ORACLE

Oracle® Workflow
API Reference
Release 12.2

Part No. E22009-08

November 2013



Oracle Workflow API Reference, Release 12.2

Part No. E22009-08

Copyright © 2003, 2013, Oracle and/or its affiliates. All rights reserved.
Primary Author:  Siu Chang, Clara Jaeckel

Contributing Author:  Varsha Bhatia, George Buzsaki, John Cordes, Mark Craig, Avinash Dabholkar, Mark
Fisher, Yongran Huang, Kevin Hudson, George Kellner, Sai Kilaru, Angela Kung, David Lam, Janet Lee, Jin
Liu, Kenneth Ma, Steve Mayze, Santhana Natarajan, Rajesh Raheja, Varadarajan Rajaram, Tim Roveda, Robin
Seiden, Vijay Shanmugam, Sachin Sharma, Sheryl Sheh, Alejandro Sosa, Allison Sparshott, Susan Stratton,
Roshin Thomas, Robert Wunderlich

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation
of the programs, including any operating system, integrated software, any programs installed on the
hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the
programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

This software or hardware and documentation may provide access to or information on content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your
access to or use of third-party content, products, or services.



Contents

Send Us Your Comments
Preface

1 Overview of Oracle Workflow

Overview of Oracle WOrKfIOW..........oooiiiiiiiiiiiie et e e e e e e e e e e 1-1
Major Features and Definitions.............ccociiiiiiiiiiiiiic i 1-2
W OTKILOW PrOCESSES. .. veeeriieeeeeiieittieiieeeee e et e ettt e e e e e e e s st eeeeeeaeeesaaannneneeeeeaaeeesannsnsaneeaaeenns 14
Oracle Workflow Procedures and FUNCHONS............ccoooiiiiiiiiiiiiie e 1-5

2 Workflow Engine APIs

Overview of the Workflow Engine.............c.cocooiiiiiiiiiiiii e 2-1
Oracle Workflow Java INterface. ........couiiueeeeiiiiee e e e e e e 2-4
Additional Workflow Engine Features..........coccooiiiiiiiiiiiiii i 2-6

Workflow Engine APIS............coooiiiiiii e 2-17
(@ T 1) g 4 o T cT T J P PUPPPPR P 2-20
SetltemUSerKey..........ociiiiiiiiiiiiii 2-22
GetltemUSETKeY .......cc.oiiiiii e 2-23
GetACHVItYLaDbEL.......ooii e 2-24
Bo T £S5 00 L A 1=y oSSR 2-24
B 1 €=V o 4 oY =T F SRR 2-25
| gVl o1 o o T USSR 2-27
SUSPENAPTOCESS. .......cviiiiiii i 2-29
RESUIMEPTOCESS. ..o e e e e e e e e e e e e e e e e e e e aaaaaaaaaaans 2-31
W oo ) 4 4 g 4 LT F P PPPPPT PP 2-32
(=T 1<) 20 0 o Lot SRR 2-34



AT OT K P T OCESS ...ttt ettt e e et e e e et e e e et e e e e e e e e e e e e ee s eeeaeeeeesaeeeennaaee 2-35

Background...........oouiiiii 2-36
WX e P | L3 0 N a0 1 o PSSP 2-38
AddItemAHTIDULEATTAY ......oceiiiiiiii i 2-40
SEtTEEMALITIDULE. ...eii e e e e e s e e e e e e e e anae 2-41
setltemAttrFormattedDate. ... ..o 2-43
SetItemMAHTIDULEATTAY .....coviiiiii i 2-44
GetItEMTYPES. ...eiiiiiiiii 2-45
GetItEMALEIIDULE. ...ttt e e e e e e e e e e e s ee s 2-46
(@S 0 <30 W 2N a5 1o ) o F SRR 2-47
getltemAIIbULes. ... ..o 2-48
(@S 0 L3 W2 N 5 g o TSRS 2-48
GetActivity AHIINSO. ... 2-49
GetACHVItY ATIDULE. ..o 2-50
GetActivity AHTCIOD ..o 2-51
GetACHVItY AtIIbULeS. ... 2-52
BegiNACHVITY....coiiiiii 2-53
ComMPlete ACHTVILY ..o 2-54
CompleteActivityInternalName.............cccooiiiiiiiiiii e 2-56
ASSIZNACHVILY ...oiiiiiic 2-57
A3 S 2-58
| =T aTe 1 1<) 2 o ) SRR 2-60
B =T <30 a1 = <3 | RPN 2-62
TN S AtUIS. e 2-64
BEEPTOCESSSEATUS. ... e 2-65
Workflow Engine Bulk APIS.............cccoiiiiiiiii e 2-65
WEF_ENGINE_BULK.CreatePrOCeSS. .. .ccvviieieiiiieee ettt e e e e e e eaae e e s abeeseaanaeees 2-66
WE_ENGINE_BULK.StartPrOCESS. ... cicuvviieeiitiiiieeiitteeeessirieeesssseeeesssssseeessnsseseessssseessnsseees 2-68
WEF_ENGINE_BULK.FaStFOIWATId.......cocuuiiiiii et e et eeeeaa e 2-70
WEF_ENGINE_BULK.SetItemMAITEXE. ..cvuuiieieeieeeieie et e et e e 2-73
WEF_ENGINE_BULK.SetItemAHTNUMDET ... ....cooviiiiiiiiieeeceeeeeeeeee e 2-74
WEF_ENGINE_BULK.SetItemMAIDAE. ... .eeeiiiiiiiieiiiiiiee et 2-75
WOTKEIOW FUNCHON APIS.........eiiiiiiiiiiie ettt et e e st e e e sseae e e s snnsaeeesnnnneeeean 2-76
1O Y=Te I L i VAN a1 o0 =TSRRI 2-77
load Activity Attributes. ... ..o 2-77
BELACHVIEY AT .. e 2-78
GetIteMAT. ..o 2-79
SEIEEMAIIVAIUE. ...t e e e e e e e e e as 2-79
oG 2-80
WOTKEIOW AIrIDULE APIS........ooiiiiiiiiiiiiiie e e et e e e et e e e e snraeeeeenee 2-80

AV SN a0 5 101 6L (<Y RO 2-82



GEENAINE. ... 2-83
BEEVALUE. ... e e e 2-83
GOETY PO 2-83
GEtFOIMAL.....ooiiiiii 2-84
EEVAlUETYPE. ... e 2-84
EOSEIIING .. 2-84
COMPATETO. ..ot 2-85
WOIKEIOW COTe APIS.... .ottt 2-85
CLEAR. .. et e e e 2-86
GET_ERROR.....coiiiiiii i s e s e s s 2-86
TOKEN . ..ttt e e oo oottt e e e et e e e bbb e ettt e e e e e e e b n e reeeeeeeaaaaa 2-87
RAISE ... e s s e 2-88
CONTEXT ...ttt s r e 2-90
TRANSLATE. ... e 2-92
SubstituteSpecialChars...........cccociiiiiiiiiii s 2-92
WOTKEIow Purge APIs.........c.oooiii e e s 2-93
TEEINIS. .. e 2-95
ACHVITIES. ..o e e e e 2-96
INOHFICATIONS. ... s 2-97
o | PO PT ST 2-98
TOtAIPERM ...t s 2-100
DIIECEOTY ...t s 2-102
Purge Obsolete Workflow Runtime Data Concurrent Program..............ccccoeieieinnnnn. 2-103
Workflow Momnitor APIs..........ccocooiiiiiiiiiiin i 2-105
GetACCESSKEY ... 2-106
GetDiagramURL..........coooiiiiiiiii 2-106
GetENVelOPeURL..... ..o s 2-107
GetAdvancedEnvelopeURL..........ccoooiiiiiiiiiiiiiic 2-108
Workflow Status Monitor APIs.................ccoooiiiii e 2-109
GetEncrypted AcCessKeY........cuoiiiiiiiiiiiiii i 2-109
GetEncrypted AdminMode. ........coooiiiiiiii e 2-110
IsMOonNitor AdmINISTIator . .....c.eeeiiiiiiiii e 2-111
Oracle WOTKEIOW VIEWS.........ooiiiiiiiiiiiii e 2-111
WE_ITEM_ACTIVITY_STATUSES_V....ooiiiiii e 2-111
WEF_NOTIFICATION_ATTR _RESP_V....cooiiiiiiiiiiiiiicin e 2-113
WEF_RUNNABLE_PROCESSES_V.....ooiiiiiiiiiiiii e 2-114

WE_ITEMS V..ot et e e et e e e e e 2-115



3 Directory Service APIs

vi

Workflow Directory Service APIS...........ccoooiiiiiiiiiiii e s 3-1
LY 0 Lo =] U3 RS 3-3
GEEUSETROIES. ...ttt ettt ettt ettt e e e e e e s bbbttt e e e e e e e e e s anbebeeeeeeaeeeeaaannns 3-3
(@Y 0 001 =] g TSR 3-4
GEEROIEINTOZ.....ciiiee ettt ettt e e e e e e st e e e e e e e e e e e annnenneees 3-5
5] B3 ) 0 =3 RS 3-6
LB LTSS N ol 1T USSP PSP N 3-7
(@1 TS5 A= 1 0o =PRSS 3-7
(@721 3 00 1<) A\ F= V' U PPRRRR 3-8
GetRoleDisplayINamIE. .......coiuiiiiiiieie e e 3-8
GetRoleDisplayName2...........ccooouiiiiiiiiee e 3-8
Creat@ AAHOCUSET ......oiieee ettt ettt e e e e e e s e bbb e e e e e e e e e e e annaee 3-9
(=T 1= Ne U [ Yol So ) L= RS 3-11
Create AAHOCROIE2.......ooiiii et e e e r e e e e e e e e re e eeeas 3-13
AddUSErsTOAAHOCROIE.......eiiiiieeie ettt e e e et e e e e e e e e e eeeeeeeeaaeeeeaannnes 3-15
AddUsersTOAAHOCROIE2..........uuuiiiiiiiie et eas 3-16
RemoveUsersFromAdHOCROIE. .........uiiiiiiieeiiiiiiee e e e 3-16
SEtAAHOCUSEISEALUS. ..ceieieeiiiiieiiei ettt e e e e e e e e e e e e e e e e e snbnbeeeeaaaeens 3-17
SEtAAHOCROIESTATUS. 1.eeviieeeiieiiiitiee it e e e e e e e e e e e s e et eeeeeaeessansnrnneeeeaens 3-17
Set AdHOCUSErEXPITation.......c.coooiuiiiciiiii e 3-18
SetAdHOCROIEEXPITatiON. ......coiiiiiiiiiiiciii e 3-18
Bo 1< 92N | s (o Tal I8 LTy o AN S 3-19
SEtAAHOCROIEALLT. ... e e e e 3-20
ChangeLocalUSerName. ...........cccuiiiiiiiiiii i 3-21
ISMILSENGDIEA. ...ttt e e e e et e e e e e e e s nenbe e e eas 3-22

WOTKEIOW LIDAP APIS. ... ..ottt e e e e e e e et e e e e e e e e e s e s e e e e e e e e e e e annnnnneees 3-22
SYNCh_Changes.........ccooiiiiiiiiiiii 3-22
SYNCI_ALL.. e 3-23
Schedule_changes.............ccociiiiiiii 3-24

Workflow Local Synchronization APIs................ccooiiiiii e 3-24
Propagate_USer..........c.ooiuiiiiiiiiii e 3-25
Propagate_ROIE.........ccooiiiiiii e e e 3-30
PropagateUserRole............c.ooooiiiiii 3-36

Workflow Role Hierarchy APIS...........coooiiiiiiiii e 3-37
AddREIatioNSIIP. ... 3-38
ExpireRelationship..........cocoiiiiiiiiiiiii 3-39
GetRelatioNShiPs. .......oouiiii e 3-39
GetAlIRelationShips.......ccuiiiiiiiiiiiiciic 3-40



4 Notification System APIs

Overview of the Oracle Workflow Notification System ...............cccoieiiiiiiii, 4-1
Ao a1 i ToZ= (o) o LY/ (o Yo 1= S 4-2
Notification Document Type Definition...........cccceviiiiiiiiiiiiniini e, 4-7

INOLIICAION APIS.....ooi ittt e e e e e e e e st e e e e e e e e s sannnntaeeeeeeaeeeeeannenreees 4-16
o<1 e TR 4-19

Custom Callback FUNCHOMN........cii ittt e e e e e snreee e e e e e e e e e 4-20
SENAGIOUP....ctiiie e 4-23
20e) 7= e PSP PRR 4-24
= g U7 SR 4-25
(=Y § V) PSPPSR 4-27
CANCEIGIOUP ... .ot e s 4-27
RESPONA. ... e 4-28
RESPONAET ... e e 4-30
NtfSignRequirementsMet.............cccooiiiiiiiiiiiiiii 4-30
Y0 <1 0 ' | USRS 4-31
OpenNotificationNSEXISt.........coiiiiiiiici 4-32
(o T PRRRRR 4-32
e T N i PSSR 4-33
BN a0 1 1 SRR 4-34
LTS N ' oV o 1SR 4-35
L@ 6 1 (o T USRS 4-36
LTt oG T 4-37
(@IS 1] a1} ol 5 PP PPRTTR 4-38
LY N ' o1 ¢S 4-39
(@S 7N 'y Do TP 4-40
GEESUDJECL . ... e 4-41
GetBOAY ..o 4-42
GetSNOTTBOAY ... e 4-43
@S OMEEXE. ¢ttt e et e e oo e oo e e e e e e e e e e e eeaaaeaaaaeeeeeeeeeeeeeeeeeeeeeensnbnbnbnnnnen 4-43
A CCESSCTINECK ..ttt e e e e e e e nnaeeas 4-44
LA e3 o 1 1o S 4-44
GEENOTIFICATIONS. ... e 4-45
getNotificatioNATIDULES. .......ocoiiii 4-45
WIEETOCIOD . ...ttt e e e e e e e e e e e e e e e e s anaes 4-46
Denormalize_NOtIfiCatiON. .. ..ciiieieeieiei e e et 4-47

Notification Mailer Utility APIL..........c..ccociiiiiiiiiiiii 4-48

vii



J EhaTele o =) ] @) 5 TN 4-49

Notification Utility APL...........coooiiii s 4-49
GetCaleNdAarDAte. .. ... ueeiee ettt e e e e e nre e e e e nnees 4-49
XML Message APIS..........ccoooiiiiiiiiiiic s 4-50
LA LY | I ) o V) = 1 TN 4-51
WE_XML.SummaryRUle..........ccciiiiiiiiiiiii e 4-51
WE _XML.EITOT RULE....couiiiiiieee e et e e e e e e e e e e eaans 4-52
Message APL...........ociiiiii 4-52
WE_MAIL.SENA.......eeiiieiiiiiie ettt ettt ettt e e e ettt e e e e enta e e e e ssnteeeeeaseeeaesansaeeeeeanes 4-53

5 Business Event System APIs

viii

Overview of the Oracle Workflow Business Event System...............c..ccocoiiiiiiiiiininienn. 5-1
Business Event System Datatypes.............cccccooiiiiiiiiiii 5-2
AGENt SEIUCLUTE. ..ot 5-3
GEEINAIMNIC. ... s 5-3
GEESYSTOIM. .. 5-4

ST A MNP o o LSOO 5-4
SEESYSIOIM. .ttt 5-4
Parameter StIUCHUTE. ......ooii e e s 5-4
GtNAIME. ... 5-5
GEEVAIUE. ... 5-5
SEEINAIMNIE. ...t 5-5
SEEVAlUE. ..ot 5-6
Parameter List Structure..........cccoiiiiiiiiiiii 5-6
Event Message Structure..........c.oociiiiiiiiiiiiiiiii i 5-6
TNIHALIZE . 5-11
GEEPTIOTILY ...oiiiiiii i 5-12
getSendDate. ........c.ooiii s 5-12
getReceiVeDAte. .......c.oiiiiiiiii 5-12
getCorrelationID....... ..o 5-12
getParameterList............ooooiii 5-13
getEventName. ... 5-13
getEventKey ..., 5-13
GEEEVENEDIAta. ..o s 5-13
GetFTOMAZENT......ooii 5-13
GEtTOAGENL. ...t 5-14
EtErrorSUbSCIIPHON. ....c.eiiiii i 5-14
GEtEITOTMESSAZE. ... i 5-14
GELEITOTSTACK. ... 5-14
SEEPTIOTIEY v 5-14



SEESEIIADIALE. ... ettt e et et e e et e e e —ar i ————————— 5-15

SEtRECEIVEDIALE. ... e e e e 5-15
SEtCOrTElatioNTD ... .eiiiiiiiiiie e e e 5-15
SetParameterList........ooo i e e e e e e 5-16
SEEEVENTINAINE. ...ttt e e e e e e e e e e e e e e 5-16
SEtEVENtKEY....o i 5-16
SEEEVENTDIALA. .....eeiiiiie e a e 5-16
SEtFIOMAZENt......ooiiiiiiiii 5-17
SEtTOAZENE.....oiiiiii e 5-17
SEtEITOrSUDSCIIPLION. .. .o 5-17
SEtEITOTMESSAZE. ....veiiiiiciiiiie e 5-18

TSN d 2 0 v Lol SRR 5-18

(@0 11 1 PP 5-18
AQATESS. .ttt ettt e e e e e et e e e e e bte e e e e abaeeeeeanreeeeeaan 5-19

o e = U= o = <2l ) 1T SR 5-19
GetValueForParameter...........uuiiiiiii i 5-19
Example for Using Abstract Datatypes...........ccoooevviiiiiiiiiic 5-20
Mapping Between WE_EVENT_T and SYS.AQ$_JMS_TEXT_MESSAGE...........cc.ccc..... 5-21
223 4 0 N o 5-24
RIS e e e e e e e e e e e e e e e e e e e e e e e e e e aeeeaeeeeeeeeeeeeeeeeeaeaaaae 5-25
=11 7 5-29
o<1 e PRSP 5-30
INEWAGENL ...ttt s 5-31
1 =T S 5-32
ENQUEUIE.. ... 5-32
53 < o PR 5-33
BTy 23 o) o 1 J PRSPPI 5-35
SetDiISPatChMOde. .........ooiiiiiii e 5-36
AddParameterTOLISt. ... ....uueiiiiiiii e e e 5-37
o Lo 8= =Y o U= 1 =3l o) 51T oo TSR 5-37
GetValueForParameter............. i a e 5-38
GetValueForParameterPOS. ... ...uuiiiie it ie e e e e sttt e e e e e e e e e e e e e e s e snnneaeeeeaaaeeeennn 5-38
BT \Y B DAL (cTe R T T PR 5-39
GetMaXINESEEARAISE. . .evieieeiiiiiiiiiiee i e e e e e e s e e e e e e e s et e e e e e e e s sssna e aereeeaeesessnnnsnranenaaaeens 5-39
GetParamListFromString.........cccooooiiiii 5-39
setNavigationParams.........c.ccccuiiiiiiiiiii i 5-40
resetNavigationParams..............ocooiiiiiiiii i 5-40
getQuetueNavIgation........ccoi i 5-41
Event Subscription Rule Function APIs...............cccooiiiiii e 5-41
D7) 101 L S C<T TR 5-42



WATTIE ... 5-46
SO S -ttt ettt etttk e et e ettt et e e+ oottt e e e e e e a b e e e et et e e et e e e b e e e e e et e e e e e e e nrnreeeeeeas 5-47
WOTKELOW_PIOtOCOL.... ..o e e e e e e e e e e e e e e e e aaaeaaaeaeaees 5-47
5 ) D S 1 (N 5-48
SetParametersIntoParameterList...........oooiiiiiiiiiiiiiiiii e 5-49
I 7S] 100 L S U 1< TR 5-50
Default_RULE3S.......ouuiiiiiiitccec et e et et et e e et e e e e e e e e e e e e e e e e et e ettt ee et eeeeeeaesesaasarsrararnaaraaannnnnan 5-51
ot Te IANTo T F o7 1 u (o) o WU RPN 5-51
Instance_Default RULE.............uuiiiiiiiiiicccccce et e e e e e eeeeaaes 5-53
Default_RUIE_OF.....ccooiiiiiiiiiiiiieieii e e e e e s e s e e e e e e e e e e e e eaaaaaaaaaaaaaaaeeeeeeeeeeeeeseeeeneees 5-55
Defatlt_GENETALE.......ceevviiveiiiiiiieiti e e e e e e e e e e e s e e e e e eeeeeeeeaeaaaaaeaaaaaeseeeseseeeeeeeeeeeeeeseseres 5-56
WebServiceInvokerSubscription............cooooiiiiii 5-57
Event FUNCHON APIS......ooooiiiiiii it et e e e e e e e e e e e ennees 5-65
S 0 21001 =P 5-65
SubscriptionParameters.............cccoiiiiiiiiiiiii 5-66
2o e (@03 =Y = o ) o DS 5-67
(@S 411 - LT PP 5-69
a1 5-70
Business Event System Replication APISs...............cccocooiiiiiiiiii e 5-72
WEF_EVENTS Document Type Definition...........cccoooiiiiiiiiiiii e 5-74
WE_EVENTS_PKG.GENETALE........ccceeiiiiiiieeeeeeeeeeeeeee ettt n s e e e e e e e e e e aaaaaaas 5-74
WE_EVENTS _PKG.RECEIVE. ... .cciiiiiiiiii ettt e e e e e e atee e e e e e e eeaae e e e e e eeseaan 5-75
WE_EVENT_GROUPS Document Type Definition..............cccocooiii 5-75
WEF_EVENT_GROUPS _PKG.GENETAE. ......ceceevniiieeeieeeieee e et e e e e e e eeeaanans 5-76
WE_EVENT_GROUPS_PKG.RECEIVE......oeiieiiiiiiieeiiiiiie e eeiiee e e e e eitee e e e stae e e s enteea e enneeas 5-76
WEF_SYSTEMS Document Type Definition..........c.ccoocieiiiiiiiiicicie e 5-76
WEF_SYSTEMS_PKG.GENETAE. ....ceiueiieiiiieiuiieaieeeeieeeaieeeeieaeaeeeesneeeasaeeeesseeesneeeaneeeeaneeeanes 5-77
WE_SYSTEMS PKG.RECEIVE. ....c.cuuniiieieeeieee ettt e et e e e e e s e e s et e e s e e s eaaeeeeanns 5-77
WF_AGENTS Document Type Definition...........cccoccoiiiiiiiiiiiiii e 5-77
WE_AGENTS _PKG.GENETAE. ... .ciiiieeiiiiiee ettt e e eeetee e e e e e e e e e e e eeaabaeaeeeaees 5-78
WE_AGENTS_PKG.RECEIVE. ....cccceeeiiiei ettt ettt e e e et e e e e e e e aaae e e e e e eeannan 5-78
WEF_AGENT_GROUPS Document Type Definition............ccccooeiiiiiiiiiiiis 5-79
WEF_AGENT_GROUPS_PKG.GENETALE. .....ceeiiiiiiieiiiiiiieiaiieeeeeeiieeeseiieeesenieeeeesnreeeeeenees 5-79
WEF_AGENT_GROUPS_PKG.RECEIVE. ...cccteieiutireiiieaitieeaitieeesieeeseeeesiteeesneeeaneeeeseeeesneeennee 5-79
WF_EVENT_SUBSCRIPTIONS Document Type Definition.............ccccoovviiiiiciiniincneene 5-80
WEF_EVENT_SUBSCRIPTIONS_PKG.GENETALe. .......eeeeiuieeeiieeeiieeaieeeaiieeesieeeeeeeseeeeeeeeas 5-81
WEF_EVENT_SUBSCRIPTIONS_PKG.RECEIVE.......ueeeiiiiiiiieiiiiiiieiiiiieeesiiee e eiveeeeeseeeeee s 5-81
Business Event System Cleanup APL.............cooiiiii e 5-81

Cleanup_SUbSCIIDETS. ... ...cciiiiiiiiiii e 5-82



6 Workflow Queue APIs

WOTKEIOW QUEUE APIS.......cooiieiiiiiiiie ettt e e e e e e e e e e e e e s s e s raeeeeaaeeeeaaanns 6-1
EnqueteInbound..........oooooiiiiiiiii i 6-4
DequeueOutbound...........ocoiiiiiiiiii 6-5
DequeueEventDetail. ..o 6-8
PUTZEEVENL......ooiiiiiii s 6-9
PurgeltemTyPe.....ccueiiiiiiiiii 6-10
ProcessINboundQUEUE. .............cooiiiiiiiiieeeeeeeeeee e e e e e e e e e e e e e e aaaaaaaaaes 6-10
GetMessageHandle.............ocoiiiiiiii e 6-11
DequetueEXCePHON. .. ..o 6-11
Deferr@dQUEUE. ......vvvvreiiiiiiiiitt e ee e e e e ee e e e e e e e e eeeeeeesaeaeaeaaaeaeaaeeeeeseeeeeereeeeeesssssssararararnranes 6-12
INDOUNAQUEUE. ..o e e e e e e e e e e e eaaaaaanns 6-12
OUDOUNAQUEUE. ...ttt bbb ns 6-12
ClearMSZStaCK. ....c.eeiveeeiiii et s 6-13
CTEALEMSZ ... e s 6-13
WIEEMSE....eeieiiie s 6-13
SEEMSGALT. ... 6-14
SEEMSGRESULL. ... 6-15

Glossary

Index






Send Us Your Comments

Oracle Workflow API Reference, Release 12.2
Part No. E22009-08

Oracle welcomes customers' comments and suggestions on the quality and usefulness of this document.
Your feedback is important, and helps us to best meet your needs as a user of our products. For example:

¢ Are the implementation steps correct and complete?

¢ Did you understand the context of the procedures?

¢ Did you find any errors in the information?

¢ Does the structure of the information help you with your tasks?

* Do you need different information or graphics? If so, where, and in what format?
* Are the examples correct? Do you need more examples?

If you find any errors or have any other suggestions for improvement, then please tell us your name, the
name of the company who has licensed our products, the title and part number of the documentation and
the chapter, section, and page number (if available).

Note: Before sending us your comments, you might like to check that you have the latest version of the
document and if any concerns are already addressed. To do this, access the new Oracle E-Business Suite
Release Online Documentation CD available on My Oracle Support and www.oracle.com. It contains the
most current Documentation Library plus all documents revised or released recently.

Send your comments to us using the electronic mail address: appsdoc_us@oracle.com
Please give your name, address, electronic mail address, and telephone number (optional).

If you need assistance with Oracle software, then please contact your support representative or Oracle
Support Services.

If you require training or instruction in using Oracle software, then please contact your Oracle local office
and inquire about our Oracle University offerings. A list of Oracle offices is available on our Web site at
www.oracle.com.

xiii






Preface

Intended Audience
Welcome to Release 12.2 of the Oracle Workflow API Reference.
This guide assumes you have a working knowledge of the following;:

e The principles and customary practices of your business area.
e Computer desktop application usage and terminology.

¢ The Oracle E-Business Suite graphical user interface.

To learn more about the Oracle E-Business Suite graphical user interface, read the
Oracle E-Business Suite User’s Guide.

* Operating system concepts.

® Oracle Database, Oracle Application Server, and PL/SQL technology.

If you have never used these products, Oracle suggests you attend training classes
available through Oracle University.

See Related Information Sources on page xvi for more Oracle E-Business Suite product
information.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers have access to electronic support through My Oracle Support. For

XV



Structure

information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

1 Overview of Oracle Workflow

This chapter introduces you to the concept of a workflow process and to the major
features of Oracle Workflow.

2 Workflow Engine APIs

This chapter describes the APIs for the Workflow Engine. The APIs consist of views and
PL/SQL and Java functions and procedures that you can use to access the Workflow
Engine, the Workflow Monitor, and workflow data.

3 Directory Service APIs

This chapter describes the APIs for the Oracle Workflow directory service. The APIs
include PL/SQL functions and procedures that you can use to access the directory
service.

4 Notification System APls

This chapter describes the APIs for the Oracle Workflow Notification System. The APIs
include PL/SQL and Java functions and procedures that you can use to access the
Notification System.

5 Business Event System APls

This chapter describes the APIs for the Oracle Workflow Business Event System. The
APIs include datatypes and PL/SQL functions and procedures that you can use to
access the Business Event System.

6 Workflow Queue APIs

This chapter describes the APIs for Oracle Workflow Advanced Queues processing. The
APIs include PL/SQL functions and procedures to handle workflow Advanced Queues
processing. Although these APIs will continue to be supported for backward
compatibility, customers using Oracle Workflow Release 12 should use the Business
Event System rather than the queue APIs to integrate with Oracle Advanced Queuing.

Glossary

Related Information Sources

xvi

This book is included in the Oracle E-Business Suite Documentation Library, which is
supplied in the Release 12.2 Media Pack. If this guide refers you to other Oracle
E-Business Suite documentation, use only the latest Release 12.2 versions of those
guides.

Online Documentation
All Oracle E-Business Suite documentation is available online (HTML or PDF).

¢ Online Help - Online help patches (HTML) are available on My Oracle Support.



e PDF Documentation - See the Oracle E-Business Suite Documentation Library for
current PDF documentation for your product with each release.

* Release Notes - For information about changes in this release, including new
features, known issues, and other details, see the release notes for the relevant
product, available on My Oracle Support.

* Oracle Electronic Technical Reference Manual - The Oracle Electronic Technical
Reference Manual (€TRM) contains database diagrams and a detailed description of
database tables, forms, reports, and programs for each Oracle E-Business Suite
product. This information helps you convert data from your existing applications
and integrate Oracle E-Business Suite data with non-Oracle applications, and write
custom reports for Oracle E-Business Suite products. The Oracle eTRM is available
on My Oracle Support.

Related Guides

You should have the following related books on hand. Depending on the requirements
of your particular installation, you may also need additional manuals or guides.

Oracle Alert User's Guide

This guide explains how to define periodic and event alerts to monitor the status of
your Oracle E-Business Suite data.

Oracle Application Framework Developer's Guide

This guide contains the coding standards followed by the Oracle E-Business Suite
development staff to produce applications built with Oracle Application Framework.
This guide is available in PDF format on My Oracle Support and as online
documentation in JDeveloper 10g with Oracle Application Extension.

Oracle Application Framework Personalization Guide

This guide covers the design-time and run-time aspects of personalizing applications
built with Oracle Application Framework.

Oracle Diagnostics Framework User's Guide

This manual contains information on implementing and administering diagnostics tests
for Oracle E-Business Suite using the Oracle Diagnostics Framework.

Oracle E-Business Suite Concepts

This book is intended for all those planning to deploy Oracle E-Business Suite Release
12.2, or contemplating significant changes to a configuration. After describing the
Oracle E-Business Suite architecture and technology stack, it focuses on strategic topics,
giving a broad outline of the actions needed to achieve a particular goal, plus the
installation and configuration choices that may be available.

Oracle E-Business Suite Developer's Guide

This guide contains the coding standards followed by the Oracle E-Business Suite
development staff. It describes the Oracle Application Object Library components

Xvii



xviii

needed to implement the Oracle E-Business Suite user interface described in the Oracle
E-Business Suite User Interface Standards for Forms-Based Products. It provides information
to help you build your custom Oracle Forms Developer forms so that they integrate
with Oracle E-Business Suite. In addition, this guide has information for customizations
in features such as concurrent programs, flexfields, messages, and logging.

Oracle E-Business Suite Installation Guide: Using Rapid Install

This book is intended for use by anyone who is responsible for installing or upgrading
Oracle E-Business Suite. It provides instructions for running Rapid Install either to carry
out a fresh installation of Oracle E-Business Suite Release 12.2, or as part of an upgrade
to Release 12.2.

Oracle E-Business Suite Integrated SOA Gateway Developer's Guide

This guide describes how system integration developers can perform end-to-end service
integration activities. These include orchestrating discrete Web services into meaningful
end-to-end business processes using business process execution language (BPEL), and
deploying BPEL processes at run time.

This guide also explains how to invoke Web services using the Service Invocation
Framework. This includes defining Web service invocation metadata, invoking Web
services, and testing the Web service invocation.

Oracle E-Business Suite Integrated SOA Gateway Implementation Guide

This guide explains how integration repository administrators can manage and
administer the Web service activities for integration interfaces including native
packaged integration interfaces, composite services (BPEL type), and custom
integration interfaces. It also describes how to invoke Web services from Oracle
E-Business Suite by employing the Oracle Workflow Business Event System, and how
to manage Web service security, configure logs, and monitor SOAP messages.

Oracle E-Business Suite Integrated SOA Gateway User's Guide

This guide describes the high level service enablement process, explaining how users
can browse and view the integration interface definitions and services residing in
Oracle Integration Repository.

Oracle E-Business Suite Maintenance Guide

This guide explains how to patch an Oracle E-Business Suite system, describing the
adop patching utility and providing guidelines and tips for performing typical patching
operations. It also describes maintenance strategies and tools that can help keep a
system running smoothly.

Oracle E-Business Suite Security Guide

This guide contains information on a comprehensive range of security-related topics,
including access control, user management, function security, data security, and
auditing. It also describes how Oracle E-Business Suite can be integrated into a single
sign-on environment.

Oracle E-Business Suite Setup Guide



This guide contains information on system configuration tasks that are carried out
either after installation or whenever there is a significant change to the system. The
activities described include defining concurrent programs and managers, enabling
Oracle Applications Manager features, and setting up printers and online help.

Oracle E-Business Suite User's Guide

This guide explains how to navigate, enter and query data, and run concurrent requests
using the user interface (UI) of Oracle E-Business Suite. This guide also includes
information on setting user profiles and customizing the Ul

Oracle Workflow Administrator's Guide

This guide explains how to complete the setup steps necessary for any product that
includes workflow-enabled processes. It also describes how to manage workflow
processes and business events using Oracle Applications Manager, how to monitor the
progress of runtime workflow processes, and how to administer notifications sent to
workflow users.

Oracle Workflow Client Installation Guide

This guide describes how to install the Oracle Workflow Builder and Oracle XML
Gateway Message Designer client components for Oracle E-Business Suite.

Oracle Workflow Developer's Guide

This guide explains how to define new workflow business processes and customize
existing Oracle E-Business Suite-embedded workflow processes. It also describes how
to define and customize business events and event subscriptions.

Oracle Workflow User's Guide

This guide describes how users can view and respond to workflow notifications and
monitor the progress of their workflow processes.

Oracle XML Gateway User's Guide

This guide describes Oracle XML Gateway functionality and each component of the
Oracle XML Gateway architecture, including Message Designer, Oracle XML Gateway
Setup, Execution Engine, Message Queues, and Oracle Transport Agent. It also explains
how to use Collaboration History that records all business transactions and messages
exchanged with trading partners.

The integrations with Oracle Workflow Business Event System, and the
Business-to-Business transactions are also addressed in this guide.

Integration Repository

The Oracle Integration Repository is a compilation of information about the service
endpoints exposed by the Oracle E-Business Suite of applications. It provides a
complete catalog of Oracle E-Business Suite's business service interfaces. The tool lets
users easily discover and deploy the appropriate business service interface for
integration with any system, application, or business partner.

Xix



The Oracle Integration Repository is shipped as part of the E-Business Suite. As your
instance is patched, the repository is automatically updated with content appropriate
for the precise revisions of interfaces in your environment.

You can navigate to the Oracle Integration Repository through Oracle E-Business Suite
Integrated SOA Gateway.

Do Not Use Database Tools to Modify Oracle E-Business Suite Data

XX

Oracle STRONGLY RECOMMENDS that you never use SQL*Plus, Oracle Data
Browser, database triggers, or any other tool to modify Oracle E-Business Suite data
unless otherwise instructed.

Oracle provides powerful tools you can use to create, store, change, retrieve, and
maintain information in an Oracle database. But if you use Oracle tools such as
SQL*Plus to modify Oracle E-Business Suite data, you risk destroying the integrity of
your data and you lose the ability to audit changes to your data.

Because Oracle E-Business Suite tables are interrelated, any change you make using an
Oracle E-Business Suite form can update many tables at once. But when you modify
Oracle E-Business Suite data using anything other than Oracle E-Business Suite, you
may change a row in one table without making corresponding changes in related tables.
If your tables get out of synchronization with each other, you risk retrieving erroneous
information and you risk unpredictable results throughout Oracle E-Business Suite.

When you use Oracle E-Business Suite to modify your data, Oracle E-Business Suite
automatically checks that your changes are valid. Oracle E-Business Suite also keeps
track of who changes information. If you enter information into database tables using
database tools, you may store invalid information. You also lose the ability to track who
has changed your information because SQL*Plus and other database tools do not keep a
record of changes.



1

Overview of Oracle Workflow

This chapter introduces you to the concept of a workflow process and to the major
features of Oracle Workflow.

This chapter covers the following topics:
* Overview of Oracle Workflow

e  QOracle Workflow Procedures and Functions

Overview of Oracle Workflow

Oracle Workflow delivers a complete workflow management system that supports
business process based integration. Its technology enables modeling, automation, and
continuous improvement of business processes, routing information of any type
according to user-defined business rules.

E-business is accelerating the demand for integration of applications within the
enterprise as well as integration of a company's systems with trading partners and
business-to-business exchanges. Oracle Workflow automates and streamlines business
processes both within and beyond your enterprise, supporting traditional applications
based workflow as well as e-business integration workflow. Oracle Workflow is unique
in providing a workflow solution for both internal processes and business process
coordination between applications.

Routing Information

Business processes today involve getting many types of information to multiple people
according to rules that are constantly changing. With so much information available,
and in so many different forms, how do you get the right information to the right
people? Oracle Workflow lets you provide each person with all the information they
need to take action. Oracle Workflow can route supporting information to each decision
maker in a business process, including people both inside and outside your enterprise.

Overview of Oracle Workflow 1-1



Defining and Modifying Business Rules

Oracle Workflow lets you define and continuously improve your business processes
using a drag-and-drop process designer.

Unlike workflow systems that simply route documents from one user to another with
some approval steps, Oracle Workflow lets you model sophisticated business processes.
You can define processes that loop, branch into parallel flows and then rendezvous,
decompose into subflows, and more. Because Oracle Workflow can decide which path
to take based on the result of a stored procedure, you can use the power of Java and of
PL/SQL, the language of the Oracle Database, to express any business rule that affects a
workflow process. See: Workflow Processes, page 1-4.

Delivering Electronic Notifications

Oracle Workflow extends the reach of business process automation throughout the
enterprise and beyond to include any e-mail or Internet user. Oracle Workflow lets
people receive notifications of items awaiting their attention via e-mail, and act based
on their e-mail responses. You can even view your list of things to do, including
necessary supporting information, and take action using a standard Web browser.

Integrating Systems

Oracle Workflow lets you set up subscriptions to business events which can launch
workflows or enable messages to be propagated from one system to another when
business events occur. You can communicate events among systems within your own
enterprise and with external systems as well. In this way, you can implement
point-to-point messaging integration or use Oracle Workflow as a messaging hub for
more complex system integration scenarios. You can model business processes that
include complex routing and processing rules to handle events powerfully and flexibly.

Major Features and Definitions

Oracle Workflow Builder

Oracle Workflow Builder is a graphical tool that lets you create, view, or modify a
business process with simple drag and drop operations. Using the Workflow Builder,
you can create and modify all workflow objects, including activities, item types, and
messages. See: Workflow Processes, page 1-4.

At any time you can add, remove, or change workflow activities, or set up new
prerequisite relationships among activities. You can easily work with a summary-level
model of your workflow, expanding activities within the workflow as needed to greater
levels of detail. And, you can operate Oracle Workflow Builder from a desktop PC or
from a disconnected laptop PC.

1-2 Oracle Workflow API Reference



Workflow Engine

The Workflow Engine embedded in the Oracle Database implements process definitions
at runtime. The Workflow Engine monitors workflow states and coordinates the routing
of activities for a process. Changes in workflow state, such as the completion of
workflow activities, are signaled to the engine via a PL/SQL API or a Java API. Based on
flexibly-defined workflow rules, the engine determines which activities are eligible to
run, and then runs them. The Workflow Engine supports sophisticated workflow rules,
including looping, branching, parallel flows, and subflows.

Business Event System

The Business Event System is an application service that uses the Oracle Advanced
Queuing (AQ) infrastructure to communicate business events between systems. The
Business Event System consists of the Event Manager, which lets you register
subscriptions to significant events, and event activities, which let you model business
events within workflow processes.

When a local event occurs, the subscribing code is executed in the same transaction as
the code that raised the event. Subscription processing can include executing custom
code on the event information, sending event information to a workflow process, and
sending event information to other queues or systems.

Workflow Definitions Loader

The Workflow Definitions Loader is a utility program that moves workflow definitions
between database and corresponding flat file representations. You can use it to move
workflow definitions from a development to a production database, or to apply
upgrades to existing definitions. In addition to being a standalone server program, the
Workflow Definitions Loader is also integrated into Oracle Workflow Builder, allowing
you to open and save workflow definitions in both a database and file.

Complete Programmatic Extensibility

Oracle Workflow lets you include your own PL/SQL procedures or external functions as
activities in your workflows. Without modifying your application code, you can have
your own program run whenever the Workflow Engine detects that your program's
prerequisites are satisfied.

Electronic Notifications

Oracle Workflow lets you include users in your workflows to handle activities that
cannot be automated, such as approvals for requisitions or sales orders. The
Notification System sends notifications to and processes responses from users in a
workflow. Electronic notifications are routed to a role, which can be an individual user
or a group of users. Any user associated with that role can act on the notification.

Each notification includes a message that contains all the information a user needs to

Overview of Oracle Workflow 1-3



make a decision. The information may be embedded in the message body or attached as
a separate document. Oracle Workflow interprets each notification activity response to
decide how to move on to the next workflow activity.

Electronic Mail Integration

Electronic mail (e-mail) users can receive notifications of outstanding work items and
can respond to those notifications using their e-mail application of choice. An e-mail
notification can include an attachment that provides another means of responding to
the notification.

Internet-Enabled Workflow

Any user with access to a standard Web browser can be included in a workflow. Web
users can access a Notification Web page to see their outstanding work items, then
navigate to additional pages to see more details or provide a response.

Monitoring and Administration

Workflow administrators and users can view the progress of a work item in a workflow
process by connecting to the Workflow Monitor using a standard Web browser that
supports Java. The Workflow Monitor displays an annotated view of the process
diagram for a particular instance of a workflow process, so that users can get a
graphical depiction of their work item status. The Workflow Monitor also displays a
separate status summary for the work item, the process, and each activity in the
process.

You can also use the Oracle Workflow Manager component of Oracle Applications
Manager as an additional administration tool for Oracle Workflow. Oracle Applications
Manager is a tool that provides administrative and diagnostic capabilities for
concurrent processing, Oracle Workflow, and other functionality in Oracle E-Business
Suite.

Workflow Processes

Oracle Workflow manages business processes according to rules that you define. The
rules, which we call a workflow process definition, include the activities that occur in
the process and the relationship between those activities. An activity in a process
definition can be an automated function defined by a PL/SQL stored procedure or an
external function, a notification to a user or role that may optionally request a response,
a business event, or a subflow that itself is made up of a more granular set of activities.

A workflow process is initiated when an application calls a set of Oracle Workflow
Engine APIs. The Workflow Engine takes over by driving the relevant work item
defined by the application, through a specific workflow process definition. According
to the workflow process definition, the Workflow Engine performs automated steps
and invokes appropriate agents when external processing is required.

The following diagram depicts a simplified workflow process definition that routes a

1-4 Oracle Workflow AP| Reference



requisition to a manager or set of managers for approval.

Sample Workflow Process in Oracle Workflow Builder

Ed oracle Workflow Builder 2.6.3
File Edit Wew ‘Window Help

=0l x|

Ed Requisition Approval

Slalal «[zm(m) x|

Tl@ | ﬁB-||ﬁBc|:@|©| ll

WwFDEMO
@ Fequizition
Bl Attributes

# Processes

# FRequisition Approval
-5 Maotifications

Werify Authority  Approve Requizition  Motify Fequestar of

End [Approve]

-4 Motify Requestor No
¢4 Motify Requestor of ¢
~pp1 Motify Requestor of f
8} Notify Requestor of f
g Notify Requisition Ap

Approval

pRIove

Record Requizsition
Faonward

—>

~yg] Reminder-Approval b Stat Select Approver

=% Functions

] Approve Requisition
Record Requisition F
- Reject Requisition
----- % Select Approver
----- H “Werify Authority
----- #| Events
F-£ Messages
----- Lookup Types
[ Standard

Directory Service

And Moty Approver Feject Requizition  Motify R equestor of

True Rejection

Maotify Requestar of
Faonward
False

Motify Requestor Mo
Approver Available

End [Reject]

rer

e xR

End [Reject]

K |

We refer to the whole drawing as a process or process diagram. The icons represent
activities, and the arrows represent the transitions between the activities. In the above
example, new items are created for the process when a user creates and submits a
requisition in the appropriate application.

This process contains several workflow activities implemented as PL/SQL stored
procedures, including;:

* Select Approver - to select, according to your business rules, who should approve

the requisition.

Verify Authority - to verify that a selected approver has the spending authority to
approve the requisition.

Oracle Workflow Procedures and Functions

Oracle Workflow supplies a list of public PL/SQL and Java procedures and functions

that you can use to set up a workflow process. They are grouped within the following
packages and classes:

WF_ENGINE, page 2-17

Overview of Oracle Workflow 1

-5




e  WF_ENGINE_BULK, page 2-65

¢  WFFunctionAPI, page 2-76

e WFAttribute, page 2-80

e WF_CORE, page 2-85

e  WF_PURGE, page 2-93

e  WF_MONITOR, page 2-105

¢  WF_FWKMON, page 2-109

* Oracle Workflow Views, page 2-111

e WEF_DIRECTORY, page 3-1

e WEF_LDAP, page 3-22

e WEF_LOCAL_SYNCH, page 3-24

e WF_ROLE_HIERARCHY, page 3-37

* WF_PREF, page 3-40

¢  WF_NOTIFICATIONS, page 4-16

e  WF_MAIL_UTIL, page 4-48

e  WF_NOTIFICATION_UTIL, page 4-49
* WF_EVENT, page 5-24

*  WF_RULE, page 5-41

¢  WF_EVENT_FUNCTIONS_PKG, page 5-65
e WF_EVENTS_PKG, page 5-72

e  WF_EVENT_GROUPS_PKG, page 5-72
¢  WF_SYSTEMS_PKG, page 5-72

¢  WF_AGENTS_PKG, page 5-72

e  WF_AGENT_GROUPS_PKG, page 5-72

1-6 Oracle Workflow AP| Reference



e WF_EVENT_SUBSCRIPTIONS_PKG, page 5-72
e WF_BES_CLEANUP, page 5-81

¢  WF_QUEUE, page 6-1

Overview of Oracle Workflow 1-7






2

Workflow Engine APIs

This chapter describes the APIs for the Workflow Engine. The APIs consist of views and
PL/SQL and Java functions and procedures that you can use to access the Workflow
Engine, the Workflow Monitor, and workflow data.

This chapter covers the following topics:
e Overview of the Workflow Engine

¢  Workflow Engine APIs

¢  Workflow Engine Bulk APIs

e Workflow Function APIs

e Workflow Attribute APlIs

e  Workflow Core APIs

¢  Workflow Purge APIs

e Workflow Monitor APIs

e  Workflow Status Monitor APIs

e QOracle Workflow Views

Overview of the Workflow Engine

The Workflow Engine manages all automated aspects of a workflow process for each
item. The engine is implemented in server-side PL/SQL and is activated whenever a call
to a workflow procedure or function is made. Since the engine is embedded inside the
Oracle Database, if the Workflow server goes down for any reason, the Oracle Database
is able to manage the recovery and transactional integrity of any workflow transactions
that were running at the time of the failure.

Additionally, Workflow engines can be set up as background tasks to perform activities
that are too costly to execute in real time.

The Workflow Engine performs the following services for a client application:

Workflow Engine APIs  2-1



It manages the state of all activities for an item, and in particular, determines which
new activity to transition to whenever a prerequisite activity completes.

It automatically executes function activities (execution is either immediate or
deferred to a background engine) and sends notifications.

It maintains a history of an activity's status.

It detects error conditions and executes error processes.

The state of a workflow item is defined by the various states of all activities that are part
of the process for that item. The engine changes activity states in response to an API call
to update the activity. The API calls that update activity states are:

WF_ENGINE.CreateProcess, page 2-20
WE_ENGINE.StartProcess, page 2-25
WF_ENGINE.CompleteActivity, page 2-54
WEF_ENGINE.CompleteActivityInternalName, page 2-56
WF_ENGINE.AssignActivity, page 2-57
WF_ENGINE.HandleError, page 2-60
WE_ENGINE.SuspendProcess, page 2-29
WF_ENGINE.ResumeProcess, page 2-31
WEF_ENGINE.AbortProcess, page 2-32
WF_ENGINE_BULK.CreateProcess, page 2-66
WE_ENGINE_BULK.StartProcess, page 2-68

WEF_ENGINE_BULK FastForward, page 2-70

Based on the result of a previous activity, the engine attempts to execute the next
activity directly. An activity may have the following status:

Active - activity is running.
Complete - activity completed normally.
Waiting - activity is waiting to run.

Notified - notification activity is delivered and open.

2-2 Oracle Workflow API Reference



Deferred - activity is deferred.
Error - activity completed with error.

Suspended - activity is suspended.

Important: The Workflow Engine traps errors produced by function
activities by setting a savepoint before each function activity. If an
activity produces an unhandled exception, the engine performs a
rollback to the savepoint, and sets the activity to the ERROR status. For
this reason, you should never commit within the PL/SQL procedure of
a function activity. The Workflow Engine never issues a commit as it is
the responsibility of the calling application to commit.

For environments such as database triggers or distributed transactions
that do not allow savepoints, the Workflow Engine automatically traps
"Savepoint not allowed" errors and defers the execution of the activity

to the background engine.

Oracle Workflow components that continue workflow processing
asynchronously, such as background engines and the Notification
System, do issue commits when appropriate on behalf of the calling
application.

Note: The Oracle Database supports autonomous transactions. By
embedding the pragma AUTONOMOUS TRANSACTION in your
procedure, you can perform commits and rollbacks independently of
the main transaction. Oracle treats this as a separate session; as such,
you will not have access to any database changes that were made in the
main session but are not yet committed. Consequently, you are
restricted from updating workflow-specific data in an autonomous
transaction; for instance, you cannot set item attributes. You cannot
access this data because the item itself has not yet been committed, and
because you may have lock contentions with the main session.

Oracle Workflow will not support autonomous commits in any
procedure it calls directly. If you need to perform commits, then embed
your SQL in a subprocedure and declare it as an autonomous block.
This subprocedure must be capable of being rerun. Additionally, note
that Oracle Workflow handles errors by rolling back the entire
procedure and setting its status to ERROR. Database updates performed
by autonomous commits cannot be rolled back, so you will need to
write your own compensatory logic for error handling. For more
information, see: Autonomous Transactions, Oracle Database Concepts.

Workflow Engine APIs



Oracle Workflow Java Interface

The Oracle Workflow Java interface provides a means for any Java program to integrate
with Oracle Workflow. The Oracle Workflow Engine and Notification APIs are
accessible through public server PL/SQL packages and published views. The Oracle
Workflow Java interface exposes those APIs as Java methods that can be called by any
Java program to communicate with Oracle Workflow. The Java methods directly
reference the WF_ENGINE and WF_NOTIFICATION PL/SQL package procedures and
views and communicate with the Oracle Workflow database through JDBC.

The methods are defined within the WFEngineAPI class and the WFNotificationAPI
class, in the Java package 'oracle.apps.fnd.wf.engine' If a Workflow Engine or
notification API has a corresponding Java method, its Java method syntax is displayed
immediately after its PL/SQL syntax in the documentation. See: Workflow Engine APIs,
page 2-17 and Notification APIs, page 4-16.

The WFFunctionAPI class and the WFAttribute class also contain methods that can be
called to communicate with Oracle Workflow. These classes are defined in the Java
package 'oracle.apps.fnd.wf'. See: Workflow Function APIs, page 2-76 and
Workflow Attribute APIs, page 2-80.

Java programs that integrate with Oracle Workflow should include the following
import statements to provide access to classes required by Oracle Workflow:
import java.io.*;

import java.sqgl.*;
import java.math.BigDecimal;

import oracle.sqgl.*;
import oracle.jdbc.*;

import oracle.apps.fnd.common.*;
import oracle.apps.fnd.wf.engine.*;
import oracle.apps.fnd.wf.*;

Oracle Workflow Context

Each Oracle Workflow Java method that accesses the database requires an input of a
WEFContext object. The WEContext object consists of database connectivity information
which you instantiate and resource context information that the WFContext class
instantiates. To call one of these Workflow Java APIs in your Java program, you must
first instantiate a database variable of class WFDB with your database username,
password and alias. You can also optionally supply a JDBC string. Then you must
instantiate the WFContext object with the database variable. You can retrieve the
system property CHARSET to specify the character set for the database session. The
following code excerpt shows an example of how to instantiate these objects.

2-4 Oracle Workflow API Reference



WEDB myDB;
WFContext ctx;

myDB = new WFDB(m user, m pwd, m jdbcStr, m conStr);

m charSet = System.getProperty ("CHARSET") ;

if (m_charSet == null) { // cannot be null
m_charSet = "UTF8";

}

try {
ctx = new WFContext (myDB, m charSet);
// m _charSet is 'UTF8' by default

if (ctx.getDB().getConnection() == null) {
// connection failed
return;

}

// We now have a connection to the database.

}

catch (Exception e) {

// exit Message for this exception

}

If you have already established a JDBC connection, you can simply set that connection
into the WFContext object, as shown in the following example:

WEFContext ctx;

m charSet = System.getProperty ("CHARSET") ;

if (m_charSet == null) { // cannot be null
m_charSet = "UTF8";

}

ctx = new WFContext (m charSet);
// m_charSet is 'UTF8' by default

ctx.setJDBCConnection (m_conn) ;
// m _conn is a pre-established JDBC connection

The Oracle Workflow Java APIs can be used safely in a thread, with certain restrictions:

¢ Each thread should have its own WFContext object, meaning you should not
instantiate WFContext before starting threads. Because each context keeps track of
an error stack, contexts cannot be shared.

*  You should not use the same JDBC connection for different workflows, because
using the same connection may cause problems with commits and rollbacks for
unrelated transactions.

There is no synchronized code inside the Oracle Workflow Java APIs, but there are no
shared resources, either.

There is also no connection pooling in the Oracle Workflow Java APIs. For Oracle
E-Business Suite, connection pooling is implemented at the AOL/] level; after you get
the JDBC connection, you use the WFContext.set/ DBCConnection() API to set the

Workflow Engine APIs  2-5



connection. This approach lets you manage your JDBC connection outside of the Oracle
Workflow APIs.

Sample Java Program

Oracle Workflow provides an example Java program that illustrates how to call most of
the Workflow Engine and Notification Java APIs. The Java program is named WFTest.
It calls the various Java APIs to launch the WFDEMO process, set and get attributes,
and suspend, resume, and abort the process, as well as the APIs to send a notification,
set and get notification attributes, and delegate and transfer the notification. Before
running the WFTest Java program, make sure you define CLASSPATH and

LD LIBRARY PATH for the Oracle JDBC implementation and a supported version of
Oracle. For example, on UNIX, use the following commands:

setenv CLASSPATH

<Workflow JAR file directory>

/wfapi.jar:${ORACLE HOME}/jdbc/lib/classeslll.zip

setenv LD LIBRARY PATH S {ORACLE_HOME }/1ib:${ LD_LIBRARY_PATH}

Note: The Workflow JAR files are located in the <ORACLE HOME>
/wf/java/oracle/apps/fnd/wf/jar/ directory.

To initiate the WFTest program, run Java against oracle.apps. fnd.wf.WFTest. For
example, on UNIX, enter the following statement on the command line:

$java oracle.apps.fnd.wf.WFTest

The source file for this program is also included in your Oracle Workflow installation so
that you can view the sample code. The source file is named WFTest . java and is
located in the <ORACLE HOME>/wf/java/oracle/apps/fnd/wf/ directory.

Additional Workflow Engine Features

In addition to managing a process, the Workflow Engine also supports the following
features:

* Completion Processing, page 2-7
e Deferred Processing, page 2-7

® Error Processing, page 2-8

* Looping, page 2-8

¢ Version/Effective Date, page 2-9
e Item Type Attributes, page 2-10

e Post-Notification Functions, page 2-11

2-6 Oracle Workflow API Reference



® Synchronous, Asynchronous, and Forced Synchronous Processes, page 2-14

¢ Business Events, page 2-17

Completion Processing

Engine processing is triggered whenever a process activity completes and calls the
Workflow Engine APL The engine then attempts to execute (or mark for deferred
execution) all activities that are dependent on the completed activity.

Note: A process as a whole can complete but still contain activities that
were visited but not yet completed. For example, a completed process
may contain a standard Wait activity that is not complete because the
designated length of time to wait has not yet elapsed. When the process
as a whole completes, the Workflow Engine marks these incomplete
activities as having a status of COMPLETE and a result of # FORCE. This
distinction is important when you review your process status through
the Workflow Monitor.

Deferred Processing

The engine has a deferred processing feature that allows long-running tasks to be
handled by background engines instead of in real time. Deferring the execution of
activity functions to background engines allows the Workflow Engine to move forward
to process other activities that are currently active. The engine can be set up to operate
anywhere on a continuum between processing all eligible work immediately, to
processing nothing and marking all transitions as deferred.

Each activity has a user-defined processing cost. You can set this cost to be small if the
activity merely sets an item attribute, or you may set it to be very high if the activity
performs a resource-intensive operation. If the result of a completed activity triggers the
execution of a costly function, you might want to defer the execution of that costly
function to a background engine.

The Workflow Engine integrates with Oracle Advanced Queues to carry out deferred
processing. If a function activity has a cost that exceeds the main threshold cost, the
Workflow Engine marks that activity with a status of 'DEFERRED' in the workflow
status tables and enqueues the deferred activity to a special queue for deferred
activities. A special queue processor called the background engine checks and processes
the activities in the 'deferred’ queue. The order in which the deferred activities are
processed are based on the first in, first out ordering of an activity's enqueue time. At
least one background engine must be set up to run at all times. Some sites may have
multiple background engines operating at different thresholds or item type
specifications, to avoid tying up all background processing with long-running
operations.

See: Setting Up Background Engines, Oracle Workflow Administrator’s Guide, Activity

Workflow Engine APIs  2-7



Cost, Oracle Workflow Developer’s Guide, and Deferring Activities, Oracle Workflow
Administrator’s Guide.

Error Processing

Errors that occur during workflow execution cannot be directly returned to the caller,
since the caller generally does not know how to respond to the error (in fact, the caller
may be a background engine with no human operator). You can use Oracle Workflow
Builder to define the processing you want to occur in case of an error. Use Oracle
Workflow Builder to assign the Default Error Process associated with the System:Error
item type or create your own custom error process. See: Error Handling for Workflow
Processes, Oracle Workflow Developer’s Guide.

The error process can include branches based on error codes, send notifications, and
attempt to deal with the error using automated rules for resetting, retrying, or skipping
the failed activity. Once you define an error process, you can associate it with any
activity. The error process is then initiated whenever an error occurs for that activity.
See: To Define Optional Activity Details, Oracle Workflow Developer’s Guide.

The Workflow Engine traps errors produced by function activities by setting a
savepoint before each function activity. If an activity produces an unhandled exception,
the engine performs a rollback to the savepoint, and sets the activity to the ERROR
status.

Note: For this reason, you should never commit within the PL/SQL
procedure of a function activity. The Workflow Engine never issues a
commit as it is the responsibility of the calling application to commit.

The Workflow Engine then attempts to locate an error process to run by starting with
the activity which caused the error, and then checking each parent process activity until
an associated error process is located.

Looping
Looping occurs when the completion of an activity causes a transition to another
activity that has already been completed. The first activity that gets detected as a
revisited activity is also called a loop point or pivot activity. The Workflow Engine can
handle a revisited activity in one of three ways:

* Ignore the activity, and stop further processing of the thread, so in effect, the
activity can only run once.

® Reset the loop to the loop point before reexecuting by first running logic to undo
the activities within the loop.

¢ Reexecute the loop point and all activities within the loop without running any
logic.

2-8 Oracle Workflow API Reference



Every activity has an On Revisit poplist field in its Oracle Workflow Builder Details
property page. The On Revisit poplist lets you specify the behavior of the Workflow
Engine when it revisits the activity in a workflow process. You can set the field to
Ignore, Reset, or Loop.

Setting On Revisit to Ignore is useful for implementing activities that should only run
once, even though they can be transitioned to from multiple sources. For example, this
mode allows you to implement a "logical OR" type of activity which is transitioned to
multiple times, but completes after the first transition only.

Setting On Revisit to Reset for an activity is useful when you want to reexecute
activities in a loop, but you want to first reset the status of the activities in the loop.
Reset causes the Workflow Engine to do the following;:

* Build a list of all activities visited following the pivot activity.
¢ Traverse the list of activities, cancelling each activity and resetting its status.

Cancelling an activity is similar to executing the activity, except that the activity is
executed in "CANCEL" mode rather than "RUN" mode. You can include compensatory
logic in "CANCEL" mode that reverses any operation performed earlier in "RUN" mode.

If you set On Revisit to Reset for the pivot activity of a loop that includes an FYI
notification activity, the Workflow Engine cancels the previous notification before
reexecuting the loop and sending a new notification to the current performer of the
notification activity.

Setting On Revisit to Loop for an activity is useful when you want to simply reexecute
activities in a loop without resetting the status of the activities in the loop. Loop causes
the Workflow Engine to reexecute the activity in "RUN" mode without executing any "
CANCEL" mode logic for the activity.

If you set On Revisit to Loop for the pivot activity of a loop that includes an FYI
notification activity, previous notifications remain open when the Workflow Engine
reexecutes the loop and sends a new notification to the current performer of the
notification activity.

Version | Effective Date

Certain workflow objects in a process definition are marked with a version number so
that more than one version of the object can be in use at any one time. These objects are:

e Activities - notifications, functions, and processes

Note: Although function activities support versioning, the
underlying PL/SQL code does not, unless implemented by your
developer. You should avoid adding references to new activity
attributes or returning result lookup codes not modelled by
existing activities in your PL/SQL code.

Workflow Engine APIs  2-9



* Activity attributes

® Process activity nodes

e Activity attribute values
* Activity transitions

If you edit and save any of the above objects in Oracle Workflow Builder to the
database, Oracle Workflow automatically creates a new version of that object or the
owning object by incrementing the version number by one. If you save edits to any of
the above objects to an existing file, then the original objects are overwritten. If you
have a process instance that is still running and you upgrade the underlying workflow
definition in your Workflow server, the process instance continues to run using the
version of the workflow object definitions with which it was originally initiated.

An effective date controls which version of a definition the engine uses when executing
a process. When you edit a process, you can save it with an immediate or future
effective date. Any new process instance that is initiated always uses the version that is
specified to be effective at that point in time. See: Opening and Saving Item Types,
Oracle Workflow Developer’s Guide.

Note that Oracle Workflow does not maintain versions for other workflow objects. Any
modifications that you save to the following objects overwrites the existing definition of
the object:

e Jtem attributes
* Messages

¢ Lookup types

Item Type Attributes

A set of item type attributes is defined at both design-time and runtime for each item.
These attributes provide information to the function and notification activities used in
the processes associated with the item type.

When you define item type attributes at runtime, you can add either individual
attributes or arrays containing several attributes of the same type, using the appropriate
Workflow Engine APIs. Similarly, you can set the values of existing attributes either
individually or in arrays containing several attributes of the same type.

Use the array APIs whenever you need to add or set the values of large numbers of item
type attributes at once. These APIs improve performance by using the bulk binding
feature in the Oracle Database to reduce the number of database operations. See:
AddItemAttributeArray, page 2-40 and SetltemAttributeArray, page 2-44.

Note: These array APIs handle arrays that are composed of multiple

2-10 Oracle Workflow API Reference



item type attributes grouped together by type. Oracle Workflow does
not support individual item type attributes that consist of arrays
themselves.

Post-Notification Functions

You can associate a post-notification function with a notification activity. The Workflow
Engine executes the post-notification function in response to an update of the
notification's state after the notification is delivered. For example, you can specify a
post-notification function that executes when the notification recipient forwards or
transfers the notification. The post-notification function could perform back-end logic to
either validate the legitimacy of the forward or transfer or execute some other
supporting logic.

The post-notification function should be a PL/SQL procedure written to the same API
standards required for function activities. See: Standard API for PL/SQL Procedures
Called by Function Activities, Oracle Workflow Developer’s Guide.

When you specify a post-notification function, the Workflow Engine first sets the
context information to use with the function through the following global engine
variables. In some cases the values of the variables differ depending on the mode in
which the post-notification function is called.

® WF _ENGINE.context nid - The notification ID. For RUN or TIMEOUT mode, if the
Expand Roles property is checked for the notification activity, then this variable
contains the notification group ID for the notifications sent to the individual
members of the role.

® WF _ENGINE.context user - The user who is responsible for taking the action
that updated the notification's state.

e For RESPOND, FORWARD, TRANSFER, QUESTION, or ANSWER mode, if the user
was acting on his or her own behalf, then the value of
WF_ENGINE.context user varies depending on the notification interface. If
the user acted through the Notification Details Web page, then
WF_ENGINE.context user is set to the user name of the logged in user. If the
recipient acted through e-mail, then this variable is set to 'email: "
<email address>.

e For RESPOND, FORWARD, TRANSFER, QUESTION, or ANSWER mode, if the user
was acting on behalf of another user by accessing that user's Worklist Web page
through the worklist access feature, then WF_ENGINE.context user issetto
the user name of that other user, to whom that worklist belongs.

e For RUN or TIMEOUT mode, WF_ENGINE.context user is set to the role
assigned as the performer of the notification activity.

Workflow Engine APIs  2-11



® WF _ENGINE.context user comment - Comments appended to the notification.

e For RESPOND mode, this variable is set to any comments entered in the special
WF_NOTE Respond message attribute, if that attribute is defined for the
notification.

e For FORWARD or TRANSFER mode, this variable is set to any comments entered
when the notification was reassigned.

e For QUESTION mode, this variable is set to the request details entered when the
request for more information was submitted.

¢ For ANSWER mode, this variable is set to the answering information provided in
response to the request for more information.

® WF ENGINE.context recipient role - The role currently designated as the
recipient of the notification. This value may be the same as the value of the
WEF_ENGINE.context user variable, or it may be a group role of which the
context user is a member.

®* WF _ENGINE.context original recipient - The role that has ownership of
and responsibility for the notification. This value may differ from the value of the
WF_ENGINE.context recipient role variable if the notification has
previously been reassigned.

® WF ENGINE.context from role - The role currently specified as the From role
for the notification. This variable may be null if no From role is specified.

e For RESPOND mode, the From role may be null or may be set by special logic in
the workflow process. See: #FROM_ROLE Attribute, Oracle Workflow Developer's
Guide.

* For FORWARD or TRANSFER mode, the From role is the role that reassigned the
notification.

e For QUESTION mode, the From role is the role that sent the request for more
information.

e For ANSWER mode, the From role is the role that sent the answering
information.

® WF ENGINE.context new role - The new role to which the action on the
notification is directed.

e For RESPOND mode, this variable is null.

e For FORWARD or TRANSFER mode, this variable is set to the new recipient role

2-12 Oracle Workflow API Reference



to which the notification is being reassigned.

e For QUESTION mode, this variable is set to the role to which the request for
more information is being sent.

e For ANSWER mode, this variable is set to the role that sent the request for more
information and is receiving the answer.

®* WF _ENGINE.context more info role - The role to which the most recent
previous request for more information was sent. This variable may be null if no
such request has previously been submitted for this notification.

* WF ENGINE.context user key - If the notification was sent as part of a
workflow process, and a user key is set for this process instance, then
WF_ENGINE.context user key is setto that user key. Otherwise, this variable is
null.

® WF ENGINE.context proxy -For RESPOND, FORWARD, TRANSFER, QUESTION,
or ANSWER mode, if the user who took that action was acting on behalf of another
user through the worklist access feature, then the value of
WF_ENGINE.context proxy is the user name of the logged in user who took the
action. Otherwise, this variable is null.

You can reference these global engine variables in your PL/SQL function.

Note: For RUN mode and TIMEOUT mode, only the
WE_ENGINE.context nidand WF_ENGINE.context user
variables are set.

Note: The WF ENGINE.context text variable from earlier versions
of Oracle Workflow is replaced by the WF_ENGINE.context user
and WF_ENGINE.context new_role variables. The current version
of Oracle Workflow still recognizes the WF ENGINE.context text
variable for backward compatibility, but moving forward, you should
only use the new WF_ENGINE.context user and
WF_ENGINE.context new role variables where appropriate.

Then when the notification's state changes, a notification callback function executes the
post-notification function in the mode that matches the notification's state: RESPOND,
FORWARD, TRANSFER, QUESTION, or ANSWER.

When a recipient responds, the Workflow Engine initially runs the post-notification
function in VALIDATE mode which allows you to validate the response values before
accepting the response. Then the Workflow Engine runs the post-notification function
in RESPOND mode to record the response. Finally, when the Notification System
completes execution of the post-notification function in RESPOND mode, the Workflow

Workflow Engine APIs  2-13



Engine automatically runs the post-notification function again in RUN mode. In this
mode, the post-notification function can perform additional processing such as vote
tallying.

If a notification activity times out, the Workflow Engine runs the post-notification
function for the activity in TIMEOUT mode. For a Voting activity, the TIMEOUT mode
logic should identify how to tally the votes received up until the timeout.

If a notification activity is reset to be reexecuted as part of a loop, the Workflow Engine
runs the post-notification function in CANCEL mode.

When the post-notification function completes, the Workflow Engine erases the global
engine variables.

As a final step, if the post-notification function is run in TRANSFER mode and Expand
Roles is not checked for the notification activity, the Workflow Engine sets the assigned
user for the notification to the new role name specified.

Important: If the post-notification function returns ERROR: <errcode>
as a result or raises an exception, the Workflow Engine aborts the
operation. For example, if the post-notification function is executed in
FORWARD mode and it raises an exception because the role being
forwarded to is invalid, an error is displayed to the user and the
Forward operation is not executed. The notification recipient is then
prompted again to take some type of action.

See: Notification Model, page 4-2.

Synchronous, Asynchronous, and Forced Synchronous Processes

A workflow process can be either synchronous or asynchronous. A synchronous
process is a process that can be executed without interruption from start to finish. The
Workflow Engine executes a process synchronously when the process includes
activities that can be completed immediately, such as function activities that are not
deferred to the background engine. The Workflow Engine does not return control to the
calling application that initiated the workflow until it completes the process. With a
synchronous process, you can immediately check for process results that were written
to item attributes or directly to the database. However, the user must wait for the
process to complete.

An asynchronous process is a process that the Workflow Engine cannot complete
immediately because it contains activities that interrupt the flow. Examples of activities
that force an asynchronous process include deferred activities, notifications with
responses, blocking activities, and wait activities. Rather than waiting indefinitely when
it encounters one of these activities, the Workflow Engine sets the audit tables
appropriately and returns control to the calling application. The workflow process is
left in an unfinished state until it is started again. The process can be restarted by the
Notification System, such as when a user responds to a notification; by the background
engine, such as when a deferred activity is executed; or by the Business Event System,

2-14 Oracle Workflow API Reference



such as when an event message is dequeued from an inbound queue and sent to the
workflow process. With an asynchronous process, the user does not have to wait for the
process to complete to continue using the application. However, the results of the
process are not available until the process is completed at a later time.

In addition to regular synchronous and asynchronous processes, the Workflow Engine
also supports a special class of synchronous processes called forced synchronous
processes. A forced synchronous process completes in a single SQL session from start to
finish and never inserts into or updates any database tables. As a result, the execution
speed of a forced synchronous process is significantly faster than a typical synchronous
process. The process results are available immediately upon completion. However, no
audit trail is recorded.

There may be cases when your application requires a forced synchronous process to
generate a specific result quickly when recording an audit trail is not a concern. For
example, several Oracle E-Business Suite products require Account Generator
workflows to generate a meaningful flexfield code derived from a series of
concatenated segments pulled from various tables. The Account Generator workflows
are forced synchronous processes that compute and pass back completed flexfield codes
to the calling applications instantaneously.

To create a forced synchronous process, you need to set the item key of your process to
#SYNCH or to wf_engine.eng synch, which returns the #SYNCH constant, when you
call the necessary WF_ENGINE APIs. Since a forced synchronous process never writes
to the database, using a non-unique item key such as #SYNCH is not an issue. Your
process definition, however, must adhere to the following set of restrictions:

¢ No notification activities are allowed.

¢ Limited blocking-type activities are allowed. A process can block and restart with a
call to WF_ENGINE.CompleteActivity only if the blocking and restarting activities:

®  Occur in the same database session.
* Contain no intervening calls to Oracle Workflow.

¢ Contain no intervening commits.

* No error processes can be assigned to the process or the process's activities.

* Each function activity behaves as if On Revisit is set to Loop, and is run in
non-cancelling mode, regardless of its actual On Revisit setting. Loops are allowed
in the process.

e No Master/Detail coordination activities are allowed.

e No parallel flows are allowed in the process, as transitions from each activity must
have a distinct result. This also means that no <Any> transitions are allowed since
they cause parallel flows.

Workflow Engine APIs  2-15



* None of the following Standard activities are allowed:

e And

Block (restricted by the conditions stated in the Limited Blocking bullet point
above.)

Defer Thread

e  Wait

Continue Flow/Wait for Flow

Role Resolution

Voting

¢ Compare Execution Time

Notify

* No use of the background engine, that is, activities are never deferred.

e No data is ever written to the Oracle Workflow tables and as a result:

¢ The process cannot be viewed from the Workflow Monitor.

* No auditing is available for the process.

¢ Only the following WF_ENGINE API calls are allowed to be made, and in all cases,
the item key supplied to these APIs must be specified as #SYNCH or
wf engine.eng synch:

e  WF_ENGINE.CreateProcess

e  WF_ENGINE.StartProcess

e  WF_ENGINE.GetltemAttribute

e  WF_ENGINE.SetltemAttribute

*  WEF_ENGINE.GetActivityAttribute

e  WF_ENGINE.CompleteActivity (for the limited usage of blocking-type
activities)

e  WEF_ENGINE API calls for any item besides the current synchronous item are not
allowed.

2-16 Oracle Workflow API Reference



Important: If you encounter an error from a forced synchronous
process, you should rerun the process with a unique item key in
asynchronous mode and check the error stack using the Workflow
Monitor or the script wEstat . sql. If the synchronous process
completes successfully, the error you encountered in the forced
synchronous process is probably due to a violation of one of the above
listed restrictions. See: Wfstat.sql, Oracle Workflow Administrator’s Guide.

Note: The item key for a process instance can only contain single-byte
characters. It cannot contain a multibyte value.

See: Synchronous, Asynchronous, and Forced Synchronous Workflows, Oracle Workflow
Administrator’s Guide.

Business Events

Events from the Business Event System are represented within workflow processes as
event activities. An event activity can either raise, send, or receive a business event.

A Raise event activity raises an event to the Event Manager, triggering any
subscriptions to that event. The Workflow Engine calls the WF_EVENT.Raise API to
raise the event. See: Raise, page 5-25.

A Send event activity sends an event directly to a Business Event System agent without
raising the event to the Event Manager. The Workflow Engine calls the
WF_EVENT.Send API to send the event. See: Send, page 5-30.

A Receive event activity receives an event from the Event Manager into a workflow
process, which then continues the thread of execution from that activity. The Workflow
Engine can receive an event into an activity in an existing process instance that is
waiting for the event, using the correlation ID in the event message to match the event
with the process to which it belongs. The Workflow Engine can also receive an event
into a Receive event activity that is marked as a Start activity to launch a new workflow
process. The WF_ENGINE.Event API is used to receive an event into a workflow
process. See: Event, page 2-58.

See also: Managing Business Events, Oracle Workflow Developer's Guide and Event
Activities, Oracle Workflow Developer’s Guide.

Workflow Engine APIs

The Workflow Engine APIs can be called by an application program or a workflow
function in the runtime phase to communicate with the engine and to change the status
of each of the activities. These APIs are defined in a PL/SQL package called
WEF_ENGINE.

Many of these Workflow Engine APIs also have corresponding Java methods that you

Workflow Engine APIs  2-17



can call from any Java program to integrate with Oracle Workflow. The following list
indicates whether the Workflow Engine APIs are available as PL/SQL
functions/procedures, as Java methods, or both.

Important: Java is case-sensitive and all Java method names begin with
a lower case letter to follow Java naming conventions.

® CreateProcess - PL/SQL and Java, page 2-20

¢ SetltemUserKey - PL/SQL and Java, page 2-22

* GetltemUserKey - PL/SQL and Java, page 2-23

* GetActivityLabel - PL/SQL, page 2-24

e SetltemOwner - PL/SQL and Java, page 2-24

¢ StartProcess - PL/SQL and Java, page 2-25

® LaunchProcess - PL/SQL and Java, page 2-27

* SuspendProcess - PL/SQL and Java, page 2-29

® ResumeProcess - PL/SQL and Java, page 2-31

e AbortProcess - PL/SQL and Java, page 2-32

¢ CreateForkProcess - PL/SQL, page 2-34

e StartForkProcess - PL/SQL, page 2-35

® Background - PL/SQL, page 2-36

e AddltemAttribute - PL/SQL and Java, page 2-38

e AddItemAttributeArray - PL/SQL, page 2-40

¢ SetltemAttribute - PL/SQL and Java, page 2-41

¢ setltemAttrFormattedDate - Java, page 2-43

e SetltemAttributeArray - PL/SQL, page 2-44

e getltemTypes - Java, page 2-45

* GetltemAttribute - PL/SQL, page 2-46

¢ GetltemAttrClob - PL/SQL, page 2-47

2-18 Oracle Workflow API Reference



e getltemAttributes - Java, page 2-48

e  GetltemAttrInfo - PL/SQL, page 2-48

*  GetActivityAttrInfo - PL/SQL, page 2-49

*  GetActivityAttribute - PL/SQL, page 2-50

¢ GetActivityAttrClob - PL/SQL, page 2-51

e getActivityAttributes - Java, page 2-52

e BeginActivity - PL/SQL, page 2-53

¢ CompleteActivity - PL/SQL and Java, page 2-54
* CompleteActivityInternalName - PL/SQL, page 2-56
* AssignActivity - PL/SQL, page 2-57

e Event- PL/SQL, page 2-58

e HandleError - PL/SQL and Java, page 2-60

¢ SetltemParent - PL/SQL and Java, page 2-62

e ItemStatus - PL/SQL and Java, page 2-64

e getProcessStatus - Java, page 2-65

Some Workflow Engine APIs use PL/SQL table composite datatypes defined in the
WF_ENGINE package. The following table shows the column datatype definition for
each PL/SQL table type.

PL/SQL Table Types in WF_ENGINE

PL/SQL Table Type Column Datatype Definition

NameTabTyp Wi_Ttem_Attribute_Values NAME%TYPE

TextTabTyp WI_Item_Attribute_Values. TEXT_VALUE%T
YPE

NumTabTyp WIf_Item_Attribute_Values. NUMBER_VALUE
%TYPE

Workflow Engine APIs  2-19



PL/SQL Table Type Column Datatype Definition

DateTabTyp Wi_Item_Attribute_Values. DATE_VALUE%T
YPE

Related Topics

Standard API for PL/SQL Procedures Called by Function Activities, Oracle Workflow
Developer’s Guide

CreateProcess

PL/SQL Syntax

procedure CreateProcess
(itemtype in varchar2,
itemkey in varchar2,
process in varchar2 default '',
user key in varchar2 default null,
owner role in varchar2 default null);

Java Syntax

public static boolean createProcess
(WFContext wCtx,
String itemType,
String itemKey,
String process)

Description

Creates a new runtime process instance for an application item.

For example, a Requisition item type may have a Requisition Approval Process as a top
level process. When a particular requisition is created, an application calls
CreateProcess to set up the information needed to start the defined process.

Caution: Although you can make a call to CreateProcess() and
StartProcess() from a database trigger to initiate a workflow process,
you should avoid doing so in certain circumstances. For example, if a
database entity has headers, lines and details, and you initiate a
workflow process from an AFTER INSERT trigger at the header-level
of that entity, your workflow process may fail because some
subsequent activity in the process may require information from the
entity's lines or details level that is not yet populated.

2-20 Oracle Workflow API Reference



Arguments (input)
wCtx

itemtype

itemkey

process

Important: The Workflow Engine always issues a savepoint before
executing each activity in a process so that it can rollback to the
previous activity in case an error occurs. For environments such as
database triggers or distributed transactions that do not allow
savepoints, the Workflow Engine automatically traps "Savepoint not
allowed" errors and defers the execution of the activity. If you initiate a
workflow process from a database trigger, the Workflow Engine
immediately defers the initial start activities to a background engine, so
that they are no longer executing from a database trigger.

Note: To create several instances of the same workflow process at once,
call WF_ENGINE_BULK.CreateProcess instead. See:
WE_ENGINE_BULK.CreateProcess, page 2-66.

Workflow context information. Required for the Java
method only. See: Oracle Workflow Context, page 2-4.

A valid item type. Item types are defined in the Workflow
Builder.

A string derived usually from the application object's
primary key. The string uniquely identifies the item within
an item type. The item type and key together identify the
new process and must be passed to all subsequent API calls
for that process.

Note: The item key for a process instance
can only contain single-byte characters. It
cannot contain a multibyte value.

Note: You can pass #SYNCH as the itemkey
to create a forced synchronous process.
See: Synchronous, Asynchronous, and
Forced Synchronous Processes, page 2-14.

An optional argument that allows the selection of a
particular process for that item. Provide the process
internal name. If process is null, the item type's selector
function is used to determine the top level process to run. If
you do not specify a selector function and this argument is

Workflow Engine APIs  2-21



null, an error will be raised.

user_key A user-friendly key to assign to the item identified by the
specified item type and item key. This argument is
optional.

owner_role A valid role to set as the owner of the item. This argument

is optional.

Note: To enhance security, Oracle
Workflow does not allow notifications
within a work item to be reassigned to the
item owner.

Sample Code

Example

The following code excerpt shows an example of how to call createProcess() in a Java

program. The example code is from the WFTest . java program.

// create an item

if (WFEngineAPI.createProcess(ctx, iType, iKey, pr))
System.out.println ("Created Item");
else

{
Systm.out.println ("createProcess failed");
WFEngineAPI.showError (ctx) ;

}

SetltemUserKey

PL/SQL Syntax

procedure SetItemUserKey
(itemtype in varchar2,
itemkey in varchar2,
userkey in varchar?);

Java Syntax

public static boolean setItemUserKey
(WFContext wCtx,
String itemType,
String itemKey,
String userKey)

Description

Lets you set a user-friendly identifier for an item in a process, which is initially
identified by an item type and item key. The user key is intended to be a user-friendly
identifier to locate items in the Workflow Monitor and other user interface components

2-22 Oracle Workflow API Reference



of Oracle Workflow.

Arguments (input)
wCtx Workflow context information. Required for the Java
method only. See: Oracle Workflow Context, page 2-4.
itemtype or itemType A valid item type.
itemkey or itemKey A string generated usually from the application object's
primary key. The string uniquely identifies the item within
an item type. The item type and key together identify the
process. See: CreateProcess, page 2-20.
userkey or userKey The user key to assign to the item identified by the
specified item type and item key.
GetltemUserKey
PL/SQL Syntax

Java Syntax

function GetItemUserKey
(itemtype in varchar?2,
itemkey in varchar?2)
return varchar?2;

public static String getItemUserKey
(WFContext wCtx,
String itemType,
String itemKey)

Description
Returns the user-friendly key assigned to an item in a process, identified by an item
type and item key. The user key is a user-friendly identifier to locate items in the
Workflow Monitor and other user interface components of Oracle Workflow.
Arguments (input)

wCtx Workflow context information. Required for the Java
method only. See: Oracle Workflow Context, page 2-4.

itemtype or itemType A valid item type.
itemkey or itemKey A string generated usually from the application object's

primary key. The string uniquely identifies the item within
an item type. The item type and key together identify the

Workflow Engine APIs  2-23



process. See: CreateProcess, page 2-20.

GetActivityLabel

PL/SQL Syntax

function GetActivityLabel
(actid in number)
return varchar?2;

Description
Returns the instance label of an activity, given the internal activity instance ID. The label
returned has the following format, which is suitable for passing to other Workflow
Engine APIs, such as CompleteActivity and HandleError, that accept activity labels as
arguments:
<process name>:<instance label>

Arguments (input)
actid An activity instance ID.

SetltemOwner

PL/SQL Syntax

procedure SetItemOwner
(itemtype in varchar2,
itemkey in varchar2,
owner in varchar?2);

Java Syntax

public static boolean setItemOwner
(WFContext wCtx,
String itemType,
String itemKey,
String owner)

Description
A procedure to set the owner of existing items. The owner must be a valid role.
Typically, the role that initiates a transaction is assigned as the process owner, so that

any participant in that role can find and view the status of that process instance in the
Workflow Monitor.

Note: To enhance security, Oracle Workflow does not allow
notifications within a work item to be reassigned to the item owner.

2-24 Oracle Workflow API Reference



Arguments (input)

Sample Code

StartProcess

PL/SQL Syntax

Java Syntax

Description

wCtx Workflow context information. Required for the Java
method only. See: Oracle Workflow Context, page 2-4.

itemtype A valid item type. Item types are defined in the Workflow
Builder.
itemkey A string derived from the application object's primary key.

The string uniquely identifies the item within an item type.
The item type and key together identify the new process
and must be passed to all subsequent API calls for that
process.

owner A valid role.

Example
The following code excerpt shows an example of how to call setltemOwner() in a Java
program. The example code is from the WFTest . java program.

// set item owner

if (WFEngineAPI.setItemOwner (ctx, iType, iKey, owner))
System.out.println("Set Item Owner: "+owner);

else

{
System.out.println ("Cannot set owner.");
WFEngineAPI.showError (ctx) ;

}

procedure StartProcess
(itemtype in varchar?2,
itemkey in varchar2);

public static boolean startProcess
(WFContext wCtx,
String itemType,
String itemKey)

Begins execution of the specified process. The engine locates the activity marked as
START and then executes it. CreateProcess() must first be called to define the item type
and item key before calling StartProcess().

Workflow Engine APIs  2-25



Caution: Although you can make a call to CreateProcess() and
StartProcess() from a trigger to initiate a workflow process, you should
avoid doing so in certain circumstances. For example, if a database
entity has headers, lines and details, and you initiate a workflow
process from an AFTER INSERT trigger at the header-level of that
entity, your workflow process may fail because some subsequent
activity in the process may require information from the entity's lines or
details level that is not yet populated.

Caution: The Workflow Engine always issues a savepoint before
executing each activity so that it can rollback to the previous activity in
case an error occurs. Because of this feature, you should avoid initiating
a workflow process from a database trigger because savepoints and
rollbacks are not allowed in a database trigger.

If you must initiate a workflow process from a database trigger, you
must immediately defer the initial start activities to a background
engine, so that they are no longer executing from a database trigger. To
accomplish this:

e Set the cost of the process start activities to a value greater than the
Workflow Engine threshold (default value is 0.5)

or

* Set the Workflow Engine threshold to be less than 0 before
initiating the process:

begin
save threshold := WF ENGINE.threshold;
WF _ENGINE.threshold := -1;
WE ENGINE.CreateProcess(...);
WE ENGINE.StartProcess(...);

--Always reset threshold or all activities in this
--session will be deferred.

WEF _ENGINE.threshold := save threshold;
end

(This method has the same effect as the previous method, but is
more secure as the initial start activities are always deferred even if
the activities' costs change.

Note: To begin execution of several instances of the same workflow
process at once, call WE_ENGINE_BULK StartProcess instead. See:
WE_ENGINE_BULK .StartProcess, page 2-68.

2-26 Oracle Workflow API Reference



Arguments (input)
wCtx Workflow context information. Required for the Java
method only. See: Oracle Workflow Context, page 2-4.

itemtype A valid item type.

itemkey A string derived from the application object's primary key.
The string uniquely identifies the item within an item type.
The item type and key together identify the process. See:
CreateProcess, page 2-20.

Note: You can pass #SYNCH as the item
key to create a forced synchronous process.
See: Synchronous, Asynchronous, and
Forced Synchronous Processes, page 2-14.

Note: The item key for a process instance
can only contain single-byte characters. It
cannot contain a multibyte value.

Sample Code
Example
The following code excerpt shows an example of how to call startProcess() in a Java
program. The example code is from the WFTest . java program.
// start a process
if (WFEngineAPI.startProcess(ctx, iType, iKey))
System.out.println ("Process Started successfully");
else
{
System.out.println("launch failed");
WFEngineAPI.showError (ctx) ;
}
LaunchProcess
PL/SQL Syntax

procedure LaunchProcess
(itemtype in varchar2,
itemkey in varchar2,
process in varchar2 default '',
userkey in varchar?2 default '',
owner in varchar2 default '');

Workflow Engine APIs  2-27



Java Syntax

public static boolean launchProcess
(WFContext wCtx,
String itemType,
String itemKey,
String process,
String userKey,
String owner)

Description

Launches a specified process by creating the new runtime process and beginning its
execution. This is a wrapper that combines CreateProcess and StartProcess.

Caution: Although you can make a call to CreateProcess() and
StartProcess() from a database trigger to initiate a workflow process,
you should avoid doing so in certain circumstances. For example, if a
database entity has headers, lines and details, and you initiate a
workflow process from an AFTER INSERT trigger at the header-level
of that entity, your workflow process may fail because some
subsequent activity in the process may require information from the
entity's lines or details level that is not yet populated.

Important: The Workflow Engine always issues a savepoint before
executing each activity in a process so that it can rollback to the
previous activity in case an error occurs. For environments such as
database triggers or distributed transactions that do not allow
savepoints, the Workflow Engine automatically traps "Savepoint not
allowed" errors and defers the execution of the activity. If you initiate a
workflow process from a database trigger, the Workflow Engine
immediately defers the initial start activities to a background engine, so
that they are no longer executing from a database trigger.

Note: To create several instances of the same workflow process at once
and begin execution of the processes at a specified start activity, call
WEF_ENGINE_BULK FastForward instead. See:
WEF_ENGINE_BULK FastForward, page 2-70.

Arguments (input)
wCtx Workflow context information. Required for the Java
method only. See: Oracle Workflow Context, page 2-4.

itemtype A valid item type.

2-28 Oracle Workflow API Reference



itemkey A string derived from the application object's primary key.
The string uniquely identifies the item within an item type.
The item type and key together identify the new process
and must be passed to all subsequent API calls for that
process.

Note: The item key for a process instance
can only contain single-byte characters. It
cannot contain a multibyte value.

You can pass #SYNCH as the item key to
create a forced synchronous process. See:
Synchronous, Asynchronous, and Forced
Synchronous Processes, page 2-14.

process An optional argument that allows the selection of a
particular process for that item. Provide the process
internal name. If process is null, the item type's selector
function is used to determine the top level process to run.
This argument defaults to null.

userkey The user key to assign to the item identified by the
specified item type and item key. If userkey is null, then
no user key is assigned to the item instance.

owner A valid role designated as the owner of the item. If owner
is null, then no owner is assigned to the process and only
the workflow administrator role can monitor the process.

Note: To enhance security, Oracle
Workflow does not allow notifications
within a work item to be reassigned to the
item owner.

SuspendProcess

PL/SQL Syntax

procedure SuspendProcess
(itemtype in varchar?,
itemkey in varchar2,
process in varchar2 default '');

Workflow Engine APIs  2-29



Java Syntax

public static boolean suspendProcess

(WFContext wCtx,
String itemType,
String itemKey,
String process)

Suspends process execution so that no new transitions occur. Outstanding notifications
can complete by calling CompleteActivity(), but the workflow does not transition to the
next activity. Restart suspended processes by calling ResumeProcess().

Description
Arguments (input)
wCitx
itemtype
itemkey
process
Sample Code
Example

Workflow context information. Required for the Java
method only. See: Oracle Workflow Context, page 2-4.

A valid item type.

A string generated from the application object's primary
key. The string uniquely identifies the item within an item
type. The item type and key together identify the process.
See: CreateProcess, page 2-20.

An optional argument that allows the selection of a
particular subprocess for that item. Provide the process
activity's label name. If the process activity label name does
not uniquely identify the subprocess you can precede the
label name with the internal name of its parent process. For
example:

<parent process internal name>:<label name>

If this argument is null, the top level process for the item is
suspended. This argument defaults to null.

The following code excerpt shows an example of how to call suspendProcess() in a Java

program. The example code is from the WETest . java program.

2-30 Oracle Workflow API Reference



// suspend, status should become SUSPEND
System.out.println("Suspend Process " + iType +"/"+ iKey +
"eLu")

if (WFEngineAPI.suspendProcess (ctx, iType, iKey, null))
System.out.println ("Seems to suspend successfully");

else

{
System.out.println ("suspend failed");
WFEngineAPI.showError (ctx) ;

}

ResumeProcess

PL/SQL Syntax

procedure ResumeProcess
(itemtype in varchar2,
itemkey in varchar2,
process in varchar2 default '');

Java Syntax

public static boolean resumeProcess
(WFContext wCtx,
String itemType,
String itemKey,
String process)

Description
Returns a suspended process to normal execution status. Any activities that were
transitioned to while the process was suspended are now executed.

Arguments (input)

wCtx Workflow context information. Required for the Java
method only. See: Oracle Workflow Context, page 2-4.

itemtype A valid item type.

itemkey A string generated from the application object's primary
key. The string uniquely identifies the item within an item
type. The item type and key together identify the process.
See: CreateProcess, page 2-20.

process An optional argument that allows the selection of a
particular subprocess for that item type. Provide the
process activity's label name. If the process activity label
name does not uniquely identify the subprocess you can
precede the label name with the internal name of its parent
process. For example:

Workflow Engine APIs  2-31



Sample Code

AbortProcess

PL/SQL Syntax

Java Syntax

Description

<parent process internal name>:<label name>

If this argument is null, the top level process for the item is
resumed. This argument defaults to null.

Example
The following code excerpt shows an example of how to call resumeProcess() in a Java
program. The example code is from the WETest . java program.

// resume process and status should be ACTIVE
System.out.println ("Resume Process " + iType +"/"+ iKey +
"ol

if (WFEngineAPI.resumeProcess (ctx, iType, iKey, null))
System.out.println ("Seems to resume successfully");

else

{
System.out.println ("resume failed");
WFEngineAPI.showError (ctx) ;

}

procedure AbortProcess
(itemtype in wvarchar2,
itemkey in varchar2,
process in varchar2 default '',
result in varchar2 default wf engine.eng force,
verify lock in boolean default FALSE,
cascade in boolean default FALSE) ;

public static boolean abortProcess

(WFContext wCtx,

String itemType,

String itemKey,

String process,

String result,

boolean verifyLock,

boolean cascade)

Aborts process execution and cancels outstanding notifications. The process status is
considered COMPLETE, with a result specified by the result argument. Also, any
outstanding notifications or subprocesses are set to a status of COMPLETE with a result
of force, regardless of the result argument.

This API also raises the oracle.apps.wf.engine.abort event. Although Oracle
Workflow does not include any predefined subscriptions to this event, you can
optionally define your own subscriptions to this event if you want to perform custom

2-32 Oracle Workflow API Reference



processing when it occurs. See: Workflow Engine Events, Oracle Workflow Developer’s
Guide and To Create or Update an Event Subscription, Oracle Workflow Developer’s Guide.

Arguments (input)
wCtx Workflow context information. Required for the Java
method only. See: Oracle Workflow Context, page 2-4.

itemtype A valid item type.

itemkey A string generated from the application object's primary
key. The string uniquely identifies the item within an item
type. The item type and key together identify the process.
See: CreateProcess, page 2-20.

process An optional argument that allows the selection of a
particular subprocess for that item type. Provide the
process activity's label name. If the process activity label
name does not uniquely identify the subprocess you can
precede the label name with the internal name of its parent
process. For example:

<parent process internal name>:<label name>

If this argument is null, the top level process for the item is
aborted. This argument defaults to null.

result A status assigned to the aborted process. The result must
be one of the values defined in the process Result Type, or
one of the following standard engine values:

® eng exception
® eng timeout

® eng force

® eng mail

® eng null

This argument defaults to "eng force".

verify_lock or verifyLock Specify TRUE if you want to lock the item before processing
it, or FALSE if you do not want to lock the item. Locking
the item controls concurrent execution contention. The
default value is FALSE.

cascade Specify TRUE if you also want to abort all child processes
associated with the process being aborted, or FALSE if you

Workflow Engine APIs  2-33



only want to abort the specified process and not its child
processes. The default value is FALSE.

Sample Code
Example
The following code excerpt shows an example of how to call abortProcess() in a Java
program. The example code is from the WFTest . java program.
// abort process, should see status COMPLETE with result
// code force
System.out.println ("Abort Process ..." + iType + "/" +
iKey);
if (!WFEngineAPI.abortProcess(ctx, iType, iKey, pr, null))
{
System.out.println ("Seemed to have problem aborting...");
WFEngineAPI.showError (ctx) ;
}
CreateForkProcess
PL/SQL Syntax
procedure CreateForkProcess
(copy itemtype in varchar2,
copy_ itemkey in varchar2,
new itemkey in varchar2,
same version in boolean default TRUE);
Description

Forks a runtime process by creating a new process that is a copy of the original. After
calling CreateForkProcess(), you can call APIs such as SetltemOwner(), SetItemUserKey(),
or the SetltemAttribute APIs to reset any item properties or modify any item attributes
that you want for the new process. Then you must call StartForkProcess() to start the new
process.

Use CreateForkProcess() when you need to change item specific attributes during the
course of a process. For example, if an order cannot be met due to insufficient inventory
stock, you can use CreateForkProcess() to fork a new transaction for the backorder
quantity. Note that any approval notification will be copied. The result is as if two items
were created for this transaction.

Caution: Do not call CreateForkProcess() and StartForkProcess() from
within a parallel branch in a process. These APIs do not copy any
branches parallel to their own branch that are not active.

Note: When you fork an item, Oracle Workflow automatically creates
an item attribute called #7ORKED FROM for the new item and sets the

2-34 Oracle Workflow API Reference



attribute to the item key of the original item. This attribute provides an
audit trail for the forked item.

Arguments (input)
copy_itemtype A valid item type for the original process to be copied. The
new process will have the same item type.

copy._itemkey A string generated from the application object's primary
key. The string uniquely identifies the item within an item
type. The copy item type and key together identify the
original process to be copied.

new_itemkey A string generated from the application object's primary
key. The string uniquely identifies the item within an item
type. The item type and new item key together identify the
new process.

Note: The item key for a process instance
can only contain single-byte characters. It
cannot contain a multibyte value.

same_version Specify TRUE or FALSE to indicate whether the new
runtime process uses the same version as the original or the
latest version. If you specify TRUE, CreateForkProcess()
copies the item attributes and status of the original process
to the new process. If you specify FALSE,
CreateForkProcess() copies the item attributes of the original
process to the new process but does not copy the status.
Defaults to TRUE.

StartForkProcess

PL/SQL Syntax

procedure StartForkProcess
(itemtype in varchar2,
itemkey in varchar?2);

Description

Begins execution of the new forked process that you specify. Before you call
StartForkProcess(), you must first call CreateForkProcess() to create the new process. You
can modify the item attributes of the new process before calling StartForkProcess().

Workflow Engine APIs  2-35



If the new process uses the same version as the original, StartForkProcess() copies the
status and history of each activity in the forked process, activity by activity. If the new
process uses the latest version, then StartForkProcess() executes StartProcess().

If you call StartForkProcess() from within a process, any function activity in the process
that had a status of 'Active'is updated to have a status of 'Notified' You must call
CompleteActivity() afterwards to continue the process.

StartForkProcess() automatically refreshes any notification attributes that are based on
item attributes. Any open notifications in the original process are copied and sent again
in the new process. Closed notifications are copied but not resent; their status remains
remains 'Complete’.

Any Wait activities in the new process are activated at the same time as the original
activities. For example, if a 24 hour Wait activity in the original process is due to be
eligible in two hours, the new Wait activity is also eligible in two hours.

Caution: Do not call CreateForkProcess() and StartForkProcess() from
within a parallel branch in a process. These APIs do not copy any
branches parallel to their own branch that are not active.

Arguments (input)
itemtype A valid item type.

itemkey A string generated from the application object's primary
key. The string uniquely identifies the item within an item
type. The item type and key together identify the process.

Note: The item key for a process instance
can only contain single-byte characters. It
cannot contain a multibyte value.

Background

PL/SQL Syntax

procedure Background
(itemtype in varchar2 default '',
minthreshold in number default null,
maxthreshold in number default null,
process_deferred in boolean default TRUE,
process_timeout in boolean default TRUE,
process_stuck in boolean default FALSE);

Description

Runs a background engine for processing deferred activities, timed out activities, and

2-36 Oracle Workflow API Reference



stuck processes using the parameters specified. The background engine executes all
activities that satisfy the given arguments at the time that the background engine is
invoked. This procedure does not remain running long term, so you must restart this
procedure periodically. Any activities that are newly deferred or timed out or processes
that become stuck after the current background engine starts are processed by the next
background engine that is invoked. You can run a script called wfbkgchk. sql to get a
list of the activities waiting to be processed by the next background engine run. See:
Wibkgchk.sql, Oracle Workflow Administrator’s Guide.

You must not call Background() from within application code. If you want to call this
procedure directly, you can run it from SQL*Plus. Otherwise, you can use the
concurrent program version of this procedure and take advantage of the concurrent
manager to schedule the background engine to run periodically. You can also use the
Workflow Manager component of Oracle Applications Manager to submit the
background engine concurrent program. See: To Schedule Background Engines, Oracle
Workflow Administrator’s Guide.

Arguments (input)

itemtype A valid item type. If the item type is null the background
engine will run for all item types.

minthreshold Optional minimum cost threshold for an activity that this
background engine processes, in hundredths of a second.
There is no minimum cost threshold if this parameter is
null.

maxthreshold Optional maximum cost threshold for an activity that this
background engine processes in hundredths of a second.
There is no maximum cost threshold if this parameter is
null.

process_deferred Specify TRUE or FALSE to indicate whether to run deferred
processes. Defaults to TRUE.

process_timeout Specify TRUE or FALSE to indicate whether to run timed
out processes. Defaults to TRUE.

process_stuck Specify TRUE or FALSE to indicate whether to run stuck

processes. Defaults to FALSE.

Workflow Engine APIs  2-37



AddltemAttribute

PL/SQL Syntax

procedure AddItemAttr
(itemtype in wvarchar2z,
itemkey in varchar2,
aname in varchar?2,
text value in varchar2 default null,
number value in number default null,
date value in date default null);

Java Syntax
public static boolean addItemAttr
(WFContext wCtx,
String itemType,
String itemKey,
String aName)

public static boolean addItemAttrText
(WFContext wCtx,
String itemType,
String itemKey,
String aName,
String aValue)

public static boolean addItemAttrNumber
(WFContext wCtx,
String itemType,
String itemKey,
String aName,
BigDecimal numberVal)

public static boolean addItemAttrDate
(WFContext wCtx,
String itemType,
String itemKey,
String aName,
String aValue)

Description
Adds a new item type attribute variable to the process. Although most item type
attributes are defined at design time, you can create new attributes at runtime for a
specific process. You can optionally set a default text, number, or date value for a new
item type attribute when the attribute is created.

If you are using Java, choose the correct method for your attribute type. To add an
empty item type attribute, use addltemAttr(). When adding an item type attribute with a
default value, use addItemAttrText() for all attribute types except number and date.

Note: If you need to add large numbers of item type attributes at once,
use the AddltemAttributeArray APIs rather than the AddltemAttribute

2-38 Oracle Workflow API Reference



APIs for improved performance. See: AddItemAttributeArray, page 2-

40.
Arguments (input)

wCtx Workflow context information. Required for the Java
methods only. See: Oracle Workflow Context, page 2-4.

itemtype A valid item type.

itemkey A string generated from the application object's primary
key. The string uniquely identifies the item within an item
type. The item type and key together identify the process.
See: CreateProcess, page 2-20.

aname The internal name of the item type attribute.

text_value The default text value for the item type attribute. Required
for the PL/SQL procedure only. Defaults to null.

number_value or numberVal The default number value for the item type attribute.
Required for the PL/SQL procedure and
addltemAttrNumber() Java method only. Defaults to null.

date_value The default date value for the item type attribute. Required
for the PL/SQL procedure only. Defaults to null.

aValue The default value for the item type attribute. Required for
the addItemAttrText() and addltemAttrDate() Java methods
only.

Sample Code
Example

The following example shows how API calls can be simplified by using AddItemAttr() to
set the default value of a new item type attribute at the time of creation.

Using AddItemAttr() to create the new attribute and SetltemAttrText() to set the value of
the attribute, the following calls are required:

AddItemAttr ('ITYPE', 'IKEY', 'NEWCHAR_VAR');
SetItemAttrText ('ITYPE', 'IKEY', 'NEWCHAR VAR',
'new text values');

Using AddItemAttr() both to create the new attribute and to set its value, only the
following call is required:

AddItemAttr ('ITYPE', 'IKEY', 'NEWCHAR7VAR',
'new text wvalues');

Workflow Engine APIs  2-39



AdditemAttributeArray

PL/SQL Syntax

procedure AddItemAttrTextArray
(itemtype in wvarchar2z,
itemkey in varchar2,
aname in Wf Engine.NameTabTyp,
avalue in Wf Engine.TextTabTyp);

procedure AddItemAttrNumberArray
(itemtype in wvarchar2,
itemkey in varchar2,
aname in Wf Engine.NameTabTyp,
avalue in Wf Engine.NumTabTyp) ;

procedure AddItemAttrDateArray
(itemtype in varchar2,
itemkey in varchar2,
aname in Wf Engine.NameTabTyp,
avalue in Wf Engine.DateTabTyp);

Description

Adds an array of new item type attributes to the process. Although most item type
attributes are defined at design time, you can create new attributes at runtime for a
specific process. Use the AddltemAttributeArray APlIs rather than the AddltemAttribute
APIs for improved performance when you need to add large numbers of item type

attributes at once.

Use the correct procedure for your attribute type. All attribute types except number and
date use AddItemAttrTextArray.

Arguments (input)
itemtype

itemkey

aname

avalue

2-40 Oracle Workflow API Reference

A valid item type.

A string generated from the application object's primary
key. The string uniquely identifies the item within an item
type. The item type and key together identify the process.
See: CreateProcess, page 2-20.

An array of the internal names of the new item type
attributes.

An array of the values for the new item type attributes.



SetltemAttribute

PL/SQL Syntax

Java Syntax

procedure SetlItemAttrText
(itemtype in wvarchar2z,
itemkey in varchar2,
aname in varchar?2,
avalue in varchar?);

procedure SetlItemAttrNumber
(itemtype in wvarchar2,
itemkey in varchar2,
aname in varchar?2,
avalue 1in number);

procedure SetItemAttrDate
(itemtype in varchar2,
itemkey in varchar2,
aname in varchar?2,
avalue 1in date);

procedure SetlItemAttrEvent
(itemtype in varchar2,
itemkey in varchar2,
name in varchar?2,
event in wf event t);

public static boolean setItemAttrText

(WFContext wCtx,
String itemType,
String itemKey,
String aName,
String aValue)

public static boolean setItemAttrNumber

(WFContext wCtx,
String itemType,
String itemKey,
String aName,
BigDecimal aValue)

public static boolean setItemAttrDate

(WFContext wCtx,
String itemType,
String itemKey,
String aName,
String aValue)

public static boolean setItemAttrDate

(WFContext wCtx,
String itemType,
String itemKey,
String attributeName,

java.util.Date attributeValue)

Workflow Engine APIs

2-41



Description

Arguments (input)

Sample Code

Sets the value of an item type attribute in a process. Use the correct procedure for your
attribute type. All attribute types except number, date, and event use SetltemAttrText.

In Java, there are two implementations of setltemAttrDate(). One lets you provide the
date value as a Java String object, while the other lets you provide the date value as a
Java Date object.

Note: If you need to set the values of large numbers of item type
attributes in the same work item at once, use the
WEF_ENGINE.SetltemAttributeArray APls rather than the
WEF_ENGINE.SetltemAttribute APIs for improved performance. See:
SetltemAttributeArray, page 2-44.

If you need to set the values of item type attributes in several work
items at once, use the WF_ENGINE_BULK.SetltemAttrText,
WF_ENGINE_BULK.SetltemAttrNumber, and
WF_ENGINE_BULK.SetltemAttrDate APIs rather than the
WFE_ENGINE.SetltemAttribute APIs. See:

WEF_ENGINE_BULK .SetltemAttrText, page 2-73,
WEF_ENGINE_BULK SetltemAttrNumber, page 2-74, and
WF_ENGINE_BULK.SetltemAttrDate, page 2-75.

Workflow context information. Required for the Java
method only. See: Oracle Workflow Context, page 2-4.

A valid item type.

A string generated from the application object's primary
key. The string uniquely identifies the item within an item
type. The item type and key together identify the process.

See: CreateProcess, page 2-20.

aname, name, or The internal name of the item type attribute.
attributeName

avalue, event, or The value for the item type attribute.
attributeValue

Example
The following code excerpt shows an example of how to call setltemAttrText() in a Java
program. The example code is from the WFTest . java program.

2-42 Oracle Workflow API Reference



if (WFEngineAPI.setItemAttrText (ctx, iType,
"REQUESTOR_USERNAME", owner))
System.out.println ("Requestor: "+owner);
else

{
WEFEngineAPI.showError (ctx) ;

}

Related Topics
Event Message Structure, page 5-6

setltemAttrFormattedDate

Java Syntax

iKey,

public static boolean setItemAttrFormattedDate

(WFContext wCtx,
String itemType,
String itemKey,
String attributeName,
String attributeValue
String dateFormat)

Description
Sets the value of an item type attribute of type date in a process with a date value
provided as a formatted string.
Arguments (input)
wCitx Workflow context information. See: Oracle Workflow
Context, page 2-4.
itemtype A valid item type.
itemkey A string generated from the application object's primary
key. The string uniquely identifies the item within an item
type. The item type and key together identify the process.
See: CreateProcess, page 2-20.
attributeName The internal name of the item type attribute.

attributeValue

dateFormat

The date value for the item type attribute.

The format of the date value. The format must be a date
format mask that is supported by the Oracle Database. If no
format is provided, the default value is the canonical date
format for the database. See: Date Formats, Oracle Database
Globalization Support Guide.

Workflow Engine APIs  2-43



SetltemAttributeArray

PL/SQL Syntax
procedure SetlItemAttrTextArray
(itemtype in wvarchar2z,
itemkey in varchar2,
aname in Wf Engine.NameTabTyp,
avalue in Wf Engine.TextTabTyp);
procedure SetItemAttrNumberArray
(itemtype in varchar?2,
itemkey in varchar2,
aname in Wf Engine.NameTabTyp,
avalue in Wf Engine.NumTabTyp) ;
procedure SetlItemAttrDateArray
(itemtype in varchar?,
itemkey in varchar2,
aname in Wf Engine.NameTabTyp,
avalue in Wf Engine.DateTabTyp);
Description
Sets the values of an array of item type attributes in a process. Use the
SetltemAttributeArray APls rather than the SetltemAttribute APIs for improved
performance when you need to set the values of large numbers of item type attributes at
once.
Use the correct procedure for your attribute type. All attribute types except number,
date, and event use SetltemAttrTextArray.
Note: If you need to set the values of item type attributes in several
work items at once, use the WF_ENGINE_BULK.SetltemAttrText,
WF_ENGINE_BULK.SetltemAttrNumber, and
WF_ENGINE_BULK.SetltemAttrDate APIs rather than the
WEF_ENGINE.SetltemAttributeArray APIs. See:
WE_ENGINE_BULK SetltemAttrText, page 2-73,
WF_ENGINE_BULK SetltemAttrNumber, page 2-74, and
WF_ENGINE_BULK.SetltemAttrDate, page 2-75.
Arguments (input)
itemtype A valid item type.
itemkey A string generated from the application object's primary

key. The string uniquely identifies the item within an item
type. The item type and key together identify the process.
See: CreateProcess, page 2-20.

2-44 Oracle Workflow API Reference



Sample Code

getltemTypes

Java Syntax

aname An array of the internal names of the item type attributes.

avalue An array of the values for the item type attributes.

Example

The following example shows how using the SetltemAttributeArray APIs rather than the

SetltemAttribute APIs can help reduce the number of calls to the database.
Using SetltemAttrText():

SetItemAttrText ('ITYPE', 'IKEY', 'VAR1l', 'valuel');
SetItemAttrText ('ITYPE', 'IKEY', 'VAR2', 'value2');
SetItemAttrText ("ITYPE', 'IKEY', 'VAR3', 'value3'):;

// Multiple calls to update the database.

Using SetltemAttrTextArray():

declare

varname Wf Engine.NameTabTyp;

varval Wf Engine.TextTabTyp;
begin

varname (1) = 'VAR1';

varval (1) = 'valuel';

varname (2) := 'VAR2';

varval (2) := 'value2';

varname (3) := 'VAR3';

varval (3) := 'value3';
WfiEngine.SetItemAttrTextArray(‘ITYPE‘, 'IKEY', varname, varval);
exception

when OTHERS then
// handle your errors here
raise;
end;

// Only one call to update the database.

public static WETwoDArray getItemTypes
(WEFContext wCtx)

Description
Returns a list of all the item types defined in the Oracle Workflow database as a
two-dimensional data object.

Arguments (input)

wCtx Workflow context information. Required for the Java

Workflow Engine APIs

2-45



method only. See: Oracle Workflow Context, page 2-4.

GetltemAttribute

PL/SQL Syntax

Description

function GetItemAttrText
(itemtype in varchar2,
itemkey in varchar2,
aname in varchar2,
ignore notfound in boolean default FALSE)
return varchar2;

function GetItemAttrNumber
(itemtype in varchar2,
itemkey in varchar2,
aname in varchar?2,
ignore notfound in boolean default FALSE)
return number;

function GetItemAttrDate
(itemtype in varchar2,
itemkey in varchar2,
aname in varchar?2,
ignore notfound in boolean default FALSE)
return date;

function GetItemAttrEvent
(itemtype in varchar?2,
itemkey in varchar2,
name in varchar?2)
return wf event t;

Returns the value of an item type attribute in a process. Use the correct function for
your attribute type. All attribute types except number, date, and event use
GetltemAttrText.

For GetltemAttrText(), GetltemAttrNumber(), and GetltemAttrDate(), you can specify TRUE
for the ignore notfound parameter to ignore the exception encountered if the
specified item type attribute does not exist. In this case the function returns a null value
but does not raise an exception. For example, you can use this parameter if a new item
type attribute is added to an item type, and your code needs to handle both the earlier
version and the upgraded version of the item type.

Arguments (input)

itemtype A valid item type.

itemkey A string generated from the application object's primary
key. The string uniquely identifies the item within an item
type. The item type and key together identify the process.

2-46 Oracle Workflow API Reference



See: CreateProcess, page 2-20.

aname The internal name of an item type attribute, for
GetltemAttrText(), GetltemAttrNumber(), and
GetltemAttrDate().

name The internal name of an item type attribute, for
GetltemAttrEvent().

ignore_notfound Specify TRUE or FALSE to indicate whether to ignore the

exception if the specified item type attribute does not exist,
for GetltemAttrText(), GetltemAttrNumber(), and
GetltemAttrDate(). If you specify TRUE and the item type
attribute you specify does not exist, the function returns a
null value but does not raise an exception. Defaults to
FALSE.

Related Topics
Event Message Structure, page 5-6
GetltemAttrClob
PL/SQL Syntax
function GetItemAttrClob
(itemtype in varchar?,
itemkey in varchar2,
aname in varchar?)
return clob;
Description
Returns the value of an item type attribute in a process as a character large object
(CLOB).
Arguments (input)
itemtype A valid item type.
itemkey A string generated from the application object's primary
key. The string uniquely identifies the item within an item
type. The item type and key together identify the process.
See: CreateProcess, page 2-20.
aname The internal name of an item type attribute.

Workflow Engine APIs  2-47



getltemAttributes

Java Syntax

Description

public static WFTwoDArray getItemAttributes
(WFContext wCtx,
String itemType,
String itemKey)

Returns a list of all the item attributes, their types, and their values for the specified
item type instance as a two-dimensional data object.

Arguments (input)

wCtx Workflow context information. Required for the Java
method only. See: Oracle Workflow Context, page 2-4.

itemtype A valid item type.

itemkey A string generated from the application object's primary
key. The string uniquely identifies the item within an item
type. The item type and key together identify the process.
See: CreateProcess, page 2-20.

GetltemAttrinfo

PL/SQL Syntax

Description

procedure GetItemAttrInfo
(itemtype in varchar2,
aname in varchar?2,
atype out varchar?2,
subtype out varchar?2,
format out varchar?);

Returns information about an item type attribute, such as its type and format, if any is
specified. Currently, subtype information is not available for item type attributes.

Arguments (input)

itemtype A valid item type.

aname The internal name of an item type attribute.

2-48 Oracle Workflow API Reference



GetActivityAttrinfo

PL/SQL Syntax

procedure GetActivityAttrInfo
(itemtype in wvarchar2z,
itemkey in varchar2,
actid in number,
aname in varchar?2,
atype out varchar?2,
subtype out varchar2,
format out wvarchar2);

Description

Returns information about an activity attribute, such as its type and format, if any is
specified. This procedure currently does not return any subtype information for activity
attributes.

Arguments (input)
itemtype A valid item type.

itemkey A string generated from the application object's primary
key. The string uniquely identifies the item within an item
type. The item type and key together identify the process.
See: CreateProcess, page 2-20.

actid The activity ID for a particular usage of an activity in a
process definition. Also referred to as the activity ID of the

node.

aname The internal name of an activity attribute.

Workflow Engine APIs  2-49



GetActivityAttribute

PL/SQL Syntax

function GetActivityAttrText
(itemtype in wvarchar2z,
itemkey in varchar2,
actid in number,
aname in varchar?2,
ignore notfound in boolean default FALSE)
return varchar?2;

function GetActivityAttrNumber
(itemtype in wvarchar2,
itemkey in varchar2,
actid in number,
aname in varchar?2,
ignore notfound in boolean default FALSE)
return number;

function GetActivityAttrDate
(itemtype in varchar2,
itemkey in varchar2,
actid in number,
aname in varchar2,
ignore notfound in boolean default FALSE)
return date;

function GetActivityAttrEvent
(itemtype in varchar2,
itemkey in varchar2,
actid in number,
name in varchar?)
return wf event t;

Description
Returns the value of an activity attribute in a process. Use the correct function for your
attribute type. If the attribute is a Number or Date type, then the appropriate function
translates the number/date value to a text-string representation using the attribute
format.

Note: Use GetActivityAttrText() for form, URL, lookup, role, attribute,
and document attribute types.

For GetActivityAttrText(), GetActivityAttrNumber(), and GetActivityAttrDate(), you can
specify TRUE for the ignore notfound parameter to ignore the exception
encountered if the specified activity attribute does not exist. In this case the function
returns a null value but does not raise an exception. For example, you can use this
parameter if a new activity attribute is added to an activity, and your code needs to
handle both the earlier version and the upgraded version of the activity.

2-50 Oracle Workflow API Reference



Arguments (input)

Related Topics

itemtype

itemkey

actid

aname

name

ignore_notfound

A valid item type.

A string generated from the application object's primary
key. The string uniquely identifies the item within an item
type. The item type and key together identify the process.
See: CreateProcess, page 2-20.

The activity ID for a particular usage of an activity in a
process definition. Also referred to as the activity ID of the
node.

The internal name of an activity attribute, for
GetActivityAttrText(), GetActivityAttrNumber(), and
GetActivityAttrDate().

The internal name of an activity attribute, for
GetActivity AttrEvent().

Specify TRUE or FALSE to indicate whether to ignore the
exception if the specified activity attribute does not exist,
for GetActivityAttrText(), GetActivityAttrNumber(), and
GetActivityAttrDate(). If you specify TRUE and the activity
attribute you specify does not exist, the function returns a
null value but does not raise an exception. Defaults to
FALSE.

Event Message Structure, page 5-6

GetActivityAttrClob

PL/SQL Syntax

Description

function GetActivityAttrClob
(itemtype in wvarchar2z,

itemkey in varchar2,
actid in number,
aname in varchar?)
return clob;

Returns the value of an activity attribute in a process as a character large object (CLOB).

Workflow Engine APIs  2-51



Arguments (input)
itemtype A valid item type.

itemkey A string generated from the application object's primary
key. The string uniquely identifies the item within an item
type. The item type and key together identify the process.
See: CreateProcess, page 2-20.

actid The activity ID for a particular usage of an activity in a
process definition. Also referred to as the activity ID of the
node.

aname The internal name of an activity attribute.

getActivityAttributes

Java Syntax

public static WETwoDArray getActivityAttributes
(WFContext wCtx,
String itemType,
String itemKey,
BigDecimal actID)

Description
Returns a list of all the activity attributes, their types, and their values for the specified
activity as a two-dimensional data object.

Arguments (input)

wCtx Workflow context information. Required for the Java
method only. See: Oracle Workflow Context, page 2-4.

itemtype A valid item type.

itemkey A string generated from the application object's primary
key. The string uniquely identifies the item within an item
type. The item type and key together identify the process.
See: CreateProcess, page 2-20.

actlD The activity ID for a particular usage of an activity in a
process definition. Also referred to as the activity ID of the
node.

2-52 Oracle Workflow API Reference



BeginActivity

PL/SQL Syntax

procedure BeginActivity
(itemtype in wvarchar2z,
itemkey in varchar2,
activity in varchar?2);

Description

Determines if the specified activity can currently be performed on the process item and
raises an exception if it cannot.

The CompleteActivity() procedure automatically performs this function as part of its
validation. However, you can use BeginActivity() to verify that the activity you intend to
perform is currently allowed before actually calling it. See: CompleteActivity, page 2-
54.

Arguments (input)
itemtype A valid item type.

itemkey A string generated from the application object's primary
key. The string uniquely identifies the item within an item
type. The item type and key together identify the process.

activity The activity node to perform on the process. Provide the
activity node's label name. If the activity node label name
does not uniquely identify the activity node you can
precede the label name with the internal name of its parent
process. For example:

<parent process internal name>:<label name>

Workflow Engine APIs  2-53



Sample Code

Example

/* Verify that a credit check can be performed on an order. If it
* is allowed, perform the credit check, then notify the Workflow
* Engine when the credit check completes. */

begin
wf engine.BeginActivity ('ORDER', to char(order id),
'CREDIT CHECK'");
OK := TRUE;
exception
when others then
WE CORE.Clear;
OK := FALSE;
end;

if OK then
-- perform activity --
wf engine.CompleteActivity ('ORDER', to char (order id),
'CREDIT CHECK' :result code);
end if;

CompleteActivity

PL/SQL Syntax

Java Syntax

Description

procedure CompleteActivity
(itemtype in wvarchar2,
itemkey in varchar2,
activity in varchar2,
result in varchar?);

public static boolean completeActivity
(WFContext wCtx,
String itemType,
String itemKey,
String activity,
String result)

Notifies the Workflow Engine that the specified activity has been completed for a
particular item. This procedure can be called for the following situations:

* Toindicate a completed activity with an optional result - This signals the
Workflow Engine that an asynchronous activity has been completed. This
procedure requires that the activity currently has a status of Notified'. An
optional activity completion result can also be passed. The result can determine
what transition the process takes next.

* To create and start an item - You can call CompleteActivity() for a 'Start' activity to

2-54 Oracle Workflow API Reference



implicitly create and start a new item. 'Start' activities are designated as the
beginning of a process in the Workflow Builder. The item type and key specified in
this call must be passed to all subsequent calls that operate on this item.

Use CompleteActivity() if you cannot use CreateProcess() and StartProcess() to start
your process. For example, call CompleteActivity() if you need to start a process with
an activity node that is mid-stream in a process thread and not at the beginning of a
process thread. The activity node you specify as the beginning of the process must
be set to 'Start'in the Node tab of its property page or else an error will be raised.

Note: Starting a process using CompleteActivity() differs from
starting a process using CreateProcess() and StartProcess() in these
ways:

The 'Start' activity called with CompleteActivity() may or may
not have incoming transitions. StartProcess() executes only
'Start' activities that do not have any incoming transitions.

CompleteActivity() only completes the single 'Start’ activity with
which it is called. Other 'Start' activities in the process are not
completed. StartProcess(), however, executes every activity in
the process that is marked as a 'Start' activity and does not have
any incoming transitions.

CompleteActivity() does not execute the activity with which it is
called; it simply marks the activity as complete. StartProcess()
does execute the 'Start' activities with which it starts a process.

When you use CompleteActivity() to start a new process, the
item type of the activity being completed must either have a
selector function defined to choose a root process, or have
exactly one runnable process with the activity being completed
marked as a 'Start' activity. You cannot explicitly specify a root
process as you can with StartProcess().

Arguments (input)
wCtx Workflow context information. Required for the Java
method only. See: Oracle Workflow Context, page 2-4.
itemtype or itemType A valid item type.

itemkey or itemKey

A string generated from the application object's primary
key. The string uniquely identifies the item within an item
type. The item type and key together identify the process.

Workflow Engine APIs  2-55



Sample Code

activity The name of the activity node that is completed. Provide
the activity node's label name. If the activity node label
name does not uniquely identify the subprocess you can
precede the label name with the internal name of its parent
process. For example:

<parent process internal name>:<label name>

This activity node must be marked as a 'Start' activity.

result An optional activity completion result. Possible values are
determined by the process activity's Result Type, or one of
the engine standard results. See: AbortProcess, page 2-32.

Example 1

/* Complete the 'ENTER ORDER' activity for the 'ORDER' item type.
* The 'ENTER ORDER' activity allows creation of new items since
* it is the start of a workflow, so the item is created by this
* call as well. */

wf engine.CompleteActivity ('ORDER', to char (order.order id),
'ENTER_ORDER', NULL) ;

Example 2
/* Complete the 'LEGAL REVIEW' activity with status 'APPROVED'.
* The item must already exist. */

wf engine.CompleteActivity ('ORDER', '1003', 'LEGAL REVIEW',
'APPROVED"'") ;

Example 3
/* Complete the BLOCK activity which is used in multiple
* subprocesses in parallel splits. */

wf engine.CompleteActivity ('ORDER', '1003',
'ORDER_PROCESS:BLOCK-3', 'null');

CompleteActivitylnternalName

PL/SQL Syntax

Description

procedure CompleteActivityInternalName
(itemtype in wvarchar2z,
itemkey in varchar2,
activity in varchar?2,
result in varchar?2);

Notifies the Workflow Engine that the specified activity has been completed for a
particular item. This procedure requires that the activity currently has a status of '
Notified'. An optional activity completion result can also be passed. The result can

2-56 Oracle Workflow API Reference



determine what transition the process takes next.

CompleteActivityInternalName() is similar to CompleteActivity() except that
CompleteActivityInternalName() identifies the activity to be completed by the activity's
internal name, while CompleteActivity() identifies the activity by the activity node label
name. You should only use CompleteActivityInternalName() when you do not know the
activity node label name. If you do know the activity node label name, use
CompleteActivity() instead. See: CompleteActivity, page 2-54.

Note: Unlike CompleteActivity(), you cannot use
CompleteActivityInternalName() to start a process. Also, you cannot use
CompleteActivitylnternalName() with a synchronous process.

When CompleteActivityInternalName() is executed, there must be exactly one instance of
the specified activity with a status of 'Notified' If there are multiple instances of the
activity with 'Notified' statuses, the process enters an 'ERROR' state.

Arguments (input)

AssignActivity

PL/SQL Syntax

itemtype A valid item type.

itemkey A string generated from the application object's primary
key. The string uniquely identifies the item within an item
type. The item type and key together identify the process.

activity The internal name of the activity that is completed. If the
activity internal name does not uniquely identify the
subprocess you can precede the activity internal name with
the internal name of its parent process. For example:

<parent process internal name>:
<activity internal name>

result An optional activity completion result. Possible values are
determined by the process activity's result type, or one of
the engine standard results. See: AbortProcess, page 2-32.

procedure AssignActivity
(itemtype in varchar2,
itemkey in varchar2,
activity in varchar?2,
performer in varchar?);

Workflow Engine APIs  2-57



Description

Assigns or reassigns an activity to another performer. This procedure may be called
before the activity is transitioned to. For example, a function activity earlier in the
process may determine the performer of a later activity.

If a new user is assigned to a notification activity that already has an outstanding
notification, the outstanding notification is canceled and a new notification is generated
for the new user by calling WF_Notification. Transfer.

Arguments (input)

Event

PL/SQL Syntax

Description

itemtype A valid item type.

itemkey A string generated from the application object's primary
key. The string uniquely identifies the item within an item
type. The item type and key together identify the process.

activity The label name of the activity node. If the activity node
label name does not uniquely identify the activity node you
can precede the label name with the internal name of its
parent process. For example:

<parent process internal name>:<label name>

performer The name of the user who will perform the activity (the
user who receives the notification). The name should be a
role name from the Oracle Workflow directory service.

procedure Event
(itemtype in varchar2,
itemkey in varchar2,
process name in varchar2 default null,
event message in wf event t);

Receives an event from the Business Event System into a workflow process.

If the specified item key already exists, the event is received into that item. If the item
key does not already exist, but the specified process includes an eligible Receive event
activity marked as a Start activity, the Workflow Engine creates a new item running
that process.

Within the workflow process that receives the event, the procedure searches for eligible
Receive event activities. For an activity to be eligible to receive an event, its event filter

2-58 Oracle Workflow API Reference



must either be set to that particular event, set to an event group of which that event is a
member, or left blank to accept any event. Additionally, the activity must either be
marked as a Start activity, or it must have an activity status of NOTIFIED, meaning the
process has transitioned to that activity and is waiting to receive the event.

For each eligible Receive event activity, Event() stores the event name, event key, and
event message in the item type attributes specified in the event activity node, if they
have been defined. Additionally, the procedure sets any parameters in the event
message parameter list as item type attributes for the process, creating new item type
attributes if a corresponding attribute does not already exist for any parameter. It also
sets the subscription's globally unique identifier (GUID) as a dynamic item attribute so
that the workflow process can reference other information in the subscription
definition. Then the Workflow Engine begins a thread of execution from the event
activity.

If no eligible Receive event activity exists for a received event, the procedure returns an
exception and an error message.

Note: If an event arrives at a Start activity to launch a new process
instance, the Workflow Engine also searches for all other receive event
activities that are marked as Start activities and that do not have any
incoming transitions, regardless of their event filter. For these activities,
the Workflow Engine sets the activity status to NOTIFIED so that they
will be ready to receive an event if any more events are sent to this
process. This feature lets you design a workflow process that requires
multiple events to be received when you do not know in advance the
order in which the events will arrive.

Note: If the event received by a Receive event activity was originally
raised by a Raise event activity in another workflow process, the item
type and item key for that process are included in the parameter list
within the event message. In this case, the Workflow Engine
automatically sets the specified process as the parent for the process
that receives the event, overriding any existing parent setting.

Arguments (input)
itemtype A valid item type.
itemkey A string that uniquely identifies the item within an item

type. The item type and key together identify the process.

Note: The item key for a process instance
can only contain single-byte characters. It
cannot contain a multibyte value.

Workflow Engine APIs  2-59



process_name

event_message

HandleError

PL/SQL Syntax

procedure HandleError
(itemtype in varchar?2
itemkey in varchar?2,
activity in varchar?
command in varchar?2,
result in varchar?);

Java Syntax

An optional argument that allows the selection of a
particular subprocess for that item type. Provide the
process activity's label name. If the process activity label
name does not uniquely identify the subprocess you can
precede the label name with the internal name of its parent
process. For example:

<parent process internal name>:<label name>

If this argument is null, the top level process for the item is
started. This argument defaults to null.

The event message containing the details of the event.

’

14

public static boolean handleError

(WFContext wCtx,

String itemType,
String itemKey,

String activity,
String command,

String result)

Description

This procedure is generally called from an activity in an ERROR process to handle any
process activity that has encountered an error.

You can also call this procedure for any arbitrary activity in a process, to roll back part
of your process to that activity. The activity that you call this procedure with can have
any status and does not need to have been executed. The activity can also be in a

subprocess. If the activity node label is not unique within the process you can precede
the activity node label name with the internal name of its parent process. For example:

<parent process internal name>:<label name>

This procedure clears the activity specified and all activities following it that have
already been transitioned to by reexecuting each activity in CANCEL mode. For an
activity in the 'Error’ state, there are no other executed activities following it, so the
procedure simply clears the errored activity.

2-60 Oracle Workflow API Reference



Once the activities are cleared, this procedure resets any parent processes of the
specified activity to a status of 'Active/, if they are not already active.

The procedure then handles the specified activity based on the command you provide:
SKIP or RETRY.

This API also raises the oracle.apps.wf.engine.skip event or the
oracle.apps.wf.engine.retry event, depending on the command you provide.
Although Oracle Workflow does not include any predefined subscriptions to these
events, you can optionally define your own subscriptions to these events if you want to
perform custom processing when they occur. See: Workflow Engine Events, Oracle
Workflow Developer’s Guide and To Create or Update an Event Subscription, Oracle
Workflow Developer’s Guide.

Note: An item's active date and the version number of the process that
the item is transitioning through can never change once an item is
created. Occasionally, however, you may want to use HandleError to
manually make changes to your process for an existing item.

If the changes you make to a process are minor, you can use
HandleError to manually push an item through activities that will error
or redirect the item to take different transitions in the process.

If the changes you want to make to a process are extensive, then you
need to perform at least the following steps:

e Abort the process by calling WF_ENGINE.AbortProcess().
e Purge the existing item by calling WF_PURGE.Items().

® Revise the process.

® Recreate the item by calling WF_ENGINE.CreateProcess().

¢ Restart the revised process at the appropriate activity by calling
WF_ENGINE.HandleError().

Arguments (input)
wCtx Workflow context information. Required for the Java
method only. See: Oracle Workflow Context, page 2-4.
item_type or itemType A valid item type.
item_key or itemKey A string generated from the application object's primary

key. The string uniquely identifies the item within an item
type. The item type and key together identify the process.

Workflow Engine APIs  2-61



activity The activity node that encountered the error or that you
want to undo. Provide the label name of the activity node.
If the activity node label name does not uniquely identify
the subprocess you can precede the label name with the
internal name of its parent process. For example:

<parent process internal name>:<label name>

command One of two commands that determine how to handle the
process activity:

® SKIP - do not reexecute the activity, but mark the
activity as complete with the supplied result and
continue execution of the process from that activity.

* RETRY - reexecute the activity and continue execution
of the process from that activity.

result The result you wish to supply if the command is SKIP.

SetltemParent

PL/SQL Syntax

procedure SetlItemParent
(itemtype in varchar2,
itemkey in varchar2,
parent itemtype in varchar2,
parent itemkey in varchar2,
parent context in varchar2);

Java Syntax

public static boolean setItemParent
(WFContext wCtx,
String itemType,
String itemKey,
String parentItemType,
String parentItemKey,
String parentContext)

Description
Defines the parent/child relationship for a master process and a detail process. This API
must be called by any detail process spawned from a master process to define the
parent/child relationship between the two processes. You make a call to this API after
you call the CreateProcess APL, but before you call the StartProcess API for the detail
process.

2-62 Oracle Workflow API Reference



Arguments (input)
wCtx

itemtype or itemType

itemkey or itemKey

parent_itemtype or
parentlitemType

parent_itemkey or
parentitemKey

parent_context or
parentContext

Workflow context information. Required for the Java
method only. See: Oracle Workflow Context, page 2-4.

A valid item type.

A string generated from the application object's primary
key. The string uniquely identifies the item within an item
type. The item type and key together identify the child
process.

Note: The item key for a process instance
can only contain single-byte characters. It
cannot contain a multibyte value.

A valid item type for the parent process.

A string generated from the application object's primary
key to uniquely identify the item within the parent item
type. The parent item type and key together identify the
parent process.

Note: The item key for a process instance
can only contain single-byte characters. It
cannot contain a multibyte value.

You can leave the parent context null if the parent process
contains only one Wait for Flow activity, or if the parent
process contains multiple Wait for Flow activities and this
detail process includes a Continue Flow activity for every
Wait for Flow activity in the parent process.

If the parent process contains multiple Wait for Flow
activities and this detail process only includes a Continue
Flow activity for one of those Wait for Flow activities, set
this parameter to the activity label name for the Wait for
Flow activity node to which this detail process
corresponds.

Workflow Engine APIs  2-63



ltemStatus

PL/SQL Syntax

procedure ItemStatus
(itemtype in wvarchar2z,
itemkey in varchar2,
status out wvarchar2,
result out varchar?);

Java Syntax

public static WFTwoDArray itemStatus
(WFContext wCtx,
String itemType,
String itemKey)

Description
Returns the status and result for the root process of the specified item instance. Possible
values returned for the status are: ACTIVE, COMPLETE, ERROR, or SUSPENDED. If the
root process does not exist, then the item key does not exist and will thus cause the
procedure to raise an exception.
Arguments (input)
wCtx Workflow context information. Required for the Java
method only. See: Oracle Workflow Context, page 2-4.
itemtype A valid item type.
itemkey A string generated from the application object's primary
key. The string uniquely identifies the item within an item
type. The item type and key together identify the item
instance.
Sample Code

Example
The following code excerpt shows an example of how to call itemStatus() in a Java
program. The example code is from the WFTest . java program.
// get status and result for this item
dataSource = WFEngineAPI.itemStatus (ctx, iType, iKey);
System.out.print ("Status and result for " + iType + "/" +
iKey + " = ");
displayDataSource (ctx, dataSource);

2-64 Oracle Workflow API Reference



getProcessStatus

Java Syntax

public static WFTwoDArray getProcessStatus
(WFContext wCtx,
String itemType,
String itemKey,
BigDecimal process)

Description
Returns the process status for the given item type instance as a two-dimensional data
object.
Arguments (input)
wCtx Workflow context information. Required for the Java
method only. See: Oracle Workflow Context, page 2-4.
itemType A valid item type.
itemKey A string generated from the application object's primary
key. The string uniquely identifies the item within an item
type. The item type and key together identify the process.
See: CreateProcess, page 2-20.
process A process instance ID for the item type. If the instance ID is

unknown, you can simply provide any negative number
and the method will return the process status for the root
process.

Workflow Engine Bulk APIs

The Workflow Engine bulk APIs can be called by an application program in an Oracle
E-Business Suite installation to launch multiple work items at once in bulk and to set
values for item attributes in bulk across multiple work items. These APIs are defined in
a PL/SQL package called WF_ENGINE_BULK.

¢  WF_ENGINE_BULK.CreateProcess, page 2-66
e  WF_ENGINE_BULK.StartProcess, page 2-68
e WF_ENGINE_BULK FastForward, page 2-70

e WF_ENGINE_BULK SetltemAttrText, page 2-73

Workflow Engine APIs  2-65



e  WF_ENGINE_BULK.SetltemAttrNumber, page 2-74
e WF_ENGINE_BULK SetltemAttrDate, page 2-75

Some Workflow Engine bulk APIs use PL/SQL table composite datatypes defined in the
WEF_ENGINE_BULK package. The following table shows the column datatype
definition for each PL/SQL table type.

PL/SQL Table Types in WF_ENGINE_BULK

PL/SQL Table Type Column Datatype Definition
ItemKeyTabType varchar2(240)
UserKeyTabType varchar2(240)
OwnerRoleTabType varchar2(320)

Some Workflow Engine bulk APIs also use PL/SQL table composite datatypes defined
in the WEF_ENGINE package. See: PL/SQL Table Types in WF_ENGINE, page 2-19.

WF_ENGINE_BULK.CreateProcess

PL/SQL Syntax

procedure CreateProcess
(itemtype in varchar2,
itemkeys in wf engine bulk.itemkeytabtype,
process in varchar2,
user keys in wf engine bulk.userkeytabtype,
owner roles in wf engine bulk.ownerroletabtype,
parent itemtype in varchar2 default null,
parent itemkey in varchar2 default null,
parent context in varchar2 default null,
masterdetail in boolean default null);

Description
Creates multiple new runtime process instances of the specified item type at once, based
on the specified array of workflow item keys. You can optionally specify one existing
work item as the parent for all the new work items.

Note: You cannot use WF_ENGINE_BULK.CreateProcess() to create
forced synchronous processes.
If processing fails for any work items, then WF_ENGINE_BULK.CreateProcess() adds

those item keys to a global PL/SQL table called g FailedItems within the

2-66 Oracle Workflow API Reference



WF_ENGINE_BULK package. The procedure then continues processing the remaining
items. When processing is complete, the procedure raises an exception for any failed

items.

Arguments (input)
itemtype

itemkeys

process

user_keys

owner_roles

A valid item type.

An array of item keys that identify the work items to be
created. An item key is a string derived from the
application object's primary key that uniquely identifies a
work item within an item type. The item type and item key
must be passed to all subsequent API calls for the work
item.

Note: The item key for a work item can
only contain single-byte characters. It
cannot contain a multibyte value.

You must provide a unique item key for
each work item to be created. You cannot
use WF_ENGINE_BULK.CreateProcess() to
create forced synchronous processes with
the generic #SYNCH item key.

Optionally specify the internal name of the process that
you want to run within the specified item type. If this
parameter is null, the Workflow Engine uses the item
type's selector function to determine the top-level process
to run for the first work item being created, and then
selects the same process to run for all the other work items.
If this parameter is null and the item type does not include
a selector function, then WF_ENGINE_BULK.CreateProcess()
raises an error.

An optional array of user-friendly keys to assign to the new
work items. The array of user keys must correspond on a
one-to-one basis with the array of item keys.

An optional array of valid roles to set as the owners of the
new work items. The array of owner roles must correspond
on a one-to-one basis with the array of item keys.

Note: To enhance security, Oracle
Workflow does not allow notifications

Workflow Engine APIs  2-67



within a work item to be reassigned to the
item owner.

parent_itemtype The item type of the parent work item, if you want to
define a parent/child relationship between an existing work
item and the new work items.

parent_itemkey The item key that identifies the parent work item within its
item type.

Note: The item key for a work item can
only contain single-byte characters. It
cannot contain a multibyte value.

parent_context You can leave the parent context null if the parent process
contains only one Wait for Flow activity, or if the parent
process contains multiple Wait for Flow activities and these
child processes include a Continue Flow activity for every
Wait for Flow activity in the parent process.

If the parent process contains multiple Wait for Flow
activities and these child processes each only include a
Continue Flow activity for one of those Wait for Flow
activities, set this parameter to the activity label name for
the Wait for Flow activity node to which these child
processes correspond.

masterdetail Specify TRUE or FALSE to indicate whether to perform
master/detail coordination between the parent process and
the child processes.

Related Topics
WF_ENGINE.CreateProcess, page 2-20

Synchronous, Asynchronous, and Forced Synchronous Processes, page 2-14

WF_ENGINE_BULK.StartProcess

PL/SQL Syntax

procedure StartProcess
(itemtype in wvarchar2,
itemkeys in wf engine bulk.itemkeytabtype);

2-68 Oracle Workflow API Reference



Description

Begins execution of multiple new runtime process instances at once, identified by the
specified item type and array of workflow item keys. The Workflow Engine locates the
activity marked as a Start activity in the process definition and then defers that activity
for each of the new work items. Ensure that you run a background engine to process the
deferred activities and continue executing the work items.

You must call either WF_ENGINE.CreateProcess() or WF_ENGINE_BULK.CreateProcess()
to define the item type and item keys before calling WF_ENGINE_BULK.StartProcess().

Note: You cannot use WF_ENGINE_BULK.StartProcess() to start forced
synchronous processes.

If processing fails for any work items, then WF_ENGINE_BULK.StartProcess() adds
those item keys to a global PL/SQL table called g FailedItems within the
WF_ENGINE_BULK package. The procedure then continues processing the remaining
items. When processing is complete, the procedure raises an exception for any failed

items.
Arguments (input)
itemtype A valid item type.
itemkeys An array of item keys that identify the work items to be

started. An item key is a string derived from the
application object's primary key that uniquely identifies a
work item within an item type.

Note: The item key for a work item can
only contain single-byte characters. It
cannot contain a multibyte value.

You must provide a unique item key for

each work item to be started. You cannot
use WF_ENGINE_BULK.StartProcess() to

start forced synchronous processes with

the generic #SYNCH item key.

Related Topics
WF_ENGINE.StartProcess, page 2-25

Setting Up Background Workflow Engines, Oracle Workflow Administrator’s Guide

Synchronous, Asynchronous, and Forced Synchronous Processes, page 2-14

Workflow Engine APIs  2-69



WF_ENGINE_BULK.FastForward

PL/SQL Syntax

Description

procedure FastForward
(itemtype in wvarchar2z,
itemkeys in wf engine bulk.itemkeytabtype,
process in varchar2,
activity in varchar?2,
activityStatus in varchar2 default null,
parent itemtype in varchar2 default null,
parent itemkey in varchar2 default null,
parent context in varchar2 default null,
masterdetail in boolean default null);

Creates multiple new runtime process instances of the specified item type at once, based
on the specified array of workflow item keys, and begins execution of the new work
items at the specified activity. You can optionally specify one existing work item as the
parent for all the new work items.

The activity at which execution begins must be marked as a Start activity. However, it
can have incoming transitions. The activity must be a direct child of the process in
which execution of the work item begins. It cannot be part of a subprocess.

The Workflow Engine first calls WF_ENGINE_BULK.CreateProcess() to create the new
work items and then sets the Start activity for each work item to the specified status,
either ' DEFERRED' or 'NOTIFIED'.

®* 'DEFERRED' - The Workflow Engine defers the Start activity for each work item.
Ensure that you run a background engine to process the deferred activities and
continue executing the work items.

® 'NOTIFIED' - The Workflow Engine waits for the Start activity for each work item
to be completed. Ensure that you complete these activities to continue executing the
work items. For example, you can call WF_ENGINE.CompleteActivity() or
WEF_ENGINE.CompleteActivitylnternalName(), or, for a receive event activity, send an
event to the activity.

Note: You cannot use WF_ENGINE_BULK.FastForward() to start forced
synchronous processes.

If processing fails for any work items, then WF_ENGINE_BULK.FastForward() adds
those item keys to a global PL/SQL table called g FailedItems within the
WF_ENGINE_BULK package. The procedure then continues processing the remaining
items. When processing is complete, the procedure raises an exception for any failed
items.

2-70 Oracle Workflow API Reference



Arguments (input)
itemtype

itemkeys

process

activity

activityStatus

A valid item type.

An array of item keys that identify the work items to be
started. An item key is a string derived from the
application object's primary key that uniquely identifies a
work item within an item type. The item type and item key
must be passed to all subsequent API calls for the work
item.

Note: The item key for a work item can
only contain single-byte characters. It
cannot contain a multibyte value.

You must provide a unique item key for
each work item to be started. You cannot
use WF_ENGINE_BULK.CreateProcess() to
start forced synchronous processes with
the generic #SYNCH item key.

Optionally specify the internal name of the process that
you want to run within the specified item type. If this
parameter is null, the Workflow Engine uses the item
type's selector function to determine the top-level process
to run for the first work item being created, and then
selects the same process to run for all the other work items.
If this parameter is null and the item type does not include
a selector function, then WF_ENGINE_BULK.FastForward()
raises an error.

The name of the activity node at which you want to begin
execution of the work items. Specify the activity node's
label name. If the activity node label name is not unique
within the item type, you can precede the label name with
the internal name of its parent process in the following
format:

<parent process internal name>:<label name>
This activity node must be marked as a Start activity.
The status to set for the Start activity in each work item,
either ' DEFERRED' or 'NOTIFIED'. If this parameter is

null, the Workflow Engine sets the activity statuses to
'DEFERRED'.

Workflow Engine APIs  2-71



parent_itemtype

parent_itemkey

parent_context

masterdetail

Related Topics

The item type of the parent work item, if you want to
define a parent/child relationship between an existing work
item and the new work items.

The item key that identifies the parent work item within its
item type.

Note: The item key for a work item can
only contain single-byte characters. It
cannot contain a multibyte value.

You can leave the parent context null if the parent process
contains only one Wait for Flow activity, or if the parent
process contains multiple Wait for Flow activities and these
child processes include a Continue Flow activity for every
Wait for Flow activity in the parent process.

If the parent process contains multiple Wait for Flow
activities and these child processes each only include a
Continue Flow activity for one of those Wait for Flow
activities, set this parameter to the activity label name for
the Wait for Flow activity node to which these child
processes correspond.

Specify TRUE or FALSE to indicate whether to perform
master/detail coordination between the parent process and
the child processes.

WE_ENGINE.LaunchProcess, page 2-27

WF_ENGINE.CompleteActivity, page 2-54

WE_ENGINE.CompleteActivityInternalName, page 2-56

WF_ENGINE.Event, page 2-58

Setting Up Background Workflow Engines, Oracle Workflow Administrator’s Guide

Synchronous, Asynchronous, and Forced Synchronous Processes, page 2-14

2-72 Oracle Workflow API Reference



WF_ENGINE_BULK.SetltemAttrText

PL/SQL Syntax

Description

procedure SetlItemAttrText
(itemtype in wvarchar2z,
itemkeys in Wf Engine Bulk.ItemKeyTabType,
anames in Wf Engine.NameTabTyp,
avalues in Wf Engine.TextTabTyp);

Sets the values of an array of item type attributes of type text in multiple work items,
identified by the specified item type and array of item keys. You can also use this API to
set attributes of type role, form, URL, lookup, or document.

This API sets the value of one item type attribute in each work item. Consequently, the
array of item keys must correspond on a one-to-one basis with the array of item type
attribute names and with the array of item type attribute values.

Note: If you need to set the values of large numbers of item type
attributes in the same work item, use
WEF_ENGINE.SetltemAttrTextArray() rather than
WF_ENGINE_BULK.SetItemAttrText().

If processing fails for any work items, then WF_ENGINE_BULK.SetltemAttrText() adds
those item keys to a global PL/SQL table called g FailedItems within the
WEF_ENGINE_BULK package and also adds the corresponding item type attribute
names to a global PL/SQL table called g FailedAttributes. The procedure then
continues processing the remaining items. When processing is complete, the procedure
raises an exception for any failed items.

Arguments (input)

itemtype A valid item type.

itemkeys An array of the item keys that identify the work items to
which the item type attributes belong. An item key is a
string derived from the application object’s primary key
that uniquely identifies a work item within an item type.

Note: The item key for a work item can
only contain single-byte characters. It
cannot contain a multibyte value.

anames An array of the internal names of the item type attributes.

Workflow Engine APIs  2-73



The array of item type attribute names must correspond on
a one-to-one basis with the array of item keys.

avalues An array of the values for the item type attributes. The
array of item type attribute values must correspond on a
one-to-one basis with the array of item keys.

Related Topics
WE_ENGINE.SetltemAttributeArray, page 2-44

WF_ENGINE.SetltemAttribute, page 2-41

WF_ENGINE_BULK.SetltemAttrNumber

PL/SQL Syntax

procedure SetlItemAttrNumber
(itemtype in varchar2,
itemkeys in Wf Engine Bulk.ItemKeyTabType,
anames in Wf Engine.NameTabTyp,
avalues in Wf Engine.NumTabTyp);

Description

Sets the values of an array of item type attributes of type number in multiple work
items, identified by the specified item type and array of item keys.

This API sets the value of one item type attribute in each work item. Consequently, the
array of item keys must correspond on a one-to-one basis with the array of item type
attribute names and with the array of item type attribute values.

Note: If you need to set the values of large numbers of item type
attributes in the same work item, use
WEF_ENGINE.SetltemAttrNumberArray() rather than
WF_ENGINE_BULK.SetltemAttrNumber().

If processing fails for any work items, then WF_ENGINE_BULK.SetltemAttrNumber()
adds those item keys to a global PL/SQL table called g_FailedItems within the
WEF_ENGINE_BULK package and also adds the corresponding item type attribute
names to a global PL/SQL table called g FailedAttributes. The procedure then
continues processing the remaining items. When processing is complete, the procedure
raises an exception for any failed items.

Arguments (input)
itemtype A valid item type.

2-74 Oracle Workflow API Reference



Related Topics

itemkeys An array of the item keys that identify the work items to
which the item type attributes belong. An item key is a
string derived from the application object's primary key
that uniquely identifies a work item within an item type.

Note: The item key for a work item can
only contain single-byte characters. It
cannot contain a multibyte value.

anames An array of the internal names of the item type attributes.
The array of item type attribute names must correspond on
a one-to-one basis with the array of item keys.

avalues An array of the values for the item type attributes. The
array of item type attribute values must correspond on a
one-to-one basis with the array of item keys.

WE_ENGINE.SetltemAttributeArray, page 2-44
WF_ENGINE.SetltemAttribute, page 2-41

WF_ENGINE_BULK.SetltemAttrDate

PL/SQL Syntax

Description

procedure SetlItemAttrDate
(itemtype in varchar2,
itemkeys in Wf Engine Bulk.ItemKeyTabType,
anames in Wf Engine.NameTabTyp,
avalues in Wf Engine.DateTabTyp) ;

Sets the values of an array of item type attributes of type date in multiple work items,
identified by the specified item type and array of item keys.

This API sets the value of one item type attribute in each work item. Consequently, the
array of item keys must correspond on a one-to-one basis with the array of item type
attribute names and with the array of item type attribute values.

Note: If you need to set the values of large numbers of item type
attributes in the same work item, use
WF_ENGINE.SetltemAttrDateArray() rather than
WEF_ENGINE_BULK.SetItemAttrDate().

Workflow Engine APIs  2-75



If processing fails for any work items, then WF_ENGINE_BULK.SetltemAttrDate() adds
those item keys to a global PL/SQL table called g FailedItems within the
WF_ENGINE_BULK package and also adds the corresponding item type attribute
names to a global PL/SQL table called g FailedAttributes. The procedure then
continues processing the remaining items. When processing is complete, the procedure
raises an exception for any failed items.

Arguments (input)

Related Topics

itemtype A valid item type.

itemkeys An array of the item keys that identify the work items to
which the item type attributes belong. An item key is a
string derived from the application object's primary key
that uniquely identifies a work item within an item type.

Note: The item key for a work item can
only contain single-byte characters. It
cannot contain a multibyte value.

anames An array of the internal names of the item type attributes.
The array of item type attribute names must correspond on
a one-to-one basis with the array of item keys.

avalues An array of the values for the item type attributes. The
array of item type attribute values must correspond on a
one-to-one basis with the array of item keys.

WE_ENGINE.SetltemAttributeArray, page 2-44
WF_ENGINE.SetltemAttribute, page 2-41

Workflow Function APIs

The WFFunctionAPI Java class is an abstract class from which other Java procedures
can be derived. This class contains methods for accessing item type and activity
attributes.

The WFFunctionAPI class is stored in the oracle.apps. fnd.wf Java package. The
following list shows the APIs available in this class.

Important: Java is case-sensitive and all Java method names begin with
a lower case letter to follow Java naming conventions.

2-76 Oracle Workflow API Reference



* loadltemAttributes, page 2-77

¢ loadAdctivityAttributes, page 2-77
* getActivityAttr, page 2-78

e getltemAttr, page 2-79

¢ setltemAttrValue, page 2-79

* execute, page 2-80

Related Topics

Function Activity, Oracle Workflow Developer’s Guide

loadltemAttributes

Java Syntax

public void loadItemAttributes
(WEFContext pWCtx) throws SQLException

Description
Retrieves the item attributes from the database for the item type associated with the
custom function. The item attributes are not loaded by default due to the performance
impact that could occur if the item type contains a large number of item attributes. You
can use this method to load the item attributes explicitly before accessing them.

If a database access error occurs, this method throws a SQLException.

Arguments (input)
pWCtx Workflow context information. See: Oracle Workflow
Context, page 2-4.

loadActivityAttributes

Java Syntax
public void loadActivityAttributes
(WFContext pWCtx,
String iType,
String iKey,
BigDecimal actid) throws SQLException

Workflow Engine APIs  2-77



Description

Retrieves the activity attributes from the database for the specified activity. This method
is called by default when the custom function activity is instantiated and before the
execute() function is called.

If a database access error occurs, this method throws a SQLException.

Arguments (input)
pWCtx Workflow context information. See: Oracle Workflow
Context, page 2-4.
iType A valid item type.
iKey A string generated from the application object's primary
key. The string uniquely identifies the item within an item
type. The item type and key together identify the process.
See: CreateProcess, page 2-20.
actid An activity instance ID.
getActivityAttr

Java Syntax

public WFAttribute getActivityAttr
(String aName)

public WFAttribute getActivityAttr
(WFContext pWCtx,
String aName) throws SQLException

Description

There are two implementations of getActivityAttr(). These methods return the activity
attribute information for the specified activity attribute.

¢ If you call getActivityAttr(String aName) with only the activity attribute name, this
method returns the activity attribute value but does not attempt to resolve any
reference to an item attribute. If an activity attribute does point to an item attribute,
this method returns the internal name of the item attribute. With the item attribute
name, you can then perform additional processing based on the item attribute.

For example, if you want to write information back to the item attribute, you can
first use getActivityAttr(String aName) to retrieve the item attribute name. Then use
setltemAttrValue(WFContext pWCtx, WEAttribute pAttr) to set the item attribute
value, which also becomes the activity attribute value. See: setltemAttrValue, page
2-79.

2-78 Oracle Workflow API Reference



e If you call getActivityAttr(WFContext pWCtx, String aName) with both the Workflow
context and the activity attribute name, this method returns the activity attribute,
and if the activity attribute points to an item attribute, the method attempts to
resolve the reference by retrieving the value of that item attribute. You can use
getActivityAttr(WFContext pWCtx, String aName) when you want to obtain the actual
activity attribute value, and you do not need to know which item attribute it
references. This method attempts to resolve the reference within the previously
loaded item attributes, or if the item attributes have not been loaded, the method
calls loadItemAttributes(WFContext pWCtx) to load them. See: loadItemAttributes,
page 2-77.

If a database access error occurs, this method throws a SQLException.

Arguments (input)
pWCtx Workflow context information. Required for the second
method only. See: Oracle Workflow Context, page 2-4.
aName The internal name of an activity attribute.
getltemAttr

Java Syntax

public WFAttribute getItemAttr
(String aName)

Description

Returns the item attribute information for the specified item attribute.

Arguments (input)

aName The internal name of an item attribute.

setltemAttrValue

Java Syntax

public void setItemAttrValue
(WFContext pWCtx,
WFAttribute pAttr)
throws NumberFormatException, WFException

Description

Sets the value of the specified item attribute in the database.

Workflow Engine APIs  2-79



This method throws a NumberFormatException if it cannot convert the value to the
appropriate format for an attribute of type number or date. The method throws a
WEFException if it encounters an error while setting an attribute of type document or
text.

Arguments (input)
pWCtx Workflow context information. See: Oracle Workflow
Context, page 2-4.
pAttr The attribute information for an item attribute.
execute

Java Syntax

public abstract boolean execute
(WFContext pWCtx)

Description
This abstract method is implemented by the extending class and forms the main entry
point of a custom function.

Arguments (input)

pWCtx Workflow context information. See: Oracle Workflow
Context, page 2-4.

Workflow Attribute APls

The WFAttribute Java class contains descriptive information for an item or activity
attribute, including the internal name of the attribute, attribute value, attribute data
type, format information, and default value type. The attribute value is stored as an
Object type. This class also contains methods for accessing the attribute information,
which can be called by a Java application.

The WFAttribute class is stored in the oracle.apps.fnd.wf Java package. The
following list shows the APIs available in this class.

Important: Java is case-sensitive and all Java method names, except the
constructor method names, begin with a lower case letter to follow Java
naming conventions.

o  WFAttribute, page 2-82

2-80 Oracle Workflow API Reference



* value, page 2-83

¢ getName, page 2-83

e getValue, page 2-83

e getType, page 2-83

¢ getFormat, page 2-84

e getValueType, page 2-84
* toString, page 2-84

e compareTo, page 2-85

WFAttribute Class Constants

The WFAttribute class contains several constants. The following table shows the
constants that can be used to represent the data type of an attribute.

Data Type Constants

Constant Variable Declaration

Constant Value

public static final String TEXT

public static final String NUMBER

public static final String DATE

public static final String LOOKUP

public static final String FORM

public static final String URL

public static final String DOCUMENT

public static final String ROLE

public static final String EVENT

"TEXT"

"NUMBER"

"DATE"

"LOOKUP"

"EORM"

"URL"

"DOCUMENT"

"ROLE"

"EVENT"

The following table shows the constants that can be used to represent the type of the

Workflow Engine APIs  2-81



default value for an attribute. The default value can be either a constant or, for an
activity attribute, a reference to an item type attribute.

Default Value Type Constants

Constant Variable Declaration Constant Value
public static final String CONSTANT "CONSTANT"
public static final String ITEMATTR "ITEMATTR"

WFAttribute

Java Syntax
public WFAttribute ()

public WFAttribute
(String pName
String pType,
Object pValue,
String pValueType)

Description
There are two constructor methods for the WFAttribute class. The first constructor
creates a new WFAttribute object. The second constructor creates a new WFAttribute
object and initializes it with the specified attribute name, attribute type, value, and
value type.
Arguments (input)
pName The internal name of an item or activity attribute. Required
for the second method only.
pType The data type of the attribute. Required for the second
method only.
pValue The attribute value. Required for the second method only.
pValueType The type of the default value for the attribute. The default

value can be either a constant or, for an activity attribute, a
reference to an item type attribute. Required for the second
method only.

2-82 Oracle Workflow API Reference



value

Java Syntax

public void wvalue
(Object pValue)

Description
Sets the value of the item or activity attribute within a WFAttribute object. The value
must be cast to the Object type.
Important: Using value() to set the attribute value within a WFAttribute
object does not set the attribute value in the database. To set the value
of an item attribute in the database, use
WFFunctionAPLsetltemAttrValue(). See: setltemAttrValue, page 2-79.
Arguments (input)
pValue The attribute value.
getName

Java Syntax

Description

getValue

Java Syntax

Description

getType

Java Syntax

public String getName ()

Returns the internal name of the item or activity attribute.

public Object getValue ()

Returns the value of the item or activity attribute as type Object.

public String getType ()

Workflow Engine APIs

2-83



Description

getFormat

Java Syntax

Description

getValueType

Java Syntax

Description

toString

Java Syntax

Description

Returns the data type of the item or activity attribute. See: Attribute Types, Oracle
Workflow Developer’s Guide.

public String getFormat ()

Returns the format string for the item or activity attribute, such as the length for an
attribute of type text or the format mask for an attribute of type number or date. See: To
Define an Item Type or Activity Attribute, Oracle Workflow Developer’s Guide.

public String getValueType ()

Returns the type of the default value for the item or activity attribute. The default value
can be either a constant or, for an activity attribute, a reference to an item type attribute.
See: To Define an Item Type or Activity Attribute, Oracle Workflow Developer’s Guide.

public String toString()

Returns the internal name and the value of the item or activity attribute as a string in
the following format:

<name>=<value>

This method overrides the toString() method in the Object class.

2-84 Oracle Workflow API Reference



compareTo

Java Syntax

Description

public int compareTo
(String pValue) throws Exception

Compares the value of the item or activity attribute with the specified value.
compareTo() returns 0 if the two values are equal, -1 if the attribute value is less than the
specified value, or 1 if the attribute value is greater than the specified value.

This method throws an Exception if it cannot convert the specified value to the
appropriate format for an attribute of type number or date.

Arguments (input)

pValue The test value to compare to the attribute value.

Workflow Core APIs

PL/SQL procedures called by function activities can use a set of core Oracle Workflow
APISs to raise and catch errors.

When a PL/SQL procedure called by a function activity either raises an unhandled
exception, or returns a result beginning with 'ERROR: ', the Workflow Engine sets the
function activity's status to ERROR and sets the columns ERROR_NAME,

ERROR MESSAGE, and ERROR_STACK in the table WF_ITEM_ACTIVITY_STATUSES to
reflect the error.

The columns ERROR_NAME and ERROR_MESSAGE get set to either the values returned
by a call to WF_CORE.RAISE(), or to the SQL error name and message if no call to
RAISE() is found. The column ERROR _STACK gets set to the contents set by a call to
WEF_CORE.CONTEXT(), regardless of the error source.

Note: The columns ERROR_NAME, ERROR_MESSAGE, and

ERROR STACK are also defined as item type attributes for the System:
Error predefined item type. You can reference the information in these
columns from the error process that you associate with an activity. See:
Error Handling for Workflow Processes, Oracle Workflow Developer’s
Guide.

Oracle Workflow also provides a core API that lets you substitute HTML character
entity references for special characters in a text string, as a security precaution.

The following APIs can be called by an application program or workflow function in

Workflow Engine APIs 2-85



the runtime phase to handle error processing. These APIs are stored in the PL/SQL
package called WF_CORE.

¢ CLEAR, page 2-86

¢ GET_ERROR, page 2-86
e TOKEN, page 2-87

e RAISE, page 2-88

e CONTEXT, page 2-90

¢ TRANSLATE, page 2-92

¢ SubstituteSpecialChars, page 2-92

Related Topics

Standard API for PL/SQL Procedures Called by Function Activities, Oracle Workflow
Developer’s Guide

CLEAR
Syntax
procedure CLEAR;
Description
Clears the error buffers.
Related Topics
GET_ERROR, page 2-86
GET_ERROR
Syntax
procedure GET ERROR
(err name out varchar2,
err message out varchar?
err stack out varchar2);
Description

Returns the name of a current error message and the token substituted error message.

2-86 Oracle Workflow API Reference



Sample Code

Related Topics

TOKEN

Syntax

Description

Also clears the error stack. Returns null if there is no current error.

Example

/* Handle unexpected errors in your workflow code by raising
* WF_CORE exceptions. When calling any public Workflow API,
* include an exception handler to deal with unexpected
* errors.*/

declare
errname varchar?2 (30);
errmsg varchar2(2000) ;
errstack varchar2 (32000) ;

begin

Wf Engine.CompleteActivity (itemtype, itemkey, activity,
result code);

exception
when others then
wf core.get error(err name, err msg, err_stack);
if (err name is not null) then
wf core.clear;
-—- Wf error occurred. Signal error as appropriate.
else
-- Not a wf error. Handle otherwise.
end if;
end;

CLEAR, page 2-86

procedure TOKEN
(token name in varchar2,
token value in varchar2);

Defines an error token and substitutes it with a value. Calls to TOKEN() and RAISE()
raise predefined errors for Oracle Workflow that are stored in the WF_RESOURCES
table. The error messages contain tokens that need to be replaced with relevant values
when the error message is raised. This is an alternative to raising PL/SQL standard

exceptions or custom-defined exceptions.

Workflow Engine APIs  2-87



Arguments (input)

Related Topics

RAISE

Syntax

Description

token_name Name of the token.

token_value Value to substitute for the token.

RAISE, page 2-88
CONTEXT, page 2-90

procedure RAISE
(name in varchar2);

Raises an exception to the caller by supplying a correct error number and token
substituted message for the name of the error message provided.

Calls to TOKEN() and RAISE() raise predefined errors for Oracle Workflow that are
stored in the WF_RESOURCES table. The error messages contain tokens that need to be
replaced with relevant values when the error message is raised. This is an alternative to
raising PL/SQL standard exceptions or custom-defined exceptions.

Error messages for Oracle Workflow are initially defined in message files (.msg). The
message files are located in the $SFND_ TOP/import/<language> directory. During
the installation of Oracle Workflow, a program called Workflow Resource Generator
takes the designated message files and imports the messages into the WF_RESOURCES
table.

Note: If you want to use custom error messages, you can define your

messages in . msgq files, load them to the WF_RESOURCES table, and

then raise them using RAISE(). A custom error message must have an
error number of 90000 or higher.

Arguments (input)

name Internal name of the error message as stored in the table
WEF_RESOURCES.

2-88 Oracle Workflow API Reference



To run the Workflow Resource Generator:

1. The Workflow Resource Generator program is registered as a concurrent program.
You can run the Workflow Resource Generator (FNDWFRESGEN) concurrent
program from the Submit Requests form or from the command line.

2. To run the concurrent program from the Submit Requests form, navigate to the
Submit Requests form.

Note: Your system administrator needs to add this concurrent
program to a request security group for the responsibility that you
want to run this program from. See: Overview of Concurrent
Programs and Requests, Oracle E-Business Suite Setup Guide.

3. Submit the Workflow Resource Generator concurrent program as a request. See:
Running Reports and Programs, Oracle E-Business Suite User’s Guide.

4. In the Parameters window, enter values for the following parameters:

Destination Type Specify "Database", to upload seed data to the
database table WF_RESOURCES from a source file (
.msg), or "File", to generate a resource file from a
source file.

Destination If you specify "File" for Destination Type, then enter
the full path and name of the resource file you wish to
generate. If you specify "Database" for Destination
Type, then the program automatically uses the current
database account as its destination.

Source Specify the full path and name of your source file.

5. Choose OK to close the Parameters window.

6. When you finish modifying the print and run options for this request, choose
Submit to submit the request.

7. Rather than use the Submit Requests form, you can also run the Workflow Resource
Generator concurrent program from the command line using one of two
commands. To generate a resource file from a source file, type:

WFRESGEN apps/pwd 0 Y FILE res filesource file

To upload seed data to the database table WF_RESOURCES from a source file, type:

WFRESGEN apps/pwd 0 Y DATABASE source file

Replace apps/pwd with the username and password to the APPS schema, replace

Workflow Engine APIs  2-89



res_file with the file specification of a resource file, and replace source file
with the file specification of a source file (.msg). A file specification is specified as:

@<application short name>:[<dir>/.../]file.ext
or
<native path>
Caution: Including your password in plain text is a security risk.

You can avoid this risk by running the Workflow Resource
Generator from the Submit Requests form instead.

Related Topics
TOKEN, page 2-87
CONTEXT, page 2-90
CONTEXT
Syntax
procedure CONTEXT
(pkg name IN VARCHARZ,
proc _name IN VARCHARZ2,
argl IN VARCHAR2 DEFAULT '*none*',
arg?2 IN VARCHAR2 DEFAULT '*none*',
arg3 IN VARCHAR2 DEFAULT '*none*',
arg4 IN VARCHAR2 DEFAULT '*none*',
argb IN VARCHARZ2 DEFAULT '*none*');
Description
Adds an entry to the error stack to provide context information that helps locate the
source of an error. Use this procedure with predefined errors raised by calls to TOKEN()
and RAISE(), with custom-defined exceptions, or even without exceptions whenever an
error condition is detected.
Arguments (input)
pkg_name Name of the procedure package.
proc_name Procedure or function name.
arg1 First IN argument.
argn nth IN argument.

2-90 Oracle Workflow API Reference



Sample Code

Example

/*PL/SQL procedures called by function activities can use the
* WF _CORE APIs to raise and catch errors the same way the
* Workflow Engine does. */

package My Package is

procedure MySubFunction (
argl in varchar2,
arg2 in varchar?2)
is
begin
if (<error condition>) then
Wf Core.Token('ARGl', argl);
Wf Core.Token('ARG2', arg2);
Wf Core.Raise ('ERROR NAME') ;
end if;

exception
when others then
Wf Core.Context ('My Package', 'MySubFunction', argl, arg2);
raise;
end MySubFunction;

procedure MyFunction (
itemtype in varcharz,
itemkey in varchar2,
actid in number,
funcmode in varchar2,
result out wvarchar?2)
is
begin
begin
MySubFunction (argl, arg2);
exception
when others then
if (Wf Core.Error Name = 'ERROR NAME') then
-— This is an error I wish to ignore.
Wf Core.Clear;
else
raise;
end if;
end;

exception
when others then
Wf Core.Context ('My Package', 'MyFunction',6 itemtype, itemkey,
to_char (actid), funcmode);
raise;
end MyFunction;

Workflow Engine APIs  2-91



Related Topics

TOKEN, page 2-87
RAISE, page 2-88

TRANSLATE
Syntax
function TRANSLATE
(tkn _name IN VARCHAR2)
return VARCHAR2;
Description
Translates the string value of a token by returning the value for the token as defined in
WF_RESOURCES for your language setting.
Arguments (input)
tkn_name Token name.
SubstituteSpecialChars
PL/SQL Syntax
function SubstituteSpecialChars
(some text in varchar2)
return varchar?2;
Pragmas
pragma RESTRICT REFERENCES (SubstituteSpecialChars,WNDS) ;
Description

Substitutes HTML character entity references for special characters in a text string and
returns the modified text including the substitutions.

You can use this function as a security precaution when creating a PL/SQL document or
a PL/SQL CLOB document that contains HTML, to ensure that only the HTML code
you intend to include is executed. If you retrieve any data from the database at runtime
for inclusion in the document, use SubstituteSpecialChars() to replace any HTML tag
characters in that data, so that those characters will not be interpreted as HTML code
and executed.

Note that you should not substitute entity references for HTML tags that you include in
the document yourself. Otherwise, the document will not be displayed with your
intended HTML formatting. You only need to perform this substitution for data that is

2-92 Oracle Workflow API Reference



retrieved from the database at runtime, which may be entered from an external source.

The following table shows each special character and the entity reference with which it
is replaced.

Entity Reference Replacements for Special Characters

Character Entity Reference
< &lt;
> &gt;
\ &#92;
& &amp;
! &quot;
' &#39;
Arguments (input)
some_text The text string in which you want to replace special
characters.

Workflow Purge APIs

The following APIs can be called by an application program or workflow function in
the runtime phase to purge obsolete runtime and design data. These APIs are defined in
the PL/SQL package called WF_PURGE.

WEF_PURGE can be used to purge obsolete runtime data for completed work items,
obsolete runtime data not associated with work items, and design information for
obsolete activity versions that are no longer in use and expired ad hoc users and roles.
You may want to periodically purge this obsolete data from your system to increase
performance.

A PL/SQL variable called "persistence type'"in the WF_PURGE package defines
how most of the WF_PURGE APIs behave, with the exception of TotalPerm(). When the
variable is set to TEMP, the WF_Purge APIs only purge data associated with Temporary
item types, whose persistence, in days, has expired. The persistence type variable
is set to TEMP by default and should not be changed. If you need to purge runtime data
for item types with Permanent persistence, you should use the procedure TotalPerm().
See: Persistence Type, Oracle Workflow Developer’s Guide.

Workflow Engine APIs  2-93



Important: You cannot run any WF_PURGE API for a future end date.
By entering a future end date, you may inadvertently violate the
persistence period for Temporary item types. The WF_PURGE APIs
will display an error message if you enter a future end date.

The three most commonly used procedures are:
¢  WF_PURGE.ITEMS - purge all runtime data associated with completed items, their

processes, and notifications sent by them.

¢  WF_PURGE.ACTIVITIES - purge obsolete design versions of activities that are no
longer in use by any item.

e  WF_PURGE.TOTAL - purge both item data and activity design data.

The other auxiliary routines purge only certain tables or classes of data, and can be used
in circumstances where a full purge is not desired.

The complete list of purge APIs is as follows:

* [tems, page 2-95

* Activities, page 2-96

* Notifications, page 2-97
¢ Total, page 2-98

e TotalPERM, page 2-100

* Directory, page 2-102

Note: The AdHocDirectory() API from earlier versions of Oracle
Workflow is replaced by the Directory() APL. The current version of
Oracle Workflow still recognizes the AdHocDirectory() API for
backward compatibility, but moving forward, you should only use
the new Directory() APl where appropriate.

You can also use the "Purge Obsolete Workflow Runtime Data" concurrent program to
purge obsolete item type runtime status information. See: Purge Obsolete Workflow
Runtime Data, page 2-103.

Related Topics

Standard API for PL/SQL Procedures Called by Function Activities, Oracle Workflow
Developer’s Guide

2-94 Oracle Workflow API Reference



Purging for Performance, Oracle Workflow Administrator’s Guide

procedure Items

(itemtype in varchar2 default null,
itemkey in varchar2 default null,
enddate in date default sysdate,
docommit in boolean default TRUE,

force in boolean default FALSE,
purgesigs in pls integer default null);

Deletes all items for the specified item type, item key, and end date, including process
status information, notifications, and any comments associated with these notifications.
However, to preserve electronic signature evidence for future reference, this API by
default does not delete any notifications that required signatures or their associated
signature information. If you do not need to maintain signature evidence, you can

choose to delete signature-related information as well.

Deletes from the tables WF_NOTIFICATIONS, WF_COMMENTS,
WE_ITEM_ACTIVITY_STATUSES, WE_ITEM_ATTRIBUTE_VALUES, and WF_ITEMS,
and, if specified, from WF_DIG_SIGS.

ltems

Syntax

Description

Arguments (input)
itemtype
itemkey
enddate
docommit

Note: Oracle Workflow cannot purge work items that have circular
parent/child relationships. That is, if a parent item has a child item that
in turn is the parent of another child, and so on, a lower-level item in
the parent/child hierarchy cannot be set as the parent of a higher-level
item. To purge such items, you must first remove the parent/child
relationship by calling WF_ENGINE.SetItemParent with null values for
the parent item type and parent item key.

Item type to delete. Leave this argument null to delete all
item types.

A string generated from the application object's primary
key. The string uniquely identifies the item within an item
type. If null, the procedure purges all items in the specified
item type.

Specified date to delete up to.

Specify TRUE or FALSE to indicate whether to commit data

Workflow Engine APIs  2-95



Activities

Syntax

Description

while purging. If you want Items() to commit data as it
purges to reduce rollback size and improve performance,
specify TRUE. If you do not want to perform automatic
commits, specify FALSE. Defaults to TRUE.

Note: By default, the procedure commits
data after every 1000 records. It then
resumes purging work items with the next
subsequent begin date. In some cases, if
additional items have the same begin date
as the last item that was purged before a
commit, the procedure may not purge all
eligible items. To purge these remaining
work items, simply rerun the procedure.

force Specify TRUE or FALSE to indicate whether to delete
records for child items that have ended, even if the
corresponding parent item does not yet have an end date.
Defaults to FALSE.

purgesigs Leave this parameter null to preserve signature evidence,
including notifications that required electronic signatures
and their associated signature information. Specify 1 to
delete signature-related information. Defaults to null.

procedure Activities
(itemtype in varchar2 default null,
name in varchar?2 default null,
enddate in date default sysdate);

Deletes old design versions of eligible activities from the tables
WEF_ACTIVITY_ATTR_VALUES, WF_ACTIVITY_TRANSITIONS,
WEF_PROCESS_ACTIVITIES, WF_ACTIVITY_ATTRIBUTES_TL,
WF_ACTIVITY_ATTRIBUTES, WE_ACTIVITIES_TL, and WF_ACTIVITIES that are
associated with the specified item type, have an END_DATE less than or equal to the
specified end date, and are not referenced by an existing item as either a process or
activity.

Note: You should call Items() before calling Activities() to avoid having

2-96 Oracle Workflow API Reference



obsolete item references prevent obsolete activities from being deleted.

Arguments (input)
itemtype Item type associated with the activities you want to delete.
Leave this argument null to delete activities for all item
types.
name Internal name of activity to delete. Leave this argument
null to delete all activities for the specified item type.
enddate Specified date to delete up to.
Notifications
Syntax

Description

procedure Notifications
(itemtype in varchar2 default null,
enddate in date default sysdate,
docommit in boolean default TRUE,
purgesigs in pls_integer default null);

Deletes old eligible notifications that are associated with the specified item type, have
an END_DATE less than or equal to the specified end date, and are not referenced by an
existing item. Any comments associated with these notifications are deleted as well.

However, to preserve electronic signature evidence for future reference, this API by
default does not delete any notifications that required signatures or their associated
signature information. If you do not need to maintain signature evidence, you can
choose to delete signature-related information as well.

Deletes from the tables WF_NOTIFICATIONS, WF_NOTIFICATION_ATTRIBUTES,
and WF_COMMENTS, and, if specified, from WF_DIG_SIGS.

You can use this procedure to delete notifications that are not associated with any work
item, such as notifications that were sent by calling WF_NOTIFICATION.Send() rather
than through a workflow process.

Note: You should call Items() before calling Notifications() to avoid
having obsolete item references prevent obsolete notifications from
being deleted.

Workflow Engine APIs  2-97



Arguments (input)

itemtype Item type associated with the notifications you want to
delete. Leave this argument null to delete notifications for
all item types.

enddate Specified date to delete up to.

docommit Specify TRUE or FALSE to indicate whether to commit data

while purging. If you want Notifications() to commit data as
it purges to reduce rollback size and improve performance,
specify TRUE. If you do not want to perform automatic
commiits, specify FALSE. Defaults to TRUE.

purgesigs Leave this parameter null to preserve signature evidence,
including notifications that required electronic signatures
and their associated signature information. Specify 1 to
delete signature-related information. Defaults to null.

Total

Syntax

procedure Total
(itemtype in varchar2 default null,
itemkey in varchar2 default null,
enddate in date default sysdate,
docommit in boolean default TRUE,
runtimeonly in boolean default null,
purgesigs in pls integer default null);

Description

Deletes all eligible obsolete runtime item type data that is associated with the specified
item type and has an END_DATE less than or equal to the specified end date. If the
ECX: Purge ECX data with WEF profile option is set to ¥, then this procedure also deletes
any Oracle XML Gateway transaction information associated with the items being
purged.

However, to preserve electronic signature evidence for future reference, this procedure
by default does not delete any notifications that required signatures or their associated
signature information. If you do not need to maintain signature evidence, you can
choose to delete signature-related information as well.

If the runtimeonly parameter is set to TRUE or left null, Total() deletes only runtime
data associated with work items. However, if the runtimeonly parameter is set to
FALSE, Total() also deletes these types of data:

e All eligible obsolete activity design data that is associated with the specified item

2-98 Oracle Workflow API Reference



type and has an END_DATE less than or equal to the specified end date. See:
Activities, page 2-96.

* Expired ad hoc users and roles in the Workflow local tables that are no longer in
use. See: Directory, page 2-102.

e All eligible notifications that are associated with the specified item type, have an
END_DATE less than or equal to the specified end date, and are not referenced by
an existing item. See: Notifications, page 2-97.

¢ Oracle XML Gateway transaction information that is not associated with any
existing work item, if the ECX: Purge ECX data with WF profile option is set to Y.
This information is purged using the ECX_PURGE.Purge_Items API. See: Oracle
XML Gateway User’s Guide.

Because Total() purges additional design data and runtime data not associated with
work items when you set the runt imeonly parameter to FALSE, it is more costly in
performance than Ifems(). If you want to purge a specific item key, use Items(), or set the
runtimeonly parameter to TRUE when you run Tofal() to enhance performance. Run
Total() with the runtimeonly parameter set to FALSE as part of your routine
maintenance during periods of low activity. See: Items, page 2-95.

Arguments (input)

itemtype Item type associated with the obsolete data you want to
delete. Leave this argument null to delete obsolete data for
all item types.

itemkey A string generated from the application object's primary
key. The string uniquely identifies the item within an item
type. If null, the procedure purges all items in the specified
itemtype.

enddate Specified date to delete up to.

docommit Specify TRUE or FALSE to indicate whether to commit data

while purging. If you want Total() to commit data as it
purges to reduce rollback size and improve performance,
specify TRUE. If you do not want to perform automatic
commiits, specify FALSE. Defaults to TRUE.

Note: By default, the procedure commits
data after every 1000 records. It then
resumes purging work items with the next
subsequent begin date. In some cases, if
additional items have the same begin date

Workflow Engine APIs  2-99



TotalPERM

Syntax

Description

as the last item that was purged before a
commit, the procedure may not purge all
eligible items. To purge these remaining
work items, simply rerun the procedure.

runtimeonly Specify TRUE to purge only obsolete runtime data
associated with work items, or FALSE to purge all obsolete
runtime data as well obsolete design data. Defaults to null
, which is treated as a value of TRUE.

purgesigs Leave this parameter null to preserve signature evidence,
including notifications that required electronic signatures
and their associated signature information. Specify 1 to
delete signature-related information. Defaults to null.

procedure TotalPERM
(itemtype in varchar2 default null,
itemkey in varchar2 default null,
enddate in date default sysdate,
docommit in boolean default TRUE,
runtimeonly in boolean default null,
purgesigs in pls_integer default null);

Deletes all eligible obsolete runtime data that is of persistence type 'PERM' (Permanent)
and that is associated with the specified item type and has an END_DATE less than or
equal to the specified end date. If the ECX: Purge ECX data with WF profile option is set
to Y, then this procedure also deletes any Oracle XML Gateway transaction information
associated with the items being purged.

However, to preserve electronic signature evidence for future reference, this procedure
by default does not delete any notifications that required signatures or their associated
signature information. If you do not need to maintain signature evidence, you can
choose to delete signature-related information as well.

If the runtimeonly parameter is set to TRUE or left null, TotalPERM() deletes only
runtime data associated with work items. However, if the runtimeonly parameter is
set to FALSE, TotalPERM() also deletes these types of data:

e All eligible obsolete activity design data that is associated with the specified item
type and has an END_DATE less than or equal to the specified end date. See:
Activities, page 2-96.

2-100 Oracle Workflow API Reference



e Expired ad hoc users and roles in the Workflow local tables that are no longer in
use. See: Directory, page 2-102.

¢ All eligible notifications that are associated with the specified item type, have an
END_DATE less than or equal to the specified end date, and are not referenced by
an existing item. See: Notifications, page 2-97.

® Oracle XML Gateway transaction information that is not associated with any
existing work item, if the ECX: Purge ECX data with WF profile option is set to Y.
This information is purged using the ECX_PURGE.Purge_Items APL See: Oracle
XML Gateway User's Guide.

TotalPERM() is similar to Total() except that Total PERM() deletes only items with a
persistence type of 'PERM'. See: Total, page 2-98.

Arguments (input)
itemtype

itemkey

enddate

docommit

runtimeonly

Item type associated with the obsolete runtime data you
want to delete. Leave this argument null to delete obsolete
runtime data for all item types.

A string generated from the application object's primary
key. The string uniquely identifies the item within an item
type. If null, the procedure purges all items in the specified

itemtype.
Specified date to delete up to.

Specify TRUE or FALSE to indicate whether to commit data
while purging. If you want TotalPERM() to commit data as
it purges to reduce rollback size and improve performance,
specify TRUE. If you do not want to perform automatic
commits, specify FALSE. Defaults to TRUE.

Note: By default, the procedure commits
data after every 1000 records. It then
resumes purging work items with the next
subsequent begin date. In some cases, if
additional items have the same begin date
as the last item that was purged before a
commit, the procedure may not purge all
eligible items. To purge these remaining
work items, simply rerun the procedure.

Specify TRUE to purge only obsolete runtime data
associated with work items, or FALSE to purge all obsolete

Workflow Engine APIs  2-101



Directory

Syntax

Description

runtime data as well obsolete design data. Defaults to null
, which is treated as a value of TRUE.

purgesigs Leave this parameter null to preserve signature evidence,
including notifications that required electronic signatures
and their associated signature information. Specify 1 to
delete signature-related information. Defaults to null.

procedure Directory
(end _date in date default sysdate,
orig system in varchar2 default null,
autocommit in boolean default false);

Purges all ad hoc users and roles in the WF_LOCAL_ROLES and
WF_LOCAL_USER_ROLES tables whose expiration date is less than or equal to the
specified end date and that are not referenced in any notification.

Note that although ad hoc users and roles whose expiration date has passed do not
appear in the seeded WF_USERS, WF_ROLES, and WF_USER_ROLES views, they are
not removed from the Workflow local tables until you purge them using Directory().
You should periodically purge expired ad hoc users and roles in order to improve
performance.

Note: This API does not delete ad hoc users or roles whose expiration
date is null. To ensure that ad hoc users and roles are purged in a
timely fashion after they are no longer needed, estimate how long they
should be active and specify an appropriate expiration date when you
call WF_DIRECTORY.CreateAdHocUser(),
WF_DIRECTORY.CreateAdHocRole(), or

WF_DIRECTORY .CreateAdHocRole2() to create them.

Arguments (input)

end_date Date to purge to.

orig_system Optionally specify an originating system to purge only ad
hoc users and roles associated with that system.

autocommit Specify TRUE or FALSE to indicate whether to commit data
while purging. If you want Directory() to commit data as it
purges to reduce rollback size and improve performance,

2-102 Oracle Workflow API Reference



specify TRUE. If you do not want to perform automatic
commits, specify FALSE. Defaults to FALSE.

Purge Obsolete Workflow Runtime Data Concurrent Program

You can submit the Purge Obsolete Workflow Runtime Data concurrent program to
purge obsolete runtime work item information, including status information, any
associated notifications, and, if the ECX: Purge ECX data with WF profile option is set
to Y, any associated Oracle XML Gateway transactions. Use the Submit Requests form
in Oracle E-Business Suite to submit this concurrent program.

By default, this program purges obsolete runtime information associated with work
items as well as obsolete design information, such as activities that are no longer in use
and expired ad hoc users and roles, and obsolete runtime information not associated
with work items, such as notifications that were not handled through a workflow
process and, if the ECX: Purge ECX data with WF profile option is set to Y, Oracle XML
Gateway transactions that were not handled through a workflow process. You can
optionally choose to purge only core runtime information associated with work items
for performance gain during periods of high activity, and purge all obsolete information
as part of your routine maintenance during periods of low activity.

To preserve electronic signature evidence for future reference, this program by default
does not delete any notifications that required signatures or their associated signature
information. If you do not need to maintain signature evidence, you can choose to
delete signature-related information as well.

Note: This program does not delete ad hoc users or roles whose
expiration date is null. To ensure that ad hoc users and roles are purged
in a timely fashion after they are no longer needed, estimate how long
they should be active and specify an appropriate expiration date when
you call WF_DIRECTORY.CreateAdHocUser(),
WF_DIRECTORY.CreateAdHocRole(), or

WF_DIRECTORY .CreateAdHocRole2() to create them.

Note: You can also use the Oracle Workflow Manager component of
Oracle Applications Manager to submit and manage the Purge
Obsolete Workflow Runtime Data concurrent program. See: Purging
Workflow Data, Oracle Workflow Administrator’s Guide.

Additionally, you can use the Purge Obsolete ECX Data concurrent
program to purge Oracle XML Gateway transactions according to
Oracle XML Gateway-specific parameters. For information about this
program and about the ECX: Purge ECX data with WEF profile option,
see: Purge Obsolete ECX Data Concurrent Program, Oracle XML
Gateway User’s Guide and Purge Obsolete Workflow Runtime Data

Workflow Engine APIs  2-103



Concurrent Program, Oracle XML Gateway User’s Guide.

To Purge Obsolete Workflow Runtime Data:

1.

Navigate to the Submit Requests form in Oracle E-Business Suite to submit the
Purge Obsolete Workflow Runtime Data concurrent program. When you install and
set up Oracle E-Business Suite and Oracle Workflow, your system administrator
needs to add this concurrent program to a request security group for the
responsibility that you want to run this program from. The executable name for this
concurrent program is "Oracle Workflow Purge Obsolete Data" and its short name
is FNDWFPR. See: Overview of Concurrent Programs and Requests, Oracle E-Business
Suite Setup Guide.

Submit the Purge Obsolete Workflow Runtime Data concurrent program as a
request. See: Running Reports and Programs, Oracle E-Business Suite User’s Guide.

In the Parameters window, enter values for the following parameters:

Item Type Item type associated with the obsolete runtime data
you want to delete. Leave this argument null to delete
obsolete runtime data for all item types.

Item Key A string generated from the application object's
primary key. The string uniquely identifies the item
within an item type. If null, the program purges all
items in the specified item type.

Age Minimum age of data to purge, in days, if the
persistence type is set to 'Temporary'. The default is 0.

Persistence Type Persistence type to be purged, either 'Temporary' or'
Permanent'. The defaultis 'Temporary'.

Core Workflow Only Enter 'Y' to purge only obsolete runtime data associated
with work items, or 'N' to purge all obsolete runtime
data as well obsolete design data. The default is 'N'.

Commit Frequency The number of records to purge before the program
commits data. To reduce rollback size and improve
performance, set this parameter to commit data after a
smaller number of records. The default is 500 records.

Note: After performing a commit, the
program resumes purging work items
with the next subsequent begin date.

2-104 Oracle Workflow API Reference



In some cases, if additional items have
the same begin date as the last item
that was purged before a commit, the
program may not purge all eligible
items. To purge these remaining work
items, simply rerun the program.

Signed Notifications Enter 'N' to preserve signature evidence, including
notifications that required electronic signatures and
their associated signature information. Enter 'Y' to
purge signature-related information. The default is 'N".

4. Choose OK to close the Parameters window.

5.  When you finish modifying the print and run options for this request, choose
Submit to submit the request.

Workflow Monitor APls

Call the following APIs to retrieve an access key or to generate a complete URL to
access various pages of the administrator version of the Status Monitor with guest
access. The Workflow Monitor APIs are defined in the PL/SQL package called
WE_MONITOR.

*  GetAccessKey, page 2-106
¢ GetDiagramURL, page 2-106
¢ GetEnvelopeURL, page 2-107

¢ GetAdvancedEnvelopeURL, page 2-108

Note: The GetURL API from earlier versions of Oracle Workflow is
replaced by the GetEnvelopeURL and GetDiagramURL APIs. The
functionality of the previous GetURL API correlates directly with the
new GetDiagramURL. APL The current version of Oracle Workflow
still recognizes the GetURL API, but moving forward, you should only
use the two new APIs where appropriate.

Note: Oracle Workflow also provides Java methods for accessing the
Status Monitor which are defined in the Java class called
oracle.apps.fnd.wf.monitor.webui.Monitor.

Workflow Engine APIs  2-105



Related Topics

Providing Access to the Status Monitor from Applications, Oracle Workflow
Administrator’s Guide

Guest Access in PL/SQL, Oracle Workflow Administrator's Guide

GetAccessKey

Syntax

function GetAccessKey
(x_item type varchar2,
x item key varchar2,
x_admin mode varchar2)
return varchar?2;

Description
Retrieves the access key password that controls access to the Workflow Monitor. Each
process instance has separate access keys for running the Workflow Monitor in
'ADMIN' mode or 'USER' mode.
Arguments (input)
x_item_type A valid item type.
x_item_key A string generated from the application object's primary
key. The string uniquely identifies the item within an item
type. The item type and key together identify the process to
report on.
x_admin_mode A value of YES or NO. YES directs the function to retrieve
the access key password that runs the monitor in '"ADMIN'
mode. NO retrieves the access key password that runs the
monitor in 'USER' mode.
GetDiagramURL
Syntax

function GetDiagramURL
(x_agent in varchar2,
X item type in varchar2,
x item key in varchar2,
x_admin mode in varchar2 default 'NO'")
return varchar?2;

2-106 Oracle Workflow API Reference



Description

Can be called by an application to return a URL that allows access to the Status
Diagram page in the Status Monitor with guest access. The URL displays the Status
Diagram page for a specific instance of a workflow process in the administrator version
of the Status Monitor, operating either with or without administrator privileges.

Arguments (input)
x_agent This parameter is no longer used. Set this parameter to
null.
x_item_type A valid item type.
x_item_key A string generated from the application object's primary
key. The string uniquely identifies the item within an item
type. The item type and key together identify the process to
report on.
x_admin_mode A value of YES or NO. YES directs the function to grant
administrator privileges to the user accessing the Status
Monitor. NO directs the function to withhold administrator
privileges from the user accessing the Status Monitor.
Sample Code
Example

Following is an example of how you can call GetDiagramUrl(). This example returns a
URL that displays the diagram page for a process instance identified by the item type
WEFDEMO and item key 10022, in 'USER' mode or without administrator privileges:

URL := WF_MONITOR.GetDiagramURL
(null,
'"WFDEMO',
'10022",
'NO") ;

GetEnvelopeURL

Syntax

function GetEnvelopeURL
(x_agent in varchar2,
x item type in varchar2,
x item key in varchar2,
x_admin mode in varchar2 default 'NO'")
return varchar?2;

Workflow Engine APIs  2-107



Description

Can be called by an application to return a URL that allows access to the Monitor
Responses page in the Status Monitor with guest access. The URL displays the Monitor
Responses page for a specific instance of a workflow process in the administrator
version of the Status Monitor, operating either with or without administrator privileges.

Arguments (input)

x_agent This parameter is no longer used. Set this parameter to
null.

x_item_type A valid item type.

x_item_key A string generated from the application object's primary
key. The string uniquely identifies the item within an item
type. The item type and key together identify the process to
report on.

x_admin_mode A value of YES or NO. YES directs the function to grant

administrator privileges to the user accessing the Status
Monitor. NO directs the function to withhold administrator
privileges from the user accessing the Status Monitor.

GetAdvancedEnvelopeURL

Syntax
function GetAdvancedEnvelopeURL
(x_agent in varchar2,
X item type in varchar2,
x item key in varchar2,
x_admin mode in varchar2 default 'NO',
x options in varchar2 default null)
return varchar?2;
Description
Can be called by an application to return a URL that allows access to the Activity
History page in the Status Monitor with guest access. The URL displays the Activity
History page for a specific instance of a workflow process in the administrator version
of the Status Monitor, operating either with or without administrator privileges. All
activity type and activity status filtering options are automatically selected by default.
Arguments (input)
x_agent This parameter is no longer used. Set this parameter to
null.

2-108 Oracle Workflow API Reference



x_item_type A valid item type.

x_item_key A string generated from the application object's primary
key. The string uniquely identifies the item within an item
type. The item type and key together identify the process to
report on.

x_admin_mode A value of YES or NO. YES directs the function to grant
administrator privileges to the user accessing the Status
Monitor. NO directs the function to withhold administrator
privileges from the user accessing the Status Monitor.

x_options This parameter is no longer used. When you access the
Status Monitor with a URL from GetAdvancedEnvelopeURL()
, all filtering options are always selected by default.

Workflow Status Monitor APls

Call the following APIs to retrieve parameters for use with the self-service functions
that provide access to the Status Monitor from Oracle E-Business Suite forms. You can
use these APIs to help integrate other applications with the Status Monitor.

The Workflow Status Monitor PL/SQL APIs are defined in the PL/SQL package called
WE_FWKMON.

*  GetEncryptedAccessKey, page 2-109
* GetEncrypted AdminMode, page 2-110

¢ IsMonitorAdministrator, page 2-111

Related Topics

Providing Access to the Status Monitor from Applications, Oracle Workflow
Administrator’s Guide

Guest Access from Oracle E-Business Suite Forms, Oracle Workflow Administrator's Guide

GetEncryptedAccessKey

PL/SQL Syntax

function GetEncryptedAccessKey
(itemType in wvarchar2z,
itemKey in varchar2,
adminMode in varchar2 default 'N')
return varchar?2;

Workflow Engine APIs  2-109



Description

Returns an encrypted access key password that controls access to the specified
workflow process instance in the Status Monitor with the specified administrator mode.
The administrator mode lets you determine whether the user who accesses the Status
Monitor with this access key should have privileges to perform administrative
operations in the Status Monitor.

Arguments (input)
itemType A valid workflow item type.
itemKey A string generated from the application object's primary
key. The string uniquely identifies the item within an item
type. The item type and key together identify the workflow
process.
adminMode Specify 'Y' to grant administrator privileges to the user
accessing the Status Monitor, or 'N' to withhold
administrator privileges from the user. The defaultis 'N'.
GetEncryptedAdminMode
PL/SQL Syntax

Description

function GetEncryptedAdminMode
(adminMode in varchar?)
return varchar?2;

Returns an encrypted value for the specified administrator mode. The administrator
mode lets you determine whether a user accessing the Status Monitor should have
privileges to perform administrative operations in the Status Monitor.

Arguments (input)

adminMode Specify 'Y' to grant administrator privileges to the user
accessing the Status Monitor, or 'N' to withhold
administrator privileges from the user. The defaultis 'N'.

2-110 Oracle Workflow API Reference



IsMonitorAdministrator

PL/SQL Syntax
function IsMonitorAdministrator
(userName in varchar?)
return varchar?2;
Description

Returns 'Y if the specified user has workflow administrator privileges, or 'N' if the
specified user does not have workflow administrator privileges. Workflow
administrator privileges are assigned in the Workflow Configuration page. See: Setting
Global User Preferences, Oracle Workflow Administrator’s Guide.

For example, you can use this function to help determine what administrator mode to
choose when calling GetEncrypted AccesKey() or GetEncrypted AdminMode() to retrieve
parameters for use with the Status Monitor form functions.

Arguments (input)

userName A valid user name.

Oracle Workflow Views

Public views are available for accessing workflow data. These views are installed in the
APPS account.

e WF_ITEM_ACTIVITY_STATUSES_V, page 2-111
e WF_NOTIFICATION_ATTR_RESP_V, page 2-113
e WF_RUNNABLE_PROCESSES_V, page 2-114

e WF_ITEMS_V, page 2-115

Note: These database views are public, meaning they are available for
you to use for your custom data requirements. This description does
not mean that any privileges for these views have been granted to
PUBLIC.

WF_ITEM_ACTIVITY_STATUSES_V

This view contains denormalized information about a workflow process and its
activities' statuses. Use this view to create custom queries and reports on the status of a
particular item or process.

Workflow Engine APIs  2-111



The following table describes the columns of the view.

WF_ITEM_ACTIVITY_STATUSES_V Columns

Name Null? Type

ROWID ROWID
SOURCE CHAR(1)
ITEM_TYPE VARCHAR2(8)
ITEM_TYPE_DISPLAY_NAM VARCHAR2(80)
E

ITEM_TYPE_DESCRIPTION VARCHAR2(240)
ITEM_KEY VARCHAR2(240)
USER_KEY VARCHAR2(240)
ITEM_BEGIN_DATE DATE
ITEM_END_DATE DATE
ACTIVITY_ID NUMBER
ACTIVITY_LABEL VARCHAR2(30)
ACTIVITY_NAME VARCHAR2(30)
ACTIVITY_DISPLAY_NAME VARCHAR2(80)
ACTIVITY_DESCRIPTION VARCHAR2(240)
ACTIVITY_TYPE_CODE VARCHAR2(8)
ACTIVITY_TYPE_DISPLAY_ VARCHAR2(80)
NAME

EXECUTION_TIME NUMBER
ACTIVITY_BEGIN_DATE DATE

2-112 Oracle Workflow API Reference



Name Null? Type
ACTIVITY_END_DATE DATE
ACTIVITY_STATUS_CODE VARCHAR2(8)
ACTIVITY_STATUS_DISPLA VARCHAR2(80)
Y_NAME

ACTIVITY_RESULT_CODE VARCHAR2(30)
ACTIVITY_RESULT_DISPLA VARCHAR2(4000)
Y_NAME

ASSIGNED_USER VARCHAR2(30)
ASSIGNED_USER_DISPLAY VARCHAR2(4000)
_NAME

NOTIFICATION_ID NUMBER
OUTBOUND_QUEUE_ID RAW(16)
ERROR_NAME VARCHAR2(30)
ERROR_MESSAGE VARCHAR2(2000)
ERROR_STACK VARCHAR2(4000)

Note: The item key for a process instance can only contain single-byte

characters. It cannot contain a multibyte value.

WF_NOTIFICATION_ATTR_RESP_V

This view contains information about the Respond message attributes for a notification
group. If you plan to create a custom voting activity, use this view to create the function
that tallies the responses from the users in the notification group. See: Voting Activity,
Oracle Workflow Developer’s Guide.

The following table describes the columns of the view.

Workflow Engine APIs  2-113



WF_NOTIFICATION_ATTR_RESP_V Columns

Name Null? Type

GROUP_ID NOT NULL NUMBER
RECIPIENT_ROLE NOT NULL VARCHAR2(30)
RECIPIENT_ROLE_DISPLAY VARCHAR2(4000)
_NAME

ATTRIBUTE_NAME NOT NULL VARCHAR2(30)
ATTRIBUTE_DISPLAY_NA NOT NULL VARCHAR2(80)
ME

ATTRIBUTE_VALUE VARCHAR2(2000)
ATTRIBUTE_DISPLAY_VAL VARCHAR2(4000)
UE

MESSAGE_TYPE NOT NULL VARCHAR2(8)
MESSAGE_NAME NOT NULL VARCHAR2(30)

WF_RUNNABLE_PROCESSES_V

This view contains a list of all runnable workflow processes in the ACTIVITIES table.

The following table describes the columns of the view.

WF_RUNNABLE_PROCESSES_V Columns

Name Null? Type
ITEM_TYPE NOT NULL VARCHAR2(8)
PROCESS_NAME NOT NULL VARCHAR2(30)
DISPLAY_NAME NOT NULL VARCHAR2(80)

2-114 Oracle Workflow API Reference



WF_ITEMS_V

This view is a select-only version of the WF_ITEMS table.

The following table describes the columns of the view.

WF_ITEMS_V Columns

Name Null? Type
ITEM_TYPE NOT NULL VARCHAR2(8)
ITEM_KEY NOT NULL VARCHAR2(240)
USER_KEY VARCHAR2(240)
ROOT_ACTIVITY NOT NULL VARCHAR2(30)
ROOT_ACTIVITY_VERSION NOT NULL NUMBER
OWNER_ROLE VARCHAR2(30)
PARENT_ITEM_TYPE VARCHAR2(8)
PARENT_ITEM_KEY VARCHAR2(240)
PARENT_CONTEXT VARCHAR2(2000)
BEGIN_DATE NOT NULL DATE
END_DATE DATE

Note: The item key for a process instance can only contain single-byte

characters. It cannot contain a multibyte value.

Workflow Engine APIs  2-115






3

Directory Service APIs

This chapter describes the APIs for the Oracle Workflow directory service. The APIs
include PL/SQL functions and procedures that you can use to access the directory
service.

This chapter covers the following topics:

Workflow Directory Service APIs
Workflow LDAP APIs

Workflow Local Synchronization APlIs
Workflow Role Hierarchy APIs
Workflow Preferences API

Workflow Directory Service APls

The following APIs can be called by an application program or a workflow function in
the runtime phase to retrieve information about existing users and roles, as well as
create and manage new ad hoc users and roles in the directory service. These APIs are
defined in a PL/SQL package called WF_DIRECTORY.

GetRoleUsers, page 3-3
GetUserRoles, page 3-3
GetRolelnfo, page 3-4
GetRolelnfo2, page 3-5
IsPerformer, page 3-6
UserActive, page 3-7

GetUserName, page 3-7

Directory Service APls  3-1



* GetRoleName, page 3-8

* GetRoleDisplayName, page 3-8

¢ GetRoleDisplayName2, page 3-8

* CreateAdHocUser, page 3-9

¢ CreateAdHocRole, page 3-11

* CreateAdHocRole2, page 3-13

e AddUsersToAdHocRole, page 3-15
e AddUsersToAdHocRole2, page 3-16
* RemoveUsersFromAdHocRole, page 3-16
¢ SetAdHocUserStatus, page 3-17

e SetAdHocRoleStatus, page 3-17

e SetAdHocUserExpiration, page 3-18
¢ SetAdHocRoleExpiration, page 3-18
¢ SetAdHocUserAttr, page 3-19

e SetAdHocRoleAttr, page 3-20

e ChangeLocalUserName, page 3-21

¢ IsMLSEnabled, page 3-22

Important: If you implement Oracle Internet Directory integration, you
must maintain your users only through Oracle Internet Directory. You
must not create ad hoc users in the WF_LOCAL_ROLES table, because
you risk discrepancies in your user information and unpredictable
results if you use any tool other than Oracle Internet Directory to
maintain users after integrating with Oracle Internet Directory.
Consequently, if you implement Oracle Internet Directory integration,
you must not use the CreateAdHocUser(), SetAdHocUserStatus(),
SetAdHocUserExpiration(), or SetAdHocUserAttr() APIs in the
WEF_DIRECTORY package.

You can still use ad hoc roles, however, since Workflow roles are not
maintained through Oracle Internet Directory.

3-2 Oracle Workflow API| Reference



Some directory service APIs use PL/SQL table composite datatypes defined in the
WF_DIRECTORY package. The following table shows the column datatype definition
for each PL/SQL table type.

PL/SQL Table Types in WF_DIRECTORY

PL/SQL Table Type Column Datatype Definition
UserTable varchar2(320)
RoleTable varchar2(320)

Related Topics

Standard API for PL/SQL Procedures Called by Function Activities, Oracle Workflow
Developer's Guide

GetRoleUsers

Syntax

procedure GetRoleUsers
(role in varchar2,
users out wF DIRECTORY.UserTable);

Description
Returns a table of users for a given role.
Note: A role can contain only individual users as its members. It cannot
contain another role.
Arguments (input)

role A valid role name.

GetUserRoles

Syntax

procedure GetUserRoles
(user in varcharz,
roles out WF DIRECTORY.RoleTable) ;

Directory Service APls  3-3



Description

Returns a table of roles that a given user is assigned to.

Arguments (input)

user A valid username.
GetRolelnfo
Syntax

procedure GetRoleInfo
(Role in wvarchar2,
Display Name out varchar2,
Email Address out varchar2Z,
Notification Preference out varchar2,
Language out varchar2,
Territory out varchar?2);

Description
Returns the following information about a role:
e Display name
* E-mail address
e Notification Preference (' QUERY', 'MAILTEXT', '"MAILHTML', 'MAILATTH',
'"MAILHTM2', 'DISABLED', 'SUMMARY', or ' SUMHTML")
¢ Language
e Territory
Note: For roles that are Oracle E-Business Suite users marked with an
originating system of FND_USR or PER, the GetRolelnfo() procedure by
default retrieves the language and territory values from the ICX:
Language and ICX: Territory profile options for that Oracle E-Business
Suite user.
However, if the WF PREFERENCE resource token is defined and set to
FND, then the GetRolelnfo() procedure obtains the language and territory
values from the Oracle Workflow preferences table instead.
Arguments (input)

role A valid role name.

3-4 Oracle Workflow API| Reference



GetRolelnfo2

Syntax

Description

procedure GetRoleInfo2
(Role in wvarchar2,
Role Info Tbl out wf directory.wf local roles tbl type);

Returns the following information about a role in a PL/SQL table:

¢ Name
e Display name
* Description

* Notification preference (' QUERY', 'MAILTEXT', 'MAILHTML', 'MAILATTH"',
'"MAILHTM2', 'DISABLED', 'SUMMARY ', or ' SUMHTML"')

¢ E-mail address

e Tax

* Status

¢ Expiration date

¢ Originating system

e Originating system ID

¢ Parent originating system

e Parent originating system ID
¢ Owner tag

e NLS parameters, including language, territory, date format, date language,
calendar, numeric characters, sort, and currency

e Standard Who columns
Note: For roles that are Oracle E-Business Suite users marked with an

originating system of FND_USR or PER, the GetRolelnfo2() procedure by
default retrieves the language and territory values from the ICX:

Directory Service APIs



Language and ICX: Territory profile options for that Oracle E-Business
Suite user.

However, if the WF PREFERENCE resource token is defined and set to
FND, then the GetRolelnfo2() procedure obtains the language and
territory values from the Oracle Workflow preferences table instead.

Additionally, for roles that are Oracle E-Business Suite users marked
with an originating system of FND USR or PER, the GetRolelnfo2()
procedure obtains the remaining NLS parameters from the following
profile options:

e Date format - ICX: Date format mask profile option

¢ Date language - ICX: Date language profile option

¢ (Calendar - FND: Forms User Calendar profile option

¢ Numeric characters - ICX: Numeric characters profile option
e Sort - ICX: NLS Sort profile option

® Currency - ICX: Preferred Currency profile option

For roles that are not Oracle E-Business Suite users, the procedure
returns the language and territory values from the Oracle Workflow
directory service and the remaining NLS parameters from the default
system-level values.

Arguments (input)

role A valid role name.
IsPerformer
Syntax

function IsPerformer
(user in varchar2,
role in varchar?2)
return boolean;

Description

Returns TRUE or FALSE to identify whether a user is a performer, also known as a
member, of a role.

3-6 Oracle Workflow API| Reference



Arguments (input)

user A valid username.

role A valid role name.

UserActive
Syntax
function UserActive
(username in varchar?)
return boolean;
Description
Determines if a user currently has a status of 'ACTIVE' and is available to participate
in a workflow. Returns TRUE if the user has a status of ' ACTIVE ', otherwise it returns
FALSE.
Arguments (input)
username A valid username.
GetUserName
Syntax
procedure GetUserName
(p_orig system in varchar2,
p_orig system id in varchar2,
p name out varchar2,
p_display name out varchar2);
Description
Returns a Workflow display name and username for a user given the system
information from the original user and roles repository.
Arguments (input)
p_orig_system Code that identifies the original repository table.
p_orig_system_id ID of a row in the original repository table.

Directory Service APls  3-7



GetRoleName

Syntax
procedure GetRoleName
(p_orig system in varchar2,
p _orig system id in varchar2,
p_name out varchar2,
p_display name out varchar2);
Description
Returns a Workflow display name and role name for a role given the system
information from the original user and roles repository.
Arguments (input)
p_orig_system Code that identifies the original repository table.
p_orig_system_id ID of a row in the original repository table.
GetRoleDisplayName
Syntax
function GetRoleDisplayName
(p_role name in varchar2)
return varchar2;
pragma restrict references (GetRoleDisplayName, WNDS, WNPS);
Description
Returns an active Workflow role's display name given the role's internal name.
Arguments (input)
p_role_name The internal name of the role.
GetRoleDisplayName2
Syntax

function GetRoleDisplayName?2
(p_role name in varchar2)
return varchar?2;
pragma restrict references (GetRoleDisplayName2, WNDS, WNPS);

3-8 Oracle Workflow API| Reference



Description

Returns a Workflow role's display name given the role's internal name, whether the role
is active or inactive. GetRoleDisplayName2() is similar to GetRoleDisplayName() except
that GetRoleDisplayName() returns information only for currently active roles, while
GetRoleDisplayName2() can return information for both active and inactive roles

Arguments (input)

p_role_name

CreateAdHocUser

Syntax

The internal name of the role.

procedure CreateAdHocUser

(name in out wvarchar?,

display name in out varchar2,

language in varchar2 default null,

territory in varchar2 default null,
description in varchar2 default null,
notification preference in varchar2 default 'MAILHTML',
email address in varchar2 default null,

fax in varchar?2 default null,

status in varchar2 default 'ACTIVE',
expiration date in date default null,
parent orig system in varchar2 default null,
parent orig system id in number default null);

Description

Creates a user at runtime by creating a value in the WF_LOCAL_ROLES table with the
user flag set to Y. This is referred to as an ad hoc user.

Arguments (input)

name

Note: The Oracle Workflow purge APIs do not delete ad hoc users
whose expiration date is null. To ensure that ad hoc users are purged in
a timely fashion after they are no longer needed, estimate how long
they should be active and specify an appropriate expiration date when
you call WF_DIRECTORY .CreateAdHocUser().

An internal name for the user. The internal name must be
no longer than 320 characters. It is recommended that the
internal name be all uppercase. This procedure checks that
the name provided does not already exist in WF_USERS
and returns an error if the name already exists. If you do
not provide an internal name, the system generates an

Directory Service APls  3-9



display_name

language

territory

description

notification_preference

email_address
fax

status

expiration_date

parent_orig_system

parent_orig_system_id

3-10 Oracle Workflow AP| Reference

internal name for you where the name contains a prefix of '
~WF_ADHOC-' followed by a sequence number.

The display name of the user. This procedure checks that
the display name provided does not already exist in
WE_USERS and returns an error if the display name
already exists. If you do not provide a display name, the
system generates one for you where the display name
contains a prefix of '~WF_ADHOC-' followed by a sequence
number.

The value of the database NLS LANGUAGE initialization
parameter that specifies the default language-dependent
behavior of the user's notification session. If null, the
procedure resolves this to the language setting of your
current session.

The value of the database NLS TERRITORY initialization
parameter that specifies the default territory-dependent
date and numeric formatting used in the user's notification
session. If null, the procedure resolves this to the territory
setting of your current session.

An optional description for the user.

Indicate how this user prefers to receive notifications:
'MAILTEXT', "MAILHTML', 'MAILATTH', '"MAILHTM2',
"QUERY', 'SUMMARY', or ' SUMHTML'. If null, the
procedure sets the notification preference to 'MAILHTML'.

A optional electronic mail address for this user.
An optional fax number for the user.

The availability of the user to participate in a workflow
process. The possible statuses are 'ACTIVE', 'EXTLEAVE'
, "INACTIVE', and 'TMPLEAVE'. If null, the procedure
sets the status to ' ACTIVE'.

The date at which the user is no longer valid in the
directory service.

An optional code for the originating system of an entity
that you want to mark as being related to this user.

The primary key that identifies the parent entity in the
parent originating system.



Related Topics

Setting Up an Oracle Workflow Directory Service, Oracle Workflow Administrator’s Guide

CreateAdHocRole

Syntax

procedure CreateAdHocRole

Description

(role name in out varchar2,

role display name in out varchar2,

language in varchar2 default null,

territory in varchar2 default null,

role description in varchar2 default null,
notification preference in varchar2 default 'MAILHTML',
role users in varchar2 default null,

email address in varchar2 default null,

fax in varchar?2 default null,

status in varchar2 default 'ACTIVE',
expiration date in date default null,
parent orig system in varchar2 default null,
parent orig system id in number default null,
owner tag in varchar2 default null);

Creates a role at runtime by creating a value in the WF_LOCAL_ROLES table with the
user flag set to N. This is referred to as an ad hoc role.

Arguments (input)

Note: A role can contain only individual users as its members. It cannot
contain another role.

Note: The Oracle Workflow purge APIs do not delete ad hoc roles
whose expiration date is null. To ensure that ad hoc roles are purged in
a timely fashion after they are no longer needed, estimate how long
they should be active and specify an appropriate expiration date when
you call WF_DIRECTORY.CreateAdHocRole().

role_name An internal name for the role. The internal name must be

no longer than 320 characters. It is recommended that the
internal name be all uppercase. This procedure checks that
the name provided does not already exist in WF_ROLES
and returns an error if the name already exists. If you do
not provide an internal name, the system generates an
internal name for you where the name contains a prefix of '
~WF_ADHOC-' followed by a sequence number.

Directory Service APls  3-11



role_display_name

language

territory

role_description

notification_preference

role_users

email_address

fax

status

expiration_date

parent_orig_system

parent_orig_system_id

3-12 Oracle Workflow AP| Reference

The display name of the role. This procedure checks that
the display name provided does not already exist in
WEF_ROLES and returns an error if the display name
already exists. If you do not provide a display name, the
system generates one for you where the display name
contains a prefix of '~WF_ ADHOC-' followed by a sequence
number.

The value of the database NL.S LANGUAGE initialization
parameter that specifies the default language-dependent
behavior of the user's notification session. If null, the
procedure resolves this to the language setting of your
current session.

The value of the database NLS TERRITORY initialization
parameter that specifies the default territory-dependent
date and numeric formatting used in the user's notification
session. If null, the procedure resolves this to the territory
setting of your current session.

An optional description for the role.

Indicate how this role receives notifications: 'MAILTEXT',
"MAILHTML', '"MAILATTH', '"MAILHTM2', 'QUERY',
"SUMMARY', or ' SUMHTML'. If null, the procedure sets the
notification preference to 'MAILHTML'.

Indicate the names of the users that belong to this role,
using commas or spaces to delimit the list.

A optional electronic mail address for this role or a mail
distribution list defined by your electronic mail system.

An optional fax number for the role.

The availability of the role to participate in a workflow
process. The possible statuses are ACTIVE, EXTLEAVE,
INACTIVE, and TMPLEAVE. If null, the procedure sets the
status to 'ACTIVE'.

The date at which the role is no longer valid in the
directory service.

An optional code for the originating system of an entity
that you want to mark as being related to this role.

The primary key that identifies the parent entity in the



parent originating system.

owner_tag A code to identify the program or application that owns the
information for this role.

Related Topics
Setting Up an Oracle Workflow Directory Service, Oracle Workflow Administrator’s Guide

CreateAdHocRole2

Syntax

procedure CreateAdHocRole2
(role name in out varchar2,
role display name in out varchar2,
language in varchar2 default null,
territory in varchar2 default null,
role description in varchar2 default null,
notification preference in varchar2 default 'MAILHTML',
role users in WF DIRECTORY.UserTable,
email address in varchar2 default null,
fax in varchar2 default null,
status in varchar2?2 default 'ACTIVE',
expiration date in date default null,
parent orig system in varchar2 default null,
parent orig system id in number default null,
owner tag in varchar?2 default null);

Description

Creates a role at runtime by creating a value in the WF_LOCAL_ROLES table with the
user flag set to N. This is referred to as an ad hoc role. CreateAdHocRole2() accepts the list
of users who belong to the role in the WF DIRECTORY . UserTable format, which lets
you include user names that contain spaces or commas.

Note: A role can contain only individual users as its members. It cannot
contain another role.

Note: The Oracle Workflow purge APIs do not delete ad hoc roles
whose expiration date is null. To ensure that ad hoc roles are purged in
a timely fashion after they are no longer needed, estimate how long
they should be active and specify an appropriate expiration date when
you call WF_DIRECTORY.CreateAdHocRole2().

Arguments (input)
role_name An internal name for the role. The internal name must be

Directory Service APls  3-13



role_display_name

language

territory

role_description

notification_preference

role_users

email_address

fax

status

3-14 Oracle Workflow AP| Reference

no longer than 320 characters. It is recommended that the
internal name be all uppercase. This procedure checks that
the name provided does not already exist in WF_ROLES
and returns an error if the name already exists. If you do
not provide an internal name, the system generates an
internal name for you where the name contains a prefix of '
~WF_ADHOC-' followed by a sequence number.

The display name of the role. This procedure checks that
the display name provided does not already exist in
WEF_ROLES and returns an error if the display name
already exists. If you do not provide a display name, the
system generates one for you where the display name
contains a prefix of '~WF_ADHOC-' followed by a sequence
number.

The value of the database NLS LANGUAGE initialization
parameter that specifies the default language-dependent
behavior of the user's notification session. If null, the
procedure resolves this to the language setting of your
current session.

The value of the database NLS TERRITORY initialization
parameter that specifies the default territory-dependent
date and numeric formatting used in the user's notification
session. If null, the procedure resolves this to the territory
setting of your current session.

An optional description for the role.

Indicate how this role receives notifications: "MAILTEXT',
'MAILHTML', "MAILATTH', "MAILHTM2', 'QUERY"',
"SUMMARY', or ' SUMHTML"'. If null, the procedure sets the
notification preference to 'MAILHTML'.

The names of the users that belong to this role, as a table in
the WF_DIRECTORY.UserTable format.

A optional electronic mail address for this role or a mail
distribution list defined by your electronic mail system.

An optional fax number for the role.

The availability of the role to participate in a workflow
process. The possible statuses are ACTIVE, EXTLEAVE,
INACTIVE, and TMPLEAVE. If null, the procedure sets the
status to 'ACTIVE'.



expiration_date The date at which the role is no longer valid in the
directory service.

parent_orig_system An optional code for the originating system of an entity
that you want to mark as being related to this role.

parent_orig_system_id The primary key that identifies the parent entity in the
parent originating system.

owner_tag A code to identify the program or application that owns the
information for this role.

Related Topics
Setting Up an Oracle Workflow Directory Service, Oracle Workflow Administrator’s Guide

AddUsersToAdHocRole

Syntax
procedure AddUsersToAdHocRole
(role name in varchar2,
role users in varchar2);

Description
Adds users to an existing ad hoc role.
Note: A role can contain only individual users as its members. It cannot
contain another role.
Arguments (input)
role_name The internal name of the ad hoc role.
role_users The list of users, delimited by spaces or commas. For
example: 'USER1,USER2,USER3"' or 'USER1 USER2
USER3'

Users can be ad hoc users or users defined in an
application, but they must already be defined in the Oracle
Workflow directory service.

Directory Service APls  3-15



AddUsersToAdHocRole2

Syntax

procedure AddUsersToAdHocRole?2
(role name in varchar2,
role users in WF_DIRECTORY.UserTable);

Description

Adds users to a existing ad hoc role. AddUsersToAdHocRole2() accepts the list of users in
the WF_DIRECTORY.UserTable format, which lets you include user names that
contain spaces or commas.

Note: A role can contain only individual users as its members. It cannot
contain another role.

Arguments (input)

role_name The internal name of the ad hoc role.

role_users The list of users, as a table in the
WE_DIRECTORY.UserTable format. Users can be ad hoc
users or users defined in an application, but they must
already be defined in the Oracle Workflow directory
service.

RemoveUsersFromAdHocRole

Syntax
procedure RemoveUsersFromAdHocRole
(role name in varchar2,
role users in varchar2 default null);
Description
Removes users from an existing ad hoc role.
Arguments (input)
role_name The internal name of the ad hoc role.
role_users List of users to remove from the ad hoc role. The users are

delimited by commas or spaces. If null, all users are
removed from the role.

3-16 Oracle Workflow AP| Reference



SetAdHocUserStatus

Syntax

procedure SetAdHocUserStatus
(user name in varchar2,
status in varchar2 default 'ACTIVE');

Description
Sets the status of an ad hoc user as 'ACTIVE' or 'INACTIVE'.

Important: If you implement Oracle Internet Directory integration, you
must maintain your users only through Oracle Internet Directory. You
must not use the SetAdHocUserStatus() API to update user information
in the WF_LOCAL_ROLES table, because you risk discrepancies in
your user information and unpredictable results if you use any tool
other than Oracle Internet Directory to maintain users after integrating
with Oracle Internet Directory.

Arguments (input)

user_name The internal name of the user.

status A status of "ACTIVE' or 'INACTIVE' to set for the user. If
null, the statusis 'ACTIVE'.

SetAdHocRoleStatus

Syntax

procedure SetAdHocRoleStatus
(role name in varchar2,
status in varchar?2 default 'ACTIVE');

Description
Sets the status of an ad hocrole as "ACTIVE' or 'INACTIVE'.

Arguments (input)

role_name The internal name of the role.

status A status of '"ACTIVE' or 'INACTIVE' to set for the role. If
null, the statusis 'ACTIVE'.

Directory Service APls  3-17



SetAdHocUserExpiration

Syntax
procedure SetAdHocUserExpiration
(user name in varchar2,
expiration date in date default sysdate);
Description
Updates the expiration date for an ad hoc user.
Note that although ad hoc users and roles whose expiration date has passed do not
appear in the seeded WF_USERS, WF_ROLES, and WF_USER_ROLES views, they are
not removed from the Workflow local tables until you purge them using Directory().
You should periodically purge expired ad hoc users and roles in order to improve
performance. See: Directory, page 2-102.
Important: If you implement Oracle Internet Directory integration, you
must maintain your users only through Oracle Internet Directory. You
must not use the SetAdHocUserExpiration() API to update user
information in the WF_LOCAL_ROLES table, because you risk
discrepancies in your user information and unpredictable results if you
use any tool other than Oracle Internet Directory to maintain users after
integrating with Oracle Internet Directory.
Arguments (input)
user_name The internal name of the ad hoc user.
expiration_date New expiration date. If null, the procedure defaults the
expiration date to sysdate.
SetAdHocRoleExpiration
Syntax
procedure SetAdHocRoleExpiration
(role name in varchar2,
expiration date in date default sysdate);
Description

Updates the expiration date for an ad hoc role.

Note that although ad hoc users and roles whose expiration date has passed do not
appear in the seeded WF_USERS, WF_ROLES, and WF_USER_ROLES views, they are

3-18 Oracle Workflow AP| Reference



not removed from the Workflow local tables until you purge them using Directory().
You should periodically purge expired ad hoc users and roles in order to improve
performance. See: Directory, page 2-102.

Arguments (input)
role_name The internal name of the ad hoc role.
expiration_date New expiration date. If null, the procedure defaults the
expiration date to sysdate.
SetAdHocUserAttr
Syntax

procedure SetAdHocUserAttr
(user name in varchar2,
display name in varchar2 default null,
notification preference in varchar2 default null,
language in varchar2 default null,
territory in varchar2 default null,
email address in varchar2 default null,
fax in varchar2 default null,
parent orig system in varchar2 default null,
parent orig system id in number default null,
owner tag in varchar2 default null);

Description
Updates the attributes for an ad hoc user.

Important: If you implement Oracle Internet Directory integration, you
must maintain your users only through Oracle Internet Directory. You
must not use the SetAdHocUserAttr() API to update user information in
the WF_LOCAL_ROLES table, because you risk discrepancies in your
user information and unpredictable results if you use any tool other
than Oracle Internet Directory to maintain users after integrating with
Oracle Internet Directory.

Arguments (input)

user_name The internal name of the ad hoc user to update.

display_name A new display name for the ad hoc user. If null, the display
name is not updated.

notification_preference A new notification preference of 'MAILTEXT',
'MAILHTML', "MAILATTH', 'MAILHTM2"', 'QUERY"',

Directory Service APls  3-19



language

territory

email_address

fax

parent_orig_system

parent_orig_system_id

owner_tag

SetAdHocRoleAttr

Syntax

'SUMMARY', or ' SUMHTML". If null, the notification
preference is not updated.

A new value of the database NLS_LANGUAGE initialization
parameter for the ad hoc user. If null, the language setting
is not updated.

A new value of the database NLS_ TERRITORY
initialization parameter for the ad hoc user. If null, the
territory setting is not updated.

A new valid electronic mail address for the ad hoc user. If
null, the electronic mail address is not updated.

A new fax number for the ad hoc user. If null, the fax
number is not updated.

An optional code for the originating system of an entity
that you want to mark as being related to this user.

The primary key that identifies the parent entity in the
parent originating system.

A code to identify the program or application that owns the
information for this user.

procedure SetAdHocRoleAttr
(role name in varchar2,
display name in varchar2 default null,
notification preference in varchar2 default null,
language in varchar2 default null,
territory in varchar2 default null,
email address in varchar2 default null,
fax in varchar2 default null,
parent orig system in varchar2 default null,
parent orig system id in number default null,
owner tag in varchar2 default null);

Description

Updates the attributes for an ad hoc role.

Arguments (input)

role_name

3-20 Oracle Workflow AP| Reference

The internal name of the ad hoc role to update.



display_name

notification_preference

language

territory

email_address

fax

parent_orig_system

parent_orig_system_id

owner_tag

ChangeLocalUserName

Syntax

Description

A new display name for the ad hoc role. If null, the display
name is not updated.

A new notification preference of 'MAILTEXT',
'"MAILHTML', "MAILATTH', 'MAILHTM2', 'QUERY"',
'SUMMARY', or 'SUMHTML . If null, the notification
preference is not updated.

A new value of the database NLS LANGUAGE initialization
parameter for the ad hoc role. If null, the language setting
is not updated.

A new value of the database NLS_TERRITORY
initialization parameter for the ad hoc role. If null, the
territory setting is not updated.

A new valid electronic mail address for the ad hoc role. If
null, the electronic mail address is not updated.

A new fax number for the ad hoc role. If null, the fax
number is not updated.

An optional code for the originating system of an entity
that you want to mark as being related to this role.

The primary key that identifies the parent entity in the
parent originating system.

A code to identify the program or application that owns the
information for this role.

function ChangeLocalUserName

(OldName in wvarcharz,
NewName in varchar2,

Propagate in boolean default TRUE)

return boolean;

Changes a user's name in the WF_LOCAL_ROLES table. Returns TRUE if the name
change completes successfully; otherwise, the API returns FALSE.

Directory Service APls  3-21



Arguments (input)

OldName The current name of the user.
NewName The new name for the user.
Propagate Specify TRUE to change all occurrences of the old user

name to the new user name.

IsMLSEnabled

Syntax

function IsMLSEnabled
(p_orig system in varchar2)
return boolean;

Description
Determines whether Multilingual Support (MLS) is enabled for the specified originating
system. Returns TRUE if MLS is enabled; otherwise the API returns FALSE.
Arguments (input)
p_orig_system A system from which directory service information
originates.

Workflow LDAP APIs

Call the following APIs to synchronize local user information in your Workflow
directory service with the users in an LDAP directory such as Oracle Internet Directory.
These APIs are defined in a PL/SQL package called WF_LDAP.

e Synch_changes, page 3-22
¢ Synch_all, page 3-23

® Schedule_changes, page 3-24

Synch_changes

Syntax

function synch changes
return boolean;

3-22 Oracle Workflow AP| Reference



Description

Related Topics

Synch_all

Syntax

Description

Related Topics

Determines whether there have been any user changes to an LDAP directory since the
last synchronization by querying the LDAP change log records; if there are any
changes, including creation, modification, and deletion, Synch_changes() stores the user
attribute information in an attribute cache and raises the
oracle.apps.global.user.change event to alert interested parties. The function
connects to the LDAP directory specified in the global workflow preferences. One event
is raised for each changed user.

If the function completes successfully, it returns TRUE; otherwise, if it encounters an
exception, it returns FALSE.

Setting Global User Preferences, Oracle Workflow Administrator’s Guide

User Entry Has Changed Event, Oracle Workflow Developer’s Guide

function synch all
return boolean;

Retrieves all users from an LDAP directory, stores the user attribute information in an
attribute cache, and raises the oracle.apps.global.user.change event to alert
interested parties. The function connects to the LDAP directory specified in the global
workflow preferences. One event is raised for each user.

Because Synch_all() retrieves information for all users stored in the LDAP directory, you
should use this function only once during setup, or as required for recovery or cleanup.
Subsequently, you can use Synch_changes() or Schedule_changes() to retrieve only
changed user information.

If the function completes successfully, it returns TRUE; otherwise, if it encounters an
exception, it returns FALSE.

Setting Global User Preferences, Oracle Workflow Administrator’s Guide
User Entry Has Changed Event, Oracle Workflow Developer’s Guide
Synch_changes, page 3-22

Schedule_changes, page 3-24

Directory Service APls  3-23



Schedule_changes

Runs the Synch_changes() AP repeatedly at the specified time interval to check for user
changes in an LDAP directory and alert interested parties of any changes. The default
interval is ten minutes. Schedule_changes() submits a database job using the DBMS_JOB

The number of days in the interval to specify how often
you want to run the Synch_changes() API. The default value

The number of hours in the interval to specify how often
you want to run the Synch_changes() API. The default value

The number of minutes in the interval to specify how often
you want to run the Synch_changes() API. The default value

Syntax
procedure schedule changes
(1 day in pls_ integer default 0,
1 hour in pls integer default O,
1 minute in pls integer default 10);
Description
utility to run Synch_changes().
Arguments (input)
|_day
is zero.
I_hour
is zero.
I_minute
is ten.
Related Topics

Synch_changes, page 3-22

Workflow Local Synchronization APIs

The following APIs can be called to synchronize user and role information stored in
application tables with the information in the Workflow local tables. These APIs are
defined in a PL/SQL package called WF_LOCAL_SYNCH.

* Propagate_User, page 3-25

* Propagate_Role, page 3-30

* PropagateUserRole, page 3-36

3-24 Oracle Workflow AP| Reference



Note: The Propagate_User_Role() API from earlier versions of Oracle
Workflow is replaced by the PropagateUserRole() APL The current
version of Oracle Workflow still recognizes the
Propagate_User_Role() API for backward compatibility, but moving
forward, you should only use the new PropagatelserRole() API
where appropriate.

Related Topics
Setting Up an Oracle Workflow Directory Service, Oracle Workflow Administrator’s Guide

Propagate_User

Syntax

procedure Propagate User
(p_orig system in varchar2,
p_orig system id in number,
p_attributes in wf parameter list t,
p_start date in date default null,
p expiration date in date default null);

Description
Synchronizes the information for a user from an application table with the
WE_LOCAL_ROLES table and marks this record as an individual user by setting the
user flag to Y. The user is identified by the specified originating system and originating
system ID. The partition ID where the user's information is stored is set automatically
depending on the originating system.

Note: Only Oracle E-Business Suite users from the FND_USER table,
Oracle Trading Community Architecture (TCA) person parties, and
TCA contacts (relationship parties) should be synchronized using
Propagate_User(). All other Oracle E-Business Suite modules should
synchronize their information using Propagate_Role().

The user information to be stored in the WF_LOCAL_ROLES table must be provided in
the WF_PARAMETER LIST T format. You can use the WF_EVENT.AddParameterToList()
API to add attributes to the list. The following table shows the attributes that should be
included in the list to populate the required columns in WF_LOCAL_ROLES. The
standard LDAP attribute names should be used for these attributes.

Directory Service APls  3-25



User Attributes

Database Column

Attribute Name

NAME

DISPLAY_NAME

DESCRIPTION

NOTIFICATION_PREFERENCE

LANGUAGE

TERRITORY

EMAIL_ADDRESS

FAX

STATUS

EXPIRATION_DATE

ORIG_SYSTEM

ORIG_SYSTEM_ID

PARENT_ORIG_SYSTEM

PARENT_ORIG_SYSTEM_ID

OWNER_TAG

PERSON_PARTY_ID

LAST_UPDATED_BY

LAST_UPDATE_DATE

LAST_UPDATE_LOGIN

[USER_NAME]

[DisplayName]

[description]

[orclWorkFlowNotificationPref]

[preferredLanguage]

[orcINLSTerritory]

[mail]

[FacsimileTelephoneNumber]

[orclIsEnabled]

[ExpirationDate]

[orclWEFOrigSystem]

[orcIWFOrigSystemID]

[orclWFParentOrigSys]

[orclWFParentOrigSysID]

[OWNER_TAG]

[PERSON_PARTY_ID]

[LAST_UPDATED_BY]

[LAST_UPDATE_DATE]

[LAST_UPDATE_LOGIN]

3-26 Oracle Workflow AP| Reference



Database Column Attribute Name

CREATED_BY [CREATED_BY]

CREATION_DATE [CREATION_DATE]

In normal operating mode, if any of these attributes except USER_NAME are not passed
in the attribute list or are null, the existing value in the corresponding field in
WF_LOCAL_ROLES remains the same. For example, if no e-mail address is passed, the
existing e-mail address for the user is retained. However, you must always pass the
USER_NAME attribute, because the Propagate_User() procedure uses this value in a
WHERE condition and will fail if the USER_NAME is not provided. Also, if the user record
does not already exist, you must pass all of the listed attributes since there are no
existing values to use.

For more robust code, you should always pass all of the listed attributes when calling
Propagate_User(). In this way you can avoid errors caused by trying to determine
dynamically which attributes to pass.

Note: If a display name is not provided in the attribute list when the
user record is first created in normal operating mode, this value is set
by default to a composite value in the format <orig system>:

<orig system ID>in the user record in WF_LOCAL_ROLES.
Additionally, if no notification preference is provided, the notification
preference for the user record is set by default to MAILHTML, and if no
status is provided, the status for the user record is set by default to
ACTIVE. If no TCA person party ID is provided, Oracle Workflow uses
a value consisting of the originating system and originating system ID
as the person party ID.

You can also call Propagate_User() in overwrite mode by including a special attribute
named WFSYNCH OVERWRITE with a value of ' TRUE'. In overwrite mode, if one of the
following attributes is not passed or is null, the procedure sets the value of the
corresponding field in WF_LOCAL_ROLES to null, deleting the previous value.

® description

® preferredlLanguage

® orclNLSTerritory

* mail

® FacsimileTelephoneNumber

® ExpirationDate

Directory Service APls  3-27



® orclWFParentOrigSys

® orclWFParentOrigSysID
e OWNER TAG

¢ LAST UPDATED BY

® LAST UPDATE DATE

e LAST UPDATE LOGIN

Consequently, when you are using overwrite mode, you must pass values for all the
attributes that you do not want to be null. Also, you must always pass the USER_NAME
attribute.

Note: The DIS PLAY NAME, NOTIFICATION PREFERENCE, STATUS,
ORIG SYSTEM, and ORIG_SYSTEM ID columns in the
WF_LOCAL_ROLES table have a NOT NULL constraint, so these
columns retain their existing values if you do not pass a value for the
corresponding attributes, even if you are using overwrite mode.

The NAME column in WF_LOCAL_ROLES also has a NOT NULL
constraint, and you cannot omit the USER_NAME attribute in any case
because it is required for the APL

Certain values, including the originating system, originating system ID, and expiration
date, can be passed both as parameters for the Propagate_User() API and as attributes
within the attribute list parameter. These values are repeated in the attribute list
because Propagate_User() sends only the attribute list to the Entity Manager that
coordinates LDAP integration, and not any of the procedure's other parameters.

* The originating system and originating system ID values that are passed as
parameters to the procedure override any originating system and originating
system ID values that are provided as attributes within the attribute list, if these
values differ.

e Likewise, if an expiration date value is passed as a parameter to the procedure, that
value overrides any expiration date value provided as an attribute within the
attribute list. However, if the p_expiration date parameter is null, the value of
the ExpirationDate attribute will be used, if one is provided. You must provide
the ExpirationDate attribute value in the following format:

to _char (<your date variable>, WF ENGINE.Date Format)

Oracle Workflow also provides three additional special attributes that you can use to
specify how the user information should be modified.

* DELETE - You can use this attribute when you want to remove a user from
availability to participate in a workflow. If you include this attribute with a value of

3-28 Oracle Workflow AP| Reference



'TRUE', the expiration date for the user in WF_LOCAL_ROLES is set to sysdate
and the status is set to INACTIVE.

Note: If you also pass a value for the p expiration date
parameter, however, that value will override the DELETE attribute.
Additionally, if the p_expiration date parameter is null but
you include the ExpirationDate attribute, that attribute value
will override the DELETE attribute. In these cases the user will
remain valid and active until the specified expiration date.

UpdateOnly - You can use this attribute for performance gain when you want to
modify information for a user for whom a record already exists in
WEF_LOCAL_ROLES. If you include this attribute with a value of ' TRUE', the
Propagate_User() API attempts to update the record directly, without first inserting
the record.

If this update attempt fails because a record does not already exist for that user, the

procedure will then insert the record. However, the initial unsuccessful attempt will
degrade performance, so you should only use the UpdateOnly attribute when you
are certain that the user record already exists in WF_LOCAL_ROLES.

WESYNCH OVERWRITE USERROLES - By default, when you propagate a change to
an existing user with the Propagate_User() API, Oracle Workflow updates only the
corresponding record in the WF_LOCAL_ROLES table. You can use the

WESYNCH OVERWRITE USERROLES attribute to specify that Oracle Workflow
should also update the standard Who columns LAST UPDATED BY,

LAST UPDATE DATE, and LAST UPDATE LOGIN for the related associations of
users and roles in the WF_LOCAL_USER_ROLES table and for the related
assignments of users to roles in the WF_USER_ROLE_ASSIGNMENTS table. In this
way you can mark the records in these tables as being affected by the change to the
user or role information if you need to do so for audit purposes.

If you want to update the standard Who columns for the related records in
WE_LOCAL_USER_ROLES and WF_USER_ROLE_ASSIGNMENTS in addition to
WF_LOCAL_ROLES, add the WFSYNCH_OVERWRITE USERROLES attribute with
the value TRUE to the attribute list that you will pass in the p_attributes
parameter for the Propagate_User() APL

Note: Ensure that you also include the [LAST UPDATED BY],
[LAST UPDATE DATE],and [LAST UPDATE LOGIN] attributes
in the list with the values you want to set. If you do not provide
values for these attributes, Oracle Workflow does not update the
standard Who columns in WF_LOCAL_USER_ROLES and
WEF_USER_ROLE_ASSIGNMENTS, even if you set the

WESYNCH OVERWRITE USERROLES attribute to TRUE.

Directory Service APls  3-29



If you do not want to update the standard Who columns for the related records in
WF_LOCAL_USER_ROLES and WF_USER_ROLE_ASSIGNMENTS, then set the
value of the WFSYNCH OVERWRITE USERROLES attribute to FALSE, or simply omit
this attribute from the list. In this case Oracle Workflow updates the standard Who
columns only for this user record in the WF_LOCAL_ROLES table.

Arguments (input)
p_orig_system A code that you assign to the directory repository that is
the source of the user information.
p_orig_system_id The primary key that identifies the user in this repository
system.
p_attributes A list of attribute name and value pairs containing
information about the user.
p_start_date The date at which the user becomes valid in the directory
service.
p_expiration_date The date at which the user is no longer valid in the
directory service.
Related Topics

AddParameterToList, page 5-37

Propagate_Role

Syntax

procedure Propagate Role
(p_orig system in varchar2,
p _orig system id in number,
p_attributes in wf parameter list t,
p_start date in date default null,
p _expiration date in date default null);

Description

Synchronizes the information for a role from an application table with the
WEF_LOCAL_ROLES table and sets the user flag for the role to N. The role is identified
by the specified originating system and originating system ID. The partition ID where
the role's information is stored is set automatically depending on the originating
system.

The role information to be stored in the WF_LOCAL_ROLES table must be provided in
the WF_PARAMETER LIST T format. You can use the WF_EVENT.AddParameterToList()

3-30 Oracle Workflow API Reference



API to add attributes to the list. The following table shows the attributes that should be

included in the list to populate the required columns in WF_LOCAL_ROLES. The
standard LDAP attribute names should be used for these attributes.

Role Attributes

Database Column

Attribute Name

NAME

DISPLAY_NAME

DESCRIPTION

NOTIFICATION_PREFERENCE

LANGUAGE

TERRITORY

EMAIL_ADDRESS

FAX

STATUS

EXPIRATION_DATE

ORIG_SYSTEM

ORIG_SYSTEM_ID

PARENT_ORIG_SYSTEM

PARENT_ORIG_SYSTEM_ID

OWNER_TAG

LAST_UPDATED_BY

LAST_UPDATE_DATE

LAST_UPDATE_LOGIN

[USER_NAME]
[DisplayName]

[description]
[orclWorkFlowNotificationPref]
[preferredLanguage]
[orcINLSTerritory]

[mail]
[FacsimileTelephoneNumber]
[orclIsEnabled]
[ExpirationDate]
[orclWEOrigSystem]
[orclWFOrigSystemID]
[orclWFParentOrigSys]
[orclWFParentOrigSysID]
[OWNER_TAG]

[LAST UPDATED_BY]
[LAST_UPDATE_DATE]

[LAST_UPDATE_LOGIN]

Directory Service APls  3-31



Database Column Attribute Name

CREATED_BY [CREATED_BY]

CREATION_DATE [CREATION_DATE]

In normal operating mode, if any of these attributes except USER_NAME are not passed
in the attribute list or are null, the existing value in the corresponding field in
WF_LOCAL_ROLES remains the same. For example, if no e-mail address is passed, the
existing e-mail address for the role is retained. However, you must always pass the
USER_NAME attribute, because the Propagate_Role() procedure uses this value in a WHERE
condition and will fail if the USER_NAME is not provided. Also, if the user record does
not already exist, you must pass all of the listed attributes since there are no existing
values to use.

For more robust code, you should always pass all of the listed attributes when calling
Propagate_Role(). In this way you can avoid errors caused by trying to determine
dynamically which attributes to pass.

Note: If a display name is not provided in the attribute list when the
role record is first created in normal operating mode, this value is set by
default to a composite value in the format <orig system>:

<orig system ID>in the role record in WF_LOCAL_ROLES.
Additionally, if no notification preference is provided, the notification
preference for the role record is set by default to MATLHTML, and if no
status is provided, the status for the role record is set by default to
ACTIVE.

You can also call Propagate_Role() in overwrite mode by including a special attribute
named WFSYNCH _OVERWRITE with a value of ' TRUE'. In overwrite mode, if one of the
following attributes is not passed or is null, the procedure sets the value of the
corresponding field in WF_LOCAL_ROLES to null, deleting the previous value.

® description

® preferredlLanguage

® orclNLSTerritory

® mail

®¢ FacsimileTelephoneNumber
® ExpirationDate

® orclWFParentOrigSys

3-32 Oracle Workflow AP| Reference



® orclWFParentOrigSysID
e OWNER TAG

e LAST UPDATED BY

¢ LAST UPDATE DATE

® LAST UPDATE LOGIN

Consequently, when you are using overwrite mode, you must pass values for all the
attributes that you do not want to be null. Also, you must always pass the USER_NAME
attribute.

Note: The DIS PLAY NAME, NOTIFICATION PREFERENCE, STATUS,
ORIG_SYSTEM, and ORIG SYSTEM ID columns in the
WEF_LOCAL_ROLES table have a NOT NULL constraint, so these
columns retain their existing values if you do not pass a value for the
corresponding attributes, even if you are using overwrite mode.

The NAME column in WF_LOCAL_ROLES also has a NOT NULL
constraint, and you cannot omit the USER_NAME attribute in any case
because it is required for the APL.

Certain values, including the originating system, originating system ID, and expiration
date, can be passed both as parameters for the Propagate_Role() API and as attributes
within the attribute list parameter. These values are repeated in the attribute list
because Propagate_Role() sends only the attribute list to the Entity Manager that
coordinates LDAP integration, and not any of the procedure's other parameters.

¢ The originating system and originating system ID values that are passed as
parameters to the procedure override any originating system and originating
system ID values that are provided as attributes within the attribute list, if these
values differ.

¢ Likewise, if an expiration date value is passed as a parameter to the procedure, that
value overrides any expiration date value provided as an attribute within the
attribute list. However, if the p_expiration date parameter is null, the value of
the ExpirationDate attribute will be used, if one is provided. You must provide
the ExpirationDate attribute value in the following format:

to _char (<your date variable>, WF ENGINE.Date Format)
Oracle Workflow also provides three additional special attributes that you can use to
specify how the role information should be modified.

* DELETE - You can use this attribute when you want to remove a role from
availability to participate in a workflow. If you include this attribute with a value of
'"TRUE', the expiration date for the role in WF_LOCAL_ROLES is set to sysdate

Directory Service APls  3-33



and the status is set to INACTIVE.

Note: If you also pass a value for the p_expiration date
parameter, however, that value will override the DELETE attribute.
Additionally, if the p_expiration date parameter is null but
you include the ExpirationDate attribute, that attribute value
will override the DELETE attribute. In these cases the role will
remain valid and active until the specified expiration date.

®* UpdateOnly - You can use this attribute for performance gain when you want to
modify information for a role for which a record already exists in
WF_LOCAL_ROLES. If you include this attribute with a value of ' TRUE ', the
Propagate_Role() API attempts to update the record directly, without first inserting
the record.

If this update attempt fails because a record does not already exist for that role, the
procedure will then insert the record. However, the initial unsuccessful attempt will
degrade performance, so you should only use the UpdateOnly attribute when you
are certain that the role record already exists in WF_LOCAL_ROLES.

Note: If an Oracle Human Resources person role with an
originating system of PER_ROLE is propagated using
Propagate_Role(), and that person is linked to an Oracle E-Business
Suite user, then the procedure updates the corresponding user
record with an originating system of PER in WF_LOCAL_ROLES,
as well as the person record.

® WFSYNCH OVERWRITE USERROLES - By default, when you propagate a change to
an existing role with the Propagate_Role() API, Oracle Workflow updates only the
corresponding record in the WF_LOCAL_ROLES table. You can use the
WFSYNCH OVERWRITE USERROLES attribute to specify that Oracle Workflow
should also update the standard Who columns LAST UPDATED BY,
LAST UPDATE DATE, and LAST UPDATE LOGIN for the related associations of
users and roles in the WF_LOCAL_USER_ROLES table and for the related
assignments of users to roles in the WF_USER_ROLE_ASSIGNMENTS table. In this
way you can mark the records in these tables as being affected by the change to the
role information if you need to do so for audit purposes.

If you want to update the standard Who columns for the related records in
WE_LOCAL_USER_ROLES and WF_USER_ROLE_ASSIGNMENTS in addition to
WF_LOCAL_ROLES, add the WFSYNCH OVERWRITE USERROLES attribute with
the value TRUE to the attribute list that you will pass in the p_attributes
parameter for the Propagate_Role() APL

3-34 Oracle Workflow API Reference



Note: Ensure that you also include the [LAST UPDATED BY],
[LAST UPDATE DATE],and [LAST UPDATE LOGIN] attributes
in the list with the values you want to set. If you do not provide
values for these attributes, Oracle Workflow does not update the
standard Who columns in WF_LOCAL_USER_ROLES and
WE_USER_ROLE_ASSIGNMENTS, even if you set the

WESYNCH OVERWRITE USERROLES attribute to TRUE.

If you do not want to update the standard Who columns for the related records in
WF_LOCAL_USER_ROLES and WF_USER_ROLE_ASSIGNMENTS, then set the
value of the WFSYNCH OVERWRITE USERROLES attribute to FALSE, or simply omit
this attribute from the list. In this case Oracle Workflow updates the standard Who
columns only for this role record in the WF_LOCAL_ROLES table.

Arguments (input)

Related Topics

p_orig_system

p_orig_system_id

p_attributes

p_start_date

p_expiration_date

A code that you assign to the directory repository that is
the source of the role information.

The primary key that identifies the role in this repository
system.

A list of attribute name and value pairs containing
information about the role.

The date at which the role becomes valid in the directory
service.

The date at which the role is no longer valid in the
directory service.

AddParameterToList, page 5-37

Directory Service APls  3-35



PropagateUserRole

procedure PropagateUserRole
(p_user name in varchar2,
p_role name in varchar2,
p_user orig system in varchar2 default null,
p_user orig system id in number default null,
p _role orig system in varchar2 default null,
p_role orig system id in number default null,
p start date in date default null,
p_expiration date in date default null,
p overwrite in boolean default FALSE,
p_raiseErrors in boolean default FALSE,
p_parent orig system in varchar2 default null,
p_parent orig system id in varchar2 default null,
p_ownerTag in varchar2 default null,
p_createdBy in number default null,
p_lastUpdatedBy in number default null,
p_lastUpdateLogin in number default null,
p _creationDate in date default null,
p_lastUpdateDate in date default null);

Synchronizes the information for an association of a user and a role from an application
table with the WF_LOCAL_USER_ROLES table.

Syntax

Description

Arguments (input)
p_user_name
p_role_name

p_user_orig_system

p_user_orig_system_id

p_role_orig_system

p_role_orig_system_id

p_start_date

p_expiration_date

3-36 Oracle Workflow AP| Reference

The internal name of the user.
The internal name of the role.

A code that you assign to the directory repository that is
the source of the user information.

The primary key that identifies the user in this repository
system.

A code that you assign to the directory repository that is
the source of the role information.

The primary key that identifies the role in this repository
system.

The date at which the association of this user with this role
becomes valid in the directory service.

The date at which the association of this user with this role



p_overwrite

p_raiseErrors

p_parent_orig_system

p_parent_orig_system_id
p_ownerTag

p_createdBy
p_lastUpdatedBy
p_lastUpdateLogin
p_creationDate

p_lastUpdateDate

Workflow Role Hierarchy APls

is no longer valid in the directory service.

Specify TRUE or FALSE to determine whether to propagate
the information in overwrite mode. In overwrite mode, if
any attribute is not passed or is null, the procedure sets the
value of the corresponding field in
WEF_LOCAL_USER_ROLES to null, deleting the previous
value.

Note: Overwrite mode does not affect the
user name and role name attributes. You
must pass values for these parameters,
because they are required for this
procedure, and because the USER_NAME
and ROLE NAME columns in the
WEF_LOCAL_USER_ROLES table have a
NOT NULL constraint.

Specify TRUE or FALSE to determine whether the
procedure should raise an exception if it encounters an
error.

A code for the originating system of an entity that you
want to mark as being related to the association of this user
with this role.

The primary key that identifies the parent entity in the
parent originating system.

A code to identify the program or application that owns the
information for the association of this user with this role.

Standard Who column.
Standard Who column.
Standard Who column.
Standard Who column.

Standard Who column.

The following APIs can be called by an application program or a workflow function in

Directory Service APls  3-37



the runtime phase to manage role hierarchy relationships in the Oracle E-Business Suite
directory service. These APIs are defined in a PL/SQL package called
WF_ROLE_HIERARCHY.

* AddRelationship, page 3-38
e ExpireRelationship, page 3-39
* GetRelationships, page 3-39

¢ GetAllRelationships, page 3-40

Related Topics

Setting Up an Oracle Workflow Directory Service, Oracle Workflow Administrator’s Guide

AddRelationship

Syntax

function AddRelationship
(p_sub name in varchar2,
p_super name in varchar2,
p_deferMode in boolean default FALSE,
p_enabled in varchar2 default 'Y')
return number;

Description
Creates a hierarchical relationship between two roles in the WF_ROLE_HIERARCHIES
table and returns the relationship ID.
Arguments (input)
p_sub_name The internal name of the subordinate role.
p_super_name The internal name of the superior role.
p_deferMode Specify TRUE or FALSE to determine whether to defer

propagation of the new relationship. If you specify FALSE,
existing user and role assignments are updated according
to the new relationship, without deferral.

p_enabled Specify 'Y' if the relationship is initially enabled or 'N" if
the relationship is initially disabled.

3-38 Oracle Workflow AP| Reference



ExpireRelationship

Syntax

function ExpireRelationship
(p_sub name in varchar2z,
p_super name in varchar2,
p _defer mode in boolean default FALSE)
return number;

Description

Expires a hierarchical relationship between two roles in the WF_ROLE_HIERARCHIES
table and returns the relationship ID.

Arguments (input)

p_sub_name The internal name of the subordinate role.
p_super_name The internal name of the superior role.

p_defer_mode Specify TRUE or FALSE to determine whether to defer
propagation of the expired relationship. If you specify
FALSE, existing user and role assignments are updated
according to the expired relationship, without deferral.

GetRelationships

Syntax

procedure GetRelationships
(p_name in varchar2,
p_superiors out WF ROLE HIERARCHY.relTAB,
p_subordinates out WF ROLE HIERARCHY.relTAB,
p_direction in VARCHAR2 default 'BOTH');

Description

Retrieves the hierarchical relationships for the specified role and returns a table of
superior roles and a table of subordinate roles. GetRelationships() stops retrieving
relationships in a hierarchy when it encounters a disabled relationship.

Arguments (input)

p_name The internal name of the role.

p_direction Specify ' SUPERIORS' to retrieve superior roles for this
role, ' SUBORDINATES' to retrieve subordinate roles for

Directory Service APls  3-39



this role, or 'BOTH' to retrieve both superior and
subordinate roles.

GetAlIRelationships

Syntax

Description

procedure GetAllRelationships
(p_name in varchar2,
p_superiors out WF ROLE HIERARCHY.relTAB,
p_subordinates out WEF ROLE HIERARCHY.relTAB,
p_direction in VARCHAR2 default 'BOTH');

Retrieves the hierarchical relationships for the specified role and returns a table of
superior roles and a table of subordinate roles. GetAllRelationships() retrieves all
hierarchical relationships, whether they are enabled or disabled.

Arguments (input)

p_name The internal name of the role.

p_direction Specify ' SUPERIORS' to retrieve superior roles for this
role, ' SUBORDINATES' to retrieve subordinate roles for
this role, or 'BOTH' to retrieve both superior and
subordinate roles.

Workflow Preferences API

get_pref

Syntax

Description

Call the following API to retrieve user preference information. The API is defined in the
PL/SQL package called WF_PREF.

function get pref
(p_user name in varchar2,
p_preference name in varchar2)
return varchar?2;

Retrieves the value of the specified preference for the specified user.

3-40 Oracle Workflow AP| Reference



Arguments (input)
p_user_name The internal name of the user. To retrieve the value for a
global preference, specify the user as ~-WF_DEFAULT-.

p_preference_name The name of the user preference whose value you wish to
retrieve. Valid preference names are:

® LANGUAGE
e TERRITORY
e MAILTYPE
e DMHOME

¢ DATEFORMAT

Directory Service APls  3-41






4

Notification System APlIs

This chapter describes the APIs for the Oracle Workflow Notification System. The APIs
include PL/SQL and Java functions and procedures that you can use to access the
Notification System.

This chapter covers the following topics:

* Overview of the Oracle Workflow Notification System
* Notification APIs

* Notification Mailer Utility API

¢ Notification Utility API

¢ XML Message APIs

* Message API

Overview of the Oracle Workflow Notification System

Oracle Workflow communicates with users by sending notifications. Notifications
contain messages that may request users to take some type of action and/or provide
users with information. You define the notification activity and the notification message
that the notification activity sends in the Workflow Builder. The messages may have
optional attributes that can specify additional resources and request responses.

Users can query their notifications online using the Notifications Web page in an HTML
browser. Users can also receive notifications in their e-mail applications. E-mail
notifications can contain HTML content or include other documents as optional
attachments. The Notification System delivers the messages and processes the incoming
responses.

Related Topics

Notification Model, page 4-2

Notification Document Type Definition, page 4-7

Notification System APIs  4-1



Notification APIs, page 4-16
Notification Mailer Utility API, page 4-48

Notification Model

A notification activity in a workflow process consists of a design-time message and a
list of message attributes. In addition, there may be a number of runtime named values
called item type attributes from which the message attributes draw their values.

The Workflow Engine moves through the workflow process, evaluating each activity in
turn. Once it encounters a notification activity, the engine makes a call to the
Notification System Send() or SendGroup() API to send the notification.

Sending Notification Messages

The Send() API or the SendGroup() APl is called by the Workflow Engine when it
encounters a notification activity. These APIs do the following:

Check that the performer role of the notification activity is valid.

Identify the notification preference for of the performer role.

¢ Look up the message attributes for the message.

e If a message attribute is of source SEND, the Send() or SendGroup() API retrieves
its value from the item type attribute that the message attribute references. If
the procedure cannot find an item type attribute, it uses the default value of the
message attribute, if available. The Subject and Body of the message may
include message attributes of source SEND, which the Send() or SendGroup()
API token replaces with each attribute's current value when creating the
notification.

e If a message includes a message attribute of source RESPOND, the Send() or
SendGroup() API checks to see if it has a default value assigned to it. The
procedure then uses these RESPOND attributes to create the default response
section of the notification.

¢ 'Construct' the notification content by inserting relevant information into the
Workflow notification tables.

e Update the notification activity's status to 'NOTIFIED' if a response is required or
to "COMPLETE" if no response is required.

Note: If a notification activity sends a message that is for the
performer's information only (FYI), where there are no RESPOND
message attributes associated with it, the notification activity gets

4-2 Oracle Workflow API Reference



marked as complete as soon as the Notification System delivers the
message.

Note: In the case of a voting activity, the status is updated to
'"WAITING' instead of 'NOTIFIED'. See: Special Handling of
Voting Activities, page 4-6.

Raise the oracle.apps.wf.notification.send event. When this event is
processed, a notification mailer generates an e-mail version of the notification if the
performer role of a notification has a notification preference of MAILTEXT,
MAILHTML, MAILHTMZ2, or MAILATTH, and sends the e-mail to the performer. For
roles with a notification preference of SUMMARY or SUMHTML, a summary e-mail is
sent when the oracle.apps.wf.notification.summary.send eventis
raised. See: Implementing Notification Mailers, Oracle Workflow Administrator’s
Guide.

Note: The notification mailer does not send e-mail notifications to
roles with a notification preference of QUERY or DISABLED. Users
with a notification preference of QUERY only access their
notifications through the Worklist Web page. Users whose
notification preference has been set to DISABLED must correct their
e-mail address and reset their notification preference before a
notification mailer can send them e-mail notifications.

Users who view their notifications from the Worklist Web page, regardless of their
notification preferences, are simply querying the Workflow notification tables from this
interface.

A notification recipient can perform the following actions with the notification:

Respond to the notification or close the notification if it does not require a response.
See: Processing a Notification Response, page 4-4.

Forward the notification to another role. See: Forwarding a Notification, page 4-4.

Transfer ownership of the notification to another role. See: Transferring a
Notification, page 4-5.

Request more information about the notification from another role, or respond to
such a request with more information. See: Requesting More Information About a
Notification, page 4-5.

Ignore the notification and let it time out. See: Processing a Timed Out Notification,
page 4-6.

Notification System APIs 4-3



Note: You can use the WF: Notification Reassign Mode profile option to
determine whether users can reassign notifications by forwarding (also
known as delegating) the notifications, transferring the notifications, or
both. See: Setting the WE: Notification Reassign Mode, Oracle Workflow
Administrator’s Guide.

Processing a Notification Response

After a recipient responds, the Notification Details Web page or a notification mailer
assigns the response values to the notification response attributes and calls the
notification Respond() APIL. The Respond() API first calls a notification callback function
to execute the notification activity's post-notification function (if it has one) in
VALIDATE mode. In this mode, the post-notification function can validate the response
values before accepting and recording the response. For example, if the notification
requires an electronic signature, the post-notification function can run in VALIDATE
mode to verify the response values and inform the user of any errors before requiring
the user to enter a signature. If the post-notification function raises an exception, the
response is aborted. See: Post-notification Functions, page 2-11.

Next, Respond() calls the notification callback function to execute the post-notification
function in RESPOND mode. The post-notification function may interpret the response
and perform tightly-coupled post-response processing. Again, if the post-notification
function raises an exception, the response is aborted.

If no exception is raised, Respond() marks the notification as closed and then calls the
notification callback function again in SET mode to update the corresponding item
attributes with the RESPOND notification attributes values. If the notification message
prompts for a response that is specified in the Result tab of the message's property page,
that response value is also set as the result of the notification activity.

Finally, Respond() calls WF_ENGINE.CompleteActivity() to inform the engine that the
notification activity is complete so it can transition to the next qualified activity.

Forwarding a Notification

If a recipient forwards a notification to another role, the Notification Details Web page
calls the Notification System's Forward() API.

Note: The Notification System is not able to track notifications that are
forwarded via e-mail. It records only the eventual responder’s e-mail
address and any Respond message attributes values included in the
response.

The Forward() API validates the role, then calls a notification callback function to
execute the notification activity's post-notification function (if it has one) in FORWARD
mode. As an example, the post-notification function may verify whether the role that
the notification is being forwarded to has appropriate authority to view and respond to

4-4 Oracle Workflow API Reference



the notification. If it doesn't, the post-notification function may return an error and
prevent the Forward operation from proceeding. See: Post-notification Functions, page
2-11.

Forward() then forwards the notification to the new role, along with any appended
comments.

Note: Forward() does not update the owner or original recipient of the
notification.

Transferring a Notification

If a recipient transfers the ownership of a notification to another role, the Notification
Details Web page calls the Notification System's Transfer() API.

Note: Recipients who view notifications from an e-mail application
cannot transfer notifications. To transfer a notification, the recipient
must use the Notifications Web page.

The Transfer() API validates the role, then calls a notification callback function to
execute the notification activity's post-notification function (if it has one) in TRANSFER
mode. As an example, the post-notification function may verify whether the role that
the notification is being transferred to has appropriate authority. If it doesn't, the
post-notification function may return an error and prevent the Transfer operation from
proceeding. See: Post-notification Functions, page 2-11.

Transfer() then assigns ownership of the notification to the new role, passing along any
appended comments. Note that a transfer is also recorded in the comments of the
notification.

Requesting More Information About a Notification

If a recipient requests more information about the notification from another role, the
Notification Details Web page calls the Notification System's Updatelnfo() APL or a
notification mailer calls the Notification System's Updatelnfo2() APL

The Updatelnfo() or Updatelnfo2() API calls a notification callback function to execute the
notification activity's post-notification function (if it has one) in QUESTION mode. As an
example, the post-notification function may verify that the request is directed to a role
that has appropriate authority to view the notification. If it doesn't, the post-notification
function may return an error and prevent the request for more information from being
sent. See: Post-notification Functions, page 2-11.

If no error is returned, the API then sends the request for more information to the
designated role. Note that a request for information is also recorded in the comments of
the notification.

If the recipient of a request for more information responds with answering information,

Notification System APIs 4-5



the Notification Details Web page calls the Notification System's Updatelnfo() API if the
responder is logged in individually or the UpdatelnfoGuest() API if the responder is
logged in as the GUEST user, or a notification mailer calls the Notification System's
Updatelnfo2() APL

The Updatelnfo(),UpdatelnfoGuest(), or Updatelnfo2() API calls a notification callback
function to execute the notification activity's post-notification function (if it has one) in
ANSWER mode. As an example, the post-notification function may validate the
answering information. If such validation fails, the post-notification function may
return an error and prevent the answer from being sent. See: Post-notification
Functions, page 2-11.

If no error is returned, the API then sends the answering information back to the
recipient role of the original notification. Note that an answer to a request for
information is also recorded in the comments of the notification.

Processing a Timed Out Notification

Timed out notification or subprocess activities are initially detected by the background
engine. Background engines set up to handle timed out activities periodically check for
activities that have time out values specified. If an activity does have a time out value,
and the current date and time exceeds that time out value, the background engine
marks that activity's status as ' TIMEOUT ' and calls the Workflow Engine. The
Workflow Engine then resumes by trying to execute the activity to which the
<Timeout> transition points.

Special Handling of Voting Activities

A voting activity by definition is a notification activity that:

* Has its roles expanded, so that an individual copy of the notification message is
sent to each member of the Performer role.

¢ Has a message with a specified Result, that requires recipients to respond from a list
of values.

* Has a post-notification function associated with it that contains logic in the RUN
mode to process the polled responses from the Performer members to generate a
single response that the Workflow Engine interprets as the result of the notification
activity. See: Voting Activity, Oracle Workflow Developer’s Guide.

Once the Notification System sends the notification for a voting activity, it marks the
voting activity's status as ' NOTIFIED'. The voting activity's status is updated to
"WAITING' as soon as some responses are received, but not enough responses are
received to satisfy the voting criteria.

The individual role members that each receive a copy of the notification message can
then respond or forward the notification, or request or respond with more information,
if they use e-mail or the Worklist Web pages to access the notification. They can also

4-6 Oracle Workflow API Reference



transfer the notification if they use the Worklist Web pages.

The notification user interface calls the appropriate Respond(), Forward(), Transfer(),
Updatelnfo(), Updatelnfo2(), or UpdatelnfoGuest() API, depending on the action that the
performer takes. Each API in turn calls the notification callback function to execute the
post-notification function in VALIDATE and RESPOND, FORWARD, TRANSFER,
QUESTION, or ANSWER mode, as appropriate. When the Notification System finishes
executing the post-notification function in FORWARD or TRANSFER mode, it carries out
the Forward or Transfer operation, respectively. When the Notification System finishes
executing the post-notification function in QUESTION or ANSWER mode, it sends the
request for more information to the designated role or the answer to the requesting role,
respectively.

When the Notification System completes execution of the post-notification function in
RESPOND mode, the Workflow Engine then runs the post-notification function again in
RUN mode. It calls the function in RUN mode after all responses are received to execute
the vote tallying logic.

Also if the voting activity is reset to be reexecuted as part of a loop, or if it times out, the
Workflow Engine runs the post-notification function in CANCEL or TIMEOUT mode,
respectively. The logic for TIMEOUT mode in a voting activity's post-notification
function should identify how to tally the votes received up until the timeout.

Notification Document Type Definition

The following document type definition (DTD) describes the required structure for the
XML document that represents a notification. The Notification System uses this
structure to communicate messages to a notification mailer. The following table shows
the level, tag name, and description for each element in the DTD.

Notification DTD
Level Tag Description
1 <NOTIFICATIONGROUP The <NOTIFICATIONGROUP> tag is the
maxcount=""> opening tag for the XML structure. The

maxcount attribute defines the maximum
number of <NOTIFICATION> tags to expect.
This number may not be reached, but will not
be exceeded within the
<NOTIFICATIONGROUP> tag.

Notification System APIs  4-7



"

message_name=""nidstr=

" "

full-document="" reason=
callback="">

Level Tag Description

2 <NOTIFICATION nid="" The <NOTIFICATION> element defines a
language="" territory="" single message entity. A <NOTIFICATION> is
codeset=""nlsDateFormat="" a repeating structure within
nlsDateLanguage="" <NOTIFICATIONGROUP>, the number of
nlsNumericCharacters="" which will not exceed the specified maxcount
nlsSort="" priority="" value. Each <NOTIFICATION> element for a
accesskey=""node="" notification sent by the Notification System is
item_type="" identified by its unique nid attribute, which is

the notification ID. For messages received
from an external source, such as responses
from users, the notification ID should be zero

0).

The language and territory values represent
the language and territory preferences of the
notification recipient. The codeset attribute is
the preferred codeset associated with the
language in the WF_LANGUAGES table. The
value of the codeset attribute must be in the
Oracle Database codeset notation.

The nlsDateFormat, nlsDateLanguage,
nlsNumericCharacters and nlsSort attributes
represent the NLS date format, date language,
numeric characters, and sort preferences used
to format the notification. If the notification
recipient is an Oracle E-Business Suite user
marked with an originating system of
FND_USR or PER, then Oracle Workflow
takes the values for these attributes from the
notification recipient's ICX: Date format mask,
ICX: Date language, ICX: Numeric characters,
and ICX: NLS Sort profile option settings,
respectively. For notification recipients who
are not Oracle E-Business Suite users, such as
ad hoc users or roles, Oracle Workflow takes
the values for these attributes from the site
level settings for these profile options or from
the NLS parameters of the database session.

Note: When the Workflow Notification
Mailer sends Oracle Alert e-mail messages,
it takes the values for these attributes from
the database session variables.

The priority attribute is the relative priority

4-8 Oracle Workflow API Reference



Level

Tag

Description

<HEADER>

for the message compared to other messages.
A priority of 1 through 33 is high, 34 through
66 is normal, and 67 through 99 is low.

The accesskey and node attributes store
information for inbound response messages.
These attributes are used together with the nid
attribute to validate the response.

The item_type attribute is the internal name of
the item type that owns the notification. The
message_name attribute is the internal
message name for the notification within that
item type. These two attributes are provided
for reference only.

The nidstr attribute is for internal use only.
The notification mailer uses this attribute to
send the notification ID in a custom header
called X-oracle-workflow-nid. This header is
used during processing of inbound messages
to help identify bounced messages in cases
where the original message may be included,
but the notification ID is encoded in the
inbound message body and cannot be
recognized there by the notification mailer.

The full-document attribute indicates whether
the generated XML document is complete (Y)
or incomplete (N). If the document is
incomplete, the reason attribute describes
why.

The callback attribute specifies an optional
business event to be raised as a callback to the
calling application when the notification
mailer finishes dispatching the e-mail
message.

<The HEADER> element defines the envelope
information for the message, which contains
the details of the recipients, where the
message was sent from, and the subject for the
message.

Notification System APIs  4-9



Level Tag

Description

4 <RECIPIENTLIST>

5 <RECIPIENT name=""
type="">

6 <NAME> </NAME>

6 <ADDRESS> </ADDRESS>

5 </RECIPIENT>

4 </RECIPIENTLIST>

The <RECIPIENTLIST> tag enables the
message to be sent to more than one recipient.
The first recipient in the list is treated as the
primary recipient. Subsequent recipients will
receive copies of the message. All recipients in
the list will receive the same e-mail in the
language and formatting of the primary
recipient's preferences.

The <RECIPIENT> tag defines a recipient for
the message. A <RECIPIENT> is a repeating
structure within the <RECIPIENTLIST>. Each
<RECIPIENT> is identified by its name
attribute, which is the internal name of the
recipient role.

The type attribute contains the copy type for
the recipient. Valid values for this attribute are
to, cc, and bcc. If the type attribute is not
provided, then the recipient is treated as
having a copy type of to.

The <NAME> tag defines the display name of
the recipient.

The <ADDRESS> tag defines the e-mail
address of the recipient.

This tag marks the end of a <RECIPIENT>
element.

This tag marks the end of the
<RECIPIENTLIST> element.

4-10 Oracle Workflow API Reference



Level

Tag

Description

<FROM>

<NAME> </NAME>

<ADDRESS> </ADDRESS>

</FROM>

<SUBJECT> </SUBJECT>

</HEADER>

The <FROM> tag shows the sender of the
message. For outbound notifications, the from
role can be set using the #FROM_ROLE
message attribute. The from role is also set to
the role who reassigned the notification if this
notification has been reassigned, to the
requesting role if this notification is a request
for more information, or to the responding
role if this notification is a response to a
request for more information. If no from role
is specified for the notification, this attribute is
set to the value of the notification mailer's
From parameter.

For inbound notifications, this information is
determined by the From address of the
incoming e-mail message.

The <NAME> tag defines the display name of
the sender.

For Oracle Alert e-mail messages, the
notification mailer either uses the sender
display name provided by Oracle Alert, or, if
no name is provided, the notification mailer
uses the value of its own From parameter.

The <ADDRESS> tag defines the e-mail
address of the sender.

For Oracle Alert e-mail messages, the
notification mailer either uses the sender
e-mail address provided by Oracle Alert, or, if
no address is provided, the notification mailer
uses the value of its own Reply-to Address
parameter.

This tag marks the end of the <FROM>
element.

The <SUBJECT> element holds the subject line
of the notification.

This tag marks the end of the <HEADER>
element.

Notification System APIs 4-11



Level Tag

Description

3 <CONTENT content-type="">

4 <BODYPART

content-type="">

The <CONTENT> element holds the contents
of the notification message. The <CONTENT>
element contains one or more <BODYPART>
elements. The content-type attribute contains
the valid MIME type definition for the content
within the <CONTENT> element. Valid values
for the content-type attribute include
multipart/mixed, text/plain and
text/html. The first <BODYPART> element
within the <CONTENT> tag is treated as the
main content of the message, and will be the
first component within amultipart/*
message structure. Subsequent <BODYPART>
elements are treated as attachments to the
message or inline body parts (body parts that
form MIME objects with the first body part).

The <BODYPART> tag represents a MIME
component of the final message. This element
contains a <XMESSAGE> tag and optionally one
or more <RESOURCE> tags. If the
<RESOURCE> tags are implemented, then the
content-type attribute must be defined for the
<BODYPART> tag to explain the relationship
of the <RESOURCE> elements to the
<MESSAGE> element. The only valid value for
this content-type attribute is
multipart/related.

The first <BODYPART> element is treated as
the main content of the message. This content
will be either text/* or
multipart/related. The subsequent
<BODYPART> elements contain any
attachments as required by the notification
message definition and the recipient's
notification preference. Attachments may
include an HTML-formatted version of the
notification, a Notification Detail Link, and
any message attributes for which the Attach
Content option is selected.

For inbound messages, the <BODYPART>
element contains the message and any
attachments where appropriate.

4-12 Oracle Workflow API Reference



Level

Tag

Description

<MESSAGE content-type=""

content-transfer-encoding=

content-disposition=

<|[CDATA[ ]I

</MESSAGE>

"

"

src=">

The content-type attribute contains the media
type definition for the <MESSAGE> element.
Valid values for this content-type attribute are
text/plain, text/html,
multipart/mixed, or
multipart/related.

The content-transfer-encoding attribute is an
optional attribute to qualify further the
encoding of the text/plain or text/html
content.

The content-disposition attribute specifies that
the component is an attachment.

The src attribute can optionally be defined if
the content for the <XMESSAGE> element is not
readily available when the notification XML
document is generated. The value of the src
attribute must be a URL from which the
content can be obtained during final e-mail
message rendering.

This structure holds the raw message content.

If the content of a <RESOURCE> element
should be merged into the content of the
<MESSAGE> element, then the message
content must include a token prefixed by an
ampersand (&) to mark the position at which
the resource content should appear. The token
must match the token attribute value of the
corresponding <RESOURCE> element.

This tag marks the end of a <MESSAGE>
element.

Notification System APIs 4-13



Level

Tag

Description

<RESOURCE content-type=""

content-transfer-encoding=
content-disposition=

"

"

content-id="" src=

" "

language=
page-type=

territory=
N

"

token=

<I[[CDATA[ |]>

The content-type attribute contains the media
type definition for the <RESOURCE> element.
This value should be a media-type/subtype
definition.

The content-transfer-encoding attribute is an
optional attribute to qualify further the
encoding of the text/plain or text/html
content.

The content-disposition attribute specifies that
the component is an attachment.

The content-id attribute holds the unique
content identifier for the component. This
identifier is referenced within the content of
the <MESSAGE> element.

The src attribute can optionally be defined if
the content for the <RESOURCE> element is
not readily available when the notification
XML document is generated. The value of the
src attribute must be a URL from which the
content can be obtained during final e-mail
message rendering.

If the src attribute is defined to refer to Oracle
Application Framework content, then the
language and territory attributes hold the
language and territory preferences of the
recipient. Also, if the src attribute refers to
Oracle Application Framework content, then
the page-type attribute is set to the value fwk
to identify Oracle Application Framework as
the source of the content. The page-type
attribute should be defined only if the src
attribute is defined correspondingly.

The token attribute holds the token value used
to mark the position at which the content of
the <RESOURCE> element will be merged into
the content of the <MESSAGE> element.
Within the <MESSAGE> element, the token
value is prefixed by an ampersand (&).

This structure holds the content for the
<RESOURCE> element.

4-14 Oracle Workflow API Reference



Level Tag Description

5 </RESOURCE> This tag marks the end of a <RESOURCE>
element.

4 </BODYPART> This tag marks the end of a <BODYPART>
element.

3 </CONTENT> This tag marks the end of the <CONTENT>
element.

3 <RESPONSE> The <RESPONSE> tag is implemented only for

inbound notifications and Oracle Alert e-mail
responses. It is not part of the specification for
outbound notifications. The <RESPONSE>
element contains one or more <ATTRIBUTE>
elements, which hold the response values
found in the incoming e-mail message. There
should be an <ATTRIBUTE> tag for each
response attribute associated with the
notification. However, only the RESULT
message attribute is mandatory. The other
respond attributes are optional. If no value is
specified for a respond attribute, Oracle
Workflow uses the default value defined for
the message attribute.

For Oracle Alert e-mail responses, the
notification mailer parses the e-mail content
for the ALR string specifier and then takes the
response values directly from the appropriate
lines within the e-mail.

Notification System APIs 4-15



Level Tag Description

4 <ATTRIBUTE name="" The <ATTRIBUTE> tag holds the response
type="" format=""> value found in the incoming e-mail message
for a particular response attribute. An
<ATTRIBUTE> is a repeating structure within

the <RESPONSE>.

The name attribute for this element is the
internal name of the response attribute.

The type attribute of this element is the Oracle
Workflow data type of the reponse attribute,
which can be either TEXT, NUMBER, DATE,
DOCUMENT, or LOOKUP.

The format attribute for this element contains
the format string for the response attribute.
For response attributes of type LOOKUP, the
format is used to identify the lookup type
code according to the value of the name
attribute. For other data types, the format
attribute is not used.

- <|[CDATA 1> This structure holds the response information
to be assigned to the attribute.

4 </ATTRIBUTE> This tag marks the end of an <ATTRIBUTE>
element.

3 </RESPONSE> This tag marks the end of a <RESPONSE>
element.

2 </NOTIFICATION> This tag marks the end of a

<NOTIFICATION> element.

1 </NOTIFICATIONGROUP> This tag marks the end of the
<NOTIFICATIONGROUP> element.

Notification APIs

The following APIs can be called by a notification agent to manage notifications for a
notification activity. The APIs are stored in the PL./SQL package called
WF_NOTIFICATION.

Many of these notification APIs also have corresponding Java methods that you can call
from any Java program to integrate with Oracle Workflow. The following list indicates

4-16 Oracle Workflow API Reference



whether the notification APIs are available as PL/SQL functions/procedures, as Java
methods, or both. See: Oracle Workflow Java Interface, page 2-4.

Note: Java is case-sensitive and all Java method names begin with a
lower case letter to follow Java naming conventions.

e Send - PL/SQL and Java, page 4-19

* SendGroup - PL/SQL, page 4-23

¢ Forward - PL/SQL and Java, page 4-24

e Transfer - PL/SQL and Java, page 4-25

e Cancel - PL/SQL and Java, page 4-27

e CancelGroup - PL/SQL, page 4-27

* Respond - PL/SQL and Java, page 4-28

® Responder - PL/SQL and Java, page 4-30

* NtfSignRequirementsMet - PL/SQL, page 4-30

e VoteCount - PL/SQL and Java, page 4-31

* OpenNotificationsExist - PL/SQL and Java, page 4-32

¢ Close - PL/SQL and Java, page 4-32

e AddAttr - PL/SQL and Java, page 4-33

* SetAttribute - PL/SQL and Java, page 4-34

e GetAttrInfo - PL/SQL and Java, page 4-35

®  GetInfo - PL/SQL and Java, page 4-36

¢ GetText - PL/SQL and Java, page 4-37

®  GetShortText - PL/SQL, page 4-38

*  GetAttribute - PL/SQL and Java, page 4-39

e GetAttrDoc - PL/SQL and Java, page 4-40

*  GetSubject - PL/SQL and Java, page 4-41

Notification System APIs  4-17



* GetBody - PL/SQL and Java, page 4-42

e GetShortBody - PL/SQL, page 4-43

¢ TestContext - PL/SQL, page 4-43

® AccessCheck - PL/SQL and Java, page 4-44

e WorkCount - PL/SQL and Java, page 4-44

e getNotifications - Java, page 4-45

e getNotificationAttributes - Java, page 4-45

e WriteToClob - PL/SQL, page 4-46

* Denormalize_Notification - PL/SQL, page 4-47

Note: The WF_NOTIFICATION.SubstituteSpecialChars() API from earlier
versions of Oracle Workflow is replaced by the
WEF_CORE.SubstituteSpecial Chars() APIL. The current version of Oracle
Workflow still recognizes the
WEF_NOTIFICATION.SubstituteSpecial Chars() API for backward
compatibility, but moving forward, you should only use the new
WEF_CORE.SubstituteSpecialChars() APl where appropriate.

The Notification System raises business events when a notification is sent, closed,
canceled, or reassigned, or when a user responds to a notification, requests more
information about a notification, or responds to a request with answering information.
Although Oracle Workflow does not include any predefined subscriptions to some of
these events, you can optionally define your own subscriptions to these events if you
want to perform custom processing when they occur. See: Notification Events, Oracle
Workflow Developer’s Guide and To Create or Update an Event Subscription, Oracle
Workflow Developer’s Guide.

4-18 Oracle Workflow API Reference



Send

PL/SQL Syntax

Java Syntax

Description

function SEND

(role in

varchar?2,

msg_type in varchar2,

msg name in varchar2,

due date in date default null,
callback in varchar?2 default null,

context

in varchar?2 default null,

send comment in varchar2 default null
priority in number default null)
return number;

public static BigDecimal send
(WFContext wCtx,

String
String
String
String
String
String
string

role,
messageType,
messageName,
dueDate,
callback,
context,
sendComment,

BigDecimal priority)

This function sends the specified message to a role, returning a notification ID if
successful. The notification ID must be used in all future references to the notification.

If your message has message attributes, the procedure looks up the values of the
attributes from the message attribute table or it can use an optionally supplied callback
interface function to get the value from the item type attributes table. A callback
function can also be used when a notification is responded to.

Note: If you are using the Oracle Workflow Notification System and its
e-mail-based or Web-based notification client, the Send() API implicitly
calls the WF_ENGINE.CB callback function. If you are using your own
custom notification system that does not call the Workflow Engine,
then you must define your own callback function following a standard
format and specify its name for the callback argument. See: Custom
Callback Function, page 4-20.

If any message attributes are mapped by worklist flexfields rules, Send() stores
denormalized values for those attributes in the designated worklist flexfields columns.

See: Defining Specialized Worklist Views with Worklist Flexfields, Oracle Workflow

Administrator’s Guide.

Notification System APIs

419



Arguments (input)
wCtx Workflow context information. Required for the Java
method only. See: Oracle Workflow Context, page 2-4.

role The role name assigned as the performer of the notification
activity.

msg_type or messageType The item type associated with the message.

msg_name or messageName The message internal name.

due_date or dueDate The date that a response is required. This optional due date
is only for the recipient's information; it has no effect on
processing.

callback The callback function name used for communication of

SEND and RESPOND source message attributes.

context Context information passed to the callback function.
send_comment or A comment presented with the message.
sendComment

priority The priority of the message, as derived from the

#PRIORITY notification activity attribute. If # PRIORITY
does not exist or if the value is null, the Workflow Engine
uses the default priority of the message.

Custom Callback Function

A default callback function can be called at various points by the actions of the
WEF_NOTIFICATION APIs. You may provide your own custom callback function, but it
must follow standard specifications.

If you do not need to handle attributes of type event through your callback function, the
procedure must use the following standard API:
procedure <name in callback argument>

(command in varchar?2,

context in varchar?2,

attr name in varchar2,

attr type in varchar2,

text value in out varchar2,

number value in out number,
date value in out date);

If the callback function does need to handle attributes of type event, you can overload
the procedure name with a second implementation that includes an additional
argument for the event value. In this case you should also retain the original
implementation for backward compatibility. However, it is recommended that you do

4-20 Oracle Workflow API Reference



Arguments (input)

not overload the procedure unless you have a requirement to handle event attributes.

The implementation of the procedure for event values must use the following standard
API:

procedure <name in callback argument>
(command in varchar2,
context in varchar?2,
attr name in varchar2,
attr type in varchar2,
text value in out varchar?2,
number value in out number,
date value in out date
event value in out nocopy wf event t);

For ease of maintenance, you can define the procedure that does not include the
event value argument to call the procedure that does include that argument, so that
you only need to maintain one version of your code. The following example shows one
way to implement such a call:

Example

procedure your callback
(command in varchar2,
context in varchar2,
attr name in varchar2,
attr type in varchar2,
text value in out varchar?2,
number value in out number,
date value in out date)

is
event value wf event t;

begin
your package.your callback(command, context, attr name,
attr type, text value,
number value, date value,
event value);

exception
when others then
Wf Core.Context ('your package', 'your callback',
command, context, attr name, attr type,
'":']ltext valuel||':'||to char (number value)
[1":'"]|to _char(date value)||':");
raise;

end your callback;

command SpedﬁIGET,SET,COMPLETE,ERROR,TESTCTX,FORWARD
TRANSFER, QUESTION, ANSWER, VALIDATE, or RESPOND
as the action requested. Use GET to get the value of an
attribute, SET to set the value of an attribute, COMPLETE to
indicate that the response is complete, ERROR to set the
associated notification activity to a status of 'ERROR',
TESTCTX to test the current context by calling the item

Notification System APIs 4-21



context

attr_name
attr_type

text_value

number_value

date_value

event_value

Sample Code
Example 1

type's Selector/Callback function, or FORWARD, TRANSFER,
QUESTION, ANSWER, VALIDATE, or RESPOND to execute
the post-notification function in those modes.

The context passed to SEND() or SendGroup(). The format is
<itemtype>:<itemkey>:<activityid>.

An attribute name to set/get if command is SET or GET.
An attribute type if command is SET or GET.

Value of a text attribute if command is SET or value of text
attribute returned if command is GET.

Value of a number attribute if command is SET or value of
a number attribute returned if command is GET.

Value of a date attribute if command is SET or value of a
date attribute returned if command is GET.

Value of an event attribute if command is SET or value of
an event attribute returned if command is GET. Required
only if the procedure name is overloaded with a second
implementation that handles event attributes.

Note: The arguments text value,
number value, and date value, as
well as event_value if you are using this
argument, are mutually exclusive. That is,
you should use only one of these
arguments, depending on the value of the
attr type argument.

When a notification is sent, the system calls the specified callback function once for each
SEND attribute (to get the attribute value).

For each SEND attribute, call:

your callback('GET',
numval,

Example 2

context, 'BUGNO', 'NUMBER', textval,
dateval) ;

When the user responds to the notification, the callback is called again, once for each

RESPOND attribute.

your callback('SET',

context, 'STATUS', 'TEXT',

'COMPLETE', numval, dateval);

4-22 Oracle Workflow API Reference



SendGroup

PL/SQL Syntax

Description

Example 3
Then finally the Notification System calls the ' COMPLETE ' command to indicate the
response is complete.
your callback ('COMPLETE', context, attrname, attrtype,
textval, numval, dateval);
Example 4
For a SEND attribute of type event, call the implementation that includes the
event_ value argument.

your callback('GET', context, 'RECEIVE EVENT', 'EVENT',
textval, numval, dateval, eventval);

function SendGroup

(role in varchar2,

msg_type in varchar2,

msg_name in varchar2,

due date in date default null,
callback in varchar2 default null,
context in varchar2 default null,
send comment in varchar2 default null
priority in number default null)
return number;

This function sends a separate notification to all the users assigned to a specific role and
returns a number called a notification group ID, if successful. The notification group ID
identifies that group of users and the notification they each received.

If your message has message attributes, the procedure looks up the values of the
attributes from the message attribute table or it can use an optionally supplied callback
interface function to get the value from the item type attributes table. A callback
function can also be used when a notification is responded to.

Note: If you are using the Oracle Workflow Notification System and its
e-mail-based or Web-based notification client, the SendGroup() API
implicitly calls the WF_ENGINE.CB callback function. If you are using
your own custom notification system, then you must define your own
callback function following a standard format and specify its name for
the callback argument. See: Custom Callback Function, page 4-20.

If any message attributes are mapped by worklist flexfields rules, SendGroup() stores
denormalized values for those attributes in the designated worklist flexfields columns.
See: Defining Specialized Worklist Views with Worklist Flexfields, Oracle Workflow
Administrator’s Guide.

Notification System APIs 4-23



Generally, this function is called only if a notification activity has 'Expanded Roles'
checked in its properties page. If Expanded Roles is not checked, then the Send()
function is called instead. See: Voting Activity, Oracle Workflow Developer’s Guide.

Arguments (input)
role The role name assigned as the performer of the notification
activity.
msg_type The item type associated with the message.
msg_name The message internal name.
due_date The date that a response is required. This optional due date
is only for the recipient's information; it has no effect on
processing.
callback The callback function name used for communication of
SEND source message attributes.
context Context information passed to the callback function.
send_comment A comment presented with the message.
priority The priority of the message, as derived from the
#PRIORITY notification activity attribute. If #PRIORITY
does not exist or if the value is null, the Workflow Engine
uses the default priority of the message.
Forward
PL/SQL Syntax

procedure FORWARD
(nid in number,
new role in varchar2,
forward comment in varchar2 default null);

Java Syntax

public static boolean forward
(WFContext wCtx,
BigDecimal nid,
String newRole
String comment)

Description

This procedure delegates a notification to a new role to perform work, even though the

4-24 Oracle Workflow API Reference



original role recipient still maintains ownership of the notification activity. Also
implicitly calls the Callback function specified in the Send or SendGroup function with
FORWARD mode. A comment can be supplied to explain why the forward is taking
place. Existing notification attributes (including due date) are not refreshed or
otherwise changed. The Delegate feature in the Notification System calls this procedure.
Note that when you forward a notification, the forward is recorded in the

USER COMMENT field of the notification.

Arguments (input)

wCitx Workflow context information. Required for the Java
method only. See: Oracle Workflow Context, page 2-4.

nid The notification ID.
new_role or newRole The role name of the person the note is reassigned to.
forward_comment or An optional forwarding comment.
comment

Sample Code
Example

The following code excerpt shows an example of how to call forward() in a Java
program. The example code is from the WETest . java program.

// forward to MBEECH
System.out.println ("Delegate Test");
count = WFNotificationAPI.workCount (ctx, "MBEECH") ;
System.out.println ("There are " + count +
" open notification(s) for"™ + " MBEECH");
System.out.println ("Delegate nid " + myNid +
" from BLEWIS to MBEECH") ;
WENotificationAPI.forward(ctx, myNid, "MBEECH",
"Matt, Please handle.");
count = WENotificationAPI.workCount (ctx, "MBEECH");
System.out.println ("There are " + count +
" open notification(s) for" +
" MBEECH after Delegate.");

Transfer

PL/SQL Syntax

procedure TRANSFER
(nid in number,
new role in varchar2,
forward comment in varchar2 default null);

Notification System APIs 4-25



Java Syntax

public static boolean transfer
(WFContext wCtx,
BigDecimal nid,
String newRole
String comment)

Description

This procedure forwards a notification to a new role and transfers ownership of the
notification to the new role. It also implicitly calls the Callback function specified in the
Send or SendGroup function with TRANSFER mode. A comment can be supplied to
explain why the forward is taking place. The Transfer feature in the Notification System
calls this procedure. Note that when you transfer a notification, the transfer is recorded
in the USER COMMENT field of the notification.

Important: Existing notification attributes (including due date) are not
refreshed or otherwise changed except for ORIGINAL RECIPIENT,
which identifies the owner of the notification.

Arguments (input)
wCtx Workflow context information. Required for the Java
method only. See: Oracle Workflow Context, page 2-4.

nid The notification ID.
new_role or newRole The role name of the person the note is transferred to.

forward_comment or An optional comment to append to notification.
comment

Sample Code
Example
The following code excerpt shows an example of how to call transfer() in a Java
program. The example code is from the WETest . java program.

// transfer to MBEECH
System.out.println("Transfer Test");
System.out.println("Transfer nid " + myNid +
" from BLEWIS to MBEECH") ;
WENotificationAPI.transfer (ctx, myNid, "MBEECH",
"Matt, You own it now.");
count = WFNotificationAPI.workCount (ctx, "MBEECH");
System.out.println ("There are " + count +
" open notification(s) for" +
" MBEECH after Transfer.");

4-26 Oracle Workflow API Reference



Cancel

PL/SQL Syntax

procedure CANCEL
(nid in number,
cancel comment in varchar2 default null);

Java Syntax

public static boolean cancel
(WFContext wCtx,
BigDecimal nid,
String comment)

Description

This procedure may be invoked by the sender or administrator to cancel a notification.
The notification status is then changed to ' CANCELED' but the row is not removed
from the WF_NOTIFICATIONS table until a purge operation is performed.

If the notification was delivered via e-mail and expects a response, a 'Canceled’ e-mail is
sent to the original recipient as a warning that the notification is no longer valid.

Note: You can optionally use the Send E-mails for Canceled
Notifications mailer parameter to prevent notification mailers from
sending any notification cancellation messages. See: Notification Mailer
Configuration Wizard, Oracle Workflow Administrator’s Guide.

Arguments (input)
wCtx Workflow context information. Required for the Java
method only. See: Oracle Workflow Context, page 2-4.

nid The notification ID.

cancel_comment or comment An optional comment on the cancellation.

CancelGroup

PL/SQL Syntax

procedure CancelGroup
(gid in number,
cancel comment in varchar2 default null,
timeout in boolean default FALSE);

Notification System APIs  4-27



Description

This procedure may be invoked by the sender or administrator to cancel the individual
copies of a specific notification sent to all users in a notification group. The notifications
are identified by the notification group ID (gid). The notification status is then changed
to '"CANCELED' but the rows are not removed from the WF_NOTIFICATIONS table
until a purge operation is performed.

If the notification was delivered via e-mail and expects a response, a 'Canceled' e-mail is
sent to the original recipient as a warning that the notification is no longer valid.

Note: You can optionally use the Send E-mails for Canceled
Notifications mailer parameter to prevent notification mailers from
sending any notification cancellation messages. See: Notification Mailer
Configuration Wizard, Oracle Workflow Administrator’s Guide.

Generally, this function is called only if a notification activity has 'Expanded Roles'
checked in its properties page. If Expanded Roles is not checked, then the Cancel()
function is called instead. See: Voting Activity, Oracle Workflow Developer’s Guide.

Arguments (input)
gid The notification group ID.
cancel_comment An optional comment on the cancellation.
timeout Specify TRUE or FALSE to indicate whether the cancellation
was caused by a timeout event.
Respond
PL/SQL Syntax

Java Syntax

Description

procedure RESPOND
(nid in number,
respond comment in varchar2 default null,
responder in varchar2 default null);

public static boolean respond
(WFContext wCtx,
BigDecimal nid,
String comment,
String responder)

This procedure may be invoked by the notification agent (Notification Web page or

4-28 Oracle Workflow API Reference



e-mail agent) when the performer completes the response to the notification. The
procedure marks the notification as ' CLOSED' and communicates RESPOND attributes
back to the database via the callback function (if supplied).

This procedure also accepts the name of the individual who actually responded to the
notification. This may be useful to know especially if the notification is assigned to a
multi-user role. The information is stored in the RESPONDER column of the
WE_NOTIFICATIONS table. The value stored in this column depends on how the user
responds to the notification. The following table shows the value that is stored for each

response mechanism.

Responder Values

Response Mechanism

Value Stored

Response through the Worklist Web pages

Response through e-mail and the sender's
e-mail address matches the e-mail address for
exactly one user in WF_ROLES

Response through e-mail and the sender's
e-mail address either does not match the
e-mail address for any user in WF_ROLES, or
matches the e-mail address for more than one
user

<Oracle E-Business Suite user name>

<Oracle E-Business Suite user name>

email:<email_address>

Additionally, the Respond() procedure calls NtfSignRequirementsMet() to determine
whether the response meets any signature requirements imposed by the electronic
signature policy of the notification. If the requirements have not been met, Respond()
raises an error. See: #WF_SIG_POLICY Attribute, Oracle Workflow Developer’s Guide and

NtfSignRequirementsMet, page 4-30.

Arguments (input)

wCtx Workflow context information. Required for the Java
method only. See: Oracle Workflow Context, page 2-4.

nid The notification ID.

comment An optional comment on the response

responder The user who responded to the notification.

Notification System APIs 4-29



Responder

PL/SQL Syntax

function RESPONDER
(nid in number)
return varchar?2;

Java Syntax

public static String responder
(WFContext wCtx,
BigDecimal nid)

Description
This function returns the responder of a closed notification.
If the notification was closed using the Web notification interface the value returned
will be a valid role defined in the view WF_ROLES. If the notification was closed using
the e-mail interface then the value returned will be either a role or an e-mail address.
See: Respond, page 4-28.
Arguments (input)
wCtx Workflow context information. Required for the Java
method only. See: Oracle Workflow Context, page 2-4.
nid The notification ID.
NtfSignRequirementsMet
PL/SQL Syntax
function NtfSignRequirementsMet
(nid in number)
return boolean;
Description

Returns 'TRUE' if the response to a notification meets the signature requirements
imposed by the electronic signature policy for the notification. See: # WF_SIG_POLICY
Attribute, Oracle Workflow Developer’s Guide.

e If the notification uses a signature policy that requires an electronic signature to
validate a user's response, then a valid signature by a user who has authority to
sign the response must be submitted in order for the response to meet the
requirements. The signature must be of the appropriate type, either
password-based or certificate-based, depending on the signature policy.

4-30 Oracle Workflow API Reference



e If the notification uses the default policy, which does not require a signature, or if
no signature policy is defined for the notification, then a response without a
signature meets the requirements.

However, if the signature policy for the notification requires an electronic signature, but
a valid signature has not been submitted, then the response does not meet the
requirements. In this case N#fSignRequirementsMet() returns ' FALSE"'.

Arguments (input)
nid The notification ID.

Related Topics
Respond, page 4-28

VoteCount

PL/SQL Syntax

procedure VoteCount
(gid in number,
ResultCode in varchar2,
ResultCount out number,
PercentOfTotalPop out number,
PercentOfVotes out number);

Java Syntax

public static WFTwoDArray voteCount
(WFContext wCtx,
BigDecimal gid,
String resultCode)

Description
Counts the number of responses for a specified result code.
Use this procedure only if you are writing your own custom Voting activity. See: Voting
Activity, Oracle Workflow Developer’s Guide.

Arguments (input)

wCtx Workflow context information. Required for the Java
method only. See: Oracle Workflow Context, page 2-4.

gid The notification group ID.

ResultCode Result code to be tallied.

Notification System APIs 4-31



OpenNotificationsExist

PL/SQL Syntax

function OpenNotificationsExist
(gid in number)
return boolean;

Java Syntax

public static boolean openNotificationsExist
(WFContext wCtx,
BigDecimal gid)

Description
This function returns ' TRUE' if any notification associated with the specified
notification group ID is 'OPEN"', otherwise it returns ' FALSE'.
Use this procedure only if you are writing your own custom Voting activity. See: Voting
Activity, Oracle Workflow Developer’s Guide.

Arguments (input)
wCtx Workflow context information. Required for the Java

method only. See: Oracle Workflow Context, page 2-4.

gid The notification group ID.

Close

PL/SQL Syntax

procedure Close
(nid in number,
responder in varchar2 default null);

Java Syntax

public static boolean close
(WFContext wCtx,
BigDecimal nid,
String responder)

Description

This procedure closes a notification.

4-32 Oracle Workflow API Reference



Arguments (input)
wCtx Workflow context information. Required for the Java
method only. See: Oracle Workflow Context, page 2-4.

nid The notification ID.

responder The user or role who responded to the notification.

AddAttr

PL/SQL Syntax

procedure AddAttr
(nid in number,
aname in varchar?);

Java Syntax

public static boolean addAttr
(WFContext wCtx,
BigDecimal nid,
String aName)

Description
Adds a new runtime notification attribute. You should perform validation and insure
consistency in the use of the attribute, as it is completely unvalidated by Oracle
Workflow.

Arguments (input)
wCtx Workflow context information. Required for the Java

method only. See: Oracle Workflow Context, page 2-4.

nid The notification ID.
aname The attribute name.
avalue The attribute value.

Sample Code
Example

The following code excerpt shows an example of how to call addAttr() in a Java
program. The example code is from the WFTest . java program.

Notification System APIs 4-33



SetAttribute

PL/SQL Syntax

Java Syntax

Description

if (WFNotificationAPI.addAttr (ctx, myNid, myAttr) == false)

{

System.out.println ("Add attribute " + myAttr + " failed.");

}

procedure SetAttrText
(nid in number,
aname in varchar?2,

avalue 1in varchar?):;

procedure SetAttrNumber

(nid in number,
aname in varchar?2,
avalue in number);

procedure SetAttrDate
(nid in number,
aname in varchar2,
avalue in date);

public static boolean
(WFContext wCtx,
BigDecimal nid,
String aName,
String aValue)

public static boolean
(WFContext wCtx,
BigDecimal nid,
String aName,
BigDecimal aValue)

public static boolean
(WFContext wCtx,
BigDecimal nid,
String aName,
String aValue)

setAttrText

setAttrNumber

setAttrDate

Used at both send and respond time to set the value of notification attributes. The
notification agent (sender) may set the value of SEND attributes. The performer
(responder) may set the value of RESPOND attributes.

Arguments (input)

wCtx

4-34 Oracle Workflow API Reference

Workflow context information. Required for the Java
method only. See: Oracle Workflow Context, page 2-4.



nid The notification ID.

aname The attribute name.
avalue The attribute value.
Sample Code
Example
The following code excerpt shows an example of how to call a setAttribute method in a
Java program. The example code is from the WFTest . java program.
if (WEFNotificationAPI.setAttrDate(ctx, myNid, myAttr, value)
== false)
{
System.out.println("set attribute " + myAttr + " to " +
value + " failed.");
}
GetAttrinfo
PL/SQL Syntax

procedure GetAttrInfo
(nid in number,
aname in varchar2,
atype out varcharz,
subtype out varchar2,
format out wvarchar?2);

Java Syntax
public static WFTwoDArray getAttrInfo
(WFContext wCtx,
BigDecimal nid,
String aName)

Description
Returns information about a notification attribute, such as its type, subtype, and format,
if any is specified. The subtype is always SEND or RESPOND to indicate the attribute's
source.

Arguments (input)
wCtx Workflow context information. Required for the Java

method only. See: Oracle Workflow Context, page 2-4.

nid The notification ID.
aname The attribute name.

Notification System APIs 4-35



Sample Code
Example
The following code excerpt shows an example of how to call getAttrinfo() in a Java
program. The example code is from the WFTest . java program.

dataSource = WENotificationAPI.getAttrInfo(ctx, myNid,
myAttr);
displayDataSource (ctx, dataSource);

// the first element is the attribute type
myAttrType = (String) dataSource.getData(0,0);

Getlnfo

PL/SQL Syntax

procedure GetInfo
(nid in number,
role out varchar2,
message type out varchar2,
message name out varchar2,
priority out number,
due date out date,
status out wvarchar?2);

Java Syntax

public static WEFTwoDArray getInfo
(WFContext wCtx,
BigDecimal nid)

Description
Returns the role that the notification is sent to, the item type of the message, the name of
the message, the notification priority, the due date and the status for the specified
notification.

Arguments (input)
wCtx Workflow context information. Required for the Java

method only. See: Oracle Workflow Context, page 2-4.

nid The notification ID.

Sample Code
Example

The following code excerpt shows an example of how to call getInfo() in a Java program.
The example code is from the WFTest . java program.

4-36 Oracle Workflow API Reference



GetText

PL/SQL Syntax

Java Syntax

Description

// Notification Info

System.out.println ("Notification Info for nid " + myNid);
dataSource = WFNotificationAPI.getInfo (ctx, myNid);
displayDataSource (ctx, dataSource);

function GetText
(some text in varchar2,
nid in number,
disptype in varchar2 default '"'")
return varchar?2;

public static String getText
(WFContext wCtx,
String someText,
BigDecimal nid,
String dispType)

Substitutes tokens in an arbitrary text string using token values from a particular
notification. This function may return up to 32K characters. You cannot use this
function in a view definition or in an Oracle Forms Developer form. For views and
forms, use GetShortText() which truncates values at 1950 characters.

Note: If the text string includes tokens for attributes of type date, then
GetText() formats the date values for those tokens according to the

calendar preference specified for the notification recipient in the FND:
Forms User Calendar profile option, if this profile option has been set.

If an error is detected, this function returns some text unsubstituted rather than raise

exceptions.

Arguments (input)
wCtx
some_text or someText
nid

disptype or dispType

Workflow context information. Required for the Java
method only. See: Oracle Workflow Context, page 2-4.

Text to be substituted.
Notification ID of notification to use for token values.

The display type of the message body that you are token
substituting the text into. Valid display types are:

Notification System APIs  4-37



e wf notification.doc_text, which returns
text/plain

e wf notification.doc html, which returns
text/html

e wf notification.doc_ attach, which returns
null

The default is null.

GetShortText
PL/SQL Syntax
function GetShortText
(some text in varchar2,
nid in number)
return varchar?2;
Description
Substitutes tokens in an arbitrary text string using token values from a particular
notification. This function may return up to 1950 characters. This function is meant for
use in view definitions and Oracle Forms Developer forms, where the field size is
limited to 1950 characters. Use GetText() in other situations where you need to retrieve
up to 32K characters.
If an error is detected, this function returns some text unsubstituted rather than raise
exceptions.
Arguments (input)
some_text Text to be substituted.
nid Notification ID of notification to use for token values.

4-38 Oracle Workflow API Reference



GetAttribute

PL/SQL Syntax

function GetAttrText
(nid in number,
aname in varchar?)
return varchar2;

function GetAttrNumber
(nid in number,
aname in varchar?2)
return number;

function GetAttrDate
(nid in number,
aname in varchar?)
return date;

Java Syntax

public static String getAttrText
(WFContext wCtx,
BigDecimal nid,
String aName)

public static BigDecimal getAttrNumber
(WFContext wCtx,
BigDecimal nid,
String aName)

public static String getAttrDate
(WFContext wCtx,
BigDecimal nid,
String aName)

Description
Returns the value of the specified message attribute.

Note: If the text string includes returned by GetAttrText() includes
formatted date values, then this API formats those date values
according to the calendar preference specified for the notification
recipient in the FND: Forms User Calendar profile option, if this profile
option has been set.

Arguments (input)
wCtx Workflow context information. Required for the Java
method only. See: Oracle Workflow Context, page 2-4.

nid The notification ID.

Notification System APIs 4-39



Sample Code

GetAttrDoc

PL/SQL Syntax

Java Syntax

Description

aname The message attribute name.

Example
The following code excerpt shows an example of how to call the getAttribute methods in
a Java program. The example code is from the WFTest . java program.

// we get the value according to the type.
if (myAttrType == "DATE")
{
value = WENotificationAPI.getAttrDate (ctx, myNid, myAttr);
}
else if (myAttrType == "NUMBER")
{
value = (WFNotificationAPI.getAttrNumber (ctx, myNid,
myAttr)) .toString();
}
else 1f (myAttrType == "DOCUMENT")
{
value = WENotificationAPI.getAttrDoc (ctx, myNid, myAttr,
null) ;
}
else
value = WFNotificationAPI.getAttrText (ctx, myNid, myAttr);

System.out.println (myAttr.toString() + " = '" + value +

IIVII);

function GetAttrDoc
(nid in number,
aname in varchar?2,
disptype in varchar2)
return varchar?2;

public static String getAttrDoc
(WFContext wCtx,
BigDecimal nid,
String aName,
String dispType)

Returns the displayed value of a Document-type attribute. The referenced document
appears in either plain text or HTML format, as requested.

If you wish to retrieve the actual attribute value, that is, the document key string
instead of the actual document, use GetAttrText().

4-40 Oracle Workflow API Reference



Arguments (input)
wCtx Workflow context information. Required for the Java
method only. See: Oracle Workflow Context, page 2-4.

nid The notification ID.

aname The message attribute name.

disptype The display type of the document you wish to return. Valid
display types are:

e wf notification.doc_ text, which returns
text/plain

e wf notification.doc html, which returns
text/html

¢ wf notification.doc_attach, which returns null

GetSubject

PL/SQL Syntax

function GetSubject
(nid in number)
return varchar?

Java Syntax

public static String getSubject
(WFContext wCtx,
BigDecimal nid)

Description
Returns the subject line for the notification message. Any message attribute in the
subject is token substituted with the value of the corresponding message attribute.
Arguments (input)

wCtx Workflow context information. Required for the Java
method only. See: Oracle Workflow Context, page 2-4.

nid The notification ID.

Notification System APIs 4-41



GetBody

PL/SQL Syntax

function GetBody
(nid in number,
disptype in varchar2 default '')
return varchar2;

Java Syntax

public static String getBody
(WFContext wCtx,
BigDecimal nid,
String dispType)

Description

Returns the HTML or plain text message body for the notification, depending on the
message body type specified. Any message attribute in the body is token substituted
with the value of the corresponding notification attribute. This function may return up
to 32K characters. You cannot use this function in a view definition or in an Oracle
E-Business Suite form. For views and forms, use GetShortBody() which truncates values
at 1950 characters.

Note that the returned plain text message body is not formatted; it should be
wordwrapped as appropriate for the output device. Body text may contain tabs (which
indicate indentation) and newlines (which indicate paragraph termination).

Arguments (input)
wCtx Workflow context information. Required for the Java
method only. See: Oracle Workflow Context, page 2-4.

nid The notification ID.
disptype The display type of the message body you wish to fetch.
Valid display types are:

e wf notification.doc_text, which returns
text/plain

e wf notification.doc html, which returns
text/html

e wf notification.doc_ attach, which returns null

The default is null.

4-42 Oracle Workflow API Reference



GetShortBody

PL/SQL Syntax

function GetShortBody
(nid in number)
return varchar?2;

Description
Returns the message body for the notification. Any message attribute in the body is
token substituted with the value of the corresponding notification attribute. This
function may return up to 1950 characters. This function is meant for use in view
definitions and Oracle Forms Developer forms, where the field size is limited to 1950
characters. Use GetBody() in other situations where you need to retrieve up to 32K
characters.

Note that the returned plain text message body is not formatted; it should be
wordwrapped as appropriate for the output device. Body text may contain tabs (which
indicate indentation) and newlines (which indicate paragraph termination).

If an error is detected, this function returns the body unsubstituted or null if all else
fails, rather than raise exceptions.

Note: This function is intended for displaying messages in forms or
views only.

Arguments (input)
nid The notification ID.

TestContext

PL/SQL Syntax

function TestContext
(nid in number)
return boolean;

Description

Tests if the current context is correct by calling the Item Type Selector/Callback
function. This function returns TRUE if the context check is OK, or if no
Selector/Callback function is implemented. It returns FALSE if the context check fails.

Notification System APIs  4-43



Arguments (input)
nid The notification ID.

AccessCheck

PL/SQL Syntax

function AccessCheck
(access _str in varchar2)
return varchar?2;

Java Syntax

public static String accessCheck
(WFContext wCtx,
String accessString)

Description
Returns a username if the notification access string is valid and the notification is open,
otherwise it returns null. The access string is automatically generated by the notification
mailer that sends the notification and is used to verify the authenticity of both text and
HTML versions of e-mail notifications.
Arguments (input)
wCtx Workflow context information. Required for the Java
method only. See: Oracle Workflow Context, page 2-4.
access_str or accessString The access string, in the format nid/nkey where nidis
the notification ID and nkey is the notification key.
WorkCount
PL/SQL Syntax

function WorkCount
(username in varchar?)
return number;

Java Syntax

public static BigDecimal workCount
(WFContext wCtx,
String userName)

4-44 Oracle Workflow API Reference



Description

Returns the number of open notifications assigned to a role.

Arguments (input)
wCtx Workflow context information. Required for the Java
method only. See: Oracle Workflow Context, page 2-4.
username The internal name of a role.
getNotifications

Java Syntax

public static WFTwoDArray getNotifications
(WFContext wCtx,
String itemType,
String itemKey)

Description

Returns a list of notifications for the specified item type and item key.

Arguments (input)
wCtx Workflow context information. Required for the Java
method only. See: Oracle Workflow Context, page 2-4.

itemType The internal name of the item type.

itemKey A string derived from the application object's primary key.
The string uniquely identifies the item within the item
type. The item type and key together identify the process
instance.

getNotificationAttributes

Java Syntax

public static WFTwoDArray getNotificationAttributes
(WFContext wCtx,
BigDecimal nid)

Description

Returns a list of notification attributes and their corresponding values for the specified
notification ID.

Notification System APIs 4-45



Arguments (input)

Sample Code

WriteToClob

PL/SQL Syntax

Description

wCtx Workflow context information. Required for the Java
method only. See: Oracle Workflow Context, page 2-4.

nid The notification ID.

Example
The following code excerpt shows an example of how to call getNotification Attributes() in
a Java program. The example code is from the WFTest . java program.

// List available Notification Attributes
System.out.println("List of Attributes for id " + myNid +

ll:ll);

dataSource =
WENotificationAPI.getNotificationAttributes (ctx, myNid) ;
displayDataSource (ctx, dataSource);

procedure WriteToClob
(clob loc in out clob,
msg string in varchar2);

Appends a character string to the end of a character large object (CLOB). You can use
this procedure to help build the CLOB for a PL/SQL CLOB document attribute for a
notification.

Arguments (input)

Related Topics

clob_loc The CLOB to which the string should be added.

msg_string A string of character data.

To Define a Document Attribute, Oracle Workflow Developer’s Guide
"PL/SQL CLOB" Documents, Oracle Workflow Developer’s Guide

4-46 Oracle Workflow API Reference



Denormalize_Notification

PL/SQL Syntax

Description

procedure Denormalize Notification
(nid in number,
username in varchar2 default null,
langcode in varchar2 default null);

Stores denormalized values for certain notification fields, including the notification
subject, in the WF_NOTIFICATIONS table. If you are using the Notification System to
send a notification outside of a workflow process, you must call
Denormalize_Notification() after setting the values for any notification attributes, in order
to populate the denormalized fields.

Denormalize_Notification() tests whether the NLS settings according to which the
notification should be sent match the NLS settings of the current session, and stores the
denormalized information only if these settings match. The procedure tests the
following NLS parameters:

* nls language

®* nls date format

®* nls date language
® nls calendar

® nls territory

®¢ nls sort

You can indicate the language setting for the notification in a number of ways.
e If you specify a role name when you call the AP], the language setting for that role

is used to determine the notification language.

e If you do not specify a role name, you can specify a language code for the language
you want.

Note: If you specify both a role name and a language code, the role
name is used to determine the notification language, and the
language code is ignored.

¢ If you specify neither a role name nor a language code, the notification language
defaults to the language setting for the recipient role of the notification.

Notification System APIs  4-47



For the other NLS parameters, the settings according to which the notification should be
sent are those of the recipient role.

If NLS settings for the notification do not match the settings of the current session, the
procedure does not store the denormalized information immediately. Instead, it raises
the oracle.apps.wf.notification.denormalize event to defer the denormalization. The
procedure sets all the NLS parameters into the event attributes so that the full NLS
context will be available when the event is processed and the denormalization is
performed.

Note: When a notification is denormalized, the only NLS parameter
that is stored in the WF_NOTIFICATIONS table is the language setting.
The other NLS parameters are not currently stored.

After notifications are sent, the user interface through which notification recipients
access notifications should also call this procedure to check the language and perform
denormalization if necessary. The Oracle Workflow Worklist performs these tasks for
you if your users access their notifications through the Worklist Web pages.

Note: Because only the language parameter is stored in the
WEF_NOTIFICATIONS table, the language setting is the only setting
that is tested against the current session when a notification is accessed
and denormalized through a user interface.

Arguments (input)
nid The notification ID.
username An optional internal name of a role used to determine the
notification language.
langcode An optional language code used to determine the

notification language if no role name is provided.

Notification Mailer Utility API

The notification mailer utility API can be used to encode data in a binary large object
(BLOB) to base64. This APl is defined in a PL/SQL package called WF_MAIL_UTIL.

4-48 Oracle Workflow API Reference



EncodeBLOB

PL/SQL Syntax
procedure EncodeBLOB
(pIDoc in blob,
pODoc in out nocopy clob);
Description
Encodes the specified BLOB to base64 and returns the encoded data as a character large
object (CLOB). You can use this procedure to store a BLOB in a PL/SQL CLOB
document to be included in a notification message.
Arguments (input)
piDoc The BLOB to encode.
pODoc The CLOB in which the encoded data should be stored.
Related Topics

Standard APIs for "PL/SQL" Documents, Oracle Workflow Developer's Guide

Notification Utility API

The notification utility API can be used to format a date value according to a particular
calendar preference. This API is defined in a PL/SQL package called
WF_NOTIFICATION_UTIL.

GetCalendarDate

PL/SQL Syntax

function GetCalendarDate
(p_nid number default -1,
p_date in date,
p_date format in varchar2 default null,
p_addTime in boolean default false) return varchar2;

Description

Returns the specified date value as formatted text in the specified date format, using
either a notification recipient's calendar preference or the current session user's calendar
preference. For example, you can call this API within PL/SQL documents used in
notifications, so that the Worklist pages and e-mail notifications display date values in
the appropriate format for the notification recipients.

Notification System APIs 4-49



Arguments (input)
p_nid Specify the notification ID if it is available. In this case, the
API returns the date value according to the calendar
preference of the notification recipient. If you do not
specify a notification ID, the API returns the date value
according to the calendar preference of the current session

user.
p_date The date value to format.
p_date_format Optionally specify a date format mask in which to return

the date value.

p_addTime If the date format mask specified in the p_date format
parameter does not include a time format, you can use this
parameter to specify whether to add a time element to the
formatted date. Specify TRUE to add a time element based
on the NLS time format of the current session, such as '
HH24:MI:SS"'. Specify FALSE if you do not want to add a
time element.The default value is FALSE.

Note: If the date format mask specified in
thep date format parameter does
include a time format, then the
p_addTime parameter is not used.

XML Message APlIs

The Oracle Workflow XML message APIs are used to process messages to be sent
through e-mail, including generating the XML message content. These APIs are defined
in a PL/SQL package called WF_XML.

¢  WF_XML.Generate, page 4-51
¢  WF_XML.SummaryRule, page 4-51

e  WEF_XML.Error_Rule, page 4-52

4-50 Oracle Workflow API Reference



WF_XML.Generate

PL/SQL Syntax

function Generate
(p_event name in varchar?2,
p_event key in varchar2,
p_parameter list in wf parameter list t default null)
return clob;

Description
Generates the XML message content as the event data for events in the Notification
Send group (oracle.apps.wf.notification.send.group). The send events are then ready to
be placed on the WF_NOTIFICATION_OUT agent to be processed by the notification
mailer.

Arguments (input)
p_event_name The internal name of the event.
p_event_key The event key that identifies the specific instance of the

event.

p_parameter_list The list of additional parameters for the event.

Related Topics

Notification Events, Oracle Workflow Developer’s Guide

WF_XML.SummaryRule

PL/SQL Syntax

Description

function SummaryRule
(p_subscription guid in raw,
p_event in out nocopy wf event t)
return varchar?2;

Launches summary notifications for each role that has open notifications and a
notification preference of SUMMARY or SUMHTML. This function calls the appropriate
APIs to generate the summary content for each role and for each member of those roles.
Oracle Workflow uses WF_XML.SummaryRule() as the rule function for a predefined
subscription to the Launch Summary Notifications event
(oracle.apps.fnd.wf.mailer.Mailer.notification.summary).

Notification System APIs 4-51



Arguments (input)
p_subscription_guid The globally unique identifier of the subscription that calls
this rule function.

p_event The event message that triggers the subscription.

Related Topics
Notification Mailer Events, Oracle Workflow Developer's Guide

WF_XML.Error_Rule

PL/SQL Syntax
function Error Rule
(p_subscription guid in raw,
p_event in out nocopy wf event t)
return varchar?2;
Description

Catches and raises internal exceptions in message processing to force a rollback. This
API helps prevent endless loops if failed messages result in error messages that also fail.
Oracle Workflow uses WF_XML.Error_Rule() as the rule function for a predefined error
subscription to the Notification Send Group event group
(oracle.apps.wf.notification.send.group).

Arguments (input)
p_subscription_guid The globally unique identifier of the subscription that calls
this rule function.
p_event The event message that triggers the subscription.
Related Topics

Notification Events, Oracle Workflow Developer’s Guide

Message API

The Oracle Workflow message API can be used to send messages through e-mail,
whether the messages are associated with a workflow process or not. This API is
defined in a PL/SQL package called WF_MAIL.

The Oracle Workflow message API uses a PL/SQL table composite datatype called
wf recipient list t, defined in the WF_MAIL package. The following table

4-52 Oracle Workflow API Reference



shows the column datatype definition for this PL/SQL table type.

PL/SQL Table Type in WF_MAIL

PL/SQL Table Type

Column Datatype Definition

wi_recipient_list_t

wf_recipient_rec_t

The wf recipient list t PL/SQL table type in turn uses a PL/SQL record
composite datatype called wf recipient rec t, which stores information about a

recipient to whom an e-mail message should be sent. The following table lists the fields

in this PL/SQL record type.

Fields in wf_recipient_rec_t Record Type

Field Name

Field Datatype

Description

NAME

ADDRESS

RECIPIENT_TYPE

VARCHAR2(360)

VARCHAR2(320)

VARCHAR2(4)

Recipient name
E-mail address

Recipient type, either TO, CC,
or BCC

WF_MAIL.Send

PL/SQL Syntax

procedure send

(p_subject in varchar2,

p_message in out nocopy clob,
p_recipient list in wf recipient list t,
p_module in varchar?2,

p_idstring in varchar2 default null,
p_from in varchar2 default null,

p_replyto in varchar2 default null,
p_language in varchar2 default 'AMERICAN',
p_territory in varchar2 default 'AMERICA',
p _codeset in varchar2 default 'UTF8',
p_content type in varchar2 default 'text/plain',
p _callback event in varchar2 default null,
p_event key in varchar2 default null,
p_fyi flag in varchar2 default null);

Notification System APIs

4-53



Description

Sends a message to be dispatched through e-mail by a notification mailer. The message
content and recipients provided in the parameters do not need to be associated with
any workflow process or directory service roles. The message content must be
complete, preformatted, and email-ready, and should conform to the content type
specified in the p_content_type parameter. Where possible, Oracle recommends setting

only the required parameters and using the default values for the optional parameters.

Arguments (input)
p_subject

p_message
p_recipient_list
p_module

p_idstring

p_from

p_replyto

p_language

p_territory

p_codeset

p_content_type

p_callback_event

p_event_key

p_fyi_flag

4-54 Oracle Workflow API Reference

The Subject header value for the message.

The message content as a character large object (CLOB).
The list of recipients to whom the message should be sent.
The program or application to which the message belongs.

An optional identifier for the message, used in response
processing.

An optional From header value for the message.
An optional Reply-To header value for the message.

An optional language setting for the message. The default
valueis 'AMERICAN'.

An optional territory setting for the message. The default
value is 'AMERICA'.

An optional codeset encoding specification for the message.
The default valueis 'UTF8'.

An optional Content-Type header value for the message.
The default value is 'text/plain’.

The event raised to enable further processing, if needed,
after the message is dispatched.

The key that identifies the message when the message is
enqueued for dispatch.

A flag to indicate whether the message is for your
information (FYI) or requires a response.



5

Business Event System APls

This chapter describes the APIs for the Oracle Workflow Business Event System. The
APIs include datatypes and PL/SQL functions and procedures that you can use to
access the Business Event System.

This chapter covers the following topics:

Overview of the Oracle Workflow Business Event System
Business Event System Datatypes

Event APIs

Event Subscription Rule Function APIs

Event Function APIs

Business Event System Replication APIs

Business Event System Cleanup API

Overview of the Oracle Workflow Business Event System

The Oracle Workflow Business Event System leverages the Oracle Advanced Queuing
infrastructure to communicate business events between systems. When a significant
business event occurs in an internet or intranet application on a system, it triggers event
subscriptions that specify the processing to execute for that event.

Subscriptions can include the following types of processing:

Sending event information to a workflow process

Sending event information to named communication points called agents on the
local system or external systems

Sending a notification to a role

Receiving an Oracle XML Gateway message from a trading partner (Oracle

Business Event System APIs  5-1



E-Business Suite only)

* Sending an Oracle XML Gateway message to a trading partner (Oracle E-Business
Suite only)

¢ Executing custom code on the event information

The event information communicated by the Business Event System is called an event
message. The event message includes header properties to identify the event as well as
event data describing what occurred.

You define events, systems, agents, and subscriptions in the Event Manager. You can
also define event activities in the Workflow Builder to include business events in your
workflow processes.

Related Topics

Business Event System Datatypes, page 5-2

Event APIs, page 5-24

Event Subscription Rule Function APIs, page 5-41

Event Function APIs, page 5-65

Business Event System Replication APIs, page 5-72

Business Event System Cleanup APIs, page 5-81

Managing Business Events, Oracle Workflow Developer’s Guide

Event Activities, Oracle Workflow Developer’s Guide

Business Event System Datatypes

Oracle Workflow uses a number of abstract datatypes (ADTs) to model the structure
and behavior of Business Event System data. These datatypes include the following;:

e Agent structure: WE_AGENT_T, page 5-3

® Parameter structure: WF_PARAMETER_T, page 5-4

* Parameter list structure: WF_PARAMETER_LIST_T, page 5-6
e Event message structure: WF_EVENT_T, page 5-6

The Business Event System datatypes are created by a script called wftypes.sql,
which is located in the $FND_TOP/sql directory.

See: User-Defined Datatypes, Oracle Concepts.

5-2 Oracle Workflow API| Reference



Related Topics
Example for Using Abstract Datatypes, page 5-20

Agent Structure

Oracle Workflow uses the object type WF_AGENT T to store information about an agent
in a form that can be referenced by an event message. The following table lists the
attributes of the WF_AGENT T datatype.

WF_AGENT_T Attributes

Attribute Name Datatype Description

NAME VARCHAR2(30) The name of the agent.

SYSTEM VARCHAR2(30) The system where the agent is
located.

The WF_AGENT T object type also includes the following methods, which you can use
to retrieve and set the values of its attributes.

¢ getName, page 5-3

getSystem, page 5-4
* setName, page 5-4

* setSystem, page 5-4

Related Topics
Agents, Oracle Workflow Developer’s Guide
getName
PL/SQL Syntax
MEMBER FUNCTION getName
return varchar?2
Description

Returns the value of the NAME attribute in a WE_AGENT T object.

Business Event System APIs  5-3



getSystem

PL/SQL Syntax

MEMBER FUNCTION getSystem

return varchar2

Description

Returns the value of the SYSTEM attribute in a WF_AGENT T object.
setName
PL/SQL Syntax

MEMBER PROCEDURE setName

(pName in varchar?2)

Description

Sets the value of the NAME attribute in a WF_AGENT T object.
Arguments (input)

pName The value for the NAME attribute.
setSystem
PL/SQL Syntax

MEMBER PROCEDURE setSystem

(pSystem in varchar?2)

Description

Sets the value of the SYSTEM attribute in a WF_AGENT T object.
Arguments (input)

pSystem The value for the SYSTEM attribute.
Parameter Structure

Oracle Workflow uses the object type WF_PARAMETER T to store a parameter name and
value pair in a form that can be included in an event message parameter list.
WF_PARAMETER T allows custom values to be added to the WF EVENT T event
message object. The following table lists the attributes of the W& PARAMETER T
datatype.

5-4 Oracle Workflow API| Reference



getName

PL/SQL Syntax

Description

getValue

PL/SQL Syntax

Description

setName

PL/SQL Syntax

WF_PARAMETER_T Attributes

Attribute Name Datatype Description
NAME VARCHAR2(30) The parameter name.
VALUE VARCHAR2(2000) The parameter value.

The WF_PARAMETER T object type also includes the following methods, which you can
use to retrieve and set the values of its attributes.

e getName, page 5-5
e getValue, page 5-5
e setName, page 5-5

e setValue, page 5-6

MEMBER FUNCTION getName
return varchar?

Returns the value of the NAME attribute in a WF_ PARAMETER T object.

MEMBER FUNCTION getValue
return varchar?2

Returns the value of the VALUE attribute in a WF_ PARAMETER_T object.

MEMBER PROCEDURE setName
(pName in varchar?2)

Business Event System APIs 5-5



Description

Arguments (input)

setValue

PL/SQL Syntax

Description

Arguments (input)

Sets the value of the NAME attribute in a WF_PARAMETER T object.

pName The value for the NAME attribute.

MEMBER PROCEDURE setValue
(pValue in wvarchar?2)

Sets the value of the VALUE attribute in a W PARAMETER T object.

pValue The value for the VALUE attribute.

Parameter List Structure

Oracle Workflow uses the named varying array (varray) WF_PARAMETER LIST T to
store a list of parameters in a form that can be included in an event message.
WF_PARAMETER LIST T allows custom values to be added to the WF_EVENT T event
message object. The WF_ PARAMETER LIST T datatype can include up to 100
parameter name and value pairs. A description of this datatype is as follows:
WF_PARAMETER_LIST_T

e  Maximum size: 100

¢ Element datatype: WF_PARAMETER T

Event Message Structure

Oracle Workflow uses the object type WF_EVENT T to store event messages. This
datatype contains all the header properties of an event message as well as the event
data payload, in a serialized form that is suitable for transmission outside the system.

WF_EVENT T defines the event message structure that the Business Event System and
the Workflow Engine use to represent a business event. Internally, the Business Event
System and the Workflow Engine can only communicate events in this format. Many of
the standard queues that Oracle Workflow provides for the Business Event System use
WF_EVENT T as their payload type.

5-6 Oracle Workflow API| Reference



Note: If you want to use queues with a custom payload type, including
any existing queues you already have defined on your system, you
must create a queue handler to translate between the standard
Workflow WF_EVENT T structure and your custom payload type. See:
Setting Up Queues, Oracle Workflow Administrator’s Guide and Standard
APIs for a Queue Handler, Oracle Workflow Developer’s Guide.

The following table lists the attributes of the WF_EVENT T datatype.

WF_EVENT_T Attributes

Attribute Name Datatype Description

PRIORITY NUMBER The priority with which the
message recipient should
dequeue the message. A
smaller number indicates a

higher priority. For example,

1 represents a high priority,
50 represents a normal
priority, and 99 represents a
low priority.

Business Event System APIs

5-7



Attribute Name

Datatype

Description

SEND_DATE

RECEIVE_DATE

CORRELATION_ID

PARAMETER_LIST

DATE

DATE

VARCHAR2(240)

WF_PARAMETER_LIST_T

The date and time when the
message is available for
dequeuing. The send date can
be set to the system date to
indicate that the message is
immediately available for
dequeuing, or to a future date
to indicate future availability.

If the send date is set to a
future date when an event is
raised, the event message is
placed on the
WEF_DEFERRED queue, and
subscription processing does
not begin until the specified
date. If the send date is set to
a future date when an event is
sent to an agent, the event
message is propagated to that
agent's queue, but does not
become available for the
consumer to dequeue until
the specified date.

The date and time when the
message is dequeued by an
agent listener.

A correlation identifier that
associates this message with
other messages. This attribute
is initially blank but can be set
by a function. If a value is set
for the correlation ID, then
that value is used as the item
key if the event is sent to a
workflow process. Note that
the item key for a process
instance can only contain
single-byte characters. It
cannot contain a multibyte
value.

A list of additional parameter
name and value pairs.

5-8 Oracle Workflow API| Reference



Attribute Name

Datatype

Description

EVENT_NAME

EVENT_KEY

EVENT_DATA

FROM_AGENT

TO_AGENT

ERROR_SUBSCRIPTION

ERROR_MESSAGE

ERROR_STACK

VARCHAR2(240)

VARCHAR2(240)

CLOB

WEF_AGENT_T

WF_AGENT_T

RAW(16)

VARCHAR2(4000)

VARCHAR2(4000)

The internal name of the
event.

The string that uniquely
identifies the instance of the
event.

A set of additional details
describing what occurred in
the event. The event data can
be structured as an XML
document.

The agent from which the
event is sent. For locally
raised events, this attribute is
initially null.

The agent to which the event
should be sent (the message
recipient).

If an error occurs while
processing this event, this is
the subscription that was
being executed when the
error was encountered.

An error message that the
Event Manager generates if
an error occurs while
processing this event.

An error stack of arguments
that the Event Manager
generates if an error occurs
while processing this event.
The error stack provides
context information to help
you locate the source of an
error.

The WF_EVENT T object type also includes the following methods, which you can use
to retrieve and set the values of its attributes.

Business Event System APIs

5-9



e Initialize, page 5-11

e getPriority, page 5-12

¢ getSendDate, page 5-12

* getReceiveDate, page 5-12

¢ getCorrelationlD, page 5-12
e getParameterList, page 5-13
¢ getEventName, page 5-13

* getEventKey, page 5-13

e getEventData, page 5-13

e getFromAgent, page 5-13

e getToAgent, page 5-14

e getErrorSubscription, page 5-14
¢ getErrorMessage, page 5-14
¢ getErrorStack, page 5-14

* setPriority, page 5-14

e setSendDate, page 5-15

* setReceiveDate, page 5-15

¢ setCorrelationID, page 5-15
¢ setParameterList, page 5-16
¢ setEventName, page 5-16

* setEventKey, page 5-16

* setEventData, page 5-16

* setFromAgent, page 5-17

¢ setToAgent, page 5-17

5-10 Oracle Workflow AP| Reference



e setErrorSubscription, page 5-17
¢ setErrorMessage, page 5-18

¢ setErrorStack, page 5-18

¢ Content, page 5-18

* Address, page 5-19

® AddParameterToList, page 5-19

e GetValueForParameter, page 5-19

Note: You can set the values of the EVENT NAME, EVENT KEY, and
EVENT DATA attributes individually using the setEventName,
setEventKey, and setEventData methods, or you can use the Content
method to set all three event content attributes at once. See: Content,
page 5-18.

Similarly, you can set the values of the FROM_AGENT, TO AGENT,
PRIORITY, and SEND DATE attributes individually using the
setFromAgent, setToAgent, setPriority, and setSendDate methods, or
you can use the Address method to set all four address attributes at
once. See: Address, page 5-19.

Related Topics

Example for Using Abstract Datatypes, page 5-20

Mapping Between WE_EVENT_T and SYS.AQ$_JMS_TEXT_MESSAGE, page 5-21
Initialize
PL/SQL Syntax

STATIC PROCEDURE initialize

(new wf event t in out wf event t)

Description

Initializes a new WEF_EVENT T object by setting the PRIORITY attribute to 0, initializing
the EVENT DATA attribute to EMPTY using the Empty_CLOB() function, and setting all
other attributes to NULL.

Important: You must call the Initialize method before you can perform
any further manipulation on a new WF_EVENT T object.

Business Event System APIs  5-11



Arguments (input)
new_wf_event_t The WF_EVENT T object to initialize.

getPriority
PL/SQL Syntax
MEMBER FUNCTION getPriority
return number
Description
Returns the value of the PRIORITY attribute ina WEF_EVENT T object.
getSendDate
PL/SQL Syntax
MEMBER FUNCTION getSendDate
return date
Description
Returns the value of the SEND DATE attribute in a WF_EVENT T object.
getReceiveDate
PL/SQL Syntax
MEMBER FUNCTION getReceiveDate
return date
Description

Returns the value of the RECEIVE DATE attribute in a WE_EVENT T object.

getCorrelationlD

PL/SQL Syntax

MEMBER FUNCTION getCorrelationID
return varchar?2

Description
Returns the value of the CORRELATION ID attribute ina WF_EVENT T object.

5-12 Oracle Workflow AP| Reference



getParameterList

PL/SQL Syntax

Description

getEventName

PL/SQL Syntax

Description

getEventKey

PL/SQL Syntax

Description

getEventData

PL/SQL Syntax

Description

getFromAgent

PL/SQL Syntax

Description

MEMBER FUNCTION getParameterList
return wf parameter list t

Returns the value of the PARAMETER LIST attribute ina WF_EVENT T object.

MEMBER FUNCTION getEventName
return varchar?

Returns the value of the EVENT NAME attribute in a WE_EVENT T object.

MEMBER FUNCTION getEventKey
return varchar?2

Returns the value of the EVENT KEY attribute ina WF_EVENT T object.

MEMBER FUNCTION getEventData

return clob

Returns the value of the EVENT DATA attribute in a WE_EVENT T object.

MEMBER FUNCTION getFromAgent
return wf agent t

Returns the value of the FROM AGENT attribute in a WF_EVENT T object.

Business Event System APIs

5-13



getToAgent

PL/SQL Syntax
MEMBER FUNCTION getToAgent
return wf agent t
Description
Returns the value of the TO AGENT attribute in a WF_EVENT T object.
getErrorSubscription
PL/SQL Syntax
MEMBER FUNCTION getErrorSubscription
return raw
Description
Returns the value of the ERROR_SUBSCRIPTION attribute ina WE_EVENT T object.
getErrorMessage
PL/SQL Syntax
MEMBER FUNCTION getErrorMessage
return varchar?2
Description
Returns the value of the ERROR_MESSAGE attribute in a WE_EVENT T object.
getErrorStack
PL/SQL Syntax
MEMBER FUNCTION getErrorStack
return varchar2
Description
Returns the value of the ERROR_STACK attribute in a WF_EVENT T object.
setPriority
PL/SQL Syntax
MEMBER PROCEDURE setPriority
(pPriority in number)
Description

Sets the value of the PRIORITY attribute in a WF_EVENT T object.

5-14 Oracle Workflow AP| Reference



Arguments (input)

setSendDate

PL/SQL Syntax

Description

Arguments (input)

setReceiveDate

PL/SQL Syntax

Description

Arguments (input)

setCorrelationID

PL/SQL Syntax

Description

Arguments (input)

pPriority The value for the PRIORITY attribute.

MEMBER PROCEDURE setSendDate
(pSendDate in date default sysdate)

Sets the value of the SEND_DATE attribute in a WF_EVENT T object.

pSendDate The value for the SEND DATE attribute.

MEMBER PROCEDURE setReceiveDate

(pReceiveDate in date default sysdate)

Sets the value of the RECEIVE DATE attribute in a WF__EVENT T object.

pReceiveDate The value for the RECEIVE DATE attribute.

MEMBER PROCEDURE setCorrelationID
(pCorrelationID in wvarchar?2)

Sets the value of the CORRELATION ID attributeina WF EVENT T object.

pCorrelationlD The value for the CORRELATION ID attribute.

Business Event System APIs



setParameterList

PL/SQL Syntax
MEMBER PROCEDURE setParameterList
(pParameterList in wf parameter list t)
Description
Sets the value of the PARAMETER LIST attribute in a WF_EVENT T object.
Arguments (input)
pParameterList The value for the PARAMETER LIST attribute.
setEventName
PL/SQL Syntax
MEMBER PROCEDURE setEventName
(pEventName in varchar?2)
Description
Sets the value of the EVENT NAME attribute in a WF_EVENT T object.
Arguments (input)
pEventName The value for the EVENT NAME attribute.
setEventKey
PL/SQL Syntax
MEMBER PROCEDURE setEventKey
(pEventKey in varchar2)
Description
Sets the value of the EVENT_ KEY attribute in a WF_EVENT T object.
Arguments (input)
pEventKey The value for the EVENT KEY attribute.
setEventData
PL/SQL Syntax

MEMBER PROCEDURE setEventData
(pEventData in clob)

5-16 Oracle Workflow AP| Reference



Description
Sets the value of the EVENT DATA attribute in a WF_EVENT T object.

Arguments (input)
pEventData The value for the EVENT DATA attribute.
setFromAgent
PL/SQL Syntax
MEMBER PROCEDURE setFromAgent
(pFromAgent in wf agent t)
Description
Sets the value of the FROM AGENT attribute in a WF_EVENT T object.
Arguments (input)
pFromAgent The value for the FROM AGENT attribute.
setToAgent
PL/SQL Syntax
MEMBER PROCEDURE setToAgent
(pToAgent in wf agent t)
Description
Sets the value of the TO AGENT attribute in a WF_EVENT T object.
Arguments (input)
pToAgent The value for the TO AGENT attribute.
setErrorSubscription
PL/SQL Syntax
MEMBER PROCEDURE setErrorSubscription
(pErrorSubscription in raw)
Description
Sets the value of the ERROR _SUBSCRIPTION attribute in a WF_EVENT T object.
Arguments (input)

pErrorSubscription The value for the ERROR SUBSCRIPTION attribute.

Business Event System APIs



setErrorMessage

PL/SQL Syntax
MEMBER PROCEDURE setErrorMessage
(pErrorMessage in varchar?)
Description
Sets the value of the ERROR MESSAGE attribute in a WF_EVENT T object.
Arguments (input)
pErrorMessage The value for the ERROR MESSAGE attribute.
setErrorStack
PL/SQL Syntax
MEMBER PROCEDURE setErrorStack
(pErrorStack in varchar?2)
Description
Sets the value of the ERROR STACK attribute in a WF_EVENT_T object.
Arguments (input)
pErrorStack The value for the ERROR STACK attribute.
Content
PL/SQL Syntax
MEMBER PROCEDURE Content
(pName in varchar2,
pKey in varchar2,
pData in clob)
Description
Sets the values of all the event content attributes in a WF_EVENT T object, including
EVENT NAME, EVENT KEY, and EVENT DATA.
Arguments (input)
pName The value for the EVENT NAME attribute.
pKey The value for the EVENT KEY attribute.
pData The value for the EVENT DATA attribute.

5-18 Oracle Workflow AP| Reference



Address

PL/SQL Syntax
MEMBER PROCEDURE Address
(pOutAgent in wf agent t,
pToAgent in wf agent t,
pPriority in number,
pSendDate in date)
Description
Sets the values of the all address attributes in a WF_EVENT T object, including
FROM_AGENT,TO_AGENT,PRIORITY}andSEND_DATE
Arguments (input)
pOutAgent The value for the FROM AGENT attribute.
pToAgent The value for the TO AGENT attribute.
pPriority The value for the PRIORITY attribute.
pSendDate The value for the SEND DATE attribute.
AddParameterToList
PL/SQL Syntax
MEMBER PROCEDURE AddParameterToList
(pName in varcharz,
pValue in varchar?2)
Description
Adds a new parameter name and value pair to the list stored in the PARAMETER LIST
attribute of a WF_EVENT T object. If a parameter with the specified name already exists
in the parameter list, then the previous value of that parameter is overwritten with the
specified value.
Arguments (input)
pName The parameter name.
pValue The parameter value.

GetValueForParameter

PL/SQL Syntax

MEMBER FUNCTION GetValueForParameter
(pName in varchar2) return varchar?2

Business Event System APIs  5-19



Description

Arguments (input)

Returns the value of the specified parameter from the list stored in the

PARAMETER_ LIST attribute of a WF_EVENT T object. This method begins at the end of
the parameter list and searches backwards through the list. If no parameter with the
specified name is found in the parameter list, then the method returns NULL.

pName The parameter name.

Example for Using Abstract Datatypes

The following example shows some ways to use abstract datatype methods in a SQL
script, including:

¢ Initializing a new event message structure with the Initialize method

Important: You must call the Initialize method before you can
perform any further manipulation on a new WF_EVENT T object.

¢ Initializing a CLOB locator
¢ Writing a text variable into a CLOB variable

*  Setting the content attributes of the event message structure with the Content
method

¢ Setting the address attributes of the event message structure with the Address
method

The example code is from the script wfevteng. sql, which enqueues an event message
on a queue using an override agent. See: Wfevtenq.sql, Oracle Workflow Administrator’s
Guide.

5-20 Oracle Workflow AP| Reference



declare

1 overrideagent varchar2(30) := '&overrideagent';

1 overridesystem varchar2(30) := '&overridesystem';
1 fromagent varchar2(30) := '&fromagent';

1 fromsystem varchar2(30) := '&fromsystem';

1 toagent varchar2(30) := '&toagent';

1 tosystem varchar2(30) := '&tosystem';

1 eventname varchar2(100) := '&eventname';

1 eventkey varchar2(100) := 'g&eventkey';

1 msg varchar2(200) := '&message';

1 clob clob;

1 overrideagent t wf agent t;
1 toagent t wf agent t;

1 fromagent t wf agent t;

1l event t wf event t;

begin
/*You must call wf event t.initialize before you can manipulate

a new wf event t object.*/
wf event t.initialize(l event t);

1 overrideagent t := wf agent t(l overrideagent, 1 overridesystem);
1 toagent t := wf agent t(l toagent, 1 tosystem);
1 fromagent t := wf agent t(l fromagent, 1 fromsystem);

if 1 msg is null then
1 event t.Content(l eventname, 1 eventkey, null);
else
dbms lob.createtemporary(l clob, FALSE, DBMS LOB.CALL);
dbms lob.write(l clob, length(l msg), 1, 1 msg);
1 event t.Content(l eventname, 1 eventkey, 1 clob);
end if;

1 event t.Address(l fromagent t, 1 toagent t, 50, sysdate);
wf event.enqueue(l event t, 1 overrideagent t);

end;

Mapping Between WF_EVENT_T and SYS.AQ$_JMS_TEXT_MESSAGE

Java Message Service (JMS) is a messaging standard defined by Sun Microsystems,
Oracle, IBM, and other vendors. JMS is a set of interfaces and associated semantics that
define how a JMS client accesses the facilities of an enterprise messaging product.

Oracle Java Message Service provides a Java API for Oracle Advanced Queuing (AQ)
based on the JMS standard. Oracle JMS supports the standard JMS interfaces and has
extensions to support the AQ administrative operations and other AQ features that are
not a part of the standard. The abstract datatype used to store a JMS Text message in an
AQ queueis called SYS.AQ$ JMS TEXT MESSAGE.

Oracle Workflow supports communication of JMS Text messages through the Business
Event System by providing a queue handler called WF EVENT OJMSTEXT OH. This
queue handler translates between the standard Workflow WF_EVENT T message
structure and SYS.AQ$ JMS TEXT MESSAGE. Oracle Workflow also provides
standard inbound and outbound queues that you can use for JMS Text messages, These
queues are called WF_JMS_IN and WF_JMS_OUT, respectively, and use the

Business Event System APIs  5-21



WEF_EVENT OJMSTEXT OQH queue handler. See: Agents, Oracle Workflow Developer’s
Guide.

The SYS.AQ$ JMS TEXT MESSAGE datatype contains the following attributes.

* HEADER - Header properties in the SYS.AQ$ JMS HEADER datatype
® TEXT LEN - The size of the message payload, set automatically

e TEXT VC - The message payload in VARCHAR? format, if the payload is equal to
or less than 4000 bytes

* TEXT LOB - The message payload in CLOB format, if the payload is greater than
4000 bytes

The SYS.AQ$ JMS HEADER datatype contains the following attributes.

® REPLYTO - A Destination supplied by a client when a message is sent
® TYPE - The type of the message

® USERID - The identity of the user sending the message

e APPID - The identity of the application sending the message

® GROUPID - The identity of the message group of which this message is a part; set by
the client

® GROUPSEQ - The sequence number of the message within the group

* PROPERTIES - Additional message properties in the
SYS.AQ$ JMS USERPROPARRAY datatype

The SYS.AQ$ JMS USERPROPARRAY datatype is a named varying array with a
maximum size of 100. The datatype of its elements is another ADT named
SYS.AQS JMS USERPROPERTY.

The following table shows how the attributes of the WF_EVENT T message structure are
mapped to the attributes within the SYS.AQ$ JMS TEXT MESSAGE structure.

Mapping WF_EVENT_T Attributes to SYS.AQ$_JMS_TEXT_MESSAGE Attributes

WF_EVENT_T SYS.AQ$_JMS_TEXT_MESSAGE
WF_EVENT_T.PRIORITY SYS.AQ$_JMS_USERPROPARRAY
WF_EVENT_T.SEND_DATE SYS.AQ$_JMS_USERPROPARRAY

5-22 Oracle Workflow AP| Reference



WF_EVENT_T

SYS.AQ$_JMS_TEXT_MESSAGE

WE_EVENT_T.RECEIVE_DATE

WEF_EVENT_T.CORRELATION_ID

WF_EVENT_T.EVENT_NAME

WEF_EVENT_T.EVENT_KEY

WEF_EVENT_T.EVENT_DATA

WEF_EVENT_T.PARAMETER_LIST

WF_EVENT_T.PARAMETER_LIST

WF_EVENT_T.PARAMETER_LIST

WE_EVENT_T.PARAMETER_LIST

WEF_EVENT_T.PARAMETER_LIST

WE_EVENT_T.PARAMETER_LIST

WEF_EVENT_T.PARAMETER_LIST (any
parameters other than JMS header properties)

WE_EVENT_T.FROM_AGENT

WE_EVENT_T.TO_AGENT

WEF_EVENT_T.ERROR_SUBSCRIPTION

WE_EVENT_T.ERROR_MESSAGE

WE_EVENT_T.ERROR_STACK

SYS.AQ$_JMS_USERPROPARRAY

SYS.AQ$_JMS_USERPROPARRAY

SYS.AQ$_JMS_USERPROPARRAY

SYS.AQ$_JMS_USERPROPARRAY

TEXT_VC or TEXT_LOB

SYS.AQ$_JMS_HEADER.REPLYTO

SYS.AQ$_JMS_HEADER.TYPE

SYS.AQ$_JMS_HEADER.USERID

SYS.AQ$_JMS_HEADER.APPID

SYS.AQ$_JMS_HEADER.GROUPID

SYS.AQ$_JMS_HEADER.GROUPSEQ

SYS.AQ$_JMS_USERPROPARRAY

SYS.AQ$_JMS_USERPROPARRAY

SYS.AQ$_JMS_USERPROPARRAY

SYS.AQ$_JMS_USERPROPARRAY

SYS.AQ$_JMS_USERPROPARRAY

SYS.AQ$_JMS_USERPROPARRAY

See: Using Oracle Java Message Service (OJMS) to Access Oracle Streams AQ, Oracle
Streams Advanced Queuing User's Guide and Reference and Package oracle.jms, Oracle

Supplied Java Packages Reference.

Business Event System APIs

5-23



Event APIs

The Event APIs can be called by an application program or a workflow process in the
runtime phase to communicate with the Business Event System and manage events.
These APIs are defined in a PL/SQL package called WF_EVENT.

* Raise, page 5-25

* Raise3, page 5-29

¢ Send, page 5-30

* NewAgent, page 5-31

¢ Test, page 5-32

* Enqueue, page 5-32

¢ Listen, page 5-33

® SetErrorInfo, page 5-35

* SetDispatchMode, page 5-36

* AddParameterToList, page 5-37

e AddParameterToListPos, page 5-37
* GetValueForParameter, page 5-38

¢ GetValueForParameterPos, page 5-38
* SetMaxNestedRaise, page 5-39

* GetMaxNestedRaise, page 5-39

* GetParamListFromString, page 5-39
¢ setNavigationParams, page 5-40

¢ resetNavigationParams, page 5-40

¢ getQueueNavigation, page 5-41

5-24 Oracle Workflow AP| Reference



Raise

PL/SQL Syntax

Description

procedure Raise
(p_event name in varchar?2,
p_event key in varchar2,
p_event data in clob default NULL,
p_parameters in wf parameter list t default NULL,
p_send date in date default NULL);

Raises a local event to the Event Manager. Raise() creates a WE_EVENT _T structure for
this event instance and sets the specified event name, event key, event data, parameter
list, and send date into the structure.

The event data can be passed to the Event Manager within the call to the Raise() AP, or
the Event Manager can obtain the event data itself by calling the generate function for
the event, after first checking whether the event data is required by a subscription. If the
event data is not already available in your application, you can improve performance
by allowing the Event Manager to run the generate function and generate the event data
only when subscriptions exist that require that data, rather than always generating the
event data from your application at runtime. See: Events, Oracle Workflow Developer's
Guide and Standard API for an Event Data Generate Function, Oracle Workflow
Developer’s Guide.

The send date can optionally be set to indicate when the event should become available
for subscription processing. If the send date is null, Raise() sets the send date to the
current system date. You can defer an event by setting the send date to a date later than
the system date. In this case, the Event Manager places the event message on the
standard WF_DEFERRED queue, where it remains in a WAIT state until the send date.
When the send date arrives, the event message becomes available for dequeuing and
will be dequeued the next time an agent listener runs on the WF_DEFERRED queue.

Note: If an event is deferred when it is raised, the event retains its
original Local source type when it is dequeued from the
WE_DEFERRED queue.

When an event is raised and is not deferred, or when an event that was deferred is
dequeued from the WF_DEFERRED queue, the Event Manager begins subscription
processing for the event. The Event Manager searches for and executes any enabled
subscriptions by the local system to that event with a source type of Local, and also any
enabled subscriptions by the local system to the Any event with a source type of Local.
If no enabled subscriptions exist for the event that was raised (apart from subscriptions
to the Any event), then Oracle Workflow executes any enabled subscriptions by the
local system to the Unexpected event with a source type of Local.

Business Event System APIs  5-25



Note: The Event Manager does not raise an error if the event is not

defined.

The Event Manager checks each subscription before executing it to determine whether

the subscription requires the event data. If the event data is required but is not already

provided, the Event Manager calls the generate function for the event to produce the

event data. If the event data is required but no generate function is defined for the
event, Oracle Workflow creates a default set of event data using the event name and

event key.

Note: For subscriptions with Stop and Rollback error handling, any
exceptions raised during subscription processing are not trapped, but
instead are exposed to the code that called the Raise() procedure. This

behavior enables you to use subscriptions and their rule functions to

perform validation, with the same results as if the validation logic were

coded inline.

For subscriptions with Skip to Next error handling, no exceptions are
exposed to the calling application. This behavior lets you continue
processing without waiting in cases where the calling application does
not depend on the successful completion of those subscriptions.

Arguments (input)

p_event_name

p_event_key

p_event_data

p_parameters

p_send_date

5-26 Oracle Workflow AP| Reference

The internal name of the event.

A string generated when the event occurs within a
program or application. The event key uniquely identifies a
specific instance of the event.

An optional set of information about the event that
describes what occurred. The Event Manager checks each
subscription before executing it to determine whether the
subscription requires the event data. If the event data is
required but is not already provided, the Event Manager
calls the generate function for the event to produce the
event data. See: Events, Oracle Workflow Developer’s Guide
and Standard API for an Event Data Generate Function,
Oracle Workflow Developer’s Guide.

An optional list of additional parameter name and value
pairs.

An optional date to indicate when the event should become
available for subscription processing.



Sample Code

Business Event System APIs  5-27



Example
declare
1 xmldocument varchar2(32000);
1 eventdata clob;
1 parameter list wf parameter list t;
1 message varchar2(10);

begin

/*
** If the complete event data is easily available, we can
** optionally test if any subscriptions to this event

** require it (rule data = Message) .

*/
1 message := wf event.test ('<EVENT NAME>');

/*
** If we do require a message, and we have the message now,
** gset it; else we can just rely on the Event Generate

** Function callback code. Then raise the event with the

** required parameters.

*/
if 1 message = 'MESSAGE' then
if 1 xmldocument is not null then
dbms lob.createtemporary(l eventdata, FALSE, DBMS LOB.CALL);
dbms_lob.write(l_eventdata, length (1 xmldocument), 1 ,
1 xmldocument) ;
-- Raise the Event with the message
wf event.raise( p event name => '<EVENT NAME>',
p_event key => '<EVENT KEY>',
p_event data => 1 eventdata,
p_parameters => 1 parameter list);
else
-- Raise the Event without the message
wf event.raise( p event name => '<EVENT NAME>',
p_event key => '<EVENT KEY>',
p_parameters => 1 parameter list);
end 1f;
elsif
1 message = 'KEY' then
-- Raise the Event
wf event.raise( p event name => <EVENT NAME>,
p_event key => <EVENT KEY>,
p_parameters => 1 parameter list);
end if;
/*
** Up to your own custom code to commit the transaction
*/
commit;
/*
** Up to your own custom code to handle any major exceptions
*/
exception
when others then
null;

5-28 Oracle Workflow AP| Reference



Related Topics

Raise3

PL/SQL Syntax

Description

end;

Any Event, Oracle Workflow Developer’s Guide

Unexpected Event, Oracle Workflow Developer’s Guide

procedure Raise3
(p_event name in varchar2,
p_event key in varchar2,
p_event data in clob default NULL,
p_parameter list in out nocopy wf parameter list t,
p _send date in date default NULL);

Raises a local event to the Event Manager and returns the parameter list for the event.
Raise3() performs the same processing as the Raise() procedure, except that Raise3()
passes the event parameter list back to the calling application after completing the event
subsription processing. See: Raise, page 5-25.

Raise3() creates a WE_EVENT T structure for this event instance and sets the specified
event name, event key, event data, parameter list, and send date into the structure.
Then, if the event is not deferred, the Event Manager begins subscription processing for
the event. The Event Manager searches for and executes any enabled subscriptions by
the local system to that event with a source type of Local, and also any enabled
subscriptions by the local system to the Any event with a source type of Local. If no
enabled subscriptions exist for the event that was raised (apart from subscriptions to the
Any event), then Oracle Workflow executes any enabled subscriptions by the local
system to the Unexpected event with a source type of Local.

After completing subscription processing for the event, Raise3() returns the parameter
list for the event, including any modifications made to the parameters by the rule
functions of the subscriptions. In this way, event subscriptions can communicate
parameters back to the application that raised the event.

Note: For subscriptions with Stop and Rollback error handling, any
exceptions raised during subscription processing are not trapped, but
instead are exposed to the code that called the Raise3() procedure. This
behavior enables you to use subscriptions and their rule functions to
perform validation, with the same results as if the validation logic were
coded inline.

For subscriptions with Skip to Next error handling, no exceptions are
exposed to the calling application. This behavior lets you continue

Business Event System APIs  5-29



processing without waiting in cases where the calling application does
not depend on the successful completion of those subscriptions.

Arguments (input)

p_event_name The internal name of the event.

p_event_key A string generated when the event occurs within a
program or application. The event key uniquely identifies a
specific instance of the event.

p_event_data An optional set of information about the event that
describes what occurred. The Event Manager checks each
subscription before executing it to determine whether the
subscription requires the event data. If the event data is
required but is not already provided, the Event Manager
calls the generate function for the event to produce the
event data. See: Events, Oracle Workflow Developer’s Guide
and Standard API for an Event Data Generate Function,
Oracle Workflow Developer’s Guide.

p_parameter_list A list of additional parameter name and value pairs.

p_send_date An optional date to indicate when the event should become
available for subscription processing.

Send

PL/SQL Syntax

procedure Send
(p_event in out wf event t);

Description

Sends an event message from one agent to another. If the event message contains both a
From Agent and a To Agent, the message is placed on the outbound queue of the From
Agent and then asynchronously delivered to the To Agent by AQ propagation, or
whichever type of propagation is implemented for the agents' protocol.

If the event message contains a To Agent but no specified From Agent, the message is
sent from the default outbound agent that matches the queue type of the To Agent.

If the event message contains a From Agent but no specified To Agent, the event
message is placed on the From Agent's queue without a specified recipient.

®  You can omit the To Agent if the From Agent uses a multi-consumer queue with a

5-30 Oracle Workflow AP| Reference



subscriber list. (The standard Workflow queue handlers work only with
multi-consumer queues.) In this case, the queue's subscriber list determines which
consumers can dequeue the message. If no subscriber list is defined for that queue,
however, the event message is placed on the WF_ERROR queue for error handling.

Note: The subscriber list for a multi-consumer queue in Oracle
Advanced Queuing is different from event subscriptions in the
Oracle Workflow Business Event System. See: Subscription and
Recipient Lists, Oracle Streams Advanced Queuing User’s Guide and
Reference.

® You can also omit the To Agent if the From Agent uses a single-consumer queue for
which you have defined a custom queue handler. For a single-consumer queue, no
specified consumer is required.

The send date within the event message indicates when the message should become
available for the consumer to dequeue. If the send date is blank, the Send() procedure
resets the value to the current system date, meaning the message is immediately
available for dequeuing as soon as it is propagated. If the send date is a future date, the
message is marked with a delay time corresponding to that date and does not become
available for dequeuing until the delay time has passed. For more information, see:
Time Specification: Delay, Oracle Streams Advanced Queuing User's Guide and Reference.

Note: If you want to use the send date to determine when a message
becomes available for dequeuing on the To Agent, you should set the
send date during subscription processing before Send() is called.

Send() returns the final event message that was sent, including any properties set by the
procedure.

Arguments (input)

NewAgent

PL/SQL Syntax

Description

p_event The event message.

function NewAgent
(p_agent guid in raw) return wf agent t;

Creates a WF_AGENT T structure for the specified agent and sets the agent's system and
name into the structure. See: Agent Structure, page 5-3.

Business Event System APIs  5-31



Arguments (input)
p_agent_guid The globally unique identifier of the agent.

Test
PL/SQL Syntax
function Test
(p_event name in varchar2) return varchar2;
Description
Tests whether the specified event is enabled and whether there are any enabled
subscriptions by the local system referencing the event, or referencing an enabled event
group that contains the event. Test() returns the most costly data requirement among
these subscriptions, using the following result codes:
* NONE - No enabled local subscriptions reference the event, or the event does not
exist.
® KEY - At least one enabled local subscription references the event, but all such
subscriptions require only the event key.
* MESSAGE - At least one enabled local subscription on the event requires the
complete event data.
Arguments (input)
p_event_name The internal name of the event.
Enqueue
PL/SQL Syntax
procedure Engqueue
(p_event in wf event t,
p_out agent override in wf agent t default null);
Description

Enqueues an event message onto a queue associated with an outbound agent. You can
optionally specify an override agent where you want to enqueue the event message.
Otherwise, the event message is enqueued on the From Agent specified within the
message. The message recipient is set to the To Agent specified in the event message.
Enqueue() uses the queue handler for the outbound agent to place the message on the
queue.

5-32 Oracle Workflow AP| Reference



Arguments (input)

Listen

PL/SQL Syntax

Description

p_event The event message.

p_out_agent_override The outbound agent on whose queue the event message
should be enqueued.

procedure Listen
(p_agent name in varchar2,
p wait in binary integer default dbms ag.no wait,
p_correlation in varchar2 default null,
p _deq condition in varchar2 default null);

procedure Listen
(p_agent name in varchar2,
p_wait in binary integer default dbms ag.no wait,
p_correlation in varchar2 default null,
p_deqg condition in varchar2 default null,
p_message count in out nocopy number,
p_max error count in out nocopy number);

There are two implementations of Listen(). Both implementations monitor an agent for
inbound event messages and dequeue messages using the agent's queue handler, in the
database tier.

The standard WF_EVENT QH queue handler sets the date and time when an event
message is dequeued into the RECEIVE DATE attribute of the event message. Custom
queue handlers can also set the RECEIVE_DATE value if this functionality is included in
the Dequeue APL

When an event is dequeued, the Event Manager searches for and executes any enabled
subscriptions by the local system to that event with a source type of External, and also
any enabled subscriptions by the local system to the Any event with a source type of
External. If no enabled subscriptions exist for the event that was received (apart from
subscriptions to the Any event), then Oracle Workflow executes any enabled
subscriptions by the local system to the Unexpected event with a source type of
External.

e The first implementation of the Listen() procedure exits after it has dequeued all
event messages on the agent's queue, unless you specify a wait period to block on
the queue waiting for additional messages.

® The second implementation of the Listen() procedure exits after it has dequeued the
specified maximum number of event messages. However, if errors occur during

Business Event System APIs  5-33



processing, the Listen() procedure exits after it encounters the specified maximum
number of errors. If there are fewer than the maximum number of event messages
on the queue, and fewer than the maximum number of errors occur, then the
procedure exits after it has dequeued all the event messages on the queue, unless
you specify a wait period to block on the queue waiting for additional messages.

You must not call Listen() from within application code. If you want to call this
procedure directly, you can run it from SQL*Plus. Otherwise, you can schedule PL/SQL
agent listeners for your inbound agents from Oracle Applications Manager. See:
Scheduling Listeners for Local Inbound Agents, Oracle Workflow Administrator’s Guide.

You can optionally restrict the event messages that the Listen() procedure will process
by specifying an AQ correlation ID consisting of an event name, or a partial event name
followed by a percent sign (%) as a wildcard character. You can also optionally restrict
the event messages that the Listen() procedure will process by specifying a dequeue
condition that references the properties or content of the message. However, you cannot
specify both of these parameters at the same time. If you specify one, you must leave
the other null.

Arguments (input)

p_agent_name The name of the inbound agent.

p_wait An optional wait period, in seconds, during which you
want the agent listener to block on the agent's queue to
wait for messages. By default an agent listener does not
wait but exits if all messages on the queue have been
dequeued.

p_correlation Optionally specify an AQ correlation ID to identify the

event messages that you want the agent listener to process.
The AQ correlation ID for an event message in the Business
Event System is usually specified as an event name, or as a
partial event name followed by a percent sign (%) as a
wildcard character. Consequently, by specifying an AQ
correlation ID in this parameter, you can dedicate the agent
listener to listen only for messages that are instances of the
specified event or events. For example, you can specify
oracle.apps.wf.notification% to listen for all
events related to notifications whose names begin with that
value. The default value for this correlation ID is null,
which allows the agent listener to process messages that
are instances of any event.

If a dequeue condition is specified in the next parameter,
this parameter must be null.

See: Dequeue Methods, Oracle Streams Advanced Queuing

5-34 Oracle Workflow AP| Reference



Related Topics

SetErrorinfo

PL/SQL Syntax

p_deq_condition

p_message_count

p_max_error_count

User’s Guide and Reference.

Note: The AQ correlation ID is different
than the correlation ID contained within
the WF_EVENT T event message structure.

Optionally specify a dequeue condition to identify the
event messages that you want the agent listener to process.
A dequeue condition is an expression that is similar in
syntax to the WHERE clause of a SQL query. Dequeue
conditions are expressed in terms of the attributes that
represent message properties or message content. The
messages in the queue are evaluated against the condition,
so you can restrict the agent listener to listen only for
messages that satisfy this condition. The default value is
null, which does not place any restriction on the messages
the agent listener can process.

If an AQ correlation ID is specified in the previous
parameter, this parameter must be null.

See: Dequeue Methods, Oracle Streams Advanced Queuing
User’s Guide and Reference.

The maximum number of event messages the agent listener
can process in one batch. Increasing the value of this
parameter can help improve performance if you need to
process large volumes of event messages.

The maximum number of errors the agent listener can
encounter before it exits.

Any Event, Oracle Workflow Developer’s Guide

Unexpected Event, Oracle Workflow Developer’s Guide

Wrtagtlst.sql, Oracle Workflow Administrator’s Guide

Standard APIs for a Queue Handler, Oracle Workflow Developer’s Guide

procedure SetErrorInfo

(p_event in out wf event t,

p_type in varchar2);

Business Event System APIs  5-35



Description

Retrieves error information from the error stack and sets it into the event message. The
error message and error stack are set into the corresponding attributes of the event
message. The error name and error type are added to the PARAMETER LIST attribute of
the event message.

Arguments (input)

p_event The event message.

p_type The error type, either ' ERROR' or 'WARNING'.
SetDispatchMode
PL/SQL Syntax

Description

procedure SetDispatchMode
(p_mode in varchar2);

Sets the dispatch mode of the Event Manager to either deferred or synchronous
subscription processing. Call SetDispatchMode() with the mode 'ASYNC' just before
calling Raise() to defer all subscription processing forever for the event that you will
raise. In this case, the Event Manager places the event on the WF_DEFERRED queue
before executing any subscriptions for that event. The subscriptions are not executed
until an agent listener runs to dequeue the event from the WF_DEFERRED queue.

You can call SetDispatchMode() with the mode ' SYNC' to set the dispatch mode back to
normal synchronous subscription processing. In this mode, the phase number for each
subscription determines whether the subscription is executed immediately or deferred.

Note: This method of deferring subscription processing is not
recommended and should only be used in exceptional circumstances,
since it requires hard-coding the deferral in your application. To retain
the flexibility to modify subscription processing without intrusion into
the application, you can simply mark some or all of the individual
subscriptions for deferral using the subscription phase numbers.

Arguments (input)

p_mode The dispatch mode: either 'ASYNC' for deferred
(asynchronous) subscription processing, or ' SYNC' for
synchronous subscription processing.

5-36 Oracle Workflow AP| Reference



Related Topics

Deferred Subscription Processing, Oracle Workflow Developer’s Guide

Raise, page 5-25

AddParameterToList

PL/SQL Syntax

Description

procedure AddParameterToList
(p_name in varchar2,
p_value in varchar2,
p_parameterlist in out wf parameter list t);

Adds the specified parameter name and value pair to the end of the specified parameter
list varray. If the varray is null, AddParameterToList() initializes it with the new
parameter.

Arguments (input)

p_hame The parameter name.
p_value The parameter value.

p_parameterlist The parameter list.

AddParameterToListPos

PL/SQL Syntax

Description

procedure AddParameterTolListPos
(p_name in varchar2,
p_value in varchar2,
p_position out integer,
p_parameterlist in out wf parameter list t);

Adds the specified parameter name and value pair to the end of the specified parameter
list varray. If the varray is null, AddParameterToListPos() initializes it with the new
parameter. The procedure also returns the index for the position at which the parameter
is stored within the varray.

Arguments (input)

p_name The parameter name.

Business Event System APIs  5-37



p_value The parameter value.

p_parameterlist The parameter list.

GetValueForParameter

PL/SQL Syntax
function GetValueForParameter
(p_name in varchar2,
p parameterlist in wf parameter list t)
return varchar?2;
Description
Retrieves the value of the specified parameter from the specified parameter list varray.
GetValueForParameter() begins at the end of the parameter list and searches backwards
through the list.
Arguments (input)
p_name The parameter name.
p_parameterlist The parameter list.

GetValueForParameterPos

PL/SQL Syntax
function GetValueForParameterPos
(p_position in integer,
p_parameterlist in wf parameter list t)
return varchar?2;
Description
Retrieves the value of the parameter stored at the specified position in the specified
parameter list varray.
Arguments (input)

p_position The index representing the position of the parameter
within the parameter list.

p_parameterlist The parameter list.

5-38 Oracle Workflow AP| Reference



SetMaxNestedRaise

PL/SQL Syntax
procedure SetMaxNestedRaise
(maxcount in number default 100);
Description
Sets the maximum number of nested raises that can be performed to the specified value.
A nested raise occurs when one event is raised and a Local subscription to that event is
executed and raises another event. The default maximum is 100.
Arguments (input)
max_count The maximum number of nested raises to allow.
GetMaxNestedRaise
PL/SQL Syntax
function GetMaxNestedRaise
return number;
Description
Returns the maximum number of nested raises that can currently be performed. A
nested raise occurs when one event is raised and a Local subscription to that event is
executed and raises another event.
GetParamListFromString
PL/SQL Syntax
function GetParamlListFromString
(p_parameters in varchar2) return wf parameter list t;
Description

Parses a string of text containing parameters and returns the parsed parameters in a
varray using the WF_ PARAMETER LIST T abstract datatype. The parameter name and
value pairs in the text string should be separated by spaces and should appear in the
following format:

<namel>=<valuel><namel2>=<value2> ... <nameN>=<valueN>

Business Event System APIs  5-39



Arguments (input)

p_parameters A text string containing parameter name and value pairs,
separated by spaces.

setNavigationParams

PL/SQL Syntax

procedure setNavigationParams
(p_agentName in varchar2 default null,
p_navigationThreshold in number default 0);

Description

Sets the navigation parameters for dequeuing messages from an agent's queue,
including the agent name and navigation threshold. The navigation threshold is the
maximum number of messages the agent listener should dequeue before resetting its
navigation to the FIRST MESSAGE option.

setNavigationParams() is typically used in a queue handler before a loop that dequeues
several messages from an agent's queue. For example, you can call this procedure
before calling WF_EVENT.Listen(). For more information about dequeuing messages,
see: Oracle Streams Advanced Queuing User's Guide.

Arguments (input)

p_agentName The internal name of the agent.

p_navigationThreshold The maximum number of messages the agent listener
should dequeue before resetting its navigation to the
FIRST MESSAGE option. This parameter does not apply
for queues that are enabled for transactional grouping.

resetNavigationParams

PL/SQL Syntax

procedure resetNavigationParams;

Description

Resets the navigation message counter, so that next navigation option to use is

FIRST MESSAGE or NEXT TRANSACTION. This procedure is typically used in a queue
handler when catching a dequeue exception. For more information about dequeuing
messages, see: Oracle Streams Advanced Queuing User’s Guide.

5-40 Oracle Workflow AP| Reference



getQueueNavigation

PL/SQL Syntax

Description

function getQueueNavigation return BINARY INTEGER;

Returns the next dequeue navigation option that should be used, such as
FIRST MESSAGE, NEXT MESSAGE, and so on. This function is typically used in a queue
handler to obtain the appropriate navigation option just before dequeuing.

To ensure that the agent listener parameter NAVIGATION RESET THRESHOLD takes
effect when you use a custom queue handler, you should call setNavigationParams() to
set the dequeue navigation parameters before starting a loop to dequeue messages from
a queue, and then call WF_EVENT.getQueueNavigation() before dequeuing to ensure that
you use the appropriate navigation option.

For more information about dequeuing messages, see: Oracle Streams Advanced Queuing
User’s Guide. For more information about the NAVIGATION RESET THRESHOLD
parameter, see: Scheduling Listeners for Local Inbound Agents, Oracle Workflow
Administrator’s Guide.

Event Subscription Rule Function APls

The event subscription rule function APIs provide standard rule functions that you can
assign to event subscriptions. A rule function specifies the processing that Oracle
Workflow performs when the subscription's triggering event occurs.

Oracle Workflow provides a standard Default_Rule function to perform basic
subscription processing. The default rule function includes the following actions:

* Sending the event message to a workflow process, if specified in the subscription
definition

* Sending the event message to an agent, if specified in the subscription definition

Oracle Workflow also provides some other standard rule functions that you can use.
The Log, Error, Warning, and Success functions can be used for testing and debugging
your application. Other standard rule functions provide specialized processing used in
predefined Oracle Workflow event subscriptions or in special options you can choose to
refine your subscription processing.

These rule function APIs are defined in a PL/SQL package called WF_RULE.
® Default_Rule, page 5-42

* Log, page 5-44

Business Event System APIs  5-41



e Error, page 5-45

e Warning, page 5-46

* Success, page 5-47

¢ Workflow_Protocol, page 5-47

* Error_Rule, page 5-48

e SetParametersIntoParameterList, page 5-49
® Default_Rule2, page 5-50

¢ Default_Rule3, page 5-51

¢ SendNotification, page 5-51

* Instance_Default_Rule, page 5-53

Default_Rule_Or, page 5-55

The WF_RULE package also provides a standard generate function that you can assign
to events for demonstration and testing purposes. A generate function produces the
complete event data from the event name, event key, and parameter list.

* Default_Generate, page 5-56
Additionally, Oracle Workflow provides a standard Java rule function called

oracle.apps.fnd.wf.bes.WebServiceInvokerSubscription thatis used in
event subscriptions to invoke a Web service.

¢ WebServiceInvokerSubscription, page 5-57

Related Topics

Event Subscriptions, Oracle Workflow Developer’s Guide

Standard API for an Event Subscription Rule Function, Oracle Workflow Developer’s
Guide

Default_Rule

PL/SQL Syntax

function Default Rule
(p_subscription guid in raw,
p_event in out wf event t) return varchar2;

5-42 Oracle Workflow AP| Reference



Description

Performs default subscription processing for an event subscription. The default
processing includes:

¢ Sending the event message to a workflow process, if specified in the subscription
definition

* Sending the event message to an agent, if specified in the subscription definition

If either of these operations raises an exception, Default_Rule() traps the exception,
stores the error information in the event message, and returns the status code ERROR.
Otherwise, Default_Rule() returns the status code SUCCESS.

Note: If the subscription is sending the event message to an error
process in the System: Error (WVFERROR) item type, then Default_Rule()
generates a new correlation ID to use as the item key for the process in
order to ensure that the item key is unique.

If you want to run a custom rule function on the event message before it is sent, you can
define one subscription with a low phase number that uses the custom rule function,
and then define another subscription with a higher phase number that uses the default
rule function to send the event.

For example, follow these steps:

1. Define a subscription to the relevant event with your custom rule function and a
phase of 10.

2. Define another subscription to the event with the rule function
WF_EVENT.Default_Rule and a phase of 20, and specify the workflow or agent to
which you want to send the event.

3. Raise the event to trigger the subscriptions. The subscription with the lower phase
number will be executed first and will run your custom rule function on the event
message. When the event is passed to the second subscription, the modified event
message will be sent to the workflow or agent you specified.

You can also call Default_Rule() to add the default send processing within a custom rule
function. If you enter a rule function other than Default_Rule() for a subscription, Oracle
Workflow does not automatically send the event message to the workflow and agent
specified in the subscription. Instead, if you want to send the message from the same
subscription, you must explicitly include the send processing in your custom rule
function, which you can optionally accomplish by calling Default_Rule(). See: Standard
API for an Event Subscription Rule Function, Oracle Workflow Developer’s Guide.

Note: You may find it advantageous to define multiple subscriptions to

Business Event System APIs  5-43



an event with simple rule functions that you can reuse, rather than
creating complex specialized rule functions that cannot be reused.

Arguments (input)
p_subscription_guid The globally unique identifier of the subscription.
p_event The event message.

Log

PL/SQL Syntax

function Log
(p_subscription guid in raw,
p_event in out wf event t) return varchar2;

Description

Logs the contents of the specified event message using DBMS_OUTPUT.put_line and
returns the status code SUCCESS. Use this function to output the contents of an event
message to a SQL*Plus session for testing and debugging purposes.

For example, if you want to test a custom rule function that modifies the event message,
you can use Log() to show the event message both before and after your custom rule
function is run. Define three subscriptions to the relevant event as follows:

* Define the first subscription with a phase of 10 and the rule function WF_RULE.Log.
¢ Define the second subscription with a phase of 20 and your custom rule function.

® Define the third subscription with a phase of 30 and the rule function WF_RULE.Log

Next, connect to SQL*Plus. Execute the following command:
set serveroutput on size 100000
Then raise the event using WF_EVENT.Raise. As the Event Manager executes your

subscriptions to the event in phase order, you should see the contents of the event
message both before and after your custom rule function is run.

Note: You should not assign Log() as the rule function for any enabled
subscriptions in a production instance of Oracle Workflow. This
function should be used for debugging only.

5-44 Oracle Workflow AP| Reference



Arguments (input)

Error

PL/SQL Syntax

Description

p_subscription_guid The globally unique identifier of the subscription.

p_event The event message.

function Error
(p_subscription guid in raw,
p_event in out wf_event_t) return varchar?2;

Returns the status code ERROR. Additionally, when you assign this function as the rule
function for a subscription, you must define a subscription parameter with the name
ERROR MESSAGE and a value set to the internal name of an Oracle Workflow error
message. When the subscription is executed, Error() will set that error message into the
event message using setErrorMessage(). See: setErrorMessage, page 5-18.

Enter the parameter name ERROR MESSAGE in the Name field and the parameter value
in the Value field in the Subscription Parameters region of the Create Event
Subscription page. The parameter value must be a valid name of an Oracle Workflow
error message. The names of the error messages provided by Oracle Workflow are
stored in the NAME column of the WF_RESOURCES table for messages with a type of
WEERR.

You can use Error() as a subscription rule function if you want to send the system
administrator an error notification with one of the predefined Workflow error messages
whenever a particular event is raised.

For example, define a subscription to the relevant event with the rule function
WEF_RULE.Error and define a subscription parameter with the name ERROR MESSAGE
and the value WFSQL_ARGS. Then raise the event to trigger the subscription. Because
Error() returns the status code ERROR, the Event Manager places the event message on
the WF_ERROR queue. When the listener runs on the WF_ERROR queue, an error
notification will be sent to the system administrator with the message "Invalid
value (s) passed for arguments", which is the display name of the
WFSQL_ARGS error message.

Note: Error() does not raise any exception to the calling application
when it completes normally.

Business Event System APIs  5-45



Arguments (input)

Warning

PL/SQL Syntax

Description

p_subscription_guid The globally unique identifier of the subscription.

p_event The event message.

function Warning
(p_subscription guid in raw,
p_event in out wf_event_t) return varchar?2;

Returns the status code WARNING. Additionally, when you assign this function as the
rule function for a subscription, you must define a subscription parameter with the
name ERROR_MESSAGE and a value set to the internal name of an Oracle Workflow
error message. When the subscription is executed, Warning() will set that error message
into the event message using setErrorMessage(). See: setErrorMessage, page 5-18.

Enter the parameter name ERROR MESSAGE in the Name field and the parameter value
in the Value field in the Subscription Parameters region of the Create Event
Subscription page. The parameter value must be a valid name of an Oracle Workflow
error message. The names of the error messages provided by Oracle Workflow are
stored in the NAME column of the WF_RESOURCES table for messages with a type of
WEERR.

You can use Warning() as a subscription rule function if you want to send the system
administrator a warning notification with one of the predefined Workflow error
messages whenever a particular event is raised.

For example, define a subscription to the relevant event with the rule function
WEF_RULE.Warning and define a subscription parameter with the name

ERROR MESSAGE and the value WFSQL ARGS. Then raise the event to trigger the
subscription. Because Warning() returns the status code WARNING, the Event Manager
places the event message on the WF_ERROR queue, but subscription processing for the
event still continues. When the listener runs on the WF_ERROR queue, a warning
notification will be sent to the system administrator with the message "Invalid
value (s) passed for arguments", which is the display name of the

WESQL ARGS error message.

Note: Warning() does not raise any exception to the calling application
when it completes normally.

5-46 Oracle Workflow AP| Reference



Arguments (input)
p_subscription_guid The globally unique identifier of the subscription.

p_event The event message.

Success

PL/SQL Syntax

function Success
(p_subscription guid in raw,
p_event in out wf_event_t) return varchar?2;

Description

Returns the status code SUCCESS. This function removes the event message from the
queue but executes no other code except returning the SUCCESS status code to the
calling subscription.

You can use Success for testing and debugging purposes while developing code for use
with the Business Event System. For example, if you are trying to debug multiple
subscriptions to the same event, you can modify one of the subscriptions by replacing
its rule function with WF_RULE.Success, leaving all other details for the subscription
intact. When the subscription is executed, it will return SUCCESS but not perform any
other subscription processing. This strategy can help you isolate a problem
subscription.

Success() is analogous to the WF_STANDARD.Noop procedure used in the standard
Noop activity.

Arguments (input)
p_subscription_guid The globally unique identifier of the subscription.

p_event The event message.

Workflow_Protocol

PL/SQL Syntax

function Workflow Protocol
(p_subscription guid in raw,
p_event in out wf event t) return varchar2;

Description

Sends the event message to the workflow process specified in the subscription, which

Business Event System APIs  5-47



will in turn send the event message to the inbound agent specified in the subscription.

Note: Workflow_Protocol() does not itself send the event message to the
inbound agent. This function only sends the event message to the
workflow process, where you can model the processing that you want
to send the event message on to the specified agent.

If the subscription also specifies an outbound agent, the workflow process places the
event message on that agent's queue for propagation to the inbound agent. Otherwise, a
default outbound agent will be selected.

If the subscription parameters include the parameter name and value pair ACKREQ=Y,
then the workflow process waits to receive an acknowledgement after sending the event
message.

If the workflow process raises an exception, Workflow_Protocol() stores the error
information in the event message and returns the status code ERROR. Otherwise,
Workflow_Protocol() returns the status code SUCCESS.

Workflow_Protocol() is used as the rule function in several predefined subscriptions to
Workflow Send Protocol events. See: Workflow Send Protocol, Oracle Workflow
Developer’s Guide.

Arguments (input)
p_subscription_guid The globally unique identifier of the subscription.
p_event The event message.

Error_Rule

PL/SQL Syntax

Description

function Error Rule
(p_subscription guid in raw,
p_event in out wf event t) return varchar2;

Performs the same subscription processing as Default_Rule(), including:
* Sending the event message to a workflow process, if specified in the subscription
definition

* Sending the event message to an agent, if specified in the subscription definition

However, if either of these operations encounters an exception, Error_Rule() reraises the
exception so that the event is not placed back onto the WF_ERROR queue. Otherwise,
Error_Rule() returns the status code SUCCESS.

5-48 Oracle Workflow AP| Reference



Error_Rule() is used as the rule function for the predefined subscriptions to the
Unexpected event and to the Any event with the Error source type. The predefined
subscriptions specify that the event should be sent to the Default Event Error process in
the System: Error item type.

You can also use this rule function with your own error subscriptions. Enter
WEF_RULE.Error_Rule as the rule function for your error subscription and specify the
workflow item type and process that you want the subscription to launch.

Arguments (input)
p_subscription_guid The globally unique identifier of the subscription.
p_event The event message.

Related Topics

Unexpected Event, Oracle Workflow Developer’s Guide

Any Event, Oracle Workflow Developer’s Guide

SetParametersintoParameterList

PL/SQL Syntax

Description

function SetParametersIntoParameterList
(p_subscription guid in raw,
p_event in out wf event t) return varchar2;

Sets the parameter name and value pairs from the subscription parameters into the
PARAMETER LIST attribute of the event message, except for any parameter named
ITEMKEY or CORRELATION ID. For a parameter with one of these names, the function
sets the CORRELATION ID attribute of the event message to the parameter value.

If these operations raise an exception, SetParametersintoParameterList() stores the error
information in the event message and returns the status code ERROR. Otherwise,
SetParametersIntoParameterList()returns the status code SUCCESS.

You can use SetParametersIntoParameterList()as the rule function for a subscription with
a lower phase number, to add predefined parameters from the subscription into the
event message. Then subsequent subscriptions with higher phase numbers can access
those parameters within the event message.

Note: If the event message will later be sent to a workflow process, then
the value for any ITEMKEY or CORRELATION ID parameter can only
contain single-byte characters, because the CORRELATION ID attribute
of the event message will be used as the item key for the process. The

Business Event System APIs  5-49



item key for a process instance can only contain single-byte characters.
It cannot contain a multibyte value.

Arguments (input)
p_subscription_guid The globally unique identifier of the subscription.
p_event The event message.

Related Topics

Event Message Structure, page 5-6

Default Rule2

PL/SQL Syntax

function Default Rule2
(p_subscription guid in raw,
p_event in out wf event t) return varchar2;

Description

Performs the default subscription processing only if the PARAMETER LIST attribute of
the event message includes parameters whose names and values match all the
parameters defined for the subscription. If the event includes the required parameters,
then the rule function calls Default_Rule() to perform the following processing:

* Sending the event message to a workflow process, if specified in the subscription
definition

¢ Sending the event message to an agent, if specified in the subscription definition

If either of these operations raises an exception, Default_Rule2() traps the exception,
stores the error information in the event message, and returns the status code ERROR.
Otherwise, Default_Rule2() returns the status code SUCCESS.

Arguments (input)
p_subscription_guid The globally unique identifier of the subscription.

p_event The event message.

Related Topics
Default_Rule, page 5-42

5-50 Oracle Workflow AP| Reference



Default Rule3

PL/SQL Syntax

function Default Rule3
(p_subscription guid in raw,
p_event in out wf event t) return varchar2;

Description

Sets the parameter name and value pairs from the subscription parameters into the
PARAMETER LIST attribute of the event message, and then performs the default
subscription processing with the modified event message. This rule function first calls
SetParametersIntoParameterList() to set the parameters and then calls Default_Rule() to
perform the following processing:

* Sending the event message to a workflow process, if specified in the subscription
definition

¢ Sending the event message to an agent, if specified in the subscription definition

If either of these operations raises an exception, Default_Rule3() traps the exception,
stores the error information in the event message, and returns the status code ERROR.
Otherwise, Default_Rule3() returns the status code SUCCESS.

Arguments (input)
p_subscription_guid The globally unique identifier of the subscription.

p_event The event message.

Related Topics

SetParametersIntoParameterList, page 5-49

Default_Rule, page 5-42

SendNotification

PL/SQL Syntax

function SendNotification
(p_subscription guid in raw,
p_event in out wf event t) return varchar2;

Description

Sends a notification as specified by the parameters in the PARAMETER LIST attribute of
the event message. Use this rule function to send notifications outside of a workflow

Business Event System APIs  5-51



process.

After sending the notification, this function sets the notification ID into the event
parameter list as a parameter named #NID. If you want to use the notification ID in
further processing, raise the event using WF_EVENT.Raise3(), which returns the event
parameter list after Oracle Workflow completes subscription processing for the event.
You can then call WF_EVENT.GetValueForParameter() to obtain the value of the #NID
parameter.

For example, if the notification requires a response, you can retrieve the response values
from the user's reply by obtaining the notification ID and using it to call
WF_NOTIFICATION.GetAttrText(), WF_NOTIFICATION.GetAttrNumber(), or
WF_NOTIFICATION.GetAttrDate() for the RESPOND attributes.

SendNotification() calls the WF_NOTIFICATION.Send() API to send the notification,
using the event parameters as the input arguments for WF_NOTIFICATION.Send(). The
following table shows the names of the parameters you should include in the event
parameter list to specify the notification you want to send, and the information you
should provide in each parameter's value.

Parameters for Sending a Notification

Parameter Name Parameter Value

RECIPIENT_ROLE The role name assigned to receive the
notification.

MESSAGE_TYPE The item type associated with the message.

MESSAGE_NAME The message internal name.

CALLBACK The callback function name used for

communication of SEND and RESPOND
source message attributes.

CONTEXT Context information passed to the callback
function.

SEND_COMMENT A comment presented with the message.

PRIORITY The priority of the message. If this value is

null, the Notification System uses the default
priority of the message.

5-52 Oracle Workflow AP| Reference



Parameter Name Parameter Value

DUE_DATE The date that a response is required. This
optional due date is only for the recipient's
information; it has no effect on processing.

Note: Although you can send a notification using the SendNotification()
rule function without defining or running a workflow process, you do
need to define the message you want to send within a workflow item

type.

Arguments (input)

Related Topics

p_subscription_guid The globally unique identifier of the subscription.

p_event The event message.

Send, page 4-19

Event Message Structure, page 5-6
Raise3, page 5-29
GetValueForParameter, page 5-38
GetAttribute, page 4-39

Instance_Default_Rule

PL/SQL Syntax

Description

function Instance Default Rule
(p_subscription guid in raw,
p_event in out wf event t) return varchar2;

Sends the event to all existing workflow process instances that have eligible receive
event activities waiting to receive it. This rule function lets you use a business key
attribute to identify one or more workflow processes that should receive the event,
instead of sending the event to one particular process based on a specific item type,
process name, and item key, as with Default_Rule().

Business Event System APIs

5-53



Note: Instance_Default_Rule() only sends the event to continue existing
workflow processes. If you want to send the event to launch a new
process instance, use Default_Rule() instead.

First, Instance_Default_Rule() calls SetParameterslntoParameterList() to set any parameter
name and value pairs from the subscription parameters into the PARAMETER LIST
attribute of the event message.

Next, the function searches for existing workflow processes that are eligible to receive
this event. To be eligible, a workflow process must meet the following requirements:

* The process includes a receive event activity with an activity status of NOTIFIED,
meaning the process has transitioned to that activity and is waiting to receive the
event.

* The event filter for the receive event activity is set to one of the following values:

e This individual event
* An event group of which this event is a member

e NULL, meaning the activity can receive any event

¢ The receive event activity has an activity attribute named #BUSINESS KEY whose
default value is an item type attribute.

® The current value of that item type attribute matches the event key.

After sending the event to all eligible workflow processes, Instance_Default_Rule() also
sends the event message to an agent, if specified in the subscription definition.

If any operations raise an exception, Instance_Default_Rule() traps the exception, stores
the error information in the event message, and returns the status code ERROR.
Otherwise, Instance_Default_Rule() returns the status code SUCCESS.

Note: Instance_Default_Rule() may take some time to complete,
depending on how many existing workflow processes include receive
event activities, how many of those processes are eligible to receive this
event, and what activities in those processes the Workflow Engine must
execute after the event has been received. Consequently, when you use
Instance_Default_Rule() as the rule function for a subscription, it is
strongly recommended that you set the phase number for the
subscription to 100 or higher to defer the subscription and allow the
rule function processing to be completed in the background by an agent
listener.

5-54 Oracle Workflow AP| Reference



Arguments (input)

Related Topics

p_subscription_guid The globally unique identifier of the subscription.

p_event The event message.

SetParametersIntoParameterList, page 5-49

Default_Rule, page 5-42

Default_Rule_Or

PL/SQL Syntax

Description

function Default Rule Or
(p_subscription guid in raw,
p_event in out wf event t) return varchar2;

Performs the default subscription processing only if the PARAMETER LIST attribute of
the event message includes at least one parameter whose name and value match a
parameter defined for the subscription. If the event includes a matching parameter, then
the rule function calls Default_Rule() to perform the following processing:

¢ Sending the event message to a workflow process, if specified in the subscription
definition

* Sending the event message to an agent, if specified in the subscription definition

If either of these operations raises an exception, Default_Rule_Or() traps the exception,
stores the error information in the event message, and returns the status code ERROR.
Otherwise, Default_Rule_Or() returns the status code SUCCESS.

Arguments (input)

Related Topics

p_subscription_guid The globally unique identifier of the subscription.

p_event The event message.

Default_Rule, page 5-42

Business Event System APIs  5-55



Default_Generate

PL/SQL Syntax
function Default Generate
(p_event name in varchar?2,
p_event key in varchar2,
p_parameter list in wf parameter list t) return clob;
Description

Generates a simple set of event data from the specified event name, event key, and

parameter list. You can assign this standard generate function to events for

demonstration and testing purposes.

Default_Generate() generates the event data as an XML document in the following

structure:

<BUSINESSEVENT event-name="" key="">
<GENERATETIME mask="">
<PARAMETERS count="">

<PARAMETER parameter-name="">

* The BUSINESSEVENT tag is the opening tag for the XML structure. The
event-name attribute stores the event name, and the key attribute stores the event
key.

e The GENERATETIME tag stores the date and time when the XML document was
generated. The mask attribute defines the date format mask. The XML documents
generated by this API always use the date format mask "mm-dd-rr hh:mi:ss".

¢ The PARAMETERS tag stores the parameter list for the event. The count attribute
defines the number of parameters in the list. The PARAMETERS tag is included in
the XML document only if the number of parameters is greater than zero.

e The PARAMETER tag stores a parameter value for the event. The parameter-name
attribute defines the parameter name. The data for the parameter value is included
in a CDATA structure to avoid issues with reserved XML characters.

Sample Event Data XML Document

<BUSINESSEVENT event-name="oracle.my.event" key="123">
<GENERATETIME mask="mm-dd-rr hh:mi:ss">04-24-06

09:05:23</GENERATETIME>
<PARAMETERS count="1">

<PARAMETER parameter-name="NOTE"><! [CDATA[This is a sample note]]>
</PARAMETER>
</PARAMETERS>
</BUSINESSEVENT>
Arguments (input)
p_event_name The internal name of the event.

5-56 Oracle Workflow AP| Reference



p_event_key A string generated when the event occurs within a
program or application. The event key uniquely identifies a
specific instance of the event.

p_parameter_list A list of additional parameter name and value pairs for the
event.

WebServicelnvokerSubscription

The WebServiceInvokerSubscription class is a standard Java rule function that
implements the SubscriptionInterface Java interface. This class invokes a
business process execution language (BPEL) process or other Web service using the
JAX-WS (Java API for XML-based Web Services) Dispatch from Oracle WebLogic
Server.

The WebServiceInvokerSubscription class is stored in the oracle.apps. fnd.wf.bes
Java package. The following list shows the APIs in this class.

Important: Java is case-sensitive and all Java method names begin with
a lower case letter to follow Java naming conventions.

* onBusinessEvent, page 5-58

¢ prelnvokeService, page 5-59

¢ setlnputParts, page 5-60

¢ addWSSecurityHeader, page 5-61

* addCustomSOAPHeaders, page 5-61

* postInvokeService, page 5-62

¢ getWsdlLocation, page 5-63

e getService, page 5-63

e getPortType, page 5-63

e getPort, page 5-63

* getOperation, page 5-63

e getOutXslFile, page 5-63

e getInXslFile, page 5-63

Business Event System APIs  5-57



e getCallbackEvent, page 5-63

e getCallbackAgent, page 5-63

¢ getUsername, page 5-63

e getPasswordModule, page 5-63

e getPasswordKey, page 5-63

¢ getBusinessEvent, page 5-63

e getBindingStyle, page 5-63

You can add custom processing if necessary by extending this class and overriding the

prelInvokeService, setInputParts, addWSSecurityHeader,
addCustomSOAPHeaders, and postInvokeService methods.

onBusinessEvent

Java Syntax

Description

Arguments (input)

The WebServiceInvokerSubscription class defines the onBusinessEvent method from
the SubscriptionInterface Java interface to invoke a Web service.

public void onBusinessEvent
(Subscription eo,
BusinessEvent event,
WorkflowContext context) throws BusinessEventException

Performs the subscription processing to invoke a Web service when the triggering event
occurs by calling the prelnvokeService, invokeService, and postInvokeService methods.
The subscription parameters must provide the Web Services Description Language
(WSDL) description URL, service name, port type, operation, and port for the Web
service.

If the execution of the subscription processing does not succeed, this method throws a
BusinessEventException to pass the error details to the Event Manager.

eo The Subscription object, which provides information about
the subscription such as the phase number and parameters.

event The BusinessEvent object, which provides information
about the business event that occurred, including the event
name, event key, event data, and payload object.

context Workflow context information, including the database

5-58 Oracle Workflow AP| Reference



connection and the Log object which can be used for
logging.

prelnvokeService

Java Syntax

Description

Arguments (input)

The WebServiceInvokerSubscription class always calls the preInvokeService method
before invoking the Web service.

protected String prelnvokeService
(Subscription eo,
BusinessEvent event,
WorkflowContext context) throws BusinessEventException

Returns the string, usually in XML format, that will be used as the Web service request.
The default implementation of this method checks whether an XSL file is specified in
the WFBES IN XSL FILENAME parameter for the subscription or the triggering event,
and if so uses that XSL file to transform the event data to the format required for the
Web service. Otherwise, the method simply returns the event data stored within the
event message.

Note: If both the event and the subscription include the
WFBES IN XSL FILENAME parameter, then the event parameter value
overrides the subscription parameter value.

If you extend the WebServiceInvokerSubscription class, you can override this method
to add further processing before the Web service is invoked.

If the pre-invocation processing does not succeed, this method throws a
BusinessEventException.

eo The Subscription object, which provides information about
the subscription such as the phase number and parameters.

event The BusinessEvent object, which provides information
about the business event that occurred, including the event
name, event key, event data, and payload object.

context Workflow context information, including the database
connection and the Log object which can be used for

logging.

Business Event System APIs  5-59



setinputParts

Java Syntax

Description

Arguments (input)

The setInputParts method is called during the invocation processing.

protected void setInputParts
(String[] partNames,
Hashtable<String,Element> partValues) throws Exception

Adds parts to the XML input message, such as the header, body, and so on, according
to the input message definition for the selected operation. The default implementation
adds the event data payload as the body of the input message. It also adds any other
parts provided as event parameters in the triggering event. The event parameters that
contain input message parts must be identified by parameter names in the following
format:

WEFBES INPUT <PartName>

Replace <PartName> with the name of the part as it appears in the input message
definition from the WSDL. For example:

WFBES INPUT header

If you extend the WebServiceInvokerSubscription class, you can override this method
to add parts to the XML input message through custom logic. For example, you can set
specific input parts that you require, or extend this method to set values for RPC-style
Web service invocation.

Note: Currently Oracle E-Business Suite Integrated SOA Gateway
supports only document-style Web services by default.

If you provide all the input parts by extending the setInputParts method, then you can
leave the event data payload null and you do not need to provide any parts as event
parameters. You can also choose to provide some parts through the event data payload
or event parameters, and other parts by extending the setInputParts method.

Note: If you provide any of the same input parts both through the
event data payload or event parameters, and by extending the
setinputParts method, then the part values specified through the
setinputParts method override the part values provided in the event.

If the input message processing does not succeed, this method throws an Exception.

partNames The list of input part names to add, as an array of
java.lang.String.

5-60 Oracle Workflow AP| Reference



partValues The java.util.Hashtable object containing the part
values that correspond to the specified part names. Ensure
that you specify a part value for each part name. Specify
each part value as a self-contained XML element of type
org.w3c.dom.Element.

addWSSecurityHeader

Java Syntax

Description

Arguments (input)

The addWSSecurityHeader method is called during the invocation processing.

protected void addWSSecurityHeader
(ArrayList headersList) throws Exception

Adds a WS-Security compliant header to the ArrayList object containing the headers
that will be added to the Web service request. The default implementation adds the
UsernameToken element to the ArrayList based on the WFBES SOAP USERNAME,
WFBES SOAP PASSWORD MOD, and WFBES SOAP PASSWORD KEY parameters for the
subscription or the triggering event. It also sets the expiration time for the header in the
Timestamp element based on the WFBES SOAP EXPIRY DURATION parameter for the
subscription or the triggering event.

Note: If both the event and the subscription include the

WFBES SOAP USERNAME, WFBES SOAP PASSWORD MOD,

WFBES SOAP PASSWORD KEY, or WFBES SOAP EXPIRY DURATION
parameters, then the event parameter values override the subscription
parameter values.

If you extend the WebServiceInvokerSubscription class, you can override this method
to add any WS-Security header, or to specify custom logic for retrieving the user name
and password used to build the UsernameToken element.

If the header processing does not succeed, this method throws an Exception.

headersList The ArrayList object containing the list of headers to which
the WS-Security compliant header should be added.

addCustomSOAPHeaders

Java Syntax

The addCustomSOAPHeaders method is called during the invocation processing.

protected void addCustomSOAPHeaders
(ArrayList<Element> customHeaders) throws Exception

Business Event System APIs  5-61



Description

Arguments (input)

Adds custom SOAP headers to the SOAP request.

If you extend the WebServiceInvokerSubscription class, you can override this method
to add one or more custom SOAP headers. Use this method to add any required SOAP
headers that are not defined in the input message for the selected operation.

Note: To set input parts that are defined in the input message for the
selected operation, use the setInputParts method rather than the
addCustomSOAPHeaders method. See: setlnputParts, page 5-60.

If the header processing does not succeed, this method throws an Exception.

customHeaders The ArrayList object containing the list of custom SOAP
headers. Specify each custom header as a self-contained
XML element of type org.w3c.dom.Element.

postinvokeService

Java Syntax

Description

The WebServiceInvokerSubscription class calls the postInvokeService method after
successfully invoking the Web service.

protected void postInvokeService
(Subscription eo,
BusinessEvent event,
WorkflowContext context,
String requestData,
String responseData) throws BusinessEventException

Allows processing to be performed on the response received from the Web service, if
the operation resulted in a response. The default implementation of this method checks
whether an XSL file is specified in the WFBES_OUT XSL FILENAME parameter for the
subscription or the triggering event, and if so uses that XSL file to transform the XML
response. The method also checks whether a callback event and callback agent are
specified in the WFBES CALLBACK_ EVENT and WFBES CALLBACK_AGENT parameters
for the subscription or the triggering event. If a callback event is specified,
postInvokeService stores the XML response in the event data of that event. If a callback
agent is specified, postInvokeService enqueues the callback event onto that agent.
Otherwise postInvokeService raises the callback event to the Business Event System
locally.

Note: If both the event and the subscription include the

5-62 Oracle Workflow AP| Reference



WFBES_OUT XSL FILENAME, WFBES CALLBACK EVENT, and
WFBES CALLBACK_ AGENT parameters, then the event parameter
values override the subscription parameter values.

If you extend the WebServiceInvokerSubscription class, you can override this method
to add further processing after the Web service is invoked. For example, you can

process and validate the response and update the application state.

If the post-invocation processing does not succeed, this method throws a

BusinessEventException.

Arguments (input)

eo

event

context

requestData

responseData

get Parameter Methods

The Subscription object, which provides information about
the subscription such as the phase number and parameters.

The BusinessEvent object, which provides information
about the business event that occurred, including the event
name, event key, event data, and payload object.

Workflow context information, including the database
connection and the Log object which can be used for

logging.
The string that was sent as the Web service request.

The string that was received as the response from the Web
service, if any.

The WebServiceInvokerSubscription class includes several methods that return the
values of the parameters used during the pre-invocation, invocation, and

post-invocation processing.

The following methods return the values of parameters specified in the subscription
definition that identify the Web service to invoke.

e getWsdlLocation - Returns the URL where the Web Services Description Language
(WSDL) description for the Web service is located, as specified in the
SERVICE WSDL URL subscription parameter.

Java syntax: public String getWsdlLocation ()

e getService - Returns the service name as specified in the SERVICE NAME

subscription parameter.

Java syntax: public String getService ()

Business Event System APIs  5-63



getPortType - Returns the port type as specified in the SERVICE PORTTYPE
internal subscription parameter.

Java syntax: public String getPortType ()

getPort - Returns the port as specified in the SERVICE PORT subscription
parameter.

Java syntax: public String getPort ()

getOperation - Returns the operation as specified in the SERVICE OPERATION
subscription parameter.

Java syntax: public String getOperation ()

The following methods return the values of parameters that define further

pre-invocation and post-invocation processing. These parameters can appear both

within the event parameter list and within the subscription parameter list. If the
triggering event contains any of the same parameters as the subscription, the event
parameter values override the subscription parameter values.

getOutXslFile - Returns the XSL file used to transform the XML response message
during post-invocation processing, as specified in the WFBES OUT XSL FILENAME
parameter.

Java syntax: public String getOutXslFile ()
getInXslFile - Returns the XSL file used to transform the XML input message during

pre-invocation processing, as specified in the WFBES IN XSL FILENAME
parameter.

Java syntax: public String getInXslFile ()
getCallbackEvent - Returns the event in whose event data Oracle Workflow should

store the XML response message from the Web service, as specified in the
WFBES_CALLBACK EVENT parameter.

Java syntax: public String getCallbackEvent ()
getCallbackAgent - Returns the inbound Business Event System agent onto which

Oracle Workflow should enqueue the callback event, as specified in the
WEFBE S_CALLBACK_AGENT parameter.

Java syntax: public String getCallbackAgent ()

getUsername - Returns the user name for the Web service authentication, as
specified in the WFBES _SOAP_USERNAME parameter.

Java syntax: public String getUsername ()

getPasswordModule - Returns the module name used to retrieve the password for
the user, as specified in the WFBES_SOAP PASSWORD MOD parameter.

5-64 Oracle Workflow AP| Reference



Java syntax: public String getPasswordModule ()

e getPasswordKey - Returns the key used to retrieve the password for the user, as
specified in the WFBES SOAP_PASSWORD KEY parameter.

Java syntax: public String getPasswordKey ()

The following methods return the values of other parameters used in processing the
Web service subscription.

e getBusinessEvent - Returns the business event that triggered the subscription.
Java syntax: public BusinessEvent getBusinessEvent ()
* getBindingStyle - Returns the binding style of the current operation being invoked.

The value of the binding style can be either document or rpc. Currently Oracle
E-Business Suite Integrated SOA Gateway supports document-style Web services.

Java syntax: public String getBindingStyle ()

Event Function APIs

The Event Function APIs provide utility functions that can be called by an application
program, the Event Manager, or a workflow process in the runtime phase to
communicate with the Business Event System and manage events. These APIs are
defined in a PL/SQL package called WF_EVENT_FUNCTIONS_PKG.

e Parameters, page 5-65

® SubscriptionParameters, page 5-66
e AddCorrelation, page 5-67

* Generate, page 5-69

* Receive, page 5-70

Parameters
PL/SQL Syntax
function Parameters
(p_string in varchar2,
p_numvalues in number,
p_separator in varchar2) return t parameters;
Description

Parses a string of text that contains the specified number of parameters delimited by the

Business Event System APIs  5-65



specified separator. Parameters() returns the parsed parameters in a varray using the
T PARAMETERS composite datatype, which is defined in the
WF_EVENT_FUNCTIONS_PKG package. The following table describes the

T PARAMETERS datatype:

T_PARAMETERS Datatype

Datatype Name Element Datatype Definition

T_PARAMETERS VARCHAR2(240)

Parameters() is a generic utility that you can call in generate functions when the event
key is a concatenation of values separated by a known character. Use this function to
separate the event key into its component values.

Arguments (input)
p_string A text string containing concatenated parameters.
p_numvalues The number of parameters contained in the string.
p_separator The separator used to delimit the parameters in the string.
Sample Code
Example

set serveroutput on

declare
1 parameters wf event functions pkg.t parameters;
begin
-- Initialize the datatype
1 parameters := wf event functions pkg.t parameters(l,2);
1 parameters := wf event functions pkg.parameters('1111/2222',2,'/");
dbms output.put line('Value 1:'||l parameters(l));
dbms output.put line('Value 2:'| |1l parameters(2));
end;
/
SubscriptionParameters

PL/SQL Syntax

function SubscriptionParameters
(p_string in varchar2,
p_key in varchar2) return varchar2;

5-66 Oracle Workflow AP| Reference



Description

Returns the value for the specified parameter from a text string containing the
parameters defined for an event subscription. The parameter name and value pairs in
the text string should be separated by spaces and should appear in the following
format:

<namel>=<valuel><nameZ>=<value2> ... <nameN>=<valueN>

SubscriptionParameters() searches the text string for the specified parameter name and
returns the value assigned to that name. For instance, you can call this function in a
subscription rule function to retrieve the value of a subscription parameter, and then
code different behavior for the rule function based on that value.

Arguments (input)
p_string A text string containing the parameters defined for an
event subscription.
p_key The name of the parameter whose value should be
returned.
Sample Code
Example

In the following example, SubscriptionParameters() is used to assign the value of the
ITEMKEY subscription parameter to the 1 function program variable. The example
code is from the AddCorrelation function, which adds a correlation ID to an event
message during subscription processing. See: AddCorrelation, page 5-67.

-- This is where we will do some logic to determine
-- 1if there is a parameter
1 function := wf event functions pkg.SubscriptionParameters
(1 parameters, 'ITEMKEY') ;

AddCorrelation

PL/SQL Syntax

Description

function AddCorrelation
(p_subscription guid in raw,
p_event in out wf event t) return varchar2;

Adds a correlation ID to an event message during subscription processing.
AddCorrelation() searches the subscription parameters for a parameter named ITEMKEY

Business Event System APIs  5-67



that specifies a custom function to generate a correlation ID for the event message.
When you define the subscription parameter, enter ITEMKEY as the parameter name
and <package name.function name> as the parameter value.

AddCorrelation() uses SubscriptionParameters() to search for and retrieve the value of the
ITEMKEY parameter. See: SubscriptionParameters, page 5-66.

If a custom correlation ID function is specified with the ITEMKEY parameter, then
AddCorrelation() runs that function and sets the correlation ID to the value returned by
the function. Otherwise, AddCorrelation() sets the correlation ID to the system date. If the
event message is then sent to a workflow process, the Workflow Engine uses that
correlation ID as the item key to identify the process instance.

Note: The item key for a process instance can only contain single-byte
characters. It cannot contain a multibyte value.

If AddCorrelation() encounters an exception, the function returns the status code ERROR.
Otherwise, AddCorrelation() returns the status code SUCCESS.

AddCorrelation() is defined according the standard API for an event subscription rule
function. You can use AddCorrelation() as the rule function for a subscription with a low
phase number to add a correlation ID to an event, and then use a subscription with a
higher phase number to perform any further processing.

For example, follow these steps:

1. Define a subscription to the relevant event with the rule function
WEF_EVENT_FUNCTIONS_PKG.AddCorrelation and a phase of 10. Enter the
parameter name and value pair ITEMKEY=<package name.function name>in
the Parameters field for the subscription, replacing
<package name.function name>with the package and function that will
generate the correlation ID.

2. Define another subscription to the event with a phase of 20, and specify the
processing you want to perform by entering a custom rule function or a workflow
item type and process, or both.

3. Raise the event to trigger the subscriptions. The subscription with the lower phase
number will be executed first and will add a correlation ID to the event message.
When the event is passed to the second subscription, that correlation ID will be
used as the item key.

You can also call AddCorrelation() within a custom rule function to add a correlation ID
during your custom processing. See: Standard API for an Event Subscription Rule
Function, Oracle Workflow Developer’s Guide.

Note: You may find it advantageous to define multiple subscriptions to
an event with simple rule functions that you can reuse, rather than

5-68 Oracle Workflow AP| Reference



creating complex specialized rule functions that cannot be reused.

Arguments (input)
p_subscription_guid The globally unique identifier of the subscription.
p_event The event message.

Generate

PL/SQL Syntax

Description

function Generate
(p_event name in varchar2,
p_event key in varchar2) return clob;

Generates the event data for events in the Seed event group. This event data contains
Business Event System object definitions which can be used to replicate the objects from
one system to another.

The Seed event group includes the following events:

e oracle.apps.wf.event.event.create
® oracle.apps.wf.event.event.update
® oracle.apps.wf.event.event.delete
® oracle.apps.wf.event.group.create
® oracle.apps.wf.event.group.update
® oracle.apps.wf.event.group.delete
® oracle.apps.wf.event.system.create
® oracle.apps.wf.event.system.update
® oracle.apps.wf.event.system.delete
® oracle.apps.wf.event.agent.create
® oracle.apps.wf.event.agent.update
® oracle.apps.wf.event.agent.delete

® oracle.apps.wf.agent.group.create

Business Event System APIs  5-69



® oracle.apps
® oracle.apps
® oracle.apps
® oracle.apps
® oracle.apps

® oracle.apps

.wf.

.wf.

.wf.

.wf

.wf.

.wf

.event.

.event.

agent.

agent.

event.

event.

group.update
group.delete
subscription
subscription
subscription

all.sync

.Create
.update

.delete

For the event, event group, system, agent, agent group member, and subscription
definition events, WF_EVENT_FUNCTIONS_PKG.Generate() calls the Generate APIs
associated with the corresponding tables to produce the event data XML document. For
the Synchronize Event Systems event, WF_EVENT_FUNCTIONS_PKG.Generate()
produces an XML document containing all the event, event group, system, agent, agent

group member, and subscription definitions from the Event Manager on the local

system.

Arguments (input)

p_event_name

p_event_key

Related Topics

The internal name of the event.

A string generated when the event occurs within a
program or application. The event key uniquely identifies a

specific instance of the event.

WE_EVENTS_PKG.Generate, page 5-74

WE_EVENT_GROUPS_PKG.Generate, page 5-76

WF_SYSTEMS_PKG.Generate, page 5-77

WF_AGENTS_PKG.Generate, page 5-78
WEF_AGENT_GROUPS_PKG.Generate, page 5-79
WE_EVENT_SUBSCRIPTIONS_PKG.Generate, page 5-81

Predefined Workflow Events, Oracle Workflow Developer’s Guide

Receive

PL/SQL Syntax

function Receive

(p_subscription guid in raw,

p_event in out wf event t)

5-70 Oracle Workflow AP| Reference

return varchar2;



Description

Receives Business Event System object definitions during subscription processing and

loads the definitions into the appropriate Business Event System tables. This function

completes the replication of the objects from one system to another.

WEF_EVENT_FUNCTIONS_PKG.Receive() is defined according the the standard API for
an event subscription rule function. Oracle Workflow uses
WEF_EVENT_FUNCTIONS_PKG.Receive() as the rule function for two predefined
subscriptions, one that is triggered when the System Signup event is raised locally, and

one that is triggered when any of the events in the Seed event group is received from an
external source.

The Seed event group includes the following events:

oracle.apps.wf

oracle.

oracle

oracle.

oracle.

oracle.

oracle.

oracle

oracle.

oracle.

oracle.

oracle.

oracle

oracle.

oracle.

oracle.

oracle.

oracle

oracle.

apps.

.apps.

apps.

apps.

apps.

apps.

.apps.

apps.

apps.

apps.

apps.

.apps.

apps.

apps.

apps.

apps.

.apps.

apps.

wf.

.event

.event.

event.

.event.

.event.

.event.

.event.

.event.

.event.

.event.

.event.

.event.

.agent.

.agent.

.agent.

.event.

.event.

.event.

.event.

event.create
event.update
event.delete
group.create
group.update
group.delete

system.create

.system.update

system.delete
agent.create
agent.update
agent.delete
group.create
group.update
group.delete
subscription.create
subscription.update
subscription.delete

all.sync

Business Event System APIs  5-71



WEF_EVENT_FUNCTIONS_PKG.Receive() parses the event data XML document from the
event message that was received and then loads the Business Event System object
definitions into the appropriate tables.

Note: For the event, event group, system, agent, agent group, and
subscription definition events, WF_EVENT_FUNCTIONS_PKG.Receive()
calls the Receive APIs associated with the corresponding tables to parse
the XML document and load the definition into the table.

Arguments (input)
p_subscription_guid The globally unique identifier of the subscription.
p_event The event message.

Related Topics

WF_EVENTS_PKG.Receive, page 5-75
WEF_EVENT_GROUPS_PKG.Receive, page 5-76
WE_SYSTEMS_PKG.Receive, page 5-77
WF_AGENTS_PKG.Receive, page 5-78
WF_AGENT_GROUPS_PKG.Receive, page 5-79
WF_EVENT_SUBSCRIPTIONS_PKG.Receive, page 5-81
Predefined Workflow Events, Oracle Workflow Developer’s Guide

Business Event System Replication APIs

You can call the following APIs to replicate Business Event System data across your
systems. The replication APIs are stored in the following PL/SQL packages, each of
which corresponds to a Business Event System table. Oracle Workflow provides both a
generate function and a receive function for each table.

e  WF_EVENTS_PKG
e  WF_EVENTS_PKG.Generate, page 5-74

e  WF_EVENTS_PKG.Receive, page 5-75
e  WEF_EVENT_GROUPS_PKG
e  WF_EVENT_GROUPS_PKG.Generate, page 5-76

e  WF_EVENT_GROUPS_PKG.Receive, page 5-76

5-72 Oracle Workflow AP| Reference



e  WF_SYSTEMS PKG
e  WEF_SYSTEMS_PKG.Generate, page 5-77

¢  WF_SYSTEMS_PKG.Receive, page 5-77

e WF_AGENTS_PKG
¢  WF_AGENTS_PKG.Generate, page 5-78

e  WEF_AGENTS_PKG.Receive, page 5-78

¢  WF_AGENT_GROUPS_PKG
e  WF_AGENT_GROUPS_PKG.Generate, page 5-79

e  WF_AGENT_GROUPS_PKG.Receive, page 5-79

e  WF_EVENT_SUBSCRIPTIONS_PKG
e WEF_EVENT _SUBSCRIPTIONS_PKG.Generate, page 5-81

e  WEF_EVENT _SUBSCRIPTIONS_PKG.Receive, page 5-81

Each generate API produces an XML message containing the complete information
from the appropriate table for the specified Business Event System object definition.
The corresponding receive API parses the XML message and loads the row into the
appropriate table.

Oracle Workflow uses these APIs during the automated replication of Business Event
System data. The generate APIs are called by WF_EVENT_FUNCTIONS_PKG.Generate(),
while the receive APIs are called by WF_EVENT_FUNCTIONS_PKG.Receive(). See:
Generate, page 5-69 and Receive, page 5-70.

Document Type Definitions

The document type definitions (DTDs) for the Workflow table XML messages are
defined under the master tag WFTABLE DATA. Beneath the master tag, each DTD has a
tag identifying the Workflow table name to which it applies, and beneath that, a version
tag as well as tags for each column in the table. The following example shows how the
DTDs are structured:

<WF_TABLE_ DATA> <- masterTagName
<WF TABLE NAME> <- m table name
<VERSION></VERSION> <- m package version
<COL1></COL1>
<COL2></COL2>

</WF_TABLE_NAME>
</WF_TABLE_DATA>

The Business Event System replication APIs use the following DTDs:

Business Event System APIs  5-73



e WF_EVENTS DTD, page 5-74

e WF_EVENT_GROUPS DTD, page 5-75
e  WEF_SYSTEMS DTD, page 5-76

e  WF_AGENTS DTD, page 5-77

e  WF_AGENT_GROUPS DTD, page 5-79

e  WEF_EVENT_SUBSCRIPTIONS DTD, page 5-80

WF_EVENTS Document Type Definition

The following document type definition (DTD) describes the required structure for an
XML message that contains the complete information for an event definition in the
WEF_EVENTS table.

<WF_TABLE DATA>
<WF_EVENTS>
<VERSION></VERSION>
<GUID></GUID>
<NAME></NAME>
<TYPE></TYPE>
<STATUS></STATUS>
<GENERATE_FUNCTION></GENERATE_FUNCTION>
<OWNER7NAME></OWNERiNAME>
<OWNER_TAG></OWNER_ TAG>
<CUSTOMIZATIONiLEVEL></CUSTOMIZATIONiLEVEL>
<LICENSED FLAG></LICENSED FLAG>
<JAVA7GENERATE7FUNC></JAVAiGENERATEiFUNC>
<DISPLAY NAME></DISPLAY NAME>
<DESCRIPTION></DESCRIPTION>
</WF_EVENTS>
</WF_TABLE DATA>

WF_EVENTS PKG.Generate

PL/SQL Syntax
function Generate
(x_guid in raw)
return varchar?2;
Description
Generates an XML message containing the complete information from the WF_EVENTS
table for the specified event definition.
Arguments (input)

x_guid The globally unique identifier of the event.

5-74 Oracle Workflow AP| Reference



WF_EVENTS_PKG.Receive

PL/SQL Syntax
procedure Receive
(x_message in varchar2);
Description
Receives an XML message containing the complete information for an event definition
and loads the information into the WF_EVENTS table.
Arguments (input)

X_message An XML message containing the complete information for
an event definition.

WF_EVENT_GROUPS Document Type Definition

The following document type definition (DTD) describes the required structure for an
XML message that contains the complete information for an event group member
definition in the WF_EVENT_GROUPS table.

Note: Event group header information is defined in the WF_EVENTS
table, similarly to an individual event. Only the event group member
definitions are stored in the WF_EVENT_GROUPS table.

<WF_TABLE DATA>
<WF_EVENT GROUPS>
<VERSION></VERSION>
<GROUP_NAME></GROUP_NAME>
<MEMBER NAME></MEMBER NAME>
</WF_EVENT GROUPS>
</WF_TABLE_DATA>

Note: The Workflow XML Loader also still supports uploading event
group member definitions that are structured according to the previous
version of the DTD:

<WF_TABLE_DATA>
<WF_EVENT_ GROUPS>
<VERSION></VERSION>
<GROUP_GUID></GROUP_GUID>
<MEMBER GUID></MEMBER GUID>
</WF_EVENT GROUPS>
</WF_TABLE_DATA>

Business Event System APIs  5-75



WF _EVENT GROUPS PKG.Generate

PL/SQL Syntax

function Generate
(x_group guid in raw,
x_member guid in raw)
return varchar?2;

Description
Generates an XML message containing the complete information from the
WEF_EVENT_GROUPS table for the specified event group member definition.
Arguments (input)
x_group_guid The globally unique identifier of the event group.
x_member_guid The globally unique identifier of the individual member
event.

WF_EVENT _GROUPS_PKG.Receive

PL/SQL Syntax

procedure Receive
(x_message in varchar2);

Description
Receives an XML message containing the complete information for an event group
member definition and loads the information into the WF_EVENT_GROUPS table.
Arguments (input)

X_message An XML message containing the complete information for
an event group member definition.

WF_SYSTEMS Document Type Definition

The following document type definition (DTD) describes the required structure for an
XML message that contains the complete information for a system definition in the
WE_SYSTEMS table.

5-76 Oracle Workflow AP| Reference



<WF_TABLE_DATA>
<WF_SYSTEMS>
<VERSION></VERSION>
<GUID></GUID>
<NAME></NAME >
<MASTER_GUID></MASTER_GUID>
<DISPLAY_NAME></DISPLAY_NAME>
<DESCRIPTION></DESCRIPTION>
</WF_SYSTEMS>
</WF_TABLE_DATA>

WF_SYSTEMS PKG.Generate

PL/SQL Syntax
function Generate
(x_guid in raw)
return varchar?2;
Description
Generates an XML message containing the complete information from the
WEF_SYSTEMS table for the specified system definition.
Arguments (input)

x_guid The globally unique identifier of the system.

WF_SYSTEMS_PKG.Receive

PL/SQL Syntax
procedure Receive
(x_message in varchar2);
Description
Receives an XML message containing the complete information for a system definition
and loads the information into the WF_SYSTEMS table.
Arguments (input)

X_message An XML message containing the complete information for
a system definition.

WF_AGENTS Document Type Definition

The following document type definition (DTD) describes the required structure for an
XML message that contains the complete information for an agent definition in the
WEF_AGENTS table.

Business Event System APIs  5-77



<WF_TABLE_DATA>
<WF_AGENTS>
<VERSION></VERSION>
<GUID></GUID>
<NAME></NAME >
<SYSTEM_GUID></SYSTEM_GUID>
<PROTOCOL></PROTOCOL>
<ADDRESS></ADDRESS>
<QUEUE7HANDLER></QUEUEiHANDLER>
<QUEUE_NAME></QUEUE_NAME>
<DIRECTION></DIRECTION>
<STATUS></STATUS>
<DISPLAYiNAME></DISPLAYiNAME>
<DESCRIPTION></DESCRIPTION>
<TYPE></TYPE>
</WF_AGENTS>
</WF_TABLE DATA>

WF_AGENTS PKG.Generate

PL/SQL Syntax
function Generate
(x_guid in raw)
return varchar?2;
Description
Generates an XML message containing the complete information from the
WEF_AGENTS table for the specified agent definition.
Arguments (input)

x_guid The globally unique identifier of the agent.

WF_AGENTS_PKG.Receive

PL/SQL Syntax
procedure Receive
(x_message in varchar2);
Description
Receives an XML message containing the complete information for an agent definition
and loads the information into the WF_AGENTS table.
Arguments (input)

X_message An XML message containing the complete information for
an agent definition.

5-78 Oracle Workflow AP| Reference



WF_AGENT_GROUPS Document Type Definition

The following document type definition (DTD) describes the required structure for an
XML message that contains the complete information for an agent group member
definition in the WF_AGENT_GROUPS table.

Note: Agent group header information is defined in the WF_AGENTS
table, similarly to an individual agent. Only the agent group member
definitions are stored in the WF_AGENT_GROUPS table.

<WF_TABLE_DATA>
<WF_AGENT GROUPS>
<VERSION></VERSION>
<GROUP_GUID></GROUP_GUID>
<MEMBER GUID></MEMBER GUID>
</WF_AGENT GROUPS>
</WF_TABLE_DATA>

WF_AGENT_GROUPS PKG.Generate

PL/SQL Syntax
function Generate
(x_group guid in raw,
x_member guid in raw)
return varchar?2;
Description
Generates an XML message containing the complete information from the
WF_AGENT_GROUPS table for the specified agent group member definition.
Arguments (input)
X_group_guid The globally unique identifier of the agent group.
x_member_guid The globally unique identifier of the individual member
agent.

WF_AGENT _GROUPS PKG.Receive

PL/SQL Syntax

procedure Receive
(x_message in varchar2);

Business Event System APIs  5-79



Description

Receives an XML message containing the complete information for an agent group
member definition and loads the information into the WF_AGENT_GROUPS table.

Arguments (input)
X_message An XML message containing the complete information for
an agent group member definition.

WF_EVENT_SUBSCRIPTIONS Document Type Definition

The following document type definition (DTD) describes the required structure for an
XML message that contains the complete information for an event subscription
definition in the WF_EVENT_SUBSCRIPTIONS table.

<WF_TABLE_DATA>

<WF_EVENT SUBSCRIPTIONS>
<VERSION></VERSION>
<GUID></GUID>
<SYSTEM_GUID></SYSTEM_GUID>
<SOURCE_TYPE></SOURCE_TYPE>
<SOURCE_AGENT_GUID></SOURCE_AGENT_GUID>
<EVENT_FILTER_GUID></EVENT_FILTER_GUID>
<PHASE></PHASE>
<STATUS></STATUS>
<RULE7DATA></RULE7DATA>
<OUT_AGENT GUID></OUT AGENT GUID>
<TO_AGENT GUID></TO_AGENT GUID>
<PRIORITY></PRIORITY>
<RULE7FUNCTION></RULE7FUNCTION>
<JAVA RULE_FUNC></JAVA RULE FUNC>
<STANDARD7TYPE></STANDARDfTYPE>
<STANDARD_CODE></STANDARD_CODE>
<ON_ERROR_CODE></ON_ERROR CODE>
<ACTION_ CODE></ACTION CODE>
<WF_PROCESS_TYPE></WF PROCESS TYPE>
<WF_PROCESS_ NAME></WF_ PROCESS NAME>
<PARAMETERS></PARAMETERS>
<OWNER_NAME></OWNER_NAME>
<OWNER_TAG></OWNER_TAG>
<CUSTOMIZATION_LEVEL></CUSTOMIZATION_LEVEL>
<LICENSED_FLAG></LICENSED_FLAG>
<DESCRIPTION></DESCRIPTION>
<EXPRESSION></EXPRESSION>

</WF_EVENT SUBSCRIPTIONS>

</WF_TABLE_DATA>

5-80 Oracle Workflow AP| Reference



WF_EVENT_SUBSCRIPTIONS_PKG.Generate

PL/SQL Syntax

function Generate
(x_guid in raw)
return varchar?2;

Description
Generates an XML message containing the complete information from the
WF_EVENT_SUBSCRIPTIONS table for the specified event subscription definition.
Arguments (input)

x_guid The globally unique identifier of the event subscription.

WF_EVENT_SUBSCRIPTIONS_PKG.Receive

PL/SQL Syntax

procedure Receive
(x_message in varchar2);

Description
Receives an XML message containing the complete information for an event
subscription definition and loads the information into the
WE_EVENT_SUBSCRIPTIONS table.

Arguments (input)

X_message An XML message containing the complete information for
an event subscription definition.

Business Event System Cleanup API

The Workflow Business Event System cleanup API can be used to clean up the standard
WE_CONTROL queue in the Business Event System by removing inactive subscribers
from the queue. This API is defined in a PL/SQL package called WF_BES_CLEANUP.

Business Event System APIs  5-81



Cleanup_Subscribers

PL/SQL Syntax

procedure Cleanup Subscribers
(errbuf out wvarchar2,
retcode out varchar2);

Description
Performs cleanup for the standard WF_CONTROL queue.

When a middle tier process for Oracle E-Business Suite starts up, it creates a JMS
subscriber to the WF_CONTROL queue. Then, when an event message is placed on the
queue, a copy of the event message is created for each subscriber to the queue. If a
middle tier process dies, however, the corresponding subscriber remains in the
database. For more efficient processing, you should ensure that WF_CONTROL is
periodically cleaned up by running Cleanup_Subscribers() to remove the subscribers for
any middle tier processes that are no longer active.

The Cleanup_Subscribers() procedure sends an event named
oracle.apps.wf.bes.control.ping to check the status of each subscriber to the
WEF_CONTROL queue. If the corresponding middle tier process is still alive, it sends
back a response.

The next time the cleanup procedure runs, it checks whether responses have been
received for each ping event sent during the previous run. If no response was received
from a particular subscriber, that subscriber is removed.

Finally, after removing any subscribers that are no longer active, the procedure sends a
new ping event to the remaining subscribers.

The recommended frequency for performing cleanup is every twelve hours. In order to
allow enough time for subscribers to respond to the ping event, the minimum wait time
between two cleanup runs is thirty minutes. If you run the procedure again less than
thirty minutes after the last run, it will not perform any processing.

The maximum retention time for information about ping events sent to subscribers is
thirty days. Cleanup_Subscribers() deletes information for previously sent pings that are
more than thirty days old.

The procedure returns an error buffer that contains an error message if any inactive
subscriber could not be removed during the cleanup. It also returns one of the following
codes to indicate the status of the cleanup.

e 0 -Success
e 1-Warning

e 2 -Error

5-82 Oracle Workflow AP| Reference



Related Topics
Cleaning Up the Workflow Control Queue, Oracle Workflow Administrator’s Guide

Standard Agents, Oracle Workflow Developer’s Guide

Business Event System Control Events, Oracle Workflow Developer’s Guide

Business Event System APIs  5-83






6

Workflow Queue APIs

This chapter describes the APIs for Oracle Workflow Advanced Queues processing. The
APIs include PL/SQL functions and procedures to handle workflow Advanced Queues
processing. Although these APIs will continue to be supported for backward
compatibility, customers using Oracle Workflow Release 12 should use the Business
Event System rather than the queue APIs to integrate with Oracle Advanced Queuing.

This chapter covers the following topics:

e Workflow Queue APIs

Workflow Queue APIs

Oracle Workflow queue APIs can be called by an application program or a workflow
function in the runtime phase to handle workflow Advanced Queues processing.

Note: Although these APIs will continue to be supported for backward
compatibility, customers using Oracle Workflow Release 12 should use
the Business Event System rather than the queue APIs to integrate with
Oracle Advanced Queuing.

In Oracle Workflow, an 'outbound' and an 'inbound' queue are established. A package
of data on the queue is referred to as an event or a message.

Note: An event in this context is different from the business events
associated with the Business Event System, and a message in this
context is different from the messages associated with notification
activities.

Events are enqueued in the outbound queue for agents to consume and process. These
agents may be any application that is external to the database. Similarly an agent may
enqueue some message to the inbound queue for the Workflow Engine to consume and
process. The outbound and inbound queues facilitate the integration of external

Workflow Queue APIs 6-1



activities into your workflow processes.

Note: Background engines use a separate 'deferred’ queue.

All Oracle Workflow queue APlIs are defined in a PL/SQL package called WF_QUEUE.
You must execute these queue APIs from the same Oracle Workflow account since the
APIs are account dependent.

Important: In using these APIs, we assume that you have prior
knowledge of Oracle Advanced Queuing concepts and terminology.
Refer to the Oracle Streams Advanced Queuing User’s Guide and Reference
for more information on Advanced Queues.

Queue APIs
¢ Enqueuelnbound, page 6-4

* DequeueOutbound, page 6-5

* DequeueEventDetail, page 6-8

* PurgeEvent, page 6-9

* PurgeltemType, page 6-10

® ProcessInboundQueue, page 6-10
¢ GetMessageHandle, page 6-11

¢ DequeueException, page 6-11

e DeferredQueue, page 6-12

¢ InboundQueue, page 6-12

¢ OutboundQueue, page 6-12

Developer APIs for the Inbound Queue

The following APlIs are for developers who wish to write to the inbound queue by
creating messages in the internal stack rather than using
WF_QUEUE.Enqueuelnbound(). The internal stack is purely a storage area and you
must eventually write each message that you create on the stack to the inbound queue.

6-2 Oracle Workflow API| Reference



Note: For efficient performance, you should periodically write to the
inbound queue to prevent the stack from growing too large.

* C(ClearMsgStack, page 6-13

* CreateMsg, page 6-13

e  WriteMsg, page 6-13

* SetMsgAttr, page 6-14

* SetMsgResult, page 6-15

Payload Structure

Oracle Workflow queues use the datatype system.wf payload t to define the
payload for any given message. The payload contains all the information that is
required about the event. The following table lists the attributes of

system.wf payload t.

System.wf_payload_t Attributes

Attribute Name Datatype Description

ITEMTYPE VARCHAR2(8) The item type of the event.

ITEMKEY VARCHAR2(240) The item key of the event.

ACTID NUMBER The function activity instance
ID.

FUNCTION_NAME VARCHAR2(200) The name of the function to
execute.

PARAM_LIST VARCHAR2(4000) A list of

"value name=value"
pairs. In the inbound
scenario, the pairs are passed
as item attributes and item
attribute values. In the
outbound scenario, the pairs
are passed as all the attributes
and attribute values of the
function (activity attributes).

Workflow Queue APIs 6-3



Attribute Name Datatype Description

RESULT VARCHAR2(30) An optional activity
completion result. Possible
values are determined by the
function activity's Result Type
or can be an engine standard
result.

Related Topics

Standard API for PL/SQL Procedures Called by Function Activities, Oracle Workflow
Developer’s Guide

Enqueuelnbound

Syntax

procedure Enqueuelnbound
(itemtype in wvarchar2,
itemkey in varchar2,
actid in number,
result in varchar2 default null,
attrlist in varchar2 default null,
correlation in varchar2 default null,
error_stack in varchar2?2 default null);

Description

Enqueues the result from an outbound event onto the inbound queue. An outbound
event is defined by an outbound queue message that is consumed by some agent.

Oracle Workflow marks the external function activity as complete with the specified
result when it processes the inbound queue. The result value is only effective for
successful completion, however. If you specify an external program error in the

error stack parameter, Oracle Workflow marks the external function activity as
complete with an ERROR status, overriding the result value. Additionally, if a
corresponding error process is defined in the item type, Oracle Workflow launches that
eITOr process.

Arguments (input)
itemtype The item type of the event.
itemkey The item key of the event. An item key is a string generated

from the application object's primary key. The string
uniquely identifies the item within an item type. The item

6-4 Oracle Workflow API| Reference



actid

result

attrlist

correlation

error_stack

DequeueOutbound

Syntax

type and key together identify the process instance.

The function activity instance ID that this event is
associated with.

An optional activity completion result. Possible values are
determined by the function activity's Result Type.

A longlist of "value name=value" pairs that you want
to pass back as item attributes and item attribute values.
Each pair must be delimited by the caret character (*), as in
the example, "ATTR1=A"ATTR2=B"ATTR3=C".Ifa
specified value name does not exist as an item attribute,
Oracle Workflow creates the item attribute for you, of type
varchar2.

Specify an optional correlation identifier for the message to
be enqueued. Oracle Advanced Queues allow you to search
a queue for messages based on a specific correlation value.
If null, the Workflow Engine creates a correlation identifier
based on the Workflow schema name and the item type.

Specify an optional external program error that will be
placed on Oracle Workflow's internal error stack. You can
specify any text value up to a maximum length of 200
characters.

procedure DequeueOutbound
(dequeuemode in number,
navigation in number default 1,
correlation in varchar2 default null,
itemtype in varchar2 default null,
payload out system.wf payload t,
message handle in out raw,
timeout out boolean);

Description

Dequeues a message from the outbound queue for some agent to consume.

Important: If you call this procedure within a loop, you must remember
to set the returned message handle to null, otherwise, the procedure
dequeues the same message again. This may not be the behavior you

Workflow Queue APIs 6-5



want and may cause an infinite loop.

Arguments (input)

dequeuemode A value of DBMS_AQ.BROWSE, DBMS_AQ.LOCKED, or
DBMS_AQ.REMOVE, corresponding to the numbers 1, 2
and 3 respectively, to represent the locking behavior of the
dequeue. A mode of DBMS_AQ.BROWSE means to read
the message from the queue without acquiring a lock on
the message. A mode of DBMS_AQ.LOCKED means to
read and obtain a write lock on the message, where the lock
lasts for the duration of the transaction. A mode of
DBMS_AQ.REMOVE means read the message and delete
it.

navigation Specify DBMS_AQ.FIRST_MESSAGE or
DBMS_AQ.NEXT_MESSAGE, corresponding to the
number 1 or 2 respectively, to indicate the position of the
message that will be retrieved. A value of
DBMS_AQ.FIRST_MESSAGE retrieves the first message
that is available and matches the correlation criteria. The
first message is inherently the beginning of the queue. A
value of DBMS_AQ.NEXT_MESSAGE retrieves the next
message that is available and matches the correlation
criteria, and lets you read through the queue. The default is
1.

correlation Specify an optional correlation identifier for the message to
be dequeued. Oracle Advanced Queues allow you to
search a queue for messages based on a specific correlation
value. You can use the Like comparison operator, '$', to
specify the identifier string. If null, the Workflow Engine
creates a correlation identifier based on the Workflow
schema name and the item type.

itemtype The item type of the event.

message_handle Specify an optional message handle ID for the specific
event to be dequeued. If you specify a message handle ID,
the correlation identifier is ignored.

Important: The timeout output returns TRUE when there is nothing
further to read in the queue.

6-6 Oracle Workflow API| Reference



Sample Code

Following is an example of code that loops through the outbound queue and displays

-- not interested in specific msg id. Leave
-- as to loop through all messages in queue

wf payload t;

the first message then
dbms_aq.FIRST MESSAGE;

dbms aq.NEXT MESSAGE;

Example
the output.
declare
event system.
i number;
msg_id raw (16);
queuename varchar2 (30) ;
navigation mode number;
end of queue boolean;
begin
queuename:=wf queue.OUTBOUNDQUEUE;
1:=0;
LOOP
1:=141;
-- always start with
if 1 = 1 then
navigation mode :=
else
navigation mode :=
end if;
msg_id :=null;

wf queue.DequeueOutbound (

if

dequeuemode =>
payload =>
navigation =>
message_handle =>

timeout =>

end of queue then
exit;

end 1if;

-- print the correlation itemtype:itemKey
dbms output.put line('Msg '||to char(i)||["
event.itemtype||':'||event.itemkey]||"
'|levent.param list);

END

end;

/

event.actid] |

LOOP;

dbms aqg.BROWSE,
event,
navigation mode,
msg_id,

end of queue);

progress to next

it null so

Workflow Queue APIs

6-7



DequeueEventDetail

Syntax

procedure DequeueEventDetail
(dequeuemode in number,
navigation in number default 1,
correlation in varchar2 default null,
itemtype in out wvarchar?,
itemkey out varcharz,

actid out number,

function name out varchar2,
param list out varchar2,
message handle in out raw,
timeout out boolean);

Description

Dequeue from the outbound queue, the full event details for a given message. This API
is similar to DequeueOutbound except it does not reference the payload type. Instead, it
outputs itemkey, actid, function name, and param list, which are part of the

payload.

Important: If you call this procedure within a loop, you must remember
to set the returned message handle to null, otherwise, the procedure
dequeues the same message again. This may not be the behavior you
want and may cause an infinite loop.

Arguments (input)

dequeuemode

navigation

6-8 Oracle Workflow API| Reference

A value of DBMS_AQ.BROWSE, DBMS_AQ.LOCKED, or
DBMS_AQ.REMOVE, corresponding to the numbers 1, 2
and 3 respectively, to represent the locking behavior of the
dequeue. A mode of DBMS_AQ.BROWSE means to read
the message from the queue without acquiring a lock on
the message. A mode of DBMS_AQ.LOCKED means to
read and obtain a write lock on the message, where the lock
lasts for the duration of the transaction. A mode of
DBMS_AQ.REMOVE means read the message and update
or delete it.

Specify DBMS_AQ.FIRSTMESSAGE or
DBMS_AQ.NEXTMESSAGE, corresponding to the number
1 or 2 respectively, to indicate the position of the message
that will be retrieved. A value of
DBMS_AQ.FIRSTMESSAGE retrieves the first message that
is available and matches the correlation criteria. It also



resets the position to the beginning of the queue. A value of
DBMS_AQ.NEXTMESSAGE retrieves the next message
that is available and matches the correlation criteria. The
default is 1.

correlation Specify an optional correlation identifier for the message to
be dequeued. Oracle Advanced Queues allow you to
search a queue for messages based on a specific correlation
value. You can use the Like comparison operator, '$', to
specify the identifier string. If null, the Workflow Engine
creates a correlation identifier based on the Workflow
schema name and the item type.

acctname The Oracle Workflow database account name. If acctname
is null, it defaults to the pseudocolumn USER.

itemtype Specify an optional item type for the message to dequeue if
you are not specifying a correlation.

message_handle Specify an optional message handle ID for the specific
event to be dequeued. If you specify a message handle ID,
the correlation identifier is ignored.

Important: The timeout output returns TRUE when there is nothing
further to read in the queue.

PurgeEvent
Syntax
procedure PurgeEvent
(queuename in varchar?2,
message handle in raw);
Description
Removes an event from a specified queue without further processing.
Arguments (input)
queuename The name of the queue from which to purge the event.
message_handle The message handle ID for the specific event to purge.

Workflow Queue APIs 6-9



PurgeltemType

Syntax
procedure PurgeltemType
(queuename in varchar?2,
itemtype in varchar2 default null,
correlation in wvarchar2 default null);
Description
Removes all events belonging to a specific item type from a specified queue without
further processing.
Arguments (input)
queuename The name of the queue from which to purge the events.
itemtype An optional item type of the events to purge.
correlation Specify an optional correlation identifier for the message to

be purged. Oracle Advanced Queues allow you to search a
queue for messages based on a specific correlation value.
You can use the Like comparison operator, '%', to specify
the identifier string. If null, the Workflow Engine creates a
correlation identifier based on the Workflow schema name
and the item type.

ProcessinboundQueue

Syntax

procedure ProcessInboundQueue
(itemtype in varchar?2 default null,
correlation in wvarchar2 default null);

Description

Reads every message off the inbound queue and records each message as a completed
event. The result of the completed event and the list of item attributes that are updated
as a consequence of the completed event are specified by each message in the inbound
queue. See: Enqueuelnbound, page 6-4.

Arguments (input)
itemtype An optional item type of the events to process.

6-10 Oracle Workflow AP| Reference



correlation

GetMessageHandle

If you wish to process only messages with a specific
correlation, enter a correlation identifier. If correlation
is null, the Workflow Engine creates a correlation identifier
based on the Workflow schema name and the item type.

function GetMessageHandle
(queuename in varchar?2,
itemtype in varchar2,

itemkey in varchar2,
actid in number,

correlation in varchar2 default null)

return raw;

Returns a message handle ID for a specified message.

Syntax

Description

Arguments (input)
queuename
itemtype
itemkey
actid
correlation

DequeueException

Syntax

The name of the queue from which to retrieve the message
handle.

The item type of the message.

The item key of the message. An item key is a string
generated from the application object's primary key. The
string uniquely identifies the item within an item type. The
item type and key together identify the process instance.

The function activity instance ID that this message is
associated with.

Specify an optional correlation identifier for the message. If
the correlation is null, the Workflow Engine creates a
correlation identifier based on the Workflow schema name
and the item type.

procedure DequeueException
(queuename in varchar?2);

Workflow Queue APIs 6-11



Description

Dequeues all messages from an exception queue and places the messages on the
standard Business Event System WF_ERROR queue with the error message 'Message
Expired'. When the messages are dequeued from WF_ERROR, a predefined
subscription is triggered that launches the Default Event Error process.

Arguments (input)
queuename The name of the exception queue that has been enabled for
dequeue.

Related Topics

Default Event Error Process, Oracle Workflow Developer’s Guide

DeferredQueue

Syntax

function DeferredQueue return varchar2;

Description
Returns the name of the queue and schema used by the background engine for deferred
processing.

InboundQueue

Syntax
function InboundQueue return varchar2;

Description
Returns the name of the inbound queue and schema. The inbound queue contains
messages for the Workflow Engine to consume.

OutboundQueue

Syntax
function OutboundQueue return varchar?2;

Description

Returns the name of the outbound queue and schema. The outbound queue contains

6-12 Oracle Workflow AP| Reference



messages for external agents to consume.

ClearMsgStack

Syntax

procedure ClearMsgStack;

Description
Clears the internal stack. See: Developer APIs for the Inbound Queue, page 6-2.
CreateMsg
Syntax
procedure CreateMsg
(itemtype in varchar2,
itemkey in varchar2,
actid in number) ;
Description
Creates a new message in the internal stack if it doesn't already exist. See: Developer
APIs for the Inbound Queue, page 6-2.
Arguments (input)
itemtype The item type of the message.
itemkey The item key of the message. An item key is a string
generated from the application object's primary key. The
string uniquely identifies the item within an item type. The
item type and key together identify the process instance.
actid The function activity instance ID that this message is
associated with.
WriteMsg
Syntax

procedure WriteMsg
(itemtype in varchar2,
itemkey in varchar2,
actid in number) ;

Workflow Queue APIs 6-13



Description

Writes a message from the internal stack to the inbound queue. See: Developer APIs for
the Inbound Queue, page 6-2.

Arguments (input)
itemtype The item type of the message.
itemkey The item key of the message. An item key is a string
generated from the application object's primary key. The
string uniquely identifies the item within an item type. The
item type and key together identify the process.
actid The function activity instance ID that this message is
associated with.
SetMsgAttr
Syntax

procedure SetMsgAttr
(itemtype in varchar2,
itemkey in varchar2,
actid in number,
attrName in varchar?2,
attrValue in varchar?2);

Description
Appends an item attribute to the message in the internal stack. See: Developer APIs for
the Inbound Queue, page 6-2.
Arguments (input)
itemtype The item type of the message.
itemkey The item key of the message. An item key is a string

generated from the application object's primary key. The
string uniquely identifies the item within an item type. The
item type and key together identify the process instance.

actid The function activity instance ID that this message is
associated with.

attrName The internal name of the item attribute you wish to append
to the message.

6-14 Oracle Workflow AP| Reference



attrValue The value of the item attribute you wish to append.

SetMsgResult

Syntax

procedure SetMsgResult
(itemtype in varchar2,
itemkey in varchar2,
actid in number,
result in varchar?2);

Description
Sets a result to the message written in the internal stack. See: Developer APIs for the
Inbound Queue, page 6-2.
Arguments (input)
itemtype The item type of the message.
itemkey The item key of the message. An item key is a string

generated from the application object's primary key. The
string uniquely identifies the item within an item type. The
item type and key together identify the process instance.

actid The function activity instance ID that this message is
associated with.

result The completion result for the message. Possible values are
determined by the activity's Result Type.

Workflow Queue APIs 6-15






Glossary

Access Level

A numeric value ranging from 0 to 1000. Every workflow user operates at a specific
access level. The access level defines whether the user can modify certain workflow
data. You can only modify data that is protected at a level equal to or higher than your
access level.

Activity

A unit of work performed during a business process.

Activity Attribute

A parameter that has been externalized for a function activity that controls how the
function activity operates. You define an activity attribute by displaying the activity's
Attributes properties page in the Activities window. You assign a value to an activity
attribute by displaying the activity node's Attribute Values properties page in the
Process window.

Agent

A named point of communication within a system.

Agent Listener

A type of service component that processes event messages on inbound agents.

Attribute
See Activity Attribute, Item Type Attribute, or Message Attribute.

Background Engines

A supplemental Workflow Engine that processes deferred or timed out activities or
stuck processes.

Business Event

See Event.

Glossary-1



Glossary-2

Cost

A relative value that you can assign to a function or notification activity to inform the
Workflow Engine how much processing is required to complete the activity. Assign a
higher cost to longer running, complex activities. The Workflow Engine can be set to
operate with a threshold cost. Any activity with a cost above the Workflow Engine
threshold cost gets set to ' DEFERRED' and is not processed. A background engine can be
set up to poll for and process deferred activities.

Concurrent Manager

An Oracle E-Business Suite component that manages the queuing of requests and the
operation of concurrent programs.

Concurrent Process

An instance of running a non-interactive, data-dependent function, simultaneously with
online operations. Each time you submit a request, a concurrent manager processes
your request, starts a concurrent process, and runs a concurrent program.

Concurrent Program

A concurrent program is an executable file that performs a specific task, such as posting
ajournal entry or generating a report.

Concurrent Queue

A list of concurrent requests awaiting completion by a concurrent manager. Each
concurrent manager has a queue of requests waiting in line to be run. If your system
administrator sets up your Oracle E-Business Suite application to have simultaneous
queuing, your request can wait to run in more than one queue.

Directory Service

A mapping of Oracle Workflow users and roles to a site's directory repository.

Event

An occurrence in an internet or intranet application or program that might be
significant to other objects in a system or to external agents.

Event Activity

A business event modelled as an activity so that it can be included in a workflow
process.

Event Data

A set of additional details describing an event. The event data can be structured as an
XML document. Together, the event name, event key, and event data fully
communicate what occurred in the event.



Event Key

A string that uniquely identifies an instance of an event. Together, the event name,
event key, and event data fully communicate what occurred in the event.

Event Message

A standard Workflow structure for communicating business events, defined by the
datatype WF_EVENT T. The event message contains the event data as well as several
header properties, including the event name, event key, addressing attributes, and error
information.

Event Subscription

A registration indicating that a particular event is significant to a system and specifying
the processing to perform when the triggering event occurs. Subscription processing
can include calling custom code, sending the event message to a workflow process, or
sending the event message to an agent.

External Functions

Programs that are executed outside of the Oracle Database.

Function

A PL/SQL stored procedure that can define business rules, perform automated tasks
within an application, or retrieve application information. The stored procedure accepts
standard arguments and returns a completion result.

Function Activity

An automated unit of work that is defined by a PL/SQL stored procedure.

Generic Service Component Framework

A facility that helps to simplify and automate the management of background Java
services.

Item

A specific process, document, or transaction that is managed by a workflow process.

Item Attribute
See Item Type Attribute.

Item Type

A grouping of all items of a particular category that share the same set of item
attributes. Item type is also used as a high level grouping for processes.

Glossary-3



Glossary-4

Item Type Attribute

A feature associated with a particular item type, also known as an item attribute. An
item type attribute is defined as a variable whose value can be looked up and set by the
application that maintains the item. An item type attribute and its value are available to
all activities in a process.

Lookup Code

An internal name of a value defined in a lookup type.

Lookup Type

A predefined list of values. Each value in a lookup type has an internal and a display
name.

Message

The information that is sent by a notification activity. A message must be defined before
it can be associated with a notification activity. A message contains a subject, a priority,
a body, and possibly one or more message attributes.

Message Attribute

A variable that you define for a particular message to either provide information or
prompt for a response when the message is sent in a notification. You can use a
predefine item type attribute as a message attribute. Defined as a 'Send' source, a
message attribute gets replaced with a runtime value when the message is sent. Defined
as a 'Respond' source, a message attribute prompts a user for a response when the
message is sent.

Node

An instance of an activity in a process diagram as shown in the Process window.

Notification

An instance of a message delivered to a user.

Notification Activity

A unit of work that requires human intervention. A notification activity sends a
message to a user containing the information necessary to complete the work.

Notification Mailer

A type of service component that sends e-mail notifications to users through a mail
application, and processes e-mail responses.

Notification Worklist

A Web page that you can access to query and respond to workflow notifications.



Performer

A user or role assigned to perform a human activity (notification). Notification activities
that are included in a process must be assigned to a performer.

Process

A set of activities that need to be performed to accomplish a business goal.

Process Activity

A process modelled as an activity so that it can be referenced by other processes.

Process Definition

A workflow process as defined in Oracle Workflow Builder, which can be saved as a
flat file or in a database.

Protection Level

A numeric value ranging from 0 to 1000 that represents who the data is protected from
for modification. When workflow data is defined, it can either be set to customizable
(1000), meaning anyone can modify it, or it can be assigned a protection level that is
equal to the access level of the user defining the data. In the latter case, only users
operating at an access level equal to or lower than the data's protection level can modify
the data.

Result Code

The internal name of a result value, as defined by the result type.

Result Type

The name of the lookup type that contains an activity's possible result values.

Result Value

The value returned by a completed activity.

Role

One or more users grouped by a common responsibility or position.

Service Component Container

An instance of a service that manages the running of the individual service components
that belong to it. The container monitors the status of its components and handles
control events for itself and for its components.

Service Component

An instance of a Java program which has been defined according to the Generic Service
Component Framework standards so that it can be managed through this framework.

Glossary-5



Glossary-6

Subscription

See Event Subscription.

System

A logically isolated software environment such as a host machine or database instance.

Timeout

The amount of time during which a notification activity must be performed before the
Workflow Engine transitions to an error process or an alternate activity if one is
defined.

Transition

The relationship that defines the completion of one activity and the activation of
another activity within a process. In a process diagram, the arrow drawn between two
activities represents a transition.

Workflow Definitions Loader

A concurrent program that lets you upload and download workflow definitions
between a flat file and a database.

Workflow Engine

The Oracle Workflow component that implements a workflow process definition. The
Workflow Engine manages the state of all activities for an item, automatically executes
functions and sends notifications, maintains a history of completed activities, and
detects error conditions and starts error processes. The Workflow Engine is
implemented in server PL/SQL and activated when a call to an engine API is made.



A

AbortProcess(), 2-32
AccessCheck(), 4-44
Activities

processing cost, 2-7

statuses, 2-2
Activities(), 2-96
AddAttr(), 4-33
AddCorrelation(), 5-67
addCustomSOAPHeaders(), 5-61
AddItemAttr(), 2-38
addItemAttrDate(), 2-38
AddItemAttrDateArray(), 2-40
addItemAttrNumber(), 2-38
AddItemAttrNumberArray(), 2-40
addItemAttrText(), 2-38
AddItemAttrTextArray(), 2-40
AddParameterToList, 5-19
AddParameterToList(), 5-37
AddParameterToListPos(), 5-37
AddRelationship(), 3-38
Address, 5-19
AddUsersToAdHocRole(), 3-15
AddUsersToAdHocRole2(), 3-16
addWSSecurityHeader(), 5-61
Ad hoc users and roles

APIs, 3-1
Advanced Queues integration, 6-1
Agent datatype, 5-3
ANSWER mode, 2-13
APIs, 2-1

Index

AQ$_JMS_TEXT_MESSAGE, 5-21
AQ message payload, 6-3
AssignActivity(), 2-57
Asynchronous processes, 2-14

B

Background(), 2-36
BeginActivity(), 2-53
Bulk APIs

Workflow Engine, 2-65
Business events

in Workflow processes, 2-17
Business Event System, 1-3
overview, 5-1
Business Event System Replication APIs, 5-72

C

Cancel(), 4-27
CancelGroup(), 4-27
ChangeLocalUserName(), 3-21
Cleanup_Subscribers(), 5-82
CLEAR(), 2-86
ClearMsgStack(), 6-13
Close(), 4-32
compareTo(), 2-85
CompleteActivity(), 2-54
CompleteActivityInternalName(), 2-56
Concurrent programs
Purge Obsolete Workflow Runtime Data, 2-
104
Workflow Resource Generator, 2-89
Constants

Index-1



WFAttribute class, 2-81
Content, 5-18
CONTEXTY(), 2-90
CreateAdHocRole(), 3-11
CreateAdHocRole2(), 3-13
CreateAdHocUser(), 3-9
CreateForkProcess(), 2-34
CreateMsg(), 6-13
CreateProcess()

WEF_ENGINE, 2-20

WEF_ENGINE_BULK, 2-66

D

Datatypes
example, 5-20
for the Business Event System, 5-2
WF_AGENT_T, 5-3
WF_EVENT_T, 5-6
WF_PARAMETER_LIST_T, 5-6
WF_PARAMETER T, 5-4
Data types
wf_payload_t, 6-3
Default_Generate(), 5-56
Default_Rule_Or(), 5-55
Default_Rule(), 5-42
Default_Rule2(), 5-50
Default_Rule3(), 5-51
Deferred processing
for workflow processes, 2-7
DeferredQueue function, 6-12
Denormalize_Notification(), 4-47
DequeueEventDetail(), 6-8
DequeueException(), 6-11
DequeueOutbound(), 6-5
Directory(), 2-102
Directory Service APIs, 3-1
Directory services
synchronization, 3-22
Document Type Definitions
Business Event System, 5-73
notifications, 4-7
WF_AGENT_GROUPS, 5-79
WEF_AGENTS, 5-77
WEF_EVENT_GROUPS, 5-75
WEF_EVENT_SUBSCRIPTIONS, 5-80
WEF_EVENTS, 5-74

Index-2

WEF_SYSTEMS, 5-76

E

Effective dates, 2-9
E-mail notifications, 1-4
EncodeBLOB(), 4-49
Enqueue(), 5-32
Enqueuelnboundy(), 6-4
Error_Rule(), 5-48
WF_XML, 4-52
Error(), 5-45
Error handling
for process activities, 2-60
for workflow processes, 2-8
Event(), 2-58
Event activities, 2-17
Event APIs, 5-24
Event Function APIs, 5-65
Event message datatype, 5-6
Event Rule APIs, 5-41
execute(), 2-80
ExpireRelationship(), 3-39

F

FastForward()
WEF_ENGINE_BULK, 2-70

FNDWEPR, 2-104

Forced synchronous processes, 2-14

Forward(), 4-4, 4-24

FORWARD mode, 2-13

G

Generate()
WF_AGENT_GROUPS_PKG, 5-79
WF_AGENTS_PKG, 5-78

WF_EVENT_FUNCTIONS_PKG, 5-69

WF_EVENT_GROUPS_PKG, 5-76

WF_EVENT_SUBSCRIPTIONS_PKG, 5-81

WEF_EVENTS_PKG, 5-74

WEF_SYSTEMS_PKG, 5-77

WF_XML, 4-51
GET_ERROR(), 2-86
get_pref(), 3-40
GetAccessKey(), 2-106
getActivity Attr(), 2-78



GetActivity AttrClob(), 2-51
GetActivityAttrDate(), 2-50
GetActivity AttrEvent(), 2-50
getActivity Attributes(), 2-52
GetActivity AttrInfo(), 2-49
GetActivity AttrNumber(), 2-50
GetActivity AttrText(), 2-50
GetActivityLabel(), 2-24
GetAdvancedEnvelopeURLY(), 2-108
GetAllRelationships(), 3-40
GetAttrDate(), 4-39
GetAttrDoc(), 4-40
GetAttrInfo(), 4-35
GetAttrNumber(), 4-39
GetAttrText(), 4-39
getBindingStyle(), 5-65
GetBody(), 4-42
getBusinessEvent(), 5-65
GetCalendarDate(), 4-49
getCallbackAgent(), 5-64
getCallbackEvent(), 5-64
getCorrelationID, 5-12
GetDiagramURL(), 2-106
GetEncrypted AccessKey(), 2-109
GetEncrypted AdminMode(), 2-110
GetEnvelopeURLY(), 2-107
getErrorMessage, 5-14
getErrorStack, 5-14
getErrorSubscription, 5-14
getEventData, 5-13
getEventKey, 5-13
getEventName, 5-13
getFormat(), 2-84
getFromAgent, 5-13
GetlInfo(), 4-36
getInXslFile(), 5-64
getltemAttr(), 2-79
GetltemAttrClob(), 2-47
GetltemAttrDate(), 2-46
GetltemAttrEvent(), 2-46
getltemAttributes(), 2-48
GetltemAttrInfo(), 2-48
Getltem AttrNumber(), 2-46
GetltemAttrText(), 2-46
getltemTypes(), 2-45
GetltemUserKey(), 2-23
GetMaxNestedRaise(), 5-39

GetMessageHandle(), 6-11
getName
WEF_AGENT_T, 5-3
WF_PARAMETER_T, 5-5
WFAttribute, 2-83
getNotificationAttributes(), 4-45
getNotifications(), 4-45
getOperation(), 5-63
getOutXslFile(), 5-64
getParameterList, 5-13
GetParamListFromString(), 5-39
getPasswordKey(), 5-64
getPasswordModule(), 5-64
getPort(), 5-63
getPortType(), 5-63
getPriority, 5-12
getProcessStatus(), 2-65
getQueueNavigation(), 5-41
getReceiveDate, 5-12
GetRelationships(), 3-39
GetRoleDisplayName(), 3-8
GetRoleDisplayName2(), 3-8
GetRolelnfo(), 3-4
GetRolelnfo2(), 3-5
GetRoleName(), 3-8
GetRoleUsers(), 3-3
getSendDate, 5-12
getService(), 5-63
GetShortBody(), 4-43
GetShortText(), 4-38
GetSubject(), 4-41
getSystem, 5-4
GetText(), 4-37
getToAgent, 5-14
getType(), 2-83
getUsername(), 5-64
GetUserName(), 3-7
GetUserRoles(), 3-3
getValue
WF_PARAMETER_T, 5-5
WFAttribute, 2-83
GetValueForParameter, 5-19
GetValueForParameter(), 5-38
GetValueForParameterPos(), 5-38
getValueType(), 2-84
getWsdlLocation(), 5-63

Index-3



H

HandleError(), 2-60

forwarding, 4-4
identifying the responder, 4-28
requesting more information, 4-5

timed out, 4-6
I transferring, 4-5
Notifications(), 2-97
Notification System, 4-2
Notification Utility API, 4-49
Notification Web page, 1-4
NtfSignRequirementsMet(), 4-30

InboundQueue function, 6-12
Initialize, 5-11
Instance_Default_Rule(), 5-53
IsMLSEnabled(), 3-22
IsMonitorAdministrator(), 2-111
IsPerformer(), 3-6 ()

Items(), 2-95

ItemStatus(), 2-64

Item type attributes, 2-10
arrays, 2-10

onBusinessEvent(), 5-58

On Revisit, 2-9

OpenNotificationsExist(), 4-32

Oracle Advanced Queues integration, 6-1
J Oracle Applications Manager, 1-4

Oracle Java Message Service, 5-21

Oracle Workflow Builder, 1-2

Oracle Workflow Manager, 1-4

Oracle Workflow views, 2-111

JMS, 5-21 OutboundQueue function, 6-12

Java APIs, 2-4
Java interface, 2-4
Java Message Service, 5-21

L P

LaunchProcess(), 2-27
LDAP APIs, 3-22
Listen(), 5-33

Parameter datatype, 5-4
Parameter list datatype, 5-6
Parameters(), 5-65

load ActivityAttributes(), 2-77 Payload

loadItemAttributes(), 2-77 for Advanced Queues messages, 6-3

Log(), 5-44 PL/SQL, 1-3

Loops, 2-8 postInvokeService(), 5-62
Post-notification functions, 2-11

M prelnvokeService(), 5-59

Message API, 4-52 Processes

Monitoring work items, 1-4 loops, 2-8
ProcessInboundQueue(), 6-10

N Process rollback, 2-60

Propagate_Role(), 3-30
Propagate_User(), 3-25
PropagateUserRole(), 3-36
Purge

Workflow Purge APIs, 2-93
PurgeEvent(), 6-9
PurgeltemType(), 6-10
Purge Obsolete Workflow Runtime Data
concurrent program, 2-103

NewAgent(), 5-31
Notification activities

coupling with custom functions, 2-11
Notification APIs, 4-1, 4-16
Notification Document Type Definition, 4-7
Notification functions, 2-11
Notification Mailer Utility API, 4-48
Notifications

Index-4



Q

QUESTION mode, 2-13

R

Raise(), 5-25

RAISE(), 2-88

Raise3(), 5-29

Receive()
WF_AGENT_GROUPS_PKG, 5-79
WEF_AGENTS_PKG, 5-78
WF_EVENT_FUNCTIONS_PKG, 5-70
WF_EVENT_GROUPS_PKG, 5-76
WF_EVENT_SUBSCRIPTIONS_PKG, 5-81
WEF_EVENTS_PKG, 5-75
WE_SYSTEMS_PKG, 5-77

Receive date
for event messages, 5-33

RemoveUsersFromAdHocRole, 3-16

Replication APIs
Business Event System, 5-72

resetNavigationParams(), 5-40

Reset process, 2-60

Respond(), 4-4, 4-28

Responder, 4-28

Responder(), 4-30

RESPOND mode, 2-13

Responses
processing, 4-4

ResumeProcess(), 2-31

Role hierarchies
APIs, 3-37

Rollback of a process, 2-60

S

Savepoints, 2-3
Schedule_changes(), 3-24
Send(), 4-2, 4-19, 5-30
WF_MAIL, 4-53
Send date
for event messages, 5-31
SendGroup(), 4-2, 4-23
SendNotification(), 5-51
SetAdHocRoleAttr(), 3-20
SetAdHocRoleExpiration(), 3-18

SetAdHocRoleStatus(), 3-17
SetAdHocUserAttr(), 3-19
SetAdHocUserExpiration(), 3-18
SetAdHocUserStatus(), 3-17
SetAttrDate(), 4-34
SetAttrNumber(), 4-34
SetAttrText(), 4-34
setCorrelationlD, 5-15
SetDispatchMode(), 5-36
SetErrorInfo(), 5-35
setErrorMessage, 5-18
setErrorStack, 5-18
setErrorSubscription, 5-17
setEventData, 5-16
setEventKey, 5-16
setEventName, 5-16
setFromAgent, 5-17
setInputParts(), 5-60
SetltemAttrDate
WF_ENGINE_BULK, 2-75
SetltemAttrDate()
WEF_ENGINE, 2-41
SetltemAttrDateArray(), 2-44
SetltemAttrEvent(), 2-41
setltem AttrFormattedDate(), 2-43
Setltem AttrNumber()
WEF_ENGINE, 2-41
WF_ENGINE_BULK, 2-74
SetltemAttrNumberArray(), 2-44
SetltemAttrText()
WEF_ENGINE, 2-41
WF_ENGINE_BULK, 2-73
SetltemAttrTextArray(), 2-44
setltem AttrValue(), 2-79
SetltemOwner(), 2-24
SetltemParent(), 2-62
SetltemUserKey(), 2-22
SetMaxNestedRaise(), 5-39
SetMsgAttr(), 6-14
SetMsgResult(), 6-15
setName
WF_AGENT_T, 5-4
WF_PARAMETER_T, 5-5
setNavigationParams(), 5-40
setParameterList, 5-16
SetParametersIntoParameterList(), 5-49
setPriority, 5-14

Index-5



setReceiveDate, 5-15
setSendDate, 5-15
setSystem, 5-4
setToAgent, 5-17
setValue, 5-6
StartForkProcess(), 2-35
StartProcess()

WEF_ENGINE, 2-25

WF_ENGINE_BULK, 2-68
SubscriptionParameters(), 5-66
SubstituteSpecialChars(), 2-92
Success(), 5-47
SummaryRule()

WEF_XML, 4-51
SuspendProcess(), 2-29
Synch_all(), 3-23
Synch_changes(), 3-22
Synchronization

APIs, 3-24

with Oracle Internet Directory, 3-22

with Workflow local tables, 3-24
Synchronous processes, 2-14
SYS.AQ$_JMS_TEXT_MESSAGE, 5-21

T

Test(), 5-32
TestContext(), 4-43
TIMEOUT mode, 2-14
TOKEN(), 2-87
toStringy(), 2-84

Total(), 2-98
TotalPERM(), 2-100
Transfer(), 4-5, 4-25
TRANSFER mode, 2-13
TRANSLATE(), 2-92

U

Updatelnfo(), 4-5
Updatelnfo2(), 4-5
UpdatelnfoGuest(), 4-5
Upgrading workflow definitions, 2-10
UserActive(), 3-7
User-defined datatypes

for the Business Event System, 5-2

Index-6

\'

value(), 2-83
Version, 2-9
Views
Oracle Workflow, 2-111
VoteCount(), 4-31
Voting activities
processing, 4-6

w

Warning(), 5-46
WebServicelnvokerSubscription class, 5-57
WF_AGENT_GROUPS_PKG.Generate, 5-79
WF_AGENT_GROUPS_PKG.Receive, 5-79
WEF_AGENT_GROUPS Document Type
Definition, 5-79
WF_AGENT_T, 5-3
WEF_AGENTS_PKG.Generate, 5-78
WEF_AGENTS_PKG.Receive, 5-78
WE_AGENTS Document Type Definition, 5-77
WEF_ENGINE_BULK.CreateProcess, 2-66
WEF_ENGINE_BULK FastForward, 2-70
WEF_ENGINE_BULK.SetltemAttrDate, 2-75
WF_ENGINE_BULK.SetltemAttrNumber, 2-74
WF_ENGINE_BULK.SetltemAttrText, 2-73
WF_ENGINE_BULK .StartProcess, 2-68
WEF_EVENT_FUNCTIONS_PKG.Generate(), 5-69
WF_EVENT_FUNCTIONS_PKG.Receive(), 5-70
WF_EVENT_GROUPS_PKG.Generate, 5-76
WF_EVENT_GROUPS_PKG.Receive, 5-76
WF_EVENT_GROUPS Document Type
Definition, 5-75
WF_EVENT_OJMSTEXT_QH

attribute mapping, 5-21
WEF_EVENT_SUBSCRIPTIONS_PKG.Generate,
5-81
WF_EVENT_SUBSCRIPTIONS_PKG.Receive, 5-
81
WEF_EVENT_SUBSCRIPTIONS Document Type
Definition, 5-80
WF_EVENT_T, 5-6

mapping attributes to

SYS.AQ$_JMS_TEXT_MESSAGE, 5-21
WEF_EVENTS_PKG.Generate, 5-74
WEF_EVENTS_PKG.Receive, 5-75



WF_EVENTS Document Type Definition, 5-74
WE_ITEM_ACTIVITY_STATUSES_V, 2-111
WE_ITEMS_V, 2-115
WF_LDAP, 3-22
WEF_LOCAL_SYNCH, 3-24
WEF_MAIL.Send, 4-53
WE_NOTIFICATION_ATTR_RESP_V, 2-113
WF_PARAMETER_LIST_T, 5-6
WF_PARAMETER_T, 5-4
wf_payload_t, 6-3
WEF_PURGE, 2-93
WEF_ROLE_HIERARCHY, 3-37
WF_RUNNABLE_PROCESSES_V, 2-114
WE_SYSTEMS_PKG.Generate, 5-77
WEF_SYSTEMS_PKG.Receive, 5-77
WEF_SYSTEMS Document Type Definition, 5-76
WEF_XML.Error_Rule, 4-52
WEF_XML.Generate, 4-51
WF_XML.SummaryRule, 4-51
WEFAttribute(), 2-82
WFAttribute class, 2-80, 2-81
WFFunctionAPI class, 2-76
Wittypes.sql, 5-2
WorkCount(), 4-44
Workflow_Protocol(), 5-47
Workflow Business Event System Cleanup AP,
5-81
Workflow Core APIs, 2-85
Workflow definitions

loading, 1-3
Workflow Definitions Loader, 1-3
Workflow Designer

Oracle Workflow Builder, 1-2
Workflow Directory Service APIs, 3-1
Workflow Engine, 1-3

calling after activity completion, 2-7

calling for activity initiation, 2-2

CANCEL mode, 2-9

core APIs, 2-85

deferred activities, 2-7

directory services, 3-1

error processing, 2-8

Java APlIs, 2-4, 2-17

looping, 2-8

master/detail processes, 2-62

PL/SQL APIs, 2-17

PL/SQL bulk APIs, 2-65

RUN mode, 2-9

threshold cost, 2-7
Workflow Engine APIs, 2-1
Workflow LDAP APIs, 3-22
Workflow Local Synchronization APls, 3-24
Workflow Monitor APIs, 2-105
Workflow Preferences API, 3-40
Workflow Purge APIs, 2-93
Workflow Queue APIs, 6-1
Workflow Resource Generator, 2-89

concurrent program, 2-89
Workflow Role Hierarchy APIs, 3-37
Workflow Status Monitor APIs, 2-109
Workflow Views, 2-111
WriteMsg(), 6-13
WriteToClob(), 4-46

X

XML message APIs, 4-50

Index-7






	Oracle Workflow API Reference
	Preface
	Overview of Oracle Workflow
	Overview of Oracle Workflow
	Major Features and Definitions
	Workflow Processes

	Oracle Workflow Procedures and Functions

	Workflow Engine APIs
	Overview of the Workflow Engine
	Oracle Workflow Java Interface
	Additional Workflow Engine Features

	Workflow Engine APIs
	CreateProcess
	SetItemUserKey
	GetItemUserKey
	GetActivityLabel
	SetItemOwner
	StartProcess
	LaunchProcess
	SuspendProcess
	ResumeProcess
	AbortProcess
	CreateForkProcess
	StartForkProcess
	Background
	AddItemAttribute
	AddItemAttributeArray
	SetItemAttribute
	setItemAttrFormattedDate
	SetItemAttributeArray
	getItemTypes
	GetItemAttribute
	GetItemAttrClob
	getItemAttributes
	GetItemAttrInfo
	GetActivityAttrInfo
	GetActivityAttribute
	GetActivityAttrClob
	getActivityAttributes
	BeginActivity
	CompleteActivity
	CompleteActivityInternalName
	AssignActivity
	Event
	HandleError
	SetItemParent
	ItemStatus
	getProcessStatus

	Workflow Engine Bulk APIs
	WF_ENGINE_BULK.CreateProcess
	WF_ENGINE_BULK.StartProcess
	WF_ENGINE_BULK.FastForward
	WF_ENGINE_BULK.SetItemAttrText
	WF_ENGINE_BULK.SetItemAttrNumber
	WF_ENGINE_BULK.SetItemAttrDate

	Workflow Function APIs
	loadItemAttributes
	loadActivityAttributes
	getActivityAttr
	getItemAttr
	setItemAttrValue
	execute

	Workflow Attribute APIs
	WFAttribute
	value
	getName
	getValue
	getType
	getFormat
	getValueType
	toString
	compareTo

	Workflow Core APIs
	CLEAR
	GET_ERROR
	TOKEN
	RAISE
	CONTEXT
	TRANSLATE
	SubstituteSpecialChars

	Workflow Purge APIs
	Items
	Activities
	Notifications
	Total
	TotalPERM
	Directory
	Purge Obsolete Workflow Runtime Data Concurrent Program

	Workflow Monitor APIs
	GetAccessKey
	GetDiagramURL
	GetEnvelopeURL
	GetAdvancedEnvelopeURL

	Workflow Status Monitor APIs
	GetEncryptedAccessKey
	GetEncryptedAdminMode
	IsMonitorAdministrator

	Oracle Workflow Views
	WF_ITEM_ACTIVITY_STATUSES_V
	WF_NOTIFICATION_ATTR_RESP_V
	WF_RUNNABLE_PROCESSES_V
	WF_ITEMS_V


	Directory Service APIs
	Workflow Directory Service APIs
	GetRoleUsers
	GetUserRoles
	GetRoleInfo
	GetRoleInfo2
	IsPerformer
	UserActive
	GetUserName
	GetRoleName
	GetRoleDisplayName
	GetRoleDisplayName2
	CreateAdHocUser
	CreateAdHocRole
	CreateAdHocRole2
	AddUsersToAdHocRole
	AddUsersToAdHocRole2
	RemoveUsersFromAdHocRole
	SetAdHocUserStatus
	SetAdHocRoleStatus
	SetAdHocUserExpiration
	SetAdHocRoleExpiration
	SetAdHocUserAttr
	SetAdHocRoleAttr
	ChangeLocalUserName
	IsMLSEnabled

	Workflow LDAP APIs
	Synch_changes
	Synch_all
	Schedule_changes

	Workflow Local Synchronization APIs
	Propagate_User
	Propagate_Role
	PropagateUserRole

	Workflow Role Hierarchy APIs
	AddRelationship
	ExpireRelationship
	GetRelationships
	GetAllRelationships

	Workflow Preferences API
	get_pref


	Notification System APIs
	Overview of the Oracle Workflow Notification System 
	Notification Model
	Notification Document Type Definition

	Notification APIs
	Send
	Custom Callback Function

	SendGroup
	Forward
	Transfer
	Cancel
	CancelGroup
	Respond
	Responder
	NtfSignRequirementsMet
	VoteCount
	OpenNotificationsExist
	Close
	AddAttr
	SetAttribute
	GetAttrInfo
	GetInfo
	GetText
	GetShortText
	GetAttribute
	GetAttrDoc
	GetSubject
	GetBody
	GetShortBody
	TestContext
	AccessCheck
	WorkCount
	getNotifications
	getNotificationAttributes
	WriteToClob
	Denormalize_Notification

	Notification Mailer Utility API
	EncodeBLOB

	Notification Utility API
	GetCalendarDate

	XML Message APIs
	WF_XML.Generate
	WF_XML.SummaryRule
	WF_XML.Error_Rule

	Message API
	WF_MAIL.Send


	Business Event System APIs
	Overview of the Oracle Workflow Business Event System
	Business Event System Datatypes
	Agent Structure
	getName
	getSystem
	setName
	setSystem

	Parameter Structure
	getName
	getValue
	setName
	setValue

	Parameter List Structure
	Event Message Structure
	Initialize
	getPriority
	getSendDate
	getReceiveDate
	getCorrelationID
	getParameterList
	getEventName
	getEventKey
	getEventData
	getFromAgent
	getToAgent
	getErrorSubscription
	getErrorMessage
	getErrorStack
	setPriority
	setSendDate
	setReceiveDate
	setCorrelationID
	setParameterList
	setEventName
	setEventKey
	setEventData
	setFromAgent
	setToAgent
	setErrorSubscription
	setErrorMessage
	setErrorStack
	Content
	Address
	AddParameterToList
	GetValueForParameter

	Example for Using Abstract Datatypes
	Mapping Between WF_EVENT_T and SYS.AQ$_JMS_TEXT_MESSAGE

	Event APIs
	Raise
	Raise3
	Send
	NewAgent
	Test
	Enqueue
	Listen
	SetErrorInfo
	SetDispatchMode
	AddParameterToList
	AddParameterToListPos
	GetValueForParameter
	GetValueForParameterPos
	SetMaxNestedRaise
	GetMaxNestedRaise
	GetParamListFromString
	setNavigationParams
	resetNavigationParams
	getQueueNavigation

	Event Subscription Rule Function APIs
	Default_Rule
	Log
	Error
	Warning
	Success
	Workflow_Protocol
	Error_Rule
	SetParametersIntoParameterList
	Default_Rule2
	Default_Rule3
	SendNotification
	Instance_Default_Rule
	Default_Rule_Or
	Default_Generate
	WebServiceInvokerSubscription

	Event Function APIs
	Parameters
	SubscriptionParameters
	AddCorrelation
	Generate
	Receive

	Business Event System Replication APIs
	WF_EVENTS Document Type Definition
	WF_EVENTS_PKG.Generate
	WF_EVENTS_PKG.Receive
	WF_EVENT_GROUPS Document Type Definition
	WF_EVENT_GROUPS_PKG.Generate
	WF_EVENT_GROUPS_PKG.Receive
	WF_SYSTEMS Document Type Definition
	WF_SYSTEMS_PKG.Generate
	WF_SYSTEMS_PKG.Receive
	WF_AGENTS Document Type Definition
	WF_AGENTS_PKG.Generate
	WF_AGENTS_PKG.Receive
	WF_AGENT_GROUPS Document Type Definition
	WF_AGENT_GROUPS_PKG.Generate
	WF_AGENT_GROUPS_PKG.Receive
	WF_EVENT_SUBSCRIPTIONS Document Type Definition
	WF_EVENT_SUBSCRIPTIONS_PKG.Generate
	WF_EVENT_SUBSCRIPTIONS_PKG.Receive

	Business Event System Cleanup API
	Cleanup_Subscribers


	Workflow Queue APIs
	Workflow Queue APIs
	EnqueueInbound
	DequeueOutbound
	DequeueEventDetail
	PurgeEvent
	PurgeItemType
	ProcessInboundQueue
	GetMessageHandle
	DequeueException
	DeferredQueue
	InboundQueue
	OutboundQueue
	ClearMsgStack
	CreateMsg
	WriteMsg
	SetMsgAttr
	SetMsgResult


	Glossary
	Index


