
Oracle® E-Business Suite
Integrated SOA Gateway Developer's Guide
Release 12.2
Part No. E20927-08

November 2013

Oracle E-Business Suite Integrated SOA Gateway Developer's Guide, Release 12.2

Part No. E20927-08

Copyright © 2008, 2013, Oracle and/or its affiliates. All rights reserved.

Primary Author: Melody Yang

Contributor: Rekha Ayothi, Sudipto Chakraborty, Bhaskar Ghosh, Vardhan Kale, Rajeev Kumar, Megha
Mathpal, Sai Munnalur, Saritha Nalagandla, Aditya Rao, Anil Kemisetti, Nadakuditi Ravindra, Dilbaghsingh
Sardar, Vijayakumar Shanmugam, Shivdas Tomar, Abhishek Verma

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation
of the programs, including any operating system, integrated software, any programs installed on the
hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the
programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

This software or hardware and documentation may provide access to or information on content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your
access to or use of third-party content, products, or services.

 iii

Contents

Send Us Your Comments

Preface

1 Oracle E-Business Suite Integrated SOA Gateway Overview
Oracle E-Business Suite Integrated SOA Gateway Overview... 1-1

Major Components Features and Definitions.. 1-3

2 Discovering and Viewing Integration Interfaces and Services
Overview... 2-1
Searching and Viewing Integration Interfaces...2-1
Reviewing Interface Details.. 2-5
Generating SOAP Web Services... 2-9
Deploying REST Web Services... 2-11
Reviewing WSDL Element Details... 2-12
Reviewing WADL Element Details.. 2-22
Understanding SOAP Messages... 2-24
Understanding REST Messages.. 2-43

3 Using PL/SQL APIs as Web Services
Overview... 3-1
Using PL/SQL SOAP Services ..3-2

Invoking a Synchronous Web Service from a SOA Composite Application with BPEL
Process... 3-6

Creating a SOA Composite Application with BPEL Process... 3-7
Creating a Partner Link for the Web Service... 3-12

iv

Adding a Partner Link for File Adapter.. 3-13
Adding Invoke Activities.. 3-23
Adding Assign Activities.. 3-27

Deploying and Testing the SOA Composite with Synchronous BPEL Process..................3-41
Deploying the SOA Composite with BPEL Process...3-42
Testing the SOA Composite Application...3-45

Invoking an Asynchronous Web Service from a SOA Composite Application with BPEL
Process... 3-50

Creating a SOA Composite Application with BPEL Process....................................... 3-52
Adding a Partner Link... 3-56
Adding an Invoke Activity.. 3-58
Adding a Receive Activity... 3-59
Adding Assign Activities.. 3-61

Deploying and Testing the SOA Composite with Asynchronous BPEL Process............... 3-67
Deploying the SOA Composite with BPEL Process...3-68
Testing the SOA Composite Application...3-73

Using PL/SQL REST Services... 3-76
Invoking a REST Service Using HTTP Basic Authentication and XML Payload With REST
Header... 3-77

Deploying a PL/SQL REST Web Service..3-78
Recording Resource Information from Deployed WADL... 3-80
Creating a Project with a Java Class.. 3-81

Invoking a REST Service Using a Java Class.. 3-87
Invoking a REST Service Using Token Based Authentication and JSON Payload............. 3-88

Deploying a PL/SQL REST Web Service..3-89
Recording the Deployed WADL URL... 3-90
Creating a Project with a Java Class.. 3-91

Invoking REST Service Using a Java Client... 3-102

4 Using XML Gateway Inbound and Outbound Interfaces
Overview... 4-1
Using XML Gateway Inbound Services... 4-2

Using XML Gateway Inbound Services at Design Time.. 4-2
Creating a New SOA Composite Application with BPEL Process................................ 4-7
Creating a Partner Link... 4-11
Adding Partner Links for File Adapter... 4-12
Adding Invoke Activities.. 4-17
Adding Assign Activities.. 4-18

Deploying and Testing the SOA Composite with BPEL Process at Run Time................... 4-22
Deploying the SOA Composite with BPEL Process...4-23
Testing the SOA Composite Application with BPEL Process...................................... 4-26

 v

Using XML Gateway Outbound Through Subscription Model.. 4-32
Using XML Gateway Outbound Services at Design Time... 4-32

Creating a New SOA Composite Application with BPEL Process.............................. 4-36
Creating a Partner Link for AQ Adapter... 4-38
Adding a Receive Activity... 4-48
Adding a Partner Link for File Adapter.. 4-49
Adding an Invoke Activity.. 4-55
Adding an Assign Activity.. 4-56

Deploying and Testing the SOA Composite Application with BPEL Process at Run Time
... 4-57

Deploying the SOA Composite Application with BPEL Process.................................4-58
Testing the SOA Composite Application with BPEL Process...................................... 4-61

5 Using Business Events Through Subscription Model
Overview... 5-1
Using a Business Event in Creating a SOA Composite Application with BPEL Process at
Design Time.. 5-2

Creating a New SOA Composite Application with BPEL Process....................................... 5-3
Creating a Partner Link for AQ Adapter... 5-6
Adding a Receive Activity... 5-14
Adding a Partner Link for File Adapter... 5-15
Adding an Invoke Activity.. 5-24
Adding an Assign Activity.. 5-26

Deploying and Testing the SOA Composite Application with BPEL Process at Run Time
.. 5-27

Deploying the SOA Composite Application with BPEL Process 5-28
Testing the SOA Composite Application with BPEL Process.. 5-31

6 Using Concurrent Programs
Overview... 6-1
Using Concurrent Program WSDLs at Design Time.. 6-2

Creating a New SOA Composite Application with BPEL Process....................................... 6-6
Creating a Partner Link for the Web Service.. 6-9
Adding a Partner Link for File Adapter... 6-11
Adding Invoke Activities... 6-20
Adding Assign Activities... 6-22

Deploying and Testing the SOA Composite with BPEL Process at Run Time..................... 6-29
Deploying the SOA Composite Application with BPEL Process....................................... 6-30
Testing the SOA Composite Application with BPEL Process.. 6-32

vi

7 Using Business Service Objects
Overview... 7-1
Using Business Service Object WSDLs at Design Time.. 7-2

Creating a SOA Composite Application with BPEL Process..7-6
Creating a Partner Link.. 7-9
Adding a Partner Link for File Adapter... 7-10
Adding an Invoke activity... 7-16
Adding an Assign activity... 7-20

Deploying and Testing the SOA Composite with BPEL Process at Run Time..................... 7-28
Deploying the SOA Composite with BPEL Process... 7-29
Testing the SOA Composite Application with BPEL Process.. 7-32

8 Using Composite Services - BPEL
Overview... 8-1
Viewing Composite Services - BPEL.. 8-2
Downloading Composite Services - BPEL.. 8-3
Modifying and Deploying BPEL Processes.. 8-4

9 Creating and Using Custom Integration Interfaces
Overview... 9-1
Creating Custom Integration Interfaces... 9-2

Creating Custom Integration Interfaces of Native Interface Types......................................9-2
Creating Custom Composite Services - BPEL.. 9-9
Creating Custom Business Events Using Workflow XML Loader..................................... 9-15

Using Custom Integration Interfaces as Web Services.. 9-23
Using Custom Interface WSDL in Creating a SOA Composite Application with BPEL
Process at Design Time.. 9-24

Creating a New SOA Composite Application with BPEL Process.............................. 9-26
Creating a Partner Link for the Web Service... 9-28
Adding a Partner Link for File Adapter.. 9-28
Adding Invoke Activities.. 9-34
Adding Assign Activities.. 9-35

Deploying and Testing the SOA Composite with BPEL Process at Run Time................... 9-41
Deploying the SOA Composite with BPEL Process...9-42
Testing the SOA Composite Application with BPEL Process...................................... 9-45

10 Working With Oracle Workflow Business Event System to Invoke Web
Services

Oracle Workflow and Service Invocation Framework Overview.. 10-1

 vii

Web Service Invocation Using Service Invocation Framework... 10-2
Understanding Message Patterns in WSDL... 10-3
Defining Web Service Invocation Metadata... 10-5

Step 1: Creating a Web Service Invoker Business Event.. 10-6
Step 2: Creating Local and Error Event Subscriptions to the Invoker Event................10-8
Step 3: Creating a Receive Event and Subscription (Optional).................................. 10-15

Understanding Web Service Input Message Parts... 10-18
Supporting WS-Security.. 10-23

Calling Back to Oracle E-Business Suite With Web Service Response............................... 10-29
Invoking Web Services... 10-31
Managing Errors.. 10-37
Testing Web Service Invocation... 10-39
Troubleshooting Web Service Invocation Failure..10-44
Extending Seeded Java Rule Function.. 10-50
Other Invocation Usage Considerations... 10-57

A Integration Repository Annotation Standards
General Guidelines... A-1
Java Annotations... A-4
PL/SQL Annotations... A-11
Concurrent Program Annotations.. A-17
XML Gateway Annotations.. A-19
Business Event Annotations... A-31
Business Entity Annotation Guidelines... A-37
Composite Service - BPEL Annotation Guidelines..A-109
Glossary of Annotations... A-116

B Configuring Server Connection
Application Server Connection ... B-1

C Sample Payload
Sample Payload for Creating Supplier Ship and Debit Request.. C-1
Sample Payload for Inbound Process Purchase Order XML Transaction...............................C-3

Glossary

Index

 ix

Send Us Your Comments

Oracle E-Business Suite Integrated SOA Gateway Developer's Guide, Release 12.2
Part No. E20927-08

Oracle welcomes customers' comments and suggestions on the quality and usefulness of this document.
Your feedback is important, and helps us to best meet your needs as a user of our products. For example:

• Are the implementation steps correct and complete?
• Did you understand the context of the procedures?
• Did you find any errors in the information?
• Does the structure of the information help you with your tasks?
• Do you need different information or graphics? If so, where, and in what format?
• Are the examples correct? Do you need more examples?

If you find any errors or have any other suggestions for improvement, then please tell us your name, the
name of the company who has licensed our products, the title and part number of the documentation and
the chapter, section, and page number (if available).

Note: Before sending us your comments, you might like to check that you have the latest version of the
document and if any concerns are already addressed. To do this, access the new Oracle E-Business Suite
Release Online Documentation CD available on My Oracle Support and www.oracle.com. It contains the
most current Documentation Library plus all documents revised or released recently.

Send your comments to us using the electronic mail address: appsdoc_us@oracle.com

Please give your name, address, electronic mail address, and telephone number (optional).

If you need assistance with Oracle software, then please contact your support representative or Oracle
Support Services.

If you require training or instruction in using Oracle software, then please contact your Oracle local office
and inquire about our Oracle University offerings. A list of Oracle offices is available on our Web site at
www.oracle.com.

 xi

Preface

Intended Audience
Welcome to Release 12.2 of the Oracle E-Business Suite Integrated SOA Gateway
Developer's Guide.

This guide assumes you have a working knowledge of the following:

• The principles and customary practices of your business area.

• Computer desktop application usage and terminology.

• Oracle E-Business Suite integration interfaces.

• B2B, A2A and BP integrations.

This documentation assumes familiarity with Oracle E-Business Suite. It is written for
the technical consultants, implementers and system integration consultants who
oversee the functional requirements of these applications and deploy the functionality
to their users.

Note: Some of the screenshots used in this guide depict Oracle's default
corporate browser Look-and-Feel (LAF), while others depict an
alternative LAF. Although the colors and interface elements of these
images may vary, the underlying functionality they illustrate remains
the same, regardless of the LAF that you have implemented.

If you have never used Oracle E-Business Suite, we suggest you attend one or more of
the Oracle E-Business Suite training classes available through Oracle University.

See Related Information Sources on page xii for more Oracle E-Business Suite product
information.

xii

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For
information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Structure
1 Oracle E-Business Suite Integrated SOA Gateway Overview
2 Discovering and Viewing Integration Interfaces and Services
3 Using PL/SQL APIs as Web Services
4 Using XML Gateway Inbound and Outbound Interfaces
5 Using Business Events Through Subscription Model
6 Using Concurrent Programs
7 Using Business Service Objects
8 Using Composite Services - BPEL
9 Creating and Using Custom Integration Interfaces
10 Working With Oracle Workflow Business Event System to Invoke Web Services
A Integration Repository Annotation Standards
B Configuring Server Connection
C Sample Payload
Glossary

Related Information Sources
This book is included in the Oracle E-Business Suite Documentation Library, which is
supplied in the Release 12.2 Media Pack. If this guide refers you to other Oracle
E-Business Suite documentation, use only the latest Release 12.2 versions of those
guides.

Online Documentation

All Oracle E-Business Suite documentation is available online (HTML or PDF).

• Online Help - Online help patches (HTML) are available on My Oracle Support.

• PDF Documentation - See the Oracle E-Business Suite Documentation Library for
current PDF documentation for your product with each release.

• Release Notes - For information about changes in this release, including new
features, known issues, and other details, see the release notes for the relevant

 xiii

product, available on My Oracle Support.

• Oracle Electronic Technical Reference Manual - The Oracle Electronic Technical
Reference Manual (eTRM) contains database diagrams and a detailed description of
database tables, forms, reports, and programs for each Oracle E-Business Suite
product. This information helps you convert data from your existing applications
and integrate Oracle E-Business Suite data with non-Oracle applications, and write
custom reports for Oracle E-Business Suite products. The Oracle eTRM is available
on My Oracle Support.

Related Guides

You should have the following related books on hand. Depending on the requirements
of your particular installation, you may also need additional manuals or guides.

Oracle E-Business Suite Concepts

This book is intended for all those planning to deploy Oracle E-Business Suite Release
12.2, or contemplating significant changes to a configuration. After describing the
Oracle E-Business Suite architecture and technology stack, it focuses on strategic topics,
giving a broad outline of the actions needed to achieve a particular goal, plus the
installation and configuration choices that may be available.

Oracle E-Business Suite Desktop Integration Framework Developer's Guide

Oracle E-Business Suite Desktop Integration Framework is a development tool that lets
you define custom integrators for use with Oracle Web Applications Desktop
Integrator. This guide describes how to define and manage integrators and all
associated supporting objects, as well as how to download and upload integrator
definitions.

Oracle E-Business Suite Developer's Guide

This guide contains the coding standards followed by the Oracle E-Business Suite
development staff. It describes the Oracle Application Object Library components
needed to implement the Oracle E-Business Suite user interface described in the Oracle
E-Business Suite User Interface Standards for Forms-Based Products. It provides information
to help you build your custom Oracle Forms Developer forms so that they integrate
with Oracle E-Business Suite. In addition, this guide has information for customizations
in features such as concurrent programs, flexfields, messages, and logging.

Oracle E-Business Suite Maintenance Guide

This guide explains how to patch an Oracle E-Business Suite system, describing the
adop patching utility and providing guidelines and tips for performing typical patching
operations. It also describes maintenance strategies and tools that can help keep a
system running smoothly.

Oracle E-Business Suite Security Guide

This guide contains information on a comprehensive range of security-related topics,
including access control, user management, function security, data security, and
auditing. It also describes how Oracle E-Business Suite can be integrated into a single

xiv

sign-on environment.

Oracle Fusion Middleware Adapter for Oracle Applications User's Guide

This guide covers the use of Adapter for Oracle Applications in developing integrations
between Oracle E-Business Suite and trading partners.

This book is available in the Oracle Fusion Middleware 11g Documentation Library.

Oracle Fusion Middleware Introduction to Oracle WebLogic Server

This book provides an overview of Oracle WebLogic Server features and describes how
you can use them to create enterprise-ready solutions. This book is available in the
Oracle Fusion Middleware 11g Documentation Library.

Oracle Diagnostics Framework User's Guide

This manual contains information on implementing and administering diagnostics tests
for Oracle E-Business Suite using the Oracle Diagnostics Framework.

Oracle E-Business Suite Integrated SOA Gateway User's Guide

This guide describes the high level service enablement process, explaining how users
can browse and view the integration interface definitions and services residing in
Oracle Integration Repository.

Oracle E-Business Suite Integrated SOA Gateway Implementation Guide

This guide explains how integration repository administrators can manage and
administer the Web service activities for integration interfaces including native
packaged integration interfaces, composite services (BPEL type), and custom
integration interfaces. It also describes how to invoke Web services from Oracle
E-Business Suite by employing the Oracle Workflow Business Event System, and how
to manage Web service security, configure logs, and monitor SOAP messages.

Oracle Workflow Administrator's Guide

This guide explains how to complete the setup steps necessary for any product that
includes workflow-enabled processes. It also describes how to manage workflow
processes and business events using Oracle Applications Manager, how to monitor the
progress of runtime workflow processes, and how to administer notifications sent to
workflow users.

Oracle Workflow Developer's Guide

This guide explains how to define new workflow business processes and customize
existing Oracle E-Business Suite-embedded workflow processes. It also describes how
to define and customize business events and event subscriptions.

Oracle Workflow API Reference

This guide describes the APIs provided for developers and administrators to access
Oracle Workflow.

Oracle XML Gateway User's Guide

This guide describes Oracle XML Gateway functionality and each component of the

 xv

Oracle XML Gateway architecture, including Message Designer, Oracle XML Gateway
Setup, Execution Engine, Message Queues, and Oracle Transport Agent. It also explains
how to use Collaboration History that records all business transactions and messages
exchanged with trading partners.

The integrations with Oracle Workflow Business Event System, and the
Business-to-Business transactions are also addressed in this guide.

Integration Repository
The Oracle Integration Repository is a compilation of information about the service
endpoints exposed by the Oracle E-Business Suite of applications. It provides a
complete catalog of Oracle E-Business Suite's business service interfaces. The tool lets
users easily discover and deploy the appropriate business service interface for
integration with any system, application, or business partner.

The Oracle Integration Repository is shipped as part of the E-Business Suite. As your
instance is patched, the repository is automatically updated with content appropriate
for the precise revisions of interfaces in your environment.

You can navigate to the Oracle Integration Repository through Oracle E-Business Suite
Integrated SOA Gateway.

Do Not Use Database Tools to Modify Oracle E-Business Suite Data
Oracle STRONGLY RECOMMENDS that you never use SQL*Plus, Oracle Data
Browser, database triggers, or any other tool to modify Oracle E-Business Suite data
unless otherwise instructed.

Oracle provides powerful tools you can use to create, store, change, retrieve, and
maintain information in an Oracle database. But if you use Oracle tools such as
SQL*Plus to modify Oracle E-Business Suite data, you risk destroying the integrity of
your data and you lose the ability to audit changes to your data.

Because Oracle E-Business Suite tables are interrelated, any change you make using an
Oracle E-Business Suite form can update many tables at once. But when you modify
Oracle E-Business Suite data using anything other than Oracle E-Business Suite, you
may change a row in one table without making corresponding changes in related tables.
If your tables get out of synchronization with each other, you risk retrieving erroneous
information and you risk unpredictable results throughout Oracle E-Business Suite.

When you use Oracle E-Business Suite to modify your data, Oracle E-Business Suite
automatically checks that your changes are valid. Oracle E-Business Suite also keeps
track of who changes information. If you enter information into database tables using
database tools, you may store invalid information. You also lose the ability to track who
has changed your information because SQL*Plus and other database tools do not keep a
record of changes.

Oracle E-Business Suite Integrated SOA Gateway Overview 1-1

1
Oracle E-Business Suite Integrated SOA

Gateway Overview

Oracle E-Business Suite Integrated SOA Gateway Overview
Oracle E-Business Suite Integrated SOA Gateway (ISG) is enhanced to leverage Oracle
SOA Suite 11g running on Oracle WebLogic Server to provide greater capabilities and
infrastructure for exposing various integration interfaces within Oracle E-Business Suite
as Web services.

With service enablement feature, integration interfaces published in the Oracle
Integration Repository can be transformed into Web services with the supported type
SOAP and REST.

SOAP services use Oracle SOA Suite. Once the services are generated with WSDL
descriptions, they are deployed to Oracle SOA Suite for service consumption.

Unlike SOAP services, REST services, without the dependency on Oracle SOA Suite, are
developed with the infrastructure of Oracle E-Business Suite. REST services described
in WADL URLs are directly deployed to an Oracle E-Business Suite WebLogic
environment. They can be used for user-driven applications such as Oracle E-Business
Suite mobile applications.

Note: All service-enabled interfaces can be generated as standard SOAP
services. However, only PL/SQL APIs can be exposed as REST services
in this release.

• At development phase, users with the System Integration Developer role can create
custom interfaces, and annotate custom interface's definitions. Users with the
Integration Repository Administrator role can validate and upload annotated
custom interfaces to the Integration Repository where all the registered interfaces,
regardless of custom or Oracle packaged ones, can be viewed and accessed by all
users.

1-2 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

• At design time, users with the Integration Repository Administrator role can
generate SOAP services with desired operation patterns, and deploy them to Oracle
SOA Suite by attaching an appropriate security policy. For interfaces can be
exposed as REST services, the administrator can select desired service operations
before deploying them to Oracle E-Business Suite.

• At run time, Web service clients send request messages to invoke Oracle E-Business
Suite services enabled through ISG's Service Provider. After authenticating and
authorizing the users who request the services, services can be invoked.

Users with the Integration Repository Administrator role are responsible for
monitoring and managing the entire service deployment life cycle.

Major Features
Oracle E-Business Suite Integrated SOA Gateway can do the following:

• Display all Oracle E-Business Suite integration interface definitions through Oracle
Integration Repository

• Support custom integration interfaces from Oracle Integration Repository

• Provide service enablement capability (SOAP and REST services) for seeded and
custom integration interfaces within Oracle E-Business Suite

• Use the Integration Repository user interface to perform design-time activities such
as generate and deploy Oracle E-Business Suite Web services

• Support synchronous and asynchronous (callback without acknowledgement only)
interaction patterns for SOAP-based Web services

Note: In this release, only PL/SQL APIs can be enabled with the
support for asynchronous service pattern.

• Support synchronous interaction pattern for REST-based Web services

Note: In this release, only PL/SQL APIs can be exposed as REST
services.

• Support multiple authentication types for inbound service requests in securing Web
service content

• Enforce function security and role-based access control security to allow only
authorized users to execute administrative functions

Oracle E-Business Suite Integrated SOA Gateway Overview 1-3

• Provide centralized, user-friendly logging configuration for Web services generated
through Oracle E-Business Suite Integrated SOA Gateway's service provider

• Audit and monitor Oracle E-Business Suite inbound service operations from Service
Monitor

• Leverage Oracle Workflow Business Event System to enable Web service invocation
from Oracle E-Business Suite

Major Components Features and Definitions
To better understand Oracle E-Business Suite Integrated SOA Gateway and its key
components, this section describes some key features and the definition of each
component.

Enabling Oracle E-Business Suite Web Services
Service enablement is the key feature within Oracle E-Business Suite Integrated SOA
Gateway. It provides a mechanism that allows native packaged integration interface
definitions resided in Oracle Integration Repository to be transformed into Web
services. SOAP services are deployed from the Integration Repository to Oracle SOA
Suite allowing more consumptions over the Web. REST services are deployed to Oracle
E-Business Suite.

The basic concept of Web service components is illustrated in the following diagram:

• Service Provider is the primary engine underlying the Web services. It acts as a
bridge between Oracle E-Business Suite and Oracle SOA Suite to facilitate the
service enablement for various types of Oracle E-Business Suite interfaces.

1-4 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

Note: In earlier Oracle E-Business Suite Releases, SOA Provider
and Web Service Provider were used in enabling Oracle E-Business
Suite Web services. In the Release 12.2, Service Provider is the
engine for service enablement.

Service Provider leverages Oracle SOA Suite for provisioning Oracle E-Business
Suite SOAP-based services. It is the engine that performs the actual service
generation and deployment behind the scene.

• Service Consumer (Web service client) is the party that uses or consumes the
services provided by the Service Provider.

• Service Broker (Service Registry) describes the service's location and contract to
ensure service information is available to potential service consumers.

Oracle Integration Repository and Service Enablement
Oracle Integration Repository, an integral part of Oracle E-Business Suite, is the
centralized repository that contains numerous interface endpoints exposed by
applications within the Oracle E-Business Suite. It supports the following interface
types:

• PL/SQL

• XML Gateway

• Concurrent Programs

• Business Events

• Interface Tables/Views

• EDI

• Business Service Object (Service Beans)

• Java

• Java APIs for Forms

Note: Java APIs for Forms are XML document-based
integration points wrapped in Java classes for executing
business logic in Oracle Forms. These specialized Java classes
are categorized as a subtype of Java interface.

• Security Services

Oracle E-Business Suite Integrated SOA Gateway Overview 1-5

Note: Security Services are a set of predefined and predeployed
REST services from Oracle Application Object Library. This
type of services provides Authentication and Authorization
services for mobile applications. These services are built on
Java; therefore, they are categorized as a subtype of Java
interface.

• Composite Interfaces

Oracle E-Business Suite Integrated SOA Gateway leverages Oracle Integration
Repository to provide the capabilities of Web service generation and deployment, as
well as managing the service development life cycle.

Note: Please note that not all the interface types resided in the
Integration Repository can be service enabled. The supported interface
types for service enablement are XML Gateway, PL/SQL, Current
Program, Business Events, Business Service Object, and Java API for
Forms.

As mentioned earlier, security services are predeployed REST services
from Oracle Application Object Library. There is no need to enable the
security services from Integration Repository as required by other
supported interface types.

Service Invocation Framework
Service Invocation Framework (SIF) leverages Oracle Workflow Java Business Event
System (JBES) and a seeded Java rule function to invoke services within Oracle
E-Business Suite.

It provides an infrastructure allowing developers to interact with Web services through
WSDL descriptions.

For more information about how to use service invocation framework, see Web Service
Invocation Using Service Invocation Framework, page 10-2.

Service Monitor
Service Monitor known as SOA Monitor is a light-weight service execution monitoring
and management tool.

The Service Monitor fetches data and statistics for each instance of a Web service
request and response and lets you monitor Oracle E-Business Suite Web services. You
can use the Service Monitor user interface in Oracle E-Business Suite to view the
runtime request and response messages.

Please note that only SOAP services are monitored and audited through Service
Monitor. Runtime REST service monitoring and auditing features are not supported in

1-6 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

this release.

Web Service Security
Oracle E-Business Suite integrated SOA Gateway enforces the security rules through
subject authentication and authorization:

• To authenticate users who request Oracle E-Business Suite Web services, request
messages must be checked based on the selected authentication type:

• The SOAP messages must be authenticated using UsernameToken or SAML
Token based security. The identified authentication information is embedded in
the wsse:security Web Security headers.

• The REST messages are authenticated using HTTP Basic Authentication or
Token Based Authentication at HTTP or HTTPS transport level.

• To authorize users on specific services or operations, the access permissions must
be explicitly given to the users through security grants. Multiple organization
access control (MOAC) security rule is also implemented for authorizing interface
execution related to multiple organizations.

Additionally, input message header (such as SOAHeader for SOAP services or
RESTHeader for REST services) is used to pass application contexts needed in invoking
Oracle E-Business Suite services as part of the subject authorization.

Discovering and Viewing Integration Interfaces and Services 2-1

2
Discovering and Viewing Integration

Interfaces and Services

Overview
In addition to browsing and viewing integration interfaces from Oracle Integration
Repository, users with the System Integration Developer role can perform certain
administrative tasks such as generating SOAP Web services and deploying REST
services for selected interfaces.

To better understand these design-time tasks as well as the structures of WSDL and
WADL elements, the following topics are included in this chapter.

• Searching and Viewing Integration Interfaces, page 2-1

• Reviewing Interface Details, page 2-5

• Generating SOAP Web Services, page 2-9

• Deploying REST Web Services, page 2-11

• Reviewing WSDL Element Details, page 2-12

• Reviewing WADL Element Details, page 2-22

• Understanding SOAP Messages, page 2-24

• Understanding REST Messages, page 2-43

Searching and Viewing Integration Interfaces
Browsing the Integration Interfaces

There are many ways to locate and view integration interfaces resided in Oracle

2-2 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

Integration Repository. You can browse the interfaces by selecting either one of the
following selections from the View By drop-down list:

• Product Family

• Interface Type

• Standard

After the selection, expand the tree node in one of these views to see a list of the
available interfaces.

For more information on how to browse the interfaces, see Browsing the Integration
Interfaces, Oracle E-Business Suite Integrated SOA Gateway User's Guide.

Searching the Integration Interfaces

To search for an integration interface, click Search to access the main Search page. Click
Show More Search Options link in the Search page to display more search fields. For
example, the Scope field has Private to Application,Internal to Oracle, Public, and All
drop-down values for your selection. If 'All' is selected from the Scope field, then all
integration interfaces including public, private to application, and internal to Oracle
interfaces will be listed in the results region.

Note: System integration analysts only have 'All' (default) and 'Public'
list of values displayed from the Scope drop-down list, and only Public
integration interfaces will be retrieved as the search result even if the
default value 'All' is selected in the Scope field.

For detailed information on Public, Private to Application, and Internal
to Oracle, see Scope, Oracle E-Business Suite Integrated SOA Gateway
User's Guide.

Searching for Deployed Web Services

For example, to locate deployed services for concurrent programs, select 'Concurrent
Program' in the Interface field and select 'Deployed' in the Web Service Status field
which is displayed after clicking the Show More Search Options link. After executing
the search, all deployed Web services for the concurrent program interface type are
displayed.

Searching for Java APIs for Forms Interfaces and Security Services

Java APIs for Forms interfaces are XML document-based integration points wrapped
in Java classes for executing business logic in Oracle Forms. These specialized Java
classes are categorized with subtype 'Java APIs for Forms' and displayed in the
Integration Repository under the Java interface type.

Similar to Java APIs for Forms, security services, built on Java, are a subtype of Java
interface. However, these services are a set of predeployed REST services from Oracle
Application Object Library, and they are available to all users.

Discovering and Viewing Integration Interfaces and Services 2-3

Searching for Security Services

To locate these interfaces or services, you must perform a search by clicking the Show
More Search Options link to display more search fields. Enter the following key search
values along with any product family or scope if needed as the search criteria:

• Category: Interface Subtype

• Category Value: 'Java APIs for Forms' or 'Security Services'

To view the interface or service details, click the interface or service name link that you
want to view from the search result region. The interface details page is displayed. For
more information on interface details, see Reviewing Interface Details, page 2-5.

Searching for Custom Integration Interfaces

Once annotated custom interface definitions are successfully uploaded to the
Integration Repository, they are merged into the interface types to which they belong
and displayed together with Oracle seeded interfaces from the Integration Repository
browser window. Interface Source 'Custom' is used to categorize those custom
integration interfaces, in contrast to Interface Source 'Oracle' for Oracle seeded
interfaces in Oracle E-Business Suite.

To locate custom integration interfaces, first click the Show More Search Options link
to display more search fields.

2-4 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

Searching for Custom Integration Interfaces

Next, select 'Custom' from the Interface Source drop-down list along with any interface
type, product family, or scope if needed as the search criteria.

For information on how to view custom integration interfaces, see Viewing Custom
Integration Interfaces, Oracle E-Business Suite Integrated SOA Gateway User's Guide.

For more information on each search field in the Search page, see Searching for an
Integration Interface, Oracle E-Business Suite Integrated SOA Gateway User's Guide.

To search for all integration interface types:

1. Log on to Oracle Integration Repository with the username granted with the system
integration developer role. Select the Integrated SOA Gateway responsibility from
the navigation menu. Select the Integration Repository link to open the repository
browser.

2. Click Search to open the main Search page.

3. Enter appropriate search information such as product family, product, interface
type, or business entity.

4. Click the Show More Search Options link to display more search options.

• To search custom integration interfaces, select 'Custom' in the Interface Source
field.

• To search Java APIs for Forms interfaces, select 'Interface Subtype' in the
Category field and 'Java API for Forms' in the Category Value field.

• To search security services, select 'Interface Subtype' in the Category field and
'Security Services' in the Category Value field.

Discovering and Viewing Integration Interfaces and Services 2-5

5. To view deployed integration interfaces, select 'Deployed' from the Web Service
Status field drop-down list.

6. To view all integration interfaces, select 'All' from the Scope field. All integration
interfaces including Public, Internal to Oracle, and Private to Application are
displayed in the results region.

7. To view different scopes of integration interfaces, select 'Public', 'Internal to Oracle',
or 'Private to Application' from the Scope drop-down list respectively.

8. Click Go to execute the search. All interfaces that match your search criteria are
displayed.

9. Select an interface from the search result to view the interface details.

Reviewing Interface Details
To view a selected interface's details, click the interface name link that you want to view
after executing a search. The interface details page appears allowing you to view the
interface general information, full description, source information, and the interface
methods (or procedures and functions) region.

Additionally, the Web service information can be displayed only for the interface that
can be service enabled.

For interfaces with the support for SOAP services only, the following fields are
available in the Web Service region:

• Interaction Pattern Table: Web services can be generated synchronously,
asynchronously, or both synchronously and asynchronously based on your
selection in the table.

Before service generation, the integration repository administrator or the system
integration developer must select at least one interaction pattern (synchronous,
asynchronous, or both) either at the interface level or at the operation level. Once a
service has been successfully generated, the selected interaction patterns are
displayed in the table. Please note that the interaction pattern table is still editable,
but modifications will be applied only after the service regeneration.

Expand the interface name node to display the selected interaction patterns for
specific operations contained in the interface or service.

Note: For XML Gateway and Concurrent Program interface types,
there is no Interaction Pattern table displayed in the region. This is
because each XML Gateway or Concurrent Program interface
contains only one method, and this interface type can be service
enabled only with synchronous operation pattern. If a selected

2-6 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

XML Gateway or Concurrent Program interface is exposed as a
Web service, the single method contained in the interface must be
generated only with the support for synchronous pattern by
default.

However, if a selected interface of XML Gateway or Concurrent
Program interface type is exposed as a Web service, the Interaction
Pattern field is displayed instead and only with 'Synchronous' as its
value.

• Web Service Status: This field indicates whether the selected interface has an
associated Web service available or not, and if the service is deployed. It can have
either one of the following values:

• Not Generated It indicates that the selected interface definition does not have a
Web service generated.

• Generated: It indicates that the selected interface has an associated Web service
available, but the service has not yet been deployed.

• Deployed: It indicates that the selected interface not only has a Web service
available, but also the service has been deployed to Oracle SOA Suite with
'Active' state. This service is ready to accept new SOAP requests.

Once the service is deployed with 'Active' state, Retire appears in the Web
Service region allowing the integration repository administrator to disable the
active service if needed so that it will no longer accept new requests. After
retiring a deployed service, Activate appears allowing the administrator to take
the retired service back to active again. Therefore, a deployed service may be
with either 'Active' or 'Retire' state.

• View WSDL link: Click this link allowing you to view the generated or deployed
WSDL code.

For more information on how to view WSDL description, see Reviewing WSDL
Element Details, page 2-12.

• Interaction Pattern: After service generation, this field displays the interaction
pattern information corresponding to the selected interaction patterns across
methods in the Interaction Pattern table.

For example, if 'Synchronous' is selected for a method contained in a PL/SQL
interface, and 'Asynchronous' is selected for another method within the interface,
then both 'Synchronous' and 'Asynchronous' are shown in this field

• Authentication Type: This field contains the following read-only radio buttons:

Discovering and Viewing Integration Interfaces and Services 2-7

• Username Token

This authentication type provides username and password information in the
security header for a Web service provider to use in authenticating the SOAP
request. It is the concept of Oracle E-Business Suite username/password (or the
username/password created through the Users window in defining an
application user).

• SAML Token (Sender Vouches)

This authentication type is used for Web services relying on sending a
username only through SAML Assertion.

These authentication types are used by Service Provider to secure Web service
content and authenticate users who invoke the Web service. Prior to deploying a
Web service, an integration repository administrator must first select one desired
authentication type. Once the service has been successfully deployed, Web service
status is changed from 'Generated' to 'Deployed' with 'Active' state along with the
selected authentication type.

For more information on how to deploy a service, see Deploying and Undeploying
Web Services, Oracle E-Business Suite Integrated SOA Gateway Implementation Guide.

Note: Please note that not all integration interface definitions can be
service enabled. Oracle Integration Repository supports service
enablement only for the following interface types:

• PL/SQL

• XML Gateway Map (inbound)

• Concurrent Program

• Business Service Object (formerly known as Service Beans)

• Java APIs for Forms

Java APIs for Forms are XML document-based integration points
wrapped in Java classes for executing business logic in Oracle
Forms. These specialized Java classes are categorized as a subtype
of Java interface.

An integration repository administrator can perform additional
administrative tasks to deploy and manage service activities
throughout the entire service deployment life cycle. For detailed
information on these administrative tasks, see Administering Native
Integration Interfaces, Oracle E-Business Suite Integrated SOA Gateway
Implementation Guide.

2-8 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

For PL/SQL interfaces with the support for both SOAP and REST services, service
information is displayed in the following tabs:

Note: In this release, only PL/SQL APIs can be exposed as both REST
and SOAP services.

• SOAP Web Service Tab

All SOAP service related information including service status, WSDL link, and
service development life cycle activities are the same as the information described
earlier in the Web Service region.

• REST Web Service Tab

This tab contains interface or REST service information for the selected PL/SQL API.
It includes the following information:

• Service Alias: Each REST service should be associated with a unique alias
name. Alias is a set of characters and used in the service endpoint which
shortens the URL for the service. Before deploying a REST service, the
developer must enter this field.

• REST Service Status: This indicates whether the selected interface has an
associated REST service deployed or not.

If the selected interface is exposed as a REST service indicating that the REST
service has been deployed, the field is changed from 'Not Deployed' to
'Deployed'.

For more information on how to deploy REST services, see Deploying REST
Web Services, page 2-11.

• View WADL link: This link appears only if the REST service has been
deployed. Click this link to view the WADL description for the deployed REST
service.

For information on viewing WADL description, see Reviewing WADL Element
Details, page 2-22.

• Verb: This field displays the Verb value indicating how the REST service is
implemented using an HTTP method. Please note that 'POST' is the only
method supported in this release.

This field is displayed only when the REST service has 'Deployed' status.

• Service Operations

This table displays the list of procedures and functions contained in the selected
interface.

Discovering and Viewing Integration Interfaces and Services 2-9

Before deploying a service, the developer must select one or more desired
procedures and functions to be exposed as REST service operations.

After deployment, the Included Operations fields are selected for the
procedures and functions that have been exposed as REST service operations.

To view security grant information for a specific operation, click the Grant icon
next to the operation. The read-only grant details should be displayed.

Once SOAP or REST Web services are deployed, they can be invoked at run time. For
information on how to invoke these services, refer to each individual chapter described
later in this book for details.

Generating SOAP Web Services
Uses with the System Integration Developer role can transform interface definitions into
SOAP Web services represented in WSDL description.

Selecting Desired Interaction Patterns from the Interaction Pattern Table

SOAP services can be generated with the support for synchronous or asynchronous
interaction pattern, or both synchronous and asynchronous patterns to meet your
needs.

Before generating a service, an integration repository administrator or a system
integration developer must select at least one interaction pattern in the Interaction
Pattern table for the selected interface or specific methods contained in the interface:
This can be achieved at the method level for one or more methods or at the interface
level for all methods.

Important: In this release, asynchronous operation is supported only in
PL/SQL interfaces in enabling SOAP-based services.

• For XML Gateway and Concurrent Program interface types

Each interface contains only one method and it can only be service
enabled synchronously by default; therefore, the Interaction Pattern
table will not be displayed in the Web Service region.

• For Business Service Object and Java APIs for Forms interface types

Each interface may contain more than one method; therefore, only
the Synchronous column is displayed in the Interaction Pattern
table for method selection.

Please note that by default, none of the interaction pattern would be selected. However,
if your system is upgraded from a previous release, for backward compatibility,
'synchronous' pattern is selected for all the methods contained in a service.

Generating Services

2-10 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

In the Web Service region (or the SOAP Web Service tab if the selected interface can be
exposed as both SOAP and REST services), after selecting interaction patterns for an
interface, the developer can click Generate to generate a Web service represented in
WSDL with the selected interaction patterns.

After Service Generation

Once a service has been successfully generated, the selected interaction patterns are
displayed in the table. Although this table is still editable, any changes to the interaction
pattern will be applied only after the service regeneration.

You can expand the interface name node to display all the methods contained in the
interface.

Web Service Region After Service Generation

Please note that after the service has been successfully generated, the SOAP service
status is changed from 'Not Generated' to 'Generated' indicating that the selected
interface has WSDL description available, but it has not yet been deployed.

Important: If service generation is still in progress, then 'Generating' is
displayed as the SOAP service status.

Click the View WSDL link to view the generated WSDL code. For more information
about WSDL, see: Reviewing WSDL Element Details, page 2-12.

Regenerating Web Services

If the interface definition is changed or the selected interaction pattern information is
modified, the Web service can be regenerated by clicking Regenerate. Upon
regeneration, the service definition along with interaction pattern information will also
be changed to reflect the changes done in the interface. You need to modify its Web
service clients based on the new service definition.

If interface definition is not changed, then regenerating the service would not change
the service definition. You can continue to use the existing Web service clients with the
new service definition.

For more service generation information, see Generating SOAP Web Services, Oracle
E-Business Suite Integrated SOA Gateway Implementation Guide.

Discovering and Viewing Integration Interfaces and Services 2-11

Deploying REST Web Services
Users with the System Integration Developer role can perform service deployment
action for the PL/SQL interfaces that can be exposed as REST services.

Before deploying a PL/SQL interface as a REST service, a system integration developer
must enter or select the following information in the REST Web Service tab:

• Enter Service Alias Information

Each REST service should be associated with a unique alias name that will be used
in service endpoint, WADL, XSDs, and namespaces.

For example, 'Invoice' is entered as the service alias for an interface Create Invoice
(AR_INVOICE_API_PUB) before service deployment. The alias will be displayed as
the service endpoint in the schema for a selected service operation
CREATE_INVOICE as follows:

href="https://<hostname>:<port>/webservices/rest/Invoice
/?XSD=CREATE_INVOICE_SYNCH_TYPEDEF.xsd" />

• Select Desired Service Operations

In the Service Operations table, select desired methods that you want them to be
exposed as REST service operations.

For example, select CREATE_INVOICE from the table for the selected interface
Create Invoice (AR_INVOICE_API_PUB).

After service deployment, only the selected method CREATE_INVOICE will be
exposed as a REST service operation. The Included Operations column will be
selected for the method in the Service Operations table.

REST Service Security

Please note that all REST services are secured by HTTP Basic Authentication or Token
Based Authentication at HTTP or HTTPS transport level.

Note: HTTPS is the recommended secure transport protocol while
using HTTP Basic Authentication security to authenticate user
credentials (username and password).

• HTTP Basic Authentication string with username and password

Username and password should be provided in each request to an Oracle
E-Business Suite REST service.

• Token Based Authentication

A security token (such as Oracle E-Business Suite session ID) can be obtained by
invoking the security Login service and passed as a cookie in place of password to

2-12 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

the subsequent requests.

Fore more information about REST service security, see Managing Web Service
Security, Oracle E-Business Suite Integrated SOA Gateway Implementation Guide.

Click Deploy to deploy the REST service to an Oracle E-Business Suite managed server.

Once the REST service has been successfully deployed, the 'Deployed' service status is
shown, along with the View WADL link allowing you to view the WADL description.

Additionally, POST is displayed as the Verb field indicating that this HTTP method is
used to create or update the resource. POST is the only HTTP method supported in this
release.

For more information on how to deploy REST services, see Deploying REST Web
Services, Oracle E-Business Suite Integrated SOA Gateway Implementation Guide.

Reviewing WSDL Element Details
If an interface can be exposed as a Web service, the corresponding WSDL file is
displayed in the interface details page.

Clicking the View WSDL link to launch a new window containing the associate WSDL
document. This XML-based document describes the selected Web service and how the
service can be used.

For example, click the deployed View WSDL link for the PL/SQL: Invoice Creation
from the interface details page, the WSDL document appears.

Discovering and Viewing Integration Interfaces and Services 2-13

Note: The http:// address in the new window has the exact WSDL URL
information that appeared in the interface details page. This address
can be copied and used directly in any of the Web service clients, such
as in a BPEL process during a partner link creation.

WSDL Document Structure
A WSDL document is simply a set of definitions. There is a definitions element at the
root, and definitions inside. The definitions element defines the set of services that the
Web service offers.

The definitions element often contains an optional TargetNamespace property, a
convention of XML schema that enables the WSDL document to refer to itself.

The structure of this definitions element can be like:
<definitions name="nmtoken"
 <targetNamespace="uri">
 <import namespace="uri" location="uri"/> *
</definitions>

For example, the definitions element in the WSDL document for the Invoice Creation
API (AR_INVOICE_API_PUB) appears:

2-14 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

<definitions name="AR_INVOICE_API_PUB"
targetNamespace="http://xmlns.oracle.com/apps/ar/soaprovider/plsql/ar_in
voice_api_pub/"
xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:tns1="http://xmlns.oracle.com/apps/ar/soaprovider/plsql/ar_invoice
_api_pub/create_invoice/"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:tns="http://xmlns.oracle.com/apps/ar/soaprovider/plsql/ar_invoice_
api_pub/
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:tns1="http://xmlns.oracle.com/apps/ar/soaprovider/plsql/ar_invoice
_api_pub/create_invoice/"
xmlns:tns2="http://xmlns.oracle.com/apps/ar/soaprovider/plsql/ar_invoice
_api_pub/create_single_invoice/>

This element specifies numerous namespaces that will be used throughout the
remainder of the document. It also specifies a default namespace:
xmlns=http://schemas.xmlsoap.org/wsdl/.

In addition to the definitions element, Web services are defined using the following six
major elements:

• Types: It provides data type definitions used to describe the messages exchanged.

• Message: It represents an abstract definition of the data being transmitted.

• PortType: It is a set of abstract operations. Each operation refers to an input
message and output message.

• Binding: It specifies concrete protocol and data format specifications for the
operations and messages defined by a particular portType.

• Port: It specifies an address for a binding, thus defining a single communication
endpoint.

• Service: It is used to aggregate a set of related ports.

The following diagram illustrates the relationship of the basic parts of WSDL:

Discovering and Viewing Integration Interfaces and Services 2-15

Types
The types element contains all data types used in all method calls described in the
WSDL. It can be used to specify the XML Schema (xsd:schema) that is used to describe
the structure of a WSDL Part.

The structure of this Types element can be like:
<definitions...>
 <types>
 <xsd:schema.../>*
 </types>
</definitions>

For example, the Invoice Creation Web service contains the following two functions:

• CREATE_INVOICE

• CREATE_SINGLE_INVOICE

Each function is described in the data type definition. WSDL prefers the use of XSD as
the type of system mechanism to define the types in a message schema. As a result, the
message schema location of the CREATE_INVOICE function is defined in the
APPS_XX_BPEL_CREATE_INVOICE_AR_INVOICE_API_PUB-24CREATE_INV.xsd.
The message schema location of the CREATE_SINGLE_INVOICE function is defined in
the
APPS_XX_BPEL_CREATE_SINGLE_INVOICE_AR_INVOICE_API_PUB-24CREATE_S
IN.xsd.

Note: For a generated service that has not yet been deployed, the
abstract WSDL description displays a temporary location for the
schema location (such as <include
schemaLocation="http://<hostname>:<port>/ISG-ISG-con
text-root/isgapp/plsql/ar_invoice_api_pub/APPS_XX_BP
EL_CREATE_INVOICE_AR_INVOICE_API_PUB-24CREATE_INV.xs
d"/>).

For a deployed service, a physical location of service endpoint where
the service is hosted in soa-infra is displayed instead as shown here:

2-16 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

<types>
 <schema xmlns="http://www.w3.org/2001/XMLSchema"
 elementFormDefault="qualified"

targetNamespace="http://xmlns.oracle.com/apps/ar/soaprovider/plsql/ar_in
voice_api_pub/create_invoice/">
 <include

schemaLocation="http://<soa_suite_hostname>:<port>/soa-infra/services/de
fault/<jndi_name>_PLSQL_AR_INVOICE_API_PUB/AR_INVOICE_API_PUB_Service?XS
D=xsd/APPS_XX_BPEL_CREATE_INVOICE_AR_INVOICE_API_PUB-24CREATE_INV.xsd"/>

 </schema>
 <schema xmlns="http://www.w3.org/2001/XMLSchema"
 elementFormDefault="qualified"

targetNamespace="http://xmlns.oracle.com/apps/ar/soaprovider/plsql/ar_in
voice_api_pub/create_single_invoice/">
 <include

schemaLocation="http://<soa_suite_hostname>:<port>/soa-infra/services/de
fault/<jndi_name>_PLSQL_AR_INVOICE_API_PUB/AR_INVOICE_API_PUB_Service?XS
D=xsd/APPS_XX_BPEL_CREATE_SINGLE_INVOICE_AR_INVOICE_API_PUB-24CREATE_SIN
.xsd"/>
 </schema>
...

In addition to message schema locations and schema elements that help to define Web
messages, the Types element can take complex data type as input.

For example, the Responsibility, Responsibility Application, Security Group, NLS
Language, and Organization ID complex types listed under the "SOAHeader" as shown
below are used in passing values to set applications context during service invocation.
...
<schema xmlns="http://www.w3.org/2001/XMLSchema"
 elementFormDefault="qualified"

targetNamespace="http://xmlns.oracle.com/apps/ar/soaprovider/plsql/ar_in
voice_api_pub/">
 <element name="SOAHeader">
 <complexType>
 <sequence>
 <element name="Responsibility" minOccurs="0" type="string"/>
 <element name="RespApplication" minOccurs="0" type="string"/>
 <element name="SecurityGroup" minOccurs="0" type="string"/>
 <element name="NLSLanguage" minOccurs="0" type="string"/>
 <element name="Org_Id" minOccurs="0" type="string" />
 </sequence>
 </complexType>
 </element>
 </schema>
</types>

Message
The Message element defines the name of the message. It consists of one or more Part
elements, which describe the content of a message using Element or Type attributes.

Parts describe the logical abstract content of a message. A binding may reference the

Discovering and Viewing Integration Interfaces and Services 2-17

name of a part in order to specify binding-specific information about the part.

The structure of this element can be like:
<definitions...>
 <message name="nmtoken"> *
 <part name="nmtoken" element="qname"? type="qname"? />
 </message>
</definitions>

A typical document-style Web service could have a header and body part in the input
message and output message as well. For example, the Message element for the Invoice
Creation Web service appears:
<message name="CREATE_INVOICE_Input_Msg">
 <part name="header" element="tns:SOAHeader"/>
 <part name="body" element="tns1:InputParameters"/>
</message>
<message name="CREATE_INVOICE_Output_Msg">
 <part name="body" element="tns1:OutputParameters"/>
</message>
<message name="CREATE_SINGLE_INVOICE_Input_Msg">
 <part name="header" element="tns:SOAHeader"/>
 <part name="body" element="tns2:InputParameters"/>
</message>
<message name="CREATE_SINGLE_INVOICE_Output_Msg">
 <part name="body" element="tns2:InputParameters"/>
</message>

Each message defined by the associated schema includes input message and output
message parts. For example, the Invoice Creation Web service has two functions:

• CREATE_INVOICE

The input message of this function is defined by CREATE_INVOICE_Input_Msg.

The output message of this function which gives its result is defined by
CREATE_INVOICE_Output_Msg.

The schema of input and output messages is defined in the
APPS_XX_BPEL_CREATE_INVOICE_AR_INVOICE_API_PUB-24CREATE_INV.x
sd.

• CREATE_SINGLE_INVOICE

The input message of this function is defined by
CREATE_SINGLE_INVOICE_Input_Msg.

The output message of this function which gives its result is defined by
CREATE_SINGLE_INVOICE_Output_Msg.

The schema of input and output messages is defined in the
APPS_XX_BPEL_CREATE_SINGLE_INVOICE_AR_INVOICE_API_PUB-24CREAT
E_INV.xsd.

The value of body part of each message will be set as SOAP body; the value of header
part will be set in the SOAP header which is required for Web service authorization.

For more information, see Understanding Web Service Input Message Parts, page 10-18

2-18 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

.

PortType
The portType element combines multiple message elements to form a complete one-way
or round-trip operation supported by a Web service.

For example, a portType element can combine one request (input message element)
message and one response (output message element) message into a Synchronous
Request - Response operation, most commonly used in SOAP services.

If it is for one-way operation, then the operation would contain an Input element only.

The structure of this element can be like:
<wsdl:definitions...>
 <wsdl:portType name="nmtoken">*
 <operation name="nmtoken"/>
 <wsdl:input name="nmtoken"? message="qname">?
 </wsdl:input>
 <wsdl:output name="nmtoken"? message="qname">?
 </wsdl:output>
 <wsdl:fault name="nmtoken"? message="qname">?
 </wsdl:fault>
 </wsdl:operation>
 </wsdl:portype>
</wsdl:definitions>

Note: An optional Fault element can be used for error handling in both
request-response and solicit response operation models. This feature is
not supported in this release.

In this Invoice Creation Web service example, corresponding to the above two
functions, AR_INVOICE_API_PUB_PortType has the following two operations:

• CREATE_INVOICE

• Input: CREATE_INVOICE_Input_Msg

• Output: CREATE_INVOICE_Output_Msg

• CREATE_SINGLE_INVOICE

• Input: CREATE_SINGLE_INVOICE_Input_Msg

• Output: CREATE_SINGLE_INVOICE_Output_Msg

For Synchronous Request-Response operation pattern, input and output messages
appear as follows:

Discovering and Viewing Integration Interfaces and Services 2-19

<portType name="AR_INVOICE_API_PUB_PortType">
 <operation name="CREATE_INVOICE">
 <input name="tns:CREATE_INVOICE_Input_Msg" />
 <output name="tns:CREATE_INVOICE_Output_Msg" />
 </operation>
 <operation name="CREATE_SINGLE_INVOICE">
 <input name="tns:CREATE_SINGLE_INVOICE_Input_Msg" />
 <output name="tns:CREATE_SINGLE_INVOICE_Output_Msg" />
 </operation>
</portype>

For Asynchronous Request-Response operation pattern, to distinguish it from the rest
of operations generated synchronously, ASYNCH appears in both input and output
(response) messages.

For example, if 'CREATE_INVOICE' operation is generated asynchronously, ASYNCH
appears specifically for the 'CREATE_INVOICE' operation in both input and output
(response) messages.
...
<portType name="AR_INVOICE_API_PUB_PortType">
 <operation name="CREATE_INVOICE_ASYNCH">
 <input name="tns:CREATE_INVOICE_Input_Msg"/>
 </operation>
</portType>
<portType name="AR_INVOICE_API_PUB_Callback_PortType">
 <operation name="CREATE_INVOICE_ASYNCH_RESPONSE">
 <input name="tns:CREATE_INVOICE_Output_Msg"/>
 </operation>
</portType>

Binding
A binding defines message format and protocol details for operations and messages
defined by a particular portType. It provides specific details on how a portType operation
will actually be transmitted over the Web. Bindings can be made available through
multiple transports, including HTTP GET, HTTP POST, or SOAP.

A port defines an individual endpoint by specifying a single address for a binding.

The structure of this element can be like:
<wsdl:definitions...>
 <wsdl:binding name="nmtoken" type="qname">*
 <wsdl:operation name="nmtoken"/>
 <wsdl:input> ?
 </wsdl:input>
 <wsdl:output>?
 </wsdl:output>
 <wsdl:fault name="nmtoken"? message="qname">?
 </wsdl:fault>
 </wsdl:operation>
 </wsdl:binding>
</wsdl:definitions>

In the same example, the binding element as shown below describes the SOAP binding
for PortType AR_INVOICE_API_PUB_PortType.

2-20 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

<binding name="AR_INVOICE_API_PUB_Binding"
type="tns:AR_INVOICE_API_PUB_PortType">
 <soap:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http"/>
 <wsp:PolicyReference
xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
URI="#wss_username_token_service_policy" wsdl:required="false" />
 <operation name="CREATE_INVOICE">
 <soap:ooperation soapAction="CREATE_INVOICE" />
 <input>
 <soap:header message="tns:CREATE_INVOICE_Input_Msg" part="header"
use="literal" />
 <soap:body parts="body" use="literal" />
 </input>
 <output>
 <soap:body use="literal" />
 </output>
 </operation>
 <operation name="CREATE_SINGLE_INVOICE">
 <soap:operation soapAction="CREATE_SINGLE_INVOICE" />
 <input>
 <soap:header message="tns:CREATE_SINGLE_INVOICE_Input_Msg"
part="header" use="literal" />
 <soap:body parts="body" use="literal" />
 </input>
 <output>
 <soap:body use="literal" />
 </output>
 </operation>
 </binding

For Asynchronous Request-Response operation pattern, if the 'CREATE_INVOICE'
operation is generated asynchronously, then ASYNCH appears specifically for the
'CREATE_INVOICE' operation in the binding element.
<binding name="AR_INVOICE_API_PUB_Binding"
type="tns:AR_INVOICE_API_PUB_PortType">
 <operation name="CREATE_INVOICE_ASYNCH">
 <soap:operation soapAction="CREATE_INVOICE_ASYNCH" />
 <input>
 <soap:header message="tns:CREATE_INVOICE_Input_Msg"
part="header" use="literal" />
 <soap:body use="literal" parts="body" />
 </input>
 </operation>
</binding>
<binding name="AR_INVOICE_API_PUB_CallBack_Binding"
type="tns:AR_INVOICE_API_PUB_CallBack_PortType">
 <soap:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http" />
 <operation name="CREATE_INVOICE_ASYNCH_RESPONSE">
 <soap:operation soapAction="CREATE_INVOICE_ASYNCH_RESPONSE" />
 <input>
 ...
 </input>
 </operation>
 </binding>

The binding is always document style for SOAP over HTTP binding. It also defines the
content of SOAP header and SOAP body.

Discovering and Viewing Integration Interfaces and Services 2-21

Note: Because it is a document-style service (style="document"), the
request and response messages will consist of simply XML documents,
instead of using the wrapper elements required for the remote
procedure call (RPC-style) Web service. The transport attribute
indicates the transport of the SOAP messages is through SOAP HTTP.

The soap:operation element indicates the binding of a specific
operation (such as CREATE_INVOICE) to a specific SOAP
implementation. The soapAction attribute specifies that the
SOAPAction HTTP header is used for identifying the service.

The soap:header element allows header to be defined that is transmitted inside the
Header element of the SOAP Envelope. The SOAHeader comprises of Responsibility,
RespApplication, SecurityGroup, NLSLanguage, and Org_Id complex types within the
Types element.

The soap:body element enables you to specify the details of the input and output
messages for a specific operation.

Service
The service element defines the Web service. It consists of one or more Port elements. A
port defines an individual endpoint by specifying a single address for a binding.

The service binding is commonly created using SOAP.

The structure of this element can be like:
<wsdl:definitions...>
 <wsdl:service name="nmtoken">*
 <wsdl:port name="nmtoken" binding="qname"> *
 </wsdl:port>
 </wsdl:service>
</wsdl:definitions>

For a deployed service, the Service element AR_INVOICE_API_PUB_Service defines a
physical location of service endpoint where the service is hosted in soa-infra for the
portType AR_INVOICE_API_PUB_PortType.
<service name="AR_INVOICE_API_PUB_Service">
 <port name="AR_INVOICE_API_PUB_Port"
binding="tns:AR_INVOICE_API_PUB_Binding">
 <soap:address

location="http://<soa_suite_hostname>:<port>/soa-infra/services/default/
<jndi_name>_PLSQL_AR_INVOICE_API_PUB/AR_INVOICE_API_PUB_Service/"/>
 </port>
 </service>

Note: For a generated service that has not yet been deployed,
'Not_Deployed' is shown in the soap:address location element
(such as <soap:address location="#NOT_DEPLOYED#"/>).

2-22 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

Reviewing WADL Element Details
If an interface can be exposed as a REST service, the corresponding WADL description
can be viewed in a separate window.

Take the same interface example PL/SQL API Invoice Creation
(AR_INVOICE_API_PUB) explained earlier for WSDL description. This interface can
also be exposed as a REST service. To view the associated WADL information, click
View WADL link in the REST Web Service tab of the interface details page. The WADL
document appears.

WADL Document Structure
WADL (Web Application Description Language) is designed to provide a machine
processable description of HTTP-based Web applications.

The application element forms the root of a WADL description. It may contain the
following elements:

• Grammars: This element serves as a container for definitions of data exchanged
during execution of the protocol described by the WADL document.

• Resources: This element serves as a container for all the included child resource
elements provided by the application.

<?xml version="1.0" encoding="UTF-8" standalone="no" ?>
<application
xmlns:tns="http://xmlns.oracle.com/apps/ar/soaprovider/plsql/rest/ar_inv
oice_api_pub/" xmlns="http://wadl.dev.java.net/2009/02"
xmlns:tns1="http://xmlns.oracle.com/apps/ar/rest/ar/create_invoice/"
name="AR_INVOICE_API_PUB"
targetNamespace="http://xmlns.oracle.com/apps/ar/soaprovider/plsql/rest/
ar_invoice_api_pub/">
 <grammars>
...
 </grammars>
 <resources base="http://<hostname>:<port>/webservices/rest/Invoice/">
 ...
 </resources
</application>

Grammars
This element acts as a container for definitions of data exchanged during execution of
the protocol described by the WADL document. Include element is often referenced to
allow the definitions of one or more data format descriptions to be included.

Discovering and Viewing Integration Interfaces and Services 2-23

<grammars>
 <include xmlns="http://www.w3.org/2001/XMLSchema"
href="https://<hostname>:<port>/webservices/rest/Invoice
/?XSD=CREATE_INVOICE_SYNCH_TYPEDEF.xsd" />
 <include xmlns="http://www.w3.org/2001/XMLSchema"
href="https://<hostname>:<port>/webservices/rest/Invoice
/?XSD=CREATE_SINGLE_INVOICE_SYNCH_TYPEDEF.xsd" />
 </grammars>

In this example, two service operations with the support for synchronous pattern
CREATE_INVOICE_SYNCH and CREATE_SINGLE_INVOICE_SYNCH are referenced
in the Include element.

Invoice highlighted here is the service alias name entered earlier prior to the service
deployment. Once the service has been successfully deployed, the specified alias name
(Invoice) becomes part of the service endpoint in the .xsd schema file.

Resources
The resources element represents the resource information provided by the Web
application. It includes a base attribute that provides the base URI for each included
child resource identifier.

For example, each child resource element represents a specific service operation (such as
create_invoice and create_single_invoice) contained in the selected interface.
<resources base="http://<hostname>:<port>/webservices/rest/Invoice/">
 <resource path="/create_invoice/">
 ...
 </resource>
 <resource path="/create_single_invoice/">
 ...
 </resource>
 </resources>

Resource
A resources element may contain a set of resource elements; each resource element
represents a REST service operation. In this example, create_invoice and
create_single_invoice are included child resource element.

Each resource element can include the following child elements:

• Method: This element describes the input to and output from an HTTP protocol
method that can be applied to the resource.

POST is the only support HTTP method in this release.

• Request: This element describes the input to be included when applying an HTTP
method to a resource.

Element mediaType indicates the supported media type, such as XML and JSON, for
the input parameters.

• Response: This element describes the output results from performing an HTTP
method on a resource.

2-24 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

The supported media types for the output results are XML and JSON.

<resources base="http://<hostname>:<port>/webservices/rest/Invoice/">
 <resource path="/create_invoice/">
 <method id="CREATE_INVOICE" name="POST">
 <request>
 <representation mediaType="application/xml"
type="tns1:InputParameters" />
 <representation mediaType="application/json"
type="tns1:InputParameters" />
 </request>
 <response>
 <representation mediaType="application/xml"
type="tns1:OutputParameters" />
 <representation mediaType="application/json"
type="tns1:OutputParameters" />
 </response>
 </method>
 </resource>
 <resource path="/create_single_invoice/">
 <method id="CREATE_SINGLE_INVOICE" name="POST">
 <request>
 <representation mediaType="application/xml"
type="tns2:InputParameters" />
 <representation mediaType="application/json"
type="tns2:InputParameters" />
 </request>
 <response>
 <representation mediaType="application/xml"
type="tns2:OutputParameters" />
 <representation mediaType="application/json"
type="tns2:OutputParameters" />
 </response>
 </method>
 </resource>
 </resources>

In this example, input request and output response messages are all supported with
XML and JSON formats when applying the HTTP method POST for each resource
element 'create_invoice' and 'create_single_invoice'.

Understanding SOAP Messages
SOAP (Simple Object Access Protocol) is a lightweight, XML-based protocol
specification for exchanging structured information in the implementation of Web
services in computer networks. For example, Web service provider receives SOAP
requests from Web service clients to invoke Web services and also sends the
corresponding SOAP responses out to the clients.

SOAP Message Structure

SOAP messages are contained in one of the SOAP components called Envelope. The
SOAP envelop defines an overall framework for describing what is in a message, who
should deal with it, and whether it is optional or mandatory. It consists of the following
elements:

Discovering and Viewing Integration Interfaces and Services 2-25

• Header (Optional)

An envelope element can optionally have a Header element. If an envelope contains
a Header element, it must contain no more than one, and it must appear as the first
child of the envelope. The first level child elements of the Header element are called
Header Blocks.

Header blocks can be used in the following mechanisms:

• It can be used to attach security related information targeted at a specific
recipient.

For more information, see SOAP Security Header, page 2-26.

• It can be used to set applications context values required for services.

For more information, see SOAP Header for Applications Context, page 2-30.

• It can be used to populate mandatory header variables for XML Gateway
inbound transactions to be completed successfully.

For more information, see SOA Header for XML Gateway Messages, page 2-33.

• Body

Every envelope element must contain exactly one Body element that holds the
message. Immediate child elements of the Body element are called Body Blocks or
Parts.

• Attachment (Optional)

A SOAP message can carry multiple attachments and these attachments can be of
any type including text, binary, image, and so on.

The following diagram depicts the structure of a SOAP message.

2-26 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

SOAP Message Structure

A skeleton of a SOAP message can be like:
<xml version="1.0">
<soap:Envelope
xmlns:soap="http://www.w3.org/2001/12/soap-envelope"
soap:encodingStyle="http://www.w3.org/2001/12/soap-encoding">

<soap:Header>
...
</soap:Header>

<soap:Body>
...
 <soap:Fault>
 ...
 </soap:Fault>
</soap:Body>

</soap:Envelope>

SOAP Security Header
When a SOAP request message is received through Oracle SOA Suite for the deployed

Discovering and Viewing Integration Interfaces and Services 2-27

SOA Composites in an Oracle WebLogic managed server, the SOAP message is
authenticated by a JAAS (Java Authentication and Authorization Service) based login
module for Oracle E-Business Suite.

A SOAP message is authenticated using either UsernameToken or SAML Token
security model which has been identified earlier for a service before being deployed.
The selected authentication information is embedded in the wsse:security Web
Security header.

UsernameToken-based SOAP Security Header
A UsernameToken-based SOAP header should include the following wsse:security
section:
<soapenv:Header>
<http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-sece
xt-1.0.xsd"
soapenv:mustUnderstand="1">
 <wsse:UsernameToken>
 <wsse:Username>Username</wsse:Username>
 <wsse:Password>Password</wsse:Password>
 </wsse:UsernameToken>
</wsse:Security>

</soapenv:Header>

Note: When a <wsse:security> header includes a
mustUnderstand="1" attribute, then the receiver must generate a
fault if it is unable to interpret or process security tokens contained
the <wsse:security> header block according to the corresponding
WS SOAP message security token profiles.

See A Sample Fault SOAP Response, page 2-40.

A typical WS-Security header in a SOAP Request can be like:
<soapenv:Header>
<http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-sece
xt-1.0.xsd"
soapenv:mustUnderstand="1">
 <wsse:UsernameToken>
 <wsse:Username>myUser</wsse:Username>
 <wsse:Password

Type="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-t
oken-profile-1.0#PasswordText">password</wsse:Password>
 </wsse:UsernameToken>
</wsse:Security>

</soapenv:Header>

The UsernameToken based security includes UsernameToken profile which provides
username and password information in the Web service security header. Username is a
clear text; password is the most sensitive part of the UsernameToken profile. In this
security model, the supported password type is plain text password (or PasswordText).

2-28 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

Note: The PasswordText password type is the password written in
clear text. SOAP requests invoking the Web services should include
security header consisting of Username and plain text password. The
password received as part of the SOAP request at run time will be
validated against the encrypted password stored in Oracle E-Business
Suite. After validation, the plain text password from the SOAP request
will be discarded.

The username/password in SOAP Header of a SOAP message will be passed to
authenticate Web services. The username/password discussed here in wsse:security
is the Oracle E-Business Suite username/password (or the username/password created
through the Users window in defining an application user).

Passing security header elements along with the SOAP request is essential to the
success of invoking Oracle E-Business Suite Web services.

If these security header values are not passed, the Web service will not be authenticated
and the execution of the service will be failed.

Detailed instructions on how to pass the security header when invoking an Oracle
E-Business Suite Web service, see Configuring Web Service Policies, page 3-38.

SAML Token-based SOAP Security Header
Security Assertion Markup Language (SAML) is an XML-based standard for
exchanging authentication and authorization data between security domains, that is,
between an identity provider and a service provider.

When a Web application invokes a service that uses SAML as its authentication
mechanism, this SOAP request message containing or referencing SAML assertions is
received through Oracle SOA Suite and passed on to a JAAS based login module for
Oracle E-Business Suite for authentication based on the wsse:security Web Security
headers. As part of the validation and processing of the assertions, the receiver or login
module for Oracle E-Business Suite must establish the relationship among the subject,
claims of the referenced SAML assertions, and the entity providing the evidence to
satisfy the confirmation method defined for the statements.

A trusted entity uses the sender-vouches confirmation method to ensure that it is acting
on behalf of the subject of SAML statements attributed with a sender-vouches
SubjectConfirmation element.

The following SOAP example describes a trusted entity that uses the sender-vouches
subject confirmation method with an associated <ds:Signature> element to establish
its identity and to assert that it has sent the message body on behalf of the subject(s):

Discovering and Viewing Integration Interfaces and Services 2-29

<soapenv:Envelope
xmlns:fnd="http://xmlns.oracle.com/apps/fnd/soaprovider/plsql/fnd_user_p
kg/" xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">
 <soapenv:Header>
 <wsse:Security
xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wsse
curity-secext-1.0.xsd">
 <ds:Signature Id="Signature-26598842"
xmlns:ds="http://www.w3.org/2000/09/xmldsig#">
 <ds:SignedInfo>
 <ds:CanonicalizationMethod
Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#"/>
 <ds:SignatureMethod
Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1"/>
 <ds:Reference URI="#id-31755621">
 <ds:Transform Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#"/>
 </ds:Transforms>
 <ds:DigestMethod
Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
 <ds:DigestValue>hbb/y+b3whhaFakWGO+bnkNm5/Q=</ds:DigestValue>
 </ds:Reference>
 </ds:SignedInfo>
 <ds:SignatureValue>

jiXB+bsTfqd0uYxnaPAJcooCGb9UrKfzqSlGu/lE0nbL+sPkQQzmaB+ZKMFxUAc5pJStyeBu
3DIg
6bEXSknB3JeJaHy6UFeGKZz3ROf4WKqRvDLXsa10Ei6Id66go3goqYzYtoUA4J43MjLJbKUw
5KG/
LGBImRKABFPRP4qlAlQ=
 </ds:SignatureValue>
 <ds:KeyInfo Id="KeyId-1042529">
 <wsse:SecurityTokenReference wsu:Id="STRId-6382436"
xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssec
urity-utility-1.0.xsd"><wsse:KeyIdentifier

EncodingType="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-so
ap-message-security-1.0#Base64Binary"

ValueType="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-
token-profile-1.0#X509SubjectKeyIdentifier">ADoNKKuduSTKTwi7jqEzCxwD7JU=
</wsse:KeyIdentifier></wsse:SecurityTokenReference>
 </ds:KeyInfo></ds:Signature>
 <Assertion AssertionID="be7d9814c36381c27fefa89d8f27e126"
IssueInstant="2010-02-27T17:26:21.241Z" Issuer="www.oracle.com"
MajorVersion="1" MinorVersion="1"
xmlns="urn:oasis:names:tc:SAML:1.0:assertion"
xmlns:saml="urn:oasis:names:tc:SAML:1.0:assertion"
xmlns:samlp="urn:oasis:names:tc:SAML:1.0:protocol"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"><Conditions
NotBefore="2010-02-27T17:26:21.241Z"
NotOnOrAfter="2011-02-27T17:26:21.241Z"/>
 <AuthenticationStatement
AuthenticationInstant="2010-02-27T17:26:21.241Z"
AuthenticationMethod="urn:oasis:names:tc:SAML:1.0:am:password">
 <Subject>
 <NameIdentifier
Format="urn:oasis:names:tc:SAML:1.1:nameid-format:unspecified"
 NameQualifier="notRelevant">SYSADMIN</NameQualifier>
 <SubjectConfirmation>

2-30 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

<ConfirmationMethod>urn:oasis:names:tc:SAML:1.0:cm:sender-vouches</Confi
rmationMethod>
 </SubjectConfirmation>
 </Subject>
 </AuthenticationStatement>
 </Assertion>
 </wsse:Security>

 <fnd:SOAHeader>
 <!--Optional:-->
 <fnd:Responsibility>UMX</fnd:Responsibility>
 <!--Optional:-->
 <fnd:RespApplication>FND</fnd:RespApplication>

 </fnd:SOAHeader>
 </soapenv:Header>

 <soapenv:Body wsu:Id="id-31755621"
xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssec
urity-utility-1.0.xsd">
 <tes:InputParameters
xmlns:tes="http://xmlns.oracle.com/apps/fnd/soaprovider/plsql/fnd_user_p
kg/testusername/">
 <!--Optional:-->
 <tes:X_USER_NAME>AMILLER</tes:X_USER_NAME>
 </tes:InputParameters>
 </soapenv:Body>
</soapenv:Envelope>

Note: SAML Token based security can be used to authenticate users in
both Single Sign-On (SSO) and non-SSO enabled environments. The
format of the NameIdentifier in the SAML assertion indicates if the
user has been authenticated against LDAP (for SSO users) or Oracle
E-Business Suite FND_USER table (for non-SSO users).

The SAML assertion in the above SOAP message is for non-SSO
enabled environment. If the username in the NameIdentifier tag is
of the form of LDAP DN as shown below, then the username is verified
in the registered OID for SSO users.
<NameIdentifier
Format="urn:oasis:names:tc:SAML:1.1:nameid-format:unspecif
ied"

NameQualifier="notRelevant">orclApplicationCommonName=PROD
1,cn=EBusiness,cn=Products,cn=OracleContext,dc=us,dc=oracl
e,dc=com</NameIdentifier>

For more information about SAML Token sender-vouches based security, see SAML
Sender-Vouches Token Based Security, Oracle E-Business Suite Integrated SOA Gateway
Implementation Guide.

SOAP Header for Applications Context
Applications context contains many crucial elements that are used in passing values

Discovering and Viewing Integration Interfaces and Services 2-31

that may be required in Oracle E-Business Suite. For example, the context header
information is required for an API transaction or a concurrent program in order for an
Oracle E-Business Suite user that has sufficient privileges to run the program.

Applications Context in SOAHeader Part of a SOAP Request

These context header elements defined in SOAHeader part of a SOAP request for
PL/SQL, Concurrent Program, and Java APIs for Forms services are:

• Responsibility

It is the Oracle E-Business Suite application responsibility information. It accepts
responsibility_key (such as SYSTEM_ADMINISTRATOR) as its value.

• RespApplication

It is the responsibility application short name information. It accepts Application
Short Name (such as FND) as its value.

• SecurityGroup

It accepts Security Group Key (such as STANDARD) as its value.

• NLSLanguage (optional)

It is an optional parameter to be passed in SOAHeader part of a SOAP request for
PL/SQL and Concurrent Program services.

If the NLS Language element is specified, SOAP requests can be consumed in the
language passed. All corresponding SOAP responses and error messages can also
be returned in the same language. If no language is identified, then the default
language of the user will be used.

• Org_Id (optional for PL/SQL and Concurrent Program services)

• It is an optional parameter to be passed in SOAHeader part of a SOAP request
for PL/SQL and Concurrent Program services. If a service execution is
dependent on any particular organization, then you must pass the Org_Id
element of that SOAP request.

• Org_Id is a mandatory value that must be passed for Java APIs for Forms
services.

The following SOAP message shows the SOAHeader part printed in bold:

2-32 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

<soapenv:Header>
<http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-sece
xt-1.0.xsd"
soapenv:mustUnderstand="1">
 <wsse:UsernameToken>
 <wsse:Username>sysadmin</wsse:Username>
 <wsse:Password

Type="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-t
oken-profile-1.0#PasswordText">password</wsse:Password>
 </wsse:UsernameToken>
</wsse:Security><ozf:SOAHeader>
 <ozf:Responsibility>OZF_USER</ozf:Responsibility>
 <ozf:RespApplication>OZF</ozf:RespApplication>
 <ozf:SecurityGroup>STANDARD</ozf:SecurityGroup>
 <ozf:NLSLanguage>AMERICAN</ozf:NLSLanguage>
 <ozf:Org_Id>204</ozf:Org_Id>
</ozf:SOAHeader>
</soapenv:Header>

Applications Context in ServiceBean_Header Part of a SOAP Request

These context header elements defined in ServiceBean_Header part of a SOAP
request for a Business Service Object service are:

• RESPONSIBILITY_NAME

It is the Oracle E-Business Suite application responsibility information. It can accept
both the name (Responsibility_Name, such as System Administrator) and
the key (in the format of {key}responsibility_key, such as
{key}SYSTEM_ADMINISTRATOR) as its values.

• RESPONSIBILITY_APPL_NAME

It is the responsibility application short name information. It accepts Application
Short Name (such as FND) as its value.

• SECURITY_GROUP_NAME

It accepts Security Group Key (such as STANDARD) as its value.

• NLSLanguage (optional)

It is an optional parameter to be passed in ServiceBean_Header part of a SOAP
request for a Business Service Object service.

If the NLS Language element is specified (such as AMERICAN), SOAP requests can
be consumed in the language passed. All corresponding SOAP responses and error
messages can also be returned in the same language. If no language is identified,
then the default language of the user will be used.

• Org_Id (optional)

It is an optional parameter to be passed in ServiceBean_Header part of a SOAP
request for a Business Service Object service.

Discovering and Viewing Integration Interfaces and Services 2-33

If a service execution is dependent on any particular organization, then you must
pass the Org_Id element of that SOAP request.

The following SOAP request example includes the ServiceBean_Header part printed
in bold for a business service object service:
<soapenv:Envelope
xmlns:ser="http://xmlns.oracle.com/apps/fnd/ServiceBean"
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:ws="http://xmlns.oracle.com/apps/fnd/rep/ws">
 <soapenv:Header>
 <wsse:Security soapenv:mustUnderstand="1"
xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wsse
curity-secext-1.0.xsd">
 <wsse:UsernameToken wsu:Id="UsernameToken-22948433"
xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssec
urity-utility-1.0.xsd">
 <wsse:Username>sysadmin</wsse:Username>
 <wsse:Password
Type="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-t
oken-profile-1.0#PasswordText">password</wsse:Password>
 </wsse:UsernameToken>
 </wsse:Security><ser:ServiceBean_Header>
 <ser:RESPONSIBILITY_NAME>System
Administrator</ser:RESPONSIBILITY_NAME>

<ser:RESPONSIBILITY_APPL_NAME>sysadmin</ser:RESPONSIBILITY_APPL_NAME>
 <ser:SECURITY_GROUP_NAME>standard</ser:SECURITY_GROUP_NAME>
 <ser:NLS_LANGUAGE>american</ser:NLS_LANGUAGE>
 <ser:ORG_ID>202</ser:ORG_ID>
 </ser:ServiceBean_Header>
 </soapenv:Header>
 <soapenv:Body>
 <ws:IntegrationRepositoryService_GetInterfaceByType>
 <interfaceType>XMLGATEWAY</interfaceType>
 </ws:IntegrationRepositoryService_GetInterfaceByType>
 </soapenv:Body>
</soapenv:Envelope>

SOA Header for XML Gateway Messages
In Oracle XML Gateway, each trading partner is configured with Oracle E-Business
Suite users. Only these authorized users defined in the Trading Partner Setup form are
allowed to perform XML transactions. External clients can pass such usernames in the
<USERNAME> and <PASSWORD> elements defined within the <ECX:SOAHeader>
element (or <XMLGateway_Header> element for generic XML Gateway services) in the
SOAP body. These username parameters are validated by Oracle XML Gateway against
the username defined in the trading partner setup before initiating a transaction.

Therefore, for XML Gateway interface type, the authorization check is performed at
both the trading partner level, as well as on the username passed in the
wsse:security header in the SOAP request. For information on trading partner setup
and how to associate users with trading partners, see Oracle XML Gateway User's Guide.

The following code snippet shows the SOAHeader element within a SOAP request for
an XML Gateway inbound message:

2-34 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

<soapenv: Envelope
xmlns:ecx="http://xmlns.oracle.com/apps/ecx/soaprovider/xmlgateway/ecx__
cbodi/"
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:sys="http://xmlns.oracle.com/xdb/SYSTEM">
 <soapenv:Header>
 <wsse:Security soapenv:mustUnderstand="1"

xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wsse
curity-secext-1.0.xsd">
 <wsse:UsernameToken wsu:Id="UsernameToken-10586449"

xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssec
urity-utility-1.0.xsd">
 <wsse:Username>SYSADMIN</wsse:Username>
 <wsse:Password
Type="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-t
oken-profile-1.0#PasswordText">password</wsse:Password>
 </wsse:UsernameToken>
 </wsse:Security>
 <ecx:SOAHeader>
 <sys:ECXMSG>
 <MESSAGE_TYPE></MESSAGE_TYPE>
 <MESSAGE_STANDARD></MESSAGE_STANDARD>
 <TRANSACTION_TYPE></TRANSACTION_TYPE>
 <TRANSACTION_SUBTYPE></TRANSACTION_SUBTYPE>
 <DOCUMENT_NUMBER></DOCUMENT_NUMBER>
 <PARTYID></PARTYID>
 <PARTY_SITE_ID></PARTY_SITE_ID>
 <PARTY_TYPE></PARTY_TYPE>
 <PROTOCOL_TYPE></PROTOCOL_TYPE>
 <PROTOCOL_ADDRESS></PROTOCOL_ADDRESS>
 <USERNAME></USERNAME>
 <PASSWORD></PASSWORD>
 <ATTRIBUTE1></ATTRIBUTE1>
 <ATTRIBUTE2></ATTRIBUTE2>
 <ATTRIBUTE3></ATTRIBUTE3>
 <ATTRIBUTE4></ATTRIBUTE4>
 <ATTRIBUTE5></ATTRIBUTE5>
 </sys:ECXMSG>
 </ecx:SOAHeader>
 </soapenv:Header>

XML Gateway header parameters defined in the SOAHeader element (or
XMLGateway_Header element for generic XML Gateway services) within a SOAP
request are described in the following table:

XMLGateway Header Information in SOAHeader Element within a SOAP Request

Attribute Description

MESSAGE_TYPE Payload message format. This defaults to XML.
Oracle XML Gateway currently supports only XML.

Discovering and Viewing Integration Interfaces and Services 2-35

Attribute Description

MESSAGE_STANDARD Message format standard as displayed in the Define
Transactions form and entered in the Define XML
Standards form. This defaults to OAG. The message
standard entered for an inbound XML document
must be the same as the message standard in the
trading partner setup.

TRANSACTION_TYPE External Transaction Type for the business
document from the Trading Partner table. The
transaction type for an inbound XML document
must be the same as the transaction type defined in
the Trading Partner form.

TRANSACTION_SUBTYPE External Transaction Subtype for the business
document from the Trading Partner table. The
transaction subtype for an inbound XML document
must be the same as the transaction subtype defined
in the Trading Partner form.

DOCUMENT_NUMBER The document identifier used to identify the
transaction, such as a purchase order or invoice
number. This field is not used by the XML Gateway,
but it may be passed on inbound messages.

PROTOCOL_TYPE Transmission Protocol is defined in the Trading
Partner table.

PROTOCOL_ADDRESS Transmission address is defined in the Trading
Partner table.

USERNAME USERNAME is defined in the Trading Partner table.

PASSWORD The password associated with the USERNAME is
defined in the Trading Partner table.

PARTY_SITE_ID The party site identifier for an inbound XML
document must be the same as the Source Trading
Partner location defined in the Trading Partner form.

ATTRIBUTE1 This parameter may be defined by the base
application.

2-36 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

Attribute Description

ATTRIBUTE2 This parameter may be defined by the base
application.

ATTRIBUTE3 For outbound messages, this field has the value from
the Destination Trading Partner Location Code in
the Trading Partner table. For inbound messages, the
presence of this value generates another XML
message that is sent to the trading partner identified
in the Destination Trading Partner Location Code in
the Trading Partner table. This value must be
recognized by the hub to forward the XML message
to the final recipient of the XML Message.

Note: For more information, see Destination
Trading Partner Location Code in the Oracle XML
Gateway User's Guide.

ATTRIBUTE4 This parameter may be defined by the base
application.

ATTRIBUTE5 This parameter may be defined by the base
application.

Note: The PARTYID and PARTY_TYPE parameters are not used.

The following code snippet shows the XMLGateway_Header element within a SOAP
request for a generic XML Gateway service:
<soap:Envelope>
 <soap:Header>
...
 <ns1:XMLGateway_Header
 xmlns:ns1="http://xmlns.oracle.com/apps/fnd/XMLGateway
 soapenv:mustUnderstand="0">
 <ns1:MESSAGE_TYPE>XML</ns1:MESSAGE_TYPE>
 <ns1:MESSAGE_STANDARD>OAG</ns1:MESSAGE_STANDARD>
 <ns1:TRANSACTION_TYPE>PO</ns1:TRANSACTION_TYPE>
 <ns1:TRANSACTION_SUBTYPE>PROCESS</ns1:TRANSACTION_SUBTYPE>
 <ns1:DOCUMENT_NUMBER>123</ns1:DOCUMENT_NUMBER>
 <ns1:PARTY_SITE_ID>4444</ns1:PARTY_SITE_ID>
 </ns1:XMLGateway_Header>
 </soap:Header>
...
</soap:Envelope>

The following table describes the XML Gateway header information in

Discovering and Viewing Integration Interfaces and Services 2-37

XMLGateway_Header part of a SOAP request:

XMLGateway_Header Part of a SOAP Request

Parameter Name Description

MESSAGE_TYPE Payload message format. This defaults to XML.
Oracle XML Gateway currently supports only XML.

MESSAGE_STANDARD Message format standard as displayed in the Define
Transactions form and entered in the Define XML
Standards form. This defaults to OAG. The message
standard entered for an inbound XML document
must be the same as the message standard in the
trading partner setup.

TRANSACTION_TYPE External Transaction Type for the business
document from the Trading Partner table. The
transaction type for an inbound XML document
must be the same as the transaction type defined in
the Trading Partner form.

TRANSACTION_SUBTYPE External Transaction Subtype for the business
document from the Trading Partner table. The
transaction subtype for an inbound XML document
must be the same as the transaction subtype defined
in the Trading Partner form.

DOCUMENT_NUMBER The document identifier used to identify the
transaction, such as a purchase order or invoice
number. This parameter is not used by the XML
Gateway, but it may be passed on inbound
messages.

PARTY_SITE_ID The party site identifier for an inbound XML
document must be the same as the Source Trading
Partner location defined in the Trading Partner form.

Examples of SOAP Messages
To better understand SOAP request and response messages received through Oracle
SOA Suite, the following sample SOAP messages are described in this section:

For information about synchronous SOAP messages, see:

• A Sample Synchronous SOAP Request, page 2-38

2-38 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

• A Sample Synchronous SOAP Response, page 2-40

• A Sample Fault Synchronous SOAP Response, page 2-40

For information about asynchronous SOAP messages, see:

• A Sample Asynchronous SOAP Request, page 2-40

• A Sample Asynchronous SOAP Response, page 2-42

• A Sample Fault Asynchronous SOAP Response, page 2-43

A Sample Synchronous SOAP Request
The following example shows a synchronous SOAP request for a PL/SQL service:

Discovering and Viewing Integration Interfaces and Services 2-39

<soapenv:Envelope xmlns:ser="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wsse
curity-secext-1.0.xsd"
xmlns:ozf="http://xmlns.oracle.com/apps/ozf/soaprovider/plsql/ozf_sd_req
uest_pub/"
xmlns:cre="http://xmlns.oracle.com/apps/ozf/soaprovider/plsql/ozf_sd_req
uest_pub/create_sd_request/">
 <soapenv:Header>
 <wsse:Security soapenv:mustUnderstand="1">
 <wsse:UsernameToken>
 <wsse:Username>trademgr</wsse:Username>
 <wsse:Password
Type="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-t
oken-profile-1.0#PasswordText">password</wsse:Password>
 </wsse:UsernameToken>
 </wsse:Security>
 <ozf:SOAHeader>
 <ozf:Responsibility>OZF_USER</ozf:Responsibility>
 <ozf:RespApplication>OZF</ozf:RespApplication>
 <ozf:SecurityGroupE>STANDARD</ozf:SecurityGroup>
 <ozf:NLSLanguage>AMERICAN</ozf:NLSLanguage>
 <ozf:Org_Id>204</ozf:Org_Id>
 </ozf:SOAHeader>
 </soapenv:Header>
 <soapenv:Body>
 <cre:InputParameters>
 <cre:P_API_VERSION_NUMBER>1.0</cre:P_API_VERSION_NUMBER>
 <cre:P_INIT_MSG_LIST>T</cre:P_INIT_MSG_LIST>
 <cre:P_COMMIT>F</cre:P_COMMIT>
 <cre:P_VALIDATION_LEVEL>100</cre:P_VALIDATION_LEVEL>
 <cre:P_SDR_HDR_REC>
 <cre:REQUEST_NUMBER>SDR-CREATE-A1</cre:REQUEST_NUMBER>

<cre:REQUEST_START_DATE>2008-08-18T12:00:00</cre:REQUEST_START_DATE>
 <cre:REQUEST_END_DATE>2008-10-18T12:00:00</cre:REQUEST_END_DATE>>
 <cre:USER_STATUS_ID>1701</cre:USER_STATUS_ID>
 <cre:REQUEST_OUTCOME>IN_PROGRESS</cre:REQUEST_OUTCOME>
 <cre:REQUEST_CURRENCY_CODE>USD</cre:REQUEST_CURRENCY_CODE>
 <cre:SUPPLIER_ID>601</cre:SUPPLIER_ID>
 <cre:SUPPLIER_SITE_ID>1415</cre:SUPPLIER_SITE_ID>
 <cre:REQUESTOR_ID>100001499</cre:REQUESTOR_ID>
 <cre:ASSIGNEE_RESOURCE_ID>100001499</cre:ASSIGNEE_RESOURCE_ID>
 <cre:ORG_ID>204</cre:ORG_ID>
 <cre:ACCRUAL_TYPE>SUPPLIER</cre:ACCRUAL_TYPE>
 <cre:REQUEST_DESCRIPTION>Create</cre:REQUEST_DESCRIPTION>

<cre:SUPPLIER_CONTACT_EMAIL_ADDRESS>sdr.supplier@testing.com</cre:SUPPLI
ER_CONTACT_EMAIL_ADDRESS>

<cre:SUPPLIER_CONTACT_PHONE_NUMBER>2255</cre:SUPPLIER_CONTACT_PHONE_NUMB
ER>
 <cre:REQUEST_TYPE_SETUP_ID>400</cre:REQUEST_TYPE_SETUP_ID>
 <cre:REQUEST_BASIS>Y</cre:REQUEST_BASIS>
 <cre:USER_ID>1002795</cre:USER_ID>
 </cre:P_SDR_HDR_REC>
 <cre:P_SDR_LINES_TBL>
 <cre:P_SDR_LINES_TBL_ITEM>
 <cre:PRODUCT_CONTEXT>PRODUCT</cre:PRODUCT_CONTEXT>
 ...
 </cre:P_SDR_LINES_TBL_ITEM>

2-40 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

</cre:P_SDR_LINES_TBL>
 <cre:P_SDR_CUST_TBL>
 ...
 </cre:P_SDR_CUST_TBL>
 </cre:InputParameters>>
</soapenv:Body>
</soapenv:Envelope>

A Sample Synchronous SOAP Response
The following example shows a synchronous SOAP response for a PL/SQL service:
<env:Envelope xmlns:env=""http://schemas.xmlsoap.org/soap/envelope/">
 <env:Header/>
 <env:Body>
 <OutputParameters
xmlns="http://xmlns.oracle.com/apps/ozf/soaprovider/plsql/ozf_sd_request
_pub/create_sd_request/">
 <X_RETURN_STATUS>S</X_RETURN_STATUS>
 <X_MSG_COUNT>23</X_MSG_COUNT>
 <X_MSG_DATA xsi:nil="true"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"/>
 <X_REQUEST_HEADER_ID>162</X_REQUEST_HEADER_ID>
 </OutputParameters>
 </env:Body>
</env:Envelope>

A Sample Fault Synchronous SOAP Response
The SOAP Fault element is used to carry error and status information within a SOAP
message.

For example, the following fault synchronous response message indicates that the
service is not deployed:
<env:Envelope xmlns:env="http://schemas.xmlsoap.org/soap/envelope/">
 <env:Header/>
 <env:Body>
 <Fault xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
 <faultcode xmlns="">SOAP-ENV:Server</faultcode>
 <faultstring xmlns="">Service is not deployed.</faultstring>
 </env:Fault>
 </env:Body>
</env:Envelope>

A Sample Asynchronous SOAP Request
The following example shows an asynchronous SOAP request for
CREATE_SD_REQUEST_ASYNCH operation contained in a PL/SQL service
OZF_SD_REQUEST_PUB:

Discovering and Viewing Integration Interfaces and Services 2-41

<soapenv:Envelope
"http://xmlns.oracle.com/isg/ozf_sd_request_pub/CREATE_SD_REQUEST_ASYNCH
"
xmlns:cre1="http://xmlns.oracle.com/apps/ozf/soaprovider/plsql/ozf_sd_re
quest_pub/create_sd_request/"
xmlns:ozf="http://xmlns.oracle.com/apps/ozf/soaprovider/plsql/ozf_sd_req
uest_pub/" xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">
 <soapenv:Header>
 <wsse:Security soapenv:mustUnderstand="1"
xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wsse
curity-secext-1.0.xsd">
 <wsse:UsernameToken wsu:Id="UsernameToken-3"
xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssec
urity-utility-1.0.xsd">
 <wsse:Username>trademgr</wsse:Username>
 <wsse:Password
Type="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-t
oken-profile-1.0#PasswordText">password</wsse:Password>
 <wsse:Nonce
EncodingType="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-so
ap-message-security-1.0#Base64Binary">JtcpwUGEcUyy09YgwaPzSA==</wsse:Non
ce>
 <wsu:Created>2011-09-21T08:17:10.656Z</wsu:Created>
 </wsse:UsernameToken>
 </wsse:Security>
 <ozf:SOAHeader>
 <!--Optional:-->
 <ozf:Responsibility>OZF_USER</ozf:Responsibility>
 <!--Optional:-->
 <ozf:RespApplication>OZF</ozf:RespApplication>
 <!--Optional:-->
 <ozf:SecurityGroupE>STANDARD</ozf:SecurityGroup>
 <!--Optional:-->
 <ozf:NLSLanguage>AMERICAN</ozf:NLSLanguage>
 <!--Optional:-->
 <ozf:Org_Id>204</ozf:Org_Id>
 </ozf:SOAHeader>
 </soapenv:Header>
 <soapenv:Body>
 <cre:InputParameters>
 <cre:P_API_VERSION_NUMBER>1.0</cre:P_API_VERSION_NUMBER>
 <cre:P_INIT_MSG_LIST>T</cre:P_INIT_MSG_LIST>
 <cre:P_COMMIT>F</cre:P_COMMIT>
 <cre:P_VALIDATION_LEVEL>100</cre:P_VALIDATION_LEVEL>
 <cre:P_SDR_HDR_REC>
 <cre1:REQUEST_NUMBER>SDR-CREATE-BPEL001</cre1:REQUEST_NUMBER>

<cre1:REQUEST_START_DATE>2011-08-18T12:00:00</cre1:REQUEST_START_DATE>

<cre1:REQUEST_END_DATE>2012-10-18T12:00:00</cre1:REQUEST_END_DATE>>
 <cre1:USER_STATUS_ID>1712</cre1:USER_STATUS_ID>
 <cre1:REQUEST_OUTCOME>IN_PROGRESS</cre1:REQUEST_OUTCOME>
 <cre1:REQUEST_CURRENCY_CODE>USD</cre1:REQUEST_CURRENCY_CODE>
 <cre1:SUPPLIER_ID>1718</cre1:SUPPLIER_ID>
 <cre1:SUPPLIER_SITE_ID>2854</cre1:SUPPLIER_SITE_ID>
 <cre1:REQUESTOR_ID>100001499</cre1:REQUESTOR_ID>
 <cre1:ASSIGNEE_RESOURCE_ID>100001499</cre1:ASSIGNEE_RESOURCE_ID>
 <cre1:ORG_ID>204</cre1:ORG_ID>
 <cre1:ACCRUAL_TYPE>SUPPLIER</cre1:ACCRUAL_TYPE>
 <cre1:REQUEST_DESCRIPTION>Create</cre1:REQUEST_DESCRIPTION>

2-42 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

<cre1:SUPPLIER_CONTACT_EMAIL_ADDRESS>sdr.supplier@testing.com</cre1:SUPP
LIER_CONTACT_EMAIL_ADDRESS>

<cre1:SUPPLIER_CONTACT_PHONE_NUMBER>2255</cre1:SUPPLIER_CONTACT_PHONE_NU
MBER>
 <cre1:REQUEST_TYPE_SETUP_ID>400</cre1:REQUEST_TYPE_SETUP_ID>
 <cre1:REQUEST_BASIS>Y</cre1:REQUEST_BASIS>
 <cre1:USER_ID>1002795</cre1:USER_ID>
 </cre:P_SDR_HDR_REC>
 <cre:P_SDR_LINES_TBL>
 <cre1:P_SDR_LINES_TBL_ITEM>
 <cre1:PRODUCT_CONTEXT>PRODUCT</cre:PRODUCT_CONTEXT>
 <cre1:INVENTORY_ITEM_ID>149</cre1:INVENTORY_ITEM_ID>
 <cre1:ITEM_UOM>Ea</cre1:ITEM_UOM>
 <cre1:REQUESTED_DISCOUNT_TYPE>%</cre1:REQUESTED_DISCOUNT_TYPE>
 <cre1:REQUESTED_DISCOUNT_VALUE>15.5</cre1:REQUESTED_DISCOUNT_VALUE>
 <!--<cre1:COST_BASIS>200</cre1:COST_BASIS>-->
 <cre1:MAX_QTY>200<cre1:MAX_QTY>
 <cre1:DESIGN_WIN>200</cre1:DESIGN_WIN>
 <cre1:APPROVED_DISCOUNT_TYPE>%</cre1:APPROVED_DISCOUNT_TYPE>
 <cre1:APPROVED_DISCOUNT_VALUE>15.5</cre1:APPROVED_DISCOUNT_VALUE>
 <cre1:APPROVED_MAX_QTY>200</cre1:APPROVED_MAX_QTY>
 <cre1:VENDOR_APPROVED_FLAG>Y</cre1:VENDOR_APPROVED_FLAG>
 <cre1:PRODUCT_COST_CURRENCY>USD</cre1:PRODUCT_COST_CURRENCY>
 <cre1:END_CUSTOMER_CURRENCY>USD</cre1:END_CUSTOMER_CURRENCY>
 </cre1:P_SDR_LINES_TBL_ITEM>
 </cre:P_SDR_LINES_TBL>
 <cre:P_SDR_CUST_TBL>
 <cre1:P_SDR_CUST_TBL_ITEM>
 <cre1:CUST_ACCOUNT_ID>1290</cre1:CUST_ACCOUNT_ID>
 <cre1:PARTY_ID>1290</cre1:PARTY_ID>
 <cre1:SITE_USE_ID>10479</cre1:SITE_USE_ID>
 <cre1:CUST_USAGE_CODE>BILL_TO</cre1:CUST_USAGE_CODE>
 <cre1:END_CUSTOMER_FLAG>N</cre1:END_CUSTOMER_FLAG>
 </cre1:P_SDR_CUST_TBL_ITEM>
 <cre1:P_SDR_CUST_TBL_ITEM>
 <cre1:CUST_ACCOUNT_ID>1287</cre1:CUST_ACCOUNT_ID>
 <cre1:PARTY_ID>1287</cre1:PARTY_ID>
 <cre1:SITE_USE_ID>1418</cre1:SITE_USE_ID>
 <cre1:CUST_USAGE_CODE>CUSTOMER</cre1:CUST_USAGE_CODE>
 <cre1:END_CUSTOMER_FLAG>Y</cre1:END_CUSTOMER_FLAG>
 </cre1:P_SDR_CUST_TBL_ITEM>
 </cre:P_SDR_CUST_TBL>
 </cre:InputParameters>>
</soapenv:Body>
</soapenv:Envelope>

A Sample Asynchronous SOAP Response
The following example shows asynchronous response for
CREATE_SD_REQUEST_ASYNCH operation contained in a PL/SQL service
OZF_SD_REQUEST_PUB:

Discovering and Viewing Integration Interfaces and Services 2-43

<?xml version="1.0" encoding="UTF-8" ?>
<outputParameters
xmlns:client="http://xmlns.oracle.com/isg/ozf_sd_request_pub/CREATE_SD_R
EQUEST_ASYNCH"
xmlns:wsa="http://www.w3.org/2005/08/addressing"
xmlns="http://xmlns.oracle.com/isg/ozf_sd_request_pub/CREATE_SD_REQUEST_
ASYNCH">
<OutputParameters
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns="http://xmlns.oracle.com/apps/ozf/soaprovider/plsql/ozf_sd_request
_pub/create_sd_request/">
 <X_RETURN_STATUS>S</X_RETURN_STATUS>
 <X_MSG_COUNT>23</X_MSG_COUNT>
 <X_MSG_DATA xsi:nil="true"/>
 <X_REQUEST_HEADER_ID>31</X_REQUEST_HEADER_ID>
 </OutputParameters>
</outputParameters>

A Sample Fault Asynchronous SOAP Response
For example, the following sample shows the asynchronous response message for
incorrect header from soapUI:
<?xml version="1.0" encoding="UTF-8" ?>
<outputParameters
xmlns:client="http://xmlns.oracle.com/isg/ozf_sd_request_pub/CREATE_SD_R
EQUEST_ASYNCH"
xmlns:wsa="http://www.w3.org/2005/08/addressing"
xmlns="http://xmlns.oracle.com/isg/ozf_sd_request_pub/CREATE_SD_REQUEST_
ASYNCH">
<OutputParameters
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns="http://xmlns.oracle.com/apps/ozf/soaprovider/plsql/ozf_sd_request
_pub/create_sd_request/">
 <X_RETURN_STATUS>E</X_RETURN_STATUS>
 <X_MSG_COUNT>1</X_MSG_COUNT>
 <X_MSG_DATA>The Organization Id provided is invalid, please provide
a valid Organization Id.</X_MSG_DATA>
 <X_REQUEST_HEADER_ID xsi:nil="true"/>
 </OutputParameters>
</outputParameters>

Understanding REST Messages
Based on REST architecture, the REST message uses HTTP header and method POST to
create or update Oracle E-Business Suite data through a service provider.

Supporting XML and JSON Message Formats

Unlike SOAP message completely based on XML format, REST messages can process
both XML and non-XML formats such as JSON.

Note: Only Jackson JSON format is supported in this release. Other
JSON formats, like Google GSON are not supported.

• XML, like HTML, organizes information by nesting angle-bracketed tag pairs (< or

2-44 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

>).

• Compared to XML, JSON is light weight with faster parsing results. It is a simple
text-based message format that is often used with REST services.

It uses curly brackets ({ or }) to hierarchically structure information.

REST resources can be invoked through REST messages with JSON or plain XML
formats.

REST Message Structure

REST messages do not wrapped in an envelope. It is a light weight alternative to
SOAP-based services.

A REST request is a simple HTTP request which includes the following elements:

• Header

This element defines the operating parameters of an HTTP transaction.

REST service user credentials can be passed in HTTP header. For more information
on REST service security, see REST Security Header, page 2-45.

• Body

This element defines the main messages or resources.

'RESTHeader' element can be included in HTTP body to set applications context
values if they are required in invoking the REST service.

For more information on setting applications context, see REST Header for
Applications Context, page 2-45.

The following diagram depicts the structure of a REST message:

Discovering and Viewing Integration Interfaces and Services 2-45

REST Security Header
User credentials must be authenticated based on either one of the following methods:

• HTTP Basic Authentication

In this security model, username and password should be provided as input data in
HTTP header as part of the REST request message. When the REST service receives
the request, the user credentials (username and password) will be routed to
LoginModule for authentication and authorization. The LoginModule in turn
extracts the credentials from HTTP header, authenticates user against Oracle
E-Business Suite user table, and establishes the identity for the authenticated user.

If user credentials are validated and applications context required for the REST
service to be invoked can be initialized, the REST service can be invoked.

For more information about HTTP Basic Authentication security, see HTTP Basic
Authentication, Oracle E-Business Suite Integrated SOA Gateway Implementation Guide.

• Token Based Authentication

Instead of passing an associated password for the user, a security token can be
passed as user credentials in place of password.

When a user tries to log on to a server with multiple requests, instead of
authenticating the user each time with username and password, a unique access
token (such as Oracle E-Business Suite session ID) may be sent along with username
in HTTP header. The LoginModule will interpret and extract the token from the
HTTP header, and validate the subject or username with token in the subsequent
requests for authentication.

If user credentials are validated and applications context required for the REST
service to be invoked can be initialized, the service can be invoked.

For more information on setting applications context, see REST Header for
Applications Context, page 2-45.

For more information about token based security, see Token Based Authentication,
Oracle E-Business Suite Integrated SOA Gateway Implementation Guide.

REST Header for Applications Context
Some Oracle E-Business Suite APIs require applications context values to be passed
before they can be invoked. These context values including Responsibility,
RespApplication. SecurityGroup, NLSLanguage, and Org_Id may be included in the
RESTHeader element as part of the HTTP body.

Optional Context Values in Token Based Security

Context header values are optional. If the context values are not passed while using
token based security, the previously passed values will be used. If context values are

2-46 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

passed, newly passed values will override the ones set previously for the given token.

For more information about token based security, see Token Based Authentication,
Oracle E-Business Suite Integrated SOA Gateway Implementation Guide.

For more information on how the context values used to initialize or re-initialize the
Oracle E-Business Suite session, see the Oracle Application Object Library REST
Security Services section, Oracle E-Business Suite Security Guide.

The following REST message in XML format shows the RESTHeader element printed
in bold:
<?xml version = '1.0' encoding = 'UTF-8'?>
<TESTUSERNAME_Input
xmlns="http://xmlns.oracle.com/apps/fnd/rest/FndUserSvc/testusername/">
 <RESTHeader
xmlns="http://xmlns.oracle.com/apps/fnd/rest/FndUserSvc/header">
<Responsibility>SYSTEM_ADMINISTRATOR</Responsibility>
 <RespApplication></RespApplication>
 <SecurityGroup></SecurityGroup>
 <NLSLanguage>AMERICAN</NLSLanguage>
 <Org_Id>/Org_Id>
 </RESTHeader>
 <InputParameters>
 <X_USER_NAME>sysadmin</X_USER_NAME>
 </InputParameters>
</TESTUSERNAME_Input>

Constructing Payload from WADL Description
Based on the resources information in a WADL description, you can compile an input
payload before invoking a REST service.

Use the following steps to compile an input payload:

1. In the Integration Repository, search and locate the deployed REST service that you
want to use.

2. Click the View WADL link in the REST Web Service tab. The following WADL
description appears:

Discovering and Viewing Integration Interfaces and Services 2-47

<xml version="1.0" encoding="UTF-8" standalone="no" ?>
<application
xmlns:tns="http://xmlns.oracle.com/apps/fnd/soaprovider/plsql/rest/f
nd_user_pkg/" xmlns="http://wadl.dev.java.net/2009/02"
xmlns:tns1="http://xmlns.oracle.com/apps/fnd/rest/FndUserSvc/testuse
rname/" name="FND_USER_PKG"
targetNamespace="http://xmlns.oracle.com/apps/fnd/soaprovider/plsql/
rest/fnd_user_pkg/">
<grammars>
 <include xmlns="http://www.w3.org/2001/XMLSchema" href="
https://<hostname>:<port>/webservices/rest/FndUserSvc/?XSD=TESTUSERN
AME_SYNCH_TYPEDEF.xsd" />
</grammars><resources
base="http://<hostname>:<port>/webservices/rest/FndUserSvc/">
<resource path="/testusername/">
 <method id="GET" name="POST">
 <request>
 <representation mediaType="application/xml"
type="tns1:InputParameters" />
 <representation mediaType="application/json"
type="tns1:InputParameters" />
 </request>
 <response>
 <representation mediaType="application/xml"
type="tns1:OutputParameters" />
 <representation mediaType="application/json"
type="tns1:OutputParameters" />
 </response>
 </method>
 </resource>
 </resources>
</application>

3. Locate the schema information (.XSD) for the Test User Name (TESTUSERNAME)
service operation from the WADL description. The XSD for the operation
TESTUSERNAME in the WADL would be:

http://<hostname>:<port>/webservices/rest/FndUserSvc/?XSD=TES
TUSERNAME_SYNCH_TYPEDEF.xsd

Note: The schema information for the service operation can also be
constructed by concatenating the values of the following elements
from the WADL description:

• <resources
base="http://<hostname>:<port>/webservices/res
t/FndUserSvc/">

• <resource path="/testusername/">

4. Construct the payload of the service by using any XSD to XML conversion tools to
get the payload information.

Once the payload is compiled, it can be used to invoke the TESTUSERNAME REST
service operation. The request, response, and fault messages with both XML and JSON

2-48 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

formats are listed in the following table:

 REST Messages with XML and JSON Formats

Input Payload
(Request
Message)

XML-based REST Message

<?xml version="1.0" encoding="UTF-8" ?>
<TESTUSERNAME_Input
xmlns="http://xmlns.oracle.com/apps/fnd/rest/FndUserSvc/te
stusername/">
 <RESTHeader
xmlns="http://xmlns.oracle.com/apps/fnd/rest/FndUserSvc/he
ader">
 <Responsibility>SYSTEM_ADMINISTRATOR</Responsibility>
 <RespApplication></RespApplication>
 <SecurityGroupE></SecurityGroup>
 <NLSLanguage></NLSLanguage>
 <Org_Id></Org_Id>
 </RESTHeader>
 <InputParameters>
 <X_USER_NAME>sysadmin</X_USER_NAME>
 </InputParameters>
</TESTUSERNAME_Input>

JSON-based REST Message

{"TESTUSERNAME_Input":{
"@xmlns":"http://xmlns.oracle.com/apps/fnd/rest/FndUserSvc
/testusername/",
"RESTHeader":{
"@xmlns":"http://xmlns.oracle.com/apps/fnd/rest/FndUserSvc
/header",
"Responsibility":"SYSTEM_ADMINISTRATOR",
"RespApplication":"SYSADMIN",
"SecurityGroup":"STANDARD",
"NLSLanguage":"AMERICAN",
"Org_Id":"202"
},
"InputParameters":{
"X_USER_NAME":"operations"
}
}}

Discovering and Viewing Integration Interfaces and Services 2-49

 REST Messages with XML and JSON Formats

Response XML-based REST Message

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<OutputParameters
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns="http://xmlns.oracle.com/apps/fnd/rest/FndUserSvc/te
stusername/">
<X_USER_NAME>2</X_USER_NAME>
</OutputParameters>

JSON-based REST Message

{
 "OutputParameters" : {
 "@xmlns:xsi" :
"http://www.w3.org/2001/XMLSchema-instance",
 "@xmlns" :
"http://xmlns.oracle.com/apps/fnd/rest/fndGlobalSvc/user_i
d/",
 "TESTUSERNAME" : "2"
 }
}

Error
Response

XML-based REST Message

<ISGServiceFault>
 <Code>IRepAccessError</Code>
 <Message>This is a sample Fault Message. Message will
vary depending on fault condition</Message>
 <Resolution>Check the server logs for
details</Resolution>
 <ServiceDetails>
 <ServiceName>FndUserSvc</ServiceName>
 <OperationName>testusername</OperationName>
 <InstanceId>0</InstanceId>
 </ServiceDetails>
</ISGServiceFault>

JSON-based REST Message

{
 "ISGServiceFault": {
 "Code": "IRepAccessError",
 "Message": "Sample Fault Message. Will vary depending
on fault condition",
 "Resolution": "Check the server logs for details",
 "ServiceDetails": {
 "ServiceName": "FndUserSvc",
 "OperationName": "testusername",
 "InstanceId": "0"
 }
 }
}

2-50 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

For more examples of REST messages used in OZF_SD_REQUEST_PUB service
invocation, see Examples of REST Messages, page 2-50.

Examples of REST Messages
To better understand REST request and response messages received through Oracle
E-Business Suite, the following sample REST messages are described in this section:

• A Sample XML-based REST Request, page 2-50

• A Sample JSON-based REST Request, page 2-52

• A Sample XML-based REST Response, page 2-54

• A Sample JSON-based REST Response, page 2-54

• Samples of XML-based Fault Responses, page 2-54

A Sample XML-based REST Request
The following example shows a synchronous XML-based REST request for a PL/SQL
service (OZF_SD_REQUEST_PUB API):

Discovering and Viewing Integration Interfaces and Services 2-51

<?xml version="1.0" encoding="UTF-8" ?>
<CREATE_SD_REQUEST_Input
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://xmlns.oracle.com/apps/ozf/rest/ozfsdrequestpu
bsvc/create_sd_request/xsd/OZF_SD_REQUEST_PUB_CREATEREQUEST.xsd"

xmlns="http://xmlns.oracle.com/apps/ozf/rest/ozfsdrequestpubsvc/create_s
d_request/">
 <RESTHeader
xmlns="http://xmlns.oracle.com/apps/fnd/rest/ozfsdrequestpubsvc/header">
 <Responsibility>SYSTEM_ADMINISTRATOR</Responsibility>
 <RespApplication></RespApplication>
 <SecurityGroupE></SecurityGroup>
 <NLSLanguage></NLSLanguage>
 <Org_Id></Org_Id>
 </RESTHeader>
 <InputParameters>
 <P_API_VERSION_NUMBER>1.0</P_API_VERSION_NUMBER>
 <P_INIT_MSG_LIST>T</P_INIT_MSG_LIST>
 <P_COMMIT>F</P_COMMIT>
 <P_VALIDATION_LEVEL>100</P_VALIDATION_LEVEL>
 <P_SDR_HDR_REC>
 <REQUEST_NUMBER>SDR-CREATE-BPEL1</REQUEST_NUMBER>
 <REQUEST_START_DATE>2008-08-18T12:00:00</REQUEST_START_DATE>
 <REQUEST_END_DATE>2008-10-18T12:00:00</REQUEST_END_DATE>>
 <USER_STATUS_ID>1701</USER_STATUS_ID>
 <REQUEST_OUTCOME>IN_PROGRESS</REQUEST_OUTCOME>
 <REQUEST_CURRENCY_CODE>USD</EQUEST_CURRENCY_CODE>
 <SUPPLIER_ID>601</SUPPLIER_ID>
 <SUPPLIER_SITE_ID>1415</SUPPLIER_SITE_ID>
 <REQUESTOR_ID>100001499</REQUESTOR_ID>
 <ASSIGNEE_RESOURCE_ID>100001499</ASSIGNEE_RESOURCE_ID>
 <ORG_ID>204</ORG_ID>
 <ACCRUAL_TYPE>SUPPLIER</ACCRUAL_TYPE>
 <REQUEST_DESCRIPTION>Create</REQUEST_DESCRIPTION>

<SUPPLIER_CONTACT_EMAIL_ADDRESS>sdr.supplier@testing.com</SUPPLIER_CONTA
CT_EMAIL_ADDRESS>

<SUPPLIER_CONTACT_PHONE_NUMBER>2255</SUPPLIER_CONTACT_PHONE_NUMBER>
 <REQUEST_TYPE_SETUP_ID>400</REQUEST_TYPE_SETUP_ID>
 <REQUEST_BASIS>Y</REQUEST_BASIS>
 <USER_ID>1002795</USER_ID>
 </P_SDR_HDR_REC>
 <P_SDR_LINES_TBL>
 <P_SDR_LINES_TBL_ITEM>
 <PRODUCT_CONTEXT>PRODUCT</PRODUCT_CONTEXT>
 <INVENTORY_ITEM_ID>2155</INVENTORY_ITEM_ID>
 <ITEM_UOM>Ea</ITEM_UOM>
 <REQUESTED_DISCOUNT_TYPE>%</REQUESTED_DISCOUNT_TYPE>
 <REQUESTED_DISCOUNT_VALUE>20</REQUESTED_DISCOUNT_VALUE>
 <COST_BASIS>200</COST_BASIS>
 <MAX_QTY>200</MAX_QTY>
 <DESIGN_WIN>200</DESIGN_WIN>
 <APPROVED_DISCOUNT_TYPE>%</APPROVED_DISCOUNT_TYPE>
 <APPROVED_DISCOUNT_VALUE>20</APPROVED_DISCOUNT_VALUE>
 <APPROVED_MAX_QTY>200</APPROVED_MAX_QTY>
 <VENDOR_APPROVED_FLAG>Y</VENDOR_APPROVED_FLAG>
 <PRODUCT_COST_CURRENCY>USD</PRODUCT_COST_CURRENCY>
 <END_CUSTOMER_CURRENCY>USD</END_CUSTOMER_CURRENCY>

2-52 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

</P_SDR_LINES_TBL_ITEM>
 </P_SDR_LINES_TBL>
 <P_SDR_CUST_TBL>
 <P_SDR_CUST_TBL_ITEM>
 <CUST_ACCOUNT_ID>1290</CUST_ACCOUNT_ID>
 <PARTY_ID>1290</PARTY_ID>
 <SITE_USE_ID>10479</SITE_USE_ID>
 <CUST_USAGE_CODE>BILL_TO</CUST_USAGE_CODE>
 <END_CUSTOMER_FLAG>N</END_CUSTOMER_FLAG>
 </P_SDR_CUST_TBL_ITEM>
 <P_SDR_CUST_TBL_ITEM>
 <CUST_ACCOUNT_ID>1287</CUST_ACCOUNT_ID>
 <PARTY_ID>1287</PARTY_ID>
 <SITE_USE_ID>1418</SITE_USE_ID>
 <CUST_USAGE_CODE>CUSTOMER</CUST_USAGE_CODE>
 <END_CUSTOMER_FLAG>Y</END_CUSTOMER_FLAG>
 </P_SDR_CUST_TBL_ITEM>
 </P_SDR_CUST_TBL>
 </InputParameters>
</CREATE_SD_REQUEST_Input>

A Sample JSON-based REST Request
The following example shows a synchronous JSON-based REST request for the same
PL/SQL service (OZF_SD_REQUEST_PUB API):

Note: Only Jackson JSON format is supported in this release. Other
JSON formats, like Google GSON are not supported.

Discovering and Viewing Integration Interfaces and Services 2-53

{
 "CREATE_SD_REQUEST_Input": {
 "@xmlns":
"http://xmlns.oracle.com/apps/ozf/rest/ozfsdrequestpubsvc/create_sd_requ
est/",
 "RESTHeader": {
 "@xmlns":
"http://xmlns.oracle.com/apps/fnd/rest/ozfsdrequestpubsvc/header",
 "Responsibility": "SYSTEM_ADMINISTRATOR"
 },
 "InputParameters": {
 "P_API_VERSION_NUMBER": "1.0",
 "P_INIT_MSG_LIST": "T",
 "P_COMMIT": "F",
 "P_VALIDATION_LEVEL": "100",
 "P_SDR_HDR_REC": {
 "REQUEST_NUMBER": "SDR-CREATE-BPEL1",
 "REQUEST_START_DATE": "2008-08-18T12:00:00",
 "REQUEST_END_DATE": "2008-10-18T12:00:00",
 "USER_STATUS_ID": "1701",
 "REQUEST_OUTCOME": "IN_PROGRESS",
 "REQUEST_CURRENCY_CODE": "USD",
 "SUPPLIER_ID": "601",
 "SUPPLIER_SITE_ID": "1415",
 "REQUESTOR_ID": "100001499",
 "ASSIGNEE_RESOURCE_ID": "100001499",
 "ORG_ID": "204",
 "ACCRUAL_TYPE": "SUPPLIER",
 "REQUEST_DESCRIPTION": "Create",
 "SUPPLIER_CONTACT_EMAIL_ADDRESS": "sdr.supplier@testing.com",
 "SUPPLIER_CONTACT_PHONE_NUMBER": "2255",
 "REQUEST_TYPE_SETUP_ID": "400",
 "REQUEST_BASIS": "Y",
 "USER_ID": "1002795"
 },
 "P_SDR_LINES_TBL": {
 "P_SDR_LINES_TBL_ITEM": {
 "PRODUCT_CONTEXT": "PRODUCT",
 "INVENTORY_ITEM_ID": "2155",
 "ITEM_UOM": "Ea",
 "REQUESTED_DISCOUNT_TYPE": "%",
 "REQUESTED_DISCOUNT_VALUE": "20",
 "COST_BASIS": "200",
 "MAX_QTY": "200",
 "DESIGN_WIN": "200",
 "APPROVED_DISCOUNT_TYPE": "%",
 "APPROVED_DISCOUNT_VALUE": "20",
 "APPROVED_MAX_QTY": "200",
 "VENDOR_APPROVED_FLAG": "Y",
 "PRODUCT_COST_CURRENCY": "USD",
 "END_CUSTOMER_CURRENCY": "USD"
 }
 },
 "P_SDR_CUST_TBL": {
 "P_SDR_CUST_TBL_ITEM": [
 {
 "CUST_ACCOUNT_ID": "1290",
 "PARTY_ID": "1290",
 "SITE_USE_ID": "10479",
 "CUST_USAGE_CODE": "BILL_TO",
 "END_CUSTOMER_FLAG": "N"

2-54 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

},
 {
 "CUST_ACCOUNT_ID": "1287",
 "PARTY_ID": "1287",
 "SITE_USE_ID": "1418",
 "CUST_USAGE_CODE": "CUSTOMER",
 "END_CUSTOMER_FLAG": "Y"
 }
]
 }
 }
 }
}

A Sample XML-based REST Response
The following example shows an XML-based REST response for the
OZF_SD_REQUEST_PUB API service:
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<OutputParameters
xmlns:xsl=""http://www.w3.org/2001/XMLSchema-instance"
xmlns="http://xmlns.oracle.com/apps/ozf/rest/ozfsdrequestpubsvc/create_s
d_request/">
 <X_RETURN_STATUS>E</X_RETURN_STATUS>
 <X_MSG_COUNT>1</X_MSG_COUNT>>
 <X_MSG_DATA>The Organization Id provided is invalid, please provide a
valid Organization Id.</X_MSG_DATA>
 <X_REQUEST_HEADER_IDxsi:nil="true"/>
</OutputParameters>

A Sample JSON-based REST Response
The following example shows a JSON-based REST response for the
OZF_SD_REQUEST_PUB API service:
{
 "OutputParameters" : {
 "@xmlns:xsi" : "http://www.w3.org/2001/XMLSchema-instance",
 "@xmlns" :
"http://xmlns.oracle.com/apps/ozf/rest/ozfsdrequestpubsvc/create_sd_requ
est/",
 "X_RETURN_STATUS" : "E",
 "X_MSG_COUNT" : "1",
 "X_MSG_DATA" : "The Organization Id provided is invalid, please
provide a valid Organization Id.",
 "X_REQUEST_HEADER_ID" : {
 "@xsi:nil" : "true"
 }
 }

Samples of XML-based Fault Responses
The following sample shows the XML-based REST response message when XML is not
well formed:

Discovering and Viewing Integration Interfaces and Services 2-55

<ISGServiceFault>
 <Code>RequestParsingError</Code>
 <Message>SAXException in XmlRequestObject, while parsing XML request
The request could not be parsed correctly</Message>
 <Resolution>This may be due to malformed construction of the payload or
incorrectContent-Type header. Please check the wellformed-ness of
payload, matching Content-Type header of the http request and
retry.</Resolution>
 <ServiceDetails>
 <ServiceName>ozfsdrequestpubsvc</ServiceName>
 <OperationName>create_sd_request</OperationName>
 <InstanceId>0</InstanceId>
 </ServiceDetails>
* Closing connection #0
</ISGServiceFault>

The following sample shows the XML-based REST response message when
RespApplication (Responsibility Application short name) is invalid:
<ISGServiceFault>
 <Code>InvalidResponsibilityApplicationShortCode</Code>
 <Message>Responsibility short code is invalid System error while
processing the request</Message>
 <Resolution>Check the server logs for details</Resolution>
 <ServiceDetails>
 <ServiceName>ozfsdrequestpubsvc</ServiceName>
 <OperationName>get_text_number</OperationName>
 <InstanceId>0</InstanceId>
 </ServiceDetails>
* Closing connection #0
</ISGServiceFault>

Using PL/SQL APIs as Web Services 3-1

3
Using PL/SQL APIs as Web Services

Overview
Oracle E-Business Suite Integrated SOA Gateway allows you to use PL/SQL application
programming interfaces (APIs) to insert or update data in Oracle E-Business Suite. APIs
are stored procedures that let you update or retrieve data from Oracle E-Business Suite.

After a PL/SQL API interface definition is exposed as a SOAP Web service represented
in WSDL, the deployed service can be orchestrated into a meaningful BPEL process
within a SOA Composite application with service endpoints. At run time, the SOA
Composite in the WebLogic managed server where the soa-infra application is
running can be exposed to customers and invoked through any of the Web service
clients or orchestration tools including Oracle JDeveloper, Apache Axis, .NET Web
Service Client, Oracle BPEL Process Manager, and Oracle Enterprise Service Bus (ESB).

In addition to SOAP services, PL/SQL APIs can be exposed as REST services. To better
understand how to use each Web service in inserting or updating application data,
detailed design-time and run-time tasks are discussed in this chapter. For the example
described in the following sections, Oracle JDeveloper 11g (11.1.1.6.0) is used as a
design-time tool to create a SOA composite application with BPEL process and Oracle
SOA Suite 11g (11.1.1.6.0) is used for the process deployment.

Note: While using Oracle JDeveloper with other Oracle Fusion
Middleware components (such as Oracle SOA Suite), to enable SOA
technologies, you need to manually download Oracle SOA Suite
Composite Editor, a JDeveloper's extension for SOA technologies. For
more information on installing additional Oracle Fusion Middleware
design time components, see the Oracle Fusion Middleware Installation
Guide for Oracle JDeveloper.

This chapter includes the following topics:

• Using PL/SQL SOAP Services, page 3-2

3-2 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

• Invoking a Synchronous SOAP Web Service from a SOA Composite
Application with BPEL Process, page 3-6

• Invoking an Asynchronous SOAP Web Service from a SOA Composite
Application with BPEL Process, page 3-50

• Using PL/SQL REST Services, page 3-76

• Invoking a REST Service Using HTTP Basic Authentication and XML Payload
With REST Header, page 3-77

• Invoking a REST Service Using Token Based Authentication and JSON Payload,
page 3-88

Using PL/SQL SOAP Services
SOA Composite Application with BPEL Process Scenario

Take PL/SQL Supplier Ship and Debit Request API OZF_SD_REQUEST_PUB as an
example to explain the creation of a SOA Composite application with BPEL process.

When the creation of a ship and debit request is received, the creation information
including input ship and debit payload will be read and passed to create a ship and
debit request.

• Invoking a Synchronous SOAP Web Service

A synchronous service is used to process the request if all needed information is
supplied immediately. The request number will be returned to the requestor
synchronously.

When the SOA Composite application with BPEL process has been successfully
executed after deployment, a ship and debit request is created in the Oracle Order
Management. The request number should be the same as the payload input value.

See: Invoking a Synchronous SOAP Web Service from a SOA Composite
Application with BPEL Process, page 3-6.

• Invoking an Asynchronous SOAP Web Service

If a response message does not return to the requestor right away or if it takes
longer time to process the request, an asynchronous Web service can be used
instead. Once the request is completed, the response information will be received.

A SOA Composite application with BPEL process will be created. The BPEL process
whose input will be the response of an asynchronous operation. This BPEL process
writes the response received to an output file on the server where the SOA
Composite is deployed.

See: Invoking an Asynchronous SOAP Web Service from a SOA Composite

Using PL/SQL APIs as Web Services 3-3

Application with BPEL Process, page 3-50.

Prerequisites to Create a SOA Composite Application with BPEL Process Using a
PL/SQL Web Service

Before performing the design-time tasks for PL/SQL Web services, you need to ensure
the following tasks are in place:

Note: Before generating the Web service for a selected interface, a
security grant can be created for a specific user (such as "TRADEMGR")
or user group if necessary to ensure the user has the access privilege to
the interface.

• An integration repository administrator or a system integration developer needs to
generate a Web service first. The administrator will deploy the generated service to
an Oracle SOA Suite WebLogic managed server.

• A system integration developer needs to locate and record the deployed WSDL
URL for the PL/SQL interface exposed as a Web service.

• SOAHeader variables need to be populated for Web service authorization.

Please note that certain PL/SQL APIs exposed from Oracle E-Business Suite Integrated
SOA Gateway take record types as input. Such APIs expect default values to be
populated for parameters within these record types for successful execution.

The default values are FND_API.G_MISS_CHAR for characters,
FND_API.G_MISS_DATE for dates, and FND_API.G_MISS_NUM for numbers. Oracle
E-Business Suite Integrated SOA Gateway can default these values when the
parameters within the record type are passed as nil values, for example, as shown
below:
<PRICE_LIST_REC>
<ATTRIBUTE1 xsi:nil="true"/>
<ATTRIBUTE2 xsi:nil="true"/>
<ATTRIBUTE3 xsi:nil="true"/>
...
</PRICE_LIST_REC>

Deploying a PL/SQL Web Service Composite

An integration repository administrator or a system integration developer must first
create a Web service for a selected interface definition, and then the administrator can
deploy the service from Oracle Integration Repository to an Oracle SOA Suite WebLogic
managed server.

For example, the following steps must be performed first before a system integration
developer creates a BPEL process by using the deployed WSDL:

1. To generate a Web service, locate the interface definition first (such as a PL/SQL
interface OZF_SD_REQUEST_PUB) and select desired interaction pattern

3-4 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

information (either synchronous or asynchronous or both patterns) from the
Interaction Pattern table. This can be selected at the interface level or at the method
level before clicking Generate in the interface details page.

Once the service has been successfully generated, the SOAP Service Status field
changed from 'Not Generated' to 'Generated' in the SOAP Web Service tab. For
detailed instructions on how to generate a Web service, see Generating SOAP Web
Services, Oracle E-Business Suite Integrated SOA Gateway Implementation Guide.

2. To deploy a generated Web service, select one authentication type before clicking
Deploy. The deployed service in Oracle SOA Suite is an active service and is ready
to accept new SOAP requests.

Once the service has been successfully deployed, the selected authentication type
will be displayed along with 'Deployed' with 'Active' state in the SOAP Service
Status field. For more information on securing Web services with authentication
type, see Managing Web Service Security, Oracle E-Business Suite Integrated SOA
Gateway Implementation Guide.

For detailed instructions on how to deploy a Web service, see Deploying and
Undeploying SOAP Web Services, Oracle E-Business Suite Integrated SOA Gateway
Implementation Guide.

Searching and Recording a WSDL URL

Apart from the required tasks mentioned above, a system integration developer needs
to locate and record the deployed Web service WSDL URL for the interface that needs
to be orchestrated into a meaningful BPEL process in Oracle JDeveloper.

This can be done by clicking the View WSDL link in the interface details page. Copy
the WSDL URL from the new pop-up window. This URL will be used later in creating a
partner link service in a BPEL process.

Using PL/SQL APIs as Web Services 3-5

Viewing and Recording a Deployed WSDL URL

For information on how to search for an interface and view the interface details, see
Searching and Viewing Integration Interfaces, page 2-1.

Setting Variables in SOAHeader for a SOAP Request

You must populate certain variables in the BPEL process for SOAHeader elements to
pass values that would be used to set application context during service execution.
These SOAHeader elements for PL/SQL interface type are Responsibility,
RespApplication, SecurityGroup, NLSLanguage, and Org_Id.

Note: The username and password information is defined by the Web
service security policy (such as
oracle/wss_username_token_service_policy). Detailed
instructions on how to pass the security headers along with the SOAP
request, see Configuring Web Service Policies, page 3-38.

The expected values for these elements are described in the following table:

3-6 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

Header Variables and Expected Values for PL/SQL Interface Type

Element Name Expected Value

Responsibility responsibility_key (such as
"OZF_USER")

RespApplication Application Short Name (such as "OZF")

SecurityGroup Security Group Key (such as "STANDARD")

NLSLanguage NLS Language (such as "AMERICAN")

Org_Id Org Id (such as "204")

Note: NLS Language and Org_Id are optional values to be passed.

• If the NLS Language element is specified, SOAP requests can be
consumed in the language passed. All corresponding SOAP
responses and error messages can also be returned in the same
language. If no language is identified, then the default language of
the user will be used.

• If a service execution is dependent on any particular organization,
then you must pass the Org_Id element of that SOAP request.

The context information can be specified by configuring an Assign activity before the
Invoke activity in the BPEL process.

Detailed information on how to set SOAHeader for the SOAP request, see Assigning
SOAHeader Parameters, page 3-27.

Invoking a Synchronous Web Service from a SOA Composite Application with BPEL
Process

Based on the single invoice creation scenario, a synchronous Web service is used to
process the request when all needed information is supplied immediately. The request
number will be returned to the requestor synchronously.

The following design-time tasks are discussed in this chapter:

1. Create a SOA Composite Application with Synchronous BPEL Process, page 3-7

Use this step to create a new SOA Composite application with BPEL project called
ShipDebitRequest.bpel using a Synchronous BPEL Process template. This

Using PL/SQL APIs as Web Services 3-7

automatically creates two dummy activities - Receive and Reply - to receive input
from a third party application and to reply output of the BPEL process to the
request application.

2. Create a Partner Link, page 3-12

Use this step to create a ship and debit request in Oracle Order Management by
using the Supplier Ship and Debit Request API OZF_SD_REQUEST_PUB exposed as
Web service.

3. Add a Partner Link for File Adapter, page 3-13

Use this step to synchronously read invoice header details passed from the first
Assign activity.

4. Add Invoke activities, page 3-23

Use this step to configure two Invoke activities in order to:

• Point to the File Adapter to synchronously read invoice header details that is
passed from the first Assign activity.

• Point to the OZF_SD_REQUEST_PUB partner link to initiate the request creation
with payload and transaction details received from the Assign activities.

5. Add Assign activities, page 3-27

Use this step to configure Assign activities in order to pass request header details,
payload information and request number to appropriate Invoke activities to
facilitate the request creation. At the end, pass the request number to the request
application through the dummy Reply activity.

For general information and how to create SOA composite applications using BPEL
process service component, see the Oracle Fusion Middleware Developer's Guide for Oracle
SOA Suite for details.

Creating a SOA Composite Application with BPEL Process
Use this step to create a new SOA Composite application that will contain various BPEL
process activities.

To create a new SOA Composite application with BPEL project:

1. Open Oracle JDeveloper.

2. Click New Application in the Application Navigator.

The "Create SOA Application - Name your application" page is displayed.

3-8 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

The Create SOA Application - Name your application Page

3. Enter an appropriate name for the application in the Application Name field and
select SOA Application from the Application Template list.

Click Next. The "Create SOA Application - Name your project" page is displayed.

Using PL/SQL APIs as Web Services 3-9

The Create SOA Application - Name your project Page

4. Enter an appropriate name for the project in the Project Name field, for example,
ShipDebitRequest.

5. In the Project Technologies tab, select 'Web Services' and ensure that SOA is
selected from the Available technology list to the Selected technology list.

Click Next. The "Create SOA Application - Configure SOA settings" page is
displayed.

3-10 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

The Create SOA Application - Configure SOA settings Page

6. Select Composite With BPEL Process from the Composite Template list, and then
click Finish. You have created a new application, and a SOA project. This
automatically creates a SOA composite.

The Create BPEL Process page is displayed.

Using PL/SQL APIs as Web Services 3-11

The Create BPEL Process Page

7. Leave the default BPEL 1.1 Specification selection unchanged. This creates a BPEL
project that supports the BPEL 1.1 specification.

Enter an appropriate name for the BPEL process in the Name field, for example,
ShipDebitRequest.

Select Synchronous BPEL Process in the Template field.

Select 'required' from the Transaction drop-down list. Click OK.

A synchronous BPEL process is created with the Receive and Reply activities. The
required source files including bpel and wsdl, using the name you specified (for
example, ShipDebitRequest.bpel and ShipDebitRequest.wsdl) and
composite.xml are also generated.

Note: Service Provider does not support service creation for
PL/SQL stored procedures or packages which have '$' character in
parameter type names. The presence of $ in the name would cause
the XSD generation to fail.

8. Navigate to SOA Content > Business Rules and click the composite.xml to view

3-12 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

the composite diagram.

Double click on the ShipDebitRequest component to open the BPEL process.

Creating a Partner Link for the Web Service
Use this step to create a Partner Link called OZF_SD_REQUEST_PUB.

To create a partner link for OZF_SD_REQUEST_PUB Web service:

1. In Oracle JDeveloper, place your mouse in the Partner Links area and right click to
select Create Partner Link... from the pull-down menu. Alternatively, you can drag
and drop Partner Link from the BPEL Constructs list into the right Partner Link
swim lane of the process diagram.

The Create Partner Link window appears.

2. Copy the WSDL URL corresponding to the OZF_SD_REQUEST_PUB service that
you recorded earlier from the Integration Repository, and paste it in the WSDL File
field. Press the [Tab] key.

3. A Partner Link Type message dialog box appears asking whether you want the
system to create a new WSDL file that will by default create partner link types for
you.

Click Yes to have the Partner Name value populated automatically. Enter the
partner link name as OZF_SD_REQUEST_PUB.

Select the Partner Link Type and Partner Role fields from the drop-down lists.

Using PL/SQL APIs as Web Services 3-13

Create Partner Link

Click Apply.

The partner link is created with the required WSDL settings, and is represented in
the BPEL project by a new icon in the border area of the process diagram.

4. Click OK to complete the partner link configuration.

Partner Link OZF_SD_REQUEST_PUB is added to the Partner Links section in the
BPEL process diagram.

Double click the OZF_SD_REQUEST_PUBWrapper.wsdl and click the Source tab to
view the source WSDL description for the partner link you just created.

Adding a Partner Link for File Adapter
Use this step to configure a BPEL process by reading current content of a file.

To add a Partner Link for File Adapter to Read Payload:

1. In Oracle JDeveloper, drag and drop the File Adapter service from the BPEL
Services list into the right Partner Link swim lane of the process diagram. The
Adapter Configuration wizard welcome page appears.

3-14 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

2. Click Next. The Service Name dialog box appears.

3. Enter a name for the file adapter service such as ReadPayload.

4. Click Next. The Adapter Interface dialog box appears.

Specifying the Operation

5. Select the Define from operation and schema (specified later) radio button and
click Next. The Operation dialog box appears.

Using PL/SQL APIs as Web Services 3-15

Specifying the Operation

6. Specify the operation type, for example Synchronous Read File. This automatically
populates the Operation Name field.

Click Next to access the File Directories dialog box.

3-16 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

Specifying the Input File Directory

7. Select the Physical Path radio button and enter the input payload file directory
information. For example, enter /usr/tmp/ as the directory name.

Note: You must ensure the input payload file
InputCreateSDRequest.xml is available in the directory
'/usr/tmp/' folder of Oracle SOA Suite server.

Click Next to open the File Name dialog box.

8. Enter the name of the file for the synchronous read file operation. For example,
enter InputCreateSDRequest.xml.

Using PL/SQL APIs as Web Services 3-17

Specifying the Input File Name

Click Next. The Messages dialog box appears.

3-18 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

Specifying Message Schema

9. Select Browse for schema file in front of the URL field.

The Type Chooser window is displayed.

Click the Import Schema Files button on the top right corner of the Type Chooser
window.

Enter the schema location for the service. Such as
http://<soa_suite_hostname>:<port>/soa-infra/services/default
/<jndi_name>_PLSQL_OZF_SD_REQUEST_PUB/OZF_SD_REQUEST_PUB_Serv
ice?XSD=xsd/APPS_ISG_CREATE_SD_REQUEST_OZF_SD_REQUEST_PUB-24C
REATE_SD_.xsd.

Schema location for your service can be found from the service WSDL URL (for
example,
http://<soa_suite_hostname>:<port>/soa-infra/services/default
/<jndi_name>_PLSQL_OZF_SD_REQUEST_PUB/OZF_SD_REQUEST_PUB_Serv
ice/?wsdl).

Select the Copy to Project check box and click OK.

Using PL/SQL APIs as Web Services 3-19

Importing Schema File

Select the Maintain original directory structure for imported files Copy Options
check box and click OK.

3-20 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

The Imported Schema folder is automatically added to the Type Chooser window.

Using PL/SQL APIs as Web Services 3-21

Identifying Message Schema

Select InputParameters Message in the
APPS_ISG_CREATE_SD_REQUEST_OZF_SD_REQUEST_PUB-24CREATE_SD_.xs
d. Click OK.

The selected .xsd is displayed as URL, and the InputParameters is selected as
Schema Element.

3-22 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

Viewing Selected Message Schema and Element

10. Click Next and then Finish. The wizard generates the WSDL file corresponding to
the partner link. The main Create Partner Link dialog box appears, specifying the
new WSDL file ReadPayload.wsdl.

Using PL/SQL APIs as Web Services 3-23

Completing the Partner Link Configuration

Click Apply and then OK to complete the configuration and create the partner link
with the required WSDL settings for the File Adapter service.

The ReadPayload Partner Link appears in the BPEL process diagram.

11. Under applications window, navigate to file ReadPayload_file.jca. Set value of
property "DeleteFile" to "false".

Adding Invoke Activities
This step is to configure two Invoke activities:

• Read request creation details that is passed from the first Assign activity using

3-24 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

ReadPayload partner link for File Adapter.

• Send the payload and request details received from the Assign activities to create a
ship and debit request by using the OZF_SD_REQUEST_PUB partner link.

To add an Invoke activity for ReadPayload Partner Link:

1. In Oracle JDeveloper, expand the BPEL Constructs from the Component Palette.
Drag and drop the Invoke activity into the center swim lane of the process diagram,
between the receiveInput and replyOutput activities.

2. Link the Invoke activity to the ReadPayload service. The Edit Invoke dialog box
appears.

3. Enter a name for the Invoke activity, and then click the Create icon next to the
Input Variable field to create a new variable. The Create Variable dialog box
appears.

Enter 'ReadPayload_InputVariable' as the input variable name. You can also accept
the default name.

Creating a Variable

Select Global Variable and click OK.

4. Click the Create icon next to the Output Variable field to create a new variable. The
Create Variable dialog box appears.

Enter 'ReadPayload_OutputVariable' as the output variable name. You can also
accept the default name.

Select Global Variable, and then enter a name for the variable. Click OK.

Using PL/SQL APIs as Web Services 3-25

Editing the Invoke Activity

5. Click Apply and then OK in the Edit Invoke dialog box to finish configuring the
Invoke activity.

The Invoke activity appears in the process diagram.

3-26 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

Adding an Invoke Activity

To add an Invoke activity for OZF_SD_REQUEST_PUB Partner Link:

1. In Oracle JDeveloper, expand the BPEL Constructs from the Component Palette.
Drag and drop the Invoke activity into the center swim lane of the process diagram,
after the first Invoke activity and the reployOutput activity.

2. Link the Invoke activity to the OZF_SD_REQUEST_PUB service. The Edit Invoke
dialog box appears.

3. Enter a name for the Invoke activity such as 'Invoke_EBS_SDR_Service'.

In the Operation field, select CREATE_SD_REQUEST from the drop-down list.

4. Create global Input and Output variables as
CREATE_SD_REQUEST_InputVariable and
CREATE_SD_REQUEST_OutputVariable.

Click OK in Edit Invoke.

Click Apply and then OK in the Edit Invoke dialog box to finish configuring the
Invoke activity.

The Invoke activity appears in the process diagram.

Using PL/SQL APIs as Web Services 3-27

Adding Assign Activities
This step is to configure four Assign activities:

1. To set the SOAHeader details for ship and debit SOAP request.

Note: You need to populate certain variables in the BPEL process
for SOAHeader elements to pass values that may be required to set
applications context during service execution. These SOAHeader
elements are Responsibility, RespApplication,
SecurityGroup, NLSLanguage, and Org_Id.

2. To set input payload for SOAP request.

3. To set input for SOAP request.

4. To set the SOAP response to output.

To add the first Assign activity to set SOAHeader details:

Assigning SOAHeader Parameters:

1. In Oracle JDeveloper, expand the BPEL Constructs from the Component Palette.
Drag and drop the Assign activity into the center swim lane of the process diagram
between the two Invoke activities you just created earlier.

2. Double-click the Assign activity to access the Edit Assign dialog box.

3. Click the General tab to enter the name for the Assign activity, such as
'SetSOAHeader'.

4. Select the Copy Rules tab to expand the target trees:

• Click the Expression icon to invoke the Expression Builder dialog.

3-28 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

Enter 'OZF_USER' in the Expression box. Click OK. The Expression icon with
the expression value ('OZF_USER') appears in the center of the Edit Assign
dialog, between the From and To navigation tree nodes.

• In the To navigation tree, navigate to Variables > Process > Variables >
CREATE_SD_REQUEST_InputVariable > header > ns1:SOAHeader and
select ns1:Responsibility. The To XPath value is displayed.

• Drag the Expression icon to connect to the target node (ns1:Responsibility) that
you just identified. This creates a line that connects the source and target nodes.
The copy rule is displayed in the From and To sections at the bottom of the Edit
Assign dialog box.

Using PL/SQL APIs as Web Services 3-29

Assigning Parameters

5. Enter second pair of parameters by clicking the Expression icon to invoke the
Expression Builder dialog.

• Enter 'OZF' in the Expression box. Click OK. The Expression icon with the
expression value ('OZF') appears in the center of the Edit Assign dialog,
between the From and To navigation tree nodes.

• In the To navigation tree, navigate to Variables > Process > Variables >
CREATE_SD_REQUEST_InputVariable > header > ns1:SOAHeader and
select ns1:RespApplication. The To XPath field should contain your selected
entry.

• Drag the Expression icon to connect to the target node (ns1:RespApplication)
that you just identified. This creates a line that connects the source and target
nodes. The copy rule is displayed in the From and To sections at the bottom of
the Edit Assign dialog box.

6. Enter the third pair of parameters by clicking the Expression icon to invoke the
Expression Builder dialog.

• Enter 'STANDARD' in the Expression box. Click OK. The Expression icon with
the expression value ('STANDARD') appears in the center of the Edit Assign
dialog, between the From and To navigation tree nodes.

• In the To navigation tree, navigate to Variables > Process > Variables >
CREATE_SD_REQUEST_InputVariable > header > ns1:SOAHeader and

3-30 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

select ns1:SecurityGroup. The XPath field should contain your selected entry.

• Drag the Expression icon to connect to the target node (ns1:SecurityGroup) that
you just identified. This creates a line that connects the source and target nodes.
The copy rule is displayed in the From and To sections at the bottom of the Edit
Assign dialog box.

7. Enter the fourth pair of parameters by clicking the Expression icon to invoke the
Expression Builder dialog.

• Enter 'AMERICAN' in the Expression box. Click OK. The Expression icon with
the expression value ('AMERICAN') appears in the center of the Edit Assign
dialog, between the From and To navigation tree nodes.

• In the To navigation tree, navigate to Variables > Process > Variables >
CREATE_SD_REQUEST_InputVariable > header > ns1:SOAHeader and
select ns1:NLSLanguage. The XPath field should contain your selected entry.

• Drag the Expression icon to connect to the target node (ns1:NLSLanguage) that
you just identified. This creates a line that connects the source and target nodes.
The copy rule is displayed in the From and To sections at the bottom of the Edit
Assign dialog box.

8. Enter the fifth pair of parameters by clicking the Expression icon to invoke the
Expression Builder dialog.

• Enter '204' in the Expression box. Click OK. The Expression icon with the
expression value ('204') appears in the center of the Edit Assign dialog, between
the From and To navigation tree nodes.

• In the To navigation tree, select type Variable. Navigate to Variables > Process
> Variables > CREATE_SD_REQUEST_InputVariable > header >
ns1:SOAHeader and select ns1:Org_Id. The XPath field should contain your
selected entry.

• Drag the Expression icon to connect to the target node (ns1:Org_Id) that you
just identified. This creates a line that connects the source and target nodes. The
copy rule is displayed in the From and To sections at the bottom of the Edit
Assign dialog box.

9. The Edit Assign dialog box appears.

Using PL/SQL APIs as Web Services 3-31

Assign Parameters

10. Click Apply and then OK to complete the configuration of the Assign activity.

To enter the second Assign activity to pass payload information to the
Invoke_EBS_SDR_Service Invoke activity:

1. Add the second Assign activity by dragging and dropping the Assign activity from
the BPEL Constructs in the Component Palette into the center swim lane of the
process diagram, between the 'SetSOAHeader' Assign activity and the
'Invoke_EBS_SDR_Service' Invoke activity.

2. Repeat Step 2 to Step 3 described in creating the first Assign activity to add the
second Assign activity called 'SetPayload'.

3. Select the Copy Rules tab and expand the source and target trees:

• In the From navigation tree, navigate to Variable > Process > Variables >
InputVariable > ReadPayload_OutVariable > body and select
ns3:InputParameters. The From XPath field is also displayed.

• In the To navigation tree, navigate to Variable > Process > Variables >
CREATE_SD_REQUEST_InputVariable > body and select
ns3:InputParameters. The To XPath field is also displayed.

Drag the source node (InputParameters) to connect to the target node
(InputParameters) that you just identified. This creates a line that connects the
source and target nodes. The copy rule is displayed in the From and To sections at

3-32 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

the bottom of the Edit Assign dialog box.

Assigning Parameters

4. Click Apply and then OK to complete the configuration of the second Assign
activity.

Defining Schema for BPEL Process Input Request

Before setting the input request for the SOAP request, you need to define necessary
schema for BPEL process request.

1. From the Applications Navigator window, expand the ShipDebitRequest > SOA
Content > xsd folder to open the ShipDebitRequest.xsd file.

2. In the Design mode, expand 'process' to view elements within process request.

Using PL/SQL APIs as Web Services 3-33

Defining Schema for BPEL Process Request

3. Click on element 'input' and change the property name from 'input' to
'request_number' in the XML Schema window.

4. Select and right-click on the 'request_number' element to open the pop-up menu.

Select the Insert after element – request_number > element option. New element
'element1' is displayed in the schema design window underneath the
'request_number' element.

From the element properties section, change the name from 'element1' to
'description' and enter type as 'string'.

3-34 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

Adding Schema Elements

5. Similarly, insert another element called 'req_max_qty' after element 'description'.

Enter default value as '200' and type as 'decimal'.

Right-click on mouse and select the Rebuild option.

Using PL/SQL APIs as Web Services 3-35

Rebuilding Schema Elements

Look for compilation messages in Log to ensure the successful compilation.

To set the third Assign activity to pass the input request to the
Invoke_EBS_SDR_Service Invoke activity:

1. Add the third Assign activity by dragging and dropping the Assign activity from
the BPEL Constructs in the Component Palette into the center swim lane of the
process diagram, between the second Assign activity 'SetPayload' and the
Invoke_EBS_SDR_Service Invoke activity.

2. Repeat Step 2 to Step 3 described in creating the first Assign activity to add the
third Assign activity called 'SetInput'.

3. Select the Copy Rules tab and expand the source and target trees:

• In the From navigation tree, navigate to Variable > Process > Variables >
inputVariable > Payload > client:ShipDebitRequestProcessRequst and select
client:request_number. The From XPath field is also displayed.

• In the To navigation tree, navigate to Variable > Process > Variables >
Create_SD_REQUEST_InputVariable > Body > ns4:InputParameters
>ns4:P_SDR_HDR_REC and select ns4:REQUEST_NUMBER. The To XPath
field is also displayed.

Drag the source node (client:request_number) to connect to the target node

3-36 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

(ns4:REQUEST_NUMBER) that you just identified. This creates a line that connects
the source and target nodes. The copy rule is displayed in the From and To sections
at the bottom of the Edit Assign dialog box.

4. Enter the second pair of parameters with the following values:

• In the From navigation tree, navigate to Variable > Process > Variables >
inputVariable > Payload > client:ShipDebitRequestProcessRequst and select
client:description. The XPath field should contain your selected entry.

• In the To navigation tree, navigate to Variable > Process > Variables >
Create_SD_REQUEST_InputVariable > Body > ns4:InputParameters
>ns4:P_SDR_HDR_REC and select ns4:REQUEST_DESCRIPTION. The XPath
field should contain your selected entry.

Drag the source node (client:description) to connect to the target node
(ns4:REQUEST_DESCRIPTION) that you just identified. This creates a line that
connects the source and target nodes. The copy rule is displayed in the From and To
sections at the bottom of the Edit Assign dialog box.

5. Enter the third pair of parameters with the following values:

• In the From navigation tree, navigate to Variable > Process > Variables >
inputVariable > Payload > client:ShipDebitRequestProcessRequst and select
client:req_max_qty. The XPath field should contain your selected entry.

• In the To navigation tree, navigate to Variable > Process > Variables >
Create_SD_REQUEST_InputVariable > Body > ns4:InputParameters
>ns4:P_SDR_LINES_TBL > ns4:P_SDR_LINES_TBL_ITEM and select
ns4:MAX_QTY. The XPath field should contain your selected entry.

Drag the source node (client:req_max_qty) to connect to the target node
(ns4:MAX_QTY) that you just identified. This creates a line that connects the source
and target nodes. The copy rule is displayed in the From and To sections at the
bottom of the Edit Assign dialog box.

Using PL/SQL APIs as Web Services 3-37

6. Click Apply and then OK to complete the configuration of the Assign activity.

To add the fourth Assign activity to set SOAP response to output:

1. Add the fourth Assign activity by dragging and dropping the Assign activity from
the BPEL Constructs in the Component Palette into the center swim lane of the
process diagram, between the Invoke_EBS_SDR_Service Invoke and the
replyOutput activities.

2. Repeat Step 2 to Step 3 described in creating the first Assign activity to add the
fourth Assign activity called 'SetResponse'.

3. Select the Copy Rules tab and expand the source and target trees:

• In the From navigation tree, navigate to Variable > Process > Variables >
CREATE_SD_REQUEST_OutputVariable> body > ns3:OutputParameters and
select ns3:X_RETURN_STATUS.

• In the To navigation tree, navigate to Variable > Process > Variables >
outputVariable> payload and select client:processResponse.

Drag the source node (ns3:X_RETURN_STATUS) to connect to the target node
(client:processResponse) that you just identified. This creates a line that connects
the source and target nodes. The copy rule is displayed in the From and To sections
at the bottom of the Edit Assign dialog box.

3-38 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

4. Click Apply and then OK to complete the configuration of the Assign activity.

Configuring Web Service Policies

Use the following steps to add a security policy at design time:

1. Navigate to SOA Content > Business Rules > composite.xml. Right click on the
OZF_SD_REQUEST_PUB service and select "Configure WS Policies" from the
drop-down list.

2. The Configure SOA WS Policies dialog appears.

In the Security section, click the Add icon (+). The Select Server Security Policies
dialog appears.

Using PL/SQL APIs as Web Services 3-39

Select 'oracle/wss_username_token_service_policy' and click OK.

The attached security policy is shown in the Security section.

A lock icon appears in the OZF_SD_REQUEST_PUB service of the composite.xml
indicating that a security policy has been successfully attached.

3-40 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

3. From the navigation menu, select View > Property Inspector to display the
Property Inspector window for OZF_SD_REQUEST_PUB service component.

In the Properties section, click the Add icon (+) for binding properties. The Create
Property dialog appears.

Enter 'oracle.webservices.auth.username' in the Name field and enter
'operations' as the value.

Click OK.

4. Use the same approach by clicking the Add icon (+) again in the Properties section
for binding properties. Enter 'oracle.webservices.auth.password' in the
Name field. Enter the associated password for user 'operations' in the Value field.

Using PL/SQL APIs as Web Services 3-41

Click OK.

Both selected property names and values appear in the Properties section.

Click the Source tab of the composite.xml and notice that the
oracle.webservices.auth.username and
oracle.webservices.auth.password property names and the associated
values are added to the OZF_SD_REQUEST_PUB reference.

Deploying and Testing the SOA Composite with Synchronous BPEL Process
To invoke the synchronous Supplier Ship and Debit Request service
(OZF_SD_REQUEST_PUB) from the BPEL client contained in the SOA composite, the
SOA composite needs to be deployed to the Oracle WebLogic managed server. This can
be achieved using Oracle JDeveloper. Once the composite is deployed, it can be tested
from the Oracle Enterprise Manager Fusion Middleware Control Console.

Prerequisites

Before deploying the SOA composite with BPEL process using Oracle JDeveloper, you
must have established the connectivity between the design-time environment and the
run-time server. For information on how to configure the necessary server connection,
see Configuring Server Connection, page B-1.

Note: If a local instance of the WebLogic Server is used, start the
WebLogic Server by selecting Run > Start Server Instance from Oracle
JDeveloper. Once the WebLogic Admin Server "DefaultServer" instance
is successfully started, the <Server started in Running mode> and
DefaultServer started message in the Running:DefaultServer and
Messages logs should appear.

For the payload information on the creation of a supplier ship and debit request, see
Sample Payload for Creating Supplier Ship and Debit Request, page C-1.

Perform the following run-time tasks:

1. Deploy the SOA Composite Application with BPEL Process, page 3-42

2. Test the SOA Composite Application with BPEL Process, page 3-45

3-42 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

Deploying the SOA Composite with BPEL Process
You must deploy the SOA composite with BPEL process (ShipDebitRequest.bpel)
that you created earlier before you can run it.

To deploy the SOA composite application:

1. In the Applications Navigator of JDeveloper, select the ShipDebitRequest project.

2. Right-click the project and select Deploy > [project name] > [serverConnection]
from the menu.

For example, you can select Deploy > ShipDebitRequest > SOAServer to deploy
the process if you have the connection set up appropriately.

Deploying the SOA Composite with BPEL Process

Note: If this is the first time to set up server connection, then the
Deployment Action window appears. Select 'Deploy to Application
Server' and click Next.

Using PL/SQL APIs as Web Services 3-43

In the Deploy Configuration window, ensure the following
information is selected before clicking Next to add a new
application server:

• New Revision ID: 1.0

• Mark composite revision as default: Select this check box.

• Overwrite any existing composites with the same revision ID:
Select this check box.

The steps to create a new Oracle WebLogic Server connection from
JDeveloper are covered in Configuring Server Connection, page B-
1.

3. In the Select Server page, select 'soa-server1' that you have established the server
connection earlier. Click Next.

3-44 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

4. In the SOA Servers page, accept the default target SOA Server ('soa-server1')
selection.

Using PL/SQL APIs as Web Services 3-45

Click Next and Finish.

5. If you are deploying the composite for the first time from your Oracle JDeveloper
session, the Authorization Request window appears. Enter username and password
information specified during Oracle SOA Suite installation. Click OK.

6. Deployment processing starts. Monitor deployment process and check for
successful compilation in the SOA - Log window.

Verify that the deployment is successful in the Deployment - Log window.

Testing the SOA Composite Application
Once the BPEL process contained in the SOA composite application has been
successfully deployed, you can manage and monitor the process from Oracle Enterprise
Manager Fusion Middleware Control Console. You can also test the process and the

3-46 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

integration interface by manually initiating the process.

You can log on to Oracle E-Business Suite to manually initiate the purchase order
approval and acknowledgement processes and to confirm that the relevant event is
raised and the updated purchased order information is also written in the XML file.

To test the SOA composite application:

1. Navigate to Oracle Enterprise Manager Fusion Middleware Control Console (
http://<servername>:<port>/em). The login page appears.

For more information about Oracle SOA Suite, see the Oracle Fusion Middleware
Administrator's Guide for Oracle SOA Suite.

2. Enter the username and password information specified during installation. Click
Login to log in to a farm. The composite (ShipDebitRequest) you deployed is
displayed in the Applications Navigation tree.

You may need to select an appropriate target instance farm if there are multiple
target Oracle Enterprise Manager Fusion Middleware Control Console farms.

3. From the Farm navigation pane, expand the SOA >soa-infra node in the tree to
navigate through the SOA Infrastructure home page and menu to access your
deployed SOA composite applications running on soa-infra managed server.

Click the ShipDebitRequest [1.0] link.

Using PL/SQL APIs as Web Services 3-47

4. Click the Policies tab and notice that the
'oracle/wss_username_token_service_policy' policy you attached to the
OZF_SD_REQUEST_PUB service binding earlier at the design time is now displayed
here.

5. In the ShipDebitRequest [1.0] home page, click Test.

6. The Test Web Service page for initiating an instance appears.

Note: If the WS-Security credentials are not entered at design time,
you can enter the credentials at run time by selecting the WSS
Username Token option in the Security section at the top of the
Request tab. Enter 'operations' in the Username field and the
associated password for user 'operations' in the Password field.

You can specify the following fields as XML payload data to use in the Input
Arguments section:

3-48 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

• request_number: Enter an unique number in this field, such as BPEL-1.

Note: The Request Number entered here should be unique each
time that you initiate. The Supplier Ship and Debit Request
Number should be unique across users in Supplier Ship and
Debit of Oracle Trade Management.

• description: Enter appropriate description information.

• req_max_qty: Enter 100 as the value.

Click Test Web Service to initiate the process.

The test results appear in the Response tab upon completion.

7. Verifying SOAP Response in the Console

In the Response tab page, click the Launch Message Flow Trace link to view the
result of synchronous composite application. The Flow Trace page is displayed.

In the Trace section, verify that ShipDebitRequest, and OZF_SD_REQUEST_PUB
components have a Completed state indicating that the application executed
successfully.

You can check the Faults section to see if any error occurred during the test.

8. Click your BPEL service component instance link (such as ShipDebitRequest) to
display the Instances page where you can view execution details for the BPEL
activities in the Audit Trail tab.

Click the Flow tab to check the BPEL process flow diagram. Click an activity of the
process diagram to view the activity details and flow of the payload through the

Using PL/SQL APIs as Web Services 3-49

process.

9. Verifying Created Supplier Ship and Debit Request in Oracle Trade
Management

Log on to Oracle E-Business Suite with the Oracle Trade Management User
responsibility. Select the Supplier Ship and Debit link from the navigation menu to
open the Ship and Debit Overview window.

Verifying in Oracle Trade Management

10. Notice that the Request Number BPEL-1 entered earlier is displayed in the list.
Click the request number BPEL-1 link to open the Ship and Debit Request Details
page for the created request. Verify the details.

3-50 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

Verifying the Ship and Debit Request Details

Invoking an Asynchronous Web Service from a SOA Composite Application with BPEL
Process

SOA Composite Application with BPEL Process Scenario

This example explains the creation of a BPEL process to invoke a method
TESTUSERNAME of asynchronous service FND_USER_PKG deployed on Oracle SOA
Suite.

When the service has been successfully executed after deployment, the
TESTUSERNAME method returns a positive number asynchronously if the username
passed as an input argument exists in Oracle E-Business Suite. If the username does not
exist, then number 0 is returned instead.

Searching and Recording a WSDL URL

Apart from the required tasks mentioned above, a system integration developer needs
to ensure that the service has been generated with the support of asynchronous
operation pattern. This is achieved by selecting the Asynchronous interaction pattern
check box in the Interaction Pattern table for the TESTUSERNAME operation of
FND_USER_PKG service in integration Repository, and followed by clicking the
Generate button to generate the service with asynchronous operation. Once the service
has been successfully generated, it needs to be deployed first before you copy the
deployed WSDL URL to create a BPEL client at design time.

Using PL/SQL APIs as Web Services 3-51

Viewing and Recording a Deployed Asynchronous WSDL URL

Client Side Setup Tasks

Oracle E-Business Suite Integrated SOA Gateway asynchronous services have two port
types. Each port type performs a one-way operation.

• One port type initiates the asynchronous process.

Example of this kind of port type can be 'TESTUSERNAME_ASYNCH'.

• The other one calls back the client with the asynchronous response.

Example of this kind of port type can be
'TESTUSERNAME_ASYNCH_RESPONSE'.

Oracle E-Business Suite Integrated SOA Gateway uses Web Services Addressing
(WS-Addressing) to provide transport-neutral mechanisms to address and correlate
Web services and messages. WS-Addressing is a public specification and is the default
correlation method supported by Oracle E-Business Suite Integrated SOA Gateway. It
uses simple object access protocol (SOAP) headers for asynchronous message
correlation. Messages are independent of the transport or application used. For more
WS-Addressing information, see
http://www.w3.org/Submission/ws-addressing/ for details.

To ensure the asynchronous operation works properly, a Web Service Client needs to
specify:

3-52 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

• Endpoint location (in wsa:ReplyTo header): The Reply-To address specifies the
location at which a client that also implements Callback port-type is listening for a
callback message.

• Conversation ID (in wsa:MessageID header): The MessageID uniquely identifies a
message for the Web Service Client. The same MessageID is returned by Oracle
E-Business Suite Integrated SOA Gateway in wsa:RelatesTo header in the
callback message.

Establishing an Asynchronous Service Process Flow

To better understand how the asynchronous service will work, the following
design-time tasks are included in this chapter:

1. Create a SOA Composite Application, page 3-52

Use this step to create a new SOA Composite application using an Asynchronous
BPEL template. This automatically creates two dummy activities - Receive and
Reply - to receive input from a third party application and to reply output of the
BPEL process to the request application.

2. Add a Partner Link, page 3-56

Use this step to create a partner link using the PL/SQL API FND_USER_PKG
exposed as Web service.

3. Add an Invoke activity, page 3-58

Use this step to configure an Invoke activity to invoke the service.

4. Add a Receive activity, page 3-59

Use this step to configure a Receive activity to receive the response message from
the asynchronous operation and pass it on to the second Assign activity.

5. Add Assign activities, page 3-61

Use this step to configure two Assign activities in order to pass username from the
client as an input value to the Invoke activity, as well as to pass the response
message from the Receive activity. The response details will be written as an output
file on the server where the BPEL process is deployed.

For general information and how to create SOA composite applications using BPEL
process service component, see the Oracle Fusion Middleware Developer's Guide for Oracle
SOA Suite for details.

Creating a SOA Composite Application with BPEL Process
Use this step to create a new SOA Composite Application that will contain various
BPEL process activities.

To create a new SOA Composite Application with BPEL project:

Using PL/SQL APIs as Web Services 3-53

1. Open Oracle JDeveloper.

2. Click New Application in the Application Navigator.

The "Create SOA Application - Name your application" page is displayed.

3. Enter an appropriate name for the application in the Application Name field and
select SOA Application from the Application Template list.

Click Next. The "Create SOA Application - Name your project" page is displayed.

4. Enter an appropriate name for the project in the Project Name field. For example,
FND_USER_PKG_BPEL_CLIENT.

The Create SOA Application - Name your project Page

5. In the Project Technologies tab, select 'Web Services' and ensure that SOA is
selected from the Available technology list to the Selected technology list.

Click Next. The "Create SOA Application - Configure SOA settings" page is
displayed.

6. Select Composite With BPEL Process from the Composite Template list, and then
click Finish.

3-54 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

You have created a new application, and a SOA project. This automatically creates a
SOA composite.

The Create BPEL Process page is displayed.

Using PL/SQL APIs as Web Services 3-55

The Create BPEL Process Page

7. Leave the default BPEL 1.1 Specification selection unchanged. This creates a BPEL
project that supports the BPEL 1.1 specification.

Enter an appropriate name for the BPEL process in the Name field. For example,
TESTUSERNAME_ASYNC_BPELProcess.

Select Synchronous BPEL Process in the Template field.

Select requiresNew from the Transaction drop-down list. Click OK.

A synchronous BPEL process is created with the Receive and Reply activities. The
required source files including bpel and wsdl, using the name you specified (for
example, TESTUSERNAME_ASYNC_BPELProcess.bpel and
TESTUSERNAME_ASYNC_BPELProcess.wsdl) and composite.xml are also
generated.

3-56 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

8. Navigate to SOA Content > Business Rules and click the composite.xml to view
the composite diagram.

Double click on the TESTUSERNAME_ASYNC_BPELProcess component to open
the synchronous BPEL process.

Adding a Partner Link
Use this step to configure a BPEL process by writing the response received from the
asynchronous operation to a file.

Using PL/SQL APIs as Web Services 3-57

To add a Partner Link:

1. In Oracle JDeveloper, place your mouse in the Partner Links area and right click to
select Create Partner Link... from the pull-down menu. Alternatively, you can drag
and drop Partner Link from the BPEL Constructs list into the right Partner Link
swim lane of the process diagram.

The Create Partner Link window appears.

2. Copy the WSDL URL corresponding to the FND_USER_PKG service that you
recorded earlier from the Integration Repository, and paste it in the WSDL File
field. Press the [Tab] key.

3. Enter the partner link name as FND_USER_PKG.

Select the following values in the WSDL Settings region:

• Partner Link Type: FND_USER_PKG

• Partner Role: FND_USER_PKGProvider

• My Role: FND_USER_PKGRequester

Create Partner Link

Click Apply.

3-58 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

The partner link is created with the required WSDL settings, and is represented in
the BPEL project by a new icon in the border area of the process diagram.

4. Click OK to complete the partner link configuration.

Partner Link FND_USER_PKG is added to the Partner Links section in the BPEL
process diagram.

Save your changes by selecting File > Save All.

Adding an Invoke Activity
Use this step to configure an Invoke activity for File Adapter to write the response to an
output file.

To add an Invoke activity for WriteFile Partner Link:

1. In Oracle JDeveloper, expand the BPEL Constructs from the Component Palette.
Drag and drop the Invoke activity into the center swim lane of the process diagram
after the receiveInput activity.

2. Link the Invoke activity to the FND_USER_PKG service. The Edit Invoke dialog box
appears.

3. Enter a name for the Invoke activity, and then click the Create icon next to the
Input Variable field to create a new variable. The Create Variable dialog box
appears.

Enter
'TESTUSERNAME_ASYNCH_Invoke_TESTUSERNAME_ASYNCH_InputVariable'
as the input variable name. You can also accept the default name.

Select Global Variable and click OK.

Please note that we have selected asynchronous function.

Using PL/SQL APIs as Web Services 3-59

Editing the Invoke Activity

4. Click Apply and then OK in the Edit Invoke dialog box to finish configuring the
Invoke activity.

The Invoke activity appears in the process diagram.

Adding a Receive Activity
Use this step to configure a Receive activity to receive the response message from the
asynchronous operation and pass it on to the second Assign activity.

1. In Oracle JDeveloper, expand the BPEL Constructs from the Component Palette.
Drag and drop the Receive activity into the center swim lane of the process
diagram after the Invoke activity.

2. Link the Receive activity to the FND_USER_PKG partner link. The Receive activity
will receive the response message from the partner link. The Edit Receive dialog

3-60 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

box appears.

3. Enter a name for the Receive activity. Select
TESTUSERNAME_ASYNCH_RESPONSE from the Operation drop-down list.

4. Click the Create icon next to the Variable field to create a new variable. The Create
Variable dialog box appears.

Select Global Variable, and then enter a name for the variable. You can accept the
default name (such as
TESTUSERNAME_ASYNCH_Receive_TESTUSERNAME_ASYNCH_RESPONSE_I
nputVariable). Click OK to return to the Edit Receive dialog box.

5. Click Apply and OK to finish configuring the Receive activity.

The Receive activity appears in the BPEL process diagram.

Using PL/SQL APIs as Web Services 3-61

Adding Assign Activities
This step is to configure two Assign activities to pass username from the client as an
input value to the Invoke activity, as well as to pass the response message from the
Receive activity. The response details will be written as an output file on the server
where the BPEL process is deployed.

To enter the first Assign activity to pass username from the client as an input value to
the Invoke activity:

1. Add the Assign activity by dragging and dropping the Assign activity from the
BPEL Constructs in the Component Palette, between the receiveInput activity and
the Invoke activity.

2. Double-click the Assign activity to access the Edit Assign dialog box.

Enter Input_to_Service as the name of the first Assign activity.

3. Select the Copy Rules tab and expand the source and target trees:

• In the From navigation tree, navigate to Variables > Process > Variables >
InputVariable > payload > client:process > client:input. The From XPath field
is also displayed.

• In the To navigation tree, navigate to Variables > Process > Variables >
TESTUSERNAME_ASYNCH_Invoke_TESTUSERNAME_ASYNCH_InputVa
riable > body > ns2:InputParameter and select ns2: X_USER_NAME. The To
XPath field is also displayed.

3-62 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

4. Drag the source node (client:input) to point to the target node (ns2:
X_USER_NAME) that you just identified in the previous step. This creates a line
that connects the source and target nodes. The copy rule is displayed in the From
and To sections at the bottom of the Edit Assign dialog box.

Assigning Parameters

5. Click Apply and then OK to complete the configuration of the first Assign activity.

To enter the second Assign activity to pass the response message from the Receive
activity:

1. Add the second Assign activity by dragging and dropping the Assign activity from
the BPEL Constructs in the Component Palette, between the Receive activity and
the replyOut activity.

2. Double-click the Assign activity to access the Edit Assign dialog box.

Enter Service_Response as the name of the second Assign activity.

3. Select the Copy Rules tab and expand the source and target trees:

• In the From navigation tree, navigate to Variables > Process > Variables >
TESTUSERNAME_ASYNCH_Receive_TESTUSERNAME_ASYNCH_InputV
ariable > body > ns2:OutputParameters and select ns2:TESTUSERNAME. The
From XPath field is also displayed.

• In the To navigation tree, select type Variable and then navigate to Variables >
Process > Variables > OutputVariable > payload > client: proessResponse and

Using PL/SQL APIs as Web Services 3-63

select client:result. The To XPath field is also displayed.

4. Drag the source node (ns2:TESTUSERNAME) to point to the target node
(client:result) that you just identified in the previous step. This creates a line that
connects the source and target nodes. The copy rule is displayed in the From and To
sections at the bottom of the Edit Assign dialog box.

Assigning Parameters

5. Click Apply and then OK to complete the configuration of the second Assign
activity.

The Assign activities appear in the BPEL process diagram.

3-64 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

Configuring Web Service Policies

Use the following steps to add a security policy at design time:

1. Navigate to SOA Content > composite.xml. Right click on the FND_USER_PKG
service and select "Configure WS Policies > For Request" from the drop-down list.

2. The Configure SOA WS Policies dialog appears.

In the Security section, click the Add icon (+). The Select Server Security Policies
dialog appears.

Using PL/SQL APIs as Web Services 3-65

Select 'oracle/wss_username_token_service_policy' and click OK.

The attached security policy is shown in the Security section.

A lock icon appears in the FND_USER_PKG service of the composite.xml
indicating that a security policy has been successfully attached.

3-66 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

3. Select the FND_USER_PKG service, and add the reference binding by selecting View
> Property Inspector from the navigation menu. This displays the Property
Inspector window for the FND_USER_PKG service component.

Note: This can also be done by directly adding the following
reference binding in the Source tab of the composite.xml file for the
FND_USER_PKG service:
<property name="oracle.webservices.auth.username"
type="xs:string"
 many="false"
override="may">operations</property>
<property name="oracle.webservices.auth.password"
type="xs:string"
 many="false" override="may">password
</property>

Replace password with the actual password for the username
'operations'.

In the Properties section, click the Add icon (+) for binding properties. The Create
Property dialog appears.

Enter 'oracle.webservices.auth.username' in the Name field and enter
'operations' as the value.

Click OK.

4. Use the same approach by clicking the Add icon (+) again in the Properties section
for binding properties. Enter 'oracle.webservices.auth.password' in the
Name field. Enter the associated password for user 'operations' in the Value field.

Using PL/SQL APIs as Web Services 3-67

Click OK.

Both selected property names and values appear in the Properties section.

Click the Source tab of the composite.xml and notice that the
oracle.webservices.auth.username and
oracle.webservices.auth.password property names and the associated
values are added to the FND_USER_PKG reference.

Deploying and Testing the SOA Composite with Asynchronous BPEL Process
To invoke the asynchronous TESTUSERNAME method from the BPEL client contained
in the SOA composite, the SOA composite needs to be deployed on the Oracle
WebLogic managed server. This can be achieved using Oracle JDeveloper. Once the
composite is deployed, it can be tested from the Oracle Enterprise Manager Fusion
Middleware Control Console.

Prerequisites

Before deploying the SOA composite with BPEL process using Oracle JDeveloper, you
must have established the connectivity between the design-time environment and the

3-68 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

run-time server. For information on how to configure the necessary server connection,
see Configuring Server Connection, page B-1.

Note: If a local instance of the WebLogic Server is used, start the
WebLogic Server by selecting Run > Start Server Instance from Oracle
JDeveloper. Once the WebLogic Admin Server "DefaultServer" instance
is successfully started, the <Server started in Running mode> and
DefaultServer started message in the Running:DefaultServer and
Messages logs should appear.

Perform the following run-time tasks:

1. Deploy the SOA Composite Application with BPEL Process, page 3-68

2. Test the SOA Composite Application with BPEL Process, page 3-73

Deploying the SOA Composite with BPEL Process
You must deploy the SOA composite with BPEL process that you created earlier before
you can run it.

To deploy the SOA composite application:

1. In the Applications Navigator of JDeveloper, select the
FND_USER_PKG_BPEL_CLIENT project.

2. Right-click the project and select Deploy > [project name] > [serverConnection]
from the menu.

For example, you can select Deploy > FND_USER_PKG_BPEL_CLIENT >
SOAServer to deploy the process if you have the connection set up appropriately.

Using PL/SQL APIs as Web Services 3-69

Note: If this is the first time to set up server connection, then the
Deployment Action window appears. Select 'Deploy to Application
Server' and click Next.

3-70 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

In the Deploy Configuration window, ensure the following
information is selected before clicking Next to add a new
application server:

• New Revision ID: 1.0

• Mark composite revision as default: Select this check box.

• Overwrite any existing composites with the same revision ID:
Select this check box.

The steps to create a new Oracle WebLogic Server connection from
JDeveloper are covered in Configuring Server Connection, page B-
1.

3. In the Select Server page, select 'soa-server1' that you have established the server
connection earlier. Click Next.

Using PL/SQL APIs as Web Services 3-71

4. In the SOA Servers page, accept the default target SOA Server ('soa-server1')
selection.

3-72 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

Click Next and Finish.

5. If you are deploying the composite for the first time from your Oracle JDeveloper
session, the Authorization Request window appears. Enter username and password
information specified during Oracle SOA Suite installation. Click OK.

6. Deployment processing starts. Monitor deployment process and check for
successful compilation in the SOA - Log window.

Verify that the deployment is successful in the Deployment - Log window.

Using PL/SQL APIs as Web Services 3-73

Testing the SOA Composite Application
Once the BPEL process contained in the SOA composite application has been
successfully deployed, you can manage and monitor the process from Oracle Enterprise
Manager Fusion Middleware Control Console.

For more information about Oracle SOA Suite, see the Oracle Fusion Middleware
Administrator's Guide for Oracle SOA Suite.

To test asynchronous operation in the Console:

1. Log on to Oracle Enterprise Manager Fusion Middleware Control Console (
http://<hostname>:<port>/em) with username and password information
specified during the installation.

2. From the Farm navigation pane, expand the SOA >soa-infra node in the tree to
navigate through the SOA Infrastructure home page and menu to access your
deployed SOA composite applications running on soa-infra managed server.

Click the FND_USER_PKG_BPEL_CLIENT [1.0] link.

3. In the FND_USER_PKG_BPEL_CLIENT [1.0] home page, click Test.

4. The Test Web Service page for initiating an instance appears. Enter username
'operations' as XML payload input data in the Input Arguments section.

Click Test Web Service to initiate the process.

3-74 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

5. The service invocation is successful and the response is shown in the Response tab.

Please note that the TESTUSERNAME operation returns a positive number
asynchronously if the input username passed as an argument exists in Oracle
E-Business Suite. If the username does not exist, then number 0 is returned instead.

6. Click Launch Flow Trace in the Response tab to open the Flow Trace page.

Using PL/SQL APIs as Web Services 3-75

7. In the Trace section, verify the deployed
'TESTUSERNAME_ASYNCH_BPELProcess' BPEL Component contained in the
'testusername_async_bpelprocess_client_ep' service along with the
FND_USER_PKG and FND_USER_PKG_Service services have a 'Completed' state
indicating that the invocation executed successfully.

You can also check the Faults section to see if any error occurred during the test.

8. Click the TESTUSERNAME_AYSNCH link in the Flow Trace page to display the
instance details in the Audit Trail tab.

3-76 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

Using PL/SQL REST Services
REST services provided through Oracle E-Business Suite Integrated SOA Gateway can
be used to create or update resources in Oracle E-Business Suite.

Since all REST services are secured by HTTP Basic Authentication or Token Based
Authentication, to better understand how these security methods work in conjunction
with REST service invocation, the following REST service invocation examples are
described in this section:

Using PL/SQL APIs as Web Services 3-77

• Invoking a REST Service Using HTTP Basic Authentication and XML Payload With
REST Header, page 3-77

• Invoking a REST Service Using Token Based Authentication and JSON Payload,
page 3-88

Invoking a REST Service Using HTTP Basic Authentication and XML Payload With REST
Header

REST Service Invocation Process Scenario

Take a PL/SQL API called 'Profile Management APIs' (FND_PROFILE) as an example to
explain the REST service invocation.

When a request is received to get the current value of a specific user profile option, a
Java client is used to invoke the Get Profile REST service operation contained in the
API. In this example, the request provides username and password information in the
HTTP header, the user credentials are authenticated and authorized. After validation,
the Get Profile REST service operation can be invoked for the authenticated user.

After the successful service invocation, the client will receive a REST response message
with the profile value for the request. If the profile does not exist, null will return.

Prerequisites to Use a PL/SQL REST Service

Before invoking the PL/SQL REST service, ensure the following tasks are in place:

Setting Variables in RESTHeader for an HTTP Request

Applications context values can be passed in the 'RESTHeader' element before invoking
a REST service that requires these values.

These context elements for PL/SQL interface type are Responsibility,
RespApplication, SecurityGroup, NLSLanguage, and Org_Id.

The expected values for these elements are described in the following table:

Header Variables and Expected Values for PL/SQL Interface Type

Element Name Expected Value

Responsibility responsibility_key (such as
"SYSTEM_ADMINISTRATOR")

RespApplication Application Short Name (such as
"SYSADMIN")

SecurityGroup Security Group Key (such as "STANDARD")

3-78 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

Element Name Expected Value

NLSLanguage NLS Language (such as "AMERICAN")

Org_Id Org Id (such as "202")

Note: NLS Language and Org_Id are optional values to be passed.

• If the NLS Language element is specified, REST requests can be
consumed in the language passed. All corresponding REST
responses and error messages can also be returned in the same
language. If no language is identified, then the default language of
the user will be used.

• If a service execution is dependent on any particular organization,
then you must pass the Org_Id element of that REST request.

Invoking a REST Service Using Java

Based on the REST service process scenario, the following design-time tasks are
included in this section:

1. Deploying a PL/SQL REST Web Service, page 3-78

2. Recording Resource Information from Deployed WADL, page 3-80

3. Creating a Project with a Java Class, page 3-81

For information on how to invoke the REST service, see Invoking a REST Service Using
a Java Class, page 3-87.

Deploying a PL/SQL REST Web Service
Use the following steps to deploy the 'Profile Management APIs' (FND_PROFILE):

1. Log on to Oracle Integration Repository with the System Integration Developer role
or the Integration Repository Administrator role through the Integrated SOA
Gateway responsibility or through custom responsibility and navigation path.
Select the Integration Repository link.

2. In the Integration Repository tab, click Search to access the main Search page.

3. Enter 'FND_PROFILE' in the Internal Name field. Click Go to execute the search.

Click the 'Profile Management APIs' interface name link to open the interface
details page.

Using PL/SQL APIs as Web Services 3-79

4. In the REST Web Service tab, enter the following information:

• Service Alias: FndProfileSvc

The alias will be displayed as the service endpoint in the schema for the
selected method or operation which is 'Get Profile' in this example.

• In the Service Operations region, select the 'Get Profile' service operation.

The selected method will be exposed as a REST service operation.

5. Click Deploy to deploy the service to an Oracle E-Business Suite WebLogic
environment.

Once the REST service has been successfully deployed, 'Deployed' appears in the REST
Service Status field along with the View WADL link. Click the View WADL link to
view the deployed service WADL description.

For more information on deploying REST services, see Deploying REST Web Services,
Oracle E-Business Suite Integrated SOA Gateway Implementation Guide.

3-80 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

Recording Resource Information from Deployed WADL
To obtain service resource information from the deployed WADL for the FND_PROFILE
service, click the View WADL link in the REST Web Service tab.

The following WADL description appears:
<xml version="1.0" encoding="UTF-8" standalone="no" ?>
<application
xmlns:tns="http://xmlns.oracle.com/apps/fnd/soaprovider/plsql/rest/fnd_p
rofile/" xmlns="http://wadl.dev.java.net/2009/02"
xmlns:tns1="http://xmlns.oracle.com/apps/fnd/rest/fndprofilesvc/get/"
name="FND_PROFILE"
targetNamespace="http://xmlns.oracle.com/apps/fnd/soaprovider/plsql/rest
/fnd_profile/">
<grammars>
 <include xmlns="http://www.w3.org/2001/XMLSchema"
href="https://<hostname>:<port>/webservices/rest/FndProfileSvc/?XSD=GET_
SYNCH_TYPEDEF.xsd" />
</grammars><resources
base="http://<hostname>:<port>/webservices/rest/FndProfileSvc/">
<resource path="/get/">
 <method id="GET" name="POST">
 <request>
 <representation mediaType="application/xml"
type="tns1:InputParameters" />
 <representation mediaType="application/json"
type="tns1:InputParameters" />
 </request>
 <response>
 <representation mediaType="application/xml"
type="tns1:OutputParameters" />
 <representation mediaType="application/json"
type="tns1:OutputParameters" />
 </response>
 </method>
 </resource>
 </resources>
</application>

Using PL/SQL APIs as Web Services 3-81

Copy or record the following information which will be used later when defining a Java
client:

• <resources base>="http://<hostname>:<port>/webservices/rest/
FndProfileSvc/">

This information will be used later as baseUrl =
"//<hostname>:<port>/webservices/rest/" in a Java client.

• <resource path>="/get/">

This information will be used later as part of the svcUrlStr1 = baseUrl +
"/FndProfileSvc/get/" in a Java client.

Creating a Project with a Java Class
This section describes how to create a project with a Java class that will be used to
invoke the FND_PROFILE REST service.

To create a project and a Java class:

1. Open Oracle JDeveloper.

2. From the main menu, choose File > New.

In the New Gallery window, expand the General category and select 'Applications'.
In the Items list, select Custom Application.

3-82 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

Click OK. The "Create Custom Application - Name your application" page is
displayed.

3. Enter an appropriate name for the application in the Application Name field. Click
Next.

4. The "Create Custom Application - Name your project" page is displayed. Enter an
appropriate name for the project in the Project Name field, for example
'ISGRESTClient'.

Using PL/SQL APIs as Web Services 3-83

In the Project Features tab, select 'Java' from the Available list. Move the selected
feature from the "Available" window to the "Selected" window using the right
arrow button.

Click Next.

5. Click Finish in the Configure Java Settings dialog box.

The newly created project should be visible in the Projects workspace.

6. Select and right-click on the project name you just created in the Application
Navigator and choose New from the drop-down selection menu.

3-84 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

7. In the New Gallery window, expand the General category and select 'Java'. In the
Items list, select Class. Click OK.

8. In the Create Java Class dialog, change the default class name to
'RestInvocationBasicAuthWithHeader'. Accept all other defaults and click OK.

9. The new class opens automatically in the source editor, displaying the skeleton
class definition.

Replace the skeleton class definition with the following Java code:

Using PL/SQL APIs as Web Services 3-85

package sample;

import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.io.OutputStreamWriter;
import java.net.HttpURLConnection;
import java.net.URL;
import com.sun.jersey.core.util.Base64;

public class RestInvocationBasicAuthWithHeader {
 // xml payload with REST header for invoking the service
 private static final String xmlRequest4 = "<ns:GET_Input
xmlns:ns=\"http://xmlns.oracle.com/apps/fnd/soaprovider/plsql/rest/f
nd_profile/get/\""
 + "
xmlns:ns1=\"http://xmlns.oracle.com/apps/fnd/soaprovider/plsql/rest/
fnd_profile/header\">"
 + " <ns1:RESTHeader>"
 + "
<ns1:Responsibility>SYSTEM_ADMINISTRATOR</ns1:Responsibility>"
 + " <ns1:RespApplication>SYSADMIN</ns1:RespApplication>"
 + " <ns1:SecurityGroup>STANDARD</ns1:SecurityGroup>"
 + " <ns1:NLSLanguage>AMERICAN</ns1:NLSLanguage>"
 + " <ns1:Org_Id>202</ns1:Org_Id>"
 + " </ns1:RESTHeader>"
 + " <ns:InputParameters>"
 + " <ns:NAME>APPS_SERVLET_AGENT</ns:NAME>"
 + " </ns:InputParameters> + </ns:GET_Input>";

 /**
 * This method invokes a REST service using basic Authentication
and xml payload with REST headers.
 */
 public static void postXml_BasicAuth(String svcUrlStr, String
username,String passwd) throws IOException {

 URL url = new URL(svcUrlStr);
 // Obtaining connection to invoke the service
 HttpURLConnection conn = (HttpURLConnection) url.openConnection();
 // Setting Http header values
 conn.setRequestMethod("POST");
 conn.setRequestProperty("Content-Type", "application/xml");
 String auth = username + ":" + passwd;
 byte[] bytes = Base64.encode(auth);
 String authStr = new String(bytes);
 conn.setRequestProperty("Authorization", "Basic " + authStr);
 conn.setRequestProperty("Accept", "application/xml");
 conn.setRequestProperty("Content-Language", "en-US");
 conn.setUseCaches(false);
 conn.setDoInput(true);
 conn.setDoOutput(true);
 // Send request
 OutputStreamWriter wr = new
OutputStreamWriter(conn.getOutputStream());
 wr.write(xmlRequest4.toCharArray());
 wr.flush();
 wr.close();
 conn.connect();
 System.out.println("Response code - " + conn.getResponseCode());

3-86 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

// Get Response
 String response = null;
 try {
 response = readHttpResponse(conn);
 } finally {
 if (conn != null)
 conn.disconnect();
 }
 // Show response
 System.out.println("Response is : \n" + response);
 }

 /**
 * This method reads response from server and returns it in a
string representation.
 */
 private static String readHttpResponse(HttpURLConnection conn) {

 InputStream is = null;
 BufferedReader rd = null;
 StringBuffer response = new StringBuffer();
 try {

 if (conn.getResponseCode() >= 400) {
 is = conn.getErrorStream();
 } else {
 is = conn.getInputStream();
 }
 rd = new BufferedReader(new InputStreamReader(is));
 String line;
 while ((line = rd.readLine()) != null) {
 response.append(line);
 response.append('\n');
 }
 } catch (IOException ioe) {
 response.append(ioe.getMessage());
 } finally {
 if (is != null) {
 try {
 is.close();
 } catch (Exception e) {
 }
 }
 if (rd != null) {
 try {
 rd.close();
 } catch (Exception e) {
 }
 }
 }
 return (response.toString());
 }

 public static void main(String a[]) {
 String baseUrl = "http://<server hostname>:<port>/webservices/rest
";
 String svcUrlStr1 = baseUrl + "/FndProfileSvc/get/";
 // invoke Rest service using basic authentication method
 try {
 postXml_BasicAuth(svcUrlStr1, "SYSADMIN", "sysadmin");
 } catch (IOException e) {

Using PL/SQL APIs as Web Services 3-87

e.printStackTrace();
 }
 }
}

Please note that resource information recorded earlier from the deployed WADL is
now placed in the baseUrl and svcUrlStr1 elements.

Note: Use https (instead of http) in the baseUrl if your Oracle
E-Business Suite instance is running on the SSL-enabled
environment. Additionally, you need to import the SSL certificate
into your client JVM's keystore.

10. Replace <server hostname>:<port> with the actual values in the code.

11. Save your work by selecting File > Save All.

Invoking a REST Service Using a Java Class
After creating a project with a Java class
RestInvocationBasicAuthWithHeader.java, you need to compile and execute
the process to invoke the REST service.

Use the following steps to compile and run the Java class:

1. In the Application Navigator, right-click on the
RestInvocationWithLogin.java Java class you just created at the design time.
Select Make from the menu.

2. Right-click on the RestInvocationBasicAuthWithHeader.java Java class.
Select Run from the menu.

Monitor this process and check for successful compilation in the Log window. Verify
that the execution is successful in the Log window.

Viewing Output Message

When the REST service is successfully invoked, the following output appears in the Log
window:
Response code - 200
Response is :
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<OutputParameters xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns="http://xmlns.oracle.com/apps/fnd/rest/FndProfileSvc/get/">
<VAL>http://<server hostname>:<port>/OA_HTML</VAL>
</OutputParameters>

The value of the profile option 'APPS_SERVLET_AGENT' is obtained by the service and
displayed in the <VAL></VAL> tag.

Notice that service alias information FndProfileSvc entered earlier during service

3-88 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

deployment appears as part of the service endpoint.

Invoking a REST Service Using Token Based Authentication and JSON Payload
REST Service Invocation Process Scenario

A PL/SQL API User (FND_USER_PKG) is used in this example to explain the REST
service invocation.

When a consequent HTTP request is received from the same user to request for testing
user names in Oracle E-Business Suite, the Test User Name (TESTUSERNAME) REST
service operation contained in the API is invoked to test the users against the
FND_USER table.

Since password is not provided in this request, token based security method is used to
authenticate the user credentials. The security Login service is launched to create an
Oracle E-Business Suite user session and returns the session ID as cookie in place of
password for user authentication. After validation, the Test User Name (
TESTUSERNAME) REST service operation can be invoked.

In this example, user name information to be tested is passed in a JSON-based payload
for REST service invocation. When the service has been successfully executed, the
TESTUSERNAME operation returns a positive number if the user name passed in the
payload exists in Oracle E-Business Suite. If the user name does not exist, then number
0 is returned instead.

Prerequisites to Use a PL/SQL REST Service

Before performing the design-time tasks, ensure the following tasks are in place:

Obtaining Needed Libraries

To successfully invoke the REST service with payload in JSON format, you need to
obtain the following libraries available at <$COMMON_TOP>/java/lib directory:

• jersey-bundle_1.0.0.0_1-1-5-1.jar

• jackson-core-asl_1.0.0.0_1-1-1.jar

• jackson-mapper-asl_1.0.0.0_1-1-1.jar

These library files will be added to the project later at the design-time during the project
creation.

Setting Variables in RESTHeader for an HTTP Request

In REST services, applications context values can be passed in the 'RESTHeader'
element before invoking a REST service.

These RESTHeader elements for PL/SQL interface type are Responsibility,
RespApplication, SecurityGroup, NLSLanguage, and Org_Id.

For more information about the RESTHeader elements for PL/SQL interface type, see
Invoking a REST Service Using HTTP Basic Authentication and XML Payload With

Using PL/SQL APIs as Web Services 3-89

REST Header, page 3-77.

Invoking a REST Service Using Java

Based on the REST service process scenario, the following design-time tasks are
included in this section:

1. Deploying a PL/SQL REST Web Service, page 3-89

2. Recording the Deployed WADL URL, page 3-90

3. Creating a Project with a Java Class, page 3-91

For information on how to invoke the REST service with JSON payload, see Invoking a
REST Service Using a Java Class, page 3-102.

Deploying a PL/SQL REST Web Service
Use the following steps to deploy the User API (FND_USER_PKG):

1. Log on to Oracle Integration Repository with the System Integration Developer role
or the Integration Repository Administrator role through the Integrated SOA
Gateway responsibility or through custom responsibility and navigation path.
Select the Integration Repository link.

2. In the Integration Repository tab, click Search to access the main Search page.

3. Enter 'FND_USER_PKG' in the Internal Name field. Click Go to execute the search.

Click the 'User' interface name link to open the interface details page.

4. In the REST Web Service tab, enter the following information:

• Service Alias: fndMessageSvc

The alias will be displayed as the service endpoint in the schema for the
selected method or service operation which is TESTUSERNAME in this
example.

• In the Service Operations region, select 'Test User Name' (TESTUSERNAME).

The selected method will be exposed as a REST service operation.

5. Click Deploy to deploy the service to an Oracle E-Business Suite WebLogic
environment.

Once the REST service has been successfully deployed, 'Deployed' appears in the REST
Service Status field along with the View WADL link allowing you to view the WADL
description.

For more information on deploying REST services, see Deploying REST Web Services,
Oracle E-Business Suite Integrated SOA Gateway Implementation Guide.

3-90 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

Recording the Deployed WADL URL
To obtain service resource information from the deployed WADL for the
FND_USER_PKG service, click the View WADL link in the REST Web Service tab.

The following WADL description appears:
<xml version="1.0" encoding="UTF-8" standalone="no" ?>
<application
xmlns:tns="http://xmlns.oracle.com/apps/fnd/soaprovider/plsql/rest/fnd_u
ser_pkg/" xmlns="http://wadl.dev.java.net/2009/02"
xmlns:tns1="http://xmlns.oracle.com/apps/fnd/rest/fndMessageSvc/testuser
name/" name="FND_USER_PKG"
targetNamespace="http://xmlns.oracle.com/apps/fnd/soaprovider/plsql/rest
/fnd_user_pkg/">
<grammars>
 <include xmlns="http://www.w3.org/2001/XMLSchema"
href="https://<hostname>:<port>/webservices/rest/fndMessageSvc/?XSD=TEST
USERNAME_SYNCH_TYPEDEF.xsd" />
</grammars><resources
base="http://<hostname>:<port>/webservices/rest/fndMessageSvc/">
<resource path="/testusername/">
 <method id="GET" name="POST">
 <request>
 <representation mediaType="application/xml"
type="tns1:InputParameters" />
 <representation mediaType="application/json"
type="tns1:InputParameters" />
 </request>
 <response>
 <representation mediaType="application/xml"
type="tns1:OutputParameters" />
 <representation mediaType="application/json"
type="tns1:OutputParameters" />
 </response>
 </method>
 </resource>
 </resources>
</application>

Copy or record the following information which will be used later when defining a Java
client:

Using PL/SQL APIs as Web Services 3-91

• <resources base>="http://<hostname>:<port>/webservices/rest/
fndMessageSvc/">

This information will be used later as baseUrl =
"//<hostname>:<port>/webservices/rest/" in a Java client.

• <resource path>="/testusername/">

This information will be used later as part of the svcUrlStr1 = baseUrl +
"/fndMessageSvc/testusername/" in a Java client.

Creating a Project with a Java Class
This section describes how to create a project with a Java class (
RestInvocationWithLogin.java) and JSON payload that will be used to invoke
the FND_USER_PKG REST service.

To create a project with a Java class:

1. In Oracle JDeveloper, choose File > New from the main menu.

In the New Gallery window, expand the General category and select 'Applications'.
In the Items list, select Custom Application.

Click OK. The "Create Custom Application - Name your application" page is
displayed.

2. Enter an appropriate name for the application in the Application Name field. Click
Next.

3. The "Create Custom Application - Name your project" page is displayed. Enter an
appropriate name for the project in the Project Name field, for example
'ISGRESTClient3'.

In the Project Features tab, select 'Java' from the Available list. Move the selected
feature from the "Available" window to the "Selected" window using the right
arrow button.

Click Next

4. Click Finish in the Configure Java Settings dialog box.

5. In the Application Navigator and right-click on the project you just created, and
choose New from the drop-down menu.

6. In the New Gallery window, expand the General category and select 'Java'. In the
Items list, select Class. Click OK.

7. In the Create Java Class dialog, change the default class name to
'RestInvocationWithLogin'. Accept all other defaults and click OK.

3-92 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

8. The new class opens automatically in the source editor, displaying the skeleton
class definition.

Replace the skeleton class definition with the following Java code:

Using PL/SQL APIs as Web Services 3-93

package sample;

import java.io.BufferedReader;
import java.io.ByteArrayInputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.io.OutputStreamWriter;
import java.net.HttpURLConnection;
import java.net.URL;
import org.codehaus.jackson.JsonNode;
import org.codehaus.jackson.JsonParseException;
import org.codehaus.jackson.JsonParser;
import org.codehaus.jackson.map.ObjectMapper;
import com.sun.jersey.core.util.Base64;

public class RestInvocationWithLogin {

 private static final String jsonRequest1 =
"{\"TESTUSERNAME_Input\":{ "
 + " \"@xmlns\":\"http://xmlns.oracle.com/apps/fnd/rest/
fndMessageSvc/testusername/\","
 + " \"RESTHeader\":{ "
 + "
\"@xmlns\":\"http://xmlns.oracle.com/apps/fnd/rest/fndMessageSvc/hea
der\","
 + " \"Responsibility\":\"SYSTEM_ADMINISTRATOR\","
 + " \"RespApplication\":\"SYSADMIN\","
 + " \"SecurityGroup\":\"STANDARD\","
 + " \"NLSLanguage\":\"AMERICAN\","
 + " \"Org_Id\":\"202\" "
 + " }, " + " \"InputParameters\":{ "
 + " \"X_USER_NAME\":\"operations\" " + " }" + "}}";

 /**
 * This Method invokes the a rest service using the accessTokenName
and accessToken values returned by AOL login service
 */
 public static void postJSON_AolToken(String svcUrlStr, String
tokenName,String tokenValue) throws IOException {

 URL url = new URL(svcUrlStr);
 //Obtaining connection to invoke the service
 HttpURLConnection conn = (HttpURLConnection) url.openConnection();
 //Setting Http header values
 conn.setRequestMethod("POST");
 conn.setRequestProperty("Content-Type", "application/json");
 //Adding the accessTokenName and accessToken as Cookies
 conn.addRequestProperty("Cookie", tokenName + "=" + tokenValue);
 conn.setRequestProperty("Accept", "application/json");
 conn.setRequestProperty("Content-Language", "en-US");
 conn.setUseCaches(false);
 conn.setDoInput(true);
 conn.setDoOutput(true);
 //Send request
 OutputStreamWriter wr = new
OutputStreamWriter(conn.getOutputStream());
 wr.write(jsonRequest1.toCharArray());
 wr.flush();
 wr.close();

3-94 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

conn.connect();
 System.out.println("Response code - " + conn.getResponseCode());
 //Get Response
 String response = null;
 try {
 response = readHttpResponse(conn);
 } finally {
 if (conn != null)
 conn.disconnect();
 }
 //Show Response
 System.out.println("Response is : \n" + response);
 }

 /**
 * This method invokes the AOL login service.It authenticates login
credentials and returns accessTokenName and accessToken values
after successful validation of login credentials.
 */
 private static String[] getAolToken(String baseUrl, String
username,String passwd) throws Exception {

 String rfUrl = baseUrl + "/login";
 URL url = new URL(rfUrl);
 //Obtaining connection to invoke login service.
 HttpURLConnection conn = (HttpURLConnection) url.openConnection();
 String auth = username + ":" + passwd;
 byte[] bytes = Base64.encode(auth);
 String authStr = new String(bytes);
 //Setting Http request method
 conn.setRequestMethod("GET");
 //Setting the Http header values
 conn.setRequestProperty("Authorization", "Basic " + authStr);
 conn.setRequestProperty("Content-type", "application/json");
 conn.setRequestProperty("Accept", "application/json");
 conn.setUseCaches(false);
 conn.setDoInput(true);
 conn.setDoOutput(true);
 conn.connect();
 String response = null;
 //Get Response
 try {
 response = readHttpResponse(conn);
 } finally {
 if (conn != null)
 conn.disconnect();
 }
 //Parsing Response to obtain
 JsonParser jp = null;
 JsonNode root = null;
 ObjectMapper mapper = new ObjectMapper();
 try {
 jp = mapper.getJsonFactory().createJsonParser(new
ByteArrayInputStream(response.getBytes()));

jp.disableFeature(org.codehaus.jackson.JsonParser.Feature.AUTO_CLOSE
_SOURCE);
 root = jp.readValueAsTree();
 } catch (JsonParseException jpe) {
 jpe.printStackTrace();
 } catch (IOException ioe) {

Using PL/SQL APIs as Web Services 3-95

ioe.printStackTrace();
 }
 JsonNode dataNode = root.get("data");
 JsonNode accessTokenNode = dataNode.get("accessToken");
 String accessToken = accessTokenNode.getTextValue();
 JsonNode accessTokenNameNode = dataNode.get("accessTokenName");
 String accessTokenName = accessTokenNameNode.getTextValue();
 return (new String[] { accessTokenName, accessToken });
 }

 /**
 * This method reads response sent by the server and returns it in
a string representation.
 */
 private static String readHttpResponse(HttpURLConnection conn) {
 InputStream is = null;
 BufferedReader rd = null;
 StringBuffer response = new StringBuffer();
 try {
 if (conn.getResponseCode() >= 400) {
 is = conn.getErrorStream();
 } else {
 is = conn.getInputStream();
 }
 rd = new BufferedReader(new InputStreamReader(is));
 String line;
 while ((line = rd.readLine()) != null) {
 response.append(line);
 response.append('\n');
 }
 } catch (IOException ioe) {
 response.append(ioe.getMessage());
 } finally {
 if (is != null) {
 try {
 is.close();
 } catch (Exception e) {
 }
 }
 if (rd != null) {
 try {
 rd.close();
 } catch (Exception e) {
 }
 }
 }
 return (response.toString());
 }

 public static void main(String[] args) throws Exception {
 String baseUrl = "http://<server hostname>:<port>/webservices/rest
";
 String svcUrlStr1 = baseUrl + "/fndMessageSvc/testusername/";
 //Get Access Token by invoking AOL Login Service
 String[] token = getAolToken(baseUrl, "SYSADMIN", "sysadmin");
 System.out.println("AOL Token : Name - " + token[0] + ", Value -
"+ token[1]);
 //Invoke REST service using the Access Token
 postJSON_AolToken(svcUrlStr1, token[0], token[1]);
 }
}

3-96 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

Please note that resource information recorded earlier from the deployed WADL is
now placed in the baseUrl and svcUrlStr1 elements.

Note: Use https (instead of http) in the baseUrl if your Oracle
E-Business Suite instance is running on the SSL-enabled
environment. Additionally, you need to import the SSL certificate
into your client JVM's keystore.

9. Replace <server hostname>:<port> with the actual values in the code.

10. Add required libraries to process JSON payload:

Use the following steps to add the required library files to the project properties.

1. Select and right-click on the project name you just created earlier to open a
selection menu.

2. Select Project Properties from the menu.

Using PL/SQL APIs as Web Services 3-97

The Default Properties dialog box opens.

3. Select Libraries and Classpath, and click Add Library. The Add Library dialog
box opens.

3-98 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

4. In the Add Library dialog box, select the Project folder and then click New.

The Create Library dialog box opens.

5. In the Library Name field, enter 'jackson-core-asl_1.0.0.0_1-1-1.jar'.

Click Add Entry. The Select Path Entry dialog box appears.

Using PL/SQL APIs as Web Services 3-99

6. In the Select Path Entry dialog box, locate and select the
'jackson-core-asl_1.0.0.0_1-1-1.jar' file that you have downloaded. This adds it to
the Classpath.

3-100 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

Click OK. The 'ackson-core-asl_1.0.0.0_1-1-1.jar' is now added to the Project
folder.

Using PL/SQL APIs as Web Services 3-101

7. Repeat steps 4, 5, and 6 to add the following two jar files to the Project folder:

• jersey-bundle_1.0.0.0_1-1-5-1.jar

• jackson-mapper-asl_1.0.0.0_1-1-1.jar

These three jar files should now appear in the Project folder. Click OK.

8. The Project Properties dialog box appears. Click OK. This project is now set up
with the required libraries.

3-102 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

11. Save your work by selecting File > Save All.

Invoking REST Service Using a Java Client
After creating a project with a Java class RestInvocationWithLogin.java, you
need to compile and execute the process to invoke the FND_USER_PKG REST service.

Use the following steps to compile and run the Java class:

1. In the Application Navigator, right-click on the
RestInvocationWithLogin.java Java class you just created at the design time.
Select Make from the menu.

2. Right-click on the RestInvocationWithLogin.java Java class and select Run
from the menu.

Monitor this process and check for successful compilation in the Log window. Verify
that the execution is successful in the Log window.

Viewing Output Message

When the FND_USER_PKG REST service is successfully invoked, the following output
appears:

• The response from the Login service should be like:

AOL Token : Name - isgdemo, Value -
5xjE6DVfi7NlEGnS70xX1fvrdt

Using PL/SQL APIs as Web Services 3-103

• The response from the service invocation should be like:
Response code - 200
Response is :
{
 "OutputParameters" : {
 "@xmlns:xsi" : "http://www.w3.org/2001/XMLSchema-instance",
 "@xmlns" : "http://xmlns.oracle.com/apps/fnd/rest/fndMessageSvc
/testusername/",
 "TESTUSERNAME" : "2"
 }
}

In this example, a positive number '2' is returned indicating that the user name
passed in the payload does exist in Oracle E-Business Suite.

Notice that service alias information fndMessageSvc entered earlier during service
deployment appears as part of the service endpoint.

• The response from the Logout service should be like:
Response is :
{
 "data" : {
 "accessToken" : "-1",
 "accessTokenName" : "isgdemo",
 "ebsVersion" : null
 }
}

Using XML Gateway Inbound and Outbound Interfaces 4-1

4
Using XML Gateway Inbound and Outbound

Interfaces

Overview
Oracle E-Business Suite Integrated SOA Gateway provides a communication
infrastructure between Oracle E-Business Suite and Web consumers. Inbound and
outbound XML data is exchanged between the consumers and Oracle E-Business Suite
through Oracle XML Gateway.

Oracle XML Gateway provides a common, standards-based approach for XML
integration. XML is key to integration solutions, as it standardizes the way in which
data is searched, exchanged, and presented thereby enabling interoperability
throughout the supply chain.

Oracle XML Gateway provides a set of services that can be easily integrated with Oracle
E-Business Suite to support XML messaging. It uses the message propagation feature of
Oracle Advanced Queuing to integrate with Oracle Transport Agent to deliver
outbound XML messages and receive inbound XML messages or transactions from
business partners.

To enable bidirectional integration with Oracle E-Business Suite and consumers, Oracle
E-Business Suite Integrated SOA Gateway supports XML Gateway Map interface type
through the following approaches:

• For an inbound XML Gateway Map interface, once a Web service of an inbound
XML Gateway interface is deployed, the deployed service represented in WSDL can
be used in creating a SOA composite application with BPEL process to insert
inbound data into Oracle E-Business Suite.

• For an outbound XML Gateway Map interface, since an outbound message is first
enqueued to the ECX_OUTBOUND queue, Oracle E-Business Suite Integrated SOA
Gateway supports it through subscription model. This can be done by dequeuing
the message to retrieve outbound data from Oracle E-Business Suite. The retrieved

4-2 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

data can then be passed to trading partners or consumers who subscribed to the
message.

To better understand how to use a deployed Web service of an inbound XML Gateway
interface as well as understand how the subscription model works for an outbound
XML Gateway, the following topics are discussed in this chapter:

• Using XML Gateway Inbound Web Services, page 4-2

• Using XML Gateway Inbound Services at Design Time, page 4-2

• Deploying and Testing a SOA Composite Application with BPEL Process at
Run Time, page 4-22

• Using XML Gateway Outbound Through Subscription Model, page 4-32

• Using XML Gateway Outbound Messages in Creating a SOA Composite
Application with BPEL Process at Design Time, page 4-32

• Deploying and Testing a SOA Composite Application with BPEL Process at
Run Time, page 4-26

For the examples described in the following sections, Oracle JDeveloper 11g (11.1.1.6.0)
is used as a design-time tool to create a SOA composite application with BPEL process
and Oracle SOA Suite 11g (11.1.1.6.0) is used for the process deployment.

Note: While using Oracle JDeveloper with other Oracle Fusion
Middleware components (such as Oracle SOA Suite), to enable SOA
technologies, you need to manually download Oracle SOA Suite
Composite Editor, a JDeveloper's extension for SOA technologies. For
more information on installing additional Oracle Fusion Middleware
design time components, see the Oracle Fusion Middleware Installation
Guide for Oracle JDeveloper.

Using XML Gateway Inbound Services
This section includes the following topics:

• Using XML Gateway Inbound Services at Design Time, page 4-2

• Deploying and Testing the SOA Composite with BPEL Process at Run Time, page 4-
22

Using XML Gateway Inbound Services at Design Time
SOA Composite Application with BPEL Process Scenario

Using XML Gateway Inbound and Outbound Interfaces 4-3

Take the XML Gateway Inbound Process PO XML Transaction as an example to explain
the SOA Composite application with BPEL process creation. In this example, the XML
Gateway inbound message map is exposed as a Web service through
PROCESS_PO_007 inbound map. It allows sales order data including header and line
items to be inserted into Order Management system while an associated purchase order
is created.

When a purchase order is sent by a trading partner, the purchase order data is used as
input to the BPEL process along with ECX Header properties such as MESSAGE_TYPE,
MESSAGE_STANDARD, TRANSACTION_TYPE, TRANSACTION_SUBTYPE,
PARTY_SITE_ID, and DOCUMENT_NUMBER. The BPEL process then pushes this
purchase order in the ECX_INBOUND queue. Agent Listeners running on the
ECX_INBOUND queue would enable further processing by the Execution Engine.
Oracle XML Gateway picks up this XML message, does trading partner validation, and
inserts order data to Order Management Application.

When the SOA Composite application with BPEL process has been successfully
executed after deployment, the same order information will be inserted into the Order
Management table once a purchase order is created.

Prerequisites to Configure a SOA Composite Application with BPEL Process Using
an XML Gateway Inbound Service

Before performing the design-time tasks for XML Gateway Inbound services, ensure the
following tasks are in place:

• An integration repository administrator or a system integration developer needs to
generate a Web service first. The administrator will then deploy the generated
service to an Oracle SOA Suite WebLogic managed server.

• A system integration developer needs to locate and record the deployed WSDL
URL for the inbound message map exposed as a Web service.

• XML Gateway header variables need to be populated for XML transaction.

• A trading partner should be available for receiving the XML documents.

• ECX Inbound Agent Listener and ECX Transaction Agent Listener must be up and
running.

Deploying an XML Gateway Inbound Web Service Composite

Once a Web service for the selected XML Gateway inbound map has been successfully
created, the administrator must deploy the service from Oracle Integration Repository
to an Oracle SOA Suite WebLogic managed server.

For example, the following steps must be performed first before a system integration
developer can create a SOA Composite application with BPEL process by using the
deployed WSDL:

1. To generate a Web service, locate the interface definition first (such as an XML

4-4 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

Gateway inbound interface INBOUND:Process Purchase Order XML
Transaction (ONT:POI)) and click Generate in the interface details page.

Once the service has been successfully generated, the Web Service Status field
changed from 'Not Generated' to 'Generated' in the Web Service region.

For detailed instructions on how to generate a Web service, see Generating Web
Services, Oracle E-Business Suite Integrated SOA Gateway Implementation Guide.

2. To deploy a generated Web service, select one authentication type before clicking
Deploy. The deployed service in Oracle SOA Suite is an active service and is ready
to accept new SOAP requests.

Once the service has been successfully deployed, the selected authentication type
will be displayed along with 'Deployed' with 'Active' state in the Web Service Status
field. For more information on securing Web services with authentication type, see
Managing Web Service Security, Oracle E-Business Suite Integrated SOA Gateway
Implementation Guide.

For information on how to deploy a Web service, see Deploying and Undeploying
Web Services, Oracle E-Business Suite Integrated SOA Gateway Implementation Guide.

Searching and Recording a WSDL URL

A system integration developer needs to locate and record the deployed Web
service WSDL URL for the inbound message map.

This WSDL information will be used later in creating a partner link for the inbound
map exposed as a Web service during the BPEL process creation at design time.

For information on how to search for an interface and review the interface details, see
Searching and Viewing Integration Interfaces, page 2-1.

Populating XML Gateway Header Variables

You need to populate certain variables in the BPEL PM in order to provide XML
Gateway header information for Oracle E-Business Suite. MESSAGE_TYPE,
MESSAGE_STANDARD, TRANSACTION_TYPE, TRANSACTION_SUBTYPE,
DOCUMENT_NUMBER and PARTY_SITE_ID are the mandatory header variables that you
need to populate in order for the XML transaction to complete successfully.

Refer to Adding an Assign Activity, page 4-18.

Setting Up a Trading Partner for Receiving XML Documents

Use the following steps to set up a trading partner:

1. Log in to Oracle E-Business Suite with the XML Gateway responsibility.

2. Click the Define Trading Partners link from the Navigator.

3. The Trading Partner Setup form is displayed. Search an existing trading partner by
selecting View > Query by Example > Enter and enter the following information:

Using XML Gateway Inbound and Outbound Interfaces 4-5

• Trading Partner Type: Customer

• Trading Partner Name: Hilman and Associates

• Trading Partner Site: 1230 East 60th Street South Tulsa OK 74146

Execute the query by selecting View > Query by Example > Enter to locate the
trading partner Hilman and Associates along with existing transactions.

Enter the following trading partner details:

• Transaction Type: ONT

• Transaction SubType: POI

• Standard Code: OAG

• External Transaction Type: PO

• External Transaction SubType: PROCESS

• Direction: IN

• Map: ONT_3A4R_OAG72_IN

• Source Trading Partner Location Code: HIL-Tulsa

4-6 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

4. Save your entry.

Ensuring Agent Listeners Are Up and Running

Make sure that agent listeners on the ECX_INBOUND and ECX_TRANSACTION
queues are up and running. Use the following steps to configure these listeners in
Oracle E-Business Suite:

1. Log in to Oracle E-Business Suite with the Workflow Administrator responsibility.

2. Click the Workflow Administrator Web Applications link from the Navigator.

3. Click the Workflow Manager link under Oracle Applications Manager.

4. Click the status icon next to Agent Listeners.

5. Configure and schedule the ECX Inbound Agent Listener and the ECX Transaction
Agent Listener. Select the listeners, and select Start from the Actions box. Click Go
if they are not up and running.

SOA Composite Application with BPEL Process Creation Flow

Based on the XML Gateway Inbound Process PO XML Transaction business scenario,
the following design-time tasks are included in this chapter:

1. Create a New SOA Composite Application with BPEL Process, page 4-7

Use this step to create a new SOA Composite application with BPEL process called
XMLGatewayInbound.bpel using an Synchronous BPEL Process template. This
automatically creates two dummy activities - Receive and Reply - to receive input
from a trading partner and to reply output of the BPEL process to the request
application.

2. Create a Partner Link, page 4-11

Use this step to create a partner link to allow the inbound message to be inserted to
Oracle E-Business Suite.

3. Add a Partner Link for File Adapter, page 4-12

Use this step to add a partner link for File Adapter in order to pick up an XML file
received from the trading partner to get the XML message.

4. Add Invoke Activities, page 4-17

Use this step to add two Invoke activities in order to:

1. Get the XML message details that is received from the Receive activity.

2. Enqueue the purchase order information to the ECX_INBOUND queue.

5. Add Assign Activities, page 4-18

Using XML Gateway Inbound and Outbound Interfaces 4-7

Use this step to create two Assign activities in order to:

1. Pass XML message obtained from the first Invoke activity to the second Invoke
activity.

2. Pass ECX header variables to the second Invoke activity as input variables.

For general information and how to create SOA composite applications using BPEL
process service component, see the Oracle Fusion Middleware Developer's Guide for Oracle
SOA Suite for details.

Creating a New SOA Composite Application with BPEL Process
Use this step to create a new SOA composite application that will contain various BPEL
process activities.

To create a new SOA composite application with BPEL process:

1. Open Oracle JDeveloper.

2. Click New Application in the Application Navigator.

The "Create SOA Application - Name your application" page is displayed.

4-8 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

The Create SOA Application - Name your application Page

3. Enter an appropriate name for the application in the Application Name field and
select SOA Application from the Application Template list.

Click Next. The "Create SOA Application - Name your project" page is displayed.

Using XML Gateway Inbound and Outbound Interfaces 4-9

The Create SOA Application - Name your project Page

4. Enter an appropriate name for the project in the Project Name field, for example,
XMLGatewayInbound.

5. In the Project Technologies tab, select 'Web Services' and ensure that SOA is
selected from the Available technology list to the Selected technology list.

Click Next. The "Create SOA Application - Configure SOA settings" page is
displayed.

6. Select Composite With BPEL Process from the Composite Template list, and then
click Finish. You have created a new application, and a SOA project. This
automatically creates a SOA composite.

The Create BPEL Process page is displayed.

4-10 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

The Create BPEL Process Page

7. Leave the default BPEL 1.1 Specification selection unchanged. This creates a BPEL
project that supports the BPEL 1.1 specification.

Enter an appropriate name for the BPEL process in the Name field, for example,
XMLGInbound.

Select Synchronous BPEL Process in the Template field.

Select required from the Transaction drop-down list. Click OK.

A synchronous BPEL process is created with the Receive and Reply activities. The
required source files including bpel and wsdl, using the name you specified (for
example, XMLGInbound.bpel and XMLGInbound.wsdl) and composite.xml
are also generated.

8. Navigate to SOA Content > Business Rules and click the composite.xml to view
the composite diagram.

Using XML Gateway Inbound and Outbound Interfaces 4-11

Double click on the XMLGInbound component to open the BPEL process.

Creating a Partner Link
Use this step to create a Partner Link called ONT__POI to insert sales order data to
Oracle E-Business Suite.

To create a partner link to insert sales data to Oracle E-Business Suite:

1. In Oracle JDeveloper, place your mouse in the right side of the Partner Links area
and right click to select Create Partner Link... from the pull-down menu.
Alternatively, you can drag and drop Partner Link from the BPEL Constructs list
into the right Partner Link swim lane of the process diagram.

The Create Partner Link window appears.

2. Copy the WSDL URL corresponding to the XML Gateway inbound map
INBOUND:Process Purchase Order XML Transaction (ONT:POI) that
you recorded earlier from the Integration Repository and paste it in the WSDL File
field.

Press the [Tab] key.

3. A Partner Link Type message dialog box appears asking whether you want the
system to create a new WSDL file that will by default create partner link types for
you.

Click Yes to have the Partner Name value populated automatically. You can
manually enter the partner link name as ONT__POI.

4-12 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

Create Partner Link

Select the Partner Link Type and Partner Role fields from the drop-down lists.

Click Apply and OK.

The partner link is created with the required WSDL settings, and is represented in
the BPEL project by a new icon in the border area of the process diagram.

Partner Link is added to the Partner Links section in the BPEL process diagram.

Double click the ONT__POIWrapper.wsdl and click the Source tab to view the source
WSDL description for the partner link you just created. Replace the reference WSDL
with the deployed service end point WSDL. Save your changes by selecting File > Save
All.

Adding Partner Links for File Adapter
Use this step to configure a BPEL process by adding a partner link for File Adapter to
get the XML Message.

To add the Partner Link for File Adapter to get the XML Message:

1. In Oracle JDeveloper, drag and drop the File Adapter service from the BPEL
Services into the right Partner Link swim lane of the process diagram. The Adapter
Configuration wizard welcome page appears.

2. Click Next. The Service Name dialog box appears.

Using XML Gateway Inbound and Outbound Interfaces 4-13

3. Enter a name for the file adapter service, such as GetXMLMsg. You can add an
optional description of the service.

4. Click Next. The Adapter Interface dialog box appears.

Specifying the Operation

5. Select the Define from operation and schema (specified later) radio button and
click Next. The Operation dialog box appears.

4-14 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

Specifying the Operation

6. Specify the operation type, for example Synchronous Read File. This automatically
populates the Operation Name field.

Click Next to access the File Directories dialog box.

Using XML Gateway Inbound and Outbound Interfaces 4-15

Specifying the Input File Directory

7. Select the Physical Path radio button and enter the input payload file directory
information. For example, enter /usr/tmp/.

Note: To be able to locate the file from the physical directory that
you specified here, you must first place the input payload file (such
as order_data_xmlg.xml) to the specified directory.

Click Next to open the File Name dialog box.

8. Enter the name of the file for the synchronous read file operation. For example,
enter order_data_xmlg.xml. Click Next. The Messages dialog box appears.

4-16 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

Specifying Message Schema

9. Select Browse for schema file in front of the URL field.

The Type Chooser window is displayed.

Click the Import Schema Files button on the top right corner of the Type Chooser
window. This opens the Import Schema File pop-up window.

Enter the schema location for the service, such as
http://<soa_suite_hostname>:<port>/soa-infra/services/default
/<jndi_name>_XMLGATEWAY_ONT__POI/ONT__POI_Service?XSD=xsd/PRO
CESS_PO_007.xsd

Schema location for your service can be found from the service WSDL URL (for
example,
http://<soa_suite_hostname>:<port>/soa-infra/services/default
/<jndi_name>_XMLGATEWAY_ONT__POI/ONT__POI_Service?wsdl).

Select the Copy to Project check box and click OK.

10. The Localize Files window appears. Ensure the Maintain original directory
structure for imported files check box is selected and click OK.

The Imported Schema folder is automatically added to the Type Chooser window.

Using XML Gateway Inbound and Outbound Interfaces 4-17

11. Expand the imported schema folder and select PROCESS_PO_007 from the
PROCESS_PO_007.xsd. Click OK. The selected PROCESS_PO_007.xsd is
displayed as URL and the PROCESS_PO_007 element is selected as Schema
Element.

Click Next and then Finish. The wizard generates the WSDL file corresponding to
the partner link. The main Create Partner Link dialog box appears, specifying the
new WSDL file GetXMLMsg.wsdl.

Click Apply and then OK to complete the configuration and create the partner link
with the required WSDL settings for the File Adapter service.

The GetXMLMsg Partner Link appears in the BPEL process diagram.

Under applications window, navigate to file GetXMLMsg_file.jca. Set value of property
"DeleteFile" to "false".

Adding Invoke Activities
This step is to configure three Invoke activities:

1. To get the XML message details that is received from the Receive activity by
invoking the GetXMLMsg partner link in an XML file.

2. To enqueue the purchase order information to the ECX_INBOUND queue by
invoking ONT_POI partner link in an XML file.

To add the first Invoke activity for a partner link to get XML message:

1. In Oracle JDeveloper, expand the BPEL Constructs from the Component Palette.
Drag and drop the Invoke activity into the center swim lane of the process diagram,
between the receiveInput and replyOutput activities.

2. Link the Invoke activity to the GetXMLMsg service. The Edit Invoke dialog box
appears.

3. Enter a name for the Invoke activity (such as 'Invoke_Msg') and then click the
Create icon next to the Input Variable field to create a new variable. The Create
Variable dialog box appears.

4. Enter an input variable name. You can also accept the default name. Select Global
Variable and click OK.

5. Click the Create icon next to the Output Variable field to create a new variable. The
Create Variable dialog box appears.

6. Enter an input variable name. You can also accept the default name. Select Global
Variable and click OK.

7. Click Apply and then OK in the Edit Invoke dialog box to finish configuring the

4-18 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

Invoke activity.

The first Invoke activity appears in the process diagram.

To add the second Invoke activity for a partner link to enqueue PO information:

1. In Oracle JDeveloper, expand the BPEL Constructs from the Component Palette.
Drag and drop the second Invoke activity into the center swim lane of the process
diagram, after the first Invoke activity and the reployOutput activity.

2. Link the Invoke activity to the ONT_POI service. The Edit Invoke dialog box
appears.

3. Enter a name for the Invoke activity and then click the Create icon next to the Input
Variable field to create a new variable. The Create Variable dialog box appears.

4. Enter an input variable name. You can also accept the default name. Select Global
Variable and click OK.

5. Click Apply and then OK in the Edit Invoke dialog box to finish configuring the
Invoke activity.

6. The process diagram appears.

Adding Assign Activities
This step is to configure two Assign activities:

1. To pass XML message as an input to the Invoke activity for enqueuing message.

2. To pass XML Gateway header variables as input variables to the Invoke activity in
order to provide context information for Oracle E-Business Suite.

To add the first Assign activity to pass XML message as input to the Invoke activity:

1. In Oracle JDeveloper, expand the BPEL Constructs from the Component Palette.
Drag and drop the Assign activity into the center swim lane of the process diagram
between the two Invoke activities you just created earlier.

2. Double-click the Assign activity to access the Edit Assign dialog box.

3. Click the General tab to enter the name for the Assign activity, such as
'SetOrderXML'.

4. Select the Copy Rules tab and expand the source and target trees:

• In the From navigation tree, navigate to Variables > Process > Variables >
Invoke_Msg_SynchRead_OutputVariable and select Process_PO_007.

Using XML Gateway Inbound and Outbound Interfaces 4-19

• In the To navigation tree, navigate to Variables > Process > Variables >
Invoke_ONT__POI_InputVariable and select body.

Drag the source node (Process_PO_007) to connect to the target node (body) that
you just identified. This creates a line that connects the source and target nodes. The
copy rule is displayed in the From and To sections at the bottom of the Edit Assign
dialog box.

5. Click Apply and then OK to complete the configuration of the Assign activity.

To add the second Assign activity to pass XML Gateway header variables to the
Invoke activity:

1. In Oracle JDeveloper, expand the BPEL Constructs from the Component Palette.
Drag and drop the Assign activity into the center swim lane of the process diagram
between the first Assign and the second Invoke activities you just created earlier.

Add the second Assign activity by dragging and dropping the Assign activity into
the center swim lane of the process diagram between the SetOrderXML Assign
activity and the second Invoke activity.

2. Repeat Step 2 to Step 3 described in creating the first Assign activity to add the
second Assign activity called 'SetECXHeader'.

3. Select the Copy Rules tab and expand the source and target trees:

• Click the Expression icon to invoke the Expression Builder dialog.

Enter 'XML' in the Expression box. Click OK. The Expression icon with the
expression value ('XML') appears in the center of the Edit Assign dialog,
between the From and To navigation tree nodes.

• In the To navigation tree, navigate to Variables > Process > Variables >
Invoke_ONT__POI_InputVariable > header > ns1:SOAHeader >
ns4:ECXMSG and select MESSAGE_TYPE.

The XPath field should contain your selected entry.

Drag the Expression icon to connect to the target node (MESSAGE_TYPE) that you
just identified. This creates a line that connects the source and target nodes. The
copy rule is displayed in the From and To sections at the bottom of the Edit Assign
dialog box.

4. Use the same mechanism described in step 3 to assign values to the following
parameters:

• MESSAGE_STANDARD: 'OAG'

• TRANSACTION_TYPE: 'PO'

4-20 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

• TRANSACTION_SUBTYPE: 'PROCESS'

• DOCUMENT_NUMBER: 'PO-4466-5'

• PARTY_SIDE_ID: 'HIL-Tulsa'

5. Click Apply and OK to complete the configuration of the Assign activity.

Configuring Web Service Policies

Use the following steps to add security policies at design time:

1. Navigate to SOA Content > Business Rules > composite.xml. Right click on the
ONT__POI service and select "Configure WS Policies" from the drop-down list.

2. The Configure SOA WS Policies dialog appears.

In the Security section, click the Add icon (+). The Select Server Security Policies
dialog appears.

Using XML Gateway Inbound and Outbound Interfaces 4-21

Select 'oracle/wss_username_token_service_policy' and click OK.

The attached security policy is shown in the Security section.

A lock icon appears in the ONT__POI service of the composite.xml indicating
that a security policy has been successfully attached.

3. From the navigation menu, select View > Property Inspector to display the
Property Inspector window for ONT__POI service component.

In the Properties section, click the Add icon (+) for binding properties. The Create
Property dialog appears.

Enter 'oracle.webservices.auth.username' in the Name field and enter
'operations' as the value.

4-22 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

Click OK.

4. Use the same approach by clicking the Add icon (+) again in the Properties section
for binding properties. Enter 'oracle.webservices.auth.password' in the
Name field. Enter the associated password for user 'operations' in the Value field.

Click OK.

Both selected property names and values appear in the Properties section.

Click the Source tab of the composite.xml and notice that the
oracle.webservices.auth.username and
oracle.webservices.auth.password property names and the associated
values are added to the ONT__POI reference.

Deploying and Testing the SOA Composite with BPEL Process at Run Time
To invoke the synchronous XML Gateway inbound map (PROCESS_PO_007) service
from the BPEL client contained in the SOA composite, the SOA composite needs to be
deployed to the Oracle WebLogic managed server. This can be achieved using Oracle
JDeveloper. Once the composite is deployed, it can be tested from the Oracle Enterprise

Using XML Gateway Inbound and Outbound Interfaces 4-23

Manager Fusion Middleware Control Console.

Prerequisites

Before deploying the SOA composite with BPEL process using Oracle JDeveloper, you
must have established the connectivity between the design-time environment and the
run-time server. For information on how to configure the necessary server connection,
see Configuring Server Connection, page B-1.

Note: If a local instance of the WebLogic Server is used, start the
WebLogic Server by selecting Run > Start Server Instance from Oracle
JDeveloper. Once the WebLogic Admin Server "DefaultServer" instance
is successfully started, the <Server started in Running mode> and
DefaultServer started message in the Running:DefaultServer and
Messages logs should appear.

For the payload information, see Sample Payload for Inbound Process Purchase Order
XML Transaction, page C-3.

Perform the following run-time tasks:

1. Deploy the SOA Composite with BPEL Process, page 4-23

2. Test the SOA Composite Application, page 4-26

Deploying the SOA Composite with BPEL Process
You must deploy the SOA composite with BPEL process (XMLGatewayInbound.bpel
) that you created earlier before you can run it.

Note: Before deploying the with SOA composite for XML Gateway
Inbound service, you should:

• Load the order_data_xmlg.xml file into the specified directory
'/usr/tmp/' folder of SOA Suite server.

• Edit the input file order_data_xmlg.xml by entering values for
<REFERENCEID> and <POID> such as 'PO-4466-5'.

To deploy the SOA Composite with BPEL process:

1. In the Applications Navigator of JDeveloper, select the XMLGInbound project.

2. Right-click the project and select Deploy > [project name] > [serverConnection]
from the menu.

For example, you can select Deploy > XMLGInbound > SOAServer to deploy the
process if you have the connection set up appropriately.

4-24 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

Note: If this is the first time to set up server connection, then the
Deployment Action window appears. Select 'Deploy to Application
Server' and click Next.

In the Deploy Configuration window, ensure the following
information is selected before clicking Next to add a new
application server:

• New Revision ID: 1.0

• Mark composite revision as default: Select this check box.

• Overwrite any existing composites with the same revision ID:
Select this check box.

The steps to create a new Oracle WebLogic Server connection from
JDeveloper are covered in Configuring Server Connection, page B-
1.

3. In the Select Server page, select 'soa-server1' that you have established the server
connection earlier. Click Next.

Using XML Gateway Inbound and Outbound Interfaces 4-25

4. In the SOA Servers page, accept the default target SOA Server ('soa-server1')
selection.

4-26 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

Click Next and Finish.

5. If you are deploying the composite for the first time from your Oracle JDeveloper
session, the Authorization Request window appears. Enter username and password
information specified during Oracle SOA Suite installation. Click OK.

6. Deployment processing starts. Monitor deployment process and check for
successful compilation in the SOA - Log window.

Verify that the deployment is successful in the Deployment - Log window.

Testing the SOA Composite Application with BPEL Process
Once the BPEL process contained in the SOA composite application has been
successfully deployed, you can manage and monitor the process from Oracle Enterprise
Manager Fusion Middleware Control Console. You can also test the process and the
integration interface by manually initiating the process.

For more information about Oracle SOA Suite, see the Oracle Fusion Middleware
Administrator's Guide for Oracle SOA Suite.

To test the SOA composite application with BPEL process:

Using XML Gateway Inbound and Outbound Interfaces 4-27

1. Navigate to Oracle Enterprise Manager Fusion Middleware Control Console (
http://<hostname>:<port>/em). The login page appears.

2. Enter the username and password information specified during the installation, and
then click Login to log in to a farm. The composite (XMLGInbound) you deployed
is displayed in the Applications Navigation tree.

You may need to select an appropriate target instance farm if there are multiple
target Oracle Enterprise Manager Fusion Middleware Control Console farms.

3. From the Farm navigation pane, expand the SOA >soa-infra node in the tree to
navigate through the SOA Infrastructure home page and menu to access your
deployed SOA composite applications running on soa-infra managed server.

Click the XMLGInbound [1.0] link.

4. Click the Policies tab and notice that the
'oracle/wss_username_token_service_policy' policy you attached to the ONT__POI
service binding earlier at the design time is now displayed here.

5. In the XMLGInbound [1.0] home page, click Test.

6. The Test Web Service page for initiating an instance appears.

Note: If the WS-Security credentials are not entered at design time,
you can enter the credentials at run time by selecting the WSS
Username Token option in the Security section at the top of the
Request tab. Enter 'operations' in the Username field and the
associated password for user 'operations' in the Password field.

4-28 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

7. Enter the input string (such as 'test') required by the process and click Test Web
Service to initiate the process.

The test results appear in the Response tab upon completion.

8. Click the Instances tab. The SOA composite application instance ID, name,
conversation ID, most recent known state of each instance since the last data refresh
of the page are displayed.

9. Click your BPEL service component instance link (such as XMLGInbound) to
display the Instances page where you can view execution details for the BPEL
activities in the Audit Trail tab.

Click the Flow tab to check the BPEL process flow diagram. Click an activity of the
process diagram to view the activity details and flow of the payload through the
process.

Verifying Records in Oracle E-Business Suite

Once the BPEL process has been successfully initiated and completed, you can validate
the transaction in Oracle E-Business Suite.

To Validate the Transaction in Oracle Transaction Monitor:

You can validate it from the Transaction Monitor. The Transaction Monitor is a tool for
monitoring the status of inbound and outbound transactions originating from and
going into Oracle E-Business Suite that have been processed by the XML Gateway and
delivered or received by the Oracle Transport Agent. It shows a complete history and
audit trail of these documents.

1. Log on to Oracle E-Business Suite with the Workflow Administrator Web
Applications responsibility.

Select the Transaction Monitor link to open the search window to search for the
order.

Using XML Gateway Inbound and Outbound Interfaces 4-29

Searching from the Transaction Monitor

2. Clear From Date and To Date fields and enter 'PO-4466-5' in the Document ID field.

3. Select Customer as the Party Type. Click Go to execute the search.

This retrieves XML inbound transaction 'PO-4466-5' in the Inbound Search Results
region.

4. Confirm that the transaction 'PO-4466-5' has status 'SUCCESS'.

You can verify it by logging on to Oracle E-Business Suite with the Order Management
Super User, Vision Operations (USA) responsibility. Select Orders, Returns: Import
Orders > Corrections. The Find Orders window is displayed and select 'XML' from
drop-down list in the Order Source field. The Corrections window is displayed with all
the transactions with the XML order source.

Notice that 'PO-4466-5' is listed in the Orig_Sys_Document_Reference field.

4-30 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

To Import the Order to Oracle Order Management:

1. Log on to the Forms-based Oracle E-Business Suite with the Order Management
Super User, Vision Operations (USA) responsibility.

2. Select Orders, Returns : Import Orders > Order Import Request. The Order Import
Request window is displayed along with the Parameters dialog.

Select 'PO-4466-5' from the Order Reference drop-down list.

Using XML Gateway Inbound and Outbound Interfaces 4-31

Order Import Request

3. Click OK in the parameters dialog. The Order Import request name is populated
automatically in the Import Request window.

4. Click Submit to submit the request. This displays a concurrent request number.
Record the request number, but click No in the Decision dialog that you will not
submit another request.

5. From the application menu, select View >Requests to open the Find Requests
window.

6. Enter the request number you recorded earlier and click Find.

This would show the status of Order Import request. It should be success and the
order should be created in Order Management application.

To Validate the Transaction in Oracle Order Management:

1. Log on to the Forms-based Oracle E-Business Suite with the Order Management,
Super User responsibility.

2. Select Order Returns > Sales Order. The Sales Order Forms is displayed.

3. Search for an order by entering the order number in the Customer PO field (such as
'PO-4466-5'). The details of a newly created order appears.

4-32 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

Sales Orders

Using XML Gateway Outbound Through Subscription Model
This section includes the following topics:

• Using XML Gateway Outbound Messages in Creating a New SOA Composite
Application with BPEL Process at Design Time, page 4-32

• Deploying and Testing the SOA Composite Application with BPEL Process at Run
Time, page 4-57

Using XML Gateway Outbound Services at Design Time
For an outbound XML Gateway Map interface, since an outbound message is first
enqueued to the ECX_OUTBOUND queue, Oracle BPEL PM listens to the
ECX_OUTBOUND queue for the message with the same correlation Id.

Oracle E-Business Suite Integrated SOA Gateway supports it through subscription
model by dequeuing the message in the ECX_OUTBOUND queue to retrieve outbound
data from Oracle E-Business Suite. The retrieved data can be passed to trading partners
or consumers who subscribed to the message.

SOA Composite Application with BPEL Process Scenario

Take XML Gateway outbound interface 'PO acknowledgement XML Transaction' as an
example. The XML Gateway outbound interface is exposed as a Web service through

Using XML Gateway Inbound and Outbound Interfaces 4-33

ECX_CBODO_OAG72_OUT outbound map.

When a purchase order is created and approved, on approval of the purchase order, a
workflow will be triggered which creates the Purchase Order Acknowledgement flow
and sends out the PO Acknowledgement as an XML file. The workflow delivers the
Confirm BOD as the PO Acknowledgement to the ECX_OUTBOUND queue for
delivery to the other system.

The correlation Id for this message is set to 'BPEL' and the Oracle BPEL PM listens to
the ECX_OUTBOUND queue for the message with the correlation Id = 'BPEL'. 'Confirm
BOD' as the PO Acknowledgement is written as an output XML file using File Adapter.

When the BPEL process has been successfully executed after deployment, the same
order book reference ID (Customer PO) from the output XML file should be obtained
once a purchase order is approved.

Prerequisites to Create a BPEL Process Using XML Gateway Outbound Messaging

You need to set up the correlation identifier in Oracle E-Business Suite. The correlation
identifier enables you to label messages meant for a specific agent, in case there are
multiple agents listening on the outbound queue. The agent listening for a particular
correlation picks up the messages that match the correlation identifier for the agent.

To set up the correlation identifier:

1. Log in to Oracle E-Business Suite with the XML Gateway responsibility. The
Navigator page appears.

2. Click the XML Gateway link.

3. Click the Define Lookup Values link under XML Gateway.

4-34 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

4. Search for COMM_METHOD in the Type field to see if it exists in the system.

5. Add a new record to the COMM_METHOD type by entering BPEL for the Code field
and the Meaning field. Enter description information and save the record.

Oracle XML Gateway puts the correlation of BPEL when enqueueing the message
on the ECX_OUTBOUND queue.

In addition to having the correlation identifier set up correctly, you need to ensure the
trading partner that you want to use has the Protocol Type field set to BPEL. For
information on how to set up the trading partner with desired transactions, see
Manually test the SOA Composite Application, page 4-61.

Using XML Gateway Inbound and Outbound Interfaces 4-35

SOA Composite Application with BPEL Process Creation Flow

Based on the PO acknowledgement XML Transaction scenario, the following
design-time tasks are discussed in this chapter:

1. Create a new SOA Composite Application with BPEL Process, page 4-36

Use this step to create a new SOA composite application with BPEL process called
XMLGOutbound.bpel.

2. Create a Partner Link for AQ Adapter, page 4-38

Use this step to dequeue the event details from the ECX_OUTBOUND queue.

3. Add a Receive activity, page 4-48

Use the Receive activity to take PO acknowledgement details as an input to the
Assign activity.

4. Add a Partner Link for File Adapter, page 4-49

This is to write PO acknowledgement details in an XML file as an output file.

5. Add an Invoke activity, page 4-55

This is to write PO acknowledgement information to an XML file through invoking
the partner link for File Adapter.

4-36 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

6. Add an Assign activity, page 4-56

Use the Assign activity to take the output from the Receive activity and to provide
input to the Invoke activity.

For general information and how to create SOA composite applications using BPEL
process service component, see the Oracle Fusion Middleware Developer's Guide for Oracle
SOA Suite for details.

Creating a New SOA Composite Application with BPEL Process
Use this step to create a new SOA composite application that will contain various BPEL
process activities.

To create a new SOA composite application with BPEL process:

1. Open Oracle JDeveloper.

2. Click New Application in the Application Navigator. The "Create SOA Application
- Name your application" page is displayed.

3. Enter an appropriate name for the application in the Application Name field and
select SOA Application from the Application Template list.

Click Next. The "Create SOA Application - Name your project" page is displayed.

4. Enter an appropriate name for the project in the Project Name field. For example,
XMLGatewayOutbound.

5. In the Project Technologies tab, select 'Web Services' and ensure that SOA is
selected from the Available technology list to the Selected technology list.

Click Next. The "Create SOA Application - Configure SOA settings" page is
displayed.

6. Select Composite With BPEL Process from the Composite Template list, and then
click Finish. You have created a new application, and a SOA project. This
automatically creates a SOA composite.

The Create BPEL Process page is displayed.

7. Leave the default BPEL 1.1 Specification selection unchanged. This creates a BPEL
project that supports the BPEL 1.1 specification.

Enter an appropriate name for the BPEL process in the Name field. For example,
XMLGOutbound.

Select Synchronous BPEL Process in the Template field.

Select required from the Transaction drop-down list. Click OK.

Using XML Gateway Inbound and Outbound Interfaces 4-37

A synchronous BPEL process is created with the Receive and Reply activities. The
required source files including bpel and wsdl, using the name you specified (for
example, XMLGOutbound.bpel and XMLGOutbound.wsdl) and composite.xml
are also generated.

8. Navigate to SOA Content > Business Rules and click the composite.xml to view
the composite diagram.

4-38 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

Double click on the XMLGOutbound component to open the BPEL process.

Creating a Partner Link for AQ Adapter
Use this step to create a Partner Link called GetAck for AQ Adapter to dequeue the
XML Gateway outbound message (for example, ECX_CBODO_OAG72_OUT) in the
ECX_OUTBOUND queue.

To create a partner link for AQ Adapter:

1. In Oracle JDeveloper, drag and drop the AQ Adapter service from the BPEL
Services list into the right Partner Link swim lane of the process diagram. The
Adapter Configuration wizard welcome page appears.

2. Click Next. The Service Name dialog box appears.

3. Enter a service name in the Service Name dialog box, for example GetAck.

Using XML Gateway Inbound and Outbound Interfaces 4-39

Entering Service Name

4. Click Next. The Service Connection dialog box appears.

5. You can use an existing database connection by selecting a database connection
from the Connection list or define a new database connection by clicking New to
open the Create Database Connection Wizard.

Note: You need to connect to the database where Oracle E-Business
Suite is running.

To create a new database connection:

1. Click New to open the Create Database Connection Wizard. Click Next and
enter an unique connection name and then select a connection type, such as
Oracle (JDBC), for the database connection. Click Next.

2. Enter appropriate username and password information to authenticate the
database connection in the Authentication dialog box. Click Next.

3. Specify the following information in the Connection dialog box:

4-40 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

• Driver: Thin

• Host Name: Enter the host name for the database connection. For example,
myhost01.example.com.

• JDBC Port: Enter JDBC port number (such as 1521) for the database
connection.

• SID: Specify an unique SID value (such as sid01) for the database
connection.

4. Click Next to test your database connection.

The status message "Success!" indicates a valid connection.

5. Click Next to return to the Service Connection dialog box providing a summary
of the database connection.

6. The JNDI (Java Naming and Directory Interface) name corresponding to the
database connection you specified appears automatically in the JNDI Name field of
the Service Connection dialog box. Alternatively, you can enter a different JNDI
name.

7. Click Next to open Adapter Interface dialog box.

Using XML Gateway Inbound and Outbound Interfaces 4-41

Select the Define from operation and schema (specified later) radio button and
click Next. The Operation dialog box appears.

8. Select the Dequeue radio button in the Operation Type field. 'Dequeue' is also
populated in the Operation Name field.

4-42 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

9. Click Next to open the Queue Name dialog box.

Select 'APPLSYS' as the Database Schema field. Enter 'ECX_OUTBOUND' as the
Queue Name field.

Using XML Gateway Inbound and Outbound Interfaces 4-43

10. Click Next to open the Queue Parameters dialog box.

4-44 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

Enter a unique customer name, such as 'Hilman and Associates', in the Correction
Id field. Click Next. The Messages dialog box opens.

11. Click Browse for schema file to open the Type Chooser window.

Click Import Schema Files on the top right corner of the Type Chooser window.
This opens the Import Schema File pop-up window.

Click the Browse Resources... icon to display the SOA Resource Browser window.
Select the xsd folder as the location and CONFIRM_BOD_004.xsd file from the
folder.

Using XML Gateway Inbound and Outbound Interfaces 4-45

Click OK. The Localize Files dialog box opens. Click OK.

4-46 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

In the Type Chooser window, the selected CONFIRM_BOD_004.xsd file is
displayed. Scroll down to select elect CONFIRM_BOD_004 schema from the
CONFIRM_BOD_004.xsd. Click OK.

Using XML Gateway Inbound and Outbound Interfaces 4-47

The Messages dialog box is automatically displayed with the selected schema
location and schema element.

4-48 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

12. Click Next to proceed to the Finish dialog box to confirm that you have finished
defining the AQ Adapter for the GetAck service.

13. Click Finish. The wizard generates the WSDL file corresponding to the GetAck
service.

Click Apply and then OK to complete the partner link configuration. The partner
link is created with the required WSDL settings, and is represented in the BPEL
project by a new icon in the border area of the process diagram.

Adding a Receive Activity
This step is to configure a Receive activity to receive XML data from the partner link
GetAck that you configured for the AQ Adapter.

The XML data received from the Receive activity is used as an input variable to the
Assign activity that will be created in the next step.

To add a Receive activity:

1. In Oracle JDeveloper, expand the BPEL Constructs from the Component Palette.
Drag and drop the Receive activity into the center swim lane of the process
diagram.

Using XML Gateway Inbound and Outbound Interfaces 4-49

2. Link the Receive activity to the GetAck partner link. The Receive activity will take
event data from the partner link. The Edit Receive dialog box appears.

3. Enter a name for the Receive activity.

Click the Create icon next to the Variable field to create a new variable. The Create
Variable dialog box appears.

4. Select Global Variable, and then enter a name for the variable. You can accept the
default name. Click OK to return to the Edit Receive dialog box.

5. Click Apply and OK to finish configuring the Receive activity.

The Receive activity appears in the BPEL process diagram.

Adding a Partner Link for File Adapter
Use this step to configure a partner link by writing the purchase order
acknowledgement to an XML file.

4-50 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

To add a Partner Link for File Adapter:

1. In Oracle JDeveloper, drag and drop the File Adapter service from the BPEL
Services list into the right Partner Link swim lane of the process diagram. The
Adapter Configuration wizard appears.

2. Click Next. The Service Name dialog box appears.

3. Enter a name for the File Adapter service, such as WriteAck.

4. Click Next and the Adapter Interface dialog box appears.

Using XML Gateway Inbound and Outbound Interfaces 4-51

Specifying the Operation

Select the Define from operation and schema (specified later) radio button and
click Next. The Operation dialog box appears.

5. Specify the operation type, for example Write File. This automatically populates the
Operation Name field.

4-52 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

6. Click Next to access the File Configuration dialog box.

Using XML Gateway Inbound and Outbound Interfaces 4-53

Configuring the Output File

7. For the Directory specified as field, select Logical Path. Enter directory path in the
Directory for Outgoing Files field, and specify a naming convention for the output
file such as PO_%yyMMddHHmmss%.xml.

8. Confirm the default write condition: Number of Messages Equals 1. Click Next. The
Messages dialog box appears.

9. Select the Browse check box to locate the schema location and schema element.

The Type Chooser dialog box appears. Expand the Project Schema Files >
CONFIRM_BOD_004.xsd and select CONFIRM_BOD_004.

4-54 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

Type Chooser

Click OK in the Type Chooser window to populate the selected schema location
and element in the Messages dialog box.

Using XML Gateway Inbound and Outbound Interfaces 4-55

10. Click Next and then Finish. The wizard generates the WSDL file corresponding to
the partner link. The main Create Partner Link dialog box appears, specifying the
new WSDL file WriteAck.wsdl.

Click Apply and then OK to complete the configuration and create the partner link
with the required WSDL settings for the File Adapter Service.

The WriteAck Partner Link appears in the BPEL process diagram.

Adding an Invoke Activity
This step is to configure an Invoke activity to send the purchase order
acknowledgement that is received from the Receive activity to the WriteAck partner
link in an XML file.

To add an Invoke activity:

1. In Oracle JDeveloper, expand the BPEL Constructs from the Component Palette.
Drag and drop the Invoke activity into the center swim lane of the process diagram,
after the Receive activity.

2. Link the Invoke activity to the WriteAck service. The Invoke activity will send
event data to the partner link. The Edit Invoke dialog box appears.

4-56 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

3. Enter a name for the Invoke activity, and then click the Create icon next to the
Input Variable field to create a new variable. The Create Variable dialog box
appears.

4. Select Global Variable, and then enter a name for the variable. You can also accept
the default name. Click OK.

Click Apply and then OK in the Edit Invoke dialog box to finish configuring the
Invoke activity.

The Invoke activity appears in the process diagram.

Adding an Assign Activity
Use this step to pass the purchase order acknowledgement details from the Receive
activity to the Invoke activity.

To add an Assign activity:

1. In Oracle JDeveloper, expand the BPEL Constructs from the Component Palette.

Using XML Gateway Inbound and Outbound Interfaces 4-57

Drag and drop the Assign activity from the Component Palette into the center
swim lane of the process diagram, between the Receive activity and the Invoke
activity.

2. Double-click the Assign activity to access the Edit Assign dialog box.

3. Select the Copy Rules tab and expand the source and target trees:

• In the From navigation tree, navigate to Variables > Process > Variables >
Receive_DEQUEUE_InputVariable and select CONFIRM_BOD_004. The
XPath field contains your selected entry.

• In the To navigation tree, navigate to Variables > Process > Variables >
Invoke_Write_InputVariable > body and select CONFIRM_BOD_004. The
XPath field contains your selected entry.

Drag the source node (CONFIRM_BOD_004) to connect to the target node
(CONFIRM_BOD_004) that you just identified. This creates a line that connects the
source and target nodes. The copy rule is displayed in the From and To sections at
the bottom of the Edit Assign dialog box.

4. Click Apply and then OK in the Edit Assign dialog box to complete the
configuration of the Assign activity.

Deploying and Testing the SOA Composite Application with BPEL Process at Run Time
After creating a SOA composite application with BPEL process for XML Gateway
outbound message map, you need to deploy it to the Oracle WebLogic managed server.

4-58 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

This can be achieved using Oracle JDeveloper. Once the composite is deployed, it can be
tested from the Oracle Enterprise Manager Fusion Middleware Control Console.

Prerequisites

Before deploying the SOA composite with BPEL process using Oracle JDeveloper, you
must have established the connectivity between the design-time environment and the
run-time server. For information on how to configure the necessary server connection,
see Configuring Server Connection, page B-1.

Note: If a local instance of the WebLogic Server is used, start the
WebLogic Server by selecting Run > Start Server Instance from Oracle
JDeveloper. Once the WebLogic Admin Server "DefaultServer" instance
is successfully started, the <Server started in Running mode> and
DefaultServer started message in the Running:DefaultServer and
Messages logs should appear.

Perform the following run-time tasks:

1. Deploy the SOA Composite with BPEL Process, page 4-58

2. Manually test the SOA Composite Application, page 4-61

Deploying the SOA Composite Application with BPEL Process
You must deploy the SOA composite application with BPEL process (
XMLGOutbound.bpel) that you created earlier before you can run it.

To deploy the SOA composite application BPEL process:

1. In the Applications Navigator of JDeveloper, select the XMLGOutbound project.

2. Right-click the project and select Deploy > [project name] > [serverConnection]
from the menu.

For example, you can select Deploy > XMLGInbound > SOAServer to deploy the
process if you have the connection appropriately.

Note: If this is the first time to set up server connection, then the
Deployment Action window appears. Select 'Deploy to Application
Server' and click Next.

Using XML Gateway Inbound and Outbound Interfaces 4-59

In the Deploy Configuration window, ensure the following
information is selected before clicking Next to add a new
application server:

• New Revision ID: 1.0

• Mark composite revision as default: Select this check box.

• Overwrite any existing composites with the same revision ID:
Select this check box.

The steps to create a new Oracle WebLogic Server connection from
JDeveloper are covered in Configuring Server Connection, page B-
1.

3. In the Select Server page, select 'soa-server1' that you have established the server
connection earlier. Click Next.

4-60 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

4. In the SOA Servers page, accept the default target SOA Server ('soa-server1')
selection.

Using XML Gateway Inbound and Outbound Interfaces 4-61

Click Next and Finish.

5. If you are deploying the composite for the first time from your Oracle JDeveloper
session, the Authorization Request window appears. Enter username and password
information specified during Oracle SOA Suite installation. Click OK.

6. Deployment processing starts. Monitor deployment process and check for
successful compilation in the SOA - Log window.

Verify that the deployment is successful in the Deployment - Log window.

Testing the SOA Composite Application with BPEL Process
Once the BPEL process contained in the SOA composite application has been
successfully deployed, you can manage and monitor the process from Oracle Enterprise
Manager Fusion Middleware Control Console. You can log on to Oracle E-Business
Suite to manually create and book the order as well as generate the order
acknowledgement by submitting a Workflow Background Process concurrent request.

Log on to the Oracle Enterprise Manager Fusion Middleware Control Console to
validate the BPEL process which writes purchase order acknowledgement in an output
directory after receiving from the XML Gateway ECX_OUTBOUND queue.

To manually test the SOA composite application with BPEL process:

1. Log on to Oracle E-Business Suite with the XML Gateway responsibility.

This is to ensure that the XML Gateway trading partner is set up correctly so that a

4-62 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

purchase order can have a valid customer that has been defined.

2. Select Define Trading Partner from the navigation menu to access the Trading
Partner Setup window.

3. Enter the header values on the Trading Partner Setup form as follows:

• Trading Partner Type: Customer

• Trading Partner Name: For example, Hilman and Associates

• Trading Partner Site: Enter a trading partner site information, for example, 1230
East 60th Street South Tulsa, OK 74146.

• Company Admin Email: Enter a valid email address.

4. Enter the following trading partner details:

• Transaction Type: ECX

• Transaction SubType: CBODO

• Standard Code: OAG

• External Transaction Type: BOD

• External Transaction SubType: CONFIRM

• Direction: Out

• Map: ECX_CBODO_OAG72_OUT

• Connection / Hub: DIRECT

• Protocol Type: BPEL

• Username: 'operations'

• Password: Enter the associated password for the user 'operations' twice.

• Protocol Address: 'http://us.example.com'

Protocol Address is the complete URL where the XML document can be posted.

• Source Trading Partner Location Code: HIL-Tulsa

Using XML Gateway Inbound and Outbound Interfaces 4-63

Trading Partner Setup

5. Save the trading partner details.

To successfully generated PO Acknowledgement, perform the following setup tasks in
Order Management and then manually book the order:

1. Switch responsibility back to Order Management Super User, Vision Operations
(USA) and select Customer > Standard from the navigation menu to open the Enter
Customer form.

2. Search on the 'Hilman and Associates' in the Name field and click Go.

3. Select the Business World with the following information from the search results:

• Name: Hilman and Associates

• Registry ID: 1004

• Address: 1230 East 60th Street South, Tulsa, OK 74146

4. Select the account with the following information:

• Account Number: 1004

4-64 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

• Account Description: Hilman and Associates

• Status: Active

5. Click the Details icon to open the Update Account: 1608 page.

6. Locate the address with 1230 East 60th Street South, Tulsa, OK 74146 and click the
Details icon to open the Site page of your selected account.

7. In the Site Details tab, the Account Site Details region, enter HIL-Tulsa' in the EDI
Location field.

8. In the Business Purposes tab, create a new row with the following values:

• Purpose: Sold To

• Check on the 'Primary' Check box

Click Apply.

Use the following steps to generate acknowledgement for the order that you have
created for the XML Gateway Inbound service.

1. With the same Order Management Super User, Vision Operations (USA)
responsibility, select Order Returns > Sales Order to open the Sales Order form.

2. Retrieve the order that you have created earlier in the XML Gateway inbound
service by entering the order ID 'PO-4466-5' in the Customer PO field.

3. Click Book Order to book the order.

Notice that the Status field is now changed to 'Booked'.

Using XML Gateway Inbound and Outbound Interfaces 4-65

4. Switch to the System Administrator responsibility and select Request > Run.

5. Select Single Request and click OK.

6. Enter the following information in the Submit Request form:

4-66 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

Specifying Parameters

• Name: Workflow Background Process

• Enter the following parameters:

• Item Type: OM Send Acknowledgement

• Process Deferred: Yes

• Process Timeout: No

• Process Stuck: No

• Click OK.

7. Click Submit to submit the 'send acknowledgement' request.

8. View your request by entering the request ID to ensure its status is 'Success'.

Validation Using Oracle Enterprise Manager Fusion Middleware Control Console

Log on to Oracle Enterprise Manager Fusion Middleware Control Console (
http://<servername>:<portname>/em) to confirm that the XMLGOutbound
process has been deployed. This process is continuously polling the ECX_OUTBOUND
queue for purchase order acknowledgement.

From the Farm navigation pane, expand the SOA > soa-infra node in the tree to
navigate through the SOA Infrastructure home page and menu to access your deployed

Using XML Gateway Inbound and Outbound Interfaces 4-67

SOA composite applications running on soa-infra managed server. Click the
XMLGOutbound [1.0] link.

Click Test. The Test Web Service page for initiating an instance appears. Enter the input
string required by the process and click Test Web Service to initiate the process. The
test results appear in the Response tab upon completion. Click your BPEL service
component instance link (such as XMLGOutbound) to display the Instances page where
you can view execution details for the BPEL activities in the Audit Trail tab.

Click the Flow tab to check the BPEL process flow diagram. Click an activity of the
process diagram to view the activity details and flow of the payload through the
process. For example, click Receive activity. Click the view xml document link to open
the received XML file. Note the Reference ID such as Customer PO.

Go to the directory you specified for the write operation, for example outputDir -
logical location (typically c:\temp) where the File Adapter has placed the file after
writing the PO Acknowledgement in an XML file (such as 'PO_060719175318.xml').

Open the 'PO_060719175318.xml' file and search for ORIGREF element. Its value should
be 'PO-4466-5' (the order booked) for which the acknowledgement is generated.

Using Business Events Through Subscription Model 5-1

5
Using Business Events Through

Subscription Model

Overview
The Oracle Workflow Business Event System (BES) is an application service that
leverages the Oracle Advanced Queuing (AQ) infrastructure to communicate business
events between systems. The Business Event System consists of the Event Manager and
workflow process event activities.

The Event Manager lets you register subscriptions to significant events; event activities
representing business events within workflow processes let you model complex
business flows or logics within workflow processes.

Events can be raised locally or received from an external system or the local system
through AQ. When a local event occurs, the subscribing code is executed in the same
transaction as the code that raised the event, unless the subscriptions are deferred.

Oracle E-Business Suite Integrated SOA Gateway supports business events through
event subscription. An integration repository administrator can subscribe to a business
event from the business event interface details page. The subscription to that event can
be enqueued as an out agent. A system integration developer can create a SOA
composite application with BPEL process in Oracle JDeveloper to include the
subscribed event at design time and update application data if needed at run time.

To better understand how the subscription model works for business events, detailed
tasks at design time and run time are included in this chapter. For the example
described in the following sections, Oracle JDeveloper 11g (11.1.1.6.0) is used as a
design-time tool to create a SOA composite application with BPEL process, and Oracle
SOA Suite 11g (11.1.1.6.0) is used for the process deployment.

Note: While using Oracle JDeveloper with other Oracle Fusion
Middleware components (such as Oracle SOA Suite), to enable SOA
technologies, you need to manually download Oracle SOA Suite

5-2 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

Composite Editor, a JDeveloper's extension for SOA technologies. For
more information on installing additional Oracle Fusion Middleware
design time components, see the Oracle Fusion Middleware Installation
Guide for Oracle JDeveloper.

Using a Business Event in Creating a SOA Composite Application with
BPEL Process at Design Time

SOA Composite Application with BPEL Process Scenario

Take a PO XML Raise business event as an example to explain the SOA composite
application with BPEL process creation.

When a purchase order is created and approved, a Purchase Order Approved business
event oracle.apps.po.event.xmlpo is raised. Since the subscription to this event
is created through the interface details page (internally, an event subscription is
automatically created for the selected event with WF_BPEL_QAGENT as Out Agent), and
enqueued in WF_EVENT_T structure to Advanced Queue WF_BPEL_Q, we will create a
BPEL process to first dequeue the subscription from the WF_BPEL_Q queue to get the
event details. The event details will be passed through BPEL process activities and then
written in XML file as an output file.

When the BPEL process has been successfully executed after deployment, the same
purchase order information should be obtained from the output file once a purchase
order is approved.

Prerequisites to Create a SOA Composite Application with BPEL Process Using a
Business Event

An integration repository administrator must first subscribe to a business event from
the Oracle Integration Repository user interface. Internally, an event subscription is
automatically created for that event with WF_BPEL_QAGENT as Out Agent.

For example, a business event oracle.apps.po.event.xmlpo needs to be
subscribed. A confirmation message appears if the event subscription has been
successfully created.

To subscribe to a business event, the administrator will first locate an event from the
Oracle Integration Repository, and then click Subscribe in the interface detail page to
create the subscription.

For information on how to subscribe to business events, see Subscribing to Business
Events, Oracle E-Business Suite Integrated SOA Gateway Implementation Guide.

Note: If a BPEL process is created with the business event that you have
subscribed to it, in order for the subscribed business event to be
successfully enqueued to WF_BPEL_Q queue, you need to make sure:

Using Business Events Through Subscription Model 5-3

• The consumer name must be unique.

• The BPEL process is deployed before raising the business event.

Once the subscription is created and enqueued, a system integration developer can then
orchestrate the subscribed event into a meaningful business process in Oracle
JDeveloper using BPEL language at design time.

SOA Composite Application with BPEL Process Creation Flow

Based on the PO XML Raise business event scenario, the following design-time tasks
are discussed in this chapter:

1. Create a new SOA Composite Application with BPEL Process, page 5-3

Use this step to create a new SOA composite application with BPEL process called
GetPurchaseOrder.bpel.

2. Create a Partner Link for AQ Adapter, page 5-6

Use this step to dequeue the event details from the WF_BPEL_Q queue.

3. Add a Receive activity, page 5-14

Use the Receive activity to take event details as an input to the Assign activity.

4. Create a Partner Link for File Adapter, page 5-15

This is to write event details in an XML file as an output file.

5. Add an Invoke activity, page 5-24

This is to write business event information to an XML file through invoking the
partner link for File Adapter.

6. Add an Assign activity, page 5-26

Use the Assign activity to take the output from the Receive activity and to provide
input to the Invoke activity.

For general information and how to create SOA composite applications using BPEL
process service component, see the Oracle Fusion Middleware Developer's Guide for Oracle
SOA Suite for details.

Creating a New SOA Composite Application with BPEL Process
Use this step to create a new SOA composite application with BPEL process that will
contain various BPEL process activities.

To create a new SOA composite application with BPEL process:

5-4 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

1. Open Oracle JDeveloper.

2. Click New Application in the Application Navigator.

The "Create SOA Application - Name your application" page is displayed.

3. Enter an appropriate name for the application in the Application Name field and
select SOA Application from the Application Template list.

Click Next. The "Create SOA Application - Name your project" page is displayed.

4. Enter an appropriate name for the project in the Project Name field, for example,
GetPOProject.

5. In the Project Technologies tab, select 'Web Services' and ensure that SOA is
selected from the Available technology list to the Selected technology list.

Click Next. The "Create SOA Application - Configure SOA settings" page is
displayed.

6. Select Composite With BPEL Process from the Composite Template list, and then
click Finish. You have created a new application, and a SOA project. This
automatically creates a SOA composite.

The Create BPEL Process page is displayed.

7. Leave the default BPEL 1.1 Specification selection unchanged. This creates a BPEL
project that supports the BPEL 1.1 specification.

Enter an appropriate name, for example GetPurchaseOrder, for the BPEL process
in the Name field.

Using Business Events Through Subscription Model 5-5

Select Define Service Later in the Template field. Click OK.

An empty BPEL process is created. The required source files including bpel and
wsdl, using the name you specified (for example, GetPurchaseOrder.bpel and
GetPurchaseOrder.wsdl) and composite.xml are also generated.

8. Click Finish.

9. Navigate to SOA Content > Business Rules and double click the composite.xml
to view the composite diagram.

5-6 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

Double click on the GetPurchaseOrder component to open the BPEL process.

Creating a Partner Link for AQ Adapter
Use this step to create a Partner Link called GetPurchaseOrder for AQ Adapter to
dequeue the subscription to oracle.apps.po.event.xmlpo event.

To create a partner link for AQ Adapter to dequeue the event subscription:

1. In Oracle JDeveloper, drag and drop the AQ Adapter service from the BPEL
Services list into the right Partner Link swim lane of the process diagram. The
Adapter Configuration wizard welcome page appears.

2. Click Next. The Service Name dialog box appears.

3. Enter a service name in the Service Name dialog box, for example GetPO.

4. Click Next. The Service Connection dialog box appears.

5. You can use an existing database connection by selecting a database connection
from the Connection list or define a new database connection by clicking New to
open the Create Database Connection Wizard.

Note: You need to connect to the database where Oracle E-Business
Suite is running.

To create a new database connection:

1. Click New to open the Create Database Connection Wizard. Click Next and
enter an unique connection name and then select a connection type for the
database connection. Click Next.

Using Business Events Through Subscription Model 5-7

2. Enter appropriate username and password information to authenticate the
database connection in the Authentication dialog box. Click Next

3. Specify the following information in the Connection dialog box:

• Driver: Thin

• Host Name: Enter the host name for the database connection. For example,
myhost01.example.com.

• JDBC Port: Enter JDBC port number (such as 1521) for the database
connection.

• SID: Specify an unique SID value (such as sid01) for the database
connection.

4. Click Next to test your database connection.

The status message "Success!" indicates a valid connection.

5. Click Next to return to the Service Connection dialog box providing a summary
of the database connection.

6. The JNDI (Java Naming and Directory Interface) name corresponding to the
database connection you specified appears automatically in the JNDI Name field of
the Service Connection dialog box. Alternatively, you can enter a different JNDI
name.

7. Click Next to open Adapter Interface dialog box.

5-8 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

Select the Define from operation and schema (specified later) radio button and
click Next. The Operation dialog box appears.

8. Select the Dequeue radio button in the Operation Type field. 'Dequeue' is also
populated in the Operation Name field.

Using Business Events Through Subscription Model 5-9

9. Click Next to open the Queue Name dialog box.

Select 'APPS' in the Database Schema field. Enter 'WF_BPEL_Q' in the Queue Name
field.

5-10 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

10. Click Next to open the Queue Parameters dialog box.

Using Business Events Through Subscription Model 5-11

Enter the following information:

• Enter a unique consumer name.

Important: In order for the subscribed business event to be
successfully enqueued to WF_BPEL_Q queue, the consumer
name must be unique.

• Enter message selector rule information (such as
tab.user_data.geteventname()='oracle.apps.po.event.xmlpo').

11. Click Next. The Messages dialog box opens where you can define the message that
will be contained in the Business Event System payload for the APPS.WF_BPEL_Q
queue.

Click Browse for schema file to open the Type Chooser window.

Click Import Schema Files on the top right corner of the Type Chooser window.
This opens the Import Schema File pop-up window.

5-12 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

Click the Browse Resources.. icon to display the SOA Resource Browser window.
Select the xsd folder as the location and APPS_NE_WF_EVENT_T file from the
folder.

Using Business Events Through Subscription Model 5-13

Click OK twice.

In the Type Chooser window, expand the Project Schema Files and select
WF_EVENT_T schema from the APPS_NE_WF_EVENT_T.xsd. Click OK.

The selected APPS_NE_WF_EVENT_T.xsd is displayed as URL and the
WF_EVENT_T element is selected as Schema Element.

5-14 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

12. Click Next to proceed to the Finish dialog box to confirm that you have finished
defining the AQ Adapter for the GetPO service.

13. Click Finish. The wizard generates the WSDL file corresponding to the GetPO
service.

Click Apply and then OK to complete the partner link configuration. The partner
link is created with the required WSDL settings, and is represented in the BPEL
project by a new icon in the border area of the process diagram.

Adding a Receive Activity
This step is to configure a Receive activity to receive XML data from the partner link
GetPO that you configured for the AQ adapter service for the business event.

The XML data received from the Receive activity is used as an input variable to the
Assign activity that will be created in the next step.

To add a Receive activity to obtain Purchase Order XML data:

1. In Oracle JDeveloper, expand the BPEL Constructs from the Component Palette.
Drag and drop the Receive activity into the center swim lane of the process
diagram.

Using Business Events Through Subscription Model 5-15

2. Link the Receive activity to the GetPO partner link. The Receive activity will take
event data from the partner link. The Edit Receive dialog box appears.

3. Enter a name for the Receive activity such as 'Receive_PO' and then click the Create
icon next to the Variable field to create a new variable. The Create Variable dialog
box appears.

4. Select Global Variable and then enter a name for the variable. You can accept the
default name. Click OK to return to the Edit Receive dialog box.

5. Click Apply and then OK to finish configuring the Receive activity.

The Receive activity appears in the BPEL process diagram.

Adding a Partner Link for File Adapter
Use this step to configure a business event by writing the event data to an XML file.

To add a Partner Link for File Adapter:

5-16 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

1. In Oracle JDeveloper, drag and drop the File Adapter service from the BPEL
Services list into the right Partner Link swim lane of the process diagram. The
Adapter Configuration wizard appears.

2. Click Next. The Service Name dialog box appears.

3. Enter a name for the file adapter service, such as WritePurchaseOrder.

4.

Specifying the Service Name

5. Click Next. The Adapter Interface dialog box appears.

Using Business Events Through Subscription Model 5-17

Specifying the Operation

6. Select the Define from operation and schema (specified later) radio button and
click Next. The Operation dialog box appears.

5-18 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

Specifying the Operation

7. Specify the operation type, for example Write File. This automatically populates the
Operation Name field.

Click Next to access the File Configuration dialog box.

Using Business Events Through Subscription Model 5-19

Configuring the Output File

8. For the Directory specified as field, select Physical Path. Enter directory path in the
Directory for Outgoing Files field, and specify a naming convention for the output
file such as PO_%SEQ%.xml.

9. Confirm the default write condition: Number of Messages Equals 1. Click Next. The
Messages dialog box appears.

5-20 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

10. Select Browse for schema file in front of the URL field.

The Type Chooser window is displayed.

Using Business Events Through Subscription Model 5-21

Expand the Project Schema Files and select WF_EVENT_T schema from the
APPS_NE_WF_EVENT_T.xsd. Click OK.

The selected APPS_NE_WF_EVENT_T.xsd is displayed as URL and the
WF_EVENT_T element is selected as Schema Element.

5-22 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

11. Click Next and then Finish. The wizard generates the WSDL file corresponding to
the partner link. The main Create Partner Link dialog box appears, specifying the
new WSDL file WritePurchaseOrder.wsdl.

Using Business Events Through Subscription Model 5-23

Completing the Partner Link Configuration

Click Apply and then OK to complete the configuration and create the partner link
with the required WSDL settings for the File Adapter Service.

The WritePurchaseOrder Partner Link appears in the BPEL process diagram.

5-24 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

Adding the Partner Link for File Adapter

Adding an Invoke Activity
This step is to configure an Invoke activity to write the purchase order approved event
details that is received from the Receive activity to the WritePurchaseOrder partner
link in an XML file.

To add an Invoke activity:

1. In Oracle JDeveloper, expand the BPEL Constructs from the Component Palette.
Drag and drop the Invoke activity from the Component Palette into the center
swim lane of the process diagram, after the Receive activity.

2. Link the Invoke activity to the WritePurchaseOrder service. The Invoke activity
will send event data to the partner link. The Edit Invoke dialog box appears.

Using Business Events Through Subscription Model 5-25

Editing the Invoke Activity

3. Enter a name for the Invoke activity, and then click the Create icon next to the
Input Variable field to create a new variable. The Create Variable dialog box
appears.

4. Select Global Variable and then enter a name for the variable. You can also accept
the default name. Click OK to close the Create Variable dialog box.

Click Apply and then OK in the Edit Invoke dialog box to finish configuring the
Invoke activity.

The Invoke activity appears in the process diagram.

5-26 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

Process Diagram With Invoke Activity

Adding an Assign Activity
Use this step to pass the purchase order approved event details from the Receive
activity to the Invoke activity.

To add an Assign activity:

1. In Oracle JDeveloper, expand the BPEL Constructs from the Component Palette.
Drag and drop the Assign activity from the Component Palette into the center
swim lane of the process diagram, between the Receive activity and the Invoke
activities.

2. Double-click the Assign activity to access the Edit Assign dialog box.

3. Select the Copy Rules tab and expand the source and target trees:

• In the From navigation tree, navigate to Variable > Process > Variables >
Receive_PO_Dequeue_InputVariable and select WF_EVENT_T element.

• In the To navigation tree, navigate to Variable > Process > Variables >
Invoke_WritePO_Write_InputVariable and select body.

Drag the source node (WF_EVENT_T) to connect to the target node (body) that you
just identified. This creates a line that connects the source and target nodes. The
copy rule is displayed in the From and To sections at the bottom of the Edit Assign
dialog box.

Using Business Events Through Subscription Model 5-27

4. Click Apply and then OK in the Edit Assign dialog box to complete the
configuration of the Assign activity.

Click the composite.xml to display the Oracle JDeveloper composite diagram.

Deploying and Testing the SOA Composite Application with BPEL Process
at Run Time

After creating a SOA composite application with the subscribed event in BPEL process,
you need to deploy it to the Oracle WebLogic managed server. This can be achieved
using Oracle JDeveloper. Once the composite is deployed, it can be tested from the
Oracle Enterprise Manager Fusion Middleware Control Console.

Prerequisites

Before deploying the SOA composite with BPEL process using Oracle JDeveloper, you
must have established the connectivity between the design-time environment and the
run-time server. For information on how to configure the necessary server connection,
see Configuring Server Connection, page B-1.

Note: If a local instance of the WebLogic Server is used, start the
WebLogic Server by selecting Run > Start Server Instance from Oracle
JDeveloper. Once the WebLogic Admin Server "DefaultServer" instance
is successfully started, the <Server started in Running mode> and
DefaultServer started message in the Running:DefaultServer and
Messages logs should appear.

5-28 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

Perform the following run-time tasks:

1. Deploy the SOA Composite Application with BPEL Process, page 5-28

2. Manually initiate the SOA Composite Application with BPEL Process, page 5-31

Deploying the SOA Composite Application with BPEL Process
Before manually testing the BPEL process, you need to deploy it first.

To deploy the SOA composite application with BPEL process:

1. In the Applications Navigator of JDeveloper, select the GetPOProject project.

2. Right-click the project and select Deploy > [project name] > [serverConnection]
from the menu.

For example, you can select Deploy > GetPOProject > SOAServer to deploy the
process if you have the connection appropriately.

Note: If this is the first time to set up server connection, then the
Deployment Action window appears. Select 'Deploy to Application
Server' and click Next.

Using Business Events Through Subscription Model 5-29

In the Deploy Configuration window, ensure the following
information is selected before clicking Next to add a new
application server:

• New Revision ID: 1.0

• Mark composite revision as default: Select this check box.

• Overwrite any existing composites with the same revision ID:
Select this check box.

The steps to create a new Oracle WebLogic Server connection from
JDeveloper are covered in Configuring Server Connection, page B-
1.

3. In the Select Server page, select 'soa-server1' that you have established the server
connection earlier.

5-30 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

Click Next.

4. In the SOA Servers page, accept the default target SOA Server ('soa-server1')
selection.

Using Business Events Through Subscription Model 5-31

Click Next and Finish.

5. If you are deploying the composite for the first time from your Oracle JDeveloper
session, the Authorization Request window appears. Enter username and password
information specified during Oracle SOA Suite installation. Click OK.

6. Deployment processing starts. Monitor deployment process and check for
successful compilation in the SOA - Log window.

Verify that the deployment is successful in the Deployment - Log window.

Testing the SOA Composite Application with BPEL Process
Once the BPEL process contained in the SOA composite application has been
successfully deployed, you can manage and monitor the process from Oracle Enterprise
Manager Fusion Middleware Control Console. You can also test the process and the
integration interface by manually initiating the process.

Log on to Oracle E-Business Suite to manually initiate the purchase order approval and
acknowledgement processes and to confirm that the relevant event is raised and the
updated purchased order details is also written in the XML file.

To manually test the BPEL process contained in the SOA composite application:

1. Navigate to Oracle Enterprise Manager Fusion Middleware Control Console (
http://<hostname>:<port>/em). The login page appears.

5-32 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

2. Enter the username and password information specified during the Oracle SOA
Suite installation. Click Login to log in to a farm. The composite
(GetPurchaseOrder) you deployed is displayed in the Applications Navigation tree.

You may need to select an appropriate target instance farm if there are multiple
target Oracle Enterprise Manager Fusion Middleware Control Console farms.

For more information about Oracle SOA Suite, see the Oracle Fusion Middleware
Administrator's Guide for Oracle SOA Suite.

3. From the Farm navigation pane, expand the SOA > soa-infra node in the tree to
navigate through the SOA Infrastructure home page and menu to access your
deployed SOA composite applications running on soa-infra managed server.

Ensure that GetPurchaseOrder has been deployed.

4. Log on to Oracle E-Business Suite with the XML Gateway responsibility.

This is to ensure that the XML Gateway trading partner is set up correctly so that a
purchase order can have a valid supplier that has been defined.

5. Select Define Trading Partner from the navigation menu to access the Trading
Partner Setup window.

6. Enter the header values on the Trading Partner Setup form as follows:

• Trading Partner Type: Supplier

• Trading Partner Name: Advanced Network Devices

• Trading Partner Site: Enter a trading partner site information, for example, 2000
Century Way, Santa Clara, CA 95613-4565.

Using Business Events Through Subscription Model 5-33

• Company Admin Email: Enter a valid email address.

7. Enter the following trading partner details:

• Transaction Type: PO

• Transaction SubType: PRO

• Standard Code: OAG

• External Transaction Type: PO

• External Transaction SubType: Process

• Direction: Out

• Map: itg_process_po_007_out

• Connection / Hub: DIRECT

• Protocol Type: SOAP

5-34 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

8. Save the trading partner details. Switch responsibility back to Purchasing, Vision
Operations (USA) and select Purchase Order from the navigation menu.

9. Create a purchase order with the header values reflecting the trading partner you
previously defined in the Purchase Order window:

• Supplier: Enter a supplier information, such as 'Advanced Network Devices'.

• Site: Select a site information, such as 'SANTA CLARA-ERS'.

10. On the Lines tab, enter a data row with the following values:

• Type: Goods

• Item: CM13139

• Quantity: 1

• Description: Hard Drive - 8GB

• Promised: Enter any future date in the format of dd-mmm-yyyy (such as
23-JUN-2008).

11. Save your purchase order. The status of the purchase order is 'Incomplete'.

Using Business Events Through Subscription Model 5-35

Note: Because the trading partner is set up and valid, the
transmission method is automatically set to XML.

12. Click Approve to approve the purchase order.

The status of the purchase order is now changed to 'Approved'. For future
reference, record the value of the PO, Rev field (for example, the PO number 5789).

Once the purchase order is approved, the business event
oracle.apps.po.event.xmlpo is raised.

13. Log on to Oracle Enterprise Manager Fusion Middleware Control Console to
confirm that the GetPurchaseOrder BPEL process has been completed.

To verify, click the Instances tab. The SOA composite application instance ID, name,
conversation ID, most recent known state of each instance since the last data refresh
of the page are displayed.

14. Click your BPEL service component instance link (such as GetPurchaseOrder) to
display the Instances page where you can view execution details for the BPEL
activities in the Audit Trail tab. Click the Flow tab to check the BPEL process flow
diagram.

15. Double-click on the Receive activity in the BPEL process diagram and click the
View XML document link to open the XML file. Please note that the purchase order
(number 5789) has been received.

5-36 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

Examining the Receive Event Name

16. Examine the Assign and Invoke activities as well for the event raised and document
number.

17. Go to the directory you specified for the write operation, for example outputDir
(typically c:\temp). Open the output file (for example PO_1.xml), and confirm
that the order number is the same as that of the approved purchase order.

Using Business Events Through Subscription Model 5-37

Confirming the Output Order Number

Using Concurrent Programs 6-1

6
Using Concurrent Programs

Overview
A concurrent program is an instance of an execution file with associated parameters.
Concurrent programs use a concurrent program executable to locate the correct
execution file. The execution file can be an operating system file or database stored
procedure which contains your application logic (such as PL/SQL, Java). Several
concurrent programs may use the same execution file to perform their specific tasks,
each having different parameter defaults.

The concurrent program can be exposed as a Web service based integration interface.
An integration repository administrator can further deploy a generated service from
Oracle Integration Repository to an Oracle SOA Suite WebLogic managed server.

By leveraging Oracle SOA Suite components, the deployed service can be orchestrated
into a meaningful BPEL process within a SOA composite application with service
endpoints.

At run time, the SOA Composite in the WebLogic managed server where the soa-infra
application is running can be exposed to customers and invoked through any of the
Web service clients or orchestration tools including Oracle JDeveloper, Apache Axis,
.NET Web Service Client, Oracle BPEL Process Manager, and Oracle Enterprise Service
Bus (ESB).

Detailed information on how to create a SOA composite application with BPEL process
to invoke the Web service and use it to update Oracle E-Business Suite is discussed in
this chapter. For the example described in the following sections, Oracle JDeveloper 11g
(11.1.1.6.0) is used as a design-time tool to create a SOA composite application and
Oracle SOA Suite 11g (11.1.1.6.0) is used for the process deployment.

Note: While using Oracle JDeveloper with other Oracle Fusion
Middleware components (such as Oracle SOA Suite), to enable SOA
technologies, you need to manually download Oracle SOA Suite
Composite Editor, a JDeveloper's extension for SOA technologies. For

6-2 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

more information on installing additional Oracle Fusion Middleware
design time components, see the Oracle Fusion Middleware Installation
Guide for Oracle JDeveloper.

Using Concurrent Program WSDLs at Design Time
SOA Composite Application with BPEL Process Scenario

This example uses Departure Shipment Notice Outbound WSHDSNO concurrent
program to explain the BPEL process creation.

When a shipment notice generation request is received as an input to the BPEL process
contained in a SOA composite application, a sales order information including header
and line items is read by a File Adapter. The sales order data will then be passed to
create a departure shipment notice (DSNO). The shipment notice creation document
number will be passed back to the request application.

When the BPEL process has been successfully executed after deployment, you can
validate the process to see if the generated shipment notice has correct trading partner
information as described in the sales order.

Prerequisites to Create a SOA Composite Application with BPEL Process Scenario
Using a Concurrent Program Web Service

Before performing design-time tasks for concurrent programs, you need to ensure the
following tasks are in place:

• An integration repository administrator or a system integration developer needs to
generate a Web service first. The administrator will deploy the generated service to
an Oracle SOA Suite WebLogic managed server.

• A system integration developer needs to locate and record the deployed WSDL
URL for the concurrent program exposed as a Web service.

• SOAHeader elements should be populated in order to run the concurrent program
for the SOAP request

Deploying a Concurrent Program Web Service Composite

Once a Web service for the selected interface definition has been generated successfully,
the administrator then can deploy the service from Oracle Integration Repository to an
Oracle SOA Suite WebLogic managed server.

For example, the following steps must be performed first before a system integration
developer can create a SOA composite application with BPEL process using a deployed
WSDL:

1. To generate a Web service, locate the interface definition first from the Oracle
Integration Repository (such as Departure Shipment Notice Outbound WSHDSNO

Using Concurrent Programs 6-3

concurrent program) and click Generate in the interface details page.

Once the service has been successfully generated, the Web Service Status field
changed from 'Not Generated' to 'Generated' in the Web Service region. For
detailed instructions on how to generate a Web service, see Generating Web
Services, Oracle E-Business Suite Integrated SOA Gateway Implementation Guide.

2. To deploy a generated Web service, select one authentication type before clicking
Deploy. The deployed service in Oracle SOA Suite is an active service and is ready
to accept new SOAP requests.

Once the service has been successfully deployed, the selected authentication type
will be displayed along with 'Deployed' with 'Active' state in the Web Service Status
field. For more information on securing Web services with authentication type, see
Managing Web Service Security, Oracle E-Business Suite Integrated SOA Gateway
Implementation Guide.

For information on how to deploy a Web service, see Deploying and Undeploying
Web Services, Oracle E-Business Suite Integrated SOA Gateway Implementation Guide.

Searching and Recording a WSDL URL

Apart from the required tasks performed by the administrator, a system integration
developer needs to locate and record the deployed Web service WSDL URL for the
interface (such as WSHDSNO concurrent program) that needs to be orchestrated into a
meaningful BPEL process in Oracle JDeveloper.

This WSDL information will be used directly for a partner link during the BPEL process
creation at design time.

6-4 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

Confirming and Recording a Deployed WSDL URL

For information on how to search for an interface and review the interface details, see
Searching and Viewing Integration Interfaces, page 2-1.

Setting Variables in SOAHeader for a SOAP Request

You must populate certain variables in the BPEL process for SOAHeader elements to
pass values that may be required to set applications context during service execution.
These SOAHeader elements for concurrent program interface type are
Responsibility, RespApplication, SecurityGroup, NLSLanguage, and
Org_Id.

Note: The username and password information is defined by the Web
service security policy (such as
oracle/wss_username_token_service_policy). Detailed
instructions on how to pass the security headers along with the SOAP
request, see Configuring Web Service Policies, page 6-26.

The expected values for these elements are described in the following table:

Using Concurrent Programs 6-5

Header Variables and Expected Values for Concurrent Program Interface Type

Element Name Expected Value

Responsibility responsibility_key (such as
"SYSTEM_ADMINISTRATOR")

RespApplication Application Short Name (such as "FND")

SecurityGroup Security Group Key (such as "STANDARD")

NLSLanguage NLS Language (such as "AMERICAN")

Org_Id Org Id (such as "202")

Note: NLS Language and Org_Id are optional values to be passed.

• If the NLS Language element is specified, SOAP requests can be
consumed in the language passed. All corresponding SOAP
responses and error messages can also be returned in the same
language. If no language is identified, then the default language of
the user will be used.

• If a service execution is dependent on any particular organization,
then you must pass the Org_Id element of that SOAP request.

The context information can be specified by configuring an Assign activity before the
Invoke activity in the BPEL PM.

SOA Composite Application with BPEL Process Creation Flow

Based on the scenario, the following design-time tasks are discussed in this chapter:

1. Create a New SOA Composite Application with BPEL Process, page 6-6

Use this step to create a new SOA composite application with BPEL process called
ShipNotice.bpel. This automatically creates two dummy activities - Receive and
Reply - to receive input from a third party application and to reply output of the
BPEL process to the request application.

2. Create a Partner Link, page 6-9

Use this step to create a partner link for the Departure Shipment Notice Outbound
Shipment_Notice concurrent service.

3. Add a Partner Link for File Adapter, page 6-11

6-6 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

This is to synchronously read sales order details received from the trading partner.

4. Add Invoke Activities, page 6-20

Use this step to create two Invoke activities in order to:

1. Point to the File Adapter - Synchronous Read operation to read the order details
from the Assign activity.

2. Point to the Shipment_Notice Web service to create the shipment notice with
header and line details.

5. Add Assign Activities, page 6-22

Use this step to create three Assign activities in order to:

1. Pass the SOAHeader variables for the invocation of the DSNO concurrent
program service.

2. Pass the order details from the output of the Synchronous Read - File Adapter
service to the input of the DSNO creation.

3. Set the SOAP response to output.

For general information and how to create SOA composite applications using BPEL
process service component, see the Oracle Fusion Middleware Developer's Guide for Oracle
SOA Suite for details.

Creating a New SOA Composite Application with BPEL Process
Use this step to create a new SOA composite application that will contain various BPEL
process activities.

To create a new SOA composite application with BPEL process:

1. Open Oracle JDeveloper.

2. Click New Application in the Application Navigator.

The "Create SOA Application - Name your application" page is displayed.

3. Enter an appropriate name for the application in the Application Name field and
select SOA Application from the Application Template list.

Click Next. The "Create SOA Application - Name your project" page is displayed.

Using Concurrent Programs 6-7

The Create SOA Application - Name your application Page

4. Enter an appropriate name for the project in the Project Name field, for example,
ShipNotice.

5. In the Project Technologies tab, select 'Web Services' and ensure that SOA is
selected from the Available technology list to the Selected technology list.

Click Next. The "Create SOA Application - Configure SOA settings" page is
displayed.

6. Select Composite With BPEL Process from the Composite Template list, and then
click Finish. You have created a new application, and a SOA project. This
automatically creates a SOA composite.

The Create BPEL Process page is displayed.

6-8 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

7. Leave the default BPEL 1.1 Specification selection unchanged. This creates a BPEL
project that supports the BPEL 1.1 specification.

Enter an appropriate name for the BPEL process in the Name field, for example
ShipNotice.

Select Synchronous BPEL Process in the Template field.

Select required from the Transaction drop-down list. Click OK.

A synchronous BPEL process is created with the Receive and Reply activities. The
required source files including bpel and wsdl, using the name you specified (for
example, ShipNotice.bpel and ShipNotice.wsdl) and composite.xml are
also generated.

Using Concurrent Programs 6-9

8. Navigate to SOA Content > Business Rules and double click the composite.xml
to view the composite diagram.

Double click on the ShipNotice component to open the BPEL process.

Creating a Partner Link for the Web Service
Use this step to create a Partner Link called Shipment_Notice for the Web service
exposed through the WSHDSNO concurrent program.

To create a partner link for Shipment_Notice Web service:

1. In Oracle JDeveloper, place your mouse in the Partner Links area and right click on
mouse to select Create Partner Link... from the pull-down menu. Alternatively, you
can drag and drop Partner Link from the BPEL Constructs list into the right
Partner Link swim lane of the process diagram.

The Create Partner Link window appears.

6-10 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

2. Copy the WSDL URL corresponding to the Departure Shipment Notice Outbound
WSHDSNO service that you recorded earlier in the WSDL File field.

Press the [Tab] key.

3. A Partner Link Type message dialog box appears asking whether you want the
system to create a new WSDL file that will by default create partner link types for
you.

Click Yes to have the Partner Name value populated automatically. You can
manually enter the Name such as WSHDSNO.

The partner link is created with the required WSDL settings, and is represented in
the BPEL project by a new icon in the border area of the process diagram.

4. You can optionally change the default partner link name by double-clicking the
icon to open the Edit Partner Link window. For example, change it from WSHDSNO
to Shipment_Notice.

Using Concurrent Programs 6-11

Select the Partner Link Type and Partner Role fields from the drop-down lists. Click
Apply.

5. Click OK to complete the partner link configuration.

Adding a Partner Link for File Adapter
Use this step to configure a BPEL process by synchronously reading a sales order to
obtain the order details.

To add a Partner Link for File Adapter to read order details:

1. In Oracle JDeveloper, drag and drop the File Adapter service from the BPEL
Services list into the right Partner Link swim lane of the process diagram. The
Adapter Configuration wizard welcome page appears.

2. Click Next. The Service Name dialog box appears.

3. Enter a name for the file adapter service, for example ReadOrder.

6-12 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

4. Click Next. The Adapter Interface dialog box appears.

Using Concurrent Programs 6-13

Specifying the Operation

5. Select the Define from operation and schema (specified later) radio button and
click Next. The Operation dialog box appears.

6-14 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

Specifying the Operation

6. Specify the operation type, for example Synchronous Read File. This automatically
populates the Operation Name field.

Click Next to access the File Directories dialog box.

Using Concurrent Programs 6-15

Specifying the Input File Directory

7. Select the Physical Path radio button and enter the input payload file directory
information. For example, enter /usr/tmp/ as the directory name.

Click Next to open the File Name dialog box.

8. Enter the name of the file for the synchronous read file operation, for example
'order_data.xml'.

6-16 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

Specifying the Input File Name

Click Next. The Messages dialog box appears.

Using Concurrent Programs 6-17

Specifying Message Schema

9. Select Browse for schema file in front of the URL field. The Type Chooser window
is displayed.

1. Click the Import Schema Files button on the top right corner of the Type
Chooser window.

2. Enter the schema location for the service. Such as
http://<soa_suite_hostname>:<port>/soa-infra/services/defa
ult/<jndi_name>_CONCURRENTPROGRAM_WSHDSNO/WSHDSNO_Service?
XSD=APPS_ISG_CP_REQUEST_CP_SUBMIT.xsd.

Schema location for your service can be found from the service WSDL URL (for
example,
http://<soa_suite_hostname>:<port>/soa-infra/services/defa
ult/<jndi_name>_CONCURRENTPROGRAM_WSHDSNO/WSHDSNO_Service?
wsdl).

3. Select the Copy to Project check box and click OK.

The Localize Files window appears. Ensure the Maintain original directory
structure for imported files check box is selected and click OK.

6-18 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

The Imported Schema folder is automatically added to the Type Chooser
window.

4. Expand the Imported Schema folder and select InputParameters Message in the
WSHDSNO_Service_XSD_APPS_ISG_CP_REQUEST_CP_SUBMIT.xsd. Click
OK.

5. The selected .xsd is displayed as URL, and the InputParameters is selected as
Schema Element.

Using Concurrent Programs 6-19

10. Click Next and then Finish. The wizard generates the WSDL file corresponding to
the partner link. The main Create Partner Link dialog box appears, specifying the
new WSDL file ReadOrder.wsdl.

Click Apply and then OK to complete the configuration and create the partner link
with the required WSDL settings for the File Adapter Service.

6-20 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

The ReadOrder Partner Link appears in the BPEL process diagram.

Adding Invoke Activities
This step is to configure two Invoke activities in order to:

• Read order details passed from the first Assign activity through the ReadOrder
partner link for File Adapter.

• Send the order header and line details received from the Assign activities and
generate an outbound shipment notice (DSNO) through the Shipment_Notice
partner link.

To add an Invoke activity for ReadOrder Partner Link:

1. In Oracle JDeveloper, expand the BPEL Constructs from the Component Palette.
Drag and drop the Invoke activity from the Component Palette into the center
swim lane of the process diagram, between the receiveInput and replyOutput
activities.

2. Link the Invoke activity to the ReadOrder service. The Invoke activity will send
order data to the partner link. The Edit Invoke dialog box appears.

Using Concurrent Programs 6-21

Editing the Invoke Activity

3. Enter a name for the Invoke activity, and then click the Create icon next to the
Input Variable field to create a new variable. The Create Variable dialog box
appears.

Creating an Input Variable

4. Enter a name for the variable. You can also accept the default name. Ensure the

6-22 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

Global Variable radio button is selected and click OK.

5. Click the Create icon next to the Output Variable field.

Enter a name for the output variable. You can also accept the default name. Ensure
the Global Variable radio button is selected and click OK.

Creating an Output Variable

6. Click Apply and then OK in the Edit Invoke dialog box to finish configuring the
Invoke activity.

The Invoke activity appears in the process diagram.

To add the second Invoke activity for Shipment_Notice Partner Link:

1. In Oracle JDeveloper, expand the BPEL Constructs from the Component Palette.
Drag and drop the second Invoke activity from the Component Palette into the
center swim lane of the process diagram, after the Invoke and replyOutput
activities.

2. Link the Invoke activity to the Shipment_Notice service. The Invoke activity will
send event data to the partner link. The Edit Invoke dialog box appears.

3. Enter a name for the Invoke activity such as 'Invoke_ShipmentNotice'. Select input
and output global variables as described in the first Invoke activity creation
procedure.

Click Apply and then OK in the Edit Invoke dialog box to finish configuring the
Invoke activity.

The second Invoke activity appears in the process diagram.

Adding Assign Activities
This step is to configure three Assign activities:

1. To pass the applications context for SOAHeader in the invocation of the DSNO

Using Concurrent Programs 6-23

concurrent program service.

2. To pass the order details from the output of the Synchronous Read - File Adapter
service to the input of the DSNO creation through the Invoke_ShipmentNotice
Invoke activity.

3. To set the SOAP response to output.

Assigning SOAHeader Parameters:

To add the first Assign activity to pass SOAHeader variables used in the invocation of
the DSNO concurrent program service:

1. In Oracle JDeveloper, expand the BPEL Constructs from the Component Palette.
Drag and drop the Assign activity into the center swim lane of the process diagram
between the two Invoke activities you just created earlier.

2. Double-click the Assign activity to access the Edit Assign dialog box.

3. Enter 'SOAHeader' as the Assign name in the Edit Assign dialog box. Click OK.

4. Select the Copy Rules tab and expand the target trees:

• Click the Expression icon to invoke the Expression Builder dialog.

Enter 'ORDER_MGMT_SUPER_USER' in the Expression box. Click OK. The
Expression icon with the expression value ('ORDER_MGMT_SUPER_USER')
appears in the center of the Edit Assign dialog, between the From and To
navigation tree nodes.

• In the To navigation tree, navigate to Variables > Process > Variables >
Invoke_Shipment_Notice_WSHDSNO_InputVariable >header >
ns2:SOAHeader and select ns2:Responsibility.

Drag the Expression icon to connect to the target node (ns2:Responsibility) that you
just identified. This creates a line that connects the source and target nodes. The
copy rule is displayed in the From and To sections at the bottom of the Edit Assign
dialog box.

5. Enter the second pair of parameters by clicking the Expression icon to invoke the
Expression Builder dialog.

• Enter 'ONT' in the Expression box. Click OK. The Expression icon with the
expression value ('ONT') appears in the center of the Edit Assign dialog,
between the From and To navigation tree nodes.

• In the To navigation tree, navigate to Variables > Process > Variables >
Invoke_Shipment_Notice_WSHDSNO_InputVariable >header >
ns2:SOAHeader and select ns2:RespApplication.

6-24 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

Drag the Expression icon to connect to the target node (ns2:RespApplication) that
you just identified. This creates a line that connects the source and target nodes. The
copy rule is displayed in the From and To sections at the bottom of the Edit Assign
dialog box.

6. Enter the third pair of parameters by clicking the Expression icon to invoke the
Expression Builder dialog.

• Enter 'STANDARD' in the Expression box. Click OK. The Expression icon with
the expression value ('STANDARD') appears in the center of the Edit Assign
dialog, between the From and To navigation tree nodes.

• In the To navigation tree, navigate to Variables > Process > Variables >
Invoke_Shipment_Notice_WSHDSNO_InputVariable >header >
ns2:SOAHeader and select ns2:SecurityGroup.

Drag the Expression icon to connect to the target node (ns2:SecurityGroup) that you
just identified. This creates a line that connects the source and target nodes. The
copy rule is displayed in the From and To sections at the bottom of the Edit Assign
dialog box.

7. Enter the fourth pair of parameters by clicking the Expression icon to invoke the
Expression Builder dialog.

• Enter 'AMERICAN' in the Expression box. Click OK. The Expression icon with
the expression value ('AMERICAN') appears in the center of the Edit Assign
dialog, between the From and To navigation tree nodes.

• In the To navigation tree, select type Variable. Navigate to Variables > Process
> Variables > Invoke_Shipment_Notice_WSHDSNO_InputVariable >header
> ns2:SOAHeader and select ns2:NLSLanguage.

Drag the Expression icon to connect to the target node (ns2:NLSLanguage) that you
just identified. This creates a line that connects the source and target nodes. The
copy rule is displayed in the From and To sections at the bottom of the Edit Assign
dialog box.

8. Enter the fifth pair of parameters by clicking the Expression icon to invoke the
Expression Builder dialog.

• Enter '202' in the Expression box. Click OK. The Expression icon with the
expression value ('202') appears in the center of the Edit Assign dialog, between
the From and To navigation tree nodes.

• In the To navigation tree, select type Variable. Navigate to Variables > Process
> Variables > Invoke_Shipment_Notice_WSHDSNO_InputVariable >header
> ns2:SOAHeader and select ns2:Org_Id.

Using Concurrent Programs 6-25

Drag the Expression icon to connect to the target node (ns2:NLSLanguage) that you
just identified. This creates a line that connects the source and target nodes. The
copy rule is displayed in the From and To sections at the bottom of the Edit Assign
dialog box.

9. The Edit Assign dialog box appears.

Click Apply and then OK to complete the configuration of the Assign activity.

To add the second Assign activity to set order details to the Invoke_ShipmentNotice
Invoke activity:

1. In Oracle JDeveloper, expand the BPEL Constructs from the Component Palette.
drag and drop the Assign activity into the center swim lane of the process diagram,
between the Assign and Invoke activities.

2. Double-click the Assign activity to access the Edit Assign dialog box.

3. Click the General tab to enter the name for the Assign activity, such as
'SetOrderDetails'.

4. Select the Copy Rules tab and expand the source and target trees:

• In the From navigation tree, navigate to Variables > Process > Variables >
InvokeReadOrder_SynchRead_OutputVariable > body > InputParameters
and select ns1:InputParameters.

• In the To navigation tree, navigate to Variables > Process > Variables >
InvokeShipmentNotice_WSHDSNO_InputVariable > body and select
ns1:InputParameters.

Drag the source node (ns1:InputParameters) to connect to the target node
(ns1:InputParameters) that you just identified. This creates a line that connects the
source and target nodes. The copy rule is displayed in the From and To sections at
the bottom of the Edit Assign dialog box.

5. The Edit Assign dialog box appears.

Click Apply and then OK to complete the configuration of the Assign activity.

To add the third Assign activity to set SOAP response to output:

1. Add the third Assign activity by dragging and dropping the Assign activity from
the BPEL Constracts section of the Component Palette into the center swim lane of
the process diagram, between the Invoke and the Reply activities.

2. Repeat Step 2 to Step 3 described in creating the first Assign activity to add the
third Assign activity called 'SetCPdetails'.

3. Select the Copy Rules tab and expand the target trees:

6-26 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

• In the From navigation tree, navigate to Variables > Process > Variables >
InvokeShipmentNotice_WSHDSNO_OutputVariable and select body.

• In the To navigation tree, navigate to Variables > Process > Variables >
OutputVariable and select payload.

Drag the source node (body) to connect to the target node (payload) that you just
identified. This creates a line that connects the source and target nodes. The copy
rule is displayed in the From and To sections at the bottom of the Edit Assign
dialog box.

4. Click Apply and then OK to complete the configuration of the Assign activity.

Configuring Web Service Policies

Use the following steps to add a security policy at design time:

1. Navigate to SOA Content > Business Rules > composite.xml. Right click on the
Shipment_Notice service and select "Configure WS Policies" from the drop-down
list.

2. The Configure SOA WS Policies dialog appears.

In the Security section, click the Add icon (+). The Select Server Security Policies
dialog appears.

Using Concurrent Programs 6-27

Select 'oracle/wss_username_token_service_policy' and click OK.

The attached security policy is shown in the Security section.

A lock icon appears in the Shipment_Notice service of the composite.xml
indicating that a security policy has been successfully attached.

6-28 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

3. From the navigation menu, select View > Property Inspector to display the
Property Inspector window for Shipment_Notice service component.

In the Properties section, click the Add icon (+) for binding properties. The Create
Property dialog appears.

Enter 'oracle.webservices.auth.username' in the Name field and enter
'operations' as the value.

Click OK.

4. Use the same approach by clicking the Add icon (+) again in the Properties section
for binding properties. Enter 'oracle.webservices.auth.password' in the
Name field. Enter the associated password for user 'operations' in the Value field.

Using Concurrent Programs 6-29

Click OK.

Both selected property names and values appear in the Properties section.

Click the Source tab of the composite.xml and notice that the
oracle.webservices.auth.username and
oracle.webservices.auth.password property names and the associated
values are added to the Shipment_Notice reference.

Deploying and Testing the SOA Composite with BPEL Process at Run
Time

To invoke the synchronous Departure Shipment Notice Outbound WSHDSNO service
from the BPEL client contained in the SOA composite, the SOA composite needs to be
deployed to the Oracle WebLogic managed server. This can be achieved using Oracle
JDeveloper. Once the composite is deployed, it can be tested from the Oracle Enterprise
Manager Fusion Middleware Control Console.

Prerequisites

Before deploying the SOA composite with BPEL process using Oracle JDeveloper, you
must have established the connectivity between the design-time environment and the
run-time server. For information on how to configure the necessary server connection,
see Configuring Server Connection, page B-1.

Note: If a local instance of the WebLogic Server is used, start the
WebLogic Server by selecting Run > Start Server Instance from Oracle
JDeveloper. Once the WebLogic Admin Server "DefaultServer" instance
is successfully started, the <Server started in Running mode> and
DefaultServer started message in the Running:DefaultServer and
Messages logs should appear.

Perform the following run-time tasks:

1. Deploy the SOA Composite Application with BPEL Process, page 6-30

2. Test the SOA Composite Application with BPEL Process, page 6-32

6-30 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

Deploying the SOA Composite Application with BPEL Process
You must deploy the SOA composite application with BPEL process (
ShipNotice.bpel) that you created earlier before you can run it.

To deploy the SOA composite application BPEL process:

1. In the Applications Navigator of JDeveloper, select the ShipNotice project.

2. Right-click the project and select Deploy > [project name] > [serverConnection]
from the menu.

For example, you can select Deploy > ShipNotice > SOAServer to deploy the
process if you have the connection appropriately.

Note: If this is the first time to set up server connection, then the
Deployment Action window appears. Select 'Deploy to Application
Server' and click Next.

In the Deploy Configuration window, ensure the following
information is selected before clicking Next to add a new
application server:

• New Revision ID: 1.0

• Mark composite revision as default: Select this check box.

• Overwrite any existing composites with the same revision ID:
Select this check box.

Using Concurrent Programs 6-31

The steps to create a new Oracle WebLogic Server connection from
JDeveloper are covered in Configuring Server Connection, page B-
1.

3. In the Select Server page, select 'soa-server1' that you have established the server
connection earlier. Click Next.

4. In the SOA Servers page, accept the default target SOA Server ('soa-server1')
selection.

6-32 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

Click Next and Finish.

5. If you are deploying the composite for the first time from your Oracle JDeveloper
session, the Authorization Request window appears. Enter username and password
information specified during Oracle SOA Suite installation. Click OK.

6. Deployment processing starts. Monitor deployment process and check for
successful compilation in the SOA - Log window.

Verify that the deployment is successful in the Deployment - Log window.

Testing the SOA Composite Application with BPEL Process
Once the BPEL process contained in the SOA composite application has been
successfully deployed, you can manage and monitor the process from Oracle Enterprise
Manager Fusion Middleware Control Console.

You can also log on to Oracle E-Business Suite to manually initiate the processes and to
confirm that the departure shipment notice outbound (DSNO) is generated in the XML
file.

For more information about Oracle SOA Suite, see the Oracle Fusion Middleware
Administrator's Guide for Oracle SOA Suite.

To test the SOA composite application with BPEL process:

1. Navigate to Oracle Enterprise Manager Fusion Middleware Control Console (

Using Concurrent Programs 6-33

http://<hostname>:<port>/em). The login page appears.

2. Enter the username and the password specified during Oracle SOA Suite
installation. Click Login to log in to a farm. The composite (ShipNotice) you
deployed is displayed in the Applications Navigation tree.

You may need to select an appropriate target instance farm if there are multiple
target Oracle Enterprise Manager Fusion Middleware Control Console farms.

3. From the Farm navigation pane, expand the SOA >soa-infra node in the tree to
navigate through the SOA Infrastructure home page and menu to access your
deployed SOA composite applications running on soa-infra managed server.

Click the ShipNotice [1.0] link.

4. Click the Policies tab and notice that the
'oracle/wss_username_token_service_policy' policy you attached to the
Shipment_Notice service binding earlier at the design time is now displayed
here.

5. In the ShipNotice [1.0] home page, click Test.

6. The Test Web Service page for initiating an instance appears. You can specify
information as XML payload data to use in the Input Arguments section.

Note: If the WS-Security credentials are not entered at design time,
you can enter the credentials at run time by selecting the WSS
Username Token option in the Security section at the top of the
Request tab. Enter 'operations' in the Username field and the
associated password for user 'operations' in the Password field.

6-34 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

Click Test Web Service to initiate the process.

The test results appear in the Response tab upon completion.

7. Click your BPEL service component instance link (such as ShipNotice) to display
the Instances page where you can view execution details for the BPEL activities in
the Audit Trail tab.

Click the Flow tab to check the BPEL process flow diagram. Click an activity of the
process diagram to view the activity details and flow of the payload through the
process.

8. Double-click the Invoke_ShipmentNotice icon from the process flow chart and click
the View XML document link to open the XML file. This file records the Request ID
that is returned for the transaction.

Verifying Records in Oracle E-Business Suite

Before verifying the records in Oracle E-Business Suite, you must first ensure that the
concurrent request is completed successfully.

1. Log on to Oracle E-Business Suite with the System Administrator responsibility.
Select View > Requests to open the Find Requests window.

2. Search for the concurrent request by entering the Request Id that you got from the
audit trail and then click Find.

3. The request details page is displayed. Check the Phase and Status of the request to
see if the Status of the request is Complete.

Once the concurrent request has been completed successfully, you can validate it in
Oracle E-Business Suite.

Since DSNO (departure shipment notice outbound) is an outbound XML message,
relevant XML Gateway setup tasks must be configured appropriately in order for the
shipment notice to be delivered to the right recipient.

See Oracle XML Gateway User's Guide for details.

You can validate if the ship-to address, purchase order, and requested ship date
information in the DSNO XML file corresponds with the information in your sales
order.

Using Business Service Objects 7-1

7
Using Business Service Objects

Overview
A business service object, formerly known as Service Bean, is a high-level service
component that allows OA Framework or BC4J (Business Components for Java)
components to be deployed as Web services. It is the tool by which Oracle E-Business
Suite employs service oriented architecture (SOA) and Web services to facilitate
integration with each other and with third party trading partners.

Business service object interfaces provide access to SOA services and facilitate
integration between Oracle E-Business Suite and trading partners. They often employ
service data objects as parameters to pass complex data.

To better utilize business service objects for broader customers, an integration
repository administrator or a system integration developer can first generate a Web
service, and then an integration repository administrator can deploy it to an Oracle SOA
Suite WebLogic managed server. By leveraging Oracle SOA Suite components, the
deployed service can be orchestrated into a meaningful BPEL process as a SOA
composite application with service endpoints. This process can take the data from a
business partner and then insert or update Oracle E-Business Suite if necessary.

At run time, the SOA composite application in the WebLogic managed server where the
soa-infra application is running can be exposed to customers and invoked through
any of the Web service clients or orchestration tools including Oracle JDeveloper,
Apache Axis, .NET Web Service Client, Oracle BPEL Process Manager, and Oracle
Enterprise Service Bus (ESB).

To better understand how each individual Web service can be used in inserting or
updating application data, detailed design-time and run-time tasks are discussed in this
chapter. For the example described in the following sections, Oracle JDeveloper 11g
(11.1.1.6.0) is used as a design-time tool to create the BPEL process and Oracle SOA
Suite 11g (11.1.1.6.0) is used for the process deployment.

Note: While using Oracle JDeveloper with other Oracle Fusion

7-2 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

Middleware components (such as Oracle SOA Suite), to enable SOA
technologies, you need to manually download Oracle SOA Suite
Composite Editor, a JDeveloper's extension for SOA technologies. For
more information on installing additional Oracle Fusion Middleware
design time components, see the Oracle Fusion Middleware Installation
Guide for Oracle JDeveloper.

Using Business Service Object WSDLs at Design Time
SOA Composite Application with BPEL Process Scenario

This example uses PurchaseOrderService
/oracle/apps/fnd/framework/toolbox/tutorial/PurchaseOrderService
business service object interface to explain the BPEL process creation.

When a purchase order approval request is received, the information of purchase order
details is read by a File Adapter. The order data is then passed to the
approvePurchaseOrder method within the PurchaseOrderService to initiate the single
PO approval process. The approval information is then replied back to the requestor.

When the BPEL process has been successfully executed after deployment, the purchase
order status is changed from Incomplete to Approved.

Prerequisites to Create a SOA Composite Application with BPEL Process Using a
Business Service Object Web Service

• An integration repository administrator or a system integration developer needs to
generate a Web service first. The administrator will deploy the generated service to
an Oracle SOA Suite WebLogic managed server.

• A system integration developer needs to locate and record the deployed WSDL
URL for the BSO interface exposed as a Web service.

• Header variables need to be populated for Web service authorization.

Deploying a Business Service Object Web Service Composite

An integration repository administrator or a system integration developer must first
create a Web service for a selected interface definition, and then the administrator can
deploy the service from Oracle Integration Repository to an Oracle SOA Suite WebLogic
managed server.

For example, the following steps must be performed first before a system integration
developer can create a BPEL process using the deployed WSDL:

1. To generate a Web service, locate the business service object interface definition first
from the Oracle Integration Repository (such as PurchaseOrderService
/oracle/apps/fnd/framework/toolbox/tutorial/PurchaseOrderServ
ice). In the Web Service region of the interface details page, select synchronous

Using Business Service Objects 7-3

interaction pattern for the interface or desired methods from the Interaction Pattern
table. Click Generate to generate the service.

Once the service has been successfully generated, the Web Service Status field
changed from 'Not Generated' to 'Generated'.

For detailed instructions on how to generate a Web service, see Generating Web
Services, Oracle E-Business Suite Integrated SOA Gateway Implementation Guide.

2. To deploy a generated Web service, select one authentication type before clicking
Deploy. The deployed service in Oracle SOA Suite is an active service and is ready
to accept new SOAP requests.

Once the service has been successfully deployed, the selected authentication type
will be displayed along with 'Deployed' with 'Active' state in the Web Service Status
field. For more information on securing Web services with authentication type, see
Managing Web Service Security, Oracle E-Business Suite Integrated SOA Gateway
Implementation Guide.

For information on how to deploy a Web service, see Deploying and Undeploying
Web Services, Oracle E-Business Suite Integrated SOA Gateway Implementation Guide.

Searching and Recording a WSDL URL

Apart from the required tasks performed by the administrator, a system integration
developer needs to locate and record the deployed Web service WSDL URL for the
interface that needs to be orchestrated into a meaningful BPEL process in Oracle
JDeveloper.

This WSDL information will be used later in creating a partner link for the interface
exposed as a Web service during the BPEL process creation at design time.

7-4 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

Confirming and Recording a Deployed WSDL URL

For information on how to search for an interface and review the interface details, see
Searching and Viewing Integration Interfaces, page 2-1.

Setting Header Variables for a SOAP Request

You need to populate certain variables in the BPEL process for header elements to pass
values that may be required to set applications context during service execution. These
header elements for Business Service Object interface type are
RESPONSIBILITY_NAME, RESPONSIBILITY_APPL_NAME,
SECURITY_GROUP_NAME, NLS_LANGUAGE, and ORG_ID.

Note: The username and password information is defined by the Web
service security policy (such as
oracle/wss_username_token_service_policy). Detailed
instructions on how to pass the security headers along with the SOAP
request, see Configuring Web Service Policies, page 7-26.

The expected values for these elements are described in the following table:

Using Business Service Objects 7-5

Header Variables and Expected Values for Business Service Object Interfaces

Element Name Expected Value

RESPONSIBILITY_NAME responsibility_name (such as "System
Administrator") or
{key}responsibility_key (such as
"{key}SYSTEM_ADMINISTRATOR")

RESPONSIBILITY_APPL_NAME Application Short Name (such as "FND")

SECURITY_GROUP_NAME Security Group Key (such as "STANDARD")

NLS_LANGUAGE NLS Language (such as "AMERICAN")

ORG_ID Org ID (such as "202")

Note: NLS_Language and ORG_ID are optional values to be passed.

• If the NLS Language element is specified, SOAP requests can be
consumed in the language passed. All corresponding SOAP
responses and error messages can also be returned in the same
language. If no language is identified, then the default language of
the user will be used.

• If a service execution is dependent on any particular organization,
then you must pass the ORG_ID element in the
ServiceBean_Header of that SOAP request.

The context information can be specified by configuring an Assign activity before the
Invoke activity in the BPEL PM.

Detailed information on how to set header variables for the SOAP request, see
Assigning ServiceBean_Header Parameters, page 7-21.

SOA Composite Application with BPEL Process Creation Flow

Based on the scenario, the following design-time tasks are discussed in this chapter:

1. Create a SOA Composite Application with BPEL Process, page 7-6

Use this step to create a new SOA Composite application with BPEL project called
ApprovePO.bpel. This automatically creates two dummy activities - Receive and
Reply - to receive input from a third party application and to reply output of the
BPEL process to the request application.

7-6 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

2. Create a Partner Link, page 7-9

Use this step to create a partner link for the PurchaseOrderService Web service.

3. Add a Partner Link for File Adapter, page 7-10

This is to synchronously read purchase order details received from the requestor.

4. Add Invoke Activities, page 7-16

Use this step to create two Invoke activities in order to:

1. Point to the File Adapter - Synchronous Read operation to read the purchase
order from the input file.

2. Point to the PurchaseOrderService Web service to initiate the single purchase
order approval process.

5. Add Assign Activities, page 7-20

Use this step to create three Assign activities in order to:

1. Set the SOAHeader details.

2. Pass the purchase order details read from the File Adapter as an input to the
Invoke activity for the PurchaseOrderService Web service.

3. Pass single purchase order approval information to the requestor through the
Reply activity.

For general information and how to create SOA composite applications using BPEL
process service component, see the Oracle Fusion Middleware Developer's Guide for Oracle
SOA Suite for details.

Creating a SOA Composite Application with BPEL Process
Use this step to create a SOA composite application that will contain various BPEL
process activities.

To create a new SOA Composite application with BPEL project:

1. Open Oracle JDeveloper BPEL Designer.

2. Click New Application in the Application Navigator.

The "Create SOA Application - Name your application" page is displayed.

Using Business Service Objects 7-7

The Create SOA Application - Name your application Page

3. Enter an appropriate name for the application in the Application Name field and
select SOA Application from the Application Template list.

Click Next. The "Create SOA Application - Name your project" page is displayed.

4. Enter an appropriate name for the project in the Project Name field, for example
ApprovePO.

5. In the Project Technologies tab, select 'Web Services' and ensure that SOA is
selected from the Available technology list to the Selected technology list.

Click Next. The "Create SOA Application - Configure SOA settings" page is
displayed.

6. Select Composite With BPEL Process from the Composite Template list, and then
click Finish. You have created a new application, and a SOA project. This
automatically creates a SOA composite.

The Create BPEL Process page is displayed.

7-8 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

The Create BPEL Process Page

7. Leave the default BPEL 1.1 Specification selection unchanged. This creates a BPEL
project that supports the BPEL 1.1 specification.

Enter an appropriate name (such as ApprovePO) for the BPEL process in the Name
field.

Select Synchronous BPEL Process in the Template field.

Select required from the Transaction drop-down list. Click OK.

A synchronous BPEL process is created with the Receive and Reply activities. The
required source files including bpel and wsdl, using the name you specified (for
example, ApprovePO.bpel and ApprovePO.wsdl) and composite.xml are
also generated.

8. Navigate to SOA Content > Business Rules and double click the composite.xml
to view the composite diagram.

Using Business Service Objects 7-9

Double click on the ApprovePO component to open the BPEL process.

Creating a Partner Link
Use this step to configure a Partner Link called PurchaseOrderService.

To create a partner link for PurchaseOrderService:

1. In Oracle JDeveloper, place your mouse in the Partner Links area and right click to
select Create Partner Link... from the pull-down menu. Alternatively, you can drag
and drop Partner Link from the BPEL Constructs list into the right Partner Link
swim lane of the process diagram.

The Create Partner Link window appears.

7-10 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

2. Copy the WSDL URL corresponding to the PurchaseOrderService
/oracle/apps/fnd/framework/toolbox/tutorial/PurchaseOrderServ
ice that you recorded earlier from the Integration Repository, and paste it in the
WSDL File field. Press the [Tab] key.

3. A Partner Link Type message dialog box appears asking whether you want the
system to create a new WSDL file that will by default create partner link types for
you.

Click Yes to have the Partner Name value populated automatically.

Select the Partner Link Type and Partner Role fields from the drop-down lists. Click
Apply.

4. Click OK to complete the partner link configuration. The partner link is created
with the required WSDL settings, and is represented in the BPEL project by a new
icon in the border area of the process diagram.

Adding a Partner Link for File Adapter
Use this step to synchronously read the purchase order details received from the third
party application.

To add a Partner Link for File Adapter:

1. In Oracle JDeveloper, drag and drop the File Adapter service from the BPEL
Services list into the right Partner Link swim lane of the process diagram. The
Adapter Configuration wizard welcome page appears.

2. Click Next. The Service Name dialog box appears.

3. Enter a name for the file adapter service for example ReadPO.

4. Click Next. The Adapter Interface dialog box appears.

Using Business Service Objects 7-11

Specifying the Operation

5. Select the Define from operation and schema (specified later) radio button and
click Next. The Operation dialog box appears.

7-12 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

Specifying the Operation

6. Specify the operation type, for example Synchronous Read File. This automatically
populates the Operation Name field.

Click Next to access the File Directories dialog box.

Using Business Service Objects 7-13

Specifying the Input File Directory

7. Select the Physical Path radio button and enter the input payload file directory
information. For example, enter /usr/tmp/ as the directory name.

Click Next to open the File Name dialog box.

8. Enter the name of the file for the synchronous read file operation. For example,
enter 'Input.xml'. Click Next. The Messages dialog box appears.

7-14 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

Specifying Message Schema

9. Select Browse for schema file in front of the URL field. The Type Chooser window
is displayed.

1. Click the Import Schema Files button on the top right corner of the Type
Chooser window.

2. Enter the schema location for the service, such as
http://<soa_suite_hostname>:<port>/soa-infra/services/defa
ult/<jndi_name>_PurchaseOrderService/PurchaseOrderService_
Service/?XSD=xsd/PurchaseOrderService.xsd.

Schema location for your service can be found from the service WSDL URL (for
example,
http://<soa_suite_hostname>:<port>/soa-infra/services/defa
ult/<jndi_name>_PurchaseOrderService/PurchaseOrderService_
Service?wsdl).

Using Business Service Objects 7-15

Importing Schema Location

3. Select the Copy to Project check box and click OK.

4. The Localize Files window appears. Ensure the Maintain original directory
structure for imported files check box is selected and click OK.

The Imported Schema folder is automatically added to the Type Chooser
window.

5. Expand the Imported Schema folder and select
PurchaseOrderService_ApprovePurchaseOrder from the
PurchaseOrderService.xsd. Click OK.

The selected .xsd is displayed as URL, and the
PurchaseOrderService_ApprovePurchaseOrder is selected as Schema Element.

7-16 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

10. Click Next and then Finish. The wizard generates the WSDL file corresponding to
the partner link. The main Create Partner Link dialog box appears, specifying the
new WSDL file ReadPO.wsdl.

Click Apply and then OK to complete the configuration and create the partner link
with the required WSDL settings for the File Adapter service.

The ReadPO Partner Link appears in the BPEL process diagram.

11. Under applications window, navigate to file ReadPO_file.jca. Set value of property
"DeleteFile" to "false".

Adding an Invoke activity
This step is to configure two Invoke activities to:

1. Point to the File Adapter ReadPO to synchronously read the purchase order from
the Receive activity.

2. Point to the PurchaseOrderService partner link to send the transaction
information that is received from the Assign activities to initiate the single purchase
order approval process.

Using Business Service Objects 7-17

To add an Invoke activity for ReadPO Partner Link:

1. In Oracle JDeveloper, expand the BPEL Constructs from the Component Palette.
Drag and drop the Invoke activity into the center swim lane of the process diagram,
between the receiveInput and replyOutput activities.

2. Link the Invoke activity to the ReadPO service. The Edit Invoke dialog box appears.

Editing the Invoke Activity

3. Enter a name for the Invoke activity, such as 'InvokeReadPO', and then click the
Create icon next to the Input Variable field to create a new variable. The Create
Variable dialog box appears.

Enter an appropriate name in the Name field. You can also accept the default name.

7-18 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

Creating a Variable

4. Select Global Variable and click OK.

5. Click the Create icon next to the Output Variable field to create a new variable. The
Create Variable dialog box appears.

Enter an appropriate name in the Name field. You can also accept the default name.

Select Global Variable. Click OK.

6. Click Apply and then OK in the Edit Invoke dialog box to finish configuring the
Invoke activity.

The Invoke activity appears in the process diagram.

Using Business Service Objects 7-19

Adding an Invoke Activity

To add an Invoke activity for PurchaseOrderService Partner Link:

1. In Oracle JDeveloper, expand the BPEL Constructs from the Component Palette.
Drag and drop the Invoke activity into the center swim lane of the process diagram,
after the first Invoke activity and the reployOutput activity.

2. Link the Invoke activity to the PurchaseOrderService service. The Edit Invoke
dialog box appears.

3. Enter a name for the second Invoke activity such as 'InvokePOService'. Create input
and output variables described in the first Invoke activity. Click OK to close the
Create Variable dialog box.

4. Click Apply and then OK to finish configuring the second Invoke activity.

The second Invoke activity appears in the process diagram.

7-20 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

Adding an Invoke Activity

Adding an Assign activity
This step is to configure three Assign activities to:

1. Set the header details.

Note: You need to populate certain variables in the BPEL process
for ServiceBean_Header elements to pass values that may be
required to embed applications context into SOAP envelopes for
Web service authorization. These ServiceBean_Header elements for
Business Service Object interface type are
RESPONSIBILITY_NAME, RESPONSIBILITY_APPL_NAME,
SECURITY_GROUP_NAME, NLS_LANGUAGE, and ORG_ID.

Detailed information on how to set ServiceBean_Header for the
SOAP request, see Assigning ServiceBean_Header Parameters,
page 7-21.

Using Business Service Objects 7-21

2. Pass the purchase order details read from the File Adapter as an input to the second
Invoke activity for PurchaseOrderService partner link.

3. Pass single purchase order approval information to the requestor through the
dummy Reply activity.

To add the first Assign activity to pass header details:

Assigning ServiceBean_Header Parameters:

1. In Oracle JDeveloper, expand the BPEL Constructs from the Component Palette.
Drag and drop the Assign activity into the center swim lane of the process diagram
between the two Invoke activities you just created earlier.

2. Double-click the Assign activity to access the Edit Assign dialog box.

3. Click the General tab to enter the name for the Assign activity, such as
'SetServiceBeanHeader'.

4. Select the Copy Rules tab and expand the target trees:

• Click the Expression icon to invoke the Expression Builder dialog.

Enter 'Purchasing, Vision Operations (USA)' in the Expression box. Click OK.
The Expression icon with the expression value appears in the center of the Edit
Assign dialog, between the From and To navigation tree nodes.

• In the To navigation tree, navigate to Variables > Process > Variables >
InvokePurchaseOrderService_PurchaseOrderService_ApprovePurchaseOrder
_InputVariable > header> ns5:ServiceBean_Header and select
ns5:RESPONSIBILITY_NAME.

Drag the Expression icon to connect to the target node
(ns5:RESPONSIBILITY_NAME) that you just identified. This creates a line that
connects the source and target nodes. The copy rule is displayed in the From and To
sections at the bottom of the Edit Assign dialog box.

7-22 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

5. Enter second pair of parameters by clicking the Expression icon to invoke the
Expression Builder dialog.

• Enter 'PUR' in the Expression box. Click OK. The Expression icon with the
expression value ('PUR') appears in the center of the Edit Assign dialog,
between the From and To navigation tree nodes.

• In the To navigation tree, navigate to Variables > Process > Variables >
InvokePurchaseOrderService_PurchaseOrderService_ApprovePurchaseOrder
_InputVariable > header> ns5:ServiceBean_Header and select
ns5:RESPONSIBILITY_APPL_NAME.

Drag the Expression icon to connect to the target node
(ns5:RESPONSIBILITY_APPL_NAME) that you just identified. This creates a line
that connects the source and target nodes. The copy rule is displayed in the From
and To sections at the bottom of the Edit Assign dialog box.

6. Enter third pair of parameters by clicking the Expression icon to invoke the
Expression Builder dialog.

• Enter 'STANDARD' in the Expression box. Click OK. The Expression icon with
the expression value ('STANDARD') appears in the center of the Edit Assign
dialog, between the From and To navigation tree nodes.

• In the To navigation tree, navigate to Variables > Process > Variables >
InvokePurchaseOrderService_PurchaseOrderService_ApprovePurchaseOrder

Using Business Service Objects 7-23

_InputVariable > header> ns5:ServiceBean_Header and select
ns5:SECURITY_GROUP_NAME.

Drag the Expression icon to connect to the target node
(ns5:SECURITY_GROUP_NAME) that you just identified. This creates a line that
connects the source and target nodes. The copy rule is displayed in the From and To
sections at the bottom of the Edit Assign dialog box.

7. Enter the fourth pair of parameters by clicking the Expression icon to invoke the
Expression Builder dialog.

• Enter 'AMERICAN' in the Expression box. Click OK. The Expression icon with
the expression value ('AMERICAN') appears in the center of the Edit Assign
dialog, between the From and To navigation tree nodes.

• In the To navigation tree, navigate to Variables > Process > Variables >
InvokePurchaseOrderService_PurchaseOrderService_ApprovePurchaseOrder
_InputVariable > header> ns5:ServiceBean_Header and select
ns5:NLS_LANGUAGE.

Drag the Expression icon to connect to the target node (ns5:NLS_LANGUAGE) that
you just identified. This creates a line that connects the source and target nodes. The
copy rule is displayed in the From and To sections at the bottom of the Edit Assign
dialog box.

8. Enter the fifth pair of parameters by clicking the Expression icon to invoke the
Expression Builder dialog.

• Enter '204' in the Expression box. Click OK. The Expression icon with the
expression value ('204') appears in the center of the Edit Assign dialog, between
the From and To navigation tree nodes.

• In the To navigation tree, navigate to Variables > Process > Variables >
InvokePurchaseOrderService_PurchaseOrderService_ApprovePurchaseOrder
_InputVariable > header> ns5:ServiceBean_Header and select ns5:ORG_ID.

Drag the Expression icon to connect to the target node (ns5:ORG_ID) that you just
identified. This creates a line that connects the source and target nodes. The copy
rule is displayed in the From and To sections at the bottom of the Edit Assign
dialog box.

7-24 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

9. Click Apply and then OK to complete the configuration of the Assign activity.

To enter the second Assign activity to pass PO details to the InvokePOService Invoke
activity:

1. In Oracle JDeveloper BPEL Designer, drag and drop the second Assign activity
from the BPEL Constructs into the center swim lane of the process diagram,
between the first Assign and Invoke activities.

2. Double-click the Assign activity to access the Edit Assign dialog box.

3. Click the General tab to enter the name for the Assign activity, such as
'SetPOApproval'.

4. Select the Copy Rules tab and expand the target trees:

• In the From navigation tree, navigate to Variables > Process > Variables >
InvokeReadPO_SynchRead_OutputVariable >
PurchaseOrderService_ApprovePurchaseOrder > body >
ns6:PurchaseOrderService_ApprovePurchaseOrder and select poNumber.

• In the To navigation tree, navigate to Variables > Process > Variables >
InvokePurchaseOrderService_PurchaseOrderService_ApprovePurchaseOrder
_InputVariable > body > ns6:PurchaseOrderService_ApprovePurchaseOrder

Using Business Service Objects 7-25

and select poNumber.

Drag the source node (poNumber) to connect to the target node (poNumber) that
you just identified. This creates a line that connects the source and target nodes. The
copy rule is displayed in the From and To sections at the bottom of the Edit Assign
dialog box.

5. Click Apply and then OK to complete the configuration of the Assign activity.

To enter the third Assign activity to set the SOAP response to output:

1. Add the third Assign activity by dragging and dropping the Assign activity into
the center swim lane of the process diagram, between the InvokePOService
Invoke and the Replyoutput activities.

2. Repeat Step 2 to Step 3 described in creating the first Assign activity to add the
second Assign activity called 'SetPOStatus'.

3. Select the Copy Rules tab and expand the source and target trees:

• In the From navigation tree, navigate to Variables > Process > Variables >
InvokePurchaseOrderService_PurchaseOrderService_ApprovePurchaseOrder
_OutputVariable and select body.

• In the To navigation tree, navigate to Variables > Process > Variables >
outputVariable and select payload.

7-26 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

Drag the source node (body) to connect to the target node (payload) that you just
identified. This creates a line that connects the source and target nodes. The copy
rule is displayed in the From and To sections at the bottom of the Edit Assign
dialog box.

4. Click Apply and then OK to complete the configuration of the Assign activity.

Configuring Web Service Policies

Use the following steps to add a security policy at design time:

1. Navigate to SOA Content > Business Rules > composite.xml. Right click on the
PurchaseOrderService service and select "Configure WS Policies" from the
drop-down list.

2. The Configure SOA WS Policies dialog appears.

In the Security section, click the Add icon (+). The Select Server Security Policies
dialog appears.

Using Business Service Objects 7-27

Select 'oracle/wss_username_token_service_policy' and click OK.

The attached security policy is shown in the Security section.

3. From the navigation menu, select View > Property Inspector to display the
Property Inspector window for PurchaseOrderService service component.

In the Properties section, click the Add icon (+) for binding properties. The Create
Property dialog appears.

Enter 'oracle.webservices.auth.username' in the Name field and enter
'operations' as the value.

7-28 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

Click OK.

4. Use the same approach by clicking the Add icon (+) again in the Properties section
for binding properties. Enter 'oracle.webservices.auth.password' in the
Name field. Enter the associated password for user 'operations' in the Value field.

Click OK.

Both selected property names and values appear in the Properties section.

Deploying and Testing the SOA Composite with BPEL Process at Run
Time

To invoke the synchronous PurchaseOrderService from the BPEL client contained in the
SOA composite, the SOA composite needs to be deployed to the Oracle WebLogic
managed server. This can be achieved using Oracle JDeveloper. Once the composite is
deployed, it can be tested from the Oracle Enterprise Manager Fusion Middleware
Control Console.

Prerequisites

Before deploying the SOA composite with BPEL process using Oracle JDeveloper, you
must have established the connectivity between the design-time environment and the
run-time server. For information on how to configure the necessary server connection,
see Configuring Server Connection, page B-1.

Note: If a local instance of the WebLogic Server is used, start the
WebLogic Server by selecting Run > Start Server Instance from Oracle

Using Business Service Objects 7-29

JDeveloper. Once the WebLogic Admin Server "DefaultServer" instance
is successfully started, the <Server started in Running mode> and
DefaultServer started message in the Running:DefaultServer and
Messages logs should appear.

Perform the following run-time tasks:

1. Deploy the SOA Composite Application with BPEL Process, page 7-29

2. Test the SOA Composite Application with BPEL Process, page 7-32

Deploying the SOA Composite with BPEL Process
You must deploy the Approve Purchase Order SOA composite (POApprove.bpel)
that you created earlier before you can run it.

To deploy the SOA composite application:

1. In the Applications Navigator of JDeveloper, select the POApprove project.

2. Right-click the project and select Deploy > [project name] > [serverConnection]
from the menu.

For example, you can select Deploy > POApprove > SOAServer to deploy the
process if you have the connection appropriately.

Note: If this is the first time to set up server connection, then the
Deployment Action window appears. Select 'Deploy to Application
Server' and click Next.

7-30 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

In the Deploy Configuration window, ensure the following
information is selected before clicking Next to add a new
application server:

• New Revision ID: 1.0

• Mark composite revision as default: Select this check box.

• Overwrite any existing composites with the same revision ID:
Select this check box.

The steps to create a new Oracle WebLogic Server connection from
JDeveloper are covered in Configuring Server Connection, page B-
1.

3. In the Select Server page, select 'soa-server1' that you have established the server
connection earlier. Click Next.

Using Business Service Objects 7-31

4. In the SOA Servers page, accept the default target SOA Server ('soa-server1')
selection.

7-32 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

Click Next and Finish.

5. If you are deploying the composite for the first time from your Oracle JDeveloper
session, the Authorization Request window appears. Enter username and password
information specified during Oracle SOA Suite installation. Click OK.

6. Deployment processing starts. Monitor deployment process and check for
successful compilation in the SOA - Log window.

Verify that the deployment is successful in the Deployment - Log window.

Testing the SOA Composite Application with BPEL Process
Once the BPEL process contained in the SOA composite has been deployed, you can
manage and monitor the process from Oracle Enterprise Manager Fusion Middleware
Control Console.

For more information about Oracle SOA Suite, see the Oracle Fusion Middleware
Administrator's Guide for Oracle SOA Suite.

To test the SOA composite application with BPEL process:

1. Navigate to Oracle Enterprise Manager Fusion Middleware Control Console (
http://<hostname>:<port>/em). The login page appears.

2. Enter the username and password information specified during the installation, and
then click Login to log in to a farm. The composite (ApprovePO) you deployed is

Using Business Service Objects 7-33

displayed in the Applications Navigation tree.

You may need to select an appropriate target instance farm if there are multiple
target Oracle Enterprise Manager Fusion Middleware Control Console farms.

3. From the Farm navigation pane, expand the SOA >soa-infra node in the tree to
navigate through the SOA Infrastructure home page and menu to access your
deployed SOA composite applications running on soa-infra managed server.

Click the ApprovePO [1.0] link.

4. Click the Policies tab and notice that the
'oracle/wss_username_token_service_policy' policy you attached to the
PurchaseOrderService service binding earlier at the design time is now
displayed here.

5. In the ApprovePO [1.0] home page, click Test.

6. The Test Web Service page for initiating an instance appears. You can specify
information as XML payload data to use in the Input Arguments section.

Note: If the WS-Security credentials are not entered at design time,
you can enter the credentials at run time by selecting the WSS
Username Token option in the Security section at the top of the
Request tab. Enter 'operations' in the Username field and the
associated password for user 'operations'.

Click Test Web Service to initiate the process.

The test results appear in the Response tab upon completion.

7. Click your BPEL service component instance link (such as ApprovePO) to display
the Instances page where you can view execution details for the BPEL activities in
the Audit Trail tab.

Click the Flow tab to check the BPEL process flow diagram. Click an activity of the
process diagram to view the activity details and flow of the payload through the
process.

8. This is to verify that a purchase order is approved successfully.

Validating the Process in Oracle E-Business Suite

Additionally, you can validate the BPEL process in Oracle E-Business Suite. Log on to
Oracle E-Business Suite with the Purchasing responsibility. Open up the Purchase

7-34 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

Orders form and search for the supplier to bring up the purchase order details. You will
notice that the Status field is 'Approved'.

Using Composite Services - BPEL 8-1

8
Using Composite Services - BPEL

Overview
A composite service is a coarse-grained abstracted service. It uses native services as
building blocks to orchestrate the business invocation sequence into a meaningful
end-to-end business flow through a Web service composition language BPEL.

At design time, system integration developers use BPEL process component in Oracle
JDeveloper 10g to assemble a series of service components together for a business
function, and then they annotate the composite service - BPEL definition based on the
Integration Repository annotation standards. After validation, the newly created
composite service - BPEL can be uploaded to Integration Repository where it can be
displayed and available to all users.

The system integration developer can view each composite service - BPEL details by
selecting a desired service from the Oracle Integration Repository browser,
downloading the selected composite service - BPEL to a local directory, modifying the
BPEL process in Oracle JDeveloper 10g if it's necessary, and deploying it to a BPEL
server in Oracle SOA Suite 10g BPEL Process Manager or a third party BPEL PM in a
J2EE environment.

This chapter explains how to view, download, and modify composite services - BPEL.
Detailed design-time tasks on how to create a SOA composite service with BPEL
process are included in each individual interface described earlier in this book.

• Viewing Composite Services - BPEL, page 8-2

• Downloading Composite Services - BPEL, page 8-3

• Modifying and Deploying BPEL processes, page 8-4

For information on how to annotate composite - BPEL definitions, see Composite
Service - BPEL Annotations, page A-109.

For information on how to upload composite - BPEL definitions to the Integration

8-2 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

Repository, see Enabling Custom Integration Interface Process Flow, Oracle E-Business
Suite Integrated SOA Gateway Implementation Guide.

Viewing Composite Services - BPEL
Once annotated custom composite - BPEL definitions are uploaded to the Integration
Repository, 'Composite - BPEL' option can be displayed from the repository and
available to all users.

A system integration developer can view a composite service - BPEL by navigating to
the Composite - BPEL interface type directly from the Oracle Integration Repository
Browser window with View By 'Interface Type'. Alternatively, the developer can
perform a search to locate the composite service - BPEL in the Search page.

To view a composite service - BPEL details, click on a composite service name link from
the navigation tree or search results. The composite service - BPEL interface details page
is displayed with service name, description, BPEL file, WSDL file, and other annotated
information.

Composite Service - BPEL Details Page

The composite service - BPEL details page allows you to perform the following tasks in
the BPEL Files region:

• View an abstract WSDL file by clicking the View Abstract WSDL link

See: Reviewing Web Service WSDL Source, Oracle E-Business Suite Integrated SOA
Gateway User's Guide.

• View the composite - BPEL file by clicking the View BPEL File link

The BPEL code is displayed in a pop-up window containing major BPEL process
components and activities included for the selected composite service.

For information on how to annotate composite - BPEL definitions, see Composite

Using Composite Services - BPEL 8-3

Service - BPEL Annotations, page A-109.

For information on how to upload composite - BPEL definitions to the Integration
Repository, see Enabling Custom Integration Interface Process Flow, Oracle E-Business
Suite Integrated SOA Gateway Implementation Guide.

You can download a corresponding composite service BPEL project file to your local
machine. See: Downloading Composite Services - BPEL, page 8-3.

Downloading Composite Services - BPEL
In addition to viewing composite service - BPEL details and reviewing a WSDL abstract,
a system integration developer can download the composite service relevant files
aggregated in a .JAR file to a local directory.

Important: In general, only system integration developers and
integration repository administrators can download the composite
services - BPEL. However, users who are granted the download
privilege through Integration Repository Download Composite Service
permission set (FND_REP_DOWNLOAD_PERM_SET) can also
perform the download action. Otherwise, Download Service may not
appear in the details page by default.

For more information on how to grant download composite service
privilege, see Role-Based Access Control (RBAC) Security, Oracle
E-Business Suite Integrated SOA Gateway Implementation Guide.

Downloading Composite Services - BPEL

To download the .ZIP file for a composite service - BPEL, navigate to the composite
service - BPEL details page for a service that you want to download, and then click
Download Service to download the file to your local directory.

8-4 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

After the download, you can unzip the BPEL .JAR file and open the BPEL process in
Oracle JDeveloper 10g for modification on service endpoints if needed. For information
on how to modify and deploy BPEL process, see Modifying and Deploying BPEL
processes, page 8-4.

To download a composite service - BPEL:

1. Log on to Oracle Integration Repository with the system integration developer role
through the Integrated SOA Gateway responsibility or through custom
responsibility and navigation path. Select the Integration Repository link.

2. In the Integration Repository tab, select 'Interface Type' from the View By
drop-down list.

3. Expand the Composite - BPEL interface type node to locate your desired composite
service - BPEL.

4. Click the composite service - BPEL that you want to download to open the
Composite Service - BPEL interface details page.

5. Click Download Service to download the selected composite BPEL file to your local
directory.

Modifying and Deploying BPEL Processes
After downloading a composite service BPEL project, a system integration developer
can modify the BPEL project if it's needed. This can be done by first unzipping the BPEL
.JAR file and then opening the BPEL file in Oracle JDeveloper 10g to modify the BPEL
process endpoints if it's needed. After the modification, the BPEL project can be
deployed to a BPEL server in Oracle SOA Suite 10g.

Note: In Oracle SOA Suite 11g, BPEL process is managed and deployed
together with the associated SOA composite application.

Composite service - BPEL type is supported in Oracle SOA Suite 10g.
The BPEL process is deployed to a BPEL server in Oracle SOA Suite 10g
or a third party BPEL PM in a J2EE environment.

The modification of a BPEL process uses the similar logic during the BPEL process
creation. Refer to the design-time tasks for each interface type discussed earlier in this
book. For information on how to test and validate the BPEL process within a composite
application, refer to the run-time tasks of the interface type described in this book.

For BPEL process modification and deployment described in this section, Oracle
JDeveloper 10g (10.1.3.3.0) is used as a design-time tool to modify the BPEL process, and
Oracle SOA Suite BPEL server 10.1.3.3.0 is used for the process deployment.

To modify a BPEL process:

Using Composite Services - BPEL 8-5

1. Open a BPEL file in Oracle JDeveloper 10g BPEL Designer.

2. From the File menu, select Open.

3. Locate your BPEL file from the directory that you want to modify. Click Open in
the Open window.

4. The selected BPEL process diagram appears.

5. Modify the BPEL process endpoints if necessary.

6. Save your work.

To deploy a BPEL process:

1. In the Applications Navigator of Oracle JDeveloper 10g BPEL Designer, select the
BPEL project that you want to deploy.

2. Right-click the project and select Deploy action from the menu. Click on Invoke
Deployment Tool and enter your BPEL Process Manager information.

For example, you can select Deploy > BPELServerConn > Deploy to Default
Domain to deploy the project if you have the BPEL Process Manager set up
appropriately.

8-6 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

Deploying the BPEL Process

3. The Password Prompt dialog box appears. Enter the password for the default
domain in the Domain Password field and click OK. The BPEL project is compiled
and successfully deployed.

Creating and Using Custom Integration Interfaces 9-1

9
Creating and Using Custom Integration

Interfaces

Overview
Custom integration interfaces and services can be viewed and displayed through the
Integration Repository browser window along with Oracle seeded interfaces in Oracle
E-Business Suite.

System integration developers create and annotate custom integration interfaces based
on the Integration Repository annotation standards for the supported interface types
including XML Gateway Map, Business Event, PL/SQL, Concurrent Program, Business
Service Object, Java (except for Java APIs for Forms subtype) and Composite Service -
BPEL type.

Note: Please note that custom interface types of EDI, Open Interface
Tables, Interface Views, and Java APIs for Forms interfaces are not
supported in this release.

Oracle Integration Repository currently does not support the creation
of custom Product Family and custom Business Entity.

Once these custom interfaces are annotated, integration repository administrators use a
standalone design-time tool to validate these annotated source files against the
annotation standards. After validation, a loader file is generated and then uploaded to
the Integration Repository through backend processing. These custom interfaces are
displayed based on the interface types to which they belong and displayed together
with Oracle seeded ones from the Integration Repository user interface.

For custom integration interfaces of interface types

If a custom interface created for a supported interface type has been uploaded to Oracle
Integration Repository, to use this custom interface, an integration repository
administrator should first create necessary security grants, and then generate and

9-2 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

deploy the Web service to the application server if the custom interface type can be
service enabled. Thus, the deployed service can be exposed to customers through a
service provider and invoked through any of the Web service clients or orchestration
tools.

For custom composite services - BPEL type

If a custom interface is needed for a composite service - BPEL type, a system integration
developer will first create a composite service by orchestrating discrete native services
into a meaningful process flow using BPEL process component in Oracle JDeveloper 10
g. Based on the annotation standards specifically for composite service, the system
integration developer will then annotate the composite service - BPEL type. Similar to
custom interfaces of other interface types, appropriate validation on the BPEL project
JAR file is required before it can be uploaded to the Integration Repository.

To have a better understanding of how to create custom interfaces as well as how to use
custom interfaces as Web services, the following topics are discussed in this chapter:

• Creating Custom Integration Interfaces, page 9-2

• Using Custom Integration Interfaces as Web Services, page 9-23

Creating Custom Integration Interfaces
The following topics are discussed in this section:

• Creating Custom Integration Interfaces of Native Interface Types, page 9-2

• Creating Custom Composite Services, page 9-9

• Creating Custom Business Events Using Workflow XML Loader, page 9-15

Creating Custom Integration Interfaces of Native Interface Types
Custom interface definitions can be created and annotated for almost all interface types.
With appropriate validation, if no error occurred, the validated custom definition
sources compiled in a generated iLDT file can be uploaded to Oracle Integration
Repository through backend processing.

Note: Please note that custom interface types of EDI, Open Interface
Tables and Interface Views are not supported in this release.

Oracle Integration Repository currently does not support the creation
of custom Product Family and custom Business Entity.

Enabling Custom Integration Interfaces
The custom interface design and service enablement process flow can be illustrated in

Creating and Using Custom Integration Interfaces 9-3

the following diagram:

Note: Not all integration interface definitions can be service enabled.
Oracle Integration Repository supports service enablement only for the
following interface types:

• PL/SQL

• XML Gateway Map (inbound)

• Concurrent Program

• Business Service Object (Service Beans)

Please note that the Business Event and XML Gateway Map (outbound)
interface types are supported through subscription model.

1. Users with the system integration developer role annotate custom integration
interface definition based on the Integration Repository annotation standards for
the supported interface types.

See: Creating and Annotating Custom Integration Interfaces, page 9-5.

2. Users with the integration repository administrator role validate the annotated
custom interface definitions against the annotation standards. This validation is
performed by executing the Integration Repository Parser (IREP Parser), a
design-time tool, to read the annotated files and then generate an Integration

9-4 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

Repository loader file (iLDT) if no error occurred.

For information on how to generate and upload the iLDT files, see Generating and
Uploading iLDT Files, page 9-8.

3. Users with the integration repository administrator role upload the generated iLDT
file to Oracle Integration Repository.

See: Uploading ILDT Files to Integration Repository, Oracle E-Business Suite
Integrated SOA Gateway Implementation Guide.

4. All users can view the uploaded custom interfaces from the Integration Repository
user interface.

5. (Optional) Users with the integration repository administrator role then create
necessary security grants for the custom integration interfaces if needed.

This is achieved by first locating the custom interface from the Integration
Repository, and then selecting methods contained in the selected custom interface
before clicking Create Grant. The Create Grants page is displayed where the
administrators can grant the selected method access permissions to a user, user
group, or all users. See: Creating Security Grants, Oracle E-Business Suite Integrated
SOA Gateway Implementation Guide.

6. (Optional) Users with the integration repository administrator role can generate
Web services if the custom interfaces can be service enabled.

This is achieved by first locating the custom interface, and then specifying the
interaction pattern either at the interface level or the method level before clicking
Generate in the selected custom interface details page. See: Generating Custom
SOAP Web Services, Oracle E-Business Suite Integrated SOA Gateway Implementation
Guide.

7. (Optional) Users with the integration repository administrator role deploy the Web
services from Oracle Integration Repository to the application server.

To deploy generated SOAP Web services, the administrators must first select one
authentication type (Username Token or SAML Token) for each selected Web
service and then click Deploy in the selected interface details page. This deploys the
generated service with 'Active' state to Oracle SOA Suite where Oracle E-Business
Suite services can be exposed as standard Web services for service execution at run
time. See: Deploying and Undeploying Custom SOAP Web Services, Oracle
E-Business Suite Integrated SOA Gateway Implementation Guide.

To deploy a custom PL/SQL API as a REST service, the administrator must enter
service alias information, and select one or more methods from the Service
Operations table before clicking Deploy in the REST Web Service tab for the
selected interface.

Creating and Using Custom Integration Interfaces 9-5

Note: In this release, only PL/SQL APIs can be exposed as both
SOAP and REST services.

See: Deploying Custom REST Web Services, Oracle E-Business Suite Integrated SOA
Gateway Implementation Guide.

Custom Integration Interface Annotation Example
Once a custom integration definition of a specific interface type is created, a system
integration developer must properly annotate the custom file based on the Integration
Repository annotation standards so that the custom interface can be displayed with
appropriate description from the browser interface.

For example, the system integration developer can create a Supplier Ship and Debit
Request custom interface using PL/SQL API. This custom PL/SQL API package
specification file (zz_sdrequest_s.pls) can be as follows:
set verify off
whenever sqlerror exit failure rollback;
WHENEVER OSERROR EXIT FAILURE ROLLBACK;

create or replace package ZZ_SDREQUEST as
/* $Header: zz_sdrequest_s.pls $ */

-- Custom procedure to create single supplier ship and debit request

procedure ZZ_CREATE_SDREQUEST (
CP_API_VERSION_NUMBER IN NUMBER,
CP_INIT_MSG_LIST IN VARCHAR2 := FND_API.G_FALSE,
CP_COMMIT IN VARCHAR2 := FND_API.G_FALSE,
CP_VALIDATION_LEVEL IN NUMBER := FND_API.G_VALID_LEVEL_FULL,
CX_RETURN_STATUS OUT VARCHAR2,
CX_MSG_COUNT OUT NUMBER,
CX_MSG_DATA OUT VARCHAR2,
CP_SDR_HDR_REC IN OZF_SD_REQUEST_PUB.SDR_HDR_REC_TYPE,
CP_SDR_LINES_REC IN OZF_SD_REQUEST_PUB.SDR_lines_rec_type,
CP_SDR_CUST_REC IN OZF_SD_REQUEST_PUB.SDR_cust_rec_type,
CP_SDR_BILLTO_REC IN OZF_SD_REQUEST_PUB.SDR_cust_rec_type,
CX_REQUEST_HEADER_ID OUT NUMBER
)
;
end ZZ_SDREQUEST;

/
commit;
exit;

Based on the PL/SQL API annotation standards, the system integration developer must
annotate the Supplier Ship and Debit Request custom package specification file by
adding the annotation information specifically in the following places:

• Annotate the PL/SQL API package specification

• Annotate the PL/SQL procedure

9-6 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

The annotations for the procedure should be placed between the definition and ';'.

Please note that you only need to annotate the custom package specification file, but not
the package body file. For information on how to annotate custom interfaces for the
interface types supported by Oracle Integration Repository, see Integration Repository
Annotation Standards, page A-1 and Oracle Application Framework Developer's Guide
Release 12.2, available from My Oracle Support Knowledge Document 1303462.1.

Creating and Using Custom Integration Interfaces 9-7

set verify off
whenever sqlerror exit failure rollback;
WHENEVER OSERROR EXIT FAILURE ROLLBACK;

create or replace package ZZ_SDREQUEST as
/* $Header: zz_sdrequest_s.pls $ */
/*#
* This custom PL/SQL package can be used to create supplier ship and
debit request for single product.
* @rep:scope public
* @rep:product OZF
* @rep:displayname Single ship and debit request
* @rep:category BUSINESS_ENTITY OZF_SSD_REQUEST
*/

-- Custom procedure to create single supplier ship and debit request

procedure ZZ_CREATE_SDREQUEST (
CP_API_VERSION_NUMBER IN NUMBER,
CP_INIT_MSG_LIST IN VARCHAR2 := FND_API.G_FALSE,
CP_COMMIT IN VARCHAR2 := FND_API.G_FALSE,
CP_VALIDATION_LEVEL IN NUMBER := FND_API.G_VALID_LEVEL_FULL,
CX_RETURN_STATUS OUT VARCHAR2,
CX_MSG_COUNT OUT NUMBER,
CX_MSG_DATA OUT VARCHAR2,
CP_SDR_HDR_REC IN OZF_SD_REQUEST_PUB.SDR_HDR_REC_TYPE,
CP_SDR_LINES_REC IN OZF_SD_REQUEST_PUB.SDR_lines_rec_type,
CP_SDR_CUST_REC IN OZF_SD_REQUEST_PUB.SDR_cust_rec_type,
CP_SDR_BILLTO_REC IN OZF_SD_REQUEST_PUB.SDR_cust_rec_type,
CX_REQUEST_HEADER_ID OUT NUMBER
)
/*#
* Use this procedure to create single supplier ship and debit request
* @param CP_API_VERSION_NUMBER Version of the custom API
* @param CP_INIT_MSG_LIST Flag to initialize the message stack
* @param CP_COMMIT Indicates Flag to commit within the program
* @param CP_VALIDATION_LEVEL Indicates the level of the validation
* @param CX_RETURN_STATUS Indicates the status of the program
* @param CX_MSG_COUNT Provides the number of the messages returned by
the program
* @param CX_MSG_DATA Returns messages by the program
* @param CP_SDR_HDR_REC Contains details of the new Ship Debit Request
to be created
* @param CP_SDR_LINES_REC Contains the product line information for the
new Ship Debit Request
* @param CP_SDR_CUST_REC Contains the Customer information for the new
Ship Debit Request
* @param CP_SDR_BILLTO_REC Contains the Bill-to information for the new
Ship Debit Request
* @param CX_REQUEST_HEADER_ID Returns the id of the new Ship Debit
Request created
* @rep:displayname Create ship and debit request
* @rep:category BUSINESS_ENTITY OZF_SSD_REQUEST
* @rep:scope public
* @rep:lifecycle active
*/
;
end ZZ_SDREQUEST;

/
commit;

9-8 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

exit;

Generating and Uploading iLDT Files
Once annotated custom integration interface definitions are created, these annotated
source files need to be validated against the annotation standards before they can be
uploaded to Oracle Integration Repository. This validation is performed by executing
the Integration Repository Parser (IREP Parser), a design-time tool, to read the
annotated files and then generate an Integration Repository loader file (iLDT) if no
error occurred.

Note: Please note that Integration Repository Parser does not support
the integration interfaces registered under custom applications.

It is currently tested and certified for Linux, Unix, Oracle Solaris on
SPARC, HP-UX Itanium, and IBM AIX on Power Systems.

Once an iLDT file is generated, an integration repository administrator can upload the
generated file to Oracle Integration Repository where the custom interfaces can be
exposed to all users.

For information on Integration Repository Parser setup tasks, and how to use it to
generate the iLDT file as well as how to upload the generated file to the repository, see:

• Setting Up and Using Integration Repository Parser, Oracle E-Business Suite
Integrated SOA Gateway Implementation Guide

• Generating ILDT Files, Oracle E-Business Suite Integrated SOA Gateway
Implementation Guide

• Uploading ILDT Files to Integration Repository, Oracle E-Business Suite Integrated
SOA Gateway Implementation Guide

Viewing Custom Interfaces and Performing Administrative Tasks
Searching and Viewing Custom Interfaces

Once annotated custom interface definitions have been uploaded successfully, they are
merged into the interface types they belong to and displayed together with Oracle
seeded interfaces from the Integration Repository browser window. To easily
distinguish annotated custom interface definitions from Oracle ones, the Interface
Source "Custom" is used to categorize those custom interfaces in contrast to Interface
Source "Oracle" for Oracle seeded interfaces in Oracle E-Business Suite.

To search for custom integration interfaces, you can use either one of the following
ways:

• From the Interface List page, select 'Custom' from the Interface Source drop-down
list along with a value for the Scope field to restrict the custom integration

Creating and Using Custom Integration Interfaces 9-9

interfaces display.

• From the Search page, click Show More Search Options to select 'Custom' from the
Interface Source drop-down list along with any interface type, product family, or
scope if needed as the search criteria.

After executing the search, all matched custom integration interfaces will be displayed.
For more information on how to search and view custom integration interfaces, see
Searching Custom Integration Interfaces, Oracle E-Business Suite Integrated SOA Gateway
Implementation Guide and Viewing Custom Integration Interfaces, Oracle E-Business Suite
Integrated SOA Gateway Implementation Guide.

Performing Administrative Tasks

Once custom integration interfaces have been successfully uploaded and displayed
from the Integration Repository user interface, an integration repository administrator
can perform the same administrative tasks on these custom interfaces as they are for the
native integration interfaces. These administrative tasks including creating security
grants for newly created custom interfaces if needed, generating Web services,
deploying Web services, and managing services throughout the entire deployment life
cycle. See Administering Custom Integration Interfaces and Services, Oracle E-Business
Suite Integrated SOA Gateway Implementation Guide.

For information on how to use custom integration interfaces as Web services, see Using
Custom Integration Interfaces as Web Services, page 9-23.

Creating Custom Composite Services - BPEL
System integration developers can create new composite services by orchestrating
discrete Web services into meaningful business processes using BPEL language. With
appropriate annotation specifically for the composite service - BPEL type and validation
against the annotation standards, if no error occurred, an iLDT file can be generated for
the validated composite service BPEL project. The generated iLDT file can then be
uploaded to the Integration Repository through backend processing.

Creating Custom Composite Services

The following diagram illustrates the custom integration interface design flow for
composite service - BPEL type:

9-10 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

1. A system integration developer orchestrates a composite service using BPEL
process component in Oracle JDeveloper 10g.

2. A system integration developer annotates the composite service based on the
Integration Repository annotation standards specifically for the composite service -
BPEL type.

See: Creating and Annotating Custom Composite Services - BPEL, page 9-10.

3. The system integration developer creates a JAR file of the composite service - BPEL
project.

4. An integration repository administrator unzips the JAR file first and then validates
the annotated custom interface definitions against the annotation standards
specifically for composite services - BPEL. This validation is performed by
executing the Integration Repository Parser to read the annotated files and then
generate an Integration Repository loader file (iLDT) if no error occurred.

5. An integration repository administrator uploads the generated iLDT file to Oracle
Integration Repository through backend processing.

See: Generating and Uploading iLDT Files, page 9-14.

After the upload, you can search and view the uploaded custom composite service -
BPEL from the Integration Repository user interface for verification.

Once custom integration interface definitions have been successfully uploaded and
displayed from the Integration Repository browser, integration repository
administrators and the system integration developers can download the composite
services - BPEL for modification if needed. For information on how to download
composite services - BPEL, see Viewing and Downloading Custom Composite Services -
BPEL, page 9-14.

A Custom Composite Service Annotation Example
The key essence of creating custom integration interfaces relies on properly explanation
of the new interface feature or definition. When a custom composite service - BPEL
definition is created, a system integration developer must properly annotate the custom
source file based on the Integration Repository annotation standards so that the source
file can be displayed with appropriate description from the browser interface.

For example, a create invoice composite service - BPEL project is created. To annotate
the composite service *.bpel file, you open the *.bpel file in text editor and place the
annotation within the comments section in the beginning of the file as highlighted
below:

Creating and Using Custom Integration Interfaces 9-11

//
Oracle JDeveloper BPEL Designer

 Created: Tue Oct 30 17:10:13 IST 2007
 Author: jdole
 Purpose: Synchronous BPEL Process
 /*#
 * This is a bpel file for creating invoice.
 * @rep:scope public
 * @rep:displayname Create Invoice
 * @rep:lifecycle active
 * @rep:product PO
 * @rep:compatibility S
 * @rep:interface oracle.apps.po.CreateInvoice
 * @rep:category BUSINESS_ENTITY INVOICE
 */

//

-->
<process name="CreateInvoice">
 targetNamespace="http://xmlns.oracle.com/CreateInvoice"
 xmlns="http://schemas.xmlsoap.org/ws/2003/03/business-process/"

xmlns:bpws="http://schemas.xmlsoap.org/ws/2003/03/business-process/"

xmlns:xp20="http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.servi
ces.functions.Xpath20"

xmlns:ns4="http://xmlns.oracle.com/pcbpel/adapter/file/ReadPayload/"
 xmlns:ldap="http://schemas.oracle.com/xpath/extension/ldap"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:ns5="http://xmlns.oracle.com/bpel/workflow/xpath"
 xmlns:client="http://xmlns.oracle.com/CreateInvoice"

xmlns:ns6="http://xmlns.oracle.com/bpel/services/IdentityService/xpath"
 xmlns:ora="http://schemas.oracle.com/xpath/extension"

xmlns:ns1="http://xmlns.oracle.com/soaprovider/plsql/AR_INVOICE_API_PUB_
2108/CREATE_SINGLE_INVOICE_1037895/"

xmlns:ns3="http://xmlns.oracle.com/soaprovider/plsql/AR_INVOICE_API_PUB_
2108/APPS/BPEL_CREATE_SINGLE_INVOICE_1037895/AR_INVOICE_API_PUB-24CREATE
_INV/"
 xmlns:ns2="http://xmlns.oracle.com/pcbpel/adapter/appscontext/"
 xmlns:bpelx="http://schemas.oracle.com/bpel/extension"

xmlns:orcl="http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.servi
ces.functions.ExtFunc">

 <!--
///
PARTNERLINKS
 List of services participating in this BPEL process
///
-->
<partnerLinks>
 <!--
 The 'client' role represents the requester of this service. It is
 used for callback. The location and correlation information
associated

9-12 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

with the client role are automatically set using WS-Addressing.
 -->
 <partnerLink name="client" partnerLinkType="client:CreateInvoice"
 myRole="CreateInvoiceProvider"/>
 <partnerLink name="CREATE_SINGLE_INVOICE_1037895"
 partnerRole="CREATE_SINGLE_INVOICE_1037895_ptt_Role"

partnerLinkType="ns1:CREATE_SINGLE_INVOICE_1037895_ptt_PL"/>
 <parnterLink name="ReadPayload" partnerRole="SynchRead_role"
 partnerLinkType="ns4:SynchRead_plt"/>
</partnerLinks>
<!--
///
VARIABLES
 List of messages and XML documents used within this BPEL process
///
-->
<variables>
<!--Reference to the message passed as input during initiation-->
 <variable name="inputVariable"
 messageType="client:CreateInvoiceRequestMessage"/>
<!--Reference to the message that will be returned to the requester-->
 <variable name="outputVariable"
 messageType="client:CreateInvoiceResponseMessage"/>
 <variable
name="Invoke_1_CREATE_SINGLE_INVOICE_1037895_InputVariable"
 messageType="ns1:Request"/>
 <variable
name="Invoke_1_CREATE_SINGLE_INVOICE_1037895_OutputVariable"
 messageType="ns1:Response"/>
 <variable name="Invoke_2_SynchRead_InputVariable"
 messageType="ns4:Empty_msg"/>
 <variable name="Invoke_2_SynchRead_OutputVariable"
 messageType="ns4:InputParameters_msg"/>
</variables>
<!--
///
ORCHESTRATION LOGIC
 Set of activities coordinating the flow of messages across the
 services integrated within this business process
///
-->
<sequence name="main">
 <!--Receive input from requestor. (Note: This maps to operation
defined in CreateInvoice.wsdl)-->
 <receive name="receiveInput" partnerLink="client"
 portType="client:CreateInvoice" operation="process"
 variable="inputVariable" createInstance="yes"/>
 <!--Generate reply to synchronous request-->
 <assign name="SetHeader">
 <copy>
 <from expression="''operations'">
 <to
variable="Invoke_1_CREATE_SINGLE_INVOICE_1037895_InputVariable"
 part="header"

query="/ns1:SOAHeader/ns2:ProcedureHeaderType/ns2:Username"/>
 </copy>
 <copy>
 <from expression="''Receivables, Vision Operations (USA)'">
 <to

Creating and Using Custom Integration Interfaces 9-13

variable="Invoke_1_CREATE_SINGLE_INVOICE_1037895_InputVariable"
 part="header"

query="/ns1:SOAHeader/ns2:ProcedureHeaderType/ns2:Responsibility"/>
 </copy>
 <copy>
 <from expression="''204'">
 <to
variable="Invoke_1_CREATE_SINGLE_INVOICE_1037895_InputVariable"
 part="header"
 query="/ns1:SOAHeader/ns2:ProcedureHeaderType/ns2:ORG_ID"/>
 </copy>
 <copy>
 <from expression="''Receivables, Vision Operations (USA)'">
 <to
variable="Invoke_1_CREATE_SINGLE_INVOICE_1037895_InputVariable"
 part="header"

query="/ns1:SOAHeader/ns1:SecurityHeader/ns1:ResponsibilityName"/>
 </copy>
 </assign>
 <invoke name="InvokeReadPayload" partnerLink="ReadPayload"
 portType="ns4:SynchRead_ptt" operation="SynchRead"
 inputVariable="Invoke_2_SynchRead_InputVariable"
 outputVariable="Invoke_2_SynchRead_OutputVariable"/>
 <assign name="SetPayload">
 <copy>
 <from variable="Invoke_2_SynchRead_OutputVariable"
 part="InputParameters" query="/ns3:InputParameters"/>
 Invoke_1_CREATE_SINGLE_INVOICE_1037895_InputVariable"
 part="body" query="/ns1:SOARequest/ns3:InputParameters"/>
 </copy>
 </assign>
 <assign name="SetDate">
 <copy>
 <from expression="xp20:current-date()">
 <to to
variable="Invoke_1_CREATE_SINGLE_INVOICE_1037895_InputVariable"
 part="body"

query="/ns1:SOARequest/ns3:InputParameters/ns3:P_TRX_HEADER_TBL/ns3:P_TR
X_HEADER_TBL_ITEM/ns3:TRX_DATE"/>
 </copy>
 </assign>
 <invoke name="Invoke_1" partnerLink="CREATE_SINGLE_INVOICE_1037895"
 portType="ns1:CREATE_SINGLE_INVOICE_1037895_ptt"
 operation="CREATE_SINGLE_INVOICE_1037895"

inputVariable="Invoke_1_CREATE_SINGLE_INVOICE_1037895_InputVariable"

outputVariable="Invoke_1_CREATE_SINGLE_INVOICE_1037895_OutputVariable"/>
 <assign name="AssignResult">
 <copy>
 <from
variable="Invoke_1_CREATE_SINGLE_INVOICE_1037895_OutputVariable"
 part="body"

query="/ns1:SOAResponse/ns3:OutputParameters/ns3:X_MSG_DATA"/>
 <to variable="outputVariable" part="payload"
 query="/client:CreateInvoiceProcessResponse/client:result"/>
 </copy>

9-14 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

</assign>
 <reply name="replyOutput" partnerLink="client"
 portType="client:CreateInvoice" operation="process"
 variable="outputVariable"/>
 </sequence>
</process>

For more information on how to annotate composite service - BPEL type, see Composite
Service - BPEL Annotations, page A-109.

Generating and Uploading iLDT Files
Once annotated custom composite services - BPEL have been created, these annotated
source files need to be validated against the annotation standards specifically for
composite service - BPEL type before they can be uploaded to Oracle Integration
Repository. This validation is performed by executing the Integration Repository Parser
(IREP Parser), a design-time tool, to read the annotated files and then generate an
Integration Repository loader file (iLDT) if no error occurred.

Note: Please note that Integration Repository Parser does not support
the integration interfaces registered under custom applications.

It is currently tested and certified for Linux, Unix, Oracle Solaris on
SPARC, HP-UX Itanium, and IBM AIX on Power Systems.

Once an iLDT file has been successfully generated, an integration repository
administrator can upload the generated file to Oracle Integration Repository where the
custom interfaces can be exposed to all users.

For information on Integration Repository Parser setup tasks, and how to use the parser
to generate an iLDT file as well as how to upload the generated iLDT file, see:

• Setting Up and Using Integration Repository Parser, Oracle E-Business Suite
Integrated SOA Gateway Implementation Guide

• Generating ILDT Files, Oracle E-Business Suite Integrated SOA Gateway
Implementation Guide

• Uploading ILDT Files to Integration Repository, Oracle E-Business Suite Integrated
SOA Gateway Implementation Guide

Viewing and Downloading Custom Composite Services - BPEL
Once annotated custom composite service definitions have been successfully uploaded
to the Integration Repository user interface, they are merged into the Composite Service
BPEL type and displayed together with Oracle seeded interfaces. To easily distinguish
annotated custom composite services from Oracle seeded ones, Interface Source
"Custom" is used to categorize those custom interfaces in contrast to Interface Source
"Oracle" for Oracle seeded interfaces in Oracle E-Business Suite.

Creating and Using Custom Integration Interfaces 9-15

To search for custom composite services, from the Search page, click Show More
Search Options to expand the search criteria. Select 'Custom' from the Interface Source
drop-down list along with 'Composite Service' interface type, product family, or scope
if needed as the search criteria. After executing the search, all matched custom
composite services will be displayed.

Downloading Custom Composite Services - BPEL

Similar to downloading native packaged composite services, integration repository
administrators and system integration developers can click Download Service in the
composite service - BPEL interface details page to download the relevant custom
composite files aggregated in a .JAR file to their local directories.

For more information on how to search and download custom composite services -
BPEL, see Downloading Composite Services - BPEL, Oracle E-Business Suite Integrated
SOA Gateway Implementation Guide.

Creating Custom Business Events Using Workflow XML Loader
Oracle E-Business Suite Integrated SOA Gateway allows you to create custom business
events in the Business Event System, download the events that you have created,
annotate the event source codes, validate the source files, and then upload the files back
to the event system using Workflow XML Loader.

The Workflow XML Loader is a command line utility that lets you upload and
download XML definitions for Business Event System objects between a database and a
flat file. When you download Business Event System object definitions from a database,
Oracle Workflow saves the definitions as an XML file. When you upload object
definitions to a database, Oracle Workflow loads the definitions from the source XML
file into the Business Event System tables in the database, creating new definitions or
updating existing definitions as necessary.

XML files uploaded or downloaded by the Workflow XML Loader should have the
extension .wfx to identify them as Workflow object XML definitions.

Use the following steps to create custom business events:

1. Locate and Download Business Events, page 9-15

2. Annotate the XML Definition File, page 9-18

3. Validate the Annotated Source File Using Integration Repository Parser, page 9-20

4. Upload Annotated File to the Database, page 9-21

5. Upload iLDT Files to Integration Repository, page 9-22

Step 1: Locating and Downloading Business Events
After creating custom business events in the Oracle Workflow Business Event System,

9-16 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

you first locate them and then download them using Workflow XML Loader.

Locating Your Business Events

To download XML definitions for Business Event System objects between a database
and a flat file, run the Workflow XML Loader by running Java against
oracle.apps.fnd.wf.WFXload with the following command syntax:
jre oracle.apps.fnd.wf.WFXload -d{e} <user> <password> <connect string>
<protocol> <language> <xml file> <object> {<key>} {<OWNER_TAG>}
{<owner>}

For example, you can download either a single event or a group of events:

• Use the following command to download a single business event, such as wfdemoe
.wfx. In the filename, the first two or three characters refer to the product and the
last character 'e' refers to Event.
java oracle.apps.fnd.wf.WFXLoad -d apps_read_only password
hostdb:12345:sid100 thin US wfdemoe.wfx EVENTS
abc.apps.wf.bes.demo.event

• Use the following command to download a group of business events with wildcard:
java oracle.apps.fnd.wf.WFXLoad -d apps_read_only password
hostdb:12345:sid100 thin US wfdemoe.wfx EVENTS abc.apps.wf.bes.%

After successfully downloading the event XML definitions, open the .wfx file in any
text editor. You will find the content of a wfdemoe.wfx file, for example, containing
one event shown as follows:

Creating and Using Custom Integration Interfaces 9-17

<?xml version = '1.0' encoding = 'UTF-8'?>
...

<oracle.apps.wf.event.all.sync><ExternalElement>
<OraTranslatibility>
<XlatElement Name="WF_EVENTS">
<XladID>
<Key>NAME</Key>
</XladID>
<XlatElement Name="DISPLAY_EVENTS" MaxLen="80" Expansion="50"/>
<XladID>
<Key Type="CONSTANT">DISPLAY_EVENTS</Key>
</XladID>
<XlatElement Name="DESCRIPTION" MaxLen="2000" Expansion="50"/>
<XladID>
<Key Type="CONSTANT">DESCRIPTION</Key>
</XladID>
</XlatElement>
</OraTranslatibility>
</ExternalElement>
<WF_TABLE_DATA>
 <WF_EVENTS>
 <VERSION>1.0</VERSION>
 <GUID>#NEW</GUID>
 <NAME>abc.apps.wf.demo.event</NAME>
 <TYPE>EVENT</TYPE>
 <STATUS>ENABLED</STATUS>
 <GENERATE_FUNCTION/>
 <OWNER_MAME>Oracle Workflow</OWNER_MAME>
 <OWNER_TAG>FMD</OWNER_TAG>
 <CUSTOMIZATION_LEVEL>U</CUSTOMIZATION_LEVEL>
 <LICENSED_FLAG>Y</LICENSED_FLAG>
 <JAVA_GENERATE_FUNC/>
 <DISPLAY_NAME>Demo Business Event</DISPLAY_NAME>
 <DESCRIPTION>Business event created for annotation demo.</DESCRIPTION>
 <IREP_ANNOTATION>/*#
* Business event created for annotation demo.
*
* @rep:scope public
* @rep:displayname Demo Business Event
* @rep:product FND
* @rep:category BUSINESS_ENTITY
*/
</IREP_ANNOTATION>
 </WF_EVENTS>
</WF_TABLE_DATA>
</oracle.apps.wf.event.all.sync>

The Workflow XML Loader automatically creates a template for integration repository
annotation as highlighted in bold between <IREP_ANNOTATION> and
</IREP_ANNOTATION>. This is where appropriate annotations need to be placed or
modified for a business event based on the business event annotation standards.

To download business events XML definitions:

1. Log on to Oracle Workflow page with the Workflow Administrator Web
Applications responsibility. Select the Business Events link from the Navigator to
open the Events page.

9-18 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

2. Enter search criteria in the Search region to locate your business events.

3. Change your directory to the same environment where your application is running.

For example, if your application is running on seed100, then change your
directory to seed100 where your business events exist.
/slot/ems3404/appmgr/apps/apps_st/appl
. ./APPSseed100.env

4. Download the events from the database using oracle.apps.fnd.wf.WFXload
with the following syntax:
jre oracle.apps.fnd.wf.WFXload -d{e} <user> <password> <connect
string> <protocol> <language> <xml file> <object> {<key>}
{<OWNER_TAG>} {<owner>}

5. Open the .wfx file in any text editor and notice that one business event has been
placed there.

Step 2: Annotating an XML Definition
After successfully downloading the XML definition file from a database, you should
open the .wfx file containing one business event in any text editor and modify the
annotation appropriately based on Integration Repository business event annotation
standards.

The appropriate annotation includes:

• Enter meaningful description.

• Enter conditions under which the business event is raised.

• Enter UI action that invokes the business event if applicable.

• Verify scope. By default, the Workflow XML Loader annotates scope as 'public'.

• Verify display name. By default, the Workflow XML Loader uses the same display
name as that mentioned in business event definition.

• Verify product. By default, the Workflow XML Loader uses Owner Tag as the
Application Short Name.

Make sure that the Owner Tag corresponds to Application Short Name in
FND_APPLICATION. Owner Name typically corresponds to Application Name,
but if your product is part of a larger application, you may enter an appropriate
name in Owner Name.

• Enter BUSINESS_ENTITY code that your respective business event belongs to.

• Enter additional annotation properties if needed.

Creating and Using Custom Integration Interfaces 9-19

Please note that the IREP properties should not be blank. For example, the Workflow
XML Loader only adds the template for Business Entity as rep:category
BUSINESS_ENTITY, page A-129, but you should add an appropriate business entity to
which the event belongs. Similarly, other @rep properties cannot be left blank either.

The following is a sample business event annotation for Oracle Workflow:
* Business Event created to demonstrate using WFXLoad to annotate
Business Events.
*
* @rep:scope internal
* @rep:displayname Demo Business Event
* @rep:product OWF
* @rep:lifecycle active
* @rep:category BUSINESS_ENTITY WF_EVENT
*/

Important: If you decide not to annotate or publish the event in Oracle
Integration Repository, you should remove the annotation only but
leave the following tags unchanged. Presence of these tags is an
indication that the event was reviewed for annotation.
<IREP_ANNOTATION/>

or
<IREP_ANNOTATION></IREP_ANNOTATION>

If the Loader sees these empty tags, it interprets that the business event
was reviewed for annotation and it does not need to be published to the
Integration Repository. Next time, when the user downloads these
events, the Loader will insert empty IREP_ANNOTATION tags as
shown in the following example.

However, if you remove the entire IREP_ANNOTATION tags for the
business event and upload it, then on subsequent download, the
Loader will insert partially filled annotation template for the business
event.

9-20 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

<WF_TABLE_DATA>
 <WF_EVENTS>
 <VERSION>1.0</VERSION>
 <GUID>#NEW</GUID>
 <NAME>oracle.apps.wf.demo.event.noannotate</NAME>
 <TYPE>EVENT</TYPE>
 <STATUS>ENABLED</STATUS>
 <GENERATE_FUNCTION/>
 <OWNER_MAME>Oracle Workflow</OWNER_MAME>
 <OWNER_TAG>FMD</OWNER_TAG>
 <CUSTOMIZATION_LEVEL>U</CUSTOMIZATION_LEVEL>
 <LICENSED_FLAG>Y</LICENSED_FLAG>
 <JAVA_GENERATE_FUNC/>
 <DISPLAY_NAME>Demo Business Event with no
annotation</DISPLAY_NAME>
 <DESCRIPTION>Business second event created for
annotation demo.</DESCRIPTION><IREP_ANNOTATION>/*#
* Business event created for annotation demo.
*
* @rep:scope public
* @rep:displayname Demo Business Event
* @rep:product FND
* @rep:category BUSINESS_ENTITY
*/
</IREP_ANNOTATION>
 </WF_EVENTS>
</WF_TABLE_DATA>

For more information on Integration Repository Business Event Annotation Standards,
see Business Event Annotations, page A-31.

Step 3: Validating the Annotated Source File Using Integration Repository Parser
Integration Repository Parser is a standalone design-time tool. It can be executed to
validate the annotated custom interface definitions against the annotation standards
and to generate an iLDT file if no error occurs.

After annotating the XML definition for a business event, execute the standalone
Integration Repository Parser (IREP Parser) using the following command syntax to
validate whether the annotation in .wfx file is valid:

Command Syntax:

$IAS_ORACLE_HOME/perl/bin/perl $FND_TOP/bin/irep_parser.pl -g -v
-username=<a fnd username> <product>:<relative path from product
top>:<fileName>:<version>=<Complete File Path, if not in currect
directory>

For example:

$IAS_ORACLE_HOME/perl/bin/perl $FND_TOP/bin/irep_parser.pl -g -v
-username=sysadmin
owf:patch/115/xml/US:wfdemoe.wfx:12.0=./wfdemoe.wfx

While executing the parser, pay attention to any error messages on the console.
Typically these errors would be due to incorrect annotation or some syntax errors in the
annotated file. Ensure that the annotations are correct and the file has proper syntax.

Creating and Using Custom Integration Interfaces 9-21

If no error occurred in the annotated interface file, an iLDT (*.ildt) file would be
generated. An integration repository administrator needs to upload the generated iLDT
file to the Integration Repository where the custom business events can be exposed to
all users. See Step 5: Uploading iLDT Files to Integration Repository, page 9-22.

Integration Repository Parser (irep_parser.pl)

The irep_parser is a design-time tool. It reads interface annotation documentation in
program source files and validates it according to its file type. If the -generate flag is
supplied (and other conditions met), then it will generate iLDT files. Any validation
errors will be reported, usually along with file name and line number, like the result of
grep -n.

Additionally, it can handle almost all types of application source files. While validating
the annotated files against the annotation standards of supported interface types, if files
that do not match will be ignored.

The parser will return an exit value of 0 if no errors occurred during processing.
Otherwise, it will return a count of the number of files that had errors. Files with
incomplete information for generation (class resolution) are considered errors only if
the -generate flag is used.

However, before executing the Integration Repository Parser, you need to install perl
modules and apply necessary patches. For setup information, see Setting Up and Using
Integration Repository Parser, Oracle E-Business Suite Integrated SOA Gateway
Implementation Guide.

For information on the Integration Repository Parser (irep_parser.pl) usage details
including supported file types and options, files specifications, and environment, see
Integration Repository Parser (irep_parser.pl) Usage Details, Oracle E-Business Suite
Integrated SOA Gateway Implementation Guide.

Step 4: Uploading Annotated File Back to a Database
After validating the annotated source file .wfx, upload the file back to the database
where you downloaded it earlier so that the annotated file can be stored in the
appropriate tables in business event system for future references.

Note: To view custom business events through the Integration
Repository browser window, an integration repository administrator
needs to upload the generated iLDT files to the Integration Repository.
For information on uploading iLDT files, see Step 5: Uploading iLDT
Files to Integration Repository, page 9-22.

The Workflow XML Loader lets you upload business event system XML definitions in
either normal upload mode (-u) or force upload mode (-uf):

• Normal upload mode (-u): If you created an event with a customization level of
Core or Limit, the Workflow XML Loader will be able to update
IREP_ANNOTATION into the Business Event System WF_EVENTS table in the

9-22 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

database. This normal mode will not make any updates to events or subscriptions
with a customization level of User.

Use the following command to upload the annotated .wfx file back to a database:

java oracle.apps.fnd.wf.WFXLoad -u apps_read_only password
hostdb:12345:sid100 thin US wfdemoe.wfx

• Force upload mode (-uf): The Workflow XML Loader loads the object definitions
from the source XML file into the Business Event System tables in the database and
overwrites any existing definitions, even for events or subscriptions with a
customization level of User.

Therefore, if you created an event with a customization level of User, use the
following force upload option to make sure the IREP_ANNOTATION can be
uploaded back into the database.

java oracle.apps.fnd.wf.WFXLoad -uf apps_read_only password
hostdb:12345:sid100 thin US wfdemoe.wfx

For more information on how to use Workflow XML Loader, see Using the Workflow
XML Loader, Oracle Workflow Administrator's Guide.

Step 5: Uploading ILDT Files to Integration Repository
After the validation using the Integration Repository Parser, an iLDT file will be
generated if no error occurred during the iLDT generation. In order for users to view
the custom business events through the Integration Repository, an integration
repository administrator needs to manually upload the generated iLDT file to the
Integration Repository using FNDLOAD command.
$FND_TOP/bin/FNDLOAD <db_connect> 0 Y UPLOAD
$fnd/patch/115/import/wfirep.lct <ildt file>

For example, FND_TOP/bin/FNDLOAD apps/password@instance_name 0 Y
UPLOAD $FND_TOP/patch/115/import/wfirep.lct SOAIS_pls.ildt

For detailed information on how to upload the iLDT files, see Uploading ILDT Files to
Integration Repository, Oracle E-Business Suite Integrated SOA Gateway Implementation
Guide.

Viewing Custom Interfaces and Performing Administrative Tasks
Searching and Viewing Custom Interfaces

Annotated custom interface definitions, once they have been successfully uploaded, are
merged into the interface types they belong to and displayed together with Oracle
seeded interfaces from the Integration Repository browser window. To easily
distinguish annotated custom interface definitions from Oracle interfaces, the Interface
Source "Custom" is used to categorize those custom integration interfaces in contrast to
Interface Source "Oracle" for Oracle seeded interfaces in Oracle E-Business Suite.

To search for custom integration interfaces, you can use either one of the following

Creating and Using Custom Integration Interfaces 9-23

ways:

• From the Interface List page, select 'Custom' from the Interface Source drop-down
list along with a value for the Scope field to restrict the custom integration
interfaces display.

• From the Search page, click Show More Search Options to select 'Custom' from the
Interface Source drop-down list along with any interface type (such as 'Business
Event'), product family, or scope if needed as the search criteria.

After executing the search, all matched custom integration interfaces will be displayed.
For more information on how to search and view custom integration interfaces, see
Searching Custom Integration Interfaces, Oracle E-Business Suite Integrated SOA Gateway
Implementation Guide and Viewing Custom Integration Interfaces, Oracle E-Business Suite
Integrated SOA Gateway Implementation Guide.

Performing Administrative Tasks

Once custom business events have been successfully uploaded and displayed from the
Integration Repository browser window, an integration repository administrator can
perform the same administrative tasks on these custom events as they are for the native
events. These administrative tasks including creating security grants for newly created
custom events if needed, and subscribing to custom business events. See Administering
Custom Integration Interfaces and Services, Oracle E-Business Suite Integrated SOA
Gateway Implementation Guide.

Using Custom Integration Interfaces as Web Services

Overview
With appropriate annotation and validation, a custom integration interface can be
created for the interface type that Oracle Integration Repository supports. If the
interface type that the custom interface belongs to can be service enabled, you can use
the custom interface as a Web service to update or retrieve data from Oracle E-Business
Suite or perform other business transactions over the Web.

For example, a system integration developer can create a new or customized interface
for Supplier Ship and Debit Request business entity using a PL/SQL API. Once the
interface has been uploaded to Oracle Integration Repository, it will be displayed under
the PL/SQL API interface type from the Integration Repository browser. To differentiate
the custom interfaces from Oracle native packaged ones, all custom integration
interfaces have Interface Source 'Custom' in contrast to Oracle seeded interfaces with
Interface Source 'Oracle' when you view them from the repository.

To better understand how to use deployed custom interfaces as Web services in
fulfilling your business needs, detailed design-time and run-time tasks in creating and
deploying a SOA composite application with BPEL process are discussed in this section.
For the example described in the following sections, Oracle JDeveloper 11g (11.1.1.6.0) is

9-24 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

used as a design-time tool to create the SOA composite application with BPEL process
and Oracle SOA Suite 11g (11.1.1.6.0) is used for the process deployment.

Note: While using Oracle JDeveloper with other Oracle Fusion
Middleware components (such as Oracle SOA Suite), to enable SOA
technologies, you need to manually download Oracle SOA Suite
Composite Editor, a JDeveloper's extension for SOA technologies. For
more information on installing additional Oracle Fusion Middleware
design-time components, see the Oracle Fusion Middleware Installation
Guide for Oracle JDeveloper.

Using Custom Interface WSDL in Creating a SOA Composite Application with BPEL
Process at Design Time

SOA Composite Application with BPEL Process Scenario

Take a custom PL/SQL API ZZ_SDREQUEST as an example to explain the BPEL process
creation in a SOA Composite application.

When the request of creating a supplier ship and debit request is received, the request
information including payload and request number will be read and passed to create a
supplier ship and debit request. After the supplier ship and debit request for a product
is created, the request number will then be returned to the requestor.

When the SOA composite application with BPEL process has been successfully
executed after deployment, a supplier ship and debit request is created in the Oracle
E-Business Suite. The request number should be the same as the payload input value.

Prerequisites to Create a BPEL Process Using a Custom Web Service

Before performing design-time tasks for a custom interface exposed as a Web service,
you need to ensure the following tasks are in place:

• An integration repository administrator or a system integration developer needs to
generate a Web service first. The administrator will deploy the generated custom
service to an Oracle SOA Suite WebLogic managed server.

• A system integration developer needs to locate and record the deployed WSDL
URL for the custom interface exposed as a Web service.

Creating Security Grants for a Custom Interface

To be able to verify and use this custom interface, the administrator will first locate the
custom interface (with 'Custom' interface source) from the repository, and then create
security grants on the custom interface so that users with appropriate privileges can
have access to the interface.

For example, the administrator can grant the custom API access privilege to a user with
the Oracle Trade Management responsibility. After the execution of this custom API,
the user can log on to Oracle Trade Management and verify the supplier and debit

Creating and Using Custom Integration Interfaces 9-25

request creation details.

For information on how to create security grants, see Creating Grants, Oracle E-Business
Suite Integrated SOA Gateway Implementation Guide.

Deploying a Web Service Composite for a Custom Interface

An integration repository administrator or a system integration developer must first
create a Web service for a selected custom interface, and then the administrator can
deploy the custom service from Oracle Integration Repository to an Oracle SOA Suite
WebLogic managed server.

For example, the following steps must be performed first before a system integration
developer creates a BPEL process by using the deployed WSDL:

1. To generate a Web service, locate the interface definition first (such as a custom
PL/SQL interface ZZ_SDREQUEST) and select desired interaction pattern
information from the Interaction Pattern table. This can be selected at the interface
level or at the method level before clicking Generate in the interface details page.

Once the service has been successfully generated, the Web Service Status field
changed from 'Not Generated' to 'Generated' in the interface details page. For
detailed instructions on how to generate a Web service, see Generating Web
Services, Oracle E-Business Suite Integrated SOA Gateway Implementation Guide.

2. To deploy a generated Web service, select one authentication type before clicking
Deploy. The deployed service in Oracle SOA Suite is an active service and is ready
to accept new SOAP requests.

Once the service has been successfully deployed, the selected authentication type
will be displayed along with 'Deployed' with 'Active' state in the Web Service Status
field. For more information on securing Web services with authentication type, see
Managing Web Service Security, Oracle E-Business Suite Integrated SOA Gateway
Implementation Guide.

For information on how to deploy a Web service, see Deploying and Undeploying
Web Services, Oracle E-Business Suite Integrated SOA Gateway Implementation Guide.

Searching and Recording a WSDL URL

Apart from the required tasks performed by the administrators, a system integration
developer needs to locate and record the deployed Web service WSDL URL for the
custom interface that needs to be orchestrated into a meaningful business process in
Oracle JDeveloper.

This can be done by clicking the View WSDL link in the interface details page. Copy
the WSDL URL from the new pop-up window. This URL will be used later in creating a
partner link service in a BPEL process.

For information on how to search for an interface and view the interface details, see
Searching and Viewing Integration Interfaces, page 2-1.

SOA Composite Application with BPEL Process Creation Flow

9-26 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

Based on the supplier and debit request creation scenario, the following design-time
tasks are discussed in this chapter:

1. Create a New SOA Composite Application with BPEL Process, page 9-26

Use this step to create a new SOA composite application with BPEL process called
ZZ_CreateSingle_ShipDebitRequest.bpel using an Synchronous BPEL
Process template. This automatically creates two dummy activities - Receive and
Reply - to receive input from a third party application and to reply output of the
BPEL process to the request application.

2. Create a Partner Link, page 9-28

Use this step to create an invoice in Oracle E-Business Suite by using the Single Ship
and Debit Request custom API ZZ_SDREQUEST exposed as a Web service.

3. Add a Partner Link for File Adapter, page 9-28

Use this step to synchronously read input data details passed from the first Assign
activity to create supplier ship and debit request.

4. Add Invoke Activities, page 9-34

Use this step to configure two Invoke activities in order to:

• Point to the File Adapter to synchronously read input data details that is passed
from the first Assign activity.

• Point to the ZZ_SDREQUEST partner link to initiate the supplier ship and debit
request creation with payload and request number details received from the
Assign activities.

5. Add Assign Activities, page 9-35

Use this step to configure Assign activities in order to pass applications context
header variables, payload information and request number to appropriate Invoke
activities to facilitate the single supplier ship and debit request creation. At the end,
pass the request number to the request application through the dummy Reply
activity.

For general information and how to create SOA composite applications using BPEL
process service component, see the Oracle Fusion Middleware Developer's Guide for Oracle
SOA Suite for details.

Creating a New SOA Composite Application with BPEL Process
Use this step to create a new SOA composite application that will contain various BPEL
process activities.

To create a new SOA composite application with BPEL process:

Creating and Using Custom Integration Interfaces 9-27

1. Open Oracle JDeveloper.

2. Click New Application in the Application Navigator.

The "Create SOA Application - Name your application" page is displayed.

3. Enter an appropriate name for the application in the Application Name field and
select SOA Application from the Application Template list.

Click Next. The "Create SOA Application - Name your project" page is displayed.

4. Enter an appropriate name for the project in the Project Name field, for example
ZZ_CreateSingle_ShipDebitRequest.

5. In the Project Technologies tab, select 'Web Services' and ensure that SOA is
selected from the Available technology list to the Selected technology list.

Click Next. The "Create SOA Application - Configure SOA settings" page is
displayed.

6. Select Composite With BPEL Process from the Composite Template list, and then
click Finish. You have created a new application, and a SOA project. This
automatically creates a SOA composite.

The Create BPEL Process page is displayed.

7. Leave the default BPEL 1.1 Specification selection unchanged. This creates a BPEL
project that supports the BPEL 1.1 specification.

Enter an appropriate name for the BPEL process in the Name field, for example
ZZ_CreateSingle_ShipDebitRequest.

Select Synchronous BPEL Process in the Template field.

Select required from the Transaction drop-down list. Click OK.

A synchronous BPEL process is created with the Receive and Reply activities. The
required source files including bpel and wsdl, using the name you specified (for
example, ZZ_CreateSingle_ShipDebitRequest.bpel and
ZZ_CreateSingle_ShipDebitRequest.wsdl) and composite.xml are also
generated.

Note: Service Provider does not support service creation for
PL/SQL stored procedures or packages which have '$' character in
parameter type names. The presence of $ in the name would cause
the XSD generation to fail.

8. Navigate to SOA Content > Business Rules and double click the composite.xml
to view the composite diagram.

Double click on the ZZ_CreateSingle_ShipDebitRequest component to open

9-28 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

the BPEL process.

Creating a Partner Link for the Web Service
Use this step to create a Partner Link called ZZ_CreateSD_Request.

To create a partner link for Single Ship and Debit Request Web service:

1. In Oracle JDeveloper, place your mouse in the Partner Links area and right click to
select Create Partner Link... from the pull-down menu. Alternatively, you can drag
and drop Partner Link from the BPEL Constructs list into the right Partner Link
swim lane of the process diagram.

The Create Partner Link window appears.

2. Copy the WSDL URL corresponding to the custom service, ZZ_SDREQUEST, that
you recorded earlier from the Integration Repository in the WSDL File field.

Press the [Tab] key.

3. A Partner Link Type message dialog box appears asking whether you want the
system to create a new WSDL file that will by default create partner link types for
you.

Click Yes. You can manually enter the partner link name.

4. Select the Partner Link Type and Partner Role values from the drop-down lists.

Click Apply.

The partner link is created with the required WSDL settings, and is represented in
the BPEL process by a new icon in the border area of the process diagram.

5. Click OK to complete the partner link configuration.

Partner Link ZZ_SDREQUEST is added to the Partner Links section in the BPEL
process diagram.

Adding a Partner Link for File Adapter
Use this step to configure a BPEL process to read input payload.

To add a Partner Link for File Adapter to Read Payload:

1. In Oracle JDeveloper, drag and drop the File Adapter service from the BPEL
Services list into the right Partner Link swim lane of the process diagram. The
Adapter Configuration wizard welcome page appears.

2. Click Next. The Service Name dialog box appears.

3. Enter a name for the file adapter service such as Read_Payload.

Creating and Using Custom Integration Interfaces 9-29

4. Click Next. The Adapter Interface dialog box appears.

Specifying the Operation

5. Select the Define from operation and schema (specified later) radio button and
click Next. The Operation dialog box appears.

9-30 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

Specifying the Operation

6. Specify the operation type, for example Synchronous Read File. This automatically
populates the Operation Name field.

Click Next to access the File Directories dialog box.

Creating and Using Custom Integration Interfaces 9-31

Specifying the Input File Directory

7. Select the Physical Path radio button and enter the physical path for incoming file
directory information. For example, enter /usr/tmp/ as the directory name.

Note: To be able to locate the file from the physical directory you
specified here, you must first place the input payload file (such as
Inputzzsdrequest.xml) to the specified directory.

Alternatively, click Browse to locate the incoming file directory information.

Click Next to open the File Name dialog box.

8. Enter the name of the file for the synchronous read file operation. For example,
enter Inputzzsdrequest.xml. Click Next. The Messages dialog box appears.

9-32 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

Specifying Message Schema

9. Select Browse for schema file in front of the URL field.

The Type Chooser window is displayed.

Click the Import Schema Files button on the top right corner of the Type Chooser
window.

Enter the schema location for the service. Such as
http://<soa_suite_hostname>:<port>/soa-infra/services/default
/<jndi_name>_PLSQL_ZZ_SDREQUEST/ZZ_SDREQUEST_Service?XSD=xsd/
APPS_XX_BPEL_ZZ_CREATE_SDREQUEST_RE_ZZ_SDREQUEST_ZZ_CREATE_SD
REQU.xsd.

Schema location for your service can be found from the service WSDL URL (for
example,
http://<soa_suite_hostname>:<port>/soa-infra/services/default
/<jndi_name>_PLSQL_ZZ_SDREQUEST/ZZ_SDREQUEST_Service/?wsdl).

Select the Copy to Project check box and click OK.

The Localize Files window appears. Ensure the Maintain original directory
structure for imported files check box is selected and click OK.

Creating and Using Custom Integration Interfaces 9-33

The Imported Schema folder is automatically added to the Type Chooser window.

Specifying Message Schema

Expand the Imported Schemas folder and select InputParameters Message in the
APPS_XX_BPEL_ZZ_CREATE_SDREQUEST_RE_ZZ_SDREQUEST_ZZ_CREATE_SD
REQU.xsd. Click OK.

The selected .xsd is displayed as URL, and the InputParameters is selected as
Schema Element.

10. Click Next and then Finish. The wizard generates the WSDL file corresponding to
the partner link. The main Create Partner Link dialog box appears, specifying the
new WSDL file Read_Payload.wsdl.

Click Apply and OK to complete the configuration and create the partner link with
the required WSDL settings for the File Adapter Service.

The Read_Payload Partner Link appears in the BPEL process diagram:

9-34 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

11. Under applications window, navigate to file ReadPayload_file.jca. Set value of
property "DeleteFile" to "false".

Adding Invoke Activities
This step is to configure two Invoke activities:

• Read supplier ship and debit request creation details that is passed from the first
Assign activity using Read_Payload partner link for File Adapter.

• Send the payload and request number details received from the Assign activities to
create a single supplier ship and debit request by using the ZZ_SDREQUEST partner
link.

To add an Invoke activity for Read_Payload Partner Link:

1. In Oracle JDeveloper, expand the BPEL Constructs from the Component Palette.
Drag and drop the Invoke activity into the center swim lane of the process diagram,
between the receiveInput and replyOutput activities.

2. Link the Invoke activity to the Read_Payload service. The Invoke activity will
send request data to the partner link. The Edit Invoke dialog box appears.

3. Enter a name for the Invoke activity such as 'Invoke_Readpayload', and then click
the Create icon next to the Input Variable field to create a new variable. The Create
Variable dialog box appears.

Creating a Variable

4. Enter a name for the variable such as 'Invoke_Readpayload_InputVariable' and
select the Global Variable radio button. Click OK in the Create Variable dialog box.

Click the Create icon next to the Output Variable field to create a new variable. The
Create Variable dialog box appears.

Enter a name for the output variable such as 'Invoke_Readpayload_OutputVariable'
and select the Global Variable radio button. Click OK in the Create Variable dialog
box.

Creating and Using Custom Integration Interfaces 9-35

Click Apply and OK in the Edit Invoke dialog box to finish configuring the Invoke
activity.

The Invoke activity appears in the process diagram.

To add an Invoke activity for ZZ_SDREQUEST Partner Link:

1. In Oracle JDeveloper, expand the BPEL Constructs from the Component Palette.
Drag and drop the Invoke activity into the center swim lane of the process diagram,
after the first Invoke activity and the reployOutput activity.

2. Link the Invoke activity to the ZZ_SDREQUEST service. The Invoke activity will
send the request number to the partner link. The Edit Invoke dialog box appears.

3. Enter a name for the Invoke activity such as 'Invoke_zzsdrequest'.

Select the Operation as ZZ_CREATE_SDREQUEST.

4. Click the Create icon next to the Input Variable field to create a new variable such
as 'Invoke_zzsdrequest_InputVariable'. Select the Global Variable radio button and
click OK in the Create Variable dialog box.

5. Click the Create icon next to the Output Variable field to create a new variable such
as 'Invoke_zzsdrequest_OutVariable'. Select the Global Variable radio button and
click OK in the Create Variable dialog box. Click Apply and OK in the Edit Invoke
dialog box to complete the Invoke activity creation.

The Invoke activity appears in the process diagram.

Adding Assign Activities
This step is to configure four Assign activities:

1. Set the applications context information obtained from the dummy Receive activity.
This information will be used in passing variables for SOAHeader elements of the
SOAP request.

Note: You need to populate certain variables in the BPEL process
for SOAHeader elements to pass values that may be required to set
applications context during service execution. These SOAHeader
elements are Responsibility, RespApplication,
SecurityGroup, NLSLanguage, and Org_Id.

2. Pass the payload information to the Invoke_zzsdrequest Invoke activity.

3. Pass the supplier ship and debit request number information to the
Invoke_zzsdrequestInvoke activity.

9-36 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

4. Pass the supplier ship and debit request number information to the dummy Reply
activity as an output.

To add the first Assign activity to pass applications context details to the
Invoke_Readpayload Invoke activity:

1. In Oracle JDeveloper, expand the BPEL Constructs from the Component Palette.
Drag and drop the Assign activity into the center swim lane of the process diagram
between the ReceiveInput activity and the first Invoke activity.

2. Double-click the Assign activity to access the Edit Assign dialog box.

3. Click the General tab to enter the name for the Assign activity, such as 'SetHeader'.

4. Select the Copy Rules tab and expand the target trees:

• Click the Expression icon to invoke the Expression Builder dialog.

Enter '204' in the Expression box. Click OK. The Expression icon with the
expression value ('204') appears in the center of the Edit Assign dialog, between
the From and To navigation tree nodes.

• In the To navigation tree, navigate to Variable > Process > Variables >
Invoke_zzsdrequest_InputVariable >header> ns5:SOAHeader and select
ns5:ORG_ID.

Drag the Expression icon to connect to the target node (ns5:ORG_ID) that you just
identified. This creates a line that connects the source and target nodes. The copy
rule is displayed in the From and To sections at the bottom of the Edit Assign
dialog box.

5. Enter the second pair of parameters by clicking the Expression icon to invoke the
Expression Builder dialog.

• Enter 'TRADE_MANAGEMENT_USER' in the Expression box. Click OK. The
Expression icon with the expression value appears in the center of the Edit
Assign dialog, between the From and To navigation tree nodes.

• In the To navigation tree, navigate to Variable > Process > Variables >
Invoke_zzsdrequest_InputVariable >header > ns5:SOAHeader and select
ns5:Responsibility.

Drag the Expression icon to connect to the target node (ns5:Responsibility) that you
just identified. This creates a line that connects the source and target nodes. The
copy rule is displayed in the From and To sections at the bottom of the Edit Assign
dialog box.

6. Enter the third pair of parameters by clicking the Expression icon to invoke the
Expression Builder dialog.

Creating and Using Custom Integration Interfaces 9-37

• Enter 'OZF' in the Expression box. Click OK. The Expression icon with the
expression value ('OZF') appears in the center of the Edit Assign dialog,
between the From and To navigation tree nodes.

• In the To navigation tree, navigate to Variable > Process > Variables >
Invoke_zzsdrequest_InputVariable >header > ns5:SOAHeader and select
ns5:RespApplication.

Drag the Expression icon to connect to the target node (ns5:RespApplication) that
you just identified. This creates a line that connects the source and target nodes. The
copy rule is displayed in the From and To sections at the bottom of the Edit Assign
dialog box.

7. Enter the fourth pair of parameters by clicking the Expression icon to invoke the
Expression Builder dialog.

• Enter 'STANDARD' in the Expression box. Click OK. The Expression icon with
the expression value ('STANDARD') appears in the center of the Edit Assign
dialog, between the From and To navigation tree nodes.

• In the To navigation tree, navigate to Variable > Process > Variables >
Invoke_zzsdrequest_InputVariable >header > ns5:SOAHeader and select
ns5:SecurityGroup.

Drag the Expression icon to connect to the target node (ns5:SecurityGroup) that you
just identified. This creates a line that connects the source and target nodes. The
copy rule is displayed in the From and To sections at the bottom of the Edit Assign
dialog box.

8. Enter the fifth pair of parameters by clicking the Expression icon to invoke the
Expression Builder dialog.

• Enter 'AMERICAN' in the Expression box. Click OK. The Expression icon with
the expression value ('AMERICAN') appears in the center of the Edit Assign
dialog, between the From and To navigation tree nodes.

• In the To navigation tree, navigate to Variable > Process > Variables >
Invoke_zzsdrequest_InputVariable >header > ns5:SOAHeader and select
ns5:NLSLanguage.

Drag the Expression icon to connect to the target node (ns5:NLSLanguage) that you
just identified. This creates a line that connects the source and target nodes. The
copy rule is displayed in the From and To sections at the bottom of the Edit Assign
dialog box.

9. Click OK to complete the configuration of the Assign activity.

To enter the second Assign activity to pass payload information to the

9-38 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

Invoke_zzsdrequest Invoke activity:

1. Add the second Assign activity by dragging and dropping the Assign activity from
the BPEL Constructs into the process diagram, between two Invoke activities.

2. Repeat Step 2 to Step 3 described in creating the first Assign activity to add the
second Assign activity called 'SetPayload'.

3. Select the Copy Rules tab and expand the source and target trees:

• In the From navigation tree, navigate to Variable > Process > Variables >
Invoke_ReadPayload_OutVariable >
ZZ_CreateSingle_ShipDebitRequestProcessRequest.

• In the To navigation tree, navigate to Variable > Process > Variables >
Invoke_zzsdrequest_InputVariable > body.

Drag the source node (ZZ_CreateSingle_ShipDebitRequestProcessRequest) to
connect to the target node (body) that you just identified. This creates a line that
connects the source and target nodes. The copy rule is displayed in the From and To
sections at the bottom of the Edit Assign dialog box.

4. Click OK to complete the configuration of the Assign activity.

To enter the third Assign activity to pass the supplier ship and debit request number
to the Invoke_zzsdrequest Invoke activity:

1. Add the third Assign activity by dragging and dropping the Assign activity from
the BPEL Constructs into the process diagram, between the second Assign activity
and the Invoke_zzsdrequest Invoke activity.

2. Repeat Step 2 to Step 3 described in creating the first Assign activity to add the
third Assign activity called 'SetRequestNumber'.

3. Select the Copy Rules tab and expand the source and target trees:

• In the From navigation tree, navigate to Variable > Process > Variables >
inputVariable > Payload >
client:ZZ_CreateSingle_ShipDebitRequestProcessRequest > client:input.

• In the To navigation tree, navigate to Variable > Process > Variables >
Invoke_zzsdrequest_InputVariable > Body > ns3:InputParameters
>ns3:CP_SDR_HDR_REC > ns3:REQUEST_NUMBER and select
ns3:TRX_NUMBER.

Drag the source node (client:input) to connect to the target node
(ns3:TRX_NUMBER) that you just identified. This creates a line that connects the
source and target nodes. The copy rule is displayed in the From and To sections at
the bottom of the Edit Assign dialog box.

Creating and Using Custom Integration Interfaces 9-39

4. Click OK in the Assign window to complete the configuration of the Assign
activity.

To add the fourth Assign activity to reply back supplier ship and debit request
number:

1. Add the third Assign activity by dragging and dropping the Assign activity from
the BPEL Constructs into the process diagram, between the
Invoke_zzsdrequest Invoke and the ReplyOutput activities.

2. Repeat Step 2 to Step 3 described in creating the first Assign activity to add the
fourth Assign activity called 'SetRequestNumber'.

3. Select the Copy Rules tab and expand the source and target trees:

• In the From navigation tree, navigate to Variable > Process > Variables >
Invoke_zzsdrequest_OutputVariable > body.

• In the To navigation tree, navigate to Variable > Process > Variables >
outputVariable > payload.

Drag the source node (body) to connect to the target node (payload) that you just
identified. This creates a line that connects the source and target nodes. The copy
rule is displayed in the From and To sections at the bottom of the Edit Assign
dialog box.

4. Click OK in the Assign window to complete the configuration of the Assign
activity.

Configuring Web Service Policies

Use the following steps to add security policies at design time:

1. Navigate to SOA Content > Business Rules > composite.xml. Right click on the
ZZ_SDREQUEST service and select "Configure WS Policies" from the drop-down
list.

2. The Configure SOA WS Policies dialog appears.

In the Security section, click the Add icon (+). The Select Server Security Policies
dialog appears.

9-40 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

Select 'oracle/wss_username_token_service_policy' and click OK.

The attached security policy is shown in the Security section.

3. From the navigation menu, select View > Property Inspector to display the
Property Inspector window for ZZ_SDREQUEST service component.

In the Properties section, click the Add icon (+) for binding properties. The Create
Property dialog appears.

Enter 'oracle.webservices.auth.username' in the Name field and enter
'operations' as the value.

Creating and Using Custom Integration Interfaces 9-41

Click OK.

4. Use the same approach by clicking the Add icon (+) again in the Properties section
for binding properties. Enter 'oracle.webservices.auth.password' in the
Name field. Enter the associated password for user 'operations' in the Value field.

Click OK.

Both selected property names and values appear in the Properties section.

Deploying and Testing the SOA Composite with BPEL Process at Run Time
To invoke the synchronous custom service (ZZ_SDREQUEST) from the BPEL client
contained in the SOA composite, the SOA composite needs to be deployed to the Oracle
WebLogic managed server. This can be achieved using Oracle JDeveloper. Once the
composite is deployed, it can be tested from the Oracle Enterprise Manager Fusion
Middleware Control Console.

Prerequisites

Before deploying the SOA composite with BPEL process using Oracle JDeveloper, you
must have established the connectivity between the design-time environment and the
run-time server. For information on how to configure the necessary server connection,
see Configuring Server Connection, page B-1.

Note: If a local instance of the WebLogic Server is used, start the
WebLogic Server by selecting Run > Start Server Instance from Oracle
JDeveloper. Once the WebLogic Admin Server "DefaultServer" instance
is successfully started, the <Server started in Running mode> and

9-42 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

DefaultServer started message in the Running:DefaultServer and
Messages logs should appear.

Perform the following run-time tasks:

1. Deploy the SOA Composite Application with BPEL Process, page 9-42

2. Test the SOA Composite Application with BPEL Process, page 9-45

Deploying the SOA Composite with BPEL Process
You must deploy the Create Single Supplier Ship and Debit Request BPEL process (
ZZ_CreateSingle_ShipDebitRequest.bpel) contained in the SOA composite
application that you created earlier before you can run it.

To deploy the SOA composite application:

1. In the Applications Navigator of JDeveloper, select the
ZZ_CreateSingle_ShipDebitRequest project.

2. Right-click the project and select Deploy > [project name] > [serverConnection]
from the menu.

For example, you can select Deploy > ZZ_CreateSingle_ShipDebitRequest >
SOAServer to deploy the process if you have the connection set up appropriately.

Note: If this is the first time to set up server connection, then the
Deployment Action window appears. Select 'Deploy to Application
Server' and click Next.

Creating and Using Custom Integration Interfaces 9-43

In the Deploy Configuration window, ensure the following
information is selected before clicking Next to add a new
application server:

• New Revision ID: 1.0

• Mark composite revision as default: Select this check box.

• Overwrite any existing composites with the same revision ID:
Select this check box.

The steps to create a new Oracle WebLogic Server connection from
JDeveloper are covered in Configuring Server Connection, page B-
1.

3. In the Select Server page, select 'soa-server1' that you have established the server
connection earlier. Click Next.

9-44 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

4. In the SOA Servers page, accept the default target SOA Server ('soa-server1')
selection.

Creating and Using Custom Integration Interfaces 9-45

Click Next and Finish.

5. If you are deploying the composite for the first time from your Oracle JDeveloper
session, the Authorization Request window appears. Enter username and password
information specified during Oracle SOA Suite installation. Click OK.

6. Deployment processing starts. Monitor deployment process and check for
successful compilation in the SOA - Log window.

Verify that the deployment is successful in the Deployment - Log window.

Testing the SOA Composite Application with BPEL Process
Once the BPEL process contained in the SOA composite application has been
successfully deployed, you can manage and monitor the process from Oracle Enterprise
Manager Fusion Middleware Control Console. For more information about Oracle SOA
Suite, see the Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite.

You can also test the process and the integration interface by manually initiating the
process, and then log on to Oracle E-Business Suite to validate that the supplier ship
and debit request is successfully created with the request number you specified.

To test the SOA composite application with BPEL process:

1. Navigate to Oracle Enterprise Manager Fusion Middleware Control Console (
http://<hostname>:<port>/em). The login page appears.

9-46 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

2. Enter the username and password information specified during the installation.
Click Login to log in to a farm. The composite (ShipNotice) you deployed is
displayed in the Applications Navigation tree.

You may need to select an appropriate target instance farm if there are multiple
target Oracle Enterprise Manager Fusion Middleware Control Console farms.

3. From the Farm navigation pane, expand the SOA >soa-infra node in the tree to
navigate through the SOA Infrastructure home page and menu to access your
deployed SOA composite applications running on soa-infra managed server.

Click the ZZ_CreateSingle_ShipDebitRequest [1.0] link.

4. In the ZZ_CreateSingle_ShipDebitRequest [1.0] home page, click Test.

5. The Test Web Service page for initiating an instance appears. You can specify
'SD-Request1' as XML payload data to use in the Input Arguments section.

Note: The Request Number entered here should be unique each
time that you initiate the process because this number will be used
as the Supplier Ship and Debit number across users in Oracle Trade
Management.

Click Test Web Service to initiate the process.

The test results appear in the Response tab upon completion.

6. Verifying SOAP Response in the Console

In the Response tab page, click the Launch Message Flow Trace link to view the
result of synchronous composite application. The Flow Trace page is displayed.

In the Trace section, verify that all components have a Completed state indicating
that the application executed successfully.

You can check the Faults section to see if any error occurred during the test.

7. Click your BPEL service component instance link (such as
ZZ_CreateSingle_ShipDebitRequest) to display the Instances page where you can
view execution details for the BPEL activities in the Audit Trail tab.

Click the Flow tab to check the BPEL process flow diagram. Click an activity of the
process diagram to view the activity details and flow of the payload through the
process.

8. Double-click the Invoke_ZZ_CreateSingle_ShipDebitRequest icon from the process
flow chart and click the View XML document link to open the XML file. This file
records the Request ID that is returned for the transaction.

9. Log on to Oracle E-Business Suite as trademgr user and then select the Oracle

Creating and Using Custom Integration Interfaces 9-47

Trade Management User responsibility. Select the 'Supplier Ship and Debit' link
from the navigation menu to open the Ship and Debit Overview window.

10. Verify if the request number 'SD-Request1' that you entered in Step 5 appears in the
list.

11. Click the request number 'SD-Request' link. The Ship and Debit Request Details
page is displayed allowing you to verify the request details.

Working With Oracle Workflow Business Event System to Invoke Web Services 10-1

10
Working With Oracle Workflow Business

Event System to Invoke Web Services

This chapter covers the following topics:

• Oracle Workflow and Service Invocation Framework Overview

• Web Service Invocation Using Service Invocation Framework

• Calling Back to Oracle E-Business Suite With Web Service Response

• Invoking Web Services

• Managing Errors

• Testing Web Service Invocation

• Troubleshooting Web Service Invocation Failure

• Extending Seeded Java Rule Function

• Other Invocation Usage Considerations

Oracle Workflow and Service Invocation Framework Overview
Oracle E-Business Suite Integrated SOA Gateway leverages Oracle Workflow Java
Business Event System to provide infrastructure for Web Service Invocation natively
from Oracle E-Business Suite.

Oracle Workflow is the primary process management solution within Oracle E-Business
Suite. It consists of some key components enabling you model and automate business
processes and activities in a process diagram based on user-defined business rules,
providing routing mechanism to support each decision maker in the process, facilitating
subscriptions to events or services between systems, and implementing workflow
process definitions at run time as well as handling errors. Since it provides a total
solution of managing and streamlining complex business processes and supporting
highly-integrated workflow in Oracle E-Business Suite, Oracle E-Business Suite
Integrated SOA Gateway relies on Oracle Workflow to enable the service invocation
process and provide the following functionality:

10-2 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

• It relies on Business Event System to create events and event subscriptions as well
as to parse a given WSDL representing a Web service to be consumed as
subscription parameters.

• It uses the Oracle Workflow seeded Java rule function
oracle.apps.fnd.wf.bes.WebServiceInvokerSubscription to help
invoke Web services.

• It relies on the Oracle Workflow Test Business Event page to test service invocation
by raising an invoker event raised from PL/SQL or Java and execute synchronous
and asynchronous subscriptions to the event.

• It utilizes the Error processing feature provided in Business Event System to
manage errors during subscription execution and sends error notifications to
SYSADMIN user with Web service definition, error and event details.

• It utilizes workflow Notification System to send error notifications to and process
responses from SYSADMIN.

For detailed information about Oracle Workflow, see the Oracle Workflow User's Guide,
Oracle Workflow Developer's Guide, and the Oracle Workflow Administrator's Guide.

To better understand how service invocation framework is used in facilitating the
invocation of Web services, the following topics are discussed in this chapter:

• Web Service Invocation Using Service Invocation Framework, page 10-2

• Calling Back to Oracle E-Business Suite With Web Service Response, page 10-29

• Invoking Web Services, page 10-31

• Managing Errors, page 10-37

• Testing Web Service Invocation, page 10-39

• Troubleshooting Web Service Invocation Failure, page 10-44

• Extending Seeded Java Rule Function, page 10-50

• Other Invocation Usage Considerations, page 10-57

Web Service Invocation Using Service Invocation Framework
Service invocation framework provides an infrastructure allowing developers to
interact with Web services through WSDL descriptions and to invoke Web services
from Oracle E-Business Suite.

To achieve this goal, the invocation framework uses a wizard-based user interface in

Working With Oracle Workflow Business Event System to Invoke Web Services 10-3

Oracle Workflow Business Event System to parse a given Web service WSDL URL
during the subscription creation and store identified service information or metadata as
subscription parameters which will be used later during service invocation.

A WSDL URL is used to represent a Web service. The underlying service can be a
simple native Web service or a BPEL process.

Please note that the service invocation framework discussed here only supports
document-based Web service invocation. The invocation framework does not support
RPC (remote procedure call) style Web service invocation.

The following diagram illustrates the high level service invocation process flow:

To successfully invoke Web services at run time, Web service invocation metadata must
be in place. In addition to defining the invocation metadata, the concepts of message
patterns, Web service input message parts, and Web service security that the service
invocation framework supports are also introduced in this section.

The section covers the following topics:

• Understanding Message Patterns, page 10-3

• Defining Web Service Invocation Metadata, page 10-5

1. Creating a Web Service Invoker Business Event, page 10-6

2. Creating Local and Error Event Subscriptions to the Invoker Event, page 10-8

3. Creating a Receive Event and Event Subscription (Optional), page 10-15

• Understanding Web Service Input Message Parts, page 10-18

• Supporting WS-Security, page 10-23

Understanding Message Patterns in WSDL
There are two major message exchange patterns — a request-response pattern, and a
one-way (request - only) pattern.

10-4 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

Request - Response Message Pattern

The request - response message exchange pattern is where a client asks a service provider
a question and then receives the answer to the question. The answer may come in the
form of a fault or exception. Both the request and the response are independent
messages. The request - response pattern is often implemented using synchronous
operations for simple operations. For longer running operations, asynchronous (with
message correlation) is often chosen.

Request - Response Message Pattern

• A synchronous operation is one that waits for a response before continuing on. This
forces operations to occur in a serial order. It is often said that an operation, "blocks"
or waits for a response. Many online banking tasks are programmed in
request/response mode.

For example, a request for an account balance is executed as follows:

• A customer (the client) sends a request for an account balance to the Account
Record Storage System (the server).

• The Account Record Storage System (the server) sends a reply to the customer
(the client), specifying the dollar amount in the designated account.

• An asynchronous operation is one that does not wait for a response before
continuing on. This allows operations to occur in parallel. Thus, the operation does
not, "block" or wait for the response. Asynchronous operations let clients continue
to perform their work while waiting for responses that may be delayed. This is
accomplished by returning an asynchronous handle that runs a thread in the
background, allowing the client to continue execution until the response is ready.

Important: In this release, the Web service invocation framework only
supports Synchronous Request - Response message pattern and One -
Way (Request Only) message pattern.

Request Only Message Pattern

The request only operation model includes one input element, which is the client's
request to the server. No response is expected.

Working With Oracle Workflow Business Event System to Invoke Web Services 10-5

Request Only Message Pattern

For example, client zip code locations send updated weather data to the service when
local conditions change using the request only operation. The server updates the data
but no response is sent back.

Defining Web Service Invocation Metadata
Because the service invocation is taken place in the Oracle Workflow Business Event
System, before invoking a Web service, the Web service invocation metadata including
events and event subscriptions must be defined first through the Business Event
System.

This section discusses the following topics:

1. Creating a Web Service Invoker Business Event, page 10-6

A Web service invoker business event that serves as a request message (or Web
service input message) for a service needs to be created first.

2. Creating Local and Error Event Subscriptions to the Invoker Event, page 10-8

After defining the Invoker event, you need to create the following two
subscriptions:

• Create a Local subscription with 'Invoke Web Service' Action Type, page 10-8

This event subscription indicates that when a triggering event occurs, the action
item of this subscription is to invoke a Web service defined as part of this
subscription.

• Create an Error subscription with 'Launch Workflow' Action Type, page 10-13

This error subscription enables error processing in the Business Event System
that is used to communicate with SYSADMIN user of an error condition in
subscription execution.

3. Creating a Receive Event and Event Subscription (Optional), page 10-15

This step is required only if a Web service has an output or a response message to
communicate or callback to Oracle E-Business Suite. Once a receive event is in
place, you must create an External subscription to the receive event to pass the Web

10-6 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

service response message.

If a Web service does not require a response, then you do not need to create a
receive event, nor the event subscription.

Step 1: Creating a Web Service Invoker Business Event
A business event is an occurrence in an internet or intranet application or program that
might be significant to other objects in a system or to external agents. For instance, the
creation of a purchase order is an example of a business event in a purchasing
application.

Use the Oracle Workflow Business Event System to define a Web service invoker
business event.

The invoker event can be served as a request message (or Web service input message) in
a message pattern to send inquiries to a service.

To invoke a Web service through the Business Event System, you must create an
invoker business event, and then subscribe to the invoker event later with an
appropriate action type.

Note: In this release, the Web service invocation framework supports
the following types of service invocation:

• One-way (request only) service that a consumer or client sends a
message to a service, and the service does not need to reply.

• Synchronous request-response service type that requires a
response before an operation continues.

If an invoker event requires a response, then you must define a
receive business event to communicate or callback into Oracle
E-Business Suite after the Web service is successfully invoked. See
Creating a Receive Event and Event Subscription (Optional), page
10-15.

For more information about business events, see Events, Oracle Workflow Developer's
Guide.

To create an invoker event:

1. Log on to Oracle E-Business Suite with the Workflow Administrator Web
responsibility. Select the Business Events link, and choose Events in the horizontal
navigation if the Events page is not already displayed.

2. In the Events page, click Create Event to open the Create Event page.

3. Enter the following information in the Create Event page:

Working With Oracle Workflow Business Event System to Invoke Web Services 10-7

• Name: Enter an event name, such as
oracle.apps.xxx.user.webservice.invoke

• Display Name: Enter an event display name, such as
oracle.apps.xxx.user.webservice.invoke

• Description: Enter a description for the event

• Status: Enabled

• Generate Function: Specify a generate function for the PL/SQL based event if
the application where the event occurs will not provide the event data

• Java Generate Function: Specify a generate function for the Java based event if
the application where the event occurs will not provide the event data

• Owner Name: Specify the program or application name that owns the event
(such as Oracle Workflow)

• Owner Tag: Specify the program or application ID that owns the event (such as
'FND')

Create Invoker Event

4. Click Apply to save your work.

Leave this page open to create a receive event.

For more information on how to create a business event, see the Oracle Workflow
Developer's Guide for details.

10-8 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

Step 2: Creating Local and Error Event Subscriptions to the Invoker Event
• Create a Local subscription with 'Invoke Web Service' Action Type, page 10-8

This event subscription indicates that when a triggering event occurs, the action
item of this subscription is to invoke a Web service that you have created in the
invoke event.

• Create an Error subscription with 'Launch Workflow' Action Type, page 10-13

This error subscription enables error processing in the Business Event System that is
used to communicate with SYSADMIN user of an error condition in subscription
execution.

It sends a workflow notification to SYSADMIN with Web service definition, error
details, and event details allowing the SYSADMIN to process the errors if needed.

Create a Local Subscription With 'Invoke Web Service' Action Type
To subscribe to an invoker event, you must create a subscription with 'Invoke Web
Service' Action Type which indicates that when a triggering event occurs, the action
item of this subscription is to invoke a Web service. This requires you to enter a WSDL
URL representing a Web service of any type (such as a native Web service or BPEL
process) in the Create Event Subscription - Invoke Web Service wizard. That WSDL
information entered in the wizard will be parsed into service metadata for further
selections.

Note: A BPEL process itself is a Web service, defining and supporting a
client interface through WSDL and SOAP. The BPEL process WSDL
URL can be created through a partner link which allows the request to
be published to Oracle SOA Suite to connect to Web services.

When a triggering event occurs, the Business Event System executes the
subscription through the seeded Java function and invokes the BPEL
process.

After you select appropriate service metadata, this selected data will be stored as
subscription parameters as follows and displayed in the Web Service Details region:

• SERVICE_WSDL_URL

• SERVICE_NAME

• SERVICE_PORT

• SERVICE_PORTYPE

• SERVICE_OPERATION

The seeded Java Rule Function

Working With Oracle Workflow Business Event System to Invoke Web Services 10-9

oracle.apps.fnd.wf.bes.WebServiceInvokerSubscription uses these
subscription parameters during the service invocation.

Note: Oracle E-Business Suite Integrated SOA Gateway allows
developers to extend the invoker subscription seeded rule function
using Java coding standards for more specialized service invocation
processing. For more information on customizing seeded Java rule
function, see Extending Seeded Rule Function, page 10-50.

Configuring Web Service Security

If the Web service being invoked enforces Username/Password based authentication,
then the Service Invocation Framework also supports the UsernameToken based
WS-Security header during Web service invocation.

Important: This UsernameToken based WS-security header is
implemented during the service invocation only if the Web service
provider that processes the Web service request needs this security
header.

After entering needed information in the Create Event Subscription - Invoke Web
Service wizard, the Web Service Security region is displayed letting you specify or
update username and password information if appropriate. The information will then
be stored in Vault securely.

Please note that Oracle Workflow allows various levels of updates on business event
and subscription based on the customization level. If the Invoke Web Service event
subscription's customization level is Core or Limit, and if the username is supplied by
the subscription owner, it cannot be updated. If the username was not already supplied,
you can update a username if required. Password can always be updated regardless of
the customization level if it is required.

For more information on how to configure security fields with customization level, see:

• Configuring Security Password with Customization Level, page 10-25

• Examples of Configuring Security with Customization Level, page 10-26

For more information about Web service security, see Supporting WS-Security, page 10-
23.

Setting Additional Subscription Parameters

Apart from the subscription parameters that have been parsed and stored through the
Invoke Web Service Subscription page, the following information could be captured if it
is specified as additional subscription parameters that will then be used by the seeded
Java rule function to enable message processing for Web service invocation:

• WS-Security Header

10-10 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

To help protect the security header <wsse:Security> from being reused during a
replay attack, you can optionally use the following parameter to set the expiration
time for the header:

• WFBES_SOAP_EXPIRY_DURATION

By default, the security header is set to expire 60 seconds in the <wsu:Timestamp>
element after it is created. This parameter provides an option letting you to set a
different expiration time in seconds for the header.

• Message transformation

If the invoker event's XML payload (to be used as Web service input message)
requires to be transformed into a form that complies with the input message
schema, the seeded Java rule function could perform XSL transformation on the
payload before invoking the Web service. Similarly, if the Web service output
message requires to be transformed into a form that is required for processing by
Oracle E-Business Suite, the seeded Java rule function could perform XSL
transformation on the response before calling back to Oracle E-Business Suite.

• WFBES_OUT_XSL_FILENAME

• WFBES_IN_XSL_FILENAME

After event payload is either passed during the event raise or generated by generate
function after the event raise, the seeded Java rule function uses these subscription
parameters to obtain the XSL file names if XSL transformations are required on the
Web service input and output messages. At run time, if event parameters are
passed with the same names, then the event parameters override the subscription
parameters.

For more information on these transformation parameters, see Understanding Web
Service Input Message Parts, page 10-18.

• Callback: Callback to Oracle E-Business Suite with Web service response

• WFBES_CALLBACK_EVENT

• WFBES_CALLBACK_AGENT

To process a Web service output or response (synchronous request - response)
message, the callback mechanism is used to communicate the response using a
business event back to Oracle E-Business Suite by enqueueing the event to an
Inbound Workflow Agent. A new or waiting workflow process can be started or
executed.

For more information on these callback parameters, see Calling Back to Oracle
E-Business Suite With Web Service Response, page 10-29.

Creating a Local Event Subscription with 'Invoke Web Service' Action Type

Working With Oracle Workflow Business Event System to Invoke Web Services 10-11

Create an Event Subscription

To create a local event subscription with 'Invoke Web Service' action type:

1. Log on to Oracle E-Business Suite with the Workflow Administrator Web
responsibility. Select the Business Events link, and choose Subscriptions in the
horizontal navigation.

2. In the Event Subscriptions page, click Create Subscription to open the Create Event
Subscription page.

3. Enter the following information in the Create Event Subscription page:

• Subscriber: Select the local system

• Source Type: Local

• Event Filter: Select the event name that you just created, such as
oracle.apps.xxx.user.webservice.invoke

• Phase: 90

If the event is raised from Java, the phase number determines whether an event
will be invoked right away or enqueued to WF_JAVA_DEFFERED queue.

10-12 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

Note: If the invoker event is raised from PL/SQL, it is always
deferred to WF_JAVA_DEFERRED queue regardless of the
phase because the subscription has a Java rule function that
cannot be executed in the database.

• If the phase is >=100, then the event is enqueued to WF_JAVA_DEFFERED
queue and will be dispatched later.

• If the phase is <100, then the event is dispatched immediately to the Java
Business Event System soon after an triggering event occurs.

• Status: Enabled

• Rule Data: Message

• Action Type: Invoke Web Service

• On Error: Stop and Rollback

4. Click Next. This opens a Create Event Subscription - Invoke Web Service wizard
allowing you to enter a WSDL URL that will be parsed into service metadata for
further selection.

Create Event Subscription - Invoke Web Service Wizard

1. Enter WSDL URL information for the Web service to be invoked. Click Next to
parse the WSDL and display all services.

2. Select an appropriate service name from the drop-down list. Click Next to
display all ports for a selected service

3. Select an appropriate service port and click Next to display all operations for a
selected port.

Working With Oracle Workflow Business Event System to Invoke Web Services 10-13

4. Select an appropriate service operation and click Next. This opens the last page
of the Create Event Subscription - Invoke Web Service wizard.

5. All the selected service metadata information is automatically displayed in the
Web Service Details region.

6. In the Web Service Security region, enter Username and Password information
if appropriate.

Please note that Oracle Workflow allows various levels of updates on business
event and subscription based on the customization level. If the Invoke Web
Service event subscription's customization level is Core or Limit, and if the
username is supplied by the subscription owner, it cannot be updated. If the
username was not already supplied, you can update a username if it's required.
Password can always be updated regardless of the customization level if it is
required.

For more information, see Configuring Security Password with Customization
Level, page 10-25.

7. In the Web Service Invoker region, the default Java Rule Function name
oracle.apps.fnd.wf.bes.WebServiceInvokerSubscription is
automatically populated.

Important: If you have extended the functionality of the seeded
rule function, manually enter your custom function name here.

8. In the Documentation region, enter an application name or a program name
that owns the subscription (such as 'Oracle Workflow') in the Owner Name
field. Enter the program ID (such as 'FND') in the Owner Tag field. Click Apply
.

For more information, see Defining Event Subscriptions, Oracle Workflow Developer's
Guide.

Create an Error subscription with 'Launch Workflow' Action Type
To enable the error processing feature during the service invocation, you must create an
Error subscription to the invoker business event.

Once subscribing to this error processing, if any errors occurred during the invocation,
the error process sends a workflow notification to SYSADMIN. This information
includes Web service definition, event details, and error details allowing SYSADMIN to
easily identify the error. The notification also provides an option for SYSADMIN to
respond to the error. The SYSADMIN can invoke the Web service again after the
underlying issue that caused the error is resolved, abort the errored event if needed, or
reassign an errored notification to another user if appropriate.

For detailed information on managing errors during Web service invocation, see

10-14 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

Managing Errors, page 10-37.

To create an error subscription with 'Launch Workflow' action type:

1. Log on to Oracle E-Business Suite with the Workflow Administrator Web
responsibility. Select the Business Events link, and choose Subscriptions in the
horizontal navigation.

2. In the Event Subscriptions page, click Create Subscription to open the Create Event
Subscription page.

3. Enter the following information in the Create Event Subscription page:

• Subscriber: Select the local system

• Source Type: Error

• Event Filter: Select the event name that you just created, such as
oracle.apps.xxx.user.webservice.invoke

• Phase: This can be any phase number.

• Status: Enabled

Note: While updating an event and subscription, for seeded
events with a customization level of Limit, you can only update
the status. For seeded product-specific events with a
customization level of Core, you cannot update any properties.
You can only view the subscription definition.

For information on how to use customization level, see
Configuring Web Service Security Through Event Subscription
User Interface, page 10-24.

• Rule Data: Key

• Action Type: Launch Workflow

• On Error: Stop and Rollback

4. Click Next to open the Create Event Subscription - Launch Workflow page.

5. Enter the following information in the Action region:

• Workflow Type: WFERROR

• Workflow Process: DEFAULT_EVENT_ERROR2

Working With Oracle Workflow Business Event System to Invoke Web Services 10-15

• Priority: Normal

6. In the Documentation region, enter an application or program name that owns the
event subscription (such as Oracle Workflow) in the Owner Name field and
application or program ID (such as 'FND') in the Owner Tag field.

7. Click Apply.

Step 3: Creating a Receive Event and Subscription (Optional)
A receive event can serve as a communication vehicle to communicate or callback to
Oracle E-Business Suite if a Web service has an output or response message required to
be communicated back after the Web service has been successfully invoked. However,
whether you need to create a receive event and an external subscription to the receive
event depends on the following criteria:

• Your message pattern

• Where your event is raised from (Java or PL/SQL layer)

• Event subscription phase number

For Synchronous Request-Response Web Service Invocation

• If the Web service invoker event is raised from Java code in the middle tier, and the

10-16 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

invoker subscription is synchronous with subscription phase < 100, then the Web
service is invoked as soon as the event is raised. If the invocation is successful, the
response can be read by the calling application and is available immediately by
using BusinessEvent.getResponseData() method after calling
BusinessEvent.raise().

In this case, the response may not have to be communicated back to Oracle
E-Business Suite using a callback event. Hence, you may not need to create a receive
event and the subscription to the event.

• If the Web service invoker event is raised from Java code with the subscription
phase is >= 100, or if the event is raised from PL/SQL, the event message will be
enqueued to WF_JAVA_DEFERRED queue. In this situation, you will need to create
a receive event and an external subscription to the event if the Web service has an
output or a response message. A callback event with callback agent is required to
receive the output message into Oracle E-Business Suite.

This receive event can also be used as a callback into Oracle E-Business Suite to let
the interested parties know through raising this event that the Web service response
is available.

See: Calling Back to Oracle E-Business Suite With Web Service Response, page 10-
29.

If a receive event is required, after creating the receive event, you must create an
external event subscription to the receive event. The Web service response message
communicated through the receive event is always enqueued to an inbound
workflow agent. In order to process an event from the inbound workflow agent, an
external subscription is required.

For Request-only Web Service

If it is a request-only Web service which does not require a response, you do not need to
create a receive event.

To create a receive event:

1. In the Events page, click Create Event to open another Create Event page.

2. Enter the following information in the Create Event page:

• Name: Enter an event name, such as
oracle.apps.xxx.user.webservice.receive

• Display Name: Enter an event display name, such as
oracle.apps.xxx.user.webservice.receive

• Description: Enter a description for the event

• Status: Enabled

Working With Oracle Workflow Business Event System to Invoke Web Services 10-17

• Owner Name: Enter an application or program name that owns the event (such
as 'Oracle Workflow')

• Owner Tag: Enter the application or program ID that owns the event (such as
'FND')

3. Click Apply to create a receive event.

To create a receive event subscription:

1. Log on to Oracle E-Business Suite with the Workflow Administrator Web
Applications responsibility. Select the Business Events link, and choose
Subscriptions in the horizontal navigation.

2. In the Event Subscriptions page, click Create Subscription to open the Create Event
Subscription page.

3. Enter the following information in the Create Event Subscription page:

• Subscriber: Select the local system

• Source Type: External

• Event Filter: Select the receive event name that you just created, such as
oracle.apps.xxx.user.webservice.receive

• Phase: any phase number

• Status: Enabled

• Rule Data: Key

• Action Type: any action type

• On Error: Stop and Rollback

4. Click Next to open the Create Event Subscription - Launch Workflow page.

Please note that the type of the Create Event Subscription page to be shown
depends on the value selected in the Action Type field. If "Launch Workflow" is
selected, you will see the Create Event Subscription - Launch Workflow page. If
other action types are selected, different types of the create event subscription pages
are displayed. By entering an appropriate action type through the subscription
page, you can launch a workflow process or execute a custom rule function for the
event defined as part of this subscription.

5. Enter the following information in the Action region:

10-18 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

• Workflow Type: Enter a workflow type that is waiting for the response

• Workflow Process: Enter a workflow process that is waiting for the response

• Priority: Normal

6. In the Documentation region, enter an application or a program name in the Owner
Name field (such as 'Oracle Workflow'). Enter an application or a program ID in the
Owner Tag field (such as 'FND').

7. Click Apply.

Understanding Web Service Input Message Parts
A message consists of one or more logical parts. Each part describes the logical abstract
content of a message. For example, a typical document-style Web service could have a
header part and a body part in the input message.

For example, consider the operation PROCESSPO in Oracle E-Business Suite XML
Gateway service (
http://<host>:<port>/webservices/SOAProvider/xmlgateway/ont__poi
/?wsdl) as described below.

Working With Oracle Workflow Business Event System to Invoke Web Services 10-19

<definitions targetNamespace="ONT__POI"
targetNamespace="http://xmlns.oracle.com/apps/ont/soaprovider/xmlgateway
/ont__poi/">
<type>
 <schema elementFormDefault="qualified"
targetNamespace="http://xmlns.oracle.com/apps/ont/soaprovider/xmlgateway
/ont__poi/">
 <include
schemaLocation="http://<host>:<port>/webservices/SOAProvider/xmlgateway/
ont__poi/PROCESS_PO_007.xsd"/>
 </schema>
...
<message name="PROCESSPO_Input_Msg">
 <part name="header" element="tns:SOAHeader"/>
 <part name="body" element="tns1:PROCESS_PO_007"/>
</message>
...
<binding name="ONT__POI_Binding" type="tns:ONT__POI_PortType">
<soap: binding style="document"
transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="PROCESSPO">
 <soap:operation
soapAction="http://<host>:<port>/webservices/SOAProvider/xmlgateway/ont_
_poi/"/>
 <input>
 <soap:header message="tns:PROCESSPO_Input_Msg" part="header"
use="literal"/>
 <soap:body parts="body" use="literal"/>
 </input>
 </operation>
</binding>
...
</definitions>

The operation PROCESSPO requires input message PROCESSPO_Input_Msg, which has
two parts:

• Body: The value of PROCESS_PO_007 type to be set as SOAP body is sent as
business event payload.

• Header: The value of SOAHeader type to be sent in the SOAP header which is
required for Web Service authorization.

To better understand the Web service operation's input message, this section includes
the following topics:

• Event Payload as SOAP Body, page 10-19

• Other Web Service Input Message Parts, page 10-22

Event Payload as SOAP Body

Any detailed information needed to describe what occurred in an event, in addition to
the event name and event key, is called the event data. For example, the event data for a
purchase order event includes the item numbers, descriptions, and cost.

During the event creation, you can have the event data specified either with or without

10-20 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

using the Generate Function for an event from both PL/SQL and Java. If the application
where the event occurs does not provide event data, then you can use the Generate
Function while creating the event. The Generate Function will produce the complete
event data from the event name, event key, and an optional parameter list at the event
raise. Otherwise, you do not need to specify the Generate Function field if the
application where the event occurs does provide event data. In other words, the event
payload can be passed in either one of the following ways:

• Event data or payload is passed through the Generate Function during the event
raise.

• Event data or payload is passed along with the event itself without using the
Generate Function.

Note: The Generate Function must follow a standard PL/SQL or Java
API. See the Oracle Workflow Developer's Guide and the Oracle Workflow
API Reference.

The event data can be structured as an XML document and passed as SOAP body
during the event raise. The seeded Java rule function accepts this SOAP body through
business event payload. The SOAP body is described in a well-formed XML element
that would be embedded into a SOAP envelope.

• BusinessEvent.setData(String)

• WF_EVENT.Raise(…. p_event_data => ….);

Message Transformation Parameters to Support XSL Transformation

If the invoker event's XML payload (to be used as Web service input message) requires
to be transformed into a form that complies with the input message schema, the seeded
Java rule function could perform XSL transformation on the payload before invoking
the Web service. Similarly, if the Web service output message requires to be
transformed into a form that is required for processing by Oracle E-Business Suite, the
seeded Java rule function could perform XSL transformation on the response before
calling back to Oracle E-Business Suite.

Note: An input message is the XML payload that is passed to the Web
service in the SOAP request. An output message is the XML document
received as a response from the Web service after a successful
invocation.

For the synchronous request - response operation, when the output (response) message,
an XML document, is available, if this XML document requires to be transformed to a
form that is easier for Oracle E-Business Suite to understand, then XSL transformation
on the output message will be performed.

Working With Oracle Workflow Business Event System to Invoke Web Services 10-21

Note: The XSL filename is given based on the format of <File
Name>:<Application Short Name>:<Version>.

For example, "PO_XSL_1_1_2.xsl:FND:1.1".

The XSL file names are passed to the seeded Java rule function as the following
subscription parameters while creating the subscription to the Web service invoker
event through the Create Event Subscription - Invoke Web Service wizard:

• WFBES_OUT_XSL_FILENAME: XSL file to perform transformation on the output
(response) message

For example, WFBES_OUT_XSL_FILENAME=PO_XSL_OUT_2.xsl:FND:1.1

• WFBES_IN_XSL_FILENAME: XSL file to perform transformation on the input
message

For example, WFBES_IN_XSL_FILENAME=PO_XSL_IN_2.xsl:FND:1.1

At run time, the XSL filenames are passed through the same parameters as event
parameters. If event parameters are passed with the same names as the subscription
parameters that have been parsed and stored, the event parameter values override the
subscription parameter values. For example, the event parameters are passed as
follows:

• BusinessEvent.setStringProperty("WFBES_OUT_XSL_FILENAME",
"PO_XSL_OUT_2.xsl:FND:1.1");

• BusinessEvent.setStringProperty("WFBES_IN_XSL_FILENAME",
"PO_XSL_IN_2.xsl:FND:1.1");

If WFBES_OUT_XSL_FILENAME is null, no outbound transformation will be performed.
If WFBES_IN_XSL_FILENAME is null, no inbound transformation will be performed.

Loading XSL files to Oracle E-Business Suite

The seeded Java rule function performs the XSL transformation on the input and output
messages by using the XML Gateway API,
ECX_STANDARD.perform_xslt_transformation; therefore, the XSL files for the
XSL transformation on the input and output messages are loaded to Oracle XML
Gateway using the oracle.apps.ecx.loader.LoadXSLTToClob loader.

Note: For information on the XSL transformation PL/SQL API, see
Execution Engine APIs, Oracle XML Gateway User's Guide.

As a result, use the following steps to perform XSL transformation during service
invocation:

1. Upload the XSL files to Oracle E-Business Suite using the
oracle.apps.ecx.loader.LoadXSLTToClob loader in Oracle XML Gateway.

10-22 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

2. Specify the XSL file names (such as PO_XSL_IN_2.xsl:FND:1.1) in the event or
subscription parameters (WFBES_IN_XSL_FILENAME and
WFBES_OUT_XSL_FILENAME) if applicable for XSL transformation on the input
and output messages.

For example, upload the XSL files to Oracle E-Business Suite as follows:
java oracle.apps.ecx.loader.LoadXSLTToClob apps password
ap601sdb:4115:owf12dev PO_XSL_IN_2.xsl FND 1.1

For more information, see Loading and Deleting an XSLT Style Sheet, Oracle XML
Gateway User's Guide.

Other Web Service Input Message Parts

Apart from passing the SOAP body part as an event payload, service invocation
framework also supports passing values for other parts that are defined for the Web
service operation's input message using the business event parameter with the
following format:

WFBES_INPUT_<partname>

<partname> is the same as the part name in the input message definition in WSDL.

For example, the header part for the above example is passed to the business event as
parameter WFBES_INPUT_header during the invoker event raise. The following code
snippet shows the header part that is used to pass username, responsibility,
responsibility application, and NLS language elements for Web service authorization:
String headerPartMsg = "<SOAHeader
xmlns:=\"http://xmlns.oracle.com/xdb/SYSTEM\" " +
 "env:mustUnderstand=\"0\"
xmlns:env=\"http://schemas.xmlsoap.org/soap/envelope/\"> \n" +
 " <MESSAGE_TYPE>XML<MESSAGE_TYPE>\n" +
 " <MESSAGE_STANDARD>OAG<MESSAGE_STANDARD>\n" +
 " <TRANSACTION_TYPE>PO<TRANSACTION_TYPE>\n" +
 " <TRANSACTION_SUBTYPE>PROCESS<TRANSACTION_SUBTYPE>\n" +
 " <DOCUMENT_NUMBER>123<DOCUMENT_NUMBER>\n" +
 " <PARTY_SITE_ID>4444<PARTY_SITE_ID>\n" +
 "<SOAHeader>\n";
businessEvent.setStringProperty("WFBES_INPUT_header", headerPartMsg);

Note: Please note that this WFBES_INPUT_<partname> parameter
can only be passed at run time during the event raise, not through the
event subscription. Several constants are defined in interface
oracle.apps.fnd.wf.bes.InvokerConstants for use in Java
code.

If the Web service input message definition has several parts, value for the part that is
sent as SOAP body is passed as an event payload. Values for all other parts are passed
as event parameters with parameter name format WFBES_INPUT_<partname>. If the
value for a specific input message part is optional to invoke the Web service, you still
have to pass the parameter with null value so that invoker subscription knows to which
part the event payload should be set as SOAP body.

Working With Oracle Workflow Business Event System to Invoke Web Services 10-23

For example, if input message part myheader for a Web service is optional and does
not require a valid value for the invocation to succeed, the event parameter for the input
should still be set with null value as follows.
businessEvent.setStringProperty("WFBES_INPUT_myheader", null);

Supporting WS-Security
Web service security (WS-Security) is a communication protocol providing a means for
applying security to Web services. It describes enhancements to SOAP messaging to
provide quality of protection through message integrity and single message
authentication. It also describes how to attach security tokens to SOAP messages to
enhance security features.

Service invocation framework supports WS-Security in a general-purpose mechanism
for associating security tokens with messages to authenticate Web service requests and
service invocations from Oracle E-Business Suite.

To accomplish this goal, service invocation framework supports WS-Security through
UsernameToken based security. The following sections explain the UsernameToken
based security and the security configuration through the event subscription user
interface:

• UsernameToken Based Security, page 10-23

• Configuring Web Service Security Through Event Subscription User Interface, page
10-24

• Configuring Security Password with Customization Level, page 10-25

• Specifying Expiration Time Parameter for the Security Header, page 10-28

UsernameToken Based Security
This security mechanism authenticates the user invoking a Web service by passing a
username and an optional password in the SOAP Header of a SOAP request sent to the
Web service provider.

Please note that the username/password information discussed here is the concept of
Oracle E-Business Suite username/password.

If the Web service that is invoked enforces Username/Password based authentication,
then the service invocation framework also supports the UsernameToken based
WS-Security header during Web service invocation.

Note: A SOAP request invoking a Web service should include a
security header consisting of Username and plain text password. The
password received as part of the SOAP request at run time will be
validated against the encrypted password stored in Oracle E-Business

10-24 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

Suite. After validation, the plain text password from the SOAP request
will be discarded.

Username is a clear text. Password is the most sensitive part of the UsernameToken
profile. Service invocation framework supports the UsernameToken based WS-Security
during service invocation with username and an optional password with Type
PasswordText.

For example, a WS-Security header with UsernameToken can be like:
<wsse:Security>
...
 <wsse:UsernameToken wsu:Id="UsernameToken-1"

xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssec
urity-utility-1.0.xsd">
 <wsse:Username>myUser</wsse:Username>
 <wsse:Password

Type="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-t
oken-profile-1.0#PasswordText">password</wsse:Password>
 <wsse:Nonce

EncodingType="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-so
ap-message-security-1.0#Base64Binary">RDyVo/jbXJdSKuVEPrQW6Q==</wsse:Non
ce>
 <wsu:Created>2013-09-02T04:56:48.597Z</wsu:Created>
 </wsse:UsernameToken>
</wsse:Security>

• The PasswordText password type is the password written in
clear text. There is another password type called 'PasswordDigest'
which is a base64-encoded SHA1 hash value of the UTF8-encoded
password and this type of password is not supported in this
release.

• <Nonce>: This element is a unique, random string that identifies
the password. This helps protect the UsernameToken security from
being reused during a replay attack.

• <Created>: This element indicates the creation time of the
security.

Configuring Web Service Security Through Event Subscription User Interface
To easily maintain UsernameToken based security, service invocation framework
allows you to configure the security password through the design-time user interface.

After entering Web service details in the Create Event Subscription - Invoke Web
Service wizard, the Web Service Security region is displayed letting you specify or
update username and password information if appropriate. The information will then

Working With Oracle Workflow Business Event System to Invoke Web Services 10-25

be stored in Vault securely.

Configuring Security Password with Customization Level
Oracle Workflow allows various levels of updates on business event. Each event and
subscription is assigned a customization level that determines whether you can update
the event definition. The customization level is used to protect Oracle E-Business Suite
seed data and to preserve your customizations in an upgrade.

An event and subscription can have one of the following customization levels:

• Core - No changes can be made to the event and subscription definition. This level
is used only for events seeded by Oracle E-Business Suite.

• Limit - The event status can be updated to Enabled or Disabled, but no other
changes can be made to the event definition. This level is used only for the events
seeded by Oracle E-Business Suite.

• User - Any property in the event and subscription definition can be updated. This
level is automatically set for events that you define.

Configuring Security Information Between Instances

When configuring Web service security with the consideration of moving event
subscription definitions between instances, whether you can enter or update the
security information is based on the customization level as explained in the following:

• Customization Level – User

If invoker subscriptions with Customization Level User are created on the target
environment, the complete definition is editable in that environment and also on
environments to which the definition is uploaded.

While WS-Security Username can be created on one environment and moved to
another, password has to be configured on each target environment before it can be
used to invoke that Web service.

• Customization Level – Limit or Core

If invoker subscriptions with Customization Level Limit or Core are uploaded to
target environment, following are the options.

• Username Configured

If username is configured for the Web service, Workflow Administrator can
have access to Oracle Workflow Business Event Manager and the invoker
subscription, and can update a password for that user in the target
environment. This can be achieved by logging on to Oracle E-Business Suite
with the Workflow Administrator Web responsibility. Select Business Events
from the Navigator and choose Subscriptions in the horizontal navigation.
Search and locate the invoker event subscription and then update the

10-26 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

password.

Username cannot be updated.

• Username Not Defined

Workflow Administrator can configure both username and password by
accessing Workflow Business Event Manager.

Note: On the system side, Module and Key values to store the
password in Vault are derived on the target environment.

• Module – Module name for Vault will be derived from the
business event and restricted to 30 characters.

• Key – Key value for Vault will be derived from the
business event and username.

The following information will be stored internally as part of
the subscription definition if not already available for the
invoker subscription:

• WFBES_SOAP_USERNAME=<entered username>

• WFBES_SOAP_PASSWORD_MOD=<derived module
name>

• WFBES_SOAP_PASSWORD_KEY=<derived key name>

Examples of Configuring WS-Security with Different Subscription Customization Levels
Scenario 1:

Define a new business event and subscription at Customization Level – User in the source
environment and have both Username and Password manually entered to invoke a Web service
that requires WS-Security. Move the event and subscription defined earlier to a target
environment and configure the WS-Security if required.

Solution:

In this scenario, both the Username and Password fields are editable in the target
enviornment. The Username value is automatically populated and the Password value
is not available. You can update the new Username (optional) and a corresponding
password if needed.

Use the following steps to configure WS-Security in the target instance:

1. Perform all the steps described in the following topics to define a new event and
subscription with security username and password:

• Creating a Web Service Invoker Business Event, page 10-6

Working With Oracle Workflow Business Event System to Invoke Web Services 10-27

• Create a Local subscription with 'Invoke Web Service' Action Type, page 10-8

2. Download the event and subscription using Workflow XML Loader and upload
them to a target environment.

Note: The Workflow XML Loader is a command line utility that lets
you upload and download XML definitions for Business Event
System objects between a database and a flat file. For download
and upload events using Workflow XML Loader, see:

• Locate and Download Business Events, page 9-15

• Upload Annotated File to the Database, page 9-21

3. Search and locate the invoker business event you defined earlier (such as
oracle.apps.xxx.user.webservice.invoke) in the source instance and click
the Subscription icon from the result table.

4. Click the Update icon for the subscription. All fields are updatable because of the
customization level - User. Click Next to the last stop of the Update Subscription -
Invoke Web Service page.

In the Web Service Security region, both the Username and Password fields are
editable.

• The Username field (such as weblogic) is automatically populated based on
the username defined earlier in the source environment in Step 1.

• The Password value is not available.

You can update Username if desired and enter Password information for the Web
service. Click Apply.

Scenario 2:

All Oracle E-Business Suite products provide seeded events and subscriptions with
Customization Level – Limit or Core for service invocation. The Username may or may not be
configured during the subscription creation for the product-specific seeded event to invoke Web
service that requires WS-Security.

When using the seeded event and subscription in the target instance of Oracle E-Business Suite
Release 12.2, configure the WS-Security by entering username, if not already provided by the
subscription owner, and password for that user to be used for service invocation.

Solution:

In the Oracle E-Busines Suite Release 12.2 target instance, log on as a user with the
'Workflow System Administrator' role (such as sysadmin). The Username field is not
updatable if the username is already provided by the subscription owner. You can

10-28 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

always enter an associated password for the user to be used for service invocation.

Use the following steps to configure WS-Security in the target instance:

1. Log on to Oracle E-Business Suite 12.2 target instance. Search and locate the
product-specific seeded event and click the Subscription icon from the result table.

2. Click the Update icon for the subscription to load the Subscription details. All fields
are disabled except the Status field because the Customization Level is set to Limit.

Click Next to the last stop of the Update Subscription - Invoke Web Service page.

In the Web Service Security region, enter the following security information:

• Username: Enter username information if it is not part of the seeded
subscription definition.

If username is entered by the Subscription owner as part of the seeded
definition, this field would show the username value with no option to edit it.
The user needs to only enter password.

• Password: Enter password information for WS-Security.

• Repeat Password: Enter the same password that you entered in the Password
field.

Click Apply. With WS-Security configured, the Web service is ready to be invoked.

For more information about using customization level for an event, see Reviewing the
Customization Level and License Status for an Event, Managing Business Events, Oracle
Workflow Developer's Guide.

Specifying Expiration Time Parameter for the Security Header
When creating the subscription to the Invoker event, you can add the following
parameter in the Web Service Invoker Parameters region to set the expiration time for
the security header. This helps protect the header from being reused during a replay.

• WFBES_SOAP_EXPIRY_DURATION

By default, the header is set to expire 60 seconds in the <wsu:Timestamp> element
(with <wsu:Created> and <wsu:Expires>) after it is created. When a different time
is specified in the WFBES_SOAP_EXPIRY_DURATION parameter, it overrides the
default 60 seconds expiration time for the header.

Working With Oracle Workflow Business Event System to Invoke Web Services 10-29

<wsse:Security soapenv:mustUnderstand="1"

xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wsse
curity-secext-1.0.xsd">
 <wsu:Timestamp wsu:Id="Timestamp-2"

xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssec
urity-utility-1.0.xsd">
 <wsu:Created>2013-09-02T04:56:59.592Z</wsu:Created>
 <wsu:Expires>2013-09-02T04:57:59.592Z</wsu:Expires>
 </wsu:Timestamp>
 <wsse:UsernameToken>
...
 </wsse:UsernameToken>
</wsse:Security>

Similar to other subscription parameters added in this region, if a different expiration
time is passed as the event parameter, then the event parameter overrides the
subscription parameter.

Calling Back to Oracle E-Business Suite With Web Service Response
To support synchronous request - response service operation, if a Web service has an
output or a response message, service invocation framework uses the callback
mechanism in Oracle Workflow to communicate the response message back to Oracle
E-Business Suite through the Business Event System.

Note: A synchronous request - response message is a common message
exchange pattern in Web service operation where a client asks a service
provider a question and then waits for a response before continuing on.
For more information about this operation pattern, see Understand
Message Patterns, page 10-3.

This callback feature takes the invoker event's event key to enqueue the callback event
to the specified inbound agent (the callback agent) for the response. In addition, if a
workflow process invokes a Web service using a "Raise" event activity and waits for
Web service response using a "Receive" event activity, the invoker event key should be
the same as the invoker and/or waiting workflow process's item key so that when
callback is performed, the waiting workflow process is correctly identified by
WF_ENGINE.EVENT API.

By using both the callback event and agent, Web service invocation can be integrated
back with a waiting workflow process or any other module within Oracle E-Business
Suite. Web service invocation uses the following callback subscription or event
parameters:

• WFBES_CALLBACK_EVENT

This parameter can have a valid business event to be raised upon completion of the
Web service with the service output message as the payload.

10-30 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

For example, it can be like:

WFBES_CALLBACK_EVENT=oracle.apps.wf.myservice.callback

• WFBES_CALLBACK_AGENT

This parameter can have a valid business event system agent to which the event
with the service response message as the payload can be enqueued.

Important: This parameter will work only if
WFBES_CALLBACK_EVENT is not null; otherwise, the output
message is lost and there is no callback.

For instance, it can be like the default inbound agent (or any other inbound queue)
for Web service messages:

WFBES_CALLBACK_AGENT=WF_WS_JMS_IN

Note: If you have defined custom agents, you can also specify the
custom agent names as the parameter values.

Since Web service output message is enqueued to the inbound agent mentioned in
WFBES_CALLBACK_AGENT, it is required to set up a Workflow Agent Listener
on the inbound agent (if it is not yet set up) in order to process the callback/receive
business event messages.

Note: Callback event can be used as correlation ID when the
response message is enqueued to a callback agent. This helps
administrators to create a specialized agent listener on the callback
agent to process the callback event.

For example, if the callback event for a service invocation is
oracle.apps.wf.myservice.callback, and the callback
agent is WF_WS_JMS_IN, when this event is enqueued to
WF_WS_JMS_IN upon a successful service invocation, the event
oracle.apps.wf.myservice.callback is used as Correlation
ID in WF_WS_JMS_IN to help create an agent listener to process
that event.

At run time, if event parameters are passed with the same names as the subscription
parameters that have been parsed and stored, the event parameter values take
precedence over subscription parameters. For instance, the event parameters are passed
as follows:

• BusinessEvent.setStringProperty("WFBES_CALLBACK_EVENT",
"oracle.apps.wf.myservice.callback");

• BusinessEvent.setStringProperty("WFBES_CALLBACK_AGENT",

Working With Oracle Workflow Business Event System to Invoke Web Services 10-31

"WF_WS_JMS_IN");

To use the callback feature during the service invocation, you must create a receive
event and subscribe to the receive event. See: Creating a Receive Event and Event
Subscription (Optional), page 10-15.

The better understand how to invoke a Web service, see An Example of Invoking a Web
Service from a Workflow Process, page 10-34

Invoking Web Services
Oracle Workflow Business Event System is a workflow component that allows events to
be raised from both PL/SQL and Java layers. Therefore, the service invocation from
Oracle E-Business Suite can be from a PL/SQL or Java layer.

Service Invocation from PL/SQL

1. An application raises a business event using PL/SQL API WF_EVENT.Raise.

The event data can be passed to the Event Manger within the call to the
WF_EVENT.Raise API, or the Event Manger can obtain the event data or message
payload by calling the Generate Function for the event if the data or payload is
required for a subscription.

Note: See the Oracle Workflow API Reference for information about
WF_EVENT.Raise API.

2. Oracle Workflow Business Event System (BES) identifies that the event has a
subscription with Java Rule Function
oracle.apps.fnd.wf.bes.WebServiceInvokerSubscription.

3. The Business Event System enqueues the event message to WF_JAVA_DEFERRED
queue. The Java Deferred Agent Listener then dequeues and executes the
subscription whose Java rule function invokes the Web service.

4. If callback event and agent parameters are mentioned, the Web service response is
communicated back to Oracle E-Business Suite using the callback information. The
Java Deferred Agent Listener process that runs in Concurrent Manager (CM) tier
invokes the Web service.

Service Invocation from Java

1. A Java application raises a business event using Java method
oracle.apps.fnd.wf.bes.BusinessEvent.raise either from OA
Framework page controller/AMImpl or Java code running on the Concurrent
Manager tier.

2. Since the event is raised in Java where the subscription's seeded Java Rule Function

10-32 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

oracle.apps.fnd.wf.bes.WebServiceInvokerSubscription is accessible,
whether the rule function is executed inline or deferred is determined by the phase
of the subscription.

• If the invoker subscription is created with Phase >= 100, the event is enqueued
to the WF_JAVA_DEFERRED queue.

• If the invoker subscription is created with Phase < 100, the event is dispatched
inline.

If the event is raised from OA Framework page, the dispatch logic executes
within OACORE WebLogic Server.

Note: If the Web service invoker event is raised from Java code in
the middle tier, and the invoker subscription is synchronous with
subscription phase < 100, then the Web service is invoked as soon
as the event is raised. If the invocation is successful, the response
can be read by the calling application and is available immediately
by using method BusinessEvent.getResponseData().

oracle.apps.fnd.wf.bes.BusinessEvent.raise throws
oracle.apps.fnd.wf.bes.BusinessEventException if
there are any issues while invoking a Web service inline.
BusinessEventException object internally stores the
underlying root cause exception within a linkedException
object. In order to see the complete exception details, print the
exception stack trace from
BusinessEventException.getLinkedException();.

If the event is raised from Java code with the subscription phase is
>= 100 or if the event is raised from PL/SQL, the event message will
be enqueued to the WF_JAVA_DEFERRED queue. If the Web
service has an output or a response message, callback event with
callback agent is required to receive the output message into Oracle
E-Business Suite.

The following sample Java code raises a business event that invokes Web service
and reads the response in the same session:

Working With Oracle Workflow Business Event System to Invoke Web Services 10-33

package oracle.apps.fnd.wf.bes;
import java.sql.Connection;
import oracle.apps.fnd.common.AppsLog;
import oracle.apps.fnd.common.Log;
import oracle.apps.fnd.wf.bes.InvokerConstants;
import oracle.apps.fnd.wf.common.WorkflowContext;
public class InvokeWebService {
 static Log mLog;
 static WorkflowContext mCtx;
 public InvokeWebService() {
 }
 public static Connection getConnection(String dbcFile) {
 Connection conn = null;
 System.setProperty("dbcfile", dbcFile);
 WorkflowContext mCtx = new WorkflowContext();

 mLog = mCtx.getLog();
 mLog.setLevel(Log.STATEMENT);
 ((AppsLog)mLog).reInitialize();
 mLog.setModule("%");

 return mCtx.getJDBCConnection();
 }
 public static void main(String[] args)
 {
 BusinessEvent event;
 Connection conn;
 conn = getConnection(args[0]);
 try {
 // Proxyt host and port requires to be set in Java options
 System.setProperty("http.proxyHost", args[1]);
 System.setProperty("http.proxyPort", args[2]);

 event = new BusinessEvent
 ("oracle.apps.wf.IrepService.invoke", "eventKey1");
 // Input XML message for Web Service
 String input = null;
 input =
"<IntegrationRepositoryService_GetInterfaceFunctionByName
xmlns:=\"http://xmlns.oracle.com/apps/fnd/rep/ws\"> \n"+
<fullMethodName>SERVICEBEAN:/oracle/apps/fnd/rep/ws/IntegrationRepos
itoryService:getInterfaceFunctionByNameSERVICEBEAN:/oracle/apps/fnd/
rep/ws/IntegrationRepositoryService:getInterfaceFunctionByName</full
MethodName>\n"+
<IntegrationRepositoryService_GetInterfaceFunctionByName>";
 event.setData(input);

 String headerPartMsg = "<SOAHeader
xmlns:=\"http://xmlns.oracle.com/xdb/SYSTEM\" " +
"env:mustUnderstand=\"0\"
xmlns:env=\"http://schemas.xmlsoap.org/soap/envelope/\"> \n" +
 " <MESSAGE_TYPE>XML<MESSAGE_TYPE>\n" +
 " <MESSAGE_STANDARD>OAG<MESSAGE_STANDARD>\n" +
 " <TRANSACTION_TYPE>PO<TRANSACTION_TYPE>\n" +
 " <TRANSACTION_SUBTYPE>PROCESS<TRANSACTION_SUBTYPE>\n" +
 " <PARTY_SITE_ID>>123<PARTY_SITE_ID>>\n" +
 " <DOCUMENT_NUMBER>4444<DOCUMENT_NUMBER>\n" +
 " <SOAHeader>\n"
businessEvent.setStringProperty("WFBES_INPUT_header",
headerPartMsg);
 event.raise(conn);

10-34 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

conn.commit();

 Object resp = event.getResponseData();
 if (resp != null) {
 System.out.println(resp.toString());
 }
 else {
 System.out.println("No response received");
 }
 }
 catch (BusinessEventException e) {
 // Use appropriate logging mechanism as per your coding
standards
 // instead of System.out.println
 System.out.println("Exception occured " + e.
getLinkedException().getMessage());
 e.getLinkedException().printStackTrace();
 }
 catch (Exception e) {
 // Use appropriate logging mechanism as per your coding
standards
 // instead of System.out.println
 System.out.println("Exception occured " + e.getMessage());
 e.printStackTrace();
 }
 }

Important: When invoking a Web service using Service Invocation
Framework, the invoker business event is raised using
oracle.apps.fnd.wf.bes.BusinessEvent.raise(Connectio
n) method that requires a JDBC connection to be passed.

To get the JDBC connection, always use the current applications context
object available for your scenario. For example, if service invocation is
from an OA Framework page, then get the JDBC connection from
OAPageContext object. If it is from a concurrent program, get the
JDBC connection from CpContext object. You should not create a
WorkflowContext in these situations. Otherwise, a duplicate
applications context will be unnecessarily created. A new
WorkflowContext should be created only if JDBC connection is not
already available through other means.

An Example of Invoking a Web Service from a Workflow Process
The following example is to invoke a Web service through launching a workflow
process including the following nodes or activities:

• An invoker business event to invoke a Web service.

For example, INVOKE_SERVICE is an event activity with event action "Raise".

• A receive business event to receive a response or Web service output message.

Working With Oracle Workflow Business Event System to Invoke Web Services 10-35

For example, RECEIVE_SERVICE is an event activity with event action "Receive".

• Other activities could be used in the process for XML message processing, notifying
users of Web service invocation response, regular transaction processing and so on.

For example, SERVICE_INVOKED is a notification activity to send a notification
message when a Web service is successfully invoked.

The following workflow process diagram illustrates the service invocation process flow:

Workflow Process Diagram to Invoke a Web Service

Defining Service Invocation Metadata

To define the service invocation metadata with the callback feature, you must have the
following necessary events and subscriptions in place:

1. An invoker event, such as INVOKE_SERVICE in the workflow diagram.

This activity is used to pass the event XML payload as SOAP body and other event
parameters required for Web service invocation.

See: Creating a Web Service Invoker Business Event, page 10-6.

2. Local and error event subscriptions to the invoker event. See: Creating Local and
Error Event Subscriptions to the Invoker Event, page 10-8.

3. A receive event (such as RECEIVE_SERVICE in the workflow diagram) and the

10-36 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

External subscription to the receive event.

Important: The receive event is raised with the same event key as it
is for the invoker event. It is important that the waiting workflow
process's item key and the invoker event's event key are the same.

If callback event and agent parameters are set, this activity waits for the receive
event to occur after a successful Web service invocation.

See: Creating a Receive Event and Event Subscription (Optional), page 10-15.

Verifying Workflow Agent Listener Status

In order to process a Web service response message from the inbound agent, you need
to verify if a Workflow Agent Listener is running on that agent.

Use the following steps for verification:

1. Log on to Oracle Workflow with Oracle Workflow Web Administrator
responsibility.

2. From the navigation menu, select Oracle Applications Manager > Workflow
Manager.

3. Click the Agent Listener status icon to open the Service Components page.

4. Locate the Workflow Agent Listener that you use for the callback agent listener. For
example, locate the 'Workflow Inbound JMS Agent Listener' for processing a Web
service response message to ensure it is up and running.

Working With Oracle Workflow Business Event System to Invoke Web Services 10-37

Validating a Workflow Agent Listener's Status

After the verification, you can launch the workflow process to invoke a Web service
with a callback response through Oracle Workflow. You can also validate the process
by reviewing the progress status of each activity contained in your workflow process
diagram.

When the Web service has been successfully invoked from the automated workflow
process, you should receive a workflow notification message if the notification activity
is included in the process.

For more information on how to create and launch a workflow, see the Oracle Workflow
Developer's Guide.

Managing Errors
Service invocation framework uses the same way of handling errors in Business Event
System to manage errors if occur during the execution of business event subscriptions.
If the service invocation returns a fault message, the event is enqueued to an error
queue to trigger error processing. If an exception occurred during invocation process is
due to service unavailability, the service faults should be logged and error subscription
should be invoked.

To effectively process run-time exceptions for the events that are enqueued to an error
queue, service invocation framework uses the following event ERROR process to
specifically trigger error processing during the service invocation:

• DEFAULT_EVENT_ERROR2: Default Event Error Process (One Retry Option)

10-38 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

Note: The DEFAULT_EVENT_ERROR2 Error workflow process is
created under WFERROR itemtype.

For example, if there is a runtime exception when the Workflow Java Deferred Agent
Listener executes event subscription to invoke a Web service, the event is enqueued to
the WF_JAVA_ERROR queue. If the event has an Error subscription defined to launch
the Error workflow process WFERROR:DEFAULT_EVENT_ERROR2, the Workflow Java
Error Agent Listener executes the error subscription which sends a notification to
SYSADMIN with Web service definition, error details, and event details. Since Oracle
Workflow default event error handler provides options for SYSADMIN to retry the
Web service invocation process after verifying that the reported error has been
corrected, SYSADMIN can invoke the Web service again from the notification if
necessary.

However, if there is a runtime exception when invoking the Web service by raising the
Invoker event with synchronous subscription (phase <100), the exception thrown to the
calling application. It is the responsibility of the calling application to manage the
exception.

Enabling Error Processing During Service Invocation

To enable the error processing feature during the service invocation, you must create an
Error subscription with the following values:

• 'Error' source type

• 'Launch Workflow' action type

• 'WFERROR:DEFAULT_EVENT_ERROR2' workflow process

Working With Oracle Workflow Business Event System to Invoke Web Services 10-39

Create an Error Subscription With 'Launch Workflow' Action Type

To access the Create Event Subscription page, log on to Oracle E-Business Suite with the
Workflow Administrator Web Applications responsibility. Select Business Events from
the navigation menu and choose the Subscriptions subtab. In the Event Subscriptions
page, click Create Subscription.

For detailed information on how to create an error subscription for service invocation,
see Create an Error subscription with 'Launch Workflow' Action Type, page 10-13.

Testing Web Service Invocation
Service invocation framework uses the Oracle Workflow Test Business Event page to
check the basic operation of Business Event System by raising a test event from either a
Java or PL/SQL layer and executing synchronous and asynchronous subscriptions to
that event. This testing feature lets you easily validate whether a Web service can be
successfully invoked from the concurrent manager tier and OACORE WebLogic Server.

You can test a Web service invocation using one of the following ways:

• Using the Test Business Event Page to Manually Raise an Event, page 10-40

• Using Command Line to Raise an Event, page 10-44

10-40 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

Using the Test Business Event Page
Use the Test Business Event page to test an event by raising it from PL/SQL API or Java.

• For an invoker event raised using Raise in Java option, the Web service is invoked
from the OACORE WebLogic server if the subscription phase < 100.

If the Web service is successfully invoked, the Test Business Event page reloads and
displays the XML Response region right after the XML Content field.

If there is a runtime exception when invoking the Web service using synchronous
subscription, the exception message is shown on the Test Business Event page.

• For an invoker event raised using Raise in PLSQL option, the Web service is
invoked from the concurrent manager tier. The raised event will be enqueued to the
WF_JAVA_DEFERRED and then dispatched by the Workflow Java Deferred Agent
Listener.

The seeded Java rule function uses the callback event and agent to communicate the
response or Web service output message back to Oracle E-Business Suite through
Business Event System.

Note: Since the Workflow Java Deferred Agent Listener is
responsible for dispatching the subscription and invoking Web
services from the concurrent manager tier, ensure that the
Workflow Java Deferred Agent Listener is up and running.

To validate, log on to Oracle Applications Manager and select the
Workflow Manager link. Choose Agent Listeners and search on the
Workflow Java Deferred Agent Listener to view its status.

Testing Service Invocations

After logging on to Oracle Workflow with the Workflow Administrator Web
responsibility, select Business Events from the navigation menu. Search for an event
that you want to test. From the search result table, click the Test icon next to the event
you want to raise. This opens the Test Business Event page where you can raise the
event with a unique event key. Enter event parameters for the invoker event
subscription and a valid XML message that complies with input message schema. The
Test Business Event page will also display response XML message if appropriate.

Please note that the Test Business Event page will retain all the data entered. Therefore,
if there is a need to raise another event, you must click Clear to clear all the data that
you have entered.

Following parameters may be specified when raising the event from the Test Business
Event page to invoke a Web service:

• Message transformation: XSL transformation for Web service input message and

Working With Oracle Workflow Business Event System to Invoke Web Services 10-41

output message

• WFBES_OUT_XSL_FILENAME

• WFBES_IN_XSL_FILENAME

• Input Message part value: Pass values for any part that may be required to embed
applications context into SOAP envelopes

• WFBES_INPUT_<partname>

Note: The WFBES_INPUT_<partname> parameter can only be
passed at run time during event raise.

• Callback: Callback to Oracle E-Business Suite with Web service response

• WFBES_CALLBACK_EVENT

• WFBES_CALLBACK_AGENT

• SOAP Body:

• XML Input message (Required)

• WS-Security: Information required to add UsernameToken header to a SOAP
request

The Web service security information is entered in the Web Service Security region
of the event subscription page after entering needed information in the Invoke
WSDL wizard. See: Create a Local subscription with 'Invoke Web Service' Action
Type, page 10-8.

Note: As described here that security information is now entered
through the event subscription user interface to replace the security
parameters used in the Oracle E-Business Suite Release 12.1.

These WS-Security parameters (WFBES_SOAP_USERNAME,
WFBES_SOAP_PASSWORD_MOD, and
WFBES_SOAP_PASSWORD_KEY) are now maintained internally
by service invocation framework.

For information about these parameters, see:

• Understanding Web Service Input Message Parts, page 10-18

• Supporting WS-Security, page 10-23

10-42 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

• Calling Back to Oracle E-Business Suite With Web Service Response, page 10-29

Testing Invocation with Callback Required

If you want to test an invocation with callback to Oracle E-Business Suite, enter the
following parameters and values:

• WFBES_CALLBACK_EVENT: receive event

• WFBES_CALLBACK_AGENT: WF_WS_JMS_IN (or any other Inbound Queue as
the value)

Please note that for testing from the Test Business Event page, since the XML message is
prewritten and entered in the XML Content field, if there is an error in the input XML
message, the error notification will not provide you with an option to correct it before
retrying the process.

To test an event invocation:

1. Log on to Oracle E-Business Suite with the Workflow Administrator Web
responsibility and select Business Events.

2. Search on a business event that you want to run the test, such as
oracle.apps.xxx.user.webservice.invoke and click Go.

3. Select the business event that you want to raise from the result table and click the
Test icon to open the Test Business Event page.

4. Enter a unique event key in the Event Key field and leave the Sand Date field blank.

5. Enter appropriate parameters in the Enter Parameters region.

6. In the Event Data region, enter the following information:

• Upload Option: Write XML

• XML Content: Enter appropriate XML information as an input message. For
example, you can enter:
<Process
xmlns="http://xmlns.oracle.com/MyFirstSOAComposite_jws/UseMovieSe
rvice/InvokeMovie">
 <zipCode>32822</<zipCode>
 <radius>5</radius>
</Process>

Working With Oracle Workflow Business Event System to Invoke Web Services 10-43

7. Click Raise in Java to raise an event from the OACORE WebLogic server.

If the Web service is successfully invoked, confirmation appears on top of the Test
Business Event page indicating that the event (
oracle.apps.xxx.user.webservice.invoke) has been successfully raised.

This test page reloads and displays the XML Response region right after the XML
Content field.

8. Click Raise in PLSQL to raise an event from the concurrent manager tier.

9. If errors occur, the Event Error Details region appears letting you view the error
details.

Viewing Error Details in the Test Business Event Page

If any errors occur while testing the service invocation, an error message appears
indicating that errors occurred while dispatching the event and detailed information is
shown in the Event Error Details region.

The Event Error Details region lets you quickly view error information through the
same page for easier debugging.

Optionally, to see detailed log messages that capture each occurrence in sequential
order for service invocation, before testing the invocation, you can enable the
diagnostics and logging feature to directly display on-screen logs in the test page. For
instructions on how to turn on this logging feature, see Troubleshooting invocation

10-44 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

failures on OACORE WebLogic Server, page 10-45.

For more information about testing business events, see To Raise a Test Event, Oracle
Workflow Developer's Guide.

Using Command Lines
You can also use the command line, API based test method, to raise PL/SQL or Java
based events.

• For PL/SQL based events, use PL/SQL WF_EVENT.Raise API to test Web service
invocation from the concurrent manager tier JVM. The Workflow Java Deferred
Agent Listener dispatches the subscription and invokes Web services from the
concurrent manager tier.

Note: Since the Workflow Java Deferred Agent Listener is
responsible for dispatching the subscription and invoking Web
services from the concurrent manager tier, ensure that the
Workflow Java Deferred Agent Listener is up and running.

To validate, log on to Oracle Applications Manager and select the
Workflow Manager link. Choose Agent Listeners and search on the
Workflow Java Deferred Agent Listener to view its status.

• For Java based Web events, use Java method
oracle.apps.fnd.wf.bes.BusinessEvent.raise to test Web service
invocation.

For example, we could have a test class
oracle.apps.fnd.wf.bes.WFInvokerTestCase with classpatch set to
$AF_CLASSPATH.
java oracle.apps.fnd.wf.bes.WSInvokerTestCase <DBC file> <proxy
host> <proxy port>

Troubleshooting Web Service Invocation Failure
Web services can be invoked from any one of following tiers:

• OACORE WebLogic Server: Web service invocations from OA Framework page
using a synchronous event subscription (phase < 100) is executed from within the
OACORE WebLogic Server.

• Concurrent Manager (CM) Tier JVM: The following Web service invocations are
executed from CM tier JVM:

• By Java Deferred Agent Listener that runs within Workflow Agent Listener
Service:

Working With Oracle Workflow Business Event System to Invoke Web Services 10-45

• Invocations from PL/SQL either through synchronous or asynchronous
event subscriptions

• Invocations from Java/OA Framework through synchronous event
subscriptions

• By Java Concurrent Program

• Invocations performed directly from within a Java Concurrent Program.

• Standalone JVM: Web service invocations from a Java process that runs outside
OACORE or CM using a synchronous event subscription executes from within that
JVM.

In most cases, the Web service resides outside the firewall and the executing host does
not have direct access to the WSDL or the Web service endpoint to send the SOAP
request. Without properly setting up and configuring the proxy parameters for each tier
that Web service invocations occur, WSDL files will not be parsed and consumed
during subscription or Web services will not be successfully invoked.

For information on how to set up proxy host and port appropriately at each layer, see
detailed information described in the Setup Tasks, Oracle E-Business Suite Integrated SOA
Gateway Implementation Guide.

At run time, if a Web service invocation fails, an exception is thrown and the invoker
event is enqueued to WF_ERROR queue. Since the Web service can be invoked from
any one of the layers described earlier, how to troubleshoot and resolve the failure
invocation can be discussed as follows based on layer that Web service invocations
occur:

• Troubleshooting invocation failure on OACORE WebLogic Server, page 10-45

• Troubleshooting invocation failure on Concurrent Manager (CM) Tier JVM, page
10-48

• Troubleshooting invocation failure on Standalone JVM, page 10-50

Troubleshooting Invocation Failure on OACORE WebLogic Server
For the purposes of easier debugging or troubleshooting throughout a test run of the
Web service invocation from within an OA Framework page, on-screen logging
mechanism should be used.

Enabling On-screen Logging

You can enable the on-screen logging feature and have the logs directly displayed at the
bottom of the Test Business Event page. These logs provide processing details while
executing the code to invoke the Web service.

10-46 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

If there is a fault or a runtime exception in processing the event and invoking the
service, the on-screen logging quickly discloses what is happening.

Enabling on-screen logging involves the following two steps:

1. Setting FND: Diagnostics Profile Option, page 10-46

2. Displaying On-screen Logging, page 10-46

Setting FND: Diagnostics Profile Option

Before using the Test Business Event page, first set the FND: Diagnostics profile option
to 'Yes' at an appropriate level to enable the Diagnostics link on the global menu of the
HTML-based application pages.

Note: Through the Diagnostics link, we can enable database trace,
profiling, and on-screen logging that will help troubleshooting the
transactions performed from the HTML-based application pages.

Setting FND: Diagnostics Profile Option

With the diagnostics feature, the on-screen logging can be enabled which helps us track
the WebServiceInvokeSubscription's log messages when an invoker event is raised from
the Test Business Event page and subsequently the Web service is invoked.

Displaying On-screen Logging

After setting the FND: Diagnostics profile option to 'Yes', you should find the
Diagnostics link available in the upper right corner of your HTML page.

By selecting the Diagnostics link and entering appropriate information, the on-screen
logging feature can be enabled. Once you locate a desired event and test its invocation,
relevant log messages directly appear at the bottom of your test page for an easier
debugging or troubleshooting if needed.

Working With Oracle Workflow Business Event System to Invoke Web Services 10-47

Important: If the FND: Diagnostics profile option is not set to 'Yes', then
the Diagnostics link will not be visible as a global menu for selection.
See: Setting FND: Diagnostics Profile Option, page 10-46.

To display on-screen logs while testing your service invocation in the Test Business
Event page:

1. Log on to Oracle Workflow with appropriate responsibility, and select the Business
Events link to locate an invoker business event hat you want to run the test, such as
oracle.apps.xxx.user.webservice.invoke and click Go to perform a
search.

2. From the search result table, select the business event that you want to raise and
click the Test icon to open the Test Business Event page.

3. Click the Diagnostics link in the upper right corner of the page.

4. Enter the following information to enable the on-screen logs:

• Diagnostics: Show Log on Screen

• Log Level: Statement (1)

• Module: %

5. Click Go. The on-screen logging is now enabled.

6. Navigate to the Test Business Event page and raise an event to execute the
invocation testing.

Review On-Screen Log Messages

After you have enabled the on-screen logging feature, during the testing, you should
find relevant log messages displayed at the bottom of the Test Business Event page.

10-48 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

This provides the detailed information of all processing by the code that invokes the
Web service.

For example, you can review WebServiceInvokerSupscription log messages displayed
on the same page to verify the service execution status, exception or fault if there is any,
and whether the callback succeeded or not.

The following example log indicates that the service execution is completed with
callback response message enqueued to the WF_WS_JMS_IN inbound queue if the
'WFBES_CALLBACK_EVENT' parameter value is set to receive event and the
'WFBES_CALLBACK_AGENT' parameter value is set to 'WF_WS_JMS_IN':

WebServiceInvokerSubscription Logs

For detailed information on how to enable the logging feature, see Enabling On-Screen
Logging, page 10-45.

Troubleshooting Invocation Failure on Concurrent Manager (CM) Tier JVM
To troubleshoot Web service invocation failure on Concurrent Manager (CM) Tier JVM,
you must ensure that the Error subscription is created for the all Web service invoker
events to capture complete exception details when invocation happens from Workflow
Java Deferred Agent Listener.

Error Subscription

For all Web service invoker events, error subscription is required to enable error
processing in the Business Event System that is used to communicate with SYSADMIN
user of an error condition in subscription execution. It sends a workflow notification to
SYSADMIN with Web service definition, error details, and event details allowing the
SYSADMIN to process the errors if needed.

For example, if an error occurs during the invocation and the event is enqueued to the
WF_JAVA_ERROR queue, with an Error subscription defined to launch Error workflow
process WFERROR:DEFAULT_EVENT_ERROR2, the Workflow Java Error Agent
Listener executes the error subscription which sends a notification to SYSADMIN with
Web service definition, error details and event details.

For more information, see Managing Errors, page 10-37.

Enabling Logging for Workflow Java Deferred Agent Listener

Since Oracle Workflow default event error handler provides options for SYSADMIN to
retry the Web service invocation process after verifying that the reported error has been
corrected, SYSADMIN can invoke the Web service again from the notification if

Working With Oracle Workflow Business Event System to Invoke Web Services 10-49

necessary. However, if further analysis of the steps leading to the exception is required,
use Workflow Java Deferred Agent Listener logging mechanism to set STATEMENT
level log for Workflow Java Deferred Agent Listener and retry the failed Web service
invocation to obtain detailed steps leading to the exception.

For more information, see Java Agent Listeners, Oracle Workflow Administrator's Guide.

Enabling Logging for Java Concurrent Program

To enable logging for Service Invocation Framework when used from within a Java
Concurrent Program to invoke Web services, set the following profile option values for
the right applications context based on how JDBC connection is obtained to raise the
business event:

• FND: Debug Log Enabled (AFLOG_ENABLED) profile value set to 'Yes'

• FND: Debug Log Level (AFLOG_LEVEL) profile value set to 'Statement'

• FND: Debug Log Module (AFLOG_MODULE) profile value set to '
%fnd.wf.bes%,%fnd.sif%'

This profile value can be a set, as comma separated module names such as "
fnd.wf.bes%,fnd.sif%" as one string without quotes. If you would like to
enable log for all modules, set it to %.

Oracle strongly recommends that you get JDBC connection directly from concurrent
program context itself as listed below, then use applications context (User and
Responsibility) under which the Java Concurrent Program request was submitted.
Using the JDBC connection from concurrent program context helps to group all logs for
that concurrent program request and Service Invocation Framework execution under
that Request ID. After the concurrent program completes execution, use the Request ID
to search for all the log messages for the component 'Concurrent Program'.
Connection conn = cpContext.getJDBCConnection();
event.raise(conn)

However, if you use a not recommended approach by creating a separate
WorkflowContext to get JDBC connection from it, as listed below:
WorkflowContext wfCtx = new WorkflowContext();
Connection conn = wfCtx.getJDBCConnection();
event.raise(conn)

Use the following context to set the logging profile options:

• User: SYSADMIN

• Responsibility: System Administrator (SYSTEM_ADMINISTRATOR)

Although the Java Concurrent Program would be executed under the applications
context under which the request was submitted, creating a new WorkflowContext
within the program results in setting a hard-coded applications context of SYSADMIN
and SYSTEM_ADMINISTRATOR for its JDBC connection. Hence, this approach is not
recommended. A new WorkflowContext should be created only if JDBC connection is

10-50 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

not already available through other means.

Since there are two separate applications context, one created for concurrent program
context and a new one for WorkflowContext, the logs for the concurrent program
request and Service Invocation Framework execution are stored under two different
contexts.

After the concurrent program execution completes, retrieve the logs for modules
fnd.wf.bes% and fnd.sif% which will give logs only for Service Invocation
Framework execution. Also, you could retrieve the logs for rest of the concurrent
program execution using the Request ID.

To retrieve logs, log on to Oracle E-Business Suite with the System Administrator
responsibility, select Oracle Applications Manager > Logs from the Navigator to search
your logs.

Troubleshooting Invocation Failure on Standalone JVM
When invoking a Web service from a Java process that runs outside OACORE or CM by
calling BusinessEvent.raise method to raise the invoker event with a synchronous
'Invoke Web Service' subscription, the following situation can occur:

• If the invocation is successful, the method returns the response message.

• If there was a runtime exception, BusinessEventException, thrown by the method
that could be used to get the complete stack trace.

For details, see the sample Java code in the Service Invocation from Java section,
Invoking Web Services, page 10-31.

Extending Seeded Java Rule Function
Oracle E-Business Suite Integrated SOA Gateway allows developers to extend the
invoker subscription seeded rule function
oracle.apps.fnd.wf.bes.WebServiceInvokerSubscription using Java
coding standards for more specialized processing.

Developers can extend the seeded rule function to override following methods:

• preInvokeService

• postInvokeService

• addWSSecurityHeader

• setInputParts

• addCustomSOAPHeaders

For detailed information about these methods, see Oracle Workflow API Reference.

Working With Oracle Workflow Business Event System to Invoke Web Services 10-51

Use the following steps to extend the seeded rule function:

1. Extend the methods using
oracle.apps.fnd.wf.bes.WebServiceInvokerSubscription.

2. Upload the compiled custom class file at
$JAVA_TOP/oracle/apps/fnd/wf/bes/.

3. Bounce the oacore and oafm servers.

4. Use the custom rule function oracle.apps.fnd.wf.bes.xxxx while creating
the subscription.

Please note that xxxx is the name of extended custom class. For example,
oracle.apps.fnd.wf.bes.CustomWebServiceInvoker.

preInvokeService
This method is used for pre processing before Web service invocations.
protected String preInvokeService(Subscription eo,
 BusinessEvent event,
 WorkflowContext context)
throws BusinessEventException;

The Web service input message or request message is available by calling
event.getData(). This is the business event payload passed when raising the
invoker event or generated by business event Generate function.

This method can perform additional processing on the request data if required. The
default implementation through the seeded Java rule function performs XSL
transformation using the XSL file specified in WFBES_IN_XSL_FILENAME if input
payload message is available.

postInvokeService
protected void postInvokeService(Subscription eo,
 BusinessEvent event,
 WorkflowContext context,
 String requestData,
 String responseData)
throws BusinessEventException;

If the operation is synchronous request - response, the response is available in
parameter responseData.

This method performs additional processing on the response and update application
state if required. The default implementation through seeded Java rule function
performs the following tasks:

• XSL transformation on a response or Web service output message based on
WFBES_OUT_XSL_FILENAME

10-52 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

• Call back to Workflow Business Event System based on WFBES_CALLBACK_EVENT
and WFBES_CALLBACK_AGENT parameter values

addWSSecurityHeader
protected void addWSSecurityHeader(ArrayList headersList) throws
Exception;

This method adds WS-Security compliant header to the SOAP request. The default
implementation through Java seeded rule function adds UsernameToken element to the
security header based on event parameters WFBES_SOAP_USERNAME,
WFBES_SOAP_PASSWORD_MOD, and WFBES_SOAP_PASSWORD_KEY, and sets the
expiration time for the header in the Timestamp element based on the
WFBES_SOAP_EXPIRY_DURATION parameter.

This method can be overridden to add any WS-Security header or have custom logic to
retrieve username and password to build UsernameToken element. The well-formed
XML Element should be added to the ArrayList.

The following code snippet shows WS-Security added to a SOAP header:
try {
 DocumentBuilderFactory factory =
DocumentBuilderFactory.newInstance();
 factory.setNamespaceAware(true);
 DocumentBuilder bldr = factory.newDocumentBuilder();
 Document doc = bldr.newDocument();

 Element sec = doc.createElement("wsse:Security");
 Attr attr = doc.createAttribute("xmlns:wsse");

attr.setValue("http://docs.oasis-open.org/wss/2004/01/oasis-200401-wssws
security-secext-1.0.xsd");
 sec.setAttributeNode(attr);
 doc.appendChild(sec);

 Element unt = doc.createElement("wsse:UsernameToken");
 sec.appendChild(unt);
 build XML message
 }
 catch (Exception e) {
 }
 headersList.add(doc.getDocumentElement());

setInputParts
protected void setInputParts(String[] partNames,
Hashtable<String,Element> partValues) throws Exception;

Note: The method, setInputParts(WSIFMessage, Input,
String) throws Exception;, used in earlier releases is not
supported in this release. Any subclass of
WebServiceInvokerSubscription that implements this method should
be modified to use the new method as explained here. Developers are

Working With Oracle Workflow Business Event System to Invoke Web Services 10-53

required only to create org.w3c.dom.Element objects for input part
values and set it to the Collections object.

This setInputParts method can be optionally implemented in a subclass of
WebServiceInvokerSubscription to set values for all input parts for the operation. The
subclass then is used as Java Rule Function for the "Invoke Web Service" event
subscription.

This method gives the list of input part names for the operation that is invoked by that
specific invocation instance as an array of java.lang.String in parameter
partNames. Implementation of this method could set self-contained XML elements of
type org.w3c.dom.Element to partValues java.util.Hashtable parameter for
each part name as key.

You can use a mix of event parameters, event payload and extension of
setInputParts method to pass input part values for a service invocation. For
example, one or more of the following combination is possible:

• All input part values can be set from implementation of setInputParts method
and event payload could be null.

• All input part values can be passed to the service invocation framework as business
event parameters or payload. Typically event payload will carry the largest part
value like the <soap:Body>.

• Combination of both above approaches.

• If some part values are passed as event parameters or payload and also set from
setInputParts method, the value from setInputParts method prevails.

Input part values of type org.w3c.dom.Element for the Web service operation can be
set in one of the following two ways:

• Pass the XML Element value as event parameters of name
WFBES_INPUT_<partname> for each part.

• Method setInputParts(String[], Hashtable (<String, Element>)
throws Exception; can be extended to generate and set XML elements
corresponding to each Input part of the Web service operation that is invoked.

The following code snippet shows how this method is used to set values for Input parts
'header' and 'body' by creating Element objects out of hand-coded XML element string:

10-54 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

final protected void setInputParts(String[] partNames,
Hashtable<String,Element>
partValues) throws Exception {
 String METHOD_NAME = CLASS_PREFIX+"setInputParts(String[],
Hashtable<String,Element>";
 writeLog(METHOD_NAME, "BEGIN", Log.PROCEDURE);
 String value = "<SOAHeader
xmlns:ns1=\"http://xmlns.oracle.com/apps/fnd/soaprovider/plsql/fnd_user_
pkg/\>
 <Responsibility>SYSTEM_ADMINISTRATOR<Responsibility>
 <RespApplication>SYSADMINn<RespApplication>
 <SecurityGroup><SecurityGroup>
 <NLSLanguage><NLSLanguage>
 <Org_Id><Org_Id>
<SOAHeader>";
 partValues.put("header", getDocumentElement(value));
 value = "<InputParameters
xmlns=\"http://xmlns.oracle.com/apps/fnd/soaprovider/plsql/fnd_user_pkg/
testusername/\"><X_USER_NAME>SYSADMIN</X_USER_NAME></InputParameters>";
 partValues.put("body", getDocumentElement(value));
 value = "<GetTheatersAndMovies
xmlns=\"http://www.ignyte.com/whatsshowing\"><zipCode>32822</zipCode><ra
dius>10</radius></GetTheatersAndMovies>";
 partValues.put("parameters", getDocumentElement(value));
 writeLog(METHOD_NAME, "END", Log.PROCEDURE);
 }

 /**
 * This function is called to convert String to XML Element
 * @param data
 * @return
 * @throws Exception
 */

 public Element getDocumentElement(String data)
 throws Exception {
 String METHOD_NAME = "getDocumentElement(String)";
 Element ret = null;
 writeLog(CLASS_PREFIX + METHOD_NAME, "BEGIN", Log.PROCEDURE);
 DOMParser parser = new DOMParser();
 parser.parse(new StringReader(data));
 Document doc = parser.getDocument();
 if(doc != null) {
 ret = doc.getDocumentElement();
 }
 writeLog(CLASS_PREFIX + METHOD_NAME, "END", Log.PROCEDURE);
 return ret;
 }

addCustomSOAPHeaders
protected void addCustomSOAPHeaders(ArrayList<Element> customHeaders)
throws Exception;

Note: The method addSOAPHeaders used in earlier releases is not
supported in this release. Any subclass of
WebServiceInvokerSubscription that implements this method should
be modified to use the addCustomSOAPHeaders method as explained

Working With Oracle Workflow Business Event System to Invoke Web Services 10-55

here. Developers are required only to create org.w3c.dom.Element
objects for your custom SOAP header and set it to the Collections
object.

This addCustomSOAPHeaders method can be optionally implemented in a subclass of
WebServiceInvokerSubscription to set custom SOAP headers for the SOAP request. The
subclass then is used as Java Rule Function for the "Invoke Web Service" event
subscription.

Implementation of this method could set any number of self-contained XML elements
of type org.w3c.dom.Element to customHeadersjava.util.ArrayList
parameter. All the XML elements will be added to the SOAP header.

This method helps to add a custom SOAP header to the SOAP request that is not
defined in the input message for the WSDL operation that is invoked. For setting values
to specific input parts as defined in WSDL operation's input message, use
setInputParts method.

The following code snippet shows how this method is used to set custom SOAP headers
for a SOAP request:
final protected void addCustomSOAPHeaders(ArrayList customHeaders)
throws Exception {
 String custHdr = mEvent.getStringProperty("XXX_CUSTOM_HEADER");
 try {
 DocumentBuilderFactory factory =
DocumentBuilderFactory.newInstance();
 factory.setNamespaceAware(true);
 DocumentBuilder bldr = factory.newDocumentBuilder();
 Document doc = bldr.newDocument();
 doc = bldr.parse(new ByteArrayInputStream(custHdr.getBytes()));
 customHeaders.add((Element)doc.getFirstChild());
 }
 catch (Exception e) {
 throw e;
 }
 }

Sample Codes
The following code shows how to extend the addCustomSOAPHeaders method to add
any additional Header elements to a SOAP header that are not defined in WSDL:

10-56 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

final protected void addCustomSOAPHeaders(ArrayList customHeaders)
 throws Exception {
 String METHOD_NAME =
CLASS_PREFIX+"addCustomSOAPHeaders(ArrayList)";
 writeLog(CLASS_PREFIX + METHOD_NAME, "BEGIN", Log.PROCEDURE);

 // Add my own Custom header
 writeLog(METHOD_NAME, "Adding Custom header", Log.STATEMENT);
 addMyCustomHeader(customHeaders);

 // Add more headers if required to the ArrayList
 System.out.println("Adding Custom Headers in the sub-class");
 writeLog(METHOD_NAME, "END", Log.PROCEDURE);
 }

 private void addMyCustomHeader(ArrayList headersList)
 throws Exception {

 String METHOD_NAME =
CLASS_PREFIX+"addMyCustomHeader(ArrayList)";

 writeLog(METHOD_NAME, "BEGIN", Log.PROCEDURE);

 // Adding special SOAP Header to the request. This is required
only
 // if the WSDL's SOAP binding does not mandate the header but
it is
 // still required by the service. The XML element should be
self-sufficient
 // with all namespace declarations local to this element

 // In this case, the custom header is passed as an Event
Parameter and
 // set to the request to avoid hard-coding the header element
in code.
 // Any element can be passed at the time of raising the invoker
business event
 String custHdr = mEvent.getStringProperty("XXX_CUSTOM_HEADER");

 if (custHdr != null && !"".equals(custHdr)) {
 try {
 DocumentBuilderFactory factory =
DocumentBuilderFactory.newInstance();
 factory.setNamespaceAware(true);
 DocumentBuilder bldr = factory.newDocumentBuilder();
 Document doc = bldr.newDocument();

 doc = bldr.parse(new
ByteArrayInputStream(custHdr.getBytes()));

 // Add the element to the Headers list
 headersList.add((Element)doc.getFirstChild());
 writeLog(CLASS_PREFIX + METHOD_NAME, "Successfully
added custom header 1", Log.STATEMENT);
 }
 catch (Exception e) {
 throw new BusinessEventException("Exception when
creating header element - "+e.getMessage());
 }
 }

Working With Oracle Workflow Business Event System to Invoke Web Services 10-57

String custHdr2 = mEvent.getStringProperty("XXX_CUSTOM_HEADER2");

 if (custHdr2 != null && !"".equals(custHdr2)) {
 try {
 DocumentBuilderFactory factory =
DocumentBuilderFactory.newInstance();
 factory.setNamespaceAware(true);
 DocumentBuilder bldr = factory.newDocumentBuilder();
 Document doc = bldr.newDocument();

 doc = bldr.parse(new
ByteArrayInputStream(custHdr2.getBytes()));

 // Add the element to the Headers list
 headersList.add((Element)doc.getFirstChild());
 writeLog(CLASS_PREFIX + METHOD_NAME, "Successfully
added custom header 2", Log.STATEMENT);
 }
 catch (Exception e) {
 throw new BusinessEventException("Exception when
creating header element - "+e.getMessage());
 }
 }

 writeLog(METHOD_NAME, "END", Log.PROCEDURE);
 }

Other Invocation Usage Considerations
While implementing the service invocation framework to invoke Web services, some
limitations need to be considered.

• WFBES_INPUT_<partname> parameter can only be passed at run time during the
event raise.

• The service invocation framework supports invoking only document-based Web
services.

• Support One-to-One relationship of event subscriptions

To successfully invoke Web services, each event should only have one subscription
(with 'Invoker Web Service' action type) associated with it. This one-to-one
relationship of event subscription is especially important in regards to synchronous
request - response service invocation.

For detailed information about implementation consideration on service invocation
framework, see Implementation Limitation and Consideration, Oracle E-Business Suite
Integrated SOA Gateway Implementation Guide.

Integration Repository Annotation Standards A-1

A
Integration Repository Annotation

Standards

General Guidelines
The Oracle Integration Repository is a centralized repository that contains numerous
integration interface endpoints exposed by applications throughout the entire Oracle
E-Business Suite. The Integration Repository is populated by the parsing of annotated
source code files. Source code files are the "source of truth" for Integration Repository
metadata, and it is vitally important that they are annotated in a prescribed and
standardized fashion.

This section describes what you should know in general about Integration Repository
annotations, regardless of the source code file type that you are working with.

Annotation Syntax

Annotations are modifiers that contain an annotation type and zero or more
member-value pairs. Each member-value pair associates a value with a different
member of the annotation type.

The annotation syntax is similar to Javadoc syntax:

@NameSpace:TypeName keyString

@NameSpace:TypeName freeString

@NameSpace:TypeName keyString keyString keyString

@NameSpace:TypeName keyString freeString

@NameSpace:TypeName {inline annotation} {inline annotation}

Element Definitions

NameSpace identifies the group of annotations that you are using. It is case sensitive.
The annotations currently in use are in the rep namespace. Future annotations may be
introduced in different namespaces.

TypeName identifies the name of the annotation type. It is case sensitive. For

A-2 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

consistency across product teams, always use lowercase typenames.

keyString is the first word that follows the annotation. It is a whole string that
excludes spaces.

freeString is a string that follows the keystring. It may have spaces or inline
annotations. It is terminated at the beginning of the next annotation or at the end of the
documentation comment.

Format Requirement

In your source code file, repository annotations will appear as a Javadoc-style block of
comments.

Use the following general procedure. (If you are working in Java and your file already
has robust Javadoc comments, then in many cases you'll only need to add the
appropriate "@rep:" tags.)

• Choose which interfaces you will expose to the Integration Repository. Be mindful
that you can annotate interfaces as public, private, or internal, as well as active, obsolete
, deprecated, or planned.

Only interfaces that you annotate as public will appear in the external Integration
Repository UI; private and internal interfaces will appear in an internal-only Oracle
UI. Consequently, all interfaces that have previously been documented as public in
customer manuals should be defined as public in your source file annotations.

• In your source file, set off the beginning of the annotation block according to the
following conditional rule:

• For Java, insert "slash-star-star" characters (/**).

• For non-Java files, insert "slash-star-pound" characters (/*#).

• Enter a text description. Use complete sentences and standard English.

• Where applicable, add plain Javadoc tags such as @param and @return.

• Next, add "@rep:" tags such as @rep:scope and @rep:product.

• Optionally, add a nonpublishable comment using the @rep:comment annotation.
(Use for reminders, notes, and so on. The parsers skip this annotation.)

• End the annotation block with a "star-slash" (*/).

Refer to the following example. Note that the first line could alternatively be
slash-star-pound (/*#) if the source file was PL/SQL or another non-Java technology.

Integration Repository Annotation Standards A-3

/**
 * This is the first sentence of a description of a sample
 * interface. This description can span multiple lines.
 * Be careful for public interfaces, where the description is
 * displayed externally in the Integration Repository UI.
 * It should be reviewed for content as well as spelling and
 * grammar errors. Additionally, the first sentence of
 * the description should be a concise summary of the
 * interface or method, as the repository UI will display
 * the first sentence by itself.
 *
 * @param <param name> <parameter description>
 @rep:paraminfo {@rep:innertype <typeName>} {@rep:precision <value>}
{@rep:required}
 * @rep:scope <public | internal | private>
 * @rep:product <product short code>
 * @rep:displayname Sample Interface
 */

Annotation Syntax Checker and iLDT Generator

A syntax checker is available at the following directory:
$IAS_ORACLE_HOME/perl/bin/perl $FND_TOP/bin/irep_parser.pl

Details about the checker can be found by using the -h flag.

Class Level vs. Method Level

For the purpose of classifying annotation requirements, we are using loose definitions
of the terms "class" and "method". In the context of interface annotations, PL/SQL
packages are thought of as classes, and PL/SQL functions or procedures are thought of
as methods. For some technologies there are different annotation requirements at the
class level and the method level. See the "Required" and "Optional" annotation lists
below for details.

Concurrent Program Considerations

In cases where a Concurrent Program (CP) is implemented with an underlying
technology that is also an interface type (such as a PL/SQL or Java CP) there may be
some confusion as to what needs to be annotated.

Assuming that you intend to have the Concurrent Program exposed by the repository,
you should annotate the Concurrent Program. Do not annotate the underlying
implementation (such as PL/SQL file) unless you intend to expose it separately from the
concurrent program in the repository.

The annotation standards for the following integration interfaces are discussed in this
chapter:

• Java Annotations, page A-4

• PL/SQL Annotations, page A-11

• Concurrent Program Annotations, page A-17

• XML Gateway Annotations, page A-19

A-4 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

• Business Event Annotations, page A-31

• Business Entity Annotations, page A-37

• Composite Service - BPEL Annotations, page A-109

• Glossary of Annotations, page A-116

Java Annotations
Users will place their annotations in Javadoc comments, immediately before the
declaration of the class or method.

Required Class-level Annotations
• must begin with description sentence(s), page A-116

• rep:scope, page A-118

• rep:product, page A-119

• rep:implementation, page A-120 (only required for Java business service objects; not
required for plain Java or SDOs)

• rep:displayname, page A-120

• rep:service, page A-137

• rep:servicedoc, page A-138

Optional Class-level Annotations
• link, page A-124

• see, page A-125

• rep:lifecycle, page A-123

• rep:ihelp, page A-126

• rep:category, page A-129

Use BUSINESS_ENTITY at the class level only if all underlying methods have the
same business entity. In those cases, you do not need to repeat the annotation at the
method level.

• rep:compatibility, page A-123

Integration Repository Annotation Standards A-5

• rep:standard, page A-131

• rep:metalink, page A-127

• rep:doccd, page A-128

• rep:synchronicity, page A-139

Required Method-level Annotations
• must begin with description sentence(s), page A-116

• param, page A-132

Use only when applicable and when other tags such as @see and @rep:metalink
do not provide parameter explanations.

• return, page A-133 (if applicable)

• rep:paraminfo, page A-134

• rep:displayname, page A-120

• rep:businessevent, page A-136 (if an event is raised)

Optional Method-level Annotations
• link, page A-124

• see, page A-125

• rep:scope, page A-118

• rep:lifecycle, page A-123

• rep:compatibility, page A-123

• rep:category, page A-129

Use BUSINESS_ENTITY at the method level only when a class methods have
heterogeneous business entities.

• rep:ihelp, page A-126

• rep:metalink, page A-127

• rep:doccd, page A-128

• rep:appscontext, page A-140

A-6 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

• rep:synchronicity, page A-139

• rep:primaryinstance, page A-141

Template
You can use the following template when annotating Business Service Objects:
Interface Template:

 /**
 * < Interface description
 * ...
 * >
 *
 * @rep:scope <public|private|internal>
 * @rep:displayname <Interface display name>
 * @rep:lifecycle <active|deprecated|obsolete|planned>
 * @rep:product <product code>
 * @rep:compatibility <S|N>
 * @rep:implementation <full implementation class name>
 * @rep:category <lookupType> <lookupCode> <sequenceNumber>
 */

Methods Template:

 /**
 * < Method description
 * ...
 * >
 *
 * @param <paramName> < Parameter description
 * ... >
 * @rep:paraminfo {@rep:innertype <typeName>} {@rep:precision <value>}
{@rep:required}
 *
 *
 * @return < Parameter description
 * ... >
 * @rep:paraminfo {@rep:innertype <typeName>} {@rep:precision <value>}
{@rep:required}
 *
 *
 * @rep:scope <public|private|internal>
 * @rep:displayname <Interface display name>
 * @rep:lifecycle <active|deprecated|obsolete|planned>
 * @rep:compatibility <S|N>
 * @rep:category <lookupType> <lookupCode> <sequenceNumber>
 * @rep:businessevent <businessEventName>
 */

Examples
For reference, here is an example of an annotated Purchase Order service:

Integration Repository Annotation Standards A-7

...
package oracle.apps.po.tutorial;

import oracle.jbo.domain.Number;

import oracle.svc.data.DataList;
import oracle.svc.data.DataService;
import oracle.svc.msg.MessageService;

import oracle.apps.fnd.common.VersionInfo;

/**
 * The Purchase Order service lets you to view, update, acknowledge and
 * approve purchase orders. It also lets you receive items, and obtain
 * pricing by line item.
 *
 * @see oracle.apps.fnd.framework.toolbox.tutorial.PurchaseOrderSDO
 * @see
oracle.apps.fnd.framework.toolbox.tutorial.PurchaseOrderAcknowledgements
SDO
 * @see
oracle.apps.fnd.framework.toolbox.tutorial.PurchaseOrderReceiptsSDO
 *
 * @rep:scope public
 * @rep:displayname Purchase Order Service
 * @rep:implementation
oracle.apps.fnd.framework.toolbox.tutorial.server.PurchaseOrderSAMImpl
 * @rep:product PO
 * @rep:category BUSINESS_ENTITY PO_PURCHASE_ORDER
 * @rep:service
 */
public interface PurchaseOrder extends DataService, MessageService
{
 public static final String RCS_ID="$Header$";
 public static final boolean RCS_ID_RECORDED =
 VersionInfo.recordClassVersion(RCS_ID,
"oracle.apps.fnd.framework.toolbox.tutorial");

 /**
 * Approves a purchase order.
 *
 * @param purchaseOrder purchase order unique identifier
 * @rep:paraminfo {@rep:required}
 *
 * @rep:scope public
 * @rep:displayname Approve Purchase Orders
 * @rep:businessevent oracle.apps.po.approve
 */
 public void approvePurchaseOrder(Number poNumber);

 /**
 * Acknowledges purchase orders, including whether the terms have
 * been accepted or not. You can also provide updated line
 * item pricing and shipment promise dates with the acknowledgement.
 *
 * @param purchaseOrders list of purchase order objects
 * @rep:paraminfo {@rep:innertype
oracle.apps.fnd.framework.toolbox.tutorial.PurchaseOrderAcknowledgements
SDO} {@required}
 *
 * @rep:scope public

A-8 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

* @rep:displayname Receive Purchase Order Items
 * @rep:businessevent oracle.apps.po.acknowledge
 */
 public void acknowledgePurchaseOrders(DataList purchaseOrders);

 /**
 * Receives purchase order items. For each given purchase order
 * shipment, indicate the quantity to be received and, optionally,
 * the receipt date if today's date is not an acceptable receipt date.
 *
 * @param purchaseOrders list of purchase order objects
 * @rep:paraminfo {@rep:innertype
oracle.apps.fnd.framework.toolbox.tutorial.PurchaseOrderReceiptsSDO}
{@required}
 *
 * @rep:scope public
 * @rep:displayname Receive Purchase Order Items
 * @rep:businessevent oracle.apps.po.receive_item
 */
 public void receiveItems(DataList purchaseOrders);

 /**
 * Gets the price for a purchase order line item.
 *
 * @param poNumber purchase order unique identifier
 * @rep:paraminfo {@required}
 * @param lineNumber purchase order line unique identifier
 * @rep:paraminfo {@required}
 * @return the item price for the given purchase order line
 *
 * @rep:scope public
 * @rep:displayname Get Purchase Order Line Item Price
 */
 public Number getItemPrice(Number poNumber,
 Number lineNumber);

Here is an example of an annotated Purchase Order SDO data object:

Integration Repository Annotation Standards A-9

/*==
=====+
 | Copyright (c) 2004 Oracle Corporation, Redwood Shores, CA, USA
|
 | All rights reserved.
|

+===
====+
 | HISTORY
|

+===
====*/
package oracle.apps.po.tutorial;

import oracle.jbo.domain.Number;

import oracle.svc.data.DataObjectImpl;
import oracle.svc.data.DataList;

/**
 * The Purchase Order Data Object holds the purchase order data
including
 * nested data objects such as lines and shipments.
 *
 * @see oracle.apps.fnd.framework.toolbox.tutorial.PurchaseOrderLineSDO
 *
 * @rep:scope public
 * @rep:displayname Purchase Order Data Object
 * @rep:product PO
 * @rep:category BUSINESS_ENTITY PO_PURCHASE_ORDER
 * @rep:servicedoc
 */
public class PurchaseOrderSDO extends DataObjectImpl
{
 public PurchaseOrderSDO ()
 {
 super();
 }

 /**
 * Returns the purchase order header id.
 *
 * @return purchase order header id.
 */
 public Number getHeaderId()
 {
 return (Number)getAttribute("HeaderId");
 }

 /**
 * Sets the purchase order header id.
 *
 * @param value purchase order header id.
 * @rep:paraminfo {@rep:precision 5} {@rep:required}
 */
 public void setHeaderId(Number value)
 {
 setAttribute("HeaderId", value);
 }

A-10 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

 /**
 * Returns the purchase order name.
 *
 * @return purchase order name.
 * @rep:paraminfo {rep:precision 80}
 */
 public String getName()
 {
 return (String)getAttribute("Name");
 }

 /**
 * Sets the purchase order header name.
 *
 * @param value purchase order header name.
 * @rep:paraminfo {@rep:precision 80}
 */
 public void setName(String value)
 {
 setAttribute("Name", value);
 }

 /**
 * Returns the purchase order description.
 *
 * @return purchase order description.
 * @rep:paraminfo {rep:precision 120}
 */
 public String getDescription()
 {
 return (String)getAttribute("Description");
 }

 /**
 * Sets the purchase order header description.
 *
 * @param value purchase order header description.
 * @rep:paraminfo {@rep:precision 80}
 */
 public void setDescription(String value)
 {
 setAttribute("Description", value);
 }

 /**
 * @return the purchase order lines DataList.
 * @rep:paraminfo {@rep:innertype
oracle.apps.fnd.framework.toolbox.tutorial.PurchaseOrderLineSDO}
 */
 public DataList getLines()
 {
 return (DataList)getAttribute("Lines");
 }

 /**
 * @param list the putrchase order lines DataList.
 * @rep:paraminfo {@rep:innertype
oracle.apps.fnd.framework.toolbox.tutorial.PurchaseOrderLineSDO}
 */
 public void setLines(DataList list)
 {

Integration Repository Annotation Standards A-11

setAttribute("Lines", list);
 }

}

PL/SQL Annotations
You can annotate *.pls and *.pkh files.

For PL/SQL packages, only the package spec should be annotated. Do not annotate the
body.

Before annotating, make sure that no comments beginning with /*# are present. The
"slash-star-pound" characters are used to set off repository annotations, and will result
in either an error or undesirable behavior if used with normal comments.

To annotate, use a text editor (such as emacs or vi.) to edit the file. For each package,
begin your annotations at the second line immediately after the CREATE OR REPLACE
PACKAGE <package_name> AS line. (The first line after CREATE OR REPLACE
PACKAGE <package_name> AS should be the /* $Header: $ */ line.)

Required Class-level Annotations
• must begin with description sentence(s), page A-116

• rep:scope, page A-118

• rep:product, page A-119

• rep:displayname, page A-120

• rep:category, page A-129

Use BUSINESS_ENTITY at the class level only if all underlying methods have the
same business entity. In those cases, you do not need to repeat the annotation at the
method level.

• rep:businessevent, page A-136 (if an event is raised)

Optional Class-level Annotations
• link, page A-124

• see, page A-125

• rep:lifecycle, page A-123

• rep:compatibility, page A-123

• rep:ihelp, page A-126

A-12 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

• rep:metalink, page A-127

• rep:doccd, page A-128

Required Method-level Annotations
• must begin with description sentence(s), page A-116

• param, page A-132

Use only when applicable and when other tags such as @see and @rep:metalink
do not provide parameter explanations.

• return, page A-133 (if applicable)

• rep:displayname, page A-120

• rep:paraminfo, page A-134

• rep:businessevent, page A-136 (if an event is raised)

Optional Method-level Annotations
• link, page A-124

• see, page A-125

• rep:scope, page A-118

• rep:lifecycle, page A-123

• rep:compatibility, page A-123

• rep:category, page A-129

Use BUSINESS_ENTITY at the method level only when a class methods have
heterogeneous business entities.

• rep:ihelp, page A-126

• rep:metalink, page A-127

• rep:doccd, page A-128

• rep:appscontext, page A-140

• rep:primaryinstance, page A-141

Integration Repository Annotation Standards A-13

Template
You can use the following template when annotating PL/SQL files:

Note: Annotation for PL/SQL APIs can start with either /** or /*#.

A-14 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

.

.

.
CREATE OR REPLACE PACKAGE <package name> AS
/* $Header: $ */
/*#
 * <Put your long package description here
 * it can span multiple lines>
 * @rep:scope <scope>
 * @rep:product <product or pseudoproduct short code>
 * @rep:lifecycle <lifecycle>
 * @rep:displayname <display name>
 * @rep:compatibility <compatibility code>
 * @rep:businessevent <Business event name>
 * @rep:category BUSINESS_ENTITY <entity name>
 */

 .
 .
 .

/**
 * <Put your long procedure description here
 * it can span multiple lines>
 * @param <param name 1> <param description 1>
 * @param <param name 2> <param description 2>
 * @rep:scope <scope>
 * @rep:product <product or pseudoproduct short code>
 * @rep:lifecycle <lifecycle>
 * @rep:displayname <display name>
 * @rep:compatibility <compatibility code>
 * @rep:businessevent <Business event name>
 */
PROCEDURE <procedure name> (. . .);

.

.

.

/**
 * <Put your long function description here
 * it can span multiple lines>
 * @param <param name 1> <param description 1>
 * @param <param name 2> <param description 2>
 * @return <return description>
 * @rep:scope <scope>
 * @rep:product <product or pseudoproduct short code>
 * @rep:lifecycle <lifecycle>
 * @rep:displayname <display name>
 * @rep:compatibility <compatibility code>
 * @rep:businessevent <Business event name>
 */
FUNCTION <function name> (. . .);

.

.

.

END <package name>;

Integration Repository Annotation Standards A-15

/

commit;
exit;

Example
For reference, here is an example of an annotated PL/SQL file:

A-16 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

set verify off
whenever sqlerror exit failure rollback;
whenever oserror exit failure rollback;

create or replace package WF_ENGINE as

/*#
 * This is the public interface for the Workflow engine. It allows
 * execution of various WF engine functions.
 * @rep:scope public
 * @rep:product WF
 * @rep:displayname Workflow Engine
 * @rep:lifecycle active
 * @rep:compatibility S
 * @rep:category BUSINESS_ENTITY WF_WORKFLOW_ENGINE
 */

g_nid number; -- current notification id
g_text varchar2(2000); -- text information

--
-- AddItemAttr (PUBLIC)
-- Add a new unvalidated run-time item attribute.
-- IN:
-- itemtype - item type
-- itemkey - item key
-- aname - attribute name
-- text_value - add text value to it if provided.
-- number_value - add number value to it if provided.
-- date_value - add date value to it if provided.
-- NOTE:
-- The new attribute has no type associated. Get/set usages of the
-- attribute must insure type consistency.
--
/*#
 * Adds Item Attribute
 * @param itemtype item type
 * @param itemkey item key
 * @param aname attribute name
 * @param text_value add text value to it if provided.
 * @param number_value add number value to it if provided.
 * @param date_value add date value to it if provided.
 * @rep:scope public
 * @rep:lifecycle active
 * @rep:displayname Add Item Attribute
 */
procedure AddItemAttr(itemtype in varchar2,
 itemkey in varchar2,
 aname in varchar2,
 text_value in varchar2 default null,
 number_value in number default null,
 date_value in date default null);

--
-- AddItemAttrTextArray (PUBLIC)
-- Add an array of new unvalidated run-time item attributes of type
text.

Integration Repository Annotation Standards A-17

-- IN:
-- itemtype - item type
-- itemkey - item key
-- aname - Array of Names
-- avalue - Array of New values for attribute
-- NOTE:
-- The new attributes have no type associated. Get/set usages of
these
-- attributes must insure type consistency.
--

END WF_ENGINE;
/

commit;
exit;

Concurrent Program Annotations
To annotate a concurrent program, select the System Administration responsibility and
click on OA Framework based Define Concurrent Program page. Query the Concurrent
Program and go to the Annotations field. Enter your annotations there and commit to
save your work.

After annotating and committing, you will need to use FNDLOAD to recreate the LDTs
for your concurrent programs.

Required Class-level Annotations
• must begin with description sentence(s), page A-116

The annotation takes precedence over the concurrent program own definition in the
LDT. One or the other must exist; otherwise, interface generation will fail.

• rep:scope, page A-118

• rep:product, page A-119

• rep:displayname, page A-120

The annotation takes precedence over the concurrent program own definition in the
LDT. One or the other must exist; otherwise, interface generation will fail.

• rep:category, page A-129

• rep:businessevent, page A-136 (if an event is raised)

Note: There is no required method-level annotations for concurrent
programs.

A-18 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

Optional Class-level Annotations
• link, page A-124

• see, page A-125

• rep:lifecycle, page A-123

• rep:compatibility, page A-123

• rep:ihelp, page A-126

• rep:metalink, page A-127

• rep:doccd, page A-128

• rep:usestable, page A-130

• rep:usesmap, page A-142

Note: There is no optional method-level annotations for concurrent
programs.

Template
You can use the following template when annotating Concurrent Programs:
/**
 * <Put your long description here
 * it can span multiple lines>
 * @rep:scope <scope>
 * @rep:product <product or pseudoproduct short code>
 * @rep:lifecycle <lifecycle>
 * @rep:category OPEN_INTERFACE <open interface name> <sequence_num>
 * @rep:usestable <table or view name> <sequence_num> <direction>
 * @rep:category BUSINESS_ENTITY <BO type>
 * @rep:category <other category> <other value>
 * @rep:businessevent <name of business event>
 */

Note: Annotation for concurrent programs can start with either /** or
/*#.

Example
For reference, here is an example of an annotated Concurrent Program:

Integration Repository Annotation Standards A-19

/**
 * Executes the Open Interface for Accounts Payable Invoices. It uses
the
 * following tables: AP_INVOICES_INTERFACE, AP_INVOICE_LINES_INTERFACE.
 * @rep:scope public
 * @rep:product AP
 * @rep:lifecycle active
 * @rep:category OPEN_INTERFACES AP_INVOICES_INTERFACE 1
 * @rep:usestable AP_INVOICES_INTERFACE 2 IN
 * @rep:usestable AP_INVOICE_LINES_INTERFACE 3 IN
 * @rep:category BUSINESS_ENTITY AP_INVOICE
 */

XML Gateway Annotations
Use the following procedure to annotate an XML Gateway map for transaction
information:

1. Check out an existing map from source code and open it in Message Designer.

2. Find out which Internal Transaction Type, Subtype, Standard, and Direction this
particular map is associated with. Note that this entry must exist in XML Gateway
to be loaded into the Integration Repository.

Click Message Designer File.... > Properties and select the Map tab. Annotate the
map using the Map Description field after your existing description. Be sure to
enter the @rep:interface annotation with <Internal Transaction

A-20 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

Type>:<Subtype>, @rep:standard, and @rep:direction accordingly.

(Optional) If this map is designed to fully support a given standard such as OAG,
then set @rep:standard to the standard, version and spec name. However, if the
map is designed with the intention of supporting standards through additional
custom transformations (such as, it is "ready" for the standard), then use the
rep:category_STANDARD_READY, page A-129 annotation to denote this.

• A given Internal Transaction Type and Subtype should have
only one map seeded by product teams for a given Standard
and Direction (regardless of Party Type). Additional maps
containing the same types in the annotations would be rejected
and treated as errors. Note that there may exist different maps
based on the External Transaction Type and Subtype, but as
these are meant to be Trading Partner-specific, we do not enter
them in the repository. In future releases, we will enforce these
rules natively within XML Gateway.

• If a single map is reused in more than one Internal Transaction
Type and Subtype, then you may enter multiple annotations,
each within its own comment block (i.e. between /*# ... */). The
parser will create entries in the Integration Repository for each
annotation set. Although this capability is supported, you are

Integration Repository Annotation Standards A-21

encouraged to use two different maps to accommodate
potentially changing interfaces. See the following example of
map reuse:

Int T Int ST D Ext T Ext ST STD Party
Type

AR Invoice O Invoice Process OAG C

AR Credit O Invoice Process OAG C

AR Debit O Invoice Process OAG C

In this scenario, since the external representation does not
change, the same map can be reused. However, the internal
processing and authorization considerations may differ based
on the Internal Transaction Type and Subtype. In this case, the
map can have three annotation blocks, one for each Internal
Transaction Type and Subtype; such as. AR-Invoice, AR-Credit,
and AR-Debit.

• Parameters are typically used in outbound maps for specifying
keys used in queries to produce outbound data. Inbound maps
do not have parameters.

3. Save the annotated map, check it into source control, and release as a patch as
usual. The annotations are updated as part of the Integration Repository loaders.

Required Class-level Annotations
• must begin with description sentence(s), page A-116

• rep:scope, page A-118

• rep:product, page A-119

• rep:displayname, page A-120

• rep:category, page A-129

• rep:standard, page A-131

• rep:interface, page A-132

A-22 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

• rep:businessevent, page A-136 (if an event is raised)

• rep:direction, page A-136

Note: There is no required method-level annotations for XML Gateway.

Optional Class-level Annotations
• link, page A-124

• see, page A-125

• param, page A-132

Use only when applicable and when other tags such as @see and @rep:metalink
do not provide parameter explanations.

• rep:paraminfo, page A-134

• rep:lifecycle, page A-123

• rep:compatibility, page A-123

• rep:ihelp, page A-126

• rep:metalink, page A-127

• rep:doccd, page A-128

• rep:synchronicity, page A-139

Note: There is no optional method-level annotations for XML Gateway.

Template
You can use the following template when annotating XML Gateway:

Integration Repository Annotation Standards A-23

Sample Inbound Map Annotation

 /*#
 * Sample map annotation public description.
 *
 * @rep:interface <transaction_type:sub_type>
 * @rep:standard <OAG|cXML> <7.2|7.3> <specname>
 * @rep:direction IN
 * @rep:scope <public|private|internal>
 * @rep:displayname <Interface display name>
 * @rep:lifecycle <active|deprecated|obsolete|planned>
 * @rep:product <product code>
 * @rep:compatibility <S|N>
 * @rep:category <lookupType> <lookupCode> <sequenceNumber>
 * @rep:category STANDARD_READY <standard:version:specification>
 * @rep:businessevent <businessEventName>
 */

Sample Outbound Map Annotation

 /*#
 * Sample map annotation public description.
 *
 * @param <paramName> <Parameter description>
 * @rep:paraminfo {@rep:required}
 *
 * @rep:interface <transaction_type:sub_type>
 * @rep:standard <OAG|cXML> <7.2|7.3> <specname>
 * @rep:direction OUT
 * @rep:scope <public|private|internal>
 * @rep:displayname <Interface display name>
 * @rep:lifecycle <active|deprecated|obsolete|planned>
 * @rep:product <product code>
 * @rep:compatibility <S|N>
 * @rep:category <lookupType> <lookupCode> <sequenceNumber>
 * @rep:category STANDARD_READY <standard:version:specification>
 * @rep:businessevent <businessEventName>
 */

Important Note

A given map should be unique to a given Internal Transaction Type /
Subtype, Standard and Direction. This is because the External
Transaction Type / Subtype are meant for Trading Partner specific values
to be specified in the Trading Partner Details form and the entries in
the Integration Repository are NOT Trading Partner specific. Moreover,
there should not be a need to change maps on a per Trading Partner
basis, and if it does, then those maps should not be part of the
Integration Repository entries.
Given the current data model however, it is possible that a given map
could differ by External Transaction Type / Subtype and even by Trading
Partner. Going forward, this would not be allowed for seeded maps and
the Integration Repository parser would return an error if it finds
multiple maps which point to the same Internal Transaction Type /
Subtype.
Additional Notes

 * Parameters are typically used in outbound maps for specifying keys
used in queries to produce outbound data

A-24 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

Example
For reference, here is an example of an annotated XML Gateway interface:

Integration Repository Annotation Standards A-25

<?xml version="1.0" encoding="UTF-8"?>
<!-- $Header: MapPrinter.java 115.12 2009/06/13 21:17:58 mtai noship $
-->
<!-- WARNING: This file should only be edited using Message Designer -->
<?xGateway mapType="MAP" ?>
<?xGatewayVersion designerVersion="2.6.3.0.0" ?>
<ECX_MAPPINGS>
<MAP_CODE>Create Purchase Order</MAP_CODE>
<DESCRIPTION>This is a sample map to demonstrate annotations in the
Interface Repository.
 /*#
 * Sample map annotation public description.
 *
 * @rep:interface PO:POC
 * @rep:standard OAG 7.2 Process_PO_001
 * @rep:direction IN
 * @rep:scope public
 * @rep:displayname Create Purchase Order
 * @rep:lifecycle active
 * @rep:product PO
 * @rep:compatibility S
 * @rep:category BUSINESS_OBJECT PURCHASE_ORDER
 * @rep:businessevent oracle.apps.po.received
 */
 /*#
 * Sample map annotation public description for reused transaction
 *
 * @rep:interface PO:POU
 * @rep:standard OAG 7.2 Process_PO_001
 * @rep:direction IN
 * @rep:scope public
 * @rep:displayname Update Purchase Order
 * @rep:lifecycle active
 * @rep:product PO
 * @rep:compatibility S
 * @rep:category BUSINESS_OBJECT PURCHASE_ORDER
 * @rep:businessevent oracle.apps.po.received
 */
</DESCRIPTION>
<OBJECT_ID_SOURCE>1</OBJECT_ID_SOURCE>
<OBJECT_ID_TARGET>2</OBJECT_ID_TARGET>
<ENABLED>Y</ENABLED>
<ECX_MAJOR_VERSION>2</ECX_MAJOR_VERSION>
<ECX_MINOR_VERSION>6</ECX_MINOR_VERSION>
<ECX_OBJECTS>
<OBJECT_ID>1</OBJECT_ID>
<OBJECT_NAME>SRC</OBJECT_NAME>
<OBJECT_TYPE>XML</OBJECT_TYPE>
<OBJECT_DESCRIPTION>Source Definition</OBJECT_DESCRIPTION>
<OBJECT_STANDARD>OAG</OBJECT_STANDARD>
<ROOT_ELEMENT>INVENTORY</ROOT_ELEMENT>

<ECX_OBJECT_LEVELS>
<OBJECTLEVEL_ID>0</OBJECTLEVEL_ID>
<OBJECT_ID>1</OBJECT_ID>
<OBJECT_LEVEL>0</OBJECT_LEVEL>
<OBJECT_LEVEL_NAME>INVENTORY</OBJECT_LEVEL_NAME>
<PARENT_LEVEL>0</PARENT_LEVEL>
<ENABLED>Y</ENABLED>
<ECX_OBJECT_ATTRIBUTES>

A-26 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

<OBJECTLEVEL_ID>0</OBJECTLEVEL_ID>
<ATTRIBUTE_ID>0</ATTRIBUTE_ID>
<ATTRIBUTE_NAME>INVENTORY</ATTRIBUTE_NAME>
<OBJECT_COLUMN_FLAG>N</OBJECT_COLUMN_FLAG>

<PARENT_ATTRIBUTE_ID>0</PARENT_ATTRIBUTE_ID>

<ATTRIBUTE_TYPE>1</ATTRIBUTE_TYPE>
<HAS_ATTRIBUTES>0</HAS_ATTRIBUTES>
<LEAF_NODE>1</LEAF_NODE>
<REQUIRED_FLAG>Y</REQUIRED_FLAG>
<IS_MAPPED>false</IS_MAPPED>
</ECX_OBJECT_ATTRIBUTES>
<ECX_OBJECT_ATTRIBUTES>
<OBJECTLEVEL_ID>0</OBJECTLEVEL_ID>
<ATTRIBUTE_ID>1</ATTRIBUTE_ID>
<ATTRIBUTE_NAME>VERSION_INFO</ATTRIBUTE_NAME>
<OBJECT_COLUMN_FLAG>N</OBJECT_COLUMN_FLAG>
<DATA_TYPE>VARCHAR2</DATA_TYPE>
<PARENT_ATTRIBUTE_ID>0</PARENT_ATTRIBUTE_ID>

<ATTRIBUTE_TYPE>1</ATTRIBUTE_TYPE>
<HAS_ATTRIBUTES>0</HAS_ATTRIBUTES>
<LEAF_NODE>1</LEAF_NODE>
<REQUIRED_FLAG>N</REQUIRED_FLAG>
<IS_MAPPED>false</IS_MAPPED>
</ECX_OBJECT_ATTRIBUTES>
<ECX_OBJECT_ATTRIBUTES>
<OBJECTLEVEL_ID>0</OBJECTLEVEL_ID>
<ATTRIBUTE_ID>2</ATTRIBUTE_ID>
<ATTRIBUTE_NAME>SAVED_WITH</ATTRIBUTE_NAME>
<OBJECT_COLUMN_FLAG>N</OBJECT_COLUMN_FLAG>
<DATA_TYPE>VARCHAR2</DATA_TYPE>
<PARENT_ATTRIBUTE_ID>1</PARENT_ATTRIBUTE_ID>

<ATTRIBUTE_TYPE>1</ATTRIBUTE_TYPE>
<HAS_ATTRIBUTES>0</HAS_ATTRIBUTES>
<LEAF_NODE>1</LEAF_NODE>
<REQUIRED_FLAG>N</REQUIRED_FLAG>
<IS_MAPPED>false</IS_MAPPED>
</ECX_OBJECT_ATTRIBUTES>
<ECX_OBJECT_ATTRIBUTES>
<OBJECTLEVEL_ID>0</OBJECTLEVEL_ID>
<ATTRIBUTE_ID>3</ATTRIBUTE_ID>
<ATTRIBUTE_NAME>MINIMUM_VER</ATTRIBUTE_NAME>
<OBJECT_COLUMN_FLAG>N</OBJECT_COLUMN_FLAG>
<DATA_TYPE>VARCHAR2</DATA_TYPE>
<PARENT_ATTRIBUTE_ID>1</PARENT_ATTRIBUTE_ID>

<ATTRIBUTE_TYPE>1</ATTRIBUTE_TYPE>
<HAS_ATTRIBUTES>0</HAS_ATTRIBUTES>
<LEAF_NODE>1</LEAF_NODE>
<REQUIRED_FLAG>N</REQUIRED_FLAG>
<IS_MAPPED>false</IS_MAPPED>
</ECX_OBJECT_ATTRIBUTES>
<ECX_OBJECT_ATTRIBUTES>
<OBJECTLEVEL_ID>0</OBJECTLEVEL_ID>
<ATTRIBUTE_ID>4</ATTRIBUTE_ID>
<ATTRIBUTE_NAME>HOME_LIST</ATTRIBUTE_NAME>
<OBJECT_COLUMN_FLAG>N</OBJECT_COLUMN_FLAG>

Integration Repository Annotation Standards A-27

<DATA_TYPE>VARCHAR2</DATA_TYPE>
<PARENT_ATTRIBUTE_ID>0</PARENT_ATTRIBUTE_ID>

<ATTRIBUTE_TYPE>1</ATTRIBUTE_TYPE>
<HAS_ATTRIBUTES>0</HAS_ATTRIBUTES>
<LEAF_NODE>1</LEAF_NODE>
<REQUIRED_FLAG>N</REQUIRED_FLAG>
<IS_MAPPED>false</IS_MAPPED>
</ECX_OBJECT_ATTRIBUTES>
<ECX_OBJECT_ATTRIBUTES>
<OBJECTLEVEL_ID>0</OBJECTLEVEL_ID>
<ATTRIBUTE_ID>5</ATTRIBUTE_ID>
<ATTRIBUTE_NAME>HOME</ATTRIBUTE_NAME>
<OBJECT_COLUMN_FLAG>N</OBJECT_COLUMN_FLAG>
<DATA_TYPE>VARCHAR2</DATA_TYPE>
<PARENT_ATTRIBUTE_ID>4</PARENT_ATTRIBUTE_ID>

<ATTRIBUTE_TYPE>1</ATTRIBUTE_TYPE>
<HAS_ATTRIBUTES>4</HAS_ATTRIBUTES>
<LEAF_NODE>0</LEAF_NODE>
<REQUIRED_FLAG>N</REQUIRED_FLAG>
<IS_MAPPED>false</IS_MAPPED>
</ECX_OBJECT_ATTRIBUTES>
<ECX_OBJECT_ATTRIBUTES>
<OBJECTLEVEL_ID>0</OBJECTLEVEL_ID>
<ATTRIBUTE_ID>6</ATTRIBUTE_ID>
<ATTRIBUTE_NAME>NAME</ATTRIBUTE_NAME>
<OBJECT_COLUMN_FLAG>N</OBJECT_COLUMN_FLAG>
<DATA_TYPE>VARCHAR2</DATA_TYPE>
<PARENT_ATTRIBUTE_ID>5</PARENT_ATTRIBUTE_ID>

<ATTRIBUTE_TYPE>2</ATTRIBUTE_TYPE>
<HAS_ATTRIBUTES>0</HAS_ATTRIBUTES>
<LEAF_NODE>1</LEAF_NODE>
<REQUIRED_FLAG>N</REQUIRED_FLAG>
<IS_MAPPED>false</IS_MAPPED>
</ECX_OBJECT_ATTRIBUTES>
<ECX_OBJECT_ATTRIBUTES>
<OBJECTLEVEL_ID>0</OBJECTLEVEL_ID>
<ATTRIBUTE_ID>7</ATTRIBUTE_ID>
<ATTRIBUTE_NAME>LOC</ATTRIBUTE_NAME>
<OBJECT_COLUMN_FLAG>N</OBJECT_COLUMN_FLAG>
<DATA_TYPE>VARCHAR2</DATA_TYPE>
<PARENT_ATTRIBUTE_ID>5</PARENT_ATTRIBUTE_ID>

<ATTRIBUTE_TYPE>2</ATTRIBUTE_TYPE>
<HAS_ATTRIBUTES>0</HAS_ATTRIBUTES>
<LEAF_NODE>1</LEAF_NODE>
<REQUIRED_FLAG>N</REQUIRED_FLAG>
<IS_MAPPED>false</IS_MAPPED>
</ECX_OBJECT_ATTRIBUTES>
<ECX_OBJECT_ATTRIBUTES>
<OBJECTLEVEL_ID>0</OBJECTLEVEL_ID>
<ATTRIBUTE_ID>8</ATTRIBUTE_ID>
<ATTRIBUTE_NAME>TYPE</ATTRIBUTE_NAME>
<OBJECT_COLUMN_FLAG>N</OBJECT_COLUMN_FLAG>
<DATA_TYPE>VARCHAR2</DATA_TYPE>
<PARENT_ATTRIBUTE_ID>5</PARENT_ATTRIBUTE_ID>

<ATTRIBUTE_TYPE>2</ATTRIBUTE_TYPE>
<HAS_ATTRIBUTES>0</HAS_ATTRIBUTES>

A-28 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

<LEAF_NODE>1</LEAF_NODE>
<REQUIRED_FLAG>N</REQUIRED_FLAG>
<IS_MAPPED>false</IS_MAPPED>
</ECX_OBJECT_ATTRIBUTES>
<ECX_OBJECT_ATTRIBUTES>
<OBJECTLEVEL_ID>0</OBJECTLEVEL_ID>
<ATTRIBUTE_ID>9</ATTRIBUTE_ID>
<ATTRIBUTE_NAME>IDX</ATTRIBUTE_NAME>
<OBJECT_COLUMN_FLAG>N</OBJECT_COLUMN_FLAG>
<DATA_TYPE>VARCHAR2</DATA_TYPE>
<PARENT_ATTRIBUTE_ID>5</PARENT_ATTRIBUTE_ID>

<ATTRIBUTE_TYPE>2</ATTRIBUTE_TYPE>
<HAS_ATTRIBUTES>0</HAS_ATTRIBUTES>
<LEAF_NODE>1</LEAF_NODE>
<REQUIRED_FLAG>N</REQUIRED_FLAG>
<IS_MAPPED>false</IS_MAPPED>
</ECX_OBJECT_ATTRIBUTES>
</ECX_OBJECT_LEVELS>
</ECX_OBJECTS>
<ECX_OBJECTS>
<OBJECT_ID>2</OBJECT_ID>
<OBJECT_NAME>TGT</OBJECT_NAME>
<OBJECT_TYPE>XML</OBJECT_TYPE>
<OBJECT_DESCRIPTION>Target Definition</OBJECT_DESCRIPTION>
<OBJECT_STANDARD>OAG</OBJECT_STANDARD>
<ROOT_ELEMENT>INVENTORY</ROOT_ELEMENT>

<ECX_OBJECT_LEVELS>
<OBJECTLEVEL_ID>1</OBJECTLEVEL_ID>
<OBJECT_ID>2</OBJECT_ID>
<OBJECT_LEVEL>0</OBJECT_LEVEL>
<OBJECT_LEVEL_NAME>INVENTORY</OBJECT_LEVEL_NAME>
<PARENT_LEVEL>0</PARENT_LEVEL>
<ENABLED>Y</ENABLED>
<ECX_OBJECT_ATTRIBUTES>
<OBJECTLEVEL_ID>1</OBJECTLEVEL_ID>
<ATTRIBUTE_ID>0</ATTRIBUTE_ID>
<ATTRIBUTE_NAME>INVENTORY</ATTRIBUTE_NAME>
<OBJECT_COLUMN_FLAG>N</OBJECT_COLUMN_FLAG`

<PARENT_ATTRIBUTE_ID>0</PARENT_ATTRIBUTE_ID>

<ATTRIBUTE_TYPE>1</ATTRIBUTE_TYPE>
<HAS_ATTRIBUTES>0</HAS_ATTRIBUTES>
<LEAF_NODE>1</LEAF_NODE>
<REQUIRED_FLAG>Y</REQUIRED_FLAG>
<IS_MAPPED>false</IS_MAPPED>
</ECX_OBJECT_ATTRIBUTES>
<ECX_OBJECT_ATTRIBUTES>
<OBJECTLEVEL_ID>1</OBJECTLEVEL_ID>
<ATTRIBUTE_ID>1</ATTRIBUTE_ID>
<ATTRIBUTE_NAME>VERSION_INFO</ATTRIBUTE_NAME>
<OBJECT_COLUMN_FLAG>N</OBJECT_COLUMN_FLAG>
<DATA_TYPE>VARCHAR2</DATA_TYPE>
<PARENT_ATTRIBUTE_ID>0</PARENT_ATTRIBUTE_ID>

<ATTRIBUTE_TYPE>1</ATTRIBUTE_TYPE>
<HAS_ATTRIBUTES>0</HAS_ATTRIBUTES>

Integration Repository Annotation Standards A-29

<LEAF_NODE>1</LEAF_NODE>
<REQUIRED_FLAG>N</REQUIRED_FLAG>
<IS_MAPPED>false</IS_MAPPED>
</ECX_OBJECT_ATTRIBUTES>
<ECX_OBJECT_ATTRIBUTES>
<OBJECTLEVEL_ID>1</OBJECTLEVEL_ID>
<ATTRIBUTE_ID>2</ATTRIBUTE_ID>
<ATTRIBUTE_NAME>SAVED_WITH</ATTRIBUTE_NAME>
<OBJECT_COLUMN_FLAG>N</OBJECT_COLUMN_FLAG>
<DATA_TYPE>VARCHAR2</DATA_TYPE>
<PARENT_ATTRIBUTE_ID>1</PARENT_ATTRIBUTE_ID>

<ATTRIBUTE_TYPE>1</ATTRIBUTE_TYPE>
<HAS_ATTRIBUTES>0</HAS_ATTRIBUTES>
<LEAF_NODE>1</LEAF_NODE>
<REQUIRED_FLAG>N</REQUIRED_FLAG>
<IS_MAPPED>false</IS_MAPPED>
</ECX_OBJECT_ATTRIBUTES>
<ECX_OBJECT_ATTRIBUTES>
<OBJECTLEVEL_ID>1</OBJECTLEVEL_ID>
<ATTRIBUTE_ID>3</ATTRIBUTE_ID>
<ATTRIBUTE_NAME>MINIMUM_VER</ATTRIBUTE_NAME>
<OBJECT_COLUMN_FLAG>N</OBJECT_COLUMN_FLAG>
<DATA_TYPE>VARCHAR2</DATA_TYPE>
<PARENT_ATTRIBUTE_ID>1</PARENT_ATTRIBUTE_ID>

<ATTRIBUTE_TYPE>1</ATTRIBUTE_TYPE>
<HAS_ATTRIBUTES>0</HAS_ATTRIBUTES>
<LEAF_NODE>1</LEAF_NODE>
<REQUIRED_FLAG>N</REQUIRED_FLAG>
<IS_MAPPED>false</IS_MAPPED>
</ECX_OBJECT_ATTRIBUTES>
<ECX_OBJECT_ATTRIBUTES>
<OBJECTLEVEL_ID>1</OBJECTLEVEL_ID>
<ATTRIBUTE_ID>4</ATTRIBUTE_ID>
<ATTRIBUTE_NAME>HOME_LIST</ATTRIBUTE_NAME>
<OBJECT_COLUMN_FLAG>N</OBJECT_COLUMN_FLAG>
<DATA_TYPE>VARCHAR2</DATA_TYPE>
<PARENT_ATTRIBUTE_ID>0</PARENT_ATTRIBUTE_ID>

<ATTRIBUTE_TYPE>1</ATTRIBUTE_TYPE>
<HAS_ATTRIBUTES>0</HAS_ATTRIBUTES>
<LEAF_NODE>1</LEAF_NODE>
<REQUIRED_FLAG>N</REQUIRED_FLAG>
<IS_MAPPED>false</IS_MAPPED>
</ECX_OBJECT_ATTRIBUTES>
<ECX_OBJECT_ATTRIBUTES>
<OBJECTLEVEL_ID>1</OBJECTLEVEL_ID>
<ATTRIBUTE_ID>5</ATTRIBUTE_ID>
<ATTRIBUTE_NAME>HOME</ATTRIBUTE_NAME>
<OBJECT_COLUMN_FLAG>N</OBJECT_COLUMN_FLAG>
<DATA_TYPE>VARCHAR2</DATA_TYPE>
<PARENT_ATTRIBUTE_ID>4</PARENT_ATTRIBUTE_ID>

<ATTRIBUTE_TYPE>1</ATTRIBUTE_TYPE>
<HAS_ATTRIBUTES>4</HAS_ATTRIBUTES>
<LEAF_NODE>0</LEAF_NODE>
<REQUIRED_FLAG>N</REQUIRED_FLAG>
<IS_MAPPED>false</IS_MAPPED>
</ECX_OBJECT_ATTRIBUTES>
<ECX_OBJECT_ATTRIBUTES>

A-30 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

<OBJECTLEVEL_ID>1</OBJECTLEVEL_ID>
<ATTRIBUTE_ID>6</ATTRIBUTE_ID>
<ATTRIBUTE_NAME>NAME</ATTRIBUTE_NAME>
<OBJECT_COLUMN_FLAG>N</OBJECT_COLUMN_FLAG>
<DATA_TYPE>VARCHAR2</DATA_TYPE>
<PARENT_ATTRIBUTE_ID>5</PARENT_ATTRIBUTE_ID>

<ATTRIBUTE_TYPE>2</ATTRIBUTE_TYPE>
<HAS_ATTRIBUTES>0</HAS_ATTRIBUTES>
<LEAF_NODE>1</LEAF_NODE>
<REQUIRED_FLAG>N</REQUIRED_FLAG>
<IS_MAPPED>false</IS_MAPPED>
</ECX_OBJECT_ATTRIBUTES>
<ECX_OBJECT_ATTRIBUTES>
<OBJECTLEVEL_ID>1</OBJECTLEVEL_ID>
<ATTRIBUTE_ID>7</ATTRIBUTE_ID>
<ATTRIBUTE_NAME>LOC</ATTRIBUTE_NAME>
<OBJECT_COLUMN_FLAG>N</OBJECT_COLUMN_FLAG>
<DATA_TYPE>VARCHAR2</DATA_TYPE>
<PARENT_ATTRIBUTE_ID>5</PARENT_ATTRIBUTE_ID>

<ATTRIBUTE_TYPE>2</ATTRIBUTE_TYPE>
<HAS_ATTRIBUTES>0</HAS_ATTRIBUTES>
<LEAF_NODE>1</LEAF_NODE>
<REQUIRED_FLAG>N</REQUIRED_FLAG>
<IS_MAPPED>false</IS_MAPPED>
</ECX_OBJECT_ATTRIBUTES>
<ECX_OBJECT_ATTRIBUTES>
<OBJECTLEVEL_ID>1</OBJECTLEVEL_ID>
<ATTRIBUTE_ID>8</ATTRIBUTE_ID>
<ATTRIBUTE_NAME>TYPE</ATTRIBUTE_NAME>
<OBJECT_COLUMN_FLAG>N</OBJECT_COLUMN_FLAG>
<DATA_TYPE>VARCHAR2</DATA_TYPE>
<PARENT_ATTRIBUTE_ID>5</PARENT_ATTRIBUTE_ID>

<ATTRIBUTE_TYPE>2</ATTRIBUTE_TYPE>
<HAS_ATTRIBUTES>0</HAS_ATTRIBUTES>
<LEAF_NODE>1</LEAF_NODE>
<REQUIRED_FLAG>N</REQUIRED_FLAG>
<IS_MAPPED>false</IS_MAPPED>
</ECX_OBJECT_ATTRIBUTES>
<ECX_OBJECT_ATTRIBUTES>
<OBJECTLEVEL_ID>1</OBJECTLEVEL_ID>
<ATTRIBUTE_ID>9</ATTRIBUTE_ID>
<ATTRIBUTE_NAME>IDX</ATTRIBUTE_NAME>
<OBJECT_COLUMN_FLAG>N</OBJECT_COLUMN_FLAG>
<DATA_TYPE>VARCHAR2</DATA_TYPE>
<PARENT_ATTRIBUTE_ID>5</PARENT_ATTRIBUTE_ID>

<ATTRIBUTE_TYPE>2</ATTRIBUTE_TYPE>
<HAS_ATTRIBUTES>0</HAS_ATTRIBUTES>
<LEAF_NODE>1</LEAF_NODE>
<REQUIRED_FLAG>N</REQUIRED_FLAG>
<IS_MAPPED>false</IS_MAPPED>
</ECX_OBJECT_ATTRIBUTES>
</ECX_OBJECT_LEVELS>
</ECX_OBJECTS>
</ECX_MAPPINGS>
<SCRIPT SRC="/oracle_smp_chronos/oracle_smp_chronos.js"></SCRIPT>

Integration Repository Annotation Standards A-31

Business Event Annotations
This section describes what you should know about Integration Repository annotations
for business events, and includes the following topics:

• Annotating Business Events

• Annotations for Business Events - Syntax

• Required Annotations

• Optional Annotations

• Template

• Example

Annotating Business Events
• You should annotate business events in *.wfx files.

• You should annotate only events. Subscriptions need not be annotated; they will
not be available in Integration Repository.

• Before annotating, make sure that no comments beginning with /*# are present.
These "slash-star-pound" characters are used to mark the start of repository
annotations, and will produce errors or unspecified behavior if used in normal
comments.

• To annotate, use a text editor such as emacs or vi to edit the file.

• In the .wfx file, place the annotations within the <IREP_ANNOTATION> tag for the
business event. Note that the <IREP_ANNOTATION> tag is a child node of the
<WF_EVENTS> tag.

• For .wfx files having multiple business event definitions, each of the business event
definitions should be separately annotated. That is, you should place the annotation
within an <IREP_ANNOTATION> tag for the appropriate business events.

• Enter a meaningful description that covers the condition under which the business
event is raised, and the UI action that invokes the business event.

• Define product codes in FND_APPLICATION.

• Use existing business entities for your events. For the list of existing business
entities, see Business Entity Annotation Guidelines, page A-37.

A-32 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

• If you decide not to annotate or publish the event after all, you should remove the
annotation only, and not the associated tags.

The presence of either the <IREP_ANNOTATION/> tag or
<IREP_ANNOTATION></IREP_ANNOTATION> tag is an indication to the loader
that the business event has been reviewed for annotation and does not need to be
published to integration repository. The next time the user downloads these events,
the loader will insert empty <IREP_ANNOTATION> tags.

• If you remove the entire <IREP_ANNOTATION> tag for the business event and then
upload it, on a subsequent download the loader will insert a partially filled
annotation template for the business event.

Annotations for Business Events - Syntax
The annotations for business events are:
<IREP_ANNOTATION>
/*#
* This event is raised after the Purchase Order has been pushed
* to Oracle Order management open interface tables. This event
* will start the workflow OEOI/R_OEOI_ORDER_IMPORT to import the
* order.
* @rep:scope public
* @rep:displayname OM Generic Inbound Event
* @rep:product ONT
* @rep:category BUSINESS_ENTITY ONT_SALES_ORDER
*/
</IREP_ANNOTATION>

Refer to General Guidelines for Annotations, page A-1 for details of element definitions.

Required Annotations
Follow the links below to view syntax and usage of each annotation.

• Must begin with description sentence(s)

• rep:displayname, page A-120

• rep:scope, page A-118

• rep:product, page A-119

• rep:category BUSINESS_ENTITY, page A-129

Optional Annotations
• link, page A-124

• see, page A-125

• rep:lifecycle, page A-123

Integration Repository Annotation Standards A-33

• rep:compatibility, page A-123

• rep:ihelp, page A-126

• rep:metalink, page A-127

• rep:doccd, page A-128

Template
You can use this template when annotating .wfx files.

A-34 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

.

.

.

<oracle.apps.wf.event.all.sync>
.
.
.
<WF_TABLE_DATA>
 <WF_EVENTS>
 <VERSION>...</VERSION>
 <GUID>....</GUID>
 <NAME>event name</NAME>
 <TYPE>EVENT</TYPE>
 <STATUS>ENABLED</STATUS>
 <GENERATE_FUNCTION/>
 <OWNER_NAME> ... </OWNER_NAME>
 <OWNER_TAG>...</OWNER_TAG>
 <CUSTOMIZATION_LEVEL>...</CUSTOMIZATION_LEVEL>
 <LICENSED_FLAG>..</LICENSED_FLAG>
 <DISPLAY_NAME>...</DISPLAY_NAME>
 <DESCRIPTION> Description for business event </DESCRIPTION>
 <IREP_ANNOTATION>
 /*#
 * Put your long package description here; it can span multiple lines.
 *
 * @rep:scope <scope>
 * @rep:displayname <display name>
 * @rep:product <product or pseudoproduct short code>
 * @rep:category BUSINESS_ENTITY <entity name>
 */
 </IREP_ANNOTATION>
 </WF_EVENTS>
</WF_TABLE_DATA>

.

.

.

<WF_TABLE_DATA>
 <WF_EVENTS>
 <VERSION>...</VERSION>
 <GUID>....</GUID>
 <NAME>event name</NAME>
 <TYPE>EVENT</TYPE>
 <STATUS>ENABLED</STATUS>
 <GENERATE_FUNCTION/>
 <OWNER_NAME> ... </OWNER_NAME>
 <OWNER_TAG>...</OWNER_TAG>
 <CUSTOMIZATION_LEVEL>...</CUSTOMIZATION_LEVEL>
 <LICENSED_FLAG>..</LICENSED_FLAG>
 <DISPLAY_NAME>...</DISPLAY_NAME>
 <DESCRIPTION> Description for business event </DESCRIPTION>
 <IREP_ANNOTATION>
 /*#
 * Put your long package description here; it can span multiple lines.
 *
 * @rep:scope <scope>
 * @rep:displayname <display name>
 * @rep:product <product or pseudoproduct short code>

Integration Repository Annotation Standards A-35

* @rep:category BUSINESS_ENTITY <entity name>
 */
 </IREP_ANNOTATION>
 </WF_EVENTS>
</WF_TABLE_DATA>

.

.

.
</oracle.apps.wf.event.all.sync>

Example
For reference, here is an example of an annotated .wfx file:

A-36 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

<?xml version="1.0" encoding="UTF-8" ?>
- <!-- $Header: oeevtname.wfx 120.0 2005/06/01 23:11:59 appldev noship
$ -->
- <!-- dbdrv: exec java oracle/apps/fnd/wf WFXLoad.class java
&phase=daa+38 \ -->
- <!-- dbdrv: checkfile(115.2=120.0):~PROD:~PATH:~FILE \ -->
- <!-- dbdrv: -u &un_apps &pw_apps &jdbc_db_addr &jdbc_protocol US \
-->
- <!-- dbdrv: &fullpath_~PROD_~PATH_~FILE -->
- <oracle.apps.wf.event.all.sync>
- <ExternalElement>
- <OraTranslatibility>
- <XlatElement Name="WF_EVENTS">
- <XlatID>
 <Key>NAME</Key>
 </XlatID>
 <XlatElement Name="DISPLAY_NAME" MaxLen="80" Expansion="50" />
- <XlatID>
 <Key Type="CONSTANT">DISPLAY_NAME</Key>
 </XlatID>
 <XlatElement Name="DESCRIPTION" MaxLen="2000" Expansion="50" />
- <XlatID>
 <Key Type="CONSTANT">DESCRIPTION</Key>
 </XlatID>
 </XlatElement>
 </OraTranslatibility>
 </ExternalElement>
- <WF_TABLE_DATA>
+ <WF_EVENTS>
 <VERSION>1.0</VERSION>
 <GUID>A3BBD9D401776AE4E0340800208ACA52</GUID>
 <NAME>oracle.apps.ont.oi.po_ack.create</NAME>
 <TYPE>EVENT</TYPE>
 <STATUS>ENABLED</STATUS>
 <GENERATE_FUNCTION />
 <OWNER_NAME>Oracle Order Management</OWNER_NAME>
 <OWNER_TAG>ONT</OWNER_TAG>
 <CUSTOMIZATION_LEVEL>L</CUSTOMIZATION_LEVEL>
 <LICENSED_FLAG>Y</LICENSED_FLAG>
 <DISPLAY_NAME>Event for 3A4 Outbound Acknowledgment</DISPLAY_NAME>
 <DESCRIPTION>Event for 3A4 Outbound Acknowledgment</DESCRIPTION>
 <IREP_ANNOTATION>/*# * This event confirms the buyer of the results of
order import. This event will start the workflow
OEOA/R_OEOA_SEND_ACKNOWLEDGMENT. * * @rep:scope public *
@rep:displayname Event for 3A4 Outbound Acknowledgment * @rep:product
ONT * @rep:category BUSINESS_ENTITY ONT_SALES_ORDER */</IREP_ANNOTATION>

 </WF_EVENTS>
 </WF_TABLE_DATA>
- <WF_TABLE_DATA>
- <WF_EVENTS>
 <VERSION>1.0</VERSION>
 <GUID>9B8BF9DB705D09C9E0340800208ACA52</GUID>
 <NAME>oracle.apps.ont.oi.po_inbound.create</NAME>
 <TYPE>EVENT</TYPE>
 <STATUS>ENABLED</STATUS>
 <GENERATE_FUNCTION />
 <OWNER_NAME>Oracle Order Management</OWNER_NAME>
 <OWNER_TAG>ONT</OWNER_TAG>
 <CUSTOMIZATION_LEVEL>L</CUSTOMIZATION_LEVEL>
 <LICENSED_FLAG>Y</LICENSED_FLAG>

Integration Repository Annotation Standards A-37

<DISPLAY_NAME>OM Generic Inbound Event</DISPLAY_NAME>
 <DESCRIPTION>OM Generic Inbound Event</DESCRIPTION>
 <IREP_ANNOTATION>/*# * This event is raised after the Purchase Order
has been pushed to Oracle Order management open interface tables. This
event will start the workflow OEOI/R_OEOI_ORDER_IMPORT to import the
order. * * @rep:direction OUT * @rep:scope public * @rep:displayname OM
Generic Inbound Event * @rep:lifecycle active * @rep:product ONT *
@rep:compatibility S * @rep:category BUSINESS_ENTITY ONT_SALES_ORDER
*/</IREP_ANNOTATION>
 </WF_EVENTS>
 </WF_TABLE_DATA>
 </oracle.apps.wf.event.all.sync>

Business Entity Annotation Guidelines
Business entities are things that either perform business activities or have business
activities performed on them. Account numbers, employees, purchase orders,
customers, and receipts are all examples of business entities.

What Is the Importance of Business Entities?

Business entities are highly desired search criteria in the context of the Integration
Repository. The design of the Integration Repository UI includes "browse by business
entity" functionality.

Where Do Business Entities Appear in Repository Annotations?

The rep:category BUSINESS_ENTITY annotation is where you associate a given
interface with a business entity. For a general description of the rep:category
annotation, see rep:category, page A-129.

Note: In certain cases where the entity's display name itself is
sufficiently self-descriptive, it can serve as the description as well.

Existing Business Entities

Custom integration interfaces can use only seeded or existing business entities.

Note: Integration Repository currently does not support the creation of
custom Product Family and custom Business Entity.

The following table lists the existing business entities:

List of Business Entities

BUSINESS_ENTITY_CODE MEANING DESCRIPTION

AHL_DOCUMENT Document Electronic Document or
Document Reference

A-38 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

BUSINESS_ENTITY_CODE MEANING DESCRIPTION

AHL_ITEM_COMPOSITION Tracked Item Composition It is the list of item groups or
non-tracked items that a
tracked item is composed of.

AHL_ITEM_GROUP Alternate Item Group A group of similar items
where one can be
interchanged for another
while performing
maintenance.

AHL_MAINT_OPERATION Maintenance Operation It defines resource and
material requirements. It is
basic definition of work.

AHL_MAINT_REQUIREME
NT

Maintenance Requirement It is maintenance requirement
definition. It defines routes,
applicability on item or unit
instances. It also defines
frequency based on time and
counters.

AHL_MAINT_ROUTE Maintenance Route It contains set of operations,
and defines dispositions,
resource and material
requirements.

AHL_MAINT_VISIT Maintenance Visit It connects an unit or item
instance with a block of tasks.
It is an organization and
department where the
maintenance work takes
place, and when the work is
to be accomplished.

AHL_MAINT_WORKORDER Maintenance Workorder Maintenance Workorder with
a schedule

AHL_MASTER_CONFIG Master Configuration A Master Configuration
models the structure of an
electromechanical system
assembly.

Integration Repository Annotation Standards A-39

BUSINESS_ENTITY_CODE MEANING DESCRIPTION

AHL_OSP_ORDER Outside Service Order An order that contains the
information required to
service parts by a third party
organization.

AHL_PROD_CLASS Product Classification It is the categorization of units
or items pertaining to
maintenance and usage.

AHL_UNIT_CONFIG Unit Configuration An Unit Configuration
describes the structure of an
assembled electromechanical
system.

AHL_UNIT_EFFECTIVITY Unit Maintenance Plan
Schedule

Unit Maintenance Plan with a
due date

AHL_UNIT_SCHEDULES Unit Usage Event Event describes usage of a
configured unit for a specific
time period, such as an
airplane flight.

AME_ACTION Approval Action Approval Action specifies an
action to be performed, if the
conditions of an approval rule
is satisfied. For example,
'Require approvals up to the
first three superiors'.

AME_APPROVAL Approval Approval

AME_APPROVER_GROUP Approvals Management
Approver Group

A predefined group of
approvers who will be
assigned to approve actions of
specific business
processes/transactions.

AME_APPROVER_TYPE Approver Type Classification of approvers
who can be used in
Approvals Management. For
example, all HR employees
are classified as the approver
type as PER in Approvals
Management.

A-40 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

BUSINESS_ENTITY_CODE MEANING DESCRIPTION

AME_ATTRIBUTE Approvals Management
Attribute

Object to capture business
attributes for a transaction
which requires approval. For
example,
INVOICE_AMOUNT can be
an attribute which captures
the total amount of an
invoice.

AME_CONDITION Approval Rule Condition Condition based on the
Approvals Management
attribute that evaluates the
approval rules. An example of
condition on the attribute
INVOICE_AMOUNT can be
"INVOICE_AMOUNT >
10,000 USD".

AME_CONFIG_VAR Approval Configuration
Variable

A set of approval
configurations which controls
certain behavior within
Approvals Management.

AME_ITEM_CLASS Approvals Management Item
Class

It is the classification of
certain Approval
Management objects into
different classes like Header,
Line Item, Cost Center.

AME_RULE Approvals Business Rule Approval Business rule
consisting of a set of
conditions, when satisfied,
will dictate some actions to
happen (which will result in a
list of approvers).

AME_TRANSACTION_TYPE Approval Transaction Type A set of approval attributes,
conditions, and rules making
up a approval policy.

AMS_BUDGETS Marketing Budget It is the budget for Marketing
Campaigns, Events, and other
marketing activities.

Integration Repository Annotation Standards A-41

BUSINESS_ENTITY_CODE MEANING DESCRIPTION

AMS_CAMPAIGN Marketing Campaign Marketing Campaign

AMS_EVENT Marketing Event Marketing Event

AMS_LEAD Sales Lead Sales Lead

AMS_LIST Marketing List Marketing List

AMS_METRIC Marketing Metric It is a measurement of
marketing operations, such
as, number of responses
generated by a campaign.

AP_INVOICE Payables Invoice Payables Invoice

AP_PAYMENT Supplier Payment Supplier Payment

AP_PAYMENT_ADVICE Payment Advice Payment Advice

AP_SUPPLIER Supplier Supplier

AP_SUPPLIER_CONTACT Supplier Contact Supplier Contact

AP_SUPPLIER_SITE Supplier Site Supplier Site

AR_ADJUSTMENT Receivables Invoice
Adjustment

Receivables Invoice
Adjustment

AR_BILLS_RECEIVABLE Bills Receivable Bills Receivable

AR_CHARGEBACK Chargeback Chargeback

AR_CREDIT_MEMO Credit Memo Credit Memo

AR_CREDIT_REQUEST Credit Request Credit Request

AR_DEBIT_MEMO Debit Memo Debit Memo

AR_DEPOSIT Deposit Deposit

A-42 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

BUSINESS_ENTITY_CODE MEANING DESCRIPTION

AR_INVOICE Receivables Invoice Receivables Invoice

AR_PREPAYMENT Prepayment Prepayment

AR_RECEIPT Receivables Receipt Receivables Receipt

AR_REMITTANCE Remittance Remittance

AR_REVENUE Revenue Revenue

AR_SALES_CREDIT Sales Credit Sales Credit

AR_SALES_TAX_RATE Sales Tax Rate Sales Tax Rate

ASN_OPPORTUNITY Sales Opportunity Sales Opportunity

ASN_SALES_TEAM Sales Team Sales Team on an
Opportunity or an Account,
or a Lead

ASO_QUOTE Sales Quote(1) A sales quote is a business
object that contains detailed
information on the products,
prices, terms, etc. in the
solution proposed to potential
customers(1).

AS_OPPORTUNITY Sales Opportunity(1) Sales Opportunity(1)

BEN_CWB_3RD_PARTY_ST
OCK_OPTS

Third Party Stock Option Third Party Stock Options

BEN_CWB_AUDIT Compensation Workbench
Audit

It records every change event
within a Compensation
Workbench user session. This
covers all compensation
elements.

BEN_CWB_AWARD Compensation Workbench
Award

It is an employee monetary
award. For example, salary
raise, salary bonus, or shares.

Integration Repository Annotation Standards A-43

BUSINESS_ENTITY_CODE MEANING DESCRIPTION

BEN_CWB_BUDGET Compensation Workbench
Budget

it is the budget of money or
shares available for a manager
to distribute including base
salaries and bonuses.

BEN_CWB_PERSON Compensation Workbench
Person

Snapshot of a HR person on a
specific date, for
Compensation Workbench
processing.

BEN_CWB_PLAN Compensation Workbench
Plan

It is a Compensation Plan,
such as Salary Raise Plan,
Bonus Plan or Stock Option
Plan.

BEN_CWB_TASK Compensation Workbench
Task

It is the task performed in
managing a Compensation
Workbench Plan. For
example, budgeting,
allocation of amounts,
submitting work and
approval.

BIS_REPORT BIS Report BIS Report

BOM_BILL_OF_MATERIAL Bill of Material This interface adds, changes,
and deletes Bill of Material of
any type.

BOM_MFG_ROUTING Product Manufacturing
Routing

A routing defines the
step-by-step operations
required to produce an
assembly in accordance with
its Bill of Material.

BOM_PRODUCT_FAMILY Product Family Product Family for Planning
Purposes

CAC_APPOINTMENT Appointment Appointment or Meeting for a
given date and time period

A-44 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

BUSINESS_ENTITY_CODE MEANING DESCRIPTION

CAC_BUSINESS_OBJECT_M
ETA_DATA

Business Object Meta Data
Definition

Metadata definition for a
Business Entity. It is used to
dynamically link to external
business entities. Also it is
used for querying entity
details, building dynamic
LOVs and search pages.

CAC_CAL_TASK Calendar Task Task that will appear on
User's Calendar as a time
Blocking Task or a Todo.

CAC_NOTE Note Notes or Comments
associated to different
Business Objects

CAC_RS_TIME_BOOKING Resource Time Booking Time Booking for Person and
non Person (e.g. Conference
room) Resources

CAC_SCHEDULE Schedule Schedule

CAC_SCHEDULE_TEMPLAT
E

Schedule Template Schedule Template

CAC_SYNC_SERVER Calendar Synchronization
Server

Calendar server to
synchronize calendar entities
like Task, Appointments,
Contacts etc. to external
calendars.

CAC_TASK_TEMPLATE Calendar Task Template Calendar Task Template

CCT_ADVANCED_TELEPH
ONY_SDK

Advanced Telephony SDK This SDK allows telephony
integration with Oracle
E-Business Suite using server
side integration.

CCT_BASIC_TELEPHONY_S
DK

Basic Telephony SDK This SDK allows telephony
integration with Oracle
E-Business Suite using client
side integration.

Integration Repository Annotation Standards A-45

BUSINESS_ENTITY_CODE MEANING DESCRIPTION

CE_BANK_STATEMENT Bank Statement Bank Statement

CE_RECONCILIATION_ITE
M

Reconciliation Item Reconciliation Item

CHV_PLANNING_SCHEDU
LE

Buyer Forecast Buyer Forecast

CHV_SHIPPING_SCHEDUL
E

Buyer Shipment Request Buyer Shipment Request

CLN_TRADING_PARTNER_
COLL

Collaboration Trading Partner Trading Partner

CLN_TRADING_PARTNER_
COLL_EVENT

Trading Partner Collaboration
Event

Trading Partner Collaboration
Event

CN_COMP_PLANS Incentive Compensation Plan Incentive Compensation Plan

CN_INCENTIVES Incentive Compensation Variable compensation or
rebates that can be monetary
or non-monetary rewards for
sales people, partners or
customers.

CSD_REPAIR_ESTIMATE Repair Estimate Repair Estimate shows the
total cost for the repair
execution, which can include
material, labor and expense
charge lines.

CSD_REPAIR_LOGISTICS Repair Logistics Repair Logistics track the
receiving and shipping of the
customer item being repaired
and also the items being
loaned.

CSD_REPAIR_ORDER Repair Order(1) Repair Order(1)

CSF_TASK_DEBRIEF Service Task Debrief Service task debrief of
material, labor and expense

A-46 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

BUSINESS_ENTITY_CODE MEANING DESCRIPTION

CSI_COUNTER Counters It provides a mechanism to
define and maintain different
types of Matrixes. These can
be attached to objects in the
Oracle E-Business Suite like
Installed Base Instances, or
Service Contract Lines.

CSI_ITEM_INSTANCE Item Instance Install Base Item Instance

CST_DEPARTMENT_OVER
HEAD

Manufacturing Department
Overhead Rate

Manufacturing Department
Overhead Rate

CST_ITEM_COST Inventory Item Cost Inventory Item Cost

CST_RESOURCE_COST Manufacturing Resource Unit
Cost

Manufacturing Resource Unit
Cost

CS_SERVICE_CHARGE Service Charge Service Charge

CS_SERVICE_REQUEST Service Request Service Request

CZ_CONFIG Configuration Configuration

CZ_CONFIG_MODEL Configuration Model Configuration Model

CZ_MODEL_PUB Configuration Model
Publication

Configuration Model
Publication

CZ_RP_FOLDER Configurator Repository
Folder

Configurator Repository
Folder

CZ_USER_INTERFACE Configuration Model User
Interface

Configuration Model User
Interface

DPP_EXECUTION_REQUES
T

Execution Integration Request It is an entity for integration
of DPP with other
Applications. It is used by
event invoked from DPP UI
and concurrent programs for
integration with external
applications like AR, AP, etc.

Integration Repository Annotation Standards A-47

BUSINESS_ENTITY_CODE MEANING DESCRIPTION

DPP_TRANSACTION_APPR
OVAL

Transaction Approval
Notification

This entity is defined for the
AME Approval for DPP
transaction. It is referenced in
UI on clicking of the Request
Approval button in a New
DPP transaction.

DPP_XMLG_OUTBOUND Outbound pre-approval
process

It is an entity used by events
to trigger preapproval process
through Oracle XML Gateway
for Price Protection.

EAM_ASSET_ACTIVITY_AS
SOCIATION

Maintenance Asset Activity
Association

Maintenance Asset Activity
Association

EAM_ASSET_ACTIVITY_SU
PPRESSION

Asset activity suppression
relations

It indicates that an asset
preventive maintenance
activity is suppressed due to
the performance of another
activity.

EAM_ASSET_AREA Maintenance Asset Area Maintenance Asset Area

EAM_ASSET_ATTRIBUTE_G
ROUPS

Maintenance Asset Attribute
Group

Maintenance Asset Attribute
Group

EAM_ASSET_ATTRIBUTE_V
ALUE

Maintenance Asset Attribute
Value

Maintenance Asset Attribute
Value

EAM_ASSET_METER Maintenance Asset Meter
Association

Maintenance Asset Meter
Association

EAM_ASSET_NUMBER Maintenance Asset Number Maintenance Asset Number

EAM_ASSET_ROUTE Maintenance Asset Route Maintenance Asset Route

EAM_COMPLETE_WO_OPE
RATION

Maintenance Work
Completion

Maintenance Work
Completion

EAM_DEPARTMENT_APPR
OVER

Maintenance Department
Approver

Maintenance Department
Approver - User or
responsibility

A-48 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

BUSINESS_ENTITY_CODE MEANING DESCRIPTION

EAM_METER Meter Meter

EAM_METER_READING Meter Reading Meter Reading

EAM_PARAMETER Maintenance Setup Maintenance Setup

EAM_PM_SCHEDULE Preventive Maintenance
Schedule

Preventive Maintenance
Schedule

EAM_SET_NAME Maintenance Set Maintenance Set

EAM_WORK_ORDER Asset Maintenance Work
Order

Asset Maintenance Work
Order

EAM_WORK_REQUEST Maintenance Work Request Maintenance Work Request

ECX_CONFIRM_BOD XML Gateway Confirmation
Message

XML Gateway Confirmation
Message

ECX_MESSAGE_DELIVERY XML Gateway Message
Delivery

It is used by both Oracle and
non Oracle messaging
systems to report delivery
status. Status information is
written to XML Gateway log
tables to track and report
transaction delivery data.

ECX_TRADING_PARTNER XML Gateway Message
Delivery(1)

It is used by both Oracle and
non Oracle messaging
systems to report delivery
status. Status information is
written to XML Gateway log
tables to track and report
transaction delivery data(1).

ECX_TRANSFORMATION XML Gateway
Transformation

This interface is used to apply
a style sheet to an XML
message and return the
transformed XML message
for further processing by the
calling environment.

Integration Repository Annotation Standards A-49

BUSINESS_ENTITY_CODE MEANING DESCRIPTION

EC_CODE_CONVERSION Code Conversion It converts Oracle's Internal
Codes to External System
Codes and vice-versa, such as
Currency Code, Unit Of
Measure.

EC_EDI_TRANSACTION_LA
YOUT

EDI Transaction Layout
Definition Report

EDI Transaction Layout
Definition Report

EC_INBOUND Inbound EDI Message It is an EDI message sent to
the system from a trading
partner.

EC_OUTBOUND Outbound EDI Message It is an EDI message sent from
the system to a trading
partner.

EC_TP_MERGE Trading Partner Merge It indicates a merge of
Trading Partners as a result of
an account merge in the
Trading Community
Architecture (TCA).

EDR_EVIDENCE_STORE E-Records Evidence Store E-Records Evidence Store

EDR_ISIGN_FILE_UPLOAD File Upload Approval
Request

File Upload Approval
Request

EGO_ITEM Catalog Item An item that is listed in the
Item Catalog.

EGO_USER_DEFINED_ATTR
_GROUP

PLM User Defined Attributes This interface adds, changes,
deletes, and queries
User-defined attributes for
any entity.

ENG_CHANGE_ORDER Product Change Order Product or Engineering
Change

FA_ASSET Asset The interface for adding
assets to Oracle Assets.

A-50 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

BUSINESS_ENTITY_CODE MEANING DESCRIPTION

FA_CAPITAL_BUDGET Capital Budget The interface for uploading
capital budgets to Oracle
Assets.

FA_LEASE_PAYMENT Lease Payment The interface for sending
lease payment lines to Oracle
Payables.

FEM_ACCOUNT_FACT Analytic Account Information Detail level financial account
data

FEM_BALANCES_FACT Analytic Balances It includes Ledger input and
Ledger Profitability
processing results.

FEM_FACT_REPOSITORY Enterprise Analytical Fact
Repository

It contains numeric facts
(often called measurements)
that can be categorized by
multiple dimensions. It
contains either detail-level
facts or facts that have been
aggregated.

FEM_STATISTICAL_FACT Analytic Statistical
Information

It contains dimensional
numerical measures. These
measures are actual statistical
values, both derived and
empirically obtained.

FEM_TRANSACTION_FACT Analytic Transaction
Information

The information represents
counts of events and
interactions for financial
accounts.

FEM_XDIM_ACTIVITY Analytic Activity It describes repeatable tasks
in relation to other
dimensions. It is defined by
an action and acted upon
item. Business processes and
actions of individuals can be
categorized as activities.

Integration Repository Annotation Standards A-51

BUSINESS_ENTITY_CODE MEANING DESCRIPTION

FEM_XDIM_AUXILIARY Auxiliary Analytic
Dimensions

It indicates the
"non-foundation" dimensions
for the Enterprise
Performance Foundation.
Unlike Foundation
dimensions, they are not
employed by calculation
engines for value-added
processing.

FEM_XDIM_BUDGET Analytic Budget It identifies budgets and
forecasts.

FEM_XDIM_CAL_PERIOD Analytic Calendar Period Analytic Calendar Period

FEM_XDIM_CCTR_ORG Analytic Organization It indicates Standard Analytic
Organization dimension
made up of Company and
Cost Center.

FEM_XDIM_CHANNEL Analytic Channel It identifies distribution and
sales channels.

FEM_XDIM_COMPANY Company Dimension Standard Analytic Company
dimension

FEM_XDIM_COST_CENTER Cost Center Dimension Standard Analytic Cost
Center dimension

FEM_XDIM_COST_OBJECT Analytic Cost Object A Cost Object is a
multidimensional entity that
describes a cost.

FEM_XDIM_CUSTOMER Analytic Customer It identifies groups or
individuals with a business
relationship to analytic data.

FEM_XDIM_DATASET Analytic Dataset It identifies generic containers
for analytic data.

A-52 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

BUSINESS_ENTITY_CODE MEANING DESCRIPTION

FEM_XDIM_ENTITY Analytic Consolidation Entity It identifies Consolidation,
Elimination and Operating
Entities for Global
Consolidation System Users.

FEM_XDIM_FINANCIAL_EL
EM

Analytic Financial Element It identifies categories of
amount types for balances,
statistics and rates.

FEM_XDIM_GENERIC_FAC
T_DATA

Analytic User Defined Fact
Data

Tables available for storing
fact data of user defined
dimensionality

FEM_XDIM_GEOGRAPHY Analytic Geography It identifies geographic
locations.

FEM_XDIM_HIERARCHY Analytic Dimension
Hierarchy

It is organized parent-child
relationships of dimension
members.

FEM_XDIM_LEDGER Analytic Ledger It identifies books of account.
It is analogous to a Set of
Books.

FEM_XDIM_LEVEL Analytic Dimension Level It identifies categories for
dimension members.

FEM_XDIM_LINE_ITEM Analytic Line Item It identifies general ledger
accounts, typically as an
extension to Natural
Accounts.

FEM_XDIM_NATURAL_AC
COUNT

Analytic Natural Account It identifies an account within
an organization where
balances are posted for the
five different balance types of
revenue, expense, owners
equity, asset and liability.

FEM_XDIM_PRODUCT Analytic Product It identifies commodities or
services offered for sale.

Integration Repository Annotation Standards A-53

BUSINESS_ENTITY_CODE MEANING DESCRIPTION

FEM_XDIM_PROJECT Analytic Project It identifies plans and
endeavors.

FEM_XDIM_SIC Analytic Standard Industrial
Classification

It identifies official codes of
the Standard Industrial
Classification system.

FEM_XDIM_SIMPLE Analytic List of Values only
Dimension

Grouping of all Analytic
dimensions that have no
attributes and serve only as
lists of values.

FEM_XDIM_SOURCE_SYSTE
M

Analytic Source System It identifies the point of origin
for fact and dimension data.

FEM_XDIM_TASK Analytic Task It identifies individual
operations and pieces of
work.

FEM_XDIM_USER_DIMENSI
ON

Analytic User Defined
Dimension

It is the grouping of all
customizable analytic
attributed dimensions.

FF_FORMULA_FUNCTION Fast Formula Function It represents an external
procedural call providing
arbitrary extensions to core
Fast Formula functionality.

FLM_FLOW_SCHEDULE Flow Schedule Flow Schedule

FND_APPS_CTX Oracle E-Business Suite
Applications Security Context

Applications context
representing current user
session

FND_CP_PROGRAM Concurrent Program Discrete unit of work that can
be run in the concurrent
processing system. Typically,
a concurrent program is a
long-running, data-intensive
task, such as generating a
report.

A-54 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

BUSINESS_ENTITY_CODE MEANING DESCRIPTION

FND_CP_REQUEST Concurrent Request It is the request to the
concurrent processing system
to run a program with a given
set of parameter values, an
optional schedule to repeat,
and optional postprocessing
actions.

FND_CP_REQUEST_SET Concurrent Request Set A convenient way to run
several concurrent programs
with predefined print options
and parameter values.
Request sets group requests
into stages that are submitted
by the set.

FND_FLEX_KFF Key Flexfield Customizable multi-segment
fields

FND_FORM Oracle E-Business Suite
Applications Form

A form is a special class of
function that you may
navigate to them using the
Navigator window.

FND_FUNCTION Oracle E-Business Suite
Applications Function

A function is a part of an
application functionality that
is registered under an unique
name for the purpose of
providing function security.

FND_FUNC_SECURITY Function Security Function security restricts
application functionality to
authorized users.

FND_GFM Oracle E-Business Suite
Applications File

Generic file manager provides
ways to upload/download
files and manipulate the file
attributes.

FND_LDAP_OPERATIONS LDAP Directory Enable Oracle E-Business
Suite to performs operations
against the integrated OID.

Integration Repository Annotation Standards A-55

BUSINESS_ENTITY_CODE MEANING DESCRIPTION

FND_MENU Oracle E-Business Suite
Applications Menu

A hierarchical arrangement of
functions and menus of
functions that appears in the
Navigator.

FND_MESSAGE Oracle E-Business Suite
Applications Message
Dictionary

It contains catalog / repository
of messages for the entire
Oracle E-Business Suite.
Message Dictionary facility is
used to display and logging
from application.

FND_NAVIGATION Oracle E-Business Suite
Applications Navigation

Standard ways of navigating
from one page to another
within applications

FND_OBJECT_CLASSIFICAT
ION

OATM Object-Tablespace
Classification

This entity stores seeded,
explicit OATM
object-tablespace
classifications, which can be
further customized.

FND_PROFILE User Profile It is a set of changeable
options that affects the way
the application behaves run
time.

FND_RESPONSIBILITY Responsibility A responsibility defines the
menu structure for a product
in Oracle E-Business Suite.

FND_SSO_MANAGER Single Sign On Manager Single Sign On and Central
Login related APIs

FND_TABLESPACE Tablespace Model Tablespace It classifies all storage-related
objects. Logical Tablespaces
have a 1:1 relation with
physical tablespaces.

FND_USER User It represents a user of Oracle
E-Business Suite.

A-56 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

BUSINESS_ENTITY_CODE MEANING DESCRIPTION

FUN_ARAP_NETTING Payables and Receivables
Netting

Payables and Receivables for
Netting

FUN_IC_TRANSACTION IC Manual Transaction Intercompany transaction will
be between one initiator and
single/multiple recipients.

FUN_INTERCOMPANY_BA
TCH

Intercompany Transaction Set It is intercompany batch
containing transactions
between legal entities.

FV_BUDGETARY_DISCOUN
T

Federal Budgetary Discount It creates Budgetary Discount
Transactions.

FV_BUDGET_JOURNAL Federal Budget Execution
Document

It contains federal budget
records imported into federal
budgetary tables.

FV_FINANCE_CHARGE Federal Finance Charge Federal Finance Charge

FV_IPAC_DISBURSEMENT IPAC Disbursement IPAC Disbursement

FV_PRIOR_YEAR_ADJUSTM
ENT

Prior Year Adjustment Prior Year Adjustment

FV_TREASURY_DISBURSEM
ENT

Treasury Disbursement Treasury Confirmation,
Backout and Void
Disbursement Transactions

FV_YEAR_END_CLOSE Federal Year End Closing
Information

Federal Year End Closing

GHR_DUTY_STATION US Federal Workplace Duty
Station

US Federal Workplace Duty
Station

GHR_EEO_COMPLAINT US Federal EEO Complaint US Federal EEO Complaint

GHR_POSITION_DESCRIPTI
ON

Position Description Position Description

GHR_REQ_FOR_PERSONNE
L_ACTION

Request for Personnel Action Request for Personnel Action

Integration Repository Annotation Standards A-57

BUSINESS_ENTITY_CODE MEANING DESCRIPTION

GL_ACCOUNTING_SETUP_
MANAGER

Accounting Setup Manager This represents the
Accounting Setup of Ledgers
and Legal Entities in General
Ledger.

GL_ACCOUNT_COMBINAT
ION

General Ledger Code
Combination

This represents General
Ledger Account
Combinations Defined Under
Chart of Accounts.

GL_BC_PACKETS Budgetary Fund Control
Transaction Packet

Budgetary Fund Control
Transaction Packet

GL_BUDGET_DATA General Ledger Budget Data General Ledger Budget Data

GL_CHART_OF_ACCOUNT
S

Chart of Accounts Chart of Accounts (COA)

GL_DAILY_RATE Daily Currency Conversion
Rate

Daily Currency Conversion
Rate

GL_INTERCOMPANY_TRA
NSACTION

Intercompany Transaction Intercompany Transaction

GL_JOURNAL Journal Entry Journal Entry

GL_PERIOD General Ledger Accounting
Period

This represents the
Accounting Period defined in
Accounting Calendar.

GMD_ACTIVITIES_PUB Product Development
Activity

It creates, modifies, or deletes
activity information.

GMD_FORMULA Process Manufacturing
Formula

Process Manufacturing
Formula

GMD_OPERATION Process Manufacturing
Operation

Process Manufacturing
Operation

A-58 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

BUSINESS_ENTITY_CODE MEANING DESCRIPTION

GMD_OUTBOUND_APIS_P
UB

Process Manufacturing
Quality Outbound
Transaction

It is public level Process
Manufacturing Quality
package containing APIs to
export information to third
party products.

GMD_QC_SAMPLES Process Manufacturing
Quality Sample

Process Manufacturing
Quality Sample

GMD_QC_SPEC Process Manufacturing
Quality Specification

Process Manufacturing
Quality Specification

GMD_QC_SPEC_VR Process Manufacturing
Specification Usage Rule

Process Manufacturing
Specification Usage Rule

GMD_QC_TESTS_PUB Process Manufacturing
Quality Test

Process Manufacturing
Quality Test

GMD_RECIPE Process Manufacturing Recipe Process Manufacturing Recipe

GMD_RECIPE_VALIDITY_R
ULE

Process Manufacturing Recipe
Usage Rule

Process Manufacturing Recipe
Usage Rule

GMD_RESULTS_PUB Process Manufacturing
Quality Test Result

Process Manufacturing
Quality Test Result

GMD_ROUTING Process Manufacturing
Routing

Process Manufacturing
Routing

GMD_STATUS_PUB Process Manufacturing
Product Development Status

It modifies the status for
routings, operations, receipts,
and validity rules.

GME_BATCH Process Manufacturing Batch Process Manufacturing Batch

GME_BATCH_STEP Process Manufacturing Batch
Step

Process Manufacturing Batch
Step

GMF_ALLOCATION_DEFIN
ITION

Process Manufacturing
Expense Allocation Definition

It is the setup data for
allocating indirect expenses
(indirect overheads) to items.

Integration Repository Annotation Standards A-59

BUSINESS_ENTITY_CODE MEANING DESCRIPTION

GMF_BURDEN_DETAIL Process Manufacturing
Financials Overhead Detail

It indicates overhead costs
assigned to items that have
been manufactured or
purchased.

GMF_ITEM_COST Process Manufacturing
Financials Item Cost

Process Manufacturing
Financials Item Cost

GMF_RESOURCE_COST Process Manufacturing
Financials Resource Cost

Process Manufacturing
Financials Resource Cost

GMI_ADJUSTMENTS Process Manufacturing
Inventory Adjustment

Process Manufacturing
Inventory Adjustment

GMI_API Process Manufacturing
Inventory Setup

It is the Process
Manufacturing Inventory
transaction to create, modify,
delete items, lots, lot
conversions.

GMI_ITEM Process Manufacturing Item Process Manufacturing Item

GMI_ITEM_LOT_UOM_CON
V

Process Manufacturing Item
Lot UOM Conversion

Process Manufacturing Item
Lot UOM Conversion

GMI_LOT Process Manufacturing Lot Process Manufacturing Lot

GMI_OM_ALLOC_API_PUB Process Manufacturing Sales
Order Inventory Allocation

The Allocate OPM Orders
API is a business object that
can create, modify, or delete
OPM reservation (allocation)
information for Order
Management.

GMI_PICK_CONFIRM_PUB Process Manufacturing Sales
Order Inventory Pick
Confirmation

The Pick Confirm API is a
business object that pick
confirms, or stages the
inventory for a Process Move
Order Line or a Delivery
Detail line.

GMP_CALENDAR_API Process Planning Shop
Calendar

It modifies the Shop
Calendar.

A-60 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

BUSINESS_ENTITY_CODE MEANING DESCRIPTION

GMP_GENERIC_RESOURCE Generic Process
Manufacturing Resource

Manufacturing resource in
Process Manufacturing

GMP_PLANT_RESOURCE Process Manufacturing Plant
Resource

Plant specific manufacturing
resource in Process
Manufacturing

GMP_RSRC_AVL_PKG Process Planning Resource
Availability

It modifies resource
availability.

GMS_AWARD Project Award Budget Project Award Budget

HR_AUTHORIA_INTEGRAT
ION_MAP

Authoria Integration Map Authoria Integration Map

HR_BUDGET HR Budget HR Budget

HR_BUSINESS_GROUP Business Group Business Group

HR_CALENDAR_EVENT HR Calendar Event HR Calendar Event

HR_COST_CENTER Cost Center Cost Center

HR_EVENT HR Bookable Event HR Bookable Event

HR_HELP_DESK HR Help Desk Integration Peoplesoft Help Desk
Integration points with the
Oracle E-Business Suite
HRMS

HR_KI_MAP Knowledge Integration Map Knowledge Integration Map

HR_KI_SYSTEM Knowledge Integration
System

Knowledge Integration
System

HR_LEGAL_ENTITY Legal Entity Legal Entity

HR_LIABILITY_PREMIUM Liability Premium Liability Premium

HR_LOCATION Location Location

Integration Repository Annotation Standards A-61

BUSINESS_ENTITY_CODE MEANING DESCRIPTION

HR_MESSAGE_LINE HRMS Message Line HRMS Message Line

HR_OPERATING_UNIT Operating Unit Operating Unit

HR_ORGANIZATION HRMS Organization HRMS Organization

HR_ORGANIZATION_LINK Organization Link Organization Link

HR_PAY_SCALE Pay Scale Pay Scale

HR_PERSON HR Person(1) HR Person(1)

HR_PERSONAL_DELIVERY_
METHOD

Personal Delivery Method Personal Delivery Method

HR_ROLE HRMS Role HRMS Role

HR_SALARY_BASIS Salary Basis Salary Basis

HR_SELF_SERVICE_TRANS
ACTION

HR Self Service Transaction Self Service Transaction

HR_SOC_INS_CONTRIBUTI
ONS

Social Insurance Contribution Social Insurance Contribution

HR_SUPER_CONTRIBUTIO
N

Superannuation Contribution It indicates payment to a fund
providing for a person's
retirement.

HR_USER_HOOK HRMS User Hook HRMS User Hook

HXC_TIMECARD Timecard Timecard

HXC_TIMECARD_RECURRI
NG_PERIOD

Timecard Recurring Period Timecard Recurring Period

HXC_TIME_INPUT_SOURC
E

Time Input Source It indicates how Timecard
data was input.

A-62 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

BUSINESS_ENTITY_CODE MEANING DESCRIPTION

HXC_TIME_RECIPIENT Time Recipient Application An application that receives
and processes Time and
Labor Data.

HZ_ACCOUNT_CONTACT Customer Account Contact A person who is the contact
for a customer account.

HZ_ADDRESS Trading Community Address It is an address of a trading
community member, for
example, a customer's or
partner's address.

HZ_CLASSIFICATION Trading Community
Classification

It is a categorization of
parties, using user-defined or
external standards such as the
NAICS, NACE, or SIC.

HZ_CONTACT Trading Community Contact A person who is a contact for
an organization or another
person.

HZ_CONTACT_POINT Contact Point It is a means of contact, for
example, phone or e-mail.

HZ_CONTACT_PREFERENC
E

Contact Preference It is the information about
when and how parties prefer
to be contacted.

HZ_CUSTOMER_ACCOUNT Customer Account A person or organization that
the deploying company has a
selling relationship with.

HZ_EXTERNAL_REFERENC
E

Trading Community External
Reference

Management of operational
mappings between the
trading community database
and external source systems.

HZ_GROUP Trading Community Group Trading Community Group

HZ_ORGANIZATION Trading Community
Organization

It is a party of type
Organization and related
information, including
financial and credit reports.

Integration Repository Annotation Standards A-63

BUSINESS_ENTITY_CODE MEANING DESCRIPTION

HZ_PARTY Party A trading community entity,
either person or organization,
that can enter into business
relationships.

HZ_PERSON Trading Community Person It is a party of type Person
and related information, such
as employment and
education.

HZ_RELATIONSHIP Trading Community
Relationship

A representation of how two
parties are related, based on
the role that each party plays
with respect to the other.

HZ_RELATIONSHIP_TYPE Trading Community
Relationship Type

A categorization of roles that
parties can play in
relationships.

IBC_CONTENT_DELIVERY_
MANAGER

Content Delivery Manager Content Delivery Manager
class provides APIs for
applications to retrieve
content items stored in the
OCM Content Repository.

IBE_CATALOG_PUNCHOU
T

Web Store Catalog Punchout It is a process of enabling
procurement users to choose
items available in iStore
catalog. The login/logout of
procurement users in iStore is
transparent to them.

IBE_CONTENT Web Store Content Web Store Page Content

IBE_ITEM Web Store Item Web Store Product Item

IBE_SALES_ORDER Web Store Sales Order Web Store Sales Order

IBE_SECTION Web Store Section Navigational Hierarchy for
Web content and product

IBE_SESSION_ATTRIBUTES Web Store Session Attributes Session Attributes of Users
visiting the Web Store

A-64 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

BUSINESS_ENTITY_CODE MEANING DESCRIPTION

IBE_SHOPPING_CART Web Store Shopping Cart Web Store Shopping Cart

IBE_SHOPPING_LIST Web Store Shopping List Web Store Shopping List

IBE_SITE Web Store Site Web Store Site

IBE_TEMPLATE Web Store Template Web Store Page Template

IBE_USER Web Store User Users, Contacts, Customers

IBW_PAGE_ACCESS_TRAC
KING

Web Analytics Page Access
Tracking

It captures visit and page
access data required for Web
analytics reporting.

IBY_BANKACCOUNT External Bank Account Supplier or Customer Bank
Account

IBY_CREDITCARD Credit Card Credit Card Payment
Instrument

IBY_EXCEPTION IBY Exception It is an exception generated
by IBY code when an error is
encountered.

IBY_FUNDSCAPTURE_ORD
ER

Funds Capture Order It is a single funds capture
request delivered to a
payment system by the
request payee.

IBY_PAYMENT IBY Payment It indicates payment made
through IBY to the supplier.

IEO_AGENT Interaction Center Agent A person that interacts with a
customer during an
interaction event.

IEX_COLLECTION_CASE Collection Case Collection Case

Integration Repository Annotation Standards A-65

BUSINESS_ENTITY_CODE MEANING DESCRIPTION

IEX_COLLECTION_DISPUT
E

Collection Dispute A dispute creates a credit
memo request in Oracle
Receivables to resolve all or
part of an invoice that a
customer contends is not
owed.

IEX_COLLECTION_PROMIS
E

Collection Promise Collection Promise

IEX_COLLECTION_SCORE Collection Score Collection Score

IEX_COLLECTION_STRATE
GY

Collection Strategy Collection Strategy

IEX_PROMISES Collection Payment Promise A promise to pay is a
non-binding agreement from
the customer to make a
payment at a certain date.

IEX_STRATEGY Receivables Collection
Strategy

Strategies are a
pre-configured sequence of
work items that automate the
process of collecting open
receivables and support
complex collections
management activities.

IGC_CONTRACT_COMMIT
MENT

Contract Commitment Contract Commitment

IGC_ENCUMBRANCE_JOU
RNAL

Encumbrance Journal Encumbrance Journal

IGF_AWARD Financial Aid Student Award Financial Aid Student Award

IGF_BASE_RECORD Financial Aid Student Base
Record

Financial Aid Student Base
Record

IGF_COA Student Attendance Cost Student Attendance Cost

IGF_DL Financial Aid Direct Loan Financial Aid Direct Loan

A-66 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

BUSINESS_ENTITY_CODE MEANING DESCRIPTION

IGF_FFELP Financial Aid FFELP Loan Financial Aid FFELP Loan

IGF_FWS Financial Aid Work Study Financial Aid Work Study

IGF_ISIR Institutional Student
Information Record

Institutional Student
Information Record

IGF_PELL Financial Aid Pell Grant Financial Aid Pell Grant

IGF_PROFILE Student Profile Application Student Profile Application

IGF_TODO Financial Aid Student Todo
Item(1)

Financial Aid Student Todo
Item(1)

IGF_VERFN Financial Aid Verification
Item

Financial Aid Verification
Item

IGS_ADM_APPLICATION Admission Application Admission Application

IGS_ADM_FEE Admission Fee Admission Application Fee

IGS_ADV_STAND Advanced Standing Advanced Standing

IGS_DA_REQUEST Degree Audit Request Degree Audit Request

IGS_INQ_APPLICATION Prospective Applicant Inquiry Prospective Applicant Inquiry

IGS_INSTITUTION Institution Institution Party

IGS_PARTY_CHARGE Higher Education Party
Charge

Higher Education Party
Account Charge Transactions

IGS_PARTY_CREDIT Higher Education Party
Credit

Higher Education Party
Account Credit Transactions

IGS_PARTY_REFUND Higher Education Party
Refund

Higher Education Party
Account Refund Transactions

IGS_PERSON_ALTERNATE_
ID

Alternate Person Identifier Person Alternate Identifier
e.g. SSN, Driver Licence etc

Integration Repository Annotation Standards A-67

BUSINESS_ENTITY_CODE MEANING DESCRIPTION

IGS_PERSON_CONTACT Person Contact Information Person Contact Information

IGS_PREV_EDUCATION Previous Education Previous Education

IGS_PROGRAM Higher Education Program Higher Education Program

IGS_SPONSORSHIP Student Sponsor Relationship Student Sponsor Relationship

IGS_STUDENT_CONCENTR
ATION

Student Concentration Student Concentration

IGS_STUDENT_PROGRAM Student Program Attempt Student Program Attempt

IGS_STUDENT_UNIT Student Unit Attempt Student Unit Attempt

IGS_TODO Financial Aid Student Todo
Item

Financial Aid Student Todo
Item

IGS_UNIT Higher Education Unit Higher Education Unit

IGW_PROPOSAL Grants Proposal Grants Proposal

IGW_PROPOSAL_BUDGET Grants Proposal Budget Grants Proposal Budget

INV_ACCOUNTING_PERIO
D

Inventory Accounting Period Status of an inventory
accounting period

INV_ALLOCATION Material Allocation Inventory Material Allocation

INV_CONSIGNED_DIAGNO
STICS

Consigned Inventory
Diagnostics

Set of utilities that identify
and communicate
inaccuracies in setup data of
Consigned Inventory from
Supplier feature.

INV_COUNT Material Count Material Count

INV_IC_TRANSACTION_FL
OW

Inventory Intercompany
Invoicing Transaction Flow

It is an execution of the
transactions that generate
intercompany invoices in
Inventory.

A-68 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

BUSINESS_ENTITY_CODE MEANING DESCRIPTION

INV_IC_TRANSACTION_FL
OW_SETUP

Intercompany Inventory
Transaction Flow Setup

Intercompany Inventory
Transaction Flow Setup

INV_LOT Inventory Lot Inventory Lot

INV_MATERIAL_TRANSAC
TION

Material Transaction Inventory Material
Transaction

INV_MOVEMENT_STATISTI
CS

Movement Statistics Statistics that are associated
with the movement of
material across the border of
two countries.

INV_MOVE_ORDER Material Move Order Physical movement of
inventory from one location
to another within a
warehouse or other facility. It
does not involve a transfer of
the inventory between
organizations.

INV_ONHAND Inventory On Hand Balance Inventory On Hand Balance

INV_ORGANIZATION_SET
UP

Inventory Organization Setup Inventory Organization Setup

INV_PICK_RELEASE_PUB Inventory Pick Release Inventory allocation in
support of pick release

INV_POSITION Inventory Position It indicates on-hand balance
of an Inventory Organization
Hierarchy for a particular
time bucket including
quantity received, quantity
issued and ending balance.

INV_REPLENISHMENT Inventory Replenishment Inventory Material
Replenishment

INV_RESERVATION Material Reservation Inventory Material
Reservation

Integration Repository Annotation Standards A-69

BUSINESS_ENTITY_CODE MEANING DESCRIPTION

INV_SALES_ORDERS Inventory Sales Order It indicates inventory sales
order tracking with references
to the order in Oracle Order
Management or a third party
order management system.

INV_SERIAL_NUMBER Inventory Serial Number Inventory Serial Number

INV_SUPPLIER_CONSIGNE
D_INV

Supplier Consigned Inventory Goods that physically reside
in an inventory organization
but are owned by a supplier.

INV_UNIT_OF_MEASURE Unit Of Measure Inventory Unit Of Measure

IPM_DOCUMENT Imaging Document Electronic documentation to
facilitate the entry and
completion of transactions in
the Oracle E-Business Suite.

IRC_AGENCY Recruiting Agency Third party agency
authorized to recruit for a
Vacancy.

IRC_CANDIDATE_NOTIFY_
PREFS

Candidate Recruitment
Notification Preferences

Candidate Recruitment
Notification Preferences

IRC_CANDIDATE_SAVED_S
EARCH

Candidate Recruitment Saved
Search

Candidate Recruitment Saved
Search

IRC_CANDIDATE_WORK_P
REFERENCES

Candidate Recruitment Work
Preferences

Candidate Recruitment Work
Preferences

IRC_DEFAULT_JOB_POSTIN
G

Default Job Posting Default Job Posting

IRC_JOB_BASKET Job Basket Job Basket

IRC_JOB_OFFER Job Offer It contains details of a job to
be offered to a Recruitment
Candidate.

A-70 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

BUSINESS_ENTITY_CODE MEANING DESCRIPTION

IRC_JOB_OFFER_LETTER_T
EMPLATE

Job Offer Letter Template It is a template for a Job Offer
letter.

IRC_JOB_OFFER_NOTES Job Offer Note Notes for a Job Offer

IRC_JOB_POSTING Job Posting Job Posting

IRC_JOB_SEARCH_LOCATI
ON

Job Search Location It contains locations for the
Candidate Recruitment Saved
Search or for the Candidate
Recruitment Work
Preferences.

IRC_JOB_SEARCH_PROF_A
REA

Job Search Professional Area It contains Professional Areas
for the Candidate
Recruitment Saved Search or
for the Candidate
Recruitment Work
Preferences.

IRC_NOTIFICATION iRecruitment Notification Notifications that are sent to
recruiter, interviewer and
candidate.

IRC_RECRUITING_3RD_PA
RTY_SITE

Recruiting Third Party Site Recruiting Third Party Site

IRC_RECRUITING_DOCUM
ENT

Recruiting Document Recruiting Document

IRC_RECRUITING_SITE Recruiting Site Recruiting Site

IRC_RECRUITING_TEAM Recruiting Team Recruiting Team

IRC_RECRUITMENT_CAND
IDATE

Recruitment Candidate Recruitment Candidate

IRC_VACANCY_CONSIDER
ATION

Vacancy Consideration Vacancy Consideration

Integration Repository Annotation Standards A-71

BUSINESS_ENTITY_CODE MEANING DESCRIPTION

JE_ES_WHT Spanish Withholding Tax
Transaction

Spanish Withholding Tax
Transaction stores
withholding tax transactions
from Payables and other
external sources.

JL_BR_AP_BANK_COLLECT
ION_DOC

Brazilian Payables Bank
Collection Document

Brazilian Payables Bank
Collection Document

JL_BR_AR_BANK_RETURN_
DOC

Brazilian Receivables Bank
Return Document

Brazilian Receivables Bank
Return Document

JTA_BUSINESS_RULE Business Rule Business Rule for Escalation
or Auto Notifications

JTA_ESCALATION Customer Escalation
Management

It manages customer's
escalation of some key
business entities like Service
Requests, Tasks, etc.

JTF_RS_ DYNAMIC_GROUP Resource Group (Dynamic) Dynamic Resource Group
(defined using dynamic SQL
statements)

JTF_RS_DYNAMIC_GROUP Resource Dynamic Group Dynamic Resource Group
(defined using dynamic SQL
statements)

JTF_RS_GROUP Resource Group Grouping of Individual
Resources

JTF_RS_GROUP_MEMBER Resource Group Member Members within a Group

JTF_RS_GROUP_MEMBER_R
OLE

Resource Group Member Role Roles assigned to members in
a group

JTF_RS_GROUP_RELATION Resource Group Hierarchy Resource Group Hierarchy
Element

JTF_RS_GROUP_USAGE Resource Group Usage Functional use of Resource
Groups in different
applications

A-72 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

BUSINESS_ENTITY_CODE MEANING DESCRIPTION

JTF_RS_RESOURCE Individual Resource Individual Resource

JTF_RS_RESOURCE_AVAIL
ABILITY

Resource Availability Whether an individual
resource is available (Yes/No)
for work assignments at
present time.

JTF_RS_RESOURCE_LOV Resource Person and non-person
resources

JTF_RS_RESOURCE_SKILL Resource Skill Resource Skillsets for work
assignment

JTF_RS_RESOURCE_SKILL_
LEVEL

Resource Skill Level Skill Levels indicating Novice,
Expert, Intermediate for
different skills

JTF_RS_ROLE Person Resource Role Roles assigned to an
individual resource

JTF_RS_ROLE_RELATION Person Resource Role
Hierarchy

Hierarchy of Roles associated
with individual resources,
groups, and group members.

JTF_RS_SALESREP Sales Representative Individual Resources that
represent Enterprise Sales
Force.

JTF_RS_SALES_GROUP_HIE
RARCHY

Sales Group Hierarchy Sales Group Hierarchy

JTF_RS_SRP_TERRITORY Sales Representative Territory Territories that are assigned
to Sales people.

Note: These are not to be
confused with Territory
Manager.

JTF_RS_TEAM Resource Team Teams represent collection of
people, and groups.

Integration Repository Annotation Standards A-73

BUSINESS_ENTITY_CODE MEANING DESCRIPTION

JTF_RS_TEAM_MEMBER Resource Team Member Members of a team that
includes individuals, as well
as groups.

JTF_RS_TEAM_USAGE Resource Team Usage It represents functional use of
Resource Teams in different
applications.

JTF_RS_UPDATABLE_ATTRI
BUTE

Updatable Attributes for
Resources

Individual resource
information that is allowed to
be modified.

JTF_RS_WF_EVENT Resource Business Event Actions in Resource Manager
that raise Workflow Business
Events.

JTF_RS_WF_ROLE Resource Workflow Role It is the Workflow Role
representing Individual,
Group, and Team resources.

JTF_RS_WF_USER_ROLE Resource Workflow User Role It is the Workflow User Role
representing resource roles,
group members, or team
members.

JTH_INTERACTION Customer Interaction It is the communication or
attempted communication
with a customer party.

JTH_INTERACTION_ACTIVI
TY

Customer Interaction Activity A business event that occurs
during an interaction with a
customer party.

JTH_INTERACTION_MEDIA Customer Interaction Media It contains the details of the
communication used in an
interaction. Call, E-mail, Web,
etc.

JTY_TERRITORY Territory Territories for sales
representatives, service
engineers and collections
agents

A-74 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

BUSINESS_ENTITY_CODE MEANING DESCRIPTION

LSH_APPLICATIONAREA Application Area A collection of objects that
define a business application.
Objects can be Business Area,
Data Mart, Loadset, Program,
Report Set, Table, Workflow
etc.

LSH_BUSINESSAREA Business Area A Business Area acts as an
interface with an External
Visualization System (EVS).

LSH_DATAMART Data Mart A Data Mart stores data
exported from the
Transactional System and is
usually used for Analytical
purposes.

LSH_DOMAIN Life Sciences Data Hub
Domain

The top level container that
owns Application Areas and
is used to store object
definitions in the Library. The
definitions can be Business
Area, Data Mart, Loadset,
Program, etc.

LSH_EXECUTIONSETUP Life Sciences Data Hub
Execution Setup Information

It is a defined object that is a
component of each LSH
executable object instance
(Programs, RS, Load Sets,
Workflows etc.) whose
purpose is to control the
execution of the executable
object.

LSH_EXECUTION_FWK Life Sciences Data Hub
Execution Job

An entity that provides the
surround and the set the rules
for the execution of an object.
Examples are Job Submission
API, Job Log API, etc

LSH_GENERIC_OBJECT Life Science Data Hub
Generic Object

Life Science Data Hub
Generic Object

Integration Repository Annotation Standards A-75

BUSINESS_ENTITY_CODE MEANING DESCRIPTION

LSH_LOADSET External Data Load Run A Load Set is an executable
object that is used to define
the structure and behavior of
a Program-like structure that
is used for loading data from
an outside system.

LSH_MAPPING Life Science Data Hub
Column Mapping

A mapping defines a column
level mapping between a
Table like object and a View
like object.

LSH_OBJ_CLASSIFICATION Object Classification An entity that provides the
categories and rules for
classifying an object.

LSH_OBJ_SECURITY Life Sciences Data Hub Object
Security Policy

An entity that provides a set
of rules to define and
implement data security on
objects.

LSH_OUTPUT Life Sciences Data Hub
Output

This is the actual Output that
is generated on execution of
an executable object, such as a
Report Set output, a Data
Mart output, a Program
Output.

LSH_PARAMETER API Parameter A defined object that acts as a
simple scalar variable and is
based on a variable, such as
an input/output Parameter of
a Program, Report Set, etc.

LSH_PARAMETERSET Parameter Set A collection of interrelated
Parameters

LSH_PLANNEDOUTPUT Life Science Data Hub
Planned Output

A Planned Output is an
expected output when an
LSH object is executed. It is
defined with the executable
object.

A-76 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

BUSINESS_ENTITY_CODE MEANING DESCRIPTION

LSH_PROGRAM Life Sciences Data Hub
Program

A Program is a metadata
object that is used to define
the structure and behavior of
a Program-like structure that
is used for processing and/or
reporting on set of data.

LSH_REPORTSET Report Set A Report Set is a group of
reports used to define the
structure and behavior of a
hierarchical structure that is
intended for simultaneously
reporting on sets of data.

LSH_SOURCECODE Software Source Code A Source Code is the actual
program code which is
executed when a Program is
run.

LSH_TABLE Metadata Registered Data
Object

It is a metadata description of
a table-like object (for
example a Oracle view or a
SAS dataset).

LSH_UTILITY Life Sciences Data Hub Setup
Utility

It is a set of tools and utilities.

LSH_VALIDATION Life Sciences Data Hub
Validation

An entity that provides the
rules for validating an object
in the application.

LSH_VARIABLE Life Science Data Hub
Variable

A LSH defined object
equivalent to a SAS variable
or Oracle table column that
serves as a source definition
for LSH Parameters and Table
Columns.

Integration Repository Annotation Standards A-77

BUSINESS_ENTITY_CODE MEANING DESCRIPTION

LSH_WORKAREA Application Work Area A container within an
Application Area that
provides the definer a place to
prepare related LSH
Definitional objects for release
and installation to a LSH
schema.

MES_COMPLETION_TRANS
ACTION

Assembly Completion in MES Business Entity for Assembly
Completion in MES

MES_MATERIAL_TRANSAC
TION

MES Material Transaction Business Entity for Material
Transaction in MES

MES_MOVE_TRANSACTIO
N

MES Move Transaction Business Entity for Move
Transaction in MES

MES_TIME_ENTRY Time Entry in MES Import Time Entry Record in
Discrete Manufacturing
Execution system

MSC_ATP_ENQUIRY ATP Enquiry This interface checks the
availability for the item(s) and
returns their availability
picture.

MSC_FORECAST Supply Chain Forecast This interface creates a
forecast for supply chain
planning.

MSC_NOTIFY_PLAN_OUTP
UT

Supply Chain Planned Order Supply chain planned order

MSC_ON_HAND Supply Chain Plan On Hand
Inventory

This interface creates on hand
supply records for supply
chain planning.

MSC_PLANNING_SUPPLY_
DEMAND

Collaborative Planning
Supply / Demand

This interface is used to create
any supply / demand records
in Collaborative Planning.

A-78 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

BUSINESS_ENTITY_CODE MEANING DESCRIPTION

MSC_PURCHASE_ORDER Supply Chain Plan Purchase
Order

This interface creates a
purchase order supply for
supply chain planning.

MSC_REQUISITION Supply Chain Plan
Requisition

A Purchase Requisition for
Supply Chain Planning

MSC_SALES_ORDER Supply Chain Plan Sales
Order

This interface creates a sales
order demand for supply
chain planning.

MSC_SHIPMENT_NOTICE Supply Chain Plan Advanced
Shipment Notice

This interface creates an
inbound intransit supply for
supply chain planning.

MSC_WORK_ORDER Supply Chain Plan Work
Order

This interface creates a work
order supply for supply chain
planning.

NETTING_BATCH Netting Batch Netting batch is a set of
payables and receivables
transactions.

OCM_GET_DATA_POINTS Credit Review Data Point It is a list of Data Points
(Criterion items against which
the credit standing of a
organization is reviewed) for
a given credit classification,
review type, data point
category, or subcategory.

OCM_GET_EXTRL_DECSN_
PUB

Imported Credit Score and
Recommendation

Import score and
recommendations from
external source

OCM_GUARANTOR_CREDI
T_REQUEST

Guarantor Credit Request It allows user to create
Guarantor credit request.

Integration Repository Annotation Standards A-79

BUSINESS_ENTITY_CODE MEANING DESCRIPTION

OCM_RECOMMENDATION
S

Credit Recommendation It is the
recommendation/decision
made by reviewer of the
credit request. For example, a
standard recommendation is
"Approve/Reject".

OCM_WITHDRAW_CREDIT
_REQUEST

Credit Request Withdrawal It allows user to withdraw a
credit request.

OIE_CREDIT_CARD_TRXN Credit Card Transaction Credit Card Transaction

OIE_PCARD_TRXN Procurement Card
Transaction

Procurement Card
Transaction

OIR_REGISTRATION Self Registration of user Self Registration of external
user of the application

OKC_DELIVERABLE Contract Deliverable Contract Deliverable

OKC_LIBRARY_ARTICLE Contract Library Article Contract Library Article

OKC_LIBRARY_CLAUSE Contract Library Clause Contract library clause

OKC_REPOSITORY_CONTR
ACT

Repository Contract A contract that handles
outside the normal
purchasing or sales flows,
such as a non-disclosure
agreement or a partnership
agreement. These contracts
are stored in the Contract
Repository.

OKC_REP_CONTRACT Repository Contract(1) A contract that handles
outside the normal
purchasing or sales flows,
such as a non-disclosure
agreement or partnership
agreement. These contracts
are stored in the Contract
Repository(1).

OKE_CONTRACT Project Contract Project Contract

A-80 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

BUSINESS_ENTITY_CODE MEANING DESCRIPTION

OKL_ACCOUNT_DISTRIBU
TION

Lease Account Distribution Lease Account Distribution

OKL_ACCOUNT_ID Lease Account Lease Account

OKL_AGREEMENT Lease Agreement Lease Agreement

OKL_ASSET_MANAGEMEN
T

Asset Management Manage portfolios and asset
returns

OKL_COLLECTION Collection Bill, collect cash and manage
collections from customers

OKL_COLLECTION_CASE Lease Collection Case Lease Collection Case

OKL_CONTRACT Lease Contract Lease Contract

OKL_CONTRACT_LIFECYC
LE

Contract Management
Lifecycle

It manages revisions,
termination and renewals of
contracts.

OKL_CONTRACT_PARTY Lease Contract Party Lease Contract Party

OKL_CONTRACT_PAYMEN
T

Lease Contract Payment Lease Contract Payment

OKL_CONTRACT_TERM Lease Contract Term Lease Contract Term

OKL_DISBURSEMENT Disbursement Process manually initiated or
automated disbursements

OKL_EXECUTE_FORMULA Lease Formula Lease Formula

OKL_FINANCIAL_PRODUC
T

Lease Contract Financial
Product

Financial Product specified in
lease contract

OKL_INSURANCE Lease Insurance Lease Insurance

OKL_INTEREST Lease Interest Lease Interest

Integration Repository Annotation Standards A-81

BUSINESS_ENTITY_CODE MEANING DESCRIPTION

OKL_INVESTMENT_PROGR
AM

Manage Investment Program It manages investor accounts
and investment agreements.

OKL_LATE_POLICY Lease Late Payment Policy Lease Late Payment Policy

OKL_LEASE_RATE Lease Rate Set Lease Rate Set

OKL_MARKETING_PROGR
AM

Marketing Program It manages internal and
partner pricing programs.

OKL_ORIGINATION Origination It manages master
agreements, author lease and
loan contracts.

OKL_REMARKETING Remarketing It manages sale of assets to
vendors and third parties.

OKL_RESIDUAL_VALUE Lease Residual Value Lease Residual Value

OKL_RISK_MANAGEMENT Risk Management It manages credit, pricing,
approval and insurance
policies.

OKL_SALES Sales Qualify, quote and manage
deal opportunities

OKL_STREAM Lease Stream Lease Stream

OKL_TERMINATION_QUOT
E

Lease Termination Quote Lease Termination Quote

OKL_THIRD_PARTY_BILLI
NG

Lease Third Party Billing Lease Third Party Billing

OKL_UNDERWRITING Manage Underwriting It manages credit applications
and lines.

OKL_VENDOR_RELATIONS
HIP

Manage Vendor Relationship It manages vendor accounts
and agreements.

A-82 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

BUSINESS_ENTITY_CODE MEANING DESCRIPTION

OKS_AVAILABLE_SERVICE Service Availability APIs for retrieving customer
service information,
specifically, duration of a
service, availability of service
for a customer and list of
services which can be ordered
for a customer.

OKS_CONTRACT Service Contract Service Contract

OKS_COVERAGE Service Contract Coverage Service contract coverage
service terms

OKS_ENTITLEMENT Service Contract Entitlement Service contract customer
entitled services

OKS_FULFILLMENTS Subscription Fulfillment
Schedule

Sales Order Fulfillment
Schedules will be defined for
the subscription contracts that
is for scheduling the Creation
of Sales Orders and its
fulfillment.

OKS_IMPORT Service Contracts Import Service contracts import is a
process of importing the
legacy data into the Oracle
tables.

OKS_SALES_CREDITS Service Contracts Sales Credit Quota/Non-Quota Sales
credits percentage will be
defined for the Salesperson(s)
who are responsible for the
service, subscription,
warranty, and extended
warranty contract.

OKS_TERMINATE Service Contracts Termination Terminating a subline, a line,
or an entire contract against
the customer with the
Termination reason and
Current or Future
Termination date.

Integration Repository Annotation Standards A-83

BUSINESS_ENTITY_CODE MEANING DESCRIPTION

ONT_SALES_AGREEMENT Sales Agreement This is a business document
that outlines the agreement
between a Customer and
Supplier committing to order
and deliver a specified
amount or quantity over an
agreed period of time.

ONT_SALES_ORDER Sales Order Sales Order is a business
document containing
customer sales order
information. This entity is
used by several Oracle
E-Business Suite applications.

OTA_CATALOG_CATEGOR
Y

Learning Catalog Category Learning Catalog Category

OTA_CERTIFICATION Learning Certification Catalog object that offers
learners the opportunity to
subscribe to and complete one
time and renewable
certifications.

OTA_CHAT Learning Chat Scheduled live discussion that
enables learners and
instructors to exchange
messages online.

OTA_CONFERENCE_SERVE
R

Conference Server Conference server integrates
OLM with Oracle Web
Conferencing (OWC) to
deliver online synchronous
classes.

OTA_COURSE_PREREQUISI
TE

Course Prerequisite A course or competency that a
learner must or should
complete before enrolling in a
given class.

A-84 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

BUSINESS_ENTITY_CODE MEANING DESCRIPTION

OTA_ENROLLMENT_JUSTIF
ICATION

Learning Enrollment
Justification

Each enrollment justification
and its associated priority
level can determine the order
by which enrollees are
automatically placed in a
class.

OTA_ENROLLMENT_STAT
US_TYPE

Learning Enrollment Status
Type

It indicates predefined
enrollment statuses
(Requested, Placed, Attended,
Waitlisted, Cancelled).

OTA_FINANCE_HEADER Learning Finance Header It is a record of a monetary
amount against a class, a
learner enrollment, or a
resource booking.

OTA_FINANCE_LINE Learning Finance Line It is an individual financial
transaction within a finance
header.

OTA_FORUM Learning Forum It represents message board
that learners and instructors
use to post general learning
topics for discussion.

OTA_LEARNER_ENROLLM
ENT

Learner Enrollment Learner Enrollment

OTA_LEARNING_ANNOUN
CEMENT

Learning Announcement Learning Announcement

OTA_LEARNING_CATALO
G_CAT_USE

Learning Catalog Category
Usage

Learning Catalog Category
Usage

OTA_LEARNING_CLASS Learning Class Learning Class

OTA_LEARNING_COURSE Learning Course Learning Course

OTA_LEARNING_CROSS_C
HARGE

Learning Cross Charge Setup Learning Cross Charge Setup

Integration Repository Annotation Standards A-85

BUSINESS_ENTITY_CODE MEANING DESCRIPTION

OTA_LEARNING_EXTERNA
L

Learning External Record A class or course that a
person has attended, not
scheduled in the internal
learning catalog.

OTA_LEARNING_OFFERIN
G

Learning Offering Learning Offering

OTA_LEARNING_OFFER_R
ES_CHKLST

Learning Offering Resource
Checklist

Learning Offering Resource
Checklist

OTA_LEARNING_PATH Learning Path Learning Path

OTA_LEARNING_PATH_CA
TEGORY

Learning Path Category Learning Path Category

OTA_LEARNING_PATH_CO
MPONENT

Learning Path Component Learning Path Component

OTA_LP_SUBSCRIPTION Learning Path Subscription It contains subscriptions for
all Learning Paths and
Components. For Example,
Subscriptions to Catalog
Learning Paths and Learning
Paths created by Managers
from Appraisals, Suitability
Matching etc.

OTA_RESOURCE Learning Resource It is a person or an object
needed to deliver a class, such
as a named instructor or a
specific classroom.

OTA_RESOURCE_BOOKING Learning Resource Booking Learning Resource Booking

OTA_TRAINING_PLAN Training Plan Training Plan

OZF_ACCOUNT_PLAN Trade Account Plan Account Plan for Trade
Planning and Promotion
activities

A-86 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

BUSINESS_ENTITY_CODE MEANING DESCRIPTION

OZF_BUDGET Sales and Marketing Budget It is the budget for
Promotional Offer, Marketing
Campaigns, Events, and other
marketing activities.

OZF_CLAIM Trade Claim Claims that customers could
be seeking money against,
such as Promotional claims,
breakages, transportation
errors etc.

OZF_INDIRECT_SALES Indirect Sales Point of Sales Data,
chargebacks etc,

OZF_OFFERS Promotional Offer Promotional Offers or
Discounts that are given to
Customers from a Vendors
Sales or Marketing
Organization.

OZF_QUOTA Trade Planning Quota Quota and Targets for Trade
Planning and Promotional
Activities

OZF_SOFT_FUND Partner Fund Partner Fund Requests

OZF_SPECIAL_PRICING Special Pricing Special Pricing Requests

OZF_SSD_BATCH Supplier Ship and Debit Batch Supplier ship and debit batch
is essentially a claim that the
distributor submits to the
supplier for approval and
payment. The batch contains
accruals for which the
supplier is expected to make
payment for.

Integration Repository Annotation Standards A-87

BUSINESS_ENTITY_CODE MEANING DESCRIPTION

OZF_SSD_REQUEST Supplier Ship and Debit
Request

An agreement that allows
distributor to request a special
price from supplier. The ship
and debit request will allow
specifications with respect to
the quantity limits associated
to the price reduction,
product and period.

PAY_BALANCE Payroll Balance Payroll Balance

PAY_BALANCE_ADJUSTME
NT

Payroll Balance Adjustment Payroll Balance Adjustment

PAY_BATCH_ELEMENT_EN
TRY

HRMS Batch Element Entry HRMS Batch Element Entry

PAY_CONTRIBUTION_USA
GE

Payroll Contribution Usage Payroll Contribution Usage

PAY_COST_ALLOCATION Payroll Cost Allocation Payroll Cost Allocation

PAY_DEFINED_BALANCE Payroll Defined Balance Payroll Defined Balance

PAY_ELEMENT HRMS Element HRMS Element

PAY_ELEMENT_CLASSIFIC
ATION

HRMS Element Classification It describes categories of
HRMS Elements such as
Earnings, Deductions and
Information. These influence
subsequent processing.

PAY_ELEMENT_ENTRY HRMS Element Entry HRMS Element Entry

PAY_ELEMENT_LINK HRMS Element Eligibility
Criteria

HRMS Element Eligibility
Criteria

PAY_EMP_TAX_INFO Employee Tax Information Employee Tax Information

A-88 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

BUSINESS_ENTITY_CODE MEANING DESCRIPTION

PAY_FORMULA_RESULT Payroll Processing Result
Rule

It indicates how the Formula
is to be processed and how its
result is to be used by the
Payroll processes.

PAY_ITERATIVE_RULE Payroll Iterative Rule Payroll Iterative Rule

PAY_LEAVE_LIABILITY Leave Liability It describes leave type and
associated definitions utilized
by the Leave Liability process.

PAY_ORG_PAYMENT_MET
HOD

Organization Payment
Method

It is a Payroll Payment
Method used by the
Organization for employee
compensation.

PAY_PAYMENT_ARCHIVE Payroll Payment Archive Payroll Payment Archive

PAY_PAYROLL_DEFINITIO
N

Payroll Definition Payroll Definition

PAY_PAYROLL_EVENT_GR
OUP

Payroll Event Interpretation
Group

Payroll Event Interpretation
Group

PAY_PAYROLL_TABLE_RE
C_EVENT

Payroll Table Recordable
Event

Payroll Table Recordable
Event

PAY_PERSONAL_PAY_MET
HOD

Personal Payment Method Personal Payment Method

PAY_PROVINCIAL_MEDIC
AL

Provincial Medical Account Provincial Medical Account

PAY_RUN_TYPE Payroll Run Type Payroll Run Type

PAY_TIME_DEFINITION Payroll Time This holds information about
period of time and its usage.

PAY_USER_DEFINED_TABL
E

HRMS User Defined Table HRMS User Defined Table

Integration Repository Annotation Standards A-89

BUSINESS_ENTITY_CODE MEANING DESCRIPTION

PAY_WORKERS_COMPENS
ATION

Workers Compensation Workers Compensation

PA_AGREEMENT Project Customer Agreement Project Customer Agreement

PA_BILLING_EVENT Project Billing Event Project Billing Event

PA_BUDGET Project Budget Project Budget

PA_BURDEN_COST Project Burden Cost Project Burden Cost

PA_CAPITAL_ASSET Project Capital Asset Project Capital Asset

PA_CUSTOMER_INVOICE Project Customer Invoice Project Customer Invoice

PA_EXPENDITURE Project Expenditure Project Expenditure

PA_EXPENSE_RPT_COST Project Expense Report Cost Project Expense Report Cost

PA_FINANCIAL_TASK Project Financial Task Project Financial Task

PA_FORECAST Project Forecast Project Forecast

PA_IC_TRANSACTION Project Cross Charge Project Cross Charge

PA_INTERCOMPANY_INVO
ICE

Project Intercompany Invoice Project Intercompany Invoice

PA_INTERPROJECT_INVOI
CE

Project Interproject Invoice Project Interproject Invoice

PA_INVENTORY_COST Project Inventory Cost Project Inventory Cost

PA_INVOICE Project Invoice Project Invoice

PA_LABOR_COST Project Labor Cost Project Labor Cost

PA_MISCELLANEOUS_COS
T

Project Miscellaneous Cost Project Miscellaneous Cost

A-90 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

BUSINESS_ENTITY_CODE MEANING DESCRIPTION

PA_PAYABLE_INV_COST Project Supplier Cost Project Supplier Cost

PA_PERF_REPORTING Project Reporting Project Reporting

PA_PROJECT Project Project

PA_PROJ_COST Project Cost Project Cost

PA_PROJ_DELIVERABLE Project Deliverable Project Deliverable

PA_PROJ_FUNDING Project Funding Project Funding

PA_PROJ_PLANNING_RES
OURCE

Project Planning Resource Project Planning Resource

PA_PROJ_RESOURCE Project Resource Project Resource

PA_RES_BRK_DWN_STRUC
T

Project Resource Breakdown
Structure

Project Resource Breakdown
Structure

PA_REVENUE Project Revenue Project Revenue

PA_TASK Project Task Project Task

PA_TASK_RESOURCE Project Task Resource Project Task Resource

PA_TOT_BURDENED_COST Project Total Burdened Cost Project Total Burdened Cost

PA_USAGE_COST Project Asset Usage Cost Project Asset Usage Cost

PA_WIP_COST Project Work in Process Cost Project Work in Process Cost

PA_WORKPLAN_TASK Project Workplan Task Project Workplan Task

PER_APPLICANT Applicant Applicant

PER_APPLICANT_ASG Applicant Assignment Applicant Assignment

PER_APPRAISAL Worker Appraisal Worker Appraisal

Integration Repository Annotation Standards A-91

BUSINESS_ENTITY_CODE MEANING DESCRIPTION

PER_APPRAISAL_PERIOD Appraisal Period It defines appraisal period
information to be used within
a performance plan.

PER_ASSESSMENT Worker Assessment Worker Assessment

PER_BF_BALANCE Third Party Payroll Balance Third Party Payroll Balance

PER_BF_PAYROLL_RESULT
S

Third Party Payroll Results Third Party Payroll Results

PER_CHECKLIST Person Task Checklist It is a checklist containing
tasks which can be copied and
the copy assigned to an
Employee, Contingent
Worker or Applicant, e.g.
'New Hire Checklist'.

PER_COLLECTIVE_AGREE
MENT

Collective Agreement Collective Agreement

PER_COLLECTIVE_AGREE
MENT_ITEM

Collective Agreement Item Collective Agreement Item

PER_COMPETENCE Competence Competence

PER_COMPETENCE_ELEME
NT

Competence Element Competence Element

PER_COMPETENCE_RATIN
G_SCALE

Competence Rating Scale Competence Rating Scale

PER_CONFIG_WORKBENC
H

HCM Configuration
Workbench

It manages enterprise
structure configuration
workbench wizard for setting
up entities such as Locations,
Business Groups, Jobs and
Positions.

PER_CONTACT_RELATION
SHIP

Contact Relationship Contact Relationship

A-92 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

BUSINESS_ENTITY_CODE MEANING DESCRIPTION

PER_CWK Contingent Worker Contingent Worker

PER_CWK_ASG Contingent Worker
Assignment

Contingent Worker
Assignment

PER_CWK_RATE Contingent Worker
Assignment Rate

Contingent Worker
Assignment Rate

PER_DISABILITY Disability Disability

PER_DOCUMENTS_OF_REC
ORD

Documents of Record Documents of Record for an
Employee, Contingent
Worker, Applicant or Contact

PER_EMPLOYEE Employee Employee

PER_EMPLOYEE_ABSENCE Employee Absence Employee Absence

PER_EMPLOYEE_ASG Employee Assignment Employee Assignment

PER_EMPLOYMENT_CONT
RACT

Employment Contract Employment Contract

PER_ESTAB_ATTENDANCE
S

Schools and Colleges
Attended

Schools and Colleges
Attended

PER_EX-EMPLOYEE Ex-Employee Ex-Employee

PER_GENERIC_HIERARCH
Y

Generic Hierarchy Generic Hierarchy

PER_GRADE Employee Grade Employee Grade

PER_JOB Job Job

PER_JOB_GROUP Job Group Job Group

PER_MEDICAL_ASSESSME
NT

Medical Assessment Medical Assessment

Integration Repository Annotation Standards A-93

BUSINESS_ENTITY_CODE MEANING DESCRIPTION

PER_OBJECTIVE_LIBRARY Objectives Library A repository of reusable
objectives that can be either
created individually or
imported from an external
source.

PER_ORGANIZATION_HIE
RARCHY

Organization Hierarchy Organization Hierarchy

PER_PERFORMANCE_REVI
EW

Employee Performance
Review

Employee Performance
Review

PER_PERF_MGMT_PLAN Performance Management
Plan

It indicates the parameters of
the performance management
process, including the
performance period,
population and appraisal
periods.

PER_PERSON HR Person HR Person

PER_PERSONAL_CONTACT Personal Contact Personal Contact

PER_PERSONAL_SCORECA
RD

Person Scorecard One worker's objectives for a
performance management
plan, which provides a goal
setting, performance review
and scoring basis.

PER_PERSON_ADDRESS Person Address Person Address

PER_PHONE Phone Phone

PER_POSITION Position Position

PER_POSITION_HIERARCH
Y

Position Hierarchy Position Hierarchy

PER_PREVIOUS_EMPLOYM
ENT

Previous Employment Previous Employment

PER_QUALIFICATION Person Qualification Person Qualification

A-94 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

BUSINESS_ENTITY_CODE MEANING DESCRIPTION

PER_RECRUITMENT_ACTIV
ITY

Recruitment Activity Recruitment Activity

PER_SALARY_PROPOSAL Salary Proposal Salary Proposal

PER_SALARY_SURVEY Salary Survey Salary Survey

PER_SCORECARD_SHARIN
G

Scorecard Access It holds the list of persons and
access permissions for a
scorecard for which the
owner of the scorecard has
granted access.

PER_SECURITY_PROFILE Security Profile Security Profile

PER_SUPPLEMENTARY_RO
LE

HR Supplementary Role HR Supplementary Role

PER_VACANCY Vacancy Vacancy

PER_VACANCY_REQUISITI
ON

Vacancy Requisition Vacancy Requisition

PER_WORK_COUNCIL_ELE
CTION

Work Council Election Work Council Election

PER_WORK_INCIDENT Work Incident Work Incident

PN_CUSTOMER_SPACE_AS
SIGNMENT

Customer Space Assignment Customer Space Assignment

PN_EMPLOYEE_SPACE_ASS
GNMENT

Employee Space Assignment Employee Space Assignment

PN_INDEX_LEASES Index Rent Index Rent Agreement: It
manages creation and
updates of index rents for
Oracle Projects.

Integration Repository Annotation Standards A-95

BUSINESS_ENTITY_CODE MEANING DESCRIPTION

PN_LEASE Lease Lease Agreement: This
describes the creation and
updates of lease and payment
terms for Oracle Projects.

PN_PROPERTY Space A property or component of
property, such as a building,
land parcel, floor, or office.

PN_RECOVERABLE_EXPEN
SE

Property Recoverable
Expense

Property Recoverable
Expense

PN_VARIABLE_RENTS Variable Rent Variable Rent Agreement: It
defines creation and updates
of rent, overrides variable
rent calculations, create
breakpoints, constraints,
allowances, and abatements
as well as generate period for
variable rent.

PN_VOLUME_HISTORY Variable Rent Volume History Variable Rent Volume History

PO_ACKNOWLEDGEMENT Purchase Order
Acknowledgement

Purchase Order
Acknowledgement

PO_ADVANCED_SHIP_NOT
FN

Advanced Shipment
Notification

Advanced Shipment
Notification

PO_APPROVAL Purchase Order Approval Purchase Order Approval

PO_APPROVAL_HIERARCH
Y

Purchase Order Approval
Hierarchy

Purchase Order Approval
Hierarchy

PO_APPROVED_SUPPLIER_
LIST

Approved Supplier List Approved Supplier List

PO_ATTACHMENTS Procurement Attachments Procurement Attachments

PO_AUCTION Auction Auction

PO_AWARD Award Award

A-96 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

BUSINESS_ENTITY_CODE MEANING DESCRIPTION

PO_BIDDING_ATTRIBUTES Bidding Attributes Bidding Attributes

PO_BLANKET_PURCHASE_
AGREEMENT

Blanket Purchase Agreement Blanket Purchase Agreement

PO_BLANKET_RELEASE Purchasing Blanket Release A blanket release is issued
against a blanket purchase
agreement to place the actual
order.

PO_CATALOG Purchasing Catalog Purchasing Catalog

PO_CATALOG_CATEGORY Purchasing Catalog Category Purchasing Catalog Category

PO_CHANGE Purchase Order Change Purchase Order Change

PO_CONSUMPTION_ADVI
CE

Consigned Inventory
Consumption Advice

Release or Standard PO for
Consigned Consumption

PO_CONTRACT Purchasing Contract Purchasing Contract

PO_CONTRACT_PURCHAS
E_AGREEMENT

Contract Purchase Agreement Contract Purchase Agreement

PO_CONTRACT_TEMPLAT
E

Purchasing Contract
Template

Purchasing Contract
Template

PO_CONTRACT_TERM Purchasing Contract Term Purchasing Contract Term
(Articles, Deliverables and
Contract Documents)

PO_DOCUMENT_APPROVE
R

Purchasing Document
Approver

Purchasing Document
Approver

PO_EXPENSE_RECEIPT Expense Receipt Expense Receipt

PO_GLOBAL_BLANKET_AG
REEMENT

Global Blanket Purchase
Agreement

Global Blanket Purchase
Agreement

PO_GLOBAL_CONTRACT_
AGREEMENT

Global Contract Purchase
Agreement

Global Contract Purchase
Agreement

Integration Repository Annotation Standards A-97

BUSINESS_ENTITY_CODE MEANING DESCRIPTION

PO_GOODS_RECEIPT Goods Receipt Goods Receipt

PO_GOODS_RETURN Goods Return Goods Return

PO_INTERNAL_REQUISITI
ON

Internal Requisition Internal Requisition

PO_NEGOTIATION Sourcing Negotiation Sourcing Negotiation

PO_PLANNED_PURCHASE_
ORDER

Planned Purchase Order Planned Purchase Order

PO_PLANNED_RELEASE Planned PO Release Planned PO Release

PO_PRICE_BREAKS Sourcing Price Break Sourcing Price Break

PO_PRICE_DIFFERENTIAL Purchasing Price Differential Purchasing Price Differential
holds the price differentials
for the rate based lines for
requisition lines, PO lines or
Blanket pricebreaks based on
the entity type.

PO_PRICE_ELEMENTS Sourcing Price Element Sourcing Price Element

PO_PURCHASE_REQUISITI
ON

Purchase Requisition Purchase Requisition

PO_QUOTE Sourcing Quote Sourcing Quote

PO_RECEIPT_CORRECTION Receipt Correction Receipt Correction

PO_RECEIPT_TRAVELER Receipt Traveler Receipt Traveler

PO_REQUISITION_APPROV
AL

Requisition Approval Requisition Approval

PO_REQ_APPROVAL_HIER
ARCHY

Requisition Approval
Hierarchy

Requisition Approval
Hierarchy

PO_RFI Request for Information Request for Information

A-98 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

BUSINESS_ENTITY_CODE MEANING DESCRIPTION

PO_RFQ Request for Quotation Request for Quotation

PO_RFQ_RESPONSE RFQ Response RFQ Response

PO_SERVICES_RECEIPTS Services Receipt Services Receipt

PO_SHIPMENT_AND_BILLI
NG_NOTICE

Shipment / Billing Notice Shipment / Billing Notice

PO_SOURCING_BID Sourcing Bid Sourcing Bid

PO_SOURCING_RULES Sourcing Rule Sourcing Rule

PO_SOURCING_RULE_ASSI
GNMENTS

Sourcing Rule Assignment Sourcing Rule Assignment

PO_STANDARD_PURCHAS
E_ORDER

Standard Purchase Order Standard Purchase Order

PO_SUPPLIER_BANK_ACC
OUNT

Supplier Bank Account Supplier Bank Account

PQH_ADDITIONAL_SECON
D_PENSION

Additional Second Pension Additional Second Pension

PQH_DEFAULT_HR_BUDG
ET_SET

Default HR Budget Set Default HR Budget Set

PQH_EMEA_SENIORITY_SI
TUATION

European Seniority Situation European Seniority Situation

PQH_EMPLOYEE_ACCOM
MODATION

Employee Accommodation Employee Accommodation

PQH_EMPLOYER_ACCOM
MODATION

Employer Provided
Accommodation

Employer Provided
Accommodation

PQH_FR_CORPS French CORPS French CORPS

PQH_FR_SERVICES_VALID
ATION

French Services Validation French Services Validation

Integration Repository Annotation Standards A-99

BUSINESS_ENTITY_CODE MEANING DESCRIPTION

PQH_FR_STATUTORY_SITU
ATION

French Statutory Situation French Statutory Situation

PQH_GLOBAL_PAY_SCALE Global Pay Scale Global Pay Scale

PQH_POS_CTRL_BUSINESS
_RULE

Position Control Business
Rule

Position Control Business
Rule

PQH_POS_CTRL_ROUTING Position Control Routing Position Control Routing

PQH_POS_CTRL_TRANS_TE
MPLATE

Position Control Transaction
Template

Position Control Transaction
Template

PQH_RBC_RATE_MATRIX Person Eligibility Criteria
Rates Matrix

Rate Matrix stores different
criteria value combinations
and the rate a person is
eligible for if the person's
value matches the criteria
values.

PQH_REMUNERATION_RE
GULATION

Remuneration Regulation Remuneration Regulation

PQH_WORKPLACE_VALID
ATION

Workplace Validation Process Workplace Validation

PQP_PENSION_AND_SAVI
NG_TYPE

Pension and Saving Type Pension and Saving Type

PQP_VEHICLE_ALLOCATIO
N

Vehicle Allocation Vehicle Allocation

PQP_VEHICLE_REPOSITOR
Y

Vehicle Repository Vehicle Repository

PRP_PROPOSAL Sales Proposal Sales Proposal

A-100 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

BUSINESS_ENTITY_CODE MEANING DESCRIPTION

PSP_EFF_REPORT_DETAILS Employee Effort Report It summarizes employee's
labor distributions over a
period of time. It is used to
ensure accurate disbursement
of labor charges to comply
with Office of Management
and Budget Guidelines.

PV_OPPORTUNITY Partner Opportunity
Assignment

It supports the assignment of
indirect opportunities to
partners.

PV_PARTNER_PROFILE Partner Profiling It is the extensible attribute
model used to capture
additional information about
a partner and their contacts.

PV_PROGRAM Partner Program
Management

It represents the partner
program management
framework which includes
the creation/maintenance of
partner programs and the
associated partner
enrollments/memberships
into those programs.

PV_REFERRAL Partner Business Referral Partner creates referrals to
refer business to vendor. If
referral results in a sale, the
partner gets compensated.
Partner register deals with
vendor for non-competition
purposes.

QA_PLAN Quality Collection Plan Quality Collection Plan

QA_RESULT Quality Result It indicates collection plan
result data collected directly,
through transactions or
collection import.

Integration Repository Annotation Standards A-101

BUSINESS_ENTITY_CODE MEANING DESCRIPTION

QA_SPEC Quality Specification A requirement for a
characteristic for an item or
item category specific to a
customer or supplier.

QOT_QUOTE Sales Quote Sales Quote

QP_PRICE_FORMULA Price Formula Price Formula

QP_PRICE_LIST Price List Price List

QP_PRICE_MODIFIER Price Modifier Price Modifier

QP_PRICE_QUALIFIER Price Qualifier Price Qualifier

REPAIR_ORDER Repair Order Repair Order

RLM_CUM Supplier Shipment
Accumulation

It is used to track the total
shipments made by the
supplier for a particular
customer item, based on
CUM management setup.

RLM_SCHEDULE Customer Demand Schedule It refers to customers
production material release.

RRS_SITE Site It indicates the spatial
location of an actual or
planned structure or set of
structures (as a building,
business park,
communication tower,
highway or monument).

SOA_DIAGNOSTICS Diagnostics for Oracle
E-Business Suite Integrated
SOA Gateway

Diagnostics for Oracle
E-Business Suite integrated
SOA Gateway

UMX_ACCT_REG_REQUEST
S

User Account Request It represents requests made
for user accounts, needed to
gain system access.

A-102 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

BUSINESS_ENTITY_CODE MEANING DESCRIPTION

UMX_ROLE Security Role It represents a set of
permissions in the security
system. Roles are assigned to
users and can be defined in
role inheritance hierarchies. A
Responsibility is a special
type of role.

UMX_ROLE_REG_REQUEST
S

Security Role Request It represents requests made
for roles (as defined in the
security system) to gain
access to a secured part of the
system.

WF_ENGINE Workflow Item It indicates a workflow Item
including processes,
functions, notifications and
event activities.

WF_EVENT Business Event Business Event

WF_NOTIFICATION Workflow Notification Workflow Notification

WF_USER Workflow Directory User Workflow Directory User

WF_WORKLIST Workflow Worklist Content Approve workflow entities
(Expense Reports, PO
Request, HR Offer, HR
Vacancy)

WIP_ACCOUNTING_CLASS WIP Accounting Class WIP Accounting Class

WIP_COMPLETION_TRANS
ACTION

WIP Assembly Completion Business Entity for Assembly
Completion in WIP

WIP_EMPLOYEE_LABOR_R
ATE

WIP Employee Labor Rate WIP Employee Labor Rate

WIP_MATERIAL_TRANSAC
TION

WIP Material Transaction Business Entity for Material
Transaction in WIP

WIP_MOVE_TRANSACTIO
N

WIP Shopfloor Move WIP Shopfloor Move

Integration Repository Annotation Standards A-103

BUSINESS_ENTITY_CODE MEANING DESCRIPTION

WIP_PARAMETER Work in Process Setup Work in Process Setup

WIP_PRODUCTION_LINE Production Line Production Line

WIP_REPETITIVE_SCHEDU
LE

Repetitive Schedule Repetitive Schedule

WIP_RESOURCE_TRANSAC
TION

WIP Resource Process Flow WIP Resource Transaction

WIP_SCHEDULE_GROUP WIP Schedule Group WIP Schedule Group

WIP_SHOPFLOOR_STATUS Shopfloor Status Shopfloor Status

WIP_WORK_ORDER Work Order Job/Work Order

WMS_BULK_PACK Warehouse Bulk Pack Custom
API

This object can be used to
specify custom method to
decide:

• Whether multiple bulk
tasks can be loaded to the
same LPN or not

• Whether for a PJM
enabled organization the
LPNs across projects and
tasks can be consolidated
or not

WMS_CONTAINER Warehouse Management
License Plate

Warehouse Container and
License Plate Management

WMS_DEPLOY Warehouse Management
System Deployment Check

Object to get the WMS
deployment mode and related
standalone and LPN
installation utilities.

WMS_DEVICE_CONFIRMA
TION_PUB

Dispatch Task It contains status update for
dispatch task. For example, an
ASRS task, a Carousel task, a
Pick to Light system task.

A-104 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

BUSINESS_ENTITY_CODE MEANING DESCRIPTION

WMS_DEVICE_INTEGRATI
ON

Warehouse Device Warehouse Device

WMS_DOCK_APPOINTMEN
TS

WMS Dock Appointments WMS Dock Appointments
object is to create new dock
appointments or modify and
delete the already existing
dock appointments.

WMS_EPC_PUB Electronic Product Code It stores Electronic Product
Codes such as GTIN, GID,
SSCC, etc.

WMS_INSTALL Warehouse Management
System Installation Check

This API has two purposes:

• This API checks if WMS
product is installed in the
system, without which
some flags are hidden on
forms.

• The API also returns if an
organization is wms
enabled.

WMS_LABEL Label Printing It holds information to
support the printing of
shipping, package, container,
item and serial labels.

WMS_LICENSE_PLATE License Plate It is an identifier of a
container instance used by
shipping, warehouse
management and shop floor
management.

Integration Repository Annotation Standards A-105

BUSINESS_ENTITY_CODE MEANING DESCRIPTION

WMS_REPLENISHMENT Warehouse Replenishment This object provides access to
the demand lines that are
processed by replenishment
code to facilitate post
processing of the selected
lines. For example, to back
order a partially allocated
replenishment move order.

This object also allows to
provide custom logic to select
the list of demand lines which
are to be replenished and
back order the unselected
demand lines.

WMS_RFID_DEVICE Warehouse Management
Radio Frequency
Identification

Warehouse Management
Radio Frequency
Identification Integration

WMS_RULES Warehouse Rules Engine Rules engine object to provide
support for custom logic that
is honored during WMS rules
engine execution.

Custom strategy search,
custom method to calculate
the available capacity at a
location, etc. can be handled
via custom code.

WMS_SHIPPING_TRANSAC
TION

Warehouse Management
Shipping Transaction

Warehouse Management
truck loading and shipping

WMS_TASKS Warehouse Task Management Support for warehouse task
management like Query,
Modify, Update, Split, Delete
or Cancel the tasks.

A-106 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

BUSINESS_ENTITY_CODE MEANING DESCRIPTION

WMS_WAVE_PLANNING Warehouse Wave Planning Supports for wave planning
to customize to:

• Add and remove lines
from the waves being
created based on
customer's requirement

• Raise wave exceptions
based on the custom logic

• Release the tasks in
unreleased status based
on custom logic

WMS_XDOCK Warehouse Crossdocking Warehouse Crossdocking
Integration can be used to
customize the way
crossdocking is done.

Use custom method to:

• Decide crossdock criteria
to be used.

• Calculate the expected
time.

• Calculate the expected
delivery time.

• Sort the supply lines.

• Sort the demand lines.

WSH_CONTAINER_PUB Container Vessel in which goods and
material are packed for
shipment.

WSH_DELIVERY Delivery Group of Shipment Lines

WSH_DELIVERY_LINE Delivery Line Shipment Line

Integration Repository Annotation Standards A-107

BUSINESS_ENTITY_CODE MEANING DESCRIPTION

WSH_EXCEPTIONS_PUB Shipping Exception Exceptions automatically
logged for Shipping Entities
such as Change Quantity,
Cancel Shipment in OM, etc.
Exception behavior defined as
"Error", "Warning" or
"Information Only".

WSH_FREIGHT_COSTS_PUB Freight Costs
The cost of transportation
services for the Shipper. For
example, amount Shipper will
pay carrier for transportation
services.

WSH_PICKING_BATCHES_
PUB

Pick Release The process of releasing
delivery lines to warehouse
for allocation and picking.

WSH_TRIP Trip It describes a planned or
historical departure of
shipment from a location.

WSH_TRIP_STOPS_PUB Trip Stop The physical location through
which a Trip will pass where
goods are either dropped off
or picked up.

WSM_INV_LOT_TXN Inventory Lot Transaction Lot based Inventory
Transactions

WSM_LOT_BASED_JOB Lot Based Job Lot Based Job / WIP Lot

WSM_LOT_MOVE_TXN Lot Move Transaction Lot based jobs shopfloor
move transactions

WSM_WIP_LOT_TXN WIP Lot Transaction Lot based WIP transactions

A-108 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

BUSINESS_ENTITY_CODE MEANING DESCRIPTION

XDP_SERVICE_ORDER Service Fulfillment Order An order for one or more
services, which need to be
provisioned by Service
Fulfillment Manager. The
provisioning of these services
often involve systems outside
Oracle E-Business Suite.

XLA_JOURNAL_ENTRY Subledger Accounting Journal
Entry

Subledger Accounting Journal
Entry comprising of a Header,
Line and Distribution

XNB_ADD_BILLSUMMARY Bill Summary Processing This is used for inserting,
creating, or populating new
Bill Summary records into
Oracle E-Business Suite from
external Billing systems.

XNB_ADD_GROUPSALESO
RDER

Billing System Sales Order
Lines Group

All the Sales order lines
information is generated as
one XML Message and
published to third party
billing application.

XNB_ADD_SALESORDER Billing System Sales Order
Addition

Sales order information is
generated as XML Message
and published to third party
billing application.

XNB_SYNC_ACCOUNT Billing System Customer
Account Synchronization

An account information is
generated as XML Message
and published to third party
billing application.

XNB_SYNC_ITEM Billing System Inventory Item
Synchronization

Catalog information is
generated as XML Message
and published to third party
billing application.

XTR_BANK_BALANCE Bank Account Balance Bank Account Balance

XTR_DEAL_DATA Treasury Deal Treasury Deal

Integration Repository Annotation Standards A-109

BUSINESS_ENTITY_CODE MEANING DESCRIPTION

XTR_MARKET_DATA Market Rate Financial Market Rates Data

XTR_PAYMENT XTR Payment Treasury Payment represents
the payments that are being
made.

ZX_DATA_UPLOAD Imported Tax Content This entity code is used in all
the programs of Oracle
E-Business Suite Tax Content
Upload Request Set.

Example: Create Customer
/*#
_*This interface creates a customer. It calls the
_*customer hub API that creates a 'party' to create a
_*party of type 'customer'.
_*@rep:scope public
_*@rep:product OM
_*@rep:displayname Create Customer
_*@rep:category BUSINESS_ENTITY OM_CUSTOMER
_*@rep:lifecycle active
_*@rep:compatibility S
_*/

Composite Service - BPEL Annotation Guidelines
This section describes what you should know about Integration Repository annotations
for Composite Services - BPEL.

Annotating Composite Services - BPEL
• You should annotate BPEL projects in *.bpel files.

• Before annotating, make sure that no comments beginning with /*# are present.
The "slash-star-pound" characters are used to set off repository annotations, and
will result in either an error or undesirable behavior if used with normal comments.

• To annotate, open the .bpel file in text editor to edit the file.

• In the .bpel file, place the annotations within the comments section in beginning of
the file.

• Enter meaningful description that covers the condition under which the business
event is raised and the UI action that invokes the business event.

A-110 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

• Define product codes in FND_APPLICATION.

• Use existing business entities for your composite services - BPEL processes. For the
list of existing business entities, see Business Entity Annotation Guidelines, page A-
37.

• Interface name in <BPEL_PROCESS_NAME>.bpel should be defined as
'oracle.apps' + product_code + '.<BPEL_PROCESS_NAME>.

• If BPEL process name is "BPEL_PROCESS_NAME", then

• A BPEL Process Jar file should be created with
<prod>_bpel_<BPEL_PROCESS_NAME>.jar.

• <prod>_bpel_<BPEL_PROCESS_NAME>.jar file should be placed under
$product_top/patch/115/jar/bpel.

• <prod>_bpel_<BPEL_PROCESS_NAME>.jar file should be unzipped under
$product_top/patch/115/jar/bpel.

• BPEL file for <BPEL_PROCESS_NAME>.jar should be present under
$product_top/patch/115/jar/bpel/<prod>_bpel_<BPEL_PROCESS_
NAME>.bpel.

• BPEL File Name should not be changed from <BPEL_PROCESS_NAME>.bpel.

• WSDL file for <BPEL_PROCESS_NAME> should be present under
$product_top/patch/115/jar/bpel/<prod>_bpel_<BPEL_PROCESS_
NAME>.bpel.

• WSDL File Name should not be changed from <BPEL_PROCESS_NAME>.wsdl.

• Standalone Parser should be run on annotated
$product_top/patch/115/jar/bpel/<prod>_bpel_<BPEL_PROCESS_
NAME>.bpel/bpel<BPEL_PROCESS_NAME>.bpel.

• $product_top/patch/115/jar/bpel/<prod>_bpel_<BPEL_PROCESS_
NAME>.bpel/bpel<BPEL_PROCESS_NAME>_bpel.ildt should be loaded
into Integration Repository.

• During the execution of a standalone parser, arcs file location of *.bpel file should
be patch/115/jar/bpel.

Annotations for Composite Services - BPEL - Syntax
The annotations for composite services - BPEL are:

Integration Repository Annotation Standards A-111

/*#
 * This is a bpel file for creating invoice.
 * @rep:scope public
 * @rep:displayname Create Invoice
 * @rep:lifecycle active
 * @rep:product inv
 * @rep:compatibility S
 * @rep:interface oracle.apps.inv.CreateInvoice
 * @rep:category BUSINESS_ENTITY INVOICE_CREATION
 */

Refer to General Guidelines for Annotations, page A-1 in Integration Repository for
details of element definitions.

Required Annotations
Follow the links below to view syntax and usage of each annotation.

• Must begin with description sentence(s)

• rep:displayname, page A-120

• rep:scope, page A-118

• rep:product, page A-119

• rep:category BUSINESS_ENTITY, page A-129

Optional Annotations
• link, page A-124

• see, page A-125

• rep:lifecycle, page A-123

• rep:compatibility, page A-123

• rep:ihelp, page A-126

• rep:metalink, page A-127

• rep:doccd, page A-128

Template
You can use the following template when annotating composite - BPEL files:

A-112 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

.

.

.
 /*#
 * <Put your long bpel process description here
 * it can span multiple lines>
 * @rep:scope <scope>
 * @rep:displayname <display name>
 * @rep:lifecycle <lifecycle>
 * @rep:product <product or pseudoproduct short code>
 * @rep:compatibility <compatibility code>
 * @rep:interface <oracle.apps.[product_code].[bpel_process_name]>
 * @rep:category BUSINESS_ENTITY <entity name>
 */
.
.
.

Example
Here is an example of an annotated composite - BPEL file:

Integration Repository Annotation Standards A-113

//
Oracle JDeveloper BPEL Designer

 Created: Tue Oct 30 17:10:13 IST 2007
 Author: jdole
 Purpose: Synchronous BPEL Process
 /*#
 * This is a bpel file for creating invoice.
 * @rep:scope public
 * @rep:displayname Create Invoice
 * @rep:lifecycle active
 * @rep:product PO
 * @rep:compatibility S
 * @rep:interface oracle.apps.po.CreateInvoice
 * @rep:category BUSINESS_ENTITY INVOICE
 */

//

-->
<process name="CreateInvoice">
 targetNamespace="http://xmlns.oracle.com/CreateInvoice"
 xmlns="http://schemas.xmlsoap.org/ws/2003/03/business-process/"

xmlns:bpws="http://schemas.xmlsoap.org/ws/2003/03/business-process/"

xmlns:xp20="http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.servi
ces.functions.Xpath20"

xmlns:ns4="http://xmlns.oracle.com/pcbpel/adapter/file/ReadPayload/"
 xmlns:ldap="http://schemas.oracle.com/xpath/extension/ldap"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:ns5="http://xmlns.oracle.com/bpel/workflow/xpath"
 xmlns:client="http://xmlns.oracle.com/CreateInvoice"

xmlns:ns6="http://xmlns.oracle.com/bpel/services/IdentityService/xpath"
 xmlns:ora="http://schemas.oracle.com/xpath/extension"

xmlns:ns1="http://xmlns.oracle.com/soaprovider/plsql/AR_INVOICE_API_PUB_
2108/CREATE_SINGLE_INVOICE_1037895/"

xmlns:ns3="http://xmlns.oracle.com/soaprovider/plsql/AR_INVOICE_API_PUB_
2108/APPS/BPEL_CREATE_SINGLE_INVOICE_1037895/AR_INVOICE_API_PUB-24CREATE
_INV/"
 xmlns:ns2="http://xmlns.oracle.com/pcbpel/adapter/appscontext/"
 xmlns:bpelx="http://schemas.oracle.com/bpel/extension"

xmlns:orcl="http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.servi
ces.functions.ExtFunc">

 <!--
///
PARTNERLINKS
 List of services participating in this BPEL process
///
-->
<partnerLinks>
 <!--
 The 'client' role represents the requester of this service. It is
 used for callback. The location and correlation information
associated

A-114 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

with the client role are automatically set using WS-Addressing.
 -->
 <partnerLink name="client" partnerLinkType="client:CreateInvoice"
 myRole="CreateInvoiceProvider"/>
 <partnerLink name="CREATE_SINGLE_INVOICE_1037895"
 partnerRole="CREATE_SINGLE_INVOICE_1037895_ptt_Role"

partnerLinkType="ns1:CREATE_SINGLE_INVOICE_1037895_ptt_PL"/>
 <partnerLink name="ReadPayload" partnerRole="SynchRead_role"
 partnerLinkType="ns4:SynchRead_plt"/>
</partnerLinks>
<!--
///
VARIABLES
 List of messages and XML documents used within this BPEL process
///
-->
<variables>
<!--Reference to the message passed as input during initiation-->
 <variable name="inputVariable"
 messageType="client:CreateInvoiceRequestMessage"/>
<!--Reference to the message that will be returned to the requester-->
 <variable name="outputVariable"
 messageType="client:CreateInvoiceResponseMessage"/>
 <variable
name="Invoke_1_CREATE_SINGLE_INVOICE_1037895_InputVariable"
 messageType="ns1:Request"/>
 <variable
name="Invoke_1_CREATE_SINGLE_INVOICE_1037895_OutputVariable"
 messageType="ns1:Response"/>
 <variable name="Invoke_2_SynchRead_InputVariable"
 messageType="ns4:Empty_msg"/>
 <variable name="Invoke_2_SynchRead_OutputVariable"
 messageType="ns4:InputParameters_msg"/>
</variables>
<!--
///
ORCHESTRATION LOGIC
 Set of activities coordinating the flow of messages across the
 services integrated within this business process
///
-->
<sequence name="main">
 <!--Receive input from requestor. (Note: This maps to operation
defined in CreateInvoice.wsdl)-->
 <receive name="receiveInput" partnerLink="client"
 portType="client:CreateInvoice" operation="process"
 variable="inputVariable" createInstance="yes"/>
 <!--Generate reply to synchronous request-->
 <assign name="SetHeader">
 <copy>
 <from expression="''operations'">
 <to
variable="Invoke_1_CREATE_SINGLE_INVOICE_1037895_InputVariable"
 part="header"

query="/ns1:SOAHeader/ns2:ProcedureHeaderType/ns2:Username"/>
 </copy>
 <copy>
 <from expression="''Receivables, Vision Operations (USA)'">
 <to

Integration Repository Annotation Standards A-115

variable="Invoke_1_CREATE_SINGLE_INVOICE_1037895_InputVariable"
 part="header"

query="/ns1:SOAHeader/ns2:ProcedureHeaderType/ns2:Responsibility"/>
 </copy>
 <copy>
 <from expression="''204'">
 <to
variable="Invoke_1_CREATE_SINGLE_INVOICE_1037895_InputVariable"
 part="header"
 query="/ns1:SOAHeader/ns2:ProcedureHeaderType/ns2:ORG_ID"/>
 </copy>
 <copy>
 <from expression="''Receivables, Vision Operations (USA)'">
 <to
variable="Invoke_1_CREATE_SINGLE_INVOICE_1037895_InputVariable"
 part="header"

query="/ns1:SOAHeader/ns1:SecurityHeader/ns1:ResponsibilityName"/>
 </copy>
 </assign>
 <invoke name="InvokeReadPayload" partnerLink="ReadPayload"
 portType="ns4:SynchRead_ptt" operation="SynchRead"
 inputVariable="Invoke_2_SynchRead_InputVariable"
 outputVariable="Invoke_2_SynchRead_OutputVariable"/>
 <assign name="SetPayload">
 <copy>
 <from variable="Invoke_2_SynchRead_OutputVariable"
 part="InputParameters" query="/ns3:InputParameters"/>
 Invoke_1_CREATE_SINGLE_INVOICE_1037895_InputVariable"
 part="body" query="/ns1:SOARequest/ns3:InputParameters"/>
 </copy>
 </assign>
 <assign name="SetDate">
 <copy>
 <from expression="xp20:current-date()">
 <to to
variable="Invoke_1_CREATE_SINGLE_INVOICE_1037895_InputVariable"
 part="body"

query="/ns1:SOARequest/ns3:InputParameters/ns3:P_TRX_HEADER_TBL/ns3:P_TR
X_HEADER_TBL_ITEM/ns3:TRX_DATE"/>
 </copy>
 </assign>
 <invoke name="Invoke_1" partnerLink="CREATE_SINGLE_INVOICE_1037895"
 portType="ns1:CREATE_SINGLE_INVOICE_1037895_ptt"
 operation="CREATE_SINGLE_INVOICE_1037895"

inputVariable="Invoke_1_CREATE_SINGLE_INVOICE_1037895_InputVariable"

outputVariable="Invoke_1_CREATE_SINGLE_INVOICE_1037895_OutputVariable"/>
 <assign name="AssignResult">
 <copy>
 <from
variable="Invoke_1_CREATE_SINGLE_INVOICE_1037895_OutputVariable"
 part="body"

query="/ns1:SOAResponse/ns3:OutputParameters/ns3:X_MSG_DATA"/>
 <to variable="outputVariable" part="payload"
 query="/client:CreateInvoiceProcessResponse/client:result"/>
 </copy>

A-116 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

</assign>
 <reply name="replyOutput" partnerLink="client"
 portType="client:CreateInvoice" operation="process"
 variable="outputVariable"/>
 </sequence>
</process>

Glossary of Annotations
The following is a list of currently supported annotation types and details about their
recommended use.

<description sentence(s)>

Annotation Type <description sentence(s)>

Syntax Does not require a tag.

Integration Repository Annotation Standards A-117

Annotation Type <description sentence(s)>

Usage Defines a user-friendly description of what the
interface or method does.

Start the description with a summary sentence
that begins with a capital letter and ends with
a period. Do not use all capitals) and do not
capitalize words that are not proper nouns.

An example of a good beginning sentence
could be as follows:

"The Purchase Order Data Object holds the
purchase order data including nested data
objects such as lines and shipments."

In general, a good description has multiple
sentences and would be easily understood by
a potential customer. An exception to the
multiple sentence rule is cases where the
package-level description provides detailed
context information and the associated
method-level descriptions can therefore be
more brief (to avoid repetitiveness).

A bad example would be: "Create an order."

This description is barely usable. A better one
would be:

"Use this package to create a customer order,
specifying header and line information."

You can use the
 tag for forcing a new line
in description. The following is an example on
how to force a new line in the description:

The following is an example on how to force a
new line in the description:

FEM_BUDGETS_ATTR_T is an interface
table for loading and updating
Budget attribute assignments using
the Dimension Member Loader.

These attribute assignments are
properties that further describe
each Budget.
 When loading
Budgets using the Dimension Member
Loader, identify each new member
in the FEM_BUDGETS_B_T table while
providing an assignment row for
each required attribute in the
FEM_BUDGETS_ATTR_T table.

A-118 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

Annotation Type <description sentence(s)>

Example /*#
 * This is a sample description.
Use
 * standard English capitalization
and
 * punctuation. Write descriptions
 * carefully.

Required Required for all interfaces that have
@rep:scope public.

Default If not set, the value is defaulted from the
Javadoc or PL/SQL Doc of the interface or
method.

Level Interface (class) and API (method).

Multiple Allowed No. Use only one per each program element
(class or method).

Comments Optionally, you can use the following HTML
tags in your descriptions:

<body>
<p>

<h1>
<h2>
<h3>

<pre> for multiple code samples (should be
enclosed by <code> tags)

@rep:scope

Annotation Type @rep:scope

Syntax @rep:scope public | private |
internal

Usage Indicates where to publish the interface, if at
all.

Integration Repository Annotation Standards A-119

Annotation Type @rep:scope

Example @rep:scope public means publish
everywhere.

Note: Public interfaces are displayed on
the customer-facing UI.

@rep:scope private means that this
interface is published to the Integration
Repository but restricted for use by the
owning team.

@rep:scope internal means publish
within the company.

Required Required for all interfaces.

Default None.

Level Interface (class) and API (method).

Multiple Allowed No. Use only one per each program element
(class or method).

@rep:product

Annotation Type @rep:product

Syntax @rep:product StringShortCode

Usage Specifies the product shortname of the
interface.

Example @rep:product PO

Required Required for all interfaces.

Default None.

Level Interface (class) only.

A-120 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

Annotation Type @rep:product

Multiple Allowed No. Use only one per interface.

@rep:implementation

Annotation Type @rep:implementation

Syntax @rep:implementation
StringClassName

Usage Specifies the implementation class name of the
interface.

Example @rep:implementation
oracle.apps.po.server.PurchaseOrde
rsAmImpl

Required Required for Java only.

Default None.

Level Interface (class).

Multiple Allowed No. Use only one per interface.

Comments

@rep:displayname

Annotation Type @rep:displayname

Syntax @rep:displayname StringName

Usage Defines a user-friendly name for the interface.

Example @rep:displayname Purchase Order
Summary

Integration Repository Annotation Standards A-121

Annotation Type @rep:displayname

Required Required for all interfaces that have
@rep:scope public.

Default None.

Level Interface (class) and API (method).

Multiple Allowed No. Use only one per each program element
(class or method).

A-122 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

Annotation Type @rep:displayname

Comments Display Name Guidelines

These guidelines apply to display names for
all technologies (interfaces, classes, methods,
parameters, XMLG maps, and so on).

Display names must meet the following
criteria:

• Be mixed case. Do not use all capitals or
all lower case.

• Be singular rather than plural. For
example, use "Customer" instead of
"Customers".

• Be fully qualified and representative of
your business area.

• Not have underscores (_).

• Not end with a period (.).

• Not be the same as the internal name.

• Not begin with a product code or product
name.

• Not contain obvious redundancies such
as "Package", "API", or "APIs". As you
write your display names, do consider the
UI where the display name will be seen.

For example, use 'Promise Activity' as the
display name, instead of
IEX_PROMISES_PUB. The reason is that
IEX_PROMISES_PUB contains underscores
and is the same as the internal name.

Use 'Process Activity' as the display name,
instead of 'Workflow Process Activity APIs'.
This is because it begins with a product name
and ends with "APIs".

Integration Repository Annotation Standards A-123

@rep:lifecycle

Annotation Type @rep:lifecycle

Syntax @rep:lifecycle active | deprecated
| obsolete | planned

Usage Indicates the lifecycle phase of the interface.

Example @rep:lifecycle active means the
interface is active.

@rep:lifecycle deprecated means the
interface has been deprecated.

@rep:lifecycle obsolete means the
interface is obsolete and must not be used.

@rep:lifecycle planned means the
interface is planned for a future release. This is
used for prototypes and mockups.

Required Optional.

Default The default value is active.

Level Interface (class) and API (method).

Multiple Allowed No. Use only one per each program element
(class or method).

Comments The parsers will validate that this annotation
is in sync with the "@deprecated" Javadoc
annotation.

@rep:compatibility

Annotation Type @rep:compatibility

Syntax @rep:compatibility S | N

A-124 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

Annotation Type @rep:compatibility

Usage S indicates the lifecycle phase of the interface.

N indicates that backward compatibility is not
assured.

Example @rep:compatibility S

Required Optional.

Default Conditional. The value is defaulted to S for
@rep:scope public. Otherwise, the value
is defaulted to N.

Level Interface (class) and API (method).

Multiple Allowed No. Use only one per each program element
(class or method).

@link

Annotation Type @link

Note: This is supported only for a
destination of Java.

Syntax {@link package.class#member label}

Usage Provides a link to another interface or method.

Example {@link
#setAmounts(int,int,int,int) Set
Amounts}

Required Optional.

Default None.

Level Interface (class) and API (method).

Integration Repository Annotation Standards A-125

Annotation Type @link

Note: This is supported only for a
destination of Java.

Multiple Allowed Yes.

Comments This is the standard Javadoc "@link"
annotation, where the linked items are
embedded as hyperlinks in the description
that displays in the UI.

Take note of the following rules: Public APIs
must not link to private or internal APIs. @link
annotations must not link to documents that
are not accessible by the Integration
Repository viewer.

@see

Annotation Type @see

Syntax @see StringLocator

Usage Provides a link to another interface or method.

Example @see #setAmounts(int,int,int,int)

Required Optional.

Default None.

Level Interface (class) and API (method).

Multiple Allowed Yes.

A-126 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

Annotation Type @see

Comments This is the standard Javadoc "@see"
annotation.

The linked items will display on the UI under
a "See Also" heading.

Usage in PL/SQL Code: @see
package#procedure

@rep:ihelp

Annotation Type @rep:ihelp

Syntax When used as a separate child annotation on a
single line:

@rep:ihelp
<product_shortname>/@<help_target>
#<help_target> <link_text>

When used as an inline annotation, add curly
braces:

{@rep:ihelp
<product_shortname>/@<help_target>
#<help_target> <link_text>}

Usage Provides a link to an existing HTML online
help page.

product_shortname is the product short
name.

help_target is the help target that was
manually embedded in the file by the
technical writer, such as, "jtfaccsum_jsp,"
"aolpo," "overview," "ast_aboutcollateral".

For more information on how to customize
Oracle E-Business Suite help, see Setting Up
Oracle E-Business Suite Help, Oracle
E-Business Suite Setup Guide.

Example @see #setAmounts(int,int,int,int)

Required Optional.

Integration Repository Annotation Standards A-127

Annotation Type @rep:ihelp

Default None.

Level Interface (class) and API (method).

Multiple Allowed Yes.

Comments The @rep:ihelp annotation is slightly
preferred over the similar @rep:doccd
annotation, as it is both local and more
specific.

@rep:metalink

Annotation Type @rep:metalink

Syntax When used as a separate child annotation on a
single line:

@rep:metalink <bulletin_number>
<link_text>

When used as an inline annotation, add curly
braces:

{@rep:metalink <bulletin_number>
<link_text>}

Usage Provides a link to an existing My Oracle
Support (formerly OracleMetaLink)
Knowledge Document.

Example @rep:metalink 123456.1 See My
Oracle Support Knowledge Document
123456.1

Required Optional.

Default None.

Level Interface (class) and API (method).

Multiple Allowed Yes.

A-128 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

Annotation Type @rep:metalink

Comments

@rep:doccd

Annotation Type @rep:doccd

Syntax When used as a separate child annotation on a single line:

@rep:doccd <file_name> <link_text>

When used as an inline annotation, add curly braces:

{@rep:doccd <file_name> <link_text>}

Usage Forms a link to a PDF guide on the documentation CD.

Example {@rep:doccd 115xyzug.pdf See the Oracle
Sample Product Users Guide}

Required Optional.

Default None.

Level Interface (class) and API (method).

Multiple Allowed Yes.

Comments • PDF guides on the doc CD should follow the naming
standard for PDF file names. Regardless of what the file
name is, once an @rep:doccd annotation exists in
source code, teams should make every effort to keep
that file name stable and enduring.

If the PDF has been zipped to reduce its file size, then
use @rep:doccd <file_name.zip> <link_text>.

• The @rep:ihelp annotation is slightly preferred over
the similar @rep:doccd annotation, as it is both local
and more specific.

Integration Repository Annotation Standards A-129

@rep:category

Annotation Type @rep:category

Syntax @rep:category BUSINESS_ENTITY
BUSINESS_ENTITY_CODE

See Annotation Syntax, page A-1 for details about this
annotation's syntax.

Usage Specifies the business category of the interface.

Example @rep:category BUSINESS_ENTITY
PO_PLANNED_PURCHASE_ORDER

PO_PLANNED_PURCHASE_ORDER is your business
entity code and your display name for example could be
"Planned Purchase Order".

Required BUSINESS_ENTITY is mandatory for all interfaces. If the
methods belonging to a class ALL have the same business
entity, you only need to annotate the class. However, if the
methods belonging to a class have heterogeneous business
entities, then you have to annotate each of the methods
appropriately.

See Business Entity Annotation Guidelines, page A-37 for
additional details.

OPEN_INTERFACE is mandatory for CPs that are part of
Open Interfaces.

Default Methods default to the value set on the class.

Level Interface (class) and API (method).

Multiple Allowed Yes.

A-130 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

Annotation Type @rep:category

Comments You are encouraged to use the rep:category annotation
liberally in your code.

STANDARD_READY specifies where Oracle is standard-ready
but cannot claim standard compliance because a third-party
process is responsible for compliance.

When using MISC_EXTENSIONS, the value for
<FND_CODE> can be any of the following:

• ALL_USER_EXIT

• HR_USER_HOOKS

• HR_DATAPUMP

• PA_CLIENT_EXTENSION

@rep:usestable

Annotation Type @rep:usestable

Syntax @rep:usestable <table or view name>
<sequence> <direction flag>

Usage Used when annotating concurrent programs to identify
associated open interface tables or views.

<table or view name> is the name of the table or view.

<sequence> is an integer used to tell the UI the display
order of the different pieces. By convention, in the
rep:category OPEN_INTERFACE, page A-129 annotation,
you will have used 1 for the concurrent program. Here in
the rep:usestable annotations, order the input tables: list
master (header) tables before detail (lines) tables. Finally,
put any output views or tables at the end of the sequence.

<direction flag> is optional and specifies one of the
following: IN (default), OUT, or BOTH.

Example @rep:usestable SampleTable 3 IN

Required Only if the concurrent program is part of an open interface.

Integration Repository Annotation Standards A-131

Annotation Type @rep:usestable

Default None.

Level Interface.

Multiple Allowed Yes.

@rep:standard

Annotation Type @rep:standard

Syntax @rep:standard StringType StringVersionNumber
StringSpecName

In the following example @rep:standard OAG 7.2
Process_PO_001 StringType is OAG,
StringVersionNumber is 7.2 and StringSpecName is
Process_PO_001

See Annotation Syntax, page A-1 for details about this
annotation's syntax.

Usage Specifies the business standard name. This annotation is
reserved for where Oracle is compliant with industry
standards.

Example In the example @rep:standard RosettaNet 02.02.00
'Pip3B12-Shipping Order Confirmation, the
StringSpecName is enclosed in Single Quotes because the
spec name has empty spaces. It is not necessary to have
these quotes if the StringSpecName does not have any
empty spaces like the following example @rep:standard
RosettaNet 02.02.00
Pip3B12-PurchaseOrderConfirmation.

Required Optional.

Default Methods default to the value set on the class.

Level Documents and data rows.

Multiple Allowed No. Use only one per each program element (class or
method).

A-132 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

Annotation Type @rep:standard

Comments

@rep:interface

Annotation Type @rep:interface

Syntax @rep:interface StringClassName where the
StringClassName syntax is
transactiontype:subtype. Refer to the
example below.

Usage Specifies the interface name for technologies where parsing
tools can't easily introspect the interface name.

Example The StringClassName is always
transactiontype:subtype

@rep:interface PO:POC

Required Optional.

Default None.

Level Interface only.

Multiple Allowed No. Use only one per interface.

Comments Used in technologies where there isn't a strong native
definition of the interface, such as XML Gateway and EDI.

@param

Annotation Type @param

Syntax @param paramName paramDescription

Usage Specifies the name and description of a method, procedure,
or function parameter (IN, OUT, or both).

Integration Repository Annotation Standards A-133

Annotation Type @param

Example @param PONumber The purchase order number.

Required Optional.

Default None.

Level Methods, procedures, and functions.

Multiple Allowed Yes.

Comments For convenience, Java annotations are also supported.

@return

Annotation Type @return

Syntax @return StringDescription

Usage Specifies the description of a method or function return
parameter.

Example @return The purchase order status.

Required Optional.

Default None.

Level Methods, procedures, and functions.

Multiple Allowed Yes.

Comments For convenience, Java annotations are also supported.

A-134 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

@rep:paraminfo

Annotation Type @rep:paraminfo

Syntax @rep:paraminfo {@rep:innertype typeName}
{@rep:precision value} {@rep:required}

Usage rep:paraminfo

The rep:paraminfo annotation must come immediately in
the line following the parameter's @param or @return
annotation it is describing.

rep:innertype

Optional inline annotation to describe the inner type of
generic objects such as collections.

rep:precision

Optional inline annotation to specify the parameter
precision. Used for Strings and numbers.

rep:required

Optional inline annotation to indicate that a not null must be
supplied. This is only needed for non-PL/SQL technologies.

Integration Repository Annotation Standards A-135

Annotation Type @rep:paraminfo

Example /**
 * Acknowledges purchase orders, including
whether
 * the terms have been accepted or not. You
can
 * also provide updated line item pricing
and
 * shipment promise dates with the
acknowledgement.
 *
 * @param purchaseOrders list of purchase
order objects
 * @paraminfo {@rep:innertype
oracle.apps.po.PurchaseOrderAcknowledgements
SDO}
{@rep:required}
 *
 * @rep:scope public
 * @rep:displayname Receive Purchase Order
Items
 */
public void
acknowledgePurchaseOrders(DataList
purchaseOrders);

/**
 * Gets the price for a purchase order line
item.
 *
 * @param poNumber purchase order unique
identifier
 * @paraminfo {@rep:precision 10}
{@rep:required}
 * @param lineNumber purchase order line
unique identifier
 * @paraminfo {@rep:precision 10}
{@rep:required}
 * @return the item price for the given
purchase order line
 * @paraminfo {@rep:precision 10}
 *
 * @rep:scope public
 * @rep:displayname Get Purchase Order Line
Item Price
 */
public Number getItemPrice(Number poNumber,
Number lineNumber);

Required Optional.

Default None.

A-136 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

Annotation Type @rep:paraminfo

Level Methods only.

Multiple Allowed Yes. Multiple values can be assigned for different
parameters.

Comments

@rep:businessevent

Annotation Type @rep:businessevent

Syntax @rep:businessevent BusinessEvent

Usage Indicates the name of the business event raised by this
method.

Example @rep:businessevent
oracle.apps.wf.notification.send

Required Optional.

Default Defaulted in file types where the business event can be
derived.

Level Methods only.

Multiple Allowed Yes.

Comments Make sure to use this annotation at every instance where
you raise a business event. Note that business events
themselves do not require an annotation.

@rep:direction

Annotation Type @rep:direction

Syntax @rep:direction <OUT | IN>

Integration Repository Annotation Standards A-137

Annotation Type @rep:direction

Usage Indicates whether the interface is outbound or inbound.

Example @rep:direction OUT

Required Required for EDI and XML Gateway annotations only.

Default None.

Level Interface.

Multiple Allowed No.

Comments

@rep:service

Annotation Type @rep:service

Syntax @rep:service

Usage Indicates that a Java file is a business service object (as
opposed to a normal Java API) Use this tag as is in your Java
file. Refer to the example section below. It takes no
parameters

A-138 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

Annotation Type @rep:service

Example /**
* The Purchase Order service lets you to
view, update, acknowledge and
* approve purchase orders. It also lets you
receive items, and obtain
* pricing by line item.
*
* @see
oracle.apps.fnd.framework.toolbox.tutorial.P
urchaseOrderSDO
* @see
oracle.apps.fnd.framework.toolbox.tutorial.P
urchaseOrderAcknowledgementsSDO
* @see
oracle.apps.fnd.framework.toolbox.tutorial.P
urchaseOrderReceiptsSDO
*
* @rep:scope public
* @rep:displayname Purchase Order Service
* @rep:implementation
oracle.apps.fnd.framework.toolbox.tutorial.s
erver.PurchaseOrderSAMImpl
* @rep:product PO
* @rep:category BUSINESS_ENTITY
PO_PURCHASE_ORDER
* @rep:service
*/

Required Required for Java files at the class level.

Default None.

Level Class.

Multiple Allowed No.

Comments

@rep:servicedoc

Annotation Type @rep:servicedoc

Syntax @rep:servicedoc

Integration Repository Annotation Standards A-139

Annotation Type @rep:servicedoc

Usage Indicates that a Java file is an SDO (as opposed to a normal
Java API). Use this tag as is in your java file. Refer to the
example section below. It takes no parameters.

Example /**
* The Purchase Order Data Object holds the
purchase order data including
* nested data objects such as lines and
shipments.
*
* @see
oracle.apps.fnd.framework.toolbox.tutorial.P
urchaseOrderLineSDO
*
* @rep:scope public
* @rep:displayname Purchase Order Data
Object
* @rep:product PO
* @rep:category BUSINESS_ENTITY
PO_PURCHASE_ORDER
* @rep:servicedoc
*/

Required Required for Java files at the class level.

Default None.

Level Class.

Multiple Allowed No.

Comments Developers do not need to enter this annotation because it is
automatically generated.

@rep:synchronicity

Annotation Type @rep:synchronicity

Syntax @rep:synchronicity <SYNCH or ASYNCH>

Usage Specifies synchronous or asynchronous behavior.

Example @rep:synchronicity SYNCH

A-140 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

Annotation Type @rep:synchronicity

Required Optional.

Default Is defaulted based on module type. For example, ASYNCH for
XML Gateway and SYNCH for Business Service Object.

Level Class or method.

Multiple Allowed No.

Comments

@rep:appscontext

Annotation Type @rep:appscontext

Syntax @rep:appscontext <NONE, APPL, RESP, USER,
NLS, or ORG>

Usage Specifies the context required to execute the method.

Example @rep:appscontext USER

Required Optional.

Default NONE

Level Method.

Multiple Allowed No, only one allowed per method.

Comments

@rep:comment

Annotation Type @rep:comment

Syntax @rep:comment <comment>

Integration Repository Annotation Standards A-141

Annotation Type @rep:comment

Usage This annotation is skipped by the parsers. It is for use by
product teams when a non-published comment is desired.

Example @rep:comment This is a sample comment.

Required Optional.

Default None.

Level Any.

Multiple Allowed

Comments

@rep:primaryinstance

Annotation Type @rep:primaryinstance

Syntax @rep:primaryinstance

Usage To indicate the primary instance of an overloaded method or
procedure.

Example

Required Required for all overloaded methods and procedures.

Default None.

Level Method or procedure.

Multiple Allowed No.

A-142 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

Annotation Type @rep:primaryinstance

Comments The primary instance's display name and description will be
used in the browser UI when a list of methods is displayed.
The non-primary instances (such as, the overloads) should
have descriptions that emphasize how they differ from the
primary (such as, "This variant allows specification of the
org_id."). The non-primary display names and descriptions
will only be displayed when viewing the details of the
overloaded interface.

@rep:usesmap

Annotation Type @rep:usesmap

Syntax @rep:usesmap <map_name> <sequence_number>

Usage To indicate the E-Commerce Gateway maps that are
associated with a concurrent program.

<map_name> where map_name is the default map name.

<sequence_number> is an integer used to tell the UI the
display order of the different pieces.

Example @rep:usesemap SampleMap 2

Required Optional.

Default None.

Level Any.

Multiple Allowed Yes.

Comments The default map name has the following naming convention
"EC_XXXX_FF" where XXXX is the 4-letter acronym for your
transaction.

Configuring Server Connection B-1

B
Configuring Server Connection

Application Server Connection
Security is the most critical feature to guard service content from unauthorized access.
To protect the SOA composite applications and other resources deployed in the Oracle
SOA Suite WebLogic Server domain and ensure that service invocations are
successfully executed, necessary server connection need to be performed.

This section includes the following server connection:

• Creating an Application Server Connection, page B-1

Creating an Application Server Connection
You must establish a connectivity between the design-time environment and the server
you want to deploy it to. In order to establish such a connectivity, you must create the
application server (Oracle WebLogic Server) connection.

Use the following steps to create the connection to an Oracle WebLogic Server:

1. In Oracle JDeveloper 11g, select View >Application Server Navigator to open the
Application Server tab.

B-2 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

Create a New Application Server Connection

2. Right-click on the Application Server and select New Application Server to open
the Create Application Server Connection wizard.

3. In the Usage page, select the Standalone Server radio button and click Next.

Configuring Server Connection B-3

Create Application Server Connection - Usage Page

4. Enter the connection name (such as 'soa-server1') and select WebLogic 10.3 as the
connection type.

B-4 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

Create Application Server Connection - Name and Type Page

Click Next.

5. Enter a valid username (such as weblogic) and the password specified during
Oracle SOA Suite installation. Click Next.

Configuring Server Connection B-5

Create Application Server Connection - Authentication Page

6. Enter the WebLogic Server connection host name and port information. In the
Weblogic Domain field, enter 'soainfra'.

B-6 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

Create Application Server Connection - Configuration Page

Click Next. The Test page is displayed.

7. Click Test Connection to validate your server configuration. You should find
success messages populated in the Status window.

Configuring Server Connection B-7

Validating the Server Configuration

Click Finish.

Sample Payload C-1

C
Sample Payload

Sample Payload for Creating Supplier Ship and Debit Request
The following information shows the sample payload in the
InputCreateSDRequest.xml file:

C-2 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

<?xml version="1.0" encoding="UTF-8"?>
 <cre:InputParameters
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:cre="http://xmlns.oracle.com/apps/ozf/soaprovider/plsql/ozf_sd_req
uest_pub/create_sd_request/">
 <cre:P_API_VERSION_NUMBER>1.0</cre:P_API_VERSION_NUMBER>
 <cre:P_INIT_MSG_LIST>T</cre:P_INIT_MSG_LIST>
 <cre:P_COMMIT>F</cre:P_COMMIT>
 <cre:P_VALIDATION_LEVEL>100</cre:P_VALIDATION_LEVEL>
 <cre:P_SDR_HDR_REC>
 <cre:REQUEST_NUMBER>SDR-CREATE-BPEL1</cre:REQUEST_NUMBER>

<cre:REQUEST_START_DATE>2008-08-18T12:00:00</cre:REQUEST_START_DATE>
 <cre:REQUEST_END_DATE>2008-10-18T12:00:00</cre:REQUEST_END_DATE>>
 <cre:USER_STATUS_ID>1701</cre:USER_STATUS_ID>
 <cre:REQUEST_OUTCOME>IN_PROGRESS</cre:REQUEST_OUTCOME>
 <cre:REQUEST_CURRENCY_CODE>USD</cre:REQUEST_CURRENCY_CODE>
 <cre:SUPPLIER_ID>601</cre:SUPPLIER_ID>
 <cre:SUPPLIER_SITE_ID>1415</cre:SUPPLIER_SITE_ID>
 <cre:REQUESTOR_ID>100001499</cre:REQUESTOR_ID>
 <cre:ASSIGNEE_RESOURCE_ID>100001499</cre:ASSIGNEE_RESOURCE_ID>
 <cre:ORG_ID>204</cre:ORG_ID>
 <cre:ACCRUAL_TYPE>SUPPLIER</cre:ACCRUAL_TYPE>
 <cre:REQUEST_DESCRIPTION>Create</cre:REQUEST_DESCRIPTION>

<cre:SUPPLIER_CONTACT_EMAIL_ADDRESS>sdr.supplier@testing.com</cre:SUPPLI
ER_CONTACT_EMAIL_ADDRESS>

<cre:SUPPLIER_CONTACT_PHONE_NUMBER>2255</cre:SUPPLIER_CONTACT_PHONE_NUMB
ER>
 <cre:REQUEST_TYPE_SETUP_ID>400</cre:REQUEST_TYPE_SETUP_ID>
 <cre:REQUEST_BASIS>Y</cre:REQUEST_BASIS>
 <cre:USER_ID>1002795</cre:USER_ID>
 </cre:P_SDR_HDR_REC>
 <cre:P_SDR_LINES_TBL>
 <cre:P_SDR_LINES_TBL_ITEM>
 <cre:PRODUCT_CONTEXT>PRODUCT</cre:PRODUCT_CONTEXT>
 <cre:INVENTORY_ITEM_ID>2155</cre:INVENTORY_ITEM_ID>
 <cre:ITEM_UOM>Ea</cre:ITEM_UOM>
 <cre:REQUESTED_DISCOUNT_TYPE>%</cre:REQUESTED_DISCOUNT_TYPE>
 <cre:REQUESTED_DISCOUNT_VALUE>20</cre:REQUESTED_DISCOUNT_VALUE>
 <cre:COST_BASIS>200</cre:COST_BASIS>
 <cre:MAX_QTY>200</cre:MAX_QTY>
 <cre:APPROVED_DISCOUNT_TYPE>%</cre:APPROVED_DISCOUNT_TYPE>
 <cre:APPROVED_DISCOUNT_VALUE>20</cre:APPROVED_DISCOUNT_VALUE>
 <cre:APPROVED_MAX_QTY>200</cre:APPROVED_MAX_QTY>
 <cre:VENDOR_APPROVED_FLAG>Y</cre:VENDOR_APPROVED_FLAG>
 <cre:PRODUCT_COST_CURRENCY>USD</cre:PRODUCT_COST_CURRENCY>
 <cre:END_CUSTOMER_CURRENCY>USD</cre:END_CUSTOMER_CURRENCY>
 </cre:P_SDR_LINES_TBL_ITEM>
 </cre:P_SDR_LINES_TBL>
 <cre:P_SDR_CUST_TBL>
 <cre:P_SDR_CUST_TBL_ITEM>
 <cre:CUST_ACCOUNT_ID>1290</cre:CUST_ACCOUNT_ID>
 <cre:PARTY_ID>1290</cre:PARTY_ID>
 <cre:SITE_USE_ID>10479</cre:SITE_USE_ID>
 <cre:CUST_USAGE_CODE>BILL_TO</cre:CUST_USAGE_CODE>
 <cre:END_CUSTOMER_FLAG>N</cre:END_CUSTOMER_FLAG>
 </cre:P_SDR_CUST_TBL_ITEM>
 <cre:P_SDR_CUST_TBL_ITEM>
 <cre:CUST_ACCOUNT_ID>1287</cre:CUST_ACCOUNT_ID>

Sample Payload C-3

<cre:PARTY_ID>1287</cre:PARTY_ID>
 <cre:SITE_USE_ID>1418</cre:SITE_USE_ID>
 <cre:CUST_USAGE_CODE>CUSTOMER</cre:CUST_USAGE_CODE>
 <cre:END_CUSTOMER_FLAG>Y</cre:END_CUSTOMER_FLAG>
 </cre:P_SDR_CUST_TBL_ITEM>
 </cre:P_SDR_CUST_TBL>
</cre:InputParameters>

Sample Payload for Inbound Process Purchase Order XML Transaction
The following information shows the sample payload in the order_data_xmlg.xml
file:

C-4 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

<?xml version = '1.0' encoding = 'UTF-8' standalone = 'no'?>
<!-- Oracle eXtensible Markup Language Gateway Server -->
<!DOCTYPE PROCESS_PO_007 SYSTEM "003_process_po_007.dtd">
 <PROCESS_PO_007>
 <CNTROLAREA>
 <BSR>
 <VERB>PROCESS</VERB>
 <NOUN>PO</NOUN>
 <REVISION>007</REVISION>
 </BSR>
 <SENDER>
 <LOGICALID>ORACLE</LOGICALID>
 <COMPONENT>PURCHASING</COMPONENT>
 <TASK>POISSUE</TASK>

<REFERENCEID>MO4YD220.US.ORACLE.COM:oracle.apps.po.event.xmlpo:32636-148
970</REFERENCEID>
 <CONFIRMATION>0</CONFIRMATION>
 <LANGUAGE>us</LANGUAGE>
 <CODEPAGE>UTF8</CODEPAGE>
 <AUTHID>APPS</AUTHID>
 </SENDER>
 <DATETIME qualifier="CREATION" type="T" index="1">
 <YEAR>2011</YEAR>
 <MONTH>04</MONTH>
 <DAY>05</DAY>
 <HOUR>23</HOUR>
 <MINUTE>44</MINUTE>
 <SECOND>09</SECOND>
 <SUBSECOND>0000</SUBSECOND>
 <TIMEZONE>+0000</TIMEZONE>
 </DATETIME>
 <OPERAMT qualifier="EXTENDED" type="T">
 <VALUE>1329432</VALUE>
 <NUMOFDEC>2</NUMOFDEC>
 <SIGN>+</SIGN>
 <CURRENCY>USD</CURRENCY>
 <UOMVALUE>1</UOMVALUE>
 <UOMNUMDEC>0</UOMNUMDEC>
 <UOM/>
 </OPERAMT>
 <POID>PO-4466-5</POID>
 <POTYPE>STANDARD</POTYPE>
 <ACKREQUEST>N</ACKREQUEST>
 <CONTRACTB/>
 <CONTRACTS/>
 <DESCRIPTN/>
 <PORELEASE/>
 <USERAREA><DATETIME qualifier="ACTSTART" type="T"
index="1"><YEAR/><MONTH/><DAY/><HOUR/><MINUTE/><SECOND/><SUBSECOND/><TIM
EZONE/></DATETIME><DATETIME qualifier="ACTEND" type="T"
index="1"><YEAR/><MONTH/><DAY/><HOUR/><MINUTE/><SECOND/><SUBSECOND/><TIM
EZONE/></DATETIME><DATETIME><FOB><DESCRIPTN>Vendor's responsibility
ceases upon transfer to
carrier</DESCRIPTN><TERMID>Origin</TERMID></FOB><TANDC/><FTTERM><DESCRIP
TN>Buyer pays
freight</DESCRIPTN><TERMID>Due</TERMID></FTTERM><EXCHRATE/><DATETIME
qualifier="EXCHRATEDATE"><YEAR>2011</YEAR><MONTH>04</MONTH><DAY>05</DAY>
<HOUR>00</HOUR><MINUTE>00</MINUTE><SECOND>00</SECOND><SUBSECOND>0000</SU
BSECOND><TIMEZONE>+0000</TIMEZONE></DATETIME><DATETIME ualifier="APPREQ"
type="T"

Sample Payload C-5

index="1"><YEAR/><MONTH/><DAY/><HOUR/><MINUTE/><SECOND/><SUBSECOND/><TIM
EZONE/></DATETIME><CONFIRM>N</CONFIRM><SHIPPINGCONTROL/><DFFPOHEADER><AT
TRIBUTE1/><ATTRIBUTE2/><ATTRIBUTE3/><ATTRIBUTE4/><ATTRIBUTE5/><ATTRIBUTE
6/><ATTRIBUTE7/><ATTRIBUTE8/><ATTRIBUTE9/><ATTRIBUTE10/><ATTRIBUTE11/><A
TTRIBUTE12/><ATTRIBUTE13/><ATTRIBUTE14/><ATTRIBUTE15/><ATTRIBUTE16/></DF
FPOHEADER><PCARDHDR><MEMBERNAME/><PCARDNUM>0</PCARDNUM><DATETIME
qualifier="EXPIRATION"><YEAR>2011</YEAR><MONTH>04</MONTH><DAY>05</DAY><H
OUR>00</HOUR><MINUTE>00</MINUTE><SECOND>00</SECOND><SUBSECOND>0000</SUBS
ECOND><TIMEZONE>+0000</TIMEZONE></DATETIME><PCARDBRAND/></PCARDHDR></USE
RAREA>
 <PARTNER>
 <NAME index="1">Hilman and Associates</NAME>
 <ONETIME>0</ONETIME>
 <PARTNRID><PARTNRID/>
 <PARTNRTYPE>Supplier</PARTNRTYPE>
 <CURRENCY>USD</CURRENCY>
 <DUNSNUMBER/>
 <PARTNRIDX>HIL-Tulsa</PARTNRIDX>
 <TAXID/>
 <TERMID/>

<USERAREA><DFFVENDOR><ATTRIBUTE1/><ATTRIBUTE2/><ATTRIBUTE3/><ATTRIBUTE4/
><ATTRIBUTE5/><ATTRIBUTE6/><ATTRIBUTE7/><ATTRIBUTE8/><ATTRIBUTE9/><ATTRI
BUTE10/><ATTRIBUTE11/><ATTRIBUTE12/><ATTRIBUTE13/><ATTRIBUTE14/><ATTRIBU
TE15/><ATTRIBUTE16/></DFFVENDOR><CUSTOMERNUM/></USERAREA>
 <ADDRESS>
 <ADDRLINE index="1"></ADDRLINE>
 <ADDRLINE index="2"/>
 <ADDRLINE index="3"/>
 <ADDRTYPE/>
 <CITY></CITY>
 <COUNTRY></COUNTRY>
 <COUNTY/>
 <DESCRIPTN></DESCRIPTN>
 <FAX index="1"/>
 <POSTALCODE></POSTALCODE>
 <REGION/>
 <STATEPROVN></STATEPROVN>
 <TAXJRSDCTN/>
 <TELEPHONE index="1"></TELEPHONE>
 <TELEPHONE index="2"/>
 <TELEPHONE index="3"/>
 <URL/>

<USERAREA><DFFVENDORSITE><ATTRIBUTE1/><ATTRIBUTE2/><ATTRIBUTE3/><ATTRIBU
TE4/><ATTRIBUTE5/><ATTRIBUTE6/><ATTRIBUTE7/><ATTRIBUTE8/><ATTRIBUTE9/><A
TTRIBUTE10/><ATTRIBUTE11/><ATTRIBUTE12/><ATTRIBUTE13/><ATTRIBUTE14/><ATT
RIBUTE15/><ATTRIBUTE16/></DFFVENDORSITE></USERAREA>
 </ADDRESS>
 <CONTACT>
 <NAME index="1"/>
 <EMAIL/>
 <FAX index="1"></FAX>
 <TELEPHONE index="1"></TELEPHONE>
 </CONTACT>
 </PARTNER>
 <PARTNER>
 <NAME index="1">Vision Operation</NAME>
 <ONETIME>0</ONETIME>
 <PARTNRID>204<PARTNRID/>
 <PARTNRTYPE>SoldTo</PARTNRTYPE>

C-6 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

<CURRENCY>USD</CURRENCY>
 <DUNSNUMBER/>
 <PARTNRIDX>HIL-Tulsa</PARTNRIDX>
 <PAYMETHOD/>
 <TAXID/>
 <TERMID/>
 <USERAREA/>
 <ADDRESS>
 </ADDRESS>
 <CONTACT>
 <NAME index="1">Stock, Ms. Pat</NAME>
 <CONTCTTYPE/>
 <DESCRIPTN/>
 <EMAIL>pstock@vision.com</EMAIL>
 <FAX index="1"/>
 <TELEPHONE index="1"/>
 <USERAREA/>
 </CONTACT>
 </PARTNER>
 <PARTNER>
 <NAME index="1">Vision Operation</NAME>
 <ONETIME>0</ONETIME>
 <PARTNRID>204<PARTNRID/>
 <PARTNRTYPE>BillTo</PARTNRTYPE>
 <CURRENCY/>
 <DUNSNUMBER/>
 <PARTNRIDX>HIL-Tulsa</PARTNRIDX>
 <PAYMETHOD/>
 <TERMID/>
 <USERAREA/>
 <ADDRESS>
 </ADDRESS>
 </PARTNER>
 <PARTNER>
 <NAME index="1">UPS</NAME>
 <ONETIME>0</ONETIME>
 <PARTNRID>204<PARTNRID/>
 <PARTNRTYPE>Carrier</PARTNRTYPE>
 <PARTNRIDX>UPS</PARTNRIDX>
 </PARTNER>
 <POTERM>
 <DESCRIPTN>Scheduled for payment 30 days from the invoice date
(invoice terms date = system date, goods received date, invoice date or
invoice received date). Invoice terms date can default from supplier
header, site, PO, system default, etc.</DESCRIPTN>
 <TERMID>30 Net (terms date + 30)</TERMID>
 <DAYSNUM/>
 <QUANTITY qualifier="PERCENT">
 <VALUE/>
 <NUMOFDEC/>
 <SIGN/>
 <UOM/>
 </QUANTITY>
 <USERAREA/>
 </POTERM>
 </POORDERHDR>
 <POORDERLIN>
 <QUANTITY qualifier="ORDERED">
 <VALUE>12</VALUE>
 <NUMOFDEC/>
 <SIGN>+</SIGN>

Sample Payload C-7

<UOM>Ea</UOM>
 </QUANTITY>
 <OPERAMT qualifier="UNIT" type="T">
 <VALUE>110786</VALUE>
 <NUMOFDEC>2</NUMOFDEC>
 <SIGN>+</SIGN>
 <CURRENCY>USD</CURRENCY>
 <UOMVALUE>1</UOMVALUE>
 <UOMNUMDEC>0</UOMNUMDEC>
 <UOM>Ea</UOM>
 </OPERAMT>
 <POLINENUM>1</POLINENUM>
 <HAZRDMATL/>
 <ITEMRV></ITEMRV>
 <ITEMRVX/>
 <POLNSTATUS/>
 <DESCRIPTN></DESCRIPTN>
 <ITEM>AS54888</ITEM>
 <ITEMX/>

<USERAREA><REQUESTOR/><CATEGORYID>PRODUCTN.FINGOODS</CATEGORYID><CONTRAC
TNUM/><CONTRACTPONUM/><CONTRACTPOLINENUM/><VENDORQUOTENUM/><CONFIGID/><L
ISTPRICE>1107.86</LISTPRICE><MARKETPRICE>0</MARKETPRICE><PRICENOTTOEXCEE
D/><NEGPRICE>N</NEGPRICE><TAXABLE>N</TAXABLE><TXNREASONCODE/><TYPE1099>A
VAN/N</TYPE1099><LINEORDERTYPE>Goods</LINEORDERTYPE><HAZRDUNNUM/><HAZRDU
NDESC/><DFFLINE><ATTRIBUTE1/><ATTRIBUTE2/><ATTRIBUTE3/><ATTRIBUTE4/><ATT
RIBUTE5/><ATTRIBUTE6/><ATTRIBUTE7/><ATTRIBUTE8/><ATTRIBUTE9/><ATTRIBUTE1
0/><ATTRIBUTE11/><ATTRIBUTE12/><ATTRIBUTE13/><ATTRIBUTE14/><ATTRIBUTE15/
><ATTRIBUTE16/></DFFLINE><DFFITEM><ATTRIBUTE1/><ATTRIBUTE2/><ATTRIBUTE3/
><ATTRIBUTE4/><ATTRIBUTE5/><ATTRIBUTE6/><ATTRIBUTE7/><ATTRIBUTE8/><ATTRI
BUTE9/><ATTRIBUTE10/><ATTRIBUTE11/><ATTRIBUTE12/><ATTRIBUTE13/><ATTRIBUT
E14/><ATTRIBUTE15/><ATTRIBUTE16/></DFFITEM><KFFITEM><ATTRIBUTE1>PRODUCTN
</ATTRIBUTE1><ATTRIBUTE2>FINGOODS</ATTRIBUTE2><ATTRIBUTE3/><ATTRIBUTE4/>
<ATTRIBUTE5/><ATTRIBUTE6/><ATTRIBUTE7/><ATTRIBUTE8/><ATTRIBUTE9/><ATTRIB
UTE10/><ATTRIBUTE11/><ATTRIBUTE12/><ATTRIBUTE13/><ATTRIBUTE14/><ATTRIBUT
E15/><ATTRIBUTE16/><ATTRIBUTE17/><ATTRIBUTE18/><ATTRIBUTE19/><ATTRIBUTE2
0/></KFFITEM><GLOBALCONTRACT/><GLOBALCONTRACTLIN/><JOBTITLE/><AMOUNT
qualifier="TOTAL"
type="T"><VALUE/><NUMOFDEC/><SIGN/><CURRENCY/><DRCR>C</DRCR></AMOUNT><CO
NTRACTORFIRSTNAME/><CONTRACTORLASTNAME/><DATETIME qualifier="ACTSTART"
type="T"
index="1"><YEAR/><MONTH/><DAY/><HOUR/><MINUTE/><SECOND/><SUBSECOND/><TIM
EZONE/></DATETIME><DATETIME qualifier="ACTEND" type="T"
index="1"><YEAR/><MONTH/><DAY/><HOUR/><MINUTE/><SECOND/><SUBSECOND/><TIM
EZONE/></DATETIME></USERAREA>
 <POLINESCHD>
 <DATETIME qualifier="NEEDDELV" type="T" index="1">
 <YEAR>2011</YEAR>
 <MONTH>04</MONTH>
 <DAY>21</DAY>
 <HOUR>00</HOUR>
 <MINUTE>00</MINUTE>
 <SECOND>00</SECOND>
 <SUBSECOND>0000</SUBSECOND>
 <TIMEZONE>+0000</TIMEZONE>
 </DATETIME>
 <QUANTITY qualifier="ORDERED">
 <VALUE>12</VALUE>
 <NUMOFDEC/>
 <SIGN>+</SIGN>
 <UOM>Ea</UOM>

C-8 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

</QUANTITY>
 <DESCRIPTN/>
 <PSCLINENUM>1</PSCLINENUM>
 <USERAREA><DATETIME
qualifier="PROMSHIP"><YEAR/><MONTH/><DAY/><HOUR/><MINUTE/><SECOND/><SUBS
ECOND/><TIMEZONE/></DATETIME><DATETIME
qualifier="APPROVAL"><YEAR/><MONTH/><DAY/><HOUR/><MINUTE/><SECOND/><SUBS
ECOND/><TIMEZONE/></DATETIME><OPERAMT qualifier="UNIT"
type="T"><VALUE>110786</VALUE><NUMOFDEC>2</NUMOFDEC><SIGN>+</SIGN><CURRE
NCY>USD</CURRENCY><UOMVALUE>1</UOMVALUE><UOMNUMDEC>0</UOMNUMDEC><UOM>Ea<
/UOM></OPERAMT><PRICEOVRRD/><TAXABLE>N</TAXABLE><TAXCODE/><PARTNER><NAME
index="1">Vision
Operations</NAME><ONETIME>0</ONETIME><PARTNRID>204</PARTNRID><PARTNRTYPE
>ShipTo</PARTNRTYPE><CURRENCY>USD</CURRENCY><DUNSNUMBER/><PARTNRIDX>HIL-
Tulsa</PARTNRIDX><PAYMETHOD/><TERMID/><USERAREA/>
 <ADDRESS></ADDRESS>
 <CONTACT><NAME index="1"/><CONTCTTYPE/><EMAIL/><FAX
index="1"/><TELEPHONE index="1"/></CONTACT>
 </PARTNER>
 <PARTNER><NAME
index="1"/><ONETIME/><PARTNRID/><PARTNRTYPE>DeliveryTo</PARTNRTYPE><PART
NRIDX/><USERAREA/><ADDRESS><ADDRLINE index="1"/><ADDRLINE
index="2"/><ADDRTYPE/></ADDRESS><CONTACT><NAME
index="1"/><CONTCTTYPE/><EMAIL/><FAX index="1"/><TELEPHONE index="1"/>
</CONTACT></PARTNER><DROPSHIPDETAILS><DROPSHIPMENT/><DROPSHIPCUSTNAME/><
SHIPINSTR/><PACKINSTR/><SHIPMETHOD/><CUSTOMERPONUM/><CUSTOMERLINENUM/><C
USTOMERSHIPNUM/><CUSTOMERDESC/></DROPSHIPDETAILS><CONSIGNEDINV>N</CONSIG
NEDINV><DISTPROJECT><REQUESTOR/><DISTNUM>1</DISTNUM><PROJECTNUM/><PROJEC
TTYPE/><TASKNUM/><QUANTITY
qualifier="ORDERED"><VALUE>12</VALUE><NUMOFDEC/><SIGN>+</SIGN><UOM>Ea</U
OM></QUANTITY><CONVRATE/><DATETIME
qualifier="EXCHRATEDATE"><YEAR>2011</YEAR><MONTH>04</MONTH><DAY>05</DAY>
<HOUR>00</HOUR><MINUTE>00</MINUTE><SECOND>00</SECOND><SUBSECOND>0000</SU
BSECOND><TIMEZONE>+0000</TIMEZONE></DATETIME><DESTTYPE>INVENTORY</DESTTY
PE><DFFDISTRIBUTN><ATTRIBUTE1/><ATTRIBUTE2/><ATTRIBUTE3/><ATTRIBUTE4/><A
TTRIBUTE5/><ATTRIBUTE6/><ATTRIBUTE7/><ATTRIBUTE8/><ATTRIBUTE9/><ATTRIBUT
E10/><ATTRIBUTE11/><ATTRIBUTE12/><ATTRIBUTE13/><ATTRIBUTE14/><ATTRIBUTE1
5/><ATTRIBUTE16/></DFFDISTRIBUTN></DISTPROJECT><AMOUNT qualifier="TOTAL"
type="T"><VALUE/><NUMOFDEC/><SIGN/><CURRENCY/><DRCR>C</DRCR></AMOUNT></U
SERAREA>
 </POLINESCHD>
 </POORDERLIN>
 <POORDERLIN>
 <QUANTITY qualifier="ORDERED">
 <VALUE>13</VALUE>
 <NUMOFDEC/>
 <SIGN>+</SIGN>
 <UOM>Ea</UOM>
 </QUANTITY>
 <OPERAMT qualifier="UNIT" type="T">
 <VALUE>110786</VALUE>
 <NUMOFDEC>2</NUMOFDEC>
 <SIGN>+</SIGN>
 <CURRENCY>USD</CURRENCY>
 <UOMVALUE>1</UOMVALUE>
 <UOMNUMDEC>0</UOMNUMDEC>
 <UOM>Ea</UOM>
 </OPERAMT>
 <POLINENUM>2</POLINENUM>
 <HAZRDMATL/>
 <ITEMRV></ITEMRV>

Sample Payload C-9

<ITEMRVX/>
 <POLNSTATUS/>
 <DESCRIPTN></DESCRIPTN>
 <ITEM>ASO0021</ITEM>
 <ITEMX/>

<USERAREA><REQUESTOR/><CATEGORYID>PRODUCTN.FINGOODS</CATEGORYID><CONTRAC
TNUM/><CONTRACTPONUM/><CONTRACTPOLINENUM/><VENDORQUOTENUM/><CONFIGID/><L
ISTPRICE>1107.86</LISTPRICE><MARKETPRICE>0</MARKETPRICE><PRICENOTTOEXCEE
D/><NEGPRICE>N</NEGPRICE><TAXABLE>N</TAXABLE><TXNREASONCODE/><TYPE1099>A
VAN/N</TYPE1099><LINEORDERTYPE>Goods</LINEORDERTYPE><HAZRDUNNUM/><HAZRDU
NDESC/><DFFLINE><ATTRIBUTE1/><ATTRIBUTE2/><ATTRIBUTE3/><ATTRIBUTE4/><ATT
RIBUTE5/><ATTRIBUTE6/><ATTRIBUTE7/><ATTRIBUTE8/><ATTRIBUTE9/><ATTRIBUTE1
0/><ATTRIBUTE11/><ATTRIBUTE12/><ATTRIBUTE13/><ATTRIBUTE14/><ATTRIBUTE15/
><ATTRIBUTE16/></DFFLINE><DFFITEM><ATTRIBUTE1/><ATTRIBUTE2/><ATTRIBUTE3/
><ATTRIBUTE4/><ATTRIBUTE5/><ATTRIBUTE6/><ATTRIBUTE7/><ATTRIBUTE8/><ATTRI
BUTE9/><ATTRIBUTE10/><ATTRIBUTE11/><ATTRIBUTE12/><ATTRIBUTE13/><ATTRIBUT
E14/><ATTRIBUTE15/><ATTRIBUTE16/></DFFITEM><KFFITEM><ATTRIBUTE1>PRODUCTN
</ATTRIBUTE1><ATTRIBUTE2>FINGOODS</ATTRIBUTE2><ATTRIBUTE3/><ATTRIBUTE4/>
<ATTRIBUTE5/><ATTRIBUTE6/><ATTRIBUTE7/><ATTRIBUTE8/><ATTRIBUTE9/><ATTRIB
UTE10/><ATTRIBUTE11/><ATTRIBUTE12/><ATTRIBUTE13/><ATTRIBUTE14/><ATTRIBUT
E15/><ATTRIBUTE16/><ATTRIBUTE17/><ATTRIBUTE18/><ATTRIBUTE19/><ATTRIBUTE2
0/></KFFITEM><GLOBALCONTRACT/><GLOBALCONTRACTLIN/><JOBTITLE/><AMOUNT
qualifier="TOTAL"
type="T"><VALUE/><NUMOFDEC/><SIGN/><CURRENCY/><DRCR>C</DRCR></AMOUNT><CO
NTRACTORFIRSTNAME/><CONTRACTORLASTNAME/><DATETIME qualifier="ACTSTART"
type="T"
index="1"><YEAR/><MONTH/><DAY/><HOUR/><MINUTE/><SECOND/><SUBSECOND/><TIM
EZONE/></DATETIME><DATETIME qualifier="ACTEND" type="T"
index="1"><YEAR/><MONTH/><DAY/><HOUR/><MINUTE/><SECOND/><SUBSECOND/><TIM
EZONE/></DATETIME></USERAREA>
 <POLINESCHD>
 <DATETIME qualifier="NEEDDELV" type="T" index="1">
 <YEAR>2011</YEAR>
 <MONTH>04</MONTH>
 <DAY>21</DAY>
 <HOUR>00</HOUR>
 <MINUTE>00</MINUTE>
 <SECOND>00</SECOND>
 <SUBSECOND>0000</SUBSECOND>
 <TIMEZONE>+0000</TIMEZONE>
 </DATETIME>
 <QUANTITY qualifier="ORDERED">
 <VALUE>12</VALUE>
 <NUMOFDEC/>
 <SIGN>+</SIGN>
 <UOM>Ea</UOM>
 </QUANTITY>
 <DESCRIPTN/>
 <PSCLINENUM>1</PSCLINENUM>
 <USERAREA><DATETIME
qualifier="PROMSHIP"><YEAR/><MONTH/><DAY/><HOUR/><MINUTE/><SECOND/><SUBS
ECOND/><TIMEZONE/></DATETIME><DATETIME
qualifier="APPROVAL"><YEAR/><MONTH/><DAY/><HOUR/><MINUTE/><SECOND/><SUBS
ECOND/><TIMEZONE/></DATETIME><OPERAMT qualifier="UNIT"
type="T"><VALUE>110786</VALUE><NUMOFDEC>2</NUMOFDEC><SIGN>+</SIGN><CURRE
NCY>USD</CURRENCY><UOMVALUE>1</UOMVALUE><UOMNUMDEC>0</UOMNUMDEC><UOM>Ea<
/UOM></OPERAMT><PRICEOVRRD/><TAXABLE>N</TAXABLE><TAXCODE/><PARTNER><NAME
index="1">Vision
Operations</NAME><ONETIME>0</ONETIME><PARTNRID>204</PARTNRID><PARTNRTYPE
>ShipTo</PARTNRTYPE><CURRENCY>USD</CURRENCY><DUNSNUMBER/><PARTNRIDX>HIL-

C-10 Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

Tulsa</PARTNRIDX><PAYMETHOD/><TERMID/><USERAREA/>
 <ADDRESS></ADDRESS>
 <CONTACT><NAME index="1"/><CONTCTTYPE/><EMAIL/><FAX
index="1"/><TELEPHONE index="1"/></CONTACT>
 </PARTNER>
 <PARTNER><NAME
index="1"/><ONETIME/><PARTNRID/><PARTNRTYPE>DeliveryTo</PARTNRTYPE><PART
NRIDX/><USERAREA/><ADDRESS><ADDRLINE index="1"/><ADDRLINE
index="2"/><ADDRTYPE/></ADDRESS><CONTACT><NAME
index="1"/><CONTCTTYPE/><EMAIL/><FAX index="1"/><TELEPHONE
index="1"/></CONTACT></PARTNER><DROPSHIPDETAILS><DROPSHIPMENT/><DROPSHIP
CUSTNAME/><SHIPINSTR/><PACKINSTR/><SHIPMETHOD/><CUSTOMERPONUM/><CUSTOMER
LINENUM/><CUSTOMERSHIPNUM/><CUSTOMERDESC/></DROPSHIPDETAILS><CONSIGNEDIN
V>N</CONSIGNEDINV><DISTPROJECT><REQUESTOR/><DISTNUM>1</DISTNUM><PROJECTN
UM/><PROJECTTYPE/><TASKNUM/><QUANTITY
qualifier="ORDERED"><VALUE>12</VALUE><NUMOFDEC/><SIGN>+</SIGN><UOM>Ea</U
OM></QUANTITY><CONVRATE/><DATETIME
qualifier="EXCHRATEDATE"><YEAR>2011</YEAR><MONTH>04</MONTH><DAY>05</DAY>
<HOUR>00</HOUR><MINUTE>00</MINUTE><SECOND>00</SECOND><SUBSECOND>0000</SU
BSECOND><TIMEZONE>+0000</TIMEZONE></DATETIME><DESTTYPE>INVENTORY</DESTTY
PE><DFFDISTRIBUTN><ATTRIBUTE1/><ATTRIBUTE2/><ATTRIBUTE3/><ATTRIBUTE4/><A
TTRIBUTE5/><ATTRIBUTE6/><ATTRIBUTE7/><ATTRIBUTE8/><ATTRIBUTE9/><ATTRIBUT
E10/><ATTRIBUTE11/><ATTRIBUTE12/><ATTRIBUTE13/><ATTRIBUTE14/><ATTRIBUTE1
5/><ATTRIBUTE16/></DFFDISTRIBUTN></DISTPROJECT><AMOUNT qualifier="TOTAL"
type="T"><VALUE/><NUMOFDEC/><SIGN/><CURRENCY/><DRCR>C</DRCR></AMOUNT></U
SERAREA>
 </POLINESCHD>
 </POORDERLIN>
 </PROCESS_PO>
 </DATAAREA>
</PROCESS_PO_007>

Glossary-1

Glossary

Agent

A named point of communication within a system.

Agent Listener

A type of service component that processes event messages on inbound agents.

Asynchronous Operation

Unlike the synchronous service execution to obtain the result immediately,
asynchronous operations may require a significant amount of time to process a request.

However, the client that invoked the Oracle E-Business Suite Web service can continue
with other processing in the meantime rather than wait for the response.

BPEL

Business Process Execution Language (BPEL) provides a language for the specification
of executable and abstract business processes. By doing so, it extends the services
interaction model and enables it to support business transactions. BPEL defines an
interoperable integration model that should facilitate the expansion of automated
process integration in both the intra-corporate and the business-to-business spaces.

Business Event

See Event.

Callback Pattern

Callback pattern is an important communication method in asynchronous services. An
asynchronous callback means that a request is made to the service provider and a
response (callback) is sent back to the requester when it is ready. This pattern can be
used in conjunction with acknowledgement to recognize the receipt of a request sent by
a requester.

Concurrent Manager

An Oracle E-Business Suite component that manages the queuing of requests and the
operation of concurrent programs.

Glossary-2

Concurrent Program

A concurrent program is an executable file that performs a specific task, such as posting
a journal entry or generating a report.

Event

An occurrence in an internet or intranet application or program that might be
significant to other objects in a system or to external agents.

Event Activity

A business event modelled as an activity so that it can be included in a workflow
process.

Event Data

A set of additional details describing an event. The event data can be structured as an
XML document. Together, the event name, event key, and event data fully
communicate what occurred in the event.

Event Key

A string that uniquely identifies an instance of an event. Together, the event name,
event key, and event data fully communicate what occurred in the event.

Event Message

A standard Workflow structure for communicating business events, defined by the
datatype WF_EVENT_T. The event message contains the event data as well as several
header properties, including the event name, event key, addressing attributes, and error
information.

Event Subscription

A registration indicating that a particular event is significant to a system and specifying
the processing to perform when the triggering event occurs. Subscription processing
can include calling custom code, sending the event message to a workflow process, or
sending the event message to an agent.

Function

A PL/SQL stored procedure that can define business rules, perform automated tasks
within an application, or retrieve application information. The stored procedure accepts
standard arguments and returns a completion result.

Integration Repository

Oracle Integration Repository is the key component or user interface for Oracle
E-Business Suite Integrated SOA Gateway. This centralized repository stores native
packaged integration interface definitions and composite services.

Glossary-3

Integration Repository Parser

It is a standalone design-time tool used by the integration repository administrator to
validate annotated custom interface definitions against the annotation standards and
generate an Integration Repository loader file (iLDT). This generated iLDT file can be
uploaded to Integration Repository where custom interfaces can be exposed to all users.

Interface Type

Integration interfaces are grouped into different interface types.

JSON

JSON (JavaScript Object Notation) is a text-based open standard designed for
human-readable data interchange. The JSON format is often used with REST services to
transmit structured data between a server and Web application, serving as an
alternative to XML.

Loose Coupling

Loose coupling describes a resilient relationship between two or more systems or
organizations with some kind of exchange relationship. Each end of the transaction
makes its requirements explicit and makes few assumptions about the other end.

Lookup Code

An internal name of a value defined in a lookup type.

Lookup Type

A predefined list of values. Each value in a lookup type has an internal and a display
name.

Message

The information that is sent by a notification activity. A message must be defined before
it can be associated with a notification activity. A message contains a subject, a priority,
a body, and possibly one or more message attributes.

Message Attribute

A variable that you define for a particular message to either provide information or
prompt for a response when the message is sent in a notification. You can use a
predefine item type attribute as a message attribute. Defined as a 'Send' source, a
message attribute gets replaced with a runtime value when the message is sent. Defined
as a 'Respond' source, a message attribute prompts a user for a response when the
message is sent.

Notification

An instance of a message delivered to a user.

Glossary-4

Notification Worklist

A Web page that you can access to query and respond to workflow notifications.

Operation

An abstract description of an action supported by a service.

Port

A port defines an individual endpoint by specifying a single address for a binding.

Port Type

A port type is a named set of abstract operations and abstract messages involved.

Process

A set of activities that need to be performed to accomplish a business goal.

REST

Representational State Transfer (REST) is an architecture principle in which the Web
services are viewed as resources and can be uniquely identified by their URLs. The key
characteristic of a REST service is the explicit use of HTTP methods (GET, POST, PUT,
and DELETE) to denote the invocation of different operations.

Please note that only POST method is supported in this release.

SAML Token (Sender-Vouches)

This type of security model authenticates Web services relying on sending a username
only through Security Assertion Markup Language (SAML) assertion.

SAML is an XML-based standard for exchanging authentication and authorization data
between security domains, that is, between an identity provider and a service provider.
SAML Token uses a sender-vouches method to establish the correspondence between a
SOAP message and the SAML assertions added to the SOAP message.

See Username Token.

Service

A service is a collection of related endpoints.

Service Component

An instance of a Java program which has been defined according to the Generic Service
Component Framework standards so that it can be managed through this framework.

Service Monitor

It is the monitoring and auditing tool in Oracle E-Business Suite allowing you to view
runtime messages for web services provided by Oracle E-Business Suite Integrated SOA

Glossary-5

Gateway.

It is known as SOA Monitor in earlier releases.

SOA

Service-oriented Architecture (SOA) is an architecture to achieve loose coupling among
interacting software components and enable seamless and standards-based integration
in a heterogeneous IT ecosystem.

SOA Composite (SCA Composite)

It is a new set of specifications that define a new way of assembling SOA-enabled
applications. It is developed and deployed as a single service that includes all the
components it assembles to form the application implementation. In Oracle SOA Suite
11g, it may contain one or more cooperating component types such as Mediator
component, BPEL process component, and so on.

SOAP

Simple Object Access Protocol (SOAP) is a lightweight protocol intended for
exchanging structured information in a decentralized, distributed environment. It uses
XML technologies to define an extensible messaging framework providing a message
construct that can be exchanged over a variety of underlying protocols.

Subscription

See Event Subscription.

Synchronous Operation

Synchronous operation provides an immediate response to a query. In this situation,
the client connection remains open from the time the request is submitted to the server.
The client will wait until the server sends back the response message.

Username Token

A type of security model based on username and password to authenticate SOAP
requests at run time.

See SAML Token (Sender-Vouches).

WADL

Web Application Description Language (WADL) is designed to provide a
machine-processable description of HTTP-based Web applications. It models the
resources provided by a service and the relationships between them.

Web Services

A Web service is a software system designed to support interoperable
machine-to-machine interaction over a network. It has an interface described in WSDL.
Other systems interact with the Web service in a manner prescribed by its description

Glossary-6

using SOAP-messages, typically conveyed using HTTP with an XML serialization in
conjunction with other Web-related standards.

Workflow Engine

The Oracle Workflow component that implements a workflow process definition. The
Workflow Engine manages the state of all activities for an item, automatically executes
functions and sends notifications, maintains a history of completed activities, and
detects error conditions and starts error processes. The Workflow Engine is
implemented in server PL/SQL and activated when a call to an engine API is made.

WSDL

Web Services Description Language (WSDL) is an XML format for describing network
services as a set of endpoints operating on messages containing either
document-oriented or procedure-oriented information. The operations and messages
are described abstractly, and then bound to a concrete network protocol and message
format to define an endpoint.

WS-Addressing

WS-Addressing is a way of describing the address of the recipient (and sender) of a
message, inside the SOAP message itself.

WS-Security

WS-Security defines how to use XML Signature in SOAP to secure message exchanges,
as an alternative or extension to using HTTPS to secure the channel.

Index-1

Index

B
business events

annotate, 9-18
download, 9-15
Upload file to the database, 9-21
Upload iLDT files, 9-22
validate, 9-20

Business Service Objects Design Tasks
Adding an Assign Activity, 7-20
Adding an Invoke Activity, 7-16
Adding a Partner Link for File Adapter, 7-10
Creating a Partner Link, 7-9
Creating a SOA Composite Application with
BPEL Process, 7-6

C
Composite Services

download, 8-3
modify, 8-4
overview, 8-1
view, 8-2

connection information
Application Server Connection, B-1

create and upload custom interfaces
business events, 9-15
composite service validation, 9-14
creation, 9-5, 9-10
View and Administer composite services, 9-14

create and use custom interfaces
create steps, 9-2
overview, 9-1

use custom interfaces, 9-23
create custom interfaces

composite services, 9-9
interface types, 9-2

Creating BPEL Using Business Events
Assign, 5-26
Create a New BPEL Project, 5-3
Create a Partner Link AQ Adapter, 5-6
Create a Partner Link File Adapter, 5-15
invoke, 5-24
receive, 5-14

Creating Invoker Event Subscription
Creating Error Subscription, 10-13
Creating Subscription with 'Invoke Web
Service', 10-8

D
deploy and test bpel

deploy bpel, 7-29
test bpel, 7-32

Deploy and Test Concurrent Program
deploy bpel, 6-30, 6-32

Deploy and Test Custom BPEL
deploy bpel, 9-42
test bpel, 9-45

Deploy and Test Event BPEL
deploy bpel, 5-28
test bpel, 5-31

Deploy and Test PL/SQL BPEL
deploy bpel, 3-42, 3-68
test bpel, 3-45, 3-73

Discovering and Viewing Integration Interfaces

Index-2

Deploying REST Web Services, 2-11
Generating Web Services, 2-9
overview, 2-1
REST Messages, 2-43
review details, 2-5
review WADL details, 2-22
review WSDL details, 2-12
search and view interfaces, 2-1
SOAP Messages, 2-24

E
Extensibility

addCustomSOAPHeaders, 10-54
addWSSecurityHeader, 10-52
postInvokeService, 10-51
preInvokeService, 10-51
setInputParts, 10-52

I
Integration Repository Annotation Standards

annotation glossary, A-116
business entity, A-37
business event, A-31
composite service - BPEL, A-109
concurrent program, A-17
guidelines, A-1
Java, A-4
PL/SQL, A-11
XML Gateway, A-19

Invoke Web service
example, 10-34

Invoke Web Services
Calling Back to Oracle E-Business Suite With
Web Service Responses, 10-29

Invoke Web services through Oracle Workflow
overview, 10-1
Web Service Invocation Using SIF, 10-2

Invoking Web service steps
Creating a receive Event, 10-15
Creating Invoke and Receive Events, 10-6
creating invoker local and error event
subscriptions, 10-8

J
JSON Payload with REST Header

Deploying a PL/SQL REST Web Service, 3-89
Invoking REST Service Using a Java Client
design time, 3-91
Invoking REST Service Using a Java Client run
time, 3-102
Recording the Deployed WADL URL, 3-90

O
Oracle E-Business Suite Integrated SOA Gateway

component features, 1-3
Major Features, 1-2
Overview, 1-1

S
Sample Payload

Inbound Purchase Order, C-3
Supplier Ship and Debit Request, C-1

T
Testing Service Invocation

Command Lines, 10-44
Test Business Event Page, 10-40
Troubleshooting Web Service Invocation
Failure

Concurrent Manager (CM) Tier JVM, 10-
48
OACORE WebLogic Server, 10-45
Standalone JVM, 10-50

U
Understanding SOAP Messages

SOA Header for XML Gateway Messages, 2-33
SOAP Header for Applications Context, 2-30
SOAP Messages Through SOA Provider, 2-37
SOAP Security Header, 2-26

use custom interfaces
design tasks, 9-24
overview, 9-23
run-time tasks, 9-41

Using Business Events
deploy and test bpel, 5-27
overview, 5-1
using Business Events, 5-2

Using Business Service Objects
deploy and test bpel, 7-28

Index-3

overview, 7-1
using Business Service Objects WSDL design
time, 7-2

Using Concurrent Program
design tasks, 6-2
Overview, 6-1
run-time tasks, 6-29

Using Concurrent Program design tasks
Adding a Partner Link for File Adapter, 6-11
Assign activities, 6-22
Creating a New BPEL Project, 6-6
Creating a Partner Link, 6-9
Invoke activities, 6-20

Using custom WSDL
Add an Assign activity, 9-35
Add an Invoke activity, 9-34

Using Custom WSDL
Adding a Partner Link for File Adapter, 9-28
Create a New BPEL Project, 9-26
Create a Partner Link, 9-28

Using PL/SQL
deploy and test bpel, 3-41, 3-67
overview, 3-1
Synchronous BPEL Process , 3-6, 3-50
using PL/SQL REST Service, 3-76
using PL/SQL WSDL, 3-2

Using PL/SQL REST Service
JSON Payload, 3-88
XML Payload with REST Header, 3-77
XML Payload with REST Header run time, 3-
87

Using PL/SQL WSDL
Add an Assign activity, 3-27
Add an Invoke activity, 3-23, 3-58
Add a Receive activity, 3-59
Add Assign activities, 3-61
Adding a Partner Link for File Adapter, 3-13,
3-56
Create a New SOA Composite Application
with BPEL Process, 3-7, 3-52
Create a Partner Link, 3-12

Using XML Gateway
deploy bpel, 4-58
overview, 4-1
test bpel, 4-61
using XML Gateway Inbound, 4-2

using XML Gateway Inbound

using XML Gateway Inbound design time, 4-2
Using XML Gateway Inbound

Creating a New BPEL Project, 4-7
Using XML Gateway Inbound by SOA Provider

Assign, 4-18
Creating a Partner Link, 4-11, 4-12
Invoke, 4-17

Using XML Gateway Inbound SOA Provider
Run-time tasks, 4-22

Using XML Gateway Inbound SOA Provider
Run-Time Tasks

deploy, 4-23, 4-26
Using XML Gateway outbound

using XML Gateway outbound, 4-32
Using XML Gateway Outbound

deploy and test bpel, 4-57
Using XML Gateway outbound design task

Add an Assign Activity, 4-56
Add an Invoke Activity, 4-55
Add a Partner Link for File Adapter, 4-49
Adding a Receive Activity, 4-48
create a new BPEL project, 4-36
create a Partner Link for AQ Adapter, 4-38
overview, 4-32

W
Web service invocation

consideration, 10-57
Extending Seeded Java Rule Function, 10-50
Testing Web Service Invocation, 10-39
Troubleshooting Web Service Invocation
Failure, 10-44

Web Service Invocation Using SIF
invoking Web services, 10-31
message patterns, 10-3
metadata definition, 10-5
Supporting WS-Security, 10-23
Web Service Input Message Parts, 10-18

X
XML Payload with REST Header

Deploying a PL/SQL REST Web Service, 3-78
Invoking REST Service Using a Java Client, 3-
81
Recording the Deployed WADL URL, 3-80

	Oracle E-Business Suite Integrated SOA Gateway Developer's Guide
	Preface
	Oracle E-Business Suite Integrated SOA Gateway Overview
	Oracle E-Business Suite Integrated SOA Gateway Overview
	Major Components Features and Definitions

	Discovering and Viewing Integration Interfaces and Services
	Overview
	Searching and Viewing Integration Interfaces
	Reviewing Interface Details
	Generating SOAP Web Services
	Deploying REST Web Services
	Reviewing WSDL Element Details
	Reviewing WADL Element Details
	Understanding SOAP Messages
	Understanding REST Messages

	Using PL/SQL APIs as Web Services
	Overview
	Using PL/SQL SOAP Services
	Invoking a Synchronous Web Service from a SOA Composite Application with BPEL Process
	Creating a SOA Composite Application with BPEL Process
	Creating a Partner Link for the Web Service
	Adding a Partner Link for File Adapter
	Adding Invoke Activities
	Adding Assign Activities

	Deploying and Testing the SOA Composite with Synchronous BPEL Process
	Deploying the SOA Composite with BPEL Process
	Testing the SOA Composite Application

	Invoking an Asynchronous Web Service from a SOA Composite Application with BPEL Process
	Creating a SOA Composite Application with BPEL Process
	Adding a Partner Link
	Adding an Invoke Activity
	Adding a Receive Activity
	Adding Assign Activities

	Deploying and Testing the SOA Composite with Asynchronous BPEL Process
	Deploying the SOA Composite with BPEL Process
	Testing the SOA Composite Application

	Using PL/SQL REST Services
	Invoking a REST Service Using HTTP Basic Authentication and XML Payload With REST Header
	Deploying a PL/SQL REST Web Service
	Recording Resource Information from Deployed WADL
	Creating a Project with a Java Class

	Invoking a REST Service Using a Java Class
	Invoking a REST Service Using Token Based Authentication and JSON Payload
	Deploying a PL/SQL REST Web Service
	Recording the Deployed WADL URL
	Creating a Project with a Java Class

	Invoking REST Service Using a Java Client

	Using XML Gateway Inbound and Outbound Interfaces
	Overview
	Using XML Gateway Inbound Services
	Using XML Gateway Inbound Services at Design Time
	Creating a New SOA Composite Application with BPEL Process
	Creating a Partner Link
	Adding Partner Links for File Adapter
	Adding Invoke Activities
	Adding Assign Activities

	Deploying and Testing the SOA Composite with BPEL Process at Run Time
	Deploying the SOA Composite with BPEL Process
	Testing the SOA Composite Application with BPEL Process

	Using XML Gateway Outbound Through Subscription Model
	Using XML Gateway Outbound Services at Design Time
	Creating a New SOA Composite Application with BPEL Process
	Creating a Partner Link for AQ Adapter
	Adding a Receive Activity
	Adding a Partner Link for File Adapter
	Adding an Invoke Activity
	Adding an Assign Activity

	Deploying and Testing the SOA Composite Application with BPEL Process at Run Time
	Deploying the SOA Composite Application with BPEL Process
	Testing the SOA Composite Application with BPEL Process

	Using Business Events Through Subscription Model
	Overview
	Using a Business Event in Creating a SOA Composite Application with BPEL Process at Design Time
	Creating a New SOA Composite Application with BPEL Process
	Creating a Partner Link for AQ Adapter
	Adding a Receive Activity
	Adding a Partner Link for File Adapter
	Adding an Invoke Activity
	Adding an Assign Activity

	Deploying and Testing the SOA Composite Application with BPEL Process at Run Time
	Deploying the SOA Composite Application with BPEL Process
	Testing the SOA Composite Application with BPEL Process

	Using Concurrent Programs
	Overview
	Using Concurrent Program WSDLs at Design Time
	Creating a New SOA Composite Application with BPEL Process
	Creating a Partner Link for the Web Service
	Adding a Partner Link for File Adapter
	Adding Invoke Activities
	Adding Assign Activities

	Deploying and Testing the SOA Composite with BPEL Process at Run Time
	Deploying the SOA Composite Application with BPEL Process
	Testing the SOA Composite Application with BPEL Process

	Using Business Service Objects
	Overview
	Using Business Service Object WSDLs at Design Time
	Creating a SOA Composite Application with BPEL Process
	Creating a Partner Link
	Adding a Partner Link for File Adapter
	Adding an Invoke activity
	Adding an Assign activity

	Deploying and Testing the SOA Composite with BPEL Process at Run Time
	Deploying the SOA Composite with BPEL Process
	Testing the SOA Composite Application with BPEL Process

	Using Composite Services - BPEL
	Overview
	Viewing Composite Services - BPEL
	Downloading Composite Services - BPEL
	Modifying and Deploying BPEL Processes

	Creating and Using Custom Integration Interfaces
	Overview
	Creating Custom Integration Interfaces
	Creating Custom Integration Interfaces of Native Interface Types
	Creating Custom Composite Services - BPEL
	Creating Custom Business Events Using Workflow XML Loader

	Using Custom Integration Interfaces as Web Services
	Using Custom Interface WSDL in Creating a SOA Composite Application with BPEL Process at Design Time
	Creating a New SOA Composite Application with BPEL Process
	Creating a Partner Link for the Web Service
	Adding a Partner Link for File Adapter
	Adding Invoke Activities
	Adding Assign Activities

	Deploying and Testing the SOA Composite with BPEL Process at Run Time
	Deploying the SOA Composite with BPEL Process
	Testing the SOA Composite Application with BPEL Process

	Working With Oracle Workflow Business Event System to Invoke Web Services
	Oracle Workflow and Service Invocation Framework Overview
	Web Service Invocation Using Service Invocation Framework
	Understanding Message Patterns in WSDL
	Defining Web Service Invocation Metadata
	Step 1: Creating a Web Service Invoker Business Event
	Step 2: Creating Local and Error Event Subscriptions to the Invoker Event
	Step 3: Creating a Receive Event and Subscription (Optional)

	Understanding Web Service Input Message Parts
	Supporting WS-Security

	Calling Back to Oracle E-Business Suite With Web Service Response
	Invoking Web Services
	Managing Errors
	Testing Web Service Invocation
	Troubleshooting Web Service Invocation Failure
	Extending Seeded Java Rule Function
	Other Invocation Usage Considerations

	Integration Repository Annotation Standards
	General Guidelines
	Java Annotations
	PL/SQL Annotations
	Concurrent Program Annotations
	XML Gateway Annotations
	Business Event Annotations
	Business Entity Annotation Guidelines
	Composite Service - BPEL Annotation Guidelines
	Glossary of Annotations

	Configuring Server Connection
	Application Server Connection

	Sample Payload
	Sample Payload for Creating Supplier Ship and Debit Request
	Sample Payload for Inbound Process Purchase Order XML Transaction

	Glossary
	Index

