Contents

Send Us Your Comments

Preface

Part 1 Spares Management

1 Using Spares Logistics

 Overview: Parts Search and Ordering... 1-1
 Using Parts Search and Ordering... 1-4
 Creating a Parts Requirement Automatically... 1-11
 Overview: Parts Return.. 1-12
 Creating and Managing Return Routing Rules... 1-13
 Using Parts Return... 1-15
 Overview: Move Orders.. 1-18
 Creating Move Orders.. 1-18
 Creating Reservations for Move Orders... 1-20
 Printing Pick Lists for Move Orders.. 1-21
 Confirming Pick Lists for Move Orders... 1-22
 Creating Pack Lists and Confirming Shipment.. 1-23
 Receiving Shipments for Move Orders... 1-26
 Viewing the Status of Move Orders... 1-27
 Viewing the Status of Internal Orders.. 1-28
 Creating Replenishment Orders.. 1-29

2 Using the Planner's Desktop

 Planner's Desktop Summary.. 2-2
3 Loop Planning, Notifications, and Reporting Hierarchy

Summary: Loop Planning, Notifications, and Reporting ... 3-1
Creating a Parts Loop... 3-2
Assigning Subinventories to a Parts Loop... 3-3
Defining a Master Stock List.. 3-4
Creating and Using Loop Notifications... 3-5
Creating Part Availability Data... 3-5
Creating Usage History.. 3-6
Viewing Usage and Forecast Data... 3-7
Creating Notifications... 3-7
Processing Notifications.. 3-8
Part 2 Warehouse Replenishment Planning

4 Warehouse Replenishment Planning
 Overview: Planning Field Service Warehouse Inventories ... 4-1
 Overview: Planned Order Release Automation .. 4-5
 Integration with Repair Execution ... 4-9
 Plan Selection .. 4-10
 Overview: Warehouse Replenishment Plan Page ... 4-10

5 Using Warehouse Replenishment Planning
 Creating Warehouse Replenishment Plans ... 5-1
 Finding Warehouse Replenishment Plans ... 5-3
 Accessing Warehouse Replenishment Plan Details ... 5-5
 Reviewing Warehouse Replenishment Plans ... 5-6
 Specifying Planning Parameters for a Specific Part ... 5-11
 Specifying Planning Parameters for a Warehouse Organization 5-14
 Regenerating Warehouse Replenishment Plans ... 5-14
 Executing Planned Orders ... 5-15
 Performing Planned Order Release Automation .. 5-16
 Recommendations .. 5-19
 Processing Excess On Order Recommendations .. 5-20
 Processing Unutilized Excess and Repair ... 5-21
 Rescheduling In or Out ... 5-21
 Reviewing Superseded Parts .. 5-22

Part 3 External Repair Execution

6 External Repair Execution
 Overview: External Repair Execution ... 6-1
 Integration with Warehouse Replenishment Planning .. 6-2
 Search for Repair Purchase Orders .. 6-5
 Overview: Repair Purchase Order Details User Interface ... 6-6

7 Using Repair Purchase Orders
 Repair Purchase Requisitions ... 7-1
 Searching for and Viewing a Repair Requisition ... 7-2
 Approving a Repair Requisition ... 7-3
A Windows/Pages and Navigation Paths

Overview of Field Service Windows/Pages and Navigation Paths ... A-1
Windows/Pages and Navigator Paths ... A-1

Index
Oracle welcomes customers' comments and suggestions on the quality and usefulness of this document. Your feedback is important, and helps us to best meet your needs as a user of our products. For example:

- Are the implementation steps correct and complete?
- Did you understand the context of the procedures?
- Did you find any errors in the information?
- Does the structure of the information help you with your tasks?
- Do you need different information or graphics? If so, where, and in what format?
- Are the examples correct? Do you need more examples?

If you find any errors or have any other suggestions for improvement, then please tell us your name, the name of the company who has licensed our products, the title and part number of the documentation and the chapter, section, and page number (if available).

Note: Before sending us your comments, you might like to check that you have the latest version of the document and if any concerns are already addressed. To do this, access the new Oracle E-Business Suite Release Online Documentation CD available on My Oracle Support and www.oracle.com. It contains the most current Documentation Library plus all documents revised or released recently.

Send your comments to us using the electronic mail address: appsdoc_us@oracle.com

Please give your name, address, electronic mail address, and telephone number (optional).

If you need assistance with Oracle software, then please contact your support representative or Oracle Support Services.

If you require training or instruction in using Oracle software, then please contact your Oracle local office and inquire about our Oracle University offerings. A list of Oracle offices is available on our Web site at www.oracle.com.
Preface

Intended Audience

This guide is designed for users, administrators, and implementers, of the Oracle Field Service Spares Management application. It assumes that you have a working knowledge of the principles and customary practices of your business area, along with specific application knowledge of the Oracle Field Service suite of products.

See Related Information Sources on page x for more Oracle E-Business Suite product information.

Documentation Accessibility

For information about Oracle’s commitment to accessibility, visit the Oracle Accessibility Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers have access to electronic support through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Structure

1 Using Spares Logistics
2 Using the Planner's Desktop
3 Loop Planning, Notifications, and Reporting Hierarchy
4 Warehouse Replenishment Planning
5 Using Warehouse Replenishment Planning
6 External Repair Execution
Related Information Sources

Integration Repository

The Oracle Integration Repository is a compilation of information about the service endpoints exposed by the Oracle E-Business Suite of applications. It provides a complete catalog of Oracle E-Business Suite’s business service interfaces. The tool lets users easily discover and deploy the appropriate business service interface for integration with any system, application, or business partner.

The Oracle Integration Repository is shipped as part of the E-Business Suite. As your instance is patched, the repository is automatically updated with content appropriate for the precise revisions of interfaces in your environment.

You can navigate to the Oracle Integration Repository through Oracle E-Business Suite Integrated SOA Gateway.

Online Documentation

All Oracle E-Business Suite documentation is available online (HTML or PDF).

- **PDF** - See the Oracle E-Business Suite Documentation Library for current PDF documentation for your product with each release. The Oracle E-Business Suite Documentation Library is also available on My Oracle Support and is updated frequently.

- **Online Help** - Online help patches (HTML) are available on My Oracle Support.

- **Release Notes** - For information about changes in this release, including new features, known issues, and other details, see the release notes for the relevant product, available on My Oracle Support.

Guides Related to All Products

Oracle E-Business Suite User’s Guide
This guide explains how to navigate, enter data, query, and run reports using the user interface (UI) of Oracle E-Business Suite. This guide also includes information on setting user profiles, as well as running and reviewing concurrent programs.

You can access this guide online by choosing "Getting Started with Oracle Applications" from any Oracle E-Business Suite product help file.

Guides Related to this Product

Oracle Advanced Scheduler User Guide
Oracle Advanced Scheduler enables you to create optimized schedules for assigning tasks to qualified field service technicians. It enables you to define constraints and parameters such as overtime allowed, proximity to the customer site, resource skill, spare part availability, and customer preference of resource and use these to calculate operational costs and provide the most efficient service.

Oracle Field Service Implementation Guide
This guide enables you to install and implement Oracle Spares Management, Oracle Advanced Scheduler, Oracle Inventory, Oracle Order Management, Oracle Service Contracts, Oracle Depot Repair, and Oracle Complex Maintenance, Repair and Overhaul for Preventive Maintenance. Integration with these applications is necessary to automate field service activities. In addition, you define codes to justify material, labor, and expense, define billing types and associate these with service activity codes and inventory items, and define skills and skill levels of field technicians. You can also define time-based and usage-based preventive maintenance programs, and forecast usage rates.

Oracle Field Service User Guide
Oracle Field Service enables the automation of field service operations such as scheduling and dispatching tasks to field technicians, ordering parts, and tracking task completion. You can use its debrief capabilities to access notes and interaction history in support of call closure, and report task execution time, parts and expenses.

Oracle Mobile Field Service Implementation Guide
This guide describes how to create and manage mobile users, implement the wireless option, and set up the interapplication bar to conveniently navigate between applications to perform diagnostic testing. This enables mobile users to periodically synchronize their mobile computer devices with the enterprise system in order to download new Oracle Mobile Field Service data and upload changes that they have
made in their applications. For example, the technician can access and update the material debrief at a customer site for materials installed and returned in the task. When out of wireless coverage, technicians can continue to perform tasks using the voice interface or phone.

Oracle Mobile Field Service User Guide
Oracle Mobile Field Service offers both connected browser-based solution and a disconnected solution that enables field service technicians to service their customers in a fully automated way. With the service request, field service technicians automatically receive the customer service history and customer install base information. For replacement parts, they can access the robust spare parts management feature of Oracle Mobile Field Service. After completing their tasks, they report labor, materials, and expenses and this information is sent back to the service organization at electronic speed so that an invoice can be given to the customer in a timely manner.

Installation and System Administration

Oracle Alert User’s Guide
This guide explains how to define periodic and event alerts to monitor the status of your Oracle E-Business Suite data.

Oracle E-Business Suite Concepts
This book is intended for all those planning to deploy Oracle E-Business Suite Release 12.2, or contemplating significant changes to a configuration. After describing the Oracle E-Business Suite architecture and technology stack, it focuses on strategic topics, giving a broad outline of the actions needed to achieve a particular goal, plus the installation and configuration choices that may be available.

Oracle E-Business Suite CRM System Administrator’s Guide
This manual describes how to implement the CRM Technology Foundation (JTT) and use its System Administrator Console.

Oracle E-Business Suite Developer’s Guide
This guide contains the coding standards followed by the Oracle E-Business Suite development staff. It describes the Oracle Application Object Library components needed to implement the Oracle E-Business Suite user interface described in the Oracle E-Business Suite User Interface Standards for Forms-Based Products. It also provides information to help you build your custom Oracle Forms Developer forms so that they integrate with Oracle E-Business Suite. In addition, this guide has information for customizations in features such as concurrent programs, flexfields, messages, and logging.
Oracle E-Business Suite Installation Guide: Using Rapid Install
This book is intended for use by anyone who is responsible for installing or upgrading Oracle E-Business Suite. It provides instructions for running Rapid Install either to carry out a fresh installation of Oracle E-Business Suite Release 12.2, or as part of an upgrade to Release 12.2.

Oracle E-Business Suite Maintenance Guide
This guide contains information about the strategies, tasks, and troubleshooting activities that can be used to help ensure an Oracle E-Business Suite system keeps running smoothly, together with a comprehensive description of the relevant tools and utilities. It also describes how to patch a system, with recommendations for optimizing typical patching operations and reducing downtime.

Oracle E-Business Suite Security Guide
This guide contains information on a comprehensive range of security-related topics, including access control, user management, function security, data security, and auditing. It also describes how Oracle E-Business Suite can be integrated into a single sign-on environment.

Oracle E-Business Suite Setup Guide
This guide contains information on system configuration tasks that are carried out either after installation or whenever there is a significant change to the system. The activities described include defining concurrent programs and managers, enabling Oracle Applications Manager features, and setting up printers and online help.

Oracle E-Business Suite User Interface Standards for Forms-Based Products
This guide contains the user interface (UI) standards followed by the Oracle E-Business Suite development staff. It describes the UI for the Oracle E-Business Suite products and tells you how to apply this UI to the design of an application built by using Oracle Forms.

Other Implementation Documentation

Oracle E-Business Suite Multiple Organizations Implementation Guide
This guide describes how to set up multiple organizations and the relationships among them in a single installation of an Oracle E-Business Suite product such that transactions flow smoothly through and among organizations that can be ledgers, business groups, legal entities, operating units, or inventory organizations. You can use this guide to assign operating units to a security profile and assign this profile to responsibilities such that a user can access data for multiple operating units from a single responsibility. In addition, this guide describes how to set up reporting to generate reports at different
levels and for different contexts. Reporting levels can be ledger or operating unit while reporting context is a named entity in the selected reporting level.

Oracle Approvals Management Implementation Guide
This guide describes transaction attributes, conditions, actions, and approver groups that you can use to define approval rules for your business. These rules govern the process for approving transactions in an integrated Oracle application. You can define approvals by job, supervisor hierarchy, positions, or by lists of individuals created either at the time you set up the approval rule or generated dynamically when the rule is invoked. You can learn how to link different approval methods together and how to run approval processes in parallel to shorten transaction approval process time.

Oracle E-Business Suite Flexfields Guide
This guide provides flexfields planning, setup and reference information for the Oracle E-Business Suite implementation team, as well as for users responsible for the ongoing maintenance of Oracle E-Business Suite product data. This guide also provides information on creating custom reports on flexfields data.

Oracle Workflow Administrator’s Guide
This guide explains how to complete the setup steps necessary for any Oracle E-Business Suite product that includes workflow-enabled processes. It also describes how to manage workflow processes and business events using Oracle Applications Manager, how to monitor the progress of runtime workflow processes, and how to administer notifications sent to workflow users.

Oracle Workflow Developer’s Guide
This guide explains how to define new workflow business processes and customize existing workflow processes embedded in Oracle E-Business Suite. It also describes how to define and customize business events and event subscriptions.

Oracle Workflow User’s Guide
This guide describes how Oracle E-Business Suite users can view and respond to workflow notifications and monitor the progress of their workflow processes.

Training and Support
Training
Oracle offers a complete set of training courses to help you master your product and reach full productivity quickly. These courses are organized into functional learning paths, so you take only those courses appropriate to your job or area of responsibility.
You have a choice of educational environments. You can attend courses offered by
Oracle University at any of our many Education Centers, you can arrange for our trainers to teach at your facility, or you can use Oracle Learning Network (OLN), Oracle University’s online education utility. In addition, Oracle training professionals can tailor standard courses or develop custom courses to meet your needs. For example, you may want to use your organization structure, terminology, and data as examples in a customized training session delivered at your own facility.

Support

From on-site support to central support, our team of experienced professionals provides the help and information you need to keep your product working for you. This team includes your Technical Representative, Account Manager, and Oracle’s large staff of consultants and support specialists with expertise in your business area, managing an Oracle server, and your hardware and software environment.

Do Not Use Database Tools to Modify Oracle E-Business Suite Data

Oracle STRONGLY RECOMMENDS that you never use SQL*Plus, Oracle Data Browser, database triggers, or any other tool to modify Oracle E-Business Suite data unless otherwise instructed.

Oracle provides powerful tools you can use to create, store, change, retrieve, and maintain information in an Oracle database. But if you use Oracle tools such as SQL*Plus to modify Oracle E-Business Suite data, you risk destroying the integrity of your data and you lose the ability to audit changes to your data.

Because Oracle E-Business Suite tables are interrelated, any change you make using an Oracle E-Business Suite form can update many tables at once. But when you modify Oracle E-Business Suite data using anything other than Oracle E-Business Suite, you may change a row in one table without making corresponding changes in related tables. If your tables get out of synchronization with each other, you risk retrieving erroneous information and you risk unpredictable results throughout Oracle E-Business Suite.

When you use Oracle E-Business Suite to modify your data, Oracle E-Business Suite automatically checks that your changes are valid. Oracle E-Business Suite also keeps track of who changes information. If you enter information into database tables using database tools, you may store invalid information. You also lose the ability to track who has changed your information because SQL*Plus and other database tools do not keep a record of changes.
Part 1

Spares Management
Using Spares Logistics

This chapter covers the following topics:

• Overview: Parts Search and Ordering
• Overview: Parts Return
• Overview: Move Orders

Overview: Parts Search and Ordering

The Parts Search and Ordering functionality enables the technician, dispatcher or other field service user to create a parts requirement, search for available parts in the field service supply chain, select the closest or most cost effective source and generate an order for the parts that are found. The Parts Requirement page is used to define the parts required for the task.

Note: If Oracle Endeca is installed and licensed in your environment, then refer to the Oracle E-Business Suite Endeca Integration and System Administration Guide for detailed information about the Endeca enhancements to your product.

The process is referred to as Forward Logistics or sending the parts to the technician. You can use the Parts Search and Ordering module to:

• Locate parts search based on distance
• Use ATP or Inventory sourcing for parts search as alternate to distance search
• Search technician’s own inventory and reserve parts
• Search other technician’s inventory and determine working or not working
• Distinguish between manned and unmanned warehouses
• Determine open and closed for manned warehouses using CRM calendar
• Include supersession and substitutes in search results
• Include global searches across entire supply chain
• Consider spares dedicated to a site
• Integrate with order creation when parts are found
• Search for parts from a single source
• Provide delivery date and time for shipments from a manned warehouse
• Integrate with GPS to find technicians current location
• Include Mobile Field Service and Technician’s Portal

Key Setups for Parts Search and Ordering

You can define the key prerequisite setups in the Site Attributes tab of the Planner’s Desktop to use the Parts Search and Ordering functionality. You can define site parameters that describe the inventory locations in the field service supply chain.

To include an inventory location in the search results of the Parts Search and Ordering functionality you must enter the following parameters in the Site Attributes tab.

To setup site parameters in the Site Attributes tab:
1. Navigate to the Planner’s Desktop in the Spares Management Navigator.
2. In the Spares Planning tree on the left pane, you create and enter multi-level nodes that describe and organize the field service supply chain.

 Note: This tree is seeded and all other nodes you create are added under this tree.

3. Add inventory locations, sub-inventories or inventory organizations to the Spares Planning tree.

 Note: Larger warehouses are modeled as inventory organizations and technicians are modeled as sub-inventories. Small warehouses are modeled as either sub-inventories or inventory organizations depending on functionality and financial considerations.

4. Click on an inventory location in the Spares Planning tree and click on the Site
Attributes tab.

5. Enter the following Site Attribute parameters:

- Select a stocking site type from the list to display in the Parts Search and Ordering search results. Required. Options include: Technician, Manned Warehouse, Unmanned Warehouse or Site Dedicated Spares.

 Note: Site Dedicated Spares (SDS) is an unmanned site that is dedicated to support a specific customer site. Inventory location in the SDS site appears in the search results for the customer site on the service request that is supported by the Site Dedicated Spares.

- Enter a Calendar and a Time Zone for a stocking site type entered. The calendar and time zone is used to determine in the search results whether the manned warehouse is open.

 Note: Technician calendar and time zone is entered in the Oracle Resource Management. The calendar and time zone is optional for unmanned warehouses or site dedicated spares.

- Enter the values for Managed By, Contact and Phone, After Hours Contact, and Phone fields. Optional.

- Select the Stocking Site Exclusion check box to exclude this inventory location from the search results.

- Enter any special instructions if applicable. Optional.

- Select and enter a Geocoded Address for the manned warehouses, unmanned warehouses and site dedicated spares. The geocoded addresses are used to determine travel distances, directions, and times.

 Note: Technician addresses are entered and managed in the Addresses tab of the Addresses and Sub-inventories window.

- To use the Geocoded Addresses list, you must run the following concurrent program:
 - Responsibility: Trading Community Manager
 - Program: Spatial Information for Locations Batch Update.
• Enter the Party Sites that an inventory location supports, when the stocking site type is Site Dedicated Spares.

 Note: When a service request is entered for a party site that has Site Dedicated Spares assigned, the search results displays the SDS site, if parts are available at that site.

Using Parts Search and Ordering

Parts Search and Ordering functionality enables you to:

- Create the Parts Requirement
- Search for the parts required
- View the parts in the search results
- Select a source
- Create the order

Prerequisites:

- Set up Inventory Organizations, Sub-inventories, and Items
- Set up Shipping Networks
- Set up Methods of Shipment
- Set up Transit Times for methods of shipment in Shipping Networks
- Set up Site Attributes in the Planner’s Desktop
- Set up Resources for the technicians
- Set up Calendar for the technicians in Oracle Resource Management
- Set up Delivery Times
 - Run the Spatial Information for Locations Batch Update concurrent program. See step 5, page 1-1, in the Key Setups for Parts Search and Ordering section for more information.
 - Run the Generate Field Service Trips concurrent program using the Field Service Manager responsibility.
Note: This program generates the technicians working schedule. You can run this program in add, close, delete, fix, replace, and upgrade mode. Refer to the Generating Field Service Trips section in the *Oracle Field Service Implementation Guide* for more information.

Refer to the Key Setups for Parts Search and Ordering section for more information.

Creating A Parts Requirement

1. Navigate to the Parts Requirement page from the Spares Management navigator.

2. Enter a task or a resource in the Requirement Information region:
 - If you enter a task number and a technician is assigned to the task, then the Technician’s Name, Ship To address, Destination Organization (usable sub-inventory), Sub-Inventory (organization), Need By Date (current date), and Time are entered automatically.

 Note: The technician’s default Ship To Address and usable sub-inventory are setup in Resource Addresses and Sub-inventories window.

 The default Ship To Address is determined by the CSP: Parts Requirement Default Ship To Address profile option. The values for this profile option are: Customer, Do not default, Task, Technician, and Third Party. The Ship To Address as determined by the profile will override the technician’s default Ship To Address.

 - If you enter a task number and a technician is not assigned to the task, then the Ship To Address is entered automatically based on the CSP: Parts Requirement Default Ship To Address profile option setting. If a default value is not specified for the profile option, then the Ship To Address can be entered manually.

 - If you enter a resource, then you select a Task from the list assigned to a technician. The Ship To address, Destination Organization (usable sub-inventory), Sub-Inventory (organization), Need By Date (current date), and Time are entered automatically.

3. Change the Ship-To address if desired from the default value. Select an address from the list defined by the address type. You can select the Ship To Address Type from the list with the following values:
 - Technician: All active usable addresses setup in the Addresses tab of the Resource Addresses and Sub-inventories window.
• Task: The incident address displayed for the task from the Service Request.

• Customer: Displays all Ship To addresses associated with the customer.

• Special: Used to create a new address and is added to the list of technician addresses.

4. Change the Destination Sub-inventory and Organization if desired from the default value.

5. Change the Need By Date and Time if desired from the current date and time.

 Note: This header information is used to define the ship-to organization, sub-inventory, address and need by date and time for creating an order or a reservation.

6. Enter the values for Item Required and Quantity fields.

7. Click on the Apply button to create the parts requirement. A message displays stating that the parts requirement has been successfully created.

 Search existing part requirements using the Find Parts Requirement page from the Spares Management Navigator.

Searching for Parts Required

1. Click on the Search Parts button. The Parts Search page appears.

2. Select the desired search parameters in the Simple Search region and click on the Go button.

 Note: If a technician has setup search parameter preferences in the Oracle Mobile Field Service Wireless application, then these parameters are selected automatically. You can also create and save the search using the Create New Search button.

3. You can set the following search parameters:

 • My Inventory: To include the search results from the default sub-inventory assigned to a technician.

 Note: Sub-inventories are assigned to the technician in the Sub-inventories tab of the Addresses and Sub-inventories window.
• Other Working Technicians: To include the search results from the default the sub-inventories of other technicians who are working.

 Note: Calendar and time zone defined in the Oracle Resource Management is used to know if the technician is working. Technicians are defined in the Stocking Site Type field in the Site Attributes tab of the Planner's Desktop.

• Open Manned Warehouse: To include manned warehouses that are open based on the calendar assigned in the Site Attributes tab of the Planner’s Desktop.

 Note: Warehouses are defined as manned or unmanned in the Site Attributes tab of the Planner's Desktop.

• Unmanned Warehouse: To include search parts from unmanned warehouses.

 Note: Unmanned warehouses are always open and accessible.

• Include Supersessions and Substitutes: To include parts supersessions and substitutes.

 Note: Supersessions are defined in Spares Management Supersessions page. Substitutes are defined in the Oracle Inventory Item Relationships.

Attachments are created for the supersessions and substitutes and these attachments are displayed in the Search Results, when substitutes and superseding parts are included in search. See the Supersession and Supersession Notes section for more information.

• Include Closed Warehouses and Non-working Technicians: To include warehouses and technicians who, per their calendars are displayed as either closed or not working.

• Use On-hand instead of Available On-hand: To include parts with on-hand greater than zero.

 Note: On-hand Available = On-hand - Reserved orders.

• Use Excess instead of Available On-hand: To include parts from the excess list.
Note: Excess = On-hand Available - Maximum.

The excess list is filtered by business rules that are setup in the Spares Management Business Rules window.

- **Ship Set:** To include only those inventory locations in the search results that can supply all of the parts and quantity defined in the parts requirement.

- **Use Current Location:** To use the technician’s current location as the center point for the search.

 Note: The technician’s current location is based on GPS, if connected, or the technician’s most recent task location and status if GPS is not being used.

- **Search Distance:** Enter a distance value. For example 25 miles or Kilometers.

 Note: The CSF Profile: Default Distance Unit is used to determine whether distance is expressed in miles or kilometers.

 Note: This parameter is used to determine which warehouses and technicians are displayed in the search results based on distance. All technicians and warehouses beyond this distance parameter based on a straight-line calculation are excluded from the search results.

 Note: Site Dedicated Spares (SDS) is used to identify an inventory site that is dedicated to support a customer site. If there is an SDS site setup in the Site Attributes tab for the customer on the service request; then, only the SDS site is displayed in the search results if parts are available. The SDS is not displayed in the search results for any customer site, which is not supported.

Viewing Parts in Search Results

1. You can view parts search results at the source level:

 Note: The search results displays all inventory locations that match the search parameters selected for a search. The inventory location is setup in the Site Attributes tab of the Planner’s Desktop.
Note: All inventory locations in the search results displays the On-hand Available, the On-hand or excess depending on the search parameters selected.

- Source Organization and Sub-inventory: Is displayed as either a source organization or a source organization and a sub-inventory. Technicians are modeled as a sub-inventory and warehouses are modeled as either an organization or sub-inventory depending on the size.

- Click on the Source Organization link to view source organization details.
 - Source Type: Defined in the Site Attributes tab of the Planner’s Desktop as Technician, Manned Warehouse, Unmanned Warehouse, or Site Dedicated Spares.
 - Shipping Method: Define the Shipping Methods setup in Shipping Networks for the source and destination organization. The shipping methods are only applicable to manned warehouses. Shipping Methods can also be setup in Transit Times when required to define shipping methods for the region, zone or external location.

- Cost: The average cost of shipping the parts from the source to the destination. The cost of shipping a single part from the source to the destination is setup in Shipping Networks or Transit Times.

- Arrival Date and Time: Expected arrival date and time at the destination based on intransit time between the source and destination and the delivery time.

- Distance: Distance from the source to the destination address as defined in the ship to address in the Part Requirement. This is a straight-line calculation.

- Click on the Show on Map button to view street level drive times and distances.

Selecting Parts at Source

1. Click on the Show link to view Item details at the source. You can view the following details:
 - Item Supplied: The Item on the Part Requirement or the superseding or substitute item, if Include Supersession and Substitute parameter is selected.
 - Description: Description of the Item Supplied.
 - Supplied Item Revision: Revision of the Item supplied.
• Attachments: This icon appears if any notes are defined for the supersession or substitute. Click on the Attachments icon to open the Attachments page.

• Required Item: Item on the Parts Requirement if the item supplied is a supersession or substitute.

• Description: Description of the required item.

• Required Item Revision: Revision of the item required.

• Quantity Available: Quantity available, quantity on-hand or excess quantity depending on parameters selected.

• Required Quantity: Quantity required from the Parts Requirement.

Creating an Order

1. Select the Item and the Source check boxes and click on the Create Order button to create an order. A message displays stating that the order is successfully created.

 Note: The order type that is created depends on the organization relationship between the source and destination.

The relationship table for order types

<table>
<thead>
<tr>
<th>Source Type</th>
<th>Source Organization Same as Destination Organization</th>
<th>Intransit</th>
<th>Order Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technician</td>
<td>Yes</td>
<td>Not allowed</td>
<td>Sub-Inventory Transfer</td>
</tr>
<tr>
<td>Technician</td>
<td>No</td>
<td>Not allowed</td>
<td>Inter-org Transfer</td>
</tr>
<tr>
<td>Manned Warehouse</td>
<td>Yes</td>
<td>Yes</td>
<td>Move Order</td>
</tr>
<tr>
<td>Manned Warehouse</td>
<td>Yes</td>
<td>No</td>
<td>Sub-inventory Transfer</td>
</tr>
<tr>
<td>Manned Warehouse</td>
<td>No</td>
<td>Yes or No</td>
<td>Internal Order</td>
</tr>
<tr>
<td>Unmanned Warehouse</td>
<td>Yes</td>
<td>Not allowed</td>
<td>Sub-inventory Transfer</td>
</tr>
</tbody>
</table>
Creating a Parts Requirement Automatically

In many field service operations, required parts are known for frequently executed tasks. You can create parts requirements automatically when you create a service request for a product by using a task template where parts have been predefined in Oracle Spares Management for that product and Task Template combination. See the Oracle Field Service Implementation Guide for details.

You create task templates and define items associated with products and task templates during Spares Management implementation. For more information on creating a service request and creating tasks using a task template, see the Oracle Field Service User Guide.

You can use the Spares Management Delivery Times to define the delivery times for the methods of shipment at the sub-inventory level along with Inter Location Intransit Time.

Prerequisites

- Create the task parts definition.

Steps

 The Service Request window appears.

2. After you create a basic service request for a product where parts requirements have been defined, navigate to the Tasks tab, and then click the Use Template button to create a task based on the template.

 Note: The product used in the service request and the task template
combination must have the required parts predefined in Spares Management Task Parts.

3. In the Create Tasks from Template Group window, select the Template Group that corresponds to the task template that you want to use.
 The parts requirement for the product and task is automatically created.

4. Go to the Parts Requirement in Spares Management. Query the parts requirement from the service request or task to view the parts requirement.

Overview: Parts Return

The Parts Return functionality enables the technician, dispatcher or other field service user to return defective or excess parts to predefined destinations. The destinations are defined for using the Return Routing Rules setup.

Parts Return Routing Rules

The Return Routing module uses business rule parameters that include a source, which is an inventory location, or territory; return type, part category and item. The business rules are used to determine the destination(s) from any point in the supply chain. It is from anywhere to anywhere approach.

A single location in the supply chain that has defective or excess parts to return sends those parts to multiple destinations. Those destinations are repair suppliers for defectives and consolidation points for excess. Other specialized destinations may be required for scrap or Defective on Arrival or DOA.

Excess is defined as available parts, which are in excess of maximum (Max) levels. Spares Management uses a program to define excess parts and business rules are optionally applied to filter the excess list. For defectives, all available quantity is considered to be excess. Max levels are not applied on defective parts.

This process is often referred to as Reverse Logistics or sending the parts back to the supply chain or to the appropriate destination. The main features of the Return Routing Rules module include:

- Excess identification based on max levels
- Business rules to focus on high impact excess
- Send defective or excess parts to any destination
- Advanced return routing module to determine the returns destination
- Integrate with customer's return routing module
• Create the return order

• Integrate with Oracle Mobile Field Service and the Technician and Administration Portals

Key Setup for Return Routing Rules

Return Routing Rules are classified as a setup for returning parts to any inventory location in a supply chain.

Creating and Managing Return Routing Rules

The Return Routing Rules are key prerequisite setups for using Parts Return

Note: If Return Routing Rules are not defined, then the routing rules from the customer integration or the default routing rules available in the Sub-Inventories tab of the Address and Sub-inventories window are used.

Creating Return Routing Rules

Steps

2. Click on the Create New Rule button. The Create Return Routing Rule popup appears.

3. In the Create Return Routing Rule popup enter the parameters and destination for a routing rule.

 Note: Routing Rules are generic or specific depending on the needs of the user. The minimum definition of a routing rule is a destination. In this case the source is an inventory location or a territory, return type, category, or item. The specific definition is where the routing rule specifies: source, return type, category or item

Searching Existing Return Routing Rules

1. In Search region of the Return Routing Rules page enter the search criteria and click on the Go button.
Updating Return Routing Rules

2. Click on the Update icon for a routing rule. The Update Return Routing Rule popup appears.

3. Enter changes to the existing routing rule and click on the Update button.
The updated routing rule is displayed in the Return Routing Rules page.

Duplicating Return Routing Rules
1. Click on the Duplicate icon to duplicate the existing routing rule. The Duplicate Return Rule popup appears.

2. Enter changes to the routing rule and click on the Save as New Rule button.
The duplicate routing rule is displayed in the Return Routing Rules page

Deleting Return Routing Rules
1. Delete existing routing rules by selecting the Select check box and clicking on the Delete button.

Mass Update Routing Rules
1. Update the destination for multiple routing rules by selecting the Select check box and clicking on the Update Rules button.

2. Enter the change in destination, Start Active Date, End Active Date and click on the Update All button.

Exporting Data to Excel Spreadsheet
1. Click on the Select check box to select the routing rules for export or leave check boxes blank to export all Rules.

2. Click on the Export Data button. The spreadsheet appears.

3. To convert spreadsheet to Microsoft Excel format:
 • Save the file to a local disk.
 • Open the file with Oracle Open Office. Make sure, Separator is selected as Comma.
 • Data is displayed in spreadsheet application.

Simulating Routing Rules
Routing rules overlaps when more than one rule is applied to a given set of routing
parameters. The purpose of the simulation is to determine, which routing rule applies
to a given set of routing parameters. To resolve any overlap or conflict in the routing
rules a hierarchy of parameters is applied. The following hierarchy of parameters is
used:

- Item
- Item Category Set or Item Category
- Return Type: Excess or defective
- Source: Organization, Organization or Subinventory or territory

For example, a routing rule that is specific to item dominates over a routing rule that is
specific to return type.

Steps

1. Click on the Run as Simulation check box and enter the simulation parameters in
 the Search region of the Return Routing Rules page. Enter the following simulation
 parameters:
 - A source type
 - A source
 - A return type
 - An item category or an item

2. Click on the Go button and the routing rule that matches your simulation
 parameter appears in the Return Routing Rules page.

Using Parts Return

Parts return process includes the following steps:

- Run the concurrent program: Create Excess or Defective Lists
- Select a source
- Select a destination
- Select the items and quantity
- Create the return order

Prerequisites:

- Set up Organizations, Sub-inventories, and Items
• Set up Territories
• Set up Setup Category Sets and Item Categories
• Set up Addresses and Sub-inventories
• Set up Business Rules: Excess Rules
• Set up Shipping Networks and Methods of Shipment
• Set up Site Attributes in the Planner’s Desktop

Refer to the Key Setups for Parts Search and Ordering section for more information.

The Parts Return Process

Steps

2. Select the correct planning node and click the Create Excess/Defective List button.

 Note: Excess lists rely on excess rules, which you define during implementation. See the *Oracle Field Service Implementation Guide* for more information.

 Excess rules apply only to the determination of excess in a usable subinventory or warehouse. For a defective subinventory, all parts are considered excess.

3. Enter a resource type and resource name or enter a source organization and source subinventory.

4. If a resource type and a resource name are entered, then select a source organization and source subinventory.

 Note: The technician’s subinventories are setup in the Resource Addresses and Sub-inventories window.

 The organization and subinventory are used as the source to create the return order.

5. Enter an item. Optional. This is used to limit the parts return to a specific item.

 Select either Excess, Defective or Null (both). This is used to limit the source
subinventory to a specific condition. The condition of the subinventories is defined in the Addresses and Sub-inventories window.

Note: Source, Item and Condition are used in combination to limit the item and subinventories or excess or defective that is returned.

7. Click on the Consolidate checkbox to ship each part individually.

 The Consolidate checkbox is used to determine whether the parts are shipped in one consolidated shipment under one waybill or individually one by one on separate waybills.

8. Click on the Go button and the Excess / Defective Items table displays the destination summary.

 The Destination Summary region displays a summary of items and quantity for each destination. Change the destination, if required.

9. Click on the Show link. The Item and Quantity details display in the Destination Summary line.

10. Click on the Select checkbox to select items that you want to return. Change return quantity as desired.

11. Enter the following shipping details for a Source line:

 - Carrier
 - Shipping Method
 - Shipment Number (required)
 - Waybill Number

 Note: Serialized parts are displayed with the quantity value as 1. Select the serial number and enter values for Lot, Locator and Revision that is required for parts subject to those controls.

12. Click on the Return button on the Source line to create an order.

 Refer to the Order Types table in the Using Parts Search and Ordering section to know the order type that is created based on the organization relationship between the source and destination.
Overview: Move Orders

Field service representatives, as well as dispatchers and managers, can process move orders for parts within a single inventory organization.

Move Orders includes the following topics:

- Creating Move Orders, page 1-18
- Creating Reservations for Move Orders, page 1-20
- Printing Pick Lists for Move Orders, page 1-21
- Confirming Pick Lists for Move Orders, page 1-22
- Creating Pack Lists and Confirming Shipment, page 1-23
- Receiving Shipments for Move Orders, page 1-26
- Viewing the Status of Move Orders, page 1-27

Creating Move Orders

Move Orders can be used only to transfer parts between subinventories within the same inventory organization. The following features are available when creating a move order:

- Designate the source and destination subinventories.
- Override the automatic receipt setting at the Move Order level. Automatic receipt is typically set at the subinventory level.
- Ship parts on a Move Order to a special address.

To create a move order to move parts between subinventories within one inventory organization, use the following procedure.

Steps

 The Move Orders window appears.

2. If the Select Organizations window appears on top of the Move Orders window, select the inventory organization that you want to access.
 The Select Organizations window closes to reveal the Move Orders window for the specified inventory organization.
3. (Optional) Enter the source subinventory and destination subinventory in the Default section of the Move Order window if you want this information to become the default values for your move order lines. This default feature is useful when you are entering multiple lines with the same source and destination subinventories.

4. On the Item tab, enter the part number in the Item field.

 Note: If you accessed the Move Order window from Parts Search Hierarchy, then the selected part number automatically appears in the Item field.

5. When you select an item, the Unit of Measure (UOM) field and the Date Required fields automatically populate with default values. You can change the Date Required value by using the list of values or by entering a new date.

6. Enter the move order quantity in the Quantity field.

7. Select the Source tab, and then enter or select a source subinventory from the list of values.

 Note: If you accessed the Move Order window from Parts Search Hierarchy, the source subinventory for the selected item automatically appears in the Source Subinventory field.

8. (Optional) Enter Locator, Lot Number, Serial From and Serial To, if your part is using these Oracle Inventory features.

9. In the Destination tab, select a destination subinventory from the list of values.

10. (Optional) In the Service Controls tab, select the Service Request and Task numbers from the list of values.

11. (Optional) Enter the Customer PO number and Comments.

 Note: The Project and Task tab and the Control tab are not used for Spares Management.

12. Use the automatic receipt feature when the shipment must be automatically transacted into the destination subinventory at the Confirm Ship step.

 The default value for the destination subinventory comes from the destination subinventory. To override the automatic receipt setting for this move order, click the Special Ship To button. Check or clear the Auto Receipt check box.
13. To ship the parts to a one time address, click the Special Ship To button. Enter a special address or click the Address button, and then select from a list of addresses previously entered for customers or locations.

Automatic receipt is often used along with a special ship to address when a drop shipment is required. The move order special ship to address specifies an address other than the standard address assigned to the destination subinventory.

14. (Optional) Select the Shipment Method and Carrier from the list of values.

15. Click OK to close the window.

16. Save your work.

The Move Order number appears.

The move order must be in an Approved status for further processing to continue. While your move order is not yet approved, you can update any field in the move order.

17. To update existing move orders, navigate to the Create Move Orders window, and query the Move Order number that you want to update. You can also find your move order on the View Move Order Status window. After updating the move order, click Save.

18. To change the status of the Move Order to Approved, click Approve.

After your move order is approved, you can update any field except Quantity and Destination Subinventory.

 Note: If you click Approve before saving your move order, the save and the approval both occur.

Creating Reservations for Move Orders

Allocations are used to reserve parts in a specific subinventory location for a move order. Allocation ties the inventory to the move order.

This process is optional because the Create Pick Lists process allocates the inventory automatically. This functionality is typically used to ensure that the move order that has been generated to support a service request task is fulfilled as a priority if inventories are limited.

When creating manual allocations, you can:

- View on-hand and available quantities
- Allocate the inventory
Follow these steps to view inventory quantities, and then create a manual allocation for a move order.

Prerequisites

- The Move Order must be in an Approved status to create an allocation.

Steps

1. Navigate to the Create Allocations window, page A-1.

2. If the Select Organizations window appears, select an inventory organization, and then click OK.

 The Find Move Order Lines window appears.

Viewing On Hand and Available Quantities

1. Enter the move order number in the Number field of the Headers tab.

2. Click Find to open the Create Allocations window for the selected inventory organization.

 The On Hand quantity field value includes reserved quantities. The Available quantity field value does not include reserved quantities.

Creating an Allocation

1. Select the Select check box to the left of the Move Order Line field.

2. Click Allocations.

Changing Allocation Quantity

1. Click View/Update Allocations to open the Transact Move Order Line Allocations window.

2. Scroll right, and then enter a quantity in the Quantity field.

3. Click Update.

Verifying the Allocation

1. (Optional) Click View/Update Details again to verify the allocated quantity.

 The allocation was created successfully if the Allocated Quantity field displays the allocated quantity.

Printing Pick Lists for Move Orders

Printing a pick list produces a report that specifies the parts to be picked from their location in the warehouses. Printing the pick list changes the Move Order status to Printed. Furthermore, if an allocation was not previously created, printing the pick list creates the allocation automatically. You can print a pick list for an individual move...
order or you can print a pick list for a batch of move orders.

Use this procedure to print pick lists:

Prerequisites

- The Move Order status is Approved.

 The quantity on hand must be greater than or equal to the quantity ordered on the Move Order.

Steps

 The Submit Requests window appears.

 Note: If the Select Organizations window appears, select the inventory organization for the pick list.

2. To print a pick list for an individual move order, enter a Move Order number, and then click OK.

3. To print pick lists for a batch of move orders, enter appropriate values in one or more of these parameters: Source Subinventory, Destination Subinventory, Date Required and Requestor. Click OK.

4. Click Submit to run the concurrent program that creates the pick list.

5. Click No in the Decision window if you are finished printing pick lists.

Verifying Pick List Printing

1. (Optional) Navigate to the Move Order Status window, page A-1 to verify that the pick list was created.

 The Move Order Status window appears.

2. Enter your Move Order number in the Find window, and then click Find.

 The line status indicates "Printed". The pick list number is assigned to the move order, and the picked quantity field displays the correct quantity.

Confirming Pick Lists for Move Orders

You confirm pick lists so that the quantity actually picked is verified before packing and shipping the parts. Confirming the pick list changes the Move Order Line status to "Confirmed".

With this feature, you can change the picked quantity only in the Reservations user interface. You can split pick list lines into multiple lines for shipping.
Follow this procedure to confirm a pick list:

Prerequisites
- The pick list must be in "Printed" status before you can confirm it.

Steps

 The Find Pick Lists window appears.

 Note: If the Select Organizations window appears, select an inventory organization.

2. Enter a pick list number or select from the list of values, and then click Find.

 The Confirm Pick List window appears and populates with data from the selected pick list.

3. Click Confirm Pick to confirm the pick list.

Verifying Pick List Confirmation
1. (Optional) Navigate to the Move Order Status window, page A-1 to verify that the pick list was confirmed.

2. Enter your move order number or your pick list number in the Find Move Order window and click Find.

 The line status indicates Confirmed and the picked quantity displays the correct quantity.

Creating Pack Lists and Confirming Shipment

A pack list is used to define the contents of a box and to execute the physical shipment. Pick lists are assigned to boxes. Pack lists are created for each box.

Pack lists are printed and then confirmed. The confirmation process transacts inventory out of the source subinventory and relieves the allocated quantity. If the auto receipt feature is enabled, confirmation transacts inventory into the destination subinventory. If auto receipt is disabled, the shipment is transacted into the in-transit subinventory.

With this functionality you can:
- Find consolidation opportunities by viewing all pick lines destined for the same ship to address.
- Assign multiple pick lines to one box.
- Split pick lines into multiple boxes.
• Automatically assign the ship to address from the pick list to the pack list header.

• Print the pack list and confirm the shipment from the same window.

Prerequisites
• The pick list must be in a Confirmed status to be available for selection in a pack list.

Opening a Packing List
 The Packing Lists navigator tree appears.

 Note: If the Select Organizations window appears, select an inventory organization.

2. Click the + sign to expand the Packing Lists node.
 The Packing Lists folder expands to display the Open, Received, Received Short, and Shipped status folders.

3. Click the + sign for the Open folder to display open packing lists.

4. Click the Open folder and then right-click it.
 The right-click popup menu appears.

5. Select Create Packing List from the right-click menu.
 The Create Pack List window appears and displays the Pack List Details tab.

6. (Optional) Enter shipping information such as Carrier, Shipment Method, Waybill, Comments, Ship to Subinventory, and Location Address.

 Note: You can also enter this information later when you are finalizing the pack list.

7. Click Save to create the pack list.
 The pack list appears within the Open folder.

Adding Items to a Shipping Box
1. Click the + sign for the new pack list to display Box 001.

2. Click Box 001 to open the Box Details tab.

3. (Optional) Enter the weight.
4. Open the Picked Items tab.
 The Find Pick lists window appears.

5. Enter the pick list number and then click Find. If you do not know the pick list number, leave the pick list number blank, and then click Find to run a blind query for all pick lists that have not been previously assigned to a pack list.

6. Select from the spread table the pick list item to be added to the box. You can select multiple items.

7. To assign the selected lines to the box, click Add.
 The selected pick line disappears from the Picked Items tab and transfer to the selected box. All other pick lines that are assigned to a ship to address that differs from the pick line just selected, disappear from the Picked Items tab.

8. To add more pick lines to the same box, repeat steps 11 through 14.

Adding Additional Shipment Boxes
1. To add a second box to your pack list, click your pack list folder, and then right-click it.
 A right-click popup menu appears.

2. Select Create Box. Optionally enter the weight in the Box Details tab. Click Save.
 Your new box number appears under your pack list.

Splitting Quantities into Multiple Boxes
1. To split the quantity on a pick line into more than one box, click the quantity value of a pick line in the Picked Items tab.
 The Split Quantity window appears.

2. Enter the quantity to be assigned to the first box, and then click OK.

3. To add the remaining quantity to another box, click the other box number.

4. Click the pick list number containing the remaining quantity. Click Add.

Creating the Pack List
1. To finalize the pack list, click the pack list number.

2. Enter values for carrier, shipment method, waybill and comments in the Pack List Header tab.

3. Save your work.
4. Enter the box weight in the Box Details tab.

5. Save your work to create the pack list.

Printing the Pack List
1. Click Print in the Pack List Header tab to print the pack list.
 The Submit Request window appears.

2. Click Submit to print the Pack list. Click No in the Decision window.

Confirming the Pack List
1. Click Ship Confirm in the Pack List Header tab to confirm the shipment.

Receiving Shipments for Move Orders
Receiving is performed at the packing list level. The receipt transaction relieves the
in-transit subinventory and increments the inventory at the destination subinventory.
Receiving parts runs automatically if auto receipt is enabled.

With this process:
• If the quantity received is correct, you can receive the entire shipment.

• If the quantity received differs from the quantity shipped, you can correct the
 quantity received.

• You can close the receipt with a short quantity (for example, in the case of lost
 parts).

Follow this procedure to manually record the receipt of parts:

Prerequisites
• The pack list must be in a Shipped status.

Steps
 The Find Pack Lists popup window appears.

2. Enter a pack list, and then click Find or leave the Pack List field blank and then click
 Find to run a blind query.
 The Receive Parts window appears with a list of shipments that match your search
 criteria.

3. If the quantity shipped is the same as the quantity received, select all the lines, and
 then click Receive.
4. If the quantity shipped is different from the quantity received, click the quantity value located under the This Receipt column.

5. Enter the actual quantity received, and click Receive.

6. To close a partially received line, select the line, and then click Close Line.

 Important: To activate the Close Line button, you must set up an inventory account alias, named CSP_RECEIPT, in the relevant organization. For information about setting up the account alias, refer to the *Oracle Field Service Implementation Guide* section on setting up inventory organizations.

Viewing the Status of Move Orders

The View Move Order Status window enables you to view the move order status and details at each step in the logistics process. This window also enables you to:

- Track move order quantities throughout the logistics process
- View the date and time of each step of the logistics process
- View multiple move orders
- View details such as pick list number, pack list number, and carrier and waybill numbers
- Navigate directly to the Move Order window

Follow this procedure to view the status of one or more move orders:

Steps

 The Find Move Orders window appears.

2. To view multiple move orders, specify combinations of parameters in the Find window, including move order number, source subinventory, destination subinventory, pick list number, pack list number, waybill number and line status.

 Enter the criteria that you want to use to limit the results of your search in the Find window, and then click Find.

 A list of move orders that match your search criteria appears.

3. Scroll to the right to view details.

4. To navigate to the Move Order window, click a move order number.
Viewing the Status of Internal Orders

Use the View Parts Order Status window to view parts requirements and internal order details at each step in the logistics process.

This window enables you to:

- Track internal order quantities throughout the logistics process
- View the date and time of each step of the logistics process
- View key logistic details such as carrier and waybill number
- Navigate directly to the parts requirement window
- View multiple internal orders
- Check whether an internal order has been created for the parts requirement
- View whether a service request and task have been assigned to the parts requirement

Follow this procedure to view the status of one or more parts requirements or internal orders:

Prerequisites

- You must have created a parts requirement or an internal order.

Steps

 The View Parts Order Status window appears.

2. To view multiple internal orders, specify combinations of the parameters in the Find window, including Order number, Source Organization, Status, Item Number, Order By Date, Promise Date, Service Request, Need by Date, Resource, Task, Requirement, Waybill number, and Line Status.

 Enter the criteria that you want to use to limit the results of your search in the Find window, and click Find. A list of parts requirements that match your search criteria appears.

3. Scroll to the right to view all details of the parts requirement.

4. To view a specific parts requirement, either select the parts requirement, and then click OK, or click the Requirement Number link.

 The Parts Requirement window appears.
Creating Replenishment Orders

Technician trunk stock and field service warehouses must be periodically replenished with parts used by the technician or shipped by the warehouse.

Replenishment is accomplished by running the Oracle Inventory Min - Max Planning Report concurrent program. You can run the program in two modes: automated or manual. The automated mode automatically creates the internal order, move order, or purchase requisition, depending upon the sourcing used. The manual mode provides a report that the planner can review before they create orders or requisitions.

Prerequisites

- Define Authorized Stock Lists.

Steps

 Alternative navigation path: From the Planner’s Desktop, right-click the node or subinventory that you want to replenish. You can launch this report from the Planning tree by territory or field service manager or any other logical grouping that is defined by a node in the tree by right-clicking on the desired node, and then selecting the Create Min - Max Planning Report concurrent program.

 When you select the Min - Max Planning Report concurrent program, the Parameters window appears.

2. Select Subinventory or Organization in the Planning Level field.

 Parts replenishment is done at either the organization or subinventory level.

3. If you select Subinventory, select the subinventory in the Subinventory field from the list of values.

4. Select Yes in the Restock field if you want to run in the automated mode. Select No if you want to run in manual mode.

5. Review and change other parameters from the default values as required.

 For more information regarding these parameters, see the Oracle Inventory User's Guide.

6. Click OK to save your entries and close the Parameters window.

7. Click Submit in the Min - Max Planning window to submit the request.

8. Click No in the Decision window to close the main Min - Max Planning concurrent program window.

9. To check the status of your concurrent request, select View from the Tools menu,
and then select Requests.

10. Click Find to view all of your concurrent requests.

11. To view the output of the Min - Max Planning Report, select the request, and then click View.
This chapter covers the following topics:

- Planner's Desktop Summary
- Creating and Maintaining the Planning Tree
- Creating the Planning Tree
- Managing Planning Tree Subinventories
- Adding Multiple Subinventories
- Moving Subinventories
- Deleting Subinventories
- Creating and Making Planning Recommendations
- Setting Up Personal Usage Planning Method
- Using Personal Usage Planning Method Modified by Population Change
- Setting Up Territory Norm Planning Methods
- Setting Up Product Norm Planning Method
- Setting Up Blended Planning Methods
- Setting Up Business Rules for Automated Min-Max Recommendations
- Generating Stock List Recommendations
- Adding or Modifying an Authorized Stock List
- Supersession
- Setting Up Part Supersession and Supersession Notes
- Create Warehouse Notifications
- Setting Up and Creating Warehouse Notifications
- Setting Up Business Rules to Automate Warehouse Notifications
- Warehouse Replenishment Notifications
• Performing Warehouse Replenishment Notifications
• Warehouse Replenishment Using Depot Repair
• Viewing Parts Status and Order Detail

Planner's Desktop Summary

The Planner's Desktop provides functionality to plan and view inventory across the entire field service supply chain.

A planner can generate min-max inventory recommendations based on the personal usage of a specific technician, the norm for the territory, or the product norm. The product norm uses failure rates and product populations to plan the technician or warehouse inventory.

The Planner's Desktop consists of the planning tree, as well as a series of tabs that provide details for the node, warehouse, or subinventory that you are viewing. Point-and-click functionality connects the planning tree to the tabs that provide information on planning parameters, inventory status, failure rates, stock list, min-max recommendations, and warehouse replenishment notifications.

When you select a node, the Planning window displays three tabs: Planning Parameters, Parts Status, and Failure Rates.

When you select a subinventory, the Planning window displays a Stock List tab and a Recommendation tab along with the previous three tabs. When you select a warehouse, all five tabs appear for the subinventory, along with a Notifications tab that is used for warehouse replenishment planning.

Creating and Maintaining the Planning Tree

Creating the Planning Tree

Oracle Spares Management planning functionality begins with creating a tree structure in the Planner’s Desktop that includes all components of the field service supply chain. The purpose of the tree structure is to define and organize supply chain components. You should include in the tree any supply chain component that needs inventory planning and replenishment or any component where you need to view the inventory status. The normal components of a field service supply chain include technicians, warehouses, and repair suppliers (both internal and external).

The Spares Management module comes with a default Spares Planning node that serves as the top level of the planning tree. From this node, you can create subnodes that you can populate with organizations and subinventories.

Spares Management enables you to create separate subinventories to handle usable and defective parts. Typically, each field technician is assigned at least one subinventory for each condition. Warehouses, through their subinventories, can also be modeled as
usable or defective.

Note: In Spares Management warehouses are modeled as inventory organizations and technicians are modeled as subinventories. Repair suppliers are modeled as inventory organizations.

After a planning tree is created, you can use point-and-click functionality to plan, replenish, and view inventories for organizations and subinventories. You can also view inventory status at the node level in the planning tree, which is a summary of the warehouses and technicians that appear under the node.

You can search the planning tree by using the Find function. The tree automatically expands to display the appropriate node, resource, or region. The following parameters are available for search criteria:

- Resource type
- Resource name
- Region name
- Node name

You can also use the Find function to search the Parts Status tab when that tab is active.

When you set up your planning tree, each subinventory that you create requires that you enter the condition in the Planning Parameters tab of the Planner’s Desktop. Planning parameters set at a higher-level node propagate downward through the tree, unless you override the parameters at a lower level. Parameters set at the subinventory or organization level override parameters set higher in the tree structure.

For the steps detailing the process to create the planning tree, see Creating the Planning Tree., page 2-4

Managing the Planning Tree

Spares Management provides a mechanism for updating the planning tree, including adding subinventories to the tree, moving subinventories from node to node, or deleting subinventories from a node.

For the steps detailing the process to manage subinventories, see Managing Planning Tree Subinventories, page 2-6.

You can also launch the following concurrent programs from the planning tree:

- Create Min-Max Planning Report
- Create Excess Lists or Defective Lists
- Create Parts Availability Data
• Generate ASL Recommendations

• Calculate Failure Rates

• Roll-up Usage

Creating the Planning Tree

You can create warehouses and subinventories under each node as necessary to meet your business needs. Each sub-node can contain subinventories, warehouses, or a combination of both. You can also create new nodes beneath an existing node on your tree.

Follow these steps to create a planning tree:

Tip: Create a tree structure that enables you to set planning parameters at the highest level possible. This enables you to manage a large field service operation without setting parameters for every field technician and warehouse in your operation.

Prerequisites

✓ Define organizations and subinventories in Oracle Inventory.

Note: Warehouses are modeled as inventory organizations.
Technicians are modeled as subinventories.

Steps:

Adding a Planning Node

2. To set Planning Parameters at the top level for your planning tree, select the Spares Planning top node. The parameters include:

• Forecast Rule

• Excess Parts Rule

• Recommendation Rule

• Service Level and EDQ Factor

• Authorized for ASL
• Use Safety Stock
• Condition
• Planner
• Exclude Category Set
• Exclude Category

3. To create your first node, from the Navigator, select and then right-click the Spares Planning node.

4. From the right-click menu, select Add Planning Node. The Planning Parameters tab refreshes.

5. In the Planning Node field, enter the name of the planning node that you are creating.

 Tip: Use a naming convention that makes it easy to distinguish from one node to the next.

 In the Planning Parameters area, default values appear (if any) along with the source node name of the default values.

6. Click Save.

 The new node appears under the Spares Planning node in the navigator tree.

Adding a Technician

7. Right-click the node that you created. Select Add Subinventory from the right-click menu.

8. Select the organization from the list of values to which the added subinventory belongs.

9. Select the subinventory that you want to add from the list of values.

10. In the Planning Parameters tab, select the Condition for this subinventory. This is a required field. A subinventory can either be for "usable" parts or "defective" parts. A green check mark next to the subinventory name indicates usable parts subinventories on the planning tree. Defective subinventories have a red X next to the subinventory name.

 Note: Default values for the other parameters come from either the
Spares Planning node, or the node that you just created. Parameters set at the subinventory level override those set higher in the planning tree structure.

11. Click Save to save this subinventory to the planning tree. Alternatively, you can add multiple subinventories to the tree from a particular organization. See Managing Planning Tree Subinventories, page 2-6.

Adding a Warehouse

12. To add a warehouse to a node, right-click the node, and then select Add Warehouse from the right-click menu.

13. Select the organization that you want to add to the node from the list of values. Warehouses are set up as a inventory organizations in Oracle Inventory.

14. Enter the Warehouse Parameters for the warehouse.

 For more information on warehouse notifications, see Create Warehouse Notifications, page 2-28.

 Note: You can use warehouses in Spares Management for either usable or defective parts. A warehouse is defined as defective through the condition of the subinventories created for the warehouse. Use Spares Management Loops functionality to assign subinventories to the loop and define condition as Defective for the defective warehouse.

15. Click Save to save this warehouse to the planning tree.

Managing Planning Tree Subinventories

Field service operations may require frequent maintenance to the tree structure as business needs and organization structures change. For example, if an organization restructures its territories there may be a need to move subinventories from one planning tree node to another, while others need to be added or deleted. Spares Management provides a subinventory management user interface to enable this maintenance.

To maintain the planning tree, see the following procedures:

- Adding Multiple Subinventories, page 2-7
- Moving Subinventories, page 2-8
Adding Multiple Subinventories

To add multiple subinventories to the planning tree, follow these steps:

Prerequisites

- Define organizations and subinventories in Oracle Inventory.
- Create a planning tree in the Planner's Desktop.

Steps:
 The Planner's Desktop window appears.

2. Expand the Spares Planning node on the planning tree navigator. Right-click the node to which you want to add the subinventories, and then select Manage Subinventories from the right-click menu.
 The Manage Subinventories window appears. The node that you right-clicked appears in the Node Name field.
 Tip: If you want the Manage Subinventories window to remain open after you perform a process, select the Keep Window check box.

3. Select the Add radio button.

4. In the Organization field, select the organization from which you want to add the subinventories to the tree.

5. Click Find.
 The Selection Lists table populates with the available subinventories.

6. Select the subinventory that you want to add by clicking the appropriate line. To select multiple subinventories, hold down the <Ctrl> key, and then click each subinventory that you want to add.

7. Select the Condition type for the subinventories.
 The options are Usable or Defective.

8. Click Add.
9. On the confirmation popup window, click OK.

Moving Subinventories

To move subinventories from one node to another on the planning tree, follow these steps:

Steps:
1. From the Planner’s Desktop, right-click the node that you want to move existing subinventories from, and then select Manage Subinventories from the right-click menu.

The Manage Subinventories window appears with the name of the selected node appearing in the Node Name field.

2. Select the Move radio button.

This changes the label of the field located near the bottom of the window from Condition to Move To.

3. From the list of values in the Move To field select the node into which you want to move the selected subinventories.

4. In the Selection Lists table, select the subinventories that you want to move from one node to another.

5. Click Move.

6. On the confirmation popup window, click OK.

Deleting Subinventories

To delete one or more subinventories from a node, follow these steps.

Steps:
1. From the Planner Desktop, right-click the node from which you want to delete subinventories, and then choose Manage Subinventories from the right-click menu.

The Manage Subinventories window appears with the name of the selected node appearing in the Node Name field.

2. Select the Delete radio button.

3. In the Selection Lists table, select the subinventories that you want to delete from the node.
4. Click Delete.

5. On the confirmation popup window, click OK.

Creating and Making Planning Recommendations

Planner’s Desktop functionality is designed to handle inventory planning scenarios unique to field service operations. You can create min-max recommendations to define stocking levels for both the field service warehouse and field technician trunk stock. Customer service agreements often require the deployment of parts inventories in numerous locations close to the point of use. Spares Management planning defines which parts to be stocked, where, and in what quantities.

This planning process produces an Authorized Stock List (ASL), which you can update automatically through Oracle Spares Management recommendation functionality. Authorized Stock List functionality includes recommendations for warehouse and technician trunk stock, and flexible planning parameters designed to handle planning scenarios unique to field service.

For example, a technician working in a stable situation, would likely have plenty of usage history that could be used for planning. A recently hired technician would not have any usage history and would require a planning method that does not require this. The usage history for a transferred technician might not apply in the new service territory where the work could be different.

This section covers these min-max stock level planning methods:

- Personal Usage, see Setting Up Personal Usage Planning Method, page 2-10
- Modified Personal Usage, see Using Personal Usage Planning Method Modified by Population, page 2-12
- Territory Norm, see Setting Up Territory Norm Planning Method, page 2-13
- Product Norm, see Setting Up Product Norm Planning Method, page 2-15
- Blended Method, see Setting Up Blended Planning Methods, page 2-18

For the technician working consistently in a relatively stable situation, Oracle Spares Management provides a planning method to make inventory recommendations based on the personal usage data of the technician. The technician’s inventory is planned based on what the technician has been using.

The personal usage method is less effective for new or transferred technicians because these technicians’ usage history is either insufficient or not applicable to the new service territory. In these cases, Oracle Spares Management provides other methods to make recommendations:

- Territory Norm, which uses averages for all technicians in the technician’s group
• Product Norm, which uses failure rates and product populations

• A blended combination of methods.

Other functions related to planning are covered in these procedures:

• Defining Business Rules to Automate Changes to Min-Max Recommendations, page 2-19

• Generating Stock List Recommendations, page 2-21

• Adding or Modifying an Authorized Stock List, page 2-22

• Setting Up Part Supersession, page 2-26

Setting Up Personal Usage Planning Method

Personal usage is a planning method that uses the history of usage transactions associated with a technician or warehouse for planning. This method is used in the scenario where the technician or warehouse is in a relatively stable situation. The technician would be planned based on the recent usage activity of that technician. The warehouse would be planned based on the aggregate summary of all usage transactions tiering into the warehouse, plus any usage transactions recorded directly against that warehouse.

The key drivers for this method are the Forecast Rule, Service Level, and Economic Delivery Quantity (EDQ).

You can set up the Planning Method, as well as other Planning Parameters at any level in the planning tree. All lower nodes use this method as the default unless you manually override the method with a different planning method at that node.

The Defaulted From column of the Planning Parameters tab lists the node where the existing default values are set. If you want to allow lower level nodes to override any of these parameters, select the Override check box next to this parameter. By default, the Override check box is selected for all fields.

Follow these steps to set up a personal usage recommendation method:

Prerequisites

☑ Define organizations and subinventories in Oracle Inventory.

☑ Set up a forecast rule.

☑ Create usage transactions either in the debrief process, or by using the transaction type: Field Service Usage in Oracle Inventory.
Steps:

2. Expand the Planner’s Tree. Select the node, warehouse or technician for which you want to set the recommendations.

 - Forecast Method: Four alternative methods for calculating the forecast are available:

 - Simple average

 - Weighted average

 - Single exponential smoothing

 - Trend enhanced

 - Period Size: Determines the length in days of the period used for the forecast and history used to create the forecast.

 - Forecast Periods: Defines how many periods you want the forecast to project into the future.

 - History Periods: Defines the number of most recent periods of history to use in the forecast calculations.

 - Transaction Types: Determines the type of transaction to be used. Normally this would be Field Service Usage for the technician and warehouse.

3. In the Planning Parameters tab, select the Forecast Rule from the list of values.

4. Enter a service level for the recommendation.

 The service level represents the percent of time that you want the technician or warehouse to have the parts on hand when needed. This is used to determine safety stock. Safety stock is used to calculate min level where:

 \[\text{Min} = \text{Reorder Point} = \text{Forecasted usage during lead time} + \text{Safety Stock} \]

 The Service Level can be any number between 1 and 100, but is typically set in the range of 75 - 90 for field service technicians and warehouses.

5. Enter the Economic Delivery Quantity (EDQ) Factor.

 The EDQ Factor is a combination of carrying cost and ordering cost in the lot-sizing formula.

 The EDQ is used to calculate the max level, where:
Max = Min + EDQ

Tip: Typically, an EDQ Factor in the range of 5 - 15 will produce desired results.

6. In the Site Attributes tab, select the Stocking Type from the list of values.

7. Enter a date for Site Expiration value in the Calendar field.

8. To create a stock list for the technician or warehouse, select Yes in the Authorized ASL field.

 A No in the field enables the ASL recommendations to be created for viewing only. This parameter is used to prevent an ASL from being implemented for a technician or warehouse (such as for a, new technician who isn’t ready to receive the first replenishment shipment).

9. If you want to include Safety Stock in your recommendation calculations, select Yes in the Use Safety Stock field.

 Tip: Safety Stock is normally recommended for planning warehouses, but not always for technicians.

10. (Optional) Select the name of the planner responsible for the node.

11. If you want to exclude a particular category or category set from being considered in recommendations, select the category or set from the list of values in the Category or Set fields.

12. In the Planning Method field of the Planning Method tab, Select Personal Usage from the list of values.

13. Save your work.

Using Personal Usage Planning Method Modified by Population Change

You can extend the Personal Usage planning method with product population changes. This approach is used to handle new product introductions or significant changes to existing product populations where the new or changing population, either up or down, can have a significant impact on part usage patterns. This method is primarily used to plan a warehouse for major changes in population, but you can also use this method for the technician if a major population change has impact.

For example, a technician routinely uses 10 parts per week of a specific part. That quantity is appropriate as long as the product population of the products supported by
the technician using the part remains relatively constant. When there is a significant population change, such as by gaining or losing customer’s contracts, then the technician’s stocking level should be replanned to reflect that gain or loss of population supported.

Oracle Spares Management applies the failure rate to the population change to calculate the change in usage. The usage average is adjusted up or down depending on the magnitude of the population change and failure rate for the part.

For details on setting up and using failure rates, see Setting Up Product Norm Planning Methods, page 2-15.

To set up a Personal Usage method that is modified by part population change, follow these steps:

Prerequisites

- Set up and calculate failure rates for the product or enter failure rates manually for a product.

 Note: You must calculate failure rates at a higher node in the tree than the warehouse or technician where you plan to employ them in combination with personal usage planning.

Steps:

1. From the Planner’s Desktop, select the subinventory or organization that you are planning and select Personal Usage in the Planning Methods sub tab in the Planning Parameters tab.

2. Open the Failure Rates tab.

3. In the Product field, select the item for which you want to consider the population change.

4. Enter the Population Change, either a positive or a negative number, in the Population Change field.

5. Save your work.

Setting Up Territory Norm Planning Methods

This method is used in the scenario that involves a new technician or a transferred technician from another territory. You can also use this method to replan the inventory of a technician who has been out of a normal technician work routine for a period of time (for example, for training or a leave of absence). During this period, the
technician's usage history would understate normal activity, and as a result would not be a good basis for planning the technician's stocking level.

Territory Norm calculates average or typical usage for the planning tree node to which the technician is assigned.

By calculating the average usage of all the technicians in a given group over a period of time, you can define min-max recommendations that represent what is typical or average for a technician in the group.

Tip: After a technician has worked long enough to create a stable personal usage history, switch to that method. Also, when using Territory Norm, it is important that the technicians in the group for which the Territory Norm is being used are doing similar work on a regular basis. If everyone is doing unique work by product or skill, for example, then Territory Norm would obviously not work well for that group.

Note: The Territory Norm method is not used for planning a warehouse.

Example:

There are 100 technicians currently in the territory. Part A has usage equal to 2000, summarized for all technicians assigned to the node for the recent 10-week period. The territory norm usage for Part A would be:

\[
\frac{2000 \text{ units}}{100 \text{ technicians} \times 10 \text{ weeks}} = 2.0 \text{ units per technician per week on average across all technicians.}
\]

Using the territory norm method, recommended Part A min-max levels for the technician are based on the average usage of 2.0 units per week. Assumed in this example is that all technicians have been working in the territory for the entire 10 week period. If this is not the case, technician-weeks would be accumulated based on the actual number of weeks each technician had been assigned to the node during the defined period.

Follow these steps to set up a territory norm recommendation method:

Prerequisites

- Define organizations and subinventories in Oracle Inventory.
- Set up a Forecast Rule.
- Create usage transactions either in the debrief process, or by using the transaction type: Field Service Usage in Oracle Inventory.
Steps:

2. Expand the Planner’s Tree, and then select the technician for which you want to set the min-max recommendation.
3. In the Planning Parameters tab, select the forecast rule from the list of values.
4. Leave the Service Level field blank; this field is not used in the recommendations when Territory Norm is used.
5. Enter the Economic Delivery Quantity (EDQ) Factor.
6. To make this method available for your authorized stock list recommendations, select Yes in the Authorized for ASL field.
7. Ensure that the Use Safety Stock field is set to Null. Safety Stock is not used in the Territory Norm method.
8. (Optional) Select the name of the planner responsible for the node.
9. If you want to exclude a particular category set from being considered in recommendation parameters, select the set from the list of values at the Exclude Category Set field.
10. In the Recommendation Method field, select Territory Norm from the list of values.
11. Save your work.

Important: Check the node that the technician is attached to in the planning tree and make sure that a Forecast Rule is entered for that node. The history periods in the Forecast Rule for that node are used to determine the number of technician weeks that fall within the history period. The number of technician weeks is used to calculate average weekly usage for the Territory Norm planning method.

Setting Up Product Norm Planning Method

Product Norm is a planning method that uses product populations and failure rates to plan the min-max levels for the warehouse or technician. The product norm typically is used when a new product is being introduced or when the population of an existing product is being increased, decreased, or extended into a new area.

When using the Product Norm, failure rates are calculated or entered manually at a
higher-level node, such as a territory, region, or theater and used on a lower-level node, such as a warehouse or technician.

Tip: Calculating the failure rates at a higher-level node increases the product population and tends to increase the accuracy of the calculated failure rates.

Failure rates are calculated from product population and usage transactions collected from the field service debrief process where the product indicated on the service request is known. Failure rates in Oracle Spares Management are expressed in terms of usage per product per week. You can calculate failure rates where usage experience is available and population is known or entered manually.

You can use the failure rates along with the anticipated product population to determine expected usage for the technician or warehouse. The population can either be expressed as a new population or as a change to an existing product population.

Follow these steps to create a Product Norm recommendation:

Prerequisites

❒ Calculate or enter failure rates at a higher node level, and then set up the Product Norm planning method at the warehouse or technician level.

❒ Define organizations and subinventories in Oracle Inventory.

❒ Set up a Forecast Rule.

❒ Create usage transactions in the debrief process, or by using the transaction type: Field Service Usage in Oracle Inventory.

Steps:

Define Failure Rates

2. Click the node in the planning tree where you want to define failure rates, and then select the Calculate Failure Rates check box in the Planning Parameters tab.

Note: You must also define a Forecast Rule in the Planning Parameters tab of the planning tree node where the failure rates are to be defined. Use the history periods in the Forecast Rule to define the amount of history that you will use to calculate the failure rates.

As a best practice, you should calculate failure rates at the highest feasible level.
3. Click the Failure Rates tab. From the list of values in the Product field, select the product for which you want to create failure rates.

4. Enter the Current Population of the product for which you are creating failure rates. Enter failure rates directly in the lower Failure Rates tab by entering Item and Failure Rate.

5. Save your work.

6. To calculate failure rates, select and then right-click the node on the planning tree where you entered your product and population information.

7. From the right-click menu of the node in the planning tree where you are calculating failure rates, select the Calculate Failure Rates concurrent program.

 A concurrent request ID number appears in a popup window. This concurrent request updates the failure rates for your product and parts. You can override the calculated failure rates by entering a value manually. For example, manually enter the failure rate if the manufacturer has published the failure rate for a part.

8. (Optional) To check whether the concurrent program ran successfully, go to View > Requests, and then look up the request ID number of the request that you want to view.

 Note: After the concurrent program runs, you can view the calculated failure rates in the lower Failure Rates tab.

Use Failure Rates in Setting Min-Max Levels

9. Expand the planning tree and select the node for which you want to use those failure rates in Product Norm min-max recommendations.

 Note: You must calculate or enter failure rates at a higher node in the tree than the warehouse or technician where you plan to employ them.

10. In the Recommendation Parameters section of the Planning Parameters tab, select the forecast rule from the list of values.

11. Leave the Service Level field null; the product norm method does not use this field.

12. Enter the Economic Delivery Quantity (EDQ) Factor.

13. To create a stock list, select Yes in the Authorized for ASL field.

14. Verify that the Use Safety Stock field is set to Null. The product norm method does
not use Safety Stock.

15. (Optional) Select the name of the planner responsible for the node.

16. If you want to exclude a particular category set from being considered in recommendation parameters, select the set from the list of values in the Exclude Category Set field.

17. In the Recommendation Method field, select Product Norm from the list of values.

18. In the Failure Rates tab for the subinventory or warehouse being planned, enter the product and population to use in the Product Norm planning.

19. Save your work.

 Note: The failure rates automatically populate into the lower Failure Rates tab for the node that you are planning. Those failure rates come from the first node higher in the tree where the Calculate Failure Rates check box is selected, the same product is entered, and failure rates are entered or calculated.

Setting Up Blended Planning Methods

Oracle Spares Management functionality enables you to set up blended planning methods for determining stock list recommendations. This method combines the Personal Usage method with either the Product Norm or the Territory Norm, according to assigned weights.

You can use Territory Norm in combination with Personal Usage in the scenario where a technician has been off the normal field service routine for a period of time due to training or special assignment. In this situation, the recent usage history would be understated due to the absence from normal technician tasks and usage reporting routines. Personal Usage, which is understated, would be used and supplemented with Territory Norm.

To set up a blended recommendation method, follow the steps:

Steps:
1. From the Planning method tab within the Planning Parameters, select one of the following:
 - Personal Usage and Product Norm
 - Personal Usage and Territory Norm
Assigning a Weight

Note: Steps 2-5 are mutually exclusive. Depending upon the usage during a given period, Spares Management functionality uses one of the four parameters to determine the Stock List recommendations.

2. Enter a decimal fraction in the Personal Usage > Norm field. This is the proportion that you want for personal usage when personal usage is greater than either the territory or product norm selected.

3. Enter a decimal fraction in the Personal Usage < Norm field. This is the proportion that you want for personal usage when personal usage is less than either the territory or product norm selected.

4. Enter a decimal fraction in the Personal Usage = Zero field. This is the proportion that you want for personal usage when personal usage is equal to zero.

5. Enter a decimal fraction in the Norm = Zero field. This is the proportion that you want for personal usage when territory or product norm is equal to zero.

6. Save your work.

Setting Up Business Rules for Automated Min-Max Recommendations

In field service operations where planners have many stocking level recommendations to review and implement, it makes sense to automate routine recommendations. This functionality reduces planning and technician costs and frees the planner to focus on high-impact planning situations.

You can create business rules that automate this process based on recommendation value, quantity change, and magnitude of the cumulative forecast error. Rules are defined by providing values for the following parameters:

- Value change and percentage
- Quantity change and percentage
- Tracking signal minimum and maximum levels for tracking forecast errors

You can set values for as many or as few of the parameters as you want. But for the automated process to be activated, all the parameters that have been set must be met. To meet the automation condition, in the cases of value change and percentage, quantity change and percentage, and tracking signal maximum, the actual value must be less than the value of the parameter. For the tracking signal minimum parameter, the actual value must be greater than the parameter value.

Use the following procedure to define business rules for automated minimum and
maximum recommendations.

2. From the Business Rules window, select the Recommendation Rules tab.

3. Enter the Name of the Recommendation rule.

4. (Optional) Enter a description.

Value Changes

5. Enter a number in the Value Change field.

 The value change represents the difference between the current maximum value and the maximum recommendation value.

6. Enter a number in the Value Change % field.

 The value change percentage represents the difference between the current maximum value and the maximum recommendation value expressed as a percentage of the current maximum.

Quantity Changes

7. Enter a number in the Quantity Change field.

 The quantity change value represents the difference between the current max value and the max recommendation value.

8. Enter a number for the Quantity Change % field.

 The quantity change percentage value represents the difference between the current max value and the max recommendation value expressed as a percentage of the current max.

Tracking Signal

You use tracking signal minimum and maximum levels for tracking forecast errors.

9. Enter a Tracking Signal Minimum value.

 This value is a negative value that measures the forecast error when actual usage on a cumulative basis is running less than what was forecast.

10. Enter a Tracking Signal Maximum value.

 This value is a positive value that measures the forecast error when actual usage on a cumulative basis is running more than what was forecast.

11. Save your work.
Generating Stock List Recommendations

Once you have set up planning parameters for your field service operation, you can create recommendations by running a concurrent program. You can be review and accept, reject, or modify the recommendation.

When you review recommendations in the Recommendations tab, the following values appear in the table to facilitate the planner review:

- Delta Cost between current max and recommended max
- Actual cost of current maximum
- Actual cost of recommended max
- Delta quantity between current minimum and recommended minimum
- Delta quantity between current maximum and recommended maximum

You can view usage history and forecast in the lower tabs.

Note: The table in the Recommendations tab can be sorted by any of the columns that appear. Sorting is useful to prioritize the review process.

Follow these steps to generate min-max recommendations:

Prerequisites

- Specify Planning Parameters.

Steps:

2. In the Spares Planning Tree, right-click the node, warehouse, or subinventory for which you want to make ASL recommendations.

3. If there has been a usage change, run the Create Usage For Recommendations and the Create ASL Recommendations concurrent programs.

 In the Create ASL Recommendation parameters window, enter the planning node for which you want to create recommendations. A popup window displays the concurrent request ID number.

 If the tree structure has changed, also run the Create Usage Rollup concurrent program. If you must consider supersession activity, run the Process Superseded Items concurrent program.
4. View the requests (View > Requests) to verify that the concurrent program ran successfully.

5. Right-click the same node, warehouse, and subinventory, and then select the **Generate ASL Recommendations** concurrent program from the right-click menu.
 A popup window displays the concurrent request ID number.

6. Select the Recommendation tab, and then review the recommendation values that appear in the table.

 Note: If you are using the automated feature, recommendations will not appear in the table. They are automatically accepted and implemented.

7. To accept a recommendation in the Authorized Stock List, select the recommendation, and then click Accept.
 The recommendation moves from this table to the Stock List tab table. Accepted recommendations automatically update the Oracle Inventory table for min-max values. The recommendations become the current min-max levels used when replenishing parts for a warehouse or technician.

8. To reject a recommendation, select the recommendation, and then click the Reject button.
 The recommendation is removed from the table.

9. To manually override a stock list recommendation, select the recommendation, and then click the Stock List tab.

10. Enter the values that you want to recommend for the stock list in the Minimum Quantity and Maximum Quantity fields.

11. Click Accept to save the new values.

Adding or Modifying an Authorized Stock List

The Stock List tab shows the existing stock list for the technician or warehouse. The stock list, by definition, displays those parts that have a min-max greater than zero. You can sort the Stock List tab by any of the columns that appear. This is useful if you want to view the stock list using different sorting parameters such as Item, Minimum Quantity, Maximum, and Quantity. You can also view details about the part through the Usage, Forecast, and Parts Status tabs.

You can modify a line in the stock list, add a part to the stock list, delete a part from the stock list, accept or reject multiple Authorized Stock List recommendations, and copy
the stock list to another subinventory.

Steps:

 The Planner’s Desktop appears.

2. From the planning tree, select the warehouse or technician and select the Stock List tab.
 The Stock List tab opens and displays the existing stock list for the warehouse or technician.

Modifying a Line in the Stock List

3. Select the line that you want to modify in the upper Stock List tab.

4. Enter the new values in the lower Stock List tab.
 The fields you can modify include Min Quantity, Min Order, Max Quantity, Max Order, Source Type, Organization, and Subinventory.

5. Save your work.

Adding a Part to the Stock List

6. To add a part to the stock list, click the Add button in the upper Stock List tab.
 The lower Stock List tab is refreshed and the fields are blank.

7. In the Item field, select the part that you want to add from the list of values.
 The default values for Unit of Measure and Cost fields automatically appear.

8. Enter the min - max values that you want to set for the part that you are adding.

9. (Optional) Select a Source Type. If you select a Source Type of Inventory, you must select the Organization.
 If the stock list was manually created, you can enter a reason for the manual override.
 This reason appears in the Reason Code field.

10. (Optional) Enter a value in the Fixed Lot Multiple field.
 If there is a specific number of parts that are typically shipped in a package, such as 12 parts per box, enter that number here. Replenishment orders round to the closest multiple of your Fixed Lot Multiple figure.

11. Save your work.
Deleting a Part from the Stock List

12. You can delete a min-max recommendation from the Stock List tab. Select the line to be deleted.

13. Click the Delete button.

Copying a Part from One Stock List to Another

14. You can also copy a stock list from one subinventory to another. Select the lines in the stock list. Click Copy.

15. Select the subinventory to which you want to copy the stock list line to.

Supersession

Supersession represents a supplier- or engineering-driven situation where one part has been replaced by another part. The supplier typically notifies the customer that a part has been replaced and is no longer available. For example, if the technician orders Part A, which is superseded by Part B, and Part A is no longer available, then Part B is supplied automatically. All new orders should be placed for the superseding part. In some cases, the supplier requests that existing orders convert to the superseding part. Oracle Spares Management incorporates supersessions in Authorized Stock List (ASL) recommendation functionality and Warehouse Notification functionality.

Additional information entered in supersession notes provides required information to process a technician order. See the Supersession and Substitution Notes, page 2-26 section for more information.

Whether inventory is still available for the part that has been replaced, and whether that inventory can be used based on the disposition parameter, determines where to position the min-max levels in the supply chain.

Depending upon the disposition of inventory on the part being superseded, Spares Management produces the min-max levels for the appropriate part, either the one being superseded, or the superseding part, depending on the inventory level in the supply chain.

To use on-hand inventory of the superseded part, the min-max levels are positioned on the superseded part until the inventory is exhausted in the supply chain. This will drive parts out to the technicians where the parts can be used and the inventory depleted. If the reasons for superseding the part include safety issues, scrapping the part is generally preferable to using the parts to depletion.

There are two disposition values: Scrap and Use to Depletion. A disposition value of Scrap indicates that inventory on the lower level part cannot be used at all and should be scrapped. This disposition causes the min-max levels to move to the superseding part as soon as the supersession is entered. The Use to Depletion disposition value indicates that inventory for the lower level part can and should be used to depletion.
wherever possible. This disposition causes the min-max levels to transfer to the superseding part when the inventory is exhausted.

Supersession Example:
To illustrate this latter scenario, consider a supersession where Part A is replaced by Part B and the on-hand quantity for Part A at the central warehouse is 500 at the time the supersession is entered. The central warehouse also has a minimum level of 50. In this scenario, Oracle Spares Management recognizes the need to use the 500 pieces of inventory under the Use to Depletion disposition option. The min-max levels for the technicians stay at Part A until the inventory at the central warehouse drops below the reorder point (ROP) or the minimum level. This drives the parts out to the technicians where usage occurs and inventory is depleted.

During the transition, while the inventory of Part A is being depleted, min-max levels are planned for Part B if there is usage history for Part B. When the central warehouse inventory drops below the minimum level, the technician min-max levels shift to Part B and are calculated based on the combined usage for both Part A and Part B. Min-max levels for the central warehouse shift to Part B when the supersession is entered, and min-max values are calculated based on the combined usage for both Part A and Part B.

Similarly, planning warehouse stocking levels are designed to enable warehouses to deplete the inventory of superseded parts.

The central warehouse is always positioned at the top of the supply chain and, as such, min-max levels are also positioned at the top part in the supersession chain. Because supersessions are a supplier-driven business scenario, the central warehouse automatically switches its min-max recommendation to the superseding part because the central warehouse will no longer be receiving any inventory for the superseded part.

For an intermediate warehouse, min-max levels are coordinated with the disposition parameters and supply chain inventories. This coordination enables the intermediate warehouse to deplete any leftover inventory of the superseded part. If the disposition of a superseded part is set to Use to Depletion, then an intermediate warehouse can position the min-max level at the superseded part until the inventory is depleted. Once depleted, the min-max level switches positions to the superseding part.

The repair to value defines the highest level in the supersession chain to which the lower level part can be repaired. Ideally, the lower level part repairs to the top part in the supersession chain. But this is not always technically or economically possible. For example, let’s say Part A has been superseded by Part B, but Part A cannot be repaired to Part B. In this scenario, the Repair-to part for Part A is Part A.

The Reciprocal values works with the Repair to value. Options for the Reciprocal value are Bilateral or Unilateral.

Bilateral is the scenario where an order for Part B (the higher level part), can be filled by either Part A or Part B. In the Unilateral scenario, only Part B can fill an order for Part B. The lower level Part A cannot be used to fill an order for Part B. An order for Part A can always be filled with Part A, unless the disposition value is set to Scrap.
In this way, Oracle Spares Management supersession functionality enables a field service operation to support supersessions and minimize obsolescence at the same time.

See also, Setting Up Part Supersession and Supersession Notes, page 2-26.

Setting Up Part Supersession and Supersession Notes

Supersession Notes and Substitution Notes

Supersession notes are used to identify additional parts required in complex supersessions. These notes are also used to indicate product restrictions and process a technician order.

Substitutions are used to fulfill the short-term shortages. Substitutes are standalone parts that are compatible with respect to form, fit and function. Substitutes are defined on the Item Relationships window in the Oracle Inventory. Refer to the Defining Item Relationships section of the *Oracle Inventory User’s Guide* for more information.

You enter or update a supersession notes or substitution notes in the Supersessions page. These notes are displayed in the Parts Search and Ordering results page as an attachment when supersession or a substitute is required for a technician order. See Parts Search and Ordering, page 1-1section for more information.

To set up supersessions and supersession notes, use the following procedure:

Prerequisites

- Set up items in Inventory.
- Set up stocking site type in the Site Attributes tab of the Planner’s Desktop.
- Select an inventory organization in the Organizations window.

Steps:

 The Search Supersessions or Substitutes page appears.

2. Enter search criteria if you want to locate existing supersession or substitution relationships.

3. To set up a new supersession or substitute, in the Search Supersessions or Substitutes page click the Create Supersession or Substitute button. Select the part that is being replaced from the list of values in the Replaced Item field.

4. Select the item that you want to supersede the replaced item with from the list of values in the Replaced Item field.
5. Select a Reciprocal value for the supersession.
 Options include: Bilateral or Unilateral.
 Bilateral is the scenario where an order for Part B (the higher level part), can be filled by either Part A or Part B. In the Unilateral scenario, only Part B can fill an order for Part B. The lower level Part A cannot be used to fill an order for Part B. An order for Part A can always be filled with Part A, unless the disposition value is set to Scrap.

6. Select a Disposition code for the superseded item. This value defines how the disposition of inventory must be handled on the lower level part.
 Options include: Use to Depletion or Scrap.

7. (Optional) Enter start and end dates for the supersession.

8. On the Search Supersessions or Substitutes page click the Attachments icon. The Add Attachments page appears.

 Note: Oracle E-Business Suite Attachments functionality enables you to set up the supersession notes or a substitute as an attachment.

9. The Seq (Sequence) number is assigned automatically for an attachment. For example 10.

10. Select a Category from the list of values. The Category defines the purpose of an attachment. Options include: Miscellaneous, Supersessions or Substitutes.

11. Enter Title for an attachment.

12. Enter Description for an attachment.
 Refer to the Attachments section in the Oracle E-Business Suite User’s Guide to know how to set up attachments.

13. Click the Apply button.

14. Close the Add Attachments page to return to the Search Supersessions or Substitutes page.

 Note: The paper clip icon is updated with an attachment icon

15. Update the start and end dates of a supersession or substitute, by using the Update icon in the Actions column.
Create Warehouse Notifications

Warehouse notifications are designed for the more complex replenishment planning encountered where excess utilization, repair, and new-buy recommendations must be incorporated into an integrated approach to warehouse replenishment planning. While this functionality is typically used at the central warehouse, it can be used at any warehouse in the supply chain where inventories of excess or repair parts must be considered in the warehouse replenishment planning process.

The notifications process provides for a utilization approach, where replenishment need at the warehouse is satisfied first from excess inventory at other specifically designated warehouses, second from repaired defectives, and finally, from new purchases and internal orders.

To use notifications that incorporate excess and defective stock at a warehouse, you must have an authorized stock level (ASL) for the warehouse, and associate an assignment set for either the usable or the defective parts to the warehouse. The assignment set uses sourcing rules from Oracle Purchasing to define those warehouses you want to consider for excess and repaired parts.

Once configured, you create warehouse notification results by running a concurrent program that identifies parts replenishment needs in the warehouse, searches the supply chain for existing excess and defective parts, and returns results that a planner can review. You can then run a replenishment strategy that best fits your business needs.

The planner has the option to fill the replenishment need by using existing excess stock, using repaired parts, ordering new parts, or using any combination of these.

Spares Management also provides a facility whereby a planner can create business rules that enable you to automate notifications that meet the business rule criteria. The automation is designed to focus on the situation where the notification value is low, the forecast is reasonably accurate, and the excess and repair to consider is relatively low.

Note: You can use notifications only for warehouses, not for field technicians.

Setting Up and Creating Warehouse Notifications

Use the following procedure to set up and create warehouse notifications:

Prerequisites

☐ An Authorized Stock List must exist for the warehouse.
If you are considering excess and defective parts, assignment sets must be set up.

Steps:
2. Expand the planning tree in the Planner's Desktop. Select the warehouse that you want to set up for notifications.
3. Select the Warehouse Parameters tab.
4. (Optional) Enter an EDQ Multiple.
 The Economic Delivery Quantity (EDQ) is used to define order quantities. The EDQ multiple sets a limit to define excess on-order quantity.
5. In the Assignment Usable field, select the assignment set to define excess in the notification from the list of values.
 Assignment Sets define those warehouses in the supply chain that you want the notification to use when looking for excess parts. See the Oracle Purchasing Implementation Guide for details on setting up Assignment Sets and Sourcing Rules.
6. If you are using Spares Management's Depot Repair functionality, select a Depot Repair assignment set, which along with sourcing rules, defines the internal repair depot as a supplier for specific parts.
7. (Optional) Enter a Min Value.
 This is a minimum value for the excess on-order notification. A Min Value of 100, for example, would mean that a notification triggers only if the total value of the excess on-order notifications exceeds $100.
8. In the Assignment Defective field, select the assignment set to define defective inventories for repair for notifications.
 The Assignment Set, along with sourcing rules, defines defective warehouses for notifications.
9. If you are using business rules to automate notifications, select the rule that you want to apply to this warehouse from the Notification Rule list of values.
10. Save your work.
 At this point, you have configured your warehouse to allow notification functionality.
 To generate a notification, continue to the next step.
11. Run the Warehouse Notifications concurrent program.
Setting Up Business Rules to Automate Warehouse Notifications

Creating business rules to automate warehouse notifications is beneficial for the efficient use of the planners' time. Planners often must perform a large number of warehouse notifications, and the notification cycles must be processed frequently to insure timely replenishment.

These rules are set up to address notifications that have a low notification value, low excess and repair values, and a high forecast reliability as measured by the tracking signal. You can create automation rules for the following three new-buy notification types:

- **Internal Order**: This represents transfer orders between warehouses.
- **WIP Order**: This is used when manufacturing is required.
- **Requisition**: This is used when purchasing is required.

In each of the preceding cases, you can enter values for excess and repair recommendations, and the minimum and maximum tracking signal.

- **Excess**: This is the value of excess inventory that you can use to satisfy the notification.
- **Repair**: This is the value of defective inventory that, when repaired, you can use to satisfy the notification.
- **Notification**: This is the value of the notification recommendation.
- **Tracking Signal Minimum**: This measures the forecast error when actual usage on a cumulative basis is running less than forecast.
- **Tracking Signal Maximum**: This measures the forecast error when actual usage on a cumulative basis is running more than forecast.

For all parameters with the exception of the tracking signal minimum, if the actual value is less than the parameter value, the notification is triggered. In the case of the tracking signal minimum, if the cumulative variance is greater than the parameter value, the notification is triggered.

Note: You can set values for as many or as few of the parameters as you want. But for the automated process to be activated, all the parameters that have been set must be met.
You can set up only one notification rule for each warehouse. To set up automated notification rules, follow this procedure:

Steps:
2. From the Business Rules window, select the Notification Rules tab.
3. Enter the Name of the rule.
4. (Optional) Enter a Description.
5. For the Internal Order Line, enter an Excess Value number.
6. Enter a Repair Value.
7. Enter a Recommended Value.
8. Enter Tracking Signal minimum and maximum values.
9. Repeat steps 5 - 8 for Requisition and WIP Order lines.
10. Save your work.

Warehouse Replenishment Notifications

Notifications are used for warehouse replenishment and provide additional information about excess parts and defectives that, when repaired, you can use to satisfy the notification.

When you open the Notifications tab, a table displays notifications for those parts where the on-hand available and on-order has dropped below the minimum level for the part. Excess parts as defined by the usable assignment set appear in the Total Excess column. The quantity of defective parts, as defined in the defective assignment set, appear in the Total Repair column.

The Notification Quantity column displays the quantity needed to replenish the warehouse. When you select one of the notifications, the lower Notifications tab displays the breakdown of replenishment options available to fill the replenishment notification. If there are excess parts and defective parts available, multiple lines appear in the table. The planner can review this information, and then create a replenishment order based on what works best in this situation.

- Internal orders set up to use excess
- The total available in repair or the repair depot order
• The purchase requisition, WIP order, or internal order

Supersession

If a lower part in a supersession chain has defectives, those are rolled into the total defectives for the higher part. For example, if Part A has a repair to status of Part B, and there are eight defective Part A’s and 10 defective Part B’s, then the Part B notification will display a defective amount of 18 parts.

For more information on supersessions, see Supersessions, page 2-24.

A planner can replenish a part from this user interface by creating an internal order, if excess stock is used, or by creating a requisition for a purchase order, or by creating internal orders and repair orders to have the parts repaired at an internal depot.

See also Executing Warehouse Replenishment Notifications, page 2-32.

Performing Warehouse Replenishment Notifications

To perform warehouse replenishment using excess, external repair, and new buy parts, follow these steps:

Prerequisites

☐ Create an Authorized Stock List for the warehouse.

☐ If you are considering excess and defective parts, set up assignment sets.

Steps:

2. In the upper Notification tab, select the notification of the part that you want to review and perform.

 In the lower Notifications tab, the replenishment options are shown as orders that can be released for the Notification shown in the upper tab.

 • Excess order for excess use:
 • An internal order is created.

 • New buy orders:
 • An internal order is created when the source is another warehouse organization.
Note: You must set the Make/Buy parameter in Inventory to Buy.

- A purchase requisition is created when the source is an external supplier.
- A WIP order is created when the source is the same as the warehouse organization being replenished.

Note: You must set the Make/Buy parameter in Inventory to Make.

- External Repair Orders are shown for information only, but are not directly executable from the user interface.

Note: Internal Repair using Depot Repair integration is described in the next section.

3. Select a Source Type in the lower Notifications tab, and then enter the quantity for the excess, WIP, or new-buy order in the Order field.
 This quantity must be less than or equal to the value in the Available Quantity field.

4. To submit your request, click Order.
 This creates the appropriate order document to perform the process as noted previously: Internal Order, Purchase Requisition, or WIP Order.

Warehouse Replenishment Using Depot Repair

Oracle Spares Management provides a mechanism to handle the repair of defective parts through an internal depot using Oracle Depot Repair. Defective parts that are owned by the field service can be sent to the internal repair depot based on need or repaired and returned to the field service warehouse being replenished.

Process Flow

- A repair depot using Oracle Depot Repair software is positioned in the supply chain to repair defective parts. This repair depot is defined in sourcing rules where the internal repair operation is defined as a repair supplier.

- Field technicians recover defective parts at the customer site, which are then
transacted into the technicians’ defective subinventories.

- Technicians transfer the parts into a defective warehouse for consolidation. The consolidated defectives are integrated into the warehouse replenishment planning, presenting the planner with a notification when defective parts must be repaired at the internal depot for replenishment to the warehouse being planned.

- When the notification is approved, the defective parts are shipped to the repair depot on an internal order, repaired by the repair depot on a repair order, and shipped to the field service warehouse on a second internal order.

To use Oracle Depot Repair functionality to repair parts based on a Warehouse Notification follow this procedure.

Prerequisites

- Install Oracle Depot Repair and Oracle Order Management.
- Provide an assignment set value for the Depot Repair Suppliers field for the warehouse that is integrated with Depot Repair.
- Define the internal depot as an organization, along with a sourcing rule that defines an internal depot.

Steps:

2. In the planning tree, click the warehouse for which you want to view notifications.

3. Select the Notifications tab. This action displays all notifications related to the selected warehouse.

4. From the upper Notifications tab, select a notification that has a Depot Repair Source Type.

5. Select the Depot Repair Source Type in the lower Notifications tab, and enter the quantity for the repair order (if it is different than the quantity available).

6. Click Order.

 The following documents are automatically created:

 - Internal order to ship the defectives to the internal depot

 - Repair order for the depot
• Internal order for shipping the repaired parts back to the field service warehouse from the repair depot

Note: Spares Management enables you to create a depot repair order from the Parts Status tab on the Planner’s Desktop to repair parts without a Warehouse Notification for replenishment.

Viewing Parts Status and Order Detail

Within the Planner’s Desktop, you can view parts status and detail information about an order.

Parts Status

The Parts Status tab displays status information at the warehouse, subinventory, or node selected in the planning tree. A table displays such information as part number, usable on-hand, defective on-hand, parts in transit, requisitions, purchase orders, and so on.

On the bottom panel of the Parts Status tab, there are several sub-tabs:

• Usage
• Forecast
• Parts Status
• Stock List
• Order Details

Each of these tabs displays information pertaining to the selected item in the Parts Status tab. The Parts Status and Stock List sub-tab correspond with the same tabs on the top panel of the Parts Status tab.

Note: In the Parts Status lower tab, the Actual On-Hand and Available values are real time. The Parts Availability Data concurrent program updates all other data in the upper and lower Parts Status tabs.

You can order parts from this tab by selecting the part that you want to order and clicking the Order button. This action brings up the Parts Requirement page, where you can create a parts requirement and an order.
Order Details

The Order Details tab provides a view of incoming orders for an item at the subinventory or organization level.
Loop Planning, Notifications, and Reporting

This chapter covers the following topics:

- Summary: Loop Planning, Notifications, and Reporting
- Creating a Parts Loop
- Assigning Subinventories to a Parts Loop
- Defining a Master Stock List
- Creating and Using Loop Notifications
- Creating Part Availability Data
- Creating Usage History
- Viewing Usage and Forecast Data
- Creating Notifications
- Processing Notifications

Summary: Loop Planning, Notifications, and Reporting

Planning loops are used to coordinate planning and execution activities across multiple locations and to control the total inventory across all subinventories in the loop. The planning loop can include both usable and defective subinventories from different inventory organizations.

You must set up at least one parts loop. These are the steps required to set up parts loops:

- Creating a Parts Loop, page 3-2
- Assigning Subinventories to a Parts Loop, page 3-3
• Defining a Master Stock List, page 3-4

Oracle Spares Management uses a master stock list to define the plan for the loop. The master stock list defines the parts and total quantities to be stocked in the loop. In addition, the master stock list provides for a minimum usable quantity to ensure that the loop maintains a balance of usable parts.

You can generate notifications by running a concurrent program when the total available is above or below plan conditions as defined in the master stock list. You can also generate notifications when the level of usable parts has dropped below the minimum usable on-hand level as designated in the master stock list.

The Planner’s Desktop provides an organized presentation of the functionality used for planning and execution at the location and loop levels. Navigation icons included on the desktop are for loops, reporting hierarchies, and notifications.

In the Reporting Hierarchy area of the Planner’s Desktop, you can create hierarchies for summarizing inventory balances, viewing on-order quantities, and viewing usage and forecast information. Reporting hierarchies also provide a tool for parts searches.

Reporting hierarchies consist of a group of virtual nodes, designed around your organizational or geographical reporting structure. Each node can contain other nodes or subinventories. Each subinventory can belong to only one reporting hierarchy.

Creating a Parts Loop

To create a parts loop, follow this procedure.

Prerequisites

☐ Define planners.

☐ Define calculation rules.

☐ Define forecast rules.

Steps:
2. Click the Parts Loop icon on the left of the window.
3. Highlight the Parts Loop folder in the navigator tree.
4. Right click the Parts Loop folder to open a right-click menu.
5. Select Create Parts Loop from the right-click menu to open the Loop Details tab.
6. Enter a parts loop name in the Loop Details tab.

7. (Optional) Enter a description for the parts loop.

8. Select a planner from the Planner list of values.

9. Select a calculation rule from the Calculation Rule list of values.

10. Select a forecast rule from the Forecast Rule list of values.

11. Save your work.

The new parts loop appears in the navigator tree.

Assigning Subinventories to a Parts Loop

When you assign subinventories to a parts loop, you must specify whether the subinventory is for tracking usable or defective parts. You can also choose to use the Auto-receipt feature for the subinventory. With Auto-receipt enabled, shipments are received automatically at the source subinventory during the ship confirm process.

Important: The auto-receive check box in the Planner's Desktop is used only for move orders. For internal orders, the auto-receive option defined in the shipping network is used.

Prerequisites

- Define the parts loop.

Steps:

2. Click the Parts Loop icon on the left of the window.

3. Click the "+" sign next to the Parts Loop folder in the navigator tree.

4. Right-click the parts loop to which you want to add subinventories.

5. Select Add Subinventory from the right-click menu.

 The Location Details tab appears.

6. Select an organization name from the Organization list of values.

7. Select a subinventory from the Subinventory list of values.
8. Select a condition type of Usable or Defective from the Condition Type list of values.

9. (Optional) Select the Auto-receipt check box.
 If you select this feature, parts shipments are received automatically during Ship Confirm at the destination subinventory.

10. Select the Spares Location check box.
 The Spares Location check box has no functionality at this time.

11. Save your work.

Defining a Master Stock List

A master stock list is the component of a parts loop that defines the allowable quantity of usable and defective parts. The master stock list defines the part numbers and corresponding quantities stocked in the parts loop. The master stock list is required if parts are stocked on a planned basis in a parts loop.

The loop quantity represents the total quantity, including usable and defective quantity, that is required in the loop and includes the availability elements as defined in the calculation rule. The minimum usable quantity represents the usable on-hand quantity that is required in the loop. The loop quantity and loop minimum are used to generate notifications to the planner. The notifications represent an exception condition for which the planner may want to take the appropriate action.

Prerequisites

- Define a parts loop.

Steps:

1. Navigate to the parts loop in the Navigator tree of the Planner’s Desktop, page A-1.

2. Highlight the appropriate parts loop in the Navigator tree.

3. Open the Master Stock List tab.

4. Enter an item number or select an item from the list of values that you want to add to the master stock list.

 Note: The Item field is case sensitive.
5. Select a planner from the Planner list of values.

6. Enter the desired loop quantity for this item.

7. (Optional) Enter the minimum usable quantity for this item in the Minimum Good field.

8. The Plan Type field default value is obtained from the item definition.

9. Save your work.

Creating and Using Loop Notifications

Planning at the loop level involves the comparison of actual loop quantities to the Master Stock List quantities. When the available quantities of parts are greater than or less than the inventory levels defined for the parts loop, a notification is created for review and processing by the planner.

In the Parts Loop area of the Planner’s Desktop, you can administer the Master Stock List for the loop. You can define and maintain the loop parameters, such as selecting the calculation and forecast rule. You can also view part availability for the loop. Finally, you can assign, update and view the usable and defective subinventories included in the parts loop.

The following steps describe using parts loops in more detail:

- Creating Part Availability Data, page 3-5
- Creating Usage History, page 3-6
- Viewing Usage and Forecast Data, page 3-7
- Creating Notifications, page 3-7
- Processing Notifications, page 3-8

Creating Part Availability Data

The Create Part Availability Data concurrent program compiles part availability data for the loop. This availability data is used to update summary quantities that appear in planning loops and hierarchies. The concurrent program updates the summary data that appears at the node levels in the Planner’s Desktop. The availability data is also used to determine whether to generate notifications.
Prerequisites

☐ Define a parts loop.

Steps:

1. Navigate to the Submit Request window, page A-1 for the Create Part Availability Data concurrent program.

 The Submit Request window appears with the Create Parts Availability Data concurrent program in the Name field.

2. Click Submit.

 There are no parameters for Create Parts Availability Data concurrent program.

3. Click No in the Decision window.

4. To see the status of your concurrent request, click View from the menu, and then click Requests.

5. Click Find to view the status of all your requests.

Creating Usage History

Usage activity is a component of planned inventory levels and is also used for forecasting future usage activity. The Create Usage History concurrent program gathers usage statistics that can be viewed in the Planner's Desktop.

Use the following procedure to run the Create Usage History concurrent program:

Steps:

1. Navigate to the Submit Request window, page A-1 for the Create Usage History concurrent program.

 The Submit Request window appears with the Create Usage History concurrent program in the Name field.

2. Click Submit.

 There are no parameters for this program.

3. Click No in the Decision window.

4. To see the status of your concurrent request, click View from the menu, and then click Requests.
5. Click Find to view the status of all your requests.

Viewing Usage and Forecast Data

A forecasting tool is available on the Planner's Desktop to aid in the planning process. Multiple forecasting techniques are provided. The forecast for the part is viewable by location, loop, and reporting hierarchy.

Use this procedure to view the forecast and usage information.

Prerequisites

Run the Create Usage History concurrent program to gather usage statistics.

Steps:

1. Navigate to the parts loop hierarchy in the Planner's Desktop, page A-1.
2. Click the + sign next to Parts Loop.
3. Click the parts loop for which you want to view forecasting information.
4. Open the Parts Status tab.
5. Click Find in the Find Items window to run a blind query for all parts.
6. Click an Item number and view the Usage and Forecast information in the lower Usage/Forecast tab.

Creating Notifications

The Create Notifications concurrent program compares the Available quantities that are calculated by the Create Part Availability Data concurrent program to the desired quantities that were defined by the master stock list in the parts loop. Notifications to the planner are created when one of the following conditions occurs:

- The available quantity for this part is above the total loop quantity by more than the allowable percentage.
- The available quantity for this part is below the total loop quantity by more than the allowable percentage.
- The usable quantity for this part is below the minimum usable quantity.
Prerequisites

Run the Create Part Availability concurrent program so that the notifications are based on the most recent quantities.

Steps:

1. Navigate to the Submit Request window, page A-1 for the Create Notifications concurrent program.
 The Submit Request window appears with the Create Notifications concurrent program in the Name field.

2. Click Submit.
 There are no parameters for this program.

3. Click No in the Decision window.

4. To view the status of your concurrent request, click View from the Tools menu, and then click Requests.

5. Click Find to view the status of all your requests.

Processing Notifications

Notifications advise that the parts inventory is above or below quantities defined in the master stock list. You can view and take action on open notifications in the Planner's Desktop. Notifications have a status of either Open, Pending, or Closed.

Prerequisites

Run the Create Notifications concurrent program.

Steps:

2. Click the + sign to expand Notifications.

3. Click the + sign to expand the Loop folder.

4. The notification categories are:
 - Above
5. Within each notification category, you can choose:
 - Open
 - Closed
 - Pending

Click the Item number in the Open folder to view the notification.

6. Open the Master Stock List tab to view the master stock list parameters for the item in the notification.

7. Open the Parts Status tab to view details. The detailed view includes the availability elements for the part.

8. There are five actions that you can take on an open notification:
 - Change the quantity on the master stock list.
 - Create a move order to transfer parts to the location that needs them.
 - Create an external requisition to purchase an additional quantity of parts.
 - Create an external requisition to have the parts repaired externally.
 - Create a WIP order to have the parts repaired internally.

After taking the appropriate action regarding the notification, update the status of the notification to Pending or Closed.
Part 2

Warehouse Replenishment Planning
Warehouse Replenishment Planning

This chapter covers the following topics:

• Overview: Planning Field Service Warehouse Inventories
• Overview: Planned Order Release Automation
• Integration with Repair Execution
• Plan Selection
• Overview: Warehouse Replenishment Plan Page

Overview: Planning Field Service Warehouse Inventories

Planning warehouse inventories in a field service supply chain requires a different approach than planning warehouses in a manufacturing or product distribution supply chain. Some of the more significant differences are:

• High volume defective returns.
• Higher volume parts repair.
• Redeployment and utilization of excess inventory.
• Forecasts determined by product population and component failure rate.
• Supersession impacts.

Supply Types Used in WRP

Supply types are key to the warehouse replenishment planning process in field service. A cost-effective approach will use excess and defective parts before ordering additional new parts that could grow the inventory unnecessarily.

Spares Management uses the Excess, Repair, and New-Buy supply types.
Excess

Changes in field service activity can cause the level of inventory to exceed the quantity needed to support planned service activities. Excess inventory is a low-cost supply type that only needs to be redeployed and should be used wherever possible at other warehouse locations when needed.

Repair

Some defective parts recovered during field service operations are repairable. Repairable returns are typically a medium-cost supply source. After consolidation, defective parts can be incorporated into the warehouse planning process and should be repaired as needed, after utilization of excess, to replenish the warehouse being planned.

New-Buy

New-buy purchases, which can be either internal or external, are used when additional parts are required in the supply chain. The new-buy purchase is usually more costly than either excess or repair sources.

Note: To achieve low inventory investment and reduce risk of obsolescence, the replenishment of parts should be planned by consuming inventories of excess parts, and repairing defective parts, before ordering new-buy parts.

Recommendation Types

Warehouse Replenishment Planning generates exception recommendations needed to balance supply and demand.

Seeded Recommendation Types

<table>
<thead>
<tr>
<th>Recommendation Type</th>
<th>Description</th>
<th>Related Business Objective</th>
</tr>
</thead>
<tbody>
<tr>
<td>Planned Order Inside of Lead Time</td>
<td>Recommended replenishment orders by supply type with a need date inside of lead time.</td>
<td>Service Level</td>
</tr>
<tr>
<td>Planned Order Outside of Lead Time</td>
<td>Recommended replenishment orders by supply type with a need date outside of lead time.</td>
<td>Service Level</td>
</tr>
<tr>
<td>Category</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Reschedule In</td>
<td>Parts are on order, but the projected on-hand balance before the scheduled delivery is tracking too low, based on the Reschedule In business rule. Schedule the delivery earlier to eliminate gaps or situations where the projected on-hand balance is potentially putting service at risk.</td>
<td></td>
</tr>
<tr>
<td>Reschedule Out</td>
<td>Parts are on order but are due to arrive before they are needed, causing the projected on-hand balance to track too high based on the Reschedule Out business rule. Schedule the delivery later to avoid an inventory level that is higher than needed.</td>
<td></td>
</tr>
<tr>
<td>Review Superseded Parts</td>
<td>This part has been replaced by a different part and has either an open order, manual forecast, or population forecast.</td>
<td></td>
</tr>
<tr>
<td>Unutilized Excess</td>
<td>A current new-buy on order is preventing the excess inventory at other warehouses from being used.</td>
<td></td>
</tr>
<tr>
<td>Unutilized Repair</td>
<td>A current new-buy on-order is preventing the defective inventory assigned to that warehouse from being used.</td>
<td></td>
</tr>
<tr>
<td>Excess On-Order</td>
<td>The on hand plus on order exceeds the Excess On-Order Limit.</td>
<td></td>
</tr>
<tr>
<td>Automated Orders</td>
<td>The Create Warehouse Replenishment Data program uses the Order Automation business rule associated to the warehouse to determine which planned orders to automate. Automated orders can be excess, repair, and new-buy.</td>
<td></td>
</tr>
</tbody>
</table>

Supersession Impacts

Supersessions can have major impacts on the planning process. The supersession definition used in Warehouse Replenishment Planning is defined in Spares Management.

The Supersession in Spares Management is defined as follows:

- Replaced item: Part that has been *superseded*.
• Superseding item: Replacement part.

• Repair to item: This identifies the highest part in the supersession chain to which the replaced part can be updated and repaired. The Repair to item should always be a superseding item.

• Reciprocal: This is either Unilateral or Bilateral, which defines whether the superseded part can be used to fill an order for the superseding part. In Bilateral, the superseded part can be used. In Unilateral, the superseded part cannot be used. In Bilateral, either part can be used to fill an order for the other part.

• Disposition: This field indicates whether the replaced item can still be used or should be scrapped. Use to Depletion (UTD) indicates that the superseded part can still be used.

• The Start Date and End Date columns are used for effectivity and expiration of supersessions.

Supersession Impact on the Superseding (Replacement) Part in the Warehouse Replenishment Planning Process:
• The superseding part defective inventory includes the superseded part defective inventory when the superseding part is the same as the Repair To for the superseded part. In other words, the superseded part can be upgraded to the superseding part.

• The usage history of the superseding part includes usage for the superseded parts in the supersession chain.

• The usage forecast for the superseding part is based on the combined usage of all parts in the supersession chain.

• The defective returns history for the superseding part includes defective returns of the superseded parts when the superseding part is the same as the Repair To for the superseded part.

• Repairable Returns are based on the combined defective returns based on the Repair To of the superseded part.

Supersession Impact on the Superseded Part:
• The superseded part is shown in the header region of the Warehouse Replenishment Plan page.

• Planning recommendations are suppressed.

• Recommendation for Review Superseded Parts appears if one of the following applies:
• On-order quantity is greater than zero.
• Population forecast exists.
• Manual forecast exists.

Overview: Planned Order Release Automation

Warehouses in the field service supply chain are in constant need of replenishment. To replenish these warehouses, large volumes of planned orders are required to manage that replenishment.

Large volumes of planned orders will occur for the following reasons:
• Large number of parts: Long service cycles are required to support a multitude of old product.
• Large number of warehouses: Local warehouses operating in close support of the technician are required when service level agreements dictate service within the same day.
• Frequent planning cycles: Needed to react to the latest usage trends and supersession activity.
• Supersessions: Superseded parts need to be reviewed when there are open orders or manual forecasts.
• Multiple supply types: Excess, repair, and new-buy can all be used on the same part depending on the need and availability of the excess and defective inventory.

The planned order release automation functionality in Warehouse Replenishment Planning (WRP) will assist in the handling of large volumes of planned orders. With the automation feature the actual order will be automatically created from the planned order when automation business rules have been met. The planned order automation gives the planner the ability to automate the more routine planned orders leaving them with more time to manage and review the planned order exceptions.

Business Rule Parameters

For each supply type you specify business rule parameters for both internal and external ordering. Excess by definition is only internal.

This table describes the automation parameters:
Parameter Description

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
</table>
| Value Limits | Dollar value of a planned order. If the actual value of the planned order is less than the Value Limit, then the planned order will be a candidate for automation based on that parameter.
\(\text{Actual value} = \text{Planned Order Quantity} \times \text{Standard Cost} \)
Important: Parts with zero cost will be excluded from automation. |
| Tracking Signal | Measure of forecast error for the part being planned. If the actual tracking signal fell within the minimum and maximum parameters, then the planned order would be a candidate for automation based on that parameter. |
| Lead Time | The Need date of a planned order falls inside of the lead time or outside of the lead time. Using the lead time parameter, the planner could select for automation those orders inside of lead time or outside of lead time or both. |

Process Flow

The planned order release automation process consists of these steps:

1. Create order automation business rules.

 You create business rules by specifying certain parameters for each supply type. The parameters include:

 - **Value Limits:** Dollar value for a planned order.
 - **Tracking Signal:** Measure of forecast error for the part being planned.
 - **Lead Time:** Whether the planned order has a need date inside of lead time, outside of lead time, or both.
Important: All applicable parameters must be met for the planned order to be automated.

For more information on defining order automation business rules, see Defining and Assigning Order Automation Business Rules in the Oracle Field Service Implementation Guide.

2. Associate the order automation rule to a warehouse you are planning in WRP using the Planner's Desktop window.

For more information on assigning the rule to a warehouse, see Defining and Assigning Order Automation Business Rules in the Oracle Field Service Implementation Guide.

3. Create warehouse replenishments plans.

Plans are created after running the three WRP concurrent programs:

- Usage for Recommendations program.

- Process Supersede Items program.

- Create Warehouse Replenishment Data program.

The Create Warehouse Replenishment Data program creates the planned orders and does the release automation.

For more information, see Creating Warehouse Replenishment Plans, page 5-1

4. Using the Automated Orders recommendation type in the Find Warehouse Replenishment Plans page the parts where automated orders were created can be selected and the individual plans reviewed if necessary.

The individual orders that were automated can be seen in the Recommendation section of the Warehouse Replenishment Plan page.

The actual orders that were automated can be seen in the Current On-order section of the Plan.

5. A summary of automated orders can also be seen in the Log File of the Create Warehouse Replenishment Data program.

Documents Automated

Internal orders and purchase requisitions are created from the automation process. This table describes the different documents that are created during the planned order release automation process:
<table>
<thead>
<tr>
<th>Supply Type</th>
<th>Internal/External</th>
<th>Documents Automated</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excess</td>
<td>Internal</td>
<td>Internal Order</td>
<td>Moves excess from one warehouse to fill need at another.</td>
</tr>
<tr>
<td>Excess</td>
<td>External</td>
<td>N/A</td>
<td>Excess is not applicable to external.</td>
</tr>
</tbody>
</table>
| Repair | Internal | Internal Order to ship defectives to the repair depot
 | Depot Repair Order | Integration with Depot Repair. | | |
| | | Internal Order to ship repaired parts to the warehouse being replenished |
| Repair | External | Purchase Requisition | Integration with External Repair Execution. |
| New-Buy | Internal | Internal Order | New-Buy when sourcing is another Inventory organization. |
| New-Buy | External | Purchase Requisition | New-Buy when sourcing is a Vendor. |

Automated Planned Order Creation

The Create Warehouse Replenishment Data concurrent program uses the order automation business rule to determine which of the planned orders will be automated. The Automation Rule uses three parameters to control automation for each supply type: value limit, tracking signal, and lead time. For each supply type, parameters are provided for internal and external except for excess which is only internal.

Here are some examples of what will occur during the planned order release automation process for each parameter.

Example

With the value limit parameter, any planned order value less than the indicated value will be automated. For example, if the Internal Value for Excess was set to 1000 USD,
then any applicable planned order with value less than 1000 USD will be automated, consistent with the other parameters.

Example
With the tracking signal parameter, any planned order for a part where the actual tracking signal is greater than the minimum and less than the maximum will be automated, consistent with the other parameters. For example, if the minimum parameter was set at minus 3 (-3) and the maximum parameter was set at plus 4 (+4), and if the actual tracking signal for the part was +1, then the planned order for that part would be automated. If the tracking signal was less than -3 or greater than +4, then the planned order will not be automated.

Example
With the lead time parameter, automation can be selected for planned orders inside of lead time, outside of lead time, or both. For example, if the Inside Lead Time parameter was set as Inside for the supply type and the Need Date for the planned order is inside of lead time, then the planned order will be automated, consistent with other parameters.

Important: All parameters must be met for the automation to occur. For example, if the value parameter is met but the tracking signal is not met, then the planned order will not be automated.

Integration with Repair Execution

Oracle Spares Management integrates Warehouse Replenishment Planning with Repair Execution to manage the execution of internal and external repair. Repair is one of the supply types in Warehouse Replenishment Planning.

The process begins in Warehouse Replenishment Planning:

- Defective parts are available for repair in one or more of the defective warehouses.

- Warehouse Replenishment Planning based on need, produces planned repair orders.

- The planner reviews and executes a planned repair order to create either a repair order in Oracle Depot Repair for internal repair, or a purchase requisition for external repair. For internal repair, the internal orders required to ship into and out of the depot repair operation are also produced.

- Integrated Repair Execution functionality manages the repair process. External Repair Execution provides a consolidated view of all documents and repair process details. For more information about external repair execution functionality, see the External Repair Execution, page 6-1 chapter in this guide.

The repair program is defined in the Repair region of the MPS/MRP Planning tab of the Inventory Organization Item window. Related setup documentation appears in
Plan Selection

Use the Find Warehouse Replenishment Plans page to find and select plans by:

- Organization
- Item
- Recommendation Type
- Inventory Class

A table presents the retrieved plans. See Accessing Warehouse Replenishment Plan Details, page 5-5.

Overview: Warehouse Replenishment Plan Page

Oracle Warehouse Replenishment Planning provides the following functionality:

- Save plans from previous planning cycles.
- Regenerate plans.
- Horizontal time phased view.
- Forecast based on population and failure rate of parts.
- Forecast of defective returns.
- Manually adjust or replace forecast.
- Projected planned orders by source type.
- Projected on-hand and available inventory balances.
The Warehouse Replenishment Planning page organizes information into the following page title, fields, and expandable regions:

Elements of the Warehouse Replenishment Planning Page

<table>
<thead>
<tr>
<th>Page Element</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item at a warehouse (title)</td>
<td>This page title is determined by the plan you select from the Find Warehouse Replenishment Plan page.</td>
</tr>
<tr>
<td>Planner (field)</td>
<td>Planner or buyer responsible for this item.</td>
</tr>
<tr>
<td>Item Cost (field)</td>
<td>Cost per-unit for the item.</td>
</tr>
<tr>
<td>Saved Plans (menu)</td>
<td>Drop-down menu lists previously saved plans.</td>
</tr>
<tr>
<td>Planning Parameters by Supply Type (region)</td>
<td>Planning parameters can be set individually for each supply type.</td>
</tr>
<tr>
<td>Current On-Hand Balance (region)</td>
<td>Displays the item current on-hand, available, and excess quantities by inventory organization and supply type.</td>
</tr>
<tr>
<td>Region</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
</tr>
<tr>
<td>Plan (region)</td>
<td>Horizontal period by period view of requirements, current on-order, planned orders, forecast of repairable returns, and projected balances.</td>
</tr>
<tr>
<td>Execute Planned Orders (region)</td>
<td>Planned orders by source type and supplier. To execute planned orders, select them, and then click Create Orders.</td>
</tr>
<tr>
<td>Recommendations (region)</td>
<td>Displays action messages by type, due date, and order quantity for excess on-order, rescheduling orders in or out, unutilized inventory, and superseded parts. Automated orders will also be shown.</td>
</tr>
<tr>
<td>Manual Forecast (region)</td>
<td>This region is used to manually adjust or replace the usage forecast.</td>
</tr>
<tr>
<td>Usage History (region)</td>
<td>This region displays usage quantities for this part by time period. Used to evaluate usage forecasts.</td>
</tr>
<tr>
<td>Defective Returns History</td>
<td>Displays the quantity of defective parts returned by time period. Used to evaluate the repairable returns forecast.</td>
</tr>
<tr>
<td>Graph</td>
<td>Quantity versus time line graph displays Total Requirements, Current On-Order, Current Balance, Planned Orders, and Planned Balance.</td>
</tr>
<tr>
<td>Notes</td>
<td>This text box is provided for adding notes to track significant events related to the part.</td>
</tr>
</tbody>
</table>
Creating Warehouse Replenishment Plans

The process for creating warehouse replenishment plans consists of running three concurrent programs. The first program updates usage history so that forecast calculations are based on the latest usage information. The second program collects the latest supersession information. The third program is the planning engine that creates or regenerates plans for one or all of the warehouses.

This program also generates the actual orders from the planned orders if you are using the Planned Order Release Automation feature. The log file generated after the
concurrent program is run will display the actual order numbers that were created.

Prerequisites

☐ Set up inventory organizations to model field service warehouses.

☐ Set up items in Oracle Inventory.

Steps:

Updating Usage History

1. Navigate to the Submit Request window, page A-1 for the Create Usage for Recommendations concurrent program.

 The Submit Request window appears. The Name field populates with the Create Usage for Recommendations concurrent program name.

2. On the Submit Request window, click Submit.

 There are no parameters to set for this program.

 The Decision window appears.

3. On the Decision window, note your request number.

 In response to “Submit another request?” click No.

 The Find Requests window appears.

5. On Find Requests, select the Specific Requests option, and then enter your request number in the Request ID field. Click Find.

 As an alternative, on Find Requests, select the All My Requests option, which appears selected by default. Click Find.

 The Requests window appears displaying your request ID, phase, and status.

6. If the phase is not Completed, wait a moment, and then click Refresh Data. When the program completes normally, close the Requests window.

Updating Planning for Superseded Parts

 The Submit Request window appears. The Name field populates with the Process Supersede Items concurrent program name.

8. On the Submit Request window, click Submit.
There are no parameters to set for this program.

The Decision window appears.

In response to “Submit another request?” click No.

Updating Planning for One or All Warehouses

10. Navigate to the Submit Request window, page A-1 for the Create Warehouse Replenishment Data concurrent program.

 The Submit Request window appears. The Name field populates with the Create Warehouse Replenishment Data concurrent program name.

11. In the Parameters window, select the inventory organization from the Organization list of values. To run this program for all organizations, leave the Organization field blank in the Parameters window.

12. To save the System Generated Plan, enter Yes in the field in the Parameters window.

 Click OK.

13. On the Submit Request window, click Submit.

 The Decision window appears.

 In response to “Submit another request?” click No.

Finding Warehouse Replenishment Plans

After creating warehouse replenishment plans, you can use search criteria within the find functionality to retrieve plans and recommendations of interest.

Prerequisites

 Create one or more warehouse replenishment plans.

Steps:

 The Find Warehouse Replenishment Plans page appears.

2. On the Find Warehouse Replenishment Plans page, select the option for either of these options:
• Show table data when all conditions are met.

• Show table data when any condition is met.

3. Specify parameters and values.

Search Criteria Examples:
To find plans for all items within the Dallas manufacturing warehouse (M3) that need to be ordered now, specify the search criteria as follows:

• Organization is Dallas Manufacturing

• Item is (blank)

• Recommendation Type is Planned Orders Inside of Lead Time

• Inventory Class (blank)

Example
To find plans for a specific item FS54888 within the Dallas manufacturing warehouse (M3), specify the search criteria as follows:

• Organization is Dallas Manufacturing

• Item is FS%

• Recommendation Type is (blank)

• Inventory Class is (blank)

Note: Entering FS plus the wild card (%) character in the Item field causes the system to retrieve several items, all having item IDs that begin with FS. Select item FS54888. The Item field populates with the selected item.

Example
To find plans for items in the Dallas Manufacturing warehouse that need to be rescheduled out, specify the search criteria as follows:

• Organization is Dallas Manufacturing

• Item is (blank)

• Recommendation Type is Reschedule Out

• Inventory Class is A

4. Click Go.
The system populates the table below the search criteria fields with the plans that match the search criteria.

Accessing Warehouse Replenishment Plan Details

After retrieving plans that meet the search criteria, view the search results table to identify the specific plan that you want to work on.

Use this procedure to access plan details:

Prerequisites

☐ Complete the Finding Warehouse Replenishment Plans, page 5-3 procedure, to populate the table in the Find Warehouse Replenishment Plans page.

Steps:

1. The Find Warehouse Replenishment Plans page table displays:
 - Item
 - Description, and where applicable:
 - Inventory Class
 - Planner
 - Recommendation Type
 - Date
 - Excess quantity and value
 - Repair quantity and value
 - New buy quantity and value

 Note: Sort the Date, Quantity, and Value fields in ascending or descending order to facilitate selection of higher priority plans.

2. To select a plan, click the Details icon in the row for the plan.
 The Warehouse Replenishment Plan `<organization> <Item ID> <Item description>` page appears.

Example
For example the page title: Dallas Manufacturing - FS54888 Sentinel Standard
Desktop displays the replenishment plan and recommendations for the Sentinel Standard Desktop computer, item ID FS54888, in the Dallas Manufacturing inventory organization.

Reviewing Warehouse Replenishment Plans

The Warehouse Replenishment Plan page presents several regions. For a description of the regions, see Overview: Warehouse Replenishment Plan Page, page 4-10.

Current On Hand Balances

This region displays the item current on-hand, available, and excess quantities by warehouse (inventory organization) by source type for the item. On-hand is the physical quantity at the warehouse. Available quantity is on-hand minus the quantity reserved to fulfill existing orders. Excess is the quantity exceeding the maximum level.

The on-hand and excess balances appear for the primary warehouse being planned and the excess warehouses that are being included in the planning for the primary warehouse. The excess warehouses will be included in the planning for the item at the primary warehouse when excess is available. Defective warehouses are locations where defective parts have been consolidated for repair. The defective warehouse will also be included in the planning for the primary warehouse when defectives are available.

Example

For example:

- On Hand: Dallas Manufacturing Warehouse = 78
- Available Excess: Total of Excess warehouses = 116
- Available Defective: Total of Repair warehouses = 225

Planning Parameters

Planning parameters by supply type are used for adjusting the inventory plan depending on the supply type being used in the planning. You can enter default
planning parameters in the Planner’s Desktop. The planning parameters in Warehouse Replenishment Planning are applicable only to the item at the warehouse that you are planning.

Input Parameters

- **Lead Time**

 Represents the number of days from *recognition* that replenishment is needed to the *receipt* of the replenishment shipment.

 Lead time is used to calculate Reorder Point (ROP) where the ROP is equal to the total requirements during lead time plus safety stock. Lead times are maintained in Oracle Inventory. It is necessary to run the Create Warehouse Replenishment Data concurrent program to update the reorder point.

 Note: The Apply button does not update the plan for lead-time changes.

- **Service Level**

 Enter as a percent. This number is used along with the Economic Delivery Quantity (EDQ) to calculate the safety stock quantity. The service level defines on a planned basis the percent of demand filled when needed.

 When you change the service level, the system automatically recalculates the reorder point and the safety stock quantity.

- **Economic Delivery Quantity (EDQ) Factor**

 This factor is used in calculating the Economic Delivery Quantity. The EDQ Factor combines both ordering costs and carrying costs in the economic order quantity algorithm to determine delivery quantity. EDQ varies directly with EDQ Factor. In other words, increasing the EDQ Factor produces a larger calculated Economic Delivery Quantity.

 When you change the EDQ Factor level, the system automatically recalculates the EDQ.
Increasing the EDQ factor increases the size of the EDQ and the size of the planned orders, and may reduce the size of the safety stock depending on how sensitive the safety stock is to the EDQ change. Safety stock is determined by service level, demand variation, and EDQ. EDQ is used in safety stock to account for the number of stockout exposures. In general, a higher EDQ means less exposure to stockout risk and a lower level of safety stock.

- **EDQ Multiple**
 This value is used to define the Excess Limit in the Excess On-Order Recommendation. The Excess On-Order Limit is equal to the Reorder Point (ROP) plus the EDQ Multiple times the EDQ. See Processing Excess On-Order Recommendations, page 5-20.

 For example, the reorder point is 266, the EDQ is 36, and the EDQ multiple is 2. The Excess On-order Recommendation triggers when on hand plus on order exceeds 338. In other words, $266 + (2 \times 36) = 338$.

Calculated Parameters
- **Reorder Point (ROP)**
 The ROP is equal to the total requirements during lead time plus the safety stock.

- **Safety Stock quantity**
 The safety stock quantity is based on EDQ, planned service level, and usage variation. This buffer inventory protects against requirement fluctuations that occur during lead time.

- **Economic Delivery Quantity (EDQ)**
 The EDQ is based on the EDQ Factor and the value of Annual Usage.

Interpret the Plan

The figure shown below displays the Plan region of the Warehouse Replenishment Planning page.
The table describes the fields and table rows in the plan region.

Description of Plan Region Elements

<table>
<thead>
<tr>
<th>Field or Row Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Periods</td>
<td>Specifies the number of periods that appear in the horizontal plan.</td>
</tr>
<tr>
<td>Period Size in Days</td>
<td>Specifies the number of days included in each period.</td>
</tr>
<tr>
<td></td>
<td>Example</td>
</tr>
<tr>
<td></td>
<td>For example, period size of seven days results in weekly time buckets.</td>
</tr>
<tr>
<td>Total Requirements</td>
<td>Displays the total demand by period.</td>
</tr>
<tr>
<td></td>
<td>* Usage Forecast</td>
</tr>
<tr>
<td></td>
<td>* Population (and Failure Rate) Forecast</td>
</tr>
<tr>
<td></td>
<td>* Manual Forecast +/- (adjustment)</td>
</tr>
<tr>
<td></td>
<td>* Manual Forecast Replace</td>
</tr>
<tr>
<td>Current On-Order</td>
<td>Displays the sum of open replenishment orders by time period. Expand this row to see individual orders.</td>
</tr>
</tbody>
</table>
Current Balance Projects inventory balance as it would occur by period if no planned orders were executed.

Current balance equals on-hand, or previous current balance plus on order for the period minus total requirements for the period.

Example

Period 1 current balance = 78 + 56 - 50 = 84
Period 2 current balance = 84 + 0 - 65 = 19
Period 3 current balance = 19 + 0 - 62 = -43

Planned Orders This row displays a summary of planned orders by time period. Expand this row to see planned orders by source type:

- Excess
- Repair
- New Buy

Example

In this example, the first three planned orders for excess are occurring in three periods for a summarized quantity of 38, 41, and 37.

In this example, the next four planned orders for repair are occurring in four periods for a summarized quantity of 75, 75, 50, and 25.

Planned orders to purchase new parts are due in the last two time periods.

Repairable Returns This row forecasts the use of future defective returns. This forecast of repairable returns use is used to fill requirements before new buy.

Planned Balance This row projects inventory balance as would occur if all planned orders were executed as planned.

Planned balance equals on-hand or previous planned balance plus on order plus planned orders plus repairable returns minus total requirements.

Example

Period 1 planned balance = 78 + 56 + 38 + 0 - 50 = 122
Period 2 current balance = 122 + 0 + 41 + 0 - 65 = 98
Period 3 current balance = 98 + 0 + 37 + 0 - 62 = 73
Period 4 current balance = 73 + 0 + 75 + 0 - 65 = 83
Example

Example Plan

<table>
<thead>
<tr>
<th></th>
<th>Past Due</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Required</td>
<td></td>
<td>50</td>
<td>65</td>
<td>62</td>
<td>65</td>
<td>67</td>
<td>70</td>
<td>72</td>
<td>75</td>
<td>78</td>
<td>80</td>
</tr>
<tr>
<td>On Order</td>
<td></td>
<td>56</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Planned Orders</td>
<td></td>
<td>38</td>
<td>41</td>
<td>37</td>
<td>75</td>
<td>75</td>
<td>50</td>
<td>25</td>
<td></td>
<td>41</td>
<td>51</td>
</tr>
<tr>
<td>Excess</td>
<td></td>
<td>38</td>
<td>41</td>
<td>37</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Repair</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>75</td>
<td>75</td>
<td>50</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>New Buy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>41</td>
<td>51</td>
</tr>
<tr>
<td>Repair Returns</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>46</td>
<td>70</td>
<td>29</td>
<td>29</td>
</tr>
<tr>
<td>Planned Balance</td>
<td></td>
<td>122</td>
<td>98</td>
<td>73</td>
<td>83</td>
<td>91</td>
<td>71</td>
<td>70</td>
<td>65</td>
<td>57</td>
<td>57</td>
</tr>
</tbody>
</table>

Planning Preserves Safety Stock

Safety stock is a buffer against unplanned demand. Planned orders are calculated to prevent the planned balance from dropping below the safety stock quantity.

The new buy quantities in periods 9 and 10 in the example plan are sized to result in a planned balance of 57. In this example, planning parameter calculations set the safety stock equal to 57. Safety stock is a buffer against unplanned demand.

Specifying Planning Parameters for a Specific Part

The Planning Parameters region displays the following parameters by source type:

- Lead Time
• Service Level
• EDQ Factor
• ROP
• EDQ
• Safety Stock
• EDQ Multiple

When you adjust the service level, EDQ factor, or EDQ multiple factors in the Warehouse Replenishment Planning page, the system recalculates the EDQ and safety stock, and automatically recalculates the replenishment plan to reflect the changes.

Use this procedure to set the input planning parameters:

Prerequisites

❒ Create, find, and select a warehouse replenishment plan.

To Modify Service Level, EDQ Factor, and EDQ Multiple

1. From the Warehouse Replenishment Plan page, page A-1 for the selected plan, expand the Planning Parameters region.

2. To modify service level, enter a different number in the service level field of the Planning Parameters region.

 Note: Increasing service level increases safety stock quantity consistent with EDQ and the reorder point.

3. To change economic delivery quantity factor, enter a different number in the EDQ Factor field of the Planning Parameters region.

 An increase in EDQ Factor indicates that ordering costs have increased or the cost of carrying inventory has gone down, and vice versa. An increase in the EDQ Factor may reduce the safety stock.

4. To change economic delivery quantity multiple, enter a different number in the EDQ Multiple field of the Planning Parameters region.

 Excess on order recommendations trigger when on hand plus on order exceed the excess on order limit and the value of the excess on order is in excess of the Minimum Value in the Warehouse Parameters tab of the Planner's Desktop.

5. After changing the Planning Parameters, click the Apply button.
The plan regenerates based on the new parameters.

To Set Up New Buy Lead Time

1. Navigate to the Organization Items window, page A-1 in the Inventory application.
 The Organizations window appears.

2. Select the inventory organization, and then click OK.
 The Find Organization Items window appears.

3. Enter the item ID number, and then click Find.
 The Organization Item (organization) window appears displaying the information for the selected item.

4. Select the Lead Times tab.
 The Lead Times tab appears displaying fields for several types of lead time.

5. To modify lead time, change the lead time days shown in the Preprocessing, Processing, and Post Processing fields. Click Save.

 Note: You can change lead times in Oracle Inventory at the Item Sub-inventory level.

To Set Up Excess Lead Time

For information on setting up excess lead times, see Setting Up Lead Times for Warehouse Replenishment Planning in the *Oracle Field Service Implementation Guide*.

To Set Up Repair Lead Time

For information on setting up repair lead times, see Setting Up Lead Times for Warehouse Replenishment Planning in the *Oracle Field Service Implementation Guide*.

To Update WRP Plans with Lead Time Changes

1. After changing the lead times, run the Create Warehouse Replenishment Data concurrent program to update the plans for the lead time changes.
 See Updating Planning for One or All Warehouses, page 5-3.

 Note: For lead-time changes, you cannot use the Regenerate button to update the plans.
Specifying Planning Parameters for a Warehouse Organization

Planning parameters specified at the warehouse level apply to all warehouse replenishment plans for items within the warehouse, unless overridden by parameters for the specific item.

Use this procedure to specify planning parameters for a warehouse.

Steps:
 The Planner's Desktop window appears.
2. From the Planning Tree, select the warehouse organization.
 The Planning Parameters and Warehouse Parameters windows provide details of the planning tree node (warehouse) that you selected.
3. Select the Planning Parameters tab.
4. The Planning Parameters tab displays fields for Service Level and EDQ Factor. Modify these fields as desired.
 Note: The Planning Parameters tab for the warehouse defines the default Service Level and EDQ Factor for all supply types.
5. The Warehouse Parameters tab displays fields for the EDQ Multiple, Minimum Value (for excess on order), and Service Level and EDQ Factor by Supply Type. Modify these fields as desired.
6. The Planning Method tab is used to enter or update the Planning Method. Modify these fields as desired.
7. Save your work.

Regenerating Warehouse Replenishment Plans

Click the Regenerate button in the Plan region of the Warehouse Replenishment Planning window, to update the plan for any change in business rules or parameter changes made outside of the Warehouse Replenishment Planning page, except for lead time changes as noted previously. For parameter changes in the Warehouse Replenishment Planning page, click the Apply button. These changes include:

- Changes to business rules such as, forecast rules and reschedule rules.
• Changes to parameters in the Planning Parameters, Warehouse Parameters, and Planning Method tabs of the Planner’s Desktop.

• Changes to the Failure Rates tab in the Planner’s Desktop.

• Changes to inventory that would update the current on-hand balance.

• Changes to the current on-order position.

In addition, use the Regenerate button to update the Plan view when you change the values in the Number of Days and Period Size in Days fields.

Use this procedure to regenerate a plan to view the impact of modifying planning parameters.

Prerequisites

☐ Create, find, and select a warehouse replenishment plan.

Steps:

1. From the Warehouse Replenishment Planning page, page A-1, expand the Plan region.

2. In the Plan region, click Regenerate.

 The system regenerates the plan and then refreshes the page with the new plan.

Executing Planned Orders

The Execute Planned Orders region displays planned orders for the item sequenced by need date. The source type, supplier, quantity, lead time, and order by date are also provided.

• Planned orders are automatically checked when the Need Date is inside the lead time.

• You can change the order quantity and need by date.

• You can create a new planned order or remove a planned order.

Use this procedure to release, remove, change, or add a planned order:

Prerequisites

☐ Create, find, and review a warehouse replenishment plan.
To Create an Order
1. Expand the Execute Planned Orders region of a warehouse replenishment plan. The region displays ordered item, source type, supplier, order quantity, order by date, need date, and lead time.

2. Select the planned orders to be executed.

3. (Optional) Change the order quantity.

4. (Optional) Change the Need Date.

5. Click Create Order.

To Remove Planned Orders
1. Expand the Execute Planned Orders region of a warehouse replenishment plan.

2. To remove one or more planned orders, select the planned orders to be removed.

3. Click Remove.

To Add an Order
1. Expand the Execute Planned Orders region of a warehouse replenishment plan.

2. Click the Add Row button.

3. Enter required fields for:
 - Source Type
 - Supplier
 - Quantity
 - Need Date

4. Click Select, and then click Create Order.

Performing Planned Order Release Automation
Using the planned order release automation functionality you can have the system automatically create the actual orders from the planned orders when the automation business rules are met.

For more information on the planned order release automation functionality, see Overview: Planned Order Release Automation., page 4-5
Use this procedure to perform planned order release automation:

Prerequisites

- An order automation business rule has been created and associated to the warehouse you are planning in WRP.

To Run the Warehouse Replenishment Data program

1. Navigate to the Submit Request window, page A-1 for the Create Warehouse Replenishment Data concurrent program.

The Submit Request window appears. The Name field populates with the Create Warehouse Replenishment Data concurrent program name.

 This concurrent program creates the warehouse plans and planned orders. It also automates the planned orders when the business rules have been met.

2. In the Parameters window, select the inventory organization from the Organization list of values. To run this program for all organizations, leave the Organization field blank in the Parameters window.

3. To save the System Generated Plan, enter Yes in the field in the Parameters window.

 Click OK.

4. On the Submit Request window, click Submit.

The Decision window appears.

5. On the Decision window, note your request number.

 In response to "Submit another request?" click No.

The Find Requests window appears.

7. On the Find Requests window, select the Specific Requests option, and then enter your request number in the Request ID field. Click Find.

 As an alternative, on the Find Requests window, select the All My Requests option, which appears selected by default and then click Find.

 The Requests window appears displaying your request ID, phase, and status.

8. If the phase is not Completed, wait a moment, and then click Refresh Data.

9. Click View Log to view the system generated log that was generated from running this concurrent program.
This log will display the actual order numbers that were created from the planned order automation process.

10. Close the Requests window.

To Find Warehouse Replenishment Plans that Contain Automated Orders

The Find Warehouse Replenishment Plans page appears.

12. On the Find Warehouse Replenishment Plans page, select either of these options:
 - Show table data when all conditions are met.
 - Show table data when any condition is met.

Requiring all conditions to be met will narrow the search results.

13. Specify the parameters to filter the data and select the Recommendation Type of Automated Orders and then click Go.

 The table in the lower region of the page displays all the plans that match the search criteria.

To View the Automated Orders

14. Click the Details icon next to a plan that contains automated orders.

 The Warehouse Replenishment Planning page appears displaying the plan.

15. Expand the Plan section.

16. Expand the Current On Order section for the plan.

 The automated orders are included in the Current On Order section.
17. Expand the Recommendations section.

The Automated Order recommendations will appear in the Recommendations section of the page. These recommendations are the automated orders that were created from that specific run of the Create Warehouse Replenishment Data program.

Any planned orders that were not automated will appear in the Execute Planned Orders section of the page.

To Release Other Planned Orders that Were Not Automated
18. (Optional) Manually release the other planned orders that were not automated.

For more information, see Executing Planned Orders., page 5-15

Recommendations

The Recommendations region of the Warehouse Replenishment Planning page displays all recommendations other than planned orders and also displays the actual order quantity that was automated during the planned order release automation process:

- Excess On Order
- Unutilized Excess
- Unutilized Repair
- Reschedule In
• Reschedule Out
• Review Superseded Part
• Automated Orders

Processing Excess On Order Recommendations

Excess on order is an exception condition where the total on order quantity is too high. The Excess EDQ multiple is used to calculate the excess limit in the excess on order recommendation. The excess limit is equal to the reorder point plus the number of EDQ multiples specified.

Example

For example, the reorder point is 266, the EDQ is 36, and the EDQ multiple is 2. The excess on order recommendation triggers when on hand plus on order exceeds 338; \[266 + (36 \times 2)] = 338\], and the value of the excess on order exceeds the minimum value as defined in the Warehouse Parameters tab of the Planner's Desktop.

Use this procedure to identify and cancel or decrease the order quantity of new buy orders that are causing the excess on order condition.

Prerequisites

☐ Create warehouse replenishment plans.

Steps:

1. Use the Find Warehouse Replenishment Plans page, page A-1 to find a plan where the Recommendation Type is Excess On-order.

2. Select the appropriate plan.

 Note: You can sort the excess on order value to facilitate the selection of high value recommendations.

3. Expand the Recommendations region.

 The Recommendations region displays all recommendation types other than planned orders. The excess on order by supply type appears.

4. Expand the Plan > Current On-Order region.

 Review current on order and determine a specific order or multiple orders to cancel or partially cancel.

 In Oracle Order Management, you can cancel internal orders that have not been
Processing Unutilized Excess and Repair

This exception conditions occur when the planned orders do not fully utilize the existing excess and defective inventory and there is new-buy on order that is preventing the utilization from occurring. In this situation, the planner is interested in canceling enough of the new-buy so that the excess and defective parts can be used in the next planning cycle.

Use this procedure to process Unutilized Excess or Unutilized Repair recommendations.

Prerequisites

☐ Create warehouse replenishment plans.

Steps:
1. Use the Find Warehouse Replenishment Plans page, page A-1 to find a plan where the Recommendation Type is Unutilized Excess or Unutilized Repair.
2. Expand the Recommendations region to view Unutilized Excess or Unutilized Repair recommendations.
3. Review the Planned Orders and Unutilized Excess and Repair to verify the condition where you need to take action.
4. Expand the Plan region and then Current On-Order.
5. Review current on order and determine a specific order or multiple orders to cancel or partially cancel.
 In Oracle Order Management, you can cancel internal orders that have not been shipped.

Rescheduling In or Out

Reschedule In is an exception condition where the projected on-hand balance is tracking too low ahead of a scheduled delivery based on the Reschedule-In business rule.

Reschedule Out is an exception condition where the on-hand balance is tracking too high based on the Reschedule-Out business rule. The Reschedule Out condition indicates that inventory investment in this item is higher than necessary to sustain the desired level of service.

For more information about defining Reschedule-in and Reschedule-out business rules,
see the *Field Service Implementation Guide*.

Use this procedure to identify orders to be rescheduled.

Prerequisites

- Create warehouse replenishment plans.

Steps:

1. Use the Find Warehouse Replenishment Plans page, page A-1 to find a plan where the Recommendation Type is Reschedule In or Reschedule Out.

2. Expand the Recommendations region to view Reschedule In or Reschedule Out recommendations.

3. Expand the Plan region. Review the Current Balance and Current On-order to verify the condition and feasibility of achieving corrective results.

4. Expand the Plan region > Current On-Order

5. Review current on order and determine a specific order or multiple orders to reschedule.

 In Oracle Order Management, you can reschedule internal orders that have not been shipped.

Reviewing Superseded Parts

The supersession represents an engineering or supplier-driven situation where one part has been replaced by another part. The supplier typically notifies the Field Service customer that a part has been replaced and is no longer available or Field Service will be notified by internal engineering of the supersession. New orders will be placed for the superseding part and current orders may need to be converted over to the superseding part.

See Setting Up Part Supersession, page 2-26

Use this procedure to process Review Superseded Part recommendations.

Prerequisites

- Create warehouse replenishment plans.

Steps:

1. Use the Find Warehouse Replenishment Plans page, page A-1 to find a plan
where the Recommendation Type is Review Superseded Parts.

2. Expand the Recommendations region to view Review Superseded Part recommendations.

Recommendation for Review Superseded Parts appears if one of the following conditions exist:

- Current on order quantity is greater than zero.
- Population forecast exists.
- Manual forecast exists.

3. The planner may need to cancel the Current On-order Quantity or roll the order to the superseding part.

4. The planner may need to cancel the population forecast or roll the forecast to the superseding part.

5. The planner may need to roll the manual forecast to the superseding part.
Part 3

External Repair Execution
This chapter covers the following topics:

- Overview: External Repair Execution
- Integration with Warehouse Replenishment Planning
- Search for Repair Purchase Orders
- Overview: Repair Purchase Order Details User Interface

Overview: External Repair Execution

Repair execution is a key part of the field service supply chain. The repair execution process includes recovery and consolidation of defective parts, as well as the repair, and replenishment of these parts to the field service warehouse inventory.

Internal repair activities are charged to an internal work order. With external repair, a repair purchase order authorizes a supplier to complete repairs. Spares Management provides functionality for both internal and external repair. For information about the internal repair, see Creating and Shipping the Internal Order, page 7-5 and Managing Defective Parts, page 2-33.

This chapter describes external repair execution, where defective parts are sent to a supplier for repair.

External Repair Business Needs Include:

- Consolidated view of process documents and transaction details.
- Integration with the Warehouse Replenishment Planning application.
- Integration with the Purchasing application.
- Integration with financial applications.
- Asset tracking.
Integration with Warehouse Replenishment Planning

The External Repair Execution (ERE) module provides an automated alternative to the multistep manual process that uses the Planner’s Desktop notifications functionality. The ERE process begins in Oracle Spares Management Warehouse Replenishment Planning:

- Finding Warehouse Replenishment Plans, page 5-3
- Accessing Warehouse Replenishment Plan Details, page 5-5
- Reviewing Warehouse Replenishment Plans, page 5-6
- Executing Planned (Repair) Orders, page 5-15

This diagram illustrates the spare parts business flow:

Spare Parts Flow Diagram

Executing a planned order for repair begins the external repair execution process described in the table:

__External Repair Execution Process__

<table>
<thead>
<tr>
<th>Step</th>
<th>Role</th>
<th>Activity</th>
</tr>
</thead>
</table>

Oracle Spares Management User Guide
<table>
<thead>
<tr>
<th>Step</th>
<th>Actor/Role</th>
<th>Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Planner</td>
<td>Approve repair planned order in Warehouse Replenishment Planning.</td>
</tr>
<tr>
<td>2</td>
<td>System</td>
<td>Automatically create a purchase requisition.</td>
</tr>
<tr>
<td>3</td>
<td>Buyer</td>
<td>Create and approve repair purchase order (RPO).</td>
</tr>
<tr>
<td>4</td>
<td>System</td>
<td>Create internal order when RPO is approved.</td>
</tr>
<tr>
<td>5</td>
<td>Inventory Planner - Defective Warehouse</td>
<td>Pick and ship defective parts to a repair supplier.</td>
</tr>
<tr>
<td>6</td>
<td>Repair Supplier</td>
<td>Receive parts and report discrepancies.</td>
</tr>
<tr>
<td>7</td>
<td>System</td>
<td>Create a work-in-process (WIP) order.</td>
</tr>
<tr>
<td>8</td>
<td>Repair Supplier</td>
<td>Repair and then ship repaired parts to the field service warehouse. Report scrap.</td>
</tr>
<tr>
<td>9</td>
<td>Repair Administrator</td>
<td>Enter transactions for negative adjustments and scrap.</td>
</tr>
<tr>
<td>10</td>
<td>Field Service Warehouse</td>
<td>Receive repaired parts into inventory.</td>
</tr>
<tr>
<td>11</td>
<td>System</td>
<td>Complete a WIP order.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Receive into Finished Repair subinventory at the repair supplier organization.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Transact out of Finished Repair subinventory at the repair supplier organization.</td>
</tr>
<tr>
<td>12</td>
<td>Repair Administrator</td>
<td>Reconcile repair purchase order when necessary.</td>
</tr>
</tbody>
</table>

Important: The process steps performed by the External Repair Execution system are the same, regardless of the repair program. The sequence, however, differs depending on the program. See Repair Programs, page 6-4 in this chapter.
Repair Programs

Repair programs can vary from company to company, but can be grouped into three general strategies:

Repair and Return:

The defective parts are sent to the repair supplier for repair. The repaired parts are shipped from the repair supplier and received as replenishment by the field service warehouse.

Exchange:

When the repair supplier receives the defective parts, serviceable parts are shipped from the repair supplier’s stock to the field service warehouse for replenishment. The repair supplier can repair the defective part and use it to replenish the buffer inventory used by the repair supplier to support the Exchange program. This strategy eliminates lead time associated with repairing the item.

Advance Exchange:

When the repair supplier receives the purchase order, serviceable parts are shipped to the field service warehouse against the purchase order. The repair supplier can repair the defective part and use it to replenish the buffer inventory used by the repair supplier to support the Advance Exchange program. This strategy eliminates lead times associated with shipping the defective parts to the repair supplier and repairing the parts.

Note: The choice of repair program influences lead time. Lead times are used in Warehouse Replenishment Planning for calculating safety stock and reorder point.

Serial Number Control

Rules for serial number control for external repair execution in the field service supply chain are as follows:

- The serial number control can be used at the defective warehouse organization.
- The serial number control cannot be used at the repair supplier organizations.
- The serial number control is available at the field service warehouse finished repair subinventory.

Serial number control at repair supplier organizations is not possible due to the automated backflushing of the parts at the repair supplier when the receipt is executed at the field service warehouse.
Search for Repair Purchase Orders

You can Search for Repair Purchase Orders by:

- Purchase Order (number)
- Requisition (number)
- Repair to Item (number)
- Repair Supplier
- Destination Organization
- Defective Organization (an inventory organization designated for defective parts)

The search results table shows retrieved repair purchase orders, along with:

- Purchase Order (number)
- Requisition (number)
- Repair to Item (number)
- Creation Date
- Repair Program
- Status
• Destination Organization
• Defective Organization (an inventory organization designated for defective parts)
• Need Date
• Delivery Date

Show details provides additional information. See Searching for Repair Requisitions and Orders, page 7-2.

Overview: Repair Purchase Order Details User Interface

The Repair Purchase Order Details user interface provides for a consolidated view of all process documents and transactions. The interface also provides functionality needed to transact scrap and negative adjustment activity. The planner or administrator can use the user interface to reconcile with the repair supplier any residual balance due on the purchase order.

The header region in the Repair Purchase Order Details user interface provides the following information:
• Purchase Order
• Requisition
• Creation Date (for the purchase order)
• Repair to Item (see Supersessions, page 2-24)
• Status (of the process)
• Repair Supplier
• Destination Organization (warehouse being replenished)
• Defective Organization (warehouse defective parts were shipped from)
• Need Date
• Delivery Date
• Repair Program
• Quantity (shipped from the defective warehouse)
• Received (quantity)
• Scrap (quantity)

• Negative Adjustment (quantity)

• Balance Due (Ordered - Received - Scrap +/- Adjustments)

The Transaction Details shows all transactions and documents related to the process:

• Requisition Incomplete

• Requisition Approved

• Purchase Order Created

• Purchase Order Approved

• Internal Order Created

• Internal Order Shipped

• Internal Order Received

• WIP Order Created

• WIP Order Received

• Scrap Transactions

• Adjustment Transactions

• Shipment Notification

• Reason

• Purchase Order Receipt
Using Repair Purchase Orders

This chapter covers the following topics:

- Repair Purchase Requisitions
- Searching for and Viewing a Repair Requisition
- Approving a Repair Requisition
- Creating and Approving Repair Purchase Orders
- Creating and Shipping the Internal Order
- Receiving the Internal Order at the Repair Supplier
- Creating the Work In Process (WIP) Order
- Entering Adjustment and Scrap Transactions
- Receiving the Purchase Order at the Field Service Warehouse

Repair Purchase Requisitions

The external repair execution process begins in Warehouse Replenishment Planning. For a general description of the process flow, see Integration with Warehouse Replenishment Planning, page 6-2.

When a planner approves a planned repair order in the Warehouse Replenishment Planning user interface, or creates a planned repair order manually, the system automatically creates a repair purchase requisition when the repair supplier is an external supplier. To approve a planned repair order, see the procedure titled: Executing Planned Orders, page 5-15.

Execution of the planned repair order in Warehouse Replenishment Planning creates the requisition in the initial status: Requisition Incomplete. You can view the requisition in Repair Purchase Order Details, but the requisition is not visible to the buyer until the Requisition Import concurrent program completes and the requisition is updated to Approved status.
Searching for and Viewing a Repair Requisition

After the system creates the requisition, use this procedure to search for and view a repair purchase requisition or a repair purchase order.

Prerequisites

☐ Create a repair requisition.

Steps:

The Search Repair Purchase Orders page appears.

2. To search for a requisition, enter search criteria. If you know the requisition number, enter the number in the Requisition field. Click Go.

Search criteria include:

• Purchase order (not yet created)
• Requisition (number)
• Repair to Item (ID number)
• Repair Supplier
• Destination Organization
• Defective (source) Organization

The table populates with requisitions that match the search criteria. Information includes:

• Requisition number
• Repair to item
• Creation date
• Repair program
• Status
• Repair supplier
• Destination warehouse
• Defective warehouse
• Need date
• Delivery date

3. To view details, click the Show details ‘+’ icon.

 Note: After the repair requisition has been initially created from Warehouse Replenishment Planning, the requisition is in Requisition Incomplete status in Transaction Details in the Repair Purchase Order Details user interface.

Approving a Repair Requisition

Use this procedure to approve a requisition and update the Transaction status from Requisition Incomplete to Requisition Approved in the Repair Purchase Order Details user interface.

Prerequisites

- Create a repair requisition in Warehouse Replenishment Planning.
- Transaction status must be Requisition Incomplete.

Steps:

1. Complete the Searching for and Viewing a Repair Requisition, page 7-2 procedure to populate the table on the Search Repair Purchase Orders page with the requisition that you want to approve.

2. In the row for the requisition, click the Update icon.

 The Repair Purchase Order Details page appears.

3. View the Repair Purchase Requisition. Verify that the transaction status is Requisition Incomplete.

Run Requisition Import

 The Submit Request window appears.

5. In the Name field, enter Requisition Import, and press the Tab key.
The Parameters window appears.

6. Click OK.

The Parameters window closes.

7. On the Submit Request window, click Submit.

 Note: After the Requisition Import program completes, the buyer can view, approve, and process the repair requisition. The buyer can see that the requisition is a repair requisition in two ways:

 - **Note to Buyer: Populated with Repair Program**
 - **Requisition Attachments:** Displays the defective parts and quantities that will be shipped to the repair supplier

Run Generate Repair Purchase Order Execution Details

 The Submit Requests window appears with the "Generate repair purchase order execution details" in the Name field.

 Note: You must run the Generate Repair Purchase Order Execution Details concurrent program each time after the Repair Purchase Order Details user interface is updated.

9. Click Submit.

 There are no parameters for this program.

10. Search for and view the requisition in the Repair Purchase Order Details user interface. See the procedure Searching for and Viewing a Repair Requisition, page 7-2.

 The Transaction column updates from Requisition Incomplete to Requisition Approved in the Transaction Details section of the user interface.

Creating and Approving Repair Purchase Orders

The repair purchase order is used to purchase the repair service from the repair supplier for the defective parts. The repair purchase order is also used to receive the repaired parts back into the field service warehouse that is being replenished and to pay the repair supplier for the repair service. Using standard Oracle Purchasing, you can either automatically create or manually create the repair purchase order.
Standard Oracle Purchasing functionality is used to create a Repair Purchase Order from the Repair Requisition and approve the purchase order. See *Purchasing User Guide*.

When the repair purchase order is updated to Approved status in Purchasing, the internal order required to ship the defective parts to the repair supplier is automatically created.

Note: To facilitate the processing of the internal order and tracking defective parts, the repair suppliers are setup as inventory organizations. This setup is covered in detail in the *Field Service Implementation Guide*.

Run the Generate Repair Purchase Order Execution Details concurrent program to update the Repair Purchase Order Details.

Search for and view the requisition and purchase order in the Repair Purchase Order Details user interface. In the Repair Purchase Order Details user interface:

- The purchase order will appear in the Header and Transaction Details.
- The Internal Order will appear in Transaction Details if the purchase order has been approved.
- The Internal Order will appear in Transaction Details as Internal Order Created, along with indicative details relating to the internal order.

Creating and Shipping the Internal Order

When the repair purchase order is updated to Approved status in Purchasing, the internal order that is used to ship the defective parts to the repair supplier is automatically created when you run the Generate Repair Purchase Order Execution Details concurrent program.

Steps:

1. Search for and view the repair requisition and repair purchase order in the Repair Purchase Order Details user interface.

 In the Repair Purchase Order Details user interface, the Internal Order appears in Transaction Details as Internal Order Created, along with indicative details relating to the internal order.

2. Oracle Order Management is used to process the internal order through the pick, pack, and shipment processes. See *Order Management User Guide* for guidance on how this processing works.

3. Run the Generate Repair Purchase Order Execution Details concurrent program to update the Repair Purchase Order Details.
4. Search for and view the repair requisition and repair purchase order in the Repair Purchase Order Details user interface.

In the Repair Purchase Order Details user interface, the Internal Order appears in Transaction Details a second time as Internal Order Shipped, along with indicative details relating to the shipment.

Receiving the Internal Order at the Repair Supplier

Receiving at the repair supplier can either be automated (direct) or manual (not direct), depending on how the Shipping Network between the defective warehouse and the repair supplier has been setup in Oracle Inventory. Direct receiving results in the shipment showing as having been received at the repair supplier as soon as the Ship Confirm transaction has executed at the defective warehouse. Manual receiving is transacted when the shipment is physically received at the repair supplier.

Prerequisites

- Oracle Purchasing is used to process receipt at the repair supplier. See *Oracle Purchasing User Guide* for details on how this processing works.

Steps:

1. Run the Generate Repair Purchase Order Execution Details concurrent program to update the Repair Purchase Order Details.
2. Search for and view the requisition and purchase order in the Repair Purchase Order Details user interface.

 In the Repair Purchase Order Details user interface, the Internal Order appears in Transaction Details a second time as Internal Order Received, along with indicative details relating to the receipt.

Creating the Work In Process (WIP) Order

The system automatically creates the WIP Order when the internal order is received (either direct or non-direct) at the repair supplier. The WIP order is used to transform the defective parts into repaired parts. In the case of a supersession, the order is used to transform the item number.

Steps:

1. Run the Generate Repair Purchase Order Execution Details concurrent program to update the Repair Purchase Order Details.
2. Search for and view the requisition and purchase order in the Repair Purchase
Order Details window.

In the Repair Purchase Order Details window, the WIP Order appears in Transaction Details as WIP Incomplete, along with indicative details relating to the WIP Order.

3. Run the WIP Mass Load concurrent program to complete the creation of the WIP Order.

5. On Submit a New Request, in response to "What type of request do you want to run?", select the Single Request radio button. Click OK.

6. In the Name field, enter: %Mass%, and then press the Tab key.

7. Enter parameters. Use the WIP Order number for the Group ID.

8. Search for and view the requisition and purchase order in the Repair Purchase Order Details window.

In the Repair Purchase Order Details window, the WIP Order appears in Transaction Details as WIP Complete, along with indicative details relating to the WIP Order.

Entering Adjustment and Scrap Transactions

Adjustment transactions are used for receiving discrepancies and other reconciliations that are required to account for miscellaneous losses and gains while the parts are at the repair supplier. Scrap transactions are used to account for repair scrap during the repair process when it is determined that a defective part cannot be repaired. The Negative Adjustment and Scrap transactions show in summary in the header and they update the balance due. The Negative Adjustment and Scrap transactions are also shown in the Transaction Details section of the user interface.

Steps:

1. Complete the Searching for and Viewing a Repair Requisition, page 7-2 procedure to navigate to the Repair Purchase Order Details window.

2. In the Transaction Details region, click Negative Adjustment or Scrap. Depending
on the button selected, either a Negative Adjustment line or a Scrap line appears with fields for Date, Defective (item number), and Quantity.

3. Click Apply. View the changes to the Adjustment or Scrap summary in the Header and the Balance Due field.

Receiving the Purchase Order at the Field Service Warehouse

The repaired parts are shipped by the repair supplier and received at the field service warehouse that is being replenished. Oracle Purchasing is used to process the receipt at the field service warehouse. See Oracle Purchasing User Guide for details on how this processing works. The receipt at the field service warehouse causes a backflushing process to occur at the repair supplier organization:

- The WIP Order at the repair supplier is completed and the receipt quantity is received into the Finished Repair sub-inventory.

- The receipt quantity is transacted out of the Finished Repair sub-inventory.

Steps:
1. Run the Generate Repair Purchase Order Execution Details concurrent program to update the Repair Purchase Order Details.

2. Search for and view the requisition and purchase order in the Repair Purchase Order Details window.

In the Repair Purchase Order Details window the Purchase Order appears in Transaction Details a second time as Purchase Order Received, along with indicative details relating to the receipt.
Windows/Pages and Navigation Paths

This appendix covers the following topics:

- Overview of Field Service Windows/Pages and Navigation Paths
- Windows/Pages and Navigator Paths

Overview of Field Service Windows/Pages and Navigation Paths

The following table displays the default navigation path for each Oracle Spares Management window or page.

- Text in brackets ([]) indicates a button.
- (I) indicates to select an icon.
- (T) indicates to select a tab.
- (M) indicates to select the menu option from the window.

Windows/Pages and Navigator Paths

<table>
<thead>
<tr>
<th>Window/Page</th>
<th>Navigator Menu Path</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attachments</td>
<td>Field Service Dispatcher > Spares Management > Setup > Define Supersessions > [Attachments icon]</td>
</tr>
<tr>
<td>Window/Page</td>
<td>Navigator Menu Path</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Business Rules</td>
<td>Field Service Dispatcher > Spares Management > Setup > Business Rules</td>
</tr>
<tr>
<td>Confirm Pick List</td>
<td>Field Service Dispatcher > Spares Management > Spares Logistics > Spares Move Order > Confirm Pick Lists > [Find]</td>
</tr>
<tr>
<td>Create Allocations</td>
<td>Field Service Dispatcher > Spares Management > Spares Move Order > Reservations</td>
</tr>
<tr>
<td>Create Pack List</td>
<td>Field Service Dispatcher > Spares Management > Spares Move Order > Pack lists > Expand Packing List node > Select Open node and right click > (M) Create Packing List</td>
</tr>
<tr>
<td>Create Tasks from Template Group</td>
<td>Field Service Dispatcher > Service Request > Service Requests > Create Service Requests > (T) Tasks > [Use Template]</td>
</tr>
<tr>
<td>Excess Lists</td>
<td>Field Service Dispatcher > Spares Management > Spares Logistics > Excess Return</td>
</tr>
<tr>
<td>Find Move Orders</td>
<td>Field Service Dispatcher > Spares Management > Spares Move Order > Move Order Status</td>
</tr>
<tr>
<td>Find Pack Lists</td>
<td>Field Service Dispatcher > Spares Management > Spares Move Order > Receive Shipments</td>
</tr>
<tr>
<td>Find Pick Lists</td>
<td>Field Service Dispatcher > Spares Management > Spares Move Order > Confirm Pick Lists</td>
</tr>
<tr>
<td>Find Requests</td>
<td>Field Service Dispatcher > Other > View Requests</td>
</tr>
<tr>
<td>Find Warehouse Replenishment Plans</td>
<td>Field Service Dispatcher > Spares Management > Warehouse Replenishment Planning</td>
</tr>
<tr>
<td>Window/Page</td>
<td>Navigator Menu Path</td>
</tr>
<tr>
<td>-------------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Inter-Org Shipping Networks</td>
<td>Inventory > Setup > Organizations > Shipping Networks > (M) Tools > Shipping Method</td>
</tr>
<tr>
<td>Move Orders</td>
<td>Field Service Dispatcher > Spares Management > Spares Logistics > Spares Move Order > Create Move Orders</td>
</tr>
<tr>
<td>Move Order Status</td>
<td>Field Service Dispatcher > Spares Management > Spares Logistics > Spares Move Order > Move Order Status > [Find]</td>
</tr>
<tr>
<td>Organization Items</td>
<td>Inventory > Items > Organization Items</td>
</tr>
<tr>
<td>Packing Lists navigator tree</td>
<td>Field Service Dispatcher > Spares Management > Spares Logistics > Spares Move Order > Pack lists</td>
</tr>
<tr>
<td>Parts Requirement</td>
<td>Field Service Dispatcher > Spares Management > Spares Logistics > Parts Requirement > [New]</td>
</tr>
<tr>
<td>Parts Search Hierarchy</td>
<td>• Field Service Dispatcher > Spares Management > Spares Logistics > Part Search Hierarchy</td>
</tr>
<tr>
<td></td>
<td>• Field Service Dispatcher > Spares Management > Spares Logistics > Parts Requirement > [New] > [Parts Search]</td>
</tr>
<tr>
<td>Planner's Desktop</td>
<td>Field Service Dispatcher > Spares Management > Planner's Desktop</td>
</tr>
<tr>
<td>Receive Shipments</td>
<td>Field Service Dispatcher > Spares Management > Spares Logistics > Spares Move Order > Receive Shipments > [Find]</td>
</tr>
<tr>
<td>Return Routing Rules</td>
<td>Field Service Dispatcher > Spares Management > Set Up > Return Routing Rules</td>
</tr>
<tr>
<td>Search Repair Purchase Orders</td>
<td>Field Service Dispatcher > Spares Management > Spares Logistics > Repair Purchase Order Details</td>
</tr>
<tr>
<td>Window/Page</td>
<td>Navigator Menu Path</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Service Request</td>
<td>Field Service Dispatcher > Service Request > Service Requests > Create Service Requests</td>
</tr>
<tr>
<td>Shipping Networks</td>
<td>Inventory > Setup > Organizations > Shipping Networks</td>
</tr>
</tbody>
</table>
| Submit Request: Create Excess List| • Field Service Dispatcher > Spares Management > Reports and Programs > Create Excess Lists
• Field Service Dispatcher > Spares Management > Planner's Desktop > Right click on node > (M) Create Excess Lists |
| Submit Request: Create Repair PO Execution Details | Field Service Dispatcher > Spares Management > Reports and Programs > Create Repair PO Execution Details |
| Submit Request: Create Warehouse Replenishment Data | Field Service Dispatcher > Spares Management > Reports and Programs > Create Warehouse Replenishment Data |
| Submit Request: Min - Max Planning | • Field Service Dispatcher > Spares Management > Reports and Programs > Create Min - Max Planning Report
• Field Service Dispatcher > Spares Management > Planner's Desktop > Right click on node > (M) Create Min - Max Planning Report |
<p>| Submit Request: Create Part Availability Data | Field Service Dispatcher > Spares Management > Reports and Programs > Create Part Availability Data |
| Submit Request: Create Usage History | Field Service Dispatcher > Spares Management > Reports and Programs > Create Usage History |
| Submit Request: Create Notifications | Field Service Dispatcher > Spares Management > Reports and Programs > Create Notifications |</p>
<table>
<thead>
<tr>
<th>Window/Page</th>
<th>Navigator Menu Path</th>
</tr>
</thead>
<tbody>
<tr>
<td>Submit Request: Print Excess List</td>
<td>Field Service Dispatcher > Spares Management > Reports and Programs > Print Excess List</td>
</tr>
<tr>
<td>Submit Request: Print Pick lists</td>
<td>Field Service Dispatcher > Spares Management > Spares Logistics > Spares Move Order > Print Pick lists</td>
</tr>
<tr>
<td>Submit Request: Process Supersede Items</td>
<td>Field Service Dispatcher > Spares Management > Reports and Programs > Process Supersede Items</td>
</tr>
<tr>
<td>Submit Request: Requisition Import</td>
<td>Purchasing > Reports > Run</td>
</tr>
<tr>
<td>Submit Request: Usage for Recommendations</td>
<td>Field Service Dispatcher > Spares Management > Reports and Programs > Usage for Recommendations</td>
</tr>
<tr>
<td>Submit Request: WIP Mass Load</td>
<td>Order Management > Reports, Requests > Run Requests</td>
</tr>
<tr>
<td>Supersessions</td>
<td>Field Service Dispatcher > Spares Management > Setup > Define Supersessions</td>
</tr>
<tr>
<td>View Move Order Status</td>
<td>Field Service Dispatcher > Spares Management > Spares Logistics > Spares Move Order > Move Order Status > [Find]</td>
</tr>
<tr>
<td>View Parts Order Status</td>
<td>• Field Service Dispatcher > Spares Management > Spares Logistics > Parts Requirement</td>
</tr>
<tr>
<td></td>
<td>• Field Service Dispatcher > Spares Management > Spares Logistics > Parts Order Status</td>
</tr>
<tr>
<td>Warehouse Replenishment Plan</td>
<td>Field Service Dispatcher > Spares Management > Warehouse Replenishment Planning > [Go] > (I) Details for a plan</td>
</tr>
</tbody>
</table>
Index

C
Creating and Managing Return Routing Rules, 1-13

I
internal orders
status, 1-28
inventory
planning
report, 1-29

L
logistics
parts requirement, 1-11
parts search, 1-4

M
move orders, 1-18
creating, 1-18
pack lists, 1-23
pick lists, 1-21
reservations
creating, 1-20
shipment
confirming, 1-23
pack lists, 1-23
receiving, 1-26
status
viewing, 1-27

O
Overview: Parts Return, 1-12

P
parts requirement, 1-11
move orders, 1-18
status, 1-28
See also internal orders
parts return
using, 1-15
parts search, 1-4
pick lists
confirming, 1-22
printing, 1-21

R
replenishment orders
creating, 1-29