
Oracle® Configurator
Modeling Guide
Release 12.2
Part No. E48818-01

September 2013

Oracle Configurator Modeling Guide, Release 12.2

Part No. E48818-01

Copyright © 1999, 2013, Oracle and/or its affiliates. All rights reserved.

Primary Author: Margot Murray

Contributor: Tom Myers

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation
of the programs, including any operating system, integrated software, any programs installed on the
hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the
programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

This software or hardware and documentation may provide access to or information on content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your
access to or use of third-party content, products, or services.

 iii

Contents

Send Us Your Comments

Preface

Part 1 Modeling Guidelines

1 Introduction
Scope of this Guide... 1-1
Conventions... 1-2
Product Support...1-3

Troubleshooting... 1-4

2 Planning Your Model Design
Overview of Designing a Configuration Model.. 2-1
Planning Guidelines Relevant to Model Design... 2-2

BOM Model Design or Redesign..2-2
End-User Expectations .. 2-5
Rule Design.. 2-5
Lifecycle and Maintainability Expectations... 2-7

3 Starting Your Model Design
Do You Expect Configurator to Display Large Lists of Options?.. 3-2
Are the Same Product Elements Repeated in Separate Models?... 3-2
Are You Modeling Many Related Products?.. 3-4
Do You Need Default Values Set Automatically?..3-4

iv

Does Your End User Need to See the Bill of Materials?...3-5
Will Configurations Contain Instances of a Component?... 3-6
Will Your Configurator Collect Many End-User Inputs?...3-6
Does Configurator Depend on Information Collected Upstream?.. 3-7
Does Configurator Pass Non-Orderable Information Downstream?...................................... 3-8
Are Some Selections Disallowed Until Other Selections Are Made?..................................... 3-8
Will Your Rules Include Repeating Patterns or Redundancy?.. 3-9
Are Your Configuration Rules Based on Legacy Rules?.. 3-9
Do You Need to Express Compatibilities in Your Model?...3-10
Do You Need to Express Comparisons in Your Model?...3-10

4 Best Practices
Explicit Model Structure Versus Abstractions... 4-2

Explicit Structure...4-2
Permutation... 4-3
Abstractions.. 4-4
Downstream Consequences in Other Oracle Applications... 4-6
Related Best Practices and Relevant Case Studies... 4-6

Explicit Model Structure Versus References.. 4-7
Explicit Structure... 4-7
Model References... 4-7

Referencing BOM Option Classes..4-7
Non-Imported Model References.. 4-8

Downstream Consequences in Other Oracle Applications.. 4-9
Related Best Practices and Relevant Case Studies..4-9

Optional and Multiple Instantiation.. 4-9
Optional Instantiation of BOM Option Classes.. 4-9
Setting Node Values After Adding Instances.. 4-11
Downstream Consequences in Other Oracle Applications.. 4-12
Large Numbers of Instances.. 4-12
Related Best Practices and Relevant Case Studies..4-12

Guided Buying or Selling... 4-12
Manufacturing vs. Sales View of a Model..4-13

Shallow Versus Nested or Deep Hierarchy.. 4-14
Items Versus Alternatives to Items... 4-14

Values Needed For Configuration Only.. 4-15
Values Needed Downstream... 4-15
Related Best Practices and Relevant Case Studies..4-18

Large Option Features and Option Classes.. 4-18
Grouped Versus Ungrouped Items.. 4-18

 v

Maximum Selections on Large Option Classes or Features... 4-18
Alternatives to Option Features With Many Options.. 4-20
Relevant Case Studies.. 4-20

Defaults Rules Versus Alternatives to Default Selections...4-20
Evaluating the Need for Default Selections... 4-21
Activating Defaults on End User Request..4-21
Boolean Features With Initial Values... 4-22
The postConfigNew Configurator Extension...4-22
Implies Relation Instead of Defaults Relation.. 4-23
Default Rule Idiosyncrasies... 4-24

Repetitive Rule Patterns and Redundancy... 4-24
Repetitive Patterns and Common Subexpressions...4-24
Redundancy... 4-25
Circular Propagation..4-26

Number and Complexity of Rules.. 4-27
NotTrue Logical Function Imposes Order and Causes Locking.. 4-28

Order Dependency Caused By NotTrue.. 4-29
Locked States Caused By NotTrue... 4-30

Compatibility Rules.. 4-30
Expressing Compatibility Using Properties... 4-31
Minimizing Participants in a Compatibility ..4-32
Using the Excludes Relation to Express Incompatibilities .. 4-33
Minimizing the Size and Complexity of Property-based Compatibility Rules.................. 4-33

How do Property Features Simplify Property-based Relationships between Large
Option Classes?... 4-35

Comparison Rules... 4-35
Comparison Rules That Raise Warnings..4-35
Using Intermediate Values Effectively With Comparison Rules..4-36

Connectors with Connection Rules.. 4-37
Connection Rules That Depend on End-User Input...4-39
Order Independent Connection Rules .. 4-39
Restoring Configurations With Connections... 4-40

Optimizing User Interface Performance .. 4-40
Display Conditions ... 4-40
Graphics... 4-41
Number and Type of Pages and Controls.. 4-41
Configuration Summary User Interface Template... 4-41
Custom User Interface... 4-42

Large Amounts of End-User Data Collected Using Configurator Extensions....................... 4-42
Configurator Extension Design.. 4-42

Avoiding Unnecessary Interactions... 4-43

vi

Accessing Runtime Nodes... 4-43
Components and Requests...4-45
Adding and Deleting Instantiable Components.. 4-45
Impact of Making Connections Among Components..4-46
Optimization of Configurator Extensions that Change Model Structure...........................4-47

Detailed Sequence... 4-47
Comparison of Coding Approaches.. 4-49
Code Example... 4-50

Optimization of Validation Configurator Extensions.. 4-52

Part 2 Case Studies

5 Many Large BOM Models
Overview... 5-1
Project Description.. 5-2
A Deficient Modeling Approach.. 5-2
The Suggested Modeling Approach... 5-4

Applying Best Practices to Your Model Structure..5-4
Applying Best Practices to Further Optimize the End-User Experience.............................. 5-7
The Resulting End-User Flow.. 5-8
Advantages of This Modeling Approach... 5-9

6 Many BOM Items
Overview... 6-1
Project Description.. 6-1
A Deficient Modeling Approach.. 6-2
The Suggested Modeling Approach... 6-4

Applying Best Practices to Your Model Structure..6-4
Applying Best Practices to Further Optimize the End-User Experience.............................. 6-6
The Resulting End-User Flow.. 6-7
Advantages of This Modeling Approach... 6-7

A SQL Queries
Number of Nodes by Type... A-1
Number of Features by Type in a Configuration Model... A-3
Number of Rules by Type in a Configuration Model... A-4
Number of Rules by Relation in a Configuration Model.. A-6

 vii

Common Glossary for Oracle Configurator

Index

 ix

Send Us Your Comments

Oracle Configurator Modeling Guide, Release 12.2
Part No. E48818-01

Oracle welcomes customers' comments and suggestions on the quality and usefulness of this document.
Your feedback is important, and helps us to best meet your needs as a user of our products. For example:

• Are the implementation steps correct and complete?
• Did you understand the context of the procedures?
• Did you find any errors in the information?
• Does the structure of the information help you with your tasks?
• Do you need different information or graphics? If so, where, and in what format?
• Are the examples correct? Do you need more examples?

If you find any errors or have any other suggestions for improvement, then please tell us your name, the
name of the company who has licensed our products, the title and part number of the documentation and
the chapter, section, and page number (if available).

Note: Before sending us your comments, you might like to check that you have the latest version of the
document and if any concerns are already addressed. To do this, access the new Oracle E-Business Suite
Release Online Documentation CD available on My Oracle Support and www.oracle.com. It contains the
most current Documentation Library plus all documents revised or released recently.

Send your comments to us using the electronic mail address: appsdoc_us@oracle.com

Please give your name, address, electronic mail address, and telephone number (optional).

If you need assistance with Oracle software, then please contact your support representative or Oracle
Support Services.

If you require training or instruction in using Oracle software, then please contact your Oracle local office
and inquire about our Oracle University offerings. A list of Oracle offices is available on our Web site at
www.oracle.com.

 xi

Preface

Intended Audience
Welcome to Release 12.2 of the Oracle Configurator Modeling Guide.

This book contains information you need for designing configuration models that are
best suited to Oracle Configurator. This book focuses on model design and does not
present other information about planning Oracle Configurator projects such as
preparing your site and team for implementation and scheduling tasks.

Use this document together with the other books in the Oracle Configurator
documentation set to prepare for and implement high performance configuration
model designs.

This preface describes how the book is organized, who the intended audience is, and
how to interpret the typographic conventions.

This guide is intended for Oracle Consultants and implementers of Oracle Configurator
who have completed Oracle Configurator training or have experience using Oracle
Configurator Developer. Oracle Configurator training is available through Oracle
University.

Before using this book, you should already have a working knowledge of your business
processes, how to create configuration models using Oracle Applications, and the other
books in the Oracle Configurator documentation set.

See Related Information Sources on page xiii for more Oracle E-Business Suite product
information.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

xii

Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For
information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Structure
1 Introduction

2 Planning Your Model Design
This chapter describes the high level flow of starting a project and designing
configuration models. The chapter also presents guidelines to help you plan your
Oracle Configurator project and determine which design questions you should ask.

For information about planning and starting an Oracle Configurator project, see the
Oracle Configurator training available through Oracle University.

3 Starting Your Model Design
Before reading this chapter, review the planning guidelines in Chapter 2 Planning Your
Model Design to help identify areas of special considerations in an Oracle Configurator
project.

This chapter presents the design questions you should ask yourself in order to identify
which best practices apply to your project.

Read through the questions on the following pages to help you identify relevant design
decisions that are presented as some of the best practices and case studies in the
following chapters. This list of design questions is intended as a starting point and does
not include all the questions that are useful to ask as you begin your Oracle
Configurator project.

4 Best Practices
Before reading this chapter, review the design questions in Starting Your Model Design,
page 4-1 to help you identify best practices that are relevant to your Oracle
Configurator project.

Applying the following best practices in various combinations will improve the
performance, usability, maintenance, and scalability of your configuration models.

Many of these best practices include detailed instructions. You can gain useful
information by reading all of them, even though some are not directly connected to a
design question. To understand these best practices, you must be familiar with the
specifics of creating configuration models. See the Oracle Configurator Developer User's
Guide for details.

5 Many Large BOM Models
This chapter describes an Oracle Configurator project involving many large BOM
Models with much explicit and repetitive structure that is best modeled as a single
top-level BOM Model containing a deep hierarchy of generic structure and abstractions.

6 Many BOM Items

 xiii

This chapter describes an Oracle Configurator project involving many BOM Items that
are not orderable and could be better implemented as Features or configuration
attributes. Configuration attributes are explained in Oracle Configurator Methodologies.
A SQL Queries
This appendix contains some SQL*Plus queries that are useful for calculating the total
number of nodes in a configuration model, and the number of different types of nodes
in a configuration model.

Common Glossary for Oracle Configurator

Related Information Sources
For a full list of documentation resources for Oracle Configurator, see the Oracle
Configurator Release Notes for this release.

For a full list of documentation resources for Oracle Applications, see Oracle
Applications Documentation Resources, on MetaLink, Oracle's technical support Web
site.

Additionally, be sure you are familiar with current release or patch information for
Oracle Configurator on MetaLink, Oracle's technical support Web site.

Integration Repository
The Oracle Integration Repository is a compilation of information about the service
endpoints exposed by the Oracle E-Business Suite of applications. It provides a
complete catalog of Oracle E-Business Suite's business service interfaces. The tool lets
users easily discover and deploy the appropriate business service interface for
integration with any system, application, or business partner.

The Oracle Integration Repository is shipped as part of the E-Business Suite. As your
instance is patched, the repository is automatically updated with content appropriate
for the precise revisions of interfaces in your environment.

You can navigate to the Oracle Integration Repository through Oracle E-Business Suite
Integrated SOA Gateway.

Do Not Use Database Tools to Modify Oracle E-Business Suite Data
Oracle STRONGLY RECOMMENDS that you never use SQL*Plus, Oracle Data
Browser, database triggers, or any other tool to modify Oracle E-Business Suite data
unless otherwise instructed.

Oracle provides powerful tools you can use to create, store, change, retrieve, and
maintain information in an Oracle database. But if you use Oracle tools such as
SQL*Plus to modify Oracle E-Business Suite data, you risk destroying the integrity of
your data and you lose the ability to audit changes to your data.

Because Oracle E-Business Suite tables are interrelated, any change you make using an

xiv

Oracle E-Business Suite form can update many tables at once. But when you modify
Oracle E-Business Suite data using anything other than Oracle E-Business Suite, you
may change a row in one table without making corresponding changes in related tables.
If your tables get out of synchronization with each other, you risk retrieving erroneous
information and you risk unpredictable results throughout Oracle E-Business Suite.

When you use Oracle E-Business Suite to modify your data, Oracle E-Business Suite
automatically checks that your changes are valid. Oracle E-Business Suite also keeps
track of who changes information. If you enter information into database tables using
database tools, you may store invalid information. You also lose the ability to track who
has changed your information because SQL*Plus and other database tools do not keep a
record of changes.

Part 1
Modeling Guidelines

Oracle Configurator provides tools for a wide range of solutions. This section consists of
chapters that are designed to lead you from relevant planning guidelines through
important design questions to best practices that leverage the strengths and
requirements of Oracle Configurator.

Introduction 1-1

1
Introduction

This chapter covers the following topics:

• Scope of this Guide

• Conventions

• Product Support

Scope of this Guide
This book contains a table of contents, examples, tables, figures, a reader comment
form, a preface, several chapters, a glossary, and an index.

• Chapter 1 - Introduction presents an overview of the materials covered in each
chapter, Product Support, and Troubleshooting information.

• Chapter 2 - Planning Your Model Design describes the high level flow of starting a
project and designing configuration models. The chapter also presents guidelines to
help you plan your Oracle Configurator project and determine which design
questions you should ask.

• Chapter 3 - Best Practices explains best practices for designing a configuration
model with optimal performance, maintainability, and scalability.

• Chapter 4 - Many Large BOM Models describes an Oracle Configurator project
involving many large BOM Models with a great deal of explicit and repetitive
structure that is best modeled as a single top-level BOM Model containing a deep
hierarchy of generic structure and abstractions.

• Chapter 5 - Many BOM Items describes an Oracle Configurator project involving
many BOM Items that are not orderable and could be better implemented as
Features or configuration attributes.

• The Glossary contains terms that are used throughout the Oracle Configurator

1-2 Oracle Configurator Modeling Guide

documentation set.

• The Index provides an alternative method of searching for key concepts and
product details.

Conventions
In code examples, an implied carriage return occurs at the end of each line, unless
otherwise noted. You must press the Enter key at the end of a line of input.

In rule examples, the order in which the rules are presented does not indicate a
sequence in which Oracle Configurator processes the rules. You cannot assume a
particular sequence, and the sequence can differ each time the rules are processed by
the Oracle Configurator engine.

The following conventions are also used in this manual:

Convention Meaning

.

.

.

Vertical ellipsis points in an example mean
that information not directly related to the
example has been omitted.

... Horizontal ellipsis points in statements or
commands mean that parts of the statement or
command not directly related to the example
have been omitted.

boldface text Boldface type in text indicates a new term, a
term defined in the glossary, specific keys,
and labels of user interface objects. Boldface
type also indicates a menu, command, or
option, especially within procedures.

italics Italic type in text, tables, or code examples
indicates user-supplied text. Replace these
placeholders with a specific value or string.

[] Brackets enclose optional clauses from which
you can choose one or none.

> The left bracket alone represents the MS DOS
prompt.

Introduction 1-3

Convention Meaning

$ The dollar sign represents the DIGITAL
Command Language prompt in Windows and
the Bourne shell prompt in Digital UNIX.

% The percent sign alone represents the UNIX
prompt.

name() In text other than code examples, the names of
programming language methods and
functions are shown with trailing parentheses.
The parentheses are always shown as empty.
For the actual argument or parameter list, see
the reference documentation. This convention
is not used in code examples.

Product Support
The mission of the Oracle Support Services organization is to help you resolve any
issues or questions that you have regarding Oracle Configurator Developer and Oracle
Configurator.

To report issues that are not mission-critical, submit a Technical Assistance Request
(TAR) using Metalink, Oracle's technical support Web site at:

http://www.oracle.com/support/metalink/

Log into your Metalink account and navigate to the Configurator TAR template:

1. Choose the TARs link in the left menu.

2. Click on Create a TAR.

3. Fill in or choose a profile.

4. In the same form:

1. Choose Product: Oracle Configurator or Oracle Configurator Developer

2. Choose Type of Problem: Oracle Configurator Generic Issue template

5. Provide the information requested in the iTAR template.

You can also find product-specific documentation and other useful information using
Metalink. For a complete listing of available Oracle Support Services and phone
numbers, see:

1-4 Oracle Configurator Modeling Guide

www.oracle.com/support/

Troubleshooting
Oracle Configurator Developer and Oracle Configurator use the standard Oracle
Applications methods of logging to analyze and debug both development and runtime
issues. These methods include setting various profile options and Java system
properties to enable logging and specify the desired level of detail you want to record.

For general information about the logging options available when working in
Configurator Developer, see the Oracle Configurator Developer User's Guide.

For details about the logging methods available in Configurator Developer and a
runtime Oracle Configurator, see:

• The Oracle E-Business Suite System Administrator's Guide for descriptions of the
Oracle Applications Manager UI screens that allow System Administrators to set up
logging profiles, review Java system properties, search for log messages, and so on.

• The Oracle E-Business Suite Supportability Guide, which includes logging guidelines
for both System Administrators and developers, and related topics.

• The Oracle Application Framework Documentation Resources, Release 12 on
Metalink.

Planning Your Model Design 2-1

2
Planning Your Model Design

This chapter describes the high level flow of starting a project and designing
configuration models. The chapter also presents guidelines to help you plan your
Oracle Configurator project and determine which design questions you should ask.

For information about planning and starting an Oracle Configurator project, see the
Oracle Configurator training available through Oracle University.

This chapter covers the following topics:

• Overview of Designing a Configuration Model

• Planning Guidelines Relevant to Model Design

Overview of Designing a Configuration Model
A proven, repeatable methodology for designing and creating configuration models
includes the following design considerations:

1. Model structure design

2. User Interface design

3. Rule design

Begin by designing the Model structure, which may involve leveraging BOM Model
data that already exists in Oracle Bills of Material, and adding guided buying or selling
Features and Options.

As you design your Model structure, consider your requirements for the user interface.
A runtime UI may be automatically generated in Configurator Developer from your
Model structure, and your UI requirements often may drive the structure of your
guided buying or selling components. However, the templates that you use to generate
UIs in Configurator Developer ultimately provide a great deal of control over the UI's
appearance and behavior.

Once you have designed an initial Model structure, apply rules among its elements.

2-2 Oracle Configurator Modeling Guide

Rules typically represent the most complex aspect of your configuration model and
should be well thought-out during the design process.

The flow of steps to design a configuration model is often iterative, but by following the
suggestions in this Modeling Guide you should be able to reduce the number of
iterations during the design process. Planning Guidelines Relevant to Model Design,
page 2-2 describes a set of guidelines to follow as you plan your implementation and
identify what design decisions are necessary.

Caution: Do not use Oracle Configurator to emulate or replace
functionality that is missing from other products or processes. For
example, using Oracle Configurator to emulate the Configure-To-Order
business process because a specific requirement is not addressed in the
current release could have undesirable consequences.

Planning Guidelines Relevant to Model Design
This section presents some of the planning guidelines that can help you make
appropriate model design decisions in the following areas:

• BOM Model Design or Redesign, page 2-2

• End-User Expectations , page 2-5

• Rule Design, page 2-5

These planning guidelines are intended as a starting point for designing your
configuration model. You may need to make additional planning decisions that are
specific to your business or Oracle Configurator project.

Note: Even if your implementation does not leverage BOM Models,
review the design questions and best practices listed in BOM Model
Design or Redesign, page 2-2 before beginning your configuration
model design.

After reading the following planning guidelines, read through the design questions
presented in Chapter 3, Starting Your Model Design to help identify best practices that
are relevant to your project. For more information, see Best Practices, page 4-1.

BOM Model Design or Redesign
The guidelines provided for BOM Model design assume that your Oracle Configurator
project is integrated with the Oracle eBusiness Suite.

The BOM is what is configured and ordered. While it needs to be structured for your
Enterprise Resource Planning (ERP) process, it also may need to be simplified for end

Planning Your Model Design 2-3

user comprehension and usability during configuration. Even if you believe there is no
flexibility for changing your BOM Models, the consequences in implementation effort,
maintenance costs, usability issues, and performance may persuade you to make some
adjustments. In this case, be aware of the limitations this lack of flexibility imposes and
plan your runtime architecture accordingly.

The table below lists some common BOM Model characteristics and specific
adjustments that must be made to maintain Oracle Configurator performance and
usability.

BOM Model Design and Impact on Runtime Architecture

BOM Model Design
Characteristic

Metric Recommended Adjustment
to Runtime Architecture

Many BOM Option Classes
and BOM Standard Items

Typically, BOM Models with
over 10,000 items.

More JVMs

More dedicated JVMs

Increased (large) JVM heap
size

Model structure abstraction
to hide the BOM from the UI
(easier option selection)

Large BOM Option Classes Typically, those containing
over 100 BOM Standard Items.

More JVMs

More dedicated JVMs

Increased (large) JVM heap
size

Model structure abstraction
to hide the BOM from the UI
(easier option selection)

Multiple BOM Models with
similar structure

References to two or more
BOM Models that contain only
minor differences (few unique
items)

Additional memory

Additional hardware

Increased (large) JVM heap
size

BOM Option Classes that are
repeated in multiple BOM
Models

Any duplication of BOM
Option Classes, (especially
those containing over 100
Standard Items)

Additional memory

Additional hardware

Increased (large) JVM heap
size

2-4 Oracle Configurator Modeling Guide

Planning Guidelines
Always begin your Oracle Configurator project by examining the structure of your
BOM Models. If your BOM Models exhibit any of the characteristics listed in BOM
Model Design and Impact on Runtime Architecture, refer to the design questions listed
in Chapter 3, Starting Your Model Design, to review best practices that may apply to
your project.

Another important consideration related to BOM Model design is that the size of the
configuration model directly affects the time it takes to load the model and display the
UI in a runtime Oracle Configurator. In other words, the bigger the model, the longer
the initial load. For this reason, Oracle recommends preloading models so that end
users experience better performance throughout the configuration session. For more
information on preloading models, see the Oracle Configurator Performance Guide.

The database size of a configuration model is measured in total number of nodes.
Appendix A, SQL Queries, page A-1 presents queries used to find out how many
nodes are in your configuration model.

The goal is to streamline your BOM Models so that the resulting configuration models
are highly maintainable and scalable as your business grows, with optimal usability and
performance at runtime.

Note: Both the name and description of BOM items are imported into
Configurator Developer with the BOM Model. If either is used to
generate UI captions, make sure they are meaningful to end users.

Be aware that only BOM Standard Items that are defined as optional in
Oracle Bills of Material appear in Oracle Configurator; BOM Standard
Items that are mandatory are not displayed.

BOM Model redesign may involve changes such as:

• Reducing repetitive or similar structure into abstract elements that should be
referenced (abstraction)

• Changing entity types: For example, changing a commonly used Option Class to a
BOM Model.

• Eliminating unnecessary items: For example, removing BOM Standard Items from
the BOM and converting them to attributes.

These and other BOM Model redesign best practices are discussed in Chapter 4, Best
Practices.

Note that any changes to the BOM Model may have an impact on downstream
operations. Optimal BOM Model design balances the needs of all applications that
leverage it. Every item in a BOM is ordered, and either gets manufactured or
provisioned. Therefore, any changes to the BOM to improve Oracle Configurator

Planning Your Model Design 2-5

performance may require additional rework to support requirements in other
applications, such as Pricing, Order Management, Install Base, Shop Floor Management,
and so on.

End-User Expectations
A single configuration model can support multiple User Interfaces (UIs). Typically,
Oracle Configurator Developer is used to automatically generate end-user UIs. Since
you may base the UI structure on the Model structure, keep UI considerations and
end-user expectations in mind as you design your configuration model. If your
expectations for the UI are based on a legacy system, it may be difficult to leverage
some of the default features and functionality that is provided "out-of-the-box" by a UI
generated in Oracle Configurator Developer. In other words, legacy UI design and
behaviors may require you to either extensively customize a generated UI or create a
completely custom UI from scratch. Writing Configurator Extensions to implement
custom behavior may also be necessary.

Planning Guidelines
Examine and understand how your end users will interact with the configuration UI.
The following circumstances are relevant to model design:

• Your runtime Oracle Configurator needs to exhibit any of the following behaviors:

• UI opens with options already selected

• Product complexity hidden from end users by high-level questions or minimal
required selections

• Your end users need to perform any of the following actions in the UI:

• Select from a long list of values

• Enter as input the characteristics of a part (such as dimensions, instructions, a
monogram, or similar information)

• Add or remove elements of the configuration

Rule Design
One of the most critical and potentially time-consuming activities in constructing your
configuration model is designing and constructing the rules that govern what the end
user can select to make a valid configuration. You need to build rules that express
relations and behaviors among the Components, Features, Options, BOM Option
Classes, and BOM Standard Items of your Model.

2-6 Oracle Configurator Modeling Guide

Planning Guidelines
The number and complexity of the rules are a factor in determining the size of your
configuration model. Independent of whether structure is a factor, fewer than 500 rules
is generally a small model, 500 to 2,000 rules is a medium model, and over 2,000 rules is
a large model. When working with models containing a large number of rules,
performance and usability can be a concern.

It is important to examine and understand all of the rules that define your business or
constrain your products before proceeding with your Configurator implementation.
You may also want to consider using Configuration Attributes to, for example, insert
values that are stored by the host application into the configuration model at the
beginning of a configuration session, as the initial values of specified Features. For more
information about configuration attributes, see Oracle Configurator Methodologies.

Note: Prototyping a configuration model based on a preliminary and
incomplete rule information will likely result in a sub-optimal model,
or require additional redesign iterations.

The following circumstances are relevant to model design:

• You have over 2,000 rules, or you have rules that exhibit any of the following
characteristics:

• Complexity with subexpressions, especially if the subexpressions are used in
multiple rules

• Specific order or sequence in which the rules must be executed

• You use the following types of rules in your configuration model:

• Compatibility

• Comparison

• Defaults

• Rules that use the NotTrue operator

• You are importing rules from a legacy system

Before importing rules from a legacy system, be sure to carefully analyze them and
consider whether they could be more efficiently implemented by creating new rules
from scratch in Oracle Configurator Developer. Importing legacy rules directly into
Configurator Developer will likely result in less than optimal rules that contain
duplicate sub-expressions.

Planning Your Model Design 2-7

Lifecycle and Maintainability Expectations
It is important to carefully consider how long your configurable product will be
available, plan for how you will maintain it until it is removed from production, and set
company expectations accordingly. You should understand the maintenance
requirements of your product - such as how often new items will be added, existing
items will be modified, and so on - and the impact these tasks will have on your overall
business. For example, when the model needs to be updated, will it need to be taken out
of production? If so, for how long?

Consider reviewing your business processes to determine if there are areas that can be
changed to minimize the impact that configuration model maintenance has on your
business, and plan for the kinds of changes that will occur throughout the life cycle of
your product.

Starting Your Model Design 3-1

3
Starting Your Model Design

Before reading this chapter, review the planning guidelines in Chapter 2 Planning Your
Model Design to help identify areas of special considerations in an Oracle Configurator
project.

This chapter presents the design questions you should ask yourself in order to identify
which best practices apply to your project.

Read through the questions on the following pages to help you identify relevant design
decisions that are presented as some of the best practices and case studies in the
following chapters. This list of design questions is intended as a starting point and does
not include all the questions that are useful to ask as you begin your Oracle
Configurator project.

This chapter covers the following topics:

• Do You Expect Configurator to Display Large Lists of Options?

• Are the Same Product Elements Repeated in Separate Models?

• Are You Modeling Many Related Products?

• Do You Need Default Values Set Automatically?

• Does Your End User Need to See the Bill of Materials?

• Will Configurations Contain Instances of a Component?

• Will Your Configurator Collect Many End-User Inputs?

• Does Configurator Depend on Information Collected Upstream?

• Does Configurator Pass Non-Orderable Information Downstream?

• Are Some Selections Disallowed Until Other Selections Are Made?

• Will Your Rules Include Repeating Patterns or Redundancy?

• Are Your Configuration Rules Based on Legacy Rules?

• Do You Need to Express Compatibilities in Your Model?

• Do You Need to Express Comparisons in Your Model?

3-2 Oracle Configurator Modeling Guide

Do You Expect Configurator to Display Large Lists of Options?
Many options means more than 100 selectable items in one list of options. Hundreds or
thousands of selectable options displayed for end users cause usability and
performance problems.

Other Ways To Phrase This Question
Does your BOM Model contain any BOM Option Classes with more than 100 selectable
items?

What is an efficient way to design a BOM Option Class or Option Feature containing a
large number of option selections?

Structure Decisions
Apply the following best practices when optimizing the design of large numbers of
options or inventoried parts:

• Optional and Multiple Instantiation, page 4-9

• Explicit Model Structure Versus Abstractions, page 4-2

• Grouped Versus Ungrouped Items, page 4-18

Rule Decisions
Apply the following best practices when optimizing the rule design of large numbers of
options:

• Large Option Features and Option Classes, page 4-18

UI Decisions
Apply the following best practices when optimizing the UI design of large numbers of
options:

• Optimizing User Interface Performance, page 4-40

Are the Same Product Elements Repeated in Separate Models?
Any identical or similar model structure that is duplicated at least twice in your Model
can be considered as a repeating product element. For example, BOM Option Classes
that are similar share some options in common, but also contain different options, as
shown in Repeating Similar Product Elements, page 3-3 graphic.

Starting Your Model Design 3-3

The graphic shows two BOM Option Classes, "Option Class 1," and "Option Class 2."
Each BOM Option Class contains Options, some of which are repeated in the two BOM
Option Classes, and some of which are not. "Option Class 1" contains Options A, B, C,
and D, while "Option Class 2" contains Options A, B, C, E, and F. An arrow points to a
third BOM Option Class that contains a union of the Options A, B, C, D, E, and F.

Repeating Similar Product Elements

Repeating Similar Product Elements, page 3-3 shows that when the separate and
duplicated structure is combined, the total structure that has to be loaded, instantiated,
or maintained is smaller. In this example, the number of nodes has been reduced from
11 to 7, a reduction of 36%. When combining structure in this way, you need
appropriate rules to ensure that only the relevant options are visible or available where
the abstraction appears in the runtime Oracle Configurator.

Other Ways To Phrase This Question
Are there high degrees of similarity across multiple models?

Are the same BOM Option Classes used in multiple BOM Models?

Where in your BOM Model structure can you take advantage of referencing?

Would combining several similar BOM Option Classes into one BOM Option Class
containing a union of all possible options decrease the overall number of options that
need to be loaded or instantiated in Oracle Configurator?

Structure Decisions
If the same product elements repeat in separate models, use the following best practices
to optimize your model design:

3-4 Oracle Configurator Modeling Guide

• Explicit Model Structure Versus Abstractions, page 4-2

• Explicit Model Structure Versus References, page 4-7

• Shallow Versus Nested or Deep Hierarchy, page 4-14

Are You Modeling Many Related Products?
Hundreds or thousands of separate products with similar or duplicate items cause
maintenance, performance, and scalability problems.

Other Ways To Phrase This Question
Do your end users configure similar products from a large product line?

Do your products contain many common elements, repetitive structure, or similar sets
of selections?

Do you use multiple BOM Models to represent different combinations of the same
general product?

When should you use generic BOM Models and when should you maintain a set of
explicit BOM Models for the same structure?

Structure Decisions
Apply the following best practices when optimizing the design of large numbers of
related products:

• Explicit Model Structure Versus Abstractions, page 4-2

• Explicit Model Structure Versus References, page 4-7

• Optional and Multiple Instantiation, page 4-9

• Shallow Versus Nested or Deep Hierarchy, page 4-14

Do You Need Default Values Set Automatically?
Default values present suggested or likely values that end users could change if desired
but do not need to change to complete the configuration. There are many ways to
implement the effect of default values, some of which, such as Defaults rules, are more
costly to Configurator performance than others.

Other Ways To Phrase This Question
Do end users expect to see default, initial, or recommended values already filled in

Starting Your Model Design 3-5

when they start up Oracle Configurator?

Do end users expect to see default values filled in automatically to accelerate
completion of the configuration as they make selections?

When is it efficient to add defaults to end user requests?

Rule Decisions
Apply the following best practices when designing pre-selected or default values:

• Defaults Rules Versus Alternatives to Default Selections, page 4-20

Does Your End User Need to See the Bill of Materials?
If configurations are based on a BOM Model, you need to determine if end users need
the BOM items to appear in Oracle Configurator exactly as they appear in Inventory
and Bills of Material. With very large BOMs or novice end users, displaying the entire
BOM is not optimal or desirable.

Other Ways To Phrase This Question
Is the end user a product expert who expects to make selections of parts by their part
numbers or part descriptions?

Does the end user need guidance in making appropriate selections to create a valid
configuration?

When is it efficient to define a guided buying or selling model instead of exposing the
BOM items for selection?

Structure Decisions
If your end users expect to see the BOM, use the following best practices to optimize
your model design, especially if your BOM is large:

• Grouped Versus Ungrouped Items, page 4-18

If your end users do not expect to see the BOM, use the following best practices to
optimize your model design:

• Guided Buying or Selling, page 4-12

UI Decisions
If your end users do not expect to see the BOM, use the following best practices to
optimize your model design:

• Optimizing User Interface Performance, page 4-40

3-6 Oracle Configurator Modeling Guide

Will Configurations Contain Instances of a Component?
The word "component" refers not only to Configurator Developer Components, but any
configurable element in a configuration model, including instances of BOM Models,
Models, and Components.

Hundreds or thousands of instances that end users must add interactively to the
configuration, or that must be instantiated at startup cause usability and performance
problems. Adding an instance is more costly to performance than selecting an option.

Other Ways To Phrase This Question
Do you have many instances of a component with no constraints among the selections
within the configuration of each instance?

Do you need your end users to add many instances of a component, or can instances be
added programmatically?

Structure Decisions
Apply the following best practices when optimizing the design of adding instances:

• Optional and Multiple Instantiation, page 4-9

Rule Decisions
Apply the following best practices when optimizing the rule design of adding instances
with a Configurator Extension:

• Configurator Extension Design, page 4-42

User Interface Decisions
Apply the following best practice when optimizing the design of UIs:

• When adding instances programmatically, add them early in the configuration
session, prior to the end user making many user selections. Each time an instance is
added, the user's inputs are retracted and reasserted thus affecting performance. By
adding them at the beginning of the configuration session, this performance
problem can be mitigated.

Will Your Configurator Collect Many End-User Inputs?
This question identifies hundreds or thousands of inputs that are only passed as
parameters and contribute to but are not constrained by rules in the configuration
session. Designing Oracle Configurator to include collecting such end-user inputs can

Starting Your Model Design 3-7

cause usability and performance problems. In some cases such data input can occur
more efficiently outside the configuration session.

Other Ways To Phrase This Question
Do you expect end-user interactions to be extensive and repetitive?

Do you have end-user inputs that do not participate directly in rules or calculations?

Do you feel that your end users would be able to enter data into a spreadsheet?

Will your end user enter data as option selections or as text or numeric inputs?

UI Decisions
Apply the following best practices when optimizing the UI design of models with large
numbers of end-user inputs:

• Large Amounts of End-User Data Collected Using Configurator Extensions, page 4-
42

Does Configurator Depend on Information Collected Upstream?
Information that is collected by the host application for the configuration session, but is
not needed in downstream processes, should be passed to Oracle Configurator as
configuration attributes. Structuring this information as orderable items can cause
usability and maintenance problems because it bloats the BOM and must be dealt with
as order line items. Configuration attributes are explained in Oracle Configurator
Methodologies.

Other Ways To Phrase This Question
Do you expect attributes or parameters to be passed into Oracle Configurator?

Is there data besides items and quantities of items that is needed for computation in
Oracle Configurator?

Is there non-item information on the order line before configuration that Oracle
Configurator needs in computations?

Structure Decisions
Apply the following best practice when optimizing structure that includes passing
attributes into Oracle Configurator:

• Items Versus Alternatives to Items, page 4-14

3-8 Oracle Configurator Modeling Guide

Does Configurator Pass Non-Orderable Information Downstream?
Information collected from the configuration session that is needed in downstream
processes should be passed as configuration attributes. Structuring this information as
orderable items can cause usability and maintenance problems because it bloats the
BOM and must be dealt with as order line items.

For more information about configuration attributes, see Oracle Configurator
Methodologies.

Other Ways To Phrase This Question
Do you expect attributes or parameters to be passed out of Oracle Configurator?

Is non-item information, meaning not items or their quantities, needed on the order
line?

Are the results of computations in Oracle Configurator needed in downstream
processing?

Are items used to represent non-manufacturable entities to indicate details about
another item or operation? For example, modeling color choices as a set of options, or a
range of allowable dimensions for a product as discrete items.

Structure Decisions
Apply the following best practice when optimizing structure that includes passing
attributes out of Oracle Configurator:

• Items Versus Alternatives to Items, page 4-14

Are Some Selections Disallowed Until Other Selections Are Made?
The purpose of this question is to find out whether you are implementing any
Statement Rules that use the NotTrue operator. This is not recommended as using
NotTrue may cause propagation issues under certain circumstances if it imposes order
in the rules.

Other Ways To Phrase This Question
Do you have rules that make some options not selected until some other option is
selected?

Are you planning on using NotTrue in Statement Rules (rules written in CDL)?

Do you want to disallow some option selections when other options are not selected?

Do you need to impose dependencies among option selections?

Starting Your Model Design 3-9

Rule Decisions
Apply the following best practice when optimizing a rule design that imposes order on
option selections, or locks the initial value of components:

• NotTrue Logical Function Imposes Order and Causes Locking, page 4-28

User Interface Decisions
Do not use the NotTrue operator to control the selection state or visibility of options in
the runtime User Interface. For example, you may want to disallow some option
selections in the UI when other options are not selected, or define specific dependencies
among option selections. Such dynamic behaviors can be easily implemented in a User
Interface created in Configurator Developer by using display conditions. For details, see
the Oracle Configurator Developer User's Guide.

Will Your Rules Include Repeating Patterns or Redundancy?
Repeating patterns or redundancy means that several rules include the same
subexpressions or have the same result. This could cause performance issues.

Other Ways To Phrase This Question
Does your model require calculations that contribute to other calculations?

Are the same Options or Features that are used in AnyTrue or AllTrue expressions used
in multiple rules?

Rule Decisions
Apply the following best practices when optimizing the rule design of models
containing common subexpressions or repeated patterns:

• Repetitive Rule Patterns and Redundancy, page 4-24

Are Your Configuration Rules Based on Legacy Rules?
New rules that are based existing rules from a legacy system, or rules imported directly
from a legacy system, are much less likely to perform well in Oracle Configurator.
Often, legacy rules contain repeating patterns or introduce redundancy, which means
that several rules include the same subexpressions or have the same result.

For best runtime performance, Oracle recommends defining constraints and relations in
Configurator Developer, following the general recommendations described in Chapter
4, Best Practices.

3-10 Oracle Configurator Modeling Guide

Rule Decisions
Apply the following best practices when optimizing the rule design of models
containing common subexpressions or repeated patterns:

• Repetitive Rule Patterns and Redundancy, page 4-24

Do You Need to Express Compatibilities in Your Model?
This means you have many options that require and exclude other options. There are
several ways to implement this to achieve optimal performance and maintainability.

Other Ways To Phrase This Question
Do you need to express incompatibilities in your model?

Are relationships between options or items documented as tables?

Do the Options or Items that are involved in compatibility relationships have relevant
property or catalog data?

Rule Decisions
Apply the following best practices when optimizing a rule design that expresses
compatibilities or incompatibilities among options:

• Compatibility Rules, page 4-30

Do You Need to Express Comparisons in Your Model?
This means you need to compare, balance, or rate one set of options against another set
of options. Comparison rules could affect usability by requiring end users to retract
selections before being able to continue. Under specific circumstances involving initial
values, Comparison rules can also lock during propagation.

Other Ways To Phrase This Question
Does your model contain comparison logic?

Rule Decisions
Apply the following best practices when optimizing a rule design that expresses
comparisons:

• Comparison Rules, page 4-35

Best Practices 4-1

4
Best Practices

Before reading this chapter, review the design questions in Starting Your Model Design,
page 4-1 to help you identify best practices that are relevant to your Oracle
Configurator project.

Applying the following best practices in various combinations will improve the
performance, usability, maintenance, and scalability of your configuration models.

Many of these best practices include detailed instructions. You can gain useful
information by reading all of them, even though some are not directly connected to a
design question. To understand these best practices, you must be familiar with the
specifics of creating configuration models. See the Oracle Configurator Developer User's
Guide for details.

This chapter covers the following topics:

• Explicit Model Structure Versus Abstractions

• Explicit Model Structure Versus References

• Optional and Multiple Instantiation

• Guided Buying or Selling

• Shallow Versus Nested or Deep Hierarchy

• Items Versus Alternatives to Items

• Large Option Features and Option Classes

• Defaults Rules Versus Alternatives to Default Selections

• Repetitive Rule Patterns and Redundancy

• Number and Complexity of Rules

• NotTrue Logical Function Imposes Order and Causes Locking

• Compatibility Rules

• Comparison Rules

• Connectors with Connection Rules

4-2 Oracle Configurator Modeling Guide

• Optimizing User Interface Performance

• Large Amounts of End-User Data Collected Using Configurator Extensions

• Configurator Extension Design

Explicit Model Structure Versus Abstractions
Abstraction is a design approach used to optimize performance and usability of a
configuration model by reducing many related products or product elements to generic
elements and eliminating repetition. Abstraction may also be as simple as merging
overlapping sets of data, as described in Are the Same Product Elements Repeated in
Separate Models, page 3-2.

Many companies define BOM Models as an explicit representation of their products
with no abstractions to streamline the structure or volume of items. (See the graphic
Explicit Structure, page 4-2 for an example.) Loading all BOM Models and presenting
entire product lines to end users for selection may result in poor performance and
usability. An alternative approach transforms many explicit BOMs into one root BOM
referencing a smaller number of configurable components that are abstractions of
related structure. Such a model loads faster, thereby improving performance.
Configurator usability is also improved by confining end-user access to only those
optionally added instances of the configurable components that are needed in the
configuration.

Explicit Structure
Explicit Model structure contains no abstractions and no References. The graphic
Explicit Model Structure, page 4-3 shows a series of explicit Models, each containing
the same BOM Option Class.

The graphic shows a simple Model repeated 1,000 times. Each version consists of a
BOM Option Class with a large number of the same Options and another BOM Option
Class containing a few unique Options.

Best Practices 4-3

Explicit Model Structure

Explicit Model Structure, page 4-3 illustrates 1,000 Models repeating explicitly, each
containing repeating elements. One BOM Option Class in each Model contains Options
that repeat across the 1,000 BOM Option Classes, while another BOM Option Class
contains Options unique to each of the 1,000 BOM Model.

Duplicate structure or common elements that are explicitly repeated in hundreds or
thousands of Models do not scale well as your business grows. Many explicit Models
with repetitive structure require repetitive maintenance.

It may not be possible or necessary to change your explicit Models to take advantage of
abstractions and references, for any of the following reasons:

• You wish to preserve existing BOM Model and routing definitions

• You need to source each explicit Model to a different organization, supplier, or flow
line.

• You can adjust your hardware and memory to accommodate many or large explicit
Models

• The number of explicit Models is not large enough to significantly affect
maintenance, scalability, and performance

• The explicit Models are not large enough to significantly affect maintenance,
scalability, and performance

Permutation
The term permutation refers to a poor modeling practice that adversely affects runtime
performance and significantly adds to how much effort is required to maintain a
configuration model. This practice can be avoided using the abstraction technique

4-4 Oracle Configurator Modeling Guide

described later in this section.

For example, an end user can select from the following characteristics when configuring
a hypothetical product:

• Product Type: (4 options)

• Speed (20 options)

• Service Level (3 options)

Based on these options, there are 240 permutations available to the end user (4 x 20 x 3 =
240). If your solution to this configuration problem is to construct a single Model with
Standard Items for each permutation, then the configuration will contain every possible
orderable item, although the user will never pick more than one. Such a configuration
model will scale very poorly when new items are added in the future. For example,
adding a single item (such as a new service level) increases the number of permutations
from 240 to 320.

Constructing a Model as an abstraction with 3 Option Classes (one each for Type,
Speed, and Service Level) and 27 Standard Items is preferable and will scale much
better than the previous example (that is, defining 240 Standard Items). However,
downstream applications for manufacturing or provisioning the product or service will
require different setups for such a modeling approach. This is one of the trade-offs to
consider when evaluating modeling styles.

Another approach is to create a single Model with three attributes that collect
information about the Type, Speed, and Service Level that the end user requires. Using
configuration attributes is also preferable to the first example, but adds difficulty to the
implementation and increases the reliance of downstream applications to process the
information that is passed from Oracle Configurator. Configuration attributes are
explained in Oracle Configurator Methodologies.

Abstractions
An abstraction is a generic part that expresses all the essential characteristics of a
specific part. For example, the related models shown in Explicit Model Structure, page
4-3 can be redefined as one top-level root Model containing a BOM Option Class or
BOM Model submodel whose contents is M1 through M1,000 redefined as ATO Items.
Abstraction of Related Products, page 4-5 shows M1 through M1,000 each containing
their unique elements as BOM Standard Items. The repeating elements occur only once
as a child BOM Option Class under the top-level root Model.

The following graphic shows a top-level root Model abstraction of the 1,000 Models
presented in Explicit Model Structure, page 4-3. The repetitive BOM Option Class with
the large number of the same Options occurs only once, and another BOM Option Class
containing a few unique Options.

Best Practices 4-5

Abstraction of Related Products

The redesign with abstractions shown in Abstraction of Related Products, page 4-5 is
easier to maintain than the Models in Explicit Model Structure, page 4-3. The number of
nodes (per the graphic) has been reduced from 40 to 23, a reduction of 42.5%. See
Downstream Consequences in Other Oracle Applications, page 4-6 for a discussion of
the possible trade-off when choosing this kind of redesign.

Together with optional instantiation and referencing, abstractions perform and scale
better than structure containing explicit, related product definitions. For details about
referencing and optional instantiation, see Optional and Multiple Instantiation, page 4-
9 and Explicit Model Structure Versus References, page 4-7. Additionally, turning
non-orderable items into alternatives such as Features could further optimize the
structure. For details about alternatives to items, see Items Versus Alternatives to Items,

4-6 Oracle Configurator Modeling Guide

page 4-14.

Downstream Consequences in Other Oracle Applications
A separate, explicit ATO Model is sourced from only a single organization or supplier.
Multiple sources and option-dependent sourcing are not supported. In the Abstraction
of Related Products, page 4-5 graphic, all the configured items M1 to M1000 are sourced
in the same organization. If you need configurations of these Models to come from
different organizations, you need to use an explicit structure such as shown in Explicit
Model Structure, page 4-3.

In Abstraction of Related Products, page 4-5, all the configured items M1 to M1000 are
built on the same flow line defined in Flow Manufacturing. If you need configurations
of these Models to be built on different flow lines, you need to use an explicit structure
such as shown in Explicit Model Structure, page 4-3.

Models M1 to M1000 are unique because they contain components (such as Options X1,
X2, and so on) available only to one of the Models (M1). The abstraction of Models M1
to M1000 as ATO items in Abstraction of Related Products, page 4-5 must include those
components as BOM Standard Items under the Option Classes M1 to M1000. For a
configuration to contain selections from Options A to ZZ, as well as one of the ATO
items, change the BOM Models so Options X1, X2, and so on do not appear under an
Option Class. In configurator, you would only see options M1 to M1000 and A to ZZ.
All mandatory components (X1, X2, X3 and so on) just appear on the BOM under M1.

Each configuration of the explicit Models M1 to M1000 results in one bill of material
and routing definition to build the entire configuration. After moving the abstract
top-level root Model, each configuration receives its own bill of material and routing,
and each of the ATO item options (M1-M1000) maintains its own bill of material and
routing. This can be avoided if M1 to M100 are defined as phantom items. However,
phantom items do not participate in Available To Promise (ATP) and Advanced
Planning.

Related Best Practices and Relevant Case Studies
Top-level root Models typically access abstract structure through referencing. See
Explicit Model Structure Versus References, page 4-7.

Referencing and abstractions alone do not address performance and memory issues
associated with instantiating many components at runtime. See Optional and Multiple
Instantiation, page 4-9 and Grouped Versus Ungrouped Items, page 4-18. See also
Items Versus Alternatives to Items, page 4-14.

The case study described in Many Large BOM Models, page 5-1 illustrates the use of
redesigning explicit structure as abstractions.

Best Practices 4-7

Explicit Model Structure Versus References
It is good modeling practice to use referencing instead of explicit structure if your
configuration models contain:

• Duplicate or repeating product information

• Common elements or product definition

Explicit Structure
Explicit Model Structure, page 4-3 shows examples of many related products defined
explicitly in Models.

Model References
Models with References are easier to maintain and require less memory to load than
structure containing explicit common product definitions.

When importing BOMs, all submodels in the top-level root BOM Model are imported as
references. See the Oracle Configurator Implementation Guide for information about BOM
structure after it has been imported into the CZ schema.

Referencing BOM Option Classes
BOM Option Classes cannot be shared by reference. Redesigning the BOM Option Class
in M1 through M1,000 in Explicit Model Structure, page 4-3 so that it can be referenced
requires turning it into a phantom ATO model containing Option A through Option ZZ.
Another Possible Abstraction of Related Products, page 4-8 shows the BOM Option
Class redefined as a phantom ATO model so that it can be referenced in M1 through
M1,000.

The following graphic shows the BOM Option Class with the large number of the same
Options in the previous figure now changed into an ATO Model. The 1,000 explicit
Models each contain a reference to the ATO Model.

4-8 Oracle Configurator Modeling Guide

Another Possible Abstraction of Related Products

Changing BOM Option Classes into BOM Models has the following consequences
within Oracle Configurator:

• BOM Models cannot express a mutually exclusive relationship

• BOM Model Items cannot participate in Compatibility Rules because Compatibility
Rules enumerate all of the allowed combinations of Options from the participant's
Features. If a selection is made from each participant Feature and the selections do
not correspond to one of the rows in the Explicit Compatibility table or do not
satisfy the Property-based criteria, then there is a contradiction.

• BOM Models with a logic state of true do not allow the last available Option to be
set to true

Note: If you have redesigned BOM Option Classes as phantom ATO
Models, you cannot specify a value greater than 1 to the Instances
Maximum.

Non-Imported Model References
Referencing is a technique used to optimize development and maintenance of a

Best Practices 4-9

configuration model in which the same submodel appears multiple times in the
structure. Replacing each explicit occurrence of the submodel with References to a
separate Model that represents the submodel can also improve runtime performance.
Additionally, it is a good idea to place a Component with repetitive structure within a
non-imported Model and then create References to that Model. See the Oracle
Configurator Developer User's Guide for information about using Model referencing in
configuration models.

Downstream Consequences in Other Oracle Applications
A BOM submodel behaves like a BOM Option Class in most of the Oracle Applications
if you leave the Supply Type of the BOM submodel set to phantom on its parent BOM
Model.

In Flow Manufacturing, some conveniences in defining BOM Option Classes are not
available when defining BOM Models. For example, you cannot create a common
routing for all BOM Models as you can for all BOM Option Classes under a parent BOM
Model.

Related Best Practices and Relevant Case Studies
Referencing is used when creating abstractions. See Explicit Model Structure Versus
Abstractions, page 4-2.

See Many Large BOM Models, page 5-1.

Optional and Multiple Instantiation
Optional instantiation is an implementation approach used to optimize performance of
a configuration model by creating a component instance only if and when it is needed.
This prevents Oracle Configurator from loading model elements at initialization that
may not be selected or needed in the configuration session.

Multiple instantiation is an implementation approach used to optimize usability by
allowing end users to create and individually configure multiple occurrences of a
Model or Component at runtime, as needed. For more information about multiple
instantiation, see the Oracle Configurator Developer User's Guide.

Optional Instantiation of BOM Option Classes
It is good modeling practice to convert a large hierarchy of BOM Option Classes to a
hierarchy of optionally instantiable BOM Models. For guidance in converting BOM
Option Classes into BOM Models, see Referencing BOM Option Classes, page 4-7. The
selective instantiation improves runtime memory usage and reduces caching of
redundant data. For example, if M1 through M1,000 in Explicit Model Structure, page 4-
3 contained more structure, as shown in Explicit Nested Hierarchy, page 4-10, the
resulting large number of Model elements that need to be loaded and instantiated could

4-10 Oracle Configurator Modeling Guide

affect performance and usability adversely.

The following graphic shows an ATO Model containing a BOM Option Class with
several child BOM Option Classes, each with unique Options.

Explicit Nested Hierarchy

Rather than load all the explicit, nested BOM Option Classes of Explicit Nested
Hierarchy, page 4-10, define them once as BOM Models and include them by reference
in M1 through M1,000, as shown in Referenced Nested Hierarchy, page 4-11. Be aware
of the consequences of changing BOM Option Classes into BOM Models, as described in
Referencing BOM Option Classes, page 4-7.

The graphic Referenced Nested Hierarchy, page 4-11 shows the ATO Model from the
previous figure now with references to a submodel containing references to child
Models that in the previous figure were the nested BOM Option Classes.

Best Practices 4-11

Referenced Nested Hierarchy

To save additional memory and improve runtime performance, make the References in
Referenced Nested Hierarchy, page 4-11optionally instantiable.

Not loading instances at start up and instead implementing optional instantiation can
result in significant performance improvement. However, requiring end users to
instantiate many components interactively one at a time may affect usability. Instead,
implement guided buying or selling to find out how many instances the end user needs
and implement a Configurator Extension that instantiates that number of components
all at the same time.

With optional instantiation, as with multiple instantiation, instances cannot be created
using rules. Either the minimum is set, the end user clicks an Add button, or a
Configurator Extension adds instances based on inputs. Using optional instantiation in
a generated UI of the BOM structure results in Add buttons that end users must
understand how to use to complete a configuration. If your end users are not product
experts, consider using guided buying or selling questions. See Guided Buying or
Selling, page 4-12 for details.

Setting Node Values After Adding Instances
Design your UI flow and Configurator Extension so that instances are added when
there are as few settings as possible. Adding an instance causes all previous requests to
be retracted, after which the requests are added and reasserted. This occurs with each
component addition. It is good modeling practice to delay setting the states or values of
nodes until after all instances are added either at startup (with a Configurator Extension
bound to the postConfigNew event) or early in the end-user flow of a configuration
session. See also The postConfigNew Configurator Extension, page 4-22.

Adding an instance is particularly expensive when there are default values set by
configuration rules. Retracting default assertions is time-consuming and iterative. See
Defaults Rules Versus Alternatives to Default Selections, page 4-20 for details. The
initial values set in Configurator Developer for Boolean Features should also be
regarded as default values.

4-12 Oracle Configurator Modeling Guide

Downstream Consequences in Other Oracle Applications
See Downstream Consequences in Other Oracle Applications, page 4-9 for the effects on
Oracle Applications of changing a BOM Option Class into a BOM Model.

Multiple instantiation of submodels is only available if the parent ATO BOM Model's
Supply Type is set to non-phantom. This means that each configured instance of the
Model receives its own configuration Item number, bill of material, and routing, and is
built or bought individually.

Large Numbers of Instances
If your Model has large numbers of instances, check for similarity among instances. If
many sibling components are nearly identical, meaning they only differ in the value of
their attributes and are not distinguished by connectivity, consider representing the
entire set of instances as a single instance. You can store the set of attribute values
offline or in a custom table.

Related Best Practices and Relevant Case Studies
See Explicit Model Structure Versus References, page 4-7.

See Large Option Features and Option Classes, page 4-18.

See Many Large BOM Models, page 5-1.

Guided Buying or Selling
Guided buying or selling questions are intended to guide end users to specific
selections and valid configurations.

The size or complexity of your Model may cause usability or performance problems at
runtime. Large models, even if not complex, may require large amounts of memory to
load, or require end users to make many selections or page through many options.
Complex models, even if not large, may require long end-user think time and
complicated navigation. Under these circumstances, you can simplify or streamline the
end-user's experience by defining guided buying or selling structure.

Guided buying or selling questions gather user inputs to accomplish any of the
following scenarios:

• End users reach a valid configuration solely by answering guided buying or selling
questions

• End users complete a configuration by making additional selections after their
answers to guided buying or selling questions make an initial set of selections

• End users only see a narrowed set of selections after answering guided buying or

Best Practices 4-13

selling questions

You implement these behaviors by adding rules that tie the end-user inputs to the
selection or exclusion of options.

Generating a default UI for a large imported BOM may result in an unreasonably large
and poorly performing runtime session. You can use guided buying or selling UI
structure to control which elements of the imported BOM you want exposed and visible
in the UI. This requires defining rules that associate the guided buying or selling UI
structure to the BOM Model items and disabling the UI visibility attribute of the BOM
nodes before generating the UI.

Manufacturing vs. Sales View of a Model
In many cases, the Sales and the Manufacturing organizations of a company have very
different views of the product definition. This can driven by several factors, including:

• The need to display customer-friendly item names rather than part numbers

• The need to simplify the product structure for customers

• The need to sell functions instead of options and features.

For example, electrical motors are sold based on their output characteristics, not
based on their components.

• Marketing requirements

For example, the name of an option must remain the same from a sales and
marketing perspective, whereas the manufacturing option may change

• Sales packages

For example, different groups of manufacturing options may be included in
different sales packages.

For companies that were previously using two separate configuration solutions for their
Sales and Manufacturing operations, the result may be two separate configuration
models and the need to "translate" Sales configurations into Manufacturing
configurations when an order is sent to production.

With Oracle Configurator, the same configuration model is shared by the entire
Enterprise, and requirements from the different divisions that are involved in the
configuration process need to be considered throughout the configuration model design
phase.

As a Configurator model designer, you may want to use your current Manufacturing
structure as the basis for your configuration model, and create additional structure to
satisfy Sales requirements, adding configuration rules to map the Sales options to
Manufacturing rules. This approach can lead to performance issues as it increases the
size of the model and the number of rules. Instead, the recommended approach is to

4-14 Oracle Configurator Modeling Guide

review and modify (if necessary) your Manufacturing structure to accommodate Sales
requirements, thereby optimizing your configuration model's performance and
usability. For example, you can expose Manufacturing options to end users by giving
the related item a user-friendly description and then displaying the description (rather
than the item name) in the Configurator User Interface.

In most cases, using the current Manufacturing structure is not recommended. Be sure
to evaluate whether functionality in Oracle Configure to Order (CTO) or other
applications will permit changes to the model design that benefits deployment and
minimizes the amount of future maintenance.

Shallow Versus Nested or Deep Hierarchy
The depth of Model structure is determined by the levels of hierarchy contained under
the root node. Shallow structure is acceptable when not displaying BOM nodes in the
UI. A shallow structure generally decreases the size of the configuration model and
potentially eases downstream processing.

Deeply nested structure takes advantage of the performance gains made when using
optional instantiation to load only those parts of the Model structure that are needed.
Nesting items into deeper structure can also ease Model maintenance. However, deep
nesting may distribute end-user selections across UI pages in a manner that requires
end users to flip back and forth as they check previous selections. When this is the case,
guided buying or selling questions can significantly ease navigation flow. See Guided
Buying or Selling, page 4-12 for additional information about guided buying or selling.

Related Best Practices
See Explicit Model Structure Versus References, page 4-7 for descriptions of nested
structure. Nested or deep hierarchy affects performance when used with optional
instantiation. See Optional and Multiple Instantiation, page 4-9.

Relevant Case Studies
See Many Large BOM Models, page 5-1 and Many BOM Items, page 6-1.

Items Versus Alternatives to Items
Items either need to appear on the order line, or they need to represent characteristics
that are needed as input somewhere in the process. Some item information is only
needed as a temporary value during configuration.

You should define Inventory Items only for elements of your structure that need to be
ordered or routed downstream from Oracle Configurator. For example, elements of
Model structure that must appear on an order line and are picked or assembled for
shipping need to be Inventory Items.

Best Practices 4-15

Alternatives to Inventory Items are Option Features or configuration attributes. For
upstream item information that is needed in Configurator computations or for
downstream processing such as calculations or passing along information about an
item, you should define an alternative to Items.

For example, if you have raw materials that are ordered by lengths, do not create an
item for each length. Instead, define a single item for each raw material with an
attribute: Length. Then capture the needed length from the end user by a numeric input
or from a List of Options, and associate that input with the attribute.

For another example of changing explicit items into Features, compare Explicit Model
Structure, page 4-3 with Abstraction of Related Products, page 4-5.

For more information about configuration attributes, see Oracle Configurator
Methodologies.

Values Needed For Configuration Only
If the value is not needed in any way downstream but only for completing the
configuration, use non-BOM Features and Options. These values cannot participate in
downstream calculations.

For information about leveraging the power of Properties, see Oracle Configurator
Developer User's Guide.

Values Needed Downstream
If the value is needed downstream, such as in Fulfillment or Billing Integration, and
represents a Configurator computation or inputs from the end user, you can define
configuration attributes to pass along those inputs. For performance reasons, it is
optimal to define as few attributes as possible. Omit Feature and attribute definitions
from your Model structure whose values can be referenced from other Model structure
or computed in custom code downstream from other attributes. If a value cannot be
referenced or computed using custom code, minimize the set of attributes and Features
you define in the Model structure. If an attribute is shared among multiple components,
use inheritance to share the Feature in which the attribute is defined.

See Oracle Configurator Methodologies for details about implementing configuration
attributes. Note that configuration attributes are not accessible to downstream
applications without customization.

For example, consider a Container Model that defines a configurable Public Switched
Telephone network (PSTN). The top-level Model contains two Components: Primary
Line (1/1) and Child Line (29/29). Each Component contains Items (such as Application
Date and Billing Date) that have been modeled as attributes of Features and are
required for downstream processing. All the Features are hidden in the runtime UI. A
Configurator Extension rule gets the required attribute values from custom code
outside Configurator and copies the values for the model and its submodels. The
duplication of data across many models and the process of copying the values causes

4-16 Oracle Configurator Modeling Guide

poor performance when the configuration is saved, restored, or during batch validation.

For details about using the type of attributes referred to in this example, refer to the
method for using configuration attributes with Install Base that is described in the
Oracle Telecommunications Service Ordering Process Guide.

The graphic Model Design with Minimal Set of Features, page 4-17, shows a better
Model design that moves all the duplicated common attribute Features to the top-level
Container model.

Best Practices 4-17

Model Design with Minimal Set of Features

The design includes attribute Features for unique attributes at the individual Model
level. A Configurator Extension copies the value from the custom application to the
top-level Features. Attribute Mode set to ALL propagates the value from the top-level
Model to all the submodels.

4-18 Oracle Configurator Modeling Guide

Related Best Practices and Relevant Case Studies
See Many BOM Items, page 6-1.

Large Option Features and Option Classes
If your Model contains large BOM Option Classes or Option Features, evaluate the
following best practices for possible use in your project:

• Grouped Versus Ungrouped Items, page 4-18

• Maximum Selections on Large Option Classes or Features, page 4-18

• Alternatives to Option Features With Many Options, page 4-20

If your design cannot eliminate the need for configuring BOM Option Classes with
large numbers (for example, hundreds) of Items, be aware that the Generic
Configurator UI does not perform faster than a generated Configurator UI. With the
generated Configurator UI you can use multiple screens to display BOM Option Classes
with large numbers of Items. If you are using guided buying or selling questions, hide
all the Items and have the guided selling questions drive the selections. See Guided
Buying or Selling, page 4-12 for more information.

Grouped Versus Ungrouped Items
In cases where there are many options to choose from, the end user's experience and
Oracle Configurator performance can be improved by grouping items into BOM Option
Classes. Typically, you can improve usability and performance by combining grouping
with the use of optional instantiation. This requires changing BOM Option Classes into
BOM Models. See Optional Instantiation of BOM Option Classes, page 4-9 for details.

For example, a manufacturer of upholstered furniture lets customers select fabrics from
a huge inventory, including solids, stripes, floral prints, and geometric patterns. Rather
than have end users flip through screen after screen of swatches in no particular order,
the configuration experience can be organized by types of fabrics, and only the group
that is selected needs to be loaded into memory. End users select one from a subset of
fabrics, thereby reducing the number of displayed options. The inventory that does not
need to be displayed to the end user is not instantiated.

Grouping items can also ease Model maintenance.

Maximum Selections on Large Option Classes or Features
Defining a Maximum Selections on a large BOM Option Class or Option Feature can
adversely affect performance. If an Option Feature contains an Option that participates
in a rule, propagation of that rule triggers a count of the current number of selected
Options. If the maximum number of Options specified by the value of Maximum

Best Practices 4-19

Selections is reached, this rule propagates Logic False to all unselected Options. If the
number of Options is large, propagating Logic False or retracting and reasserting the
logic state on all the Options can cause slow performance.

The best way to improve performance is to restructure the Model or BOM Model to
contain Option Features or BOM Option Classes with fewer Options or Items.

If your business requirements demand many options and a maximum number that can
be selected, and you need the remaining options to be Logic False after the maximum is
reached, then you must set the Maximum Selections and incur the performance cost.

However, since the runtime display icons for both Logic False (from maximum
reached) and Unknown states indicate that an Option is available for selection, your
logic requirements may permit you to set the Maximum Selections to no value and
define the number of allowable selections by using a rule that counts the selected
Options. For example, if you want only three Options to be selected from a Feature,
impose that maximum by defining a Total, a Numeric Rule, and a Logic Rule with CDL
or as a Statement Rule as shown in Maximum Selections Imposed by a Rule, page 4-19.

Maximum Selections Imposed by a Rule
One Feature, F1, contains five Options, and a second Feature, AlwaysTrue, contains one
Option, as shown in the following design:

The rules:
Total T1 tracks the number of options selected.
Numeric Rule: EachOf (Options of F1) Contributes 1 to T1
Statement Rule expressing a Logic Rule with the following expression for
Operand 2: AlwaysTrue Requires Total < 4

At runtime, when the end user selects O1, O2, and O3, the number of selections is less
than 4. When the end user selects O4, the Logic Rule displays a violation message. The
violation message can be customized to explain that the maximum number of allowable
selections has been exceeded.

If your business requirements demand many options and a maximum number that can
be selected, and it does not matter to your implementation whether Options are
Unknown or Logic False, then having them be Unknown is better. The Oracle

4-20 Oracle Configurator Modeling Guide

Configurator engine does not push the Unknown state to other options that are
connected through rules, except if NotTrue is used. Design your configuration model so
that valid configurations are allowed even when numerous Options are Unknown. That
way the CIO and the Oracle Configurator engine process fewer changes on each
end-user action. For example, use the suggested rule for counting selected options to
minimize the propagated Logic False states, instead of the regular Maximum
Selections.

Alternatives to Option Features With Many Options
When an Option from a large Option Feature participates in a rule, the propagation of
that rule triggers an evaluation of all that Feature's other Options. (This does not apply
to BOM Option Classes and BOM Standard Items.) However, if no Options participate
in rules or the Option Feature is not constrained by a maximum number of Options that
can be selected, redesign the Options as Boolean Features. Create a Component
containing the Boolean Features or design all selectable Options as BOM structure.

Redesigning Unconstrained Options as Boolean Features
A Feature called Finish contains four independent furniture finishing Options, Polish,
Stain, Varnish, and Paint, as shown in the following design:

Since end users can select any Option independent of the other Option selections, it is
better to define a Component containing a Boolean Feature for each Option.

Relevant Case Studies
See Many BOM Items, page 6-1.

Defaults Rules Versus Alternatives to Default Selections
Defaults Logic Rules reduce the number of required end-user selections by providing
the following:

• Initial values when Oracle Configurator is launched

Best Practices 4-21

• Filled-in values during the configuration session based on end user selections

• Filled-in values at the end of the configuration session to complete the
configuration

Some implementations of Defaults relation can cause performance problems at runtime,
especially when propagation of the defaulted items affects many other items. This is
because the Oracle Configurator engine retracts default values before applying or
reapplying user requests or adding or deleting components.

Evaluating the Need for Default Selections
When designing a configuration model, add Defaults Logic Rules at the end of the
design process and weigh the performance cost of adding them against the perceived
benefit to the end user.

The following considerations can help you determine the usefulness of setting initial
values:

• Analyze how often the end user changes the default selections that are
automatically made by these rules. If you expect that default selections are often
changed, then you will gain runtime performance by removing those Defaults
relations.

• Analyze the runtime performance when Defaults relations are active, compared to
when the Defaults relations are disabled and end users have to make initial
selections explicitly.

Activating Defaults on End User Request
If you intend to apply default values to complete the configuration session rather than
set selections during the configuration session, design the Defaults Logic Rules so they
are not processed at runtime until the end user requests them. For example, create a
Boolean Feature at the root of the Model for this purpose. This Boolean Feature could be
called ApplyDefaults.

1. Create a Statement Rule with Operand 1 of the Defaults relation defining a
condition.

2. In every Defaults relation, replace

Example
X Defaults Y

where X is the condition, and Y is the result, with

Example
AllTrue (X, ApplyDefaults) Defaults Y

Note that it is enough to define this rule as AllTrue (Apply Defaults) if X is

4-22 Oracle Configurator Modeling Guide

always true.

3. Write a Configurator Extension bound to the preConfigSaveevent that sets the
ApplyDefaults Boolean Feature to True. This causes applicable Defaults to be
applied so their consequences appear in the output.

4. Write a Configurator Extension bound to the postConfigRestore event that
unsets ApplyDefaults. This allows the configuration session to proceed in the
absence of defaults. Since this Configurator Extension could cause unnecessary
work during batch validation, consider using Step 5.

5. Optionally, make the ApplyDefaults Boolean Feature visible in the User Interface so
the end user can turn it on and see the consequences of the Defaults. Since this is
expensive in terms of performance, the end user might elect to use it sparingly.

If you do not make the ApplyDefaults Boolean Feature visible, line items and prices
may appear in the order that the end user was not aware of during the configuration
session.

Boolean Features With Initial Values
Boolean Features with an initial value (True or False) cause slow performance because
they behave like Defaults Logic Rules. Leaving the initial value Unknown improves
performance.

The postConfigNew Configurator Extension
A Configurator Extension bound to the postConfigNew event simulates the behavior
of setting initial default values, but avoids the cost of repeatedly retracting and
reapplying default values after the end user makes selections involving Defaults
relation participants. However, there are consequences to using the Configurator
Extension that you should consider. Defaults Rule Behavior at Runtime, page 4-22 and
Configurator Extension That Simulates Defaults Rule, page 4-23 show the differences
in behavior during the runtime selection process between Defaults relations and
Configurator Extensions that simulate Defaults relations.

Defaults Rule Behavior at Runtime
Two Features contain different Options, as shown in the following design: Feature F1
contains Options A, B, and C. Feature F2 contains Options D, E, and F.

Best Practices 4-23

The rules:
F1 has a Maximum Selections set to 1
F1 Defaults A
E Requires B

At startup, A is selected. When the end user selects E, Option B is selected and A is
deselected. No contradiction occurs in this example.

Configurator Extension That Simulates Defaults Rule
Using the same two Features shown in Defaults Rule Behavior at Runtime, page 4-22,
define the following rules:
Configurator Extension selects A
E Requires B

When the configuration session begins, Option A is selected. The end user selects
Option E. Oracle Configurator displays a contradiction message asking whether the end
user wants to override the contradiction and select Option B. This is because settings
made by the Configurator Extension have the status of an end-user request.

Implies Relation Instead of Defaults Relation
In some rare cases, an Implies relation can be used instead of a Defaults relation if your
end users do not need the flexibility to change the default value.

Implies Rule Provides Behavior of an Unoverridable Defaults Rule
Two Features contain different Options, as shown in the following design: Feature F1
contains Options 1, 2, and 3. Feature F2 contains Options 4, 5, and 6.

The rules:

4-24 Oracle Configurator Modeling Guide

Option 1 Defaults Option 4
or
Option 1 Implies Option 4

At runtime, both rules cause Option 4 to become selected when the end user selects
Option 1. The Defaults relation gives end users the flexibility to override the default
value and select Option 5 or Option 6 when Option 1 is selected. If you your end users
do not need that flexibility, use the Implies relation and only Option 4 can be selected
when Option 1 is selected.

Default Rule Idiosyncrasies
When designing Defaults rules, avoid overlapping rules as this can cause unexpected
behavior at runtime. Rules overlap when they both contain the same node (or nodes) as
participants.

For example, in Model A, Features Y and Z are siblings (that is, they appear at the same
level in the Model structure). You define the following rules:
All True (A, B) Defaults Y
All True (A, B, C) Defaults Z

When A, B and C are all true at runtime, neither Y nor Z will be selected by default
consistently. In other words, sometimes Y will be selected by default and sometimes Z
will be selected by default. To avoid this kind of unintended behavior, be very explicit
when defining Defaults rules.

To implement the rules in this example properly, define the first rule as follows:
All True (A, B, Not (C)) Defaults Y

Repetitive Rule Patterns and Redundancy
Repetitive patterns or redundancy means that several rules include the same
subexpressions or have the same result. This could cause performance issues.

Repetitive Patterns and Common Subexpressions
The Oracle Configurator engine separately evaluates and propagates each instance of
the subexpressions of every rule, even if there are commonly used patterns of operators
and operands in those subexpressions. Consequently, a large number of rules with
common subexpressions impairs performance by triggering redundant calculations of
the subexpressions. (A subexpression provides a calculation result that is subsequently
used as a term in a parent expression.)

Subexpressions are defined within a pair of parentheses, and every pair of parentheses
is treated as a subexpression using the conventional order of operations.

Rules With Common Subexpressions, page 4-25 shows two rules containing a common
calculation contributing to a Resource.

Best Practices 4-25

Rules With Common Subexpressions
[(A + B) * C] contributes to R1

[(A + B) * C] + D contributes to R2

Create an intermediate node (I1) to contain the value of the commonly used
subexpression and create an intermediate rule that contains the subexpression
[(A + B) * C] and the intermediate node:

[(A + B) * C] contributes to I1

The original rules can then be rewritten by replacing the common subexpression with
the new node that expresses the intermediate rule.

I1 contributes to R1

I1 + D contributes to R2

Although this technique creates an additional rule (the definition of the common
subexpression), the effect of replacing repeating patterns in rules with nodes that
represent those patterns is that Oracle Configurator only computes the subexpression
once, thereby reducing the calculation required for each rule containing the common
subexpression.

Note: When you use the technique of replacing common
subexpressions with intermediate nodes, you must customize the
violation message of the intermediate rule to explain the contradiction
in terms of the rules that contain the intermediate rule. In other words,
the default violation message for I1 in Rules With Common
Subexpressions, page 4-25, which is displayed to the end user when
Oracle Configurator encounters a problem with R1 or R2, describes a
contradiction in I1 unless you customize the message to explain the
error in terms of R1 and R2.

Redundancy
Redundancy occurs when you unintentionally create multiple rules that perform the
same function in a configuration model. Executing redundant rules at runtime is
inefficient and contributes to poor performance. Redundant rules are most often Logic
Rules, and when they are of this type they are more difficult to detect when unit testing.

Redundant Rules: Simple Example, page 4-25 shows two redundant rules.

Redundant Rules: Simple Example
• Rule 1: A Requires B

• Rule 2: B Requires A

4-26 Oracle Configurator Modeling Guide

Note, however, that the following rules are not redundant (since the Implies relation is
not bidirectional):

• Rule 1: A Implies B

• Rule 2: B Implies A

The following example shows two more rules that perform the same purpose.

Redundant Subexpression
• Rule 1: (A,B) Requires (X,Y)

• Rule 2: AllTrue (A,B,C) Requires AllTrue (X,Y,Z)

In Redundant Subexpression, page 4-26, Rule 2 overlaps Rule 1 because it contains the
same options (A, B, X, and Y) and performs the same purpose as Rule 1 (they both
ensure that options X and Y are selected when A and B are selected).

It is also important to understand what kinds of runtime behavior Oracle Confgurator
inherently provides to be sure that you do not create rules that accomplish the same
tasks. For example, Rules that Perform Unnecessary Actions, page 4-26 shows a rule
that performs an action that Oracle Configurator does implicitly.

Rules that Perform Unnecessary Actions
Model A contains Feature X, and Feature X has three Options: A, B, and C. Model A
also has the following rule:
AnyTrue('Option A', 'Option B', 'Option C') Implies AnyTrue('Option
Feature X')

When an end user selects any of a Feature X's Options, Oracle Configurator
automatically selects Feature X. It is therefore not necessary to define a rule that does
the same thing.

Circular Propagation
Circular rules may involve both Logic and Numeric Rules. In some cases this may result
in Oracle Configurator not being able to settle on a final result. Circular Rules (Logic
and Numeric), page 4-26 shows four rules that are circular.

Circular Rules (Logic and Numeric)
A Contributes A.count() to B

B Contributes B.count() to C

C Requires D

D Contributes D.count() to A

Examine all possible actions or inputs and their results to show where the propagation
path does not settle on a result but cycles through the rule again and again. In Circular
Rules (Logic and Numeric), page 4-26, the following sequence of events occur when you
set A to 3:

Best Practices 4-27

Example
Set A =3
B is set to 3, and true
C is set to 3, and true
D is set to 1, and true
A is set to 4, and true
B is set to 4, and true
C is set to 4, and true

The circularity stops at this point, because D is already set to 1, and true.

Circular Numeric Rules may cause numeric cycles, as shown in Numeric Cycles, page
4-27.

Numeric Cycles
A Contributes A.count() to B

B Contributes B.count() to C

C Contributes C.count() to A

In Numeric Cycles, page 4-27, the following sequence of events occur when you set A to
3:

Example
Set A =3
B is set to 3, and True
C is set to 3, and True
A is set to 6, and True
B is set to 6, and True
C is set to 6, and True
A is set to 9, and True

Examining all possible actions or inputs and their results suggests that these rules
would continue to propagate without end. However, Oracle Configurator catches the
error in Numeric Cycles, page 4-27 as a runtime numeric cycle failure.

The circular rules may not be obvious. Imported BOM Models automatically enforce
Bill of Material quantity cascade, which can be thought of as Numeric Rules.
Attempting to contribute the quantity of a Standard Item to it's parent Option Class or
any other ancestor node in the model hierarchy will result in a circular rule.

Optimize the configuration problem to avoid creating rules that create cycles.

One way to debug redundancy and cycles is to turn rules on or off by explicitly
disabling them at the rule or Folder level. For a review of logic states and other
information related to rules, see the Oracle Configurator Developer User's Guide. See the
Oracle Configurator Performance Guide for a discussion about the effect of the quantity
and complexity of rules on runtime performance.

Number and Complexity of Rules
Complex or large numbers of rules within a configuration model could cause slow
performance. Whenever possible, use effectivity dates or Usages to turn off rules that
are not necessary in certain contexts of the calling application. That lets the Oracle
Configurator engine ignore those rules and propagate among the enabled rules more

4-28 Oracle Configurator Modeling Guide

efficiently. When debugging configuration models, disable rules explicitly at the rule or
rule folder level to let the Oracle Configurator engine ignore them. For information on
Property-based Compatibility rules, see Minimizing the Size and Complexity of
Property-based Compatibility Rules, page 4-33.

Large numbers of rules with commonly used subexpressions also cause slow
performance. When the Oracle Configurator engine propagates such rules, even if there
are commonly used patterns of operators and operands, the engine needs to evaluate
and propagate each instance of the common subexpression separately.

Consider Rules With Common Subexpressions, page 4-28 showing two rules with a
common calculation contributing to a Resource.

Rules With Common Subexpressions
[(A + B) * C] contributes to R1

[(A + B) * C] + D contributes to R2

Create an intermediate node (I1) for the commonly used subexpression and create an
intermediate rule that contains the subexpression [(A+B)*C] and the intermediate node.

[(A+B*C] contributes to I1

The original rules can then be rewritten by replacing the common subexpression with
the new node that expresses the intermediary rule.

I1 contributes to R1

I1+D contributes to R2

Although this technique creates an additional rule, the net effect of replacing repeating
patterns in rules with nodes that represent those patterns is that the Oracle
Configurator only computes the subexpression once, thereby reducing the amount of
calculation required for each rule that contains the common subexpression.

Warning: When you use the technique of replacing common
subexpressions with intermediate nodes, you must customize the
violation message of the intermediary rule to explain the contradiction
in terms of the rules that contain the intermediary rule. In other words,
the default violation message for I1 in Rules With Common
Subexpressions, page 4-28, which is displayed to the end user when
Oracle Configurator encounters a problem with R1 or R2, describes a
contradiction in I1 unless you customize the message to explain the
error in terms of R1 and R2.

NotTrue Logical Function Imposes Order and Causes Locking
The logical function NotTrue is used in CDL and Statement Rules.

Best Practices 4-29

Order Dependency Caused By NotTrue
Using NotTrue in a Statement Rule can impose an order for rule propagation that
makes the configuration model harder to design and use. Rule order diminishes the
flexibility with which end users make selections. For example, if the intention is to have
one Option, Y, not be selected until another Option, X, is selected, then using NotTrue
achieves this result, but alternative rule definitions have a similar effect without causing
order dependency.

If the rule is NotTrue(X) Excludes Y, the following occurs at runtime:

1. Initially, X is unknown and Y is not available for selection (false).

2. When X is selected (true), Y becomes unknown, or available for selection. If Y is
selected, X remains true.

3. If X is deselected (false), Y becomes false.

If you want Y to be unavailable for selection until X is selected, you need to use
NotTrue(X) and incur the cost of imposed order in the rule propagation. If you only
need to make sure that Y is never selected when X is not selected, you can express this
with less restrictive alternative rules

For example, Not(X) Excludes Y preserves the original intent of ensuring that Y cannot
be true without X being true, but X can be true without Y being true. If the rule is
Not(X) Excludes Y, the following occurs at runtime:

1. Initially, X is unknown and Y is unknown, or available for selection.

2. When X is selected (true), Y remains unknown. If Y is selected (true), X becomes
selected (true).

3. If X is deselected (false), Y becomes deselected (false).

Both these rules use a double negative (which may be difficult to understand) and a
subexpression (which compromises efficiency).

An optimal alternative rule is Y Implies X, which imposes no order and avoids the
double negative and subexpression of the previous alternative. If the rule is Y Implies X,
the following occurs at runtime:

1. Initially both X and Y are unknown and available for selection.

2. When Y is selected (true), X becomes selected (true).

3. If X is deselected (false), Y becomes deselected (false).

Although this rule preserves the original intent of ensuring that Y cannot be in a sales
order without X, it does not allow X to be in the sales order without Y.

4-30 Oracle Configurator Modeling Guide

Note that in release 11.5.10 and later, a simpler and more efficient approach is to define
a display condition to prevent Y from appearing in the UI until X is selected. Display
conditions are explained in the Oracle Configurator Developer User's Guide.

Locked States Caused By NotTrue
Using NotTrue can result in a locked state for the initial values of some items. In the
following example, Model X contains the following structure:

Option Feature A, containing some Options

Option Feature B, containing some Options

Your project requires that Feature B should be false and not displayed to the end user
until an Option in Feature A is selected.

When an Option in Feature A is selected, Feature B should be true and displayed to the
end user. End users must select an Option from Feature B to satisfy the configuration.

The following rules fulfill these requirements:

Example
Rule 1: NotTrue(A) Excludes B
Rule 2: A Implies B

Initially, as a consequence of Rule 1, A is unknown and B is false. As a consequence of
Rule 2, A is made false when B is false. Rule 1 and Rule 2 together result in both A and
B being false, which is a locked state. Changing the state of either A or B results in a
contradiction.

To accomplish the intent of Rule 1 without locking, create a display condition in Oracle
Configurator Developer that hides Feature B until an Option in Feature A is selected.

Locking also results from embedding a NotTrue expression within a series of rules
involving the same operands. Consider the following rule:

Example
NotTrue(A) Implies B

If A is an Option of a Feature whose other Options participate in other rules that side
effect A and B (such as through a maximum number of selections setting), then A being
NotTrue locks the series of rules from completing. To avoid this locking, do not use the
participants of a NotTrue expression in any other rules.

For more information about logic states, display conditions, and other information
related to rules, see the Oracle Configurator Developer User's Guide.

Compatibility Rules
When you want to express compatibility, use Compatibility Rules instead of Logic
Rules. The Oracle Configurator engine performs calculations over a large number of
Options faster with Compatibility Rules than with any other rule type.

However, consider the following when designing compatibilities or incompatibilities

Best Practices 4-31

among items in your Model:

• Expressing Compatibility Using Properties, page 4-31

• Minimizing Participants in a Compatibility , page 4-32

• Using the Excludes Relation to Express Incompatibilities , page 4-33

These guidelines are explained in the following sections.

Expressing Compatibility Using Properties
Explicit Compatibility Rules defined with a large number of participants are difficult to
maintain and can cause performance problems at runtime. It may be better to express
the compatibility among options by using a Property-based Compatibility Rule.

For example, power supply voltage for a personal computer is determined by the
voltage used in the country where the computer will be used. The United States is
compatible with a 110 volt power supply, while France and India are compatible with a
220 volt power supply. You can create a Property-based Compatibility Rule to enforce
this relationship at runtime.

The Model for this example includes a Feature named "Country" and a BOM Option
Class named "Power Supply Type." Preliminary steps in creating this rule are to define
a Property named "Voltage Needed" for the Feature and to define a Property named
"Voltage Supplied" for the BOM Option Class.

The table below lists the Options of the Feature called "Country," as well as each
Option's Property and Property Values.

Option Name Property Value

USA Voltage Value 110

France Voltage Value 220

India Voltage Value 220

The following table lists the options within the Power Supply Type BOM Option Class,
as well as each option's Property and Property Value.

Option Name Property Value

110V Voltage Value 110

4-32 Oracle Configurator Modeling Guide

Option Name Property Value

220V Voltage Value 220

The final step is to create the following Property-based Compatibility Rule that links the
Country Feature selected at runtime to the Power Supply Type BOM Option Class
voltage specified for the computer:

Operand 1:

• Feature: Country

• Property: Voltage Value

Operator:

• Equals

Operand 2:

• BOM Option Class: Power Supply Type

• Property: Voltage Value

At runtime, when the end user makes a selection for the Country (Feature), the value
for the Voltage Value Property is determined. The Property-based Compatibility Rule
matches the value of the BOM Option Class Voltage Value to the value of the Feature
Property Voltage Value.

In this example, a Property-based Compatibility Rule design performs better than an
Explicit Compatibility Rule defining particular power supply types and the voltages or
countries with which they are incompatible. Maintenance is also streamlined. For
example, when you add a new country, you add only the Voltage Value Property rather
than modifying the rule to add the new compatibility. Or if a country changed its line
voltage, the change could be reflected in your Model by changing the value of the
Voltage Value Property.

If you needed to express compatibility between country and currency, the problem
would be more complex and the maintenance advantages of the Property-based
Compatibility solution even greater.

Minimizing Participants in a Compatibility
To express compatibility among Options by using Compatibility Rules, it is better to
design several Compatibility Rules with fewer participants than to define one
Compatibility Rule with many participants.

Best Practices 4-33

Using the Excludes Relation to Express Incompatibilities
If your Compatibility Rule defines a larger number of compatibilities than
incompatibilities, consider defining the incompatibilities by using Excludes relations.
For example, a Compatibility table contains compatibility between six Features, each
with two Options. This is shown in Compatibility Table, page 4-33.

The following table lists the compatibilities among the two Options (A and B) and six
Features. A1 and A2 are compatible with B1 and B2. A3 is compatible with B1 only.

Compatibility Table

A B

A1 B1

A1 B2

A2 B1

A2 B2

A3 B1

In this Compatibility table, the only incompatibility exists between Options A3 and B2.
In this case, it would be better to express the incompatibility between A3 and B2 in an
Excludes relation.

Minimizing the Size and Complexity of Property-based Compatibility Rules
Property-based relationships between large BOM Option Classes can be implemented
more efficiently by introducing Property Features that correspond directly to
Properties, with options corresponding to the Property values. Relationships between
Property values are then expressed on these smaller Features instead of directly on the
Option Classes. Property-based Compatibility Rules are then used to relate the Option
Classes and the Property Features. This can result in improved runtime performance
and shorter times to generate logic and load a configuration model. Property Features
may also provide a shortcut to a needs-based Configurator User Interface.

One of the best ways to make a configuration model simple to define and easy to
maintain is to base as many of the rules as possible on Property relationships and avoid
the explicit use of options unless absolutely necessary. A possible solution is the use of
the Constraint Definition Language's (CDL) 'FOR ALL' expression with Property-based
WHERE clauses.

4-34 Oracle Configurator Modeling Guide

However, there is a negative aspect to this approach. The statement of a Property-based
Compatibility or the CDL's FOR ALL...WHERE rule can be deceptively simple. If the
Features or Option Classes used in the rule have a large number of options, the rule can
expand into large and complex logic within the Configurator Engine. This large and
complex logic can result in time-consuming generation of logic in Configurator
Developer and poor runtime performance. The best way to avoid this situation is to
keep in mind the number of explicit relationships implied by the Property-based
expression and take steps to minimize it.

Large Number of Options
A model has two Option Classes, A and B. Each Option Class has a large number of
options, for example 1000. The options of A have a Property X, the options of B have a
Property Y, and an option of A is compatible with an option of B when A.X = B.Y. This
relationship can be expressed as a Property-based Compatibility Rule.

Now suppose that X and Y each have 20 distinct values, more or less evenly distributed,
so on average each option of A is compatible with 50 options of B. Expressing the
relationship as an Explicit Compatibility Rule between A and B would result in each
option of A appearing in 50 rows of the table, and the table would contain 50,000 rows
(1000 x 50). This illustrates the complexity of the rule as compiled by logic generation.
Because this is a very large rule, compiling the logic takes a long time and runtime
performance is adversely affected.

The logic of this relationship can be simplified by creating "Property Features." A
Property Feature should have Options that correspond to each possible value of the
Property, and these Options should each contain the Property in question. Typically, a
Property Feature represents a Property of the items of a specific Option Class. It is also
possible for a single Property Feature to correspond to multiple Option Classes whose
options come from the same catalog. A Property Feature is related to its corresponding
Option Class via a Property-based Compatibility Rule, with a condition
'PropertyFeature.Property = OptionClass.Property'.

Property Features can be created easily using a Populator.

1. Manually create a Feature.

2. Define a Populator on the Feature: Select Property Values as the Source and
Options as the Destination. Select the Item Type of the Items in the corresponding
Option Class and a Property of the selected Item Type. The Populator will
automatically attach the specified Property to the Options it creates.

After creating the Populator, create the Property-based Compatibility Rule that links the
Property Feature to its corresponding Option Class.

Whenever new options are added to the Option Class in Oracle Inventory (possibly
including new values for Properties), Property Features can be brought up to date by
rerunning the Populator(s).

Best Practices 4-35

How do Property Features Simplify Property-based Relationships between Large Option Classes?
Any direct property-based relationship between Option Classes is equivalent to a
Property-based Compatibility Rule between Property Features, together with the
structural Property-based Compatibilities. The complexity of a structural
Property-based Compatibility Rule is equivalent to that of an Explicit Compatibility
Rule with only as many rows as the Option Class has options. Since the Property
Features have a small number of options, a property-based relationship between them
will generally correspond to a fairly small number of compatibility table rows or
explicit relationships. The total complexity of such a set of indirect relationships is
usually less than the complexity of the original direct relationship.

In the Large Number of Options, page 4-34 example, Property Features FeatureX and
FeatureY are created. Populators create 20 Options each in FeatureX and FeatureY,
which correspond to the 20 different values of the Properties. Each Option bears the
corresponding Property and value. The structural Property-based Compatibility would
specify 'FeatureX.X = A.X' and 'FeatureY.Y = B.Y'. The property-based relationship
requiring X and Y to be equal would specify 'FeatureX.X = FeatureY.Y'. The net effect of
these three relationships is equivalent to the original relationship 'A.X = B.Y'. But now,
instead of 50,000 equivalent explicit compatibility rows, there are only 2020 (1000 + 1000
+ 20).

One other possible benefit of Property Features is that Property values often
characterize the form, fit, and function of the Items in an Option Class, and may be
closely related to the end user's reasons for preferring one Item over another. In an ideal
case, the Properties (or a subset of them) directly represent the user's needs. By
presenting Property Features in the runtime UI, it may be possible to implement a
needs-based Configurator that requires little or no ongoing maintenance aside from
defining Items and BOM Models in Oracle Inventory.

Comparison Rules
Depending on your requirements, it is generally good modeling practice to avoid rules
that raise contradictions. Instead, define rules that cause only validation failures or
warnings and therefore allow end users to proceed.

When defining Comparison rules, avoid involving the initial value of a Total in the
comparison. The initial value can cause locking when retracted during a numeric cycle.

The examples in this section show best practices for building rules that avoid
contradictions and problems caused by intermediate values (also known as locking).
However, it is important to remember that subsequent changes to any nodes that
participate in the rule may alter a rule's behavior at runtime.

Comparison Rules That Raise Warnings
When defining Comparison Rules, construct your rules so they lead to a resource
violation rather than a contradiction. Rules that raise contradictions are much less

4-36 Oracle Configurator Modeling Guide

flexible because they require one or more previous selections to be deselected before the
end user can continue. A resource violation, however, only displays a warning
indicating that a specific value has been exceeded, does not deselect any options, and
allows the end user to acknowledge the warning and proceed with the configuration.

For an example, see Avoiding Unexpected Contradictions from Intermediate Values,
page 4-37.

Using Intermediate Values Effectively With Comparison Rules
Comparison Rules that raise contradictions can also lead to problems caused by an
intermediate value. Oracle Configurator triggers each rule in a configuration model
sequentially (that is, one after another), rather than propagating all rules
simultaneously. As a result, a rule may be violated when it reaches a specific value,
even if you defined another rule to prevent the violation from occurring in the first
place. However, since the intermediate value is reached before the other rule
propagates, a violation occurs. (See Unexpected Contradictions from Intermediate
Values, page 4-36). See also Connectors with Connection Rules, page 4-37 for
additional reasons to avoid rule order.

Problems with intermediate values can also occur when:

• The initial value of a Total participates in the comparison

• A Statement Rule contains a comparison-based expression

For example:
'OC58102' = 1 Excludes AnyTrue('OC29315')

Note: The purpose of this example is to show a Statement Rule that
contains a comparison-based expression. Whether such a rule
would cause an intermediate value problem depends on other rules
defined in your Model, as described in the preceding paragraph.

Unexpected Contradictions from Intermediate Values
Model A contains the following:

• Boolean Feature: X

• Option Feature: F1 containing one Option1

• Option Feature: F2 (0,2) containing two Options: Option2 and Option3

• Numeric Feature: Z

The rules:

Best Practices 4-37

Logic: Boolean Feature X Requires AllOf (OptionsOf (Option Feature F2))
Numeric: EachOf (OptionsOf (Option Feature F2)) Contributes to Numeric
Feature Z
Comparison: Numeric Feature Z equal to 1 Excludes Option Feature F1

At runtime, the end user selects Boolean Feature X, making the state of X true. This
makes F2 true. Propagation of Option2 makes the value of Numeric Feature Z equal 1.
The Comparison Rule causes the propagation of Z=1 to try to push the value of Option
Feature F1 false. Even though the current value of Numeric Feature Z is an intermediate
value, and the propagation of Option2 will result in a value of Z=2, a contradiction
occurs. To avoid the contradiction, consume from a Resource to keep Z=1 when Option2
is true.

Avoiding Unexpected Contradictions from Intermediate Values
This example shows how to avoid contradictions raised by Comparison Rules because
of intermediate values.

In addition to the nodes described in the previous example, above, Model A also
contains the following:

• Boolean Feature: Temp

• Resource: Res

To avoid a contradiction from an intermediate value, define the following rules (note
that you define these instead of the rules shown in Unexpected Contradictions from
Immediate Values, page 4-36, not in addition to those rules):
Logic: Boolean Feature X Requires AllOf (OptionsOf (Option Feature F2))
Numeric: EachOf (OptionsOf (Option Feature F2)) Contributes to Numeric
Feature Z
Comparison: Numeric Feature Z equalto 1 Implies Temp
Numeric: Temp Consumes from Res

At runtime, the end user selects Boolean Feature X, making the state of X true. This
makes F2 true. Propagation of Option2 makes the value of Numeric Feature Z equal 1.
The Comparison Rule causes the propagation of Z=1 to push Boolean Feature Temp
true. Temp consumes 1 from Resource Res. Since Oracle Configurator checks validation
failures at the end of propagation, Option3 can become true without any validation
failures.

Connectors with Connection Rules
Connection rules that involve Connector nodes in the Model structure operate only
when component instances are connected at runtime, and only among the connected
instances. The logic generated by connection rules is not initially loaded with the
configuration model at runtime. Connection rules are loaded and executed only when
the Connectors in the parent instance have been assigned to corresponding instances of
the target Models.

When an end user makes a connection, the following happens:

4-38 Oracle Configurator Modeling Guide

1. All the end-user inputs are retracted.

2. The connection is made.

3. Connection rules are loaded and executed.

4. All the end-user inputs are applied again.

This process leads to changes in values and logic that conflict with the configuration as
it was before the connection was made. The sequence in which the rules are loaded and
the end-user inputs are reapplied could cause unexpected behavior due to invalid
intermediate values. Such situations could cause fatal errors and prevent the end user
from proceeding with the configuration.

To avoid inconsistency or errors, ensure that all component instantiations and
connections can be performed independent of end-user inputs. Additionally, as with all
configuration rules, write rules that are order independent.

Consider the two models in Model with a Connector, page 4-38. The Rack Model
contains a Total, a Boolean Feature that is Always True, and an Options Feature named
Rack Type with Option A and B. The Rack Type Options Feature has a Property named
Width. The Server Model contains a Connector to the Rack Model and a Boolean
Feature that is Always True.

Model with a Connector

The following sections use these Models to demonstrate:

• Connection Rules That Depend on End-User Input, page 4-39

• Order Independent Connection Rules , page 4-39

• Restoring Configurations With Connections, page 4-40

Best Practices 4-39

Connection Rules That Depend on End-User Input
The rules in the Rack Model are as follows:

Example
Rule 1: Total < 0 Excludes Always True
Rule 2: Each Of (Options Of(Rack Type)) * Property.Weight Contributes To
Total
CDL Rule 1: CONSTRAIN (Total < 0) EXCLUDES "Always True"
CDL Rule 2: CONTRIBUTE (EachOf (OptionsOf(Rack Type)) * Property.Weight)
TO Total

The intent of the CONSTRAIN rule ensures that the value of Total never drops below 0
(zero).

The rule in the Server Model is the Connection rule:

Example
Rule 3: Always True * Constant(Value) Consumes From Total
CDL Rule 3: CONTRIBUTE ((Always True * Constant(Value))* -1) TO Total

At runtime, the end user selects a Rack Type. Oracle Configurator executes Rule 2,
contributing the selected Rack Type's Property Weight to Total. The end user then
connects to the Rack Model in the Server Model. Oracle Configurator retracts the
selected Rack Type, which resets Total to 0. Oracle Configurator loads the connection
rule, Rule 3, and consumes Value from Total (0), causing Rule 1 to be invalid. This
results in a non-overridable contradiction and the connection fails.

Order Independent Connection Rules
You can avoid the dependence on end-user input described in Connection Rules That
Depend on End-User Input, page 4-39 by creating a rule rather than an end-user input
that makes the contribution. Rewrite Rule 2 in the above case as:

Example
Rule 1: Total < 0 Excludes Always True
Rule 2: Always True * Constant(Value) Contributes To Total
CDL Rule 1: CONSTRAIN (Total < 0) EXCLUDES "Always True"
CDL Rule 2: CONTRIBUTE "Always True" * Constant(Value) TO Total

When Oracle Configurator starts up, a configuration is created. The end user connects
the Server Model to a Rack Model. Oracle Configurator retracts all end-user inputs, but
does not retract the Value of Total because it has been set by a rule, not an end-user
input. Then Oracle Configurator loads the connection rule, Rule 3, and consumes from
Total without a contradiction occurring.

Example
Rule 3: Always True * Constant(Value) Consumes From Total
CDL Rule 3: CONTRIBUTE (("Always True" * Constant(Value))* -1) TO Total

This solution avoids order dependence but may still encounter intermittent failures
when a configuration is restored. See Restoring Configurations With Connections, page
4-40 for details.

4-40 Oracle Configurator Modeling Guide

Restoring Configurations With Connections
Restoring a configuration created using the rules described in Order Independent
Connection Rules , page 4-39 intermittently results in failures. When Oracle
Configurator restores a configuration, the Oracle Configurator engine activates all the
rules and the order of assertions is no longer guaranteed. In some cases, Rule 1 and Rule
3 might be executed before Rule 2, resulting in a fatal error.

You can avoid the fatal error either by populating a Total with an initial value, or using
a Resource instead of a Total. Over-consuming a resource does not result in a fatal
validation failure, which allows the end user to proceed with the configuration session.

Example
Rule 1: Resource < 0 Excludes Always True
Rule 2: Always True * Constant(Value) Contributes To Resource
Rule 3: Always True * Constant(Value) Consumes From Resource
CDL Rule 1: CONSTRAIN (Total < 0) EXCLUDES "Always True"
CDL Rule 2: CONTRIBUTE "Always True" * Constant(Value) TO Total
CDL Rule 3: CONTRIBUTE (("Always True" * Constant(Value))* -1) TO
Resource

When Oracle Configurator starts up, a configuration is created. The end user connects
the Server Model to a Rack Model. Oracle Configurator retracts all end-user inputs, but
does not retract the Value of Resource because it has been set by a rule, not an end-user
input. Then Oracle Configurator loads the connection rule, Rule 3, and consumes from
Resource without a contradiction occurring. The connection is made. Now, when the
end user restores this configuration, only a validation failure would occur if Rule 1 and
Rule 3 were executed before Rule 2. The validation failure would not prevent the
configuration from being restored.

Optimizing User Interface Performance
The following design considerations can help you improve performance of a runtime
User Interface:

• Visibility Settings, page 4-40

• Graphics, page 4-41

• Number and Type of Pages and Controls, page 4-41

• Custom User Interface, page 4-42

For details about creating a User Interface, see the Oracle Configurator Developer User's
Guide.

Display Conditions
Using display conditions to hide items is generally more expensive than allowing all
options to be displayed. However, the overall effect on performance is minimal when

Best Practices 4-41

only a small number of items on a page have display conditions. For best performance,
avoid placing many items with display conditions on the same page.

Graphics
The number and size of GIFs in a page does not increase the time needed to render the
screen on the server. However, reducing the number of controls and GIFs on the page
may improve the performance of rendering the browser page on the client machine.

Number and Type of Pages and Controls
The number of Oracle Configurator pages and the number of UI controls on each page
influences runtime performance. Increasing the number of controls increases the time
needed to render a page. This is due to browser resource limitations, not an inherent
limitation in Oracle Configurator. For DHTML UIs, Oracle recommends a maximum of
8 to 10 UI controls and 5 graphics per page. The performance of an HTML UI is not
adversely affected by pages containing a large number of UI controls.

The type of controls on a page does not influence server performance. For example,
Drop-down Lists and Selection Lists take the same amount of time to render. However,
In a DHTML UI, Dropdown Lists may render faster than Selection Lists, and the time it
takes to render a Selection List is dependent on how many Options are displayed in the
list.

Configuration Summary User Interface Template
By default, the predefined UI Master Templates use the Summary with Status Region
Content Template to display all orderable items in the Configuration Summary page at
runtime. The default template displays the Summary Table fully expanded, which can
negatively affect performance in a large configuration.

To improve performance of the Configuration Summary page:

1. Create a custom configuration summary UI Content Template. (Refer to the
predefined template to see which UI elements are required and understand the
structure.)

When creating the Summary Table UI element, deselect Expand All Levels on
Entry.

2. Create a custom UI Master Template.

3. In the Utility Templates section of your UI Master Template, select your custom
configuration summary template for the Configuration Summary/Preview setting.

4. Use your custom UI Master Template to generate the UI.

4-42 Oracle Configurator Modeling Guide

Custom User Interface
A Custom User Interface is created outside of Oracle Configurator Developer. It is
usually coded as a set of Java Server Pages that display model content via the
Configuration Interface Object (CIO). You create a custom UI by writing custom code
that allows your configuration model to interface with the Configuration Interface
Object (CIO).

Because it interacts with the CIO, it is important to optimize the CIO calls for best
performance. For more information, see Configurator Extension Design, page 4-42.

Large Amounts of End-User Data Collected Using Configurator Extensions
In rare cases, you may have unconstrained end-user data, meaning it is not constrained
by or does not participate in rules. Collecting large amounts of that kind of data from
end users, especially if it is repetitive, can degrade the usability of the Oracle
Configurator UI. If you can identify data that could be collected outside the main
interactive configuration session, especially if it lends itself to being collected in a
tabular or spreadsheet form and is not orderable or constrained by rules, consider the
following implementations:

• If you only need to collect moderate amounts of end-user data, design a
Configurator Extension bound to the onCommand event to launch a separate child
window during the main interactive configuration session that allows end users to
enter data. Moderate amounts of end-user data might be no more than 100 rows, or
take no more than a few minutes to enter.

• If end users have to enter a large volume of data or do not have time to enter data
during configuration sessions, create a separate application for collecting the data
outside Oracle Configurator. Implement a Configurator Extension to collect this
data for inclusion in the configuration. In cases where the collected data needs to be
validated, consider the following possible implementations:

• Design a Configurator Extension bound to the onCommand event to launch a
separate child window that displays the previously collected data for editing
and then validates the modified data.

• Design a Configurator Extension bound to the onCommand event that alerts end
users to the invalid data so they can correct entries in the separate application
used for collecting data and begin a new configuration session with valid data.

Configurator Extension Design
The design of Configurator Extensions and how they interact with the configuration
model as well as other software may affect performance. This section presents the
following topics:

Best Practices 4-43

• Avoiding Unnecessary Interactions, page 4-43

• Accessing Runtime Nodes, page 4-43

• Components and Requests, page 4-45

• Adding and Deleting Instantiable Components, page 4-45

• Impact of Making Connections Among Components, page 4-46

• Optimization of Configurator Extensions that Change Model Structure, page 4-47

• Optimization of Validation Configurator Extensions, page 4-52

Configurator Extensions must use the Configuration Interface Object (CIO) to interact
with the configuration model. See the Oracle Configurator Extensions and Interface Object
Developer's Guide for additional information about the CIO and Configurator
Extensions.

Avoiding Unnecessary Interactions
Design Configurator Extension to avoid any unnecessary interactions, such as
recursively processing unselected Model subtrees or creating large numbers of
Configurator Extension instances by associating Configurator Extension instantiation
component instances that occur in large numbers.

Accessing Runtime Nodes
• The method RuntimeNode.getChildByID() is likely to cause slow performance

if used on runtime nodes with many children. It is better to use
RuntimeNode.getChildByName(), even on runtime nodes with few children.

• Use Java HashMap objects to map names, IDs, and paths to RuntimeNodes so that
you can use RuntimeNode.getChildren(). If HashMaps cannot be used, use a
localized search by starting only at the Components where you can certainly find
the nodes. For better performance, use a localized search only once. In other words,
do not construct your Configurator Extension such that it navigates the tree
multiple times, or unnecessarily.

Additionally, be sure to always cache the runtime node to allow faster access on
subsequent calls to the extension.

• Keeping track of all changed runtime nodes after a user action is an expensive
operation. Use Configuration.getDeltaListIterator() immediately before
calling Configurator.commitConfigTransaction(). This iterator returns
only the changed nodes with their new and old states and counts.

4-44 Oracle Configurator Modeling Guide

• Configurator Extension code that invokes the CIO to make unnecessary state and
count assertions should be avoided. Use IState.getState() or
IState.getCount() to determine the state or count, and do not reset the state or
count if it is already as desired.

In some cases, setting the state of a node may cause a contradiction. For example,
setting the state of a node that is Logic False due to an Excludes Logic Rule. If you
know that setting the node's state will cause a contradiction and you have no
intention of overriding the assertion, then do not set the state.

Warning: When you use this technique of ignoring assertions, the
contradiction is not obvious for opposite states if the contradictory
state is due to a Default Logic Rule, in which case the assertion
might succeed. For example, the state of a Boolean Feature is Logic
True. If this node participates in a Defaults Logic Rule, then its
logic state could be caused by this rule, and you can change the
state to False without causing a contradiction. However, if the True
state is due to an Excludes, Requires, or Negates Logic Rule, then a
contradiction will occur when you change the node's state.

• Configurator Extensions and custom CIO code making many calls to
IState.getState() to check for certain states can be slow.

For each node on which to check the state, call IState.getState() only once.
Then use the following static methods on the returned int:

• StateNode.isTrueState()

• StateNode.isFalseState()

• StateNode.isUserState()

• StateNode.isLogicState()

• StateNode.isUnknownState()

You can also use the following methods to combine state checks:

• StateNode.isSelected()

• StateNode.isTrue()

• StateNode.isFalse()

• StateNode.isUser()

• StateNode.isLogic()

• StateNode.isUnknown()

Best Practices 4-45

• Configurator Extensions and custom code invoking the CIO that makes many calls
to IState.getState() or OptionFeature.getSelectedOptions() to get
the Options selected as a result of a transaction can be slow. Instead, use
Configuration.getSelectedItems(), which uses already-calculated
information about all the TRUE items in the whole configuration.

If you are also making assertions (with setState(), setCount(), setValue(),
and so on), wrap all those assertions in a transaction.

In order for the CIO mechanism to be able to update the selected item list, make
sure you commit the transaction before calling
Configuration.getSelectedItems().

• CIO methods may or may not be expensive, depending on the circumstances of the
configuration model. Making many calls to any CIO method that is expensive can
be slow. Instead, call the method once and then cache the results for reuse. For
example, the information from Configuration.getAvailableNodes() should
be queried only when necessary, such as on screen flips and after user assertions.
(Note that you can also obtain availability information by using
AvailabilityDeltaValidator.)

Use profiling tools (such as JProbe) to evaluate the performance cost of called CIO
methods.

Components and Requests
Programmatic changes to the configuration model are dependent on the sequence of
events. For example, to instantiate some Components and programmatically set some
Features in each Component, you could use either of these approaches:

• Set the Features as you add each Component

• Add all Components and then set all the Features

The second approach is faster, because the creation of each Component requires the
retraction of all previous inputs (all user selections and all default selections). In the
second approach, you can assert inputs and defaults only once, between when you add
all the Components and when you set all the Features in all the added Components. The
expensive events that you are avoiding in this second approach are the retractions and
reassertions of inputs and defaults, which are processed every time that a Component is
added.

If you are modifying the structure of a Model, you can improve performance by using
the technique described in Optimization of Configurator Extensions that Change Model
Structure, page 4-47.

Adding and Deleting Instantiable Components
Adding or deleting an instance of a ComponentSet can be very expensive in terms of

4-46 Oracle Configurator Modeling Guide

performance. For example:

• Adding an instance causes all previous requests to be retracted, then reasserted
(that is, added and asserted again).

• Adding an instance is particularly expensive when there are default values set by
configuration rules. Retracting default assertions is time-consuming and iterative.
The initial values set in Configurator Developer for Boolean Features should also be
regarded as default values.

• Deleting instances is a very expensive operation, and may not be necessary at the
end of the Configurator Extension event sequence, since the Configurator Extension
may need to add the same number of Components back into the Component Set
anyway.

To avoid these performance problems, follow these guidelines for adding instances of a
ComponentSet:

• Try to delay setting the states or values of nodes until after all instances are added.
Add an instance when there are as few settings as possible.

• When deleting instances (if you have retracted all the requests), you can reuse the
instantiated Components by computing the number of children in the
ComponentSet and keeping track of the index number of the Component that you
are setting Feature values for. You can then delete any Components that you have
not reused. To determine the number of children, you can use
IRuntimeNode.getChildren().size() or ComponentSet.getCount().

You may also want to consider using the method
ConfigTransaction.allowOnlyStructuralChanges (). For details, see
Optimization of Configurator Extensions that Change Model Structure, page 4-47.

Impact of Making Connections Among Components
Connectivity among components can add further complexity to the suggested sequence
described in Detailed Sequence, page 4-47. The best approach depends on
understanding the number of connections you plan to make, and how many you expect
to fail. Completing a connection involves the creation and loading of all rules that are
enforced as a result of the connection. That means all current requests have to be
retracted and reapplied after the net is added.

The optimum point at which to make the connection is between the retraction of all
requests and adding or reusing component instances.

If you do not expect the end user requests or the new values to make a difference on
whether connection is allowed, then you need to add or reuse component instances, or
reassert applicable requests before the connection.

The number of connections may cause you to adjust your thinking, due to the impact of

Best Practices 4-47

retracting inputs.

You may also want to consider using the method
ConfigTransaction.allowOnlyStructuralChanges (). For details, see
Optimization of Configurator Extensions that Change Model Structure, page 4-47.

Optimization of Configurator Extensions that Change Model Structure
Use the following general strategy to optimize performance of a Configurator Extension
that changes model structure:

1. Store all needed values.

2. Begin a transaction and call
ConfigTransaction.allowOnlyStructuralChanges().

3. Make changes to model structure. Model structure changes are defined as:

• Adding or deleting instantiable components

• Connecting or disconnecting component instances

4. Delete extra component instances.

5. Commit or roll back the transaction.

6. Set values on components.

The structural change transaction enables you to mark a transaction as being only for
modifying the product structure. When you use the method
ConfigTransaction.allowOnlyStructuralChanges(), Oracle Configurator
automatically retracts the inputs and stores them until you close the transaction. If the
end user changes any inputs, Configurator displays an exception.

The principle behind this strategy is that making structural changes in a block, inside a
transaction that suspends the usual retraction and reassertion of requests, optimizes the
event sequence. Detailed Sequence, page 4-47 explains these events in more detail.

Detailed Sequence
Based on the preceding guidelines, optimize the performance of a Configurator
Extension that changes model structure by designing it according to the following
sequence:

1. Store all needed values and logic states in temporary variables.

These are the values that are needed for later calculations and which would be lost
by retracting requests.

2. Begin a transaction. Use Configuration.beginConfigTransaction().

4-48 Oracle Configurator Modeling Guide

3. Call ConfigTransaction.allowOnlyStructuralChanges().

This method puts the configuration into a state in which the only changes allowed
are those that modify the structure of the Model. Model structure changes are
defined as:

• Adding or deleting instantiable components

• Connecting or disconnecting component instances

You cannot make any requests (changes to values or logic states in the
configuration) while in the structural-changes-only state. If you make a request, a
non-overridable logical exception is thrown.

The allowOnlyStructuralChanges() method retracts all user and
non-overridable requests. The requests are stored until your transaction is
committed or rolled back. If a contradiction occurs during the retraction, then the
retraction is aborted, and the transaction loses its structural-changes-only state.

Any nested transactions that you create inherit the structural-changes-only state of
the parent transaction.

Caution: Do not call any methods that get values or logic states in
the configuration while it is in the structural-changes-only state.
Because the allowOnlyStructuralChanges() method
previously retracted all requests, any values or states in the
configuration returned by a query will be incorrect.

4. Add or reuse component instances, as suggested in Adding and Deleting
Instantiable Components, page 4-45. To add a component instance, use
ComponentSet.add().

5. If you know that you have extra component instances, you may be able to delete
them, as suggested in Adding and Deleting Instantiable Components, page 4-45. To
delete a component instance, use ComponentSet.delete().

6. Commit or roll back the transaction. Use
Configuration.commitConfigTransaction() or
Configuration.rollbackConfigTransaction().

When you commit or roll back the transaction, the CIO removes the configuration
from the structural-changes-only state, and reasserts all the previously retracted
user and non-overridable requests. If a contradiction occurs during the reassertions,
then a LogicalOverridableException is thrown. You can override the
exception and examine the failed requests. See the Oracle Configurator Extensions and
Interface Object Developer's Guide for details on exceptions and failed requests.

7. Set values on Component instances or their children. Use setState(),

Best Practices 4-49

setCount(), setValue(), and so on.

Comparison of Coding Approaches
Consider an example of creating instances of a certain number of instantiable
Components, and setting the values of Features in each one. Setting Components and
Feature Values One at a Time (Slower), page 4-49 creates a Component, then sets its
Features before creating the next Component. Setting All Components and Then All
Feature Values (Faster) , page 4-49 creates all the Components, then sets all of their
Features.

Setting Components and Feature Values One at a Time (Slower)
// Block for 1st component
Add Component1 to ComponentSet
Set Feature1 in Component1
Set Feature2 in Component1
// Block for 2nd component
Add Component2 to ComponentSet
Set Feature3 in Component2
...

Setting All Components and Then All Feature Values (Faster)
// Block for all structure changes
Begin strucure-only transaction
Add Component1 to ComponentSet
Add Component2 to ComponentSet
Commit strucure-only transaction
// Block for all assertions
Set Feature1 in Component1
Set Feature2 in Component1
Set Feature3 in Component2
...

Setting Components and Feature Values One at a Time (Slower), page 4-49 is subject to
the negative performance effects identified in Optional and Multiple Instantiation, page
4-9. Setting All Components and Then All Feature Values (Faster) , page 4-49 results in
significantly faster runtime performance.

The reason why Setting Components and Feature Values One at a Time (Slower), page
4-49 is slower is shown by comparing Detailed Slower Approach, page 4-50 with
Detailed Faster Approach, page 4-50. The operations that have to be performed by the
CIO when adding ComponentSet instances are highlighted in boldface. repeats all of
the operations for each addition of an instance, so that each addition takes longer than
the preceding one, and the total processing time is proportional to the number of
instances to be added. If there are many instances to be added, the impact is great.
Detailed Faster Approach, page 4-50 performs the operations once, greatly lessening
the effect of adding many instances.

4-50 Oracle Configurator Modeling Guide

Detailed Slower Approach
...
Set Feature1 in Component1
Set Feature3 in Component2
// Block for 1st component
Retract requests // (2 requests)
Add Component1 to ComponentSet
Reassert requests // (2 requests)
Set Feature1 in Component1
Set Feature2 in Component1
...
// Block for 2nd component
Retract requests // (2 existing + 2 new = 4 requests)
Add Component2 to ComponentSet
Reassert requests // (4 requests)
Set Feature3 in Component2
...

For n components added, this approach results in n retractions and reassertions, each of
which is an expensive operation. Note also that the queue of requests grows over time,
further increasing the expense of retraction and reassertion.

Contrast this with the result for Detailed Faster Approach, page 4-50.

Detailed Faster Approach
...
Set Feature1 in Component1
Set Feature3 in Component2
Set Feature1 in Component1Set Feature2 in Component1
Begin strucure-only transaction // retracts all existing requests (4
requests)
Add Component1 to ComponentSet
Add Component2 to ComponentSet
Commit strucure-only transaction // reasserts all existing requests (4
requests)
...
Set Feature3 in Component2
...

For n components added, this approach results in only 1 retraction and reassertion.
Contrast this with the result for Detailed Slower Approach, page 4-50. You could
further improve performance by performing structural changes before making requests,
thus reducing the size of the queue of requests.

Code Example
Consider the simple runtime Model structure shown in Model Structure for Adding
Components, page 4-51. At runtime, this Model contains a ComponentSet object and
several BooleanFeature objects.

The following graphic shows a simple Model, consisting of a ComponentSet object
named Comp1, which contains three BooleanFeature objects called BoolFeat1,
BoolFeat2, and BoolFeat3.

Best Practices 4-51

Model Structure for Adding Components

Assume that you have written a Configurator Extension bound to the onCommand
event that sets the state of the Boolean Features as illustrated in Setting Features (Slower
Code), page 4-51.

Setting Features (Slower Code)
...for(int i=0; i<100; i++) {
 comp = Comp1.add();

((BooleanFeature)comp.getChildByName("BoolFeat1")).setState(IState.TRUE)
;

((BooleanFeature)comp.getChildByName("BoolFeat2")).setState(IState.FALSE
);

((BooleanFeature)comp.getChildByName("BoolFeat3")).setState(IState.TRUE)
;
}
...

You can significantly improve the performance of this operation by modifying the code
as shown in Setting Features (Faster Code), page 4-51. The differences are highlighted
in boldface.

Setting Features (Faster Code)
...
ConfigTransaction tr = config.beginConfigTransaction();
ConfigTransaction.allowOnlyStructuralChanges();
for(int i=0; i<100; i++){
 comp[i] = Comp1.add();
}config.commitConfigTransaction(tr);for(int i=0; i<100; i++){
 ((BooleanFeature)comp[i]
.getChildByName("BoolFeat1")).setState(IState.TRUE);
 ((BooleanFeature)comp[i]
.getChildByName("BoolFeat2")).setState(IState.FALSE);
 ((BooleanFeature)comp[i]
.getChildByName("BoolFeat3")).setState(IState.TRUE);
}
...

Setting Features (Faster Code), page 4-51 improves performance by adding all the
ComponentSet instances, then setting all the BooleanFeature values. This follows
the principles identified in Optional and Multiple Instantiation, page 4-9, and the
example shown in Setting All Components and Then All Feature Values (Faster) , page

4-52 Oracle Configurator Modeling Guide

4-49 under Comparison of Coding Approaches, page 4-49.

Optimization of Validation Configurator Extensions
In general, Oracle Configurator applies validation tests and defaults more often than
would be expected. The onConfigValidate event is called whenever the end user
selects an option or enters an input in the runtime Oracle Configurator. In a
Configurator Extension bound to this event, defaults should be used as judiciously as
possible, as described in Defaults Rules Versus Alternatives to Default Selections, page
4-20. Validation tests must also be minimal. You should arrange the code so that
onConfigValidate is only called when necessary, and the condition test is quick.

The examples Minimizing Validation Tests on a Configuration Model, page 4-52 and
Causing More Validation Tests on a Configuration Model, page 4-52 show two ways of
applying a validation test. Minimizing Validation Tests on a Configuration Model, page
4-52 performs better because it performs the task of setting up the validation (by
finding the node in each call) in a method bound to the postCXInit event, which
occurs once, and then performs the validation test only after all other calls are
completed.

The example Causing More Validation Tests on a Configuration Model, page 4-52 sets
up the validation as part of the validation test, so the setup is performed every time the
onConfigValidate event occurs.

If you are using Oracle Configurator release 11.5.9 or earlier, use onConfigValidate.
If you are using release 11.5.10 or later - and only the end user can modify the Feature -
then use the postValueChange event instead. This event has a more limited scope
and is much more efficient than onConfigValidate. Refer to the Oracle Configurator
Extensions and Interface Object Developer's Guidefor more information.

Minimizing Validation Tests on a Configuration Model
OptionFeature f = null;
doPostCXInit() { // bind to postCXInit event
 f = (OptionFeature) root.getChildByName("feature_name");
 }
doOnConfigValidate () { // bind to onConfigValidate event
 if (f.isTrue()) {
 }
}

Causing More Validation Tests on a Configuration Model
doPostCXInit() { // bind to postCXInit event
 // empty
 }
doOnConfigValidate () { // bind to onConfigValidate event
 OptionFeature f = (OptionFeature) root.getChildByName("feature_name");
 if (f.isTrue()) {
 }
}

Part 2
Case Studies

To solve your configuration problem, Oracle Configurator may require a combination
of best practices that is not obvious. This section presents some examples of common
configuration problems and optimal design solutions best suited to an Oracle
Configurator implementation.

Many Large BOM Models 5-1

5
Many Large BOM Models

This chapter describes an Oracle Configurator project involving many large BOM
Models with much explicit and repetitive structure that is best modeled as a single
top-level BOM Model containing a deep hierarchy of generic structure and abstractions.

This chapter covers the following topics:

• Overview

• Project Description

• A Deficient Modeling Approach

• The Suggested Modeling Approach

Overview
This case study explores redesigning a project consisting of many large BOM Models
(such as 90,000), each with a large number of options for selection (such as 150,000). The
goal is to fulfill performance and usage expectations in a way best suited to the
strengths and characteristics of Oracle Configurator.

This project illustrates the following best practices:

• Explicit Model Structure Versus Abstractions, page 4-2

• Explicit Model Structure Versus References, page 4-7

• Optional and Multiple Instantiation, page 4-9

• Shallow Versus Nested or Deep Hierarchy, page 4-14

• Items Versus Alternatives to Items, page 4-14

• Large Option Features and Option Classes, page 4-18

• Optimizing User Interface Performance, page 4-40

5-2 Oracle Configurator Modeling Guide

Project Description
A manufacturer and wholesaler of jewelry offers customers the opportunity to custom
configure rings and bracelets. Configuring a ring consists of placing stones with
characteristics such as shape, size, type, clarity, quality, into a specified location on the
ring. Each ring consists of up to 60 locations. For example, a customer orders a 3-setting
ring by configuring a 2mm round ruby at location 1 and 3, and a 3mm square emerald
at location 2.

A Deficient Modeling Approach
An initial modeling approach might be to have a specific BOM for each ring model.
Each ring model contains explicit submodels for each of 60 possible locations. Each
Location submodel contains the specifications for the stone placed in that location.
Stone specifications are shape, type, and so on. The 60 locations can be arranged in one
of many possible settings. So for instance, if a ring is defined with three locations, the
locations can be arranged in a line with two bevels flanking a peg. The locations on a
60-location ring could be arranged in many more possible settings. Multiplying the 60
rings containing from 1 to 60 Location submodels by the various possible settings
results in 90,000 large, explicit BOM Models with up to 150,000 options in each BOM
Model. Many Explicit Ring Models, page 5-3 shows an example of such explicit, flat
Model structure across many Models.

The graphic Many Explicit Ring Models, page 5-3 shows RingModel 1000, RingModel
1001, and RingModel 1800, and shows that 800 RingModels contain repetitive structure.

Many Large BOM Models 5-3

Many Explicit Ring Models

Each Location has the same kind of configurable characteristics, such as particular
stones of specific shapes and sizes. In the individual RingModels, the structure for
configuring Locations is repeated over and over again, up to the maximum number of
60 locations. For example, if 100 rings are defined with 3 locations and another 100 rings
are defined with 4 locations, then in 200 ring models the submodel structure for
Location is repeated 700 times.

The ring configuration can contain the same configuration of a stone in several locations
or a stone with different characteristics in different locations.

5-4 Oracle Configurator Modeling Guide

Perceived Advantages
By defining each possible model explicitly, the manufacturer can maintain and sell each
model independently of all the other models. This includes sourcing items to separate
organizations and preserving existing routings.

By not defining abstractions, the manufacturer does not have to create a large number
of rules to capture the large number of valid combinations because each model
identifies explicit options.

Overwhelming Disadvantages
A design consisting of 90,000 individual Models, each representing a unique
combination, does not leverage the power of Oracle Configurator and causes the
following:

• Performance problems when importing 90,000 BOM Models into Oracle
Configurator Developer

• Performance problems at runtime caused by the large number of items (up to
150,000 options per model) that must be instantiated

• Costly maintenance of 90,000 explicit Models with repetitive structure of many
similar items across many of the models

• Costly memory usage during preload, initialization, and UI screen display

• Scalability issues as the business expands to more models and more options within
those models

The runtime performance issues at a minimum are prohibitive.

The Suggested Modeling Approach
The suggested modeling approach avoids the problems presented in A Deficient
Modeling Approach, page 5-2 and applies numerous best practices described in Best
Practices, page 4-1. Rather than define separate explicit models repeatedly for each
possible ring, a well-designed implementation defines the duplicated structure by
references and abstractions, using optional instantiation to optimize performance.

Applying Best Practices to Your Model Structure
This case involves several separate models that represent unique rings. However, the
ring models contain a large amount of similar structure, such as settings and locations
for mountings on the rings.

To leverage the advantages of deep hierarchy and optional instantiation, you need to

Many Large BOM Models 5-5

create abstractions of the structure that is similar across all ring models, as follows:

1. Combine the separate models into a single top-level model for configuring rings.
RingModel_1001 through RingModel_1800 in Many Explicit Ring Models, page 5-3
become an abstract model called Ring Model in Top-level Ring Model with
Abstractions, page 5-7. Instead of searching from a long list of rings with many
pre-defined characteristics in RingModel_1001 through RingModel_1800, the
end-user starts by selecting the characteristics of an undefined ring. The undefined
ring is represented by Ring Model and the characteristics are the settings and the
stones.

This step applies the best practice:

• Explicit Model Structure Versus Abstractions, page 4-2

2. Creating a single top-level Ring Model containing the settings structure, initially
results in one huge, flat BOM Option Class containing all possible settings, of which
only one will be selected. Not only are all settings loaded when the top-level Ring
Model is loaded, but the end user is faced with selecting a setting from this very
large list of options.

To help end users see only those settings options that are relevant to their
configuration, organize settings into groups by some criterion such as popularity or
the ring's intended function. A Settings Model contains not all possible settings but
BOM Option Classes of related or grouped settings.

Each group of settings is a BOM Option Class containing only those options that
belong in that group. Ideally, a specific Settings option should not appear in more
than one group.

Create a Settings Model that contains all the Setting Group BOM Option Classes.

This step applies the best practices:

• Explicit Model Structure Versus Abstractions, page 4-2

• Grouped Versus Ungrouped Items, page 4-18

3. To involve only that group of settings in the configuration that contains relevant
settings, change the Settings Group BOM Option Classes into BOM Models and
make them optionally instantiable, which means the value of Instance Minimum is
0, Maximum is 1. See Top-level Ring Model with Abstractions, page 5-7.

This step applies the best practice:

• Optional Instantiation of BOM Option Classes, page 4-9

4. In the top-level Ring Model, you can significantly decrease the amount of repetitive
structure by defining an ATO model for the various Stone Types, each containing
BOM Option Classes for the configurable characteristics of the Stone such as size

5-6 Oracle Configurator Modeling Guide

and quality.

This step applies the best practice:

• Explicit Model Structure Versus Abstractions, page 4-2

5. To specify the location where the Stone will be placed, create a Location Option
Feature for the Stone Model. The Location List of Options contains the maximum
number of Locations allowed for any ring. Making Location an attribute of the
Stone Model rather than an Item in the Ring Model is appropriate because the Stone
is configurable and orderable, not the Location.

This step applies the best practice described in:

• Items Versus Alternatives to Items, page 4-14

6. In the Stone Model, refine your design further by creating a Stone Type ­BOM
Model containing each stone type (Diamond, Ruby, and so one) as a separate Model
that is optionally instantiable. Each Model in the Stone Type ­BOM Model contains
BOM Option Classes of the configurable characteristics of that stone type, such as
shape and size.

This applies the following best practices:

• Explicit Model Structure Versus Abstractions, page 4-2

• Explicit Model Structure Versus References, page 4-7

• Shallow Versus Nested or Deep Hierarchy, page 4-14

The graphic Top-level Ring Model with Abstractions, page 5-7 shows the Ring Model
that represents an abstraction of RingModel 1000 to 1800.

Many Large BOM Models 5-7

Top-level Ring Model with Abstractions

Applying Best Practices to Further Optimize the End-User Experience
After completing the steps in the previous section (Applying Best Practices to Your
Model Structure, page 5-4), continue with the following steps:

1. To allow end users to select only the Locations relevant to their ring configurations,
write rules that disallow selecting Locations that are not allowed for a particular
Setting. For example, when the end user has selected a 3-location setting, only 3
Locations should be selectable.

2. To further enhance usability, define a display condition so only valid Locations are
displayed in the UI.

This applies the best practice:

• Optimizing User Interface Performance, page 4-40

5-8 Oracle Configurator Modeling Guide

3. You can also write rules to ensure that each required Location for the selected
Setting is selected and that, as the end user configures the Stones for a ring, only
those Locations remain available for selection that have not yet been selected.

The Resulting End-User Flow
In the Order Management Sales Order Pad, the end user selects the top-level Ring
Model and clicks the Configurator button to start configuring a ring. At start up, no
Settings or Stone Models are instantiated. In the Oracle Configurator UI, the end user
selects a Settings Group. For example, the end user picks a 3-setting ring. The end user
must then configure between one and three Stones for the 3 Locations of the 3-setting
ring. The first instance of the Stone Model allows the end user to configure the Stone
Type and select from the three available Locations. If the end users picks all three
Locations, the configuration is complete and the same Stone configuration will be set in
each of the three locations. If not all three Locations are selected, the end user adds
additional instances of the Stone Model, configures them and selects remaining
available Locations until the ring is fully configured.

The diagram in End User Flow for Configuring a Ring Model, page 5-9 shows a
typical end-user flow.

The graphic End User Flow for Configuring a Ring Model, page 5-9is an end-user
flow chart for ordering the Ring Model. The end user picks a setting from the Settings
submodel and rules select the corresponding number of Locations. The end user then
creates an instance of a Stone and configures its characteristics. Finally, the end user
completes the Stone configuration by selecting a location for that Stone. These tasks
repeat for all locations required by the selected Setting.

Many Large BOM Models 5-9

End User Flow for Configuring a Ring Model

Advantages of This Modeling Approach

Perceived Disadvantages
Creating deeper hierarchy and abstractions may require greater designing effort and
more rule definitions than an explicit design approach.

A single BOM Model can be sourced to only one organization.

Downstream ERP applications may require additional setup for option-dependent
routings or using configuration attributes. Configuration attributes are explained in
Oracle Configurator Methodologies.

Overwhelming Advantages
Comparing this approach to the deficient one presented in A Deficient Modeling

5-10 Oracle Configurator Modeling Guide

Approach, page 5-2, a single top-level BOM Model with structure that is only
instantiated as needed provides the following advantages:

• Importing a single BOM Model with abstractions is significantly faster than
importing 90,000 large BOM Models with explicit, repetitive structure

• Instantiating only the substructures required by the current configuration is
significantly faster at runtime than instantiating all items

• Maintaining a single top-level BOM Model with abstractions is quicker, more
flexible to change, and less prone to error than maintaining 90,000 explicit models
with repetitive structure of many similar items across many of the models

• Preloading, initializing, and displaying the UI screens for a single BOM Model with
optionally instantiated items uses significantly less memory than the same
operations for 90,000 explicit models

• Scaling the single top-level BOM Model with abstractions to accommodate
exponentially more items as the business grows does not significantly affect the
performance baseline

Many BOM Items 6-1

6
Many BOM Items

This chapter describes an Oracle Configurator project involving many BOM Items that
are not orderable and could be better implemented as Features or configuration
attributes. Configuration attributes are explained in Oracle Configurator Methodologies.

This chapter covers the following topics:

• Overview

• Project Description

• A Deficient Modeling Approach

• The Suggested Modeling Approach

Overview
This case study explores redesigning a project that contains a profusion of items not all
of which are part of the order.

This project illustrates the following best practices:

• Items Versus Alternatives to Items, page 4-14

• Grouped Versus Ungrouped Items, page 4-18

• Optional and Multiple Instantiation, page 4-9

• Optimizing User Interface Performance, page 4-40

Project Description
A manufacturer and retail supplier of perforated metal sheets offers customers both
standard products available from local stock and custom-made products. When
ordering metal sheets, customers must specify the type and grade of the material, its
width, length, and thickness, and various characteristics about the perforations. From

6-2 Oracle Configurator Modeling Guide

this information, the manufacturer must determine the machines and tools to use to
produce the metal sheets.

A Deficient Modeling Approach
An initial modeling approach might be to define all possible characteristics of a metal
sheet as items in the BOM Model. This would result in a top-level BOM structure for
Metal Sheet, which contains submodels for specifying material and machines, and
contains BOM Option Classes for specifying width, length, thickness, material grade,
hole type, hole size, tools, and so on. Each BOM Option Class contains a large number
of selectable items. Widths, lengths, thicknesses, material grades, hole types, hole sizes,
and tools are all defined as items. For example, the Width BOM Option Class contains
items that represent every possible selectable width for the metal sheet. Model With Too
Many Items, page 6-3 shows an excerpt of such a model.

The graphic Model With Too Many Items, page 6-3 shows a Custom Metal Sheet
Model containing submodels for Material and Machine, and BOM Option Classes for
Width, Hole Size, and Hole Shape.

Many BOM Items 6-3

Model With Too Many Items

Perceived Advantage
• By defining each characteristic of the product as an item, the manufacturer does not

have to create rules to capture a large number of valid combinations of
characteristics

• Defining all of the information as part of the BOM Model ensures that all of the
information is passed back to Order Management and to the downstream
manufacturing applications.

• Defining each characteristic as an item provides a straightforward means by which
to associate a price with each characteristic.

6-4 Oracle Configurator Modeling Guide

Overwhelming Disadvantages
A design that forces all of this information into the BOM Model inflates the size of the
model structure, does not leverage the flexibility of Oracle Configurator, and causes the
following problems:

• Poor performance when importing large numbers of items into Oracle Configurator
Developer

• Poor performance at runtime caused by the large number of items (more than
10,000) that must be loaded into memory and displayed

• Poor usability of a UI that requires finding the desired item among a large number
of items

• Insufficient scalability and maintainability as the business expands to more
characteristics and dimensions

The Suggested Modeling Approach
Rather than defining thousands of BOM items to capture the characteristics of the
configured item, a well-designed implementation reviews the requirement for this large
number of items and based on the item's use, redefines it either as a configuration
attribute or Feature.

Applying Best Practices to Your Model Structure
The following suggested modeling approach applies best practices to achieve improved
performance and usability:

1. Redesign the BOM Model for perforated metal sheets by analyzing the purpose of
each submodel and BOM Option Class. By finding alternatives to items where
possible, you can make the BOM structure significantly smaller and improve
performance and maintainability.

1. Identify which items appear on an order line and will be picked or assembled.
For example, items in the Materials submodel must appear on the order line.
These items must remain in your model as BOM Standard Items.

2. Of the items that do not need to appear on the order line, determine whether
you need end user input for the value of the item, or if the item has static value
used in calculations or Compatibility rules. Define static values as Properties of
the items they define.

For example, the material grade has a static value (Premium, Medium, and so
on) which can be defined as Properties of the Materials items.

Many BOM Items 6-5

3. Define items whose values result from end user input as Features or as
attributes on items. For example, hole size and width.

4. Of the items that require end user input, determine whether they should be
defined as Features or as configuration attributes. Those inputs that are
required for downstream operations must be defined as configuration
attributes. Write attribute values collected during the configuration session into
the CZ_CONFIG_ATTRIBUTES table.

For example, width, length, and thickness contribute to items that specify
material. These values can be modeled as configuration attributes and
associated with the Materials items that need to go to manufacturing.

For details about implementing configuration attributes, seeOracle Configurator
Methodologies. Note that configuration attributes are not accessible to
downstream applications without customization.

5. If the items are only needed during the configuration session, define them as
Features.

For example, the hole size and type affect the selection of tools needed for
creating custom-made sheets. Tool selection occurs during the configuration
session. Add a Numeric Feature to get the hole size and a Feature with a List of
Options to get the hole shape from the end user.

6. Define Configurator Extensions for selecting the appropriate tool based on end
users selections for hole shape and size.

This step applies the best practice:

• Items Versus Alternatives to Items, page 4-14

2. The Material submodel contains a large number of items. Organize these items
under some logical grouping by making each logical group a separate model. Add
non-BOM Features to get user inputs that determine which Material group to load.
Each group model contains only items belonging to that group. For instance, if the
group were based on material type, then add a Feature to capture a material type
selection such as aluminum or steel.

This step applies the best practice:

• Grouped Versus Ungrouped Items, page 4-18

The graphic Redesigned Model With Fewer Items, page 6-6 shows a top-level root
Custom Metal Sheet Model that contains references to a submodels for Material and
Machine, as well as Features for Width, Thickness, Hole Shape, and Hole Size.

6-6 Oracle Configurator Modeling Guide

Redesigned Model With Fewer Items

Applying Best Practices to Further Optimize the End-User Experience
After completing the steps in the previous section (Applying Best Practices to Your
Model Structure, page 6-4), continue with the following steps:

1. To enhance the runtime performance, load only those groups of items that are
needed by making instantiation of each group model optional, which means the
value of Instance Minimum is 0, Maximum is 1. For example, a particular

Many BOM Items 6-7

submodel group of the Material model is instantiated based on certain end-user
criteria.

This step applies the best practice:

• Optional and Multiple Instantiation, page 4-9

2. Hide the parts of the BOM that do not require user interaction. For example, hide
the Machine submodel.

This step applies the best practice:

• Optimizing User Interface Performance, page 4-40

The Resulting End-User Flow
The end user starts the order in the Order Management Sales Order Pad, selects the
appropriate item to be configured, and launches Oracle Configurator. The Oracle
Configurator UI starts with a page or pages for entering high-level order characteristics,
such as material type, hole size, and hole shape. Based on the end user's selection of a
material type, the Configurator Extension loads the appropriate Material model. The
end user selects the material and then enters the dimensions for the material, such as
height, width, and length. These dimensions are collected as configuration attributes.
The end user then selects a tool selection button which invokes a Configurator
Extension to determine the appropriate tool for processing the ordered specifications.

At the end of the configuration session, the Configurator Extension writes the
dimension attributes to the CZ_CONFIG_ATTRIBUTES table and populates the order
line with the ordered material and tool.

For more information about configuration attributes, see Oracle Configurator
Methodologies.

Advantages of This Modeling Approach

Perceived Disadvantages
• Differentiating whether items are orderable or merely participants in completing a

configuration may require greater designing effort and more rule definitions than
simply defining all characteristics as individual items.

• Using configuration attributes requires customization to retrieve the dimension
attributes information from CZ_CONFIG_ATTRIBUTES for use in downstream
manufacturing applications. This customization must be reviewed for possible
modification when you upgrade Oracle Applications.

• Associating prices with characteristics that are defined as configuration attributes
requires customization and the use of Advanced Pricing rules.

6-8 Oracle Configurator Modeling Guide

Overwhelming Advantages
Compared to the deficient approach presented in A Deficient Modeling Approach, page
6-2, the suggested approach provides the following advantages:

• Importing fewer BOM items is significantly faster

• Instantiating only groups of items at runtime that are needed by the current
configuration is significantly faster than instantiating all items

• Maintaining a smaller BOM Model with fewer items is easier

• A relatively smaller BOM Model can be scaled better as the business grows without
irreparably degrading performance

SQL Queries A-1

A
SQL Queries

This appendix contains some SQL*Plus queries that are useful for calculating the total
number of nodes in a configuration model, and the number of different types of nodes
in a configuration model.

This appendix covers the following topics:

• Number of Nodes by Type

• Number of Features by Type in a Configuration Model

• Number of Rules by Type in a Configuration Model

• Number of Rules by Relation in a Configuration Model

Number of Nodes by Type
Use the Determine Number of Nodes by Type in a configuration model, page A-2
query to find out how many nodes of each type exist in a configuration model. The
Numeric Identification of PS_NODE_TYPE table, page A-1 provides the numeric
identification of the node types that need to be inserted in the query. For example, in the
example that follows the table below, replace ps_node_type ID with 259 in the script
to find out how many Component nodes exist in a configuration model.

Numeric Identification of PS_NODE_TYPE

PS_NODE_TYPE Description

259 Component

261 Feature

262 Option

A-2 Oracle Configurator Modeling Guide

PS_NODE_TYPE Description

263 Model Reference (BOM or Non-BOM)

264 Model Connector

272 Total

273 Resource

436 BOM Model Root node

437 BOM Option Class

438 BOM Standard Item

Determine Number of Nodes by Type in a Configuration Model (not including
Model References)
This query returns the number of nodes by type in a configuration model, but does not
include nodes that belong to referenced Models. .
SQL> SELECT count(*)
FROM cz_ps_nodes
WHERE deleted_flag = '0'
and ps_node_type = ps_node_type ID
and devl_project_id = devl_project_id
/

Determine Number of Nodes by Type in a Configuration Model (including Model
References)
This query returns the number of nodes by type in a configuration model, including
nodes that belong to referenced Models.
SQL> SELECT count(*)
FROM cz_ps_nodes
WHERE deleted_flag = '0'
and ps_node_type = ps_node_type ID
and devl_project_id in (select distinct component_id from
cz_model_ref_expls where deleted_flag = '0'
and model_id = devl_project_id)
/

In the examples above, insert a number from the Numeric Identification of
PS_NODE_TYPE, page A-1 table for the variable ps_node_type ID, and insert the
configuration model ID for devl_project_id. To determine a configuration model's
DEVL_PROJECT_ID, see the Determine DEVL_PROJECT_ID of a Configuration Model,
page A-3 example.

The following examples show queries that use the 'in' and 'not in' functions to find out
how many BOM and non-BOM nodes exist in a configuration model.

SQL Queries A-3

References)
SQL> SELECT count(*)
FROM cz_ps_nodes
WHERE deleted_flag = '0'
and ps_node_type in (436,437,438)
and devl_project_id = devl_project_id
/

Determine Number of BOM Nodes in a Configuration Model (including Model
References)
SQL> SELECT count(*)
FROM cz_ps_nodes
WHERE deleted_flag = '0'
and ps_node_type in (436,437,438)
and devl_project_id in (select distinct component_id from
cz_model_ref_expls where deleted_flag = '0'
and model_id = devl_project_id
/

Determine Number of non-BOM Nodes in a Configuration Model (not including
Model References)
SQL> SELECT count(*)
FROM cz_ps_nodes
WHERE deleted_flag = '0'
and ps_node_type not in (436,437,438)
and devl_project_id = devl_project_id
/

Determine Number of non-BOM Nodes in a Configuration Model (including Model
References)
SQL> SELECT count(*)
FROM cz_ps_nodes
WHERE deleted_flag = '0'
and ps_node_type not in (436,437,438)
and devl_project_id in (select distinct component_id from
cz_model_ref_expls where deleted_flag = '0'
and model_id = devl_project_id
/

Determine DEVL_PROJECT_ID of a Configuration Model
SQL> SELECT devl_project_id, name
FROM cz_devl_projects
WHERE name like '%Sen%'
and deleted_flag='0'

In this example, replace Sen with part of your model's name. The query returns both
the Model's devl_project_id and its name, as shown below:
DEVL_PROJECT_ID NAME
2020 Sentinel Custom Desktop(204 137)

Number of Features by Type in a Configuration Model
Use the queries in this section to find out how many Features of a specific type exist in a
configuration model. For each query, refer to the table below to determine the value to
enter for the feature_type ID variable. Refer to Determine DEVL_PROJECT_ID of a
Configuration Model, page A-3to determine your configuration model's
devl_project_id.

A-4 Oracle Configurator Modeling Guide

Numeric Identification of FEATURE_TYPE

FEATURE_TYPE Description

0 Option

1 Integer

2 Decimal

3 Boolean

4 Text

Determine Number of Features by Type in a Configuration Model (not including
Model References)
SQL> SELECT count(*)
FROM cz_ps_nodes
WHERE deleted_flag = '0'
and ps_node_type = 261
and feature_type = feature_type ID
and devl_project_id = devl_project_id
/

Determine Number of Features by Type in a Configuration Model (including Model
References)
SQL> SELECT count(*)
FROM cz_ps_nodes
WHERE deleted_flag = '0'
and ps_node_type = 261
and feature_type = feature_type ID
and devl_project_id in (select distinct component_id from
cz_model_ref_expls where deleted_flag = '0'
and model_id = devl_project_id
/

Number of Rules by Type in a Configuration Model
Use the query below to find out how many rules of each type exist in a configuration
model.

When executing the query, insert the model_id of one or more models where indicated
in the example, and enter a value from the table below for rule_type ID.

SQL Queries A-5

Numeric Identification of RULE_TYPE

RULE_TYPE Description

21 Logic Rule

22 Numeric Rule

23 Compatibility Rule

24 Compatibility Table

25 Func Preselect

26 Func Validate

27 Comparison Rule

29 Functional Companion

30 Design Chart

33 Runtime DISPLAY Condition

34 Runtime ENABLED Condition

200 Statement Rule

300 Configurator Extension Rule

A-6 Oracle Configurator Modeling Guide

Determine Number of Rules by Type in a Configuration Model
select
 model_id,
 rule_type,
 count (distinct rule_id) as distinct_rules,
 count (*) as rule_instances_all_models
from
 cz_model_ref_expls,
 cz_rules
where
 cz_model_ref_expls.DELETED_FLAG = '0' and
 cz_model_ref_expls.component_id = cz_rules.devl_project_id and
 cz_rules.deleted_flag = '0' and
 ps_node_type != 264 and
 cz_rules.rule_type = rule_type ID and
 model_id in (list one or more models here, separated by commas)
group by
 model_id, rule_type
;

There are two rule counts in the above example. The rule counts usually return the
same amount but not always. The reason for this is that it is possible for the same child
model to be referenced more than once. In this case, a rule is likely to be loaded and
active once for each place its model is included in the overall root model. The data
storage volume is indicated by the DISTINCT_RULES calculation; this counts each
unique rule only once. The runtime memory and processing load will usually be better
indicated by the RULE_INSTANCES_ALL_MODELS calculation.

Number of Rules by Relation in a Configuration Model
The Determine Number of Rules by Relation in a Configuration Model, page A-7
example shows the query for determining the number of rules by relation type in a
configuration model.

Numeric Identification of EXPR_RULE_TYPE

EXPR_RULE_TYPE Description

1 Requires

2 Implies

3 Excludes

4 Negates

5 Defaults

SQL Queries A-7

EXPR_RULE_TYPE Description

6 NumSelections

8 Contributes

10 Consumes

Determine Number of Rules by Relation in a Configuration Model
SQL> SELECT count(*)
FROM cz_rules
WHERE rule_type = rule_type
and expr_rule_type = expr_rule_type
and devl_project_id in (
SELECT distinct ps_node_id
FROM cz_ps_nodes
WHERE deleted_flag = '0'
and ps_node_type in(436,263)
START WITH ps_node_id = devl_project_id
CONNECT BY DECODE(PRIOR ps_node_type,263,PRIOR reference_id, PRIOR
ps_node_id)=
DECODE(PRIOR ps_node_type,263,ps_node_id,parent_id))
/

In the Determine Number of Rules by Relation in a Configuration Model, page A-7
example, insert the RULE_TYPE number shown in the Numeric Identification of
RULE_TYPE, page A-5 table for the variable rule_type, insert the EXPR_RULE_TYPE
number shown in the Numeric Identification of EXPR_RULE_TYPE, page A-6 table for
the variable expr_rule_type, and insert the DEVL_PROJECT_ID of the configuration
model for the variable devl_project_id (see the Determine DEVL_PROJECT_ID of a
Configuration Model, page A-3 example).

Glossary-1

Glossary

This glossary contains definitions relevant to working with Oracle Configurator.

A

Archive Path

The ordered sequence of Configurator Extension Archives for a Model that determines
which Java classes are loaded for Configurator Extensions and in what order.

B

base node

The node in a Model that is associated with a Configurator Extension Rule. Used to
determine the event scope for a Configurator Extension.

batch validation

A background process for validating selections in a configuration.

binding

Part of a Configurator Extension Rule that associates a specified event with a chosen
method of a Java class. See also event.

BOM item

The node imported into Oracle Configurator Developer that corresponds to an Oracle
Bills of Material item. Can be a BOM Model, BOM Option Class node, or BOM Standard
Item node.

BOM Model

A model that you import from Oracle Bills of Material into Oracle Configurator
Developer. When you import a BOM Model, effective dates, ATO (Assemble To Order)
rules, and other data are also imported into Configurator Developer. In Configurator
Developer, you can extend the structure of the BOM Model, but you cannot modify the
BOM Model itself or any of its attributes.

Glossary-2

BOM Model node

The imported node in Oracle Configurator Developer that corresponds to a BOM Model
created in Oracle Bills of Material.

BOM Option Class node

The imported node in Oracle Configurator Developer that corresponds to a BOM
Option Class created in Oracle Bills of Material.

BOM Standard Item node

The imported node in Oracle Configurator Developer that corresponds to a BOM
Standard Item created in Oracle Bills of Material.

Boolean Feature

An element of a component in the Model that has two options: true or false.

C

CDL (Constraint Definition Language)

A language for entering configuration rules as text rather than assembling them
interactively in Oracle Configurator Developer. CDL can express more complex
constraining relationships than interactively defined configuration rules can.

The CIO is the API that supports creating and navigating the Model, querying and
modifying selection states, and saving and restoring configurations.

CIO (Oracle Configuration Interface Object)

A server in the runtime application that creates and manages the interface between the
client (usually a user interface) and the underlying representation of model structure
and rules in the generated logic.

command event

An event that is defined by a character string and detected by a command listener.

Comparison Rule

An Oracle Configurator Developer rule type that establishes a relationship to determine
the selection state of a logical Item (Option, Boolean Feature, or List-of-Options Feature)
based on a comparison of two numeric values (numeric Features, Totals, Resources,
Option counts, or numeric constants). The numeric values being compared can be
computed or they can be discrete intervals in a continuous numeric input.

Compatibility Rule

An Oracle Configurator Developer rule type that establishes a relationship among
Features in the Model to control the allowable combinations of Options. See also,

Glossary-3

Property-based Compatibility Rule.

Compatibility Table

A kind of Explicit Compatibility Rule. For example, a type of compatibility relationship
where the allowable combination of Options are explicitly enumerated.

component

A piece of something or a configurable element in a model such as a BOM Model,
Model, or Component.

Component

An element of the model structure, typically containing Features, that is configurable
and instantiable. An Oracle Configurator Developer node type that represents a
configurable element of a Model.

Component Set

An element of the Model that contains a number of instantiated Components of the
same type, where each Component of the set is independently configured.

configuration

A specific set of specifications for a product, resulting from selections made in a
runtime configurator.

configuration attribute

A characteristic of an item that is defined in the host application (outside of its
inventory of items), in the Model, or captured during a configuration session.
Configuration attributes are inputs from or outputs to the host application at
initialization and termination of the configuration session, respectively.

configuration model

Represents all possible configurations of the available options, and consists of model
structure and rules. It also commonly includes User Interface definitions and
Configurator Extensions. A configuration model is usually accessed in a runtime Oracle
Configurator window. See also model.

configuration rule

A Logic Rule, Compatibility Rule, Comparison Rule, Numeric Rule, Design Chart,
Statement Rule, or Configurator Extension rule available in Oracle Configurator
Developer for defining configurations. See also rules.

configuration session

The time from launching or invoking to exiting Oracle Configurator, during which end
users make selections to configure an orderable product. A configuration session is

Glossary-4

limited to one configuration model that is loaded when the session is initialized.

configurator

The part of an application that provides custom configuration capabilities. Commonly,
a window that can be launched from a host application so end users can make
selections resulting in valid configurations. Compare Oracle Configurator.

Configurator Developer

See OCD.

Configurator Extension

An extension to the configuration model beyond what can be implemented in
Configurator Developer.

A type of configuration rule that associates a node, Java class, and event binding so that
the rule operates when an event occurs during a configuration session.

A Java class that provides methods that can be used to perform configuration actions.

Configurator Extension Archive

An object in the Repository that stores one or more compiled Java classes that
implement Configurator Extensions.

connectivity

The connection across components of a model that allows modeling such products as
networks and material processing systems.

Connector

The node in the model structure that enables an end user at runtime to connect the
Connector node's parent to a referenced Model.

Constraint Definition Language

See CDL

Container Model

A type of BOM Model that you import from Oracle Bills of Material into Oracle
Configurator Developer to create configuration models that support connectivity and
contain trackable components. Configurations created from Container Models can be
tracked and updated in Oracle Install Base

Contributes to

A relation used to create a specific type of Numeric Rule that accumulates a total value.
See also Total.

Glossary-5

Consumes from

A relation used to create a specific type of Numeric Rule that decrements a total value,
such as specifying the quantity of a Resource used.

count

The number or quantity of something, such as selected options. Compare instance.

CZ

The product shortname for Oracle Configurator in Oracle Applications.

CZ schema

The implementation version of the standard runtime Oracle Configurator
data-warehousing schema that manages data for the configuration model. The
implementation schema includes all the data required for the runtime system, as well as
specific tables used during the construction of the configurator.

D

default

In a configuration, the automatic selection of an option based on the preselection rules
or the selection of another option.

Defaults relation

An Oracle Configurator Developer Logic Rule relation that determines the logic state of
Features or Options in a default relation to other Features and Options. For example, if
A Defaults B, and you select A, B becomes Logic True (selected) if it is available (not
Logic False).

Design Chart

An Oracle Configurator Developer rule type for defining advanced Explicit
Compatibilities interactively in a table view.

E

element

Any entity within a model, such as Options, Totals, Resources, UI controls, and
components.

end user

The ultimate user of the runtime Oracle Configurator. The types of end users vary by
project but may include salespeople or distributors, administrative office staff,
marketing personnel, order entry personnel, product engineers, or customers directly

Glossary-6

accessing the application via a Web browser or kiosk. Compare user.

event

An action or condition that occurs in a configuration session and can be detected by a
listener. Example events are a change in the value of a node, the creation of a
component instance, or the saving of a configuration. The part of model structure inside
which a listener listens for an event is called the event binding scope. The part of model
structure that is the source of an event is called the event execution scope. See also
command event.

Excludes relation

An Oracle Configurator Developer Logic Rule type that determines the logic state of
Features or Options in an excluding relation to other Features and Options. For
example, if A Excludes B, and if you select A, B becomes Logic False, since it is not
allowed when A is true (either User or Logic True). If you deselect A (set to User False),
there is no effect on B, meaning it could be User or Logic True, User or Logic False, or
Unknown. See Negates relation.

F

feature

A characteristic of something, or a configurable element of a component at runtime.

Feature

An element of the model structure. Features can either have a value (numeric or
Boolean) or enumerated Options.

G

generated logic

The compiled structure and rules of a configuration model that is loaded into memory
on the Web server at configuration session initialization and used by the Oracle
Configurator engine to validate runtime selections. The logic must be generated either
in Oracle Configurator Developer or programmatically in order to access the
configuration model at runtime.

guided buying or selling

Needs assessment questions in the runtime UI to guide and facilitate the configuration
process. Also, the model structure that defines these questions. Typically, guided selling
questions trigger configuration rules that automatically select some product options
and exclude others based on the end user's responses.

H

Glossary-7

host application

An application within which Oracle Configurator is embedded as integrated
functionality, such as Order Management or iStore.

I

implementer

The person who uses Oracle Configurator Developer to build the model structure, rules,
and UI customizations that make up a runtime Oracle Configurator. Commonly also
responsible for enabling the integration of Oracle Configurator in a host application.

Implies relation

An Oracle Configurator Developer Logic Rule type that determines the logic state of
Features or Options in an implied relation to other Features and Options. For example,
if A Implies B, and you select A, B becomes Logic True. If you deselect A (set to User
False), there is no effect on B, meaning it could be User or Logic True, User or Logic
False, or Unknown. See Requires relation.

import server

A database instance that serves as a source of data for Oracle Configurator's Populate,
Refresh, Migrate, and Synchronization concurrent processes. The import server is
sometimes referred to as the remote server.

initialization message

The XML (Extensible Markup Language) message sent from a host application to the
Oracle Configurator Servlet, containing data needed to initialize the runtime Oracle
Configurator. See also termination message.

instance

A runtime occurrence of a component in a configuration that is determined by the
component node's Instance attribute specifying a minimum and maximum value. See
also instantiate. Compare count.

Also, the memory and processes of a database.

instantiate

To create an instance of something. Commonly, to create an instance of a component in
the runtime user interface of a configuration model.

item

A product or part of a product that is in inventory and can be delivered to customers.

Glossary-8

Item

A Model or part of a Model that is defined in the Item Master. Also data defined in
Oracle Inventory.

Item Master

Data stored to structure the Model. Data in the CZ schema Item Master is either entered
manually in Oracle Configurator Developer or imported from Oracle Applications or a
legacy system.

Item Type

Data used to classify the Items in the Item Master. Item Catalogs imported from Oracle
Inventory are Item Types in Oracle Configurator Developer.

L

listener

A class in the CIO that detects the occurrence of specified events in a configuration
session.

Logic Rule

An Oracle Configurator Developer rule type that expresses constraint among model
elements in terms of logic relationships. Logic Rules directly or indirectly set the logical
state (User or Logic True, User or Logic False, or Unknown) of Features and Options in
the Model.

There are four primary Logic Rule relations: Implies, Requires, Excludes, and Negates.
Each of these rules takes a list of Features or Options as operands. See also Implies
relation, Requires relation, Excludes relation, and Negates relation.

M

model

A generic term for data representing products. A model contains elements that
correspond to items. Elements may be components of other objects used to define
products. A configuration model is a specific kind of model whose elements can be
configured by accessing an Oracle Configurator window.

Model

The entire hierarchical "tree" view of all the data required for configurations, including
model structure, variables such as Resources and Totals, and elements in support of
intermediary rules. Includes both imported BOM Models and Models created in
Configurator Developer. May consist of BOM Option Classes and BOM Standard Items.

Glossary-9

model structure

Hierarchical "tree" view of data composed of elements (Models, Components, Features,
Options, BOM Models, BOM Option Class nodes, BOM Standard Item nodes,
Resources, and Totals). May include reusable components (References).

N

Negates relation

A type of Oracle Configurator Developer Logic Rule type that determines the logic state
of Features or Options in a negating relation to other Features and Options. For
example, if one option in the relationship is selected, the other option must be Logic
False (not selected). Similarly, if you deselect one option in the relationship, the other
option must be Logic True (selected). Compare Excludes relation.

node

The icon or location in a Model tree in Oracle Configurator Developer that represents a
Component, Feature, Option or variable (Total or Resource), Connector, Reference,
BOM Model, BOM Option Class node, or BOM Standard Item.

Numeric Rule

An Oracle Configurator Developer rule type that expresses constraint among model
elements in terms of numeric relationships. See also, Contributes to and Consumes from.

O

object

Entities in Oracle Configurator Developer, such as Models, Usages, Properties,
Effectivity Sets, UI Templates, and so on. See also element.

OCD

See Oracle Configurator Developer.

option

A logical selection made in the Model Debugger or a runtime Oracle Configurator by
the end user or a rule when configuring a component.

Option

An element of the Model. A choice for the value of an enumerated Feature.

Oracle Configurator

The product consisting of development tools and runtime applications such as the CZ
schema, Oracle Configurator Developer, and runtime Oracle Configurator. Also the

Glossary-10

runtime Oracle Configurator variously packaged for use in networked or Web
deployments.

Oracle Configurator Developer

The tool in the Oracle Configurator product used for constructing and maintaining
configuration models.

Oracle Configurator engine

The part of the Oracle Configurator product that uses configuration rules to validate
runtime selections. Compare generated logic. See also generated logic.

Oracle Configurator schema

See CZ schema.

Oracle Configurator Servlet

A Java servlet that participates in rendering legacy user interfaces for Oracle
Configurator.

Oracle Configurator window

The user interface that is launched by accessing a configuration model and used by end
users to make the selections of a configuration.

P

Populator

An entity in Oracle Configurator Developer that creates Component, Feature, and
Option nodes from information in the Item Master.

Property

A named value associated with a node in the Model or the Item Master. A set of
Properties may be associated with an Item Type. After importing a BOM Model, Oracle
Inventory Catalog Descriptive Elements are Properties in Oracle Configurator
Developer.

Property-based Compatibility Rule

An Oracle Configurator Developer Compatibility Rule type that expresses a kind of
compatibility relationship where the allowable combinations of Options are specified
implicitly by relationships among Property values of the Options.

publication

A unique deployment of a configuration model (and optionally a user interface) that
enables a developer to control its availability from host applications such as Oracle
Order Management or iStore. Multiple publications can exist for the same configuration

Glossary-11

model, but each publication corresponds to only one Model and User Interface.

publishing

The process of creating a publication record in Oracle Configurator Developer, which
includes specifying applicability parameters to control runtime availability and running
an Oracle Applications concurrent process to copy data to a specific database.

R

reference

The ability to reuse an existing Model or Component within the structure of another
Model (for example, as a subassembly).

Reference

An Oracle Configurator Developer node type that denotes a reference to another Model.

Repository

Set of pages in Oracle Configurator Developer that contains areas for organizing and
maintaining Models and shared objects in a single location.

Requires relation

An Oracle Configurator Developer Logic Rule relationship that determines the logic
state of Features or Options in a requirement relation to other Features and Options. For
example, if A Requires B, and if you select A, B is set to Logic True (selected). Similarly,
if you deselect A, B is set to Logic False (deselected). See Implies relation.

Resource

A variable in the Model used to keep track of a quantity or supply, such as the amount
of memory in a computer. The value of a Resource can be positive or zero, and can have
an Initial Value setting. An error message appears at runtime when the value of a
Resource becomes negative, which indicates it has been over-consumed. Use Numeric
Rules to contribute to and consume from a Resource.

Also a specific node type in Oracle Configurator Developer. See also node.

rules

Also called business rules or configuration rules. In the context of Oracle Configurator
and CDL, a rule is not a business rule. Constraints applied among elements of the
product to ensure that defined relationships are preserved during configuration.
Elements of the product are Components, Features, and Options. Rules express logic,
numeric parameters, implicit compatibility, or explicit compatibility. Rules provide
preselection and validation capability in Oracle Configurator.

See also Comparison Rule, Compatibility Rule, Design Chart, Logic Rule and Numeric
Rule.

Glossary-12

runtime

The environment in which an implementer (tester), end user, or customer configures a
product whose model was developed in Oracle Configurator Developer. See also
configuration session.

S

Statement Rule

An Oracle Configurator Developer rule type defined by using the Oracle Configurator
Constraint Definition Language (text) rather than interactively assembling the rule's
elements.

T

termination message

The XML (Extensible Markup Language) message sent from the Oracle Configurator
Servlet to a host application after a configuration session, containing configuration
outputs. See also initialization message.

Total

A variable in the Model used to accumulate a numeric total, such as total price or total
weight.

Also a specific node type in Oracle Configurator Developer. See also node.

U

UI

See User Interface.

UI Templates

Templates available in Oracle Configurator Developer for specifying UI definitions.

Unknown

The logic state that is neither true nor false, but unknown at the time a configuration
session begins or when a Logic Rule is executed. This logic state is also referred to as
Available, especially when considered from the point of view of the runtime Oracle
Configurator end user.

user

The person using a product or system. Used to describe the person using Oracle
Configurator Developer tools and methods to build a runtime Oracle Configurator.
Compare end user.

Glossary-13

user interface

The visible part of the application, including menus, dialog boxes, and other on-screen
elements. The part of a system where the user interacts with the software. Not
necessarily generated in Oracle Configurator Developer. See also User Interface.

User Interface

The part of an Oracle Configurator implementation that provides the graphical views
necessary to create configurations interactively. A user interface is generated from the
model structure. It interacts with the model definition and the generated logic to give
end users access to customer requirements gathering, product selection, and any
extensions that may have been implemented. See also UI Templates.

V

validation

Tests that ensure that configured components will meet specific criteria set by an
enterprise, such as that the components can be ordered or manufactured.

W

Workbench

Set of pages in Oracle Configurator Developer for creating, editing, and working with
Repository objects such as Models and UI Templates.

Index-1

Index

A
abstractions

creating, 5-4
definition, 4-2, 4-4
downstream consequences, 4-6
effect on Flow Manufacturing, 4-6
example, 4-
issues, 4-3
sourcing, 4-6, 5-4

Add button
BOM structure, 4-11

adding
component instances, 2-5, 3-6
Components and Features, 4-45
configuration elements, 2-5, 3-6
Features, 6-5, 6-5
instances

node values not set, 4-11
instantiable Components, 4-45

Advanced Planning
phantom items, 4-6

Advanced Pricing
configuration attributes, 6-7

allowOnlyStructuralChanges()
usage, 4-48

AllTrue logical function
activating defaults, 4-21

applications
collecting data, 4-42

Assemble To Order
See ATO (Assemble To Order)

assertions
ignoring, 4-44
retracting defaults, 4-11
retracting defaults, 4-11, 4-45, 4-46
state and count, 4-44
wrapping in a transaction, 4-45

ATO (Assemble To Order)
models

non-phantom, 4-12
phantom, 4-7, 4-8

ATO Items
See Items

ATP (Available To Promise)
phantom items, 4-6

attributes, 3-7, 4-14, 5-6, 6-4, 6-5
See also configuration attributes
instead of items, 4-14, 5-6, 6-5
processing, 4-15

Available To Promise
See ATP (Available To Promise)

B
beginConfigTransaction()

usage, 4-47
bill of materials, 3-5

See also BOM
display, 3-5

BOM, 2-2
definition, 2-2
design questions, 3-5
displaying, 3-5
structure for ERP versus configuration, 2-2

Index-2

BOM Models, 2-1
controlling display at runtime, 4-12
designing, 2-2, 2-4
extending with guided buying or selling, 2-1
importing

item names and descriptions, 2-4
performance, 5-9

large, 5-1
leveraging in Configurator, 2-1
planning guidelines, 2-4
redesigning, 2-2
References, 4-7
sourcing, 4-6, 5-4

BOM Option Classes
change into BOM Models, 5-5
display of Standard Items at runtime, 4-12
grouped items, 4-18, 5-5
improving

performance, 4-18
usability, 6-6

large
best practices, 4-18
example, 5-5, 6-2

optional instantiation, 4-9
redesigned as BOM Models, 4-7, 4-8, 5-5
References, 4-7
with many Items, 4-18

BOM Option Classes, 4-7
See also BOM Standard Items

BOM Standard Items
optional, 2-4
runtime display, 2-4, 4-12

BooleanFeature object, 4-50
Boolean Features

alternative to Options, 4-20
example, 4-21, 4-22, 4-36
initial values, 4-11, 4-22

browser
resource limitations and UI performance, 4-41

business
constraints, 2-5

C
caching

reducing, 4-9
results of CIO methods, 4-45

CDL (Constraint Definition Language)
precedence of operators, 4-24
using AllTrue, 4-21
using NotTrue, 3-8, 4-28

change
Model structure, 4-47

child
windows, 4-42

CIO (Configuration Interface Object)
optimizing calls by custom UI, 4-42
use by Configurator Extensions, 4-42

client
graphics rendering, 4-41

commitConfigTransaction()
best practice, 4-43
usage, 4-48

Comparison rules
Totals, 4-35

Comparison Rules
best practices, 4-35
design questions, 3-10
using intermediate values, 4-36

Compatibility Rules
best practices, 4-30
definition, 4-8
design questions, 3-10
engine processing, 4-30
Explicit

engine performance, 4-30
Property-based

engine performance, 4-30
using static item values, 6-4
versus Excludes relation, 4-33
versus Logic Rules, 4-30

components
connectivity among, 4-46

Components
adding, 4-45
add or reuse instances, 4-48
containing Boolean Features, 4-20
definition, 3-6
deleting, 4-45
instantiable, 4-45
instantiating, 4-45
multiple instantiation, 4-9
requests, 4-45
runtime node search, 4-43

Index-3

versus components, 3-6
with repetitive structure, 4-8

ComponentSet
performance effects, 4-45

configuration attributes
CZ_CONFIG_ATTRIBUTES table, 6-5, 6-7, 6-7
input, 3-7
instead of items, 3-7, 4-14, 6-4
output, 4-15

downstream values, 6-5
output

example, 6-5, 6-7
non-orderable information, 3-8

Configuration Interface Object
See CIO

configuration models
complexity, 4-12
creating, 2-1
design

flow, 2-1
guided buying or selling, 4-12
interaction with Configurator Extension, 4-42
interaction with other software, 4-42
maintainability, 2-4
scalability, 2-4
size

large, 2-6
medium, 2-6
number of rules, 2-6
small, 2-6

configurations
restoring saved configurations

with connections, 4-40
configuration session

collecting data, 4-42
completing, 4-21
data collection for, 3-7
data input outside, 3-6
data output, 3-8
design questions, 3-6
filled-in values, 4-20
proceeding without defaults, 4-22

Configuration Summary page
performance impact, 4-41

Configurator
See Oracle Configurator

Configurator Extensions

allowOnlyStructuralChanges, 4-47
collecting end-user data, 4-42
design, 4-42
design questions, 3-6
example, 6-5, 6-7
instantiating instances, 4-11
interaction with configuration model, 4-42
onCommand, 4-42, 4-42, 4-47
onConfigValidate, 4-52
output configuration attributes, 6-7
postConfigNew, 4-22
postConfigRestore, 4-22
preConfigSave, 4-22
sequence of events, 4-11, 4-45
settings made by, 4-23
simulate Defaults relation, 4-22

configuring
Option Classes, 4-18

connectivity
assertions, 4-46
processing at runtime, 4-37

Connectors
best practice, 4-37
example, 4-38

constraints, 2-5
business, 2-5

contradictions
caused by locking logic states, 4-30
versus resource violations, 4-35

Contributes to
example, 4-19
example, 4-25, 4-25

Count
assertion, 4-44
triggered by rule, 4-18

customer requirements
maximum selections, 4-18

customizing violation messages, 4-25
CZ_CONFIG_ATTRIBUTES (interface table)

table in CZ schema, 6-5, 6-7, 6-7
CZ schema

imported BOM data, 4-7

D
data

caching, 4-9

Index-4

import
item name and description, 2-4
performance, 5-4, 6-4

redundant, 4-9
defaults

apply on user request, 4-21
asserting, 4-45, 4-52
design questions, 3-4
in added instances, 4-11
performance effects, 4-11, 4-20, 4-45
setting values

automatically, 3-4
on demand, 4-21

Defaults relation (Logic Rule)
best practices, 4-20
design questions, 3-4
evaluating need, 4-21
example, 4-23
simulation, 4-22
versus Implies rule, 4-23

deleting
instance of ComponentSet, 4-45
instantiable instances, 4-46

deltas (from baseline)
minimizing despite Unknown Options, 4-20

Description
BOM Items, 2-4, 3-5

designing, 2-2
BOM Models, 2-2
configuration models, 2-1
Configurator Extensions, 4-42
rules, 2-1

design questions
BOM

design, 3-5
display, 3-5

Comparison Rules, 3-10
Compatibility Rules, 3-10
configuration session, 3-6
Configurator Extension, 3-6
defaults, 3-4
guided buying or selling, 3-5
list of options, 3-2

DHTML (legacy UIs)
Configurator

decision to use, 4-42
control

processing in OC Servlet, 4-42
effect on performance, 4-42

display conditions
prevent NotTrue locking, 4-30

downstream values output
configuration attributes, 4-15

Drop-down List
render time, 4-41
server processing of, 4-41

E
end users

collecting data, 4-42
collecting inputs from, 3-6
example flow, 6-7
expectations, 2-5
flow, 4-11
guided buying or selling questions, 4-11
product experts, 4-11
requests made by, 4-23

engine
See Oracle Configurator engine

Enterprise Resource Planning
See ERP (Enterprise Resource Planning)

ERP (Enterprise Resource Planning)
BOM structure, 2-2

events
circular propagation, 4-26
Configurator Extension sequence, 4-45

examples
abstractions, 4-
Boolean Feature, 4-21, 4-36
Configurator Extension, 6-5, 6-7
Contributes to, 4-19, 4-25, 4-25
Defaults relation, 4-23
Implies relation (Logic Rule), 4-25, 4-29, 4-30,
4-37
intermediate value, 4-36
list of options, 5-5
onCommand Configurator Extension, 4-42, 4-
51
output configuration attributes, 6-5, 6-7
postConfigRestore, 4-22
preConfigSave, 4-22
Properties, 6-4
Property-based Compatibility Rules, 4-31

Index-5

Resource, 4-24, 4-37
setting values on demand, 4-21

Excludes relation (Logic Rule)
example, 4-29
expressing incompatibility, 4-33

Explicit Compatibility Rules
versus Property-based Compatibility, 4-31
with many participants, 4-31

F
Features

adding, 6-5, 6-5
flow

creating configuration models, 2-1
end user, 4-11, 5-8, 6-7

Flow Manufacturing
abstract structure, 4-6

G
generated Configurator User Interface

comparative performance, 4-18
Generic Configurator User Interface

comparative performance, 4-18
getAvailableNodes()

performance consideration, 4-45
getDeltaListIterator()

best practice, 4-43
grouping

for performance, 6-8
items in submodels, 6-5
items into BOM Option Classes, 4-18, 5-5
optional instantiation, 4-18, 5-5, 5-5, 6-6

guided buying or selling, 4-18
controlling display of BOM Model, 4-12
definition, 4-12
design questions, 3-5
determining what to instantiate, 4-11
driven by structure, 2-1
easing navigation flow, 4-14
extending a BOM Model, 2-1
hiding Items, 4-18
non-expert end users, 4-11
rules, 4-12
scenarios, 4-12
simplifying complex models, 4-12

H
HTML

effect on performance, 4-42
HTML templates

modified to improve performance, 4-42

I
Implies relation (Logic Rule)

example, 4-25, 4-29, 4-30, 4-37
versus Defaults rule, 4-23

importing
data

item name and description, 2-4
performance, 5-4, 6-4

incompatibilities, 4-33
expressed using Excludes relation, 4-33

inputs
collecting from end users, 3-6
configuration attributes, 3-7

instances
adding

with Configurator Extension, 4-11
creating at runtime, 4-11
delaying state assertions, 4-11
deleting, 4-46
many, 4-12

instantiable
Components

adding and deleting, 4-45
setting Feature values, 4-49

instantiation
by Configurator Extension, 4-11
guided buying or selling, 4-11
limitations, 4-11
multiple, 4-9
optional, 5-4, 5-5, 5-10

creating instances, 4-11
definition, 4-9
example, 6-6
for usability, 4-2
grouped items, 4-18
of abstractions, 4-5
of references, 4-5
performance, 4-14

intermediate values

Index-6

definition, 4-36
example, 4-36

Items
alternatives, 6-4
hiding, 4-18
naming, 2-4
number, 4-12
phantom, 4-6

J
JavaScript

decision to use, 4-42
effect on performance, 4-42
processing in OC Servlet, 4-42

L
limitations

browser resources and UI controls, 4-41
list of options

case study example, 5-5
design questions, 3-2
large

definition, 3-2
example, 5-5
grouping, 4-18
usability, 4-12

Logic False
available for selection, 4-18

logic states
caused by NotTrue, 4-30
checking, 4-44
locking, 4-30
Logic False, 4-20

M
maintenance

BOM Model design, 2-4, 5-4, 6-8
manufacturing

constraints, 2-5
memory

usage
BOM Model design, 5-4

messages
violation, 4-25, 4-28

Model

manufacturing and sales views, 4-13
Model structure

abstractions
advantages, 5-4, 5-10
issues, 4-6, 5-9

changes defined, 4-47
deeply nested, 4-14
explicit, 5-2

reasons, 4-3
flat, 4-14, 5-2
grouping, 4-18, 5-5
guided buying or selling, 2-1
nodes

intermediate, 4-25
Option, 4-40
Option Class, 4-18

shallow, 4-14

N
Name

BOM Items, 2-4
navigation

easing flow, 4-14
guided buying or selling, 4-14

nested structure
designing, 4-14

non-phantom
setting Supply Type, 4-12

NotTrue logical function
causes order dependency, 4-29
CDL operator, 3-8, 4-28
display condition, 4-30
locked initial values, 4-30

O
OC Servlet

DHTML control processing, 4-42
JavaScript processing, 4-42

onCommand Configurator Extension type
collecting end-user data, 4-42
example, 4-42, 4-51
optimization, 4-47
sequence of events, 4-47

onConfigValidate Configurator Extension type,
4-52
operators

Index-7

order in subexpressions, 4-24
optional, 5-5

BOM Standard Items, 2-4
Option Features

alternative to Inventory Items, 4-14
improving performance, 4-18
large, 4-18
with many Options, 4-20

Options, 4-12
availability and performance, 4-40
hiding options, 4-40
many

compatibility, 3-10
example, 5-1
grouping, 4-18
Maximum Number of Selections, 4-18
usability, 4-12

maximum number, 4-18
redesigning as Boolean Features, 4-20
require and exclude other options, 3-10
Selection List, 4-41

Oracle Applications
designing configuration models, 4-6, 4-9, 4-12

Oracle Configurator
collecting data, 4-42
customization

output configuration attributes, 6-7
engine

See Oracle Configurator engine
leveraging BOM Models, 2-1
project planning, 2-4

Oracle Configurator Developer
importing data to, 2-4, 5-4, 6-4

Oracle Configurator engine
adding Components, 4-45
rule propagation behavior

Comparison Rules, 4-36
Compatibility Rules, 4-30
cycles, 4-26
subexpressions, 4-24, 4-27

Oracle Configurator schema
See CZ schema

output
configuration attributes, 3-8, 6-5

P

parameters, 3-7
See also configuration attributes

performance
due to many BOM Items, 6-4, 6-8
due to many BOM Models, 5-4
effect of

adding ComponentSets, 4-11, 4-45
Boolean Feature, 4-22
defaults, 4-11, 4-45
deleting ComponentSets, 4-46
requests, 4-11, 4-45
rule types, 4-20

effect of
display conditions, 4-40

HTML versus DHTML, 4-42
permutation

avoiding, 4-3
phantom

ATO model, 4-7
Items, 4-6
non-phantom ATO model, 4-12
setting Supply Type, 4-9

planning guidelines
BOM Models, 2-4
rules, 2-6
User Interface, 2-5

postConfigNew (event)
usage

simulating initial defaults, 4-11, 4-22
postConfigRestore (event)

example, 4-22
preConfigSave (event)

example, 4-22
pricing

customization with configuration attributes, 6-
7
simple, 6-3
unexpected, 4-22

Properties
example, 6-4
instead of items, 6-4
Property-based Compatibility Rules, 4-31

Property-based Compatibility Rules
example, 4-31
versus Explicit Compatibility, 4-31

Index-8

R
redesigning

BOM Models, 2-2
BOM Option Classes, 4-7, 4-8, 5-5
Options as Boolean Features, 4-20

References
in imported BOM Models, 4-7
optionally instantiable, 4-11
to repetitive structure, 4-8, 5-4

requests
growth of queue, 4-50
performance effects, 4-11, 4-45

Resources
contributing to, 4-24
example, 4-24, 4-37

resource violations
versus contradictions, 4-35

rollbackConfigTransaction()
usage, 4-48

routing
definitions, 4-3
downstream from Configurator, 4-14
preserving, 5-4

rules
commonly used subexpressions, 4-24, 4-27
Comparison Rules, 4-35
Compatibility Rules, 4-30
complexity, 2-1, 2-6, 4-27, 4-27
connectivity, 4-37
contradictions, 4-25, 4-28
debugging, 4-27, 4-27
designing, 2-1
disabling, 4-27, 4-27

folder, 4-27
error messages, 4-25, 4-28
examining, 4-26
factor in Model size, 2-6
flexibility, 4-35
folders

disabling, 4-27
intermediate, 4-25
intermediate values, 4-36
locked initial values, 4-30
many, 5-4
number of, 4-27

order
dependency, 4-29
execution, 2-6

overview, 2-5
planning guidelines, 2-6
propagation

in engine, 4-24, 4-26, 4-27
issues, 4-28
paths, 4-26

redundancy, 4-25
relating guided buying or selling, 4-12
subexpressions

repeated, 2-6
violation messages, 4-25, 4-28

runtime Oracle Configurator
displaying BOM Items, 2-4
generated UI, 4-18
Generic UI, 4-18
loading connection rules, 4-37

S
scalability

BOM Model design
advantages, 6-8
disadvantages, 5-4, 6-4
planning, 2-4

Selection List
number of Options in, 4-41
render time, 4-41
server processing of, 4-41

server
processing

Drop-down List, 4-41
Selection List, 4-41

sourcing, 5-4
BOM Models, 4-6, 5-4

states
assertions by custom code, 4-44
logic

checking, 4-44
false, 4-20
setting, 4-11, 4-46

setting
after adding instances, 4-11, 4-46

subexpressions
common or repeating, 4-24

Index-9

defining, 4-24
order of operations, 4-24

Supply Type
non-phantom, 4-12
phantom, 4-9

T
Totals

Comparison rules, 4-35
imposing a maximum, 4-19
initial value, 4-40
using a Resource instead, 4-40

U
UI

See User Interface
UI captions

meaningfulness, 2-4
unknown values

available for selection, 4-18
usability

BOM Model design, 6-4
User Interface

Configuration Summary template, 4-41
custom

definition, 4-42
designing

DHTML versus Java applet, 4-18
recommendations, 4-41

display conditions, 4-40
generating

UI captions, 2-4
graphics

number, 4-41
size, 4-41
type, 4-41

guided selling with hidden items, 4-18
performance

due to browser, 4-41
planning guidelines, 2-5
rendering

guided buying or selling, 4-41
requirements, 2-1
screen

number of graphics per, 4-41
number of UI controls per, 4-41

types of, 4-41
UI controls

Drop-down List, 4-41
Option, 4-40
Selection List, 4-41

V
validation

tests, 4-52
values

attribute, 4-15
default, 3-4, 4-11
downstream processing, 4-15
Feature, 4-49
initial, 3-4

violation messages
Comparison Rules warning, 4-35
customization for intermediary rules, 4-25, 4-
28
resource exceeded, 4-35

visibility
BOM nodes, 6-6
runtime nodes, 4-12

W
warnings

raised by Comparison Rules, 4-35

	Oracle Configurator Modeling Guide
	Preface
	Modeling Guidelines
	Introduction
	Scope of this Guide
	Conventions
	Product Support
	Troubleshooting

	Planning Your Model Design
	Overview of Designing a Configuration Model
	Planning Guidelines Relevant to Model Design
	BOM Model Design or Redesign
	End-User Expectations
	Rule Design
	Lifecycle and Maintainability Expectations

	Starting Your Model Design
	Do You Expect Configurator to Display Large Lists of Options?
	Are the Same Product Elements Repeated in Separate Models?
	Are You Modeling Many Related Products?
	Do You Need Default Values Set Automatically?
	Does Your End User Need to See the Bill of Materials?
	Will Configurations Contain Instances of a Component?
	Will Your Configurator Collect Many End-User Inputs?
	Does Configurator Depend on Information Collected Upstream?
	Does Configurator Pass Non-Orderable Information Downstream?
	Are Some Selections Disallowed Until Other Selections Are Made?
	Will Your Rules Include Repeating Patterns or Redundancy?
	Are Your Configuration Rules Based on Legacy Rules?
	Do You Need to Express Compatibilities in Your Model?
	Do You Need to Express Comparisons in Your Model?

	 Best Practices
	Explicit Model Structure Versus Abstractions
	Explicit Structure
	Permutation
	Abstractions
	Downstream Consequences in Other Oracle Applications
	Related Best Practices and Relevant Case Studies

	Explicit Model Structure Versus References
	Explicit Structure
	Model References
	Referencing BOM Option Classes
	Non-Imported Model References

	Downstream Consequences in Other Oracle Applications
	Related Best Practices and Relevant Case Studies

	Optional and Multiple Instantiation
	Optional Instantiation of BOM Option Classes
	Setting Node Values After Adding Instances
	Downstream Consequences in Other Oracle Applications
	Large Numbers of Instances
	Related Best Practices and Relevant Case Studies

	Guided Buying or Selling
	Manufacturing vs. Sales View of a Model

	Shallow Versus Nested or Deep Hierarchy
	Items Versus Alternatives to Items
	Values Needed For Configuration Only
	Values Needed Downstream
	Related Best Practices and Relevant Case Studies

	Large Option Features and Option Classes
	Grouped Versus Ungrouped Items
	Maximum Selections on Large Option Classes or Features
	Alternatives to Option Features With Many Options
	Relevant Case Studies

	Defaults Rules Versus Alternatives to Default Selections
	Evaluating the Need for Default Selections
	Activating Defaults on End User Request
	Boolean Features With Initial Values
	The postConfigNew Configurator Extension
	Implies Relation Instead of Defaults Relation
	Default Rule Idiosyncrasies

	Repetitive Rule Patterns and Redundancy
	Repetitive Patterns and Common Subexpressions
	Redundancy
	Circular Propagation

	Number and Complexity of Rules
	NotTrue Logical Function Imposes Order and Causes Locking
	Order Dependency Caused By NotTrue
	Locked States Caused By NotTrue

	Compatibility Rules
	Expressing Compatibility Using Properties
	Minimizing Participants in a Compatibility
	Using the Excludes Relation to Express Incompatibilities
	Minimizing the Size and Complexity of Property-based Compatibility Rules
	How do Property Features Simplify Property-based Relationships between Large Option Classes?

	Comparison Rules
	Comparison Rules That Raise Warnings
	Using Intermediate Values Effectively With Comparison Rules

	Connectors with Connection Rules
	Connection Rules That Depend on End-User Input
	Order Independent Connection Rules
	Restoring Configurations With Connections

	Optimizing User Interface Performance
	Display Conditions
	Graphics
	Number and Type of Pages and Controls
	Configuration Summary User Interface Template
	Custom User Interface

	Large Amounts of End-User Data Collected Using Configurator Extensions
	Configurator Extension Design
	Avoiding Unnecessary Interactions
	Accessing Runtime Nodes
	Components and Requests
	Adding and Deleting Instantiable Components
	Impact of Making Connections Among Components
	Optimization of Configurator Extensions that Change Model Structure
	Detailed Sequence
	Comparison of Coding Approaches
	Code Example

	Optimization of Validation Configurator Extensions

	Case Studies
	 Many Large BOM Models
	Overview
	Project Description
	A Deficient Modeling Approach
	The Suggested Modeling Approach
	Applying Best Practices to Your Model Structure
	Applying Best Practices to Further Optimize the End-User Experience
	The Resulting End-User Flow
	Advantages of This Modeling Approach

	 Many BOM Items
	Overview
	Project Description
	A Deficient Modeling Approach
	The Suggested Modeling Approach
	Applying Best Practices to Your Model Structure
	Applying Best Practices to Further Optimize the End-User Experience
	The Resulting End-User Flow
	Advantages of This Modeling Approach

	SQL Queries
	Number of Nodes by Type
	Number of Features by Type in a Configuration Model
	Number of Rules by Type in a Configuration Model
	Number of Rules by Relation in a Configuration Model

	Common Glossary for Oracle Configurator
	Index

