

[1] Oracle® Communications Services Gatekeeper
Extension Developer’s Guide

Release 6.0

E50771-03

November 2015

Oracle Communications Services Gatekeeper Extension Developer's Guide, Release 6.0

E50771-03

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users
are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the programs, including any operating system, integrated software, any programs installed on
the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to
the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content,
products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and
expressly disclaim all warranties of any kind with respect to third-party content, products, and services
unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its
affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services, except as set forth in an applicable agreement between you and
Oracle.

iii

Contents

Preface ... xiii

Audience... xiii
Documentation Accessibility ... xiii
Related Documents ... xiii

1 Overview of the Platform Development Studio

About Platform Development Studio .. 1-1
About Creating Communication Services and Plug-ins... 1-1

About Platform Development Studio Wizard ... 1-1
About the Example Communication Service ... 1-2
About Testing New Communication Services... 1-2

Integrating and Customizing Communication Services .. 1-2
Intercepting Requests with Service Interceptors ... 1-2
Creating Subscriber-centric Policies with SLAs... 1-2
Integrating Communication Services with External Systems ... 1-3

2 Understanding Communication Service Components

Understanding Communication Service Components ... 2-1
Understanding Communication Service Plug-ins ... 2-4

Plug-in Service and Plug-in Instance .. 2-5
Understanding the Plug-in States.. 2-5
Understanding the PluginPool... 2-8
Understanding the Plug-in APIs.. 2-8

Interface: Plug-in ... 2-8
Interface: PluginNorth.. 2-8
Interface: PluginNorthCallBack.. 2-9
Interface: PluginSouth.. 2-9
Interface: ManagedPluginService... 2-9
Interface: PluginService.. 2-9
Interface: PluginInstanceFactory ... 2-10
Interface: PluginServiceLifecycle... 2-10
Interface: ManagedPluginInstance.. 2-10
Interface: PluginInstance... 2-10
Interface: PluginInstanceLifecycle... 2-11
Class: RequestFactory.. 2-11

iv

Class: CallbackFactory .. 2-11
Interface: Callback.. 2-12
Class: RequestInfo ... 2-12
Class: ServiceType ... 2-12

Plug-in Context APIs .. 2-12
Interface: ContextMapperInfo.. 2-13
Interface: RequestContext... 2-13

Managing Communication Services.. 2-13
Managing Communication Service Access with SLAs .. 2-13
Sharing Libraries Among Communication Service Plug-ins ... 2-14

3 Developing Communication Services

Tips for Creating or Extending Communication Services ... 3-1
Communicating with Container Services.. 3-2

Retrieving Implementation Instances Using InstanceFactory... 3-3
Obtaining JNDI Context with ClusterHelper .. 3-4
Broadcasting Events... 3-4
Generating Statistics with Statistics Service ... 3-4

Generating Standard Statistics .. 3-4
Generating Statistics when Exceptions are Thrown .. 3-4

Using the Plug-in Packages .. 3-5
Understanding Communication Service Management .. 3-5
Understanding EDRs ... 3-5
Enforcing Service Level Agreements.. 3-5
Correlating Services ... 3-6

About Service Correlation Identifiers ... 3-6
Managing Service Correlation Identifiers .. 3-7

Creating a Custom Service Correlation ... 3-7
Using Parameter Tunneling ... 3-8
Understanding Service Gatekeeper Storage Services ... 3-8

Storing Configuration Data with ConfigurationStore .. 3-8
Interfaces .. 3-9

Storing Traffic Data with StorageService... 3-11
Store configuration file.. 3-14
<store>... 3-15
<db_table> .. 3-15
<query> ... 3-17
<provider-mapping>... 3-18
<providers> .. 3-19

Sharing Common Libraries ... 3-19

4 Communication Service Example

Overview of the Example Communication Service... 4-1
High-level Flow for sendData (Flow A) ... 4-2
High-level Flow for startNotification and stopNotification (Flow B) .. 4-3
High-level flow for notifyDataReception (Flow C)... 4-3

Interfaces .. 4-3

v

Web Service Interface Definition ... 4-3
Interface: SendData... 4-3
Interface: NotificationManager... 4-4
Interface: NotificationListener .. 4-5

Network Interface Definition ... 4-5
sendDataToNetwork .. 4-5
receiveData... 4-6

Directory Structure... 4-6
Directories for WSDL... 4-7

Application-initiated traffic... 4-7
Network-triggered traffic .. 4-7

Directories for Java Source.. 4-7
Communication Service Common ... 4-7
Plug-in .. 4-8

Directories for resources ... 4-8
Directories for Configuration of Plug-in... 4-9
Directories for Build and Configuration of Builds .. 4-9
Directories for Classes, JAR, and EAR Files .. 4-10

Classes ... 4-11
Communication Service Common.. 4-11

ExceptionType.. 4-11
NotificationManagerPluginFactory .. 4-12

Plug-in Layer ... 4-12
ContextTranslatorImpl.. 4-12
ExamplePluginService... 4-13
ExamplePluginInstance... 4-14
ConfigurationStoreHandler.. 4-15
ExampleMBean .. 4-16
Management ... 4-16
NotificationHandlerNorth.. 4-16
NetworkToNotificationPluginAdapter .. 4-17
NetworkToNotificationPluginAdapterImpl.. 4-18
NotificationManagerPluginNorth ... 4-19
SendDataPluginNorth... 4-20
SendDataPluginSouth ... 4-20
SendDataPluginToNetworkAdapter .. 4-21
SendDataPluginToNetworkAdapterImpl.. 4-21
FilterImpl... 4-21
NotificationData... 4-21
StoreHelper ... 4-22
ExamplePluginInstance... 4-23
ExamplePluginService... 4-24

Store configuration ... 4-25
SLA Example .. 4-27

5 Creating Extensions with Platform Development Studio Wizard

About Platform Development Studio Wizard .. 5-1

vi

Configuring Platform Development Studio Wizard... 5-1
Prerequisite Software... 5-1
Configuring Platform Development Studio Wizard Directories and Logging Levels 5-2
Ensuring Platform Development Studio Wizard Uses JRE 1.7 .. 5-2

Generating an Interceptor Module ... 5-3
Generating an OAuth 2.0 Extension Handler ... 5-3
Generating a Platform Test Environment Custom Module... 5-4
Generating a Web Service API Exposure Project... 5-6
Adding and Removing Extension Plug-ins... 5-7

Adding a Plug-in to a Services Gatekeeper Project... 5-7
Removing a Plug-in from a Communication Service ... 5-8

6 Understanding the Communication Service Project Output

About the Generated Communication Service... 6-1
About the Communication Service Project .. 6-1
About the RESTFul Service Facade ... 6-2

Default RESTful Service Facade.. 6-2
Customize the RESTful Service Facade ... 6-5
Custom URL Mapping Example ... 6-12
Using a Custom Handler Chain... 6-13

About the Communication Service Plug-in ... 6-13
About the SOAP2SOAP Plug-in .. 6-14
Generated Artifacts for a SOAPSOAP Communication Service.. 6-16
Properties for SOAP2SOAP Plug-ins ... 6-16
About the SIP Plug-in .. 6-18
About the Diameter Plug-in .. 6-19

Generated classes for a Plug-in .. 6-19
Interface: ManagedPluginService ... 6-20

Interface: PluginService... 6-20
Interface: PluginInstanceFactory ... 6-20
Interface: PluginServiceLifecycle... 6-20

PluginService ... 6-21
ManagedPlugin Skeleton.. 6-21

PluginInstance ... 6-21
PluginNorth ... 6-22

PluginNorth skeleton .. 6-22
RequestFactory Skeleton .. 6-23

Generated classes for a SOAP2SOAP Plug-in ... 6-23
 Comparison with a Non-SOAP2SOAP Plug-in... 6-23
Client Stubs .. 6-23

Web Services Interface_Stub .. 6-24
Web Services Interface .. 6-24
Web Services InterfaceService_Impl... 6-24
Web Services InterfaceService ... 6-24

PluginInstance ... 6-24
PluginNorth ... 6-25
PluginSouth.. 6-25

vii

RequestFactory ... 6-25
HTTPProxyMBean Reference ... 6-25
Adding a SOAP2SOAP Communication Services.. 6-25

About SOAP2SOAP Communication Services... 6-25
Generated Artifacts for a SOAP2SOAP Communication Service.. 6-26
Managing and Configuring SOAP2SOAP Communication Services 6-27

Properties for SOAP2SOAP Plug-ins .. 6-27
Provisioning Workflow for SOAP2SOAP Communication Services 6-28

Build Files and Targets for a Communication Service Project... 6-28
Main Build File .. 6-29
Communication Service Common Build File.. 6-29
Plug-in Build File... 6-29
Ant Tasks.. 6-30

cs_gen... 6-30
plugin_gen .. 6-31
cs_package .. 6-32
javadoc2annotation.. 6-33

7 Service Enabler Example with SIP plug-in

Overview of the Service Enabler Example with SIP Plug-in... 7-1
High-level Flow for sendData (Flow A) ... 7-2
High-level Flow for startNotification and stopNotification (Flow B) .. 7-3
High-level flow for notifyDataReception (Flow C)... 7-3

Understanding the SIP Example Interfaces .. 7-3
Web Service Interface Definition ... 7-3
Network Interface Definition ... 7-3

SIP Example Directory Structure .. 7-4
Differences Compared to the Example netex Plug-in .. 7-4

SIP Example Configuration Files and Artifacts ... 7-5
SIP Example Classes .. 7-6

ExampleServlet ... 7-6
public void init().. 7-6
protected void doMessage() .. 7-6

ExampleSipHelper ... 7-6
public void init(ServletContext servletContext)... 7-6
public SipSessionsUtil getSessionsUtil().. 7-6
public SipFactory getSipFactory() .. 7-6
public synchronized void registerCallback(NetworkCallback callback) 7-6
public synchronized void unregisterCallback(NetworkCallback callback)....................... 7-7
public synchronized void notifyCallbacks(String fromAddress, String toAddress, String
message) 7-7

SendDataPluginSouth ... 7-7
public SendDataPluginSouth() ... 7-7
public void send(String address, String data) .. 7-7
public String resolveAppInstanceGroupdId(ContextMapperInfo info)............................. 7-7
public void prepareRequestContext(RequestContext ctx, ContextMapperInfo info) 7-7

NotificationHandlerSouth .. 7-8

viii

public NotificationHandlerNorth() .. 7-8
public void receiveData(@ContextKey(EdrConstants.FIELD_ORIGINATING_ADDRESS)
String fromAddress, @ContextKey(EdrConstants.FIELD_DESTINATION_ADDRESS)
@MapperInfo(C) String toAddress, String data) 7-8
public String resolveAppInstanceGroupdId(ContextMapperInfo info)............................. 7-8
public void prepareRequestContext(RequestContext ctx, ContextMapperInfo info) 7-8

ExampleMBean... 7-8
SIP Example SLA ... 7-9

8 Using the SMPP API

Understanding the SMPP API ... 8-1
SMPP Service Interfaces .. 8-2
SMPPPluginSouth.. 8-3
SMPPPluginNorth.. 8-3

Additional Information You Need to Build an SMPP Plug-in ... 8-3
Creating a Custom SMPP Plug-in ... 8-4
Configuration Settings Affecting SMPP Connections ... 8-5
About the SMPP Interfaces .. 8-5

oracle.ocsg.protocol.common... 8-6
oracle.ocsg.protocol.smpp.service ... 8-6

SMPPService .. 8-6
SMPPServiceNorth ... 8-6
SMPPServiceSouth.. 8-7

oracle.ocsg.protocol.smpp.plugin.. 8-7
SMPPPluginNorth .. 8-7
SMPPPluginSouth... 8-8
SMPPPluginMBean... 8-8

oracle.ocsg.protocol.smpp.common.. 8-8
oracle.ocsg.protocol.smpp.event.. 8-8

Using the SMPP APIs .. 8-8
Processing a BIND Request from an Application ... 8-9
Processing a SUBMIT_SM Request from an Application ... 8-10
Processing a SUBMIT_SM Response from the SMSC.. 8-10
Processing a DELIVER_SM Request from the SMSC ... 8-11
Processing a DELIVER_SM Response from an Application... 8-12

9 Using the UCP API

Understanding the UCP Protocol API .. 9-1
UCP Protocol Server Service .. 9-2
Understanding the Connection Information Manager Service ... 9-3
PluginNorth .. 9-3
PluginSouth... 9-4

Additional Information You Will Need... 9-4
Procedure for Creating a Customized UCP Plug-in .. 9-5
About the UCP Protocol Server Service Interfaces .. 9-6

oracle.ocsg.protocol.common... 9-6
oracle.ocsg.protocol.ucp.. 9-6

ix

oracle.ocsg.protocol.ucp.pdu.. 9-7
Connection Mapping ... 9-7
OAM Attributes Affecting UCP Network Connectivity .. 9-8
Using the APIs .. 9-8

Sending a submitSm Request to the SMSC .. 9-9
Creating a UCP PDU ... 9-9
Sending an openSession Request to the SMSC... 9-10
Sending a DeliverSm to an Application... 9-11

10 Using Service Interceptors to Manipulate Requests

Understanding Service Interceptors in Services Gatekeeper ... 10-1
Understanding How Requests are Triggered ... 10-2
Understanding How the Plug-in Manager Works with Interceptors 10-3
Request Context Data Used to Handle Request Flow ... 10-3
Data Available for Modification ... 10-4
Specifying a Destination for the Request... 10-4

Proceeding with the Request Flow.. 10-5
Returning the Request... 10-5
Aborting the Request... 10-5

Invoking the Next Service Interceptor to Handle the Request... 10-5
Last Service Interceptor in the Chain ... 10-6

Understanding the Standard Interceptors .. 10-6
Locating the Standard Interceptors .. 10-11
Retry Functionality for plug-ins.. 10-11

Interceptors.ear File .. 10-12
File Contents .. 10-12

Maintaining Interceptor Data Integrity .. 10-12
Location for All Standard Interceptor Classes... 10-13

Config.xml File .. 10-13
Elements in Config.xml... 10-13
Standard Interceptors in the MT_NORTH Section ... 10-13
Standard Interceptors in the MO_NORTH Section .. 10-14
Standard Interceptors in the MO_SOUTH Section ... 10-14
Standard Interceptors in the MT_SOUTH Section.. 10-15

Creating and Using Custom Interceptors ... 10-15
Understanding Custom Interceptors.. 10-15

How to Provide Your Custom Interceptors ... 10-15
Required Packages, Interfaces and Methods ... 10-16
Creating a Backup.. 10-16
On Customer Interceptor Implementation ... 10-16
Testing the Custom Interceptor ... 10-17

Understanding the Example Interceptors ... 10-17
General Example .. 10-17
Interceptor that Extracts Context Data from RequestContext... 10-18
Interceptor that Functions as a Black List for SMSs.. 10-19
Interceptor that Replaces a Word with a Variable String in an SMS.............................. 10-19

Using the Default EAR File to Add a Custom Interceptor.. 10-20

x

Developing the Custom Interceptor for Deployment... 10-20
Updating the Config.xml File... 10-21
Rebuilding the Interceptors.ear File .. 10-22
Re-deploying Common Interceptors. ear File.. 10-22

Using a Custom EAR File to Add a Custom Interceptor .. 10-22
Points to Note ... 10-22
Steps to Build a Custom EAR for Use with a Custom Interceptor 10-23
Information Needed to Register Custom Interceptors ... 10-23
Creating a Custom Listener.. 10-23
The Registration Process ... 10-24
Building a Custom EAR File .. 10-25
Deploying Your Custom EAR File .. 10-26
Updating an Existing Custom EAR to Add Custom Interceptors.................................. 10-26

Customizing the Interceptor Chain for a Communication Service ... 10-26
Managing Custom Interceptor Filter Rules... 10-27

Interceptor Rule Parameters... 10-27
Summary of Tasks Related to Interceptors ... 10-29

Interceptor Rules .. 10-29

11 Aspects, Annotations, EDRs, Alarms, and CDRs

About Aspects and Annotations... 11-1
How Aspects are Applied .. 11-1
Understanding the Context Aspect .. 11-2
Generating EDRs from Communication Services .. 11-4

EDR Exception Scenarios ... 11-5
Adding Data to the RequestContext .. 11-6

Using translators .. 11-7
Triggering an EDR Programmatically ... 11-8
EDR Content .. 11-8

Using send lists... 11-14
RequestContext and EDR... 11-15

Categorizing EDRs .. 11-15
The EDR descriptor... 11-16

Special characters ... 11-17
Values provided ... 11-18
Boolean semantic of the filters ... 11-18
Example filters.. 11-19

Checklist for EDR generation ... 11-22
Frequently Asked Questions about EDRs and EDR filters .. 11-23
Alarm generation... 11-24

Trigger an alarm programmatically ... 11-25
Alarm content .. 11-25

CDR generation ... 11-27
Triggering a CDR .. 11-28
Trigger a CDR programmatically ... 11-28
CDR content ... 11-28

Additional_info column.. 11-30

xi

Out-of-the box (OOTB) CDR support .. 11-32

12 Using SLA Policies to Manage Subscribers

About Using Policies to Manage Subscribers ... 12-1
Service Classes and the Subscriber SLA... 12-1

The <reference> element.. 12-1
The <restriction> element .. 12-2
Managing the Subscriber SLA... 12-3

The Profile Provider SPI and Subscriber Contracts ... 12-3
Deploying the Custom Profile Provider .. 12-4

Subscriber Policy Enforcement ... 12-4
Do Relevant Subscriber Contracts Exist?... 12-5
Is There Adequate Budget for the Contracts? ... 12-7

13 Creating Custom Runtime SLAs

Introduction.. 13-1
Custom SLAs and XSDs... 13-1
Custom SLA Enforcement ... 13-1

Get an SLA using a DOM Object .. 13-2
Get an SLA using a Custom Parser .. 13-3

Example .. 13-3
Custom SLA Schema and Example SLA ... 13-4
Enforcement Logic .. 13-4

14 Customizing SLA Behavior for a Service Provider or Application

Understanding How to Customize Behavior Based on SLAs... 14-1

15 Customizing Diameter AVPs

Understanding Customized Diameter AVPs... 15-1
Configuring Customized AVPs for Parlay X 3.0 Payment/Diameter .. 15-1
Configuring Customized AVPs for Credit Control Interceptor... 15-3
Configuring Customized AVPs for CDR Diameter Listener ... 15-4
Dynamically Customizing AVPs for Applications .. 15-6

16 Creating EDR Listeners

Understanding External EDR listeners ... 16-1
Example using a pure JMS listener... 16-3
Example using JMSListener utility with no filter ... 16-3
Using JMSListener utility with a filter ... 16-3

Understanding an EDR listener utility ... 16-4
Class JMSListener.. 16-4
Class EdrFilterFactory .. 16-4
Class EdrData .. 16-5
Class ConfigDescriptor... 16-5
Class EdrConfigDescriptor .. 16-5

xii

Class AlarmConfigDescriptor ... 16-5
Class CdrConfigDescriptor.. 16-5

Updating EDR configuration files ... 16-5

17 Making Communication Services Manageable

Understanding Communication Service Management ... 17-1
Create Standard JMX MBeans ... 17-1

Create an MBean Interface... 17-2
Implement the MBean .. 17-3
Register the MBean with the Runtime MBean Server ... 17-3

Use the Configuration Store to Persist Values .. 17-4

18 Extending the ATE and PTE for Your Communication Services

Understanding ATE and PTE Extensions ... 18-1
Generating a Custom Module Project Using the PDS Wizard ... 18-3
Understanding the Generated Project.. 18-3
Understanding the Generated Project Build File.. 18-3
Understanding the Generated Project Deployment Descriptor ... 18-4

Building and Deploying the Module .. 18-6
Virtual Communication Service Module for the ATE ... 18-6
Client Module for the PTE .. 18-8
Simulator Module for the PTE.. 18-8
Virtual Communication Service Example ... 18-9
Client Module Example ... 18-9
Simulator Module Example .. 18-9
Stateless and Stateful Modules .. 18-9
Presenting Results... 18-9
Presenting Statistics .. 18-10
Interacting With the Network Simulator Map .. 18-10

xiii

Preface

This document describes the tools that Oracle Communications Services Gatekeeper
includes to create and test new or customizes communication services.

Audience
This book is intended for system integrators and field engineers who need to extend
the out-of-the-box functionality of Services Gatekeeper.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing
impaired.

Related Documents
For more information, see the following documents in the Services Gatekeeper set:

■ Oracle Communications Services Gatekeeper Application Developer's Guide

■ Oracle Communications Services Gatekeeper Communication Service Reference Guide

■ Oracle Communications Services Gatekeeper OAuth Guide

■ Oracle Communications Services Gatekeeper Portal Developer's Guide

■ Oracle Communications Services Gatekeeper Platform Test Environment User's Guide

■ Oracle Communications Services Gatekeeper Security Guide

xiv

1

Overview of the Platform Development Studio 1-1

1Overview of the Platform Development Studio

This chapter provides an overview of Oracle Communication Services Gatekeeper
Platform Development Studio that you use to create or extend communication
services.

About Platform Development Studio
Services Gatekeeper Platform Development Studio provides tools you can use to:

■ Create communication services

■ Customize existing communication services

■ Integrate Services Gatekeeper with external systems

About Creating Communication Services and Plug-ins
You can expose your network’s new features to partners using Platform Development
Studio. Extension developers can then focus on only those parts of the system that
correspond directly to their specific needs.

About Platform Development Studio Wizard
Platform Development Studio Wizard (PDS Wizard) is an Eclipse plug-in that
streamlines the task of creating these Services Gatekeeper extensions:

■ Communication Services

■ Interceptor Modules

■ OAuth2 Extension Handlers

■ Platform Test Environment Custom Modules

For example, when you supply some basic naming information and the location of a
Web Services Description Language (WSDL) file for each application-facing interface
that the communication service supports, the wizard generates either a complete
communication service project, or a network plug-in only project, as required. For
more information about running the wizard, see "Creating Extensions with Platform
Development Studio Wizard".

To get an understanding of the Services Gatekeeper features with which your
communication service will interact, see these sections:

■ Customizing SLA Behavior for a Service Provider or Application

■ Aspects, Annotations, EDRs, Alarms, and CDRs

Integrating and Customizing Communication Services

1-2 Services Gatekeeper Extension Developer's Guide

■ Making Communication Services Manageable

Platform Development Studio Wizard offers XML-to-JSON mapping capability so you
can map REST data to SOAP and back.

About the Example Communication Service
Platform Development Studio contains an example communication service that is
ready to build and run. This example is based on a basic Web Service interface and a
basic underlying network protocol. It demonstrates the entire range of tasks required
to create your own communication service. For more information, see
"Communication Service Example".

See "Service Enabler Example with SIP plug-in" for an example network protocol
plug-in that uses the SIP Servlet container.

About Testing New Communication Services
You can test your communication service by using the Platform Test Environment
(PTE) graphical user interface of the Platform Development Studio. PTE provides an
extensible suite of tools for testing communication services and the Unit Test
Framework, which includes the WlngBaseTestCase abstract base class which connects
to the Platform Test Environment (PTE). There is a also complete set of sample tools
created to interact with the example communication service. See Services Gatekeeper
Platform Test Environment User's Guide for more information.

Integrating and Customizing Communication Services
You can customize the following services using Platform Development Studio:

■ Intercepting Requests with Service Interceptors

■ Creating Subscriber-centric Policies with SLAs

■ Integrating Communication Services with External Systems

Intercepting Requests with Service Interceptors
Service interceptors offer an easy way to modify the request flow, simplify routing
mechanisms for plug-ins, and centralize policy and SLA enforcement. Services
Gatekeeper uses these modules as part of its internal functioning.

You can use service interceptors to intercept a service request and manipulate the
request as it flows through a communication service. You can also choose to create
new interceptors, or to rearrange the order in which the interceptors are used, in order
to customize their functionality. See "Using Service Interceptors to Manipulate
Requests" for more information.

Creating Subscriber-centric Policies with SLAs
Network operators can use the default Services Gatekeeper administration model to
manage application service provider access to the network at increasingly granular
levels. Network operators can also extend that model to encompass subscribers and
offer them a highly personalized experience while protecting their privacy and
keeping their subscriber data safe within your operator domain. See "Using SLA
Policies to Manage Subscribers" for more information.

Integrating and Customizing Communication Services

Overview of the Platform Development Studio 1-3

Integrating Communication Services with External Systems
You can use Platform Development Studio to integrate Services Gatekeeper with
external network systems, including:

■ EDR listeners. See "Creating EDR Listeners".

■ Alarm monitoring using SNMP. See "Creating EDR Listeners".

■ Short Messaging Peer to Peer Protocol (SMPP) API Java interface. See "Using the
SMPP API".

■ Universal Computer Protocol (UCP) API Java interface. See "Using the UCP API".

Additional integration points not covered in this document include:

■ The Partner Relationship Management interfaces for creating Partner Management
portals. See Services Gatekeeper Portal Developer's Guide.

■ JMX for non-console based management, covered in these WebLogic Server
documents:

– Oracle Fusion Middleware Developing Custom Management Utilities With JMX for
Oracle WebLogic Server at

http://docs.oracle.com/cd/E24329_01/web.1211/e24415/toc.htm

– Oracle Fusion Middleware Designing Manageable Applications With JMX for Oracle
WebLogic Server at:

http://docs.oracle.com/cd/E24329_01/web.1211/e24416/designapp.htm

Integrating and Customizing Communication Services

1-4 Services Gatekeeper Extension Developer's Guide

2

Understanding Communication Service Components 2-1

2Understanding Communication Service
Components

This chapter describes the components, management, and use of the communication
services used by Oracle Communications Services Gatekeeper. Also see “About
Communication Services” in Services Gatekeeper Communication Service Reference Guide
for a higher-level look at communication services.

Understanding Communication Service Components
A communication service consists of:

■ A Service Web Service (SOAP or RESTful)

■ A Service enterprise Java bean (EJB)

■ A Callback EJB

■ A Callback client EJB

■ A set of network protocol plug-ins

Service components, such as the Web service and service EJB, handle
application-initiated requests.

Callback components, such as the callback EJB and callback client EJB, handle
network-triggered requests.

When these components are deployed in separate clusters, remote calls are used to
transport the request or response.

Figure 2–1 shows the high-level communication path used by application-triggered
and network-triggered requests.

Understanding Communication Service Components

2-2 Services Gatekeeper Extension Developer's Guide

Figure 2–1 High-Level Components of a Communication Service

Communication service components are auto-generated and are based on one or more
WSDL or WADL files. Application-initiated requests use service WSDL or WADL files.
Network-triggered requests use callback WSDL or WADL files.

You use Platform Developer Studio Wizard to generate the communication service
components listed in Table 2–1.

Understanding Communication Service Components

Understanding Communication Service Components 2-3

Table 2–1 Common Components of a Communication Service

Module Description
North
interface

South
interface

Service Web
Service

For application-initiated requests, the service Web service
implements the (SOAP or RESTful) interfaces defined in the
set of WSDL or WADL files for the specific service.

The definition for a Web service is packaged into a single
WAR file. For example, the SOAP Parlay X 2.1 Short
Messaging service defines the SendSms, ReceiveSms, and
SmsNotificationManager interfaces for application-initiated
requests. The service Web service implements all the above
interfaces and is packaged into one single WAR file for this
communication service.

Passes on the requests to the service EJB. Any service EJB of
the same type can be chosen, regardless of the server on
which it is deployed. The requests are load-balanced across
the different server instances.

Packaged into a single WAR file.

Deployed as a part of the access tier .ear for the
communication service.

The Service Web service is transparent to an extension
developer.

SOAP/HTTP
representation
of the service
WSDL files

Java RMI
representation
of the service
WSDL files

Understanding Communication Service Plug-ins

2-4 Services Gatekeeper Extension Developer's Guide

Understanding Communication Service Plug-ins
As an extension developer, you can use the range of interfaces and classes provided in
the com.bea.wlcp.wlng.api.plugin.* packages.

The first of these is a set of interfaces that define the borders of a plug-in and related
helper classes. You can use these borders to apply aspects, the special constructs that
contain several entities unavailable to standard classes in the definition of the plug-in
and thereby provide flexibility in handling the request in transit. See "Aspects,
Annotations, EDRs, Alarms, and CDRs" for information on aspects and the Services
Gatekeeper Java API Reference for information on the com.bea.wlcp.wlng.plugin
package.

Service EJB The service EJB is packaged into a single JAR file for the
communication service. When the Web service makes a Java
RMI call to a service EJB, the service EJB uses the Plug-in
Manager to locate and calls the appropriate plug-in instance.
The operations defined between the service Web service and
the service EJB are Java realizations of the interfaces defined
in the service WSDL files.

The service EJB is responsible for:

■ Constructing the RequestInfo object.

■ Converting any exception caught to an exception that is
defined in the service WSDL files.

This functionality must be implemented in the PluginFactory
class, which extends "Class: RequestInfo".

Packaged in a single .jar file.

Deployed as a part of the network tier .ear file.

Java RMI
representation
of the service
WSDL files

Local Java
representation
of the service
WSDL files

Callback EJB A Web services client that uses a Web service implemented
by an application. It uses the interfaces defined in the set of
callback WSDL or WADL files that define the Web service for
network-triggered requests.

Accepts requests from the service callback client EJB and
propagates them to an application.

Packaged into a single .jar file for the communication service.

Deployed as a part of the access tier .ear file.

SOAP/HTTP
representation
of the service
callback
WSDL file

Java RMI
representation
of the callback
WSDL file

Callback EJB
client

A client library that abstracts the remote call between the
plug-in and the callback EJB.

Accepts requests from a plug-in and propagates them to the
callback EJB.

It provides for cache invalidation of references to the remote
object in order to support in-production redeployment of the
.ear file for the access tier.

Any callback EJB of the same type can be chosen, regardless
of the server on which it is deployed. The requests are
load-balanced across the different server instances.

See "Class: CallbackFactory" and "Interface: Callback".

Packaged into a single .jar file for the communication service.

Deployed as a part of the network tier .ear file.

Java RMI
representation
of the service
callback
WSDL file

Local Java
representation
of the callback
WSDL file

Table 2–1 (Cont.) Common Components of a Communication Service

Module Description
North
interface

South
interface

Understanding Communication Service Plug-ins

Understanding Communication Service Components 2-5

Plug-in Service and Plug-in Instance
A plug-in service is a JEE application that implements the
com.bea.wlcp.wlng.api.plugin.ManagedPluginService interface. It has:

■ A life cycle, defined in the com.bea.wlcp.wlng.api.plugin.PluginServiceLifecycle
interface.

■ A registry, defined in the com.bea.wlcp.wlng.api.plugin.PluginService interface.

■ A factory to create plug-in instances, defined in the
com.bea.wlcp.wlng.api.plugin.PluginInstanceFactory interface.

Life-cycle management is performed on the plug-in service.

A plug-in instance is a class that implements the
com.bea.wlcp.wlng.api.plugin.ManagedPluginInstance interface. Plug-in instances
are part of the traffic flow. Each plug-in instance registers with the Plug-in Manager
and manages the routing. It has:

■ A life cycle defined in the com.bea.wlcp.wlng.api.plugin.PluginInstanceLifecycle
interface.

■ A set of PluginNorth and PluginSouth interfaces that it implements. These
interfaces are defined by the application-facing interfaces and the network-facing
interfaces.

■ A registry, defined in the com.bea.wlcp.wlng.api.plugin.PluginInstance interface.
This registry holds the list of the registered interfaces.

■ Logic that examines the data in a request and determines if the instance can
handle it or not. The interface for this logic is defined in
com.bea.wlcp.wlng.api.plugin.PluginInstance.

■ Logic that maintains the state of a connection. The interface for this logic is defined
in com.bea.wlcp.wlng.api.plugin.PluginInstance.

Understanding the Plug-in States
Plug-in services have the following states:

■ NEW

■ STARTED

■ ACTIVE (ADMIN)

■ ACTIVE (RUNNING)

Plug-in instances have the following states:

■ NEW

■ ACTIVE

Figure 2–2 shows the states used by the plug-in service and plug-in instance.

Understanding Communication Service Plug-ins

2-6 Services Gatekeeper Extension Developer's Guide

Figure 2–2 States for a Plug-in Service (left) and a Plug-in instance (right)

The state transitions in Figure 2–1 are triggered by:

■ The start-up sequence of the server in which the plug-in is deployed.

■ An explicit deployment of the plug-in using the weblogic.Deployer, a Java-based
deployment tool that provides a command-line interface to the WebLogic Server
deployment API. For details, see "Deploying Applications and Modules with
weblogic.Deployer" in Oracle Fusion Middleware Deploying Applications to Oracle
WebLogic Server.

Table 2–2 lists the plug-in service state transitions, what they are triggered by and
describes the state.

Note: All deployments are made at the .ear level, which means that
individual plug-ins are not targeted, but all plug-ins within the .ear
are affected.

Table 2–2 Plug-in Service State Transitions

State Transition Triggered by Descriptions

init Deployment or
startup

The plug-in service has been created and initialized.

The only method that will be called in this state is
doStarted()

doStarted Deployment or
startup

The plug-in service should perform as much initialization as
possible without being externally visible. Examples include:
retrieving configuration data, creating internal objects, and
initializing stores.

doActivated Deployment or
startup

The plug-in service should continue activation and become
visible, for example register MBeans, without accepting traffic.

handleResuming Deployment or
startup

The plug-in service should order all plug-in instances to
establish connections with the network node, if applicable,
and accept traffic.

Understanding Communication Service Plug-ins

Understanding Communication Service Components 2-7

Table 2–3 lists the state transitions, what they are triggered by and describes each state.
These state transitions are triggered by either the start-up sequence of the server on
which the plug-in instance is created, or are an explicit creation of a new instance
using the Plug-in manager. See the discussion on “Managing and Configuring the
Plug-in Manager” in the Services Gatekeeper System Administrator's Guide.

handleSuspending Graceful
undeployment/rede
ployment/stopping

That is, by invoking
weblogic.Deployer
with -graceful

The plug-in service should order the plug-in instance to reject
new traffic, but continue processing of in-flight work.

A com.bea.wlcp.wlng.api.plugin.CompletionBarrier type
object is provided in the request.

When all in-flight work has been processed, the plug-in
should get the
com.bea.wlcp.wlng.api.plugin.CompletionBarrierCallback
interface type object from the CompletionBarrier type object
and call the completed() method on the
CompletionBarrierCallback interface.

handleForceSuspending Forced
undeployment/rede
ployment/stopping

That is invoking
weblogic.Deployer
with -retiretimeout

The plug-in service should order the plug-in instance to reject
new traffic and to discard in-flight work.

doDeactivated Undeployment. The plug-in service should deactivate itself, unregister any
MBeans and become invisible.

doStopped Undeployment. The plug-in service should perform cleanup and be available
for garbage collection.

Table 2–3 Plug-in Instance State Transitions

Transition Triggered by Descriptions

activate Creation of the
plug-in
instance using
the Plug-in
Manager
MBean.

The plug-in instance is created. Depending on the state of the
plug-in service, the plug-in instance should take the
appropriate action. If the state of the plug-in service is:

■ ACTIVE (ADMIN): The plug-in instance

Instantiates and registers the PluginNorth and call-back
interfaces with the plug-in manager.

Instantiates and registers the PluginSouth interfaces with
the plug-in manager.

Instantiates any ConfigurationStore.

Registers the MBean for the instance.

■ ACTIVE (RUNNING): The plug-in instance

Connects to the network node, if a connection-oriented
protocol is used.

Registers any callbacks with the network node.

deactivate Destruction of
the plug-in
instance using
the Plug-in
Manager
MBean.

The plug-in instance:

■ De-registers any call-backs with the network node.

■ Disconnects from the network node, if connected.

■ De-registers the MBean for the instance.

■ Cancels any timers.

Table 2–2 (Cont.) Plug-in Service State Transitions

State Transition Triggered by Descriptions

Understanding Communication Service Plug-ins

2-8 Services Gatekeeper Extension Developer's Guide

The Plug-in Manager maintains a pool of plug-in instances. This pool is provided to
the plug-in when the init() method is called. This pool can be used to iterate over all
instances in order to propagate events related to state transitions in the plug-in service.

The Plug-in Manager maintains a registry of all PluginNorth and PluginSouth
interfaces. It is the responsibility of the plug-in instance to register these interfaces
with the Plug-in Manager. The Plug-in Manager uses this list of registered interfaces
when routing a request to the appropriate plug-in instance. The Plug-in Manager
queries the plug-in instance for information in order to make a routing decision. A
plug-in instance maintains:

■ A list of PluginNorth interfaces

■ A list of PluginSouth interfaces

■ Whether the plug-in instance has a connection to the network node.

■ Custom pattern matching, where the plug-in examines the request and marks the
plug-in instance as either a 1) mandatory, 2) optional, or 3) required target for the
request.

The plug-in service maintains a:

■ Service type, used by all plug-in instances to generate EDRs, CDRs, and statistics.

■ List of supported address schemes, used by the Plug-in Manager when taking a
routing decision.

Understanding the PluginPool
The PluginPool interface is a collection of PluginInstances interfaces. PluginPool is
populated when a plug-in instance is created using the PluginInstanceFactory. The
plug-in service can use PluginPool to do the following:

■ List plug-in instances

■ Get a plug-in instance by its plug-in instance ID.

Understanding the Plug-in APIs
The com.bea.wlcp.wlng.api.plugin package contains interfaces and classes used for
building a plug-in. A brief description of some of the most important interfaces and
classes in this package is given here. See the Services Gatekeeper Actions Java API
Reference for details.

Interface: Plug-in
Plug-in is the superinterface for "Interface: PluginNorth", "Interface:
PluginNorthCallBack", and "Interface: PluginSouth".

These interfaces must be implemented by any plug-in that handles network-triggered
requests, either new requests or notifications.

Interface: PluginNorth
PluginNorth defines the entry-point for application-initiated requests and is one of the
borders at which aspects are woven. This interface must be implemented by all classes
that handle application-triggered requests from the service EJB to the plug-in. All
interfaces in the plug-in that implement the traffic interfaces contained in the service
WSDL definitions must implement the PluginNorth interface. There must be one class
per interface.

Understanding Communication Service Plug-ins

Understanding Communication Service Components 2-9

A list of the implementations is maintained in the class that implements "Interface:
ManagedPluginInstance". Statistics aspects are applied for classes that implement this
interface and counters for transaction units are increased. See Services Gatekeeper
Licensing Guide for information about transaction units.

Interface: PluginNorthCallBack
PluginNorthCallback defines the limit between the plug-in and the service callback
EJB and further on to an application.

All interfaces in the plug-in that implement the traffic interfaces contained in the
service callback WSDL definitions must implement the PluginNorthCallback
interface. Statistics aspects are applied for classes that implement this interface and
counters for transaction units are increased. See Services Gatekeeper Licensing Guide for
information about transaction units.

Interface: PluginSouth
PluginSouth defines the entry-point for network-triggered requests. It defines the
south (or the network-facing) border of a plug-in. This interface must be implemented
by the plug-in.

PluginSouth contains methods used to rebuild the object defined by "Interface:
RequestContext" for network-initiated requests. The object is rebuilt using information
from the object defined by "Interface: ContextMapperInfo" and the methods for
resolving the application instance to which the request belongs.

When a network-triggered request arrives at the plug-in, the usual pattern is to
correlate the request with a previous subscription for notifications.

Aspects that call the method

public String resolveAppInstanceGroupId(ContextMapperInfo)

can be applied by extending PluginSouth in the class that implements the request.

It is the responsibility of the plug-in instance to extract the information provided in the
request and to resolve the application instance that matches this data as a part of the
rebuilding of the RequestContext object. This is done using the Context aspect. See
"Understanding the Context Aspect" for more information.

After resolving the application instance, the contextual information about the request
is set up by calling the following method

public void prepareRequestContext(RequestContext ctx, ContextMapperInfo info)

In the implementation of this method, the plug-in instance has the option to add
additional data to the contextual information about the request in the object defined by
RequestContext.

Interface: ManagedPluginService
Every plug-in service must implement the ManagedPluginService interface which
extends the PluginService, PluginInstanceFactory and PluginServiceLifecycle
interfaces.

Interface: PluginService
PluginService defines a plug-in service registered in the Plug-in Manager.

A set of fields can be defined by implementing the following methods:

Understanding Communication Service Plug-ins

2-10 Services Gatekeeper Extension Developer's Guide

■ getNetworkProtocol(), returns a descriptive name for the supported network
protocol. For example "SMPP v3.4."

■ getServiceType(), returns a ServiceType object. See "Class: ServiceType".

■ getSupportedSchemes(), returns a list of supported address schemes. This is a
string array of URI schemes: for example “tel”, “mailto”, and “sip“.

Interface: PluginInstanceFactory
PlugininInstanceFactory allows a plug-in service to create plug-in instances.

It defines the method:

ManagedPluginInstance createInstance(String pluginInstanceId)

This method is triggered by the createPluginInstance method on the Plug-in Manager
MBean. When the createInstance method is invoked, the plug-in service is responsible
for creating an instance of the class implementing the ManagedPluginInstance
interface.

Interface: PluginServiceLifecycle
PluginServiceLifecycle defines the life-cycle for a plug-in service. See "Understanding
the Plug-in States".

Interface: ManagedPluginInstance
ManagedPluginInstance extends the PluginInstance and PluginInstanceLifecycle
interfaces. It must be implemented by a plug-in instance.

Interface: PluginInstance
PluginInstance defines a plug-in instance registered in the Plug-in Manager.

The plug-in instance is responsible for:

■ Maintaining a list of north interfaces that the plug-in implements.

■ Maintaining a list of south interfaces that the plug-in implements.

Both lists are arrays of PluginInterfaceHolder. The respective lists are returned when
the getNorthInterfaces() and getSouthInterfaces() methods are invoked.

The plug-in instance is also responsible for implementing the
customMatch(RequestInfo requestInfo) method. This method examines the
RequestInfo object and decides if the plug-in instance can be used to serve the
request. It returns the following constants:

■ MATCH_OPTIONAL

The request is completely stateless and can be served by any plug-in instance.

■ MATCH_REMOVE

The request cannot be served. This situation can occur, for example, if a plug-in
service does not implement the method being invoked or if the request relates to a
previous request which is known only to a subset of the plug-in instances in the
cluster.

■ MATCH_REQUIRED

The request must be served by the plug-in instance. This situation can occur, for
example, if the request relates to a previous request which is known only to a
subset of the plug-in instances in the cluster.

Understanding Communication Service Plug-ins

Understanding Communication Service Components 2-11

The plug-in instance is also responsible for maintaining information on the connection
status with the network node to which it is connected. It returns True or False when
the isConnected() method is invoked.

The Plug-in Manager invokes the methods in this interface to select the plug-in
instance to which it must route the request.

Interface: PluginInstanceLifecycle
PluginInstanceLifecycle defines the life cycle for a plug-in service. See
"Understanding the Plug-in States".

Class: RequestFactory
The RequestFactory class processes application-initiated requests both before and
after a request is processed in the plug-in. Each communication service must have one
implementation of the RequestFactory for each application-facing interface, named
according to the pattern: interfacename.PluginFactory, where interfacename is the name
of the application-facing interface. A skeleton for the factory is generated by the
Platform Developer’s Studio Wizard plug-in.

The RequestFactory class has two main functions:

■ It packages routing information contained in the request into a RequestInfo object
that the Plug-in Manager then uses to select an appropriate plug-in to process the
request. See "Class: RequestInfo" for more information on RequestInfo objects.

■ Translates any exceptions thrown in the plug-in (or the underlying network) into a
form that can be sent back to the application.

Class: CallbackFactory
This class is used by a plug-in instance to get an implementation of "Interface:
Callback". There is one CallbackFactory per interface in the callback WSDL
definitions.

Note: In order to support sendlists which target multiple plug-ins,
the Request Factory implementation must support three methods that
are not required for non-sendlist based plug-ins:

■ createRequestInfos allows the creation of multiple RequestInfo
objects. Each RequestInfo object is matched to a plug-in. For
example if an SMS message request is sent to 3 addresses, the
factory should create an array of 3 AddressRequestInfo objects.

■ createPartialRequest splits a request into multiple requests sent to
different plug-ins.

■ mergeResults merges the results reported back by multiple
plug-ins into a single result.

For details see RequestFactory in the “All Classes” section of the
Services Gatekeeper Java API Reference.

Plug-ins are invoked in sequence and if one of them fails the whole
request is considered a failure. In this case, an exception is thrown and
the transaction is rolled back.

Understanding Communication Service Plug-ins

2-12 Services Gatekeeper Extension Developer's Guide

The naming pattern is
com.acompany.example.callback.interfacenameCallbackFactory

Where interfacename is name of the interface (such as Notification in Example 2–1). The
implementation of the interface is fetched using the following pattern:

Example 2–1 Example CallbackFactory Implementation

import com.acompany.example.callback.NotificationCallback;
import com.acompany.example.callback.NotificationCallbackFactory;
...
private NotificationCallback cachedNotificationCallback = null
....
private NotificationCallback getNotificationCallback() {
if(cachedNotificationCallback == null) {
cachedNotificationCallback =
NotificationCallbackFactory.getInstance().create();

}
return cachedNotificationCallback;

}

Interface: Callback
The Callback interface is used by a plug-in to propagate a network-triggered request
from the plug-in to the callback EJB. This interface defines a Java representation of the
methods in the callback WSDL definitions. There is one of these per interface in the
callback WSDL definitions.

The naming pattern is com.acompany.example.callback.interface nameCallback, where
interfacename is name of the interface.

Class: RequestInfo
The RequestInfo object is created by the RequestFactory to hold information from the
application-initiated request. There are four sub-classes of RequestInfo that can be
used depending on the request:

■ AddressRequestInfo, if the request contains an address.

■ CorrelatorRequestInfo, if the request contains a correlator.

■ RegistrationIdentifierRequestInfo, if the request contains a registration identifier.

■ RequestIdentifierRequestInfo, if the request contains a request identifier.

Class: ServiceType
ServiceType is an abstract utility class that each plug-in must implement. An object of
this type is passed to the Plug-in Manager when the plug-in registers itself, so that the
Plug-in Manager can query for service type.

When they are used, aspects make this service type available in the request thread of
each plug-in. The service type is used by various services, including the EdrService.
See Services Gatekeeper Application Developer's Guide for the current set of supported
interfaces and plug-ins.

Plug-in Context APIs
The com.bea.wlcp.wlng.api.plugin.context package contains interfaces and a class
used for providing context for a plug-in. Brief descriptions of the most important

Managing Communication Service Access with SLAs

Understanding Communication Service Components 2-13

interfaces and classes in this package are given below. See Services Gatekeeper Java API
Reference for the complete Javadoc.

Interface: ContextMapperInfo
This interface defines a ContextMapperInfo object. When network-initiated traffic
enters the plug-in from the network-facing (south) side, aspects take any annotated
arguments from the network call that are needed by the plug-in for correlation
purposes and places them in this very short-lived object. Arguments are stored by key
and defined when the annotation is set, making it possible to retrieve a particular
value. For example, if an argument is annotated with @MapperInfo(C), its value can
be retrieved using the key “C”.

Methods in the plug-in can access this ContextMapperInfo object and retrieve the
annotated arguments in order to perform a mapping such as associating a notification
with the session ID of the request that established it.

The PluginSouth interface includes one such method, resolveAppInstanceGroupdId.

Interface: RequestContext
This interface defines a RequestContext object which is available in all communication
services for both application-initiated and network-initiated requests. This object
contains contextual information about the request, including the service provider
account ID, application account ID, and application instance of the application that
initiated either the request or the notification, as well as the session ID.

Managing Communication Services
These are base classes and annotations for giving the Services Gatekeeper
Administration Console or other JMX tools management access to communication
services. See "Making Communication Services Manageable" for more information.
Also see the Services Gatekeeper Java API Reference for the
com.bea.wlcp.wlng.api.management package documentation.

Managing Communication Service Access with SLAs
SLA enforcement operates on methods identified by the Java representation of the
interface, and the operation of the application-facing interface for the communication
service.

The content of the <scs> element defined in the <serviceContract> element in the
SLA is the plug-in type for the plug-in.

An operation on the application-facing interface is represented in the rules according
to the following scheme: <service name> and <operation name>.

Parameters in the operation are represented in the rules according to the following
scheme:

argn.parameter name

where n depends on the WSDL definition for the application-facing interface.
Normally this is arg0.

If the parameter in parameter name is

■ A composed parameter, the notation is according to the Java Bean notation for that
parameter.

Sharing Libraries Among Communication Service Plug-ins

2-14 Services Gatekeeper Extension Developer's Guide

■ An enumeration, the notation is according to the Java-representation of that
parameter, parameter name.enumeration value. The enumeration value is the string
representation.

Sharing Libraries Among Communication Service Plug-ins
It is possible for multiple plug-ins to share common libraries: for example, a third
party library or custom code that can be shared.

If there are such parts, these should preferably not be packaged into the plug-in jar but
instead be copied into the APP-INF/lib directory of the communication service EARs
that utilizes this shared library. All jars in this directory are available for each of the
plug-ins in the .ear.

3

Developing Communication Services 3-1

3Developing Communication Services

This chapter provides a high-level description of how to develop communication
services using Oracle Communications Services Gatekeeper. It also provides an
overview of other parts of the API available to extension developers.

The Javadoc for the container API is available with the Services Gatekeeper
documentation. See the “All Classes” section of the Services Gatekeeper Java API
Reference for details on the individual MBeans shown in this chapter. These javadoc
files are also available from the Middleware_home/ocsg_pds/doc/javadoc directory of
the Platform Development studio installation, where Middleware_home is the directory
in which Oracle WebLogic Server is installed.

Tips for Creating or Extending Communication Services
The following tips are useful to consider when creating or extending communication
services in Services Gatekeeper:

■ Make sure to follow the naming convention for the plug-in:

Plugin_web service interface part_network protocol

■ Make sure to implement customMatch method of the PluginInstance (or
ManagedPluginInstance) interface to verify if the plug-in can be used. This is
important when there are multiple plug-ins for the same communication service.

■ Create exception types that are very specific to various error scenarios. This allows
fine grain control of the alarms that are generated.

■ Have a clean separation between the application-facing and the network-facing
sides of the plug-in.

■ Make sure to return all application-facing interfaces (callback included) and
network-facing interfaces when implementing the getNorthInterfaces and
getSouthInterfaces methods of PluginInstance.

■ Make sure to implement the resolveAppInstanceGroupdId method for each
PluginSouth instance (if applicable).

■ When creating the management interface, consider if the management methods
and fields should be cluster-wide or local.

■ Annotate the following:

– Each parameter in the south object methods that you need to have when
aspect calls back the resolveAppInstanceGroupId or the
prepareRequestContext methods.

Communicating with Container Services

3-2 Services Gatekeeper Extension Developer's Guide

– All the methods you want to be woven using the @Edr annotation, when you
add additional EDR fields.

– The specific arguments you want to see in the EDR for each annotated
methods. Use either @ContextKey or @ContextTranslate depending on the
kind of argument.

See "Aspects, Annotations, EDRs, Alarms, and CDRs" for more information on
annotation.

■ Add all the EDRs you are triggering to the EDR descriptor.

Communicating with Container Services
The container service APIs enable communication between a communication service
and the container services.

All APIs for inter-working with the container services are found in
com.bea.wlcp.wlng.api.*.

For a network protocol plug-in of a communication service to interact with Services
Gatekeeper, it must be deployable in the context of Services Gatekeeper. After it is
deployable, it can have access to certain utility functions.

Table 3–1 lists and describes the container services API packages.

Table 3–1 Summary of the Container Services APIs

Package Description

com.bea.wlcp.wlng.api.account Represents an application instance and the related
accounts, groups, and the states of the accounts.

com.bea.wlcp.wlng.api.edr.* Annotations, interfaces and classes used when
annotating EDRs. Descriptor classes for alarms,
EDRs, and CDRs.

Helper classes for EDR listeners.

See "Aspects, Annotations, EDRs, Alarms, and
CDRs".

com.bea.wlcp.wlng.api.event_channel Classes to publish and listen to events over
cluster-wide event channels.

See "Broadcasting Events".

com.bea.wlcp.wlng.api.interceptor Interfaces and classes for service interceptors.

See "Using Service Interceptors to Manipulate
Requests".

com.bea.wlcp.wlng.api.management.* MBean helper classes.

See "Making Communication Services Manageable".

com.bea.wlcp.wlng.api.plugin.* Plug-in related classes and interfaces.

See "Using the Plug-in Packages".

com.bea.wlcp.wlng.api.servicecorrelati
on

Interface to implement when you extend the
existing service correlation mechanism.

See "Correlating Services".

com.bea.wlcp.wlng.api.statistics Annotation for statistics.

See "Generating Statistics with Statistics Service".

Communicating with Container Services

Developing Communication Services 3-3

For complete documentation of these APIs, see the Services Gatekeeper Java API
Reference.

Retrieving Implementation Instances Using InstanceFactory
Services Gatekeeper retrieves instances of a specified interface, class, or abstract class
by using InstanceFactory. You retrieve an instance of the Instance Factory using the
public static method getInstance. The factory itself has a single method called
getImplementation which retrieves a class that implements a given interface or
extends a given class.

To use an implementation:

1. Locate the list that maps a given interface, class, or abstract class to the preferred
implementation of that functionality. This list is provided in the JAR file’s
instancemap, a standard java.util.Properties file. Every JAR file can have its own
instancemap. See Example 3–1 for an example.

2. If a mapping is provided, instantiate the public constructor or static singleton
method in the target class.

3. If there is no explicit mapping, or if there is no public constructor or static
singleton method for a mapped class, instantiate an object named according to the
following pattern: theClass.getClass().getName() +”Impl” if this exists and has a
public constructor or static singleton method.

Example 3–1 Example instancemap file

com.bea.wlcp.wlng.MyInterface=com.bea.wlcp.wlng.MyImplementation
com.bea.wlcp.wlng.MyOtherInterface=com.bea.wlcp.wlng.MyOtherImplementation

For details, see InstanceFactory in the “All Classes” section of the Services Gatekeeper
Java API Reference.

com.bea.wlcp.wlng.api.storage Interfaces and classes for the storage service.

See "Understanding Service Gatekeeper Storage
Services".

com.bea.wlcp.wlng.api.timers Factory for using commonj.timers API.

com.bea.wlcp.wlng.api.util Classes and interfaces for commonly used
functions, for example ID generator,
InstanceFactory, and clustering.

com.bea.wlcp.wlng.api.work Factory for using commonj.work API.

Note: The interface name used in the instancemap file must be
unique across all plug-ins for a given service enabler. It is not possible
to use the same interface in two instancemap files belonging to two
different plug-ins and still map them to two different
implementations.

Table 3–1 (Cont.) Summary of the Container Services APIs

Package Description

Communicating with Container Services

3-4 Services Gatekeeper Extension Developer's Guide

Obtaining JNDI Context with ClusterHelper
ClusterHelper is a helper class in the com.bea.wlcp.wlng.api.util.cluster package. It is
used to obtain the JNDI Context for the network and access tier.

For details see ClusterHelper in the “All Classes” section of the Services Gatekeeper Java
API Reference.

Broadcasting Events
You can use EventChannel, a utility service interface, to broadcast events by other
Services Gatekeeper server instances and register listeners for events originating in
other Services Gatekeeper server instances. An event has a name and a value, where
the name is an identifier for the event and the value is any object implementing the
java.io.Serializable interface.

Retrieve an EventChannel instance using com.bea.wlcp.wlng.api.event_
channel.EventChannelFactory. Use the methods of the EventChannel interface to do
the following:

■ Deactivate all registered listeners (deactivateAllListeners)

■ Publish an event to all registered listeners (publishEvent)

■ Publish an event to one Services Gatekeeper instance (publishEventToOneNode)

■ Register an EventListener (registerEventListener)

■ Unregisters an EventListener (unregisterEventListener)

Use the EventChannelListener interface to receive events published using
EventChannel. It contains the processEvent(String eventType, Serializable event,
String source) method which receives an event.

Generating Statistics with Statistics Service
You can generate standard statistics or exception-related statistics. In addition to this,
you can generate custom statistics explicitly. Register the type of statistics by using the
addStatisticType operation in the Administration Console. For extensions, the
statistics ID should be in the range 1000 to 2250.

Generating Standard Statistics
Standard statistics are generated automatically when a plug-in implements
PluginNorth and PluginNorthCallBack interfaces.

The @Statistics annotation generates a statistics event when the method returns. It is
defined in the com.bea.wlcp.wlng.api.statistics.Statistics package. The syntax of the
annotation is:

@Statistics(id=My_Statistics_Type)

To explicitly generate statistics, annotate the method where you wish to generate
statistics.

Generating Statistics when Exceptions are Thrown
The @ExceptionStatistics annotation generates a statistics event if an exception is
thrown. It is defined in the com.bea.wlcp.wlng.api.statistics.ExceptionStatistics
package. The syntax of the annotation is:

@ExceptionStatistics(id=My_Statistics_Type)

Enforcing Service Level Agreements

Developing Communication Services 3-5

For more information, see the discussion on “Managing and Configuring Statistics and
Transaction Licenses” in Services Gatekeeper System Administrator's Guide.

Using the Plug-in Packages
The com.bea.wlcp.wlng.api.plugin.* packages contain a range of interfaces and
classes for use by extension developers.

See "Understanding Communication Service Components" for more information.

Understanding Communication Service Management
Base classes and annotations for giving the Services Gatekeeper Administration
Console or other JMX tools management access to communication services. See
"Making Communication Services Manageable" for more information. Also see the
com.bea.wlcp.wlng.api.management.* packages in Services Gatekeeper Java API
Reference.

Understanding EDRs
See "Aspects, Annotations, EDRs, Alarms, and CDRs" for details on EDRs. Also see the
com.bea.wlcp.wlng.api.management.* packages in Services Gatekeeper Java API
Reference.

Enforcing Service Level Agreements
Service Level Agreement (SLA) enforcement operates on methods identified by the
Java representation of the interface, and the method on the application-facing interface
for the communication service or the service type of the communication service. Note
that:

■ The content of the <scs> element defined in the <serviceContract> element in the
SLA is the plug-in type for the plug-in.

■ An operation on the application-facing interface is represented in the rules
according to the following scheme: <service name> and <operation name>.

■ Parameters in the operation are represented in the rules according to the following
scheme:

argn.parameter name

where n in argn depends on the WSDL file that defines the application-facing
interface; normally this is arg0.

If the parameter in parameter name is

– a composed parameter, the notation is according to the Java Bean notation for
that parameter.

– an enumeration, the notation is according to the Java-representation of that
parameter, parameter name.enumeration value. The enumeration value is the string
representation.

■ SLA enforcement can also be done for a certain service type. The service type is
defined when generating the communication service or network protocol plug-in
using the Platform Developer’s Studio Wizard. SLA enforcement for service types
relates to quotas and request rates and are defined under the
<serviceTypeContract> element.

Correlating Services

3-6 Services Gatekeeper Extension Developer's Guide

For enforcement of custom SLAs, see "Creating Custom Runtime SLAs".

Correlating Services
Service providers often bundle separate services into a single unit for charging
purposes. For example, a subscriber sends an SMS to the provider requesting the
location of the coffee shop closest to her current location. In completing that request,
the application provides three services. It receives the network-initiated SMS, performs
a user location lookup on the customer and finally, sends the customer an MMS with a
map showing the requested information. Services Gatekeeper provides the framework
for a Service Correlation service that uses a service correlation ID (SCID) to
combine/correlate all three Services Gatekeeper services into a single service charging
unit.

About Service Correlation Identifiers
This service correlation ID is a string that is captured in all CDRs and EDRs generated
by Services Gatekeeper. It is propagated in the SOAP header sent to and from the
application. The CDRs and EDRs use this data to provide special treatment for a given
chain of service invocations, such as applying charging to the chain as a whole rather
than to the individual invocations.

Services Gatekeeper does not provide the SCID and it does not check whether the
SCID is unique. The SCID is stored in the Oracle Label Security (OLS) work context, so
that it can be accessed by both the access tier and the network tier.

The Service Correlation class registers itself as a RequestContextListener. The
application or by an external mechanism that the communication service provides the
SCID in the following way:

■ When the chain of services is initiated by an application-initiated request, the
application provides and ensures a unique SCID within the chain of service
invocations.

When the application-initiated request traffic enters the plug-in, the Service
Correlation service takes the SCID from the WorkContext interface instance and
places it in the RequestContext class object, where it will be available to the EDR
service.

■ When the chain of services is initiated by a network-triggered request, Services
Gatekeeper calls an external interface to get the SCID. This interface must be
implemented by an external system. No utility or integration is provided out of
the box; this must be a part of a system integration project. It is the responsibility
of the external system to provide a unique SCID.

When the network-initiated request traffic leaves the plug-in, the Service
Correlation service takes the SCID from the RequestContext object and places it in
the WorkContext object, where it can be retrieved by the SOAP Handler and
passed along to the application.

Note: If a custom service correlation service supplies the SCID, it is
the responsibility of the custom service to ensure the uniqueness of
the SCID.

Correlating Services

Developing Communication Services 3-7

Managing Service Correlation Identifiers
A communication service needs to create a way of storing and retrieving the Service
Correlator ID (SCIDs), because a RequestContext object exists only for the lifetime of a
single request and SCIDs may need to be stored across several invocations.

To store and retrieve SCIDs, you use the following:

■ ExternalInvocation interface

The ExternalInvocation interface has two methods, one to store the Service
Correlation ID and the other to retrieve it. The ExternalInvocation implementation
class should have an empty public constructor or a static method that returns
itself. The implementor is free to modify the ID once it has been stored, or to use
the ExternalInvocation object to create IDs in the first place.

For an application-initiated request, the Service Correlation service takes the SCID
(should there be one) out of the WorkContext of the request, and automatically
attempts to store it in an object of this type before putting the SCID in the
RequestContext.

When a network-initiated request is leaving the plug-in, the Service Correlation
service verifies the SCID before storing it in the WorkContext. The service
automatically attempts to retrieve an SCID from an object of this type using the
SCID (should there be one) it finds in the RequestContext object. In this way, if the
ExternalInvocation object has modified the SCID in any way, the modified version
is put in the WorkContext and sent on to the application.

■ ExternalInvocationFactory class

The ExternalInvocationFactory class is used by the Service Correlation service to
locate and instantiate the correct ExternalInvocation object. It does this by using
an instancemap entry such as:

com.bea.wlcp.wlng.api.servicecorrelation.ExternalInvocation=myPackageSt
ructure.myImplClass

where, myImplClass is the ExternalInvocation implementation.

■ ServiceCorrelation package

This package manages the transport and storage of the Service Correlation ID
across multiple service invocations.

Creating a Custom Service Correlation
To create a custom service correlation:

1. Create a JAR file that includes your code. For example:

Example 3–2 Sample Custom Service Correlation

package myPackageStructure;
import com.bea.wlcp.wlng.api.servicecorrelation.ExternalInvocation;
import com.bea.wlcp.wlng.api.servicecorrelation.ExternalInvocationException;

public class MyImplClass implements ExternalInvocation {
public MyImplClass() {
}
public String pushServiceCorrelationID(String scID, String serviceName,

String methodName, String spID, String appID, String appInstGrp) throws
ExternalInvocationException {

// your code here
return scID;

Using Parameter Tunneling

3-8 Services Gatekeeper Extension Developer's Guide

}

public String getServiceCorrelationID(String scID, String serviceName, String
methodName, String spID, String appID, String appInstGrp) throws
ExternalInvocationException {

// your code here
return scID;

}

}
2. Create the instancemap using ExternalInvocationFactory.

3. Put the instancemap file in the JAR file. This makes your custom service
correlation available to the service interceptor InvokeServiceCorrelation.

4. Put the JAR file in Domain_Home/lib.

Using Parameter Tunneling
Parameter tunneling is a feature that allows an application to send additional
parameters to Services Gatekeeper and lets a plug-in use these parameters. This
feature makes it possible for an application to tunnel parameters that are not defined
in the application-facing interface and can be seen as an extension to it.

See "Dynamically Customizing AVPs for Applications" for more information and an
example SOAP header.

Understanding Service Gatekeeper Storage Services
The storage services provided in Services Gatekeeper are of two types, described
below:

■ Storing Configuration Data with ConfigurationStore

■ Storing Traffic Data with StorageService

Storing Configuration Data with ConfigurationStore
The Services Gatekeeper container exposes a ConfigurationStore Java API that
communication services can use to store simple configuration parameters instead of
using JDBC and caching algorithms in each module.

All data stored in a ConfigurationStore are stored in a database table and cached in
memory.

Below are the characteristics of a ConfigurationStore:

■ It is a named store.

■ Parameters stored in it must be initialized before they can be used.

■ Stores can be either domain wide (shared) or limited to a single Services
Gatekeeper server (local). The domain wide store type replicates all data changes
to all servers in the cluster, while the local store type keeps a different view of the
parameters on different servers and data changes affect only the view for that
particular server.

Note: This utility is intended for configuration parameters only, not
traffic data.

Understanding Service Gatekeeper Storage Services

Developing Communication Services 3-9

■ Parameters stored in a ConfigurationStore are persisted to the database.

■ Data in all ConfigurationStores are also cached in memory.

■ Only one instance of each named ConfigurationStore is cached in memory per
server.

■ Updates to a cluster wide named ConfigurationStore is reflected in all cluster
nodes.

■ The named ConfigurationStore only supports parameters of type Boolean, Integer,
Long, String, and Serializable.

Interfaces
The Java interface APIs are found in the package com.bea.wlcp.wlng.api.storage.

The entry point to configuration stores is through the
com.bea.wlcp.wlng.api.storage.configuration.ConfigurationStoreFactory using the
following method:

public abstract ConfigurationStore getStore(String moduleName, String name, int
storeType) throws ConfigurationException;

The ConfigurationStore service exposes an interface with the following features:

■ Methods to initialize the store with the following data types:

– Boolean

– Integer

– Long

– String

– Serializable

A ConfigurationStore is initialized using a name in key/value pair. You get and set
configuration parameters using the key.

■ Methods to set and get the following data types:

– Boolean

– Integer

– Long

– String

– Serializable

■ Methods to add and remove listeners for notifications on updates.

When a parameter has been updated in one instance of the ConfigurationStore, a
notification is broadcast to all other instances of the ConfigurationStore.

Example 3–3 is an example of using the Configuration Store.

Example 3–3 Example of a ConfigurationStoreHelper

package com.acompany.plugin.example.netex.management;
import com.bea.wlcp.wlng.api.storage.configuration.*;
/**
 * Class used for handling the configuration store.
 *
 * @author Copyright (c) 2007 by BEA Systems, Inc. All Rights Reserved.

Understanding Service Gatekeeper Storage Services

3-10 Services Gatekeeper Extension Developer's Guide

 */
public class ConfigurationStoreHandler {
/**
 * Constants used for the values stored in the store.
 */
 public static final String KEY_NETWORK_HOST = "KEY_NETWORK_HOST";
 public static final String KEY_NETWORK_PORT = "KEY_NETWORK_PORT";
/**
 * Constant to access either the local store. Note that these are
 * just names for the store.
 */
 private static final String LOCAL_STORE = "local";
/**
 * Local configuration store instance.
 */
 private ConfigurationStore localConfigStore;
/**
 * Constructor.
 *
 * @param pluginId The plugin id
 * @throws ConfigurationException An exception thrown if the initialization
failed
 */
 public ConfigurationStoreHandler(String pluginId)
 throws ConfigurationException {

 ConfigurationStoreFactory factory = ConfigurationStoreFactory.getInstance();
 localConfigStore = factory.getStore(pluginId, LOCAL_STORE,
 ConfigurationStore.STORE_TYPE_LOCAL);
 // To obtain a shared configuration store, use ConfigurationStore.STORE_TYPE_
SHARED

 localConfigStore.initialize(KEY_NETWORK_HOST, "localhost");
 localConfigStore.initialize(KEY_NETWORK_PORT, 5001);
 }

 /**
 * Sets an integer value in the local store.
 *
 * @param key The key associated with the value.
 * @param value The value to store.
 * @throws ConfigurationException An exception thrown if the operation failed
 */
 public void setLocalInteger(String key, Integer value)
 throws ConfigurationException {
 localConfigStore.setInteger(key, value);
 }
/**
 * Gets an integer value from the local store.
 *
 * @param key The key associated with the value.
 * @return The value associated with the key.
 * @throws InvalidTypeException thrown if type is invalid.
 * @throws NotInitializedException thrown if key value has not been
 * initialized.
 */
 public Integer getLocalInteger(String key)
 throws InvalidTypeException, NotInitializedException {
 return localConfigStore.getInteger(key);
 }

Understanding Service Gatekeeper Storage Services

Developing Communication Services 3-11

/**
 * Sets a string value in the local store.
 *
 * @param key The key associated with the value.
 * @param value The value to store.
 * @throws ConfigurationException An exception thrown if the operation failed
 */
 public void setLocalString(String key, String value)
 throws ConfigurationException {
 localConfigStore.setString(key, value);
 }
/**
 * Gets a string value from the local store.
 *
 * @param key The key associated with the value.
 * @return The value associated with the key.
 * @throws InvalidTypeException thrown if type is invalid.
 * @throws NotInitializedException thrown if key value has not been
 * initialized.
 */
 public String getLocalString(String key)
 throws InvalidTypeException, NotInitializedException {
 return localConfigStore.getString(key);
 }
}

Storing Traffic Data with StorageService
The Storage Service is used for storing data that is not configuration-related, but
related to the traffic flow through a communication service, in a cluster-wide store. See
“Managing and Configuring Storage Service” in Services Gatekeeper System
Administrator's Guide for an overview.

It provides mechanisms for:

■ Store initialization

A store is created using the StoreFactory singleton class, by specifying either a
key/value class pair where the value class should be a class that is unique to the
Store (recommended), or a Store name.

■ Basic Map usage

Since the Store interface extends the java.util.Map interface, it can be used as any
other Map interface, and it is extended to be a cluster-wide view of the store.

■ Named queries

In addition to the standard java.util.Map interface, Stores have support for a
StoreQuery interface. The behaviors of these named queries are configured as part
of the Storage Service configuration files. There is an option to define a cache filter
and/or SQL query. An index specified for the Store can be used by implementing
the IndexFilter interface for the cache filter. The index is automatically used for
SQL queries that can make use of these indexes.

■ Store listener

The Store API has support for registering StoreListeners. These listeners get
notified if the Storage Service decides to automatically remove Store entries (based
on configuration parameters). It is not notified if the extension itself removes
entries from the Store.

Understanding Service Gatekeeper Storage Services

3-12 Services Gatekeeper Extension Developer's Guide

■ Cluster locking

Cluster-wide locking can be done using the Store interface. If the same entry in a
Store may be modified on multiple servers at the same time, use cluster locking to
avoid errors from concurrent modification when a transaction commits.

A communication service extension uses the StorageService through an API. The API
functionality is implemented by a storage provider.

The storage provider offers a set of different store types:

■ Write-behind database store

A database-backed store where data is stored using a distributed in-memory
cache. Each data entry in the store is backed up on one other server in the cluster.
The data in the cache is persisted to the database with a delay and in batch mode.
The cache is distributed across servers. This store type combines performance with
availability.

■ Write-through database store

A database-backed store where data is stored using a distributed in-memory
cache. Each data entry in the store is backed up on one other server in the cluster.
The data is immediately persisted to the database without any delay. The cache is
distributed across servers. Data updates are synchronously written to the
database, blocking the method invocation until the database query has been
performed. Updates to data in the store are slower compared to updates to a
cluster store, but read operations are faster if the data is available in cache. This
store offers best reliability.

■ Cluster store

A store where data is stored in a distributed in-memory cache only. Each data
entry in the store is backed up on one other server in the cluster. Updates to data
in the store is slow compared to updates to a cluster store, but read operations are
faster if the data is available in cache. This store offers best reliability.

■ Database log store

A database-backed store where data is stored in a distributed in-memory cache.
Each data entry in the store is backed up on one other server in the cluster. The
data in the cache is persisted to the database with a delay and in batch mode. The
cache is minimal and distributed across servers.

All stores except for the cluster store are backed by a database table that is configured
in a store configuration file.

When choosing a store type, take into consideration what kind of data that will be
stored, how often it is written and read, and how long the data will stay in the store.

In general, if the lifetime for data is short enough that having the data duplicated in
memory on two servers in the cluster, the cluster cache type should provide sufficient
persistence. In other cases, a trade-off can be made between the data integrity
transaction synchronized write-through operation gives and the performance given by
asynchronous write behind. For data that just needs to be added to a database table,
and is never read, the database log store is recommended. This store type could be
optimized to avoid keeping cache entries in memory that will never be read anyway.

Table 3–2 outlines the recommendations on how to choose a store type.

Understanding Service Gatekeeper Storage Services

Developing Communication Services 3-13

Extensions can use the com.bea.wlcp.wlng.api.storage.Store interface. This interface
extends a java.util.Map interface and adds the following methods:

■ addListener: Adds a listener for the store.

■ getQuery: Gets a named query.

■ lock: Takes a cluster-wide lock.

■ release: Releases the current store instance.

■ removeListener: Removes a registered listener.

■ unlock: Unlocks a previously obtained cluster-wide lock.

The storage service uses configuration files that define the configuration for stores and
the relationship between the cluster-wide store and the database table that backs the
store. In each configuration file it is possible to define named queries towards the
store. There is one configuration file for each plug-in. Each configuration store
configuration file together with its XSD and any complex data types should be stored,
created, and packaged in a JAR file in the directory domain_Home/config/store_
schema, where domain_Home is the home directory of the Services Gatekeeper domain.
The configuration file must be named wlng-cachestore-config-extensions.xml and it
must be present in the root of the JAR file.

For details about the store configuration file, see the corresponding xsd:
com.bea.wlcp.wlng.storage_6.0.0.0.jar/wlng-cachestore-config.xsd in Middleware_
home/ocsg/modules where Middleware_home is the home directory of the WebLogic
Server domain.

A Store is retrieved from com.bea.wlcp.wlng.api.storage.StoreFactory, either by the
name of the store or by the class names of the key/value names. How to retrieve the
Store depends on how the store is configured.

The store interface needs to be released when it is no longer needed. The programming
model is to retrieve the Store from the StoreFactory when the Store is used, and to
release it once it has finished, using try { .. } finally { store.release(); }.

Example 3–4 shows how to retrieve a store identified by key/value classes, operate on
it, and release it.

Example 3–4 Using the Store Interface

Store<String, NotificationData> store =
StoreFactory.getInstance().getStore(String.class, NotificationData.class);
try {

notificationData = store.put(address.toString(), notificationData);

Table 3–2 Store Type Recommendations

Access Type Lifetime of Data Store Type

Read mostly Short Cluster store

Read mostly Long Write-through database store

Write mostly Short Cluster store

Write mostly Long Write-behind database store

Write only Any Database log store

Read and Write Short Cluster store

Read and Write Long Write-behind database store

Understanding Service Gatekeeper Storage Services

3-14 Services Gatekeeper Extension Developer's Guide

} finally {
store.release();

}
If it is a named store, it can also be retrieved by name as illustrated below.

Example 3–5 Retrieving a store by name

Store<Serializable,Serializable> store = StoreFactory.getInstance().getStore("A",
this.getClass().getClassLoader());

Store configuration file
The wlng-cachestore-config-extensions.xml configuration file defines attributes of the
store and relations between the store, the cache for the store, and the mapping to a
database table. This part is used by extension developers.

In addition, the configuration file can contain a section with mapping information
between a store, the provider it uses, and the factory for the storage provider. This
section should not be used by extension developers.

The XSD for the configuration file is located in com.bea.wlcp.wlng.storage_
6.0.0.0.jar/wlng-cachestore-config.xsd in Middleware_home/ocsg/modules.

There is one configuration file for each plug-in. The file must be embedded in a JAR
file that contains the file itself and any complex data types used. The JAR file must be
stored in domain_Home/config/store_schema.

Below is an example of a store configuration file for extensions.

Example 3–6 Example of a store configuration file for extensions

<store-config>
 <db_table name="example_store_notification">

 <key_column name="address" data_type="VARCHAR(255)"/>
 <!-- bucket_column using default BLOB type -->
 <bucket_column name="notification_data_value"/>

 <value_column name="correlator" data_type="VARCHAR(255)">
 <methods>
 <get_method name="getCorrelator"/>
 <set_method name="setCorrelator"/>
 </methods>
 </value_column>

 </db_table>

 <store type_id="wlng.db.wt.example_store_notification"
 db_table_name="example_store_notification">
 <identifier>
 <classes key-class="java.lang.String"

value-class="com.acompany.plugin.example.netex.notification.NotificationData"/>
 </identifier>
 <index>
 <get_method name="getCorrelator"/>
 </index>
 </store>

 <query name="com.bea.wlcp.wlng.plugin.example.netex.Query">
 <sql>

Understanding Service Gatekeeper Storage Services

Developing Communication Services 3-15

 <![CDATA[
 SELECT * FROM example_store_notification WHERE correlator = ?
]]>
 </sql>

<filter-class>com.acompany.plugin.example.netex.store.FilterImpl</filter-class>
 </query>
</store-config>

A store is defined between the <store-config> and </store-config> tags.

Each Store consists of the following elements:

■ <store>: Defines the store.

■ <db_table>: Defines the database table used to persist data in the store.

■ <query>: Defines queries on the store. This is optional, only required if non-key
queries are used with the store.

<store>
The <store> element defines the store itself. The type_id attribute defines the type of
cache to use and a store type identifier. The ID must be mapped to a provider store
mapping defined in wlng-cachestore-config.xml.

Which cache type to use depends on the use case. A store is identified by a class name.
The type is given by adding the store type ID prefix followed by an identifier for the
store. For example, the store wlng.db.wt.example_store_notification uses the cache
type wlng.db.wt. Table 3–3 describes the correlation between a store type and a store
type ID prefix.

The db_table_name attribute identifies the database definition to use. The cluster store
does not need a database definition since it does not use a database.

The <store> element contains the following elements:

■ <identifier>: Holds one <classes> element. This element defines the classes for
the key and the value that defines the store. The class for the key is defined in the
key-class attribute and the class for the value part is defined in the value-class
attribute. If a named store is used, the name is given in the <name> element.

■ <index>: Defines an index on the cache and one or more get methods. The
methods maps to an index on the corresponding columns in the table and
potentially a cache index if supported by the provider in use.

<db_table>
The <db_table> element defines the database table used to persist data in store. The
name attribute defines the table name to use. This name must be the same as the db_
table_name specified in the <store> element. It contains the following elements:

Table 3–3 Store Types and Store Type ID

Store Type Store type ID prefix

Write behind database store wlng.db.wb.

Write through database
store

wlng.db.wt.

Cluster store wlng.cache.

Database log store wlng.db.log.

Understanding Service Gatekeeper Storage Services

3-16 Services Gatekeeper Extension Developer's Guide

■ <key_column>: Has the name and data_type attributes. The name attribute
specifies the column name for the key and data_type specifies the SQL data type
for the key.

■ <multi_key_column>: Has the name and data_type attributes. The name attribute
specifies the column name for one part of a multi-key column and data_type
specifies the SQL data type for the part of the key. The difference between <multi_
key_column> and <key_column> is that <multi_key_column> supports two or more
columns to be parts of the key, so <multi_key_column> can occur two or more
times in the configuration file.

■ <bucket_column>: Has the name attribute. This attribute specifies the name of the
column for the value part of the store. By default, this is a BLOB. There is an
optional attribute data_type, that can be used if other data types are used. This
must be a Java to SQL supported data type mapping and corresponds to the data
type in the value part of the store.

■ <value_column>: Used if attributes in the value part of the store should be stored
in a separate column. The name attribute defines the name of the column and the
data_type specifies the SQL data type for the column. The <value_column>
element contains the <methods> element, which encloses the <get_method> and
<set_method> elements. The <methods> element defines the names of the set and
get methods for the data stored in <value_column> and the set and get methods
for the attribute of the object in the store.

Example 3–7 Example of single key column configuration

...
<db_table name="single_key_store">
<key_column name="sample_key_1" data_type="VARCHAR(30)">
<methods>
<get_method name="getSampleKey1"/>
<set_method name="setSampleKey1"/>

</methods>
</key_column>
<value_column name="sample_value" data_type="VARCHAR(30)">
<methods>
<get_method name="getSampleValue"/>
<set_method name="setSampleValue"/>

</methods>
</value_column>

</db_table>
...

Example 3–8 Example of Multi-key Column Configuration

...
<db_table name="combined_key_store">
<multi_key_column name="sample_key_1" data_type="VARCHAR(30)">
<methods>
<get_method name="getSampleKey1"/>
<set_method name="setSampleKey1"/>

</methods>
</multi_key_column>
<multi_key_column name="sample_key_2" data_type="INT">
<methods>
<get_method name="getSampleKey2"/>
<set_method name="setSampleKey2"/>

</methods>
</multi_key_column>

Understanding Service Gatekeeper Storage Services

Developing Communication Services 3-17

<value_column name="sample_value" data_type="VARCHAR(30)">
<methods>
<get_method name="getSampleValue"/>
<set_method name="setSampleValue"/>

</methods>
</value_column>

</db_table>
...

<query>
In addition to the standard java.util.Map interface, Stores support a StoreQuery
interface.

The <query> element specifies a named query and a filter associated with the named
query. The attribute name defines the name of the query. The behavior of these named
queries are configured as part of the Storage Service configuration files. When using
the storage service, the query is fetched using this name. The SQL query towards the
database is defined in the element sql. The actual query is defined in the element
<![CDATA[.....]]>.

The filter is a class that implements com.bea.wlcp.wlng.api.storage.filter.Filter, and the
name of the class is defined in the <filter-class> element. The filter implements the
setParameters method and a matches(...) method.

The setParameters method maps the parameters to the filter class or a
PreparedStatement setObject call ordered as the parameter array given. The filter class
must implement the matches method in such a way that it will yield the same result as
the SQL query specified.

Example 3–9 Example of a named query

<query name="com.bea.wlcp.wlng.plugin.example.netex.Query">
 <sql>
 <![CDATA[
 SELECT * FROM example_store_notification WHERE correlator = ?
]]>
 </sql>

<filter-class>com.acompany.plugin.example.netex.store.FilterImpl</filter-class>
 </query>

Example 3–10 Example of using the named query using a filter

StoreQuery<String, NotificationData> storeQuery =
store.getQuery("com.bea.wlcp.wlng.plugin.example.netex.Query");
storeQuery.setParameters(correlator);
set = storeQuery.entrySet();

Example 3–11 Example of a filter implementation

public class FilterImpl implements Filter {

 /**
 * The query parameters.
 */
 private Serializable[] parameters;

 /**
 * Default constructor.
 */

Understanding Service Gatekeeper Storage Services

3-18 Services Gatekeeper Extension Developer's Guide

 public FilterImpl() {

 }

 /**
 * Evaluate if a store entry matches the filter.
 *
 * @param value The store entry value to evaluate.
 */
 public boolean matches(Object value) {

 if (parameters == null || value == null || parameters.length == 0) {

 return false;
 }

 if (value instanceof NotificationData) {
 String compareValue = ((NotificationData) value).getCorrelator();

 if (compareValue != null) {
 return compareValue.equals(parameters[0]);
 }
 return compareValue == parameters[0];
 }

 return false;
 }

 /**
 * Set query parameters. The parameters will be ordered as provided to the
 * StoreQuery and it it the responsibility of the implementation to handle
 * them in this order.
 *
 * @param parameters The query parameters to use.
 */
 public void setParameters(Serializable ... parameters)
 throws StorageException {

 this.parameters = parameters;
 }

}

<provider-mapping>
The <provider-mapping> element contains definitions of which storage provider a
given type-id is mapped to. This element should not be used unless a custom storage
provider is used.

In the type_id attribute for store_mapping type, the same ID shall be used as when
the store was defined. A best match (longest matching entry) is performed. A wildcard
(*) can be used at the end of type_id to match the prefix.

The <provider-name> entry references the type of store being used, see "<providers>".

The type_id for the storage provider mapping in use is wlng.db.wt.*. which references
the write-through provider.

There is another set of type_id attributes defined for store_mapping:

Sharing Common Libraries

Developing Communication Services 3-19

■ wlng.db.log.*, which is used for internal purposes only.

■ wlng.db.wb.*, which is used if the storage provider supports write-behind
operations. The invalidating storage provider does not support write-behind
operations, write-through will be used.

■ wlng.db.wt.*, which is used if the storage provider supports write-through
operations.

■ wlng.cache.*, which is used if the storage provider supports cache-only
operations. The invalidating storage provider does not support cache-only
operations, write-through will be used.

■ wlng.local.*, which is used for internal purposes only.

These store mapping types are present for internal and future use. All store mapping
types (except for the internal wlng.db.log.*) are by default mapped to the keyword
invalidating which represents the invalidating storage provider. This should not be
changed unless a custom storage provider is used.

<providers>
The <providers> element contains mappings between the provider-name defined in
the <provider-mapping> element and the factory class for the storage provider. This
element should not be changed used unless a custom storage provider is used.

Sharing Common Libraries
It is possible for multiple plug-ins to share common libraries, for example a third party
library or custom code that can be shared.

If there are such parts, these should preferably not be packaged into the plug-in JAR
but instead be copied into the APP-INF/lib directory of the communication service
network tier EAR file. All classes in this directory are available for all of the plug-ins in
the EAR file.

Sharing Common Libraries

3-20 Services Gatekeeper Extension Developer's Guide

4

Communication Service Example 4-1

4Communication Service Example

This chapter describes the example communication service provided with the Oracle
Communications Services Gatekeeper Platform Development Studio.

Overview of the Example Communication Service
The Communication service example demonstrates the following:

■ Structure and execution workflow in a communication service.

■ Parameter validation

■ Hitless upgrade

■ Retry

■ Simple TCP/IP protocol-based simulator

■ Testability with the PTE

The example is based on an end-to-end communication service, with a set of simple
interfaces

■ SendData, which defines the operation sendData used to send data to a given
address.

■ NotificationManager, which defines these operations:

– startEventNotification, which starts a subscription for network-triggered
events.

– stopEventNotification, which ends the subscription for network-triggered
events.

■ Notification, which defines the operation:

– notifyDataReception, used to notify the application on a network-triggered
event.

SendData and NotificationManager are used by an application and implemented by
the communication service.

Notification is used by the communication service and implemented by an
application.

The communication service to network node interface is a simple TCP/IP based
interface that defines the two commands:

■ sendDataToNetwork, that sends data to the network node.

Overview of the Example Communication Service

4-2 Services Gatekeeper Extension Developer's Guide

■ receiveData, that is used by the network node to send data to a receiver - in this
case the network protocol plug-in.

Figure 4–1 illustrates the flow for these operations.

Figure 4–1 Overview of example Communication Service

The flow marked A* is for sendData, the flow marked B* is for startNotification and
stopNotification, and the flow marked C* is for notifyDataReception.

The modules marked with 1 are automatically generated based on the WSDL files that
define the application-facing interface and code generation templates provided by the
Platform Development Studio. The modules marked with 2 are skeletons generated at
build time.

High-level Flow for sendData (Flow A)
1. A1: An application invokes the Web Service SendData, with the operation

sendData.

2. A2: The request is passed on the EJB for the interface, which passes it on to the
network protocol plug-in. The diagram is simplified, but at this stage the Plug-in
Manager is invoked and makes a routing decision to route to the appropriate
plug-in.

3. A3: The Plug-in Manager invokes the sendData method in the class
SendDataPluginNorth. It will always invoke a class named PluginNorth, that has
a prefix that is the same as the Java representation of the Web Service interface.

4. A4: The request is passed on to class SendDataPluginToNetworkAdapter that
performs the protocol translation according to the network-interface.

5. A5: The request is passed to SendDataPluginSouth.

Interfaces

Communication Service Example 4-3

6. A6: The request is handed off to the network node.

High-level Flow for startNotification and stopNotification (Flow B)
The initial steps (B1-B3) are similar to flow A*. Instead of translating the request to a
command on the network node, NotificationManagerNorth uses the StoreHelper to
either store a new or remove a previously registered subscription for notifications. The
data stored, the NotificationData, is used in network-triggered requests to resolve
which application started the notification and the destination to which to send it. In
the example the notification is started on an address, so the address is stored together
with information to which endpoint the application wants the notification to be sent.

High-level flow for notifyDataReception (Flow C)
1. C1: The network protocol plug-in receives the network-triggered command

receiveData on NetworkToNotificationPluginAdapter.

2. C2: SendDataPluginSouth can be used to add additional information to the
request before passing in on.

3. C3: NetworkToNotificationPluginAdapter performs the protocol translation.

4. C4: StoreHelper is used to examine if the request matches any stored
NotificationData. If so, the information in NotificationData is retrieved. This
information includes which application instance that the request resolves to and
on which endpoint this application wants to be notified about the network
triggered event.

5. C5: NotificationCallbackFactory is used to get a hold of an active
NotificationCallback EJB to pass on the request to.

6. C6: The request is passed on to the NotificationCallback EJB.

7. C7: The request is passed on to an application.

Interfaces
The example communication service translates between an application-facing
interface, defined in WSDL, see "Web Service Interface Definition" and a network
interface, TCP/IP based, see "Network Interface Definition".

Web Service Interface Definition
This is the application-facing interface for the example communication service.

Interface: SendData
This interface is a simple interface containing operations for sending data.

Operation: sendData

Send data to the network.

Input message: sendDataMessage

Table 4–1 sendDataMessage parts

Part name Part type Optional Description

data xsd:string N The data to be sent to the target device

Interfaces

4-4 Services Gatekeeper Extension Developer's Guide

Output message: sendDataResponse

Interface: NotificationManager
The Notification Manager Web Service is a simple interface containing operations for
managing subscriptions to network triggered events.

Operation: startEventNotification

Start the subscription of event notification from the network.

Input message: startEventNotificationRequest

Output message: invokeMessageResponse

Operation: stopEventNotification

Stop the subscription of event notification from the network.

Input message: stopEventNotificationRequest

address xsd:anyURI N Address of the target device.

Example:

tel:4154011234

Table 4–2 sendDataResponse parts

Part name Part type Optional Description

none N/A N/A N/A

Table 4–3 startEventNotificationRequest parts

Part name Part type Optional Description

correlator xsd:string N Service unique identifier provided to set up this
notification.

endPoint xsd:string N Endpoint address. Endpoint of the application
to receive notifications.

Example:

http://www.hostname.com/NotificationServic
e/services/Notification

address xsd:anyURI N Service activation number.

Example:

tel:4154567890

Table 4–4 invokeMessageResponse parts

Part name Part type Optional Description

none N/A N/A N/A

Table 4–1 (Cont.) sendDataMessage parts

Part name Part type Optional Description

Interfaces

Communication Service Example 4-5

Output message: stopEventNotificationResponse

Interface: NotificationListener
The NotificationListener interface defines the methods that the communication
service invokes on a Web Service that is implemented by an application.

Operation: notifyDataReception

Method used for receiving a notification.

Input message: notifyDataReceptionRequest

Output message: notifyDataReceptionResponse

Network Interface Definition
This is the network-facing interface for the example communication service.

sendDataToNetwork
Send data from the communication service to the network node.

Table 4–5 stopEventNotificationRequest parts

Part name Part type Optional Description

correlator xsd:string N Service unique identifier provided to set up this
notification.

Table 4–6 stopEventNotificationResponse parts

Part name Part type Optional Description

none N/A N/A N/A

Table 4–7 notifyDataReceptionRequest parts

Part name Part type Optional Description

correlator xsd:string N Service unique identifier provided to set up this
notification.

originating
Address

xsd:anyURI N Address of the device where the data
originated.

Example:

tel:4153083412

data xsd:string N/A Data sent by the originating device.

Table 4–8 notifyDataReceptionResponse

Part name Part type Optional Description

none N/A N/A N/A

Table 4–9 sendDataToNetwork arguments

Argument Type Description

fromAddres
s

String The address from which the request is sent.

toAddress String The address to which the request shall be sent.

Directory Structure

4-6 Services Gatekeeper Extension Developer's Guide

receiveData
Send data from the network node to the communication service.

Directory Structure
Below is a description of the directory structure for the example communication
service.

communication_service
+- build.properties
+- common.xml
+- build.xml
+- example
| +- common
| | +- build.xml
| | +- dist
| | | +- request_factory_skel
| | | +- tmp
| | | +- example.war
| | | +- example_callback.jar
| | | +- example_callback_client.jar
| | | +- example_service.jar
| | | +- resources
| | | | +- enabler
| | | | + facade
| | | +- src
| | | | +- com/<package name>Plugin
| | | | | +- ExceptionType.java
| | | | | +- NotificationManagerPluginFactory.java
| | | | | +- SendDataPluginFactory.java
| | | | | +- handlerconfig.xml
| | | | | +- weblogic.xml
| | +- wsdl
| +- dist
| | +- com.acompany.plugin.example.netex.store_4.1.jar
| | +- example_enabler.ear
| | +- example_facade.ear
| +- plugins
| | +- nextex
| | | +- build.xml
| | | +- dist
| | | | +- example_netex_plugin.jar
| | | | +- com.acompany.plugin.example.nextex.store_4.1.0.0.jar
| | | +- build

data String The data to send.

Table 4–10 receiveData arguments

Argument Type Description

fromAddres
s

String The address from which the request is sent.

toAddress String The address to which the request shall be sent.

data String The data to send.

Table 4–9 (Cont.) sendDataToNetwork arguments

Argument Type Description

Directory Structure

Communication Service Example 4-7

| | | +- config
| | | | +- edr
| | | | | +- alarm.xml
| | | | | +- cdr.xml
| | | | | +- edr.xml
| | | | | +- alarm.xml
| | | | +- instance_factory
| | | | | +- instancemap
| | | +- dist
| | | | +- com.acompany.plugin.example.netex.store_4.1.jar
| | | | +- example_netex_plugin.jar
| | | +- src/com/acompany/plugin/example/netex/
| | | | +- context
| | | | +- management
| | | | +- notification
| | | | +- notificationmanager
| | | | +- senddata
| | | | +- store
| | | +- storage
| | | | +- wlng-cachestore-config-extensions.xml

Directories for WSDL
Below is a list of WSDL files that define the application-facing interface and the Java
representation of these in the plug-in.

Application-initiated traffic
Middleware_home/ocsg/example/wsdl/service

example_common_faults.wsdl
example_common_types.xsd
example_data_send_interface.wsdl
example_data_send_service.wsdl
example_notification_manager_interface.wsdl
example_notification_manager_service.wsdl

Network-triggered traffic
Middleware_home/ocsg/example/wsdl/callback

example_notification_interface.wsdl
example_notification_service.wsdl

Directories for Java Source
Below is a list of Java source directories for the "Communication Service Common"
and the "Plug-in".

Communication Service Common
Middleware_home/ocsg/example/communication_
service/example/common/src/acompany/example/plugin

ExceptionType
NotificationManagerPluginFactory
SendDataPluginFactory

Directory Structure

4-8 Services Gatekeeper Extension Developer's Guide

Plug-in
Middleware_home/ocsg/example/communication_service/example/common/src

com.acompany.plugin.example.netex.context.ContextTranslatorImpl
com.acompany.plugin.example.netex.management.ConfigurationStoreHandler
com.acompany.plugin.example.netex.management.ExampleMBean
com.acompany.plugin.example.netex.management.ExampleMBeanImpl
com.acompany.plugin.example.netex.management.Management
com.acompany.plugin.example.netex.notification.north.NotificationHandlerNorth
com.acompany.plugin.example.netex.notification.south.NetworkToNotificationPluginAd
apter
com.acompany.plugin.example.netex.notification.south.NetworkToNotificationPluginAd
apterImpl
com.acompany.plugin.example.netex.notificationmanager.north.NotificationManagerPlu
ginNorth
com.acompany.plugin.example.netex.senddata.north.SendDataPluginNorth
com.acompany.plugin.example.netex.senddata.south.SendDataPluginSouth
com.acompany.plugin.example.netex.senddata.south.SendDataPluginToNetworkAdapter
com.acompany.plugin.example.netex.senddata.south.SendDataPluginToNetworkAdapterImp
l
com.acompany.plugin.example.netex.store.FilterImpl
com.acompany.plugin.example.netex.store.NotificationData
com.acompany.plugin.example.netex.store.StoreHelper
com.acompany.plugin.example.netex.ExamplePluginInstance
com.acompany.plugin.example.netex.ExamplePluginService

Directories for resources
Only the communication service common components have associated resources. The
resources are XML files that serve as deployment descriptors for the network tier and
access tier EAR files.

Middleware_home/ocsg/example/communication_
service/example/common/resources/at/META-INF

Contains deployment descriptors for the access tier EAR file. These must be present in
the META-INF directory of the EAR. See "Enterprise Application Deployment
Descriptor Elements" in Oracle Fusion Middleware Developing Applications for Oracle
WebLogic Server at:

http://download.oracle.com/docs/cd/E15523_01/web.1111/e13706/app_xml.htm

for a description of the enterprise application deployment descriptor elements.

application.xml
weblogic-application.xml

The code generation creates these files, and the build script takes care of the
packaging.

Middleware_home/ocsg/example/communication_
service/example/common/resources/nt/META-INF

Contains deployment descriptors for the network tier EAR file. These must be present
in the META-INF directory of the EAR. See “Enterprise Application Deployment
Descriptor Elements” in Oracle Fusion Middleware Developing Applications for Oracle
WebLogic Server at:

http://download.oracle.com/docs/cd/E15523_01/web.1111/e13706/app_xml.htm

for a description of the enterprise application deployment descriptor elements.

Directory Structure

Communication Service Example 4-9

application.xml
weblogic-application.xml
weblogic-extension.xml

The code generation creates these files, and the build script takes care of the
packaging.

Directories for Configuration of Plug-in
Middleware_home/ocsg/example/communication_
service/example/plugins/netex/config/edr

Sample entries to add in the EDR, CDR, and Alarm filters.

alarm.xml
cdr.xml
edr.xml

These serves as examples. Add the contents of these to the EDR configuration file. Use
the EDR Configuration Pane as described in "Managing and Configuring EDRs,
CDRs and Alarms" in Services Gatekeeper System Administrator's Guide.

Middleware_home/ocsg/example/communication_
service/example/plugins/netex/instance_factory

Sample instance map for mapping of classes, interfaces, and abstract classes.

When using com.bea.wlcp.wlng.api.util.InstanceFactory to retrieve instances for a
given interface, class, or abstract class, this mapping is referenced. The mapping can be
overridden. For details, see InstanceFactory in the “All Classes” section of the Services
Gatekeeper Java API Reference.

instancemap

Middleware_home/ocsg/example/communication_
service/example/plugins/netex/storage

Sample store configuration file. Defines how the Storage service is used by the plug-in,
store type, table names, query definitions, and get and set methods. See "StoreHelper",
"FilterImpl", and "NotificationData".

wlng-cachestore-config-extensions.xml

Directories for Build and Configuration of Builds
Middleware_home/ocsg/example/communication_service/

build.properties

Defines the installation directory for Services Gatekeeper and for the Platform
Development Studio.

common.xml

Defines properties, class paths, task definitions, and macros for the build.

build.xml

Main build file to build the communication service. This build file also contains targets
for packaging deployable artifacts into the access and network tier.

Middleware_home/ocsg/example/communication_service/example/common

build.xml

Directory Structure

4-10 Services Gatekeeper Extension Developer's Guide

Build file for the common parts of the communication service.

Middleware_home/ocsg/example/communication_service/example/plugins/netex

build.xml

Build file for the plug-in.

Directories for Classes, JAR, and EAR Files
Middleware_home/ocsg/example/communication_service/example/dist

Deployment artefacts for the communication service.

example_facade.ear

The part of the communication service that is deployed in the access tier.

example_enabler.ear

The part of the Communications Service that is deployed in the network tier.

Middleware_home/ocsg/example/communication_service/example/common/dist

JAR and WAR files for the common parts of the communication service.

example_callback_client.jar
example_callback.jar
example_service.jar
example.war

Middleware_home/ocsg/example/communication_
service/example/common/dist/request_factory_skel

Auto-generated source for skeleton classes extending
com.bea.wlcp.wlng.api.plugin.RequestFactory.

One class is generated per Service WSDL, that is per interface that defines
application-initiated operations.

The classes are named PreFixPluginFactory, where PreFix is picked up from the WSDL
binding in the WSDL file.

In the subdirectory that corresponds to the package name, the following classes are
generated:

NotificationManagerPluginFactory.java
SendDataPluginFactory.java

These are generated as skeletons, but in the example they are adapted to the specific
use cases.

Middleware_home/ocsg/example/communication_service/example/plugins/netex/dist

Contains individual JAR files comprises the plug-in.

com.acompany.plugin.example.netex.store_4.1.jar

Includes the schema file for the store used by the plug-in, packaged together with the
classes for which instances are stored. This file must be put in Domain_
Home/config/store_schema on each server in the network tier. The server needs to be
restarted if any changes have been done to the store schema or the classes referred to
in the store schema.

example_netex_plugin.jar

Classes

Communication Service Example 4-11

The JAR for the plug-in.

Middleware_home/ocsg/example/communication_
service/example/plugins/netex/dist/mbean_generationdir

Output directory for the MBean that has been processed by the javadoc2annotation
Apache Ant task.

Classes
Below is a description of the classes and the methods defined in these classes:

■ Communication Service Common

– ExceptionType

– NotificationManagerPluginFactory

■ Plug-in Layer

– ContextTranslatorImpl

– ExamplePluginService

– ConfigurationStoreHandler

– ExampleMBean

– Management

– NotificationHandlerNorth

– NetworkToNotificationPluginAdapter

– NetworkToNotificationPluginAdapterImpl

– NotificationManagerPluginNorth

– SendDataPluginNorth

– SendDataPluginSouth

– SendDataPluginToNetworkAdapter

– SendDataPluginToNetworkAdapterImpl

– FilterImpl

– NotificationData

– StoreHelper

Communication Service Common
This section describes the communication service Common classes.

ExceptionType
Class.

Enumeration for exception types:

Defines:

■ SERVICE_ERROR

■ POLICY_ERROR

Classes

4-12 Services Gatekeeper Extension Developer's Guide

NotificationManagerPluginFactory
Class.

Extends RequestFactory.

Helper class that is used by the service EJB for two purposes:

■ Creating routing information requested by the Plug-in Manager when routing the
method call to a plug-in.

■ Converting Exceptions, thrown either by the Plug-in Manager or by the plug-in, to
Exceptions that are supported by the application-facing interface.

public void validateRequest(Method method, Object... args)

Validates the request to make sure that mandatory parameters are present. Operates
on a Java representation of the Web Service call.

public RequestInfo createRequestInfo(Class<? extends Plugin> type, Method
method, Object... args)

Used by the service EJB to extract routing data from the method call. The routing data
is then given to the Plug-in Manager. This method returns the routing data in a
RequestInfo object.

Returns a:

■ AddressRequestInfo if the request contains an actual address that can be routed
to a specific plug-in.

■ CorrelatorRequestInfo if the request contains an correlator that relates to an
operation that relates to states (to start or to stop something). Most often it is the
starting and stopping of notifications that use a correlator.

public Throwable convertEx(Method method, Throwable e)

Called by the service EJB in order to convert Exceptions thrown by the Plug-in
Manager and the Plug-in to Exceptions defined by the called method.

private Throwable convertEx(Method method, PluginException e)

Converts a PluginException to an Exception that can be thrown by the method called
by the application.

Plug-in Layer
This section describes the Plug-in Layer classes.

ContextTranslatorImpl
Class.

Implements interface com.bea.wlcp.wlng.api.plugin.context.ContextTranslator.

Responsible for setting any non-simple parameter into the RequestContext.

public void translate(Object param, ContextInfo info)

Puts the member variables of a complex data type into the ContextInfo.

Checks the interface type.

Note: This class needs to remain in this package and the class name
must not be changed.

Classes

Communication Service Example 4-13

Gets the simple data types provided in the parameter param.

Puts each of the parameters into the ContextInfo object.

These parameters are provided in each subsequent EDR that is emitted in the request.

ExamplePluginService
Package: com.acompany.plugin.example.netex

Implements ManagedPluginService.

Initial point for the network protocol plug-in.

Defines the life-cycle for a plug-in service.

Also holds the data that is specific for the plug-in instance.

This class manages the life-cycle for the plug-in service, including implementing the
necessary interfaces that make the plug-in deployable in Services Gatekeeper. It is also
responsible for registering the north interfaces with the Plug-in Manager. At startup
time it uses the InstanceFactory to create one instance of each plug-in service and at
activation time it registers these with the Plug-in Manager. InstanceFactory uses an
instancemap to find out which class it should instantiate for each plug-in interface
implementation. The instance map is found under the resource directory. It also has

public boolean isRunning()

Checks to see if the plug-in service is in running state.

public String[] getSupportedSchemes()

Returns a list of address schemes the plug-in supports.

public void init(String id, PluginPool pool)

Initializes the plug-in service with its ID and a reference to its plug-in pool.

public void doStarted()

When entering state Started, the plug-in instantiates a TimerManager.

public void doStopped()

No action.

public void doActivated()

No action.

public void doDeactivated()

No action.

public void handleSuspending(CompletionBarrier barrier)

The plug-in service does not handle graceful shutdown: it propagates the request to
public void handleForceSuspending().

public void handleForceSuspending()

When the plug-in is being forcefully suspended, the plug-in service iterates through all
plug-in instances and calls public void handleSuspending() on each.

public boolean isActive()

While there is a connection to the network node and the plug-in is in state
ACTIVE/RUNNING this method must return true, in all other cases false. This
method is invoked by the Plug-in Manager during route selection.

Classes

4-14 Services Gatekeeper Extension Developer's Guide

public ServiceType getServiceType()

Returns the type of the service. Used by the Plug-in Manager to route requests to a
plug-in instance that can manage the type of request. The ServiceType is
auto-generated based on the WSDL that defines the application-facing interfaces.

public String getNetworkProtocol()

Returns a descriptive name of the network protocol being used.

createInstance(String)

Creates a new plug-in instance.

ExamplePluginInstance
Package: com.acompany.plugin.example.netex.

Implements ManagedPluginInstance

Defines the life-cycle for a plug-in instance/

This class manages the life-cycle for the plug-in instance including implementing the
necessary interfaces that make the plug-in an instance in Services Gatekeeper.

It is also responsible for instantiating classes that implement the traffic interfaces and
for initializing stores to use and MBeans.

public String getId()

Returns the plug-in instance ID.

public void activate()

■ Instantiates the classes implementing the PluginNorth interface:

– SendDataPluginNorth

– NotificationManagerPluginNorth

– NotificationHandlerNorth

■ Instantiates the class implementing the PluginSouth interface:

– SendDataPluginSouth

■ Instantiates the classes that implements the southbound and northbound adapter
instances:

– NetworkToNotificationPluginAdapterImpl

– SendDataPluginToNetworkAdapterImpl

■ Creates the network proxy:

■ Registers the PluginNorth interfaces into the Plug-in Manager.

■ Registers the PluginSouth interfaces into the Plug-in Manager.

■ Registers the NetworkToNotificationPluginAdapter into the network proxy to be
notified when a request arrives from the network node.

■ Sets NotificationHandlerNorth to NetworkToNotificationPluginAdapter in order
to forward request to the application.

■ Sets the network proxy into the SendDataPluginToNetworkAdapter in order to
send request to the network.

■ Sets SendDataPluginToNetworkAdapter into SendDataPluginNorth.

Classes

Communication Service Example 4-15

■ Instantiates ConfigurationStoreHandler.

■ Instantiates Management and registers the plug-in into it.

private void rethrowServiceDeploymentException(Exception e)

Re-throws a ServiceDeploymentException if any other exception is encountered. The
exception is wrapped in a ServiceDeploymentException.

public ConfigurationStoreHandler getConfigurationStore()

Returns a handle to the ConfigurationStore used by the plug-in instance. The
ConfigurationStore was initiated in public void activate().

public NetworkProxy getNetworkProxy()

Returns handle to the NetworkProxy. The NetworkProxy was initiated in public void
activate().

public void connect()

Connects to the network using NetworkProxy.

ConnectTimerTask

Inner class of ExamplePluginService.

Extends java.util.TimerTask.

It has one method, run(), that tries to connect to the network node, if not connected.
This class is instantiated and scheduled as a java.util.Timer in public void
handleResuming().

ConfigurationStoreHandler
Handles storage of configuration data using the StorageService.

A set of default settings are defined as static final variables. These are used to populate
the ConfigurationStore with default values the first time the plug-in is deployed.

Takes the plug-in ID as a parameter. The plug-in ID is the key in the
ConfigurationStore.

Uses ConfigurationStoreFactory to get a handle to the ConfigurationStoreService
and gets the local ConfigurationStore that handles configuration data for the plug-in
instance.

The plug-in only deals with configuration data that is unique for the instance in a
specific server, so the store is fetched as outlined in Example 4–1.

Example 4–1 Get a server-specific (local) ConfigurationStore

ConfigurationStoreFactory factory = ConfigurationStoreFactory.getInstance();
localConfigStore = factory.getStore(pluginId, LOCAL_STORE,
ConfigurationStore.STORE_TYPE_LOCAL);

If the plug-in uses a ConfigurationStore that is shared between the plug-in instances
in the cluster, it must fetch that one as well, as outlined in Example 4–2

Example 4–2 Get a cluster-wide (shared) ConfigurationStore

ConfigurationStoreFactory factory = ConfigurationStoreFactory.getInstance();
sharedConfigStore = factory.getStore(pluginId, SHARED_STORE,
ConfigurationStore.ConfigurationStore.STORE_TYPE_SHARED);

Classes

4-16 Services Gatekeeper Extension Developer's Guide

After the ConfigurationStore is fetched, it is initialized with default values for the
available configuration settings. These default values can be changed later on, using
the MBeans, see "ExampleMBean".

public void setLocalInteger(String key, Integer value),

public Integer getLocalInteger(String key),

public void setLocalString(String key, String value), and

public String getLocalString(String key)

The methods above are used to set and get data to and from the ConfigurationStore.
One set/get pair must be implemented per data type in the ConfigurationStore. It is
only necessary to implement set/get methods for the data types actually used by the
plug-in.

In the set methods, the parameter name/key is provided as the first parameter and the
actual value is provided in the second parameter.

In the get methods, the parameter name/key is provided as the parameter and the
actual value is returned.

ExampleMBean
Interface.

Management interface for the example simulator.

It defines the following methods:

■ public void setNetworkPort(int port) throws ManagementException;

■ public int getNetworkPort() throws ManagementException;

■ public void connect() throws ManagementException;

■ public void disconnect() throws ManagementException;

■ public boolean connected();

Implemented by ExampleMBeanImpl.

All MBean methods should throw
com.bea.wlcp.wlng.api.management.ManagementException or a subclass thereof if
the management operation fails.

Management
Class.

Handles registration of the "ExampleMBean" in the MBean Server.

NotificationHandlerNorth
NotificationHandlerNorth()

Constructor.

Empty.

public void deliver(String data, String destinationAddress, String
originatingAddress)

Delivers data originating from the network node to the application.

NetworkToNotificationPluginAdapterImpl calls this method upon a network
triggered request.

Classes

Communication Service Example 4-17

The actual delivery is not done directly to the application. Instead it is done via the
service callback client EJB which forwards the request to the service callback EJB. Both
of these are generated during the build process.

First, the "NotificationData" associated with the destination address is fetched.

NotificationCallback, which is a generated class, is fetched using "private
NotificationCallback getNotificationCallback()".

NotifyDataReception, a generated class that is a Java representation of the operation
defined in the callback WDSL is instantiated.

The correlator associated with the "NotificationData" is set on NotifyDataReception.

The data (payload) in the network triggered request is set on NotifyDataReception.

The originating address in the network-triggered request is converted to a URI and set
on NotifyDataReception.

The endpoint associated with NotificationData is fetched.

A remote call is done to the method notifyDataReception on the Callback EJB in the
access tier. The endpoint and NotifyDataReception are supplied as parameters.

private NotificationCallback getNotificationCallback()

Helper method to get the object representing the Callback EJB.

If the object is already retrieved it is returned, otherwise the
NotificationCallbackFactory is used to get a new object. This is the preferred pattern.

Using the CallBackFactory ensures high-availability between the network tier and the
access tier for network triggered requests.

The Callback is generated during the build process when the access tier is generated.
Three files are generated per callback WSDL. The names are based on the interface
name defined in the WSDL. The interface in the WSDL is Notification, so:

■ The factory is named NotificationCallbackFactory.

■ The implementation class is named NotificationCallbackImpl

■ An interface is named is named NotificationCallback.

The classes are completely based on the WSDL file for the callback interface. The
factory is used to retrieve the implementation class that implements the interface.

private NotificationData getNotificationData(String destinationAddress)

Helper method to fetch the NotificationData from the StoreHelper. The
NotificationData is retrieved based on the key destination address.

NetworkToNotificationPluginAdapter
Interface

extends PluginSouth, NetworkCallback

Defines the interface between "NetworkToNotificationPluginAdapter" and the
network node.

public void setNotificationHandler(NotificationHandlerNorth
notificationHandlerNorth)

Sets the NotificationHandler.

Classes

4-18 Services Gatekeeper Extension Developer's Guide

NetworkToNotificationPluginAdapterImpl
Class.

Implements "NetworkToNotificationPluginAdapter".

public void setNotificationHandler(NotificationHandlerNorth
notificationHandlerNorth)

Sets "NotificationHandlerNorth" in the class.

public String resolveAppInstanceGroupdId(ContextMapperInfo info)

From interface com.bea.wlcp.wlng.api.plugin.PluginSouth

Gives the plug-in an opportunity to add additional values to the RequestContext
before the network-triggered requests is passed on to public void
receiveData(@ContextKey(EdrConst ants.FIELD_ORIGINATING_ADDRESS) String
fromAddress, @ContextKey(EdrConstants.FIELD_DESTINATION_ADDRESS)
@MapperInfo(C) String toAddress, String data).

This method is called only once per network-triggered request. It is invoked after
resolveAppInstanceGroupId(ContextMapperInfo), when the RequestContext for the
current request has been rebuilt.

The default implementation is supposed to be empty.

RequestContext contains the fully rebuilt RequestContext.

ContextMapperInfo contains the annotated parameters in public void
receiveData(@ContextKey(EdrConst ants.FIELD_ORIGINATING_ADDRESS) String
fromAddress, @ContextKey(EdrConstants.FIELD_DESTINATION_ADDRESS)
@MapperInfo(C) String toAddress, String data).

public void receiveData(@ContextKey(EdrConst ants.FIELD_ORIGINATING_
ADDRESS) String fromAddress, @ContextKey(EdrConstants.FIELD_
DESTINATION_ADDRESS) @MapperInfo(C) String toAddress, String data)

From NetworkCallback.

The network node invokes this method when a network-triggered events occurs.

The parameter:

■ fromAddress is the address representing the originator of the request

■ toAddress is the address representing the destination of the request.

■ data contains the payload of the request.

The method is annotated with @Edr, so the method is woven with annotation EDR.

fromAddress and toAddress are annotated with @ContextKey, which means that they
will be put it the current RequestContext under the key specified by the string in the
argument of the annotation. As illustrated in Example 4–3, they are put in the
RequestContext under the keys EdrConstants.FIELD_ORIGINATING_ADDRESS
and EdrConstants.FIELD_DESTINATION_ADDRESS, respectively. These keys
ensure that the values will be available in all subsequent EDRs emitted during this
request.

toAddress is also annotated with @MapperInfo, which means that the value should
be registered in ContextMapperInfo under the key specified by the string in the
argument of the annotation. In Example 4–3, the key is C.

Classes

Communication Service Example 4-19

Example 4–3 Annotation of network-triggered method

...
@Edr
public void receiveData(

@ContextKey(EdrConstants.FIELD_ORIGINATING_ADDRESS)
String fromAddress,
@ContextKey(EdrConstants.FIELD_DESTINATION_ADDRESS)
@MapperInfo(C)
String toAddress,
String data) {

...

NotificationManagerPluginNorth
Class.

Implements NotificationManagerPlugin.

public StartEventNotificationResponse
startEventNotification(@ContextTranslate(ContextTranslatorImpl.class)
StartEventNotification parameters)

Starts a subscription for notifications on network-triggered requests.

The method is a Java representation of the application-facing operation
startEventNotification, defined in the WSDL that was used as input for the code
generation.

As illustrated in Example 4–4, the method is annotated with @EDR, and the parameter
is put in the RequestContext using the annotation @ContextTranslate, since the
parameter is a complex data type that requires traversal in order to resolve the simple
data types. When using this annotation, the class is provided as an ID.

Example 4–4 Annotations for startEventNotification

...
@Edr
public StartEventNotificationResponse startEventNotification(
@ContextTranslate(ContextTranslatorImpl.class) StartEventNotification parameters)
throws ServiceException {
...

In the operation, these parameters are included:

<xsd:element name="correlator" type="xsd:string"/>
<xsd:element name="endPoint" type="xsd:string"/>
<xsd:element name="address" type="xsd:anyURI"/>

The values of correlator and endPoint are put in NotificationData.

The application instance ID for the originator of the request, the application that uses
the Web Services interface, is resolved from the RequestContextManager and put in
NotificationData.

Using StoreHelper, NotificationData is put in the StorageService.

public StopEventNotificationResponse
stopEventNotification(@ContextTranslate(ContextTranslatorImpl.class)
StopEventNotification parameters)stopEventNotification(StopEventNotification)

Ends a previously started subscription for notifications on network-triggered requests.

Classes

4-20 Services Gatekeeper Extension Developer's Guide

The method is a Java representation of the application-facing operation
stoptEventNotification, defined in the WSDL that was used as input for the code
generation.

The method is annotated in a similar manner to public
StartEventNotificationResponse
startEventNotification(@ContextTranslate(ContextTranslatorImpl.class)
StartEventNotification parameters).

Using StoreHelper, NotificationData corresponding to the correlator provided in the
requests is removed from the StorageService.

SendDataPluginNorth
Class.

Implements SendDataPlugin.

public void setPluginToNetworkAdapter(SendDataPluginToNetworkAdapter
adapter)

Sets SendDataPluginToNetworkAdapter to be used for application-initiated requests.

public SendDataResponse
sendData(@ContextTranslate(ContextTranslatorImpl.class) SendData parameters)

Sends data to the network

The method is a Java representation of the application-facing operation sendData,
defined in the WSDL that was used as input for the code generation.

The method is annotated in a similar manner to public
StartEventNotificationResponse
startEventNotification(@ContextTranslate(ContextTranslatorImpl.class)
StartEventNotification parameters).

Passes on the request to SendDataPluginToNetworkAdapter.

If there is a need to retry the request, this method re-throws a PluginRetryException,
so the request can be retried by the service interceptors.

SendDataPluginSouth
Class.

implements PluginSouth.

public SendDataPluginSouth()

Constructor.

Empty.

public void send(NetworkProxy proxy, String address, String data)

Sends data to the network node.

Passes on the request to sendDataToNetwork using the NetworkProxy.

The method is annotated with @Edr.

public String resolveAppInstanceGroupdId(ContextMapperInfo info)

Empty implementation that returns null. This method has meaning, and is used, only
in network-triggered requests.

Classes

Communication Service Example 4-21

The application instance ID is already known in the RequestContext, since the class
only handles application-initiated requests.

public void prepareRequestContext(RequestContext ctx, ContextMapperInfo info))

From interface com.bea.wlcp.wlng.api.plugin.PluginSouth

Gives the plug-in an opportunity to add additional values to the RequestContext
before the application-initiated requests is passed on to public void
send(NetworkProxy proxy, String address, String data).

Empty in this example. Normally all data about the request should be known at this
point, so no additional data needs to be set.

SendDataPluginToNetworkAdapter
Interface.

Defines the interface between the plug-in and the network node for
application-initiated requests.

SendDataPluginToNetworkAdapterImpl
Class.

public SendDataPluginToNetworkAdapterImpl()

Constructor.

Instantiates SendDataPluginSouth.

public void setNetworkProxy(NetworkProxy networkProxy)

Sets the NetworkProxy object. This is a remote object in the network node.

public void send(String address, String data)

Hands off the request to the network node using SendDataPluginSouth.

FilterImpl
Class.

Implements interface com.bea.wlcp.wlng.api.storage.filter.Filter.

This is the query filter used for the named store NotificationData.

Evaluates whether an entry in the named store NotificationData matches the filter.
The filter is defined in XML, see "Store configuration".

public boolean matches(Object value)

Must be invoked after public void setParameters(Serializable... parameters).

Returns true if the value provided in Object matches parameters[0], as set in public
void setParameters(Serializable... parameters).

public void setParameters(Serializable... parameters)

Sets the query parameters for the filter.

The parameters are ordered as provided to the StoreQuery and it is the responsibility
of the implementation to handle them in this order.

NotificationData
Class.

Classes

4-22 Services Gatekeeper Extension Developer's Guide

Implements Serializable

The data structure representing a notification. The notification is registered and
de-registered by applications using the application-facing Web Services interfaces and
represents a subscription for network-triggered events. The NotificationData is used
for:

■ Matching a network-triggered event with a subscription started by an application.
The match is usually based on the destination address in the requests from the
network.

■ Resolving information on which application instance created the subscription, and
the endpoint on which the application expects to be notified of the event.

NotificationData is stored using the storage service, normally using the invalidating
cache storage provider for cluster-wide access and high performance.

Each of the fields to be stored must have a corresponding set method and get method.

The class must be serializable.

public NotificationData()

Constructor.

Empty.

StoreHelper
Class.

Singleton.

Helper class for storing NotificationData using the StorageService.

public static StoreHelper getInstance()

Returns the single instance of StoreHelper.

public void addNotificationData(URI address, NotificationData notificationData)

Stores the NotificationData using the Storage Service.

The named store is retrieved using private Store<String, NotificationData> getStore().

The NotificationData is put into the named store. The address is the key and the
object is the value.

The named store is released. This should always be done in a finally{...} block.

public void removeNotificationData(String correlator)

Removes NotificationData using the StorageService.

The named store is retrieved using private Store<String, NotificationData> getStore().

A Set of matching entries are returned using private Set<Map.Entry<String,
NotificationData>> getEntries(String correlator, Store<String, NotificationData> store).

If there are matching entries, all are removed using private void
removeEntries(Set<Map.Entry<String, NotificationData>> set, Store<String,
NotificationData> store).

The named store is released. This should always be done in a finally{...} block.

public NotificationData getNotificationData(String destinationAddress)

Gets NotificationData using the StorageService

Classes

Communication Service Example 4-23

The named store is retrieved using private Store<String, NotificationData> getStore().

The NotificationData that is keyed on destinationAddress is fetched from the store.

The named store is released. This should always be done in a finally{...} block.

private Store<String, NotificationData> getStore()

Gets a named stored from com.bea.wlcp.wlng.api.storage.StoreFactory.

private Set<Map.Entry<String, NotificationData>> getEntries(String correlator,
Store<String, NotificationData> store)

Gets a java.util.Set of entries of NotificationData from a named store using the
StorageService. The query being used is a named query,
com.bea.wlcp.wlng.plugin.example.netex.Query, defined in
wlng-cachestore-config-extensions.xml.

private void removeEntries(Set<Map.Entry<String, NotificationData>> set,
Store<String, NotificationData> store)

Removes a java.util.Set of entries of NotificationData using the StorageService. The
NotificationData is removed from a named store.

ExamplePluginInstance
Class.

Implements com.bea.wlcp.wlng.api.plugin.ManagedPluginInstance.

Defines the life-cycle for a plug-in instance.

Also holds the data that is specific to the plug-in instance.

public ExamplePluginInstance(String id, ExamplePluginService parent)

Constructor.

The id is the plug-in instance ID, and the parent is the Plug-in service the of which the
plug-in is an instance.

public String getId()

The plug-in instance returns the ID that it was instantiated with.

public void activate()

Called when the plug-in instance is activated, so the plug-in:

■ Instantiates the traffic interfaces.

■ Registers the traffic interfaces with the Plug-in Manager.

■ Register callbacks between the interfaces.

■ Initiates the Store.

■ Instantiates and registers the MBean interface.

If the plug-in service is in state ACTIVE (RUNNING), public void handleResuming()
is called.

public void handleResuming()

Connects to the network node.

If the connection fails, a timer is triggered to retry the connection setup.

public void deactivate()

Classes

4-24 Services Gatekeeper Extension Developer's Guide

Called when the plug-in instance is deactivated.

If the plug-in service is in state ACTIVE (RUNNING), public void handleSuspending()
is called.

The call-back is unregistered from the network node.

The MBean is unregistered.

public void handleSuspending()

If existing, the timer associated with connection setup is cancelled.

The plug-in disconnects from the network node.

public List<PluginInterfaceHolder> getNorthInterfaces()/ public
List<PluginInterfaceHolder> getSouthInterfaces()

Returns a list of the interfaces.

public boolean isConnected()

Returns true if there is a connection to the network node, that is if the plug-in instance
is ready to accept traffic.

public int customMatch(RequestInfo requestInfo)

Checks the operation that is about to be invoked on the plug-in instance by
introspection of the RequestInfo associated with request.

If the operation is StopEventNotification and the correlator provided is cached using
the Storage service, the request must be sent to all instances of the plug-in, since the
request depends on an earlier request (startNotification). MATCH_REQUIRED is
returned.

If the operation is any other than StopEventNotification, the request is unrelated to
any previous operation and any plug-in instance can be used. MATCH_OPTIONAL is
returned.

private void rethrowDeploymentException(Exception e)

Re-throws a DeploymentException given another exception. The exception is
wrapped in a DeploymentException.

public ConfigurationStoreHandler getConfigurationStore()

Gets the ConfigurationStoreHandler.

ExamplePluginService
Class.

Implements com.bea.wlcp.wlng.api.plugin.ManagedPluginService.

Defines the life-cycle for a plug-in service.

Also holds the data that is specific for the plug-in instance.

public ExamplePluginService()

Constructor.

Empty.

public TimerManager getTimerManager()

Gets a handle to the TimerManager.

public boolean isRunning()

Store configuration

Communication Service Example 4-25

Checks if the plug-in service is in RUNNING state.

public String[] getSupportedSchemes()

Returns an array of supported address schemes.

public void init(String id, PluginPool pool)

Initializes the plug-in service with the ID and a reference to the plug-in pool.

The PluginPool holds all plug-in instances.

public void doStarted()

Instantiates a TimerManager to be used.

public void doStopped()/public void doActivated()/public void doDeactivated()

Empty implementation. Nothing to do here.

public void handleResuming()

Iterates over all plug-in instances using the PluginInstancePool and calls public void
handleResuming() on ExamplePluginInstance.

public void handleSuspending(CompletionBarrier barrier)

The nature of the example network protocol is that is does not have connections to
maintain. Because it is possible to treat this event as in public void
handleForceSuspending () the request is passed on to that method.

public void handleForceSuspending ()

When the plug-in service is being forcefully suspended, the plug-in instances are
disconnected from the network node immediately, without waiting for any in-flight
requests to complete.

This is done by iterating over the PluginInstancePool and calling public void
handleSuspending() on ExamplePluginInstance.

public ServiceType getServiceType()

Returns the service type,
com.acompany.example.servicetype.ExampleServiceType.type. The type is
automatically generated when the service EJB is generated.

public String getNetworkProtocol()

Returns the network protocol. A string used for informational purposes.

public ManagedPluginInstance createInstance(String pluginInstanceId)

Creates a new instance of the plug-in service. The ID for the new plug-in is supplied
together with the object that created the instance (this).

Store configuration
The store configuration file wlng-cachestore-config-extensions.xml defines:

■ Which data to store

■ The get and set methods to retrieve and store the data

■ The database table structure use to store the data

■ Queries to perform on the store

Store configuration

4-26 Services Gatekeeper Extension Developer's Guide

Example 4–5 shows the store configuration file for the example communication
service.

The configuration file defines:

■ The store type ID: since the store type ID is prefixed with wlng.db.wt
(wlng.db.wt.es_example), the store is a write-through cache.

■ The table to be used: es_example

■ The identifier for the store is a combination of the type of the key column
(java.lang.String) and the type of the value column
(com.acompany.plugin.example.netex.store.NotificationData). These are used
when the store is retrieved from the StoreFactory, see "private Store<String,
NotificationData> getStore()".

■ The key column: address

■ The value columns for the key:

– correlator

– endpoint

– appinstance

■ The get and set methods for the value columns.

■ The query to use when doing lookups in the store.

The configuration file, together with any non-complex data types must be packaged
into a JAR and put in the directory Domain_Home/config/store_schema so it can be
accessed by the storage service.

Example 4–5 Store configuration for the example Communication Service

<?xml version="1.0" encoding="UTF-8"?>
<store-config xmlns="http://www.bea.com/ns/wlng/30"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.bea.com/ns/wlng/30
wlng-cachestore-config.xsd">

 <db_table name="es_example">
 <key_column name="address" data_type="VARCHAR(100)"/>
 <value_column name="correlator" data_type="VARCHAR(100)">
 <methods>
 <get_method name="getCorrelator"/>
 <set_method name="setCorrelator"/>
 </methods>
 </value_column>
 <value_column name="endpoint" data_type="VARCHAR(255)">
 <methods>
 <get_method name="getEndPoint"/>
 <set_method name="setEndPoint"/>
 </methods>
 </value_column>
 <value_column name="appinstance" data_type="VARCHAR(100)">
 <methods>
 <get_method name="getApplicationInstance"/>
 <set_method name="setApplicationInstance"/>
 </methods>
 </value_column>
 </db_table>

SLA Example

Communication Service Example 4-27

 <store type_id="wlng.db.wt.es_example" db_table_name="es_example">
 <identifier>
 <classes key-class="java.lang.String"
value-class="com.acompany.plugin.example.netex.store.NotificationData"/>
 </identifier>
 <index>
 <get_method name="address"/>
 </index>
 </store>

 <query name="com.bea.wlcp.wlng.plugin.example.netex.Query">
 <sql><![CDATA[SELECT * FROM es_example WHERE correlator LIKE ?]]></sql>
 </query>

</store-config>

SLA Example
Below is an example SLA for the example communication service. There are examples
of service provider group and application group SLAs in: Middleware_
home/ocsg/pte/resource/sla.

Example 4–6 Example SLA for the example Communication Service

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<Sla xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
applicationGroupID="default_app_group" xsi:noNamespaceSchemaLocation="app_sla_
file.xsd">
 <serviceContract>
 <startDate>2008-04-17</startDate>
 <endDate>2099-04-17</endDate>
 <scs>com.acompany.example.plugin.SendDataPlugin</scs>
 <contract/>
 </serviceContract>
 <serviceContract>
 <startDate>2008-04-17</startDate>
 <endDate>2099-04-17</endDate>
 <scs>com.acompany.example.plugin.NotificationManagerPlugin</scs>
 <contract/>
 </serviceContract>
 <serviceContract>
 <startDate>2008-04-17</startDate>
 <endDate>2099-04-17</endDate>
 <scs>com.acompany.example.callback.NotificationCallback</scs>
 <contract/>
 </serviceContract>
</Sla>

SLA Example

4-28 Services Gatekeeper Extension Developer's Guide

5

Creating Extensions with Platform Development Studio Wizard 5-1

5Creating Extensions with Platform
Development Studio Wizard

This chapter describes how to use Platform Development Studio Wizard to create
extensions for Oracle Communications Services Gatekeeper.

About Platform Development Studio Wizard
Platform Development Studio Wizard is an Eclipse plug-in that streamlines the
creation of the following Services Gatekeeper extensions:

■ Interceptor Modules

■ OAuth2 Extension Handlers

■ Platform Test Environment (PTE) Custom Modules

■ Web Services API Exposure Project

See "Overview of the Platform Development Studio" for more information.

The wizard adapts itself to the type of extension you are creating. It generates the
following for each extension:

■ Classes and Ant build files

■ A build file with Ant targets for packaging the extension for deployment

Configuring Platform Development Studio Wizard
Before you create Services Gatekeeper extensions, configure Platform Development
Studio Wizard by:

■ Ensuring you have the prerequisite software installed on your system.

■ Configuring Platform Development Studio Wizard directories and logging levels.

■ Ensuring Platform Development Studio Wizard is using the correct JRE.

Prerequisite Software
Ensure that the following software is installed on your system:

Note: The REST API based on WADL (Deprecated wizard and the
REST and/or SOAP API based on WSDL (Deprecated) wizard are for
backwards compatibility only.

Configuring Platform Development Studio Wizard

5-2 Services Gatekeeper Extension Developer's Guide

■ JDK 1.7.0_15 or higher

■ Eclipse 4.0 or higher

■ Services Gatekeeper Release 6.0

■ Services Gatekeeper Platform Development Studio

Configuring Platform Development Studio Wizard Directories and Logging Levels
To configure Platform Development Studio Wizard directories and logging levels:

1. Copy the oracle.ocsg.eclipse.jar file from your Middleware_home/ocsg_pds
directory to your Eclipse_Home/plugins directory.

2. Start Eclipse.

3. From the Window menu, select Preferences.

The Preferences window appears.

4. From the navigation tree, select Services Gatekeeper Platform Development
Studio.

The Services Gatekeeper Platform Development Studio window appears.

5. In the Middleware Home Directory field, enter or browse to the Middleware_home
directory. For example, Oracle/Middleware.

The Middleware_home directory serves as the repository for common files that are
used by Oracle Communications products installed on the same machine, such as
Services Gatekeeper and WebLogic Server.

6. In the JDK Installation Directory field, enter or browse to the directory where the
JDK is installed. For example, /java/jdk1.7.0_15.

7. In the Logging Level group, do one of the following:

■ To create detailed log files, select All.

■ To create less detailed log files, select Standard.

8. Click OK.

Ensuring Platform Development Studio Wizard Uses JRE 1.7
To ensure that Platform Development Studio Wizard is using JRE 1.7 or higher:

1. In Eclipse, from the Window menu, select Preferences.

The Preferences window appears.

2. From the navigation tree, expand Java and then select Installed JREs.

The Installed JREs window appears.

3. Ensure that the Installed JREs table lists JRE 1.7.0_15 or higher.

4. Click OK.

Note: Platform Development Studio is automatically installed in
your system’s Middleware_home/ocsg_pds directory when you run the
Services Gatekeeper multi-tier installer and select to install the
Administration Server component.

Generating an OAuth 2.0 Extension Handler

Creating Extensions with Platform Development Studio Wizard 5-3

Generating an Interceptor Module
To generate an interceptor module project:

1. Open Eclipse.

2. From the File menu, select New and then select Other to start the New wizard.

The Select a wizard window appears.

3. From the navigation tree, expand Services Gatekeeper Platform Development
Studio and then select Interceptor Module. Click Next.

The Generate Interceptors module window appears.

4. Enter a unique project name and choose a location for your project.

5. In the Interceptor Settings group, do the following:

a. In the Package Name field, enter the name of the interceptor module package.

b. To include a life cycle listener, enter the name in the Application Lifecycle
Listener field.

c. Click the Add icon.

The Add Interceptor window appears.

d. In the Name field, enter the name of the interceptor.

e. In the Index field, enter the name of interceptor index.

f. In the Point list, select the location in Services Gatekeeper where the
interceptor will intercept events: MO North, MO South, MT North, or MT
South.

g. Click OK.

h. To create more interceptors, click the Add icon and fill out the information in
the Add Interceptor window.

6. Click Finish.

Generating an OAuth 2.0 Extension Handler
To generate an OAuth 2.0 extension handler project:

1. Open Eclipse.

2. From the File menu, select New and then select Other to start the New wizard.

The Select a wizard window appears.

3. From the navigation tree, expand Services Gatekeeper Platform Development
Studio and then select OAuth2 Extension Handlers. Click Next.

The Generate OAuth2 Extended Handlers window appears.

4. Enter a unique project name and choose a location for your project.

5. In the OAuth2 Extension Settings group, do the following:

a. In the Package Name field, enter the name of the extension handler.

b. Click the Add icon.

Generating a Platform Test Environment Custom Module

5-4 Services Gatekeeper Extension Developer's Guide

The Add Handler window appears.

c. In the Handler Name field, enter the name of the OAuth2 handler.

d. To add more extensive customization for the OAuth2 handler, select the Ext
check box.

e. In the Validator Name field, enter the name of the validator for the OAuth2
handler.

f. In the Response Type list, select the type of response the validator expects:
code or token.

g. In the Grant Type list, select the grant type that the validator expects:
authorization code, refresh token, password, or client credentials.

h. Click OK.

i. To create more handlers, click the Add icon and fill out the information in the
Add Handler window.

6. Click Finish.

Generating a Platform Test Environment Custom Module
To generate a Platform Test Environment custom module:

1. Open Eclipse.

2. From the File menu, select New and then select Other to start the New wizard.

The Select a wizard window appears.

3. From the navigation tree, expand Services Gatekeeper Platform Development
Studio and then select PTE Custom Module. Click Next.

The Generate PTE modules window appears.

4. Enter a unique project name and choose a location for your project.

5. To define the module by using a custom WSDL file, select the Use custom WSDL
files option.

The Configure Service WSDL Files area and Configure Callback WSDL Files area
are visible.

a. In the Configure Service WSDL Files area, click the Add icon.

The WSDL Files Configuration window appears.

b. In the WSDL File field, either enter the path to the service file or click the Add
icon to browse to the service file's location.

c. In the JAX-WS or JAXB binding files area, click the Add icon.

The Binding File Configuration window appears.

d. In the Binding File field, either enter the path to the binding file or click the
Add icon to browse to the binding file’s location. Click OK.

e. Click OK.

f. In the Configure Callback WSDL Files area, click the Add icon.

Generating a Platform Test Environment Custom Module

Creating Extensions with Platform Development Studio Wizard 5-5

The WSDL Files Configuration window appears.

g. In the WSDL File field, either enter the path to the service file or click the Add
icon to browse to the service file's location.

h. In the JAX-WS or JAXB binding files area, click the Add icon.

The Binding File Configuration window appears.

i. In the Binding File field, either enter the path to the binding file or click the
Add icon to browse to the binding file’s location. Click OK.

j. Click OK.

6. To define the module by using a WADL file, select the Use predefined WSDL files
option.

In the drop-down list, select one of the following predefined communication
services:

■ px30_audio_call

■ px21_call_notification

■ px30_call_notification

■ px21_multimedia_messaging

■ px21_presence

■ ews_push_message

■ px21_sms

■ ews_binary_sms

■ ews_subscriber_profile

■ px21_terminal_location

■ px21_third_party_call

■ px30_third_party_call

■ px30_payment

7. To define the module by using a WADL file, select the Use WADL option.

The Configure Service WADL Files area appears.

a. Click the Add icon.

The WADL Files Configuration window appears.

b. In the WADL File field, either enter the path to the service file or click the Add
icon to browse to the service file's location.

c. Click OK.

8. To define the module by using a REST-to-REST WADL file, select the Rest2Rest
WADL option.

The Configure Service WADL Files area appears.

a. Click the Add icon.

The WADL Files Configuration window appears.

b. In the WADL File field, either enter the path to the service file or click the Add
icon to browse to the service file's location.

Generating a Web Service API Exposure Project

5-6 Services Gatekeeper Extension Developer's Guide

c. Click OK.

9. From the Settings Area, in the Name field, enter a name for the PTE module.

10. In the Package Name field, enter the name of the Java package that will contain
the package classes.

11. In the Company field, enter the name of your company.

12. In the Version field, enter the version number of the PTE module.

13. Click Finish.

Generating a Web Service API Exposure Project
To generate a web service API exposure project:

1. Open Eclipse.

2. From the File menu, select New and then select Project to start the New wizard.

The Select a wizard window appears.

3. From the navigation tree, expand Services Gatekeeper Platform Development
Studio and then select Web Service API Exposure Project. Click Next.

The Create a Communication Service window appears.

4. Enter a unique project name and choose a location for your project.

5. Click Next.

The Define the Communication Service window appears.

6. In the Configure Service WSDL or WADL Files area, click the Add icon.

The WSDL/WADL Files Configuration window appears.

7. In the WSDL/WADL File field, either enter the path to the service file or click the
Add icon to browse to the service file's location.

8. Click OK.

9. In the Configure Callback WSDL or WADL Files area, click the Add icon.

The WSDL/WADL Files Configuration window appears.

10. In the WSDL/WADL File field, either enter the path to the service file or click the
Add icon to browse to the service file's location.

11. Click OK.

12. In the Company field, enter the name of your company.

13. In the Version field, enter the version number of the communication service.

14. In the Identifier field, enter an identifier to tie together a collection of Web
services. The identifier is used in the names of the generated WAR and JAR files
and the service type for the communication service. For example:

sms_Identifier.war
sms_Identifier_callback.jar

15. In the Service Type field, enter the service type. The service type is used in EDRs
and statistics. For example:

smsServiceType
MultimediaMessagingServiceType

Adding and Removing Extension Plug-ins

Creating Extensions with Platform Development Studio Wizard 5-7

16. In the Java Class Package Name field, set the package names to use. For example:
com.mycompany.service.

17. In the Web Services Context Path field, set the context path for the Web service.
For example: myService.

18. In the API Exposure Interface list, select REST to generate a RESTful Service
Facade for the communication service, or SOAP to generate SOAP Service Facade
for the communication service.

19. In the Content Type list, select the HTTP content type that Services Gatekeeper
uses when it sends a request to the network: application/xml or application/json.

20. In the Callback Content Type list, select the HTTP content type that Services
Gatekeeper uses when it sends a request to the application: application/xml or
application/json.

21. Click Finish.

Adding and Removing Extension Plug-ins
This section describes how to add or remove plug-ins from an extension.

Adding a Plug-in to a Services Gatekeeper Project
To add a plug-in to an existing Services Gatekeeper project:

1. Open Eclipse.

2. From the Window menu, click Show View and then click Package Explorer.

The Package Explorer window appears.

3. Right-click your Services Gatekeeper project and then choose Properties.

The Properties for ProjectName appears.

4. From the navigation tree, select Plugins Configuration.

The Plugins Configuration window appears.

5. Click the Add Plugin icon.

The Add Plugin window appears.

6. In the Protocol field, enter an identifier for the network protocol that the plug-in
implements. It is used as a part of the names of the generated JAR file and the
service name. For example:

communicationServiceIdentifier._protocol.jar
Plugin_communicationServiceIdentifier._protocol

7. In the Schemes field, enter the address schemes that the plug-in can handle. Use a
comma-separated list if multiple schemes are supported. For example: tel or sip.

8. In the Package Name field, enter the package names to be used.

9. In the Company field, enter the name of your company.

10. In the Version field, enter the version number of the plug-in.

Adding and Removing Extension Plug-ins

5-8 Services Gatekeeper Extension Developer's Guide

11. In the Type area, select SOAP, SOAP to SOAP, or SIP.

12. Click OK.

13. Click Apply and then OK.

Removing a Plug-in from a Communication Service
To remove a a plug-in from an existing Services Gatekeeper project:

1. Open Eclipse.

2. From the Window menu, click Show View and then click Package Explorer.

The Package Explorer window appears.

3. Right-click your Services Gatekeeper project and then choose Properties.

The Properties for ProjectName appears.

4. From the navigation tree, select Plugins Configuration.

The Plugins Configuration window appears and a list of plug-ins defined for the
project is displayed.

5. Select the plug-in to remove.

6. Click the Remove Plugin icon.

The plug-in definitions are removed from the list.

7. Click Apply to remove the plugin from the project.

Warning: This removes all parts of the project, including any manually edited or
added files.

6

Understanding the Communication Service Project Output 6-1

6Understanding the Communication Service
Project Output

The chapter describes a project generated from the Oracle Communications Services
Gatekeeper Platform Development Studio Wizard.

About the Generated Communication Service
The section describes a project generated from the Platform Development Studio
Wizard.

About the Communication Service Project
Generating a communication service project creates the directory structure illustrated
in Example 6–1.

The base directory is the directory given in the PDS Wizard input field Identifier. It
contains the following files:

■ build.properties: properties file for the build files:

– wlng.home is set to Middleware_home, the base directory for the installation.

– pds.home is set to Middleware_home/ocsg_pds, the base directory for the
Platform Development Studio.

– wls.home is set to Middleware_home/wlserver, the base directory for the
WebLogic Server installation.

■ build.xml: the main file for the project, that is the build file for the communication
service and references to any other plug-in specific build files in the project. See
"Main Build File".

■ common.xml: properties, Apache Ant task and targets used by all build files in the
project.

The directories and files in bold in Example 6–1 are generated when building the
common parts of the communication service; the others are generated by the PDS
(Eclipse) Wizard.

Example 6–1 Generated project for Communications Services Common

<Eclipse Project Name>
+- build.properties
+- common.xml
+- build.xml
+- <Identifier given in Ecplise Wizard>

About the Generated Communication Service

6-2 Services Gatekeeper Extension Developer's Guide

| +- dist //Generated by target dist in <Eclipse Project Name>/build.xml
| | +- <Package name>.store_<version.jar // Example store configuration
| | +- wlng_at_<Identifier>.ear //Deployable in access tier
| | +- wlng_nt_<Identifier>.ear //Deployable in network tier
| +- common
| | +- build.xml //Build file for the common parts of the communication service
| | +- dist //Generated by target dist on

//<Eclipse Project Name>/common/build.xml
| | | +- request_factory_skel //Skeletons for the RequestFactory,

//one class for each service WSDL
| | | +- tmp //Used during build. Contains classes, source,

//definitions, WSDLs, templates, and more.
| | | +- <Identifier>.war // Web Service implementation
| | | +- <Identifier>_callback.jar // Service callback EJB for

//the communication service
| | | +- <Identifier>_callback_client.jar //Service call-back EJB used by

// the plug-in.
| | | +- <Identifier>_service.jar // Service EJB

// for the communication service
| | +- resources // Contains application.xml and weblogic-application.xml

// for the access and network tier EAR files respectively.
// The files are packaged in the EAR files META-INF directory

| | | +- handlerconfig.xml //SOAP Message Handler
| | +- src // Source directory for communication service common
| | | +- <Package name>/plugin
| | | | +- <Web Services interface>PluginFactory // One per interface

// defined in the
// Service WSDL files.

The SOAP Message Handler definition file, handlerconfig.xml, can be edited in order
to change, add, or remove SOAP Message Handlers. If modified, it will be taken into
account the next time the communication service or plug-in is rebuilt.

The following exception definitions are added:

■ PolicyException - Any policy based exceptions.

■ RoutingException - Any exceptions during the routing of the request.

■ ServiceException - Any other internal exceptions.

The exceptions are added only to the service facade, not to the plug-in to network
interface.

If the exceptions listed above are present in the original WSDL they are reused; if not
they are added.

About the RESTFul Service Facade
You can generate a RESTful Service Facade using the PDS wizard. The sections below
describe the default generation of the RESTful Service Facade and how to modify it.

Default RESTful Service Facade
When a RESTful Service Facade is generated, the following files are generated in
addition to the directory structure described in Example 6–1:

■ rest_identifier.war in the common/dist directory

■ rest/identifier/index.html, in the common/dist/tmp/wars/rest_identifier directory

■ rest-config.xml, in the identifier/common/resources/facade/rest directory

About the Generated Communication Service

Understanding the Communication Service Project Output 6-3

The RESTful Service Facade Web Application rest_identifier.war is packaged in the
Access Tier EAR file. The context root is rest/identifier.

An API description is generated in the common/dist/tmp/wars/rest_identifier directory.
It describes each operation, including URI, HTTP-method, request- and response
content-type, request- and response, and errors.

The generated RESTful API has a default implementation, which can be changed by
editing rest-config.xml and re-building the Service Facade. The API description is
updated so it reflects any changes done in the configuration file.

The default implementation of the generated RESTful Service Facade has the following
attributes for application-initiated requests.

The HTTP method is POST.

The URL to a default RESTful resource is:

http://host:port/rest/context-root/interface/operation/path_
info?name[1]=value[1]&name[2]=value[2]&...name[n]=value[n]

Where:

■ host and port depend on the Services Gatekeeper installation, and on the server
where the RESTful Service Facade is deployed.

■ context-root is specified in the field Web Services Context Path in the PDS wizard.

■ interface is derived from the interface name in the Service WSDL.

■ operation is derived from the operation name in the Service WSDL.

■ path_info and the name-value pair should not be present in the URI since the
default HTTP method is POST. See Table 6–1 for information on how this behavior
can be changed. path-info and the queryString are not present by default.

The HTTP content-type for the request is application/json. The HTTP request body
contains a JSON formatted object that corresponds to the input message of the
operation as defined in the Service WSDL.

The HTTP content-type for the response is application/json. The HTTP response body
contains a JSON formatted object that corresponds to the output message of the
operation as defined in the Service WSDL. The HTTP response body for an error
contains a JSON formatted object that corresponds to the error message of the
operation as defined in the Service WSDL.

For example the Parlay X 2.1 Short Messaging Service defines the operation
startSmsNotification. Using the WSDLs for this service, the corresponding RESTful
resource is according to Table 6–1. This information is provided in the generated API
documentation.

Table 6–1 Example of a RESTful resource as used by an application

Attribute Value

URI rest/sms/SmsNotificationManager/startSmsNotification

HTTP Method POST

Request Content-Type application/json

About the Generated Communication Service

6-4 Services Gatekeeper Extension Developer's Guide

The Bayeux Protocol 1.0 is used to deliver network-triggered messages or notifications
to an application.

The RESTful Service Facades rely on the publish-subscribe model supported by the
Publish-Subscribe Server functionality of Oracle WebLogic Server. The communication
service delivers the network-triggered traffic to the publish-subscribe server channel,
from which the application Bayeux client fetches it. For more information on this
model, see the discussion on using the HTTP publish-subscribe server in Oracle Fusion
Middleware Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server at:

http://download.oracle.com/docs/cd/E15523_01/web.1111/e13712/pubsub.htm

An application needs to subscribe for notifications. The application provides an
endpoint URI to receive notifications on. In Parlay X, the operations are normally
named according to startservice_nameNotification, for example startSmsNotification.
In a RESTful environment, the endpoint URI is the name of the Bayeux channel, must
start with the string /bayeux/ to be recognized as a RESTful endpoint. Immediately
following this keyword, the application must provide the application instance ID that
uniquely identifies the application. An example of an endpoint is
/bayeux/myApplicationID/myInterface. The application’s Bayeux client must perform
a hand-shake, connect to the publish-subscribe server and subscribe to the channel
that is being created for the notification.

The publish-subscribe server URI to use for the Bayeux connect is:

http://host:port/rest/context-root/notifications

Where:

■ host and port depend on the Services Gatekeeper installation.

■ identifier is specified in the field identifier in the PDS wizard.

Request Body {

"reference": {

"correlator": "String",

"endpoint": "URI",

"interfaceName": "String"

},

"smsServiceActivationNumber": "URI",

"criteria": "String"

}

Response Body Empty.

Error Response {"error":{

"type":"org.csapi.schema.parlayx.common.v2_1.ServiceException"

"message":"String"

}}

Error Response {"error":{

"type":"org.csapi.schema.parlayx.common.v2_1.PolicyException"

"message":"String"

}}

Table 6–1 (Cont.) Example of a RESTful resource as used by an application

Attribute Value

About the Generated Communication Service

Understanding the Communication Service Project Output 6-5

Notifications are sent by using Bayeux Deliver Event messages.

The HTTP response body contains a JSON formatted object that corresponds to the
output message of the operation as defined in the Service Callback WSDL.

Typically, the publish-subscribe server URI to use for the Bayeux connect should be
returned to the application in the in the header of the response to start a notification.
Do do this, you should update rest-config.xml with a <response-header> element. See
"Customize the RESTful Service Facade" for more information.

Customize the RESTful Service Facade
The following can be customized for the RESTFul Service Facade:

■ HTTP method

■ URI Mapping

– servlet-path

– pathinfo

– request parameter

■ Data binding

– path-info-param

– request-param

■ Other

– additional response headers

– custom handler chain for an operation

– custom data type adapters

– custom HTTP status code mappings for errors

The mappings are defined in rest-config.xml according to the XSDs rest-config.xsd
and error-mappings.xsd, located in Middleware_home/ocsg/applications/rest.jar.
Table 6–2 contains a description of the mappings.

Table 6–2 Structure and Description of rest-config.xml

Element/Type Description

<resources> Main element. Contains:

<resource>, one (1) or more.

<handler-chain>, zero (0) or more.

<data-type-adapter>, zero (0) or more.

<notification>, zero (0) or more.

<binding>, one (1) or more.

<error-mappings>, zero (0) or one (1).

About the Generated Communication Service

6-6 Services Gatekeeper Extension Developer's Guide

<resource> Parent element: <resources>.

Contains the following element:

<operation>, one (1) or more.

Has the attribute:

■ uri

Defines a part of the URI for a RESTful resource. All resources used
for application-initiated traffic need this definition.

If the URI used by an application is:

http://host:port/<context-root>/<servlet-path>/<pathinfo>?<nam
e1>=<value1>&<name2>=<value2>

The attribute uri corresponds to <servlet-path> in the URI.

<operation> Parent element: <resource>.

Contains the following elements:

■ <http-method>, exactly one (1).

■ <request-type>, zero (0) or one (1).

■ <request-param>, zero (0) or more.

■ <path-info-param>, zero (0) or one (1).

■ <target>, exactly one (1).

■ <handler-chain>, zero (0) or one (1).

■ <response-header>, zero (0) or more.

■ <response-type>, zero (0) or one (1).

■ <empty-response>, zero (0) or one (1).

Defines an operation that corresponds to the RESTful resource.

<http-method> Defines which HTTP operation to use for the resource.

Use GET, POST, PUT, or DELETE.

By default, the method is POST. For other methods, the request
URI will differ and some elements become mandatory or not used.

<request-type> Parent element: <operation>.

Used for API documentation generation only. It has no run-time
effect. Defines the content-type header of the incoming HTTP
request. Default value is application/json.

Enumeration:

■ application/json

■ multipart/form-data (for example, when using HTTP
attachments)

Table 6–2 (Cont.) Structure and Description of rest-config.xml

Element/Type Description

About the Generated Communication Service

Understanding the Communication Service Project Output 6-7

<request-param> Parent element: <operation>.

Has the attributes:

■ name

■ value (optional)

Defines expected request name value pairs.

Useful for sending a JSON object using HTTP GET, in which case
the value should be an encoded JSON string representing the input
object. Only one JSON object is supported.

Also useful for overloading the resource URI, for example invoking
different operations on the same resource, in which case the value
will be specified as a constant.

Every incoming request in the format of:

http://host:port/<context-root/<servlet-path>/<pathinfo>?<nam
e1>=<value1>

invokes the given operation.

If the URI used by an application is:

http://host:port/<context-root/<servlet-path>/<pathinfo>?<nam
e1>=<value1>&<name2>=<value2>

The attribute name corresponds to either <name1> or <name2> in
the URI.

If either <value1> or <value2> is defined as a constant, that
attribute value shall be set to this constant. Format the value as a
JSON object.

<path-info-param> Parent element: <operation>.

Has the attribute:

■ name

Defines a part of the URI for a RESTful resource. This element is
optional. When present, the value will be taken from the
<pathInfo> component of request URI, and used to populate the
field of the target operation input parameter. The attribute name
specifies the name of the field to be populated.

If the URI used by an application is:

http://host:port/<context-root/<servlet-path>/<pathinfo>?<nam
e1>=<value1>&<name2>=<value2>

The attribute name corresponds to <pathinfo> in the URI.

Table 6–2 (Cont.) Structure and Description of rest-config.xml

Element/Type Description

About the Generated Communication Service

6-8 Services Gatekeeper Extension Developer's Guide

<target> Parent element: <operation>.

Has the attributes:

■ service

■ class

■ method

Defines how the RESTful resource maps to the Java
implementation of the service.

The attribute service is derived from the interface type in the
WSDL.

The attribute class defines the generated class that implements the
interface defined in the WSDL. The pattern is:

<package name from PDS wizard>.<Service name from
wizard>.rest.<Interface name from WSDL>RestImpl

The attribute method defines the method in the class to bind
RESTful resource. The name of the method is derived from the
operation defined in the WSDL.

<handler-chain> Parent element: <resources> or <operation>.

This element defines a handler chain.

When defined under <operation>, it refers to provided handler
chain names or custom handler chains. If it is a custom handler
chain it also needs to be defined under <resources>. If it is a
provided handler chain, it is only necessary to refer to the name.

When defined under <resources>, it defines a named handler chain
to be invoked prior to the request being handed off to the
generated RESTFul Service Facade implementation and prior to a
response being handed off to the calling application.

There are a set of available handler chains available. New ones can
be added. The available handler chains include:

■ Default, this is the default handler chain. It has the following
sequence defined:

SessionIdHandler −> ServiceCorrelationIdHandler −>
ExtendingParametersHandler

■ Default-with-attachment, this handler chain shall be used
when an a RESTful resource uses attachments. It has the
following sequence defined:

SessionIdHandler −>AttachmentHandler−>
ServiceCorrelationIdHandler −>
ExtendingParametersHandler

■ Empty, this handler chain does not do anything.

For default behavior use default or default-with-attachment. See
"Using a Custom Handler Chain" for information on how to create
a custom handler chain.

Table 6–2 (Cont.) Structure and Description of rest-config.xml

Element/Type Description

About the Generated Communication Service

Understanding the Communication Service Project Output 6-9

<response-header> Parent element: <operation>.

Has the attributes:

■ name

■ value

Defines HTTP response headers to be returned to the application.

The attribute name is the name of the response header.

The attribute value attribute can be a constant or a variable.

If it is a variable, the format is ${field name of return value}, where
the variable is replaced with the runtime value of the field. Nested
fields are not supported. The variable tokens for each operation is
found in the generated API docs.

The variable ${rest-facade-url} is predefined. It is replaced with the
URL to the incoming request the RESTFul Service Facade.

Example:

<response-header name="Location"
value="${rest-facade-url}/delivery-status/${result}"/>

<response-type> Parent element: <operation>.

For API documentation only, no run-time effect.

Defines the content-type header of the outgoing HTTP response.

Enumeration:

Defines the content-type header of the outgoing HTTP response.
Default value is application/json.

Enumeration:

■ application/json

■ multipart/mixed

<empty-response> Parent element: <operation>.

Defines that the HTTP response for the enclosing operation does
not have an entity body.

Table 6–2 (Cont.) Structure and Description of rest-config.xml

Element/Type Description

About the Generated Communication Service

6-10 Services Gatekeeper Extension Developer's Guide

<data-type-adapter> Parent element: <resources>.

Contains the following elements:

■ name, exactly one (1).

■ target-field, exactly one (1).

The element target-field has the attributes:

■ class

■ name

Defines a data type adapter. This is needed only if the target Java
type can be mapped to more than one XML schema types, for
example byte[] to xsd:hexBinary or xsd:base64Binary.

There are two adapters available:

■ base64binary

■ hexBinary

The element name defines the data type adapter to use for the
given target fields.

The element target specifies the class for the object and the member
variable in the object.

Examples:

<data-type-adapter>

<name>base64binary</name>

<target-field

class="org.csapi.schema.parlayx.sms.send.v2_
2.local.SendSmsLogo"

name="image"/>

</data-type-adapter>

<data-type-adapter>

<name>hexBinary</name>

<target-field

class="com.acompany.schema.example.data.send.local.SendDat
a"

name="binaryField"/>

</data-type-adapter>

<notification> Parent element: <resources>.

Contains the following elements:

■ <service>, exactly one (1).

■ <data>, one (1) or more.

For API documentation only, no run-time effect.

Defines the message format used to notify an application of a
network-triggered operation. The operation is defined in the
Service Callback WSDL. All resources used for network-triggered
traffic needs this definition.

Table 6–2 (Cont.) Structure and Description of rest-config.xml

Element/Type Description

About the Generated Communication Service

Understanding the Communication Service Project Output 6-11

<service> Parent element: <notification>

Derived form the WSDL for the Service Callback WSDL.

Example:

MessageNotification

<data> Parent element: <notification>

Has the attributes:

■ id

■ class

Defines the data in a notification sent to an application.

The attribute id defines the id of the notification. This is the same
as the operation defined in the Service Callback WSDL.

The attribute class defines the generated class that specifies the
notification. The class is generated based on the Service Callback
WSDL.

Example:

<data id="notifyMessageReception"
class="org.csapi.schema.parlayx.multimedia_
messaging.notification.v2_4.local.NotifyMessageReception"/>

<binding> Parent element: <resources>

Has the attributes:

■ service

■ schema

For API documentation only, no run-time effect. No need to
modify.

Defines the binding between the attribute service defined in the
element <target> and the Service WSDL.

The attribute service identifies the service name.

The attribute schema identifies the Service WSDL.

Example:

<binding service="SendMessage" schema="parlayx_mm_send_
interface_2_4.wsdl"/>

<error-mappings> Parent element: <resources>

Contains the following elements:

■ <error-mapping>, zero (0) or more.

<error-mapping> Parent element: <error-mappings>

Contains the following elements:

■ <http-status-code>, exactly one (1)

■ <http-method>, zero (0) or one (1)

■ <error>, one (1) or more.

Describes how a set of exceptions thrown by the RESTful Service
Facade or Service Enabler maps to a HTTP status code.

Default behavior is defined in default-error-mapping.xml. Custom
mapping takes precedence.

<http-status-code> Parent element: <error-mapping>

Defines the HTTP status code to return.

Table 6–2 (Cont.) Structure and Description of rest-config.xml

Element/Type Description

About the Generated Communication Service

6-12 Services Gatekeeper Extension Developer's Guide

Custom URL Mapping Example
For a URL in the format:

http://host:port/context-root/servlet-path/pathinfo?name1=value1&name2=value2

The following applies:

■ servlet-path must match the attribute URI of the <resource> element.

■ pathinfo must match the attribute name of the <path-info-param> element. It
identifies a unique resource, such as a correlator. Note that this element is optional.
If not present in the XML configuration file, it should not be present in the URL.

■ request parameters:

– name must match the attribute name of the <request-param> element.

– value must match the attribute value of the <request-param> element.

For application-initiated operations, each resource URI is mapped to an HTTP method
and an implementing class, for example:

<resource uri="/SendSms/sendSms">
<operation>
<httpMethod>POST</httpMethod>
<target method="sendSms"

 class="com.acompany.arestservice.rest.SendSmsRestImpl" service="SendSms"/>
</operation>

</resource>

The names of the generated classes are derived from the package name given in the
PDS wizard and the interface name derived from the WSDL:

package name from wizard.service name from wizard.rest.interface name from
WSDLRestImpl

The method name is derived from the WSDL. The resource URI is derived from the
namespace definition in the WSDL. The <httpMethod> element defines the HTTP
method to use, either POST, GET, PUT or DELETE.

For network-triggered operations, each notification service is mapped to one or more
classes that contain the data and the method used to deliver the data, for example:

<http-method> Parent element: <error-mapping>

Defines the HTTP method used for the original request. If omitted
the mapping is valid for all HTTP request methods.

<error> Parent element: <error-mapping>

Has the attributes:

■ class

■ id-field (optional)

■ id-value (optional)

The attribute class defines the class that defines the exception.

The attribute id-field defines which member variable in the
exception to match.

The attribute id-value defines the value of the member variable to
match.

Table 6–2 (Cont.) Structure and Description of rest-config.xml

Element/Type Description

About the Generated Communication Service

Understanding the Communication Service Project Output 6-13

<notification>
<service>SmsNotification</service>
<data class=
"org.csapi.schema.parlayx.sms.notification.v2_2.local.NotifySmsReception"
id="notifySmsReception"/>

<data class=
"org.csapi.schema.parlayx.sms.notification.v2_

2.local.NotifySmsDeliveryReceipt"
id="notifySmsDeliveryReceipt"/>

</notification>

The classes and the method name are derived from the WSDL.

Using a Custom Handler Chain
A custom handler chain can be defined if additional processing of the request needs to
be done before a request is passed on to the Service Enabler or back to an application.

A handler chain is defined as a set of handlers. A handler chain is named and referred
to in rest-config.xml.

The existing handlers are:

■ SessionIdHandler, which handles session IDs and extracts the IDs from the
request.

■ ServiceCorrelationIdHandler, which handles service correlation and extracts the
IDs from the request.

■ ExtendingParametersHandler, which handles tunnelled parameters.

■ AttachmentHandler, which handles HTTP attachments.

A custom handler must implement the interface.

public interface com.bea.wlcp.wlng.rest.handler.Handler

The handleRequest method is invoked before a request is passed on to the Service
Enabler.

The handleResponse method is invoked before a response is returned to an
application.

The chain is defined in rest-config.xml. All classes in the chain must be packaged in
the WAR file for the restful service facade.

About the Communication Service Plug-in
When you create a plug-in for a communication service, the directory structure
illustrated in Example 6–2 is created under the top-level directory. The base directory
depends on the type of communication service the plug-in belongs to, for example,
px21_multimedia_messaging, or px21_sms. It also depends on whether the plug-in is
for an existing communication service or for a new one.

If the plug-in is for an existing communication service, it is generated under one of the
existing directories; for example a Parlay X 30 Audio Call plug-in the px30_audio_call
directory, a Parlay X 2.1 Short Messaging in the px21_sms, and so on.

If the plug-in is for a new communication service, the base directory is given in the
Identifier entry field in the PDS Wizard.

About the Generated Communication Service

6-14 Services Gatekeeper Extension Developer's Guide

The base directory contains the directory plugins, which contains subdirectories for
each protocol being added. The names of the directories are the same as the name
chosen for the Protocol field in the PDS Wizard.

Each of the sub-directories for a plug-in contains the following files:

■ build.xml: The build file for the plug-in, see "Plug-in Build File".

Each plug-in sub-directory also contains the directories:

■ config: The directory that includes an instance map that is used by the
InstanceFactory to create instances for the plug-in interface implementations.

■ dist: The directory where the final deployable plug-in JAR will end up. If a new
plug-in skeleton is generated from the build file it will be generated here.

■ resources: The directory that contains deployment descriptors for the plug-in.

■ src: The directory that contains the generated plug-in code.

■ storage: The directory that contains the configuration file for the Storage service.

The directories and files in bold in Example 6–2 are generated when building the
plug-in, the others are generated by the PDS Wizard.

Example 6–2 Generated project for a plug-in

| +- plugins // Container directory for all plug-ins for
// the communication service

| | +- <Protocol> // One specific plug-in
| | | +- build.xml // Build file for the plug-in
| | | +- build // Used during the build process
| | | +- config //
| | | | +- instance_factory
| | | | | +- instancemap //Instance map
| | | +- dist // Generated by target dist in build.xml for the plug-in
| | | | +- <Identifier>_<Protocol>_plugin.jar
| | | | +- <Package name>.store_<version>.jar
| | | +- resources // Contains parts of weblogic-extension.xml

// for the network tier EAR file.
// the file is packaged in the EAR file’s META-INF directory

| | | +- src
| | | | +- <Package name> // Directory structure reflecting

// plug-in package name
| | | | | +- management // Example MBean
| | | | | | +- MyTypeMBean.java
| | | | | | +- MyTypeMBeanImpl.java
| | | | | +- <Web Services interface> // One per Service WSDL
| | | | | | +- north
| | | | | | | +- <Web Services interface>PluginImpl.java

// Implmentation of the interface
| | | | | +- <Type>PluginInstance.java
| | | | | +- <Type>PluginService.java

// PluginService implementation
| | | +- storage //Example of a store configuration.
| | | | +- wlng-cachestore-config-extensions.xml

About the SOAP2SOAP Plug-in
When you create a SOAP2SOAP plug-in, the directory structure described in "About
the Communication Service Plug-in" is created under the top-level directory. In
addition, the directories and files in "Generated project for a SOAP2SOAP plug-in" are

About the Generated Communication Service

Understanding the Communication Service Project Output 6-15

generated. The directories and files in bold are created when building the plug-in; the
others are generated by the PDS Wizard.

Example 6–3 Generated project for a SOAP2SOAP plug-in

| +- plugins // Container directory for all plug-ins for
// the communication service

| | +- <Protocol> // One specific plug-in
| | | +- build.xml // Build file for the plug-in
| | | +- build // Used during the build process
| | | +- config //
| | | | +- instance_factory
| | | | | +- instancemap //Instance map
| | | +- dist // Generated by target dist in build.xml for the plug-in
| | | | +- <Identifier>_<Protocol>_plugin.jar
| | | | +- <Package name>.store_<version>.jar //unused, empty
| | | +- resources // Contains parts of weblogic-extension.xml

// for the network tier EAR file.
// the file is packaged in the EAR file’s META-INF directory

| | | | +- client_handlerconfig.xml // SOAP Message Handler
| | | +- src
| | | | +- <Package name> // Directory structure reflecting

// plug-in package name
| | | | | +- client // Implementation of Web Service client
| | | | | | +- <Web Services interface>_Stub.java
| | | | | | +- <Web Services interface>.java
| | | | | | +- <Web Services interface>Service_Impl.java
| | | | | | +- <Web Services interface>Service.java
| | | | | +- <Web Services call-back interface> // One per Call-back WSDL
| | | | | | +- south
| | | | | | | +- <Web Services interface>PluginSouth.java

// Interface for network-triggered requests
| | | | | | | +- <Web Services interface>PluginSouthImpl.java

// Implementation of the interface
| | | | | +- <Web Services interface> // One per Service WSDL
| | | | | | +- north
| | | | | | | +- <Web Services interface>PluginImpl.java

// Implementation of the interface
| | | | | +- <Type>PluginInstance.java
| | | | | +- <Type>PluginService.java

// PluginService implementation
| | | +- storage //Example of a store configuration. Empty.
| | | +- wsdl // WSDLS and XML-to-Java mappings.
| +- <Identifier>_callback.war // Web Service implementation

// for the SOAP2SOAP plug-in

As illustrated in Example 6–3, a WAR file for the plug-in is generated. This WAR file
contains the Web Service for network-triggered requests. It is only generated if there is
a notification WSDL defined at generation-time. It will be packaged in the EAR file for
the Service Enabler.

The SOAP Message Handler definition file, client_handlerconfig.xml, can be edited in
order to change, add, or remove SOAP Message Handlers. If modified, the Ant target
rebuild.ws in the plug-in build file needs to be invoked.

Note: Only the deployable artifacts are relevant. The generated code
for the SOAP2SOAP type of plug-ins should not be modified.

About the Generated Communication Service

6-16 Services Gatekeeper Extension Developer's Guide

In the start script, the -Dweblogic.wsee.soap.81CustomException flag must be set to
true in order to push the soap faults defined in WSDL as-is.

Generated Artifacts for a SOAPSOAP Communication Service
When a SOAP2SOAP communication service is generated, the following directory
structure is created in the directory domain_home/soap2soap on the administration
server.

Example 6–4 Directory Structure from Generating SOAP2SOAP Communication
Services

+- <Communication service name>_<version>/
+- build.properties
+- build.xml
+- common.xml
+- <Communication service name>/
+- common/+- resources/
+- enabler/
+- facade/
+- handlerconfig.xml
+- dist/
+- com.bea.wlcp.wlng.soap2soap.<service type>.store_<version>.jar
+- wlng_at_<Communication service name>.ear
+- wlng_nt_<Communication service name>.ear
+- plugins/
|+- soap/
+- tmp/

All Java source files, build files, configuration files, and deployable artifacts are created
under the directory domain_home/soap2soap. The source files are there mainly for
reference. The only files that are necessary to deploy the communication service are:

■ wlng_at_communication_service_name.ear

■ wlng_nt_communication_service_name.ear

wlng_at_communication_service_name.ear should be deployed in the access tier
server.

wlng_nt_communication_service_name.ear should be deployed in the network tier
server.

The generated communication service can be deployed as a part of the generation
process, as described above, or using standard WebLogic Server tools.

See the discussion on deploying and undeploying communication services and
plug-ins in Services Gatekeeper System Administrator's Guide for information on how to
deploy the files using WebLogic Server tools.

Properties for SOAP2SOAP Plug-ins
Table 6–3 lists the SOAP2SOAP plug-in properties.

Table 6–3 SOAP2SOAP Plug-in Properties

Property Description

Managed object in
Administration Console

domain name, then OCSG, then server name, then Communication
Services, then plug-in instance ID

About the Generated Communication Service

Understanding the Communication Service Project Output 6-17

MBean Domain=com.bea.wlcp.wlng

Name=wlngt

InstanceName is same as plug-in instance ID

Type=com.bea.wlcp.wlng.httpproxy.management.HTTPProxyMBe
an

Network protocol
plug-in service ID

Defined when generating the SOAP2SOAP plug-in using the
Platform Development Studio.

When generated fm the Administration console, the ID is Name_
soap_plugin.

Network protocol
plug-in instance ID

The ID assigned when the plug-in instance is created: see the
discussion on configuring and managing the plug-in manager in
Services Gatekeeper System Administrator's Guide for more
information.

Supported Address
Scheme

Defined when generating the SOAP2SOAP plug-in using the
Platform Development Studio.

When generated fm the Administration console, the address
scheme is always an empty string.

Application-facing
interfaces

Derived from the package name of the network protocol plug-in,
assigned when the plug-in was generated, and the name of the
interface as defined in the WSDL.

For application-initiated request:

package name.plugin.interface namePlugin

For network-triggered requests:

package name.callback.interface nameCallback

See see the discussion on configuring and managing the plug-in
manager in Services Gatekeeper System Administrator's Guide
information on how to list the interfaces.

Service type Given when the plug-in was generated using the Platform
Development Studio or the administration console.

Exposes to the service
communication layer a
Java representation of:

Depends on the WSDLs used.

Interfaces with the
network nodes using:

The same protocol as exposed by the application-facing interfaces.

Deployment artifacts communication service identifier_protocol_plugin.jar, communication
service identifier_service.jar and communication service identifier_
callback.war, packaged in wlng_nt_communication service.ear

communication service identifier_callback.jar and communication
service identifier.war, packaged in wlng_at_communication service
identifier.ear

communication service identifier was given in the PDS wizard or the
Administration console when the communication service was
generated.

protocol is configurable when using the PDS wizard. If the
communication service was generated using the Administration
console, it is always soap.

Table 6–3 (Cont.) SOAP2SOAP Plug-in Properties

Property Description

About the Generated Communication Service

6-18 Services Gatekeeper Extension Developer's Guide

About the SIP Plug-in
When creating a SIP plug-in, the directory structure described in "About the
Communication Service Plug-in" is created under the top-level directory. In addition,
the directories and files in Example 6–5 are generated. The directories and files in bold
are created when building the plug-in; the others are generated by the PDS Wizard.

Example 6–5 Generated project for a SIP plug-in

| +- plugins // Container directory for all plug-ins for
// the communication service

| | +- <Protocol> // One specific plug-in
| | | +- build.xml // Build file for the plug-in
| | | +- build // Used during the build process
| | | +- config //
| | | | +- instance_factory
| | | | | +- instancemap //Instance map
| | | | +- sip
| | | | | +- WEB-INF
| | | | | | +- sip.xml
| | | | | | +- web.xml
| | | +- dist // Generated by target dist in build.xml for the plug-in
| | | | +- <Identifier>_<Protocol>_plugin.jar
| | | | +- <Identifier>_<Protocol>_sip.war
| | | | +- <Package name>.store_<version>.jar
| | | +- resources
| | | | +- META-INF
| | | | | +-weblogic-extension.xml
| | | | | +-application.xml
| | | +- src
| | | | +- <Package name> // Directory structure reflecting

// plug-in package name
| | | | | +- servlet // Implementation of the SIP Servlet
| | | | | | +- <Identifier>Servlet.java
| | | | | +- <Identifier>SipHelper.java
| | | +- storage //Example of a store configuration. Empty.

As illustrated in Example 6–3, a set of additional classes and configuration files for the
SIP type plug-in is generated compared to the standard plug-in.

Table 6–4 contains a summary of the added items.

Table 6–4 Additional files generated for a SIP plug-in

File Description

sip.xml SIP Application deployment descriptor.

See:

WebLogic 11g - “Developing and Programming SIP Applications”
in Oracle WebLogic Communication Services Developer's Guide at the
WebLogic 11g documentation web site:

http://docs.oracle.com/cd/E36909_
01/doc.1111/e13807/partpage_ii.htm#sthref41

web.xml HTTP Servlet deployment descriptor.

See “Understanding WebLogic Server Deployment” in Oracle
WebLogic Server Developing Applications for WebLogic Server.

identifier_protocol_
sip.war

Deployable SIP application.

Generated classes for a Plug-in

Understanding the Communication Service Project Output 6-19

About the Diameter Plug-in
Network protocol plug-ins can benefit from the Diameter support provided by Oracle
Communications Converged Application Server (Converged Application Server).

Diameter is a peer-to-peer protocol that involves delivering attribute-value pairs
(AVPs). A Diameter message includes a header and one or more AVPs. The collection
of AVPs in each message is determined by the type of Diameter application, and the
Diameter protocol also allows for extension by adding new commands and AVPs.
Diameter enables multiple peers to negotiate their capabilities with one another, and
defines rules for session handling and accounting functions.

Converged Application Server includes an implementation of the base Diameter
protocol that supports the core functionality and accounting features described in RFC
3588. Converged Application Server uses the base Diameter functionality to
implement multiple Diameter applications, including the Sh, Rf, and Ro applications.

You can also use the base Diameter protocol to implement additional client and
server-side Diameter applications. The base Diameter API provides a simple,
Servlet-like programming model that enables you to combine Diameter functionality
with SIP, HTTP, or other functionality in a Service Enabler.

Services Gatekeeper uses the Diameter support provided by Converged Application
Server in the Parlay X 3.0 Payment communication service (Ro), CDR to Diameter
service (Rf), and the Credit Control interceptor (Ro).

For an overview of the capabilities of the Diameter API provided with Converged
Application Server, see the discussion on overview of the diameter API in:

Oracle WebLogic Communication Services Developer's Guide at:

http://download.oracle.com/docs/cd/E15523_01/doc.1111/e13807/diameter_
1.htm.

To create a plug-in that uses this the Diameter API, generate a network protocol
plug-in using the PDS Wizard and include the JAR file to the build path of the project.

The Diameter API is packaged in Middleware_
home/wlserver/sip/server/lib/wlssdiameter.jar.

The JAR file needs to be added to the build class path. It is already included in the
run-time class path.

Generated classes for a Plug-in
Figure 6–1 illustrates the generated plug-in classes for life-cycle management and their
relationships with other interfaces.

application.xml Deployment descriptor.

Contains an additional element for elements for the SIP
application.

identifierServlet.java Implementation of a SIP Servlet.

identifierSipHelper.java Helper class for getting an instance of javax.servlet.sip.SipFactory
and javax.servlet.sip.SipSessionsUtil.

Table 6–4 (Cont.) Additional files generated for a SIP plug-in

File Description

Generated classes for a Plug-in

6-20 Services Gatekeeper Extension Developer's Guide

Figure 6–1 Generated Plug-in Classes

Interface: ManagedPluginService
The interface a plug-in service needs to implement.

Extends the interfaces PluginService, PluginInstanceFactory and
PluginServiceLifecycle.

Interface: PluginService
The interface that defines the plug-in service when it is registered in the Plug-in
Manager.

Interface: PluginInstanceFactory
The factory that allows a plug-in service to create plug-in instances.

Interface: PluginServiceLifecycle
The interface that defines the lifecycle for a plug-in service. See "Understanding the
Plug-in States".

Generated classes for a Plug-in

Understanding the Communication Service Project Output 6-21

PluginService
Class

Implements com.bea.wlcp.wlng.api.plugin.ManagedPluginService.

Defines the life-cycle for a plug-in service, see "Understanding the Plug-in States" for
more information.

Also holds the data that is specific for the plug-in instance.

The actual class name is communication_service_typePluginService. This class manages
the life-cycle for the plug-in service, including implementing the necessary interfaces
that make the plug-in deployable in Services Gatekeeper. It is also responsible for
registering the north interfaces with the Plug-in Manager. At startup time it uses the
InstanceFactory to create one instance of each plug-in service and at activation time it
registers these with the Plug-in Manager. The InstanceFactory uses an instancemap to
find out which class it should instantiate for each plug-in interface implementation.
The instance map is found under the resource directory.

ManagedPlugin Skeleton
The ManagedPlugin skeleton implements the following methods related to life-cycle
management and should be adjusted for the plug-in:

■ doStarted() - plug-in specific functionality for being started.

■ doActivated() - plug-in specific functionality for being activated.

■ doDeactivated() - plug-in specific functionality for being deactivated.

■ doStopped() - plug-in specific functionality for being stopped.

■ handleForceSuspending() - Called when a FORCE STOP/SHUTDOWN has been
issued.

■ handleResuming() - Transitions the plug-in from ADMIN to ACTIVE state in
which it begins to accept traffic.

■ handleSuspending(CompletionBarrier barrier()) - Called in a normal
re-deployment when the plug-in is taken from ACTIVE do ADMIN state.

■ isActive() - reports back true or false. If false, no application-initiated requests are
routed to the plug-in.

In addition, this class defines which address schemes the plug-in can handle, in
private static final String[] SUPPORTED_SCHEMES.

PluginInstance
Class

Implements com.bea.wlcp.wlng.api.plugin.ManagedPluginInstance.

Defines the life-cycle for a plug-in instance, see "Understanding the Plug-in States" for
more information.

The actual class name is communication_service_typePluginInstance. This class manages
the life-cycle for the plug-in instance including implementing the necessary interfaces
that make the plug-in an instance in Services Gatekeeper.

It is also responsible for instantiating the classes that implement the traffic interfaces,
and initializing stores to use and relevant MBeans.

See "Interface: ManagedPluginInstance".

Generated classes for a Plug-in

6-22 Services Gatekeeper Extension Developer's Guide

PluginNorth
This is an empty implementation of the Plug-in North interface. This interface is
generated based on the WSDL files that define the application-facing interface. This is
the starting point for the plug-in implementation.

The following files are generated in the directory under src/...../service_ name/north:

■ web_service_interface_namePluginNorth: This class implements the plug-in
interface. One file is generated for each plug-in interface. There is one plug-in
interface for each service WSDL.

Figure 6–2 shows the PluginNorth and RequestFactory class diagram.

Figure 6–2 Class diagram of the generated PluginNorth and RequestFactory.

PluginNorth skeleton
Below outlines what needs to be implemented in the plug-in skeleton.

Generated classes for a SOAP2SOAP Plug-in

Understanding the Communication Service Project Output 6-23

The class contains a Java mapping of the methods defined in the Web Service. The
methods are mapped one-to-one. The name of each method is the same as the name of
the operation defined in the WSDL. The parameter is a class that mirrors the
parameters in the input message in the Web Service request. The return type is a class
that represents the output message in the Web Service Request.

RequestFactory Skeleton
The actual class name is communication_service_identifierPluginFactory, such as, for
example, NotificationManagerPluginFactory. This is a helper class used by the
Service EJB. It serves two purposes:

■ It creates the routing information requested by the Plug-in Manager when routing
the method call to a plug-in.

■ It converts exceptions thrown either by the Plug-in Manager or by the plug-in to
exception types that are supported by the application-facing interface. This is the
place to convert exceptions specific to an extension plug-in to exceptions specific
to the application-facing interface. It is a best practice to have one single place for
performing these conversions in order to document and locate exception
mappings.

The following files are generated in the dist directory under request_factory_skel/src:

■ webservice_interface_namePluginFactory: This class extends the RequestFactory
class. There will be one file generated for each plug-in interface.

Generated classes for a SOAP2SOAP Plug-in
In addition to the generated classes for a regular plug-in, a SOAP2SOAP plug-in adds
a few extra classes, because the network protocol is known.

 Comparison with a Non-SOAP2SOAP Plug-in
The following generated code is similar to the code generated for the
non-SOAP2SOAP plug-ins:

■ Interface: ManagedPluginService

■ Interface: PluginService

■ Interface: PluginInstanceFactory

■ Interface: PluginServiceLifecycle

■ ManagedPlugin Skeleton

■ RequestFactory Skeleton

Client Stubs
These classes and interfaces are generated for each interface, based on the Service
WSDLs:

Note: Only the deployable artifacts are relevant. The generated code
for SOAP2SOAP type of plug-ins should not be modified.

See Managing and Configuring SOAP2SOAP communication services
in Services Gatekeeper System Administrator's Guide for information on
how to configure and manage a SOAP2SOAP plug-in.

Generated classes for a SOAP2SOAP Plug-in

6-24 Services Gatekeeper Extension Developer's Guide

■ Web Services Interface_Stub

■ Web Services Interface

■ Web Services InterfaceService_Impl

■ Web Services InterfaceService

Web Services Interface_Stub
Class

Extends weblogic.wsee.jaxrpc.StubImp.

Implements Web Services Interface.

Used by the corresponding PluginNorth class.

Web Services Interface
Interface

Extends java.rmi.Remote.

Implemented by Web Services Interface_Stub.

Defines the traffic methods.

Web Services InterfaceService_Impl
Class

Extends weblogic.wsee.jaxrpc.ServiceImpl.

Implements the Web Service.

Web Services InterfaceService
Interface

Extends javax.xml.rpc.Service.

Defines the traffic interfaces.

PluginInstance
In addition to the functionality in described in "PluginInstance", in the PluginInstance
generated for SOAP2SOAP plug-ins, the following occurs:

■ In the implementation of activate() it:

– instantiates and registers a class implementing
com.bea.wlcp.wlng.httpproxy.management.HTTPProxyManagement

– instantiates and registers a a class implementing
com.bea.wlcp.wlng.heartbeat.management.HeartbeatManagement

■ It unregisters the above in the implementation of deactivate().

■ In the implementation of isConnected(), HeartbeatManagement is used to check
the connection towards the network node.

■ getHttpProxyManagement() is added for use by "PluginSouth".

HTTPProxyManagement is described in HTTPProxyMBean. For details see the “All
Classes” section of the Services Gatekeeper Java API Reference.

Adding a SOAP2SOAP Communication Services

Understanding the Communication Service Project Output 6-25

HeartbeatManagement is described in HearbeatMBean. For details see the “All
Classes” section of the Services Gatekeeper Java API Reference.

PluginNorth
In addition to the functionality described in "PluginNorth", this class:

■ Checks whether there is an endpoint to the network node registered in the
HttpProxyManagement MBean.

■ Instantiates the client stubs used to make Web Services call to the network node.
See "Client Stubs".

■ Invokes the corresponding method on the stubs.

PluginSouth
This class implements a Java representation of the Web Service implementation. It
implements PluginSouth. See "Interface: PluginSouth". When a network-triggered
method is invoked, it:

■ gets the handle to the callback EJB. See "Class: RequestInfo".

■ Resolves the endpoint used for the application instance by querying the
"PluginInstance" for the endpoint by calling
getApplicationEndPoint(getApplicationInstanceId).

■ Passes on the request to the callback EJB.

RequestFactory
The RequestFactory for a SOAP2SOAP plug-in has the same functionality as
described in "RequestFactory Skeleton", but instead of serving as a skeleton, it is an
implementation. It contains an implementation of createRequestInfo(...) which means
that the Plug-in Manager does no routing based on destination address.

HTTPProxyMBean Reference
Set field values (attributes) and use methods (operations) for the HTTPProxyMBean
from the Administration Console or a Java application. For information on the
methods and fields, see the “All Classes” section of Services Gatekeeper OAM Java API
Reference.

Adding a SOAP2SOAP Communication Services
This section explains how to generate, deploy and configure Services Gatekeeper
SOAP2SOAP communication services.

About SOAP2SOAP Communication Services
You can create SOAP2SOAP communication Services using the Partner and API
Management Portal GUI.

Based on a set of service WSDLs and callback WSDLs, a SOAP2SOAP communication
service acts as a proxy service and provides the functionality provided by Services
Gatekeeper container services, such as:

■ SLA enforcement

Adding a SOAP2SOAP Communication Services

6-26 Services Gatekeeper Extension Developer's Guide

■ EDR, CDR, and alarms

■ Authentication, access control, and accounting

SOAP2SOAP plug-in services can be instantiated using the plug-in manager. The
plug-in instances process traffic and connect to individual network nodes. The
instances are managed independently of each other.

For application-initiated requests, all requests are routed to the network node defined
for the plug-in instance.

For network-triggered requests, the network node should distinguish the application
instance the request is targeted to by adding the application instance ID to the URL:

http://IP_Address_of_AT_server:port/context-root_nt/plug-in instance ID_
nt/application_instance_ID

If the number of HTTP methods that time-out during a certain time-period exceeds the
maximum allowed, the plug-in instance is taken out of operation for a configurable
time-period. The HTTP time-out behavior is valid for request between the plug-in
instance and the network node. The purpose of this feature is to prevent network
nodes that are malfunctioning from incoming requests.

Generated Artifacts for a SOAP2SOAP Communication Service
When a SOAP2SOAP communication service is generated, the following directory
structure is created in the directory domain_Home/soap2soap on the administration
server.

Example 6–6 Directory Structure from Generating SOAP2SOAP Communication
Services

+- <Communication service name>_<version>/
+- build.properties
+- build.xml
+- common.xml
+- <Communication service name>/
+- common/+- resources/
+- enabler/
+- facade/
+- handlerconfig.xml
+- dist/
+- com.bea.wlcp.wlng.soap2soap.<service type>.store_<version>.jar
+- wlng_at_<Communication service name>.ear
+- wlng_nt_<Communication service name>.ear
+- plugins/
|+- soap/
+- tmp/

All Java source files, build files, configuration files, and deployable artifacts are created
under the directory domain_Home/soap2soap. The source files are there mainly for
reference. The only files that are necessary to deploy the communication service are:

■ wlng_at_communication_service_name.ear

■ wlng_nt_communication_service_name.ear

wlng_at_communication_service_name.ear should be deployed in the access tier
server.

wlng_nt_communication_service_name.ear should be deployed in the network tier
server.

Adding a SOAP2SOAP Communication Services

Understanding the Communication Service Project Output 6-27

The generated communication service can be deployed as a part of the generation
process, as described above, or using standard WebLogic Server tools.

See the discussion on managing APIs for partner applications in Services Gatekeeper
Partner and API Management Portal Online Help for information on how to create and
deploy a SOAP2SOAP communication service.

Managing and Configuring SOAP2SOAP Communication Services
This section describes configuration attributes and operations available for
SOAP2SOAP-type of plug-in instances.

Properties for SOAP2SOAP Plug-ins

Table 6–5 Task Overview

To see a Refer to

Detailed list of necessary for managing and
configuring a plug-in instance

Properties for SOAP2SOAP Plug-ins

List of operations and attributes related to
management and provisioning

Provisioning Workflow for SOAP2SOAP
Communication Services

Reference of management attributes and
operations

HTTPProxyMBean Reference

Table 6–6 Properties

Property Description

Managed object in
Administration Console

domain name, then OCSG, then server name, then Communication
Services, then plug-in instance ID

MBean Domain=com.bea.wlcp.wlng

Name=wlngt

InstanceName is same as plug-in instance ID

Type=com.bea.wlcp.wlng.httpproxy.management.HTTPProxyMBe
an

Network protocol
plug-in service ID

Defined when generating the SOAP2SOAP plug-in using the
Platform Development Studio.

When generated fm the Administration console, the ID is Name_
soap_plugin.

Network protocol
plug-in instance ID

The ID assigned when the plug-in instance is created: see the
discussion on configuring and managing the plug-in manager in
Services Gatekeeper System Administrator's Guide for more
information.

Supported Address
Scheme

Defined when generating the SOAP2SOAP plug-in using the
Platform Development Studio.

When generated fm the Administration console, the address
scheme is always an empty string.

Build Files and Targets for a Communication Service Project

6-28 Services Gatekeeper Extension Developer's Guide

Provisioning Workflow for SOAP2SOAP Communication Services
For each application that uses SOAP2SOAP communication services and supports
network-triggered requests, set up a mapping between the application instance ID and
the URL for the Web service that the application instance implements. Use these
HTTPProxyMBean methods to manage the callback URLs for the application
instances:

■ addApplicationEndPoint

■ getApplicationEndPoint

■ listApplicationEndPoints

■ removeApplicationEndPoint

Build Files and Targets for a Communication Service Project
This section describes the build files, including the targets and associated Ant tasks,
for a communication service project.

Application-facing
interfaces

Derived from the package name of the network protocol plug-in,
assigned when the plug-in was generated, and the name of the
interface as defined in the WSDL.

For application-initiated request:

package name.plugin.interface namePlugin

For network-triggered requests:

package name.callback.interface nameCallback

See see “Configuring and Managing the Plug-in Manager” in
Services Gatekeeper System Administrator's Guide information on
how to list the interfaces.

Service type Given when the plug-in was generated using the Platform
Development Studio or the administration console.

Exposes to the service
communication layer a
Java representation of:

Depends on the WSDLs used.

Interfaces with the
network nodes using:

The same protocol as exposed by the application-facing interfaces.

Deployment artifacts communication service identifier_protocol_plugin.jar, communication
service identifier_service.jar and communication service identifier_
callback.war, packaged in wlng_nt_communication service.ear

communication service identifier_callback.jar and communication
service identifier.war, packaged in wlng_at_communication service
identifier.ear

communication service identifier was given in the PDS wizard or the
Administration console when the communication service was
generated.

protocol is configurable when using the Platform Development
Studio wizard. If the communication service was generated using
the Administration console, it is always soap.

Table 6–6 (Cont.) Properties

Property Description

Build Files and Targets for a Communication Service Project

Understanding the Communication Service Project Output 6-29

Main Build File
The main build file for the communication service contains the following targets:

■ build_csc, builds the common parts of the communication service.

■ build_plugins, builds the plug-ins for the communication Service.

■ stage, copies the JARs for the plug-ins to the directory stage.

■ make-facade, creates a deployable EAR file for the access tier in the directory dist.

■ make-enabler, creates a deployable EAR file for the network tier in the directory
dist.

■ deploy-facade, deploys the service facade EAR file to the access tier.

■ undeploy-facade, undeploys the service facade EAR file from the access tier.

■ deploy-enabler, deploys the service enabler EAR file from the network tier.

■ undeploy-enabler, undeploys the service enabler EAR file from the network tier

■ clean, clears the directory dist.

■ dist, calls the prepare, build_csc, build_plugins, stage, make-facade,
make-enabler targets.

Communication Service Common Build File
The build file for the common parts of the communication service contains the
following targets:

■ dist: Calls the csc_gen Ant task that generates the Java source for each
PluginFactory. The source is generated under the directory dist/request_factory_
skel/src

■ clean: Deletes the dist directory.

Plug-in Build File
The build file for the plug-in contains the following targets:

■ compile, compiles the source code under the src directory and puts the class files
under the build directory.

■ jar, calls the compile target and then creates a plug-in jar file under the dist
directory.

■ instrument, weaves the aspects that should apply into the plug-in.

■ build.schema, builds the schema file and the classes used by the storage service.

■ dist, calls the clean, compile, jar and instrument, and build.schema targets.

■ clean, deletes the build and dist directories.

Note: When using the deploy and undeploy targets, make sure to
adapt the settings for user, password, adminurl, targets, and
appversion in the parameters to wldeploy. By default Web Services
Security is not enabled for new communication services. See
“Securing SOAP-Based Web Services” in Services Gatekeeper System
Administrator's Guide for instructions on how to configure this.

Build Files and Targets for a Communication Service Project

6-30 Services Gatekeeper Extension Developer's Guide

Ant Tasks
The build files use a set of Ant tasks and macros, described below:

■ cs_gen

■ plugin_gen

■ cs_package

■ javadoc2annotation

The Ant tasks are defined in Middleware_home/ocsg_pds/lib/wlng/ant-tasks.jar.

cs_gen
This Ant task builds the common parts of the communication service. Below is a
description of the attributes.

Example:

<cs_gen destDir="${dist.dir}"
packageName="com.bea.wlcp.wlng.example"
name="say_hello"
serviceType="example"
company="BEA"
version="6.0"

Table 6–7 cs_gen Ant Task

Attribute Description

destDir Defines the destination directory for the generated files.

packageName Defines the package name to be used.

Example: com.mycompany.service

serviceType Defines the service type. Used in EDRs, statistics, etc.

Example: SmsServiceType, MultimediaMessagingServiceType.

company Defines the company name, to be used in
META-INF/MANIFEST.MF.

version Defines the version, to be used in META-INF/MANIFEST.MF.

contextPath Defines the context path for the Web Service.

Example: myService

soapAttachmentSupport Use true if SOAP with attachments shall be supported.

Use false if not.

wlngHome Path to Middleware_home, this depends on the installation. Example:
c:\bea\ocsg.

pdsHome Path to Middleware_home/ocsg_pds.

classpath Defines the necessary classpaths. Must include:

Middleware_home/ocsg/server/lib/weblogic.jar

Middleware_home/ocsg/server/lib/webservices.jar

Middleware_home/ocsg/server/lib/api.jar

Middleware_home/ocsg_pds/lib/wlng/wlng.jar

Middleware_home/ocsg_pds/lib/log4j/log4j.jar

servicewsdl URL to the WSDL that defines the service.

Build Files and Targets for a Communication Service Project

Understanding the Communication Service Project Output 6-31

contextPath="sayHello"
soapAttachmentSupport="false"
wlngHome="${wlng.home}"
pdsHome="${pds.home}">
<classpath refid="wls.classpath"/>
<classpath refid="wlng.classpath"/>
<servicewsdl file="${wsdl}/example_hello_say_service.wsdl"/>

</cs_gen>

plugin_gen
This Ant task builds a plug-in for a communication service. Below is a description of
the attributes.

Example:

<plugin_gen destDir="${dist.dir}"
packageName="com.bea.wlcp.wlng.example.bla"
name="say_hello"
serviceType="example"
esPackageName="com.bea.wlcp.wlng.example"
protocol="bla"

Table 6–8 plugin_gen Ant Task

Attribute Description

destDir Defines the destination directory for the generated files.

packageName Defines the package name to be used.

Example: com.mycompany.service

name Name and directory of the plug-in JAR file.

serviceType Defines the service type. Used in EDRs, statistics, etc.

Example: SmsServiceType, MultimediaMessagingServiceType.

esPackageName communication service package name used to import relevant
classes.

protocol An identifier for the network protocol the plug-in implements.
Used as a part of the names of the generated JAR file:
communication_service_identifier_protocol.jar and the service name
Plugin_communication_service_identifier_protocol.

schemes Address schemes the plug-in can handle. Use a comma separated
list if multiple schemes are supported. For example: tel: or sip:.

company Defines the company name, to be used in
META-INF/MANIFEST.MF.

version Defines the version, to be used in META-INF/MANIFEST.MF.

pluginifjar The name of the JAR file for the plug-in.

classpath Defines the necessary classpaths. Must include:

$OCSG_HOME/server/lib/weblogic.jar

$OCSG_HOME/server/lib/webservices.jar

$OCSG_HOME/server/lib/api.jar

$PDS_HOME/lib/wlng/wlng.jar

$PDS_HOME/lib/log4j/log4j.jar

servicewsdl URL to the WSDL that defines the service.

Build Files and Targets for a Communication Service Project

6-32 Services Gatekeeper Extension Developer's Guide

schemes=""
company="BEA"
version="6.0"
pluginifjar="${dist.dir}/say_hello/common/dist/say_hello_service.jar">
<classpath refid="wls.classpath"/>
<classpath refid="wlng.classpath"/>
<servicewsdl file="${wsdl}/example_hello_say_service.wsdl"/>

</plugin_gen>

cs_package
This Ant task packages a communication service. Below is a description of the
attributes.

Example:

<cs_package destfile="${cs.dist}/${enabler.ear.name}.ear"
duplicate ="fail"
displayname="${enabler.ear.name}">
<descriptorfileset dir="${csc.dir}/resources/enabler/META-INF"
includes="*.xml"/>

<descriptorfileset dir="${cs.name}/plugins"
includes="*/resources/META-INF/*.xml"/>
<manifest>

<attribute name="Bundle-Name"
value="${enabler.ear.name}"/>

<attribute name="Bundle-Version"
value="${manifest.bundle.version}"/>

<attribute name="Bundle-Vendor"
value="${manifest.bundle.vendor}"/>

<attribute name="Weblogic-Application-Version"
value="${manifest.bundle.version}"/>

</manifest>
<fileset dir="${csc.dist}">

Table 6–9 cs_package Ant Task

Attribute Description

destfile Defines the destination directory for the generated files.

duplicate Defines the package name to be used.

Example: com.mycompany.service

displayname Used in application.xml for the display name of the application.

descriptorfileset Defines the service type. Used in EDRs, statistics, etc.

Example: SmsServiceType, MultimediaMessagingServiceType.

manifest Description of the manifest file use. Enter values for the following
attributes:

name="Bundle-Name" value should be the name of the EAR file
for the service enabler.

name="Bundle-Version" value should be the version to use.

name="Bundle-Vendor" value should be vendor name

name="Weblogic-Application-Version" value should be the version
of the EAR file

fileset Should point to the communication service JAR file.

zipfileset Should point to the plug-in JAR file(s).

Build Files and Targets for a Communication Service Project

Understanding the Communication Service Project Output 6-33

<include name="*_service.jar"/>
</fileset>
<zipfileset dir="${cs.stage}">

<include name="*plugin.jar"/>
</zipfileset>

</cs_package>

javadoc2annotation
This Ant macro annotates an MBean interface based on the JavaDoc. The macro is
defined in the common.xml build file.

The annotations are rendered as descriptive information by the Gatekeeper
Administration console. Below is a description of the attributes.

Example:

<javadoc2annotation
tempDir="${plugin.generated.dir}/mbean_gen_tmpdir"
destDir="${plugin.classes.dir}"
sourceDir="${plugin.src.dir}"
classpath="javadoc.classpath">

</javadoc2annotation>

Table 6–10 javadoc2annotation Ant Macro

Attribute Description

tempDir Temporary directory for the generated files.

destDir Destination directory for the generated MBean interface.

sourceDir Source directory for the MBean interface with JavaDoc annotations.

classpath Defines the necessary classpaths. Depending on which interfaces
that are used from the MBean, include:

$OCSG_HOME/server/lib/weblogic.jar

$OCSG_HOME/server/lib/webservices.jar

$OCSG_HOME/server/lib/api.jar

$PDS_HOME/lib/wlng/wlng.jar

$PDS_HOME/lib/log4j/log4j.jar

Build Files and Targets for a Communication Service Project

6-34 Services Gatekeeper Extension Developer's Guide

7

Service Enabler Example with SIP plug-in 7-1

7Service Enabler Example with SIP plug-in

This section describes the example network protocol plug-in for SIP connectivity
provided in Oracle Communications Services Gatekeeper Platform Development
Studio.

Overview of the Service Enabler Example with SIP Plug-in
Services Gatekeeper includes an example SIP Plug-in the demonstrates the following:

■ Structure and execution workflow in a communication service.

■ Parameter validation

■ Hitless upgrade

■ Retry

■ SIP connectivity using a SIP Servlet

■ Testability with the PTE

The example is based on an end-to-end communication service, with a set of simple
interfaces

■ SendData, which defines the operation sendData used to send data to a given
address.

■ NotificationManager, which defines these operations:

– startEventNotification, that starts a subscription for network-triggered events.

– stopEventNotification, that ends the subscription for network-triggered
events.

■ Notification, which defines the operation:

– notifyDataReception, used to notify the application on a network-triggered
event.

The SendData and NotificationManager interfaces are used by an application and
implemented by the communication service.

The Notification interface is used by the communication service and implemented by
an application.

The communication service to network node interface is a simple SIP based interface
that defines the two commands:

■ send, that sends data to the SIP network.

Overview of the Service Enabler Example with SIP Plug-in

7-2 Services Gatekeeper Extension Developer's Guide

■ receiveData, that is used by the network node to send data to a receiver - in this
case the network protocol plug-in.

Figure 7–1 illustrates the flow for these operations.

Figure 7–1 Overview of Example Communication Service with SIP Plug-in

The flow marked A* is for sendData, the flow marked B* is for startNotification and
stopNotification, and the flow marked C* is for notifyDataReception.

The modules marked with 1 are automatically generated based on the WSDL files that
defines the application-facing interface and code generation templates provided by the
Platform Development Studio. The modules marked with 2 are skeletons generated at
build time.

High-level Flow for sendData (Flow A)
1. A1: An application invokes the Web Service SendData, with the operation

sendData.

2. A2: The request is passed on the EJB for the interface, which passes it on to the
network protocol plug-in. The diagram is simplified, but at this stage the Plug-in
Manager is invoked and makes a routing decision to the appropriate plug-in.

3. A3: The Plug-in Manager invokes the sendData method in the class
SendDataPluginNorth. It will always invoke a class named PluginNorth, that has
a prefix that is the same as the Java representation of the Web Service interface.

4. A4: The SIP request is created.

5. A5: The the SIPFactory is fetched from ExampleSIPHelper.

Understanding the SIP Example Interfaces

Service Enabler Example with SIP plug-in 7-3

6. A6: The request is handed off to the network node.

High-level Flow for startNotification and stopNotification (Flow B)
The initial steps (B1-B3) are similar to flow A*. Instead of translating the request to a
command on the network node, NotificationManagerNorth uses the StoreHelper to
either store a new or remove a previously registered subscription for notifications. The
data stored, the NotificationData, is used in network-triggered requests to resolve
which application started the notification and the destination to which to send it. In
the example the notification is started on an address, so the address is stored together
with information to which endpoint the application wants the notification to be sent.

High-level flow for notifyDataReception (Flow C)
1. C1: The network protocol plug-in receives the network-triggered SIP message to

ExampleSipServlet.

2. C2: SendDataPluginSouth can be used to add additional information to the request
before passing in on.

3. C3: ExampleSipHelper finds a plug-in instance to pass on the request to.

4. C4: ExampleSipHelper calls NotificationHandlerSouth.

5. C5: StoreHelper is used to examine if the request matches any stored
NotificationData. If so, the information in NotificationData is retrieved. This
information includes which application instance that the request resolves to and
on which endpoint this application wants to be notified about the network
triggered event.

6. C6: NotificationCallbackFactory is used to get a hold of an active
NotificationCallback EJB to pass on the request to.

7. C7: The request is passed on to the NotificationCallback EJB.

8. C8: The request is passed on to an application.

Understanding the SIP Example Interfaces
The example SIP plug-in translates between an application-facing interface, defined in
WSDL, see "Web Service Interface Definition" and a SIP network interface, see
"Network Interface Definition".

Web Service Interface Definition
The WSDL, and Service Facade used is the same as for the example communication
service, see "Web Service Interface Definition" in "Communication Service Example".

Network Interface Definition
The network interface is SIP and the plug-in uses the Oracle Communications
Converged Application Server SIP Servlet container to process and create SIP
messages.

Application-initiated requests are converted to regular SIP messages. It is configurable
whether to send it to a SIP Proxy or not.

All SIP messages that arrive to the plug-in are processed and passed on the application
that has subscribed for notifications that matches the network-triggered request.

SIP Example Directory Structure

7-4 Services Gatekeeper Extension Developer's Guide

SIP Example Directory Structure
The directory structure is similar to the directory structure for the example
communication service, see "SIP Example Directory Structure" in "Communication
Service Example" but adds these classes, descriptors, and artifacts:

| +- plugins
| | +- sip
| | | +- config
| | | | +- sip
| | | | | +- WEB-INF
| | | | | | +- sip.xml
| | | | | | +- web.xml
| | | +- dist
| | | | +- com.acompany.plugin.example.sip.store_4.0.jar
| | | | +- example_sip_plugin.jar
| | | | +- example_sip.war
| | | +- src/com/acompany/plugin/example/sip/
| | | | +- context
| | | | +- management
| | | | +- notification
| | | | +- notificationmanager
| | | | +- senddata
| | | | +- servlet
| | | | +- store
| | | +- storage
| | | | +- wlng-cachestore-config-extensions.xml

Differences Compared to the Example netex Plug-in
The source for the example SIP plug-in is very similar to the netex plug-in described in
"Communication Service Example". This section lists the classes that have been added
or changed.

The SIP plug-in has a different package structure compared to the netex plug-in:

package com.acompany.plugin.example.sip.*

The following classes are new, and relates to the SIP protocol:

■ com.acompany.plugin.example.sip.servlet.ExampleServlet

■ com.acompany.plugin.example.sip.ExampleSipHelper

The class
com.acompany.plugin.example.netex.senddata.south.SendDataPluginToNetworkAd
apter has been replaced by direct calls from SendDataPluginNorth to
SendDataPluginSouth.

The class
com.acompany.plugin.example.netex.notification.south.SendDataPluginToNetwork
Adapter has been replaced by
com.acompany.plugin.example.sip.notification.south.NotificationHandlerSouth.
The class also does a lookup for matching subscriptions. In the netex plug-in, this is
done by NotificationHandlerNorth.

The class com.acompany.plugin.example.sip.senddata.south.SendDataPluginSouth
has been updated to use ExampleSipHelper.

The MBean com.acompany.plugin.example.sip.management.ExampleMBean has been
changed to contain SIP-related attributes.

SIP Example Configuration Files and Artifacts

Service Enabler Example with SIP plug-in 7-5

The store definition classes:

■ FilterImpl

■ NotificationData

■ StoreHelper

and the storage service configuration wlng-cachestore-config-extensions.xml is
updated to use another store.

Configuration files for the SIP Servlet has been added:

■ sip.xml

■ web.xml

The build artifacts have been changed to:

■ com.acompany.plugin.example.sip.store_4.0.jar

■ example_sip_plugin.jar

■ example_sip.war

SIP Example Configuration Files and Artifacts
The SIP Servlet-defined configuration files for the SIP application is added to
WEB-INF/sip.xml in example_sip.war.

The Java EE standard configuration file for the Web application is added to
WEB-INF/application.xml in example_sip.war.

Both configuration files are found in Middleware_home/ocsg_
pds/example/communication_service/example/plugins/sip/config/sip.

The following artifacts are generated when the plug-in is built:

■ com.acompany.plugin.example.sip.store_4.0.jar, the store definition for the plug-in.

■ example_sip_plugin.jar, the plug-in where most of the processing logic takes place.

■ example_sip.war, the servlet part of the plug-in.

The build artifacts are created in Middleware_home/ocsg_
pds/example/communication_service/example/plugins/sip/dist.

The deployable Service Enabler is created when the communication service is built. It
is packaged in the EAR file example_enabler.ear in Middleware_home/ocsg_
pds/example/communication_service/example/dist.

The store definition .jar file is also generated to this directory.

Note that both the netex plug-in and the SIP plug-in will be packaged in example_
enabler.ear.

The configuration files:

■ alarm.xml

■ cdr.xml

■ edr.xml

are provided in Middleware_home/ocsg_pds/example/communication_
service/example/plugins/sip/config/edr.

SIP Example Classes

7-6 Services Gatekeeper Extension Developer's Guide

Add the contents of these files to Services Gatekeeper when deploying the Service
Enabler.

SIP Example Classes
This section describes the classes that are different from those in the netex plug-in
described in "Communication Service Example".

ExampleServlet
Package: com.acompany.plugin.example.sip.servlet

Extends javax.servlet.sip.SipServlet

The SIP Servlet part of the plug-in. Uses "ExampleSipHelper" to manage
network-triggered requests.

public void init()
Initialization for the SIP Servlet.

Calls init() on "ExampleSipHelper" and provides the ServletContext to
ExampleSipHelper.

protected void doMessage()
Handles network-initiated SIP messages.

Returns a SIP 200 OK Response to the network.

Extracts the to and from URIs, and the content of the SIP message and calls
notifyCallbacks with these parameters on "ExampleSipHelper".

ExampleSipHelper
Package: com.acompany.plugin.example.sip

Singleton class that holds the SIPFactory, the SipSessionsUtil, and list of plug-in
instances that can be used to process network-triggered messages.

public void init(ServletContext servletContext)
Initialization for ExampleSipHelper.

Called by ExampleSIPServlet, when it is being deployed.

Fetches the SipFactory and the SipSessionsUtil from the ServletContext and stores
them in member variables.

public SipSessionsUtil getSessionsUtil()
Get method for SipSessionsUtil.

public SipFactory getSipFactory()
Get method for SipFactory.

public synchronized void registerCallback(NetworkCallback callback)
Called by the plug-in instance when it is being activated. Registers
NotificationHandlerSouth in "ExampleSipHelper". NotificationHandlerSouth is
responsible for processing of network-triggered requests.

SIP Example Classes

Service Enabler Example with SIP plug-in 7-7

public synchronized void unregisterCallback(NetworkCallback callback)
Called by the plug-in instance when it is being deactivated. Unregisters
NotificationHandlerSouth from ExampleSipHelper.

public synchronized void notifyCallbacks(String fromAddress, String toAddress,
String message)
Called by ExampleSipHelper when a network-triggered SIP message arrives.

Resolves a plug-in instance to deliver a network-triggered request to. Since all plug-in
instances register their own instance of NotificationHandlerSouth, there are as many
possible plug-in instances to use as there are plug-in instances. In the example, only
one instance is picked since they all have the same logic and access to the same
notification data.

An alternative way to implement it is to call all instances. The notification data in the
store may or may not be shared among plug-in instances. It is up to the designer of the
plug-in to decide which pattern to use. If the notification data is tied to the plug-in
instance, the alternatives are to call all plug-in instances or to establish communication
channels between the different plug-in instances in order to resolve which instance
that shall be targeted for the request.

SendDataPluginSouth
Class

Implements PluginSouth.

public SendDataPluginSouth()
Constructor

Empty

public void send(String address, String data)
Sends data to the SIP network.

Creates a SipApplicationSession and a SipServletRequest and sends the request to the
SIP network.

The SipServletRequest is created as a SIP Message, with the From: address set to
identify Services Gatekeeper, and the To: address to the address provided by the
application.

The content of the SIP message contains the SIP Proxy URI fetched from the
configuration store.

The method is annotated with @Edr.

public String resolveAppInstanceGroupdId(ContextMapperInfo info)
Empty implementation that returns null. This method has meaning, and is used, only
in network-triggered requests.

The application instance ID is already known in the RequestContext, since the class
only handles application-initiated requests.

public void prepareRequestContext(RequestContext ctx, ContextMapperInfo info)
From interface com.bea.wlcp.wlng.api.plugin.PluginSouth

SIP Example Classes

7-8 Services Gatekeeper Extension Developer's Guide

Gives the plug-in an opportunity to add additional values to the RequestContext
before the application-initiated requests is passed on to public void send(String
address, String data).

Empty in this example. Normally all data about the request should be known at this
point, so no additional data needs to be set.

NotificationHandlerSouth
Class

Implements PluginSouth, NetworkCallback.

public NotificationHandlerNorth()
Constructor

Empty

public void receiveData(@ContextKey(EdrConstants.FIELD_ORIGINATING_
ADDRESS) String fromAddress, @ContextKey(EdrConstants.FIELD_DESTINATION_
ADDRESS) @MapperInfo(C) String toAddress, String data)
Handles network-triggered requests from ExampleSipHelper.

Generates EDRs, finds the application instance that has subscribed for notifications,
and passes on the request to NotificationHandlerNorth.

public String resolveAppInstanceGroupdId(ContextMapperInfo info)
Resolves which application instance that has subscribed for notifications that matches
the data in the network-triggered request. Use StoreHelper to find the subscription for
notifications.

public void prepareRequestContext(RequestContext ctx, ContextMapperInfo info)
From interface com.bea.wlcp.wlng.api.plugin.PluginSouth

Empty implementation in this example. Normally all data about the request should be
known at this point, so no additional data needs to be set. This method has meaning,
and is used, only in network-triggered requests.

Gives the plug-in an opportunity to add additional values to the RequestContext
before the network-triggered requests are passed on to NotificationHandlerNorth.

ExampleMBean
Interface

Management interface

Defines the following methods:

■ public void setProxyURI(String uri) throws ManagementException;

■ public String getProxyURI() throws ManagementException;

Implemented by ExampleMBeanImpl.

Stores the URI to the SIP proxy to send application-initiated requests to in the
configuration store for the plug-in instance.

SIP Example SLA

Service Enabler Example with SIP plug-in 7-9

All MBean methods should throw
com.bea.wlcp.wlng.api.management.ManagementException or a subclass thereof if
the management operation fails.

SIP Example SLA
The SLA is on the communication service level and identical to the one for the
example communication service. See "Communication Service Example" for details.

SIP Example SLA

7-10 Services Gatekeeper Extension Developer's Guide

8

Using the SMPP API 8-1

8Using the SMPP API

This chapter provides an overview of the Oracle Communications Services Gatekeeper
Short Messaging Peer to Peer Protocol (SMPP) API Java interface. It also contains some
guidance on how to develop a custom SMPP plug-in using the Services Gatekeeper
Platform Development Studio and the SMPP APIs.

Understanding the SMPP API
The Services Gatekeeper SMPP implementation depends on a core module, the SMPP
Service, which provides connectivity services for SMPP plug-ins. The SMPP API
defines the interfaces between the plug-ins and the SMPP Service.

Using this API, platform developers can create SMPP plug-ins without having to
manage the low-level tasks of connecting from Services Gatekeeper to applications
and to SMSCs.

Figure 8–1 illustrates the basic Services Gatekeeper SMPP architecture.

Understanding the SMPP API

8-2 Services Gatekeeper Extension Developer's Guide

Figure 8–1 SMPP Architecture in Services Gatekeeper

SMPP Service Interfaces
The SMPP Service performs connection services on behalf of the standard SMPP
plug-ins (Native SMPP and ParlayX 2.1 SMPP) as well as any custom SMPP plug-ins.

The SMPP Service handles the following tasks:

■ Receives SMPP data from the socket.

■ Constructs the SMPP protocol data unit (PDU).

■ Associates the current PDU with the correct application instance.

■ Invokes the plug-in.

■ Manages connections between Services Gatekeeper and applications.

■ Manages connections between Services Gatekeeper and Short Message Service
Centers (SMSCs).

See the oracle.ocsg.protocol.smpp.service package in the Services Gatekeeper Java API
Reference for documentation of the SMPP Services interfaces.

The SMPPServiceNorth interface processes requests received from an
application-facing plug-in and sends them to the application.

The SMPPServiceSouth interface processes requests received from a network-facing
plug-in and sends them to the SMSC.

The SMPP Service is a standard Services Gatekeeper WebLogic Server (WLS) service.
You can access its Operations, Administration, and Maintenance (OAM) (operations

Additional Information You Need to Build an SMPP Plug-in

Using the SMPP API 8-3

and management) functions from the Administration console as SMPPService under
es.

Figure 8–2 shows the SMPP service menu in the Administration Console.

Figure 8–2 SMPP Service in the Administration Console

SMPPPluginSouth
The SMPPluginSouth interface processes network-triggered operations received from
SMPPServiceSouth and sends them to SMPPServiceNorth. You would extend and
implement this interface to add a new network-facing SMPP protocol.

SMPPPluginNorth
The SMPPluginNorth interface processes requests received from SMPPServiceNorth
and sends them to SMPPServiceSouth. You would extend and implement this interface
to add a new application-facing SMPP protocol.

Additional Information You Need to Build an SMPP Plug-in
In addition to the information in this chapter, developers should consult the following
documents for information on how to build an SMPP plug-in:

■ Services Gatekeeper Actions Java API Reference

Of special interest are the following packages, which include the interfaces and
classes for the SMPP service and plug-ins:

– oracle.ocsg.protocol.smpp.service

– oracle.ocsg.protocol.smpp.plugin

– oracle.ocsg.protocol.smpp.event

– oracle.ocsg.protocol.smpp.common

– oracle.ocsg.protocol.common

Creating a Custom SMPP Plug-in

8-4 Services Gatekeeper Extension Developer's Guide

You also need resources from various generic packages such as:

– com.bea.wlcp.wlng.api.edr

– com.bea.wlcp.wlng.api.management

– com.bea.wlcp.wlng.api.plugin

■ Services Gatekeeper Communication Service Reference Guide

See the Native SMPP chapter for an overview of the Services Gatekeeper Native
SMPP communication service, which uses the SMPP Service. This chapter includes
general information about how the SMPP Service handles connectivity and
documents the configurable attributes and operations of the SMPP Service.

Creating a Custom SMPP Plug-in
The most common task is to add a custom network-facing SMPP plug-in using the
south interfaces. It is also possible to create a custom application-facing SMPP module
using the north interfaces. The following procedures cover both scenarios.

The basic steps for creating a custom SMPP plug-in are as follows:

1. Using the Services Gatekeeper SCE PDS wizard, generate a customized network
plug-in for the SMPP communication service.

You can also use this wizard to create a custom interceptor, if necessary.

See "Communication Service Example" for a description of a generated project.

2. Create the service type for the customized plug-in by extending the ServiceType
class.

When the plug-in registers itself, an object of this type is passed to the Plug-in
Manager.

3. Implement the ManagedPluginService interface.

This class activates, deactivates and initializes the plug-in service. It implements
the PluginService, PluginServiceLifecycle and PluginInstanceFactory interfaces.

See "Understanding Communication Service Components" and "Understanding
the Communication Service Project Output" for more information.

4. Implement the ManagedPluginInstance interface.

This class activates a plug-in instance that has been created with the Plug-in
Manager, after which the plug-in should register its MBeans and prepare to accept
traffic. The plug-in service that activates this plug-in instance must be in the
ACTIVE (ADMIN) or ACTIVE (RUNNING) state when the activate method is
called.

This class also initializes and deactivates the plug-in instance, determines whether
the plug-in instance is capable of servicing the current request, and sets up the
session information cache.

See "Understanding Communication Service Components" for more information.

5. Extend and implement the SMPPPluginMBean interface and register the MBean
using the SMPP API.

6. If you are implementing a network-facing SMPP module, extend and implement
the SMPPPluginSouth interface to process network-triggered events received from
SMPPServiceSouth. See the oracle.ocsg.protocol.smpp.plugin package in Services
Gatekeeper Java API Reference for the list of methods in this interface. See also Using

About the SMPP Interfaces

Using the SMPP API 8-5

the SMPP APIs.

7. Send the processed requests and responses to the application using the
SMPPServiceNorth interface.

8. If you are implementing an application-facing SMPP module, extend and
implement the SMPPPluginNorth interface to process application-initiated events
received from SMPPServiceNorth. See the oracle.ocsg.protocol.smpp.plugin
package in Services Gatekeeper Java API Reference for the list of methods in this
interface. See also Using the SMPP APIs.

9. Send the processed requests and responses to the SMSC using the
SMPPServiceSouth interface.

10. Maintain a session information class to cache session values such as client and
server connection IDs, source and destination addresses, whether a delivery
notification is required, and so on.

11. Create CDRs and EDRs to trace the message flow, if necessary.

See "Aspects, Annotations, EDRs, Alarms, and CDRs" for more information.

12. Build the plug-in project and create EAR package, which will be deployed to
Services Gatekeeper.

Make sure that the smpp_api.jar is in the build class path; for example:

<path path="${target.dir}/protocol/modules/smpp_
api/oracle.ocsg.protocol.smpp_api_6.0.0.0.jar"/>

13. Use the Platform Test Environment (PTE) to test and debug the plug-in.

See Services Gatekeeper Platform Test Environment User's Guide for information.

Configuration Settings Affecting SMPP Connections
The System Administrator can configure several attributes that control how the SMPP
Service manages connections.

The System Administrator can also set some parameters on how the SMPP Service
behaves on a per application basis, such as whether certain operations are allowed
after sending a short message or whether network-triggered notification is enabled.
These parameters are set using the addApplicationSpecificSettings operation.

These settings can affect how requests and responses should be processed before they
are sent. The SMPP Service API provides methods for querying some of these settings.
See "SMPPService" for more information.

For a complete list of the SMPP Service attributes and operations, see the reference
material for the SMPP server service in the “Native SMPP” in Services Gatekeeper
Communication Service Reference Guide.

About the SMPP Interfaces
The packages for developing an SMPP plug-in are:

■ oracle.ocsg.protocol.common

■ oracle.ocsg.protocol.smpp.service

■ oracle.ocsg.protocol.smpp.plugin

■ oracle.ocsg.protocol.smpp.common

About the SMPP Interfaces

8-6 Services Gatekeeper Extension Developer's Guide

■ oracle.ocsg.protocol.smpp.event

oracle.ocsg.protocol.common
The oracle.ocsg.protocol.common package includes the ProtocolServiceProxyFactory
interface, which is derived from the AbstractProtocolService class. This is the base
class for the getProtocolServiceNorth and getProtocolServiceSouth methods.

The SMPP plug-in implementations use the getProtocolServiceNorth method to get a
reference to the interface used to send PDUs to applications on server connections and
the getProtocolServiceSouth method to get a reference to the interface used to send
PDUs to SMSCs on client connections.

This package also includes the ProtocolServiceNorth and ProtocolServiceSouth
interfaces from which the SMPPServiceNorth and SMPPServiceSouth interfaces are
derived.

oracle.ocsg.protocol.smpp.service
The oracle.ocsg.protocol.smpp.service package includes the interfaces for the SMPP
Service:

■ SMPPService

■ SMPPServiceNorth

■ SMPPPluginSouth

SMPPService
This interface provides methods for generic SMPP Service tasks. These include
checking whether available or active client connections exist for a plug-in instance,
registering the SMPP work manager, and registering the plug-in MBean object, which
exposes configurable attributes and operations to the SMPP Service.

It provides methods for querying the following SMPP Service configuration settings:

■ ConnectionBasedRouting: an attribute in the SMPP service

■ LooseBinding: an attribute in the SMPP service

■ notificationEnabled: an application-specific setting in the SMPP Service

■ subsequentOperationsAllowed: an application-specific setting in the SMPP
Service

For details about these settings, see s the reference material for the SMPP server
service in the Native SMPP chapter in Services Gatekeeper Communication Service
Reference Guide.

SMPPServiceNorth
The SMPPServiceNorth interface maintains a server connection pool that provides
connections between Services Gatekeeper and applications. Services Gatekeeper is a
server in this relationship.

When the application sends a successful BIND request to Services Gatekeeper, the
plug-in obtains a server connection from the server connection pool and uses the
implementation of the SMPPServiceNorth interface to send messages to the
application.

The server connection:

About the SMPP Interfaces

Using the SMPP API 8-7

■ Receives messages from the application.

■ Invokes the SMPPPluginNorth interface through a proxy.

■ Sends messages to the application.

■ Manages SMPP timers and windowing toward the application.

■ Stores transaction mapping information in cache.

This interface provides the following methods to send northbound requests and
responses submitted by the plug-in: cancelSmResponse, dataSm, dataSmResponse,
deliverSm, querySmResponse, replaceSmResponse, submitSmMultiResponse,
submitSmResponse.

SMPPServiceSouth
The SMPPServiceSouth interface maintains a client connection pool that provides
connections between Services Gatekeeper and Short Message Service Centers (SMSCs).
Services Gatekeeper is a client in this relationship.

The service processes BIND and UNBIND requests from the plug-in and obtains
client connections on which to perform SMPP operations toward the SMSC.

The client connection:

■ Receives messages from the SMSC.

■ Invokes the SMPPPluginSouth interface through a proxy.

■ Sends messages to the SMSC.

■ Manages SMPP timers and windowing toward the SMSC.

■ Stores transaction mapping information in cache.

This interface provides the following methods to send southbound requests and
responses submitted by the plug-in: bind, cancelSm, dataSm, dataSmResponse,
deliverSmResponse, querySm, replaceSm, submitSm, submitSmMulti, unbind.

oracle.ocsg.protocol.smpp.plugin
The oracle.ocsg.protocol.smpp.plug-in package defines the interfaces between the
SMPP service and the SMPP plug-ins:

■ SMPPServiceNorth

■ SMPPServiceSouth

■ SMPPPluginMBean

The plug-in developer extends and implements these interfaces for a custom plug-in.

SMPPPluginNorth
A plug-in extends and implements the SMPPluginNorth interface to process the
following supported application-initiated operations:

■ BIND

■ CANCEL_SM

■ DATA_SM

■ DATA_SM_RESPONSE

■ DELIVER_SM_RESPONSE

Using the SMPP APIs

8-8 Services Gatekeeper Extension Developer's Guide

■ QUERY_SM

■ REPLACE_SM

■ SUBMIT_SM

■ SUBMIT_SM_MULTI

The SMPPPluginNorth implementation uses the SMPPServiceSouth interface to send
these operations to the SMSC.

SMPPPluginSouth
The plug-in extends and implements the SMPPluginSouth interface to process
supported network-triggered operations, such as:

■ CANCEL_SM_RESPONSE

■ DATA_SM

■ DATA_SM_RESPONSE

■ DELIVER_SM

■ QUERY_SM_RESPONSE

■ REPLACE_SM_RESPONSE

■ SUBMIT_SM_MULTI_RESPONSE

■ SUBMIT_SM_RESPONSE

■ UNBIND

The SMPPPluginSouth implementation uses the SMPPServiceNorth interface to send
these operations to the application.

SMPPPluginMBean
This interface defines the network-facing connection attributes of the plug-in. A
custom plug-in extends and implements this interface to provide the facilities to
manage and query the plug-in.

The SMPPPluginNorth and SMPPPluginSouth implementations use this interface to
query values in the plug-in while processing requests and responses.

oracle.ocsg.protocol.smpp.common
This package provides the SMPPException class.

oracle.ocsg.protocol.smpp.event
This package provides classes for SMPP events.

Using the SMPP APIs
The basic procedure for processing and sending an incoming request or response
through the SMPP Service is as follows:

1. Get the SMPPService object.

2. Process the fields in the incoming request or response.

Using the SMPP APIs

Using the SMPP API 8-9

Depending on the particular request or response typical processing may involve
setting various fields in the request or response. For a response, you may need to
process event data from the original request.

It may be necessary to query some SMPP Service configuration settings using the
SMPPService methods. See "SMPPService" for more information.

3. Get the SMPPService object’s protocol interface for sending data.

For sending data to the SMSC, you need the interface for SMPPServiceSouth to get
a client-side connection. For sending data to the application, you need the
interface for SMPPServiceNorth to get a server-side connection.

4. Send the request or response using the methods provided by the
SMPPServiceNorth or SMPPServiceSouth.

The following sections illustrate how the SMPP Server APIs and settings are used in
processing some requests and responses. They focus on sample tasks involving the
SMPP API. Logging, exception handling, session information management, alarm
creation, and other tasks not using the SMPP APIs are not considered.

■ Processing a BIND Request from an Application

■ Processing a SUBMIT_SM Request from an Application

■ Processing a SUBMIT_SM Response from the SMSC

■ Processing a DELIVER_SM Request from the SMSC

■ Processing a DELIVER_SM Response from an Application

These are among the tasks performed in custom SMPPPluginNorth and
SMPPPluginSouth implementations.

Processing a BIND Request from an Application
When the plug-in receives a BIND request from an application, the SMPPPluginNorth
class processes the request and sends it to the SMSC.

The SMPPPluginNorth bind method:

1. Gets the plug-in instance id and sets it in the request.

2. Gets the SMPP Service object.

3. Gets the service object’s protocol interface for sending data on a client connection.

4. Sends the request using the SMPPServiceSouth’s bind method.

For example:

public BindResponse bind(Bind request) {
 BindResponse bindResp = null;

 // Set the plug-in instance id
 request.setPluginInstanceId(plugin.getPluginInstanceId());

 // Get the SMPP service object
 SMPPService smppService = plugin.getSMPPService();

 // Get the interface for sending data on a client-side connection
 SMPPServiceSouth serviceSouth =
smppService.getProtocolServiceSouth(SMPPServiceSouth.class);
 // Send the request
 bindResp = serviceSouth.bind(request);

Using the SMPP APIs

8-10 Services Gatekeeper Extension Developer's Guide

 return bindResp;
}

Processing a SUBMIT_SM Request from an Application
When a plug-in receives a SUBMIT_SM request from an application, the
SMPPPluginNorth class processes the request and sends it to the SMSC.

The SMPPPluginNorth submitSm method:

1. Gets the plug-in instance and application instance IDs and sets them in the
request.

2. Queries the SMPP Service’s application-specific notificationEnabled setting and
sets the registeredDelivery field in the request accordingly.

if (request.getRegisteredDelivery() != 0 &&
!plugin.isNotificationAllowed(aigId)) {
 request.setRegisteredDelivery(0);
}

3. Gets the SMPP Service object.

SMPPService smppService = plugin.getSMPPService();

4. Gets the service object’s protocol interface for sending data on a client connection.

SMPPServiceSouth serviceSouth =
smppService.getProtocolServiceSouth(SMPPServiceSouth.class)

5. Process any extra parameters (xparams) in the request.

6. Sends the request using the SMPPServiceSouth’s submitSm method.

serviceSouth.submitSm(request);

Processing a SUBMIT_SM Response from the SMSC
When a plug-in receives a SUBMIT_SM_RESPONSE from the SMSC, the
SMPPPluginSouth class processes the response and sends it to the application.

The SMPPPluginSouth submitSmResponse method:

1. Gets the SMPP Service object.

SMPPService smppService = plugin.getSMPPService();

2. Gets the plug-in message ID and sets it in the response.

3. Gets and processes the request event data from the original request to which this is
the response.

4. Queries the SMPP Service and application-specific settings to determine whether a
delivery receipt will be provided. For example, the following example checks the
notificationEnabled and isSubsequentOperationsAllowed application-specific
settings and the ConnectionBasedRouting SMPP Service attribute.

boolean needDR = plugin.isNotificationAllowed(aigId) &&
originalRequest.getRegisteredDelivery() != 0 &&
 !plugin.isConnectionBasedRoutingEnabled();
 if (plugin.isSubsequentOperationsAllowed(aigId) || needDR) {

Using the SMPP APIs

Using the SMPP API 8-11

 // Set the session information accordingly . . .
}

5. Gets the SMPP Service object’s interface for sending data on a server-side
connection.

SMPPServiceNorth serviceNorth =
smppService.getProtocolServiceNorth(SMPPServiceNorth.class);

6. Sends the response on that connection using SMPPService North’s
submitSmResponse method.

serviceNorth.submitSmResponse(response);

Processing a DELIVER_SM Request from the SMSC
A DELIVER_SM request from the SMSC can be a simple SMS message from the
network, or it can be the SMSC sending a delivery receipt for a previously submitted
SUBMIT_SM request.

When a plug-in receives a DELIVER_SM request from the SMSC, the
SMPPPluginSouth deliverSm method first examines the isDeliveryReceipt field in the
request to determine whether the request is for a delivery receipt or a
network-triggered SMS message. For example:

public void deliverSm(final DeliverSm request) {
 request.setPluginInstanceId(plugin.getPluginInstanceId());
 final boolean isDeliverReceipt = request.isDeliverReceipt();

 if (isDeliverReceipt) {
 deliverSmForDeliveryReceipt(request);
 } else {
 deliverSmForMO(request);
 }
 }

If the DELIVER_SM request is not for a delivery receipt, the processing is simple. The
SMPPPluginSouth’s method for processing the request:

1. Gets the SMPP Service object.

2. Gets the SMPP Service object’s interface for sending data on a server-side
connection.

SMPPServiceNorth serviceNorth =
smppService.getProtocolServiceNorth(SMPPServiceNorth.class);

3. Sends the request using the SMPPServiceNorth’s deliverSm method.

serviceNorth.deliverSm(request)

If the request requires a delivery receipt, the SMPPPluginSouth method for processing
the request performs some additional tasks before sending the request:

1. Gets and sets the receipted message ID in the request.

String msgId = createPluginMessageId(request.getReceiptedMessageId());
request.setReceiptedMessageId(msgId);

2. Using the plug-in’s implementation of the SMPPPluginMBean, gets the response
command status.

failureCommandStatus =

Using the SMPP APIs

8-12 Services Gatekeeper Extension Developer's Guide

plugin.getManagement().getMySMPPPluginMBean().getDeliverSmRespCommandStatus();

You would implement the getDeliverSmCommandStatus method in your
SMPPPluginMBean class to get the outcome of the DELIVER_SM request. The
status should indicate whether the application was reached.

3. Uses the SMPPService isConnectionBasedRouting method to establish whether
connection-based routing is enabled in the SMPP Service and processes the request
accordingly.

If connection-based routing is enabled, the operator can send a delivery receipt to
a site other than the one through which the original message was submitted. See
the discussion of connection-based routing in Services Gatekeeper Communication
Service Reference Guide for information about how connection-based routing works
in combination with other configuration settings.

4. Queries any additional relevant configuration settings for the plug-in using the
custom management methods implemented by the plug-in in the
SMPPPluginMBean and processes accordingly. For example, you may want to
query whether to delete SMPP session information after the delivery receipt is
received.

5. Uses the SMPPService isSubsequentOperationsAllowed method to query
whether subsequent operations are allowed for the application instance and sets
the session information accordingly.

6. Gets an SMPP Service object.

7. Gets the SMPPService object’s interface for sending data on a server-side
connection.

8. Sends the request using the SMPPServiceNorth’s deliverSm method.

Processing a DELIVER_SM Response from an Application
A DELIVER_SM response from an application can be the response for the receipt of
an mobile-originated SMS message or of a delivery receipt.

The SMPPPluginNorth deliverSmReponse method gets the original request event
associated with the response, determines whether the response if for a delivery receipt,
and passes the request as well as the response to the method that will process and
send the response.

public void deliverSmResponse(DeliverSmResponse response) {
 DeliverSm originalRequest = (DeliverSm)response.getRequestEvent();
 if (originalRequest != null && !originalRequest.isDeliverReceipt()) {
 deliverSmResponseForMO(response, originalRequest);
 } else {
 deliverSmResponseForDeliveryReceipt(response, originalRequest);
 }
 }

The appropriate deliverSmResponse method processes any information needed from
the response and its associated request.

A method that processes a response for a mobile-originated SMS message may need to
construct EDR data before sending the response to the SMSC using the
SMPPServiceSouth deliverSmResponse method.

9

Using the UCP API 9-1

9Using the UCP API

This chapter provides an overview of the Oracle Communications Services Gatekeeper
Universal Computer Protocol (UCP) API Java interface. It also contains some guidance
on how to develop a customized UCP plug-in using the Services Gatekeeper Platform
Development Studio and the UCP APIs.

Understanding the UCP Protocol API
The UCP protocol APIs enable platform developers to create custom UCP plug-ins
without having to set up and manage connections from Services Gatekeeper to
applications and SMSCs.

The UCP Protocol Server Service manages the low-level connectivity details, in
conjunction with a configurable Connection Information Manager service, which
stores mappings between plug-in instances and the hosts and ports and mappings
between application instances and network node credentials.

Using the Protocol Server Service APIs, a plug-in obtains a connection to an
application or SMSC and sends a protocol data unit (PDU) or acknowledgement on
that connection. The APIs include classes for constructing UCP PDUs.

Figure 9–1 shows the UCP architecture.

Understanding the UCP Protocol API

9-2 Services Gatekeeper Extension Developer's Guide

Figure 9–1 UCP Architecture in Services Gatekeeper

A client-side connection is a connection between Services Gatekeeper and the SMSC,
since Services Gatekeeper acts as client in this relationship. In the context of this
architecture, a server-side connection is a connection between an application and
Services Gatekeeper, since Services Gatekeeper acts as server in this relationship.

UCP Protocol Server Service
The UCP Protocol Server Service provides connection services on behalf of UCP
plug-ins. It communicates with external applications and SMSCs using UCP over
TCP/IP. This service:

■ Sends and receives UCP data from the socket.

■ Constructs the UCP PDU.

■ Associates the current PDU with the correct application instance.

■ Calls the plug-in.

All requests from a plug-in instance to the Protocol Server Service contain a plug-in
instance ID. The Protocol Server Service performs connection and network credential
mapping based on the configuration set up in the Connection Information Manager.

The UCP Protocol Service API defines the interface between the UCP Protocol Server
Service and UCP plug-ins. See the oracle.ocsg.protocol.ucp and
oracle.ocsg.protocol.ucp.pdu packages in Services Gatekeeper Java API Reference for
documentation on this API.

The Protocol Server Service is a standard Services Gatekeeper WLS service. You can
access it from the Administration console as UCPService under es.

Understanding the UCP Protocol API

Using the UCP API 9-3

Understanding the Connection Information Manager Service
 The Connection Information Manager is a standard Services Gatekeeper service,
which creates and stores connection and credential mappings that UCP plug-in
instances need to connect to network elements and applications.

The UCP Protocol Service uses the Connection Information Manager to map
plug-instance IDs to SMSC IP addresses and ports.

You can also optionally configure in the Connection Information Manager the local
address and port to bind to when setting up a client-side connection to an SMSC.
When Services Gatekeeper connects to the remote network node, it uses the specified
local host IP address and port combination to bind the socket on the Services
Gatekeeper side of the connection. The Protocol Service uses the specified port as a
starting offset and increments the port number by one for each additional connection
additional associated with the same plug-in instance ID. If the local host address is not
configured, an ephemeral port is used.

You manage connection information settings from the Administration console. See
ConnectInfoManager under es, as shown in Figure 9–2. See “Managing and
Configuring Native UCP Connections” in Services Gatekeeper System Administrator's
Guide for information about specific operations.

Figure 9–2 UCP Protocol Server Service and Connection Information Manager in the
Administration Console

PluginNorth
A plug-in implements the PluginNorth interface to perform the following tasks on
behalf of application-initiated requests:

■ Send a mobile-terminated (MT) SMS message

■ Open a UCP session

Additional Information You Will Need

9-4 Services Gatekeeper Extension Developer's Guide

■ Send an ACK to the SMSC

■ Send a NACK to the SMSC

You would extend and implement this interface to add a new application-facing UCP
protocol plug-in.

PluginSouth
A plug-in implements the PluginSouth interface to perform the following tasks on
behalf of network-triggered requests:

■ Deliver a mobile-originated (MO) SMS message

■ Deliver a message delivery notification associated with a previously-sent MT SMS

■ Send an ACK to the application

■ Send a NACK to the application

You would extend and implement this interface to add a new network-facing UCP
protocol plug-in.

Additional Information You Will Need
In addition to the information in this chapter, developers should consult the following
documents for information on how to build a UCP plug-in:

■ Services Gatekeeper Java API Reference

Of special interest are the following packages, which include the interfaces and
classes for the UCP Protocol Server Service:

– oracle.ocsg.protocol.ucp

– oracle.ocsg.protocol.ucp.pdu

– oracle.ocsg.protocol.common

The following packages include the plug-in interfaces and classes for the Native
SMPP plug-in, which is part of the standard Services Gatekeeper Native UCP
communication service. They can serve as a reference for developing customized
north and south UCP plug-ins.

– oracle.ocsg.plugin.nativefacade.ucp.north

– oracle.ocsg.plugin.nativefacade.ucp.south

In addition, you will need resources from various generic packages such as:

– com.bea.wlcp.wlng.api.edr

– com.bea.wlcp.wlng.api.management

– com.bea.wlcp.wlng.api.plugin

– com.bea.wlcp.wlng.api.plugin.common

– com.bea.wlcp.wlng.api.plugin.context

– com.bea.wlcp.wlng.api.util

■ Services Gatekeeper Communication Service Reference Guide

See the discussion on Native UCP. This discussion provides an overview of the
Services Gatekeeper Native UCP communication service. It documents the
attributes and operations provided to manage the UCP Protocol Server Service.

Procedure for Creating a Customized UCP Plug-in

Using the UCP API 9-5

The protocol server service is available for any UCP plug-in to access using the
UCP Protocol Server Service APIs.

■ Services Gatekeeper System Administrator's Guide

See the connection information discussion. The Connection Information Manager
creates and stores connection and credential mappings used by UCP plug-ins.

Procedure for Creating a Customized UCP Plug-in
This procedure outlines the basic steps to perform to add a custom UCP plug-in.

1. Using the Services Gatekeeper SCE PDS Wizard, generate a customized network
plug-in for the UCP communication service.

You can also use this wizard to create a custom interceptor, if necessary.

See "Understanding the Communication Service Project Output" for more
information.

2. Create the service type for the customized plug-in by extending the ServiceType
class.

When the plug-in registers itself, an object of this type is passed to the Plug-in
Manager.

3. Implement the ManagedPluginService interface. This class activates, deactivates
and initializes the plug-in service. It implements the PluginService,
PluginServiceLifecycle and PluginInstanceFactory interfaces.

See "Understanding Communication Service Components" for more information.

4. Implement the ManagedPluginInstance interface.

This class activates a plug-in instance that has been created with the Plug-in
Manager, after which the plug-in should register its MBeans and prepare to accept
traffic. The plug-in service that activates this plug-in instance must be in the
ACTIVE (ADMIN) or ACTIVE (RUNNING) state when the activate method is
called.

This class also initializes and deactivates the plug-in instance and determines
whether the plug-in instance is capable of servicing the current request.

See "Understanding Communication Service Components" for more information.

5. If you are implementing an application-facing UCP module, extend and
implement the PluginNorth interface: SubmitSm, openSession, ack and nack.

6. If you are implementing a network-facing UCP module, extend and implement
the PluginSouth interface: deliverSm, deliveryNotification, ack and nack.

7. Create CDRs and EDRs to trace the message flow, if necessary.

8. From the Administration console, configure the connection and credential
mappings in the Connection Information Manager.

See the discussion on managing and configuring connection information in
Services Gatekeeper System Administrator's Guide.

9. Build the plug-in project and create the EAR package, which will be deployed to
Services Gatekeeper.

10. Use the Platform Test Environment (PTE) to test and debug the plug-in.

See Services Gatekeeper Platform Test Environment User's Guide for more information.

About the UCP Protocol Server Service Interfaces

9-6 Services Gatekeeper Extension Developer's Guide

About the UCP Protocol Server Service Interfaces
The packages for the protocol server service are:

■ oracle.ocsg.protocol.common

■ oracle.ocsg.protocol.ucp

■ oracle.ocsg.protocol.ucp.pdu

Using the UCP Protocol Server Service API, you can develop a custom UCP plug-in
without having to implement the low-level connection functionality. The API provides
a wrapper to bind, send, and receive messages and allows customization of PDUs.

oracle.ocsg.protocol.common
The oracle.ocsg.protocol.common.package provides four basic interfaces from which
the UCP Protocol Server Service APIs are derived:

■ AbstractProtocolService

This is the base class for the getProtocolServiceNorth and
getProtocolServiceSouth methods. The UCPNetworkingServiceImpl class inherits
from AbstractProtocolService to implement these methods.

■ ProtocolServiceProxyFactory

Gets references to the getProtocolServiceNorth and getProtocolServiceSouth
methods for use by the plug-in.

■ ProtocolServiceNorth

This is the base interface for creating network-facing connections.

■ ProtocolServiceSouth

This is the base interface for creating application-facing connections.

oracle.ocsg.protocol.ucp
The main protocol server service interfaces used by a UCP plug-in are:

■ UCPNetworkingService

The UCPNetworkingService interface provides methods to add, remove, list and
otherwise manage server-side and client-side connections. See the
UCPNetworkingService interface in the oracle.ocsg.protocol.ucp package in the
Services Gatekeeper Java API Reference for a list of the methods in this interface.

In addition to accessing these methods programmatically, a System Administrator
can also access most of the methods in the UCPNetworkingService interface as
operations and management (OAM) operations from the UCPService pane of the
Administration console.

Figure 9–3 shows how to access the UCPService pane.

Connection Mapping

Using the UCP API 9-7

Figure 9–3 Protocol Service Operations in Administration Console

■ UCPNetworkingServiceClient

This interface implements methods for sending PDUs, ACKs, and NACKs on a
client-side connection. It extends the Services Gatekeeper
oracle.ocsg.protocol.common.ProtocolServiceSouth interface.

The plug-in uses this interface’s sendPDUOnClientConnection method to send
the plug-in instance ID and the PDU. The method returns a connection ID that
identifies the connection to the SMSC on which the request was sent.

■ UCPNetworkingServiceServer

This interface implements methods for sending PDUs, ACKs, and NACKs on a
server-side connection. It extends the Services Gatekeeper
oracle.ocsg.protocol.common.ProtocolServiceNorth interface.

■ The plug-in uses the sendPDUOnServerConnection method to send the
connection ID and the PDU. The method returns a connection ID that identifies the
connection to the application on which the request was sent.

oracle.ocsg.protocol.ucp.pdu
This package provides utility classes for building UCP PDUs for the supported UCP
operations. This package provides classes for all of the supported UCP abstract data
types (ADTs), as well as a generic UCP ADT, UCP constants, headers, and parameters

Connection Mapping
The Protocol Server Service uses mappings between application instances to network
nodes configured in the Connection Information Manager to set up the connections
that are used by the plug-ins.

OAM Attributes Affecting UCP Network Connectivity

9-8 Services Gatekeeper Extension Developer's Guide

At a minimum you need to configure the credential map, host address, and user
password using these operations:

■ createOrUpdateCredentialMap

■ createOrUpdateRemoteHostAddress or createOrUpdateLocalHostAddress

■ createOrUpdateListenAddress

■ createOrUpdateUserPasswordCredentialEntry

There are various possible mapping logics; for example:

■ One connection to the SMSC for all Services Gatekeeper applications

■ One connection to the SMSC for a group of Services Gatekeeper applications

■ One connection to the SMSC for each Services Gatekeeper application

The simplest scenario is to configure a plug-in always to use the same application
instance for all UCP requests. This requires only one connection to the SMSC. You
would create the application instance in Services Gatekeeper and dedicate it to UCP
southbound requests in the Connection Information Manager. Before making the call
to the UCP Protocol Server Service, the plug-in can switch context to the
UCP-dedicated application instance

Another scenario would configure the plug-in to use the current application instance
to send requests through the service. This results in multiple connections to the SMSC,
at least one per application instance. In this case, you must configure the Connection
Information Manager with connection credentials and SMSC address and port
mappings for all application instances.

There is no single correct solution. The mapping logic that you choose depends on the
demands of your situation.

OAM Attributes Affecting UCP Network Connectivity
The UCPProtocol read-only attribute contains the UCP protocol string. This value is
set to the listen address defined by the createOrUpdateListenAddress operation in the
Connection Information Manager.

In the Administration console, you can configure two attributes that control how the
Protocol Server Service handles reconnection attempts:

■ MaxReconnectAttempts: Specifies the maximum number of reconnection
attempts permitted. Set to -1 for no maximum, 0 for no reconnection attempts, or a
positive integer indicating the maximum number of reconnections to attempt.

■ TimeBetweenReconnectAttempts: Specifies the time in milliseconds between
reconnection attempts.

Using the APIs
The first three examples in this section provide some guidance related to common
tasks using the UCP APIs that would be performed by a custom application-facing
UCP plug-in that implements and extends PluginNorth. The examples are based on a
prototype for a ParlayX2.1 SMS plug-in. The last example is for a PluginSouth
implementation processing a DELIVER_SM request.

The tasks include:

■ Sending a submitSm Request to the SMSC

Using the APIs

Using the UCP API 9-9

■ Creating a UCP PDU

■ Sending an openSession Request to the SMSC

■ Sending a DeliverSm to an Application

Sending a submitSm Request to the SMSC
When a plug-in receives a SUBMIT_SM request from an application, the PluginNorth
implementing class processes the parameters in the request, constructs the PDU, and
sends it to the SMSC using the UCPNetworkingServiceClient APIs.

The plug-in:

1. Gets the UCP NetworkingService object. For example:

UCPNetworkingService ucpService =
PX21UCPPluginInstanceImpl.getUCPNetworkingService();

2. Gets any outstanding standing SUBMIT_SM requests.

3. Creates the submit PDU, using the classes in the oracle.ocsg.protocol.ucp.pdu
package. See "Creating a UCP PDU" for more information.

4. Gets the source connection ID.

5. Gets the UCP NetworkingService protocol interface for sending data on a client
connection. For example:

UCPNetworkingServiceClient client =
ucpService.getProtocolServiceSouth(UCPNetworkingServiceClient.class);

6. Sends the PDU on the client connection, using the UCPNetworkingServiceClient
sendPDUOnClientConnection method. For example:

clientConnectionID = client.sendPDUOnClientConnection
(
 px21UCPPluginInstanceImpl.getPluginInstanceId(),
 px21UCPPluginInstanceImpl.getSourceServerPort(),
 submitSMPDU,
 outstandingSubmitSMRequests,
 sourceConnectionID
);

Creating a UCP PDU
To create a UCP PDU, you can use the classes in the oracle.ocsg.protocol.ucp.pdu
package.

The following method creates the submitSM PDU used in "Sending a submitSm
Request to the SMSC". It uses the using the UcpHeader, UcpParameter,
GenericUcpAdt classes defined in the pdu package.

private UcpPDU createSubmitSMPDU(SendSms parameters) {
 UcpHeader ucpHeader = new UcpHeader();
 UcpParameter orParam = new UcpParameter("O");
 ucpHeader.setParameter(UcpHeader.PARAM_OR, orParam);
 UcpParameter otParam = new UcpParameter(UcpConstants.OT_SUBMIT_SHORT_
MESSAGE);
 ucpHeader.setParameter(UcpHeader.PARAM_OT, otParam);
 UcpParameter trnParam = new UcpParameter("01");
 ucpHeader.setParameter(UcpHeader.PARAM_TRN, trnParam);
 UcpParameter lenParam = new UcpParameter("00000");

Using the APIs

9-10 Services Gatekeeper Extension Developer's Guide

 ucpHeader.setParameter(UcpHeader.PARAM_LEN, lenParam);

 GenericUcpAdt data = new GenericUcpAdt(33);

 //ADC
 URI[] destAddresses = parameters.getAddresses();
 String uriStringDestAddress = destAddresses[0].toASCIIString();

 //Strip "tel:"
 String destAddressString = stripURIPrefix(uriStringDestAddress);
 UcpParameter adcParam = new UcpParameter(destAddressString);
 data.setParameter(Ucp50Adt.PARAM_ADC, adcParam);

 //OADC
 String senderName = parameters.getSenderName();
 UcpParameter oadcParam = new UcpParameter(senderName);
 data.setParameter(Ucp50Adt.PARAM_OADC, oadcParam);

 //NRQ and NT
 SimpleReference simpleRef = parameters.getReceiptRequest();
 String nrq = "";
 String nt = "";
 if(simpleRef != null){
 nrq = "0"; //0 == NADC not used
 nt = "7"; // 7 == all
 }
 UcpParameter nrqParam = new UcpParameter(nrq);
 data.setParameter(Ucp50Adt.PARAM_NRQ, nrqParam);
 UcpParameter ntParam = new UcpParameter(nt);
 data.setParameter(Ucp50Adt.PARAM_NT, ntParam);

 //If LRq is empty, the contents of LRAd and LPID are ignored

 //Message type 3 == "Alphanumeric message encoded into IRA characters."
 UcpParameter mtParam = new UcpParameter("3");
 data.setParameter(Ucp50Adt.PARAM_MT, mtParam);

 String message = parameters.getMessage();
 String iraEncodedMessage = iraEncodeMessage(message);
 UcpParameter msgParam = new UcpParameter(iraEncodedMessage);
 data.setParameter(Ucp50Adt.PARAM_MSG, msgParam);

 return new UcpPDU(ucpHeader, data);
 }

Sending an openSession Request to the SMSC
A connection from the UCP plug-in to the SMSC is implicitly established on receipt of
the openSession request. Upon receiving the openSession request, the Protocol Server
Service uses the current context as a key to determine the connection and credential
mapping to use for the new connection that it is creating. The user and plug-in
instance ID must therefore be configured in the Connection Information Manager
before the openSession request is sent; otherwise the openSession request fails.

The APIs do not provide a specific open session method.

To create a new session to the SMSC, create an openSession PDU using the pdu
package and use the sendPDUOnClientConnection with a that openSessionPDU as
the PDU parameter:

Using the APIs

Using the UCP API 9-11

UCPNetworkingServiceClient client =
ucpService.getProtocolServiceSouth(UCPNetworkingServiceClient.class);

String connectionID = client.sendPDUOnClientConnection
 (myUCPPluginInstanceImpl.getPluginInstanceId(),
 sourceServerPort,
 openSessionPDU,
 outstandingOpenSessionRequests,
 sourceConnectionId);

A UCP plug-in uses the Protocol Server Service API after it receives an openSession
PDU. The UCP Protocol Server Service creates a new socket connection for each
session management operation of subtype openSession that is sent. The created
connections are later used for sending SUBMIT_SM requests.

Sending a DeliverSm to an Application
When a plug-in receives a DELIVER_SM request from the SMSC, the PluginSouth
implementing class processes the parameters in the request.

If the plug-in is communicating with a web services-based application, it typically
analyzes the parameters in the request to find the correct application callback reference
(URL) to which the mobile-originated SMS message should be sent and then sends it.

If the plug-in is communicating with a UCP-based application, it typically constructs a
DELIVER_SM PDU, which it sends to the application-facing UCP
NetworkingServerService APIs.

After notifying the application of the message, the plug-in should send an ACK or
NACK to the SMSC to report whether the notification was successful.

The following process flow is for a plug-in communicating with a web services-based
application:

1. Gets the UCP NetworkingService object. For example:

UCPNetworkingService ucpService =
PX21UCPPluginInstanceImpl.getUCPNetworkingService();

2. Processes the incoming deliverSM PDU to get the source and destination
addresses. This implementation uses the UCP50Adt class to extract the data from
the PDU:

String destinationAddress = deliverSMPDU.getData().getParameter(Ucp50Adt.PARAM_
ADC).getValueAsString();
String originatingAddress = deliverSMPDU.getData().getParameter(Ucp50Adt.PARAM_
OADC).getValueAsString();

3. Gets the notification callback references.

4. Implements support for using criteria and storing the mobile-originated message.

5. Creates the deliverSM PDU.

6. Send the deliverSM notification PDU. For example:

boolean notificationOK = sendDeliverSMNotification(callbackRef,
destinationAddress, originatingAddress, deliverSMPDU);

7. Send ACK or NACK to the SMSC depending on the outcome of the notification.
For example:

if(notificationOK){

Using the APIs

9-12 Services Gatekeeper Extension Developer's Guide

 sendAck(ucpService, connectionId, deliverSMPDU);
}else{
 sendNack(ucpService, connectionId,deliverSMPDU, UcpConstants.ERROR_CODE_
SYNTAX_ERROR);
 }

10

Using Service Interceptors to Manipulate Requests 10-1

10Using Service Interceptors to Manipulate
Requests

This chapter provides a high-level overview of service interceptors (interceptors) and
describes both the standard interceptors in Oracle Communications Services
Gatekeeper and the process of developing your own custom interceptors and
deploying them in Services Gatekeeper.

Understanding Service Interceptors in Services Gatekeeper
Service interceptors provide a mechanism to intercept and manipulate a request
flowing through any arbitrary communication service in Services Gatekeeper. (See
"Understanding Communication Service Components" for a description of
communication services.) Additionally, service interceptors supply an easy way to
modify the flow for a request and simplify the routing mechanism for plug-ins
associated with a request.

Often, interceptors may make a decision to permit, deny, or stay neutral to a particular
request. Some typical use cases for service interceptors are to:

■ Deny a request if the user does not subscribe to a particular service in the
application layer.

■ Deny a request if the personal identification number is not valid.

■ Verify that a request’s parameters are valid.

■ Perform argument manipulation (such as aliasing).

Each interceptor in Services Gatekeeper is identified by the class name of the entry
point of the interceptor, that is, the class that implements the Service Provider Interface
(SPI) Interceptor.

For example, the EnforceBlacklistedMethodFromSLA interceptor is identified by
com.bea.wlcp.wlng.interceptor.EnforceBlacklistedMethodFromSLA. (See the entry
for EnforceBlacklistedMethodFromSLA in Example 10–1.)

A set of standard interceptors are provided with Services Gatekeeper. Some
interceptors are required, while others provide extra functionality. In addition, Services
Gatekeeper enables you to develop and deploy custom interceptors. The invocation
order of the interceptors currently active in Services Gatekeeper is defined in an
XML-based configuration file, described later in this chapter.

Understanding Service Interceptors in Services Gatekeeper

10-2 Services Gatekeeper Extension Developer's Guide

Understanding How Requests are Triggered
Figure 10–1 illustrates where interceptors are triggered, both for application-initiated
and network-triggered requests.

Figure 10–1 Interceptors and Request Flow

Application-initiated requests proceed south in the following order:

1. The requests starts in the web service (access tier).

2. The web services converts the request to the Service EJB in the network tier.

3. The Service EJB sends the request to the plug-in manager.

4. The plug-in manager sends it to the interceptor stack.

5. From the interceptor stack the request is sent do the network protocol plug-in.

6. The network protocol sends the request to the network node.

Network triggered requests proceed north in the following order:

1. The request starts in the network tier.

2. From the network tier, the request goes to the network protocol plug-in.

3. From the network plug-in it goes to the interceptor stack.

4. From the interceptor stack it goes to the service callback client.

5. From the service callback client it goes to the service callback EJB (access tier).

Understanding Service Interceptors in Services Gatekeeper

Using Service Interceptors to Manipulate Requests 10-3

6. Finally the request arrives at the application.

Understanding How the Plug-in Manager Works with Interceptors
As Figure 10–1 shows, the Plug-in Manager is responsible for calling the first
interceptor in the chain of interceptors as defined in the interceptor configuration file,
described later in this chapter.

For application-initiated requests, the Plug-in Manager is called automatically by the
service Enterprise Java Beans (EJB) for the application-facing interface. For
network-triggered requests, the Plug-in Manager is called by an Aspect that is woven
prior to calling the service callback EJB for the application-facing interface. For more
information on Aspect, see "About Aspects and Annotations".

The interceptor chain is invoked at the point-cut that is a Java representation of the
application-facing interface. Some application-initiated requests are not necessarily
propagated to the network, and some network-triggered requests are not necessarily
forwarded to the service callback client.

Request Context Data Used to Handle Request Flow
Interceptors in Services Gatekeeper have access to context data associated with each
request and use that data to arrive at the appropriate decisions to forward, return or
abort the request.

The actual data that is available to an interceptor depends on the context of the
request. In general, the application-facing interface defines the data that is available.
This data includes the following:

■ The RequestContext for the request, including:

– Service provider account ID

– Application account ID

– Application User ID

– Transaction ID

– Session ID

– A Java Map containing arbitrary request-specific data

For information on RequestContext, see "Interface: RequestContext".

■ The type of plug-in targeted by the request for (application-initiated requests)

■ The type of object targeted by the request (network-triggered requests)

■ The method targeted by the request

■ The arguments that will be used in the method targeted by the request

■ The set of RequestInfo available to the request, including:

– method name

– arguments to the method

– plug-in type

For information on RequestInfo, see "Class: RequestInfo".

■ A list of plug-ins that matches the specified RequestInfo

Understanding Service Interceptors in Services Gatekeeper

10-4 Services Gatekeeper Extension Developer's Guide

■ The interception point that indicates whether the request is network-triggered or
application-initiated.

Example 10–6 shows the method used to retrieve data located in RequestContext.

Data Available for Modification
Custom interceptors that you develop can be designed to access and modify certain
elements of the data in RequestContext.

Interceptors can set the following data in a request:

■ In the RequestContext:

– Session ID

– Transaction ID

■ A list of plug-ins that matches the specified RequestInfo. For information on
RequestInfo, see "Class: RequestInfo".

■ Arguments to the method targeted by the request

Specifying a Destination for the Request
Each interceptor is responsible for deciding whether to proceed with the request flow
(by forwarding the request down the chain of interceptors) or to break the flow. The
interceptor may break the request flow in one of two ways, either by returning the
request or by aborting it.

Figure 10–2 Decisions and the Interceptor Chain

Understanding Service Interceptors in Services Gatekeeper

Using Service Interceptors to Manipulate Requests 10-5

Proceeding with the Request Flow
The decision to proceed with the request flow translates to continuing down the
invocation chain by calling the next interceptor in the chain.

The request is passed on to the next interceptor in the chain and ultimately to the
network protocol plug-in or to the application. When the request is returned from
either one of these points in the flow, the return path traverses the interceptors that
were used in the calling path. Doing so makes it possible for interceptors to
manipulate the request on its return path and ultimately return it to the originator of
the request, the application or the network node.

Returning the Request
The decision to return a request may be arrived at because the needs of the request
may have been fulfilled and, therefore, there maybe no need to call the plug-in or the
application. The remaining and final step is simply to return the request.

In such a scenario, the request is rolled back through the previous interceptors using a
regular return statement. Doing so makes it possible for the previous interceptors to
manipulate the request in the rollback path which ends with the originator of the
request, the application or the network node.

Aborting the Request
The decision to abort a request is arrived at when there is a violation. For example, a
parameter in the request is out of bounds, or certain usage policies have been violated
by this request. Such events lead to a PluginDenyException being thrown.

When the decision is made to abort a request, the interceptor breaks the chain for that
request. The request is rolled back through each interceptor’s exception catch-block
rather than being returned in a regular mode.

■ For application-initiated requests, the exception is reported back to the
application. It is possible to reuse the exception catalogue to map the exception
thrown by the interceptor to an exception defined by the application-facing
interface. For such a scenario, interceptors should use
com.bea.wlcp.wlng.api.plugin.DenyPluginException.

■ For network-triggered requests, it is the responsibility of the plug-in to act on the
thrown exception.

Invoking the Next Service Interceptor to Handle the Request
Each interceptor is responsible for calling the next interceptor in the chain. This means
that:

■ For an application-initiated request, the interceptors can change and add
request-specific data. This data is then propagated to the next interceptor and
ultimately to the network protocol plug-in. When the request returns from the
plug-in, the data can be changed as the request returns through the invocation
chain.

■ For network-triggered request, the interceptors can change and add
request-specific data. This data is then propagated to the next interceptor and
ultimately to the application. When the request returns from the application, the
data can be changed as the request returns through the invocation chain.

This is useful for aliasing of data, where the interceptor anonymizes request data such
as telephone numbers so that an application is not aware of the actual telephone
number of the subscriber.

Understanding the Standard Interceptors

10-6 Services Gatekeeper Extension Developer's Guide

Last Service Interceptor in the Chain
For application-initiated requests, the last interceptor in the chain is responsible for
calling the plug-in. The standard interceptor InvokePlugin performs this function. In
Example 10–1, the example interceptor configuration file lists InvokePlugIn as the last
entry for the tag called <position name="MT_NORTH">.

For network-triggered requests, the last interceptor in the chain is responsible for
calling the callback service EJB, which calls the application. The standard interceptor
InvokeApplication does this. In Example 10–2, the example interceptor configuration
file lists InvokeApplication as the last entry for the tag called <position name="MO_
NORTH">.

Understanding the Standard Interceptors
Standard interceptors are service interceptors that are provided by Services
Gatekeeper.

The standard interceptors in Services Gatekeeper can be:

■ Enabled: The interceptors that are enabled in Services Gatekeeper are listed in the
config.xml interface configuration file provided with the installation. See
"Config.xml File".

■ Disabled: A few interceptors are not yet enabled in the default set of interceptors
enabled in Services Gatekeeper. If necessary, you can enable these interceptors by
updating config.xml. See the steps in "Updating the Config.xml File".

■ Internal: Any interceptor with a $ in its name is internal to Services Gatekeeper.
Such an interceptor should not be used, changed or deleted.

Table 10–1 provides a description of the standard interceptors that are available in
Services Gatekeeper and lists any dependencies enforced by Services Gatekeeper.

Understanding the Standard Interceptors

Using Service Interceptors to Manipulate Requests 10-7

Table 10–1 Standard Interceptors Provided by Services Gatekeeper

Interceptor Description Dependency Enforced

CheckMethodParametersFromS
LA

Enabled at installation time.

Checks and enforces the
specifications in the service provider
group and application group SLAs
with respect to the request
parameters.

Is related to the SLA
<parameterName> and
<parameterValue> elements in
<methodParameters>.

 See the discussion on service
provider groups and service level
agreements in Services Gatekeeper
Portal Developer's Guide.

CheckMethodParametersFromSLA
must be invoked after invoking:

■ FindAndValidateSLAContract

CreatePluginList Enabled at installation time.

Creates a list of plug-ins that are
capable of handling the given
request.

Populates the RequestInfo object.

See "Class: RequestInfo".

CreatePluginList must be invoked
before you invoke:

■ EnforceNodeBudget

■ EnforceSubscriberBudget

■ FilterPluginListUsingCustomMatch

■ RemoveInactivePlugin

■ RemoveInvalidRoute

■ RemoveOptional

■ RetryPlugin

■ RoundRobinPluginList

CreatePolicyData Enabled at installation time.

Creates the policy request data object
needed by other interceptors.

CreatePolicyData must be invoked
before you invoke:

■ CheckMethodParametersFromSLA

■ RemoveInvalidRoute

EnforceApplicationState Enabled at installation time.

Enforces the application state.
Verifies that the application with
which the request is related has
established a session with Services
Gatekeeper.

None

EnforceBlacklistedMethodFrom
SLA

Enabled at installation time.

Enforces the method blacklist as
specified in the service provider
group and application group SLAs.

Is related to the SLA
<blacklistedMethod> element in the
<methodAccess> element.

See the discussion on service
provider groups and service level
agreements in Services Gatekeeper
Portal Developer's Guide.

EnforceBlacklistedMethodFromSLA
must be invoked after you invoke
FindAndValidateSLAContract.

EnforceComposedBudget$1 Internal. Do not use. Not Applicable

EnforceComposedBudget$GetA
ppSLA

Internal. Do not use. Not Applicable

Understanding the Standard Interceptors

10-8 Services Gatekeeper Extension Developer's Guide

EnforceComposedBudget$GetG
eoAppSLA

Internal. Do not use. Not Applicable

EnforceComposedBudget$GetG
eoSpSLA

Internal. Do not use. Not Applicable

EnforceComposedBudget$GetS
LA

Internal. Do not use. Not Applicable

EnforceComposedBudget$GetS
pSLA

Internal. Do not use. Not Applicable

EnforceComposedBudget Enabled at installation time.

Enforces all settings on composed
service contract in both southbound
and northbound traffic.

A Composed Service contract
supports services implemented
through the composition of OCSG
communication services (for
example, SMS+Terminal
Location+....).

For more on Composed Services, see
Services Gatekeeper Portal Developer's
Guide.

None

EnforceNodeBudget Enabled at installation time.

Enforces budgets related to the global
and service provider node SLAs.

EnforceNodeBudget must be invoked
after you invoke CreatePluginList.

EnforceSpAppBudget Enabled at installation time.

Enforces the budget defined in the
service provider group SLA and
application group SLA. Is related to
the SLA <rate> element in
<methodRestrictions>.

 See the discussion on service
provider groups and service level
agreements in Services Gatekeeper
Portal Developer's Guide.

EnforceSpAppBudget must be
invoked before you invoke
EnforceNodeBudget.

EnforceSubscriberBudget Enabled at installation time.

Enforces budgets related to the
Subscriber SLAs.

EnforceSubscriberBudget must be
invoked after you invoke
CreatePluginList.

FilterPluginListUsingCustomM
atch

Enabled at installation time.

Invokes the custom match method of
each plug-in the current plug-in list.
The custom match method either
removes the plug-in from the current
plug-in list or marks it as required.

FilterPluginListUsingCustomMatch
must be invoked after you invoke
CreatePluginList.

Table 10–1 (Cont.) Standard Interceptors Provided by Services Gatekeeper

Interceptor Description Dependency Enforced

Understanding the Standard Interceptors

Using Service Interceptors to Manipulate Requests 10-9

FindAndValidateSLAContract Enabled at installation time.

Enforces the existence of application
level and service provider level SLAs
for the given request. It also verifies
that the dates given in the SLA are
current.

See the discussion on service
provider groups and service level
agreements in Services Gatekeeper
Portal Developer's Guide.

FindAndValidateSLAContract must
be invoked before you invoke
InjectValuesInRequestContextFromS
LA.

InjectValuesInRequestContextFr
omSLA

Enabled at installation time.

Adds any optional request context
attribute as specified in the service
provider group and application
group SLAs.

Is related to the SLA
<attributeName>,
<attributeValue>, and
<contextAttribute> elements in
<requestContext>.

See the discussion on service
provider groups and service level
agreements in Services Gatekeeper
Portal Developer's Guide.

InjectValuesInRequestContextFromS
LA must be invoked before you
invoke:

■ FindAndValidateSLAContract

■ ResultFilter

InjectXParametersFromRequest
Context

Enabled at installation time.

Takes tunnelled parameters from the
RequestContext and puts them in the
the SOAP header of either a request
to an application or a response to a
request from an application.

None

InvokeApplication Enabled at installation time.

Invokes the Application via the
service callback EJB. This should be
the last interceptor for an
network-triggered (mobile
originated) request.

None

InvokeNetworkNode Enabled at installation time.

Invokes the Network Node via the
service callback EJB. This is the only
interceptor for an network-triggered
(mobile terminated) request.

None

InvokePlugin Enabled at installation time.

Invokes the plug-in(s). This should
be the last interceptor for an
application-initiated (mobile
terminated) request.

InvokePlugin must be invoked after
you invoke CreatePluginList.

InvokeServiceCorrelation Enabled at installation time.

Invokes the service correlation
feature.

See "Correlating Services".

None

Table 10–1 (Cont.) Standard Interceptors Provided by Services Gatekeeper

Interceptor Description Dependency Enforced

Understanding the Standard Interceptors

10-10 Services Gatekeeper Extension Developer's Guide

NativeSMPPAddressRouting Not enabled, by default

If enabled, ensures that, for networks
having multiple SMSCs, SMS
messages sent to the same address
will be sent through the same plug-in
instance.

If NativeSMPPAddressRouting is
enabled, it must be invoked before you
invoke RoundRobinPluginList

NativeUCPAddressRouting Not enabled, by default

If enabled, ensures that messages
sent to the same address are sent to
the same SMSC.

If NativeUCPAddressRouting is
enabled, it must be invoked before you
invoke RoundRobinPluginList

RemoveInactivePlugin Enabled at installation time.

Removes any plug-in that is not
active from the current plug-in list.

RemoveInactivePlugin must be
invoked after you invoke
CreatePluginList.

RemoveInvalidRoute Enabled at installation time.

Enforces the plug-in routing logic.

RemoveInvalidRoute must be
invoked after you invoke:

■ CreatePluginList

■ CreatePolicyData

RemoveOptional Enabled at installation time.

Removes any plug-in that is marked
as optional if there is a at least one
marked as required in the current
plug-in list.

RemoveOptional must be invoked
after you invoke CreatePluginList.

ResultFilter Enabled at installation time.

Applies result filters as specified in
the service provider group and
application group SLAs.

Relates to the SLA
<resultRestriction> element.

See the discussion on service
provider groups and service level
agreements in Services Gatekeeper
Extension Developer's Guide.

ResultFilter must be invoked after you
invoke
InjectValuesInRequestContextFromS
LA.

Table 10–1 (Cont.) Standard Interceptors Provided by Services Gatekeeper

Interceptor Description Dependency Enforced

Understanding the Standard Interceptors

Using Service Interceptors to Manipulate Requests 10-11

Locating the Standard Interceptors
All the standard interceptors can be found packaged in Middleware_
home/ocsg/applications/interceptors.ear. (See Table 10–3.)

Retry Functionality for plug-ins
When a RetryPluginExeption exception is thrown during the handling of a request, a
retry is attempted among the plug-ins that were chosen based on the data provided in
the request. Retries are performed among the plug-ins in the same Services Gatekeeper
instance only.

When a plug-in throws a RetryPluginExeption, the RetryPlugin interceptor is
triggered. The RetryPlugin interceptor captures the RetryPluginExeption, removes
the plug-in that threw the exception from the list of chosen plug-ins, and calls the next
interceptor in the chain.

The different decision scenarios are described below in Table 10–2.

Note that the Subscriber Profile/LDAPv3 is the only (standard) plug-in that throws
the RetryPluginException.

RetryPlugin Enabled at installation time.

Performs retries of request. See
"Retry Functionality for plug-ins".

RetryPlugin must be invoked after
you invoke CreatePluginList.

RoundRobinPluginList Enabled at installation time.

Performs a round-robin of the list of
available plug-ins. This is not a strict
round-robin, but a function of the
number of plug-ins that match the
request and the number of
destination or target addresses in the
request. If these parameters are
consistent, a true round-robin is
performed.

RoundRobinPluginList must be
invoked after you invoke
CreatePluginList.

ValidateRequestUsingRequestF
actory

Enabled at installation time.

Validates the request using the
RequestFactory corresponding to the
type of plug-in the request is
intended for. For a description of
RequestFactory, see "Class:
RequestFactory".

None

Table 10–2 Retry Plug-in Interceptor Scenarios

Objects with which the
RequestInfo objects in
the RequestContext
are associated Action(s) Taken by RetryPlugin interceptor

PluginHolder objects
that are marked as
optional

Remove the failed RequestInfo from RequestContext and invoke
the next interceptor in the chain.

PluginHolder objects
that are marked as
required

Treat the request itself as failed. No retry is performed, and an
exception is thrown.

Table 10–1 (Cont.) Standard Interceptors Provided by Services Gatekeeper

Interceptor Description Dependency Enforced

Interceptors.ear File

10-12 Services Gatekeeper Extension Developer's Guide

Custom plug-ins can use the infrastructure for retries as provided by the RetryPlugin
interceptor. This exception should be thrown if the communication with the
underlying network node fails, or if an unexpected error is reported back from the
plug-in.

Interceptors.ear File
The interceptors.ear file is located at Middleware_home/ocsg/applications.

File Contents
Table 10–3 describes the contents of the top-level of the multi-level folder in the
interceptors.ear file.

Maintaining Interceptor Data Integrity
If you deploy a new interceptor, you need to update the interceptors.ear file to
support the functionality for your custom interceptor.

At all times when you do so, be sure to maintain the general structure shown in
Table 10–3. The following data must not be changed:

■ Data listed in Table 10–3 as not be changed or removed.

■ /APP-INF/classes/com/bea/wlcp/wlng/interceptor/deploy: (Infrastructure for the
interceptor functionality.)

■ /APP-INF/classes/com/bea/wlcp/wlng/interceptor/util

Table 10–3 Contents of interceptor.ear File

Folder Name/File Name Content

APP-INF A multi-level folder which contains information about the
applications.

■ classes: A multi-level folder where the sub-folder
/APP-INF/classes/com/bea/wlcp/wlng/interceptor
contains the standard interceptor classes.

■ config.xml: Interceptor configuration file. See
"Config.xml File".

■ config.xsd: Schema for config.xml.

dummy.war Empty WAR file. Present in order to deploy the interceptors.

Do not remove or change this file.

META-INF This folder contains the following files:

■ application.xml: Deployment descriptor.

■ MANIFEST.MF: Manifest file for the interceptor
infrastructure.

■ weblogic-application.xml: WebLogic extensions to
application.xml.

Do not edit or remove the contents of META-INF.

WEB-INF For internal use.

Do not edit or remove its contents.

Interceptors.ear File

Using Service Interceptors to Manipulate Requests 10-13

Location for All Standard Interceptor Classes
All standard interceptors provided with Services Gatekeeper (and described in
Table 10–1) are located in /APP-INF/classes/com/bea/wlcp/wlng/interceptor/.

Config.xml File
The config.xml located at /interceptors/APP-INF/classes displays the standard
interceptors that are currently enabled in Services Gatekeeper.

To access this file, expand the compressed Middleware_
home/ocsg/applications/interceptors.ear to a folder at a suitable location. It would be
good practice to create and store a backup of the original config.xml file to keep the
base version that was provided at installation time.

Elements in Config.xml
Table 10–4 describes the structure of config.xml.

Standard Interceptors in the MT_NORTH Section
The standard interceptors found in the MT_NORTH section of the default
configuration file are listed here for your convenience. Note that InvokePlugin (with
the fully classified name com.bea.wlcp.wlng.interceptor.InvokePlugin) is the last
interceptor in this section.

Example 10–1 MT_NORTH Position Interceptors

<position name="MT_NORTH">
 <interceptor class="com.bea.wlcp.wlng.interceptor.ValidateRequestUsingRequestFactory" index="100"
/>

Table 10–4 Description of Interceptor Configuration File

Element Description

<interceptor-config> Main element. Contains zero or more <position> elements.

<position> The <position> element separates the interceptors according to
the following four attributes.

■ MT_NORTH: This position name indicates that all
<interceptor> elements encapsulated by this element are
valid for application-initiated (mobile terminated)
requests.

■ MO_NORTH: This position name indicates that all
<interceptor> elements encapsulated by this element are
valid for network-triggered (mobile originated) requests.

■ MO_SOUTH: Currently, the interceptors listed for MO_SOUTH
attribute are internal to Services Gatekeeper. They should
not be altered in anyway.

■ MT_SOUTH: Currently, the interceptors listed for MO_SOUTH
attribute are internal to Services Gatekeeper. They should
not be altered in anyway.

<interceptor> Has the following attributes:

■ class: The class attribute identifies the class for the
interceptor implementation.

■ index: The index attribute indicates the invocation order
relative to other interceptors within the same <position>
element. The order is ascending. The index value must be
unique within the same <position> element.

Interceptors.ear File

10-14 Services Gatekeeper Extension Developer's Guide

 <interceptor class="com.bea.wlcp.wlng.interceptor.EnforceApplicationState" index="200" />
 <interceptor class="com.bea.wlcp.wlng.interceptor.EnforceSpAppBudget" index="300" />
 <interceptor class="com.bea.wlcp.wlng.interceptor.EnforceComposedBudget" index="350" />
 <interceptor class="com.bea.wlcp.wlng.interceptor.CreatePluginList" index="400" />
 <interceptor class="com.bea.wlcp.wlng.interceptor.RemoveInactivePlugin" index="500" />
 <interceptor class="com.bea.wlcp.wlng.interceptor.CreatePolicyData" index="600" />
 <interceptor class="com.bea.wlcp.wlng.interceptor.RemoveInvalidRoute" index="700" />
 <interceptor class="com.bea.wlcp.wlng.interceptor.FilterPluginListUsingCustomMatch" index="800"
/>
 <interceptor class="com.bea.wlcp.wlng.interceptor.RemoveOptional" index="900" />
 <interceptor class="com.bea.wlcp.wlng.interceptor.RoundRobinPluginList" index="1000" />
 <interceptor class="com.bea.wlcp.wlng.interceptor.InvokeServiceCorrelation" index="1100" />
 <interceptor class="com.bea.wlcp.wlng.interceptor.FindAndValidateSLAContract" index="1200" />
 <interceptor class="com.bea.wlcp.wlng.interceptor.CheckMethodParametersFromSLA" index="1300" />
 <interceptor class="com.bea.wlcp.wlng.interceptor.EnforceBlacklistedMethodFromSLA" index="1400"
/>
 <interceptor class="com.bea.wlcp.wlng.interceptor.InjectValuesInRequestContextFromSLA"
index="1500" />
 <interceptor class="com.bea.wlcp.wlng.interceptor.ResultFilter" index="1600" />
- <!-- <interceptor class="com.bea.wlcp.wlng.interceptor.EvaluateILOGPolicy" index="1700"/>
 -->
 <interceptor class="com.bea.wlcp.wlng.interceptor.InjectXParametersFromRequestContext"
index="1800" />
 <interceptor class="com.bea.wlcp.wlng.interceptor.RetryPlugin" index="1900" />
 <interceptor class="com.bea.wlcp.wlng.interceptor.EnforceNodeBudget" index="2000" />
 <interceptor class="com.bea.wlcp.wlng.interceptor.EnforceSubscriberBudget" index="2100" />
 <interceptor class="com.bea.wlcp.wlng.interceptor.InvokePlugin" index="2200" />
 </position>

Standard Interceptors in the MO_NORTH Section
The standard interceptors found in the MO_NORTH section of the default
configuration file are listed here for your convenience. Note that InvokeApplication
with the fully classified name com.bea.wlcp.wlng.interceptor.InvokeApplication is
the last interceptor in this section.

Example 10–2 MO_NORTH Position Interceptors

<position name="MO_NORTH">
 <interceptor class="com.bea.wlcp.wlng.interceptor.EnforceApplicationState" index="100" />
 <interceptor class="com.bea.wlcp.wlng.interceptor.InvokeServiceCorrelation" index="200" />
 <interceptor class="com.bea.wlcp.wlng.interceptor.FindAndValidateSLAContract" index="300" />
 <interceptor class="com.bea.wlcp.wlng.interceptor.CreatePolicyData" index="400" />
 <interceptor class="com.bea.wlcp.wlng.interceptor.CheckMethodParametersFromSLA" index="500" />
 <interceptor class="com.bea.wlcp.wlng.interceptor.InjectValuesInRequestContextFromSLA"
index="600" />
- <!-- <interceptor class="com.bea.wlcp.wlng.interceptor.EvaluateILOGPolicy" index="700"/>
 -->
 <interceptor class="com.bea.wlcp.wlng.interceptor.InjectXParametersFromRequestContext"
index="800" />
 <interceptor class="com.bea.wlcp.wlng.interceptor.InvokeApplication" index="900" />
 </position>

Standard Interceptors in the MO_SOUTH Section
The standard interceptors found in the MO_SOUTH position of the default
configuration file are listed here for your convenience. The last interceptor in this
section is InvokeApplication with the fully classified name
com.bea.wlcp.wlng.interceptor.InvokeApplication.

Creating and Using Custom Interceptors

Using Service Interceptors to Manipulate Requests 10-15

Currently, the interceptors listed for MO_SOUTH are internal to Services Gatekeeper.
They should not be altered in anyway.

Example 10–3 MO_SOUTH Position Interceptors

 <position name="MO_SOUTH">
 <interceptor class="com.bea.wlcp.wlng.interceptor.CreatePluginList" index="100" />
 <interceptor class="com.bea.wlcp.wlng.interceptor.RemoveInactivePlugin" index="200" />
 <interceptor class="com.bea.wlcp.wlng.interceptor.FilterPluginListUsingCustomMatch" index="300"
/>
 <interceptor class="com.bea.wlcp.wlng.interceptor.RemoveOptional" index="400" />
 <interceptor class="com.bea.wlcp.wlng.interceptor.RoundRobinPluginList" index="500" />
 <interceptor class="com.bea.wlcp.wlng.interceptor.RetryPlugin" index="600" />
 <interceptor class="com.bea.wlcp.wlng.interceptor.InvokePlugin" index="700" />
 </position>

Standard Interceptors in the MT_SOUTH Section
Only one standard interceptor is found in the MT_SOUTH position of the default
configuration file and is listed here for your convenience.

Currently, the interceptors listed for MT_SOUTH are internal to Services Gatekeeper.
They should not be altered in anyway.

Example 10–4 MT_SOUTH Position Interceptor

<position name="MT_SOUTH">
 <interceptor class="com.bea.wlcp.wlng.interceptor.InvokeNetworkNode" index="100" />
 </position>

Creating and Using Custom Interceptors
This section describes how you can develop and deploy custom interceptors to modify
the handling of requests using the existing Services Gatekeeper software. The custom
interceptors are developed using the Introspection method.

Understanding Custom Interceptors
Custom interceptors, as their name suggests, are tailored to the individual needs of
each application. This section describes the points to keep in mind when you develop
custom interceptors.

How to Provide Your Custom Interceptors
When you create a custom interceptor, you need to package it in an EAR file to enable
Services Gatekeeper to use it.

You can set up your custom interceptor in one of two ways:

■ Develop and deploy your custom interceptor in the common
/applications/interceptors.ear file. This method is described in "Using the Default
EAR File to Add a Custom Interceptor".

■ Develop and deploy your custom interceptor in a separate EAR file. This method
is described in "Using a Custom EAR File to Add a Custom Interceptor".

For each method, the description focuses on the creation of a single custom interceptor.
In practice you can create as many interceptors as you require.

Creating and Using Custom Interceptors

10-16 Services Gatekeeper Extension Developer's Guide

Required Packages, Interfaces and Methods
Determine and provide the required and relevant Java (or other) packages for your
custom interceptor.

For example, all the classes necessary for SampleInterceptor in Example 10–5 are
available in the package:

com.bea.wlcp.wlng.api.interceptor located in Middleware_home/ocsg_
pds/lib/api/wlng.jar.

You can find all publicly available classes in the “All Classes” section of the Services
Gatekeeper Java API Reference.

Creating a Backup
It would be good practice to create the necessary backups of the current configuration
before you embark on any changes to the current setup.

For example, you should create a backup of the current version of the
/applications/interceptors.ear file located at Middleware_home/ocsg/applications and
store it in a desired location.

On Customer Interceptor Implementation
Note the following points about a custom interceptor:

■ Application: The interceptor that you create can be placed in any type of JavaEE or
WebLogic application.

■ Interface to implement: Your custom interceptor must implement the interface
com.bea.wlcp.wlng.api.interceptor.Interceptor.

■ Override: Your custom interceptor must override the invoke method of that
interface. See Example 10–5 and Example 10–6.

■ Actions: The logic in your custom interceptor depends on what it needs to do:

– Some interceptors contain logic that results in a decision that may affect the
request flow. (See Example 10–5). For decisions, see "Specifying a Destination
for the Request".

– Other interceptors serve additional functions. For example, the custom
interceptor ExtractXParamExample in Example 10–6 retrieves the context data
in the RequestContext object for a specific type of request.

■ Registration: A custom interceptor can be registered or unregistered when the
status of that application changes. The information used to register a custom
interceptor must be synchronized with the existing data for interceptors in
Services Gatekeeper.

■ Index value: The index value used to register the interceptor should be unique
with respect to the entries in the config.xml file of /applications/interceptors.ear
file and other custom interceptors.

A collision will occur if more than one interceptor is registered with the same
index value, In such a situation, only the last interceptor to register at the index
will be executed. The other interceptor(s) with that index value will be
overwritten.

■ Positioning with respect to RetryPlugin: Where you position your custom
interceptor with respect to RetryPlugin will determine whether your custom
interceptor is invoked once or more for a request:

Creating and Using Custom Interceptors

Using Service Interceptors to Manipulate Requests 10-17

– Before RetryPlugin: If you add your custom interceptor before the
RetryPlugin interceptor, your custom interceptor will be triggered only once
for the request.

– After RetryPlugin: If you add your custom interceptor after RetryPlugin,
your custom interceptor will be triggered once for every plug-in that is
attempted.

Note that the Subscriber Profile/LDAPv3 is the only (standard) plug-in which
throws the RetryPluginException. If you have a custom plug-in which throws
RetryPluginException, place your custom interceptor after RetryPlugin
interceptor if your custom interceptor should be invoked for each "tried"
plug-in instance.

For more information, see "Retry Functionality for plug-ins".

■ Request Flow: A custom interceptor is responsible for invoking the next
interceptor in the chain by using the invokeNext method. See Example 10–5 and
Example 10–6.

■ Thread safety: It must be thread-safe.

■ Debugging: Log statements at the debug level enable you to debug your custom
interceptor. These statements will be needed to turn on the logging mechanism
when you wish to debug your code.

Testing the Custom Interceptor
The Platform Test Environment (PTE) can be used to test your custom interceptor
before you use it in a production environment. For more information, see Services
Gatekeeper Platform Test Environment User's Guide.

Understanding the Example Interceptors
Two example interceptors are provided for your reference. In the first example, the
custom interceptor makes some decisions, while the second shows how context data
can be extracted from the RequestContext object.

For information on RequestContext, see "Interface: RequestContext".

You can find additional interceptor examples on the Oracle Learning Library (OLL)
website at:

https://apex.oracle.com/pls/apex/f?p=44785:24:0::NO:24:P24_CONTENT_ID,P24_
PREV_PAGE:9578,29

General Example
This example shows the structure of a simple interceptor designed to make some
decisions on a request. The code will require logic to determine the value for decision
and for the ReturnValue object.

Example 10–5 General interceptor

import com.bea.wlcp.wlng.api.interceptor.Interceptor;

public class SampleInterceptor implements Interceptor {
private final int ABORT = 0;
private final int RETURN = 1;

public Object invoke(Context ctx) throws Exception {
int decision = // Logic that evaluates the request and makes a decision.

Creating and Using Custom Interceptors

10-18 Services Gatekeeper Extension Developer's Guide

if (decision == ABORT) {
throw new Exception();

} else if (decision == RETURN) {
Object returnValue = // Define a returnValue here if desired.
return returnValue;

} else {
Object returnValue = ctx.invokeNext(this);
// Define a new returnValue here if desired, for example for aliasing.
return returnValue;

}
}

}

Interceptor that Extracts Context Data from RequestContext
The following example interceptor extracts some of the arguments present in the
RequestContext data object. For more on the data in RequestContext that can be
modified by a custom interceptor, see "Data Available for Modification".

As the code shows, the interceptor intercepts and retrieves the RequestContext data
associated with SendSms requests only.

Example 10–6 Custom Interceptor to Extract Data from RequestContext Object

package com.bea.wlcp.wlng.interceptor;

// Provide all the Required Interfaces/Classes. This example imports:
// Java API for Method;
// Context, the parameter passed to Invoke;
// the Interface Interceptor;
// the package which contains the required Plugin;
// the package which contains the required RequestContext;

import java.lang.reflect.Method;
import org.apache.log4j.Logger;
import com.bea.wlcp.wlng.api.interceptor.Context;
import com.bea.wlcp.wlng.api.interceptor.Interceptor;
import com.bea.wlcp.wlng.api.plugin.Plugin;
import com.bea.wlcp.wlng.api.plugin.context.RequestContext;

// Example Interceptor implements Interface Interceptor
public class ExtractXParamExample implements Interceptor {

// Create a log object for ExtractXParamExample
private Logger logger = Logger.getLogger(ExtractXParamExample.class);

// Define the tag and the value that must be extracted.
public static final String TLV_OPTIONAL_INT_PARAM_TAGS =

"smpp_optional_int_tlv_param_tags";
public static final String TLV_OPTIONAL_INT_PARAM_VALUES =

"smpp_optional_int_tlv_param_values";

// Method Override
@Override

// Implement the invoke method of interceptor inteface
public Object invoke(Context ctx) throws Exception {

Creating and Using Custom Interceptors

Using Service Interceptors to Manipulate Requests 10-19

Object[] args = ctx.getArguments();

// Retrieve a class object corresponding to the Plugin type
Class<? extends Plugin> pluginType = ctx.getType();

// Retrieve the name of the method used
Method calledMethod = ctx.getMethod();

// Check to see if the method is "SendSms" with the appropriate plugin
// If it is not what we’re looking for, do nothing
// If it is Send Sms,
// Call extractTLVXParameters to retrieve contents of RequestContext object

if (pluginType.getName().equals(
 "com.bea.wlcp.wlng.px21.plugin.SendSmsPlugin")&&

calledMethod.getName().equals("sendSms")) {
extractTLVXParameters(ctx, args[0]);

}

// All done. invokeNext must be called here.
 return ctx.invokeNext(this);

}

private void extractTLVXParameters(Context ctx, Object arg) {

 RequestContext rctx = ctx.getRequestContext();
 logger.info("Extracted XParams for: " +

TLV_OPTIONAL_INT_PARAM_TAGS +"::"+
rctx.getXParam(TLV_OPTIONAL_INT_PARAM_TAGS)+

 " and: " + TLV_OPTIONAL_INT_PARAM_VALUES+"::"
+rctx.getXParam(TLV_OPTIONAL_INT_PARAM_VALUES));

}

}

Interceptor that Functions as a Black List for SMSs
This pseudo code illustrates how to check whether an SMS from the class
org.csapi.schema.parlayx.sms.send.v2_2.local.SendSms contains the word
“bomb” and if so, rejects it.

Example 10–7 Interceptor that Rejects all SMSs with the Word “Bomb”

// keyword blacklist
if (message.toUpperCase().indexOf("BOMB") > -1) {
 throw new Exception("Blacklisted keyword found in message");
}

Interceptor that Replaces a Word with a Variable String in an SMS
This pseudo code searches each SMS from org.csapi.schema.parlayx.sms.send.v2_
2.local.SendSms for the word "weather" and replaces it with the string defined for the
variable WX_MSG.

Example 10–8 Replaces a the word “Weather” With a Variable String

 // short codes
Class c = ctx.getArguments()[0];

Creating and Using Custom Interceptors

10-20 Services Gatekeeper Extension Developer's Guide

if ((c.getName().equals("org.csapi.schema.parlayx.sms.send.v2_2.local.SendSms"))
&& (message.indexOf("WEATHER") > -1)) {

 System.out.println("changing shortcode: " + message);
 Method mm = c.getMethod("setMessage", new String().getClass());
 mm.invoke(argz[i], WX_MSG);
}

Using the Default EAR File to Add a Custom Interceptor
This section describes how you can develop custom interceptors for use with the
default interceptors.ear file. See "Interceptors.ear File" for information about this file.

Developing the Custom Interceptor for Deployment
Use the Platform Development Studio wizard to create custom service interceptors.
See "Creating Extensions with Platform Development Studio Wizard" for information
on using the PDS Wizard.

Artifacts for a Custom Interceptor Module
When you use the wizard to create the skeleton of an interceptor module, the wizard
generates the following artifacts:

■ build.xml:

This is the build file used to build all the interceptor modules and to package them
into a single EAR file for deployment.

■ build.properties

This is the properties file required by the Apache Ant process to build the module.

■ common.xml

This file defines the common properties used by the module, such as environment
variables, WebLogic library path, and so on.

■ CustomizedApplicationLifecycleListener.java

This is an implementation of the WebLogic ApplicationLifecycleListener used to
manage the module life cycle.

■ InterceptorXXX.java

This is your interceptor implementation, where XXX is the name that you assign
to the interceptor in the wizard.

Generating a Custom Interceptor Module
See "Generating an Interceptor Module" for information on generating a custom
interceptor using the custom interceptor PDS wizard.

Deploying Custom Interceptors
Use the following procedure to deploy your custom interceptor:

1. Expand the /applications/interceptors.ear file and review its contents to determine
the location for your new interceptor. If necessary, create a backup file at a desired
location.

Creating and Using Custom Interceptors

Using Service Interceptors to Manipulate Requests 10-21

2. Create the necessary customer interceptor class, (for
example, MyCustomEnforceThis.class). For details, see "On Customer Interceptor
Implementation".

3. Update the config.xml file. Position the interceptor in the appropriate <position>
section(s). See "Updating the Config.xml File".

4. Verify the changes to the invocation order in config.xml. See "Updating the
Config.xml File".

5. Repackage the interceptors.ear file. See "Rebuilding the Interceptors.ear File".

Updating the Config.xml File
This section describes how to update the config.xml file to provide the desired
invocation order for the interceptors. See "Config.xml File" for a description of the file.

Creating a Backup of the Current Config.xml
To change the order in the interceptor configuration file, always use the current
interceptors.ear file deployed on the Administration Server.

As a general rule, before you proceed with any changes to config.xml, be sure to back
up that file in a secure location and using a different name, for example, config.xml_
backup_as_of_May252013.

Adding the Custom Interceptor to the Current Chain
To add your custom interceptor to the interceptor chain:

1. Access the config.xml file.

2. Add the entry/entries for the custom interceptor(s).

For every new custom interceptor, a <interceptor> element with the attribute
class referring to the entry point of the interceptor and a numeric value in the
attribute index that corresponds to the location in the interceptor invocation chain
should be present. Ensure that:

■ The entry for the interceptor is placed in the required <Position name=...>
block(s).

■ The <class=...> attribute names the required class.

■ The <index=...> attribute contains a value that is appropriate and unique to
the specific section.

For example, if the interceptor main class is com.acompany.interceptor.DoStuff, and
the chosen index value is 1150, the corresponding entry in
/APP-INF/classes/config.xml would be

<interceptor class="com.acompany.interceptor.DoStuff" index="1150"/>

3. Save the config.xml file.

Rearranging the Invocation Order
To rearrange the invocation order for an interceptor chain:

1. Access the config.xml file.

2. Edit the config.xml file and change the index attribute for the appropriate
<interceptor> element if necessary. Ensure that the new value is appropriate and
unique within that <position> element.

Creating and Using Custom Interceptors

10-22 Services Gatekeeper Extension Developer's Guide

3. Save the config.xml.

Excluding an Interceptor from the chain
To exclude an interceptor element from an interceptor chain:

1. Access the config.xml file.

2. Edit the config.xml file and comment out the specific <interceptor> element(s).

3. Save the config.xml.

Rebuilding the Interceptors.ear File
To re-build the common interceptors.ear file:

1. Build the class file for the custom interceptor module using the artifacts generated
by the PDS wizard.

2. Place the class file for the interceptor in the appropriate location where the other
standard interceptors are located.

■ For example, an installation maintains the default settings provided by
Services Gatekeeper at installation time. In such a scenario, the main class for
the interceptor would be com.bea.wlcp.wlng.interceptor. All the standard
interceptors would be located in /APP-INF/classes/.

■ If for example, the main class for your custom interceptor is
com.mycompany.interceptor.DoStuff, place DoStuff.class in
/APP-INF/classes/com/mycompany/interceptor.

3. Repackage the EAR file, making sure that you maintain the original structure of
common interceptors.ear file. See "Maintaining Interceptor Data Integrity".

Re-deploying Common Interceptors. ear File
Use standard WebLogic procedures to redeploy the application interceptor.ear to all
servers in the network tier cluster from the Administration server. For more
information on re-deploying applications on Oracle WebLogic Server, see the
description in Developing Applications with WebLogic Server.

Using a Custom EAR File to Add a Custom Interceptor
This section describes how you can provide a custom EAR file for use with your
custom interceptor.

Points to Note
If you use a custom EAR file for your custom interceptor:

■ A custom interceptor meant for use with a custom EAR file should not be included
in the config.xml file in the common interceptors.ear file.

■ When providing index values for your custom interceptor, maintain the order for
the indexes used in the current config.xml in the common interceptors.ear file.

■ Do not modify config.xml, the standard configuration file in Services Gatekeeper
(and located in interceptors.ear). Services Gatekeeper will continue to use the
default interceptors in that config.xml file.

■ If, currently, there is no custom EAR file:

– An alternate listener class must be provided to take over the registration
process for your custom interceptor at server startup and restart events. See

Creating and Using Custom Interceptors

Using Service Interceptors to Manipulate Requests 10-23

"Creating a Custom Listener".

– A custom EAR file must be built. See "Building a Custom EAR File".

■ If a custom EAR file exists, update that EAR file appropriately. This is described
under "Updating an Existing Custom EAR to Add Custom Interceptors".

■ The custom interceptors can be placed in a JavaEE or WebLogic application.
Ensure that the registration process handles these interceptors appropriately.

Steps to Build a Custom EAR for Use with a Custom Interceptor
To provide a separate EAR file for your custom interceptor:

1. Create the necessary customer interceptor class, (for
example, MyCustomEnforceThis.class). See "On Customer Interceptor
Implementation".

2. Create a listener to register the custom interceptor. (For
example, MyCustomListener.class).

3. Set up the registration process to handle the registration of the
MyCustomEnforceThis.class custom interceptor.

4. Build a Custom EAR file (for example, MyCustomEar.ear) which will be the active
EAR in your deployment.

Information Needed to Register Custom Interceptors
The following information is necessary to register your custom interceptor and enable
it in Services Gatekeeper:

■ The fully qualified name for your custom interceptor

■ Its position in the request flow associated with the <position> element seen in
config.xml, (for example, MT_NORTH and/or MT_SOUTH)

■ The exact point in the invocation order, specified as the value for the index
attribute. See Table 10–4.

Place this information (for example, as an XML file) in the custom ear to be parsed and
used for the registration.

Synchronizing with Invocation Order in Config.xml
Check to make sure that the index values used to set up the invocation point(s) for
your custom interceptors maintain the general order for the indexes currently used in
config.xml in the common interceptors.ear file.

Creating a Custom Listener
By default, Services Gatekeeper employs InterceptorListener to automatically register
the standard interceptors in the common interceptors.ear file. It does this when the
Administration Server starts (or when it restarts after a status change).

If this is the first time a custom EAR will be used for a custom interceptor, you need to
create a custom listener for your custom interceptor. The custom listener that you
create must do the work done by the standard InterceptorListener for the standard
interceptors.

Creating and Using Custom Interceptors

10-24 Services Gatekeeper Extension Developer's Guide

Implementing ApplicationLifecycleListener
In order to create such a custom listener, (for example, MyCustomListener.class),
implement weblogic.application.ApplicationLifecycleListener. For more information
on ApplicationLifecycleListener, see:

 http://download.oracle.com/docs/cd/E11035_
01/wls100/javadocs/weblogic/application/ApplicationLifecycleListener.html

Note that, the ApplicationLifecycleListener interface is only used with reference to
the application state and not with reference to the state of the WebLogic server.

Ensure that, MyCustomListener.class is called whenever there is a change in
myCustomEar.ear application status. When it is called, MyCustomListener.class must
complete the registration process for your custom interceptors.

The Registration Process
You can select to hard-code the information necessary to register your interceptors or
use the InterceptorManager interface.

Hard-coding the Information
If you have a limited set of custom interceptors, and their behavior may not often be
changed, you can hard-code this information in MyCustomListener.class.

Providing a Data File for Registration
If you plan to use the InterceptorManager interface, create a data file that will contain
the information necessary to register the custom interceptor as described in
"Information Needed to Register Custom Interceptors"). This data (the position, and
index information for each custom interceptor) will be used by MyCustomListener.class
in the register method described below.

Registering (and unregistering) Your Custom Interceptors
If you are not hard-coding the registration information, ensure that you have the
external data file necessary to parse and register your interceptors.

Use the register or unregister method in the InterceptorManager interface in your
custom listener (MyCustomListener) to register/unregister your custom interceptor.

Note that:

■ Retrieve the using the getInstance method in
com.bea.wlcp.wlng.api.interceptor.InterceptorManagerFactory. They are:

■ The InterceptorManager interface handles the registration, unregistration and
invocation of the interceptors. Use the following methods in this interface:

– register: The register method should be called in the postStart callback
when the application has been started.

– unregister: The unregister method should be called in the preStop callback
when the application is being stopped.

– update: The update method must be invoked immediately following register
or unregister to activate the changes caused by each method.

Note that, unless update is called, the changes will not take effect.

Example
Example 10–9 shows an example of how to register an interceptor manually.

Creating and Using Custom Interceptors

Using Service Interceptors to Manipulate Requests 10-25

Example 10–9 Registering an interceptor

// Get Interceptor manager
InterceptorManager im = InterceptorManagerFactory.getInstance();

// Register the custom MyCustomEnforceThis interceptor
im.register(MyCustomEnforceThis, InterceptionPoint.MT_NORTH.MT_NORTH, myIndex);

// Changes do not take effect until update() is called
im.update();

Building a Custom EAR File
Build your custom EAR file, (for example, myCustomEar.ear), with the necessary
elements. The structure of the common interceptors.ear file has been described in "File
Contents".

Example 10–10 shows the structure:

Example 10–10 Example Structure for Custom EAR File

/APP-INF
+--/lib/name_your_jar.jar
/META-INF
+--application.xml
+--weblogic-application.xml
+--MANIFEST.MF

Contents of META-INF/weblogic-application.xml
The META-INF/weblogic-application.xml file should contain the fully qualified class
name for your implementation of weblogic.application.ApplicationLifecycleListener.
Here is an example:

Example 10–11 Custom META-INF/weblogic-application.xml

<?xml version='1.0' encoding='UTF-8'?>
<weblogic-application xmlns="http://www.bea.com/ns/weblogic/90"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <listener>

<listener-class>weblogic.application.ApplicationLifecycleListener.MyCustomListener
</listener-class>
 </listener>
</weblogic-application>

Contents of META-INF/application.xml
The META-INF/application.xml file should specify the contents of the custom EAR.
Here is an example:

Example 10–12 Custom META-INF/application.xml

<?xml version='1.0' encoding='UTF-8'?>
<application xmlns="http://java.sun.com/xml/ns/j2ee"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" version="1.4">
 <display-name>myCustomEAR</display-name>
 <module>
 <java>name_of_my_jar.jar</java>

Customizing the Interceptor Chain for a Communication Service

10-26 Services Gatekeeper Extension Developer's Guide

 </module>
</application>

Deploying Your Custom EAR File
If you deploy custom interceptors in a custom EAR file, always deploy the EAR file
using the Administration Server and use standard WebLogic procedures to deploy the
application to all servers in the cluster from the Administration Server.

For more information, see Oracle WebLogic Server Documentation at
http://www.oracle.com/technetwork/indexes/documentation/index.html

Updating an Existing Custom EAR to Add Custom Interceptors
If a custom EAR file exists in Services Gatekeeper,

1. Access that custom EAR file and review its contents. Before you update this file,
create a backup in a safe location.

2. Create the necessary customer interceptor class, (for
example, MyCustomEnforceThisToo.class). For details, see "On Customer Interceptor
Implementation".

3. Ensure that you have the information necessary to register your custom
interceptor and that the index value(s) are synchronized appropriately. For details,
see "Information Needed to Register Custom Interceptors".

4. Check the existing custom listener to see whether the registration information
currently in use was hard-coded in the custom listener or provided in a data file.
(See the discussion under "Creating a Custom Listener".

5. Ensure that the new registration information is made available to that custom
listener in the same way. (See the discussion under "The Registration Process".

6. Rebuild the custom EAR file making sure that you preserve its structure. (See the
discussion under "Building a Custom EAR File".

Customizing the Interceptor Chain for a Communication Service
This section describes how interceptor chains can be customized for a specific
communication service. Interceptor rules can be used to define which interceptors are
used based on communication service.

The Services Gatekeeper Plug-in Manager retrieves a list of all eligible interceptors
when an initial service request is received. The Plug-in Manager references an internal
interceptor rule configuration and removes disabled interceptors for subsequent
requests. The customized interceptor chain is then stored in cache so future requests to
the same communication service are handed off automatically to the custom
interceptor chain.

The interceptor rule configuration is stored in the Services Gatekeeper database and
loaded into cache at initial startup. Changes to the configuration will result in a flush
of the cached interceptor chains. Subsequent requests then trigger Services Gatekeeper
to refresh the cached rule configuration from the database.

Available interceptors in Services Gatekeeper are determined by the config.xml file
located in the interceptors.ear file. See "Interceptors.ear File" for information on
configuring available interceptors, including custom interceptors.

Customizing the Interceptor Chain for a Communication Service

Using Service Interceptors to Manipulate Requests 10-27

Managing Custom Interceptor Filter Rules
To create a custom interceptor rule, create an XML file based on the
interceptorRule.xsd file located in the middleware_
home/ocsg/modules/com.bea.wlcp.wlng.plugin.mngr_6.0.0.0.jar. The Plug-in Manager
MBean is used to create, edit and delete interceptor rule configuration.

This MBean can be accessed from a variety of interfaces including the WebLogic
Administration Console, the Platform Test Environment (PTE) or by using the
WebLogic Scripting Tool (WLST).

For information on using the WebLogic Administration Console and WSLT, see the
Operation and Maintenance chapter in Services Gatekeeper System Administrator's Guide.

For information on using the PTE with the Plug-in Manager Mbean, see “Configuring
communication services by Changing MBean Attributes and Operations” in Services
Gatekeeper Platform Test Environment User's Guide.

Interceptor Rule Parameters
The default interceptor configuration is provided in the interceptorRule.xml file
located in the com.bea.wlcp.wlng.plugin.mngr_6.0.0.0.jar. When a new Services
Gatekeeper domain is created this configuration is used. Interceptors not included in
the configuration file are enabled by default.

Use the Mbean operations available in the Administrator Console to edit the
configuration. See "Summary of Tasks Related to Interceptors" for more information.

Interceptor rules contain the elements listed in Table 10–5.

Example 10–13 contains an interceptor rule configuration file that performs the
following:

■ Applies the rule configuration to all parlayrest plug-ins by using a wildcard:

– packageName is set to ..*$

■ Enables the standard Services Gatekeeper interceptors for the MT_NORTH
interceptor for all parlayrest plug-ins:

– interceptorPoint is set to MT_NORTH

Table 10–5 Interceptor Rule Elements

Name Type Description

packageName string The plug-in for the communication service for which
the rule is to be valid for. Regular expressions can be
used in the package name to specify more than one
package.

methodName string The method for which the rule is to be valid for.
Regular expressions can be used in the method name
to specify more than one method.

interceptorPoint tns:InterceptorPoint The topological system location in Services
Gatekeeper where the interceptor chain is applied
(MT_NORTH, MT_SOUTH, MO_NORTH or MO_
SOUTH.

interceptorNam
e

string The interceptor for which the rule applies. Multiple
interceptors can be included if each is enclosed in the
<interceptorName> tag.

enable boolean Boolean indicating if the interceptor(s) listed should
be enabled or disabled in the rule.

Customizing the Interceptor Chain for a Communication Service

10-28 Services Gatekeeper Extension Developer's Guide

– interceptorName lists the standard interceptors included in the rule

– enable is set to true allowing all the listed interceptors to run

■ Disables the MT_NORTH OAuth 2.0 interceptor using a second rule

Example 10–13 Sample interceptorRule.xml Configuration File

<?xml version="1.0" encoding="UTF-8"?>
<tns:interceptorConfig xmlns:tns=
 "http://ocsg.oracle/plugin/xsd/interceptorRule"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://ocsg.oracle/plugin/xsd/interceptorRule
interceptorRule.xsd ">
 <!-- following are retrieved from ServiceType.java
oracle.ocsg.parlayrest.plugin.MmsPlugin
oracle.ocsg.parlayrest.callback.MessageNotificationCallback
oracle.ocsg.parlayrest.plugin.PaymentPlugin
oracle.ocsg.parlayrest.plugin.ParlayRestSmsPlugin
oracle.ocsg.parlayrest.callback.ClientSmsNotificationCallback
oracle.ocsg.parlayrest.plugin.TerminalLocationPlugin
 -->
 <tns:interceptorRule>
 <tns:packageName>^oracle\.ocsg\.parlayrest\.plugin\..*$</tns:packageName>
 <tns:methodName>^.*$</tns:methodName>
 <tns:interceptorPoint>MT_NORTH</tns:interceptorPoint>

<tns:interceptorName>com.bea.wlcp.wlng.interceptor.EnforceApplicationState</tns:in
terceptorName>

<tns:interceptorName>com.bea.wlcp.wlng.interceptor.EnforceSpAppBudget</tns:interce
ptorName>

<tns:interceptorName>com.bea.wlcp.wlng.interceptor.EnforceComposedBudget</tns:inte
rceptorName>

<tns:interceptorName>com.bea.wlcp.wlng.interceptor.FindAndValidateSLAContract</tns
:interceptorName>

<tns:interceptorName>com.bea.wlcp.wlng.interceptor.CheckMethodParametersFromSLA</t
ns:interceptorName>

<tns:interceptorName>com.bea.wlcp.wlng.interceptor.EnforceBlacklistedMethodFromSLA
</tns:interceptorName>

<tns:interceptorName>com.bea.wlcp.wlng.interceptor.InjectValuesInRequestContextFro
mSLA</tns:interceptorName>

<tns:interceptorName>com.bea.wlcp.wlng.interceptor.EnforceNodeBudget</tns:intercep
torName>

<tns:interceptorName>com.bea.wlcp.wlng.interceptor.EnforceSubscriberBudget</tns:in
terceptorName>
 <tns:enable>true</tns:enable>
 </tns:interceptorRule>

 <tns:interceptorRule>

 <!-- Enable/disable OAuth2 interceptor -->
 <tns:interceptorRule>
 <tns:packageName>^.*$</tns:packageName>

Customizing the Interceptor Chain for a Communication Service

Using Service Interceptors to Manipulate Requests 10-29

 <tns:methodName>^.*$</tns:methodName>
 <tns:interceptorPoint>MT_NORTH</tns:interceptorPoint>

<tns:interceptorName>oracle.ocsg.oauth2.interceptor.OAuth2Interceptor</tns:interce
ptorName>
 <tns:enable>false</tns:enable>
 </tns:interceptorRule>
</tns:interceptorConfig>

Summary of Tasks Related to Interceptors
The following is a summary of tasks related to Interceptor Rules.

Interceptor Rules
Table 10–6 lists the tasks related to application accounts and the
PluginManagerMBean methods you use to perform those tasks.

For a description of the PluginManagerMBean MBean operations, see the “All
Classes” section of Services Gatekeeper OAM Java API Reference.

Table 10–6 Tasks Related to Application Accounts

Task PluginManagerMBean Method to Use

List the enabled interceptors loaded in Services
Gatekeeper

listInterceptors

Retrieve the current interceptor rule configuration
file

retrieveInterceptorConfiguration

Update the interceptor rule configuration file updateInterceptorConfiguration

Customizing the Interceptor Chain for a Communication Service

10-30 Services Gatekeeper Extension Developer's Guide

11

Aspects, Annotations, EDRs, Alarms, and CDRs 11-1

11Aspects, Annotations, EDRs, Alarms, and
CDRs

This chapter describes aspects and generation of EDRs, alarms, CDRs, and statistics in
Oracle Communications Services Gatekeeper.

About Aspects and Annotations
Aspects allow developers to manage cross-cutting concerns in their code in a
straightforward and coherent way. Aspects in Services Gatekeeper (pointcuts, advice,
and so on) are written in the AspectJ 1.5.3 annotation style. There is already support
for editing annotations in many modern IDEs, and aspects are simply set up as
annotated classes.

How Aspects are Applied
All aspects are applied at build time by weaving the byte code of previously complied
Java packages. Minimal reflection is used at runtime to make aspect-based decisions.

Different aspect types are applicable to different Services Gatekeeper modules. In
general there are two categories of aspects:

■ Those restricted to the code for the traffic flow

■ Those that can be applied to other packages.

Traffic aspects are subdivided into two categories:

■ Those that are always applied

■ Those that are controlled using annotations.

Only statistics aspects are always applied because they are used to calculate usage costs.
Traffic aspects are applied to application-facing and network-facing boundaries of a
plug-in as well as to the internal processing of the plug-in.

Annotations are used to control the aspects that are not always applied for each plug-in.
These annotations are defined as part of the functional areas that a given set of aspect
implements. They allow the plug-in to communicate with the aspects as well as to
customize their behavior.

Note: In this case, traffic flow is defined to include only plug-in
implementations.

Understanding the Context Aspect

11-2 Services Gatekeeper Extension Developer's Guide

Understanding the Context Aspect
The Context aspect is woven at compile time, using PluginSouth as a marker.

While requests coming from the application-facing interface have a valid context (with
attributes like Service provider account ID, application Account ID, and so on) any
events triggered by the network and entering a plug-in’s network-facing interface do
not have a valid context.

The Context aspect solves this problem by rebuilding the context as soon as a
network-facing interface method is invoked: after this aspect is executed, a valid
context will be available for any subsequent usages, such as the EDR aspect. All
methods inside a class implementing the interface PluginSouth are woven by the
Context aspect.

The Context aspect requires the following in order to correctly weave the
network-facing interface methods and be able to rebuild the context:

■ Each Plug-in must explicitly register its application-facing and network-facing
interfaces.

■ Each network-facing interface must implement the resolveAppInstanceGroupdId()
and prepareRequestContext() methods of the PluginSouth interface.

■ application-facing interfaces must implement PluginNorth and network-facing
interfaces must implement PluginSouth.

The following rules apply for methods in classes that implement PluginNorth:

■ The default behavior is that EDRs are triggered only for exceptions and callbacks
to EJBs in the access tier (Service Callback EJB)

■ If a method is annotated with @NoEdr, no EDRs will be generated. It overrides the
default behavior.

■ If a method is annotated with @EDR, 2 EDRs will be generated:

– When entering the method

– When exiting the method.

The following rule applies for methods in classes that implement PluginSouth:

■ Methods that perform requests to the network may have a parameter annotated
with @MapperInfo in order to be able to rebuild the RequestContext when the
response to the request arrives from the network. The annotated parameter must
be used as a key to resolve the application instance ID using some plug-in specific
lookup.

■ Methods must implement resolveAppInstanceGroupdId(ContextMapperInfo info)
in PluginSouth and return the application instance ID that corresponds to the
original request to the network.

The ways of doing this are plug-in-specific, but normally a network triggered request
is tied to an application instance in a store that is managed by the plug-in. The store
used for context mapping may be a local cache or a cluster wide store, depending on
whether responses are known to always arrive on the same plug-in instance, or if they
can arrive at a plug-in on another server in the cluster.

Example:

1. An application sends a request to the network and an ID for this request is either
supplied by the network or generated by the plug-in. At this point the originator

Understanding the Context Aspect

Aspects, Annotations, EDRs, Alarms, and CDRs 11-3

of the requests, the application instance, is known since the request originated
from an application.

2. The plug-in puts the application instance ID and the ID for the request into a store.

3. At a later stage, when a response to the original requests arrives at the plug-in, the
method resolveAppInstanceGroupId() is called by aspects.

4. In this method, the plug-in must perform a lookup in the store of the application
instance related to that request and return the application instance ID to the
aspect.

5. The aspect authenticates the application instance with the container and puts the
application instance ID in the RequestContext.

6. The method in the plug-in receives the request from the network and the
RequestContext contains the application instance ID.

In the example below the method deliver(...) is a request from the underlying network.
The destinationAddress is annotated to be available to the aspect that handles
network-triggered requests associated with this request, represented by constant C.

NotificationHandler handles the store for notifications and supplies all necessary
parameters to the store.

Example 11–1 Application initiated request

protected static final String C = "destinationAddress";
@Edr
 public void deliver(String data,
 @ContextKey(EdrConstants.FIELD_DESTINATION_ADDRESS)
 @MapperInfo(C) String destinationAddress,
 @ContextKey(EdrConstants.FIELD_ORIGINATING_ADDRESS) String
originatingAddress,
 String nwTransactionId)
 throws Exception {

 notificationHandler.deliver(data, destinationAddress, originatingAddress,
nwTransactionId);

 }

When a network triggered event occurs, the aspect calls
resolveApplicationInstanceGroup(...) in PluginSouth and the plug-in looks up the
application instance using any argument available in ContextMapperInfo that can
help the plug-in to resolve this ID from ContextMapperInfo, using
info.getArgument(C). The application instance ID is returned to the aspect and the
execution flow continues in the plug-in, with a RequestContext that contains the
application instance ID, session ID and so on.

Example 11–2 Rebuilding RequestContext

protected static final String C = "destinationAddress";
public String resolveAppInstanceGroupdId(ContextMapperInfo info) {

 String destinationAddress = (String) info.getArgument(C);
 NotificationData notificationData = null;
 try {
 notificationData =
StoreHelper.getInstance().getNotificationData(destinationAddress);
 } catch (StorageException e) {

return null;

Generating EDRs from Communication Services

11-4 Services Gatekeeper Extension Developer's Guide

 }

 if (notificationData == null) {
 return null;
 }

 return notificationData.getAppInstanceGroupId();
 }

Below are the steps you have to take to make your plug-in compliant with the Context
aspect:

■ Make sure to register all your PluginSouth objects before registering your plug-in
in the Plug-in Manager.

■ Make sure to implement the resolveAppInstanceGroupdId() method for each
PluginSouth instance.

■ Annotate each parameter in network-facing object methods that you need to have
when aspects call back the resolveAppInstanceGroupId() or the
prepareRequestContext() methods. All the annotated parameters are available in
the ContextMapperInfo parameter. The aspects need to have them annotated to
be able to store them into the ContextMapperInfo object.

Generating EDRs from Communication Services
EDRs are generated in the two following ways:

■ Automatically using aspects at given points in the traffic execution flow in a
plug-in.

■ Manually anywhere in the code using the EdrService.

EDRs should be generated at the plug-in boundaries (application-facing and
network-facing), using the @Edr annotation to ensure that the boundaries are covered.
Additional EDRs can be added elsewhere in the plug-in if needed: for example for
CDRs.

For extensions, the EDR ID should be in the range 500 000 to 999 999.

EDRs are generated automatically by an aspect in the following locations in the
plug-in:

■ Before and after any method annotated with @Edr

■ Before and after any callback to an EJB

■ After any exception is thrown

Note: Note that aspects are not applied outside the plug-in.

Table 11–1 Manual annotation for EDRs

Trigger When Modifiers restrictions What is woven

method before executing public method only only in methods
annotated with @Edr

method after executing public method only only in methods
annotated with @Edr

Generating EDRs from Communication Services

Aspects, Annotations, EDRs, Alarms, and CDRs 11-5

The following values are always available in an EDR when it is generated from an
aspect:

■ class name

■ method name

■ direction the request is going toward (network-facing, application-facing)

■ position (before, after)

■ interface (application-facing, network-facing, other, null)

■ source (method, exception)

EDR Exception Scenarios
Exceptions are automatically woven by the aspect.

Some limitations apply:

■ The aspect will catch only exceptions that are thrown by a plug-in method.

■ The aspect will not catch an exception that is thrown by a library and caught by
the plug-in.

■ If the same exception is re-thrown several times, the aspect will only trigger an
EDR once, for the first instance of the exception.

Figure 11–1 illustrates typical scenarios when a library (or core service) throws an
exception in the plug-in.

method-call before calling any method only for method call to a
class implementing the
PluginNorthCallback
interface (EJB callback)

method-call after calling any method only for method call to a
class implementing the
PluginNorthCallback
interface (EJB callback)

exception after throwing any method any exception thrown
except in methods
annotated with @NoEdr

Table 11–1 (Cont.) Manual annotation for EDRs

Trigger When Modifiers restrictions What is woven

Generating EDRs from Communication Services

11-6 Services Gatekeeper Extension Developer's Guide

Figure 11–1 Exception scenarios

Scenario 1:

The plug-in method in Stage 2 simply catches the exception but does not re-throw it or
throw another exception. Since it just consume the exception, the aspect will not
trigger an EDR.

Scenario 2:

The plug-in method in Stage 2 lets the exception A propagate (or re-throws exception
A).

In this case, the aspect triggers an EDR after the method in stage 2. Since the same
exception A (the same exception instance object) is propagated (or re-thrown), only the
first method triggers an EDR.

Scenario 3:

This scenario is almost identical to scenario 2 except that the method in stage 1 is not
throwing the exception A but another exception, named B. In this case, because B is
not the same instance as A, the aspect will trigger another EDR after the method in
stage 1.

Adding Data to the RequestContext
In addition to the default values, an EDR also contains all the values put into the
RequestContext using the putEdr() method.

Example 11–3 Adding values using RequestContext

...
RequestContext ctx = RequestContextManager.getCurrent();
// this value will be part of any EDRs generated in the current request

Generating EDRs from Communication Services

Aspects, Annotations, EDRs, Alarms, and CDRs 11-7

ctx.putEdr("address", "tel:1234");
// this value will NOT be part of any EDRs since ctx.put(...) is used
ctx.put("foo", "bar");
...

Using translators
When a parameter is a more complex object, it is possible to specify a translator that
will take care of extracting the relevant information from this parameter.

The annotation is @ContextTranslate.

For example, the following method declares:

■ The first (and only) parameter should be translated using the specified translator
ACContextTranslator

■ The returned object should also be translated using the specified translator
ACContextTranslator

Example 11–4 Using a translator

...
 @Edr
 public @ContextTranslate(ACContextTranslator.class) PlayTextMessageResponse
playTextMessage(@ContextTranslate(ACContextTranslator.class) PlayTextMessage
parameters) {
 ...
 return response;
 }
 ...
The Translator is a class implementing the ContextTranslator interface.

Example 11–5 Example Translator

 public class ACContextTranslator implements ContextTranslator {
 public void translate(Object param, ContextInfo info) {
 if(param instanceof PlayTextMessage) {
 PlayTextMessage msg = (PlayTextMessage) param;
 info.put("address", msg.getAddress().toString());
 } else if(param instanceof PlayTextMessageResponse) {
 PlayTextMessageResponse response = (PlayTextMessageResponse) param;
 info.put("correlator", response.getResult());
 } ...
 }
 }
The ContextTranslator class specified in the @ContextTranslate annotation is
automatically instantiated by the aspect when needed. It is however possible to
explicitly register it using the ContextTranslatorManager.

Example 11–6 Registering a Context Translator

ContextTranslatorManager.register(ACContextTranslator.class.getName(), new
ACContextTranslator());
Table 11–2 is a summary of annotations to use.

Note: Common key names are defined in the class
com.bea.wlcp.wlng.api.edr.EdrConstants.

Generating EDRs from Communication Services

11-8 Services Gatekeeper Extension Developer's Guide

Triggering an EDR Programmatically
Services Gatekeeper triggers EDRs automatically in all plug-ins where aspects have
been applied. It is also possible to trigger EDRs explicitly. In this case, you must
manually create and trigger the EDR by following these steps:

1. Create an EdrData object

2. Trigger the EDR using the EdrService instance

Below is an example of triggering an EDR from inside a plug-in.

Example 11–7 Triggering an EDR Programmatically

public class SamplePlugin {
// Get the EdrDataHelper like a logger
private static final EdrDataHelper helper =

EdrDataHelper.getHelper(SamplePlugin.class);

public void doSomething() {
...
// Create a new EdrData using the EdrDataHelper class to allow
// Services Gatekeeper to automatically populate some fields
EdrData data = helper.createData();
// Since we are creating the EdrData manually,
// we have to provide the mandatory fields.
// Note that the EdrDataHelper will provide most of them
data.setValue(EdrConstants.FIELD_SOURCE, EdrConstants.VALUE_SOURCE_METHOD);
data.setValue(EdrConstants.FIELD_METHOD_NAME, "doSomething");
// Log the EDR
EdrServiceFactory.getService().logEdr(data);
...

}
}

EDR Content
Table 11–3 describes the content of an EDR. It shows which values are mandatory, who
is responsible for providing these values, and other information.

Legends:

■ A: Automatically provided by Services Gatekeeper

■ H: Provided if the EdrDataHelper createData API is used to create the EdrData
(which is the recommended way)

■ M: Provided manually in the EdrData

Table 11–2 Annotations

Name Type Description

@ContextKey Annotation Specifies that an argument must be put into the
current RequestContext under the name provided
in this annotation

@ContextTranslate Annotation Same as @ContextKey but for complex argument
that need to be translated using a translator
(implementing the ContextTranslator interface).

ContextTranslator Interface Interface used by static translators to translate
complex object.

Generating EDRs from Communication Services

Aspects, Annotations, EDRs, Alarms, and CDRs 11-9

■ X: Provided in the EDR descriptor.

■ C: Custom filter. Use the <attribute> element to specify a custom filter.

Note: EDRs triggered by aspects will have all the mandatory fields
provided by the aspect.

Table 11–3 EDR content

Name Description
Filter tag
name

EdrId To get the ID, use getIdentifier() in EdrConfigDescriptor.

This value is provided in the EDR descriptor.

Provider INSIDE plug-in: X

Provider OUTSIDE plug-in: X

Mandatory: Yes

C

ServiceName The name (or type) of the service.

Fields in EdrConstants: FIELD_SERVICE_NAME

Provider INSIDE plug-in: H

Provider OUTSIDE plug-in: M

Mandatory: Yes

C

ServerName The name of the Services Gatekeeper server.

Fields in EdrConstants: FIELD_SERVER_NAME

Provider INSIDE plug-in: H

Provider OUTSIDE plug-in: H

Mandatory: Yes

C

Timestamp The time at which the EDR was triggered (in ms since
midnight, January 1, 1970 UTC)

Fields in EdrConstants: FIELD_TIMESTAMP

Provider INSIDE plug-in: A

Provider OUTSIDE plug-in: A

Mandatory: Yes

C

ContainerTrans
actionId

The WebLogic Server transaction ID, if available.

Fields in EdrConstants: FIELD_CONTAINER_
TRANSACTION_ID

Provider INSIDE plug-in: H

Provider OUTSIDE plug-in: H

Mandatory: No

C

Generating EDRs from Communication Services

11-10 Services Gatekeeper Extension Developer's Guide

Class Name of the class that triggered the EDR.

Fields in EdrConstants: FIELD_CLASS_NAME

Provider INSIDE plug-in: H

Provider OUTSIDE plug-in: H

Mandatory: Yes

<class>

Method Name of the method that triggered the EDR.

Provider INSIDE plug-in: M

Provider OUTSIDE plug-in: M

Mandatory: Yes

<name> inside
<method> or
<method>
inside
<exception>

Source Indicates the type of source that triggered the EDR.

Fields in EdrConstants: FIELD_SOURCE

Values in EdrConstants: VALUE_SOURCE_METHOD,
VALUE_SOURCE_EXCEPTION

Provider INSIDE plug-in: M

Provider OUTSIDE plug-in: M

Mandatory: Yes

<method> or
<exception>

Direction Direction of the request.

Fields in EdrConstants: FIELD_DIRECTION

Values in EdrConstants:VALUE_DIRECTION_SOUTH,
VALUE_DIRECTION_NORTH

Provider INSIDE plug-in: M

Provider OUTSIDE plug-in: M

Mandatory: No

<direction>

Position Position of the EDR relative to the method that triggered
the EDR.

Fields in EdrConstants: FIELD_POSITION

Values in EdrConstants: VALUE_POSITION_BEFORE,
VALUE_POSITION_AFTER

Provider INSIDE plug-in: M

Provider OUTSIDE plug-in: M

Mandatory: No

<position>

Table 11–3 (Cont.) EDR content

Name Description
Filter tag
name

Generating EDRs from Communication Services

Aspects, Annotations, EDRs, Alarms, and CDRs 11-11

Interface Interface where the EDR is triggered.

Fields in EdrConstants: FIELD_INTERFACE

Values in EdrConstants: VALUE_INTERFACE_NORTH,
VALUE_INTERFACE_SOUTH, VALUE_INTERFACE_
OTHER

Provider INSIDE plug-in: M

Provider OUTSIDE plug-in: M

Mandatory: No

<interface>

State Where the EDR was dispatched.

Fields in EdrConstants: FIELD_STATE

Values in EdrConstants: ENTER_AT, ENTER_NT,
ENTER_NET, EXIT_AT, EXIT_NT, EXIT_NET

Provider INSIDE plug-in: M

Provider OUTSIDE plug-in: M

Mandatory: No

<state>

Exception Name of the exception that triggered the EDR.

Fields in EdrConstants: FIELD_EXCEPTION_NAME

Provider INSIDE plug-in: M

Provider OUTSIDE plug-in: M

Mandatory: No

<name> inside
<exception>

SessionId Session ID.

Fields in EdrConstants: FIELD_SESSION_ID

Provider INSIDE plug-in: H

Provider OUTSIDE plug-in: M

Mandatory: No

C

ServiceProvider
Id

Service provider account ID.

Fields in EdrConstants: FIELD_SP_ACCOUNT_ID

Provider INSIDE plug-in: H

Provider OUTSIDE plug-in: M

Mandatory: No

C

Table 11–3 (Cont.) EDR content

Name Description
Filter tag
name

Generating EDRs from Communication Services

11-12 Services Gatekeeper Extension Developer's Guide

ApplicationId Application account ID.

Fields in EdrConstants: FIELD_APP_ACCOUNT_ID

Provider INSIDE plug-in: H

Provider OUTSIDE plug-in: M

Mandatory: No

C

AppInstanceId Application instance ID.

Fields in EdrConstants: FIELD_APP_INSTANCE_ID

Provider INSIDE plug-in: H

Provider OUTSIDE plug-in: M

Mandatory: No.

C

TransactionId Transaction ID.

Fields in EdrConstants: FIELD_TRANSACTION_ID

Provider INSIDE plug-in: H

Provider OUTSIDE plug-in: M

Mandatory: No.

C

Facade Facade.

Fields in EdrConstants: FIELD_FACADE

Values in EdrConstants: VALUE_FACADE_REST,
VALUE_FACADE_SOAP

Provider INSIDE plug-in: H

Provider OUTSIDE plug-in: M

Mandatory: No.

C

OrigAddress The originating address with scheme included (for
example “tel:1234”).

Fields in EdrConstants: FIELD_ORIGINATING_
ADDRESS

Provider INSIDE plug-in: M

Provider OUTSIDE plug-in: M

Mandatory: No

C

Table 11–3 (Cont.) EDR content

Name Description
Filter tag
name

Generating EDRs from Communication Services

Aspects, Annotations, EDRs, Alarms, and CDRs 11-13

DestAddress The destination address(es) with scheme included (For
example “tel:1234”). See "Using send lists".

Fields in EdrConstants: FIELD_DESTINATION_
ADDRESS

Provider INSIDE plug-in: M

Provider OUTSIDE plug-in: M

Mandatory: No

C

<custom> Any additional information put into the current
RequestContext using the putEdr() API will end up in the
EDR.

Fields in EdrConstants: -

Provider INSIDE plug-in: -

Provider OUTSIDE plug-in: -

Mandatory: No

C

URL URL.

Fields in EdrConstants: FIELD_URL

Provider INSIDE plug-in: M

Provider OUTSIDE plug-in: M

Mandatory: No

WebAppName Name of the current web application.

Fields in EdrConstants: FIELD_WEB_APP_NAME

Provider INSIDE plug-in: M

Provider OUTSIDE plug-in: M

Mandatory: No

HttpMethod HTTP request method. For example "POST", or "GET".

Fields in EdrConstants: FIELD_HTTP_METHOD

Provider INSIDE plug-in: M

Provider OUTSIDE plug-in: M

Mandatory: No

Table 11–3 (Cont.) EDR content

Name Description
Filter tag
name

Generating EDRs from Communication Services

11-14 Services Gatekeeper Extension Developer's Guide

Using send lists
If more than one address needs to be stored in the DestAddress field, use the following
pattern. Both patterns described below can be used.

Example 11–8 Pattern to store one single or multiple addresses in field destination
directly on EdrData.

EdrData data = ...;
// If there is only one address
data.setValue(EdrConstants.FIELD_DESTINATION_ADDRESS, address);
// If there are multiple addresses
data.setValues(EdrConstants.FIELD_DESTINATION_ADDRESS, addresses);
If you are using the current RequestContext object, simply store a List of addresses.
The EdrDataHelper will automatically take care of converting this to a List of Strings
in the EdrData.

Example 11–9 Pattern to store one single or multiple addresses in field destination
using RequestContext.

RequestContext ctx = RequestContextManager.getCurrent();
// If there is only one address
ctx.putEdr(EdrConstants.FIELD_DESTINATION_ADDRESS, address);
// If there are multiple addresses
URI[] addresses = ...;
ctx.putEdr(EdrConstants.FIELD_DESTINATION_ADDRESS, Arrays.asList(addresses));

RequestContext Attributes in the request context map.

Fields in EdrConstants: FIELD_REQUEST_CONTEXT

Provider INSIDE plug-in: M

Provider OUTSIDE plug-in: M

Mandatory: No

InterceptorChai
n

List of all the interceptors that are triggered.

Fields in EdrConstants: FIELD_INTERCEPTOR_CHAIN

Provider INSIDE plug-in: M

Provider OUTSIDE plug-in: M

Mandatory: No

SubscriberId Subscriber identifier (using route address)

Fields in EdrConstants: FIELD_SUBSCRIBER_ID

Provider INSIDE plug-in: M

Provider OUTSIDE plug-in: M

Mandatory: No

Table 11–3 (Cont.) EDR content

Name Description
Filter tag
name

Categorizing EDRs

Aspects, Annotations, EDRs, Alarms, and CDRs 11-15

RequestContext and EDR
Figure 11–2 shows how and where information for the EDR is added to the
RequestContext and how it finally ends up in the additional info column of the alarm
and CDR databases.

Figure 11–2 RequestContext and EDR

There are 3 ways of putting information in the RequestContext that will end up in the
EDR (more precisely in the EdrData object):

■ Using the putEdr() API of the RequestContext

■ Using the @ContextKey or @ContextTranslate annotation. In the case of the
@ContextTranslate annotation, the information that will end up in the
RequestContext will be what is put into the ContextInfo object.

■ Any information put in the RequestContext parameter of the
PluginSouth.prepareRequestContext() method.

When an EDR is created, the EdrDataHelper (which is the recommended way to create
the EDR) will populate the EdrData with all the key/value pairs found in the
RequestContext.

When the EdrService writes the alarm or CDR additional information content into the
database, it will use all the EdrData key/value pairs EXCEPT a set of well-known keys
that are either not relevant or already included in other columns of the database, see
"Alarm content" and "CDR content".

Categorizing EDRs
Only one type of EDR exists: alarms and CDRs are subsets of this EDR type. In order
to categorize the flow of EDRs as either pure EDRS, alarms or CDRs, the EDR service
uses 3 descriptors:

■ The EDR descriptor contains descriptors that describe pure EDRs.

■ The alarm descriptor contains descriptors that describe EDRs that should be
considered alarms.

■ The CDR descriptor contains descriptors that describe EDRs that should be
considered CDRs.

Categorizing EDRs

11-16 Services Gatekeeper Extension Developer's Guide

These XML descriptors can be manipulated using the EDR Configuration Pane as
described in “Managing and Configuring EDRs, CDRs and Alarms” in Services
Gatekeeper System Administrator's Guide. File representations of these must be included
in edrjmslistener.jar if you are using external EDR listeners.

The EDR descriptor
Each descriptor contains a list of EDR descriptors that define an EDR as a pure-EDR,
as an alarm or as a CDR.

The descriptor is composed of two parts:

■ The <filter> element: this is the filter

■ The <data> element: this part is used to attach additional data with the EDR if it is
matched by the <filter> part

Table 11–5 describes the elements allowed in the <filter> part:

Table 11–4 EDR descriptors.

Descriptor Descriptor Description

EDR <edr...> Defines which EDRs are pure EDRs

Alarm <alarm...> Defines which EDRs are alarms

CDR <cdr...> Defines which EDRs are CDRs

Table 11–5 Elements allowed in <filter> part of an EDR descriptor.

Source Filter
Min
occurs

Max
occurs Description

<method> N/A 0 unbounde
d

Filter EDR triggered by a method

<method> <name> 0 unbounde
d

Name of the method that
triggered the EDR

<method> <class> 0 unbounde
d

Name of the class that triggered
the EDR

<method> <direction> 0 2 Direction of the request

<method> <interface> 0 3 Interface where the EDR has been
triggered

<method> <position> 0 2 Position relative to the method
that triggered the EDR

<exception> N/A 0 unbounde
d

Filter EDR triggered by an
exception

<exception> <name> 0 unbounde
d

Name of the exception that
triggered the EDR

<exception> <class> 0 unbounde
d

Name of the class where the
exception was thrown

<exception> <method> 0 unbounde
d

Name of the method where the
exception was thrown

<exception> <direction> 0 2 Direction of the request

<exception> <interface> 0 3 Interface where the EDR has been
triggered

Categorizing EDRs

Aspects, Annotations, EDRs, Alarms, and CDRs 11-17

Table 11–5 describes the values allowed for each element of the <filter> part:

Special characters
The filter uses special characters to indicate more precisely how to match certain
values.

Using * at the end of a method, class or exception name matches all names that match
the string specified prior to the * (that is, what the string starts with).

<exception> <position> 0 2 Position relative to the method
that triggered the EDR

<attribute> N/A 0 unbounde
d

Filter EDR by looking at custom
attribute

<attribute> <key> 1 1 Name of the key

<attribute> <value> 1 1 Value

Table 11–6 Values allowed in each element of the <filter> part.

Source Filter Allowed values Comment

<method> <name> “returntype
nameofmethod([args])”

Method name. The
arguments can be omitted
with the parenthesis. See
"Special characters" below.

<method> <class> “fullnameofclass” Fully qualified class name.
See "Special characters"
below.

<method> <direction> “south”, “north” N/A

<method> <interface> “north”, “south”, “other” N/A

<method> <position> “before”, “after” N/A

<exception
>

<name> “fullnameofexceptionclass” Fully qualified exception
class name. See "Special
characters" below.

<exception
>

<class> “fullnameofclass” Fully qualified class name
where the exception was
triggered. See "Special
characters" below.

<exception
>

<method> “returntype
nameofmethod([args])”

Method name. The
arguments can be omitted
with the parenthesis See
"Special characters" below.

<exception
>

<direction> “south”, “north” N/A

<exception
>

<interface> “north”, “south”, “other” N/A

<exception
>

<position> “before”, “after” N/A

<attribute> <key> “astring” N/A

<attribute> <value> “astring” N/A

Table 11–5 (Cont.) Elements allowed in <filter> part of an EDR descriptor.

Source Filter
Min
occurs

Max
occurs Description

Categorizing EDRs

11-18 Services Gatekeeper Extension Developer's Guide

Values provided
The exact value in these fields depends on who triggered the EDR. If the aspect
triggered the EDR, then the name of the method (with return type and parameters) or
the fully qualified name of the class/exception is indicated. If the EDR is manually
triggered from the code, it is up to the implementer to decide what name to use. Here
are some examples of fully qualified method/class names as specified by the aspect:

Example methods:

SendSmsResponse sendSms(SendSms)
void receivedMobileOriginatedSMS(NotificationInfo, boolean, SmsMessageState,
String, SmsNotificationRemote)
TpAppMultiPartyCallBack reportNotification(TpMultiPartyCallIdentifier,
TpCallLegIdentifier[], TpCallNotificationInfo, int)
Example Class:

com.bea.wlcp.wlng.plugin.sms.smpp.SMPPManagedPluginImpl

Boolean semantic of the filters
Figure 11–3 shows briefly how the filter works:

■ The EdrConfigSource elements are the following: <method>, <exception> or
<attribute>. They are combined using OR.

■ The filter elements of each EdrConfigSource are combined using AND. However,
if the same filter is available more than once (e.g. multiple class names), it is
combined with OR.

Note: The use of any of these characters disables the caching of the
filter containing them. To avoid a performance hit, using the other
way of matching is strongly encouraged.

Table 11–7 Example filters

To match on Use the filter

All sendInfoRes
methods with one
argument of type int.

<method>

<name>void sendInfoRes(int)</name>

...

</method>

All methods starting
with sendInfoRes
regardless of the
arguments.

<method>

<name>void sendInfoRes</name>

...

</method>

All methods starting
with void sendInfo.

<method>

<name>void sendInfo*</name>

...

</method>

All class names
beginning with
com.bea.wlcp.wlng.plug
in

<method>

<class>com.bea.wlcp.wlng.plugin*</class>

...

</method>

Categorizing EDRs

Aspects, Annotations, EDRs, Alarms, and CDRs 11-19

Figure 11–3 Filter mechanism

Example filters
Example 1: filter

Example 11–10 categorizes EDRs as pure EDRs with an id of 1000 when the following
conditions are met:

■ The class where the method triggered the EDR is
com.bea.wlcp.wlng.plugin.AudioCallPlugin or any subclass of it.

■ AND the request is network-facing (direction = south)

■ AND the interface where the EDR was trigger is application-facing

■ AND the EDR has been triggered after the method has been executed (position =
after)

Example 11–10 Example 1: filter

<edr id="1000" description="...">
 <filter>
 <method>
 <class>com.bea.wlcp.wlng.plugin.AudioCallPlugin</class>
 <direction>south</direction>
 <interface>north</interface>
 <position>after</position>
 </method>
 </filter>
 </edr>

Example 2: Alarm filter

Example 11–11 categorizes EDRs as alarms when the following conditions are met:

■ The exception is the com.bea.wlcp.wlng.plugin.PluginException class or a subclass
of it.

Categorizing EDRs

11-20 Services Gatekeeper Extension Developer's Guide

■ OR the name of the exception starts with org.csapi.*. Since “‘*” is used, the
matching will not be performed using the class hierarchy but only using a pure
string matching.

The alarms descriptor has a <alarm-group> element that is used to group alarms by
service/source: this group id and each individual alarm id is used to generate the OID
of SNMP traps.

Example 11–11 Example 2: filter

<alarm-group id="104" name="parlayX" description="Parlay X alarms">>
<alarm id="1000" severity="minor" description="Parlay X exception">
 <filter>
 <exception>
 <name>com.bea.wlcp.wlng.plugin.PluginException</name>
 <name>org.csapi*</name>
 </exception>
 </filter>
 </alarm>
</alarm-group>
Example 3: Alarm filter

Example 11–12 categorizes EDRs as alarms when the following conditions are met:

■ The exception is the class com.bea.wlcp.wlng.plugin.PluginException or a subclass
of it

■ OR the name of the exception starts with “org.csapi”. String matching in used.

■ AND the exception was triggered in a class whose name starts with
com.bea.wlcp.wlng.plugin

■ AND the request is application-facing (direction = north) when the exception was
triggered

If the filter determines that the EDR is an alarm, the following attributes are available
to the alarm listener. They are defined in the <data> part.

■ identifier = 123

■ source = wlng_nt1

Example 11–12 Example 3: filter

<alarm id="1000" severity="minor" description="Parlay X exception">
 <filter>
 <exception>
 <name>com.bea.wlcp.wlng.plugin.PluginException</name>
 <name>org.csapi*</name>
 <class>com.bea.wlcp.wlng.plugin*</class>
 <direction>north</direction>
 </exception>
 </filter>
 <data>
 <attribute key="identifier" value="123"/>
 <attribute key="source" value="wlng_nt1"/>
 </data>
 </alarm>

Example 4: filter

Example 11–13 (for example purposes only) categorizes EDRs as pure EDRs with the
id 1002 when the following conditions are met:

Categorizing EDRs

Aspects, Annotations, EDRs, Alarms, and CDRs 11-21

■ The name of the method that triggered the EDR starts with “void play” AND the
class is com.bea.wlcp.wlng.plugin.AudioCallPluginNorth or a subclass of it
AND the EDR was triggered after executing this method.

■ OR the name of the method that triggered the EDR is “String getMessageStatus”
AND the class is com.bea.wlcp.wlng.plugin.AudioCallPluginNorth or a subclass
of it AND the EDR was triggered before executing this method.

■ OR the name of the exception that triggered the EDR starts with
com.bea.wlcp.wlng.bar AND the exception was triggered in a plug-in
application-facing interface

■ OR the name of the exception that triggered the EDR starts with
com.bea.wlcp.wlng.plugin.exceptionA AND the exception was triggered in a class
whose name starts with com.bea.wlcp.wlng.plugin.classD AND the exception was
triggered in a method whose name starts with void
com.bea.wlcp.wlng.plugin.methodA AND the exception was triggered in a
plug-in application-facing interface

■ OR the EDR contains an attribute with key attribute_a and value value_a

■ OR the EDR contains an attribute with key attribute_b and value value_b

Example 11–13 Example 4: filter

<edr id="1002">
 <filter>
 <method>
 <name>void play*</name>
 <class>com.bea.wlcp.wlng.plugin.AudioCallPluginNorth</class>
 <position>after</position>
 </method>
 <method>
 <name>String getMessageStatus</name>
 <class>com.bea.wlcp.wlng.plugin.AudioCallPluginNorth</class>
 <position>before</position>
 </method>
 <exception>
 <name>com.bea.wlcp.wlng.bar*</name>
 <interface>north</interface>
 </exception>
 <exception>
 <name>com.bea.wlcp.wlng.plugin.exceptionA</name>
 <class>com.bea.wlcp.wlng.plugin.classD</class>
 <method>void com.bea.wlcp.wlng.plugin.methodA</method>
 <interface>north</interface>
 </exception>
 <attribute key="attribute_a" value="value_a"/>
 <attribute key="attribute_b" value="value_b"/>
 </filter>
 </edr>

Example 5: filter with corresponding code for manually triggering a matching EDR

Example 11–14 shows a manually triggered EDR with its corresponding filter. The
EDR is triggered using these lines.

Example 11–14 Example 5: Trigger the EDR

 // Declare the EdrDataHelper for each class
 private static final EdrDataHelper helper =
EdrDataHelper.getHelper(MyClass.class);

Checklist for EDR generation

11-22 Services Gatekeeper Extension Developer's Guide

 public void myMethodName() {
 ...
 // Create a new EdrData. Use the EdrDataHelper class to allow Services
Gatekeeper to automatically populate some fields
 EdrData data = helper.createData();

 // Because we are creating the EdrData manually, we have to provide the
mandatory fields
 data.setValue(EdrConstants.FIELD_SOURCE, EdrConstants.VALUE_SOURCE_METHOD);
 data.setValue(EdrConstants.FIELD_METHOD_NAME, "myMethodName");
 data.setValue("myKey", "myValue");

 // Log the EDR
 EdrServiceFactory.getService().logEdr(data);
 ...
 }
This EDR can be filtered using Example 11–15 (note the various ways of identifying
this EDR):

Example 11–15 Example: Filter 5

 <edr id="1003">
 <filter>
 <!-- Match both method name and class name -->
 <method>
 <name>myMethodName</name>
 <class>com.bea.wlcp.wlng.myClassName</class>
 </method>
 <!-- OR match only the method name (looser than matching also the class
name) -->
 <method>
 <name>myMethodName</name>
 </method>
 <!-- OR match only the classname (looser than matching also the method name)
-->
 <method>
 <class>com.bea.wlcp.wlng.myClassName</class>
 </method>
 <!-- OR match only the custom attribute -->
 <attribute key="myKey" value="myValue"/>
 </filter>
 </edr>

Checklist for EDR generation
Below is a list of steps to take to make your plug-in able to use aspect EDRs:

■ Make sure to register all your PluginNorth (and network-facing) objects within
the ManagedPlugin before registering in the PluginManager.

■ Annotate all the methods you want to be woven using the @Edr annotation.

■ Annotate the specific arguments you want to see in the EDR for each annotated
methods. Use either @ContextKey or @ContextTranslate depending on the kind of
argument.

■ Add to the EDR descriptor all the EDRs you are triggering, either manually or
with the @Edr annotation. This is the only way to customize alarms and CDRs.

Frequently Asked Questions about EDRs and EDR filters

Aspects, Annotations, EDRs, Alarms, and CDRs 11-23

■ If external EDR listeners, CDR, and alarms are used, the edrjmslistener.jar file
needs to be updated on all the listeners. Add the contents of the EDR descriptors
to edr.xml, CDR descriptor to cdr.xml, and alarm descriptor to alarm.xml. The xml
files reside in the edr directory in edrjmslistener.jar.

Frequently Asked Questions about EDRs and EDR filters
Question (Q): Is it possible to specify both exception and method name in the filter
section?

Example 11–16 Example: method name and exception in a filter.

<filter>
 <method>
 <name>internalSendSms</name>
 </method>
 <exception>
 <name>com.bea.wlcp.wlng.plugin.sms.smpp.TooManyAddressesException</name>
 </exception>
 </filter>
Answer

Yes, make sure that the <method> element is before the <exception> element.
Otherwise the XSD will complain.

Q: Is it possible to specify multiple method names?

Answer

Yes.

Q: In some places I have methods re-throwing an exception. Is it possible to have
only one of the methods generate the EDR and map that EDR to an alarm?

Re-throwing an exception

myMethodA()throws MyException{
 myMethodB();
}

myMethodB()throws MyException{
 myMethodC();
}

myMethodC()throws MyException{
 ...
 //on error
 throw new MyException(“Exception text..”);
}
Answer

In this case, only the first exception will be caught by aspects. Or more precisely, they
will all be caught by aspects but will only trigger an EDR for the first one, but not for
the re-thrown ones (if they are the same, of course). So you don’t need to use the
@NoEdr annotation for myMethodA and myMethodB.

Q: Will aspects detect the following exception?

Example exception

 try{
 throw new ReceiverConnectionFailureException(message);
 }catch(ReceiverConnectionFailureException connfail){

Alarm generation

11-24 Services Gatekeeper Extension Developer's Guide

 //EDR-ALARM-MAPPING
 }
Answer

This exception will not be detected by aspects. If you need to generate an EDR you will
have to either manually create an EDR or call a method throwing an exception.

Q: Will EDRs for exceptions also work for private methods?

Answer

Yes, EDRs can work for any method.

Q: Will exceptions be disabled with the @NoEdr annotation?

Answer

Yes, with the @NoEdr annotation you will not get any EDRs, not even for exceptions.

Q: How can data from the current context be included in an alarm?

For example, can an alarm be generated in a request with more than 12 destination
addresses? How can information about how many addresses were included in the
request be added to the alarm

It is possible to specify some info in the alarm descriptor with something like

<data>
 <attribute key="source" value="thesource"/>
</data>
Can something be put in the RequestContext using the putEdr method and then get it
into the alarm in some way?

Answer

Yes, add custom information by putting this information into the current
RequestContext, as show below.

RequestContext ctx = RequestContextManager.getCurrent();
ctx.putEdr("address", "tel:1234");
This value is part of any EDRs generated in the current request.

The information will be available in the database in the additional_info column. Make
sure you are putting in only relevant information.

Q: Is it possible to specify classname in the filtering section?

Answer

Yes, use the <class> element inside <method> or <exception> in the filter.

 <filter>
 <exception>
 <class>com.y.y.z.MyClass</class>
 <name>com.x.y.z.MyException</name>
 </exception>
</filter>

Alarm generation
An alarm is a subset of an EDR. To generate an alarm, generate an EDR, either using
one generated in aspects or programmatically, and define the ID and the descriptor of
the alarm in the alarm descriptor.

Alarm generation

Aspects, Annotations, EDRs, Alarms, and CDRs 11-25

The alarm ID, severity, description and other kind of attributes are defined in the
alarm descriptor, see "The EDR descriptor". For extensions, the alarm ID should be in
the 500 000 to 999 999 range.

There are two ways to trigger an alarm:

■ Use an existing EDR that is generated in the plug-in and add its descriptor to the
alarm descriptor.

■ Programmatically trigger an EDR and add its descriptor in both the alarm
descriptor file and the EDR descriptor. Make sure the ID of the alarm is unique
and that the description is the same as in the EDR descriptor.T

Trigger an alarm programmatically
Trigger an EDR as described in "EDR Content". Then specify in the alarm descriptor
the corresponding alarms.

Example 11–17 Example code to trigger an alarm

private static final EdrDataHelper helper =
EdrDataHelper.getHelper(MyClass.class);
...
EdrData data = helper.createData();
data.setValue(EdrConstants.FIELD_SOURCE, EdrConstants.VALUE_SOURCE_METHOD);
data.setValue(EdrConstants.FIELD_METHOD_NAME, "com.bea.wlcp.wlng.myMethod");
data.setValue("myAdditionalInformation", ...);
EdrServiceFactory.getService().logEdr(data);
...
The corresponding entry in the alarm descriptor that matches this EDR is shown
below.

Example 11–18 Alarm descriptor

 <alarm id="2006"
 severity="major"
 description="Sample alarm">
 <filter>
 <method>
 <name>com.bea.wlcp.wlng.myMethod</name>
 <class>com.bea.wlcp.wlng.myClass</class>
 </method>
 </filter>
 </alarm>

Alarm content
Table 11–8 shows a list of the information provided in alarms.

Note: The alarm filter that provides the first match in the alarm
descriptor is used for triggering the alarm.

Table 11–8 Alarm information for alarm listeners, also stored in DB

Field Comment

alarm_id Unique ID for the alarm.

Automatically provided by the EdrService.

Alarm generation

11-26 Services Gatekeeper Extension Developer's Guide

source Service name emitting the alarm.

Automatically provided by the EdrService.

timestamp Timestamp in milliseconds since midnight, January 1, 1970 UTC.

Automatically provided by the EdrService.

severity Severity level.

Defined in the alarm. descriptor.

identifier The alarm identifier.

Defined in the alarm descriptor.

The column in the database will always contain the identifier defined in
the alarm descriptor.

alarm_info The alarm information or description.

Defined in the alarm descriptor.

Table 11–8 (Cont.) Alarm information for alarm listeners, also stored in DB

Field Comment

CDR generation

Aspects, Annotations, EDRs, Alarms, and CDRs 11-27

CDR generation
A CDR is a subset of an EDR. To generate a CDR, generate an EDR and define the ID
of the EDR in the CDR descriptor.

additional_info Automatically provided by the EdrService.

Not valid for backwards compatible alarm listeners.

Each entry is formatted as:

key=value\n

Similar to the Java properties file.

All the custom key/value pairs found in the EdrData except these are
present (EdrConstants if not specified):

■ FIELD_TIMESTAMP

■ FIELD_SERVICE_NAME

■ FIELD_CLASS_NAME

■ FIELD_METHOD_NAME

■ FIELD_SOURCE

■ FIELD_DIRECTION

■ FIELD_POSITION

■ FIELD_INTERFACE

■ FIELD_STATE

■ FIELD_EXCEPTION_NAME

■ FIELD_ORIGINATING_ADDRESS

■ FIELD_DESTINATION_ADDRESS

■ FIELD_CONTAINER_TRANSACTION_ID

■ FIELD_APP_INSTANCE_ID

■ FIELD_FACADE

■ FIELD_CORRELATOR

■ FIELD_SESSION_ID

■ FIELD_SERVER_NAME

■ FIELD_URL

■ FIELD_WEB_APP_NAME

■ FIELD_REQUEST_CONTEXT

■ FIELD_HTTP_METHOD

■ FIELD_INTERCEPTOR_CHAIN

■ FIELD_SUBSCRIBER_ID

■ ExternalInvocatorFactory.SERVICE_CORRELATION_ID

■ FIELD_BC_EDR_ID

■ FIELD_BC_EDR_ID_3

■ FIELD_BC_ALARM_IDENTIFIER

■ FIELD_BC_ALARM_INFO

Table 11–8 (Cont.) Alarm information for alarm listeners, also stored in DB

Field Comment

CDR generation

11-28 Services Gatekeeper Extension Developer's Guide

Triggering a CDR
There are two ways to trigger a CDR:

■ Use an existing EDR that is generated in the plug-in and add its description to the
CDR descriptor.

■ Programmatically trigger an EDR and add its description to the CDR descriptor.

Trigger a CDR programmatically
If none of the existing EDRs is appropriate for a CDR, you can programmatically
trigger an EDR that will become a CDR. See the section, "Triggering an EDR
Programmatically" for information on how to create and trigger an EDR. Specify in the
CDR descriptor the description necessary for this EDR to be considered a CDR.

Example 11–19 Example, triggering a CDR

private static final EdrDataHelper helper =
EdrDataHelper.getHelper(MyClass.class);
...
EdrData data = helper .createData();
data.setValue(EdrConstants.FIELD_SOURCE, EdrConstants.VALUE_SOURCE_METHOD);
data.setValue(EdrConstants.FIELD_METHOD_NAME,
"com.bea.wlcp.wlng.myEndOfRequestMethod");
// Fill the required fields for a CDR
data.setValue(EdrConstants.FIELD_CDR_START_OF_USAGE, ...);
...
EdrServiceFactory.getService().logEdr(data);
...
The description, in the CDR descriptor, that matches this EDR is shown in
Example 11–20.

Example 11–20 Filter to match the EDR

<cdr>
 <filter>
 <method>
 <name>com.bea.wlcp.wlng.myEndOfRequestMethod</name>
 <class>com.bea.wlcp.wlng.myClass</class>
 </method>
 </filter>
</cdr>

CDR content
In addition to the EDR fields, there are specific fields used only for CDRs. They are
listed in Table 11–5.

Table 11–9 Fields in EdrConstants specific for CDRs.

Field in EdrConstants Comment

FIELD_CDR_SESSION_ID Session ID

FIELD_CDR_START_OF_USAGE Start Time

FIELD_CDR_CONNECT_TIME Connect Time

FIELD_CDR_END_OF_USAGE End Time

FIELD_CDR_DURATION_OF_USAGE Duration

CDR generation

Aspects, Annotations, EDRs, Alarms, and CDRs 11-29

The structure of the CDR content is aligned toward the 3GPP Charging Applications
specifications. As a result the database schema has been changed to accommodate
these ends and to facilitate future extensions.

Legends:

■ NU: Not used

■ NC: New column in DB

■ RC: Renamed column in DB

FIELD_CDR_AMOUNT_OF_USAGE Amount

FIELD_CDR_ORIGINATING_PARTY Originating Party

FIELD_CDR_DESTINATION_PARTY Same pattern applies as for send lists, see "Using
send lists".

FIELD_CDR_CHARGING_INFO Charging Information

Table 11–10 Content in database

Field Comment DB

transaction_id Unique id for the CDR.

Provided automatically by the EDR service.

x

service_name name of the service

Provided automatically by the EDR service.

x

service_provider the service provider account ID

Provided automatically by the EDR service.

x

application_id the application account ID (was user_id in 2.2) RC

application_instance_
grp_id

the application instance ID. NC

container_transaction_id id of the current user transaction

Provided automatically by the EDR service.

NC

server_name name of the server that generated the CDR.

Provided automatically by the EDR service.

NC

timestamp in ms since midnight, January 1, 1970 UTC NC

service_correlation_id Service Correlation ID.

Provided automatically by the EDR service.

NC

charging_session_id Id that correlates requests that belong to one charging
session as defined by the plug-in. Was 'session_id' in 2.2.

Plug-in specific. Plug-in needs to put the value into the
RequestContext of the request that will trigger the CDR.

x

start_of_usage The date and time the service capability module started
to use services in the network (in ms since midnight,
January 1, 1970 UTC)

Plug-in specific. Plug-in needs to put the value into the
RequestContext of the request that will trigger the CDR.

x

Table 11–9 (Cont.) Fields in EdrConstants specific for CDRs.

Field in EdrConstants Comment

CDR generation

11-30 Services Gatekeeper Extension Developer's Guide

Additional_info column
The EDR populates the additional_info column of the DB with all the custom
key/value pairs found in the EdrData except the ones listed below.

Excluded keys (EdrConstants if not specified):

■ FIELD_SERVICE_NAME

■ FIELD_APP_INSTANCE_ID

■ FIELD_SP_ACCOUNT_ID

■ FIELD_CONTAINER_TRANSACTION_ID

connect_time The date and time the destination party responded (in
ms since midnight, January 1, 1970 UTC). Used for call
control only.

Plug-in specific. Plug-in needs to put the value into the
RequestContext of the request that will trigger the CDR.

x

end_of_usage The date and time the service capability module stopped
using services in the network (in ms since midnight,
January 1, 1970 UTC).

Plug-in specific. Plug-in needs to put the value into the
RequestContext of the request that will trigger the CDR

x

duration_of_usage The total time the service capability module used the
network services (in ms)

Plug-in specific. Plug-in needs to put the value into the
RequestContext of the request that will trigger the CDR

x

amount_of_usage Plug-in specific. Plug-in needs to put the value into the
RequestContext of the request that will trigger the CDR.

x

originating_party The originating party address with scheme included
(e.g. “tel:1234”)

Plug-in specific. Plug-in needs to put the value into the
RequestContext of the request that will trigger the CDR.

x

destination_party the originating party address with scheme included (e.g.
“tel:1234”). Additional addresses are stored in the
additional_info field.

x

charging_info The charging service code from the application.

Plug-in specific. Plug-in needs to put the value into the
RequestContext of the request that will trigger the CDR.

x

additional_info Additional information provided by the plug-in x

revenue_share_
percentage

Not used. NU

party_to_charge Not used. NU

slee_instance Not used. NU

network_transaction_id Not used. NU

network_plugin_id Not used. NU

transaction_part_number Not used. NU

completion_status Not used. NU

Table 11–10 (Cont.) Content in database

Field Comment DB

CDR generation

Aspects, Annotations, EDRs, Alarms, and CDRs 11-31

■ FIELD_SERVER_NAME

■ FIELD_TIMESTAMP

■ ExternalInvocatorFactory.SERVICE_CORRELATION_ID

■ FIELD_CDR_SESSION_ID

■ FIELD_CDR_START_OF_USAGE

■ FIELD_CDR_CONNECT_TIME

■ FIELD_CDR_END_OF_USAGE

■ FIELD_CDR_DURATION_OF_USAGE

■ FIELD_CDR_AMOUNT_OF_USAGE

■ FIELD_CDR_ORIGINATING_PARTY

■ FIELD_CDR_DESTINATION_PARTY

■ FIELD_CDR_CHARGING_INFO

■ FIELD_CLASS_NAME

■ FIELD_METHOD_NAME

■ FIELD_SOURCE

■ FIELD_DIRECTION

■ FIELD_POSITION

■ FIELD_INTERFACE

■ FIELD_STATE

■ FIELD_EXCEPTION_NAME

■ FIELD_ORIGINATING_ADDRESS

■ FIELD_DESTINATION_ADDRESS

■ FIELD_CORRELATOR

■ FIELD_APP_ACCOUNT_ID

■ FIELD_SESSION_ID

■ FIELD_TRANSACTION_ID

■ FIELD_FACADE

■ FIELD_URL

■ FIELD_WEB_APP_NAME

■ FIELD_REQUEST_CONTEXT

■ FIELD_INTERCEPTOR_CHAIN

■ FIELD_SUBSCRIBER_ID

■ FIELD_BC_EDR_ID

■ FIELD_BC_EDR_ID_3

■ FIELD_BC_ALARM_IDENTIFIER

■ FIELD_BC_ALARM_INFO

Two keys not present in the EdrData are added to additional_info.

CDR generation

11-32 Services Gatekeeper Extension Developer's Guide

The format of the additional_info field is formatted as:

key=value\n
similar to the Java properties file.

Out-of-the box (OOTB) CDR support
It is difficult to come up with a CDR generation scheme that fulfills the requirements
of all customers. Services Gatekeeper generates a default set of CDRs which can be
customized by re-configuring the CDR descriptor.

The guiding principle for deciding when to generate CDRs is:

■ Generate a CDR when you are 100% sure that you have completely handled the
service request

In other words, after the last method, in a potential sequence of method calls, returns.

For network-triggered requests this means that you should a trigger a CDR at the
network-facing interface after the method has returned back to the network. For
application-triggered requests generate a CDR at the application-facing interface after
the method has returned to the Network Tier SLSB.

Table 11–11 Keys not present in EdrData, but added in additional_info

Key Description

destinationPart
y

If a send list is specified as the destination party, the first address will be
written in the destination_party field of the DB and the remainder of the list
will be written under this key name

oldInfo Any backwards compatible additional info is available

12

Using SLA Policies to Manage Subscribers 12-1

12Using SLA Policies to Manage Subscribers

This chapter describes how you use Oracle Communications Services Gatekeeper
Platform Development Studio to use policy-based control on your subscriber base.

There is an example Profile Provider in Middleware_home/ocsg_pds/example.

About Using Policies to Manage Subscribers
As a network operator, you can use Services Gatekeeper to evaluate the status of
requests in terms of policy, or rules governing a variety of service characteristics and
manage the normal request traffic policy evaluation flow using service contracts to
evaluate requests and to generate subscriber budgets.

To do so, you create a Subscriber SLA, based on a provided schema, which describes
sets of service classes. The service classes define access relationships with the services
of particular service provider and application groups, along with default rates and
quotas. Profile providers created by you or your network integrator can associate those
service classes with subscriber URIs to create subscriber contracts. A single subscriber
can be covered by multiple subscriber contracts, based on that individual subscriber’s
requirements.

Service Classes and the Subscriber SLA
Making subscriber personalization easy and offering superior subscriber data
protection is key to growing and maintaining a loyal subscriber base.

The first step in adding subscriber-centric policy to Services Gatekeeper is to create a
Subscriber SLA. This is an XML file based on the sub_sla_file.xsd schema.

The schema file can be found in the wlng.jar file located in the Middleware_home/ocsg_
pds/lib/wlng directory.

The SLA is used to define classes of service in the context of existing Service Provider
and Application Groups.(For more information on Service Provider and Application
Groups, see the discussion on managing application service providers in Services
Gatekeeper Concepts. These service classes can then be associated with subscribers,
based on their preferences and permissions, defining individualized relationships
between subscribers and Service Provider and Application Group functionality.

The <reference> element
The <reference> element specifies the operator’s already-established Application and
Service Provider Groups that are to be associated with this service class. There are two
reference types that define the groups: the ApplicationGroupReference and

Service Classes and the Subscriber SLA

12-2 Services Gatekeeper Extension Developer's Guide

ServiceProviderGroupReference. In addition there are two additional reference types,
ServiceReference and MethodReference that indicate specific service interfaces and
methods, respectively, covered by those groups. In the Example 12–1 snippet, the
service class news_subscription is defined. Evaluation of matches in the class occurs
using the following rules:

■ If no reference type is specified, everything of that type is a match

■ Two or more entries of the same reference type creates an OR relationship

■ The default relationship is AND

So, in the case of Example 12–1, the class covers any request that matches:

■ Any of the service interfaces of the silver_app_group

(No ServiceReference type is specified, so everything is a match)

■ OR the gold_app_group

(Two ApplicationGroupReference entries creates an OR)

– AND the SendSMS service interface of the gold_app_group

(The default relationship)

– AND the content_sp_group

(The default relationship)

– AND the SendSMS service interface of the content_sp_group

(The default relationship)

– AND either the sendSms OR the getSmsDeliveryStatus methods

(Two MethodReference entries creates an OR)

Example 12–1 The <reference> element

<ServiceClass name="news_subscription">
 <references>
 <ApplicationGroupReference id="silver_app_group"/>
 <ApplicationGroupReference id="gold_app_group">

<ServiceReference
serviceInterface="com.bea.wlcp.wlng.px21.plugin.SendSmsPlugin"/>
 </ApplicationGroupReference>

<ServiceProviderGroupReference id="content_sp_group">
 <ServiceReference
serviceInterface="com.bea.wlcp.wlng.px21.plugin.SendSmsPlugin">

<MethodReference methodName="sendSms" />
 <MethodReference methodName="getSmsDeliveryStatus" />
 </ServiceReference>
 </ServiceProviderGroupReference>
 </references>

Use of the empty <references/> element matches everything.

The <restriction> element
In addition to the <reference> element, service classes may have a <restriction>
element. This element is used to attach default rates and quotas that are used to create
budgets for the classes. These rates and quotas can be replaced in specific contracts.

The Profile Provider SPI and Subscriber Contracts

Using SLA Policies to Manage Subscribers 12-3

Example 12–2 The <restriction> element

<restriction>
 <rate>
 <reqLimit>5</reqLimit>
 <timePeriod>1000</timePeriod>
 </rate>
 <quota>
 <qtaLimit>600</qtaLimit>
 <days>3</days>
 <limitExceedOK>true</limitExceedOK>
 </quota>
</restriction>

These elements function exactly as they do in the other SLAs in Services Gatekeeper.
For more information on these elements, see the Contract structure section of the
“Defining Service Provider Group and Application Group SLAs” chapter of Managing
Accounts and SLAs, a separate document in this set. If the <limitExceedOK> element is
set to true, the request is allowed even when quota has been exceeded, but an alarm
(Alarm id 200000) is fired.

There is also a <restrictAllType/> element. This element, as its name implies, denies
access to all requests.

Managing the Subscriber SLA
There are three management methods in the Service Level Agreement MBean for
managing a Subscriber SLA. They are covered in detail in “Managing SLAs” in Services
Gatekeeper Extension Developer's Guide. The methods allow you to load a Subscriber
SLA as a string, to load a Subscriber SLA from a URL, and to retrieve a loaded
Subscriber SLA.

The Profile Provider SPI and Subscriber Contracts
Once the Subscriber SLA is established, the various service classes it defines must be
associated with individual subscribers. The combination of a subscriber (identified by
URI) and a service class is called a subscriber contract. A subscriber (a URI) can have
multiple subscriber contracts associated with it.

The subscriber contract object contains a URI designating the subscriber and the
service class type with which it is associated. It also contains an expiration time,
represented as a java.util.Date.

The subscriber contract constructor throws an exception if the URI, service class type,
and expiration time are not specified.

The subscriber contract may also replace the default rate and/or quota settings in the
service class, or set this subscriber to RestrictAll, that is, to deny access for all requests.

The operator or integrator is responsible for creating the mechanism, a Profile
Provider, that supplies these subscriber contracts.

Note: The XSD requires you either to specify a rate/quota restriction
or to use the <restrictAllType/> element.

Subscriber Policy Enforcement

12-4 Services Gatekeeper Extension Developer's Guide

The Profile Provider must implement the Profile Provider SPI. The SPI defines three
methods;

■ init: Services Gatekeeper initializes the Profile Provider by passing in a list of the
service classes that are defined in the Subscriber SLA and a list of any previously
defined subscriber contracts. The Provider returns a list of updated subscriber
contracts.

■ contractExpired: Services Gatekeeper sends the Provider a list of service classes
and a list of expired contracts. The Provider returns an updated list of contracts for
those that have expired. The Provider can remove or add contracts to the returned
list.

■ serviceClassesUpdated: Whenever the Subscriber SLA is updated, and the service
classes are thus modified, Services Gatekeeper sends the Provider a list of the
updated service classes and a list of all current contracts. The Provider returns an
updated list of contracts. The Provider can make any necessary updates to the
subscriber contracts.

The Profile Provider implementation must have a public constructor with no
parameters or a static method which returns ProfileProvider.

Deploying the Custom Profile Provider
Once ProfileProviderImpl has been created, the JAR file containing it must be added
to the app-inf/lib directory in the profile_providers.ear file, which can be found in the
Middleware_home/ocsg/applications directory. You must also modify the
app-inf/classes/ProfileProviders.prop file, adding a line containing the package and
implementation file name of each of your providers (multiple providers are possible).
For example:

com.mycompany.mypackage.MyProfileProviderImpl

Once the EAR file is modified, it can be deployed in the normal manner. For more
information on deploying EAR files see discussion on deployment model for
communications services in Services Gatekeeper System Administrator's Guide.

Subscriber Policy Enforcement
Once the providers.ear is deployed, the singleton SubscriberProfileService initializes
the Profile Provider(s) and receives the relevant subscriber contracts. It uses the
Budget Service to create budgets for the contracts, based on the specified rates and
quotas, and also creates and schedules a timer based on the expiration times in the

Note: All class files related to creating Profile Providers are in the
com.bea.wlcp.wlng.spi.subscriberdata package, and can be found in
the wlng.jar file in the Middleware_home/ocsg_pds/lib/wlng directory.
The documentation for the files is in the “All Classes” section of the
Services Gatekeeper Java API Reference. An example implementation can
be found in the Middleware_home/ocsg_pds/example/profile_
providers/src directory. This sample implementation assumes the use
of a properties file to assign subscriber URIs to particular service
classes. An example properties file,
exampleSubscriberContractMappingFile.properties, can be found in
the Middleware_home/ocsg_pds/example/profile_providers/resource
directory.

Subscriber Policy Enforcement

Using SLA Policies to Manage Subscribers 12-5

contracts. Both the Subscriber SLA and the subscriber contracts are persisted using the
Storage Service.

When a request from an application arrives at Services Gatekeeper, it passes through
the Interceptor Stack for policy evaluation. The EnforceSubscriberBudget interceptor
manages policy enforcement for subscriber contracts. The process within the
interceptor has two phases:

■ Do Relevant Subscriber Contracts Exist?

■ Is There Adequate Budget for the Contracts?

Do Relevant Subscriber Contracts Exist?
The first thing the interceptor must determine is whether one or more contracts exist
that are relevant to the particular request that is being evaluated. The interceptor
iterates through all the target URIs in the application request, and evaluates whether
or not there are contracts in effect that it should enforce.

■ If there are no contracts at all associated with a particular URI, the request is
simply passed on to the next interceptor in the sequence.

■ If there are contracts associated with a particular URI, a set of evaluations must be
carried out. The figures below show the decision flow for the evaluations. All three
sections must evaluate to true for there to be an enforceable contract.

■ Is there an ApplicationGroupReference and is it relevant? See Figure 12–1.

Note: For more information on budgets in Services Gatekeeper, see
the discussion on managing and configuring budgets in Services
Gatekeeper System Administrator's Guide.

Note: The XML snippets correspond to the relevant sections of
Example 12–1.

Subscriber Policy Enforcement

12-6 Services Gatekeeper Extension Developer's Guide

Figure 12–1 Application Group Reference Evaluation

■ Is there a ServiceProviderGroupReference and is it relevant? See Figure 12–2.

Figure 12–2 Service Provider Group Reference Evaluation

■ Is there a Service Reference (and possibly a MethodReference) and are they
relevant? See Figure 12–3.

Note: The evaluation for methodExists is covered in Figure 12–3.

Note: The evaluation for methodExists is covered in Figure 12–3.

Subscriber Policy Enforcement

Using SLA Policies to Manage Subscribers 12-7

Figure 12–3 Service and Method Reference Evaluation

Is There Adequate Budget for the Contracts?
Once the interceptor determines that an enforceable contract exists, it first determines
whether the contract includes a <restriction> element set to <restrictAll/>. If so,
the request is immediately denied, and processing on the request ceases.

If the <restriction> element is not set to <restrictAll/>, the decision flow is
identical to the other budget evaluations that take place in Services Gatekeeper.

If there are no relevant contracts, or there are relevant contracts and there is adequate
budget to cover them, budgets are adjusted as necessary and the request passes on to
the next interceptor. If there are relevant contracts and there is not adequate budget to
cover them, the request is denied.

Subscriber Policy Enforcement

12-8 Services Gatekeeper Extension Developer's Guide

13

Creating Custom Runtime SLAs 13-1

13Creating Custom Runtime SLAs

This chapter describes how to enforce custom service level agreements (SLAs) and
explains the relationship between the custom SLAs, their XSDs, and the enforcement
logic in Oracle Communications Services Gatekeeper.

Introduction
Custom service level agreements (SLAs), offer a mechanism to add custom SLA
enforcement in addition to the SLA enforcement provided by default with Services
Gatekeeper. In contrast to the system SLA types that have static XSDs and enforcement
logic, the custom SLAs offer configuration time loading of SLA XSDs and runtime
deployment of the enforcement logic. It is a framework for definition and enforcement
of custom SLAs.

The entities involved include:

■ Custom SLA XSDs

■ Custom SLAs

■ Enforcement logic for the custom SLAs

The custom SLA XSDs are loaded and assigned an SLA type using the management
interfaces. Then SLAs are loaded, and associated with a service provider group,
application group, or globally. After this is done, the SLA type is used and the custom
SLAs are validated against the XSDs.

At run-time, when the custom SLAs are enforced, the enforcement logic is responsible
for fetching the enforcement logic relevant for the custom SLA type.

Custom SLAs and XSDs
The SLAs must be expressed in XML and be formatted according to their SLA XSDs.
There are no other requirements for the SLAs.

At load time, the custom SLA XSD is validated and associated with an SLA type. This
type is used when loading the custom SLA, and the SLA is validated against the XSD.

The XSD and SLA are loaded using the management interfaces. See “Managing SLAs”
in Services Gatekeeper Extension Developer's Guide.

Custom SLA Enforcement
The custom SLA enforcement is implemented as one or more service interceptors.
Thus gives the operator the ability to deploy and undeploy the enforcement logic in

Custom SLA Enforcement

13-2 Services Gatekeeper Extension Developer's Guide

runtime. It also gives the enforcement logic access to all data about a request from the
context object through the com.bea.wlcp.wlng.api.interceptor.Context class.

The service interceptor is responsible for:

■ Resolving the request data it needs from the Context object.

■ Loading the representation of the custom SLA

■ Fetching any other data needed for the enforcement logic

■ Manipulating the Context with new data, if necessary

■ Allowing or denying the request, if necessary

For information on how to access the data from the Context object, see "Using Service
Interceptors to Manipulate Requests".

The Java representation of the custom SLA is fetched from
com.bea.wlcp.wlng.api.sla.CustomSlaManager.

This class exposes the following methods:

Document getApplicationGroupCustomSla(String slaType)
Document getServiceProviderGroupCustomSla(String slaType)
Document getGlobalCustomSla(String slaType)
Object getApplicationGroupCustomSla(String slaType, String parserId)
Object getServiceProviderGroupCustomSla(String slaType, String parserId)
Object getGlobalCustomSla(String slaType, String parserId)
void registerSlaParserCallback(String slaType, String parserId, SlaParserCallback
parser)
void unregisterSlaParserCallback(String slaType, String parserId)

There are two ways to get the Java representation of the SLA, through a DOM object or
from a custom XML parser:

■ Get an SLA using a DOM Object

■ Get an SLA using a Custom Parser

The CustomSlaManager automatically resolves which custom SLA should be fetched,
so there is no need to resolve which group the originator of the request belongs to. In
the case of a global SLA, only the custom SLA type is of significance since this scope
does not take into account the originator of the request, but is relevant for all requests.

If the combination of SLA data and enforcement logic is intended to add or replace
data about the request, the service interceptor must manipulate the Context object
accordingly.

If the combination of SLA data and enforcement logic is intended to function to deny
or allow the request, the service interceptor must throw an exception and break the
chain of interceptors or pass on the request to the next interceptor as described in
"Using Service Interceptors to Manipulate Requests".

Get an SLA using a DOM Object
When using get methods that return the SLA as an org.w3c.dom.Document, a
standard DOM parser is used to construct the Java representation of the SLA:

Note: A custom SLA parser can produce a more efficient Java
representation of the SLA than the more general DOM representation.

Example

Creating Custom Runtime SLAs 13-3

Document getApplicationGroupCustomSla(String slaType)
Document getServiceProviderGroupCustomSla(String slaType)
Document getGlobalCustomSla(String slaType)

The slaType identifies the XSDs and returns the custom SLA for the service provider
group, application group, or global, respectively. Depending on the scope of the
enforcement logic, the corresponding method is used. In this case there is no need to
implement and register any parser.

Get an SLA using a Custom Parser
When using get methods to return the SLA as an Object, the custom parser parses the
SLA and returns an object in a known format:

Object getApplicationGroupCustomSla(String slaType, String parserId)
Object getServiceProviderGroupCustomSla(String slaType, String parserId)
Object getGlobalCustomSla(String slaType, String parserId)

All of the above methods require the ID of parser to use for creating the Object. The
parser must be registered using:

void registerSlaParserCallback(String slaType, String parserId, SlaParserCallback
parser)

It can be unregistered using:

unregisterSlaParserCallback(String slaType, String parserId

The custom SLA parser must implement the interface
com.bea.wlcp.wlng.api.sla.SlaParserCallback, which defines the method:

Object parse(String sla)

The parameter sla contains a text-representation of the SLA, and originates from the
SLA as loaded using the Account Service. Services Gatekeeper is responsible for
caching and keeping the SLA in sync with the loaded SLA. The implementation of
parse(String sla) returns the object that is returned by the get methods.

The two methods are equivalent in every aspect except the custom SLA
implementation and the parser ID.

Example
Below is an example of how a custom SLA that combines data from an application’s
request, the contents of a custom SLA and data from an external source can be
implemented. A DOM parser for the SLA is used.

The use case assumes that service provider groups are used to differentiate between
different content providers. For example, service provider groups are created for
content providers of entertainment, sports, and weather. End-users of the services can
opt in to get content of a certain category, and this data is accessible by Service
Gatekeeper.

A simple custom SLA schema with entries for allowed content types is created. See
"Custom SLA Schema and Example SLA" for more information. The custom SLA XSD
is loaded in Services Gatekeeper using the management interfaces. Custom SLAs are
created that list the content types from these service provider groups. Service provider
groups are created for different content types. Each SLA is associated with the
corresponding service provider group using the management interfaces.

Example

13-4 Services Gatekeeper Extension Developer's Guide

The enforcement logic for the SLA is created. The logic is deployed as a service
interceptor.

When an application uses Service Gatekeeper to deliver content, the request travels
through the communication service until the custom service interceptor is reached.
The interceptor gets the custom SLA XSD, and - depending on the originator of the
request - fetches the appropriate SLA and matches the addressee’s preferences. Based
on that information, it allows or blocks the request. See "Enforcement Logic" for more
detailed information.

Custom SLA Schema and Example SLA
Example 13–1 is an example of a SLA schema that allows a set of content types to be
defined.

Example 13–1 Example SLA Schema

<?xml version="1.0"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://www.example.com"
 xmlns="http://www.example.com"
 elementFormDefault="qualified">
 <xs:element name="contentFilter">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="allowContents">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="allowContentType"
 type="xs:string"
 maxOccurs="unbounded"
 minOccurs="1"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
</xs:schema>

Example 13–2 is an SLA that adheres to the schema in Example 13–1. It allows the
content type Entertainment.

Example 13–2 ContentFilterSla.xml

<?xml version="1.0"?>
 <contentFilter xmlns="http://www.example.com"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.example.com contentFilter.xsd">
 <allowContents>
 <allowContentType>Entertainment</allowContentType>
 </allowContents>
 </contentFilter>

Example

Creating Custom Runtime SLAs 13-5

Enforcement Logic
The enforcement logic of the SLA is implemented as a service interceptor, so it must
register itself and de-register itself using the InterceptorManagerFactory. See "Using
Service Interceptors to Manipulate Requests" for more information.

Below are the main steps involved in implementing the enforcement logic:

1. A request enters the interceptor. The destination address of the request is retrieved
from com.bea.wlcp.wlng.api.interceptor.Context by iterating over the RequestInfo
objects until the AddressRequestInfo is found.

for (RequestInfo requestInfo : context.getRequestInfos()) {
if (requestInfo instanceof AddressRequestInfo) {
URI uri = ((AddressRequestInfo) requestInfo).getAddress()
...

2. A lookup of which content types are allowed by the subscriber identified by the
destination address is done. This lookup could be done on a subscriber database.

3. The custom SLA for the service provider group is fetched from the
CustomSlaManager. The SLA is fetched by name and the SLA type given when
the XSD for the custom SLA was loaded using the management interfaces. The
SLA for the service provider group that is associated with the originating
application is resolved automatically by the CustomSlaManager. Different
methods are used to fetch the custom SLA on service provider group, application
group, and global level.

Document spSla = slaManager.getServiceProviderGroupCustomSla(CONTENT_FILTER);

4. The custom SLA is returned as a org.w3c.dom.Document, and the Document is
parsed to get the data, in this case the content of the <allowContentType>
elements.

5. The content of the SLA is compared to the list of allowed contents for the
destination address. If there is a mismatch, an exception is thrown to stop the
service interceptor chain. If the request is allowed, it is passed on to the next
service interceptor.

Example

13-6 Services Gatekeeper Extension Developer's Guide

14

Customizing SLA Behavior for a Service Provider or Application 14-1

14Customizing SLA Behavior for a Service
Provider or Application

This chapter explains how Oracle Communications Services Gatekeeper plug-ins can
use the generic data in SLAs to customize the behavior of the plug-in.

Understanding How to Customize Behavior Based on SLAs
Plug-ins can specify different behavior for individual service providers or applications
using the generic data specified in their service provider or application level SLAs. The
plug-in uses generic data specified in the SLAs to do this.

This capability is useful when the data used by a plug-in should be different
depending on which service provider or application that the request originates. For
example, this can be used for information about parameters that corresponds to a
certain group of applications. A certain group might get the priority on their SMS set
to LOW because they pay less. The priority might be a parameter that is sent down to
the network which handles this.

In an SLA, a <contextAttribute> is defined as a name/value pair, where the name is
defined in the <attributeName> and the value is specified in <attributeValue>.

A plug-in can retrieve the value specified in <attributeValue> using the name
specified in <attributeName>. The value is retrieved using the RequestContext for the
request:

String attributeValue =
(String)RequestContextManager.getCurrent().get("<attributeName>");

For example, you can retrieve the value associated with the contextAttribute with the
attributeName com.bea.wlcp.wlng.plugin.sms.testName1:

String value1 =
(String)RequestContextManager.getCurrent().get("com.bea.wlcp.wlng.plugin.sms.testN
ame1");

Understanding How to Customize Behavior Based on SLAs

14-2 Services Gatekeeper Extension Developer's Guide

15

Customizing Diameter AVPs 15-1

15Customizing Diameter AVPs

This chapter describes how to customize Diameter AVPs (Attribute-Value Pairs) in
Oracle Communications Services Gatekeeper for:

■ Parlay X 3.0 Payment Diameter communication service

■ Credit Control Interceptor

■ CDR Diameter listener

Understanding Customized Diameter AVPs
You can add or modify the Diameter AVPs that Services Gatekeeper sends to the
network.

A set of standard AVPs are sent using Diameter, and you can add additional AVPs and
modify them using configuration. Applications can also provide custom AVPs as
tunnelled parameters, and they can receive returned AVPs using tunneled parameters.

This chapter starts with sections that describe how to configure custom AVPs for these
entities:

■ Configuring Customized AVPs for Parlay X 3.0 Payment/Diameter

■ Configuring Customized AVPs for Credit Control Interceptor

■ Configuring Customized AVPs for CDR Diameter Listener

Finally this chapter explains how to customize AVPs for any application in the
"Dynamically Customizing AVPs for Applications" section.

Configuring Customized AVPs for Parlay X 3.0 Payment/Diameter
The Parlay X 3.0 Payment/Diameter communication service translates Parlay X
requests or requests over the RESTful interfaces to Diameter calls. You can add and
modify the Diameter AVPs that are sent in the Diameter request using a custom global
SLA or a custom service provider SLA. See Services Gatekeeper Extension Developer's
Guide for more information. Use the SLA type payment_diameter_avp when loading
the SLA.

The custom SLA has the following structure:

<tns:paymentConfig>

 <tns:avpAttributeDefinitions>

 <avp:avpAttribute></avp:avpAttribute>

 ...

Configuring Customized AVPs for Parlay X 3.0 Payment/Diameter

15-2 Services Gatekeeper Extension Developer's Guide

 </tns:avpAttributeDefinitions>

 <tns:avpTemplate>

 <avp:avpValue/>

 ...

 </tns:avpTemplate>

</tns:paymentConfig>

The paymentConfig element contains one instance of avpAttributeDefinitions and a
sequence of avtTemplate. It has no attributes.

The avpAttribute element specifies the AVP attribute to use and defines its
characteristics. One or more avpAttribute elements can be defined under
avpAttributeDefinitions. The avpAttribute element has the following attributes:

■ code Required. Defines the AVP attribute code.

■ vendorId Required. Defines the Vendor ID for the AVP.

■ name Required. Symbolic name to use when referring to the AVP attribute
definition in the avpValue element.

■ type Required. Type is String. Defines the data type of the AVP. Possible values
are:

– INTEGER32

– INTEGER64

– FLOAT32

– FLOAT64

– STRING

– ADDRESS

– GROUPED

– BYTES

If the type is GROUPED, the AVP attribute is a grouped attribute and a sequence
of avpAttribute elements can be added as siblings to a avpAttribute.

■ flag default is 64. Use one of the following values:

– FLAG_NONE = 0x0 (0)

– FLAG_VENDOR_SPECIFIC = 0x80 (128)

– FLAG_MANDATORY =0x40 (64)

– FLAG_END_TO_END_ENCRYPTION = 0x20 (32)

You can combine these flags by adding their values together.

 The value parts of the AVPs are defined as sequence of avpValue elements. The
avpValue is a sibling to the avpTemplate element.

The avpTemplate element defines the optional paramName attribute. If a ParamName is
not specified, the template that has the same name as the calling operation is used.

The avpValue element defines the value of an AVP. It has two attributes:

Configuring Customized AVPs for Credit Control Interceptor

Customizing Diameter AVPs 15-3

■ avpName Required. Type is String. Points to the avpAttribute the value
corresponds to.

■ defaultValue Optional. Type is String. Defines the value of the AVP. When it is a
grouped AVP (type is set to GROUPED) the value must be null, otherwise it must
have a value.

Example 15–1 illustrates a custom AVP definition for Payment. It defines three AVP
attributes and shows how to set the values for these.

Example 15–1 Custom AVP definition for Payment

<?xml version="1.0" encoding="UTF-8"?>
<tns:paymentConfig xmlns:avp="http://ocsg.oracle/diameterAvp/xml"
xmlns:tns="http://ocsg.oracle/plugin/payment/diameter/xml"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <tns:avpAttributeDefinitions>
 <avp:avpAttribute code="3001" vendorId="111" name="test-avp-1" type="String"
flag="0"></avp:avpAttribute>
 <avp:avpAttribute code="3002" vendorId="111" name="test-avp-2" type="Grouped"
flag="0">
 <avp:avpAttribute code="3003" vendorId="111" name="test-avp-3"
type="Integer32" flag="0"></avp:avpAttribute>
 </avp:avpAttribute>
 </tns:avpAttributeDefinitions>

 <!-- default template -->
 <tns:avpTemplate>
 <avp:avpValue avpName="test-avp-1" defaultValue="hello world."/>
 <avp:avpValue avpName="test-avp-2">
 <avp:avpValue avpName="test-avp-3" defaultValue="2"/>
 </avp:avpValue>
 </tns:avpTemplate>

 <!-- custom template -->
 <tns:avpTemplate ParameterName="template1">
 <avp:avpValue avpName="test-avp-1" defaultValue="hello template 1"/>
 <avp:avpValue avpName="test-avp-2">
 <avp:avpValue avpName="test-avp-3" defaultValue="20"/>
 </avp:avpValue>
 </tns:avpTemplate>

</tns:paymentConfig>

Configuring Customized AVPs for Credit Control Interceptor
The Credit Control Interceptor sends Diameter requests based on the content of a
request from an application. For each request, you can specify one or more AVPs to
send in the request.

You specify the AVPs in an custom global SLA or custom service provider SLA. See
Services Gatekeeper Extension Developer's Guide for more information. Use the SLA type
credit_control when loading the SLA. For information about Credit Control
Interceptors and SLAs, see “Implementing Diameter Ro Charging using Credit Control
Interceptors” in Services Gatekeeper System Administrator's Guide.

The AVPs are defined in the avpAttributeDefinitions elements in the credit control
SLA. Define this as a sibling to the CCInterceptions element.

Configuring Customized AVPs for CDR Diameter Listener

15-4 Services Gatekeeper Extension Developer's Guide

The SLA has the following structure:

<CCInterceptions>

 <avpAttributeDefinitions>

 <avpAttribute></avp:avpAttribute>

 ...

 </avpAttributeDefinitions>

 <CCInterception>

 <SubscriptionId>...</SubscriptionId>

 <OCSGChargeDescription>...</OCSGChargeDescription>

 <ServiceContextId>...</ServiceContextId>

 <Amount>...</Amount>

 <Currency>...</Currency>

 <ServiceIdentifier>...</ServiceIdentifier>

 <CallingPartyAddress>...</CallingPartyAddress>

 <CalledPartyAddress>...</CalledPartyAddress>

 <AsynchronousCommit></AsynchronousCommit>

 <customizedAvpValues>...</customizedAvpValues>

 </CCInterception>

 <CCInterception>

 ...

 </CCInterception>

</CCInterceptions>

The CCInterceptions element contains a sequence of CCInterception and
avpAttributeDefinitions elements. It has no attributes.

The CCInterception element defines the data to set in an AVP and it specifies which
method and interface the request that the AVPs are valid for.

It has the following attributes:

■ interfaceName Required. Type is String. The Java representation of the Parlay X
interface name. For example, com.bea.wlcp.wlng.px21.plugin.SendSmsPlugin.

■ methodName Required. Type is String. The method name. For example, sendSms.

■ pluginId Optional. Type is String. The Id of the plug-in instance the AVP is
defined for and serves as a default definition. If it is not present, it is valid for all
plug-in instances. If it is present, it overrides the default AVP definition.

The avpAttribute element is identical to the avpAttribute element for the Payment
plug-in, see "Configuring Customized AVPs for Parlay X 3.0 Payment/Diameter".

Configuring Customized AVPs for CDR Diameter Listener
The CDR Diameter listener converts CDRs emitted by Services Gatekeeper to
Diameter Requests.

Configuring Customized AVPs for CDR Diameter Listener

Customizing Diameter AVPs 15-5

The mapping from a CDR to Diameter AVPs is defined in the XML file mapping.xml.
The file is located in the EAR files cdr_to_diameter-single.ear and cdr_to_
diameter.ear, in the APP-INF\classes directory.

You can define two types of AVPs: dynamic and static.

Dynamic AVPs take fields in the CDR and defines which AVP it is mapped to. The
Static AVPs define static values.

The XML file has the following structure:

<mappings>

 <mapping/>

 ...

 <mapping/>

</mappings>

The mappings element contains a sequence of mapping. It has no attributes

The mapping element has the following attributes:

■ edr Optional. Type is String. Defines the EDR ID to convert.

■ avp Required. Type is String. Defines the AVP attribute name part, for example
Called-Party-Address.

■ avpType Required. Type is String. Defines the data type of the AVP. Possible values
are:

– INTEGER32

– INTEGER64

– FLOAT32

– FLOAT64

– STRING

– ADDRESS

– GROUPED

– BYTES

■ vendorId Optional. Type is int. Defines the vendor-ID included in the Diameter
request. For example, Oracle’s vendor-ID is 111.

■ mandatory Optional. Type is Boolean. Defines if the AVP is mandatory or not.

■ vendorSpecific Optional. Type is Boolean. Specifies if the AVP is specific for the
vendor or if it is a standard AVP.

■ endToEndEncryption Optional.Type is Boolean. Specifies if end-to-end encryption
shall be used for the request.

■ avpCode Required. Type is int. Specifies the numeric value for the AVP attribute
part.

■ mapper Optional. Type is String. Specifies the class that performs the mapping. Use
the fully qualified class name, including he package name.

■ avpValue Optional. Type is String. Specifies the value-part of the AVP.

The following rules apply:

Dynamically Customizing AVPs for Applications

15-6 Services Gatekeeper Extension Developer's Guide

■ If the specified edr attribute exists, the value in the EDR is forwarded in the
Diameter ACR (account request).

■ f the value in the EDR is an array, all entries are sent as comma-separated values.

■ If there is no EDR attribute that matches edr, the value set in avpValue is used.

To define a dynamic EDR to AVP mapping for the time stamp, use the following XML:

<mapping edr="Timestamp" avp="Event-Timestamp" mandatory="true"
avpCode="55" avpType="INTEGER32"
mapper="com.bea.wlcp.wlng.cdrdiameter.xmlmapper.avpmapper.TimeStampAVPMapp
er"/>

To define a static AVP, use the following XML:

<mapping edr="CustomizedAVP1" avp="Ocsg-Customized-1" mandatory="false"
avpCode="3001" vendorId="111" avpType="STRING" avpValue="test"/>

Dynamically Customizing AVPs for Applications
Applications can define customized AVPs to be sent in Diameter requests by using
tunneled parameters (x parameters) that define the AVPs to be added. The AVPs need
to be configured in the SLAs using the same key name as used in the tunneled
parameter. AVPs are forwarded in the responses to requests from the SOAP and
RESTful interfaces for requests to the Payment communication service.

See Services Gatekeeper Communication Service Reference Guide for descriptions of the
tunneled parameters used by individual communication services.

The parameters are defined using key-value pairs encapsulated by the tag <xparams>.
The xparams tag can include one or more <param> tags. Each <param> tag has a key
attribute that identifies the parameter and a value attribute that defines the value of
the parameter. Set the value for the key in the tunneled parameter to the value of the
paramName attribute in the SLA to use a configured AVP.

The tunneled parameter can be retrieved from a plug-in by the key and used in the
request towards the network node. The parameter is fetched from the
RequestContext, using the getXParam(String key) method. If a value for the key
cannot be found, null is returned.

You can block requests that contain tunneled parameters that have not been
configured as allowed. Filtering is on a global, not application, level. See "About
Filtering Tunneled Parameters” in Services Gatekeeper System Administrator's Guide for
more information on configuring which tunneling parameters are allowed or blocked
in Services Gatekeeper.

Example 15–2 Retrieving the Value of the Tunneled Parameter ‘aParameterName’

RequestContext.getCurrent().getXParam("aParameterName");

A parameter tunneled from the application is overridden, if the same parameter is
defined in the <contextAttribute> SLA element. This behavior, however, is defined
per plug-in.

The application sends the tunneled parameters in the SOAP header of a Web Services
request.

The key-value pairs for SOAP-based tunneled parameters are defined this way:

<soapenv:Header>
...

Dynamically Customizing AVPs for Applications

Customizing Diameter AVPs 15-7

<xparams>
 <param key="key1" value="value1" />
 <param key="key2" value="value2" />
</xparams>
...
</soapenv:Header>

When you use the SOAP interfaces, the AVPs are returned in the SOAP header in a
tunneled parameter with the attribute key set to AVP_LIST and the attribute value set
to an XML encoded string representing the AVP. An example is:

<param key="AVP_LIST" value="AVP_list_in_XML" />

When you use the RESTful interfaces, the values should be encoded in the HTTP
header this way:

X-Plugin-Param-Keys:template1,template2

X-Plugin-Param-Values:10,10

The key and the value for the tunnelled parameters are ordered so the first occurrence
in X-Plugin-Param-Keys is for the first occurrence of X-Plugin-Param-Values, and so
on.

When the XML is returned in a SOAP header, values are escaped. For example the <
character is converted to <.

When you use the RESTful interfaces, the AVPs are returned in the HTTP response
header in an tunneled parameter with the attribute X-Plugin-Param-Keys set to AVP_
LIST and the attribute X-Plugin-Param-Values set to an XML encoded string
representing the AVP.

The key-value pairs for REST-based tunneled parameter (xparam) request headers are
defined this way:

X-Param-Keys: key1,key2
X-Param-Values: value1,value2

The key-value pairs for REST-based response headers are defined this way:

X-Plugin-Param-Keys: key1,key2
X-Plugin-Param-Values: value1,value2

This example shows an AVP list expressed in XML:

<Avp-List>

 <Session-Id>;1280993750;3</Session-Id>

 <Origin-Host>ocag.oracle.com</Origin-Host>

 <Origin-Realm>oracle.com</Origin-Realm>

 <Result-Code>2001</Result-Code>

 <CC-Request-Type>4</CC-Request-Type>

 <CC-Request-Number>0</CC-Request-Number>

</Avp-List>

When the XML is returned in the HTTP header, all <CR> (carriage return) and <LF>
(line feed) characters are removed.

Dynamically Customizing AVPs for Applications

15-8 Services Gatekeeper Extension Developer's Guide

16

Creating EDR Listeners 16-1

16Creating EDR Listeners

This chapter describes how to create an external event data record (EDR) listener in
Oracle Communications Services Gatekeeper.

Understanding External EDR listeners
External EDR listeners are Java Message Service (JMS) topic subscribers.

The diagram below illustrates three different ways of listening for EDRs as a JMS
listener.

Understanding External EDR listeners

16-2 Services Gatekeeper Extension Developer's Guide

Figure 16–1 Flow for external EDR, alarm, and CDR listeners

EDRs are published externally using a JMS topic. This makes it possible to implement
language-independent listeners anywhere on the network in a standard way. It is
possible to implement an EDR listener in several ways:

■ Alternative 1: Using a pure JMS listener. Implement the javax.jms.MessageListener
interface. It is up to the implementation class to implement any filtering
mechanism needed.

■ Alternative 2: Using a subclass of JMSListener with no filter specified. In that case,
the JMSListener class will use a tag, if available in the EDR, to filter the EDR into a
specific category: EDR, alarm or CDR.

■ Alternative 3: Using a subclass of JMSListener with a specified filter. This filter is
used to perform the filtering. If a default filter is used to perform the same filtering
as Services Gatekeeper, all classes used in the xml configuration files must be
present in the current class loader. Otherwise, some EDRs will not be correctly
filtered.

Understanding External EDR listeners

Creating EDR Listeners 16-3

Example using a pure JMS listener

Example 16–1 Using a pure JMS listener

public class ClientJMSListener implements MessageListener {
public void onMessage(Message msg) {
// Extract the EdrData object or array
if(o instanceof EdrData[]) {
for(EdrData edr : (EdrData[])o) {
//do something with each EDR

}
}

}
}

Example using JMSListener utility with no filter

Example 16–2 Using a subclass of JMSListener with no filter specified

public class SampleEdrJMSListener extends JMSListener {
public SampleEdrJMSListener(String url) throws Exception {
// Register in the JMS topic. No filter is specified so
// the "tag" filtering mechanism will be used.
register(url);

}
@Override
public void onEdr(EdrData edr, ConfigDescriptor descriptor) {
// The "tag" mechanism will filter the stream of EDRs according
// to the internal filtering. To know which type of EDR is
// actually provided in this method, we have to determine the
// instance of the ConfigDescriptor as follow:
if(descriptor instanceof EdrConfigDescriptor) {
// do something with this EDR

} else if(descriptor instanceof AlarmConfigDescriptor) {
// do something with this alarm

} else if(descriptor instanceof CdrConfigDescriptor) {
// do something with this CDR

}
}

}

Using JMSListener utility with a filter

Example 16–3 Using a subclass of JMSListener with a specified filter

public class SampleEdrJMSListener extends JMSListener {

public SampleEdrJMSListener(String url) throws Exception {
// Register in the JMS topic. Use the default alarm filter.
// Note that in this case all classes needed by the alarm.xml file
// must be in the current class loader in order for the filtering
// to work correctly.
register(url, EdrFilterFactory.createDefaultFilterForAlarm());

}
@Override
public void onEdr(EdrData edr, ConfigDescriptor descriptor) {

Understanding an EDR listener utility

16-4 Services Gatekeeper Extension Developer's Guide

// Only AlarmConfigDescriptor should be received here.
// Just check before casting.
if(descriptor instanceof AlarmConfigDescriptor) {
... do something with this alarm

}
}

}

Understanding an EDR listener utility
The EDR listener utility contains a set of classes to use when creating an external JMS
listener using the JMSListener.

The helper classes are found in:

Middleware_home/ocsg_pds/lib/wlng/edrjmslistener.jar.

Class JMSListener

Class EdrFilterFactory

Note: When using the JMSListener class, make sure that any
modification to an EDR, CDR. or alarms descriptor in Services
Gatekeeper is also updated in the edrjmslistener.jar file.

Table 16–1 JMSListener

Method Description

public void register(String url) Registers the JMS listener to the EDR topic using no
filter. The filtering will be done using the tagging
mechanism. The parameter url specifies the URL of a
Network Tier server.

public void register(String url,
EdrFilter filter)

Registers the JMS listener to the EDR topic using the
specified filter.

public void onEdr(EdrData edr,
ConfigDescriptor descriptor)

Method that the subclass can override to get notified
each time an EDR is received.

The descriptor is a subclass of ConfigDescriptor that
identifies the type of EDR: one of
EdrConfigDescriptor, AlarmConfigDescriptor or
CdrConfigDescriptor.

Table 16–2 EdrFilterFactory

Method Description

public static EdrFilter
createDefaultFilterForEdr()

Creates the default filter using in Services
Gatekeeper to filter the EDRs using the edr.xml file
embedded in the edrjmslistener.jar file.

public static EdrFilter
createDefaultFilterForAlarm()

Creates the default filter used in Services
Gatekeeper to filter the alarms using the alarm.xml
file embedded in the edrjmslistener.jar file.

public static EdrFilter
createDefaultFilterForCdr()

Creates the default filter using in Services
Gatekeeper to filter the CDRs using the cdr.xml file
embedded in the edrjmslistener.jar file.

Updating EDR configuration files

Creating EDR Listeners 16-5

Class EdrData
This class contains all the values that an EDR (alarm and CDR) have.

Class ConfigDescriptor
This class is the parent class of EdrConfigDescriptor, AlarmConfigDescriptor and
CdrConfigDescriptor.

Class EdrConfigDescriptor
This class contains the data that is specified in the descriptors in the edr.xml
configuration file: the identifier and the description.

Class AlarmConfigDescriptor
This class contains the data that is specified in the descriptors in the alarm.xml
configuration file: the identifier, the severity and the description.

Class CdrConfigDescriptor
This class identifies a CDR. This descriptor does not contain any additional data.

Updating EDR configuration files
If you are using external EDR listeners, and the alarm, CDR, or EDR descriptors have
been updated in Services Gatekeeper, the corresponding files need to be updated in
edrjmslistener.jar. Update the corresponding xml file with the updated entries in the
edr directory in edrjmslistener.jar.

Table 16–3 EdrData

Method Description

public String getValue(String key) Gets the value associated with the specified key.

public List<String> getValues(String
key)

Gets the values associated with the specified key.

Table 16–4 EdrConfigDescriptor

Method Description

public long getIdentifier() Returns the identifier of the EDR.

public String getDescription() Returns the description of the EDR.

Table 16–5 AlarmConfigDescriptor

Method Description

public long
getIdentifier()

Returns the identifier of the alarm.

public String
getSeverity()

Returns the severity of the alarm.

public String
getDescription()

Returns the description of the alarm.

Updating EDR configuration files

16-6 Services Gatekeeper Extension Developer's Guide

17

Making Communication Services Manageable 17-1

17Making Communication Services Manageable

This chapter explains how to make new communications services manageable by
Communications Services Gatekeeper.

Understanding Communication Service Management
Once you have created an extension communication service, you must make it
manageable by Services Gatekeeper. You do this by exposing the operations and
management (OAM) functions, such as read/write attributes and or operations, in a
way that allows them to be accessed and manipulated by the Services Gatekeeper
Administration Console extension, or other management tools.

Services Gatekeeper uses the Java Management Extensions (JMX) 1.2 standard, as it is
implemented in JDK 1.6. The JMX model consists of three layers, Instrumentation,
Agent, and Distributed Services. As a communication service developer, you work in
the Instrumentation layer. You create MBeans that expose your communication service
management functionality as a management interface. These MBeans are then
registered with the Agent, the Runtime MBean Server in the WebLogic Server instance.
This makes the functionality available to the Distributed Services layer, management
tools like the Services Gatekeeper Administration Console. Finally, because
configuration information needs to be persisted, you store the values you set using the
Services Gatekeeper Configuration Store, which provides a write-through database
cache. In addition to persisting the configuration information, the cache also provides
cluster-wide access to the data, updating a cluster-wide store whenever there is a
change in globally relevant configuration data.

For more information on the JMX model in general in relation to WebLogic Server, see
Oracle Fusion Middleware Developing Manageable Applications With JMX for Oracle
WebLogic Server at:

http://docs.oracle.com/cd/E24329_01/web.1211/e24416/designapp.htm

Create Standard JMX MBeans
Creating standard MBeans is a three step process.

1. Create an MBean Interface

2. Implement the MBean

3. Register the MBean with the Runtime MBean Server

Configuration settings should be persisted, see "Use the Configuration Store to Persist
Values".

Create Standard JMX MBeans

17-2 Services Gatekeeper Extension Developer's Guide

Create an MBean Interface
You must first create an interface file that describes the getter and setter methods for
each class attribute that is to be exposed through JMX (getter only for read-only
attributes; setter only for write-only). Also create a wrapper operation for each class
method to be exposed. The attribute names should be the case-sensitive names that
you wish to see displayed in the user interface of the Console extension.

■ For each read-write attribute, define a get and set method that follows this naming
pattern: getattribute_name, setattribute_name where attribute_name is a
case-sensitive name that you want to expose to JMX clients.

■ For each read-only attribute define only an is or a get method. For each write-only
attribute, define only a set method.

■ The JavaDoc is rendered in the console as a description of an attribute or
operation. It renders exactly as in the JavaDoc. For example:

/**
 * Connects to the simulator
 * @throws ManagementException An exception if the connection failed
 */
 public void connect() throws ManagementException;

Renders as:

■ Any internal operation or attribute should be annotated with @Internal
annotation. This attribute or method will not be shown in the console. For eample:

@Internal
public String resetStatistics();

■ Indicate optional parameters for the operation by using the @OptionalParam
annotation. In the JavaDoc for the operation, explicitly specify which parameters
are optional. For example:

/**
 * Gets the alarms matching the specified criteria from the database
 * @param Identifier EDR Identifier
 * @Param Source server name (optional)
 * @Param Severity 0 - Critical, 1- Major, 2 -Minor
 * @Param maxEntries max number of entries
 */
 AlarmData[] getAlarms(long identifier,
 @OptionalParam('source')String source,
 int severity,
 int maxEntries) throws ManagementException;

Create Standard JMX MBeans

Making Communication Services Manageable 17-3

Name the interface ServiceNameMBean.java. The interface for the example
communication service provided with the Platform Development Studio is named
ExampleMBean.java.

Implement the MBean
Once you have defined the interface, it must be implemented.

You must name your class ServiceNameMBeanImpl.java, based on the interface name,
and the implementation must extend WLNGMBeanDelegate. This class takes care of
setting up notifications and MBean descriptions and all MBean implementation classes
must extend it. All MBean implementations must also be public, non-abstract classes
and have at least one public constructor. The MBean implementation for the example
communication service provided with the Platform Development Studio is named
ExampleMBeanImpl.java.

■ The MBean implementation must be a public, non abstract class

■ The MBean must have at least one public constructor

■ The MBean must implement its corresponding MBean interface and extend
WLNGMBeanDelegate

Register the MBean with the Runtime MBean Server
The MBean must be registered with the Runtime MBean Server in the local WebLogic
Server instance. Services Gatekeeper provides a proxy class for MBean registration:

com.bea.wlcp.wlng.api.management.MBeanManager

The MBean implementation is registered using an ObjectName, and a DisplayName:

registerMBean(Object mBeanImpl, ObjectName objectName, String displayName)

Construct the ObjectName using:

constructObjectName(String type, String instanceName, HashMap properties)

There should be no spaces in the InstanceName or Type. Object names are
case-sensitive

If the MBean is a regular MBean, use the conventions as illustrated in Table 17–1.

Table 17–1 MBean ObjectName

The ObjectName
convention for
extensions Description

type Fully qualified MBean Name.

MBeanObj.class.getName()

instanceName Unique name that identifies the instance of the MBean. For
example, it can be obtained from serviceContext.getName()

The unique name of the MBean. If this is a plug-in that potentially
is used on the same server with multiple plug-in instances this
should be unique per plug-in instance. It is recommended to use
managedPlugin.getId().

properties HashMap that contains objectName key and value pairs
ObjectNameConstants class has set of constants that can be used as
keys.

Null for non-hierarchical MBeans.

Use the Configuration Store to Persist Values

17-4 Services Gatekeeper Extension Developer's Guide

Example
com.bea.wlcp.wlng:AppName= wlng_nt_sms_px21#6.0,InstanceName= Plugin_px21_short_
messaging_smpp, Type=com.bea.wlcp.wlng.plugin.sms.smpp.management.SmsMBean

If the MBean is an MBean that should be the child of a regular MBean, use the
conventions as illustrated in Table 17–2.

Example
A child MBean, for example HeartBeatConfiguration, can register with the same
Level1InstanceName for all instances of the Plug-in (since it is a child, its MBean name
depends on the parent’s instance:

com.bea.wlcp.wlng:AppName= wlng_nt_sms_px21#6.0,InstanceName= Plugin_px21_short_
messaging_smpp,
Type=com.bea.wlcp.wlng.plugin.sms.smpp.management.SmsMBean,Level1InstanceName=Hear
tBeatManager,Level1Type=com.bea.wlcp.wlng.heartbeat.management.HeartbeatMBean

com.bea.wlcp.wlng:AppName= wlng_nt_multimedia_messaging_px21#6.0,InstanceName
Plugin_px21_multimedia_messaging_mm7, Type=
com.bea.wlcp.wlng.plugin.multimediamessaging.mm7.management.MessagingManagementMBe
an,Level1InstanceName=HeartBeatManager,Level1Type=com.bea.wlcp.wlng.heartbeat.mana
gement.HeartbeatMBean

Use the Configuration Store to Persist Values
The Services Gatekeeper Configuration Store API provides a cluster-aware
write-through database cache. Parameters stored in the Configuration Store are both
cached in memory and written to the database. The store works in two modes: Local
and Global. Values stored in the Local store are of interest only to a single server
instance, whereas values stored in the Global store are of interest to all servers
cluster-wide. Updates to a value in the Global store update all cluster nodes. The
example communication service provides a handler class, ConfigurationStoreHandler,
that gives an example of both usages of the Configuration Store API.

Table 17–2 MBean ObjectName with hierarchy

The ObjectName
convention for
extensions Description

type Fully qualified MBean Name of the parent MBean.

Parent MBeanObj.class.getName()

instanceName Unique name that identifies the instance of the parent MBean.

properties.key=ObjectNa
meConstants.LEVEL1_
INSTANCE_NAME

properties.value is a unique name that identifies the instance of
the MBean

properties.key=ObjectNa
meConstants.LEVEL1_
TYPE

Fully qualified MBean Name: MBeanObj.class.getName()

properties.key=ObjectNa
meConstants.LEVEL2_
INSTANCE_NAME

properties.value is a unique name that identifies the instance of
the MBean

properties.key=ObjectNa
meConstants.LEVEL2_
TYPE

Fully qualified MBean Name: MBeanObj.class.getName()

Use the Configuration Store to Persist Values

Making Communication Services Manageable 17-5

The configuration store supports only Boolean, Integer, Long, and String values.

Use the Configuration Store to Persist Values

17-6 Services Gatekeeper Extension Developer's Guide

18

Extending the ATE and PTE for Your Communication Services 18-1

18Extending the ATE and PTE for Your
Communication Services

The chapter describes how to generate and build virtual communication services,
clients, and simulators for the Application Test Environment (ATE) and the Platform
Test Environment (PTE) in Oracle Communications Services Gatekeeper.

For complementary information, see “Adding and Testing Custom Client Modules” in
Services Gatekeeper Platform Test Environment User's Guide.

Understanding ATE and PTE Extensions
You use the ATE to create virtual communication services, and interact with and
extend to the network simulator. The ATE uses these extension points:

■ Virtual communication services

■ The network simulator part of the ATE

You use the PTE to create client modules that act as applications, and simulator
modules that act as network elements and present results and statistics in the PTE user
interface. The PTE uses these extension points:

■ Clients

■ Network protocol simulators

■ The network simulator part of the PTE

Figure 18–1 shows how the PTE and ATE work with Services Gatekeeper

Understanding ATE and PTE Extensions

18-2 Services Gatekeeper Extension Developer's Guide

Figure 18–1 Extensions to the ATE and PTE

After you create a communication service, you can:

■ Create a module that simulates the communication service and deploys it to the
ATE. This provides application developers access to an Application Test
Environment that simulates the behavior of the communication service with which
you have extended Services Gatekeeper.

■ Use the PTE to test the communication service from an application perspective.
You do this by creating a module that acts as a client application to the new
communication service and deploys it to the PTE.

■ Use the PTE to test the communication service from a network perspective. You do
this by creating a module that acts as a simulator to the new communication
service and deploys it to the PTE.

The base for a virtual communication service project, a client project, and a network
protocol simulator project is one or more WSDL files defining the application-facing
interfaces exposed by the ATE or used by the PTE.

You use Platform Development Studio Eclipse tools to generate source code,
deployment descriptors, and build files for modules that use these extension points.

Your implementation can use a set of interfaces to interact with the statistics and
presentation facilities provided by the ATE and the PTE. You can interact with the

Understanding ATE and PTE Extensions

Extending the ATE and PTE for Your Communication Services 18-3

network simulator map and add new elements to the map. Refer to the “All Classes”
section of the Services Gatekeeper Java API Reference for the interface documentation..

Generating a Custom Module Project Using the PDS Wizard
See "Generating a Platform Test Environment Custom Module" for instructions about
using the PDS Wizard to create a custom PTE module.

Understanding the Generated Project
The PDS (Eclipse) Wizard generates:

■ A build file for the project: build.xml

■ A deployment descriptor: pte-extensions.xml

■ Depending on the type of project you generate, the project may also include:

– Interface classes for a Virtual communication service.

– Deployment class for a Virtual communication service.

– Application client classes.

– Network protocol simulator skeleton class.

The directory structure is described below:

<Eclipse_project>
+- build.xml
+- pte-extensions.xml
+- <Identifier given in Ecplise Wizard>
| +- clients
| +- simulators
| +- vcs
| | +- <Identifier given in Eclipse Wizard>ModuleVCS.java
| | +- <Interface Name>Impl.java // One per interface

// defined in the
// Service WSDL files.

Understanding the Generated Project Build File
A generated Apache Ant build file is created in the directory:

Eclipse_project/build.xml

Where Eclipse_project is the directory where the project was generated by the PDS
Wizard.

The build file defines the following targets:

■ generate

Generates source code.

■ compile

Compiles the generated source code.

■ jar

Packages the modules in JAR files.

■ clean

Understanding ATE and PTE Extensions

18-4 Services Gatekeeper Extension Developer's Guide

Removes all generated artifacts.

■ dist

Generates the source code, compiles it, and generates JAR files that you can
deploy.

Understanding the Generated Project Deployment Descriptor
A deployment descriptor is created when the project is generated. The deployment
descriptor file name is pte-extensions.xml. It is created in the Eclipse_project directory,
where Eclipse_project is the directory where the project is generated by the PDS Wizard.

The deployment descriptor describes how the virtual communication service is
deployed in the Application Test Environment.

The deployment descriptor is an XML file with the following structure:

<module>
 <data>
 <parameter>
 </parameter>
 </data>
</module>

The module element has these attributes:

■ name

The name of the module given in the Name field in the PDS Wizard. The suffix
VCS is added for virtual communication services. The suffix Simulator is added
for simulators.

■ type

The type of module. vcs for a Virtual Communications Service module, client for a
client module, and sim for a simulator module.

■ class

The fully qualified class name for the module. The first part of the package name
is the name given in the Package name field in the PDS wizard. The name of the
class is the name given in the Name field in the PDS wizard.

For simulators, the last part of the package name is .simulators.. The class name
has the suffix Simulator.

For virtual communication services, the last part of the package name is .vcs. The
class name has the suffix VCS.

■ version

The version of the module, given in the Version field in the PDS Wizard.

■ depends

The name of the module that this module depends on. In most cases, it is the
Session module. Not used for Virtual Communications Services.

■ uiPanel

Describes in which panel in the user interface of the ATE or the PTE the module
presents it’s user interface. For PTE clients is clients, for PTE simulators it is
simulators, and for ATE virtual communication services it is vcs.

Understanding ATE and PTE Extensions

Extending the ATE and PTE for Your Communication Services 18-5

■ uiTabs

Describes in which tab in the GUI the module is presented. A comma-separated
list describes the hierarchy.

The <data> element encapsulates zero or more parameter elements.

The <parameter> element describes fields in the user interface. It has the following
attributes:

■ name

The label of the parameter in the user interface. Mandatory.

■ class

The class that defines the parameters in the user interface. Reflection is used to
present the fields in the user interface. The parameters are presented as a hierarchy
of description-only fields, and the parameters that have simple data types are
presented with an input field. Optional.

■ default

The default value for the input field.

■ occurs

The number of occurrences of the parameter. Default value is 1.

Example 18–1 illustrates a deployment descriptor example for a client module.

Example 18–1 Example of a Client Module Deployment Descriptor

 <module name="SendSmsModule"
 type="client"
 class="my.company.sm.clients.SendSmsModule"
 version="1.0"
 depends="session"
 uiPanel="client"
 uiTabs="Other,ate_pte_sm,sendSms"
 >

 <data>
 <parameter name="Parameters"
 class="my.company.sm.clients.SendSmsModuleData"
 occurs="1">

 <parameter name="facade"/>

 <parameter name="url"
 default="http://${at.host}:${at.port}/SendSmsModule"/>

 <parameter name="vcsUrl"
 default="http://${localhost}:13444/jaxws/SendSmsModule"/>

 <parameter name="restUrl"
 default="http://${at.host}:${at.port}/rest/SendSmsModule"/>

 <parameter name="restVcsUrl"
 default="http://${localhost}:13444/rest/SendSmsModule"/>

 </parameter>
 </data>
 </module>

Building and Deploying the Module

18-6 Services Gatekeeper Extension Developer's Guide

Example 18–2 illustrates a deployment descriptor example for a simulator module.

Example 18–2 Example of a Simulator Module Deployment Descriptor

 <module name="Ate_pte_smSimulator"
 type="sim"
 class="my.company.sm.simulators.Ate_pte_smSimulator"
 version="1.0"
 uiPanel="simulator"
 uiTabs="ate_pte_sm"
 >

 <data>
 <parameter name="Parameters"
 class="parameterClassName"
 occurs="1">
 </parameter>
 -->
 </data>
 </module>

Example 18–3 illustrates a deployment descriptor example for a virtual
communication service.

Example 18–3 Example of a Virtual Communications Service Module Deployment
Descriptor

 <module name="Ate_pte_smVCS"
 type="vcs"
 class="my.company.sm.vcs.Ate_pte_smVCS"
 version="1.0"
 >
 </module>

Building and Deploying the Module
Run the Ant target dist to create a deployable module for the ATE or the PTE.

The deployable module is a JAR file named Name.jar, where Name is the name of
module given in the Project Name field in the PDS Wizard. The file is created in the
dist subdirectory in the Eclipse project directory.

Deploying the module:

■ ATE: Copy the deployable module to SDK_Homelib/modules, where SDK_Home
is the installation directory for the SDK.

■ PTE: Copy the deployable module to Service_Gatekeeper_Home/ocsg_
pds/lib/modules, where Service_Gatekeeper_Home is the installation directory for
Services Gatekeeper

Restart the ATE or PTE after deploying the new module.

Virtual Communication Service Module for the ATE
Skeletons of Java classes for a Virtual Communications Service for the ATE are created
by the PDS Wizard. The classes are generated in the Project_home/src/Package_
hierarchy/vcs directory.

Virtual Communication Service Module for the ATE

Extending the ATE and PTE for Your Communication Services 18-7

The class Module_nameVCS deploys all the port implementations for the virtual
communication service. Module_name is given in the PDS Wizard.

The class implements the oracle.ocsg.pte.api.vcs.VCSModule interface.

The methods are:

■ getName()

Returns the name of the module as a String. The name was given in the Name
field in the PDS Wizard.

■ initialize(...)

Initializes the module. If the module is exposing MBeans, register them here.

■ start(...)

Deploys the module in the web services container. All generated implementation
classes are deployed.

■ stop(...)

Undeploys the module from the web services container.

A separate class is generated for each port defined in the WSDL that the project
defines. The classes are named Port_nameImpl, where Port_name is defined in the
WSDL.

Each of the implementation classes defines the web service using the annotation
@WebService. Example 18–4 gives an example of the @WebService annotation.

Example 18–4 Example of an @WebService Annotation

@WebService(name = "SendSms", targetNamespace =
"http://www.csapi.org/wsdl/parlayx/sms/send/v2_2/interface")

Each implementation class also defines a handler chain using the annotation
@HandlerChain. This handler chain is necessary to leverage the security and SLA
enforcement in the ATE and PTE. Example 18–5 illustrates the @HandlerChain
annotation.

Example 18–5 Handler Chain Definition

@HandlerChain(file = "/vcs/VcsHandlerChains.xml")

Each method defined in the WSDL has a skeleton implementation. Each method is
defined with the annotations:

■ @WebMethod

■ @WebResult

■ @RequestWrapper

■ @ResponseWrapper

Each method has an empty implementation where you add the custom code for the
virtual communication service.

Client Module for the PTE

18-8 Services Gatekeeper Extension Developer's Guide

Client Module for the PTE
If you generated the project by using WSDL files, Platform Development Studio
Wizard creates skeletons of Java classes for a client module for the Platform Test
Environment.

The classes are generated in the Project_home/src/Package_hierarchy/clients directory.

For each method defined in the WDSL file the following classes are generated:

■ Method_NameModule

■ ResourceEndpoint

■ Method_NameModuleData

The class Method_NameModule deploys all the port implementations for the virtual
communication service. Method_Name is given in the WSDL file.

The class extends oracle.ocsg.pte.api.module.AbstractRestClientModule and
implements oracle.ocsg.pte.api.module.CustomStatelessModule.

The following methods are defined:

■ execute(...)

■ prepare(...)

The execute(...) method is called when you click the Send button for the client method
in the Platform Test Environment GUI or, once, at the beginning of a duration test. The
skeleton for the method retrieves the data to use in the method call from the
CustomModuleContext. This context is passed in as a parameter to execute(...).
CustomModule is cast to the corresponding Method_NameModuleData object for the
method.

The prepare(...) method fetches the URL from the field in the GUI and checks if the
client shall use the SOAP interface or the RESTful interface by calling isRestFacade()
on the CustomModuleContext. If the RESTful interface is used, the method
getRestClient(...) defined by Method_NameModuleData object is fetched.

If the client shall use the SOAP facade, JAXWSServiceFactory is used to create the
Web Service, a port is derived from the service and the local stub is set on the
RequestContext.

The class ResourceEndpoint is instantiated if you are using the RESTful facade in the
client. This class defines the methods:

■ getHttpMethod()

■ getResourceURI()

The method getHttpMethod shall return the HTTP request type as a String; POST or
GET.

The method getresourceURI() shall return the URI to the RESTful method as a String.

The class Method_NameModule is used to hold the data about the request.

Simulator Module for the PTE
Skeletons of a Java classes for a simulator module for the Platform Test Environment
are created by the PDS Wizard. The class is generated in the directory Project_
home/src/Package_hierarchy/simulators.

Presenting Results

Extending the ATE and PTE for Your Communication Services 18-9

The class is named Project_NameSimulator, where Project_Name is fetched from the
Name field in the PDS Wizard.

The class implements the oracle.ocsg.pte.api.module.CustomStatefulModule
interface. It defines these methods:

■ prepare(....)

■ start(...)

■ stop(...)

All the methods sends in the CustomModuleContext as a parameter.

When the prepare(....) method is called, you can set up anything that is necessary for
the simulator.

The start(...) method is called when you click the Start button in the GUI for the
simulator.

The stop(...) method is called when you click the Stop button in the GUI for the
simulator.

Virtual Communication Service Example
An example of a virtual communication service is provided in the Middleware_
home/ocsg_pds/example/pte_vcs directory.

Client Module Example
An example of a client module is provided in the Middleware_home/ocsg_
pds/example/pte_module directory.

Simulator Module Example
An example of a simulator module is provided in the Middleware_home/ocsg_
pds/example/pte_module directory.

Stateless and Stateful Modules
A stateless module implements the
oracle.ocsg.pte.api.module.CustomStatelessModule interface. This interface defines
the methods prepare(...) and execute(...).

A stateful module implements the
oracle.ocsg.pte.api.module.CustomStatefulModule interface. This interface defines
the methods prepare(...), start(...), and stop(...).

All these methods provide oracle.ocsg.pte.api.module.CustomModuleContext as a
parameter.

Presenting Results
You present results in the Platform Test Environment GUI by implementing the
oracle.ocsg.pte.api.module.CustomResultsProvider<T> interface.

The results are presented in a table with columns and rows. Specify the name, or title,
of each column by returning the names when java.lang.String[] getResultsColumns()
is called.

Presenting Statistics

18-10 Services Gatekeeper Extension Developer's Guide

When java.lang.Object getResultsContent(int column, T object) is called, return the
value of the object in the column with index column. The index is the same as the
position in the results from java.lang.String[] getResultsColumns().

The method java.util.Map<java.lang.String,java.lang.Object> getResultsDetails(T
object) can be used to return additional result data than returned by
getResultsContent(...). Return null if there are no additional details.

When java.util.List<T> getResultsObjects() is called, you return a list of objects to be
presented. Each object is presented in its’ own row.

When void clearResults() is called, clear all result objects.

Presenting Statistics
You present statistics in the Platform Test Environment GUI by implementing the
oracle.ocsg.pte.api.module.CustomStatisticsProvider interface.

To clear the statistics, call void clearStatistics().

To return the statistics as a java.util.Map<java.lang.String,java.lang.String>, call
getStatistics(). Each key in the map represents a specific statistics counter and the
value is the value of the statistic counter.

Interacting With the Network Simulator Map
You use the simulator module and the virtual communication service to interact with
the network simulator map and elements in the map.

Use oracle.ocsg.pte.api.network.Network to interact with the network simulator map.

Use oracle.ocsg.pte.api.network.factory.NetworkFactory to get a handle to the
network simulator map:

oracle.ocsg.pte.api.network network =
NetworkFactory.getInstance().getNetwork();

Define a new network element by defining a class that extends the abstract class
oracle.ocsg.pte.api.network.element.AbstractNetworkElement.

Create the network element using a class that implements the
oracle.ocsg.pte.api.network.factory.NetworkElementFactory<T extends
NetworkElement> interface. For example:

public class ExampleTruckFactory implements
NetworkElementFactory<ExampleTruck>

Register the network element with the network simulator map:

NetworkFactory.getInstance().register(ExampleTruck.class, new
ExampleTruckFactory());

Define the message that can be sent to and from a network element by defining a class
that extends the abstract class
oracle.ocsg.pte.api.network.message.AbstractNetworkMessage. Register the
message, For example:

NetworkFactory.getInstance().register(ExampleMessage.class, new
ExampleMessageFactory());

There are a set of classes that describes messages that already defined. The classes are
defined in the package oracle.ocsg.pte.api.network.message. The messages include
SMS, MMS, and MLP update messages.

Interacting With the Network Simulator Map

Extending the ATE and PTE for Your Communication Services 18-11

To send a message to the network use sendMessage(NetworkSource source,
NetworkMessage message) in the oracle.ocsg.pte.api.network.Network interface. For
example:

final ExampleMessage msg = new ExampleMessage(null, address, data);

NetworkFactory.getInstance().getNetwork().sendMessage(this, msg);

The network element class receives a call to public boolean
processMessage(NetworkMessage message defined in the
oracle.ocsg.pte.api.network.element.NetworkElement interface. For example:

public boolean processMessage(NetworkMessage message) throws Exception {
 if(message instanceof SmsMessage) {
 final SmsMessage sms = (SmsMessage) message;
 if(AbstractNetworkMessage.isAddressesMatching(sms.getDestinationAddress(),
getAddress())) {
 storeIncomingMessage(message);
 return true;
 }
 }
 return false;
 }

When the message is processed, the type of the message is checked and there is a
check to see if the message is addressed to the network element by comparing the
destination address in the message with the address of the element.

If you move around a network element on the map, the coordinates for it is updated.
Use the methods public double getLatitude() and public double getLongitude()
defined by the NetworkElement interface to get the location of the element.

Interacting With the Network Simulator Map

18-12 Services Gatekeeper Extension Developer's Guide

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents

	1 Overview of the Platform Development Studio
	About Platform Development Studio
	About Creating Communication Services and Plug-ins
	About Platform Development Studio Wizard
	About the Example Communication Service
	About Testing New Communication Services

	Integrating and Customizing Communication Services
	Intercepting Requests with Service Interceptors
	Creating Subscriber-centric Policies with SLAs
	Integrating Communication Services with External Systems

	2 Understanding Communication Service Components
	Understanding Communication Service Components
	Understanding Communication Service Plug-ins
	Plug-in Service and Plug-in Instance
	Understanding the Plug-in States
	Understanding the PluginPool
	Understanding the Plug-in APIs
	Plug-in Context APIs

	Managing Communication Services
	Managing Communication Service Access with SLAs
	Sharing Libraries Among Communication Service Plug-ins

	3 Developing Communication Services
	Tips for Creating or Extending Communication Services
	Communicating with Container Services
	Retrieving Implementation Instances Using InstanceFactory
	Obtaining JNDI Context with ClusterHelper
	Broadcasting Events
	Generating Statistics with Statistics Service

	Using the Plug-in Packages
	Understanding Communication Service Management
	Understanding EDRs
	Enforcing Service Level Agreements
	Correlating Services
	About Service Correlation Identifiers
	Managing Service Correlation Identifiers

	Using Parameter Tunneling
	Understanding Service Gatekeeper Storage Services
	Storing Configuration Data with ConfigurationStore
	Storing Traffic Data with StorageService

	Sharing Common Libraries

	4 Communication Service Example
	Overview of the Example Communication Service
	High-level Flow for sendData (Flow A)
	High-level Flow for startNotification and stopNotification (Flow B)
	High-level flow for notifyDataReception (Flow C)

	Interfaces
	Web Service Interface Definition
	Network Interface Definition

	Directory Structure
	Directories for WSDL
	Directories for Java Source
	Directories for resources
	Directories for Configuration of Plug-in
	Directories for Build and Configuration of Builds
	Directories for Classes, JAR, and EAR Files

	Classes
	Communication Service Common
	Plug-in Layer

	Store configuration
	SLA Example

	5 Creating Extensions with Platform Development Studio Wizard
	About Platform Development Studio Wizard
	Configuring Platform Development Studio Wizard
	Prerequisite Software
	Configuring Platform Development Studio Wizard Directories and Logging Levels
	Ensuring Platform Development Studio Wizard Uses JRE 1.7

	Generating an Interceptor Module
	Generating an OAuth 2.0 Extension Handler
	Generating a Platform Test Environment Custom Module
	Generating a Web Service API Exposure Project
	Adding and Removing Extension Plug-ins
	Adding a Plug-in to a Services Gatekeeper Project
	Removing a Plug-in from a Communication Service

	6 Understanding the Communication Service Project Output
	About the Generated Communication Service
	About the Communication Service Project
	About the RESTFul Service Facade
	About the Communication Service Plug-in
	About the SOAP2SOAP Plug-in
	Generated Artifacts for a SOAPSOAP Communication Service
	Properties for SOAP2SOAP Plug-ins
	About the SIP Plug-in
	About the Diameter Plug-in

	Generated classes for a Plug-in
	Interface: ManagedPluginService
	PluginService
	PluginInstance
	PluginNorth
	RequestFactory Skeleton

	Generated classes for a SOAP2SOAP Plug-in
	Comparison with a Non-SOAP2SOAP Plug-in
	Client Stubs
	PluginInstance
	PluginNorth
	PluginSouth
	RequestFactory

	HTTPProxyMBean Reference
	Adding a SOAP2SOAP Communication Services
	About SOAP2SOAP Communication Services
	Generated Artifacts for a SOAP2SOAP Communication Service
	Managing and Configuring SOAP2SOAP Communication Services

	Build Files and Targets for a Communication Service Project
	Main Build File
	Communication Service Common Build File
	Plug-in Build File
	Ant Tasks

	7 Service Enabler Example with SIP plug-in
	Overview of the Service Enabler Example with SIP Plug-in
	High-level Flow for sendData (Flow A)
	High-level Flow for startNotification and stopNotification (Flow B)
	High-level flow for notifyDataReception (Flow C)

	Understanding the SIP Example Interfaces
	Web Service Interface Definition
	Network Interface Definition

	SIP Example Directory Structure
	Differences Compared to the Example netex Plug-in

	SIP Example Configuration Files and Artifacts
	SIP Example Classes
	ExampleServlet
	ExampleSipHelper
	SendDataPluginSouth
	NotificationHandlerSouth
	ExampleMBean

	SIP Example SLA

	8 Using the SMPP API
	Understanding the SMPP API
	SMPP Service Interfaces
	SMPPPluginSouth
	SMPPPluginNorth

	Additional Information You Need to Build an SMPP Plug-in
	Creating a Custom SMPP Plug-in
	Configuration Settings Affecting SMPP Connections
	About the SMPP Interfaces
	oracle.ocsg.protocol.common
	oracle.ocsg.protocol.smpp.service
	oracle.ocsg.protocol.smpp.plugin
	oracle.ocsg.protocol.smpp.common
	oracle.ocsg.protocol.smpp.event

	Using the SMPP APIs
	Processing a BIND Request from an Application
	Processing a SUBMIT_SM Request from an Application
	Processing a SUBMIT_SM Response from the SMSC
	Processing a DELIVER_SM Request from the SMSC
	Processing a DELIVER_SM Response from an Application

	9 Using the UCP API
	Understanding the UCP Protocol API
	UCP Protocol Server Service
	Understanding the Connection Information Manager Service
	PluginNorth
	PluginSouth

	Additional Information You Will Need
	Procedure for Creating a Customized UCP Plug-in
	About the UCP Protocol Server Service Interfaces
	oracle.ocsg.protocol.common
	oracle.ocsg.protocol.ucp
	oracle.ocsg.protocol.ucp.pdu

	Connection Mapping
	OAM Attributes Affecting UCP Network Connectivity
	Using the APIs
	Sending a submitSm Request to the SMSC
	Creating a UCP PDU
	Sending an openSession Request to the SMSC
	Sending a DeliverSm to an Application

	10 Using Service Interceptors to Manipulate Requests
	Understanding Service Interceptors in Services Gatekeeper
	Understanding How Requests are Triggered
	Understanding How the Plug-in Manager Works with Interceptors
	Request Context Data Used to Handle Request Flow
	Data Available for Modification
	Specifying a Destination for the Request
	Invoking the Next Service Interceptor to Handle the Request
	Last Service Interceptor in the Chain

	Understanding the Standard Interceptors
	Locating the Standard Interceptors
	Retry Functionality for plug-ins

	Interceptors.ear File
	File Contents
	Config.xml File

	Creating and Using Custom Interceptors
	Understanding Custom Interceptors
	Understanding the Example Interceptors
	Using the Default EAR File to Add a Custom Interceptor
	Using a Custom EAR File to Add a Custom Interceptor

	Customizing the Interceptor Chain for a Communication Service
	Managing Custom Interceptor Filter Rules
	Summary of Tasks Related to Interceptors

	11 Aspects, Annotations, EDRs, Alarms, and CDRs
	About Aspects and Annotations
	How Aspects are Applied
	Understanding the Context Aspect
	Generating EDRs from Communication Services
	EDR Exception Scenarios
	Adding Data to the RequestContext
	Triggering an EDR Programmatically
	EDR Content
	RequestContext and EDR

	Categorizing EDRs
	The EDR descriptor

	Checklist for EDR generation
	Frequently Asked Questions about EDRs and EDR filters
	Alarm generation
	Trigger an alarm programmatically
	Alarm content

	CDR generation
	Triggering a CDR
	Trigger a CDR programmatically
	CDR content
	Out-of-the box (OOTB) CDR support

	12 Using SLA Policies to Manage Subscribers
	About Using Policies to Manage Subscribers
	Service Classes and the Subscriber SLA
	The <reference> element
	The <restriction> element
	Managing the Subscriber SLA

	The Profile Provider SPI and Subscriber Contracts
	Deploying the Custom Profile Provider

	Subscriber Policy Enforcement
	Do Relevant Subscriber Contracts Exist?
	Is There Adequate Budget for the Contracts?

	13 Creating Custom Runtime SLAs
	Introduction
	Custom SLAs and XSDs
	Custom SLA Enforcement
	Get an SLA using a DOM Object
	Get an SLA using a Custom Parser

	Example
	Custom SLA Schema and Example SLA
	Enforcement Logic

	14 Customizing SLA Behavior for a Service Provider or Application
	Understanding How to Customize Behavior Based on SLAs

	15 Customizing Diameter AVPs
	Understanding Customized Diameter AVPs
	Configuring Customized AVPs for Parlay X 3.0 Payment/Diameter
	Configuring Customized AVPs for Credit Control Interceptor
	Configuring Customized AVPs for CDR Diameter Listener
	Dynamically Customizing AVPs for Applications

	16 Creating EDR Listeners
	Understanding External EDR listeners
	Example using a pure JMS listener
	Example using JMSListener utility with no filter
	Using JMSListener utility with a filter

	Understanding an EDR listener utility
	Class JMSListener
	Class EdrFilterFactory
	Class EdrData
	Class ConfigDescriptor
	Class EdrConfigDescriptor
	Class AlarmConfigDescriptor
	Class CdrConfigDescriptor

	Updating EDR configuration files

	17 Making Communication Services Manageable
	Understanding Communication Service Management
	Create Standard JMX MBeans
	Create an MBean Interface
	Implement the MBean
	Register the MBean with the Runtime MBean Server

	Use the Configuration Store to Persist Values

	18 Extending the ATE and PTE for Your Communication Services
	Understanding ATE and PTE Extensions
	Generating a Custom Module Project Using the PDS Wizard
	Understanding the Generated Project
	Understanding the Generated Project Build File
	Understanding the Generated Project Deployment Descriptor

	Building and Deploying the Module
	Virtual Communication Service Module for the ATE
	Client Module for the PTE
	Simulator Module for the PTE
	Virtual Communication Service Example
	Client Module Example
	Simulator Module Example
	Stateless and Stateful Modules
	Presenting Results
	Presenting Statistics
	Interacting With the Network Simulator Map

