminalStatusNotificationManager interface is:

http://host:port/parlayx21/terminal_
status/TerminalStatusNotificationManager

Where values for host and port are the host name and port of the system on which
Services Gatekeeper is installed.

startNotification
Starts the terminal status change subscription.

endNotification
Notifies the Terminal Status communication service that it can cancel the terminal
status change subscription.

Interface: TerminalNotification
The endpoint for the TerminalNotification interface is provided by the calling
application.

statusNotification
Supplies the terminal status to the application. The status is sent by the Terminal
Status communication service to the application.

statusError
Informs the application that the Terminal Status could not be obtained and contains an
error message indicating why. Sent by the Terminal Status plug-in to the application.

statusEnd
Informs the application that the status notification subscription has ended. Sent by the
Terminal Status plug-in to the application.

Error Codes
See the General Exceptions and General Error Codes sections for most error
information. Table 26–9 includes additional diagnostic information specific to the
Terminal Status/MAP plug-in.

Table 26–9 Terminal Status Exception and Error Code Information

Exception
Error
code Reason/Action

POL0002 N/A A Terminal Status request was sent using a criteria of busy, in
violation of a BusyAvailable = false is setting in an SLA.

Parlay X 2.1 Part 9: Terminal Location

26-12 Services Gatekeeper Application Developer's Guide

Parlay X 2.1 Part 9: Terminal Location
This set of interfaces is compliant with ETSI ES 202 391-9 V1.2.1 (2006-12), Open
Service Access (OSA); Parlay X Web services; Part 9: Terminal Location (Parlay X 2).

Understanding Parlay X 2.1 Terminal Location Precision
The Parlay X 2.1 Terminal Location specification complies with the ISO 6709 [7]
specification, specifying decimal values for longitude and latitude locations. The
decimals representing longitude are floating point numbers in the range -90.0000 to
+90.0000. Positive values for locations North of the equator and negative values for
South of the equator. Longitude values are floating point numbers in the range
-180.0000 to +180.0000. Positive values are East of the prime meridian, and negative
values are West of the prime meridian.

It is important to understand that Services Gatekeeper rounds these floating point
values to 8 significant digits. For example, if Services Gatekeeper receives messages
with these longitude (X) and latitude (Y) values from the network:

"latitude":"12.34567890",
"longitude":"123.4567890",

Services Gatekeeper reports these rounded values to the application:

 <X> 12.345679 </X>
 <Y> 123.45679 </Y>

POL0003 N/A The number of Terminal Server addresses sent exceeded the
MaximumNotificationAddresses setting in an SLA.

POL0004 N/A An unlimited number of Terminal Status requests were sent, but
the SLA UnlimitedCountAllowed was set to False.

POL0005 N/A The number of Terminal Status requests exceeded the
MaximumCount setting in an SLA.

POL0009 N/A The Terminal Status request frequency violated the
MaximumNotificationFrequency setting in an SLA.

POL0200 N/A Busy criteria not supported.

SVC0001 MAP-0000
01

The Terminal Status communication service could not encode the
anyTimeInterrogation MAP message. Check that the incoming
Parlay X address request is correct and that the NetworkSelection
for the supplied address has the correct MAPApplicationContext
and MAPDialogueAS values.

SVC0001 SS7API-00
0001

The SS7 API failed to build and send a message to the SS7 stack.
This usually means that the Terminal Status plug-in could not bind
with the stack, or the bind was lost. Make sure that the stack is
running and that the CpUserId and SS7 host/port/instance are
correct.

SVC0001 SS7-000001 The SS7 stack received no answer or an incorrect answer. The SS7
stack did not send an anyTimeInterrogation call answer or the
answer was incorrect. This probably indicates a problem with the
SS7 stack. Make sure that the global title/SPC/SSN is configured
correctly in the NetworkSelection. Start an SS7 stack trace and
check the ss7trace.log file. See the documentation reference at
www.openss7.org website for more information.

Table 26–9 (Cont.) Terminal Status Exception and Error Code Information

Exception
Error
code Reason/Action

Parlay X 2.1 Part 9: Terminal Location

About the Supported SOAP Parlay X 2.1 Facades 26-13

Interface: TerminalLocation
The endpoint for the TerminalLocation interface is:
http://host:port/parlayx21/terminal_location/TerminalLocation

Where values for host and port are the host name and port of the system on which
Services Gatekeeper is installed.

GetLocation
Gets the location of a terminal.

GetTerminalDistance
Gets the distance from a certain point to the location of a terminal.

Table 26–10 Exceptions and Error Codes

Exception
Error
code Reason/Action

SVC0001 TL-000007 There is a communication problems between Services Gatekeeper
and the network node. Contact your Services Gatekeeper
administrator.

SVC0001 TL-000010 There is a communication problem between Services Gatekeeper
and the network node, and Services Gatekeeper was unable to
interpret the response. Contact your Services Gatekeeper
administrator.

SVC0001 TL-000009 No location data was received from network.

SVC0001 TL-000011 An unknown error was received from the network.

SVC0002 N/A An invalid parameter was included in the terminal status request.

SVC0200 N/A The location accuracy is invalid.

POL0001 N/A General policy error.

POL0002 N/A Privacy error.

POL0230 N/A The requested accuracy is not supported.

Table 26–11 Exceptions and Error Codes

Exception Error code Reason/Action

SVC0001 TL-000007 There is a communication problems between Services Gatekeeper
and the network node. Contact your Services Gatekeeper
administrator.

SVC0001 TL-000010 There is a communication problem between Services Gatekeeper
and the network node, and Services Gatekeeper was unable to
interpret the response. Contact your Services Gatekeeper
administrator.

SVC0001 TL-000009 No location data was received from the network.

SVC0001 TL-000011 An unknown error was received from the network.

SVC0002 N/A An invalid parameter was included in the terminal status request.

SVC0200 N/A The location accuracy is invalid.

POL0001 N/A General policy error.

Parlay X 2.1 Part 9: Terminal Location

26-14 Services Gatekeeper Application Developer's Guide

GetLocationForGroup
Gets the location for one or more terminals.

Interface: TerminalLocationNotificationManager
The endpoint for the TerminalLocationNotificationManager interface is:
http://host:port/parlayx21/terminal_
location/TerminalLocationNotificationManager

Where values for host and port are the host name and port of the system on which
Services Gatekeeper is installed.

StartGeographicalNotification
Initiates location notifications to the application when one or more terminals change
their location according to a criteria.

POL0002 N/A Privacy error.

POL0230 N/A The requested accuracy is not supported.

Table 26–12 Exceptions and Error Codes

Exception
Error
code Reason/Action

SVC0001 TL-000007 There is a communication problems between Services Gatekeeper
and the network node. Contact your Services Gatekeeper
administrator.

SVC0001 TL-000010 There is a communication problem between Services Gatekeeper
and the network node, and Services Gatekeeper was unable to
interpret the response. Contact your Services Gatekeeper
administrator.

SVC0001 TL-000009 No location data was received from the network.

SVC0001 TL-000011 An unknown error was received from the network.

SVC0002 N/A An invalid parameter was included in the terminal status request.

SVC0004 N/A No valid addresses were passed in on the request.

SVC0200 N/A The location accuracy is invalid.

POL0001 N/A General policy error.

POL0002 N/A Privacy error.

POL0230 N/A The requested accuracy is not supported.

Table 26–13 Exceptions and Error Codes

Exception
Error
code Reason/Action

SVC0001 TL-000003 Unable to start the geographical notification due to a network error.
Contact your Services Gatekeeper administrator.

SVC0001 TL-000004 Unable to start geographical notification due to an internal error.
Contact your Services Gatekeeper administrator.

SVC0002 N/A The request included an invalid parameter.

Table 26–11 (Cont.) Exceptions and Error Codes

Exception Error code Reason/Action

Parlay X 2.1 Part 9: Terminal Location

About the Supported SOAP Parlay X 2.1 Facades 26-15

StartPeriodicNotification
Initiates location notifications to the application on a periodic basis.

EndNotification
Ends a previously started notification.

Interface: TerminalLocationNotification
The TerminalLocationNotification interface is implemented by an application, and
the consumer of this interface is Services Gatekeeper. The WSDL that defines the
interface can be downloaded from:

http://host:port/parlayx21/terminal_location/wsdls/parlayx_terminal_
location_notification_interface_2_2.wsdl

http://host:port/parlayx21/terminal_location/wsdls/parlayx_terminal_
location_notification_service_2_2.wsdl

http://host:port/parlayx21/terminal_location/wsdls/parlayx_terminal_
location_types_2_2.xsdl

SVC0004 N/A The request did not include any valid addresses.

SVC0005 N/A The correlator used already exists.

POL0001 N/A General policy error.

Table 26–14 Exceptions and Error Codes

Exception
Error
code Reason/Action

SVC0001 TL-000005 Unable to start periodic notification due to a network error. Contact
your Services Gatekeeper administrator.

SVC0001 TL-000006 Unable to start periodic notification due to an internal error. Contact
your Services Gatekeeper administrator.

SVC0002 N/A The request included an invalid parameter.

SVC0004 N/A The request did not include any valid addresses.

SVC0005 N/A The correlator used already exists.

POL0001 N/A General policy error.

Table 26–15 Exceptions and Error Codes

Exception Error code Reason/Action

SVC0001 TL-000001 Unable to start geographical notification due to a network error.
Contact your Services Gatekeeper administrator.

SVC0001 TL-000002 Unable to start geographical notification due to an internal error.
Contact your Services Gatekeeper administrator.

SVC0002 N/A The request included an invalid parameter.

POL0001 N/A General policy error.

Table 26–13 (Cont.) Exceptions and Error Codes

Exception
Error
code Reason/Action

Parlay X 2.1 Part 11: Audio Call

26-16 Services Gatekeeper Application Developer's Guide

Where values for host and port are the host name and port of the system on which
Services Gatekeeper is installed.

LocationNotification
Notifies an application about a change of location for a terminal.

LocationError
Notifies an application that the subscription for location notifications was cancelled by
Services Gatekeeper.

LocationEnd
Notifies an application that no more location notifications are being sent to the
application.

Error Codes
See "General Error Codes".

Parlay X 2.1 Part 11: Audio Call
This set of interfaces is compliant with ETSI ES 202 391-11 V1.2.1 (2006-12) Open
Service Access (OSA); Parlay X Web services; Part 11: Audio Call (Parlay X 2).

Interface: PlayAudio
The endpoint for the PlayAudio interface is: http://host:port/parlayx21/audio_
call/AudioCall.

Where values for host and port are the host name and port of the system on which
Services Gatekeeper is installed.

EndMessage
Cancels previous play request.

GetMessageStatus
Requests the status of a previous play request.

PlayAudioMessage
Play an audio file (such as .WAV).

PlayTextMessage
Play text to a text-to-speech engine.

PlayVoiceXmlMessage
Play a VXML file.

Error Codes
See "General Error Codes".

Parlay X 2.1 Part 14: Presence

About the Supported SOAP Parlay X 2.1 Facades 26-17

Parlay X 2.1 Part 14: Presence
This set of interfaces is compliant with ETSI ES 202 391-14 V1.2.1 (2006-12), Open
Service Access (OSA); Parlay X Web services; Part 14: Presence (Parlay X 2).

Interface: PresenceConsumer
The endpoint for the PresenceConsumer interface is:
http://host:port//parlayx21/presence/PresenceConsumer

Where values for host and port are the host name and port of the system on which
Services Gatekeeper is installed.

subscribePresence
Requests a subscription for presence information about a presentity.

For the parameter presentity, only SIP URI can be used. Group-URI is not supported.

getUserPresence
Gets presence information about a presentity.

For the parameter presentity, only SIP URI can be used. Group-URI is not supported.

startPresenceNotification
Initiates presence notifications to the application when one or more presence attributes
changes for a presentity.

For the parameter presentity, only SIP URI can be used. Group-URI is not supported.

The parameter frequency is not supported. The application is notified when an update
of presence information is received from the network.

endPresenceNotification
Ends a previously started notification.

Interface: PresenceNotification
The PresenceNotification interface is implemented by an application, and the
consumer of this interface is Services Gatekeeper. The WSDL that defines the interface
can be downloaded from:

http://host:port/parlayx21/presence/wsdls/parlayx_presence_notification_
interface_2_3.wsdl

http://host:port/parlayx21/presence/wsdls/parlayx_presence_notification_
service_2_3.wsdl

http://host:port/parlayx21/presence/wsdls/parlayx_presence_types_2_3.xsd

Where values for host and port are the host name and port of the system on which
Services Gatekeeper is installed.

statusChanged
Notifies an application about a change of presence attributes for a presentity.

statusEnd
Notifies an application that no more notifications will be sent to the application.

Parlay X 2.1 Part 14: Presence

26-18 Services Gatekeeper Application Developer's Guide

notifySubscription
Notifies an application that the presentity has handled the request for presence
information.

subscriptionEnded
Notifies an application that the subscription for presence information has ended.

Interface: PresenceSupplier
The endpoint for the PresenceSupplier interface is:
http://host:port/parlayx21/presence/PresenceSupplier where values for host and
port are the host name and port of the system on which Services Gatekeeper is
installed.

The Presence Supplier interface requires that a presence server be available in the
underlying network. Services Gatekeeper interacts with this server to provide this
functionality to the application.

By default, Services Gatekeeper maps a presentity URI parameter to the client’s
Application Instance ID. This information is required to interact with the network and
Parlay X 2.1 does not provide it by default.

The application can override the default presentity URI value by using
“wlng.presence.parlay21.presentity.uri” as the key and the desired URI for the
value in value = $the_desired_URI. See "Understanding Parameter Tunneling" for
more information.

publish
Publishes presence data about a presentity.

getOpenSubscriptions
Gets a list of new watchers who wish to subscribe to this presentity’s data.

updateSubscriptionAuthorization
Adds new watchers and updates the permissions of existing watchers of this
presentity’s data. This is the usual follow-up to the getOpenSubscriptions operation.

Note: The presence server in the network must support the
"Publication of Partial Presence Information" IETF standard for this
functionality to work. For the standards document, see
http://tools.ietf.org/html/draft-ietf-simple-partial-publish
-07#page-4

Note: The presence server in the network must support
http://tools.ietf.org/html/draft-ietf-simple-partial-pidf-fo
rmat-10 and http://tools.ietf.org/html/rfc3857
(http://tools.ietf.org/html/draft-ietf-simple-winfo-package-
05) for this functionality to work.

Note: This operation requires the presence of both a presence server
and a Data Manipulation Server in the underlying network.

General Exceptions

About the Supported SOAP Parlay X 2.1 Facades 26-19

An SVC0220 service exception (NoSubscriptionRequest) is thrown if the presentity
attempts to confirm the subscription of a watcher who has not asked to subscribe to
the presentity’s data.

getMyWatchers
Returns an array of the watchers that are subscribed to the presentity’s data.

getSubscribedAttributes
Not supported.

blockSubscription
Blocks the flow of presence information to a subscribed watcher by cancelling the
subscription. The watcher is notified using "subscriptionEnded".

An SVC0221 service exception (Not a watcher) is thrown if the URI in the field watcher
is not a watcher of the presentity.

Error Codes
See "General Error Codes".

About Notifications
After an application starts notification, the notification persists. If an application has
started a notification and destroys the session, the notification remains registered and
matching notifications are sent to the application when it connects to Services
Gatekeeper.

General Exceptions
This section describes the exception handling for the Parlay X 2.1 interfaces.

These exception types are defined:

■ Service exceptions

■ Policy exceptions

Service exceptions are related to the operation of the service itself. The following
exceptions are general:

■ SVC0001: Service error.

■ SVC0002: Invalid input value

Note: The presence server in the network must support these IETF
standards found at the IETF website for this feature to work:

http://tools.ietf.org/html/draft-ietf-simple-partial-pidf-fo
rmat-10

and

 http://tools.ietf.org/html/rfc3857
(http://tools.ietf.org/html/draft-ietf-simple-winfo-package-
05) .

General Error Codes

26-20 Services Gatekeeper Application Developer's Guide

■ SVC0003: Invalid input value with list of valid values

■ SVC0004: No valid addresses

■ SVC0005: Duplicate correlator

■ SVC0006: Invalid group

■ SVC0007: Invalid charging information

■ SVC0008: Overlapping Criteria

Policy Exceptions are thrown when a policy has been violated, including violations of
a service level agreements. The following general Policy Exceptions are defined:

■ POL0001: Policy error.

■ POL0002: Privacy error.

■ POL0003: Too many addresses specified.

■ POL0004: Unlimited notifications not supported.

■ POL0005: Too many notifications requested.

■ POL0006: Groups not allowed.

■ POL0007: Nested groups not allowed.

■ POL0008: Charging not supported.

■ POL0009: Invalid frequency requested.

Within the exception, an error code is defined. The error code details why the
exception was thrown. See "General Error Codes".

General Error Codes
The following are general error codes for SVC0001: Service error:

■ Null sessionID (loginTicket) expired.

■ CN-000001 Two requests for call direction overlap with each other.

■ CN-000002 Internal error when accessing the subscription storage.

■ CN-000003 Could not find the call-back plug-in.

■ CN-000004 The call direction routing address is not valid.

■ MAP-000001 The Terminal Status plug-in failed to encode the
anyTimeInterrorgation MAP message.

■ MMS-000001 Unable to perform action. Network error. Check that the incoming
Parlay X address request is correct and that the NetworkSelection for the supplied
address has the correct MAPApplicationContext and MAPDialogueAS values

■ MMS-000002 Unable to retrieve configuration, internal error.

■ MMS-000003 The used address type is not supported.

■ MMS-000004 An error occurred when an attachment was put into the request
context.

■ MMS-000005 The MM7 Relay server responded with an error code, which includes
the status code and the status text in the following format:
MMS-000005:StatusCode:StatusText.

For example, if the MMSC response were:

General Error Codes

About the Supported SOAP Parlay X 2.1 Facades 26-21

<rel:Status>
 <rel:StatusCode>4000</rel:StatusCode>
 <rel:StatusText>Hello</rel:StatusText>
</rel:Status>

the SVC0001 ServiceException error code would be:

"MMS-000005:4000:Hello".

■ OSA-000001 Invalid network state.

■ OSA-000002 Invalid interface type.

■ OSA-000003 Invalid event type.

■ OSA-000004 Unsupported address plan.

■ OSA-000005 Communication failure between OSA Gateway and Services
Gatekeeper.

■ PLC-000001 Internal policy engine error.

■ PLG-000001 Could not find remote ejb home in access tier.

■ PLG-000002 Could not create the ejb.

■ PLG-000003 Could not access callback ejb.

■ PLG-000004 Matching plug-in cannot be found because, for example, route has not
been set up.

■ PRESENCE-000001 Failed to use the default duration for a notification.

■ PRESENCE-000002 Failed to use the default value for count for a notification.

■ PRESENCE-000003 The application has no SIP-URI mapping configured.

■ PRESENCE-000004 Internal error. Failed to put data in WorkContext.

■ SIP-000001 Could not find remote ejb home.

■ SIP-000002 Could not create the ejb.

■ SIP-000003 Could not access remote ejb.

■ SIP-000004 Could not create SIP session.

■ SIP-000005 Failed to send SIP message.

■ SIP-000006 Internal SIP stack error.

■ SMS-000001 Unable to perform action. Network error.

■ SMS-000002 Unable to retrieve configuration, internal error.

■ SMS-000003 The used address type is not supported.

■ SMS-000004 Unable to encode message segments.

■ SMS-000005 GSM message format incorrect.

■ SMS-000006 Could not send message. Message was not accepted by the network.

The status code and the status text are in the following format:
SMS-000006:CommandStatus:Description

For example, if the SMSC commandstatus response is:

0x0000000B(ESME_RINVDSTADR)

the SVC0001 ServiceException error code is:

General Error Codes

26-22 Services Gatekeeper Application Developer's Guide

"SMS-000006:11:Invalid Dest Addr".

The description of the command status is taken from the SMPP Specification v3.4.
If the command status in the response from the SMSC is not explicitly described in
the SMPP Specification, the text of the error is No description available for
CommandStatus.

■ SS7API-000001 The SS7 server failed to build and send the message to the SS7
stack. Make sure that the stack is running and that the CpUserId and SS7
host/port/instance are correct.

■ SS7-000001 No answer or an incorrect answer received from the SS7 stack.

■ TL-000001 Unable to end notification because of a network error.

■ TL-000002 Unable to end notification because of an internal error.

■ TL- 000003 Unable to start geographical notification because of a network error.

■ TL-000004 Unable to start geographical notification because of an internal error.

■ TL-000005 Unable to start periodic notification because of a network error.

■ TL-000006 Unable to start periodic notification because of an internal error.

■ TL-000007 Unable to get location because of a network error.

■ TL-000008 Unable to get location because of an internal error.

■ TL-000009 Unable to get location because no data was found.

■ TL-000010 Failed to parse response because of an internal error.

■ TL-000011 Failed to get location information because the MLP server returned an
error.

■ TPC-000001 Unable to retrieve configuration because of an internal error.

■ TS-000001 Communication problems between Services Gatekeeper and the
network node. Contact your Services Gatekeeper administrator. The
GroupRequestTimeout attribute may be too low.

■ TS-000002 Could not find a network service route to match the address. Validate
the network selection routes. You may want to add a default route
(expression=DEFAULT) to capture any addresses that do not matched any other
expression.

■ TS-000003 No result returned from a getStatusForGroup query. Update
getGroupRequestTimeout to an appropriate value and check the status of network
connection

■ TS-000004 Did not find the correlator when sending an end-status notification. The
value of correlator in the endNotification request is incorrect, or the notification
has already been terminated by the network.

■ TS-000005 Could not initialize the object. Check the instancemap configuration
file.

■ TS-000006 Failed to access storage. Check the status of the storage service and
database.

■ WNG-000000 No error.

■ WNG-000001 Unknown error.

■ WNG-000002 Storage service error.

Code Examples

About the Supported SOAP Parlay X 2.1 Facades 26-23

Code Examples
The following code examples illustrate how to use the Parlay X 2.1 interfaces.

Example: sendSMS
This is an SMS sending example.

Example 26–1 SendSMS example

org.csapi.schema.parlayx.sms.send.v2_2.local.SendSms request =
new org.csapi.schema.parlayx.sms.send.v2_2.local.SendSms();
SimpleReference sr = new SimpleReference();
sr.setEndpoint(new
URI("http://localhost:8111/SmsNotificationService/services/SmsNotification?WSDL"));
sr.setCorrelator("cor188");
sr.setInterfaceName("InterfaceName");
ChargingInformation charging = new ChargingInformation();
charging.setAmount(new BigDecimal("1.1"));
charging.setCode("qwerty");
charging.setCurrency("USD");
charging.setDescription("some charging info");
sendInf.setCharging(charging);
URI[] uri = new URI[1];
uri[0] = new URI("1234");
request.setAddresses(uri);
request.setCharging(charging);
request.setReceiptRequest(sr);
request.setMessage("we are testing sms!");
request.setSenderName(“6001”);
org.csapi.schema.parlayx.sms.send.v2_2.local.SendSmsResponse response =
smport.sendSms(request);
String sendresult = response.getResult();
System.out.println("result: " + sendresult);

Example: startSmsNotification
This is an example of how to use startSmsNotification.

Example 26–2 startSmsNotification example

org.csapi.schema.parlayx.sms.notification_manager.v2_3.local.StartSmsNotification parameters =
new org.csapi.schema.parlayx.sms.notification_manager.v2_3.local.StartSmsNotification();
parameters.setCriteria("hello");
SimpleReference sr = new SimpleReference();
sr.setEndpoint(new
URI("http://localhost:8111/SmsNotificationService/services/SmsNotification?WSDL"));
sr.setCorrelator("cor189");
sr.setInterfaceName("interfaceName");
parameters.setReference(sr);
URI uri = new URI("tel:6001");
parameters.setSmsServiceActivationNumber(uri);
port.startSmsNotification(parameters);

Example: getReceivedSms
This example shows how to poll for SMS messages using getReceivedSms.

Example: getReceivedMessages and getMessage

26-24 Services Gatekeeper Application Developer's Guide

Example 26–3 getReceivedSms example

org.csapi.schema.parlayx.sms.receive.v2_2.local.GetReceivedSms parameters =
new org.csapi.schema.parlayx.sms.receive.v2_2.local.GetReceivedSms();
parameters.setRegistrationIdentifier("1");
org.csapi.schema.parlayx.sms.receive.v2_2.local.GetReceivedSmsResponse response =
port.getReceivedSms(parameters);
org.csapi.schema.parlayx.sms.v2_2.SmsMessage[] msgs =
response.getResult();
if(msgs != null) {
for(org.csapi.schema.parlayx.sms.v2_2.SmsMessage msg : msgs) {
System.out.println(msg.getMessage());

}
}

Example: sendMessage
This is an MMS sending example.

Example 26–4 sendMessage example

org.csapi.schema.parlayx.multimedia_messaging.send.v2_4.local.SendMessage request =
new org.csapi.schema.parlayx.multimedia_messaging.send.v2_4.local.SendMessage();
ChargingInformation charging = new ChargingInformation();
charging.setAmount(new BigDecimal("1.1"));
charging.setCode("qwerty");
charging.setCurrency("USD");
charging.setDescription("some charging info");
sendInf.setCharging(charging);
SimpleReference sr = new SimpleReference();
if(getProperty("notification_mt").equalsIgnoreCase("true")) {
sr.setEndpoint(new URI(getProperty(ClientConstants.NOTIFICATION_LISTENER_URL)));
sr.setCorrelator(getProperty("correlator"));
sr.setInterfaceName(getProperty("interfacename"));

}
URI[] uri = new URI[1];
uri[0] = new URI("1234");
request.setAddresses(uri);
request.setCharging(charging);
request.setPriority(MessagePriority.fromString("Default"));
request.setReceiptRequest(sr);
request.setSenderAddress("6001");
request.setSubject("subject");
org.csapi.schema.parlayx.multimedia_messaging.send.v2_4.local.SendMessageResponse response =
smport.sendMessage(request);
String sendresult = response.getResult();
System.out.println("sendresult: " + sendresult);

Example: getReceivedMessages and getMessage
This is shows polling for a received MMS.

Example 26–5 getReceivedMessages and getMessage example

org.csapi.schema.parlayx.multimedia_messaging.receive.v2_4.local.GetReceivedMessages parameters =
new org.csapi.schema.parlayx.multimedia_messaging.receive.v2_4.local.GetReceivedMessages();
parameters.setPriority(org.csapi.schema.parlayx.multimedia_messaging.v2_
4.MessagePriority.fromString("Default"));
parameters.setRegistrationIdentifier("2");

Example: getReceivedMessages and getMessage

About the Supported SOAP Parlay X 2.1 Facades 26-25

org.csapi.schema.parlayx.multimedia_messaging.receive.v2_4.local.GetReceivedMessagesResponse result
=
port.getReceivedMessages(parameters);
org.csapi.schema.parlayx.multimedia_messaging.v2_4.MessageReference[] refs =
result.getResult();
if(refs != null) {
for(org.csapi.schema.parlayx.multimedia_messaging.v2_4.MessageReference ref : refs) {
String id = ref.getMessageIdentifier();
org.csapi.schema.parlayx.multimedia_messaging.receive.v2_4.local.GetMessage p2 =
new org.csapi.schema.parlayx.multimedia_messaging.receive.v2_4.local.GetMessage();
p2.setMessageRefIdentifier(id);
port.getMessage(p2);

}
}

Example: getLocation
This example shows how to get the location of a terminal.

Example 26–6 getLocation example

org.csapi.schema.parlayx.terminal_location.v2_2.local.GetLocation parameters =
new org.csapi.schema.parlayx.terminal_location.v2_2.local.GetLocation();
parameters.setAcceptableAccuracy(5);
parameters.setAddress(new URI("1234"));
parameters.setRequestedAccuracy(5);
TimeMetric maximumAge = new TimeMetric();
maximumAge.setMetric(TimeMetrics.fromString("Hour"));
maximumAge.setUnits(10);
parameters.setMaximumAge(maximumAge);
TimeMetric responseTime = new TimeMetric();
responseTime.setMetric(TimeMetrics.fromString("Hour"));
responseTime.setUnits(1);
parameters.setResponseTime(responseTime);
DelayTolerance tolerance = DelayTolerance.fromString("NoDelay");
parameters.setTolerance(tolerance);
org.csapi.schema.parlayx.terminal_location.v2_2.local.GetLocationResponse response =
port.getLocation(parameters);
org.csapi.schema.parlayx.terminal_location.v2_2.nfo result =
response.getResult();
System.out.println("accuracy : " + result.getAccuracy());
System.out.println("altitude : " + result.getAltitude().floatValue());
System.out.println("latitude : " + result.getLatitude());
System.out.println("longitude : " + result.getLongitude());
System.out.println("timestamp : " + result.getTimestamp());

Example: getReceivedMessages and getMessage

26-26 Services Gatekeeper Application Developer's Guide

27

About the Supported SOAP Parlay X 3.0 Facades 27-1

27About the Supported SOAP Parlay X 3.0
Facades

This chapter describes the Oracle Communications Services Gatekeeper interfaces in
the supported Parlay X 3.0 facades and contains information specific to Services
Gatekeeper not found in the specifications. For detailed descriptions of the interfaces,
methods, and parameters, see the ETSI OSA Parlay X 3.0 specifications at:

http://www.etsi.org/deliver/etsi_es/202300_202399/20239111/01.02.01_60/es_
20239111v010201p.pdf

Parlay X 3.0 Part 6: Payment
The Payment communication service interfaces follow Draft ETSI ES 202 504-6 v0.0.4
(2007-06), Open Service Access (OSA); Parlay X Web services; Part 6: Payment (Parlay
X 3)

Interface: AmountCharging
The AmountCharging interface endpoint is:
http://host:port/parlayx30/payment/AmountCharging

where values for host and port are the host name and port of the system on which
Services Gatekeeper is installed.

chargeAmount
Charges the account indicated by the end user identifier.

Table 27–1 Exceptions and Error Codes

Exception Error Code Explanation

SVC0001 PAYMENT000002 A protocol-related error. This error is returned
from the Diameter server. Make sure the server is
running and reachable.

Check the log files for more information.

SVC0001 PAYMENT000003 A transient error. This error is returned from the
Diameter server, for example, in an authentication
failure. Make sure the server is reachable and has
adequate storage space.

Check the log files for more information.

SVC0001 PLG-000004 General plug-in routing error.

Parlay X 3.0 Part 6: Payment

27-2 Services Gatekeeper Application Developer's Guide

refundAmount
Refunds the account indicated by the end user identifier.

SVC0001 PAYMENT000004 A permanent failure. This error is returned from
the Diameter server, for example, when there is
incorrect data in the AVP.

Check the log files for more information.

SVC0270 PAYMENT000004 A permanent failure. This error is returned from
the Diameter server containing a Diameter error
code and string. The Diameter charging server
returns the error code and string to Services
Gatekeeper, and the Services Gatekeeper charging
plug-in returns it to the calling application in the
Diameter-Error-Message Xparam using this
syntax:

DIAMETERDiameter_error_code
Diameter-Error-Message="Diameter_error_
string"

Where Diameter_error_code and Diameter_
error_string are the codes and strings listed in
Section 7.1 of Diameter RFC3588. For example:

DIAMETER5001
Diameter-Error-Message="DIAMETER_AVP_
UNSUPPORTED"

For details on the error codes and strings see
Diameter RFC3588 Section 7.1
(http://www.ietf.org/rfc/rfc3588.txt)

Table 27–2 Exceptions and Error Codes

Exception Error Code Explanation

SVC0001 PAYMENT000002 A protocol-related error. This error is returned
from the Diameter server. Make sure the server is
running and reachable.

Check the log files for more information.

SVC0001 PAYMENT000003 A transient error. This error is returned from the
Diameter server, such as authentication failure.
Make sure the server is reachable and has
adequate storage space.

Check the log files for more information.

SVC0001 PLG-000004 General plug-in routing error.

SVC0001 PAYMENT000004 A permanent failure. This error is returned from
the Diameter server, such as incorrect data in the
AVP.

Check the log files for more information.

Table 27–1 (Cont.) Exceptions and Error Codes

Exception Error Code Explanation

Parlay X 3.0 Part 6: Payment

About the Supported SOAP Parlay X 3.0 Facades 27-3

chargeSplitAmount
Charges multiple end user accounts concurrently.

SVC0270 PAYMENT000004 A permanent failure. This error is returned from
the Diameter server containing a Diameter error
code and string. The Diameter charging server
returns the error code and string to Services
Gatekeeper, and the Services Gatekeeper
charging plug-in returns it to the calling
application in the Diameter-Error-Message
Xparam using this syntax:

DIAMETERDiameter_error_code
Diameter-Error-Message="Diameter_error_
string"

Where Diameter_error_code and Diameter_
error_string are the codes and strings listed in
Section 7.1 of Diameter RFC3588. For example:

DIAMETER5001
Diameter-Error-Message="DIAMETER_AVP_
UNSUPPORTED"

For details on the error codes and strings see
Diameter RFC3588 Section 7.1
(http://www.ietf.org/rfc/rfc3588.txt)

Table 27–3 Exceptions and Error Codes

Exception Error Code Explanation

SVC0001 PAYMENT000002 A protocol-related error. This error is returned
from the Diameter server. Make sure the server
is running and reachable.

Check the log files for more information.

SVC0001 PAYMENT000003 A transient error. This error is returned from the
Diameter server, for example, in an
authentication failure. Make sure the server is
reachable and has adequate storage space.

Check the log files for more information.

SVC0001 PLG-000004 General plug-in routing error.

SVC0001 PAYMENT000004 A permanent failure. This error is returned from
the Diameter server, for example, such as
incorrect data in the AVP.

Check the log files for more information.

Table 27–2 (Cont.) Exceptions and Error Codes

Exception Error Code Explanation

Parlay X 3.0 Part 6: Payment

27-4 Services Gatekeeper Application Developer's Guide

Interface: VolumeCharging
The VolumeCharging interface endpoint is:
http://host:port/parlayx30/payment/VolumeCharging

where values for host and port are the host name and port of the system on which
Services Gatekeeper is installed.

chargeVolume
Charges the specified volume to the end user account.

refundVolume
Refunds the specified volume to the end user account.

SVC0270 PAYMENT000004 A permanent failure. This error is returned from
the Diameter server containing a Diameter error
code and string. The Diameter charging server
returns the error code and string to Services
Gatekeeper, and the Services Gatekeeper
charging plug-in returns it to the calling
application in the Diameter-Error-Message
Xparam using this syntax:

DIAMETERDiameter_error_code
Diameter-Error-Message="Diameter_error_
string"

Where Diameter_error_code and Diameter_
error_string are the codes and strings listed in
Section 7.1 of Diameter RFC3588. For example:

DIAMETER5001
Diameter-Error-Message="DIAMETER_AVP_
UNSUPPORTED"

For details on the error codes and strings see
Diameter RFC3588 Section 7.1
(http://www.ietf.org/rfc/rfc3588.txt)

Table 27–4 Exceptions and Error Codes

Exception Error Code Explanation

SVC0002 parameter Invalid parameter value.

Check the log files for more information.

SVC0270 PAYMENT000004 Charge failed.

Check the log files for more information.

Table 27–5 Exceptions and Error Codes

Exception Error Code Explanation

SVC0002 parameter Invalid parameter value.

Check the log files for more information.

SVC0270 PAYMENT000004 Refund failed

Check the log files for more information.

Table 27–3 (Cont.) Exceptions and Error Codes

Exception Error Code Explanation

Parlay X 3.0 Part 6: Payment

About the Supported SOAP Parlay X 3.0 Facades 27-5

chargeSplitVolume
Charges a volume amount to multiple end user accounts based on percentages defined
in a policy.

getAmount
Converts the given volume to a currency amount.

chargeReservation
Charge the reserved volume to an end user account.

releaseReservation
Release the reserved volume on an end user account.

Interface: ReserveAmountCharging
The ReserveAmountCharging interface endpoint is:
http://host:port/parlayx30/payment/ReserveAmountCharging

where values for host and port are the host name and port of the system on which
Services Gatekeeper is installed.

reserveAmount
Reserves a charge for an account indicated by the end user identifier.

Table 27–6 Exceptions and Error Codes

Exception Error Code Explanation

SVC0002 parameter Invalid parameter value.

Check the log files for more information.

SVC0270 PAYMENT000004 The charge failed.

Check the log files for more information.

SVC0271 Invalid sum of percentage allocations. The sum
of percentage allocations must be 100.

POL0250 The number of endUserIdentifiers exceeds
policy-defined maximum.

POL0251 Split charging is not supported by the defined
policy.

Table 27–7 Exceptions and Error Codes

Exception Error Code Explanation

SVC0002 parameter Invalid parameter value.

Check the log files for more information.

SVC0270 PAYMENT000004 Charge reservation failed

Check the log files for more information.

Table 27–8 Exceptions and Error Codes

Exception Error Code Explanation

SVC0002 parameter Invalid parameter value.

Check the log files for more information.

Parlay X 3.0 Part 6: Payment

27-6 Services Gatekeeper Application Developer's Guide

reserveAdditionalAmount
Adds to or subtracts from a charge to or from an existing reservation.

Table 27–9 Exceptions and Error Codes

Exception Error Code Explanation

SVC0001 PAYMENT000002 A protocol-related error. This error is returned
from the Diameter server. Make sure the server
is running and reachable.

Check the log files for more information.

SVC0001 PAYMENT000003 A transient error. This error is returned from the
Diameter server, such as authentication failure.
Make sure the server is reachable and has
adequate storage space.

Check the log files for more information.

SVC0001 PLG-000004 General plug-in routing error.

SVC0001 PAYMENT000004 A permanent failure. This error is returned from
the Diameter server, such as incorrect data in the
AVP.

Check the log files for more information.

SVC0270 PAYMENT000004 A permanent failure. This error is returned from
the Diameter server containing a Diameter error
code and string. The Diameter charging server
returns the error code and string to Services
Gatekeeper, and the Services Gatekeeper
charging plug-in returns it to the calling
application in the Diameter-Error-Message
Xparam using this syntax:

DIAMETERDiameter_error_code
Diameter-Error-Message="Diameter_error_
string"

Where Diameter_error_code and Diameter_
error_string are the codes and strings listed in
Section 7.1 of Diameter RFC3588. For example:

DIAMETER5001
Diameter-Error-Message="DIAMETER_AVP_
UNSUPPORTED"

For details on the error codes and strings see
Diameter RFC3588 Section 7.1
(http://www.ietf.org/rfc/rfc3588.txt)

Table 27–10 Exceptions and Error Codes

Exception Error Code Explanation

SVC0001 PAYMENT000002 A protocol-related error. This error is returned
from the Diameter server. Make sure the server is
running and reachable.

Check the log files for more information.

SVC0001 PAYMENT000003 A transient error. This error is returned from the
Diameter server, such as authentication failure.
Make sure the server is reachable and has
adequate storage space.

Check the log files for more information.

SVC0001 PLG-000004 General plug-in routing error.

Parlay X 3.0 Part 6: Payment

About the Supported SOAP Parlay X 3.0 Facades 27-7

chargeReservation
Charges to a reservation indicated by the reservation ID.

SVC0001 PAYMENT000004 A permanent failure. This error is returned from
the Diameter server, such as incorrect data in the
AVP.

Check the log files for more information.

SVC0270 PAYMENT000004 A permanent failure. This error is returned from
the Diameter server containing a Diameter error
code and string. The Diameter charging server
returns the error code and string to Services
Gatekeeper, and the Services Gatekeeper
charging plug-in returns it to the calling
application in the Diameter-Error-Message
Xparam using this syntax:

DIAMETERDiameter_error_code
Diameter-Error-Message="Diameter_error_
string"

Where Diameter_error_code and Diameter_
error_string are the codes and strings listed in
Section 7.1 of Diameter RFC3588. For example:

DIAMETER5001
Diameter-Error-Message="DIAMETER_AVP_
UNSUPPORTED"

For details on the error codes and strings see
Diameter RFC3588 Section 7.1
(http://www.ietf.org/rfc/rfc3588.txt)

Table 27–11 Exceptions and Error Codes

Exception Error Code Explanation

SVC0001 PAYMENT000002 A protocol-related error. This error is returned
from the Diameter server. Make sure the server is
running and reachable.

Check the log files for more information.

SVC0001 PAYMENT000003 A transient error. This error is returned from the
Diameter server, such as authentication failure.
Make sure the server is reachable and has
adequate storage space.

Check the log files for more information.

SVC0001 PLG-000004 General plug-in routing error.

SVC0001 PAYMENT000004 A permanent failure. This error is returned from
the Diameter server, such as incorrect data in the
AVP.

Check the log files for more information.

Table 27–10 (Cont.) Exceptions and Error Codes

Exception Error Code Explanation

Parlay X 3.0 Part 6: Payment

27-8 Services Gatekeeper Application Developer's Guide

releaseReservation
Returns funds left in a reservation to the account from which this reservation was
made.

SVC0270 PAYMENT000004 A permanent failure. This error is returned from
the Diameter server containing a Diameter error
code and string. The Diameter charging server
returns the error code and string to Services
Gatekeeper, and the Services Gatekeeper
charging plug-in returns it to the calling
application in the Diameter-Error-Message
Xparam using this syntax:

DIAMETERDiameter_error_code
Diameter-Error-Message="Diameter_error_
string"

Where Diameter_error_code and Diameter_
error_string are the codes and strings listed in
Section 7.1 of Diameter RFC3588. For example:

DIAMETER5001
Diameter-Error-Message="DIAMETER_AVP_
UNSUPPORTED"

For details on the error codes and strings see
Diameter RFC3588 Section 7.1
(http://www.ietf.org/rfc/rfc3588.txt)

Table 27–12 Exceptions and Error Codes

Exception Error Code Explanation

SVC0001 PAYMENT00000
2

A protocol-related error. This error is returned
from the Diameter server. Make sure the server is
running and reachable.

Check the log files for more information.

SVC0001 PAYMENT00000
3

A transient error. This error is returned from the
Diameter server, such as authentication failure.
Make sure the server is reachable and has
adequate storage space.

Check the log files for more information.

SVC0001 PLG-000004 General plug-in routing error.

SVC0001 PAYMENT00000
4

A permanent failure. This error is returned from
the Diameter server, such as incorrect data in the
AVP.

Check the log files for more information.

Table 27–11 (Cont.) Exceptions and Error Codes

Exception Error Code Explanation

Parlay X 3.0 Part 6: Payment

About the Supported SOAP Parlay X 3.0 Facades 27-9

Interface: ReserveVolumeCharging
The ReserveVolumeCharging interface endpoint is:
http://host:port/parlayx30/payment/ReserveVolumeCharging

where values for host and port are the host name and port of the system on which
Services Gatekeeper is installed.

reserveVolume
Reserves a volume amount for the end user account.

reserveAdditionalVolume
Adds or reduces a volume amount to for an existing reservation on an end user
account.

SVC0270 PAYMENT00000
4

A permanent failure. This error is returned from
the Diameter server containing a Diameter error
code and string. The Diameter charging server
returns the error code and string to Services
Gatekeeper, and the Services Gatekeeper charging
plug-in returns it to the calling application in the
Diameter-Error-Message Xparam using this
syntax:

DIAMETERDiameter_error_code
Diameter-Error-Message="Diameter_error_
string"

Where Diameter_error_code and Diameter_
error_string are the codes and strings listed in
Section 7.1 of Diameter RFC3588. For example:

DIAMETER5001
Diameter-Error-Message="DIAMETER_AVP_
UNSUPPORTED"

For details on the error codes and strings see
Diameter RFC3588 Section 7.1
(http://www.ietf.org/rfc/rfc3588.txt)

Table 27–13 Exceptions and Error Codes

Exception Error Code Explanation

SVC0001 PAYMENT000002 Service error.

Check the log files for more information.

SVC0002 parameter Invalid parameter value.

Check the log files for more information.

POL0001 Policy error.

Check the log files for more information.

Table 27–14 Exceptions and Error Codes

Exception Error Code Explanation

SVC0002 parameter Invalid parameter value.

Check the log files for more information.

Table 27–12 (Cont.) Exceptions and Error Codes

Exception Error Code Explanation

Parlay X 3.0 Part 13: Address List Management

27-10 Services Gatekeeper Application Developer's Guide

getAmountReserveCharging
Converts a reserved volume to a currency amount.

Parlay X 3.0 Part 13: Address List Management
The Address List Management communication service interfaces follow 3GPP TS
29.199-13 V7.0.2 (2007-06), Open Service Access (OSA); Parlay X Web services; Part 13:
Address List Management (Parlay X 3).

Interface: GroupManagement
This section describes the GroupManagement interface.

The GroupManagement interface endpoint is:

http://host:port/parlayx30/address_list/GroupManagement

where values for host and port are the host name and port of the system on which
Services Gatekeeper is installed.

createGroup
Creates an Address List Management group.

queryGroups
Queries an Address List Management group to return details about a particular group
attribute, which is specified by attributeName.

deleteGroup
Deletes the specified Address List Management group.

setAccess
Sets access permissions for a member of an Address List Management group.

queryAccess
Queries the access permissions set for the group member passed in the requester
parameter.

General Exceptions
See "General Exceptions".

Interface: Group
This section describes the Group interface.

The Group interface endpoint is:

http://host:port/parlayx30/address_list/Group

Table 27–15 Exceptions and Error Codes

Exception Error Code Explanation

POL0212 n/a Group name too long.

POL0213 n/a Group already exists.

Parlay X 3.0 Part 13: Address List Management

About the Supported SOAP Parlay X 3.0 Facades 27-11

where values for host and port are the host name and port of the system on which
Services Gatekeeper is installed.

addMember
Adds a single member to an Address List Management group.

addMembers
Adds multiple members to an Address List Management group.

queryMembers
Deletes the specified Address List Management group.

deleteMember
Deletes a single member from an Address List Management group.

deleteMembers
Deletes multiple members from an Address List Management group.

addGroupAttribute
Adds an attribute to an Address List Management group.

queryGroupAttribute
Queries an Address List Management group for the value associated with the passed
attribute name. The attribute’s value and status are returned.

deleteGroupAttribute
Deletes an attribute from an Address List Management group.

addGroupMemberAttribute
Adds an attribute to a member of an Address List Management group.

queryGroupMemberAttributes
Queries a member of an Address List Management group for list of attributes attached
to the member.

deleteGroupMemberAttribute
Deletes an attribute from a member of an Address List Management group.

Interface: Member
This section describes the Member interface.

The Member interface endpoint is:

Table 27–16 Exceptions and Error Codes

Exception Error Code Explanation

POL0210 n/a Too many members in group.

POL0210 n/a Subgroups not allowed.

Parlay X 3.0 Part 18: Device Capabilities and Configuration

27-12 Services Gatekeeper Application Developer's Guide

http://host:port/parlayx30/address_list/Member

where values for host and port are the host name and port of the system on which
Services Gatekeeper is installed.

addMemberAttribute
Adds an attribute to a member outside of the context of a particular Address List
Management group.

queryMemberAttributes
Queries a list of attributes for a member and retrieves their values.

deleteMemberAttribute
Deletes an attribute from a member.

Parlay X 3.0 Part 18: Device Capabilities and Configuration
The Device Capabilities and Configuration communication service interfaces follow
ETSI ES 202 504-18 v0.0.1(2007-06), Open Service Access (OSA); Parlay X Web services;
Part 18: Device Capabilities and Configuration (Parlay X 3).

Interface: DeviceCapabilities
This section describes the DeviceCapabilities interface.

The Device Capabilities interface endpoint is:

http://host:port/parlayx30/rest/device_capabilities

where values for host and port are the host name and port of the system on which
Services Gatekeeper is installed.

getCapabilities
Retrieves the following capability information for a device:

■ The device’s unique ID.

■ The name and model of the device.

■ A link to the UAProf file.

getDeviceId
Retrieves the device’s equipment identifier.

General Exceptions
See "General Exceptions".

Interface: DeviceCapabilitiesNotificationManager
This section describes the DeviceCapabilitiesNotificationManager interface.

startNotification
Not supported.

General Exceptions

About the Supported SOAP Parlay X 3.0 Facades 27-13

endNotification
Not supported.

Interface: DeviceCapabilitiesNotification
This section describes the DeviceCapabilitiesNotification interface.

deviceNotification
Not supported.

deviceError
Not supported.

deviceEnd
Not supported.

Interface: DeviceConfiguration
This section describes the DeviceConfiguration interface.

pushConfiguration
Not supported.

getConfigurationList
Not supported.

getConfigurationHistory
Not supported.

General Exceptions
This section describes the exception handling for the Parlay X 3.0 interfaces.

The following exception types are defined:

■ Service exceptions

■ Policy exceptions

Service exceptions are related to the operation of the service itself. The following
exceptions are general:

■ SVC0001: Service error.

■ SVC0002: Invalid input value

■ SVC0003: Invalid input value with list of valid values

■ SVC0004: No valid addresses

■ SVC0005: Duplicate correlator

■ SVC0006: Invalid group

■ SVC0007: Invalid charging information

■ SVC0008: Overlapping Criteria

General Exceptions

27-14 Services Gatekeeper Application Developer's Guide

Policy exceptions are thrown when a policy has been violated, including violations of
a service level agreements. The following general policy exceptions are defined:

■ POL0001: Policy error

■ POL0002: Privacy error

■ POL0003: Too many addresses specified

■ POL0004: Unlimited notifications are not supported

■ POL0005: Too many notifications requested

■ POL0006: Groups not allowed

■ POL0007: Nested groups not allowed

■ POL0008: Charging not supported

■ POL0009: Invalid frequency requested

Within the exception, an error code is defined. The error code details why the
exception was thrown.

28

About the Supported SOAP Parlay X 4.0 Facades 28-1

28About the Supported SOAP Parlay X 4.0
Facades

This chapter describes the Oracle Communications Services Gatekeeper interfaces in
the supported Parlay X 4.0 facades and contains information specific to Services
Gatekeeper not found in the specifications. For detailed descriptions of the interfaces,
methods, and parameters, refer to the specifications, see the ETSI OSA Parlay X 4.0
specifications at:

http://www.3gpp.org/DynaReport/29199-01.htm

Parlay X 4.0 Part 17 Application-Driven QoS
The application driven QoS communication service interfaces follow.ETSI ES 202
504-17 V1.1.1 (2008-05) Open Service Access (OSA); Parlay X Web services; Part 17:
Application-driven Quality of Service (QoS); Parlay X 3.

See the specification at the ETSI website:

http://www.etsi.org/deliver/etsi_es/202500_202599/20250417/01.01.01_60/es_
20250417v010101p.pdf

See the discussion on Parlay X 4.0 application-driven quality of service (QoS) in
Services Gatekeeper Communication Service Reference Guide for details on the supported
operations.

There are two interfaces available for this specification:

■ Interface: Application-driven QoS

■ Interface: ApplicationQoSNotificationManager

Interface: Application-driven QoS
The Application-driven Quality of Service interface endpoint is:

http://host:port/parlayx40/qos/ApplicationQoS

Where values for host and port are the host name and port of the system on which
Services Gatekeeper is installed.

These operations are available to applications to manage QoS requests. These
operations are also available from the Platform Test Environment (PTE) graphical user
interface:

■ applyQoSFeature

■ getQoSHistory

Parlay X 4.0 Part 17 Application-Driven QoS

28-2 Services Gatekeeper Application Developer's Guide

■ getQoSStatus

■ modifyQoSFeature

■ notifyQoSEvent

■ removeQoSFeature

applyQoSFeature
Applications use this operation to apply the connection settings in a temporary QoS
feature profile to a subscriber connection.

Table 28–1 lists the applyQoSFeature request parameters.

Request Example This example shows a request that attempts to apply a QoS feature
profile named pxt to the tel:555012 subscriber, for a duration of 7200 seconds (120
minutes, or 2 hours). The upload rate is 1000 Mbps and the download rate is 1000
Kbps:

Table 28–1 applyQoSFeature Request Parameters

Name
Data
Type/Values

Mandato
ry? Description

endUserIdentifier xsd:anyURI Yes Identifies the network subscriber for which to
apply the QoS feature profile for. Uses the standard
URI format: tel:[0-9]

qoSFeatureIdentifier xsd:string Yes The name of the QoS feature profile to apply to the
subscriber connection. The QoS feature profile must
exist before use, so use the Operation:
loadQoSRequestTemplate MBean operation to
create it first.

defaultQoSFeature xsd:boolean Yes Always set to false.

modifyExistingSession xsd:boolean No Always set to false.

qosFeatureProperties QoSFeatureProp
erties

No Specifies values for the configurable service
attributes that apply to the temporary QoS feature
profile.

qosFeatureProperties.Durati
on

common:TimeM
etri

No The duration of the QoS feature profile being
applied. Supported units of measurement are
Second, Minute, Hour, Day, Week, Month, Year. A
0 or negative value extends the duration for the
entire session.

qosFeatureProperties.UpStre
amSpeedRate

xsd:string No The upload speed rate of the QoS feature profile.
The format is [0-9]bps|Kbps|Mbps|Gbps|Tbps.
The maximum value is 4294967295bps.

qosFeatureProperties.DownS
treamSpeedRate

xsd:string No The download speed rate of the QoS feature profile.
The format is [0-9]bps|Kbps|Mbps|Gbps|Tbps.
The maximum value is 4294967295bps..

qosFeatureProperties.OtherP
roperties

Property[0..unb
ounded

No The attribute-value pairs that replace the default
values defined in QoS feature profile. For example,
you can define an application identifier variable in
the QoS feature profile:
<applicationIdentifier parameterName="$APP_
ID">test_appId</applicationIdentifier>

And then specify a value for the variable by setting
applicationIdentifier to app_id: "$APP_ID=app_
id"

Parlay X 4.0 Part 17 Application-Driven QoS

About the Supported SOAP Parlay X 4.0 Facades 28-3

<S:Body> <ns2:applyQoSFeature
 xmlns:ns2="http://www.csapi.org/schema/parlayx/adq/v4_0/local"
 xmlns:ns3="http://www.csapi.org/schema/parlayx/common/v4_0">
 <ns2:endUserIdentifier>tel:555012</ns2:endUserIdentifier>
 <ns2:qoSFeatureIdentifier>pxt</ns2:qoSFeatureIdentifier>
 <ns2:defaultQoSFeature>false</ns2:defaultQoSFeature>
 <ns2:modifyExistingSession>false</ns2:modifyExistingSession>
 <ns2:qosFeatureProperties>
 <duration>
 <metric>Second</metric>
 <units>7200</units>
 </duration>
 <upStreamSpeedRate>1000 Mbps</upStreamSpeedRate>
 <downStreamSpeedRate>1000 kbps</downStreamSpeedRate>
 </ns2:qosFeatureProperties>
 </ns2:applyQoSFeature>
 </S:Body>

Response Parameters Table 28–3 lists the applyQoSFeature response parameters.

Response Example This example shows a response to an applyQoSFeature request. It
identifies the pxt feature profile that the QoS applies to, and Diameter Rx session
details.

<env:Body>
 <loc:applyQoSFeatureResponse
 xmlns:loc="http://www.csapi.org/schema/parlayx/adq/v4_0/local">
 <loc:result>
 <requestId>localhost;1385973500;0-1386001353054</requestId>
 <qoSFeatureIdentifier>pxt</qoSFeatureIdentifier>
 <actualProperties>
 <duration>
 <metric>Second</metric>
 <units>6000</units>
 </duration>
 <upStreamSpeedRate>1000000000bps</upStreamSpeedRate>
 <downStreamSpeedRate>1000000bps</downStreamSpeedRate>
 <otherProperties>
 <name>supportedFeatures[0].vendorId</name>
 <value>10415</value>
 </otherProperties>
 <otherProperties>

Table 28–2 applyQoSFeature Response Parameters

Name Data Type
Mandat
ory? Description

result QoSFeatureDat
a

Yes Details of the actions taken as a result of the QoS feature
profile request.

result.requestID XSD:string Yes A unique request identifier generated by this
communication service and used by the application to
identify this specific invocation of the applyQoSFeature
operation.

result.qoSFeatureIdentifie
r

XSD:string Yes A name that uniquely identifies the QoS feature profile
being applied temporarily to the subscriber’s
connection.

actualProperties QoSFeaturePro
perties

No The AVPs returned by the PCRF.

Parlay X 4.0 Part 17 Application-Driven QoS

28-4 Services Gatekeeper Application Developer's Guide

 <name>supportedFeatures[0].featureListID</name>
 <value>1</value>
 </otherProperties>
 <otherProperties>
 <name>ratType</name>
 <value>WLAN</value>
 </otherProperties>
 <otherProperties>
 <name>ipcanType</name>
 <value>_3GPP-GPRS</value>
 </otherProperties>
 <otherProperties>
 <name>supportedFeatures[0].featureList</name>
 <value>2</value>
 </otherProperties>
 </actualProperties>
 </loc:result>
 </loc:applyQoSFeatureResponse>
</env:Body>

getQoSHistory
Applications use this operation to return a list of the QoS transactions (feature profile
requests and responses) for a subscriber. You can filter the list by specifying:

■ A QoS feature profile identifier

■ A maximum number of transactions

■ A date and time limit

■ Additional custom criteria that you create

After a request/response, there is approximately a 20-second delay before its record is
available to getQoSHistory. To avoid filling up the database, request/response records
are maintained for a period of 30 days and then deleted.

Request Parameters Table 28–3 lists the getQoSHistory request parameters.

Table 28–3 getQoSHistory Request Parameters

Name Data Type
Manda
tory? Description

endUserIdentifier XSD:anyURI Yes Identifies the subscriber for which to get a history. Uses the
standard URI format.

qosFeatureIdentifier XSD:string No The name of the QoS feature profile this operation returns a
history for. If not specified, a history is returned for all
feature profiles for this subscriber.

date XSD:datTime No Limits the history returned to the date and time specified. If
not specified, a history is returned for this subscriber for the
previous minute only.

maxEntries XSD:Integer No Specifies the maximum number of QoS feature profile
requests and responses to return. If not specified (or a value
of 0 is specified) the maximum is set to 10. The largest value
allowed is 100.

additionalCriteria Property[0..unbou
nded]

No Not implemented in this release.

Parlay X 4.0 Part 17 Application-Driven QoS

About the Supported SOAP Parlay X 4.0 Facades 28-5

Request Example This example shows a request for a QoS feature profile history of
requests and responses for the subscriber tel:555012, for the pxt feature, that transpired
on December 12th, 2013 at 01:33:53.

 <S:Body>
 <ns2:getQoSHistory
 xmlns:ns2="http://www.csapi.org/schema/parlayx/adq/v4_0/local"
 xmlns:ns3="http://www.csapi.org/schema/parlayx/common/v4_0">
 <ns2:endUserIdentifier>tel:555012</ns2:endUserIdentifier>
 <ns2:qoSFeatureIdentifier>pxt</ns2:qoSFeatureIdentifier>
 <ns2:date>2013-12-05T01:33:53Z</ns2:date>
 <ns2:maxEntries>10</ns2:maxEntries>
 </ns2:getQoSHistory>
</S:Body>

Response Parameters Table 28–4 lists the getQoSHistory response parameters.

Response Example This example shows an example of a history returned to the
application:

<env:Body>
 <loc:getQoSHistoryResponse
 xmlns:loc="http://www.csapi.org/schema/parlayx/adq/v4_0/local">
 <loc:result>

<transactionDateTime>2013-12-05T09:33:53.522+08:00</transactionDateTime>

<transactionDetails>requestId=localhost;1386206978;0-1386207233485#duration=7200se
conds#endTime=2013-12-05
09:53:42#featureName=pxt#modification:time=1386207684611#duration=9600seconds#$FLO
W_DESCRIPTION_0=permit out ip from any to any#</transactionDetails>
 </loc:result>
 </loc:getQoSHistoryResponse>
</env:Body>

Table 28–4 getQoSHistory Response Parameters

Name
Data
Type

Mandat
ory? Description

transactionDateTime XSD:date
Time

Yes Specifies the transaction time.

transactionDetails XSD:strin
g

Yes Specifies the request/response details.

The details name the portion of the name/value pairs separated
by the # symbol. The name portion of the name/value pairs
include:

■ startTime

■ endTime

■ requstId

■ duration

■ featureName

■ A list of request/response records, including the transaction
time and a list of the modified variables.

Parlay X 4.0 Part 17 Application-Driven QoS

28-6 Services Gatekeeper Application Developer's Guide

getQoSStatus
Applications use this operation to retrieve the status and details of a subscriber’s
current QoS feature profile.

Request Parameters Table 28–5 lists the getQoSStatus request parameters.

Request Example This example requests QoS details for subscriber tel:555012.

<S:Body>
 <ns2:getQoSStatus xmlns:ns2="http://www.csapi.org/schema/parlayx/adq/v4_
0/local"
 xmlns:ns3="http://www.csapi.org/schema/parlayx/common/v4_0">
 <ns2:endUserIdentifier>tel:555012</ns2:endUserIdentifier>
 </ns2:getQoSStatus>
</S:Body>

Response Parameters Table 28–6 lists the getQoSStatus response parameters.

Response Example This example shows the QoS status details returned for a subscriber:

<env:Body>
 <loc:getQoSStatusResponse
 xmlns:loc="http://www.csapi.org/schema/parlayx/adq/v4_0/local">
 <loc:result>
 <userIsConnected>true</userIsConnected>
 <qosFeatureStatuses>
 <requestId>localhost;1386206978;0-1386207233485</requestId>
 <qoSFeatureIdentifier>pxt</qoSFeatureIdentifier>
 <actualProperties>
 <duration>
 <metric>Second</metric>
 <units>9600</units>
 </duration>
 <upStreamSpeedRate>1000000000bps</upStreamSpeedRate>

Table 28–5 getQoSStatus Request Parameters

Name Data Type Mandatory? Description

endUserIdentifier XSD:any
URI

Yes Identifies a subscriber to obtain QoS details for.

Table 28–6 getQosStatus Response Parameters

Name Data Type Mandatory? Description

result QosStatus Yes Returns the status of a subscriber connection, including
information about the temporary QoS feature profile
details that are currently activated.

result.userIsConnected XSD:Boolean Yes Specifies whether the subscriber account is currently
connected (true or false).

result.defaultQoSFeatur
eIdentifier

XSD:string No Not used because setting a default QoS feature profile
is not supported.

trafficClasses TrafficClass[0
..unbounded]

No Not used because setting a default QoS feature profile
is not supported.

qosFeatureStatuses QoSFeatureD
ata[0..unbou
nded]

No An array of the QoS feature profile details for the
subscriber.

Parlay X 4.0 Part 17 Application-Driven QoS

About the Supported SOAP Parlay X 4.0 Facades 28-7

 <downStreamSpeedRate>1000000bps</downStreamSpeedRate>
 <otherProperties>
 <name>supportedFeatures[0].vendorId</name>
 <value>10415</value>
 <otherProperties>
 <otherProperties>
 <name>supportedFeatures[0].featureListID</name>
 <value>1</value>
 </otherProperties>
 <otherProperties>
 <name>ratType</name>
 <value>WLAN</value>
 </otherProperties>
 <otherProperties>
 <name>ipcanType</name>
 <value>_3GPP-GPRS</value>
 </otherProperties>
 <otherProperties>
 <name>supportedFeatures[0].featureList</name>
 <value>2</value>
 </otherProperties>
 </actualProperties>
 </qosFeatureStatuses>
 </loc:result>
</loc:getQoSStatusResponse>
</env:Body>

modifyQoSFeature
Applications use this operation to alter a QoS feature profile that has already been
applied using "applyQoSFeature". Specify the attributes you want to change in the
QoS feature profile. Any other attributes remain as originally set. Remember that the
new values only take effect for the time limit set by the
qosFeatureProperties.Duration attribute of "applyQoSFeature"

This operation must take place inside an active application session, and you must send
in the request ID generated by applyQosFeature.

Request Parameters Table 28–7 lists the modifyQoSFeature request parameters:

Request Example This example shows a request that modifies the QoS feature profile
identified as localhost;1386206978;0-1386207233485. It changes the values of the
upStreamSpeedRate, downStreamSpeedRate, and flow description attributes.

<S:Body>
 <ns2:modifyQoSFeature
 xmlns:ns2="http://www.csapi.org/schema/parlayx/adq/v4_0/local"
 xmlns:ns3="http://www.csapi.org/schema/parlayx/common/v4_0">

Table 28–7 modifyQoSFeature Request Parameters

Name Data Type
Mandat
ory? Description

requestID XSD:string Yes Specifies the unique request identifier generated
by this communication service from the original
"applyQoSFeature" operation.

requestProperties QoSFeatureP
roperties

Yes Specifies new values of the attributes of the QoS
feature profile.

Parlay X 4.0 Part 17 Application-Driven QoS

28-8 Services Gatekeeper Application Developer's Guide

 <ns2:requestId>localhost;1386206978;0-1386207233485</ns2:requestId>
 <ns2:requestProperties>
 <duration>
 <metric>Second</metric>
 <units>9600</units>
 </duration>
 <upStreamSpeedRate>1000 Mbps</upStreamSpeedRate>
 <downStreamSpeedRate>1000 kbps</downStreamSpeedRate>
 <otherProperties>
 <name>$FLOW_DESCRIPTION_0</name>
 <value>permit out ip from any to any</value>
 <description></description>
 </otherProperties>
 </ns2:requestProperties>
 </ns2:modifyQoSFeature>
</S:Body>

Response Parameters Table 28–8 lists the modifyQoSFeature response parameters.

Response Example This example shows the attributes changed by modifyQoSFeature.
The modified attributes are returned in the result array.

<env:Body>
 <loc:modifyQoSFeatureResponse
 xmlns:loc="http://www.csapi.org/schema/parlayx/adq/v4_0/local">
 <loc:result>
 <duration>
 <metric>Second</metric>
 <units>9600</units>
 </duration>
 <upStreamSpeedRate>1000 Mbps</upStreamSpeedRate>
 <downStreamSpeedRate>1000 kbps</downStreamSpeedRate>
 <otherProperties>
 <name>$FLOW_DESCRIPTION_0</name>
 <value>permit out ip from any to any</value>
 <description></description>
 </otherProperties>
 </loc:result>
 </loc:modifyQoSFeatureResponse>
</env:Body>

notifyQoSEvent
Your PCRF uses this operation to report certain network events that occurred against
one or more subscriber’s active QoS features profiles.

Request Parameters Table 28–9 lists the notifyQoSEvent request parameters.

Table 28–8 modifyQoSFeature Response Parameters

Name Data Type
Mandator
y? Description

result QoSFeatur
eProperties

Yes Specifies the attributes that have been modified and their values.

Parlay X 4.0 Part 17 Application-Driven QoS

About the Supported SOAP Parlay X 4.0 Facades 28-9

Response Parameters There are no response parameters.

removeQoSFeature
Applications use this operation to remove an active temporary QoS feature profile,
and return the QoS values to the state they were in before the temporary QoS feature
profile was applied.

This operation must take place inside an active session.

Request Parameters Table 28–10 lists the removeQoSFeature request parameters.

Request Example This example shows a removeQoSFeature request that removes the
temporary QoS feature profile identified as localhost;1386206978;0-1386207233485:

<S:Body>
 <ns2:removeQoSFeature
 xmlns:ns2="http://www.csapi.org/schema/parlayx/adq/v4_0/local"
 xmlns:ns3="http://www.csapi.org/schema/parlayx/common/v4_0">
 <ns2:requestId>localhost;1386206978;0-1386207233485</ns2:requestId>
 </ns2:removeQoSFeature>
</S:Body>

Response Parameters Table 28–11 lists the removeQoSFeature response parameters.

Response Example This example shows a response to a request to remove a temporary
QoS feature profile in which the removal was successful:

<env:Body>
 <loc:removeQoSFeatureResponse
 xmlns:loc="http://www.csapi.org/schema/parlayx/adq/v4_0/local">
 <loc:result>true</loc:result>
 </loc:removeQoSFeatureResponse>
</env:Body>

Table 28–9 notifyQoSEvent Request Parameters

Name Data Type
Mandato
ry? Description

correlator xsd:string yes The correlator identifying the original notification
registration.

endUserIdentities xsd:anyURI[1..unbound
ed]

Yes The network subscribers associated with the event.

eventType QoSEvent Yes The event being reported.

Table 28–10 removeQoSFeature Request Parameters

Name Data Type Mandatory? Description

requestID XSD:String Yes Contains the unique request ID generated by the
original applyQoSFeature call.

Table 28–11 removeQoSFeature Response Parameters

Name Data Type Mandatory? Description

result XSD:boolean Yes Returns true if the QoS feature profile was successfully
removed.

Parlay X 4.0 Part 17 Application-Driven QoS

28-10 Services Gatekeeper Application Developer's Guide

Interface: ApplicationQoSNotificationManager
The Application-driven Quality of Service interface endpoint is:

http://host:port/parlayx40/qos/ApplicationQoSNotificationManager

Where values for host and port are the host name and port of the system on which
Services Gatekeeper is installed.

These operations are available to applications to manage start and stop QoS
notification. These operations are also available from the Platform Test Environment
(PTE) graphical user interface:

■ startQoSNotification

■ stopQoSNotification

startQoSNotification
Applications use this operation to register interest in receiving notifications of specific
event types for a subscriber.

Request Parameters Table 28–12 lists the startQoSNotification request parameters.

Table 28–13 lists the event definitions that you use for the events request parameter to
startQoSNotifiation.

Table 28–12 startQoSNotification Reqeust Parameters

Name Data Type
Mandato
ry? Description

reference common:SimpleReference Yes The application end point to receive event
notifications.

reference.Endpoint xsd:anyURI Yes The end point address.

reference.InterfaceNa
me

xsd:string Yes The interface name.

reference.Correlator xsd:string Yes Correlation information.

endUserIdentities xsd:anyURI[1..unbounded] Yes The subscriber for which to monitor
events.

eventCriteria QoSEvent[1..unbounded] Yes The events to be monitored.

Table 28–13 startQoSNotification event Definitions

Event Name Description Trigger Condition

AbnormalConnectionTermination The subscriber connections were
terminated abnormally by a network
fault that released all temporary QoS
feature profile requests.

This communication service can
not detect this kind of event, so
you must use this event
definition for all abnormal
terminations.

NormalConnectionTermination The subscriber connections were
terminated normally (for example, the
subscriber logged off), which
automatically released all of the
temporary QoS feature profile requests.

This event is triggered by a
Diameter Rx abort session
request (ASR) message.

TemporaryQoSFeatureReleased An active temporary QoS feature profile
request on a subscriber connection was
released, because it reached a threshold
specified by one of the service attributes.

This event is triggered by this
communication service when a
QoS feature profile duration
expires.

Parlay X 4.0 Part 17 Application-Driven QoS

About the Supported SOAP Parlay X 4.0 Facades 28-11

Request Example This example shows an application requesting notifications for the
subscriber tel:555012 for both normal network connection terminations and temporary
QoS feature profiles released.

<S:Body>
 <ns2:startQoSNotification
 xmlns:ns2="http://www.csapi.org/schema/parlayx/adq/notification_
manager/v4_0/local"
 xmlns:ns3="http://www.csapi.org/schema/parlayx/common/v4_0">
 <ns2:reference>
 <endpoint>http://endpoint_host.port/jaxws/QoSNotification</endpoint>
 <interfaceName>interfaceName</interfaceName>
 <correlator>987654321</correlator>
 </ns2:reference>
 <ns2:endUserIdentities>tel:555012</ns2:endUserIdentities>
 <ns2:eventCriteria>NormalConnectionTermination</ns2:eventCriteria>
 <ns2:eventCriteria>TemporaryQoSFeatureReleased</ns2:eventCriteria>
 </ns2:startQoSNotification>
</S:Body>

Response Parameters There are no response parameters because the connections have
been terminated.

stopQoSNotification
Applications use this operation to cancel notification registrations started by
startQoSNotification.

Request Parameters Table 28–14 lists the stopQoSNotification request parameters.

Response Parameters There are no response parameters.

Table 28–14 stopQoSNotification Request Parameter

Name Data Type
Mandat
ory? Description

correlator XSD:string Yes The correlator identifying the original notification
registration.

Parlay X 4.0 Part 17 Application-Driven QoS

28-12 Services Gatekeeper Application Developer's Guide

29

About the Supported SOAP Native Facade 29-1

29About the Supported SOAP Native Facade

This chapter describes the Oracle Communications Services Gatekeeper interfaces in
the supported SOAP Native facade and contains information specific to Services
Gatekeeper not found in the specifications.

About the Native Interfaces
This chapter provides details on these supported native interfaces:

■ MM7

■ SMPP

■ UCP

MM7
The MM7 specification is available from the 3GPP website:

 http://www.3gpp.org/ftp/Specs/html-info/23140.htm

Messages are compliant with the schema defined by Rel-5-MM7-1-2.xsd. Because the
network-facing interface supports Rel-5-MM7-1-5.xsd, Rel-5-MM7-1-2.xsd and a
modified version of REL-5-MM7-1-0.xsd, some mapping may be done during
processing.

The endpoint for this interface is:

http://host:port/mm7/Mms

where values for host and port are the host name and port of the system on which
Services Gatekeeper is installed.

Supported MM7 Operations
Services Gatekeeper supports the following MM7 operations:

■ MM7_submit

■ MM7_deliver

■ MM7_cancel

■ MM7_replace

Note: The MM7 interface uses HTTP basic authentication,
username/password. The username is the application instance ID.

SMPP

29-2 Services Gatekeeper Application Developer's Guide

■ MM7_delivery_report

■ MM7_read_reply_report

MM7_submit
Sends an application-initiated multimedia message

MM7_deliver
Services Gatekeeper delivers a network-triggered message to the application, at an
endpoint implemented by the application.

MM7_cancel
Not supported.

MM7_replace
Not supported

MM7_delivery_report
Services Gatekeeper delivers a delivery report on a previously sent message to the
application, at an endpoint implemented by the application.

MM7_read_reply_report
Services Gatekeeper delivers a read reply report on a previously sent message to the
application, at an endpoint implemented by the application.

SMPP
The native SMPP communication service exposes SMPP version 3.4 to applications.

The specification is the Short Message Peer to Peer, Protocol Specification v3.4,
Document Version:- 12-Oct-1999 Issue 1.2. It can be downloaded from

http://smsforum.net/

The native SMPP communication service supports all Protocol Data Units (PDUs) for
SMPP version 3.4, and all header and body elements except when stated otherwise.

The native SMPP communication service also supports the billing identification
parameter in the format defined by SMPP Specification 5.1, section 4.8.4.3. This
parameter works with SMPP 5.1 SMSCs. Services Gatekeeper supports it as a tunneled
parameter named smpp_billing_id. It also supports the ussd_service_operation
parameter, which was expanded to support the deliver_sm opration in SMPP 5.1.

Table 29–1 Error Codes

Error code Reason/Action

4006 Service unavailable. Communication error within Services
Gatekeeper or between Services Gatekeeper and the MMSC

Transient error. The client should try again.

4007 Service denied. The request was not allowed by policy.

Contact the Services Gatekeeper administrator.

<all MMSC fault codes> Passed along transparently

Contact the Services Gatekeeper administrator.

SMPP

About the Supported SOAP Native Facade 29-3

Services Gatekeeper supports it as a tunneled parameter named ussd_service_
operation. For details about these tunneled parameters, see the discussion on the
Tunneled Parameters for Parlay X 2.1 Short Messaging / SMPP in Services Gatekeeper
Communication Service Reference Guide.

An application using this interface acts as an External Short Message Entity (ESME).

Bind PDUs and Sessions
An application must bind to the native SMPP communications service. It can bind
using:

■ bind_transmitter PDU

■ bind_receiver PDU

■ bind_transceiver PDU

As a result of a bind operation, Services Gatekeeper authenticates the application and
establishes a session.

The following is valid for all bind operations:

■ An application binds using host name or IP address and port that depends on the
installation. The server to bind to is a network tier server.

■ The system_id field must be the application instance group ID assigned to the
application instance.

■ The password field must be the same as the password for the application instance
group.

A session is maintained until the application sends an "unbind PDU".

Services Gatekeeper can be configured to allow a limited number of sessions per
application through the maxSession parameter of the addApplicationSpecificSettings
operation. See Services Gatekeeper Communication Service Reference Guide for information
about this operation.

Services Gatekeeper can be configured to terminate a session if:

■ The session is inactive. See the InactivityTimerValue in Services Gatekeeper
Communication Service Reference Guide.

■ The application takes too long time to respond to a request. See the
RequestTimerValue in Services Gatekeeper Communication Service Reference Guide.

Error Handling
All errors are reported in the command_status field of a response PDU.

Table 29–2 lists the error codes that are specific for Services Gatekeeper. Errors from
the SMSC are transparently forwarded to the application.

Table 29–2 Error Codes for SMPP Communication Service

SMPP PDU

Error Code in
Response

(command_status) Description

bind_transmitter ESME_RBINDFAIL Could not bind.

bind_receiver ESME_RBINDFAIL Could not bind.

bind_transceiver ESME_RBINDFAIL Could not bind.

SMPP

29-4 Services Gatekeeper Application Developer's Guide

Supported Operations
The following operations are supported or not supported as indicated.

bind_transmitter PDU
The application binds to Services Gatekeeper as an SMPP transmitter.

bind_transmitter_resp PDU
Services Gatekeeper sends this PDU to an application as a response to "bind_
transmitter PDU".

bind_receiver PDU
The application binds as an SMPP receiver to Services Gatekeeper.

The address_range field must be the same as provisioned for the application instance
group in the addressRange parameter to the addApplicationSpecificSettings operation.
See Services Gatekeeper Communication Service Reference Guide for information about this
operation.

bind_receiver_resp PDU
Services Gatekeeper sends this PDU to an application as a response to "bind_receiver
PDU".

bind_transceiver PDU
The application binds as an SMPP transceiver to Services Gatekeeper.

The address_range field must be the same as provisioned for the application instance
group in the addressRange parameter to the addApplicationSpecificSettings operation.
See Services Gatekeeper Communication Service Reference Guide for information about this
operation.

bind_transceiver_resp PDU
Services Gatekeeper sends this PDU to an application as a response to "bind_
transceiver PDU".

outbind PDU
Not supported.

submit_sm ESME_RTHROTTLED Throttling limit or quota limit exceeded.

The application has performed too many
requests per time unit and has exceeded the
Service Level Agreement.

N/A ESME_RSUBMITFAIL Could not submit the message. Possible
reasons include time-out encountered when
sending the message and configuration error.

submit_sm_multi ESME_RTHROTTLED Same as for submit_sm.

N/A ESME_RSUBMITFAIL Same as for submit_sm.

Table 29–2 (Cont.) Error Codes for SMPP Communication Service

SMPP PDU

Error Code in
Response

(command_status) Description

SMPP

About the Supported SOAP Native Facade 29-5

unbind PDU
The application unbinds from Services Gatekeeper.

unbind_resp PDU
Services Gatekeeper sends this PDU to an application as a response to "unbind PDU".

generic_nack PDU
Services Gatekeeper sends this PDU as a negative acknowledgement of a PDU sent
from the application if the PDU can not be recognized.

If this PDU is sent from the application, it is propagated to the SMPP SMSC.

submit_sm PDU
The application sends a short message to Services Gatekeeper, which forwards it to the
destination address using an SMSC.

submit_sm_resp PDU
Services Gatekeeper sends this PDU to an application as a response to "submit_sm
PDU".

submit_multi PDU
The application sends a short message to Services Gatekeeper, which forwards it to a
set of destination addresses using an SMSC.

submit_multi_resp PDU
Services Gatekeeper sends this PDU to an application as a response to "submit_multi
PDU".

deliver_sm PDU
Services Gatekeeper sends this PDU to an application upon receiving from an SMSC a
network-triggered short message that matches the destination addresses that the
application is interested in. The PDU contains the short message.

The application expresses interest by subscribing for notifications addressed to specific
destination addresses.

deliver_sm_resp PDU
The application sends this PDU to acknowledge the reception of a "deliver_sm PDU".

data_sm PDU
Not supported.

data_sm_resp PDU
Not supported.

query_sm PDU
The application sends this PDU to query the status of a previously-sent short message.

SMPP

29-6 Services Gatekeeper Application Developer's Guide

The communication service can be configured to allow or block this operation through
the subsequentOperationsAllowed parameter to the addApplicationSpecificSettings
operation.

query_sm_resp PDU
Services Gatekeeper sends this PDU to an application as a response to "query_sm
PDU".

cancel_sm PDU
The application sends this PDU to cancel the sending of one more previously-sent
short messages, if the message has not yet been delivered to the end-user terminal.

The communication service can be configured to allow or block this operation through
the subsequentOperationsAllowed parameter to the addApplicationSpecificSettings
operation.

cancel_sm_resp PDU
Services Gatekeeper sends this PDU to an application as a response to "cancel_sm
PDU".

replace_sm PDU
The application sends this PDU to replace a previously-sent short message with the
short message provided in this PDU, if the message has not yet been delivered to the
end-user terminal.

The communication service can be configured to allow or block this operation through
the subsequentOperationsAllowed parameter to the addApplicationSpecificSettings
operation. See Services Gatekeeper Communication Service Reference Guide for information
about this operation.

replace_sm_resp PDU
Services Gatekeeper sends this PDU to an application as a response to "replace_sm
PDU".

enquire_link PDU
The application or Services Gatekeeper sends this PDU to verify the connection
between the application and Services Gatekeeper.

The communication service can be configured to send this PDU to the application on a
regular interval. When an application receives this PDU it must respond with
"enquire_link_resp PDU" within the configured time-interval. See the
EnquireLinkTimerValue attribute for the native SMPP plug-in in Services Gatekeeper
Communication Service Reference Guide.

enquire_link_resp PDU
Services Gatekeeper or an application sends this PDU as a response to "enquire_link
PDU".

alert_notification PDU
Not supported.

UCP

About the Supported SOAP Native Facade 29-7

UCP
The universal computer protocol (UCP) communication service complies with the
Short Message Service Centre EMI-UCP Interface 5.1 specification.

Error Handling
The following errors are reported to the application or the SMSC in the UCP NACK
PDU under the conditions described.

ERROR_CODE_OPERATION_NOT_ALLOWED
■ The UCP service has received something in suspended mode.

■ The UCP service has received an openSession request on a connection that has
already received an openSession request and has processed an OK response to it.
Further openSession requests are not allowed.

■ The UCP service has received an openSession request on a connection where it is
currently processing an openSession request.

■ All SMSCs have responded with NACK to an openSession request.

■ The UCP service has received a session management operation on a client-side
connection.

ERROR_CODE_AUTH_FAILURE
■ Authentication between Services Gatekeeper and the application has failed.

ERROR_CODE_OPERATION_NOT_SUPPORTED
■ The UCP service has received a session management operation that is not of the

openSession subtype.

■ The UCP service has received an operation that it does not understand or support
on a server-side connection.

■ The UCP service has received an operation that it does not understand or support
on a client-side connection.

ERROR_CODE_SYNTAX_ERROR
■ The UCP service received an exception when trying to deliver a PDU that was

received on a server-side connection to a plug-in.

■ The UCP service received an exception when trying to deliver a PDU that was
received on a client-side connection to a plug-in.

Any errors triggered in the SMSC are propagated to the application. See the Short
Message Service Centre EMI-UCP Interface 4.6 specification for a list of those error
codes.

Native UCP Operations: Application-Facing Interface
This section describes the native UCP operations in the NativeUCPPluginNorth
interface.

submitSM
Sends a mobile-terminated SMS.

UCP

29-8 Services Gatekeeper Application Developer's Guide

Signature:

submitSM(UcpPDU submitSMPDU, ServerPort sourceServerPort, String
sourceConnectionId)

openSession
Opens a new UCP session.

Signature:

openSession(UcpPDU openSessionPDU, ServerPort sourceServerPort, String
sourceConnectionId)

ack
Sends an ACK to the SMSC.

Signature:

ack(UcpPDU ack, String sourceConnectionId)

nack
Sends a NACK to the SMSC.

Signature:

nack(UcpPDU nack, String sourceConnectionId)

deliverSM
Delivers a mobile-originated SMS.

Signature:

deliverSM(UcpPDU deliverSMPDU, String connectionId)

deliveryNotification
Delivers a message delivery notification associated with a previously sent mobile-
terminated SMS.

Signature:

deliveryNotification(UcpPDU deliveryNotificationPDU, String connectionId)

Native UCP Operations: Network-Facing Interface
This section describes the supported native UCP operations in the
NativeUCPPluginSouth interface.

ack
Sends an ACK to the application.

Signature:

ack(UcpPDU ack, String connectionId)

nack
Sends a NACK to the application.

Signature:

nack(UcpPDU ack, String connectionId)

Part V
Part V Creating Applications Using Extended Web

Service Interfaces

Part V explains how to use the native telephony facade to create applications that
interact with Oracle Communications Services Gatekeeper.

Part V contains the following chapters:

■ Understanding the Extended Web Services Common Definitions

■ Adding Extended Web Service Binary SMSs Support

■ Adding WAP Push Extended Web Service Message Support

■ Adding Subscriber Profile Extended Web Service Support

30

Understanding the Extended Web Services Common Definitions 30-1

30Understanding the Extended Web Services
Common Definitions

This chapter describes the Oracle Communications Services Gatekeeper definitions
that the Extended Web Services share.

Namespace
The namespace for the common data types is:

■ http://www.bea.com/wlcp/wlng/schema/ews/common

The namespace for the common faults is:

■ http://www.bea.com/wlcp/wlng/wsdl/ews/common/faults

XML Schema Datatype Definition
This section explains the XML schema datatype definition.

AdditionalProperty Structure
Defines a name-value pair.

ChargingInformation structure
For services that include charging as an inline message part, the charging information
is provided in this data structure.

Table 30–1 AdditionalProperty Structure

Element Name Element type Optional Description

name xsd:string Y Name part.

value xsd:string Y Value part.

Table 30–2 ChargingInformation Structure

Element Name Element type Optional Description

description xsd:string N Description text to be use for
information and billing text.

currency xsd:string Y Currency identifier as defined in ISO
4217.

amount xsd:decimal Y Amount to be charged.

Fault Definitions

30-2 Services Gatekeeper Application Developer's Guide

SimpleReference structure
For those services that require a reference to a Web service, the information required to
create the endpoint information is provided in this data structure.

Fault Definitions
This section explains the fault definitions.

ServiceException
Faults related to the operation of the service, not including policy related faults, result
in the return of a ServiceException message.

Service exceptions are related to the operation of the service itself. The following
exceptions are general:

■ SVC0001: Service error

■ SVC0002: Invalid input value

■ SVC0003: Invalid input value with list of valid values

■ SVC0004: No valid addresses

■ SVC0005: Duplicate correlator

■ SVC0006: Invalid group

■ SVC0007: Invalid charging information

■ SVC0008: Overlapping criteria

code xsd:string Y Charging code, referencing a
contract under which the charge is
applied.

Table 30–3 SimpleReference Structure

Element Name Element type Optional Description

endpoint xsd:anyURI N Description text to be use for
information and billing text.

interfaceName xsd:string Y Name of interface.

correlator xsd:decimal Y Correlation information.

Table 30–4 ServiceException

Element Name Element type Optional Description

messageId xsd:string N Message identifier, with prefix SVC.

text xsd:string N Message text, with replacement
variables marked with %#

variables xsd:string
[0...unbounded]

Y Variables to substitute into text
string.

Table 30–2 (Cont.) ChargingInformation Structure

Element Name Element type Optional Description

Fault Definitions

Understanding the Extended Web Services Common Definitions 30-3

PolicyException
Faults related to policies associated with the service, result in the return of a
PolicyException message.

PolicyExceptions are thrown when a policy has been violated, including violations of a
service level agreements. The following general PolicyExceptions are defined:

■ POL0001: Policy error

■ POL0002: Privacy error

■ POL0003: Too many addresses specified

■ POL0004: Unlimited notifications not supported

■ POL0005: Too many notifications requested

■ POL0006: Groups not allowed

■ POL0007: Nested groups not allowed

■ POL0008: Charging not supported

■ POL0009: Invalid frequency requested

Table 30–5 PolicyException

Element Name Element type Optional Description

messageId xsd:string N Message identifier, with prefix POL.

text xsd:string N Message text, with replacement
variables marked with %#

variables xsd:string
[0...unbounded]

Y Variables to substitute into text
string.

Fault Definitions

30-4 Services Gatekeeper Application Developer's Guide

31

Adding Extended Web Service Binary SMSs Support 31-1

31Adding Extended Web Service Binary SMSs
Support

This chapter explains how to use the Oracle Communications Services Gatekeeper
binary SMS extended web service interface to add binary SMS support to applications.

Understanding the Binary SMS Web Service
The Extended Web Services Binary SMS Web Service allows for the sending and
receiving of any generic binary content through SMSs. Both application-initiated and
network-triggered requests are supported. The binary content can include data beyond
the logos and ringtones specified by Parlay X Short Messaging. Examples of supported
binary content include vCards, calendar entries, and WAP Push messages.

The Extended Web Services Binary SMS Web Service supports the automatic chunking
of oversized binary SMS messages to handle messages that exceed the maximum size
of a single SMS request. Oversized unsegmented messages are automatically divided
into size conforming individual messages and handled by Services Gatekeeper if the
proper encoding is provided in the message header.

Namespaces
The BinarySMS interface and service use the namespaces:

■ http://www.bea.com/wlcp/wlng/wsdl/ews/binary_sms/interface

■ http://www.bea.com/wlcp/wlng/wsdl/ews/binary_sms/service

The BinarySmsNotificationManager interface and service use the namespaces:

■ http://www.bea.com/wlcp/wlng/wsdl/ews/binary_sms/notification/interface

■ http://www.bea.com/wlcp/wlng/wsdl/ews/binary_sms/notification/service

In addition, Extended Web Services Binary SMS uses common data type definitions
common for all Extended Web Services interfaces, see "Understanding the Extended
Web Services Common Definitions".

Fault definitions are according to ETSI ES 202 391-1 V1.2.1 (2006-10) Open Service
Access (OSA); Parlay X Web Services; Part 1: Common (Parlay X 2).

Endpoints
The endpoint for the BinarySMS interface is: http://<host:port>/ews/binary_
sms/BinarySms

Sequence Diagram

31-2 Services Gatekeeper Application Developer's Guide

The endpoint for the BinarySmsNotificationManager interface is:
http://host:port/ews/binary_sms_notification/BinarySmsNotificationManager

Where the values for host and port depend on your specific Services Gatekeeper
deployment.

Sequence Diagram
This section explains the sequence diagrams for sending and receiving an SMS.

Send SMS
Figure 31–1 shows the general message sequence for sending a binary SMS message
from an Extended Web Services Binary SMS application to the network. In this
message sequence the application also receives a notification from the network
indicating the delivery status of the SMS, that is that the message has reached its
destination. It also displays how an application can query the delivery status of the
message.

The interaction between the network and Services Gatekeeper is illustrated in a
protocol-agnostic manner. The exact operations and sequences depend on which
network protocol is being used.

Note: The delivery notifications are sent from the Parlay X 2.1 Short
Messaging implementation.

Sequence Diagram

Adding Extended Web Service Binary SMSs Support 31-3

Figure 31–1 Sequence diagram Application-initiated send Extended Web Services
Binary SMS

Receive SMS
Figure 31–2 shows the general message sequence for receiving a binary SMS message
from the Network using Services Gatekeeper. In this message sequence the application
also subscribes for a notifications on network triggered short messages.

The interaction between the network and Services Gatekeeper is illustrated in a
protocol-agnostic manner. The exact operations and sequences depend on which
network protocol is being used.

XML Schema data type definition

31-4 Services Gatekeeper Application Developer's Guide

Figure 31–2 Sequence diagram receive Extended Web Services Binary SMS

XML Schema data type definition
The following data structures are used in the Extended Web Services Binary SMS Web
Service.

BinaryMessage structure
Defines the binary payload of the SMS for application-initiated messages.

Defines the TP-User Data (TP-UD).

For a description of TP-User Data (TP-UD), TP-User-Data-Header-Indicator (TP
UDHI), see 3GPP TS 23.040 V6.5.1, Technical realization of the Short Message Service
(SMS) at:

http://www.3gpp.org/ftp/Specs/html-info/23040.htm

BinarySmsMessage structure
Defines the binary payload of the SMS for network-triggered messages.

Table 31–1 BinaryMessage structure

Element Name Element type Optional Description

udh xsd:base64Binary Y if
message is
set,
otherwise N

Defines the User Data Header.

See the description of TP-User Data
(TP-UD) in the 3GPP specification for
information about how to format the User
Data Header.

message xsd:base64Binary Y if udh is
set,
otherwise N

Binary message data.

Must be formatted according to TP-User
Data (TP-UD), excluding the User Data
Header.

XML Schema data type definition

Adding Extended Web Service Binary SMSs Support 31-5

Interface: BinarySms
Operations to send SMSs with binary content.

Operation: sendBinarySMS
Sends an SMS with any binary data as content.

Input message: sendBinarySMS

Table 31–2 BinarySmsMessage structure

Element Name Element type Optional Description

message ews_binary_
sms_
xsd:BinaryMess
age[1..unbounde
d]

N See "BinaryMessage structure".

dcs xsd:byte N Data code schema, according
to SMPP v3.4.

protocolId xsd:byte Y TP-Protocol-Identifier
according to 3GPP 23.040 6.5.1.

Defines the TP-User Data
(TP-UD). For a description of
TP-User Data (TP-UD),
TP-User-Data-Header-Indicato
r (TP UDHI), see 3GPP TS
23.040 V6.5.1, Technical
realization of the Short
Message Service (SMS) at:

http://www.3gpp.org/ftp/Sp
ecs/html-info/23040.htm

The protocol identifier is the
information element by which
the short message transport
layer either refers to the higher
layer protocol being used, or
indicates interworking with a
certain type of telematic
device.

Example: 123

senderAddress xsd:anyURI N The address of the sender of
the short message.

Example:

tel:1234556

smsServiceActivationNumber xsd:anyURI N The destination address of the
short message.

Example:

tel:1222

dateTime xsd:dateTime N The timestamp of the message.

Table 31–3 Input message: sendBinarySMS

Part name Part type Optional Description

addresses xsd:anyURI[1
..unbounded]

N An array of end-user terminal addresses.

Example: tel:1234

XML Schema data type definition

31-6 Services Gatekeeper Application Developer's Guide

Output message: sendBinarySMSResponse

Referenced faults

senderName xsd:string Y The name of the sender. Alphanumeric.

Example: tel:7485, Mycompany.

dcs xsd:byte N Defines the data encoding scheme for the
binaryMessage parameter.

Formatted according to data_coding parameter
in SMPP v3.4.

See http://www.smsforum.net/

binaryMessage binary_sms_
xsd:BinaryM
essage[1..unb
ounded]

N Message payload.

An array comprised of UDH elements and
message elements, see "BinaryMessage
structure".

This array must be equal to or less than 140
bytes in size.

protocolId xsd:byte Y TP-Protocol-Identifier (TP-PID) according to
3GPP TS 23.040 V6.5.1, Technical realization of
the Short Message Service (SMS) at:

http://www.3gpp.org/ftp/Specs/html-info/2
3040.htm

Specifies the higher layer protocol being used, or
indicates interworking with a certain type of
telematic device.

validityPeriod xsd:string Y Defines the validity period for the short
message.

Formatted according to validity_period
parameter in SMPP v3.4.

See http://www.smsforum.net/

charging ews_
common_
xsd:Charging
Information

Y Charging information.

See "ChargingInformation structure".

receiptRequest ews_
common_
xsd:SimpleRe
ference

Y It defines the application endpoint,
interfaceName and correlator that will be used
to notify the application when the message has
been delivered to the terminal or if delivery is
impossible.

See "SimpleReference structure"

Table 31–4 Output message: sendBinarySMSResponse

Part name Part type Optional Description

result xsd:string N Identifies a specific SMS delivery request.

Table 31–5 exceptions and error codes

Exception Error code Reason/Action

SVC0001 BSMS-000001 Unable to perform action. Network error

Table 31–3 (Cont.) Input message: sendBinarySMS

Part name Part type Optional Description

XML Schema data type definition

Adding Extended Web Service Binary SMSs Support 31-7

Interface: BinarySmsNotificationManager
Operations to start and stop subscriptions for notifications for short messages with
binary content.

Operation: StartBinarySmsNotification
Starts a subscription for notifications for short messages that have content in the form
of binary data. A correlator is provided in the request. This correlator is used when
stopping the subscription.

Input message: StartBinarySmsNotification

Output message: StartBinarySmsNotificationResponse

Referenced faults

SVC0001 BSMS-000002 Unable to retrieve configuration, internal
error.

SVC0001 BSMS-000003 The used address type is not supported

SVC0001 BSMS-000004 Unable to encode message segments.

make sure the number of message segments
is not 0.

SVC0001 BSMS-000005 GSM message format error.

SVC0001 BSMS-000006 Binary Message has too many segments.

SVC0001 PLG-000004 General plug-in routing error.

SVC0002 N/A SenderName in non-alphanumeric format.

SVC0003 N/A N/A

SVC0004 N/A N/A

SVC0005 N/A N/A

EPOL0001 N/A N/A

Table 31–6 Input message: StartBinarySmsNotification

Part name Part type Optional Description

reference ews_common_
xsd:SimpleRefe
rence

N Defines the application
endpoint, interfaceName and
correlator that will be used to
forward a binary short message
from the network.

See "SimpleReference
structure"

smsServiceActivationNumber xsd:xsd:anyURI Y The destination address of the
short message.

Table 31–7 Output message: StartBinarySmsNotificationResponse

Part name Part type Optional Description

N/A N/A N/A N/A

Table 31–5 (Cont.) exceptions and error codes

Exception Error code Reason/Action

XML Schema data type definition

31-8 Services Gatekeeper Application Developer's Guide

Operation: StopBinarySmsNotification
Stops a previously started subscription for notifications for short messages that have
content in the form of binary data. A correlator is provided in the request. This
correlator was provided when the subscription was started, see "Operation:
StartBinarySmsNotification".

Input message: StopBinarySmsNotification

Output message: StopBinarySmsNotificationResponse

Referenced faults

Table 31–8 exceptions and error codes

Exception Error code Reason/Action

SVC0001 BSMS-000001 Unable to perform action. Network error

SVC0001 BSMS-000002 Unable to retrieve configuration, internal
error.

SVC0001 BSMS-000003 The used address type is not supported

SVC0001 BSMS-000004 Unable to encode message segments.

make sure the number of message segments
is not 0.

SVC0001 BSMS-000005 GSM message format error.

SVC0001 BSMS-000006 Binary Message has too many segments.

SVC0001 PLG-000004 General plug-in routing error.

SVC0002 N/A N/A

SVC0003 N/A N/A

SVC0004 N/A N/A

SVC0005 N/A N/A

EPOL0001 N/A N/A

Table 31–9 Input message: StopBinarySmsNotification

Part name Part type Optional Description

correlator xsd:String N The identifier for the subscription.

Table 31–10 Output message: StopBinarySmsNotificationResponse

Part name Part type Optional Description

N/A N/A N/A N/A

Table 31–11 exceptions and error codes

Exception Error code Reason/Action

SVC0001 BSMS-000001 Unable to perform action. Network error

SVC0001 BSMS-000002 Unable to retrieve configuration, internal
error.

SVC0001 BSMS-000003 The used address type is not supported

XML Schema data type definition

Adding Extended Web Service Binary SMSs Support 31-9

Interface: BinarySmsNotification
This interface is implemented by the application. It is used by Services Gatekeeper to
deliver short messages with binary content to an application. Only messages that
match a previously started subscription for notifications are delivered.

Operation: NotifyBinarySmsReception
Services Gatekeeper calls this methods on

The notification is used to send a short message with binary content to the application.
The notification occurs if the short message matched the criteria specified when
starting the notification. See "Operation: StartBinarySmsNotification".

The method must be implemented by a Web Service at the application side. It is be
invoked by Services Gatekeeper when it receives a short message with binary content
form the network and the criteria is fulfilled.

Input message: NotifyBinarySmsReceptionRequest

Output message: NotifyBinarySmsReceptionResponse

SVC0001 BSMS-000004 Unable to encode message segments.

make sure the number of message segments
is not 0.

SVC0001 BSMS-000005 GSM message format error.

SVC0001 BSMS-000006 Binary Message has too many segments.

SVC0001 PLG-000004 General plug-in routing error.

SVC0002 N/A N/A

SVC0003 N/A N/A

SVC0004 N/A N/A

SVC0005 N/A N/A

EPOL0001 N/A N/A

Note: Notifications on delivered short messages are delivered using
the Parlay X 2.1 Short Messaging SmsNotification interface, using the
method NotifySmsDeliveryReceipt.

Table 31–12 Input message: NotifyBinarySmsReceptionRequest

Part name Part type Description

correlator xsd:String The correlator for the subscription.

message ews_binary_
sms_
xsd:BinarySmsM
essage

The message in binary form.

See "BinarySmsMessage structure".

Table 31–11 (Cont.) exceptions and error codes

Exception Error code Reason/Action

Configuring Automatic Chunking of Binary SMSs

31-10 Services Gatekeeper Application Developer's Guide

Referenced faults

None.

Configuring Automatic Chunking of Binary SMSs
This interface includes a feature that automatically separates oversize SMS messages
into smaller segments so that even switches that limit the size of SMSs will support
them. This feature works for SMS messages that use either user data header (UDH)
headers, or Sar_ headers. Each chunk gets its own header segment, so your switches
treat them a separate SMS messages.

You use the wlng.smpp.concatenated_message_indicator Services Gatekeeper system
property to select the type of header you use. 0 is the default value. It indicates UDH
headers. Change this setting to 1 if your implementation processes SMSs with Sar_
headers.

This feature follows the 3GPP TS 23.038 and 3GPP TS 23.040 specifications for UDH
and the SMPPv3.4 specification for Sar.

WSDLs
The document/literal WSDL representation of the interfaces can be retrieved from the
Web Services endpoints, see "Endpoints".

The notification interface can be downloaded from:

http://host:port/ews/binary_sms_notification/wsdls/ews_binary_sms_notification_
service.wsdl
http://host:port/ews/binary_sms_notification/wsdls/ews_binary_sms_notification_
interface.wsdl
Where host and port are depending on the Services Gatekeeper deployment.

Error Codes
The following error codes are defined for SVC0001: Service error:

■ See "General Error Codes".

■ Error codes defined for Parlay X 2.1 Short Messaging, see "Error Codes".

■ 16133 Too many segments in message.

The following error codes are defined for EPOL0001: Policy error:

■ See "Code Examples".

■ Policy error codes defined for Parlay X 2.1 Short Messaging, see "Error Codes".

Table 31–13 Output message: NotifyBinarySmsReceptionResponse

Part name Part type Optional Description

N/A N/A N/A N/A

Sample Send Binary SMS

Adding Extended Web Service Binary SMSs Support 31-11

Sample Send Binary SMS

Example 31–1 Example Send Binary SMS

BinarySmsService service = new BinarySmsService_Impl(“http://localhost:8001/ews/binary_
sms/BinarySms?WSDL”);
BinarySms port = service.getBinarySms();
com.bea.wlcp.wlng.schema.ews.binary_sms.local.SendBinarySms parameters =
new com.bea.wlcp.wlng.schema.ews.binary_sms.local.SendBinarySms();
URI[] addresses = new URI[1];
addresses[0] = new URI("tel:1234");
parameters.setAddresses(addresses);
parameters.setDcs((byte)0);
parameters.setProtocolId((byte)0x7b);
parameters.setSenderName("tel:7878");
parameters.setValidityPeriod("020610233429000R");
com.bea.wlcp.wlng.schema.ews.binary_sms.BinaryMessage[] binaryMessages =
new com.bea.wlcp.wlng.schema.ews.binary_sms.BinaryMessage[1];
binaryMessages[0] = new com.bea.wlcp.wlng.schema.ews.binary_sms.BinaryMessage();
byte[] udh = {0};
byte[] message = {0x4d, 0x61, 0x64, 0x65, 0x20, 0x69, 0x6e, 0x20, 0x2e};
binaryMessages[0].setUdh(udh);
binaryMessages[0].setMessage(message);
parameters.setBinaryMessage(binaryMessages);
port.sendBinarySms(parameters);

Sample Send Binary SMS

31-12 Services Gatekeeper Application Developer's Guide

32

Adding WAP Push Extended Web Service Message Support 32-1

32Adding WAP Push Extended Web Service
Message Support

This chapter explains how to use the Oracle Communications Services Gatekeeper
WAP Push Extended Web Service interface to add WAP Push support to applications.

Understanding the WAP Push Extended Web Service Interface
The WAP Push Extended Web Services interface sends messages which are rendered
as WAP Push messages by the addressee’s terminal. The content of the message is
coded as a PAP message. It also provides an asynchronous notification mechanism for
delivery status.

The payload of a WAP Push message must adhere to the following specifications:

■ WAP Service Indication Specification, as specified in Service Indication Version
31-July-2001, Wireless Application Protocol WAP-167-ServiceInd-20010731-a.

■ WAP Service Loading Specification, as specified in Service Loading Version
31-Jul-2001, Wireless Application Protocol WAP-168-ServiceLoad-20010731-a.

■ WAP Cache Operation Specification, as specified in Cache Operation Version
31-Jul-2001, Wireless Application Protocol WAP-175-CacheOp-20010731-a.

See the Open Mobile Alliance websitewebsite for links to the specifications:

http://www.openmobilealliance.org/tech/affiliates/wap/wapindex.html

The payload is sent as a SOAP attachment.

See "Sending Custom Message Content for Split and Submit Messaging Requests" for
instructions on how to split messages into multiple individually-addressed requests

Namespaces
The PushMessage interface and service use the namespaces:

■ http://www.bea.com/wlcp/wlng/wsdl/ews/push_message/interface

■ http://www.bea.com/wlcp/wlng/wsdl/ews/push_message/service

The PushMessageNotification interface and service use the namespaces:

■ http://www.bea.com/wlcp/wlng/wsdl/ews/push_
message/notification/interface

■ http://www.bea.com/wlcp/wlng/wsdl/ews/push_message/notification/service

The data types are defined in the namespace:

Endpoint

32-2 Services Gatekeeper Application Developer's Guide

■ http://www.bea.com/wlcp/wlng/schema/ews/push_message

In addition, WAP Push Extended Web Service uses definitions common for all
Extended Web Services interfaces:

■ The datatypes are defined in the namespace:

■ http://www.bea.com/wlcp/wlng/schema/ews/common

■ The faults are defined in the namespace:

■ targetNamespace="http://www.bea.com/wlcp/wlng/wsdl/ews/common/faults"

Endpoint
The endpoint for the PushMessage interface is: http://host:port/ews/push_
message/PushMessage

Where host and port are the host name and port of the system on which Services
Gatekeeper is installed.

Sequence Diagram
Figure 32–1 shows the general message sequence for sending a WAP Push message
from an application that uses WAP Push Extended Web Service to the network. In this
message sequence the application also receives a notification from the network
indicating the delivery status of the WAP Push message, that is that the message has
been read The interaction between the network and Services Gatekeeper is illustrated
in a protocol-agnostic manner. The exact operations and sequences depend on which
network protocol is being used.

Note: Zero or more resultNotificationmesages are sent to the
application, depending on parameters provided in the initial
SendPushMessage request.

XML Schema Data Type Definition

Adding WAP Push Extended Web Service Message Support 32-3

Figure 32–1 Sequence Diagram of WAP Push Extended Web Services

XML Schema Data Type Definition
The following data structures are used in the WAP Push Extended Web Service.

PushResponse Structure
Defines the response that Services Gatekeeper returns from a sendPushMessage
operation.

Table 32–1 PushResponse Structure

Element Name Element type Optional Description

result push_message_
xsd:ResponseRe
sult

No The ResponseResult allows the server
to specify a code for the outcome of
sending the push message. See
"ResponseResult structure"

pushId xsd:string No The push ID provided in the request.

senderAddress xsd:string Yes Contains the address to which the
message was originally sent, for
example the URL to the network node.

senderName xsd:string Yes The descriptive name of the server.

replyTime xsd:dateTime Yes The date and time associated with the
creation of the response.

additionalProperties ews_common_
xsd:AdditionalP
roperty

Yes Additional properties.The supported
properties are: pap.stage, pap.note,
pap.time

XML Schema Data Type Definition

32-4 Services Gatekeeper Application Developer's Guide

ResponseResult structure
Defines the result element in the PushResponse structure, which is used in the
response returned from a sendPushMessage operation.

Table 32–2 ResponseResult Structure

Element Name Element type Optional Description

code xsd:string No A code representing the outcome when
sending the push message. Generated by
the network node.

Possible status codes are listed in this
section.

description xsd:string No Textual description.

Table 32–3 Outcome Status Codes

Status code Description

1000 OK.

1001 Accepted for processing.

2000 Bad request.

2001 Forbidden.

2002 Address error.

2003 Address not found.

2004 Push ID not found.

2005 Capabilities mismatch.

2006 Required capabilities not supported.

2007 Duplicate push ID.

2008 Cancellation not possible.

3000 Internal server error.

3001 Not implemented.

3002 Version not supported.

3003 Not possible.

3004 Capability matching not possible.

3005 Multiple addresses not supported.

3006 Transformation failure.

3007 Specified delivery method not possible.

3008 Capabilities not available.

3009 Required network not available.

3010 Required bearer not available.

3011 Replacement not supported.

4000 Service failure.

4001 Service unavailable.

WAP Push Extended Web Service Interface Descriptions

Adding WAP Push Extended Web Service Message Support 32-5

ReplaceMethod enumeration
Defines the values for the replacePushId parameter in the sendPushMessage
operation. This parameter is used to replace an existing message based on a given
push ID. This parameter is ignored if it is set to NULL.

MessageState enumeration
Defines the values for the messageState parameter in a resultMessageNotification.

WAP Push Extended Web Service Interface Descriptions
The following describes the interfaces and operations that are available in the WAP
Push Extended Web Service.

Table 32–4 ReplaceMethod Enumeration

Enumeration value Description

all Indicates that this push message must be treated as a new push
submission for all recipients, whether or not a previously
submitted push message with pushId equal to the replacePushId
in this push message can be found.

pending-only Indicates that this push message should be treated as a new push
submission only for those recipients who have a pending push
message that is possible to cancel.

In this case, if no push message with pushId equal to the
replacePushId in this push message can be found, the server
responds with status code PUSH_ID_NOT_FOUND in the
responseResult.

Status code CANCELLATION_NOT_POSSIBLE may be returned
in the responseResult if no message can be cancelled.

Status code CANCELLATION_NOT_POSSIBLE may also be
returned in a subsequent resultNotification to indicate a
non-cancellable message for an individual recipient.

Table 32–5 MessageState Enumeration

Enumeration value Description

rejected Message was not accepted by the network.

pending Message is being processed.

delivered Message successfully delivered to the network.

undeliverable The message could not be delivered.

expired The message reached the maximum allowed age or could not be
delivered by the time specified when the message was sent.

Some network elements allows for defining policies on maximum
age of messages.

aborted The end-user terminal aborted the message.

timeout The delivery process timed out.

cancelled The message was cancelled.

unknown The state of the message is unknown.

WAP Push Extended Web Service Interface Descriptions

32-6 Services Gatekeeper Application Developer's Guide

Interface: PushMessage
Operations to send, or to manipulate previously sent, WAP Push messages.

Operation: sendPushMessage
Sends a WAP Push message. The message Content Entity (the payload) is provided as
a SOAP attachment in MIME format. The Content Entity is a MIME body part
containing the content to be sent to the wireless device. The content type is not
defined, and can be any type as long as it can be described by MIME. The Content
Entity is included only in the push submission and is not included in any other
operation request or response.

Input message: sendPushMessage

Table 32–6 Input Message: sendPushMessage

Part name Part type Optional Description

pushId xsd:string N Provided by the application. Serves
as a message ID. The application is
responsible for its uniqueness, for
example, by using an address
within its control (for example a
URL) combined with an identifier
for the push message as the value
for pushId. Supported types are
PLMN and USER.

For example:
"www.wapforum.org/123" or
"123@wapforum.org"

destinationAddresses xsd:string
[1..unbounde
d]

N An array of end-user terminal
addresses.

The addresses should be formatted
according to the Push Proxy
Gateway Service Specification
(WAP-249-PPGService-20010713-a).

Example addresses:

■ WAPPUSH=+155519990730

TYPE=PLMN@ppg.carrier.com

■ WAPPUSH=john.doe%40wapforu
m.org

TYPE=USER@ppg.carrier.com

resultNotificationEndpoint xsd:anyURI Y Specifies the URL the application
uses to return result notifications.

The presence of this parameter
indicates that a notification is
requested. If the application does
not want a notification, this
parameter must be set to NULL.

WAP Push Extended Web Service Interface Descriptions

Adding WAP Push Extended Web Service Message Support 32-7

replacePushId xsd:string Y The pushId of the still pending
message to replace.

The presence of this parameter
indicates that the client is
requesting that this message replace
one previously submitted, but still
pending push message.

The following rules apply:

■ Setting the replacePushId
parameter to NULL indicates
that it is a new message. It does
not replace any previously
submitted message.

■ The initial pending (pending
delivery to the end-user
terminal) message is cancelled,
if possible, for all recipients of
the message. This means that it
is possible to replace a message
for only a subset of the
recipients of the original
message.

■ Message replacement will
occur only for the recipients for
whom the pending message
can be cancelled.

replaceMethod push_
message_
xsd:Replace
Method

N Defines how to replace a previously
sent message. Used in conjunction
with the replacePushId parameter
described above.

Ignored if replacePushId is NULL.

deliverBeforeTimestamp xsd:dateTime Y Defines the date and time by which
the content must be delivered to the
end-user terminal.

The message is not delivered to the
end-user terminal after this time
and date.

If the network node does not
support this parameter, the message
is rejected.

deliverAfterTimestamp xsd:dateTime Y Specifies the date and time after
which the content should be
delivered to the wireless device.

The message is delivered to the
end-user terminal after this time
and date.

If the network node does not
support this parameter, the message
is be rejected.

sourceReference xsd:string Y A textual name of the content
provider.

Table 32–6 (Cont.) Input Message: sendPushMessage

Part name Part type Optional Description

WAP Push Extended Web Service Interface Descriptions

32-8 Services Gatekeeper Application Developer's Guide

Output message: sendPushMessageResponse

Referenced faults

Interface: PushMessageNotification
Operations resultNotificationMessage and resultNotificationMessageResponse.

progressNotesRequested xsd:boolean Y This parameter informs the network
node if the client wants to receive
progress notes.

TRUE means that progress notes are
requested.

Progress notes are delivered using
the PushMessageNotification
interface.

If not set, progress notes are not
sent.

serviceCode xsd:string N Used for charging purposes.

requesterID xsd:string N The application ID as given by the
operator.

additionalProperties ews_
common_
xsd:Addition
alProperty

[0...unbound
ed]

Y Additional properties, defined as
name/value pairs, can be sent using
this parameter. The supported
properties are: pap.priority,
pap.delivery-method, pap.network,
pap.network-required, pap.bearer,
pap.bearer-required.

Table 32–7 Output Message: sendPushMessageResponse

Part name Part type Optional Description

result push_
message_
xsd:PushRes
ponse

N The response that Services Gatekeeper returns
for sendPushMessage operation

Table 32–8 Exceptions and Error Codes

Exception Error code Reason/Action

SVC0001 WNG-000001 Internal problem in Services Gatekeeper.

Contact your Services Gatekeeper
administrator.

SVC0001 WNG-000002 Internal problem in Services Gatekeeper.

Contact Services Gatekeeper administrator.

SVC0001 PUSHMSG-000002 Failed to create push message.

SVC0001 PUSHMSG-000003 Unable to retrieve configuration.

SVC0001 PUSHMSG-000001 Failed to submit push message to PPG.

SVC0001 PLG-000004 General plug-in routing error

Table 32–6 (Cont.) Input Message: sendPushMessage

Part name Part type Optional Description

WAP Push Extended Web Service Interface Descriptions

Adding WAP Push Extended Web Service Message Support 32-9

Operation: resultNotificationMessage
Input message: resultNotificationMessage

Output message: resultNotificationMessageResponse

Referenced faults

Table 32–9 Input Message: resultNotificationMessage

Part name Part type Optional Description

pushId xsd:string N Defined by the application in the
corresponding sendPushMessage
operation.

Used to match the notification to the
message.

address xsd:string N The address of the end-user terminal.

messageState push_
message_
xsd:Message
State

N State of the message.

code xsd:string N Final status of the message.

description xsd:string Y Textual description of the notification.
Supplied by the network. May or may not
be present, depending on the network
node used.

senderAddress xsd:string Y Address of the network node.

May or may not be present, depending on
the network node used.

senderName xsd:string Y Name of the network node.

May or may not be present, depending on
the network node used.

receivedTime xsd:dateTime Y Time and date when the message was
received at the network node.

eventTime xsd:dateTime Y Time and date when the message reached
the end-user terminal.

additionalProperties ews_
common_
xsd:Addition
alProperty

Y Additional properties can be sent using
this parameter in the form of name/value
pairs. The supported properties are:

■ pap.priority

■ pap.delivery-method

■ pap.network

■ pap.network-required

■ pap.bearer

■ pap.bearer-required

Which properties are sent, if any, is
dependent on the network node.

Table 32–10 Output Message: resultNotificationMessageResponse

Part name Part type Optional Description

N/A N/A N/A N/A

WSDLs

32-10 Services Gatekeeper Application Developer's Guide

WSDLs
The document/literal WSDL representation of the PushMessage interface can be
retrieved from the Web services endpoint.

The document/literal WSDL representation of the PushMessageNotification interface
can be downloaded from

http://host:port/ews/push_message/wsdls/ews_common_types.xsd

http://host:port/ews/push_message/wsdls/ews_push_message_notification_
interface.wsdl

http://host:port/ews/push_message/wsdls/ews_push_message_notification_
service.wsdl

http://host:port/ews/push_message/wsdls/ews_push_message_types.xsd

Where host and port are the host name and port of the system on which Services
Gatekeeper is installed.

Sample Send WAP Push Message

Example 32–1 Example Send WAP Push Message

// Add handlers for MIME types needed for WAP MIME-types
MailcapCommandMap mc = (MailcapCommandMap) CommandMap.getDefaultCommandMap();
mc.addMailcap("text/vnd.wap.si;;x-java-content-handler=com.sun.mail.handlers.text_xml");
CommandMap.setDefaultCommandMap(mc);
// Create a MIME-message where with the actual content of the WAP Push message.
InternetHeaders headers = new InternetHeaders();
headers.addHeader("Content-type", "text/plain; charset=UTF-8");
headers.addHeader("Content-Id", "mytext");
byte[] bytes = "Test message".getBytes();
MimeBodyPart mimeMessage = new MimeBodyPart(headers, bytes);

// Create PushMessage with only the manadatory parameters

// SendPushMessage is provided in the stubs generated from the WSDL.
SendPushMessage sendPushMessage = new SendPushMessage();
String [] destinationAddresses = {"wappush=461/type=user@ppg.o.se"};
sendPushMessage.setDestinationAddresses(destinationAddresses);
// Create “unique” pushId, using a combination of timestamp and domain.
sendPushMessage.setPushId(System.currentTimeMillis() + "@wlng.bea.com");
// ReplaceMethod is provided by the stubs generated from the WSDL.
sendPushMessage.setReplaceMethod(ReplaceMethod.pendingOnly);
// Defined by the operator/service provider contractual agreement
sendPushMessage.setServiceCode(”Service Code xxx”);
// Defined by the operator/service provider contractual agreement
sendPushMessage.setRequesterID(”Requester ID xxx”);
// Endpoint to send notifications to. Implemented on the application side.
String notificationEndpoint = "http://localhost:80/services/PushMessageNotification";
sendPushMessage.setResultNotificationEndpoint(new URI(notificationEndpoint));

Table 32–11 Exceptions and Error Codes

Exception Error code Reason/Action

SVC0001 PUSHMSG-000004 Failed to send result notification to the
application.

Sample Send WAP Push Message

Adding WAP Push Extended Web Service Message Support 32-11

// Send the WAP Push message
PushMessageService pushMessageService = null;
// Define the endpoint of the WAP Push Web service
String endpoint = "http://localhost:8001/ews/push_message/PushMessage?WSDL";
try {
// Instantiate an representation of the Web service from the generated stubs.
pushMessageService = new PushMessageService_Impl(endpoint);

} catch (ServiceException e) {
e.printStackTrace();
throw e;

}
PushMessage pushMessage = null;
try {
// Get the Web service interface to operate on.
pushMessage = pushMessageService.getPushMessage();

} catch (ServiceException e) {
e.printStackTrace();
throw e;

}
SendPushMessageResponse sendPushMessageResponse = null;
try {
// Send the WAP Push message.
sendPushMessageResponse = pushMessage.sendPushMessage(sendPushMessage);

} catch (RemoteException e) {
e.printStackTrace();
throw e;

} catch (PolicyException e) {
e.printStackTrace();
throw e;

} catch (com.bea.wlcp.wlng.schema.ews.common.ServiceException e) {
e.printStackTrace();
throw e;

}
// Assign the pushId provided in the in the response to a local variable.
String pushId = sendPushMessageResponse.getPushId();

Sample Send WAP Push Message

32-12 Services Gatekeeper Application Developer's Guide

33

Adding Subscriber Profile Extended Web Service Support 33-1

33Adding Subscriber Profile Extended Web
Service Support

This chapter explains how to use the Oracle Communications Services Gatekeeper
subscriber profile extended web service interface to add subscriber profile information
applications.

Understanding the Subscriber Profile Extended Web Service Interface
The Subscriber Profile Extended Web Service interface allows an application to get
subscriber-specific data from data sources within the network operator’s domain.

Examples of data sources are subscriber databases containing information about
terminal types in use, preferred language, and currency types. This information can be
used by applications in order to control rendering options for rich media, charging
information, and the language to be used in voice and text interaction with the
end-user.

The interface is built around a model where the data can be retrieved in two different
ways:

■ Individual attributes, identified using a path.

■ A collection of attributes.

The attributes are keyed on a subscriber ID that uniquely identifies the subscriber for
whom the attributes are valid or by an address that uniquely identifies the terminal for
which the attributes are valid. An attribute is identified by a path name, which
corresponds to a specific property. The following is an example of a path name:

serviceName/accessControlId/accessControlId

The syntax for the path is similar to relative file system paths in UNIX.

A collection of attributes is specified in a subscriber profile filter for the application or
the service provider. Only allowed attributes, as specified in the filter, are returned.

The returned attributes are returned in the form of name-value pairs, or property
tuples, where the name is expressed as a path name with a associated property value.

The interface is based on a proposal for a Parlay X Subscriber Profile Web service
interface.

Namespaces
The SubscriberProfile interface and service use these namespaces:

■ http://www.bea.com/wlcp/wlng/wsdl/ews/subscriber_profile/interface

Endpoint

33-2 Services Gatekeeper Application Developer's Guide

■ http://www.bea.com/wlcp/wlng/wsdl/ews/subscriber_profile/service

The data types are defined in the namespace:

■ http://www.bea.com/wlcp/wlng/schema/ews/subscriber_profile

In addition, the Subscriber Profile Extended Web Service interface uses definitions
common for all Extended Web Services interfaces:

■ The datatypes are defined in the namespace:

■ http://www.bea.com/wlcp/wlng/schema/ews/common

■ The faults are defined in the namespace:

■ http://www.bea.com/wlcp/wlng/wsdl/ews/common/faults

Endpoint
The endpoint for the PushMessage interface is: http://host:port/ews/subscriber_
profile/SubscriberProfile

Where host and port are the host name and port of the system on which Services
Gatekeeper is installed.

Address schemes

XML Schema data type definition
The following data structures are used in the Subscriber Profile Extended Web Service.

PropertyTuple Structure
Defines the response that Services Gatekeeper returns from "Operation: get" and
"Operation: getProfile".

Table 33–1 Supported Address Schemes

Address scheme Valid for Communication service

tel Subscriber Profile Extended Web Service profile for LDAPv3

id Subscriber Profile Extended Web Service profile for LDAPv3

imsi Subscriber Profile Extended Web Service profile for LDAPv3

ipv4 Subscriber Profile Extended Web Service profile for LDAPv3

Table 33–2 PropertyTuple Structure

Element Name Element type Optional Description

pathName xsd:string N The key of the name-value pair.

Expressed as a relative UNIX path.

Example:

serviceName/accessControlId/access
ControlId

propertyValue xsd:string N The value associated with the key.

WAP Push Extended Web Service Interface Descriptions

Adding Subscriber Profile Extended Web Service Support 33-3

WAP Push Extended Web Service Interface Descriptions
The following describes the interfaces and operations that are available in the
Subscriber Profile Extended Web Service.

Interface: SubscriberProfile
Operations to obtain specific subscriber profile attributes and operations to obtain a set
of profile properties grouped together in a profile.

Operation: get
Gets specific subscriber profile attributes. The requested attributes are identified by the
pathNames parameter, and the possible values are restricted by the configured
capabilities of the underlying data source. The allowed path name values are also
restricted individually per service provider and application in the SLA.

Input message: get

Output message: getResponse

Referenced faults

Table 33–3 Input Message: get

Part name Part type Optional Description

address xsd:anyURI N Identity to get profile attributes for.

pathNames xsd:string
[1..unbounded]

N Requested subscriber properties.

Expressed as a relative UNIX path.

Example:

serviceName/accessControlId/accessControlId

Table 33–4 Output Message: getResponse

Part name Part type Optional Description

properties PropertyTuple
[1..unbounded
]

N All retrieved subscription property name and
value pairs which are requested by application
and allowed by the usage policies as specified in a
filter.

See "PropertyTuple Structure".

Table 33–5 Exceptions and Error Codes

Exception Error code Reason/Action

ESVC0001 WNG000002 Internal problem in Services Gatekeeper.

Contact your Services Gatekeeper
administrator.

ESVC0001 SP000001 Internal problem in Services Gatekeeper.

The LDAP connection is not working. There
might be a configuration error for with the
underlying LDAP server or a network error.

Contact your Services Gatekeeper
administrator.

WAP Push Extended Web Service Interface Descriptions

33-4 Services Gatekeeper Application Developer's Guide

Operation: getProfile
Gets a set of profile properties grouped together in a profile identified by a certain
profile ID.

Input message: getProfile

Profile ID is ignored when connecting the to the network using the LDAPv3 network
protocol plug-in. The collection of attributes that identifies the profile are provisioned
as filters.

Output message: getProfileResponse

Referenced faults

ESVC0001 SP000002 Internal problem in Services Gatekeeper.

LDAP operation failed.

Contact your Services Gatekeeper
administrator.

ESVC0001 SP000003 Internal problem in Services Gatekeeper.

Contact your Services Gatekeeper
administrator.

ESVC0001 SP000004 Internal problem in Services Gatekeeper.

Contact your Services Gatekeeper
administrator.

Table 33–6 Input Message: getProfile

Part name Part type Optional Description

subscriberID xsd:string N Identity to get profile attributes for.

profileID xsd:string N Identity of the profile to get.

Table 33–7 Output Message: getProfileResponse

Part name Part type Optional Description

properties PropertyTuple
[1..unbounded]

N All retrieved subscription property name and
value pairs which are requested by application
and allowed by the usage policies as specified in a
filter.

See "PropertyTuple Structure".

Table 33–8 Exceptions and Error Codes

Exception Error code Reason/Action

SVC0001 WNG-000002 Internal problem in Services Gatekeeper.

Contact your Services Gatekeeper
administrator.

Table 33–5 (Cont.) Exceptions and Error Codes

Exception Error code Reason/Action

WSDLs

Adding Subscriber Profile Extended Web Service Support 33-5

WSDLs
The document/literal WSDL representation of the SubscriberProfile interface can be
retrieved from the Web services endpoint, see "Endpoint", or:

■ http://host:port/ews/subscriber_profile/SubscriberProfile?WSDL

■ http://host:port/ews/subscriber_profile/SubscriberProfile?WSDL/ews_
subscriber_profile_interface.wsdl

■ http://host:port/ews/subscriber_profile/SubscriberProfile?WSDL/ews_
common_types.xsd

Where host and port are the host name and port of the system on which Services
Gatekeeper is installed.

SVC0001 SP-000001 Internal problem in Services Gatekeeper.

The LDAP connection is not working. There
might be a configuration error for with the
underlying LDAP server or a network error.

Contact your Services Gatekeeper
administrator.

SVC0001 SP-000002 Internal problem in Services Gatekeeper.

LDAP operation failed.

Contact your Services Gatekeeper
administrator.

SVC0001 SP-000003 Internal problem in Services Gatekeeper.

Contact your Services Gatekeeper
administrator.

SVC0001 SP-000004 Internal problem in Services Gatekeeper.

Contact your Services Gatekeeper
administrator.

SVC0001 PLG-000004 General plug-in routing error

Table 33–8 (Cont.) Exceptions and Error Codes

Exception Error code Reason/Action

WSDLs

33-6 Services Gatekeeper Application Developer's Guide

Part VI
Part VI Testing Applications with the Application

Test Environment

Part VI describes the Oracle Communications Services Gatekeeper Application Test
Environment Graphical User Interface, and explains how to use and customize it.

Part VI contains the following chapters:

■ Understanding the Application Test Environment

■ Testing Applications with the Application Test Environment

■ Customizing the Application Test Environment

■ ATE Endpoints

■ Virtual Communication Services Exception Codes

34

Understanding the Application Test Environment 34-1

34Understanding the Application Test
Environment

This chapter provides an overview of the Oracle Communications Services Gatekeeper
Software Development Kit (SDK) which includes the Application Test Environment
(ATE). This chapter assumes that you have used the instructions in Services Gatekeeper
Multi-tier Installation Guide to install the ATE.

Understanding the ATE
You use the ATE to test applications you have created that interact with Services
Gatekeeper. The ATE tests applications without needing access to a running Services
Gatekeeper implementation. The ATE contains a set of virtual communication services
(VCSs) that simulate many of the communication services provided by Services
Gatekeeper.

You can develop applications that require interaction with Services Gatekeeper (for
tasks such as opening sessions, sending and receiving messages, and examining
delivery reports) through the VCSs without having to connect to the network
operator´s Services Gatekeeper installation. When you are ready to test and deploy the
application on a real Services Gatekeeper installation, you only need to change a few
URLs and authentication credentials in the application.

Using the ATE, you can:

■ Test the basic functionality of your application

■ Test the application’s behavior with different configuration settings

■ Test the application’s behavior with different authentication credentials

■ Test the application’s behavior with policy restrictions

You can customize the ATE interface, changing it’s appearance and functionality to
meet your implementation’s needs.

Understanding the ATE Graphical Interface
The default configuration on startup resembles Figure 34–1. Your ATE may look
different depending on how it has been customized by the network operator.

Understanding the ATE Graphical Interface

34-2 Services Gatekeeper Application Developer's Guide

Figure 34–1 ATE

The upper-left panel is the elements panel. In the Elements tab of this panel, you
create and configure elements representing mobile terminals that your application can
send messages to and receive messages and notifications from. These elements are
persistent. You can also create notification areas that your application can monitor. In
the Messages tab of this panel, you can see a log of all the messages and notifications
received by a VCS during the current session.

The upper-right panel is the map panel. You can place elements created in the
elements panel on the map and drag them to another location on the map. You can
also send messages from some elements and change the status of an element by
right-clicking it on the map. If a notification area has been configured to monitor the
location of any of the mobile terminals on the map, it will signal when a terminal has
entered or left the area, depending on the configuration.

The lower-left panel is the VCS panel. Each tab accesses a different VCS, which
simulates an actual communication service in Services Gatekeeper. You can display
hidden VCS tabs by clicking the arrows in the tab region of the VCS panel. Each
module, except the Session Manager, has two tabs: Controls and Configuration. In
the Controls tab, you can stop and start the VCS module. The Configuration tab
provides some configuration options, which vary for each VCS.

The Session Manager has a single panel from which you can start and stop the session
manager.

The lower-right panel is the account manager/SLA manager/payment panel. In the
Account Manager tab, you can set up accounts for your application to use. In the SLA
Manager tab, you can set up simple enforcements based on values in a request or the
rate of requests. In the Payment Account and Payment Account Detail tabs, you can
monitor charging activity resulting from your application’s requests in the Payment
VCS.

You can hide and show these individual panels by clicking the small triangles at the
edges of the panels. You can also resize the entire window and the individual panels.

Supported Communication Services

Understanding the Application Test Environment 34-3

Supported Interfaces
The ATE supports both Simple Object Access Protocol (SOAP) and Representational
State Transfer (RESTful) application interfaces.

See "Creating Applications Using the SOAP Interfaces" for information about the
SOAP application interface. You can also access the Parlay X 2.1 specifications at:

ftp://ftp.3gpp.org/Specs/archive/29_series/29.199-04/29199-04-650.zip

and the Parlay X 3.0 specifications at:

ftp://ftp.3gpp.org/Specs/archive/29_series/29.199-02/29199-02-740.zip

See "Creating Applications Using the RESTful Interfaces" for information about the
RESTful application interface.

Supported Communication Services
The ATE supports the following VCSs:

■ Session Manager

■ Short Messaging

■ MultiMedia Messaging

■ Terminal Location

■ Terminal Status

■ Payment/Diameter

■ Third Party Call

■ Binary Short Messaging

Supported Communication Services

34-4 Services Gatekeeper Application Developer's Guide

35

Testing Applications with the Application Test Environment 35-1

35Testing Applications with the Application Test
Environment

The Application Test Environment (ATE) is a graphical user interface that lets you test
your applications on a simulation of Oracle Communications Services Gatekeeper.

Starting the ATE
The ATE is a standalone application. It is not necessary to install Services Gatekeeper
to use the ATE.

For information about installing ATE, see "Installing the Application Test
Environment" in Services Gatekeeper Multi-tier Installation Guide.

Starting the ATE on UNIX
To start the ATE on UNIX:

1. Change directory to the SDK root directory.

2. At a command prompt, enter run.sh.

Starting the ATE on Windows
To start the ATE on Windows, do one of the following

■ To start the ATE from the Start menu, select Oracle Communications Services
Gatekeeper, then select SDK.

■ To start the ATE from a command prompt, change directory to the SDK root
directory and enter run.cmd.

Starting the ATE on Mac OS X
To start the ATE on Mac OS X:

1. Change directory to the SDK root directory.

2. Enter run.sh.

Stopping the ATE
To stop the ATE:

In the ATE window, select Exit from the File menu.

Understanding Application Testing

35-2 Services Gatekeeper Application Developer's Guide

Understanding Application Testing
Using the ATE, you can:

■ Test the basic functionality of your application. See Basic Testing for instructions.

■ Test the application’s behavior with different configuration settings. See Test with
Virtual Communication Service Configuration Settings for instructions.

■ Test the application’s behavior with different authentication credentials. See Test
with Account Credentials for instructions.

■ Test the application’s behavior with policy restrictions. See Test Policy
Enforcement for instructions.

Basic Testing
This section provides a high-level workflow for performing basic testing.

To perform basic testing:

1. Set the endpoints in your application to point to the ATE.

See "Substituting ATE Endpoints in Your Application" for more information.

2. Change the credentials in the headers of your application’s requests either to the
default credentials or to those provided to you by the network operator.

See "Substituting Credentials in Your Application" for more information.

3. Start the ATE.

See "Starting the ATE" for more information.

4. Add some elements to the ATE map or use existing elements.

By default, a mobile terminal element with the address "tel:1234" is provided in the
default configuration. Your application can send messages to and receive messages
and notifications from mobile terminals on the map. You can also verify whether a
terminal has entered or left a defined notification area.

See "Setting Up and Using Map Elements" for more information.

5. Verify that the VCSs that your application uses are started.

They should be started by default, but if they are not, start them. See
"Starting/Stopping a VCS" for more information.

6. Start your application.

7. (Optional) If your application uses the SOAP-based application interfaces and you
want to see the SOAP content for each VCS request, do the following:

a. In the ATE, select Settings from the File menu.

The Settings dialog box appears.

b. Select the Print SOAP content for each VCS request check box.

The SOAP content is displayed in the command window from which you
started the ATE. You must have started the ATE from a command window to
use this option.

8. Use the application to send and receive messages and notifications to and from the
elements that you created in step 4.

Substituting Credentials in Your Application

Testing Applications with the Application Test Environment 35-3

9. Check results in the ATE (to verify that messages were received) and in your
application.

Test with Virtual Communication Service Configuration Settings
To test your application’s behavior with different configuration settings:

1. Configure each VCS that corresponds to a communication service that your
application uses.

See "Configuring VCS Settings" for more information.

2. Repeat the steps outlined in Basic Testing with different VCS configuration
settings.

Test with Account Credentials
To test requests with credentials that are different from the defaults:

1. Set up one or more accounts using the Account Manager.

See "Managing Accounts" for more information.

2. Change the credentials in the headers of your application’s requests to the
credentials of the accounts that you set up in the ATE.

3. Repeat the steps outlined in Basic Testing with the credentials of your ATE
accounts.

Test Policy Enforcement
To test simple policy enforcements:

1. Set up one or more value and rate enforcements using the SLA Manager.

See "Managing Service-Level Agreements" for more information.

2. Repeat the basic testing outlined in Basic Testing by sending requests that violate
the SLA enforcements that you set up in the ATE.

Substituting ATE Endpoints in Your Application
To use the ATE, you must change the endpoints in your application to point to the ATE
rather than to Services Gatekeeper. See "ATE Endpoints" for the ATE endpoints for the
SOAP and RESTful interfaces.

Substituting Credentials in Your Application
By default, the ATE enforces security.

Applications sending requests to the VCS must supply a user name/password
combination in the SOAP header or Hypertext Transfer Protocol (HTTP) basic
authentication credentials that correspond to those in your application account in the
ATE.

The default credentials are:

■ User Name=domain_user

■ Password=domain_user

Setting Up and Using Map Elements

35-4 Services Gatekeeper Application Developer's Guide

Your network operator may have set up a special ATE account for your application
and configured your ATE for those credentials.

You can also create your own accounts. See "Managing Accounts" for more
information.

Setting Up and Using Map Elements
The ATE provides three graphic elements to test applications:

■ Phone

■ Mobile elements that are not phones (truck)

■ Circular notification area

You add elements from the elements panel. After you have added elements to the
map, you can move them by dragging around the map. Figure 35–1 shows an elements
panel containing a a phone element, a circular notification area element, and a truck
element.

Figure 35–1 Elements Panel

If the elements panel is not currently displayed, you can display it.

To display the elements panel:

1. Click one of the small black triangles at the edge of one of the panels that is
displayed.

2. Click the Elements tab if it is not already selected.

Setting Up and Using Map Elements

Testing Applications with the Application Test Environment 35-5

Adding and Using Phone Elements
The phone element represents a mobile terminal that can send and receive messages.
You use a phone element to test how your application handles incoming and outgoing
messages to and from mobile phones.

Every phone has an address, a position, and a status.

Adding a Phone Element
To add a phone to the map from the elements panel:

1. Click the + symbol in the bottom left corner of the elements panel.

The Add Map Element dialog box appears.

2. From the menu, select Phone.

3. Click OK.

The Properties dialog box appears, with some default values.

4. In the address field, enter a value that is unique in the ATE in the tel: address
format: for example tel: 1234.

5. From the status menu, select the status of the phone. Valid values are Busy,
Reachable and Unreachable.

6. If desired, set the position of the phone by entering values in the longitude,
latitude, and altitude fields.

For these values, the ATE considers a maximum precision of four positions after
the decimal point.

You can also set the latitude and longitude by dragging the phone element across
the map after it has been added.

Changing the phone element’s position in the Properties dialog box may cause the
phone to move off the map. You can still access the phone from the elements
panel, even when it is not visible on the map.

7. Click OK.

The phone is added. If its position is within the coordinates of the map, it appears
on the map.

Changing a Phone Element´s Properties
To change a phone element´s properties:

1. Access the phone´s properties by doing one of the following:

■ In the elements panel, double-click the phone element.

■ In the elements panel, select the phone element and click the pencil symbol in
the bottom left corner of the elements panel.

The Properties dialog box appears.

2. Enter the values that you want to change.

See "Adding a Phone Element" for information about the individual fields.

3. Click OK.

Removing a Phone Element
To remove a phone, do one of the following:

Setting Up and Using Map Elements

35-6 Services Gatekeeper Application Developer's Guide

■ In the map, right-click on the phone and select Remove.

■ In the elements panel, select the phone and click the - symbol in the bottom left
corner of the elements panel.

Sending an SMS from a Phone Element
You can send an Short Message Service (SMS) message from a phone element that is
on the map.

 To send an SMS message:

1. Right-click the phone element that is sending the message and select Send SMS.

The SmsMessage dialog appears.

2. In the sourceAddress field, enter the address of the terminal sending the message.

The default is the phone element that you clicked, but you can enter a different
address in this field.

3. In the destinationAddress field, enter the terminal/short code of the terminal that
will receive the message.

4. In the message field, enter the text of the message.

5. Click OK.

Sending an MMS from a Phone Element
You can send an Multimedia Messaging Service (MMS) message from a phone element
that is on the map.

To send an MMS message:

1. Right-click the phone element that is sending the message and select Send MMS.

The MmsMessage dialog appears.

2. In the sourceAddress field, enter the address of the terminal sending the message.

The default is the phone element that you clicked, but you can enter a different
address in this field.

3. In the destinationAddress field, enter the terminal/short code of the terminal that
will receive the message.

4. In the subject field, enter the subject line of the message.

5. In the priority field, enter the priority of the message.

This can be any text.

6. Click OK.

Sending a Binary SMS from a Phone Element
You can send a Binary SMS from a phone element that is on the map.

The binary data must be in hexadecimal format.

To send a Binary SMS:

1. Right-click the phone element that is sending the message and select Send Binary
SMS.

The SmsBinaryMessage dialog appears.

2. In the sourceAddress field, enter the address of the terminal sending the message.

Setting Up and Using Map Elements

Testing Applications with the Application Test Environment 35-7

The default is the phone element that you clicked, but you can enter a different
address in this field.

3. In the destinationAddress field, enter the terminal/short code of the terminal that
will receive the message.

4. In the byteMessage field, enter message data formatted according to the TP-User
Data (TP-UD), excluding the TP-User-Data-Header--Indicator (TP UDHI).

5. In the dcs_hex field, enter the data encoding schema used to encode the binary
data.

For more information about data encoding. see the data_encoding section of the
SMPP v 3.4 specification.

6. In the protocolId_hex field, enter the protocol identifier.

Table 35–1 Data Encoding Schemes

Bits 7 6 5 4 3 2 1 Meaning

0 0 0 0 0 0 0 0 SMSC Default Alphabet

0 0 0 0 0 0 0 1 IA5 (CCITT T.50)/ASCII (ANSI X3.4)

0 0 0 0 0 0 1 0 Octet unspecified (8-bit binary)

0 0 0 0 0 0 1 1 Latin 1 (ISO-8859-1)

0 0 0 0 0 1 0 0 Octet unspecified (8-bit binary)

0 0 0 0 0 1 0 1 JIS (X 0208-1990)

0 0 0 0 0 1 1 0 Cyrllic (ISO-8859-5)

0 0 0 0 0 1 1 1 Latin/Hebrew (ISO-8859-8)

0 0 0 0 1 0 0 0 UCS2 (ISO/IEC-10646)

0 0 0 0 1 0 0 1 Pictogram Encoding

0 0 0 0 1 0 1 0 ISO-2022-JP (Music Codes)

0 0 0 0 1 0 1 1 reserved

0 0 0 0 1 1 0 0 reserved

0 0 0 0 1 1 0 1 Extended Kanji JIS(X 0212-1990)

0 0 0 0 1 1 1 0 KS C 5601

0 0 0 0 1 1 1 1 reserved

1 0 1 1 1 1 1 1 reserved

1 1 0 0 x x x x GSM MWI control. See:

http://www.etsi.org/deliver/etsi_gts/03/0338/05.03.00_
60/gsmts_0338v050300p.pdf

1 1 0 1 x x x x GSM MWI control. See:

http://www.etsi.org/deliver/etsi_gts/03/0338/05.03.00_
60/gsmts_0338v050300p.pdf

1 1 1 0 x x x x reserved

1 1 1 1 x x x x GSM message class control. See:

http://www.etsi.org/deliver/etsi_gts/03/0338/05.03.00_
60/gsmts_0338v050300p.pdf

Setting Up and Using Map Elements

35-8 Services Gatekeeper Application Developer's Guide

The protocol identifier specifies the higher layer protocol being used or indicates
networking with a certain type of telematic device. For more information, see
3GPP TS 23.040 V6.5.0, Technical realization of the Short Message Service (SMS) at:

http://www.3gpp.org/ftp/Specs/html-info/23040.htm

7. Click OK.

Sending an Example Message from a Phone Element
This is identical to the procedure for sending an SMS.

See "Sending an SMS from a Phone Element" for more information.

Reading a Phone Element´s Received Messages
If a phone element has received messages, from another element on the map or from
your application, a number next to the phone element indicates the number of
messages in its inbox.

To read a phone element´s received messages:

■ Right-click the phone element and select Read Messages.

The phone element´s messages are displayed.

You can also view a log of the messages received by all the phone elements in the
Messages tab of the elements panel.

Deleting a Phone Element´s Messages
To delete all of a phone element´s messages:

1. Right-click the phone element for which you want to delete messages and select
Delete Messages.

The Delete Messages dialog box appears.

2. Select Yes.

To delete a selected message:

1. Right-click the phone element and select Read Messages.

The phone element´s messages are displayed.

2. Select the message that you want to delete.

3. Click the trash icon in the lower right corner of the message window.

The message is deleted.

Setting a Phone Element´s Status
To set a phone element´s status:

1. Right-click the phone element in the map.

2. Select Set Status.

A StatusMessage menu appears, displaying a status menu.

3. In the status menu, select the status of the phone. Valid values are Busy,
Reachable and Unreachable.

You can also set a phone element´s status in the phone element´s Properties dialog box.
See "Changing a Phone Element´s Properties" for more information.

Setting Up and Using Map Elements

Testing Applications with the Application Test Environment 35-9

Reading a Phone Element’s Third Party Call Status
The Third Party Call VCS logs the call status of successful third party calls.

To read the log of third party calls:

1. Right-click the phone element on the map.

2. Select Read Call Status . . .

The Call Information window appears.

Figure 35–2 Third Party Call Log

The three status conditions that can be logged for successful third party calls are:

■ CallInitial: The call has been place but not yet connected.

■ CallConnected: The call has connected.

■ CallTerminated: The call has terminated.

If the caller or callee terminal status is Busy or Unreachable, the third party call is not
established and not recorded in the log. See "Setting a Phone Element´s Status" for
information about setting the terminal status.

The call log holds a maximum of ten calls. If more than ten calls are made, calls are
automatically deleted from the log on a first-in first-out (FIFO) basis. The user can also
manually delete a call from the log by selecting it and then clicking trash icon in lower
left corner of the Call Information window.

Adding and Using Mobile Elements That Are Not Phones
The truck element symbolizes a mobile terminal that is not a phone. Typically it is
used to represent a vehicle that contains a flat panel capable of receiving and
displaying messages to a driver, but it can be used to represent other mobile devices as
well.

A truck element has the same characteristics as a phone element.

To add, remove, configure, and use a truck element, follow the instructions for phone
elements in "Adding and Using Phone Elements".

Adding and Using Circular Notification Area Elements
The circular notification area element represents the geographic area for which the
application wishes to receive notifications when a mobile terminal enters or leaves the

Setting Up and Using Map Elements

35-10 Services Gatekeeper Application Developer's Guide

area. The ATE supports multiple notification areas on the same map. Notification areas
can overlap.

Adding a Circular Notification Area
To add a circular notification area to the map:

1. Click the + symbol in the bottom left corner of the elements panel.

The Add Map Element dialog box appears.

2. Select Circular Notification Area from the menu.

3. Click OK.

The Circular Notification Area Properties dialog box appears, with some default
values.

4. In the id field, enter a unique identifier for the notification area.

5. In the addresses field, enter a comma-separated lists of the addresses for which
notification is requested. The format is "tel:1234,tel:2345,tel:3456, . . .".

6. In the trigger field, specify whether notification is requested when terminals enter
the area or when they leave the area. Valid values are MS_ENTERING and MS_
LEAVING.

7. Optional settings:

a. Set the position of the area by entering values in the longitude and latitude
fields. These coordinates represent the center of the notification area.

For these values, the ATE considers a maximum precision of four positions
after the decimal point.

You can change the latitude and longitude of a notification area by dragging
the area element across the map after it has been created.

Changing the position may cause the notification area to move off the map.
You can still access the notification area from the elements panel, even when it
is not visible on the map.

b. Set the size of the notification area by entering a value in the radius field.

The ATE considers a maximum precision of four positions after the decimal
point.

c. Enter the frequency (in seconds) at which periodic location notifications
should be sent to the application in the interval field.

d. Enter the maximum number of notifications to be sent to the application in the
count field. This value represents the number of notifications sent in total, not
the number of notifications per mobile terminal address.

Changing a Circular Notification Area´s Properties
To change a notification area´s properties:

1. To access the notification area´s properties do one of the following:

■ Double-click the notification area´s element in the elements panel.

■ Select the notification area´s element in the elements panel and click the pencil
symbol in the bottom left corner of the elements panel.

The Properties dialog box appears.

Displaying a Custom Map

Testing Applications with the Application Test Environment 35-11

2. Enter the values that you want to change.

See "Adding a Circular Notification Area" for information about the individual
fields.

Removing a Circular Notification Area
To remove a circular notification area, do one of the following:

■ In the map, right-click on the edge of the circular notification area and select
Remove.

■ In the elements panel, select the circular notification and click the - symbol in the
bottom left corner of the elements panel.

Displaying a Custom Map
You can substitute a map of your choice for the default map.

The map must be in BMP, JPEG, or PNG format.

You need to know the geographic coordinates of at least two diagonally-opposite
corners of the map to be able to set the map´s latitude and longitude ranges.

For the latitude and longitude values that define the edges of the map, the ATE
considers a maximum precision of four positions after the decimal point.

Figure 35–3 shows a typical custom map, displaying a truck and mobile device.

Figure 35–3 Custom Map with Coordinates Displayed

If the map panel is not currently displayed, you can display it by clicking one of the
small black triangles at the edge of one of the panels that is displayed.

You add a custom map from the map panel.

To display a custom map:

Configuring, Starting and Stopping the VCS

35-12 Services Gatekeeper Application Developer's Guide

1. Click the following symbol, which appears in the lower-right corner of the map
panel.

The Map Properties dialog box appears.

2. In left Longitude field, enter the lowest longitude value for an east/west edge of
the map.

3. In the right Longitude field, enter the highest longitude for the other east/west
edge of the map.

4. In the left Latitude field, enter the lowest latitude value for a north/south edge of
the map.

5. In the right Latitude field, enter the highest latitude value for the other
north/south edge of the map.

6. If you want the values of the coordinates set in the preceding steps to be displayed
in the map, check the Show Ranges check box.

7. Select the Custom Image option.

A file browser appears.

8. Navigate to the file that contains your map image.

9. Select the map image file.

10. Click OK.

The custom map appears in the map panel.

You can return to the default map by selecting the Default Image option in the Map
Properties dialog box.

Any elements created after the substitution of a custom map will have their default
coordinates adjusted to the coordinates of the new map.

Configuring, Starting and Stopping the VCS
You manipulate the VCS used by your application in the VCS panel.

Figure 35–4 shows the VCS panel with the Short Messaging/Controls tab selected.

Figure 35–4 VCS Panel

Configuring, Starting and Stopping the VCS

Testing Applications with the Application Test Environment 35-13

If the VCS panel is not currently displayed, you can display it by clicking one of the
small black triangles at the edge of one of the panels that is displayed.

Each individual VCS is represented by a tab in the VCS panel. Choose the tabs that
correspond to the services used by your application to access a particular VCS´s
settings.

Starting/Stopping a VCS
By default, all VCSs are started when the ATE starts.

You can stop and restart a VCS using the Start and Stop buttons that appear in the
Session Manager tab and in the Control sub-tabs displayed for the other VCSs.

VCS MBean Object and Class Names
If you want to connect your application to a VCS programmatically, you need to know
the full paths of the MBean object and class names.

To view the object name and class name of any VCS:

1. Click a VCS tab.

2. Click the Configuration tab.

3. Click any attribute or operation in the VCS tab.

A panel appears displaying fields for configuration.

4. Click this icon, which appears at the top of the configuration panel when an
operation or attribute is selected:

A window displaying the VCS´s object name and class name appears.

Configuring VCS Settings
This section describes the attributes that you can configure and the operations you can
perform for a specific VCS.

These settings are for the purpose of testing the application´s behavior in the ATE and
do not necessarily represent attributes and operations in Services Gatekeeper or in the
application.

Configuring the Short Messaging VCS
To configure the Short Messaging VCS:

1. In the VCS panel, click the Short Messaging tab.

The Short Messaging panel appears.

2. Click the Configuration tab.

The Short Messaging VCS´s list of configuration options appears.

3. Select the operation that you want to perform.

A panel displaying fields for the operation´s input parameters and, if appropriate,
a field for the operation´s output appears.

Configuring, Starting and Stopping the VCS

35-14 Services Gatekeeper Application Developer's Guide

4. Enter any input parameters required by the operation.

See "Configuring Offline Notifications for SMS Messages" below.

5. Click the green triangle, which performs the operation.

Configuring Offline Notifications for SMS Messages
The Short Messaging VCS supports operations for configuring how offline
notifications are handled.

An offline notification is a message received by the ATE when the application is
offline. The ATE saves the message. When the application comes online and polls for
mobile-originated messages, the ATE forwards the saved messages to the application
if offline notification is enabled.

disableReceiveSms
Disables offline notification of a received SMS.

If offline notification is disabled, the ATE does not save or forward mobile-originated
messages received while the application was offline.

enableReceiveSms
Enables offline notification of a received SMS addressed to a specified shortcode.

The ATE notifies the application when it has received a message addressed to the
specified shortcode in which the message contains a match to the specified criteria. If
no criteria are specified, the ATE forwards all messages received by the specified
shortcode while the application was offline.

listOfflineNotifications
Displays a list of registered offline notifications.

Configuring the Multimedia Messaging VCS
To configure the Multimedia Messaging VCS:

1. In the VCS panel, click the Multimedia Messaging tab.

The Multimedia Messaging panel appears.

2. Click the Configuration tab.

The Multimedia Messaging VCS´s list of configuration options appears.

3. Select the operation that you want to perform.

Table 35–2 Parameters for disableReceiveSms

Parameter Description

Correlator The id value returned by the corresponding enableReceiveSms
operation.

Table 35–3 Parameters for enableReceiveSms

Parameter Description

Shortcode Destination address to which the message was sent.

Criteria Optional. Text to match in the message. If the text matches, the
application receives the notification.

Configuring, Starting and Stopping the VCS

Testing Applications with the Application Test Environment 35-15

A panel displaying fields for the operation´s input parameters and, if appropriate,
a field for the operation´s output appears.

4. Enter any input parameters required by the operation.

Operations and parameters are listed below.

5. Click the green triangle, which performs the operation.

Configuring Offline Notifications for MMS Messages
The Multimedia Messaging VCS supports operations for configuring how offline
notifications are handled.

An offline notification is a message received by the ATE when the application is
offline. The ATE saves the message. When the application comes online and polls for
mobile-originated messages, the ATE forwards the messages to the application if
offline notification is enabled.

disableReceiveMms
Disables off-line notification of a received MMS.

If offline notification is disabled, the ATE does not save or forward mobile-originated
messages received while the application was offline.

enableReceiveMms
Enables off-line notification of a received message sent to a specified short code. This is
used by applications that poll for mobile-originated messages.

The ATE notifies the application when it has received a message addressed to the
specified shortcode in which the message contains a match to the specified criteria. If
no criteria are specified, the ATE forwards all messages received by the specified
shortcode while the application was offline.

listOfflineNotifications
Displays a list of registered offline notifications.

Configuring the Terminal Location VCS
To configure the Terminal Location VCS:

1. In the VCS panel, click the Terminal Location tab.

The Terminal Location panel appears.

Table 35–4 Parameters for disableReceiveMms

Parameter Description

Correlator The value returned by the corresponding enableReceiveMms
operation.

Table 35–5 Parameters for enableReceiveMms

Parameter Description

Shortcode Destination address to which the message was sent.

Criteria Optional. Text in the message to match against. If the text
matches the first word in the message, the application receives
the notification.

AppInstanceID Application instance identifier of the application instance
receiving the notification.

Configuring, Starting and Stopping the VCS

35-16 Services Gatekeeper Application Developer's Guide

2. Click the Configuration tab.

The Terminal Location VCS´s list of configuration options appears.

3. Click the attribute to configure.

A panel displaying the attribute´s check box or field appears.

4. Set the attribute.

Attributes for the Terminal Location VCS are listed below.

5. If you want to restore all the settings to their default values, do the following:

a. Click the resetToDefault operation.

The operation´s panel appears.

b. Click the green triangle in the panel, which re-sets the attributes to their
default values.

The Terminal Location VCS supports the following attributes:

AltitudeAlwaysAvailable
If selected, altitude information is always available for all location responses.

AltitudeSometimesAvailable
If selected, altitude information is sometimes available for some or all location
responses.

GeographicalNotificationAvailable
If selected, notifications can be set up based on geographical coordinates.

MaximumAddresses
Maximum number of addresses for which a notification can be requested.

MaximumCount
Maximum number of notifications that can be requested.

If zero or blank, there is no maximum. In this case, select UnlimitedCountAllowed
also.

MaximumNotificationDuration
Maximum amount of time (in seconds) for which a notification can be set up.

MaximumNotificationFrequency
Maximum rate of notification delivery. Can also be viewed as the minimum interval
(in seconds) between notifications.

MinimumAcceptableAccuracy
Minimum distance from the terminal that the application considers useful. The unit
applies to distance (for example, meters or feet).

MinimumAccuracy
Minimum distance from the terminal for which the application wishes to receive
location information. The unit applies to distance (for example, meters or feet).

MinimumTrackingAccuracy
Minimum tracking accuracy refers to the accuracy of the tracking technology, not to
the accuracy of the notification area. For example, a low value is appropriate to a
device tracking a person entering a building, while a high value would be appropriate
to a device tracking a plane landing in a city.

Configuring, Starting and Stopping the VCS

Testing Applications with the Application Test Environment 35-17

The unit applies to distance (for example, kilometers or feet).

PeriodicNotificationAvailable
If selected, periodic notification can be set up for a set of terminals at an
application-defined interval.

UnlimitedCountAllowed
If selected, an unlimited notification count is allowed.

Configuring the Terminal Status VCS
To configure the Terminal Status VCS:

1. In the VCS panel, click the Terminal Status tab.

The Terminal Status panel appears.

2. Click the Configuration tab.

The Terminal Status VCS´s list of configuration options appears.

3. Click the attribute that you want to configure.

A panel displaying the attribute´s check box or field appears.

4. Set the attribute.

Attributes for the Terminal Status VCS are listed below.

5. If you want to restore all the settings to their default values:

a. Click the resetToDefault operation.

The operation´s panel appears.

b. Click the green triangle in the panel, which re-sets the attributes to their
default values.

The Terminal Status VCS supports the following attributes:

BusyAvailable
If selected, busy can be returned as a status.

If not checked and the application includes the busy criterion in a Start Notification
request, the client is not notified of the terminal’s busy status and the VCS throws a
policy exception.

MaximumAddresses
Maximum number of addresses for which a notification can be set up or statuses be
retrieved.

MaximumCount
Maximum number of notifications that can be requested.

If zero or blank there is no maximum. In this case, select UnlimitedCountAllowed
also.

MaximumNotificationDuration
Maximum amount of time (in seconds) for which a notification can be set up.

MaximumNotificationFrequency
Maximum rate of notification delivery. Can also be viewed as the minimum interval
(in seconds) between notifications.

Configuring, Starting and Stopping the VCS

35-18 Services Gatekeeper Application Developer's Guide

UnlimitedCountAllowed
If selected, an unlimited notification count is allowed.

Configuring the Payment VCS
To configure the Payment VCS:

1. In the VCS panel, click the Payment tab.

The Payment panel appears.

2. Click the Configuration tab.

The Payment VCS´s list of configuration options appears.

3. Click the attribute that you want to configure.

A panel displaying the attribute´s check box or field appears.

4. Set the attribute.

Attributes for the Payment VCS are listed below.

5. Select the operation that you want to perform.

A panel displaying fields for the operation´s input parameters and, if appropriate,
a field for the operation´s output appears.

6. Enter any input parameters required by the operation.

Operations and parameters are listed below.

7. Click the green triangle, which performs the operation.

The Payment VCS supports the following attributes:

ExpiredTime
Duration of a reservation, in milliseconds.

The default is -1, which indicates that no duration is set.

SplitSupport
If checked, the chargeSplitAmount request is supported.

SplitNumbers
Maximum number of end users that can be charged in a single chargeSplitAmount
request.

The Payment VCS supports the following operations:

createUserAccount
Creates a user account.

listAllReservationRecords
Lists all the reservation records.

listAllUserAccounts
Lists all the user accounts.

Table 35–6 Parameters for createUserAccount

Parameter Description

username User name for the account

originalAmount Original amount of money in the account

Configuring, Starting and Stopping the VCS

Testing Applications with the Application Test Environment 35-19

listReservationRecord
Lists the reservation record detail for the specified session.

listUserAccount
Lists user account information, including the account’s current balance and original
amount, for the specified account.

listUserChargeRecord
Lists the charge record detail for the specified account.

refreshPaymentUI
Refreshes the Payment VCS user interface.

resetToDefault
Resets all the Payment VCS settings to their default values.

Configuring the Third Party Call VCS
To configure the Third Party Call VCS:

1. In the VCS panel, click the Third Party Call tab.

The Third Party Call panel appears.

2. Click the Configuration tab.

The Third Party Call VCS´s list of configuration options appears.

3. Click the attribute that you want to configure.

A panel displaying the attribute´s check box or field appears.

4. Set the attribute.

Attributes for the Third Party call VCS are listed below.

5. If you want to restore all the settings to their default values:

a. Click the resetToDefault operation.

The operation´s panel appears.

b. Click the green triangle in the panel, which re-sets the attributes to their
default values.

The Third Party Call VCS supports the following attributes:

Table 35–7 Parameters for listReservationRecord

Parameter Description

reservatiionID Reservation ID for the reservation records to be described

Table 35–8 Parameters for listUserAccount

Parameter Description

userID UserID for the account to be described

Table 35–9 Parameters for listUserChargeRecord

Parameter Description

userID User ID for the charge record to be described

Troubleshooting

35-20 Services Gatekeeper Application Developer's Guide

ChargingAllowed
If selected, charging can be applied to calls.

StatusRententionTime
The length of time, in seconds, to retain status after the call has terminated.

Configuring the Binary Short Messaging VCS
To configure the Binary Short Messaging VCS:

1. In the VCS panel, click the Binary Short Messaging tab.

The Binary Short Messaging panel appears.

2. Click the Configuration tab.

The Binary Short Messaging VCS´s configuration option appears.

3. Click the green triangle, which performs the operation.

The Binary Short Messaging VCS supports the following operation.

listOfflineNotifications
Displays a list of registered offline notifications.

An offline notification is a message received by the ATE when the application is
offline. The ATE saves the message. When the application comes online and polls for
mobile-originated messages, the ATE forwards the saved messages to the application
if offline notification is enabled.

Troubleshooting
If your application does not perform as expected (for example, your messages and
notifications are not received), check the exceptions thrown by the failing operation.

Exceptions with an SVC prefix indicate an error against the service. Exceptions with a
POL prefix indicate a violation of a policy enforcement. See "Managing Service-Level
Agreements" for information about setting policy enforcements in a VCS.

See "Virtual Communication Services Exception Codes" for the lists of exception codes
for each VCS.

Simple Mobile-Terminated Test
A simple example is to test a Send Sms request from your application to a phone
element in the ATE.

To test Send Sms:

1. In your application, change the endpoint for the Send Sms request to point to the
ATE.

If you are using the SOAP interface, see Table A–5, " Endpoints for SOAP
SendMessage Interface" for the endpoint. If you are using the RESTful interface,
see Table A–21, " Endpoints for RESTful Send SMS Operation".

2. Start the SDK.

3. Add a phone element to the map.

See "Adding a Phone Element" for information about adding a phone element.

Managing Accounts

Testing Applications with the Application Test Environment 35-21

4. Click the Short Messaging VCS tab to verify that the Short Messaging VCS is
running. Click the Start button if it is not running.

5. Start the application.

6. From the application, send an SMS to the phone element.

7. Read the received message in the ATE.

See "Reading a Phone Element´s Received Messages" for more information.

If the message text does not appear in the ATE, check the exceptions associated
with the Send Sms request to identify the source of the problem. See "Short
Messaging Exception Codes" for more information.

You can use this procedure as a general outline for testing mobile-terminated requests.

Simple Mobile-Originated Test
A simple example is to test a Receive Sms request by sending an SMS from a phone
element in the ATE to an address in your application.

To test Receive Sms:

1. In your application, change the endpoint for the Receive Sms request to point to
the ATE.

If you are using the SOAP interface, see Table A–7, " Endpoints for SOAP
ReceiveMessage Interface" for the endpoint. If you are using the RESTful interface,
see Table A–24, " Endpoints for RESTful Get Received SMS Operation".

2. Start the SDK.

3. Add a phone element to the map.

See "Adding a Phone Element" for information about adding a phone element.

4. Click the Short Messaging VCS tab to make sure that the Short Messaging VCS is
running. Click the Start button if it is not running.

5. Start the application.

6. From the phone element, send an SMS to an address defined in the application.

7. Fetch the SMS in the application using the Receive Sms request.

If the message is not available in the application, check the exceptions associated
with the Receive Sms request to identify the source of the problem. See "Short
Messaging Exception Codes" for more information.

You can use this procedure as a general outline for testing mobile-originated requests.

Managing Accounts
The ATE is configured with a default application account: domain_user/domain_user.

You can remove this default account.

You can also set up additional accounts.

To set up an account:

1. In the account manager/sla manager panel, click the Account Manager tab.

2. Click the + symbol.

Managing Service-Level Agreements

35-22 Services Gatekeeper Application Developer's Guide

A new row for the account information appears with the default values
name/password.

3. Overwrite the name with the account´s user name in the User Name field.

4. Overwrite the password with the account´s password in the Password field.

The account is set up. An application should pass the user name/password values
for its account before it submits a request to a secure VCS.

To modify an account´s user name or password:

1. In the account manager/sla manager panel, click the Account Manager tab.

2. Overwrite the values that you want to change.

To remove an account:

1. In the account manager/sla manager panel, click the Account Manager tab.

2. Select the account that you want to remove.

3. Click the - symbol.

The account is removed.

Managing Service-Level Agreements
You can set up simple service-level agreement (SLA) enforcement for VCS requests to
use in your tests. The ATE supports two types of enforcement:

■ Value enforcement: rejects a request based on a specific value in the request; for
example: the subject of an SMS contains the string "foo"

■ Rate enforcement: rejects a request based on a rate value: for example, a specified
number of requests per minute

To enable/disable simple SLA enforcement:

1. In the account manager/sla manager panel, click the SLA Manager tab.

2. Do one of the following:

■ To enable SLA enforcement, select the Enable SLA enforcements check box.

■ To disable SLA enforcement, select the Disable SLA enforcements check box.

All SLA enforcements set up for the VCS are either enabled or disabled as a group.
You cannot selectively enable or disable a subset of them.

Managing Value Enforcements
To set up a value enforcement:

1. In the account manager/sla manager panel, click the SLA Manager tab.

2. Click the Value Enforcements tab.

3. Click the + symbol.

4. In the Path field, enter the element in the VCS request against which the value will
be enforced; for example: SendMessage.subject,
SendMessage.charging.currency, GetLocation.maximumAge. No spaces are
permitted in the Path field.

Managing Service-Level Agreements

Testing Applications with the Application Test Environment 35-23

If you do not know the exact name of the element, click the magnifying glass icon
next to the Path field. A browser appears in which you can locate the path by
expanding the entry for the appropriate service.

Figure 35–5 Browser for Element Paths

5. From the Operation menu, select the operation to be applied. Valid values are:
CONTAINS, DOES_NOT_CONTAIN.

6. In the Value field, enter the value against which the element will be tested.

Figure 35–6 shows two value enforcements in the SLA Manager. The first allows
messages in which the subject contains the word urgent. The second allows messages
in which the charging currency does not contain renminbi.

Figure 35–6 SLA Manager Value Enforcements Tab

To modify a value enforcement:

1. In the account manager/sla manager panel, click the SLA Manager tab.

2. Overwrite the values that you want to change.

To remove a value enforcement:

1. In the account manager/sla manager panel, click the SLA Manager tab.

2. Click the Value Enforcements tab.

Monitoring Payment Accounts

35-24 Services Gatekeeper Application Developer's Guide

3. Select the value enforcement that you want to remove.

4. Click the - symbol.

The enforcement is removed.

Managing Rate Enforcements
To set up a rate enforcement:

1. In the account manager/sla manager panel, click the SLA Manager tab.

2. Click the Rate Enforcements tab.

3. Click the + symbol.

4. In the Request Name field, select the request for which the enforcement will be
enforced. No spaces are permitted in the Request field.

5. In the Request Count field, enter an integer representing the maximum number of
requests allowed in a specified time period.

6. In the Time Amount field, enter an integer representing the time period against
which the request count is applied.

7. From the Time Unit menu, select the unit of time to which the time amount
applies. Valid values are SECONDS, MINUTES, or HOURS.

Figure 35–7 shows a rate enforcement in the SLA Manager. It allows a maximum of 5
sendSms requests every 10 seconds.

Figure 35–7 SLA Manager Rate Enforcements Tab

Monitoring Payment Accounts
You can test the charging functionality in your application by monitoring changes in
the Payment Account and Payment Account Detail tabs.

To test charging:

1. Create one or more subscriber accounts using the createUserAccount operation in
the Payment VCS. See "createUserAccount" for more information.

Or use a default account displayed in the Payment Account tab. The Payment VCS
creates a subscriber account for every phone element in the ATE.

2. In your application, charge and refund the subscriber accounts created in step 1
using various Payment requests such as chargeAmount, refundAmount, and
chargeSplitAmount.

3. Click the Payment Account tab.

Example Module

Testing Applications with the Application Test Environment 35-25

The amounts in the Credits column reflect the resulting balance of the charges and
refunds made by the application for each account.

4. Click the Payment Account Detail tab.

Each charge and refund made by the application against subscriber accounts is
logged here.

Example Module
A VCS example module is deployed in the SDK.

You can find it in the ocsg_sdk_5.1/lib/modules subdirectory of your SDK installation.

Example Module

35-26 Services Gatekeeper Application Developer's Guide

36

Customizing the Application Test Environment 36-1

36Customizing the Application Test Environment

This chapter describes how to customize the Oracle Communications Services
Gatekeeper Application Test Environment (ATE) using a configuration file.

Understanding Customizing the ATE
Network operators can use a startup configuration file to create a custom version of
the ATE that reflects the services and defaults that they want to expose to application
developers. Once created, you can distribute the configuration file to any number of
systems, and ATEs that you start on those systems have identical configurations.

For information on incorporating new custom communication services into the ATE,
see the discussion of the virtual communication service module for the ATE in Services
Gatekeeper Extension Developer's Guide.

Understanding the ATE Configuration File
To customize the ATE, create a configuration file that defines the version to distribute.
This configuration sets the appearance of the ATE on its initial startup.

To create an ATE configuration file:

1. Create a file named startup-configuration.xml.

2. Save this file in the product installation directory of the ATE.

If a startup-configuration.xml file exists in the product installation directory of the
ATE, the ATE takes on the appearance and behavior configured by the elements in that
file. Elements not included in this configuration file retain their default appearance
and behavior.

If no startup-configuration.xml file exists in the product installation directory, the
entire default configuration is used.

You can use a different filename for startup-configuration.xml by overriding the
oracle.ocsg.pte.startup.config system property.

Example Startup Configuration File
The following is a sample startup-configuration.xml file that you can use as a basis for
creating your own. The rest of this chapter explains the various elements in detail.

<config xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="http://www.oracle.com/ns/ocsg/50/at">

 <general>

Understanding the ATE Configuration File

36-2 Services Gatekeeper Application Developer's Guide

 <title>A new title for the ATE</title>
 <version>7.0</version>
 <copyright>(c) 2010 My Company</copyright>
 <icon>anewicon.gif</icon>
 </general>

 <account visible="true">
 <users>
 <user name="domain_user" password="domain_user"/>
 <user name="bob" password="foo"/>
 </users>
 </account>

 <sla visible="true">
 <enforcements enabled="true">
 <value path="sendMessage.subject" operation="contains" value="world"/>
 <value path="sendMessage.charging.currency" operation="does_not_contain"
value="euro"/>
 <request name="sendSms" count="5" timeAmount="10" timeUnit="seconds"/>
 </enforcements>
 </sla>

 <payment visible="false"/>

 <vcs>
 <mbeans>
 <mbean name="px21_tl" attribute="MaximumCount" value="7"/>
 </mbeans>
 <visible>
 <module
className="oracle.ocsg.pte.impl.vcs.sessionmanager.SessionManagerModule"
title="Session Manager"/>
 <module className="oracle.ocsg.pte.impl.vcs.px21_sms.SmsModule" title="Short
Messaging"/>
 <module className="oracle.ocsg.pte.impl.vcs.px21_tl.TerminalLocationModule"
title="Terminal Location"/>
 </visible>
 </vcs>

</config>

Configuration Element Order
The top-level configuration elements must appear in the order in which they appear in
the example.

The order is:

1. <general>

2. <account>

3. <sla>

4. <payment>

5. <vcs>

When Configuration Elements Are Read
The ATE reads most configuration elements when the ATE starts.

Customizing ATE General Characteristics

Customizing the Application Test Environment 36-3

Exceptions are the data elements: <users> inside the <account> element and
<enforcements>, inside the <sla> element. The ATE reads <users> and
<enforcements> only on installation of the ATE.

To force the ATE to use the elements in the configuration file without reinstalling the
ATE:

1. Stop the ATE.

2. Delete the sdk_home_dir/product_installation_dir/runtime/pte.dat file.

3. Edit the startup-configuration.xml file with your changes.

4. Save the file.

5. Start the ATE.

Customizing ATE General Characteristics
You can change the following general characteristics of the ATE in the <general>
element in the startup-configuration.xml file.

■ title

■ version

■ copyright

■ icon

The title, version, and icon appear in the ATE title bar and in the About window
accessed from the ATE´s Help menu item.

The copyright appears in the About window.

To customize general characteristics of the ATE:

1. Create a <general> element in the startup-configuration.xml file, or use an
existing <general> element.

2. Do any or all of the following:

■ To change the title of the ATE, create a <title> element inside the <general>
element and enter your title for the ATE between the <title> element’s
delimiters.

■ To change the version of the ATE, create a <version> element inside the
<general> element and enter your version string between the <version>
element’s delimiters.

■ To change the copyright of the ATE, create a <copyright> element inside the
<general> element and enter your copyright string between the <copyright>
element’s delimiters.

■ To change the icon of the ATE, create an <icon> element inside the <general>
element and enter the name of the icon image file between the <icon>
element’s delimiters.

Store the icon image in the ATE root directory, which is the same directory that
contains the startup-configuration.xml file.

3. Save the file.

Any elements that you do not specify remain unchanged from the default ATE.

The following is a sample <general> element.

Customizing a VCS

36-4 Services Gatekeeper Application Developer's Guide

 <general>
 <title>A new title for the ATE</title>
 <version>7.0</version>
 <copyright>(c) 2010 My Company</copyright>
 <icon>anewicon.gif</icon>
 </general>

Customizing a VCS
You can customize a virtual communication service (VCS) in the following ways:

■ Showing/Hiding a VCS Module

■ Changing a VCS Title

■ Reconfiguring the Default VCS MBean Attributes.

You configure these customizations in the <vcs> element of the
startup-configuration.xml file.

Showing/Hiding a VCS Module
By default, all VCSs are invisible in the ATE.

To display a VCS module:

1. Create a <vcs> element in the startup-configuration.xml file, or use an existing
<vcs> element.

2. Create a <visible> element inside the <vcs> element, or use an existing <visible>
element.

3. For each VSC module that you want to show, insert a <module> element inside the
<visible> element.

Each <module> element has an attribute for:

■ The class name of the VCS in the className attribute

■ The title that you want to appear on the VCS´s tab in the title attribute

Table 36–1 lists the class names of the VCS modules. These are the valid values for
the className attribute.

4. Save the file.

Table 36–1 VCS Class Names

VCS Class Name

Session Manager oracle.ocsg.pte.impl.vcs.sessionmanager.SessionManagerModule

Short Messaging oracle.ocsg.pte.impl.vcs.px21_sms.SmsModule

Multimedia Messaging oracle.ocsg.pte.impl.vcs.px21_mms.MmsModule

Terminal Location oracle.ocsg.pte.impl.vcs.px21_tl.TerminalLocationModule

Terminal Status oracle.ocsg.pte.impl.vcs.px21_ts.TerminalStatusModule

Payment oracle.ocsg.pte.impl.vcs.px30_payment.ParlayX30PaymentModule

Third Party Call oracle.ocsg.pte.impl.vcs.px21_tpc.ThirdPartyCallModule

Binary Sms oracle.ocsg.pte.impl.vcs.binarysms.BinarySmsModule

Example oracle.ocsg.pte.example.vcs.ExampleModule

Customizing a VCS

Customizing the Application Test Environment 36-5

Any VCS that you do not specify in the <visible> element remains hidden.

To hide a VCS module, delete its <module> element.

The following <vcs> element example shows the Session Manager, Short Messaging,
and Terminal Location VCSs in the ATE. All the other VCSs remain hidden.

<vcs>
 <visible>
 <module
className="oracle.ocsg.pte.impl.vcs.sessionmanager.SessionManagerModule"
title="Session Manager"/>
 <module className="oracle.ocsg.pte.impl.vcs.px21_sms.SmsModule"
title="Short Messaging"/>
 <module className="oracle.ocsg.pte.impl.vcs.px21_tl.TerminalLocationModule"
title="Terminal Location"/>
 </visible>
</vcs>
The <visible> elements are applied each time the ATE starts up.

Changing a VCS Title
You can display a different title on a VCS tab by changing the title attribute of the
<module> element inside the <visible> element.

To change the title of a VCS tab, specify a different value for the title attribute of the
VCS module that you want to change inside the <module> element. See step 3 in
"Showing/Hiding a VCS Module".

The following example sets the title on the Short Messaging VCS tab to SMS.

 <vcs>
 <visible>
 <module className="oracle.ocsg.pte.impl.vcs.px21_sms.VCSSmsModule"
title="SMS"/>
 </visible>
 </vcs>

Reconfiguring the Default VCS MBean Attributes
The MBean attributes that are settable in the VCS are configured with default values
when the ATE starts. You can change these default values in your custom
configuration.

To reconfigure a default VCS MBean attribute:

1. Create a <vcs> element in the startup-configuration.xml file, or use an existing
<vcs> element.

2. Create an <mbeans> element inside the <vcs> element, or use an existing <mbeans>
element.

3. For every attribute for which you want to change the default value, insert an
<mbean> element inside the <mbeans> element.

Each <mbean> element has

■ A name attribute for the MBean name of the VCS.

■ An attribute attribute for the VCS attribute.

■ A value attribute for the default value.

Customizing the Account Manager

36-6 Services Gatekeeper Application Developer's Guide

Table 36–2 lists the valid MBean name values for the name attribute for VCS
modules that support configurable attributes.

Valid values for the attribute attribute are the names displayed in the
Configuration tab of the VCS in the ATE. Some VCSs do not have any
configurable attributes.

4. Save the file.

Attributes that you do not specify in an <mbean> element retain their default values.

The application developer can modify these defaults from the Configuration tab of a
visible VCS for the duration of an ATE session, but those changes do not persist. The
next time the ATE starts up, the default values configured in the
startup-configuration.xml file are used.

The following example sets the default value for the Terminal Location VCS´s
MaximumCount attribute to 7 and the default value for the Terminal Status VCS´s
NotificationFrequency attribute to 8.

 <mbeans>
 <mbean name="px21_tl" attribute="MaximumCount" value="7"/>
 <mbean name="px21_ts" attribute="NotificationFrequency" value="8"/>
 </mbeans>

Customizing the Account Manager
The ATE is configured with a default account that applications use to access the VCS.
The credentials for this account are:

■ User Name=domain_user

■ Password=domain_user

The user name and password are included in the SOAP header or HTTP basic
authentication credentials in the application’s requests.

Showing and Hiding the Account Manager
By default, the default account is visible in the Account Manager when the ATE starts.

You can configure whether the Account Manager panel should be displayed or
hidden.

To show or hide the Account Manager panel:

1. Create an <account> element in the startup-configuration.xml file, or use an
existing <account> element.

2. Do one of the following:

Table 36–2 VCS MBean Names

VCS MBean Name

Terminal Location px21_tl

Terminal Status px21_ts

Payment px30_payment

Third Party Call px21_tpc

Customizing the SLA Manager

Customizing the Application Test Environment 36-7

■ To hide the Account Manager panel, set the <account> element’s visible
attribute to false.

■ To show the Account Manager panel, set the <account> element’s visible
attribute to true.

3. Save the file.

Creating Accounts
You can create additional accounts for applications to use as credentials for requests
sent to a VCS.

To create an account:

1. Create an <account> element in the startup-configuration.xml file, or use an
existing <account> element.

2. Create a <users> element inside the <account> element, or use an existing <users>
element.

3. For every account that you want to create, insert a <user> element inside the
<users> element.

Each <user> element has a name attribute for the user name and a password
attribute for the password.

4. Save the startup-configuration.xml file.

The following example creates two application accounts and hides the Account
Manager panel. Applications can send requests using either set of credentials.

 <account visible="false">
 <users>
 <user name="dev1" password="plm9zaq"/>
 <user name="dev2" password="cde4rfv"/>
 </users>
 </account>
Accounts are read when the ATE is installed. See "When Configuration Elements Are
Read" for more information.

Customizing the SLA Manager
You can customize the following characteristics of the VCS’s service level agreement
(SLA) Manager:

■ Showing and Hiding the SLA Manager

■ Creating Policy Enforcements

By default, the SLA Manager panel is visible when the ATE starts.

Showing and Hiding the SLA Manager
To show or hide the SLA Manager panel:

1. Create an <sla> element in the startup-configuration.xml file, or use an existing
<sla> element.

2. Do one of the following:.

■ To hide the SLA Manager panel, set the <sla> element’s visible attribute to
false

Customizing the SLA Manager

36-8 Services Gatekeeper Application Developer's Guide

■ To show the SLA Manager panel, set the <sla> element’s <visible> attribute
to true.

3. Save the file.

Creating Policy Enforcements
You can provide policy enforcements in the ATE to test how applications handle policy
restrictions. These restrictions would be enforced by actual service-level agreements
when the application is deployed.

To create policy enforcements:

1. Create an <sla> element in the startup-configuration.xml file, or use an existing
<sla> element.

2. Create an <enforcements> element inside the <sla> element, or use an existing
<enforcements> element.

3. Do one of the following:

■ To enable all enforcements, set the enabled attribute of the <enforcements>
element to true.

■ To disable all enforcements, set the enabled attribute of the <enforcements>
element to false.

You cannot enable or disable individual enforcements.

4. For every value enforcement, create a <value> element inside the <enforcements>
element.

Set the path, operation, and value attributes of the <value> element to define the
value enforcement. See "Managing Value Enforcements" for more information
about these attributes.

5. For every rate enforcement, create a <request> element inside the <enforcements>
element.

Set the name, count, timeAmount, and timeUnit attributes of the <request> element
to define the rate enforcement. See "Managing Rate Enforcements" for more
information about these attributes.

6. Save the file.

The following example creates two value enforcements and one rate enforcement,
enables those enforcements, and shows the SLA Manager in the ATE.

 <sla visible="true">
 <enforcements enabled="true">
 <value path="sendMessage.subject" operation="contains" value="world"/>
 <value path="sendMessage.charging.currency" operation="does_not_contain"
value="euro"/>
 <request name="sendSms" count="5" timeAmount="10" timeUnit="seconds"/>
 </enforcements>
 </sla>
When the SLA Manager panel is visible, the application developer can create
additional value and rate enforcements that apply for the duration of the session. The
developer can also modify or delete the enforcements that are currently configured.
Any modifications the application developer makes are applicable only for the
duration of the SDK session. Only those enforcements configured in the
startup-configuration.xml file are persistent when the ATE is restarted.

Showing And Hiding Payment Accounts Panels

Customizing the Application Test Environment 36-9

Enforcements are read when the ATE is installed. See "When Configuration Elements
Are Read" for more information.

Showing And Hiding Payment Accounts Panels
You can configure whether the Payment Account and Payment Account Detail panels
should be displayed or hidden.

These panels are treated as a unit, which means that you must hide both panels or
show both panels.

To show or hide the Payment Account and Payment Account Detail panels:

1. Create a <payment> element in the startup-configuration.xml file, or use an
existing <payment> element.

2. Do one of the following:.

■ To hide the Payment Account and Payment Account Detail panels, set the
<payment> element’s visible attribute to false.

■ To show the Payment Account and Payment Account Detail panels, set the
<payment> element’s visible attribute to true.

Showing And Hiding Payment Accounts Panels

36-10 Services Gatekeeper Application Developer's Guide

A

ATE Endpoints A-1

AATE Endpoints

This appendix lists the endpoints needed to point your application toward the
Application Test Environment (ATE) in Oracle Communications Services Gatekeeper.

When you specify the ATE endpoints in your application, replace ate_host with the
host name or IP address of the system running the ATE.

ATE Endpoints for SOAP-Based Interfaces
This section lists the ATE endpoints that correspond to Services Gatekeeper endpoints
for SOAP-based application interfaces.

Session Manager

Parlay X 2.1 Short Messaging Service/SMPP

Table A–1 Endpoints for SOAP SessionManager Interface

Destination Endpoint

Services Gatekeeper http://host:port/session_manager/SessionManager

ATE http://ate_host:13444/jaxws/SessionManager

Table A–2 Endpoints for SOAP SendSms Interface

Destination Endpoint

Services Gatekeeper http://host:port/parlayx21/sms/SendSms

ATE http://ate_host:13444/jaxws/vcs/px21_sms/SendSms

Table A–3 Endpoints for SOAP ReceiveSms Interface

Destination Endpoint

Services Gatekeeper http://host:port/parlayx21/sms/ReceiveSms

ATE http://ate_host:13444/jaxws/vcs/px21_sms/ReceiveSms

Table A–4 Endpoints for SOAP SmsNotificationManager Interface

Destination Endpoint

Services Gatekeeper http://host:port/parlayx21/sms/SmsNotificationManager

ATE Endpoints for SOAP-Based Interfaces

A-2 Services Gatekeeper Application Developer's Guide

Parlay X 2.1 MultiMedia Messaging Service

Parlay X 2.1 Terminal Location

ATE http://ate_host:13444/jaxws/vcs/px21_
sms/SmsNotificationManager

Table A–5 Endpoints for SOAP SendMessage Interface

Destination Endpoint

Services Gatekeeper http://host:port/parlayx21/multimedia_
messaging/SendMessage

ATE http://ate_host:13444/jaxws/vcs/px21_mms/SendMessage

Table A–6 Endpoints for SOAP MessageNotificationManager Interface

Destination Endpoint

Services Gatekeeper http://host:port/parlayx21/multimedia_
messaging/MessageNotificationManager

ATE http://ate_host:13444/jaxws/vcs/px21_
mms/MessageNotificationManager

Table A–7 Endpoints for SOAP ReceiveMessage Interface

Destination Endpoint

Services Gatekeeper http://host:port/parlayx21/multimedia_
messaging/ReceiveMessage

ATE http://ate_host:13444/jaxws/vcs/px21_mms/ReceiveMessage

Table A–8 Endpoints for SOAP TerminalLocation Interface

Destination Endpoint

Services Gatekeeper http://host:port/parlayx21/terminal_
location/TerminalLocation

ATE http://ate_host:13444/jaxws/vcs/parlayx21/terminal_
location/TerminalLocation

Table A–9 Endpoints for SOAP TerminalLocationNotificationManager Interface

Destination Endpoint

Services Gatekeeper http:/host:port/parlayx21/terminal_
location/TerminalLocationNotificationManager

ATE http://ate_host:13444/jaxws/vcs/parlayx21/terminal_
location/TerminalLocationNotificationManager

Table A–4 (Cont.) Endpoints for SOAP SmsNotificationManager Interface

Destination Endpoint

ATE Endpoints for SOAP-Based Interfaces

ATE Endpoints A-3

Parlay X 2.1 Terminal Status

Parlay X 3.0 Payment

Table A–10 Endpoints for SOAP TerminalStatus Interface

Destination Endpoint

Services Gatekeeper http://host:port/parlayx21/terminal_
location/TerminalStatus

ATE http://ate_host:13444/jaxws/vcs/parlayx21/terminal_
status/TerminalStatus

Table A–11 Endpoints for SOAP TerminalStatusNotificationManager Interface

Destination Endpoint

Services Gatekeeper http://host:port/parlayx21/terminal_
location/TerminalStatus

ATE http://ate_host:13444/jaxws/vcs/parlayx21/terminal_
status/TerminalStatusNotificationManager

Table A–12 Endpoints for SOAP Payment AmountCharging Interface

Destination Endpoint

Services Gatekeeper http://host:port/parlayx30/payment/AmountCharging

ATE http://ate_
host:13444/jaxws/vcs/parlayx30/payment/AmountCharging

Table A–13 Endpoints for SOAP Payment ReserveAmountCharging Interface

Destination Endpoint

Services Gatekeeper http://host:port/parlayx30/payment/ReserveAmountChargin
g

ATE http://ate_
host:13444/jaxws/vcs/parlayx30/payment/ReserveAmountCha
rging

Table A–14 Endpoints for SOAP Payment VolumeCharging Interface

Destination Endpoint

Services Gatekeeper http://host:port/parlayx30/payment/VolumeCharging

ATE http://ate_
host:13444/jaxws/vcs/parlayx30/payment/VolumeCharging

Table A–15 Endpoints for SOAP Payment ReserveVolumeCharging Interface

Destination Endpoint

Services Gatekeeper http://host:port/parlayx30/payment/ReserveVolumeChargin
g

ATE http://ate_
host:13444/jaxws/vcs/parlayx30/payment/ReserveVolumeCha
rging

ATE Endpoints for RESTful Interfaces

A-4 Services Gatekeeper Application Developer's Guide

Parlay X 2.1 Third Party Call

EWS Binary SMS

ATE Endpoints for RESTful Interfaces
This section lists the ATE endpoints that correspond to Services Gatekeeper endpoints
for RESTful application interfaces.

Session Manager

Table A–16 Endpoints for SOAP Third Party Call Interface

Destination Endpoint

Services Gatekeeper http://host:port/parlayx21/third_party_
call/ThirdPartyCall

ATE http://ate_host:13444/jaxws/vcs/parlayx21/third_party_
call/ThirdPartyCall

Table A–17 Endpoints for EWS Binary SMS Interface

Destination Endpoint

Services Gatekeeper http://host:port/ews/binary_sms/BinarySms

ATE http://ate_host:13444/jaxws/vcs/ews/binary_
sms/BinarySMS

Table A–18 Endpoints for EWS Binary SMS Notification Manager Interface

Destination Endpoint

Services Gatekeeper http://host:port/ews/binary_sms_
notification/BinarySmsNotificationManager

ATE http://ate_host:13444/jaxws/vcs/ews/binary_
sms/BinarySMSNotificationManager

Table A–19 Endpoints for RESTful Get Session Operation

Destination Endpoint

Services Gatekeeper http://host:port/rest/sessions

ATE http://ate_host:13444/rest/session_manager/sessions

Table A–20 Endpoints for RESTful Get Session Remaining Lifetime, Destroy a Session
Operations

Destination Endpoint

Services Gatekeeper http://host:port/rest/session/${sessionId}

ATE http://ate_host:13444/rest/session_
manager/session/${sessionId}

ATE Endpoints for RESTful Interfaces

ATE Endpoints A-5

Short Messaging

Table A–21 Endpoints for RESTful Send SMS Operation

Destination Endpoint

Services Gatekeeper http://host:port/rest/sms/messages

ATE http://ate_host:13444/rest/sms/messages

Table A–22 Endpoints for RESTful Send SMS Logo Operation

Destination Endpoint

Services Gatekeeper http://host:port/rest/sms/logos

ATE http://ate_host:13444/rest/sms/logos

Table A–23 Endpoints for RESTful Send SMS Ringtone Operation

Destination Endpoint

Services Gatekeeper http://host:port/rest/sms/ringtones

ATE http://ate_host:13444/rest/sms/ringtones

Table A–24 Endpoints for RESTful Get Received SMS Operation

Destination Endpoint

Services Gatekeeper http://host:port/rest/sms/receive-messages/${registrati
onIdentfier}

ATE http://ate_
host:13444/rest/sms/receive-messages/${registrationIden
tfier}

Table A–25 Endpoints for RESTful Get SMS Delivery Status Operation

Destination Endpoint

Services Gatekeeper http://host:port/rest/sms/delivery-status/${requestIden
tfier}

ATE http://ate_
host:13444/rest/sms/delivery-status/${requestIdentifier
}

Table A–26 Endpoints for RESTful Start Sms Notification Operation

Destination Endpoint

Services Gatekeeper http://host:port/rest/sms/notification/

ATE http://ate_host:13444/rest/sms/notification

Table A–27 Endpoints for RESTful Stop Sms Notification Operation

Destination Endpoint

Services Gatekeeper http://host:port/rest/sms/notification/${correlator}

ATE http://ate_
host:13444/rest/sms/notification/${correlator}

ATE Endpoints for RESTful Interfaces

A-6 Services Gatekeeper Application Developer's Guide

Multimedia Messaging

Table A–28 Endpoints for RESTful Send Message Operation

Destination Endpoint

Services Gatekeeper http://host:port/rest/multimedia_messaging/messages/

ATE http://ate_host:13444/rest/multimedia_
messaging/messages

Table A–29 Endpoints for RESTful Get Received Messages Operation

Destination Endpoint

Services Gatekeeper http://host:port/rest/multimedia_
messaging/receive-messages/

ATE http://ate_host:13444/rest/multimedia_
messaging/receive-messages

Table A–30 Endpoints for RESTful Get Message Operation

Destination Endpoint

Services Gatekeeper http://host:port/rest/multimedia_
messaging/message/${messageRefIdentifier}

ATE http://ate_host:13444/rest/multimedia_
messenging/message/${messageRefIdentifier}

Table A–31 Endpoints for RESTful Get Message Delivery Status Operation

Destination Endpoint

Services Gatekeeper http://host:port/rest/multimedia_
messaging/delivery-status/${requestIdentifier}

ATE http://ate_host:13444/rest/multimedia_
messenging/delivery-status/${requestIdentifier}

Table A–32 Endpoints for RESTful Start MMS Notification Operation

Destination Endpoint

Services Gatekeeper http://host:port/rest/multimedia_messaging/notification

ATE http://ate_host:13444/rest/multimedia_
messenging/notification

Table A–33 Endpoints for RESTful Stop MMS Notification Operation

Destination Endpoint

Services Gatekeeper http://host:port/rest/multimedia_
messaging/notification/${correlator}

ATE http://ate_host:13444/rest/multimedia_
messenging/notification/${correlator}

ATE Endpoints for RESTful Interfaces

ATE Endpoints A-7

Terminal Location

Terminal Status

Table A–34 Endpoints for RESTful Get Location Operation

Destination Endpoint

Services Gatekeeper http://host:port/rest/terminal_
location/location?query=${query}

ATE http://ate_host:13444/rest/terminal_location/location

Table A–35 Endpoints for RESTful Get Terminal Distance Operation

Destination Endpoint

Services Gatekeeper http://host:port/rest/terminal_
location/distance?query=${query}

ATE http://ate_host:13444/rest/terminal_location/distance

Table A–36 Endpoints for RESTful Start Periodic Notification Operation

Destination Endpoint

Services Gatekeeper http://host:port/rest/terminal_
location/periodic-notification

ATE http://ate_host:13444/rest/terminal_
location/periodic-notification

Table A–37 Endpoints for RESTful Start Geographic Notification Operation

Destination Endpoint

Services Gatekeeper http://host:port/rest/terminal_
location/geographic-notification

ATE http://ate_host:13444/rest/terminal_
location/geographic-notification

Table A–38 Endpoints for RESTful End Notification Operation

Destination Endpoint

Services Gatekeeper http://host:port/rest/terminal_
location/notification/${correlator}

ATE http://ate_host:13444/rest/terminal_
location/notification/${correlator}

Table A–39 Endpoints for RESTful Get Status Operation

Destination Endpoint

Services Gatekeeper http://host:port/rest/terminal_
status/status?query=${query}

ATE http://ate_host:13444/rest/terminal_status/status

ATE Endpoints for RESTful Interfaces

A-8 Services Gatekeeper Application Developer's Guide

Payment

Table A–40 Endpoints for RESTful Start Notification Operation

Destination Endpoint

Services Gatekeeper http://host:port/rest/terminal_
status/status-notification

ATE http://ate_host:13444/rest/terminal_
status/status-notification

Table A–41 Endpoints for RESTful End Notification Operation

Destination Endpoint

Services Gatekeeper http://host:port/rest/terminal_
status/notification/${correlator}

ATE http://ate_host:13444/rest/terminal_
status/notification/${correlator}

Table A–42 Endpoints for RESTful Charge Amount Operation

Destination Endpoint

Services Gatekeeper http://host:port/rest/payment/charge-amount

ATE http://ate_host:13444/rest/payment/charge-amount

Table A–43 Endpoints for RESTful Refund Amount Operation

Destination Endpoint

Services Gatekeeper http://host:port/rest/payment/refund-amount

ATE http://ate_host:13444/rest/payment/refund-amount

Table A–44 Endpoints for RESTful Charge Split Amount Operation

Destination Endpoint

Services Gatekeeper http://host:port/rest/payment/charge-split-amount

ATE http://ate_host:13444/rest/payment/charge-split-amount

Table A–45 Endpoints for RESTful Reserve Amount Operation

Destination Endpoint

Services Gatekeeper http://host:port/rest/payment/reserve-amount

ATE http://ate_host:13444/rest/payment/reserve-amount

Table A–46 Endpoints for RESTful Reserve Additional Amount Operation

Destination Endpoint

Services Gatekeeper http://host:port/rest/payment/reserve-additional-amount

ATE http://ate_
host:13444/rest/payment/reserve-additional-amount

ATE Endpoints for RESTful Interfaces

ATE Endpoints A-9

Third Party Call

Table A–47 Endpoints for RESTful Charge ReservationOperation

Destination Endpoint

Services Gatekeeper http://host:port/rest/payment/charge-reservation

ATE http://ate_host:13444/rest/payment/charge-reservation

Table A–48 Endpoints for RESTful Release Reservation Operation

Destination Endpoint

Services Gatekeeper http://host:port/rest/payment/release-reservation

ATE http://ate_host:13444/rest/payment/release-reservation

Table A–49 Endpoints for RESTful Charge Amount Operation

Destination Endpoint

Services Gatekeeper http://host:port/rest/payment/charge-amount

ATE http://ate_host:13444/rest/payment/charge-amount

Table A–50 Endpoints for RESTful Volume Charging Operation

Destination Endpoint

Services Gatekeeper http://host:port/rest/payment/volume-charging

ATE http://ate_host:13444/rest/payment/volume-charging

Table A–51 Endpoints for RESTful Reserve Volume Charging Operation

Destination Endpoint

Services Gatekeeper http://host:port/rest/payment/reserve-volume-charging

ATE http://ate_
host:13444/rest/payment/reserve-volume-charging

Table A–52 Endpoints for RESTful Make Call Operation

Destination Endpoint

Services Gatekeeper http://host:port/third_party_call/calls

ATE http://ate_host:13444/rest/third_party_call/calls

Table A–53 Endpoints for RESTful Get Call Information Operation

Destination Endpoint

Services Gatekeeper http://host:port/rest/third_party_
call/call/${callIdentifier}

ATE http://ate_host:13444/rest/third_party_
call/call/${callIdentifier}

ATE Endpoints for Example Communication Service

A-10 Services Gatekeeper Application Developer's Guide

Binary SMS

ATE Endpoints for Example Communication Service
The ATE provides the following endpoints to test the communications service example
that is provided for platform development. This example is described in Services
Gatekeeper Extension Developer's Guide, another document in this set.

Table A–54 Endpoints for RESTful Cancel Call Operation

Destination Endpoint

Services Gatekeeper http://host:port/rest/third_party_
call/cancel-call/${callIdentifier}

ATE http://ate_host:13444/rest/third_party_
call/cancel-call/${callIdentifier}

Table A–55 Endpoints for RESTful End Call Operation

Destination Endpoint

Services Gatekeeper http://host:port/rest/third_party_
call/end-call/${callIdentifier}

ATE http://ate_host:13444/rest/third_party_
call/end-call/${callIdentifier}

Table A–56 Endpoints for RESTful Send Binary SMS Operation

Destination Endpoint

Services Gatekeeper http://host:port/rest/binary_sms/messages

ATE http://ate_host:13444/rest/binary_sms/messages

Table A–57 Endpoints for RESTful Start Binary SMS Notification Operation

Destination Endpoint

Services Gatekeeper http://host:port/rest/binary_sms/notification

ATE http://ate_host:13444/rest/binary_sms/notification

Table A–58 Endpoints for RESTful Stop Binary SMS Notification Operation

Destination Endpoint

Services Gatekeeper http://host:port/rest/binary_
sms/notification/${correlator}

ATE http://ate_host:13444/rest/binary_
sms/notification/${correlator}

Table A–59 Endpoint for Platform Development Studio Example Send Data Interface

Destination Endpoint

ATE http://ate_host:13444/jaxws/SendData

ATE Endpoints for Example Communication Service

ATE Endpoints A-11

Table A–60 Endpoint for Platform Development Studio Example Notification Manager
Interface

Destination Endpoint

ATE http://ate_host:13444/jaxws/NotificationManager

ATE Endpoints for Example Communication Service

A-12 Services Gatekeeper Application Developer's Guide

B

Virtual Communication Services Exception Codes B-1

BVirtual Communication Services Exception
Codes

This appendix lists the exceptions codes generated by the Application Test
Environment (ATE) Virtual Communication Services (VCSs) in Oracle
Communications Services Gatekeeper Software Development Kit (SDK).

Exceptions with an SVC prefix indicate an error against the service. Exceptions with a
POL prefix indicate a violation of a policy enforcement. See "Managing Service-Level
Agreements" for information about setting policy enforcements in the VCS.

Short Messaging Exception Codes
The following exceptions are generated by the Short Messaging VCS.

SendSms.sendSms

SendSms.sendSms
Exception ID: SVC0001

Exception Type: service error

Cause: Any problem sending the SMS.

SendSms.getSmsDeliveryStatus

SendSms.getSmsDeliveryStatus
Exception ID: SVC0002

Exception Type: invalid input error

Cause: No delivery status available for the given request identifier.

ReceiveSms.getReceivedSms

ReceiveSms.getReceivedSms
Exception ID: SVC0001

Exception Type: service error

Cause: Any problem retrieving an SMS.

Multimedia Messaging Exception Codes

B-2 Services Gatekeeper Application Developer's Guide

SmsNotificationManager.startSmsNotification

SmsNotificationManager.startSmsNotification
Exception ID: SVC0005

Exception Type: duplicate correlator

Cause: Duplicate correlator used when starting a notification.

Multimedia Messaging Exception Codes
The following the exceptions are generated by the Multimedia Messaging VCS.

SendMessage.sendMessage

SendMessage.sendMessage
Exception ID: SVC0001

Exception Type: service error

Cause: Any problem sending the MMS.

SendMessage.getMessageDeliveryStatus

SendMessage.getMessageDeliveryStatus
Exception ID: SVC0002

Exception Type: invalid input error

Cause: The requestIdentifier is invalid.

ReceiveMessage.getMessage

ReceiveMessage.getMessage
Exception ID: SVC0002

Exception Type: invalid input error

Cause: The messageRefIdentifier is invalid.

ReceiveMessage.getReceivedMessage

ReceiveMessage.getReceivedMessages
Exception ID: SVC0002

Exception Type: invalid input error

Cause: The registrationIdentifier is invalid.

MessageNotificationManager.startMessageNotification

MessageNotificationManager.startMessageNotification
Exception ID: SVC0005

Exception Type: duplicate correlator

Cause: The same correlator is registered multiple times.

Terminal Location Exception Codes

Virtual Communication Services Exception Codes B-3

MessageNotitifcationManager.stopMessageNotification

MessageNotificationManager.stopMessageNotification
Exception ID: SVC0002

Exception Type: invalid input error

Cause: The correlator is invalid.

Terminal Location Exception Codes
The following exceptions are generated by the Terminal Location VCS.

TerminalLocation.getLocation

TerminalLocation.getLocation
Exception ID: SVC0002

Exception Type: invalid input error

Cause: Address is null.

TerminalLocation.getLocation
Exception ID: SVC0004

Exception Type: invalid address error

Cause: No terminal with specified address.

TerminalLocation.getLocationForGroup
Exception ID: POL0003

Exception Type: too many addresses error

Cause: Too many addresses specified.

TerminalLocation.getLocation
Exception ID: POL0230

Exception Type: requested accuracy not supported

Cause: The requestedAccuracy or acceptableAccuracy is too low.

TerminalLocation.getTerminalDistance

TerminalLocation.getTerminalDistance
Exception ID: SVC0002

Exception Type: invalid input error

Cause: Address is null, or latitude is not in [-90, 90] range, or longitude is not in [-180,
180] range.

TerminalLocation.getTerminalDistance
Exception ID: SVC0004

Exception Type: invalid address error

Cause: No terminal with specified address.

Terminal Location Exception Codes

B-4 Services Gatekeeper Application Developer's Guide

TerminalLocationNotificationManager.startGeographicalNotification

TerminalLocationNotificationManager.startGeographicalNotification
Exception ID: SVC0002

Exception Type: invalid input error

Cause: No callback endpoint or correlator provided, or latitude is not in [-90, 90]
range, or longitude is not in [-180, 180] range.

TerminalLocationNotificationManager.startGeographicalNotification
Exception ID: SVC0004

Exception Type: invalid address error

Cause: No valid addresses provided.

TerminalLocationNotificationManager.startGeographicalNotification
Exception ID: SVC0005

Exception Type: duplicate correlator

Cause: The same correlator is registered multiple times.

TerminalLocationNotificationManager.startGeographicalNotification
Exception ID: POL0003

Exception Type: too many addresses error

Cause: Too many addresses provided.

TerminalLocationNotificationManager.startGeographicalNotification
Exception ID: POL0004

Exception Type: unlimited notifications not supported

Cause: Count equals zero.

TerminalLocationNotificationManager.startGeographicalNotification
Exception ID: POL0005

Exception Type: too many notifications requested

Cause: Count is too high.

TerminalLocationNotificationManager.startGeographicalNotification
Exception ID: POL0009

Exception Type: invalid frequency error

Cause: Invalid frequency requested.

TerminalLocationNotificationManager.startGeographicalNotification
Exception ID: POL0230

Exception Type: requested accuracy not supported

Cause: The requestedAccuracy or acceptableAccuracy is too low.

TerminalLocationNotificationManager.startGeographicalNotification
Exception ID: POL0231

Exception Type: geographic notification error

Cause: Geographic notification is not available.

Terminal Status Exception Codes

Virtual Communication Services Exception Codes B-5

TerminalLocationNotificationManager.startPeriodicNotification

TerminalLocationNotificationManager.startPeriodicNotification
Exception ID: SVC0002

Exception Type: invalid input error

Cause: No callback endpoint or correlator provided.

TerminalLocationNotificationManager.startPeriodicNotification
Exception ID: SVC0004

Exception Type: invalid address error

Cause: No terminal with specified address.

TerminalLocationNotificationManager.startPeriodicNotification
Exception ID: SVC0005

Exception Type: duplicate correlator

Cause: The same correlator is registered multiple times.

TerminalLocationNotificationManager.startPeriodicNotification
Exception ID: POL0003

Exception Type: too many addresses error

Cause: Too many addresses provided.

TerminalLocationNotificationManager.startPeriodicNotification
Exception ID: POL0009

Exception Type: invalid frequency error

Cause: Invalid frequency requested.

TerminalLocationNotificationManager.startPeriodicNotification
Exception ID: POL0232

Exception Type: periodic notification error

Cause: Periodic notification is not available.

TerminalLocationNotificationManager.endNotification

TerminalLocationNotificationManager.endNotification
Exception ID: SVC0002

Exception Type: invalid input error

Cause: Invalid correlator.

Terminal Status Exception Codes
The following exceptions are generated by the Terminal Status VCS.

TerminalStatus.getStatus

TerminalStatus.getStatus
Exception ID: SVC0002

Terminal Status Exception Codes

B-6 Services Gatekeeper Application Developer's Guide

Exception Type: invalid input error

Cause: Address is null.

TerminalStatus.getStatus
Exception ID: SVC0004

Exception Type: invalid address error

Cause: No valid addresses provided.

TerminalStatus.getStatusForGroup

TerminalStatus.getStatusForgroup
Exception ID: SVC0002

Exception Type: invalid input error

Cause: Address is null.

TerminalStatus.getStatusForGroup
Exception ID: SVC0004

Exception Type: invalid address error

Cause: No valid addresses provided.

TerminaStatus.getStatusForGroup
Exception ID: POL0003

Exception Type: too many addresses error

Cause: Too many addresses provided.

TerminalStatusNotificationManager.startNotification

TerminalStatusNotificationManager.startNotification
Exception ID: SVC0002

Exception Type: invalid input error

Cause: No callback endpoint or correlator provided, or latitude is not in [-90, 90]
range, or longitude is not in [-180, 180] range.

TerminalStatusNotificationManager.startNotification
Exception ID: SVC0004

Exception Type: invalid address error

Cause: No valid addresses provided.

TerminalStatusNotificationManager.startNotification
Exception ID: SVC0005

Exception Type: duplicate correlator

Cause: The same correlator is registered multiple times.

TerminalStatusNotificationManager.startNotification
Exception ID: POL0003

Exception Type: too many addresses error

Cause: Too many addresses provided.

Third Party Call Exception Codes

Virtual Communication Services Exception Codes B-7

TerminalStatusNotificationManager.startNotification
Exception ID: POL0004

Exception Type: unlimited notifications not supported

Cause: Count equals zero.

TerminalStatusNotificationManager.startNotification
Exception ID: POL0005

Exception Type: too many notifications requested

Cause: Count is too high.

TerminalStatusNotificationManager.startNotification
Exception ID: POL0009

Exception Type: invalid frequency error

Cause: Invalid frequency requested.

TerminalStatusNotificationManager.startNotification
Exception ID: POL0200

Exception Type: busy criterion not supported

Cause: isBusyAvailable is set to false and criteria include busy.

TerminalStatusNotificationManager.endNotification

TerminalStatusNotificationManager.endNotification
Exception ID: SVC0002

Exception Type: invalid input error

Cause: No valid correlator provided.

Third Party Call Exception Codes
The following exceptions are generated by the Third Party Call VCS.

ThirdPartyCallImpl.cancelCallRequest

ThirdPartyCallImpl.cancelCallRequest
Exception ID: SVC0002

Exception Type: invalid input value for call identifier

Cause: Call identifier is null.

ThirdPartyCallImpl.cancelCallRequest
Exception ID: SVC0260

Exception Type: call already connected

Cause: The specified call has already connected and can not be canceled.

ThirdPartyCallImpl.endCall

ThirdPartyCallImpl.endCall
Exception ID: SVC0002

Payment Exception Codes

B-8 Services Gatekeeper Application Developer's Guide

Exception Type: invalid input value for call identifier

Cause: Call identifier is null.

ThirdPartyCallImpl.endCall
Exception ID: SVC261

Exception Type: call already terminated

Cause: The specified call has already terminated.

ThirdPartyCallImpl.getCallInformation

ThirdPartyCallImpl.getCallInformaton
Exception ID: SVC0001

Exception Type: service error

Cause: Called party or callee party status is invalid.

ThirdPartyCallImpl.getCallInformaton
Exception ID: SVC0002

Exception Type: invalid input value for call identifier

Cause: Call identifier is null.

ThirdPartyCallImpl.makeCall

ThirdPartyCallImpl.makeCall
Exception ID: SVC0002

Exception Type: invalid input value for call identifier

Cause: Call identifier is null.

ThirdPartyCallImpl.sendMessage

ThirdPartyCallImpl.sendMessage
Exception ID: SVC0001

Exception Type: service error

Cause: Called party or callee party status is invalid.

ReceiveMessage.makeCall

ReceiveMessage.makeCall
Exception ID: SVC0004

Exception Type: invalid input value

Cause: Called party or callee party address is invalid.

Payment Exception Codes
The following exceptions are generated by the Payment VCS.

Payment Exception Codes

Virtual Communication Services Exception Codes B-9

AmountCharging.ChargeAmount

AmountCharging.ChargeAmount
Exception ID: SVC0002

Exception Type: invalid input value

Cause: The user ID or some other parameter value is invalid.

AmountCharging.ChargeAmount
Exception ID: SVC0007

Exception Type: invalid charging information

Cause: The charging information is invalid.

AmountCharging.ChargeAmount
Exception ID: SVC0270

Exception Type: charge failed

Cause: The charge failed.

AmountCharging.RefundAmount

AmountCharging.RefundAmount
Exception ID: SVC0002

Exception Type: invalid input value

Cause: The user ID or some other parameter value is invalid.

AmountCharging.RefundAmount
Exception ID: SVC0007

Exception Type: invalid charging information

Cause: The charging information is invalid.

AmountCharging.RefundAmount
Exception ID: SVC0270

Exception Type: charge failed

Cause: The charge failed.

AmountCharging.ChargeSplitAmount

AmountCharging.ChargeSplitAmount
Exception ID: SVC0002

Exception Type: invalid input value

Cause: The user ID or some other parameter value is invalid.

AmountCharging.ChargeSplitAmount
Exception ID: SVC0007

Exception Type: invalid charging information

Cause: The charging information is invalid.

Payment Exception Codes

B-10 Services Gatekeeper Application Developer's Guide

AmountCharging.ChargeSplitAmount
Exception ID: SVC0270

Exception Type: charge failed

Cause: The charge failed.

AmountCharging.ChargeSplitAmount
Exception ID: SVC0271

Exception Type: invalid sum of percent allocations

Cause: The sum of the percentage allocations does not equal 100.

AmountCharging.ChargeSplitAmount
Exception ID: POL0250

Exception Type: too many end-user identifiers

Cause: The number of end-user identifiers exceeds defined policy.

AmountCharging.ChargeSplitAmount
Exception ID: POL0251

Exception Type: split charging not supported

Cause: Split charging is not supported by defined policy.

VolumeCharging.ChargeVolume

VolumeCharging.ChargeVolume
Exception ID: SVC0002

Exception Type: invalid input value

Cause: The user ID or some other parameter value is invalid.

VolumeCharging.ChargeVolume
Exception ID: SVC0270

Exception Type: charge failed

Cause: The charge failed.

VolumeCharging.RefundVolume

VolumeCharging.RefundVolume
Exception ID: SVC0002

Exception Type: invalid input value

Cause: The user ID or some other parameter value is invalid.

VolumeCharging.RefundVolume
Exception ID: SVC0270

Exception Type: charge failed

Cause: The refund of the volume charge failed.

Payment Exception Codes

Virtual Communication Services Exception Codes B-11

ReserveAmountCharging.ReserveAmount

ReserveAmountCharging.ReserveAmount
Exception ID: SVC0002

Exception Type: invalid input value

Cause: The user ID or some other parameter value is invalid.

ReserveAmountCharging.ReserveAmount
Exception ID: SVC0007

Exception Type: invalid charging information

Cause: The charging information is invalid.

ReserveAmountCharging.ReserveAmount
Exception ID: SVC0270

Exception Type: charge failed

Cause: The charge failed.

ReserveAmountCharging.ReserveAdditionalAmount

ReserveAmountCharging.ReserveAdditionalAmount
Exception ID: SVC0002

Exception Type: invalid input value

Cause: The user ID or some other parameter value is invalid.

ReserveAmountCharging.ReserveAdditionalAmount
Exception ID: SVC0007

Exception Type: invalid charging information

Cause: The charging information is invalid.

ReserveAmountCharging.ReserveAdditionalAmount
Exception ID: SVC0270

Exception Type: charge failed

Cause: The charge failed.

ReserveAmountCharging.ChargeReservation

ReserveAmountCharging.ChargeReservation
Exception ID: SVC0002

Exception Type: invalid input value

Cause: The user ID or some other parameter value is invalid.

ReserveAmountCharging.ChargeReservation
Exception ID: SVC0007

Exception Type: invalid charging information

Cause: The charging information is invalid.

Payment Exception Codes

B-12 Services Gatekeeper Application Developer's Guide

ReserveAmountCharging.ChargeReservation
Exception ID: SVC0270

Exception Type: charge failed

Cause: The charge failed.

ReserveAmountChargingReleaseReservation

ReserveAmountCharging.ReleaseReservation
Exception ID: SVC0002

Exception Type: invalid input value

Cause: The user ID or some other parameter value is invalid.

VolumeCharging.ChargeSplitVolume

VolumeCharging.ChargeSplitVolume
Exception ID: SVC0002

Exception Type: invalid input value

Cause: The user ID or some other parameter value is invalid.

VolumeCharging.ChargeSplitVolume
Exception ID: SVC0270

Exception Type: charge failed

Cause: The charge failed.

VolumeCharging.ChargeSplitVolume
Exception ID: SVC0271

Exception Type: invalid sum of percent allocations

Cause: The sum of the percentage allocations does not equal 100.

VolumeCharging.ChargeSplitVolume
Exception ID: POL0250

Exception Type: too many end-user identifiers

Cause: The number of end-user identifiers exceeds defined policy.

VolumeCharging.ChargeSplitVolume
Exception ID: POL0251

Exception Type: split charging not supported

Cause: Split charging is not supported by defined policy.

ReserveVolumeCharging.ReserveVolume

ReserveVolumeCharging.ReserveVolume
Exception ID: SVC0001

Exception Type: service error

Cause: Any problem reserving the charge volume.

Binary SMS Exception Codes

Virtual Communication Services Exception Codes B-13

ReserveVolumeCharging.ReserveVolume
Exception ID: SVC0002

Exception Type: invalid input value

Cause: The user ID or some other parameter value is invalid.

ReserveVolumeCharging.ReserveVolume
Exception ID: POL0001

Exception Type: policy error

Cause: Policy error

ReserveVolumeCharging.ReserveAdditionalVolume

ReserveVolumeCharging.ReserveAdditionalVolume
Exception ID: SVC0002

Exception Type: invalid input value

Cause: The user ID or some other parameter value is invalid.

ReserveVolumeCharging.ChargeReservation

ReserveVolumeCharging.ChargeReservation
Exception ID: SVC0002

Exception Type: invalid input value

Cause: The user ID or some other parameter value is invalid.

ReserveVolumeCharging.ChargeReservation
Exception ID: SVC0270

Exception Type: charge failed

Cause: The charge failed.

ReserveVolumeCharging.ReleaseReservation

ReserveVolumeCharging.ReleaseReservation
Exception ID: SVC0002

Exception Type: invalid input value

Cause: The user ID or some other parameter value is invalid.

Binary SMS Exception Codes
The following exceptions are generated by the Short Messaging VCS.

SendBinarySms.sendMessage

SendBinarySms.sendMessage
Exception ID:

Exception Type:

Cause: Any problem sending the binary SMS.

Binary SMS Exception Codes

B-14 Services Gatekeeper Application Developer's Guide

BinarySmsNotificationManager.startMessageNotification

BinarySmsNotificationManager.startMessageNotification
Exception ID:

Exception Type: duplicate correlator

Cause: Duplicate correlator used when starting a notification.

BinarySmsNotificationManager.stopMessageNotification
Exception ID:

Exception Type: invalid correlator

Cause: The correlator is invalid.

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents

	Part I Overview of Creating Applications for Services Gatekeeper
	1 About Creating Applications that Interact with Services Gatekeeper
	Basic Concepts
	Understanding the Interfaces
	Understanding Communication Services
	Understanding Traffic Types
	Understanding Mobile Applications
	Understanding Management Structures
	Understanding How to Test Applications

	2 Managing Communication Sessions
	Understanding the Session Manager Web Service
	Session Management for SOAP, RESTful, and OneAPI Interfaces
	About Sessions
	Changing the Session Mode

	Session Manager WSDL File
	SessionManager Interface Reference
	Operation: getSession
	Operation: changeApplicationPassword
	Operation: getSessionRemainingLifeTime
	Operation: refreshSession
	Operation: destroySession

	Session Manager Examples

	Part II Creating Applications Using the RESTful Interfaces
	3 Using the RESTful Interfaces
	Supported RESTful Interfaces
	Understanding RESTful Operations
	Request-URI and HTTP Methods
	Status-Line
	Headers
	Message Body
	Example of a Request and Response

	RESTful Authentication and Security
	RESTful Notifications and Publish/Subscribe
	Supported Endpoint Addresses
	Using the Bayeux Protocol to Communicate with the Server

	Understanding RESTful Errors and Exceptions

	4 Adding RESTful Third Party Call Support
	About the RESTful Third Party Call Interface
	REST Service Descriptions Available at Runtime

	RESTful Third Party Call Interface Reference
	Make Call
	Get Call Information
	Cancel Call
	End Call

	5 Adding RESTful Anonymous Customer Reference Support
	About Anonymous Customer References
	Configuring ACR Support in Services Gatekeeper
	Creating an ACR Plug-in Instance
	Setting ACR Plug-in Parameters
	Creating Multiple ACRs for a Single Subscriber

	RESTful APIs for ACR Support
	Create ACR
	Query ACR
	Change ACR Status
	Errors and Exceptions
	EDRs

	6 Adding RESTful Application Subscription Management Support
	About Application Subscription Management
	REST Service Descriptions Available at Run-time

	Subscribe
	Unsubscribe
	Suspend
	Unsuspend
	Notify
	Confirm
	queryBySubscriberAddress
	queryByApplicationName
	queryBySubscriptionID

	7 Adding RESTful Call Notification Support
	About the Call Notification Interface
	REST Service Descriptions Available at Run-time
	Common Data

	Start Call Notification
	Stop Call Notification
	Start Call Direction Notification
	Stop Call Direction Notification

	8 Adding RESTful Short Messaging Support
	About the Short Messaging Interface
	REST Service Descriptions Available at Run-time

	Send SMS
	Send SMS Ringtone
	Send SMS Logo
	Get Received SMS
	Get SMS Delivery Status
	Start SMS Notification
	Stop SMS Notification

	9 Adding RESTful Multimedia Messaging Support
	About the Multimedia Messaging Interface
	REST Service Descriptions Available at Run-time

	Send Message
	Get Received Messages
	Get Message
	Get Message Delivery Status
	Start Message Notification
	Stop Message Notification

	10 Adding RESTful Email Communication Service Support
	About the Email Communication Interface
	REST Service Descriptions Available at Run-time

	Send Message
	Get Received Messages
	Get Message
	Get Message Delivery Status
	Start Message Notification
	Stop Message Notification

	11 Adding RESTful Terminal Status Support
	About the Terminal Status Interface
	REST Service Descriptions Available at Run-time

	Get Status
	Get Status For Group
	Status Notification
	End Notification

	12 Adding RESTful Terminal Location Support
	About the Terminal Location Interface
	REST Service Descriptions Available at Run-time

	Get Location
	Get Location for Group
	Get Terminal Distance
	Start Geographical Notification
	Start Periodic Notification
	End Notification

	13 Adding RESTful Payment Support
	About the Payment Interface
	REST Service Descriptions Available at Run-time

	Charge Amount
	Refund Amount
	Charge Split Amount
	Reserve Amount
	Reserve Additional Amount
	Charge Volume
	Refund Volume
	Charge Split Volume
	Get Amount
	Charge Reservation
	Release Reservation
	Reserve Volume
	Reserve Additional Volume
	Get Amount Reserve Charging

	14 Adding RESTful Audio Call Support
	About the Audio Call Interface
	REST Service Descriptions Available at Run-time

	Play Audio Message
	Play Text Message
	Play VoiceXML Message
	Get Message Status
	End Message

	15 Adding RESTful Quality of Service Support
	About the QoS Interface
	REST Service Descriptions Available at Run-time

	Example QoS Scenario
	Configuring QoS for Services Gatekeeper
	Using OAuth with QoS
	Apply QoS
	Apply Template-Based QoS
	Modify QoS
	Template-Based Modify QoS
	Get QoS Status
	Remove QoS
	Register for QoS Notifications
	Unregister for QoS Notifications
	QoS Event Notification
	List QoS Event Notifications

	16 Adding RESTful Presence Support
	About the Presence Interface
	REST Service Descriptions Available at Run-time
	About Presentities and Watchers

	Data Common to Operations in RESTful Presence Interface
	attributes
	presenceAttribute
	unionElement
	activity
	place
	privacy
	sphere
	type
	communication
	means
	typeAndValue
	other

	Get Open Subscriptions
	Get My Watchers
	Update Subscription Authorization
	Subscribe Presence
	Block Subscription
	Start Presence Notification
	End Presence Notification
	Get User Presence
	Publish

	17 Adding RESTful Device Capabilities Support
	About the Device Capabilities Interface
	REST Service Descriptions Available at Run-time

	Get Capabilities
	Get Device Id

	18 Adding RESTful Binary Short Messaging Support
	About the Binary Short Messaging Interface
	REST Service Descriptions Available at Runtime

	RESTful Binary SMS Interface Reference
	Send Binary Sms
	Start Binary Sms Notification
	Stop Binary Sms Notification

	19 Adding RESTful Session Manager Support
	About the Session Manager Interface
	REST Service Descriptions Available at Run-time

	Get Session
	Get Session Remaining Lifetime
	Destroy Session

	20 Adding RESTful Subscriber Profile Support
	About the Subscriber Profile Interface
	REST Service Descriptions Available at Run-time

	Get
	Get Profile

	21 Adding RESTful WAP Push Support
	About the WAP Push Interface
	REST Service Descriptions Available at Run-time

	Send Push Message

	Part III Creating Applications Using the OneAPI RESTful Interfaces
	22 Using the OneAPI RESTful Interfaces
	About the OneAPI Facade Architecture
	Support for Anonymous Customer References
	Components of the RESTful Facade

	Supported OneAPI Interfaces
	SMS
	MMS
	Terminal Location
	Payment

	About Configuring OneAPI Server Functionality
	General Format of an Operation
	Request-URI and HTTP Methods
	Headers
	Status Line
	Message Body
	Example of a Request and Response

	Authentication and Security
	Notifications
	Errors and Exceptions

	Part IV Creating Applications Using the SOAP Interfaces
	23 Using the SOAP Interfaces
	Understanding the SOAP Interfaces
	Requirements for Using the SOAP-Based Interfaces
	Understanding SOAP-Based Authentication
	Setting Callback Timeout Limits
	Understanding How Service Correlation Orchestrates Services
	Understanding Parameter Tunneling
	Understanding SOAP Payload Attachments

	Managing SOAP Headers and Attachments Programmatically

	24 Adding a SOAP2SOAP Communication Services
	About SOAP2SOAP Communication Services

	25 Adding SOAP-Based Quality of Service Support
	About the SOAP-Based QoS Interface
	SOAP-Based Service Descriptions Available at Run-time
	Example Parlay X 4.0 Application-Driven QoS/Diameter Scenario
	Configuring Services Gatekeeper to Use the QoS Communication Services

	26 About the Supported SOAP Parlay X 2.1 Facades
	Parlay X 2.1 Part 2: Third Party Call
	Interface: ThirdPartyCall
	Error Codes

	Parlay X 2.1 Part 3: Call Notification
	Interface: CallDirection
	Interface: CallNotification
	Interface: CallNotificationManager
	Interface: CallDirectionManager
	Error Codes

	Parlay X 2.1 Part 4: Short Messaging
	Interface: SendSms
	Interface: SmsNotification
	Interface: ReceiveSms
	Interface: SmsNotificationManager
	Sending Custom Message Content for Split and Submit Messaging Requests
	Error Codes

	Parlay X 2.1 Part 5: Multimedia Messaging
	Interface: SendMessage
	Interface: ReceiveMessage
	Interface: MessageNotification
	Interface: MessageNotificationManager
	Error Codes

	Parlay X 2.1 Part 8: Terminal Status
	Interface: TerminalStatus
	Interface: TerminalStatusNotificationManager
	Interface: TerminalNotification
	Error Codes

	Parlay X 2.1 Part 9: Terminal Location
	Understanding Parlay X 2.1 Terminal Location Precision
	Interface: TerminalLocation
	Interface: TerminalLocationNotificationManager
	Interface: TerminalLocationNotification
	Error Codes

	Parlay X 2.1 Part 11: Audio Call
	Interface: PlayAudio
	Error Codes

	Parlay X 2.1 Part 14: Presence
	Interface: PresenceConsumer
	Interface: PresenceNotification
	Interface: PresenceSupplier
	Error Codes

	About Notifications
	General Exceptions
	General Error Codes
	Code Examples
	Example: sendSMS
	Example: startSmsNotification
	Example: getReceivedSms
	Example: sendMessage

	Example: getReceivedMessages and getMessage
	Example: getLocation

	27 About the Supported SOAP Parlay X 3.0 Facades
	Parlay X 3.0 Part 6: Payment
	Interface: AmountCharging
	Interface: VolumeCharging
	Interface: ReserveAmountCharging
	Interface: ReserveVolumeCharging

	Parlay X 3.0 Part 13: Address List Management
	Interface: GroupManagement
	Interface: Group
	Interface: Member

	Parlay X 3.0 Part 18: Device Capabilities and Configuration
	Interface: DeviceCapabilities
	Interface: DeviceCapabilitiesNotificationManager
	Interface: DeviceCapabilitiesNotification
	Interface: DeviceConfiguration

	General Exceptions

	28 About the Supported SOAP Parlay X 4.0 Facades
	Parlay X 4.0 Part 17 Application-Driven QoS
	Interface: Application-driven QoS
	Interface: ApplicationQoSNotificationManager

	29 About the Supported SOAP Native Facade
	About the Native Interfaces
	MM7
	Supported MM7 Operations

	SMPP
	Bind PDUs and Sessions
	Error Handling
	Supported Operations

	UCP
	Error Handling
	Native UCP Operations: Application-Facing Interface
	Native UCP Operations: Network-Facing Interface

	Part V Creating Applications Using Extended Web Service Interfaces
	30 Understanding the Extended Web Services Common Definitions
	Namespace
	XML Schema Datatype Definition
	AdditionalProperty Structure
	ChargingInformation structure
	SimpleReference structure

	Fault Definitions
	ServiceException
	PolicyException

	31 Adding Extended Web Service Binary SMSs Support
	Understanding the Binary SMS Web Service
	Namespaces
	Endpoints
	Sequence Diagram
	Send SMS
	Receive SMS

	XML Schema data type definition
	BinaryMessage structure
	BinarySmsMessage structure
	Interface: BinarySms
	Interface: BinarySmsNotificationManager
	Interface: BinarySmsNotification

	Configuring Automatic Chunking of Binary SMSs
	WSDLs
	Error Codes
	Sample Send Binary SMS

	32 Adding WAP Push Extended Web Service Message Support
	Understanding the WAP Push Extended Web Service Interface
	Namespaces
	Endpoint
	Sequence Diagram
	XML Schema Data Type Definition
	PushResponse Structure
	ResponseResult structure
	ReplaceMethod enumeration
	MessageState enumeration

	WAP Push Extended Web Service Interface Descriptions
	Interface: PushMessage
	Interface: PushMessageNotification

	WSDLs
	Sample Send WAP Push Message

	33 Adding Subscriber Profile Extended Web Service Support
	Understanding the Subscriber Profile Extended Web Service Interface
	Namespaces
	Endpoint
	Address schemes
	XML Schema data type definition
	PropertyTuple Structure

	WAP Push Extended Web Service Interface Descriptions
	Interface: SubscriberProfile

	WSDLs

	Part VI Testing Applications with the Application Test Environment
	34 Understanding the Application Test Environment
	Understanding the ATE
	Understanding the ATE Graphical Interface
	Supported Interfaces
	Supported Communication Services

	35 Testing Applications with the Application Test Environment
	Starting the ATE
	Starting the ATE on UNIX
	Starting the ATE on Windows
	Starting the ATE on Mac OS X

	Stopping the ATE
	Understanding Application Testing
	Basic Testing
	Test with Virtual Communication Service Configuration Settings
	Test with Account Credentials
	Test Policy Enforcement

	Substituting ATE Endpoints in Your Application
	Substituting Credentials in Your Application
	Setting Up and Using Map Elements
	Adding and Using Phone Elements
	Adding and Using Mobile Elements That Are Not Phones
	Adding and Using Circular Notification Area Elements

	Displaying a Custom Map
	Configuring, Starting and Stopping the VCS
	Starting/Stopping a VCS
	VCS MBean Object and Class Names
	Configuring VCS Settings

	Troubleshooting
	Simple Mobile-Terminated Test
	Simple Mobile-Originated Test
	Managing Accounts
	Managing Service-Level Agreements
	Managing Value Enforcements
	Managing Rate Enforcements

	Monitoring Payment Accounts
	Example Module

	36 Customizing the Application Test Environment
	Understanding Customizing the ATE
	Understanding the ATE Configuration File
	Example Startup Configuration File
	Configuration Element Order
	When Configuration Elements Are Read

	Customizing ATE General Characteristics
	Customizing a VCS
	Showing/Hiding a VCS Module
	Changing a VCS Title
	Reconfiguring the Default VCS MBean Attributes

	Customizing the Account Manager
	Showing and Hiding the Account Manager
	Creating Accounts

	Customizing the SLA Manager
	Showing and Hiding the SLA Manager
	Creating Policy Enforcements

	Showing And Hiding Payment Accounts Panels

	A ATE Endpoints
	ATE Endpoints for SOAP-Based Interfaces
	Session Manager
	Parlay X 2.1 Short Messaging Service/SMPP
	Parlay X 2.1 MultiMedia Messaging Service
	Parlay X 2.1 Terminal Location
	Parlay X 2.1 Terminal Status
	Parlay X 3.0 Payment
	Parlay X 2.1 Third Party Call
	EWS Binary SMS

	ATE Endpoints for RESTful Interfaces
	Session Manager
	Short Messaging
	Multimedia Messaging
	Terminal Location
	Terminal Status
	Payment
	Third Party Call
	Binary SMS

	ATE Endpoints for Example Communication Service

	B Virtual Communication Services Exception Codes
	Short Messaging Exception Codes
	SendSms.sendSms
	SendSms.getSmsDeliveryStatus
	ReceiveSms.getReceivedSms
	SmsNotificationManager.startSmsNotification

	Multimedia Messaging Exception Codes
	SendMessage.sendMessage
	SendMessage.getMessageDeliveryStatus
	ReceiveMessage.getMessage
	ReceiveMessage.getReceivedMessage
	MessageNotificationManager.startMessageNotification
	MessageNotitifcationManager.stopMessageNotification

	Terminal Location Exception Codes
	TerminalLocation.getLocation
	TerminalLocation.getTerminalDistance
	TerminalLocationNotificationManager.startGeographicalNotification
	TerminalLocationNotificationManager.startPeriodicNotification
	TerminalLocationNotificationManager.endNotification

	Terminal Status Exception Codes
	TerminalStatus.getStatus
	TerminalStatus.getStatusForGroup
	TerminalStatusNotificationManager.startNotification
	TerminalStatusNotificationManager.endNotification

	Third Party Call Exception Codes
	ThirdPartyCallImpl.cancelCallRequest
	ThirdPartyCallImpl.endCall
	ThirdPartyCallImpl.getCallInformation
	ThirdPartyCallImpl.makeCall
	ThirdPartyCallImpl.sendMessage
	ReceiveMessage.makeCall

	Payment Exception Codes
	AmountCharging.ChargeAmount
	AmountCharging.RefundAmount
	AmountCharging.ChargeSplitAmount
	VolumeCharging.ChargeVolume
	VolumeCharging.RefundVolume
	ReserveAmountCharging.ReserveAmount
	ReserveAmountCharging.ReserveAdditionalAmount
	ReserveAmountCharging.ChargeReservation
	ReserveAmountChargingReleaseReservation
	VolumeCharging.ChargeSplitVolume
	ReserveVolumeCharging.ReserveVolume
	ReserveVolumeCharging.ReserveAdditionalVolume
	ReserveVolumeCharging.ChargeReservation
	ReserveVolumeCharging.ReleaseReservation

	Binary SMS Exception Codes
	SendBinarySms.sendMessage
	BinarySmsNotificationManager.startMessageNotification

