Oracle Endeca Commerce

Deployment Template Usage Guide
Version 11.0 *» January 2014

ORACLE
COMMERCE

Contents

(= - o = 7
ADOUL TNIS QUIAE. ...ttt oo a et e oo e bttt e e oo a bt e e e e a b b e e e e e e bbe e e e s e anbe e e e e e annbeeeeeanreeas 7
WhO Should USE thiS QUIAE.........e ettt ettt e e e e e e e ettt et e e e e e e e e e e e e nnbabrneeeaaaaaaans 7
Conventions USEd IN thiS QUIAE.........c.uuiiiiiiiiiee e e e e e e e e e e e e e e s et e b aeaeeeeaaaeeesaassnsasaneeeaaaaeeeeasannnnnn 7
(7] a1 ¢= Tox 119 To T] r= o7 [T TU] o] o o /U 8
Chapter 1: Deploying and initializing an EAC Application..........ccccccuuunnnnnee.e. 9
(DT) o) T a1 A o = Yo U 1= 1 (= 3SR 9
PYoTo 01 e [=Y o] (o) Vil aTo I =Y N O2F=1 o] o] o= | o] g - TSRS 9
Deploying and initializing an EAC @ppliCatioN............eeiiiiiiii i e e e e e e s rre e e e e e e e e s e e s aaaeees 9
Directories created by the Deployment Template.........oo e 11
Configuring automated/file-based deplOoYMENt...........cooiiiiii e 12
Modifying the template files to support custom appliCations............cooo i 13
[O10E o] g TF=ToT o[o= o) g I [=T=To] 4 o] (o] =TSSR 13
Configuring an automated/file-based deployment for a custom application.............ccccvciiiiiiii i 15
Communicating with SSL-enabled Oracle Endeca COMPONENTS...........ccoiiiiiiiiiiiiiiicce e 16
Displaying the Deployment Template VEISION..........cooi e e 19
Chapter 2: Configuring an EAC Application........ccccevemeemcciciiiiniirceeeeeeecceennnns 21
About configuring an EAC @ppliCatiON........ ...t e e e e e e e e e e e e e e e e e eaee s
About the application configuration filES............oo.uiiiiiiii e e e a e e
About the schema for ApPCONTIG.XML........ceeeiiiee e e e e e e e e e s e e e e e e e e e s sannaraaareeaaaaeeas
Configuring the application configuration fileS.......... .o e
(€1 lo) o T=TIE=T o] o] Tez=Y o] g =TT 11 oo =3RS S
HOSES e

Lock Manager
Fault tolerance and polling interval properties
(07 NS 7= PR SRR

e T[S T PO PPP PSR 30
D T 1o b€ TP PPRRPPT 31
190 =T o] 1= S EPRRR PP 32
(oo JRET=T Y SRR 37
REPOIM GENEIALOIS.t e e e e e e e ettt e e e e e eeeeeeeeeeeasabeseeeeeeaeeessesaansssrennees 38
1O TP S R PP PP PRSP PRRPY 38
WOTKDENCN IMBNAGET ... ettt bt e oot e e e e e b et e e e e b b et e e e e ab e e e e e e e nnbee e e e e anbeeeeeennnees 39
CoNfIQUIAtion MANAGET........coiiiiiiiie ettt et e e st e e e ettt e e s asbeeeesansteeeeeansbaeaesannsteeeeeannsenaeeennseesd 40
Configuring the BeanShell SCIIPIS.....cc.uuiiiiiiiiiii et e e e e e e e e e e e e e aaeeeessnansnbraaeeeraaaeeesennasd 42
(@] a1iTo 0T r= o] T o V7= 5 4 [T SRS A4
Chapter 3: Replacing the Default Forge Pipeline...........coeeeiiiiiieeccccereeeenee, 47
About the SaMPIE PIPEIINES. et e e e e e e e er e e e e e e e e s ee e nantneeeeeeaeeeeeeaaannnnrnreeeeees? A7
SAMPIE PIPEIINE OVEIVIEW.ueeeeeeiiee ettt e e e e e e e ettt e et e eeeeeeeeesabsbaeeeeeeaaeeeessessnsbsrnnneaeaaeeeeesd A7
SPECITYING @ PIPEIINE ..eeeeii ettt e e ettt e e e ettt et e e e a et e e e e e anteeeeeesnnseeeesannneeeeeannnneeesannnneeesd A7
CreatiNg @ NEW PrOJECL.o ittt ettt e e ettt e e e s b bttt e e s s bbbt e e e saas e e e e sanbne e e e e annbneeeesannnneeesd A8
Modifying @n EXIStING PrOJECT........uiiiiiiiiiie ettt e e ettt e e e sttt e e e stteeeeeeaateeeeessnnteeeeeaansaeeaesaseeeeeeannen 50
Configuring @ rECONA SPECITIEN.........eiiiiiiiiiii ettt e ettt e ettt e e e e bttt e e e aneeeeeesansaeeeeeanneeeeesannnneeenan 51
el o T {F= o O UPPPUPPOPPPPPR 52
[aTo UL (= Toto] o = To F=T o] (=] £ PSSP PP PP PP PRPPPPN 52
(BT g pTeY g o] g J=To F= o) L= T PP O O PP PP PPPPPPPP 53
T To =Y = To £= o) (= = SRR 53
(O 10] 1 o8| Y =Toto] o = To b= o) (=1 = TR SUP PSSR 53
T =T 5] o] TR =Y V=T USSR 54
(@70 10T 4o T =T {0 7SSOSR 54
Chapter 4: Modifying Index Configuration for an Application 57
Overview of the Index Configuration Command-ling ULility ... 57

About index configuration OWNEISNIDc..uuiiiiiiiiie e e e e e e e e e e e e e e e e e e s s et b b aeeeeaaaaeeas 58

About the schema for the index configuration fileooo e 59
Schema for an Endeca property, derived property, or diMenSION.eeiiiiiiiii i 59
Schema fOr PreCEAENCE TUIES........ooiiiii et e e e e e e e e e e e e e e e e e se et reaeeeeeaeeesseaannsenneesd 64
Schema for global index CoNfiQUIratioN.............oouiiii e 66

Getting the index configuration for an appliCationcooi i 67

Getting the merged index configuration for an applicationooooiiiiiiiiiiiii e 69

Setting the index configuration for an appliCationcooii i 71

Deleting the index configuration associated With @an OWNEr............c.uiiiiii e 72

An example of changing multi-select 0N @ diMENSION.............eiiiiiiiiiiiiiieee e 73

An example of changing a product.brand.name property to a dimension............coccueeii i 74

An example of setting dimension diSPIAY OFAEN.........oouuiiiii i e 75

Chapter 5: Managing Data Operations.............ccccmmmrmmmmmencssnsnns s 77

Running a baseline update with test data ... 77

Running a baseline update with production data ... 78

Running a partial update with production dataceeiiiiiii e s 79

RUNNING CAS CrAWIS ...ttt ettt ettt e e e o b b et e e e e aa b et e e e e s b be e e e e aanbe e e e e e aabeeeeeesanbneeeesannnneeessnnd 80

Chapter 6: Script Reference......... e 81

Analyzing Deployment SCHPE EITOIS.o ettt e aaannnnsnneeeaaaaeesd 81

Deployment Template SCrPt FEfErENCE. ... e e e e e e e e e e aee s 81

(VIS o] a1 g T = Tel] o] £ TSP OO PSPROPPRPP 83

[So] o [o F= 7= To o F= L c= o] oo =TS] o o U 83
Dgraph baseline update SCript USING FOIgE.......ccoiiiiiiiiii s eeeerenerenrananed 84
Dgraph partial update SCript USING FOIge.........oiiiiiiiii e e 86
Dgraph baseline update script using Forge and a CAS full crawl SCript..........ccoiiiiiiiiiiii e 88
Dgraph partial update script using Forge and a CAS incremental crawl script...........cccccovieeieieie i, 90
Multiple CAS crawls and FOrge UPAates.........cuuuiiiiiiiiiiie et e e e s st e e e e sneeeeeeeane 91

CAS-DaSEd data PrOCESSING. .. .ceeiutiieie ittt ettt et e e e s b bt e e s st et e e e e aab b et e e e saabe e et e e aabbe et e e snbnneeesannnneeeeas 91
Dgraph baseline update SCript USING CAS.... ..o e e e e e e e e e s rr e e e e aaaeeeaaas 91
Dgraph partial update SCript USING CAS e e et e e e e e nbee e e e e nneeas 93
CAS crawl scripts for Record STOre OULPUL...........oooiiiiiiccr e 94
CAS crawl scripts for record file OUEPUL..........uuiiiiiiiie e e e e e e e s e e s nr e aee s 95

(=T oTo] o Qe =T 0 T=T = 1T o 1 P UPPPPROPPRPP 97

Appendix A: EAC Development ToolKit..........cceeiiimmimcciiiirrececce e 101

EAC Development Toolkit distribution and package contents.............oooeiiii e 101

EAC Development TOOIKIT USAGE.......c.uuiiiiiiiiiiee e ciieiee ettt e ettt e e ettt e e e sttt e e e e astaeeeessntteeeeesasteeeeesanbeeeaeeanssaeaaeanns 102

Appendix B: Application Configuration File.............ccveeeiiiiimiicciiiinree, 103

SPIING fTAMEWOIK. ...ttt e e e et e e e e et e e e e e e s s s st e s eeeeeeeaaaeeesaaassstasaeeeeaaaeessaaannnssbannneeeaaaeaens 103

DAY | =1 =T o - S 103
APPHICAtION BIEMENTS.ottt e e e e e e e e e e e e e aaaeaeeeeeeeeearaerarrrra—a———— 103
(o] £ T ST P RSP PRPR 104
(0] 4] eToTT=T o] £ SRR 104
L] PSSR 108
Customization/extension within the tooIKit'S SChemMa...........cccuiiiiiiiiiii e 109
Customization/extension beyond the toolkit's SChema............cooiiiiiii e 110

Appendix C: BeanShell Scripting.......cccooiimiicccirrcccrrrreece e 111

NS Yo7] o1 T 0] 11T 0 4 1=T 01 =1 (o T o PR 111

BeanShell interpreter @NVIFONMENT.............oooiiiie et e e e e e e e e e e e e eaaabeeeees 111

About implementing 10giC iN BEANSNEIL...........ooi e e e 113

Appendix D: Command INVOCatioN...........ccoiiiiieeciiiimniiss s 115

Invoke @ Method 0N @n ODJECL.......... .ot e e e e e 115

Identify available MEthOAS......... ... ettt e e e e e e e e e et e e e e e e e e e e e e e e e nneneeeee 115

W] oTe L=\ CRE=1 o] o] [fox=1 i o] g o [=] 11011 o] P PP 117

REMOVE AN @PPIICALION. ettt s ettt e e s bttt e e s ab bt e e e e e ne et e e e e nnb et e e e e anreeae s 117

Display COMPONENT STALUS.......coii oottt e et e e e e e e e ettt et e e e e e e e e e e annnenbeeeeeaaaeeeeeaannnnnnees 117

iv Oracle Endeca Commerce

Copyright and disclaimer

Copyright © 2003, 2014, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific
supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs,
including any operating system, integrated software, any programs installed on the hardware, and/or
documentation, shall be subject to license terms and license restrictions applicable to the programs. No other
rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices.
UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim
all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and
its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services.

Vi

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Oracle customers have access to electronic support through My Oracle Support. For information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Oracle Endeca Commerce

Preface

Oracle Endeca Commerce is the most effective way for your customers to dynamically explore your storefront
and find relevant and desired items quickly. An industry-leading faceted search and Guided Navigation solution,
Oracle Endeca Commerce enables businesses to help guide and influence customers in each step of their
search experience. At the core of Oracle Endeca Commerce is the MDEX Engine™, a hybrid search-analytical
database specifically designed for high-performance exploration and discovery. The Endeca Content Acquisition
System provides a set of extensible mechanisms to bring both structured data and unstructured content into
the MDEX Engine from a variety of source systems. Endeca Assembler dynamically assembles content from
any resource and seamlessly combines it into results that can be rendered for display.

Oracle Endeca Experience Manager is a single, flexible solution that enables you to create, deliver, and manage
content-rich, cross-channel customer experiences. It also enables non-technical business users to deliver
targeted, user-centric online experiences in a scalable way — creating always-relevant customer interactions
that increase conversion rates and accelerate cross-channel sales. Non-technical users can determine the
conditions for displaying content in response to any search, category selection, or facet refinement.

About this guide

This guide describes how to configure, run, and customize the Deployment Template that is included with
Tools and Frameworks.

The Deployment Template is a utility that you run to create a new Endeca application with the complete directory
structure required for deployment, including Endeca Application Controller (EAC) control scripts, configuration
files, and batch files or shell scripts that wrap common script functionality.

Some scripts created by the Deployment Template are documented in the Assembler Application Developer's
Guide, rather than this guide, because the scripts are very closely associated with Assembler features. Similarly,
some scripts are documented in the Oracle Endeca Commerce Administrator's Guide because the scripts are
very closely associated with administrative tasks such as backing up or restoring site configuration.

Who should use this guide

This guide is for developers or administrators who create and maintain Oracle applications using the Deployment
Template.

Conventions used in this guide

This guide uses the following typographical conventions:

Code examples, inline references to code elements, file names, and user input are set in monospace font. In
the case of long lines of code, or when inline monospace text occurs at the end of a line, the following symbol
is used to show that the content continues on to the next line: -~

When copying and pasting such examples, ensure that any occurrences of the symbol and the corresponding
line break are deleted and any remaining space is closed up.

8 | Preface

Contacting Oracle Support

Oracle Support provides registered users with important information regarding Oracle Endeca software,
implementation questions, product and solution help, as well as overall news and updates.

You can contact Oracle Support through Oracle's Support portal, My Oracle Support at
https:.//support.oracle.com.

Oracle Endeca Commerce Deployment Template Usage Guide

https://support.oracle.com

Chapter 1
Deploying and initializing an EAC Application

This section describes how to deploy and initialize an EAC application using the Deployment Template.

Deployment prerequisites

You must have installed Tools and Frameworks on the machine running the EAC Central Server (part of the
Platform Services package) and set environment variables used by the Oracle Endeca software (including
ENDECA_ROQT).

About deploying EAC applications

The Deployment Template (deploy) script is available for both Windows and UNIX platforms. The prompts
for the deploy . sh script are exactly the same as the deploy . bat script.

In every deployment environment, one server serves as the primary control machine and hosts the EAC Central
Server, while all other servers act as agents to the primary server and host EAC Agent processes that receive
instructions from the Central Server.

Both the EAC Central Server and the EAC Agent run as applications inside the Endeca HTTP Service. (As
mentioned in the prequisites, Tools and Frameworks only needs to be installed on the machine that hosts the
EAC Central Server.)

4 Note: Mixed-platform deployments may require customization of the default Deployment Template
scripts and components. For example, paths are handled differently on Windows and on UNIX, so paths
and working directories are likely to require customization if a deployment includes servers running both
of these operating systems.

Deploying and initializing an EAC application

The deploy script in the bin directory creates, configures, and distributes the EAC application files into the
deployment directory structure.

To deploy an EAC application on Windows:

1. Start a command prompt (on Windows) or a shell (on UNIX).

10 Deploying and initializing an EAC Application | Deploying and initializing an EAC application

2. Navigateto<installation path>\ToolsAndFrameworks\<version>\deployment_template\bin
or the equivalent path on UNIX.

3. From the bin directory, run the deploy script.
For example, on Windows:

C:\Endeca\ToolsAndFrameworks\4.0.0\deployment_template\bin>deploy

4. If the path to the Platform Services installation is correct, press Enter.

(The template identifies the location and version of your Platform Services installation based on the ENDE—
CA_ROOT environment variable. If the information presented by the installer does not match the version or
location of the software you plan to use for the deployment, stop the installation, reset your ENDECA_ROOT
environment variable, and start again. Note that the installer may not be able to parse the Platform Services
version from the ENDECA_ROOT path if it is installed in a non-standard directory structure. It is not necessary
for the installer to parse the version number, so if you are certain that the ENDECA_ROOT path points to the
correct location, proceed with the installation.)
5. Specify a short name for the application.

The name should consist of lower- or uppercase letters, or digits between zero and nine.

6. Specify the full path into which your application should be deployed.

This directory must already exist. The deploy script creates a folder inside of the deployment directory
with the name of your application and the application directory structure.

For example, if your application name is MyApp, and you specify the deployment directory as C:\Ende-
ca\apps, the deploy script installs the template for your application into C:\Endeca\apps\MyApp.

7. Specify the port number of the EAC Central Server.
By default, the Central Server host is the machine on which you are running dep oy script and that all EAC
Agents are running on the same port.

8. Specify the port number of Oracle Endeca Workbench, or press Enter to accept the default of 8006.

9. Specify the port number of the Live Dgraph, or press Enter to accept the default of 15000.

10. Specify the port number of the Authoring Dgraph, or press Enter to accept the default of 15002.

11. Specify the port number of the Log Server, or press Enter to accept the default of 15010.
If the application directory already exists, the deploy script time stamps and archives the existing directory
to avoid accidental loss of data.

12. Specify the path to the Oracle Wallet configuration file, jps—-config.xml, or press Enter to accept the
default path of . ./ . ./server/workspace/credential_store/jps-config.xml.

13. Specify the path to the location where you can export your application content to, or press Enter to accept
the default path of ../../server/workspace/state/repository.

14. Navigate to the control directory of the newly deployed application.

This is located under your application directory. For example: C:\Endeca\apps\<app dir>\control.

15. From the control directory, run the initialize_services script.

e On Windows:
<app dir>\control\initialize _services.bat

+ On UNIX:
<app dir>/control/initialize_services.sh

The script initializes each server in the deployment environment with the directories and configuration
required to host your application. This script removes any existing provisioning associated with this application
in the EAC and then adds the hosts and components in your application configuration file to the EAC. Use

Oracle Endeca Commerce Deployment Template Usage Guide

Deploying and initializing an EAC Application | Deploying and initializing an EAC application 1"

caution when running this script. The script forces any components that are defined for this application to
stop, which may lead to service interruption if executed on a live environment.

Once deployed, an EAC application includes all of the scripts and configuration files required to create an
index and start an MDEX Engine.

If no script customization is required, the application is now ready for use. Go on to Managing Data Operations
on page 77.

However, if you need to configure an EAC application (the scripts and files) to reflect your environment and
data processing requirements, go on to Configuring an EAC Application on page 21 before Managing Data
Operations on page 77.

Directories created by the Deployment Template

The Deployment Template creates the following default directory structure. For each Endeca implementation
that is deployed with the Deployment Template, look into these directories to identify currently used configuration
options and scripts.

The Deployment Template is designed to support operations with the MDEX Engine in the production
environment. This means it must support a variety of possible configurations and their modifications. Therefore,
its AppConfig.xml file contains all the possible blocks and directories that you may need on your production
servers.

For example, the Deployment Template has separate directories to ensure that the MDEX Engine operations
are safely accessing only the information they need. Further, the default Deployment Template allows for
configuring multiple Dgraphs, so additional directories are created to facilitate this task.

Directory Contents

config/lib Subdirectories to store any custom scripts or code for your
Deployment Template project.

config/pipeline The Developer Studio pipeline file and XML configuration files.

config/report_templates Files required to generate an application's reports.

config/script The AppConTig.xml file and related Deployment Template scripts

responsible for defining the baseline update workflow and
communication of different Endeca components with the EAC Central

Server.
control Shell (UNIX) or batch (Windows) scripts responsible for running
different operations defined within AppConfig.xml.
data/incoming The premodified incoming data files that are ready acquisition by
the Endeca pipeline and should be processed.
data/processing Temporary data and configuration files created and stored during
the baseline update process.
data/forge_output The data and configuration files that are output from the Forge
process to the Dgidx process.
data/dgidx_output The index files that are output from the Dgidx process.
data/dgraphs The copy of the index files used by an instance of the MDEX Engine.
data/state Autogenerated dimensions files.

Oracle Endeca Commerce Deployment Template Usage Guide

12 Deploying and initializing an EAC Application | Configuring automated/file-based deployment

Directory Contents
data/complete_index_config Merged configuration (that is, Developer Studio files from con-
fig/pipeline, with any Workbench- maintained files specified
in the Deployment Template's ConfigManager component
overwritten by files downloaded from the Workbench instance).

data/web_studio/config Configuration files extracted from Workbench by the Deployment

Template's ConfFigManager component.

logs Various log files within subdirectories, such as Dgidx logs.

reports Generated reports.

Configuring automated/file-based deployment

The Deployment Template supports a file-based configuration option to simplify the deployment of an EAC
Application. This automation may be especially useful during development, when the same deployment process
must be repeated many times.

You can create a deployment configuration file that contains name/values that satisfy the deploy script
prompts, so you do not have to respond to the prompts manually. You specify the deployment configuration
file as an argument to the --instal I-config flag when you run the deploy script.

The deployment configuration file should specify the application name, deployment path, deployment type,
and all ports. The following example specifies the installation of a Dgraph deployment named Discover:

<install app-name="Discover">
<deployment-path>/localdisk/endeca/apps</deployment-path>
<base-module type="'dgraph"™ />
<options>
<option name="eac-port''>8888</option>
<option name="workbench-port'>8006</option>
<option name="dgraphlPort">15000</option>
<option name="authoringDgraphPort">15002</option>
<option name="logserverPort'>15010</option>
<option name="jps-config-location”>ToolsAndFrameworks/11.0.0/serv-
er/workspace/credential_store/jps-config.xml</option>
</options>
</install>

To configure automated/file-based deployment:

1. Start a text editor, create a new text file, and copy/paste the example above.

2. If necessary, modify the default port values for the EAC Central Server, Workbench, Live Dgraph, Authoring
Dgraph, and the Log Server to new values.

3. Save and close the file.

4. Run the deploy script and specify the --instal l-config flag and the location of the deployment
configuration file.

Oracle Endeca Commerce Deployment Template Usage Guide

Deploying and initializing an EAC Application | Modifying the template files to support custom applications 13

The following example specifies the deployment descriptor (deploy.xml) for a version of the Discover
Electronics reference application, then the —-instal I-config flag with an argument to the deployment
configuration file (pci-app-install-config.xml):

./deploy.sh —--app /localdisk/endeca/ToolsAndFrameworks/*/reference/discover-
data-pci/deploy.xml --install-config /localdisk/infrontSetupScripts/config/pci-
app-install-config.xml --no-prompt

When a configuration file is specified for the Deployment Template, the deployment attempts to retrieve and
validate required information from the document before proceeding. If any information is missing or invalid,
the Deployment Template prompts for that information, as described in previous sections. To truly automate
the install process, the ——no-prompt flag may be passed to the installer, instructing it to fail (with error
messages) if any information is missing and to bypass interactive verification of the Oracle Endeca version.

Modifying the template files to support custom applications

This section provides information about deploying custom applications.

Custom application descriptors

The Deployment Template deploys new applications based on application descriptor XML documents. The
documents describe the directory structure associated with an application as well as the files to distribute
during the deployment process.

By default, the Deployment Template ships with application descriptor files named base_descriptor.xml
located in <installation
path>\ToolsAndFrameworks\<version>\deployment_ template\app-templates.

This document describes the directory structure of the deployment as well as the copying that is done during
the deployment to distribute files into the new directories. Additionally, this document describes whether files
are associated with a Windows or UNIX deployment, and whether copied files should be updated to replace
tokens in the format @ @TOKEN_NAME@@ with text strings specified to the installer.

The following tokens are handled by the base descriptor:

* @@WORKBENCH_PORT@@ - Oracle Endeca Workbench port.

* @@DGRAPH_1_PORT @@ - Live Dgraph port.

* @@AUTHORING_DGRAPH_PORT @@ - Authoring Dgraph port.

* @@LOGSERVER_PORT@@ - Log Server port.

* @@JPSCONFIG_LOCATION@@ - Path to Oracle Wallet configuration file.

The following tokens are handled by the Deployment Template:

* @@EAC_PORT@@ - EAC Central Server port.

* @@HOST@@ - Hostname of the server on which the deploy script is invoked.

* @@PROJECT_DIR@@ - Absolute path of the target deployment directory.

* @@PROJECT_NAME@@ - Name of the application to deploy.

* @@ENDECA_ROOT@@ - Absolute path of the ENDECA_ROOT environment variable.
* @@SCRIPT_SUFFIX@@ - ".bat" for Windows, ".sh" for Linux installs.

In addition to these tokens, you can specify custom tokens to substitute in the files. Tokens are specified in
the application descriptor file, including the name of the token to substitute as well as the question with which
to prompt the user or the installer configuration option to parse to retrieve the value to substitute for the token.

Oracle Endeca Commerce Deployment Template Usage Guide

14 Deploying and initializing an EAC Application | Modifying the template files to support custom applications

The default application descriptors use this functionality to request the port number for Dgraphs, Log Servers
and Forge servers.

If a project deviates from the Deployment Template directory structure, it may find it useful to create a custom
application descriptor document, so that the default Deployment Template can continue to be used for application
deployment.

Custom deployment descriptors may also be used to define add-on modules on top of a base install. For
example, sample applications (such as the Sample Term Discovery and Clustering application) are shipped
with a custom deployment descriptor file, which describes the additional files and directories to install on top
of a base Dgraph deployment. Modules may be installed using the deploy batch or shell script, specifying the
—--app argument with the location of the application descriptor document. For example:

deploy.bat --app \
C:\Endeca\Solutions\sampleTermDiscovery-[VERSION]\data\deploy.xml

The installer prompts you to specify whether it should install the module as a standalone installation or if it
should be installed on top of the base Dgraph deployment. Multiple add-on modules may be specified to the
installer script, though only one of them may be a base install (that is, all but one of them should specify an
attribute of update= "true").

The following excerpt from the Dgraph deployment application descriptor identifies the document's elements
and attributes:

<r--

Deployment Template installer configuration file. This file defines the direc-
tory structure to create and the copies to perform to distribute files into the
new directory structure.

The update attribute of the root install element indicates whether this is a
core installation or an add-on module. When set to false or unspecified, the in-
stallation requires the removal of an existing target install directory (if
present). When update is set to true, the installer preserves any existing direc-
tories, adding directories as required and distributing files based on the speci-
fied copy pattern.

-——>
<app-descriptor update="false'" id="Dgraph">

<custom-tokens>
<I-- Template custom token:

<token name="MYTOKEN"">

<prompt-question>What is the value to substitute for token MYTO-
KEN?</prompt-question>

<install-config-option>myToken</install-config-option>
<default-value>My Value</default-value>

</token>

This will instruct the installer to look for the "myToken' option
in a specified install config file (if one is specified) or to
prompt the user with the specified question to submit a value. If a
value is entered/retrieved, the installer will substitute instances
of @@MYTOKEN@@ with the value.
S
</custom-tokens>

<dir-structure>
<!l-- Template directory:
<dir platform="unix" primary="true'></dir>

primary builds directory only on primary server installs

Oracle Endeca Commerce Deployment Template Usage Guide

Deploying and initializing an EAC Application | Modifying the template files to support custom applications

platform

-——>
</dir-structure>

builds directory only on specified platform.
Valid values: "win" and "unix"

<I—

Copy source directory is specified relative to this file"s directory
-—>

<copy-pattern src-root="._./data ">

<I-- Template copy pattern:
<copy clear-dest-dir="true" recursive=""true"
preserve-subdirs="true" filter-files="true"
primary="true" platform="win" Endeca-version="480">
<src-dir></src-dir>
<src-file></src-file>
<dest-dir></dest-dir>

</copy>

src-dir

src-file

dest-dir

clear-dest-dir

recursive

preserve-subdirs

filter-files

mode

platform

Endeca-version

-——>
</copy-pattern>
</app-descriptor>

Configuring an automated/file-based deployment for a custom application

source directory, relative to root of deployment
template package.

source Filename or pattern (using "*" wildcard
character) to copy from source dir

destination directory, relative to root of target
deployment directory.

removes all files in target dir before copying

copies Files matching pattern in subdirectories
of the specified source dir

copies files, preserving dir structure. Only
applicable to recursive copies

filters file contents and file names by replacing
tokens (format @@TOKEN@@) with specified
strings.

applies the specified permissions to the files
after the copy. Mode string should be 3 octal
digits with an optional leading zero to
indicate octal, e.g. 755, 0644. Not relevant
for Windows deployments.

applies copy to specified platform. Valid
values: "win" "unix"

applies copy to specified Oracle Endeca version Valid

values: 460" 470" "'480™" '"'500"

15

The configuration file discussed in previous sections may be used to specify the location of custom application
descriptor documents in place of the ——app command line argument to the installer.

Oracle Endeca Commerce Deployment Template Usage Guide

16

Deploying and initializing an EAC Application | Communicating with SSL-enabled Oracle Endeca components

The following example shows how to install the Sample Term Discovery and Clustering application on top of
the base Dgraph deployment.

<install app-name="MyApp" >
<deployment-path>C:\Endeca</deployment-path>
<base-module type="dgraph />
<additional-module type="custom'>
C:\Endeca\Solutions\sampleTermDiscovery-[VERSION]\data\deploy.xml
</additional-module>
<options>
<option name="eac-port''>8888</option>
<option name="dgraphlPort’'>15000</option>
<option name="logserverPort'>15010</option>
<option name="jps-config-location">ToolsAndFrameworks/11.0.0/serv-
er/workspace/credential_store/jps-config.xml</option>
</options>
</install>

Communicating with SSL-enabled Oracle Endeca components

The Deployment Template supports enabling SSL to communicate securely with the EAC Central Server and
with the Content Acquisition System version 3.0.x and later. (Secure communication between the Deployment
Template and CAS is not supported in CAS 2.2.x.)

For details about enabling SSL in the EAC Central Server or Agent, refer to the Oracle Endeca Security Guide.
For details about enabling SSL in CAS, refer to the CAS Developer's Guide.

To use the template with an SSL-enabled Central Server:

1. Update runcommand .bat/ .sh to load your SSL keystore and truststore.
&
" Note: To enable secure communication, you must have already followed the documentation to create
a Java keystore and truststore, containing your generated certificates. Upload a copy of these
certificates to the server on which your Deployment Template scripts will run. Edit the runcommand
file to specify the locations of these files.

* On Windows, edit runcommand . bat to add the following lines:

set JAVA ARGS=%JAVA ARGS% '"-Djava.util.logging.config.file=%~dp0..\con-
fig\script\logging.properties"

ifT exist [\path\to\truststore] (

set TRUSTSTORE=[\path\to\truststore]
) else (

echo WARNING: Cannot find truststore at [path\to\truststore]. Secure EAC
communication may fail.

)

if exist [\path\to\keystore] (

set KEYSTORE=[\path\to\keystore]
) else (

echo WARNING: Cannot find keystore at [\path\to\keystore]. Secure EAC com-
munication may fail.

)

Oracle Endeca Commerce Deployment Template Usage Guide

Deploying and initializing an EAC Application | Communicating with SSL-enabled Oracle Endeca components 17

set JAVA ARGS=%JAVA ARGS% '-Djavax.net.ssl.trustStore=%TRUSTSTORE%" -
Djavax.net.ssl._trustStoreType=JKS" "-Djavax.net.ssl._trustStorePassword=[trust-
store password]"

set JAVA_ARGS=%JAVA_ARGS% '‘-Djavax.net.ssl._keyStore=%KEYSTORE%" *'-
Djavax.net.ssl _keyStoreType=JKS"™ "-Djavax.net.ssl._keyStorePassword=[keystore
password]"

set CONTROLLER_ARGS=--app-config AppConfig.xml

Note that the final two new lines (beginning with "set JAVA_ARGS" are wrapped to fit the page size of
this document, but each of those two lines should have no line breaks. Also note that you need to fill in
the locations and passwords of your keystore and truststore files in the locations indicated by the
placeholders in italics.

* On UNIX, edit runcommand . sh as follows:

JAVA_ARGS="${JAVA_ARGS} -Djava.util._logging.config.file=${WORKING_DIR}/. ./con-
fig/script/logging.properties”

if [- "[/path/to/truststore]™] ; then
if [-T "[/path/to/keystore]™] ; then

TRUSTSTORE=[/path/to/truststore]

KEYSTORE=[/path/to/keystore]

JAVA ARGS=""${JAVA ARGS} -Djavax.net.ssl.trustStore=${TRUSTSTORE}"

JAVA ARGS=""${JAVA_ARGS} -Djavax.net.ssl.trustStoreType=JKS"

JAVA_ARGS="${JAVA_ARGS} -Djavax.net.ssl._trustStorePassword=[truststore
password]"

JAVA_ARGS="${JAVA_ARGS} -Djavax.net.ssl_keyStore=${KEYSTORE}"

JAVA_ARGS=""${JAVA_ARGS} -Djavax.net.ssl_keyStoreType=JKS"

JAVA_ARGS=""${JAVA_ARGS} -Djavax.net.ssl.keyStorePassword=[keystore pass-
word]"

else

echo "WARNING: Cannot find keystore at [/path/to/keystore]. Secure EAC

communication may fail."
Ti
else
echo "WARNING: Cannot find truststore at [/path/to/truststore]. Secure EAC

communication may fail."
Ti

CONTROLLER_ARGS=""--app-config AppConfig.xml"

2. In the app element of the AppConTig.xml document, update the sslEnabled attribute to true.
The sslEnabled attribute is a application-wide setting that applies to the EAC and to CAS (if used in your
application).

3. Specify the SSL-enabled port for the EAC.

The Endeca HTTP Service uses a separate port to communicate securely. For example, the default non-SSL
connector is on port 8888 and the default SSL connector listens on port 8443. The SSL port should be
specified in the eacPort attribute of the app element in the AppConfig.xml document.

Oracle Endeca Commerce Deployment Template Usage Guide

18

Deploying and initializing an EAC Application | Communicating with SSL-enabled Oracle Endeca components

4. If you are using CAS in your application, specify the SSL-enabled port for CAS.

The Endeca CAS Service uses a separate port to communicate securely. For example, the default non-SSL
port is 8500 and the default SSL port is 8505. The SSL port should be specified in the value attribute of
casPort.

5. Specify the non-SSL connector for hosts.

Internally, the EAC Central Server always initiates communication with Agents by communicating with the
non-SSL connector. When the Agent is SSL-enabled, the non-secure port redirects communication to the
secure port. In both cases, the appropriate configuration is to specify the non-secure port for provisioned
hosts.

6. Specify the non-SSL connector for Oracle Endeca Workbench.

In the ConfigManager component, the property webStudioPort should specify the non-secure connector
for the Endeca Tools Service, as communication with Oracle Endeca Workbench configuration store always
uses the unsecured channel.

The following excerpt from the AppConfig.xml document shows a sample configuration for an SSL-enabled
application

<I--
HHH R
EAC Application Definition
#

-——>

<app appName="test" eacHost=""localhost™ eacPort="38888"

dataPrefix=""test" sslEnabled="true" lockManager="LockManager' >

<working-dir>${ENDECA_PROJECT_DIR}</working-dir>
<log-dir>_/logs</log-dir>

</app>

<Ih--
HHHHH R R R R R R R R R R AR
Lock Manager - Used to set/remove/test flags and obtain/release locks
#

—-——>

<lock-manager id="LockManager™ releaseLocksOnFailure=""true" />

i

HHH R
Content Acquisition System Server

#

<custom-component 1d=""CAS" host-id=""CASHost" class="'com.Oracle Endeca.eac.toolk-
it.component.cas.ContentAcquisitionServerComponent'>
<properties>
<property name="'casHost" value="localhost" />
<property name="‘casPort" value="8505" />
</properties>
</custom-component>

-—>

Oracle Endeca Commerce Deployment Template Usage Guide

Deploying and initializing an EAC Application | Displaying the Deployment Template version 19

Displaying the Deployment Template version

You can print out the version number of the Deployment Template from the command line.

The runcommand script has a --version flag that prints the version number of the Deployment Template
and exits. The command actually prints the version number of the EAC Development Toolkit.

Displaying the version is important for troubleshooting purposes.

To display the version of the Deployment Template:

1. From a command prompt, navigate to the <app dir>\control directory on Windows (<app
dir>/control on UNIX).
2. Run the runcommand script with the --version flag, as in this Windows example:

C:\Endeca\Apps\control>runcommand --version

The command prints the version, as in this sample output:
Deployment Template: 4.0.0

Oracle Endeca Commerce Deployment Template Usage Guide

Chapter 2
Configuring an EAC Application

This section provides an overview of the elements defined in AppConfig.xml.

About configuring an EAC application

The standard processing and script operations of the Deployment Template are sufficient to support the
operational requirements of most projects. Some applications require customization to enable custom processing
steps, script behavior, or even directory structure changes.

Developers are encouraged to use the template as a starting point for customization. The scripts and modules
provided with the template incorporate Oracle's best practice recommendations for synchronization, archiving,
and update processing. The Deployment Template is intended to provide a set of standards on which
development should be founded, while allowing the flexibility to develop custom scripts to meet specific project
needs.

There are two ways to configure an EAC application:

» Configure AppConfig.xml files. The simplest form of configuration consists of editing the AppConfig.xml
configuration file and its associated configuration files to change the behavior of components or to add or
remove components.

This type of configuration includes the addition of removal of Dgraphs to the main cluster or even the
creation of additional clusters. In addition, this category includes adjustment of process arguments (for
example, adding a Java classpath for the Forge process in order to enable the use of a Java Manipulator),
custom properties and directories (for example, changing the number of index archives that are stored on
the indexing server).

» Change behavior of existing BeanShell scripts. Scripts are written in the Java scripting language BeanShell.
Scripts are defined in the AppConfig.xml document and are interpreted at runtime by the BeanShell
interpreter. This allows developers and system administrators to adjust the behavior of the baseline, partial,
and configuration update scripts by simply modifying the configuration document.

About the application configuration files

The application configuration file <app dir>/config/script/AppConfig.xml and its associated files
define the hosts, components, and scripts that make up an EAC application and the that orchestrate updates
by executing the defined components.

22 Configuring an EAC Application | About the schema for AppConfig.xml

The Deployment Template provides a single AppConfig.xml file that contains pointers to refer to other files
that define distinct parts of an application, separate scripts from component provisioning, and are used for
other purposes. The full set of application configuration files are as follows:

» AssemblerConfig.xml - Specifies the application server cluster that allows for quick updating of all
Assemblers.

» AuthoringDgraphCluster.xml - Specifies the Dgraphs used in the authoring environment and a script
that pushes configuration from Workbench to each Dgraph in the authoring cluster.

» Datalngest.xml - Specifies data processing scripts, including the baseline update script, partial update
script, and the components to perform data processing such as CAS or Forge and Dgidx.

» DgraphDefaults.xml - Specifies default values that are inherited by all Dgraph components. These
values include host IDs, data processing paths, and Dgraph flags.

« InitialSetup.xml - Specifies scripts to perform initial setup tasks, such as uploading initial configuration
to Workbench.

» LiveAppServerCluster.xml - Specifies your application server clusters, the servers within each cluster,
and the applications running on a given Assember.

» LiveDgraphCluster.xml - Specifies the Dgraphs used in the live environment and a script that pushes
configuration from Workbench to each Dgraph in the live cluster.

* ReportGeneration.xml - Specifies the hosts used for logging and report generations, and several
scripts that produce log files at different time intervals.

» UsageCollectionConfig.xml - Specifies the Dgraph clusters and application server clusters from
which usage is collected.

* WorkbenchConfig.xml - Specifies the Endeca Configuration Repository component, the Workbench
Manager component, and a script that promotes content from the authoring environment to the live
environment.

In addition to these files, any number of —-—app-config arguments may be specified to the Controller class
in the EAC development toolkit. All of the objects in the files will be read and processed and scripts can refer
to components, hosts, or other scripts defined in other files.

About the schema for AppConfig.xml

The eacToolkit.xsd schema determines the valid syntax within AppConfig.xml.

The eacToolkit.xsd file is located at the top level of the eacHandlers. jar archive file. If any of your
Deployment Template scripts fail due to XML syntax errors, you can look at the schema to learn which syntax
options for attributes and values are allowed. You may decide to modify the schema to allow you to specify
the options you need.

This archive file resides in the config/lib/java sub-directory of a deployed application. It also resides in
the data/eac-java/common/config/lib/java directory of the Deployment Template installation.

To explore this file, use the following command at a prompt from the directory containing the eacHandlers. jar
archive file:

* On UNIX: $SENDECA_ROOT/j2sdk/bin/jar xvf eacHandlers.jar eacToolkit.xsd
» On Windows: %ENDECA_ROOT%\j2sdk\bin\jar xvf eacHandlers.jar eacToolkit.xsd

Configuring the application configuration files

This topic guides you through the process of configuring an EAC application.

Oracle Endeca Commerce Deployment Template Usage Guide

Configuring an EAC Application | Configuring the application configuration files 23

. Edit the AppConfig.xml file in <app dir>/config/script to reflect the details of your environment.
Specifically, set the following values:

» Specify the eacHost and eacPort attributes of the app element with the correct host and port of the
EAC Central Server.

» Specify the host elements with the correct host name or names and EAC ports of all EAC Agents in
your environment.

» Specify the WorkbenchManager component with the correct host and port for Oracle Endeca Workbench.

. Ifnecessary, editthe InitialSetup.xml filein <app dir>/config/script. This file does not usually
require any modifications.

. Editthe Datalngest.xml filein <app dir>/config/scriptto reflect your data processing requirements.
Specifically, ensure that the baseline update script and partial update script are correct and that the CAS
or Forge and Dgidx components are correctly configured.

. Edit the DgraphDefaults.xml file in <app dir>/config/script with the default values that are
inherited by all Dgraph components in both the authoring cluster and live cluster.

. Edit the AuthoringDgraphCluster.xml file in <app dir>/config/script to ensure the authoring
Dgraph, the authoring cluster and post-startup script is correct for your environment.

. Edit the LiveDgraphCluster.xml file in <app dir>/config/script to ensure the live Dgraph, the
live cluster and post-startup script is correct for your environment.

. Editthe LiveAppServerCluster.xml filein <app dir>/config/scriptto ensure that the application
server clusters, the servers within each cluster, and the applications running on the servers are correct for
your environment.

a) For each server cluster, create an <app-server-cluster> element with an id attribute that
corresponds to the cluster name.
For example:
<app-server-cluster id="LiveAppServerCluster'>
</app-server-cluster>

b) For each server within the cluster, create an <app-server> element with the following attributes:
* id — The name of the server.

* hostName — The DNS name or IP address of the server hosting the Assembiler.
* port — The port on which the Assembler Web application is running.

For example:

<app-server id="LiveDiscover" hostName="assemblerHost.example.com"
port="8006"">
</app-server>

c) For each application running on a given Assembler, create a <web-app> element with the following
attributes:

* id — The name of the Assembler application.

» contextPath — The path to the application relative to the Assembler server.

» sslEnabled — Optionally, whether the application is SSL-enabled.
For example:
<web-app id="DiscoverWebApp" contextPath="/discover" sslEnabled=""true" />
<web-app id=""DiscoverAsService" contextPath="/discoverAsService" />

d) Add the <web-app> elements to their respective <app-server>s as referenced elements.

Oracle Endeca Commerce Deployment Template Usage Guide

24

Configuring an EAC Application | Configuring the application configuration files

For example:

<app-server id="LiveDiscover" hostName="assemblerHost" port="8006">
<web- app ref="Di scover WbApp" />
<web- app ref="Di scover AsService" />

</app-server>

e) Add the <app-server> elements to their respective <app-server-cluster>s as referenced elements.
For example:

<app-server-cluster id="LiveAppServerCluster'>
<app-server ref="LiveDi scover" />
</app-server-cluster>

8. Edit the AssemblerConfig.xml file in <app dir>/config/script to ensure that it references the
application server clusters that are correct for your environment.

9. Editthe WorkbenchConfig.xml filein <app dir>/config/script to ensure the Workbench Manager
and IFCR components are correct for your environment.

10. Edit the UsageCol lectionConfig.xml filein <app dir>/config/script to ensure that the Dgraph
clusters and application server clusters from which usage is collected are correct for your environment.

11. If necessary, edit the ReportGeneration.xml file in <app dir>/config/script. This file does not
usually require any modifications.

The following topics describe the components that you can define in the application configuration files.

Global application settings

This first section of the application configuration file defines global application-level configuration, including
the host and port of the EAC Central Server, the application name and whether or not SSL is to be used when
communicating with the EAC Central Server.

In addition, a default working and log directory are specified and a default lockManager is specified for use
by other elements defined in the document. All elements inherit these settings or override them.

<I—

HHH R R R R R R R R R R R R R R R R R R

Global variables

#
-——>
<app appName="MyApp" eacHost="myhostl.company.com' eacPort="8888"
dataPrefix=""MyApp" sslEnabled="false" lockManager="LockManager">
<working-dir>C:\Endeca\MyApp</working-dir>
<log-dir>./logs/baseline</log-dir>
</app>
Hosts

All servers in a deployment are enumerated in the host definition portion of the document.

Each host must be given a unique ID. The port specified for each host is the port on which the EAC Agent is
listening, which is the Endeca HTTP Service port on that server. This example shows a host defined to run
CAS and a host to run the MDEX Engine.

<i_

BHUHHH T

Servers/hosts
#

Oracle Endeca Commerce Deployment Template Usage Guide

Configuring an EAC Application | Configuring the application configuration files 25

-——>
<host i1d=""CASHost"™ hostName="‘myhostl.company.com™ port="'8888" />
<host id="MDEXHost" hostName="myhost2.company.com" port="8888" />

Lock Manager

The LockManager component is used to obtain and release locks and to set and remove flags using the EAC's
synchronization Web service.

A LockManager object is associated with the elements in the application to enable a centralized access point
to locks, allowing multiple objects to test for the existence of locks and flags. When a script or component
invocation fails, the Deployment Template attempts to release all locks acquired during the invocation for a
LockManager configured to release locks on failure. Multiple LockManager components may be configured,
if it is appropriate for some locks to be released on failure while others remain.
<I-
HHH R R R R R R R R R R R R R R R R R
Lock manager, used to set/remove/test flags and obtain/release
locks
#
-——>

<lock-manager id="LockManager" releaseLocksOnFailure="true" />

Fault tolerance and polling interval properties

Two sets of configurable properties set the behavior of the Deployment Template fault tolerance mechanism
and the frequency of status checks for components.

Fault tolerance property

You can now configure fault tolerance (i.e., retries) for any component (such as Forge, Dgidx, and Dgraph)
when invoked through the EAC. This functionality also extends to the CAS server when running a crawl with
the CAS component. The name of the fault-tolerance property is maxMissedStatusQueriesAl lowed.

When components are run, the Deployment Template instructs the EAC to start a component, then polls on
a regular interval to check if the component is running, stopped, or failed. If one of these status checks fails,
the Deployment Template assumes the component has failed and the script ends. The maxMissedStatus—
QueriesAl lowed property allows a configurable number of consecutive failures to be tolerated before the
script will end.

The following is an example of a Forge component configured to tolerate a maximum of ten consecutive failures:
<forge id="Forge'" host-id="ITLHost">
<properties>
<property name="numStateBackups'" value="10"/>
<property name="‘numLogBackups’™ value="10"/>

<property name="maxMissedStatusQueriesAllowed" value="10"/>
</properties>

</forge>

The default number of allowed consecutive failures is 5. Note that these status checks are consecutive, so
that every time a status query returns successfully, the counter is reset to zero.

Keep in mind that you can use different fault-tolerance settings for your components. For example, you could
set a value of 10 for the Forge component, a value of 8 for Dgidx, and a value of 6 for the Dgraph.

Oracle Endeca Commerce Deployment Template Usage Guide

26

Configuring an EAC Application | Configuring the application configuration files

Polling interval properties

As described in the previous section, the Deployment Template polls on a regular interval to check if a started
component is running, stopped, or failed. A set of four properties is available to configure each component for
how frequently the Deployment Template polls for status while the component is running. Because each
property has a default value, you can use only those properties that are important to you.

The polling properties are as follows:

* minWaitSeconds specifies the threshold (in seconds) when slow polling switches to standard (regular)
polling. The default is -1 (i.e., no threshold, so the standard polling interval is used from the start).

» slowPol linglIntervalMs specifies the interval (in milliseconds) that status queries are sent as long as
the minWaitSeconds time has not elapsed. The default slow polling interval is 60 seconds.

» standardPol linglIntervalMs (specified in milliseconds) is used after the minWai tSeconds time has
passed. If no minWai tSeconds setting is specified, the standardPol 1 ingIntervalMs setting is always
used. The default standard polling interval is 1 second.

+ maxWaitSeconds specifies the threshold (in seconds) when the Deployment Template gives up asking
for status and assumes that it has failed. The default is -1 (i.e., no threshold, so the Deployment Template
will keep trying indefinitely).

Here is an example configuration for a long-running Forge component that typically takes 8 hours to complete:

<forge id="Forge'" host-id="ITLHost">
<properties>
<property name="numStateBackups" value="10"/>
<property name="‘numLogBackups' value="10"/>

<property name="'standardPollinglntervalMs" value="60000"/>

<property name="'slowPollinglntervalMs"™ value="600000"/>

<property name="minWaitSeconds"™ value="28800"/>

<property name="maxMissedStatusQueriesAllowed" value="10"/>
</properties>

</forge>

The result of this configuration would be that for the first 8 hours (minWaitSeconds=28800), Forge’s status
would be checked every 10 minutes (slowPol 1ingIntervalMs=600000), after which time the status would
be checked every minute (standardPol 1 ingIntervalMs=60000). If a status check fails, a maximum of
10 consecutive retries will be attempted, based on the standardPol I inglntervalMs setting.

Keep in mind that these values can be set independently for each component.

Fault tolerance and polling interval for utilities
Fault tolerance and polling interval values can also be set for these utilities:

* copy
* shell
* archive
* rollback

You set the new values by adjusting the BeanShell script code that is used to construct and invoke the utility.
You adjust the code by using these setter methods from the EAC Toolkit's Uti l ity class:

« Utility.setMinWaitSeconds()

« Utility.setMaxWaitSeconds()

« Utility.setMaxMissedStatusQueriesAllowed()
« Utility.setPollinglntervalMs()

« Utility.setSlowPollinglIntervalMs()

Oracle Endeca Commerce Deployment Template Usage Guide

Configuring an EAC Application | Configuring the application configuration files 27

« Utility.setMaxMissedStatusQueriesAllowed()

If you do not use any of these methods, then the utility will use the default values listed in the two previous
sections.

For example, here is a default utility invocation in the CAS crawl scripts:

// create the target dir, if it doesn"t already exist

mkDirUtil = new CreateDirUtility(CAS.getAppName(),
CAS.getEacHost(), CAS.getEacPort(), CAS.isSslEnabled());

mkDirUtil.init(Forge.getHostld(), destDir, CAS.getWorkingDir());

mkDirUtil.runQ;

You would then add these methods before calling the run() method, so that the code would now look like

this:

// create the target dir, if it doesn"t already exist

mkDirUtil = new CreateDirUtility(CAS.getAppName(),
CAS.getEacHost(), CAS.getEacPort(), CAS.isSslEnabled());

mkDirUtil_init(Forge.getHostld(), destDir, CAS.getWorkingDir());

mkDirUtil _setMinWaitSeconds(30);

mkDirUtil _setMaxWaitSeconds(120);

mkDirUtil _.setMaxMissedStatusQueriesAllowed(10);

mkDirUtil .setPollinglntervalMs(5000);

mkDirUtil .setSlowPollinglntervalMs(30000);

mkDirUtil_.run();

Alternatively, if your utility was defined in your AppConfig.xml like this:

<copy 1d="MyCopy” src-host-id="1TLHost” dest-host-id="MDEXHost” recursive="true”>
<src>./path/to/files</src>
<dest>./path/to/target</dest>

</copy>

You would add the same type of lines as above, before calling the run() method; for example:

MyCopy . setMaxMissedStatusQueriesAl lowed(10) ;

MyCopy-run();

For more information on the Uti 1 ity methods, see the Javadocs for the EAC Toolkit package.

CAS Server

The Deployment Template provides support for running CAS crawls with the CAS Server Component. A CAS
Server component is implemented as a custom-component. You configure the component according to the
output type of a crawl. The sections below describe the common configuration properties, the output-type
configuration properties, and then provide examples for each output type including Record Store output,
MDEX-compatible output, and record file output.

]
7~ Note: The Deployment Template cannot create a new CAS crawl. You create a crawl using CAS and
run it using the Deployment Template. For details about creating a crawl, see the CAS Developer's
Guide.

The cust om conponent configuration properties

The custom-component configuration properties identify the CAS server in the Servers/hosts section of
AppConfig.xml. The properties are defined as follows:

* 1d - Assigns a unique ID to a specific CAS Server.

Oracle Endeca Commerce Deployment Template Usage Guide

28 Configuring an EAC Application | Configuring the application configuration files

» host-1id - Points back to the 1d attribute of the host global configuration element.

» class - Specifies the class that implements the ContentAcquisitionServerComponent. Specify
class=""com.endeca.eac.toolkit.component.cas.ContentAcquisitionServerComponent™.

Common configuration properties

The common configuration properties describe the host and port running CAS. The properties are defined as
follows:

» casHost - Host name of the server on which the Content Acquisition System is running.

» casPort - Port on which the Endeca CAS Service listens. If the application is running in SSL mode, the
casPort is the SSL port of the Endeca CAS Service The port number must match the com.ende-
ca.cas.port value that is used in the CAS Service configuration script. Or, if the Endeca CAS Service
is configured for SSL, then the port number must match com.endeca.cas.ssl.port value. The
configuration script is in <install path>\CAS\workspace\conf\jetty.xml.

» httpSocketTimeout is the maximum period of inactivity in milliseconds between two consecutive data
packets before http times out.

Configuration properties specific to MDEX-compatible output
The configuration properties for MDEX-compatible output are defined as follows:

» numPartialsBackups - Indicates the number of backups to keep for the cumulative partials directory
(cumulativePartialsDir). If this property is not configured, then no backups are retained.

» cumulativePartialsDir - Indicates the directory on the CAS host where partial MDEX output should
be accumulated. This allows partial updates to be reapplied in the event of a failure while applying partial
updates.

» numDval IdMappingsBackups - Indicates the number of backups to keep for the dimension value 1D
mappings file. This allows you to restore dimension value ID mappings if the CAS host fails. If this property
is not configured, then five backups are retained. If set to zero, then no backing up is performed.

« dval ldMappingsArchiveDir - Indicates the directory where the dimension value ID mappings files are
stored. If this property is not configured, then mappings are written to
-/data/dvalid_mappings_archive. However, to provide more secure backups, Oracle recommends
that you specify a network drive that is available to CAS but not the same as the CAS host.

Example

This example CAS Server component is configured for MDEX-compatible output:

<l--
BHHHHH T
Content Acquisition System Server
#
-——>
<custom-component 1d="CAS" host-id="I1TLHost" class="'com.endeca.eac.toolkit.com-
ponent.cas.ContentAcquisitionServerComponent">
<properties>
<property name="casHost" value="localhost" />
<property name="'casPort" value="8500" />
<property name="httpSocketTimeout" value="180000" />
<property name="numPartialsBackups'" value="5" />
<property name="numDval ldMappingsBackups' value="5" />
</properties>
<directories>
<directory name="cumulativePartialsDir">_/data/partials/cumulative_par-
tials</directory>
<directory name="dval ldMappingsArchiveDir'>./data/dvalid_mappings_archive</di-

Oracle Endeca Commerce Deployment Template Usage Guide

Configuring an EAC Application | Configuring the application configuration files 29

rectory>
</directories>
</custom-component>

Configuration properties specific to Record Store output

There are no additional configuration properties required for crawls that write to a Record Store instance. Only
the custom-component and common configuration properties are required.

Example

This example CAS Server component is configured for Record Store output:

<I--
HHH R R R R R R R R R R R R R R R R R
Content Acquisition System Server
#
<custom-component id="CAS" host-id=""CASHost" class="com.endeca.eac.toolkit.compo-
nent.cas.ContentAcquisitionServerComponent'>
<properties>

<property name="'casHost" value="localhost" />

<property name="'casPort" value="8500" />

<property name="httpSocketTimeout" value='180000" />

</properties>

</custom-component>
-——>

Configuration properties specific to record file output

The configuration properties are defined as follows:

» casCrawlFul I0utputDestDir - Indicates the destination directory to which the crawl output file will be
copied after a baseline crawl. Note that this is not the directory to which the CAS crawl writes its output;
that output directory is set as part of the crawl configuration.

» casCrawl IncrementalOutputDestDir - Indicates the destination directory to which the crawl output
file will be copied after an incremental crawl. As with the previous property, this is not the directory to which
the CAS crawl writes its output. If you run incremental crawls, the default settings assume that the output
format will be compressed binary files.

» casCrawlOutputDestHost - Indicates the ID of the host on which the destination directories (specified
by the previous two properties) reside.

Example

This example CAS Server component is configured for a record file output:

<l--
HHH R R R R R R R R R R R R R R R R R R
Content Acquisition System Server
#
-——>
<custom-component id=""CAS" host-id=""CASHost" class="com.endeca.soleng.eac.toolk-
it.component.ContentAcquisitionServerComponent'>
<properties>
<property name="'casHost" value="localhost" />
<property name="'casPort" value="8500" />
<property name="httpSocketTimeout" value="180000" />
<property name="‘casCrawlFul lOutputDestDir' value="_./data/com-
plete_cas crawl_output/full™ />
<property name="'casCrawlIncrementalOutputDestDir" value="_/data/com-
plete_cas crawl_output/incremental" />

Oracle Endeca Commerce Deployment Template Usage Guide

30 Configuring an EAC Application | Configuring the application configuration files

<property name="'casCrawlOutputDestHost" value=""CASHost" />
</properties>
</custom-component>

Forges

One or many Forge components are defined for baseline update processing and partial update processing
depending on the deployment type you choose.

If necessary, you can define a Forge cluster component to apply actions to an entire cluster of Forges, rather
than manually iterating over a number of Forges. You could use this feature to run several instances of Forge
in parallel to process large joins.

In addition, the object contains logic associated with executing Forges in parallel based on Forge groups, which
are described below. Multiple Forge clusters can be defined, with no restriction around which Forges belong
to each cluster or how many clusters a Forge belongs to.

A Forge cluster is configured with references to all Forges that belong to that cluster. In addition, the cluster
can be configured to copy data in parallel or serially. This setting applies to copies that are performed to retrieve
source data and configuration to each server that hosts a Forge component. By default, the template sets this
value to true.
<I--
HHH R R R R R R R R R R R R R R R R R R
Forge Cluster
#
-——>
<forge-cluster id="ForgeCluster"™ getDatalnParallel=""true">
<forge ref="ForgeServer" />
<forge ref="ForgeClientl" />
<forge ref="ForgeClient2" />
</forge-cluster>

In addition to standard Forge configuration settings and process arguments, the Deployment Template uses
several configurable properties and custom directories during processing:

» numLogBackups - Number of log directory backups to store.

* numStateBackups - Number of autogen state directory backups to store.

* numPartialsBackups - Number of cumulative partials directory backups to store. It is recommended
that you increase the default value of 5. The reason is that the files in the updates directory for the Dgraph
are automatically deleted after partials are applied to the Dgraph. The number you choose depends on
how often you run partial updates and how many copies you want to keep.

» incomingDataHost - Host to which source data files are extracted.

» incomingDataDir - Directory to which source data files are extracted.

« incomingDataFileName - Filename of the source data files that are extracted.

» configHost - Host from which configuration files and dimensions are retrieved for Forge to process.

» configDir - Directory from which configuration files and dimensions are retrieved for Forge to process.

« cumulativePartialsDir - Directory where partial updates are accumulated between baseline updates.

» wsTempDir - Temp Oracle Endeca Workbench directory to which post-Forge dimensions are copied to
be uploaded to the Workbench.

» skipTestingForFilesDuringCleanup - Used for directory-cleaning operations. If set to "true", will
skip the directory-contents test and instead proceed directly to cleaning the directory. The default behavior
is to test the directory contents and skip cleanup if the directory is not empty.

» The properties documented in the "Fault tolerance and polling interval properties" topic.

Oracle Endeca Commerce Deployment Template Usage Guide

Configuring an EAC Application | Configuring the application configuration files 31

This excerpt combines properties from both the baseline and partial update Forge to demonstrate the use of
all of these configuration settings.
<properties>

<property name="'forgeGroup" value="A" />

<property name=""incomingDataHost">ITLHost</property>

<property name=""incomingDataFileName'">project name-partO-*</property>

<property name="'configHost'>I1TLHost</property>

<property name="numStateBackups" value="10" />

<property name="numLogBackups' value="10" />

<property name="numPartialsBackups'" value="5" />

<property name="'skipTestingForFilesDuringCleanup”™ value="true"™ />
</properties>
<directories>

<directory name="incomingDataDir'>_/data/partials/incoming</directory>

<directory name="configDir'>./config/pipeline</directory>

<directory name="cumulativePartialsDir">

./data/partials/cumulative_partials

</directory>

<directory name="wsTempDir'>./data/web_studio/temp</directory>
</directories>

In addition to standard Forge configuration and process arguments, Forge processes add a custom property
used to define which Forge processes run in parallel with each other when they belong to a Forge cluster.

forgeGroup - Indicates the Forge's membership in a Forge group. When the run method on a Forge cluster
is executed, Forge processes within the same Forge group are run in parallel. Forge group values are arbitrary
strings. The Forge cluster iterates through the groups in alphabetical order, though non-standard characters
may result in groups being updated in an unexpected order.

Dgidxs
One or many Dgidx components are defined depending on the deployment type you choose.

If necessary, you can define a Dgidx cluser to apply actions to an entire cluster of Dgidxs, rather than manually
iterating over a number of Dgidxs. In addition, the object contains logic associated with executing Dgidxs in
parallel based on Dgidx groups, which are described below. Multiple indexing clusters can be defined, with no
restriction around which Dgidx belongs to each cluster or how many clusters a Dgidx belongs to.

An indexing cluster is configured with references to all Dgidxs that belong to that cluster. In addition, the cluster
can be configured to copy data in parallel or serially. This setting applies to copies that are performed to retrieve
source data and configuration to each server that hosts a Dgidx component. By default, the template sets this
value to true.

<l--
HHHHHH
Indexing Cluster
#
-——>
<indexing-cluster id="IndexingCluster" getDatalnParallel="true">
<dgidx ref="Dgidx1l" />
<dgidx ref="Dgidx2" />
</indexing-cluster>

In addition to standard Dgidx configuration settings and process arguments, the Deployment Template uses
several configurable properties and custom directories during processing:

* numLogBackups - Number of log directory backups to store.
» numlindexbackups - Number of index backups to store.

Oracle Endeca Commerce Deployment Template Usage Guide

32 Configuring an EAC Application | Configuring the application configuration files

» incomingDataHost - Host to which source data files are extracted.

» incomingDataDir - Directory to which source data files are extracted.

» incomingDataFileName - Filename of the source data files that are extracted.

» configHost - Host from which configuration files and dimensions are retrieved for Dgidx to process.

» configDir - Directory from which configuration files and dimensions are retrieved for Dgidx to process.

» configFileName - Filename of the configuration files and dimensions that are retrieved for Dgidx to
process.

» skipTestingForFilesDuringCleanup - Used for directory-cleaning operations. If set to "true", will
skip the directory-contents test and instead proceed directly to cleaning the directory. The default behavior
is to test the directory contents and skip cleanup if the directory is not empty.

» The properties documented in the "Fault tolerance and polling interval properties" topic.

In addition to standard Dgidx configuration and process arguments, Dgidx processes add a custom property
used to define which Dgidx processes run in parallel with each other when they belong to an indexing cluster.
dgidxGroup - Indicates the Dgidx's membership in a Dgidx group. When the run method on an indexing
cluster is executed, Dgidx processes within the same Dgidx group are run in parallel. Dgidx group values are
arbitrary strings. The indexing cluster iterates through the groups in alphabetical order, though non-standard
characters may result in groups being updated in an unexpected order.

Dgraphs

If a Dgraph deployment type is chosen, a Dgraph cluster component is defined.

This object is used to apply actions to an entire cluster of Dgraphs, rather than manually iterating over a number
of Dgraphs. In addition, the object contains logic associated with Dgraph restart strategies, which are described
below. Multiple Dgraph clusters can be defined, with no restriction around which Dgraphs belong to each
cluster or how many clusters a Dgraph belongs to.

A Dgraph cluster is configured (via the dgraph-cluster element) with references to all Dgraphs that belong
to that cluster. In addition, the cluster can be configured to copy data in parallel or serially. This setting applies
to copies that are performed to distribute a new index, partial updates or configuration updates to each server
that hosts a Dgraph. By default, the template sets this value to true.

<I--

HHHHHHH R R AR R
Dgraph Cluster
#

-—>

<dgraph-cluster i1d="DgraphCluster’ getDatalnParallel="true">
<dgraph ref="Dgraphl' />
<dgraph ref="Dgraph2" />

</dgraph-cluster>

Two Dgraphs are defined by the template by default.

Global Dgraph settings

In order to avoid defining shared configuration for multiple Dgraphs in each Dgraph's XML configuration, the
document provides the dgraph-defaul ts element, where shared settings can be configured and inherited
(or overridden) by each Dgraph defined in the document. This defaults object specifies a number of custom
configuration properties that are used by the update scripts to define operational functionality.

* numLogBackups - Number of log directory backups to store.
» shutdownTimeout - Number of seconds to wait for a component to stop (after receiving a stop command).

Oracle Endeca Commerce Deployment Template Usage Guide

Configuring an EAC Application | Configuring the application configuration files 33

* numldleSecondsAfterStop - Number of seconds to pause/sleep after a component is stopped. Typically,
this will be used to ensure that log file locks are release by the component before proceeding.

» srcIndexDir - Location from which a new index will be copied to a local directory on the Dgraph's host.
» srcindexHostld - Host from which a new index will be copied to a local directory on the Dgraph's host.

» local IndexDir - Local directory to which a single copy of a new index is copied from the source index
directory on the source index host.

» srcPartialsDir - Location from which a new partial update will be copied to a local directory on the
Dgraph's host.

» srcCumulativePartialsDir - Location from which all partial updates accumulated since the last
baseline update will be copied to a local directory on the Dgraph's host.

» srcPartialsHostld - Host from which partial updates will be copied to a local directory on the Dgraph's
host.

* localCumulativePartialsDir - Local directory to which partial updates are copied from the source
(cumulative) partials directory on the source partials host.

» srcDgraphConfigDir - Location from which Dgraph configuration files will be copied to a local directory
on the Dgraph's host.

» srcDgraphConfigHostld - Host from which Dgraph configuration files will be copied to a local directory
on the Dgraph's host.

» localDgraphConfigDir - Local directory to which Dgraph configuration files are copied from the source
Dgraph config directory on the source Dgraph config host.

* srcXQueryHostld - Hostfrom which XQuery modules will be copied to a local directory on the Dgraph's
host.

» srcXQueryDir - Location from which XQuery modules will be copied to a local directory on the Dgraph's
host.

» localXQueryDir - Local directory to which XQuery modules are copied from the source Dgraph XQuery
directory on the source Dgraph XQuery modules host.

» skipTestingForFilesDuringCleanup - Used for directory-cleaning operations. If set to "true", will
skip the directory-contents test and instead proceed directly to cleaning the directory. The default behavior
is to test the directory contents and skip cleanup if the directory is not empty.

» The properties documented in the "Fault tolerance and polling interval properties" topic.

<I--
HHH R R R R R R R R R R R R R R A R R
Global Dgraph settings, inherited by all dgraphs
#
-—>
<dgraph-defaul ts>
<properties>
<property name="'srcindexDir"™ value="_/data/dgidx_output" />
<property name="'srcindexHostld" value="ITLHost" />
<property name="'srcPartialsDir" value="_./data/partials/forge output" />
<property name="'srcPartialsHostld" value="ITLHost" />
<property name="'srcCumulativePartialsDir" value="_/data/partials/cumulative_par-
tials" />
<property name="'srcCumulativePartialsHostld" value="I1TLHost" />
<property name="srcDgraphConfigDir" value="./data/web_studio/dgraph_config"
/>
<property name="'srcDgraphConfigHostld" value="I1TLHost" />
<property name="'srcXQueryHostld" value="ITLHost" />
<property name="'srcXQueryDir" value="_./config/lib/xquery" />
<property name="‘numLogBackups' value="10" />
<property name="'shutdownTimeout" value="30" />
<property name="numldleSecondsAfterStop" value="0" />
</properties>
<directories>

Oracle Endeca Commerce Deployment Template Usage Guide

34 Configuring an EAC Application | Configuring the application configuration files

<directory name=""local IndexDir">_/data/dgraphs/local_dgraph_input</directory>

<directory name="localCumulativePartialsDir">_/data/dgraphs/local_cumula-
tive partials</directory>
<directory name=""localDgraphConfigDir'>./data/dgraphs/local_dgraph_config</di-
rectory>
<directory name="localXQueryDir'">_/data/dgraphs/local_xquery</directory>
</directories>

<args>
<arg>--threads</arg>
<arg>2</arg>

<arg>--spl</arg>
<arg>--dym</arg>
<arg>--xquery_path</arg>
<arg>./data/dgraphs/local_xquery</arg>
</args>
<startup-timeout>120</startup-timeout>
</dgraph-defaults>

Each Dgraph defined in the document (via the dgraph element) inherits from the settings defined in the
dgraph-defaults element, and also specifies settings that are unique to the Dgraph.

]
7~ Note: As of version 3.1 of the Deployment Template, the numCacheWarmupSeconds and offlineUp-
date properties are ignored (and warning messages generated) because they are not supported in the
6.1.x MDEX Engine.

Restart and update custom properties

In addition to standard Dgraph configuration and process arguments, the dgraph element adds two custom
properties that define restart and update strategies:

* restartGroup
» updateGroup

The restartGroup property indicates the Dgraph's membership in a restart group. When applying a new
index or configuration updates to a cluster of Dgraphs (or when updating a cluster of Dgraphs with a provisioning
change such as a new or modified process argument), the Dgraph cluster object applies changes simultaneously
to all Dgraphs in a restart group.

Similarly, the updateGroup property indicates the Dgraph's membership in an update group. When applying
partial updates, the Dgraph cluster object applies changes simultaneously to all Dgraphs in an update group.

This means that a few common restart strategies can be applied as follows:

» Torestart/update all Dgraphs at once: specify the same restartGroup/updateGroup value for each Dgraph.

» Torestart/update Dgraphs one at a time: specify a unique restartGroup/updateGroup value for each Dgraph,
or omit one or both of the custom properties on all Dgraphs (causing the template to assign a unique group
to each Dgraph).

* To restart/update Dgraphs on each server simultaneously: specify the same restartGroup/updateGroup
value for each Dgraph on a physical server.

» To restart Dgraphs one at a time but apply partial updates to all Dgraphs at once: specify a unique
restartGroup value for each Dgraph and specify the same updateGroup value for each Dgraph.

<dgraph id="Dgraphl" host-id="MDEXHost" port="15000">
<properties>
<property name="‘restartGroup' value="A" />
<property name="'updateGroup' value="a" />
</properties>

Oracle Endeca Commerce Deployment Template Usage Guide

Configuring an EAC Application | Configuring the application configuration files 35

<log-dir>_/logs/dgraphs/Dgraphl</log-dir>

<input-dir>./data/dgraphs/Dgraphl/dgraph_input</input-dir>

<update-dir>./data/dgraphs/Dgraphl/dgraph_input/updates</update-dir>
</dgraph>

Restart and update group values are arbitrary strings. The DgraphCluster will iterate through the groups in
alphabetical order, though non-standard characters may result in groups being updated in an unexpected
order.

Running scripts

Dgraph components can specify the name of a script to invoke prior to shutdown and the name of a script to
invoke after the component is started. These optional attributes must specify the ID of a Script defined in the
XML file(s). These BeanShell scripts are executed just before the Dgraph is stopped or just after it is started.
The scripts behave identically to other BeanShell scripts, except that they have an additional variable,
invokingObiject, which holds a reference to the Dgraph that invoked the script. This functionality is typically
used to implement calls to a load balancer, adding or removing a Dgraph from the cluster as it is updated.

The following example shows two dummy scripts (which just log a message, but could be extended to call out
to a load balancer) provisioned to run pre-shutdown and post-startup for Dgraph1.

<dgraph id="Dgraphl" host-id="MDEXHost" port="15000"
pre-shutdown-script="DgraphPreShutdownScript"
post-startup-script="DgraphPostStartupScript">
<properties>
<property name="‘restartGroup' value="A" />
</properties>
<log-dir>_/logs/dgraphs/Dgraphl</log-dir>
<input-dir>./data/dgraphs/Dgraphl/dgraph_input</input-dir>
<update-dir>./data/dgraphs/Dgraphl/dgraph_input/updates</update-dir>
</dgraph>

<script id="DgraphPreShutdownScript'>
<bean-shell-script>
<I[CDATAL
id = invokingObject.getElementld();
hostname = invokingObject.getHost() .getHostName();
port = invokingObject.getPort();

log.info("'Removing dgraph with id "™ + id + " (host: " + hostname +
", port: " + port + ") from load balancer cluster.');
>
</bean-shell-script>
</script>

<script id="DgraphPostStartupScript">
<bean-shell-script>
<I[CDATAL
id = invokingObject.getElementld();
hostname = invokingObject.getHost() .getHostName();
port = invokingObject.getPort();
log.info("'Adding dgraph with id ™ + id + " (host: " + hostname +

", port: " + port + ') to load balancer cluster.™);
11>
</bean-shell-script>
</script>

The following log excerpt shows these scripts running when a new index is being applied to the dgraph:

[03.10.08 10:03:28] INFO: Applying index to dgraphs in restart group "A".
[03.10.08 10:03:28] INFO: [MDEXHost] Starting shell utility "mkpath_dgraph-input-
new" .

Oracle Endeca Commerce Deployment Template Usage Guide

36

Configuring an EAC Application | Configuring the application configuration files

[03.10.08 10:03:30] INFO: [MDEXHost] Starting copy utility “copy_in-

dex_to_temp_new_dgraph_input_dir_for_Dgraphl®.

[03.10.08 10:03:35] INFO: Removing dgraph with id Dgraphl (host: mdexl.mycompa-
ny.com, port: 15000) from load balancer cluster.

[03.10.08 10:03:35] INFO: Stopping component "Dgraphl®.

[03.10.08 10:03:37] INFO: [MDEXHost] Starting shell utility "move _dgraph-in-
put_to_dgraph-input-old®.

[03.10.08 10:03:39] INFO: [MDEXHost] Starting shell utility "move_dgraph-input-
new_to_dgraph-input”.

[03.10.08 10:03:40] INFO: [MDEXHost] Starting backup utility "back-
up_log_dir_for_component Dgraphl®.

[03.10.08 10:03:42] INFO: [MDEXHost] Starting component "Dgraphl”.

[03.10.08 10:03:45] INFO: Adding dgraph with id Dgraphl (host: mdexl1.mycompany.com,
port: 15000) to load balancer cluster.

[03.10.08 10:03:45] INFO: [MDEXHost] Starting shell utility "rmdir_dgraph-input-

old".

Note that the dgraph-default element can also specify the use of pre-shutdown and post-startup scripts
as attributes, allowing all Dgraphs in an application to execute the same scripts. For example:

<dgraph-defaults pre-shutdown-script="DgraphPreShutdownScript"
post-startup-script="DgraphPostStartupScript">

</dgraph-defaults>

Deploying XQuery modules

The Deployment Template supports the distribution of XQuery modules to each Dgraph in the group. The
<app dir>config/lib/xquery directory is provided for users to store their XQuery modules. In addition,
a LoadXQueryModules script (in the AppConTig.xml file) distributes the XQuery modules to Dgraph servers
and instructs the Dgraphs to load the modules.

The procedure to deploy the XQuery modules is:

1. Make certain that the dgraph-defaul ts section of the AppConfig.xml file has the XQuery properties
set. These global Dgraph setting properties are srcXQueryHostld, srcXQueryDir, and localXQuery-
Dir.

2. Make certain that the Dgraph --xquery_path flag is specified as an argument in the dgraph-defaults
section.

3. Place all the XQuery code in the <app dir>/config/lib/xquery and <app
dir>/config/lib/xquery/lib directories.

4. Execute the runcommand script with the LoadXQueryModules argument, as in this Windows example:

C:\Endeca\Apps\control>runcommand LoadXQueryModules

The XQuery modules are distributed to the Dgraphs in the deployment and they are instructed to reload/compile
the modules.

Specifying arguments for the Dgraphs

Both the dgraph and dgraph-defaults elements allow you to use the args sub-element to pass
command-line flags to the Dgraphs. However, if you use an args section in both the dgraph and dgraph-
defaults configurations, the results are not cumulative.

Instead, the args section for an individual Dgraph completely overrides the dgraph-defaul ts definition
(i.e., it does not inherit the parameters that are specified in the dgraph-defaults section and then add the
ones that are unique for that Dgraph).

Oracle Endeca Commerce Deployment Template Usage Guide

Configuring an EAC Application | Configuring the application configuration files 37

Enabling SSL for the Dgraph

You can configure the Dgraph for SSL by using the following elements to define the certificates to use for SSL:

All

cert-Tile specifies the path of the eneCert.pem certificate file that is used by the Dgraph to present
to any client. This is also the certificate that the Application Controller Agent should present to the Dgraph
when trying to talk to the Dgraph.

ca-Ti le specifies the path of the eneCA . pem Certificate Authority file that the Dgraph uses to authenticate
communications with other Oracle Endeca components.

cipher specifies one or more cryptographic algorithms, one of which Dgraph will use during the SSL
negotiation. If you omit this setting, the Dgraph chooses a cryptographic algorithm from its internal list of
algorithms. See the Endeca Commerce Security Guide for more information

three elements are first-level children of the <dgraph-defaul ts> element.

The following example shows the three SSL elements being used within the dgraph-default element:

<d

graph-defaul ts>

<cert-file>
C:\Endeca\PlatformServices\workspace\etc\eneCert.pem

</cert-file>

<ca-file>
C:\Endeca\PlatformServices\workspace\etc\eneCA.pem

</ca-file>

<cipher>AES128-SHA</cipher>

</dgraph-defaults>

Log server

A LogServer component is defined.

In addition to standard LogServer configuration settings and process arguments, the Deployment Template
uses a configurable property for log archiving.

<l

numLogBackups - Number of log directory backups to store.

shutdownTimeout - Number of seconds to wait for a component to stop (after receiving a stop command).
numldleSecondsAfterStop - Number of seconds to pause/sleep after a component is stopped. Typically,
this will be used to ensure that log file locks are release by the component before proceeding.
targetReportGenDir - Directory to which logs will be copied for report generation.
targetReportGenHostld - Host to which logs will be coped for report generation.
skipTestingForFilesDuringCleanup - Used for directory-cleaning operations. If set to "true", will
skip the directory-contents test and instead proceed directly to cleaning the directory. The default behavior
is to test the directory contents and skip cleanup if the directory is not empty.

The properties documented in the "Fault tolerance and polling interval properties" topic.

ogserver id="LogServer"™ host-id="I1TLHost" port="15010">
<properties>
<property name="‘numLogBackups' value="10" />
<property name=""targetReportGenDir" value="_/reports/input"’” />
<property name="'targetReportGenHostld" value="I1TLHost" />
</properties>
<log-dir>_./logs/logservers/LogServer</log-dir>
<output-dir>./logs/logserver_output</output-dir>
<startup-timeout>120</startup-timeout>
<gzip>false</gzip>

</logserver>

Oracle Endeca Commerce Deployment Template Usage Guide

38

Configuring an EAC Application | Configuring the application configuration files

Report Generators

Four report generator components are defined.

In addition to standard Report Generator configuration settings and process arguments, the Deployment
Template uses a configurable property for log archiving, as well as these configurable properties:

» skipTestingForFilesDuringCleanup - Used for directory-cleaning operations. If set to "true", will
skip the directory-contents test and instead proceed directly to cleaning the directory. The default behavior
is to test the directory contents and skip cleanup if the directory is not empty.

» The properties documented in the "Fault tolerance and polling interval properties" topic.

The configuration file includes the name of an output file for each report generator, which defaults to
report.html or report.xml. This file name is never used when the report generation scripts in the
AppConTig.xml file are used. During execution, the script re-provisions the report generator to output a file
named with a date stamp. This means that the provisioning in the file will always be "out of synch" with the
provisioning in the EAC. This will result in the Report Generator's definition changing repeatedly as scripts are
executed.

<report-generator id="WeeklyReportGenerator"™ host-id="I1TLHost">

<log-dir>_/logs/report_generators/WeeklyReportGenerator</log-dir>

<input-dir>./reports/input</input-dir>

<output-file>_/reports/weekly/report.xml</output-file>

<stylesheet-file>
./config/report_templates/tools _report stylesheet.xsl

</stylesheet-file>

<settings-file>
-/config/report_templates/report_settings.xml

</settings-file>

<time-range>LastWeek</time-range>

<time-series>Daily</time-series>

<charts-enabled>true</charts-enabled>

</report-generator>

IFCR

The IFCR is a custom component that specifies user information for an Endeca Configuration Repository that
is running inside Oracle Endeca Workbench. The deployment template scripts use the information to connect
to an Endeca Configuration Repository and move configuration used by Authoring and Live Dgraphs, the media
MDEX reference application, and the IFCR Backup Utility.

You define an IFCR component in the WorkbenchConfig.xml file which is then referenced by
AppConfig.xml.

The cust om conponent configuration properties

The custom-component configuration properties identify the IFCR in the Data Ingest Hosts section of
Datalngest.xml.

The properties are defined as follows:

» 1d - Assigns a unique ID to a specific IFCR instance.
» host-id - Points back to the 1d attribute of the host global configuration element.

» class - Specifies the class that implements the IFCRComponent. Specify class=""com.ende-
ca.soleng.eac.toolkit.component. IFCRComponent".

Oracle Endeca Commerce Deployment Template Usage Guide

Configuring an EAC Application | Configuring the application configuration files 39

IFCR configuration properties

The configuration properties are defined as follows:

* repositoryUrl - Specifies host, port, and ifcr directory as http://<workbench host>:<port>/ifcr.

» username - Name of the user logging in to Oracle Endeca Workbench where the Endeca Configuration
Repository is hosted.

» password - Corresponding password for the user name.

* numExportBackups - Indicates the number of backups to keep for exported configuration of the Endeca
Configuration Repository. If this property is not configured, then no backups are retained. The default value
is 5.

Example

This example shows a typical configuration:

<l--
HHHH A
IFCR - A component that interfaces with the Workbench repository.
-——>
<custom-component id="IFCR" host-id="ITLHost" class=""com.endeca.soleng.eac.toolk-
it.component. IFCRComponent' >
<properties>
<property name="‘repositoryUrl" value="http://localhost:8006/ifcr" />
<property name="‘username’ value="admin™ />
<property name="‘password’” value="admin"™ />
<property name="'numExportBackups' value="3" />
</properties>
</custom-component>

Workbench Manager

The Workbench Manager is a custom component that specifies connection information for Oracle Endeca
Workbench and also a configuration directory for Oracle Endeca Workbench. The deployment template scripts
use the information to connect to Workbench and update shared configuration contained in the configuration
directory.

You define a Workbench Manager component in the WorkbenchConfig.xml file which is then referenced
by AppConfig.xml.

The cust om conponent configuration properties

The custom-component configuration properties identify the Workbench Manager in the Data Ingest Hosts
section of Datalngest.xml.

The properties are defined as follows:

* 1d - Assigns a unique ID to a specific Workbench instance.

» host-1id - Points back to the 1d attribute of the host global configuration element.

» class - Specifies the class that implements the WorkbenchManagerComponent. Specify
class=""com.endeca.soleng.eac.toolkit.component.WorkbenchManagerComponent".

Workbench configuration properties

The configuration properties are defined as follows:
» workbenchHost - Host name of the server on which Oracle Endeca Workbench is running.

Oracle Endeca Commerce Deployment Template Usage Guide

40

Configuring an EAC Application | Configuring the application configuration files

» workbenchPort - Port on which Workbench listens. This is the port of the Endeca Tools Service on the
Oracle Endeca Workbench host. If the application is running in SSL mode, the workbenchPort is the
SSL port of Workbench.

» configDir - Directory to which Workbench configuration files are uploaded or downloaded by other
components in the implementation.

» workbenchTempDir - Temporary directory used for Workbench interaction. Post-Forge dimensions are
uploaded or downloaded from this directory by other components in the implementation.

Example

This example shows a typical configuration:

<l--
HHHH A
WorkbenchManager - A component that interfaces with the legacy
“"web studio® configuration repository. It is used primarily during
data ingest to load post-forge dimensions into Workbench.
-——>
<custom-component id="WorkbenchManager"™ host-id="1TLHost" class="'com.ende-
ca.soleng.eac.toolkit.component.WorkbenchManagerComponent'>
<properties>
<property name="‘workbenchHost" value="localhost" />
<property name="workbenchPort"” value='8006" />
</properties>
<directories>
<directory name="configDir'>./config/pipeline</directory>
<directory name="workbenchTempDir'>./data/workbench/temp</directory>
</directories>
</custom-component>

Reporting

Oracle Endeca Workbench provides an interface for viewing and analyzing reports produced by the Report
Generator.

In order for Oracle Endeca Workbench to display these reports, report files and associated charts need to be
created and delivered to a directory in Oracle Endeca Workbench's workspace. Alternatively, a "webstudio”
host can be provisioned with a "webstudio-report-dir" custom directory, which indicates to Oracle Endeca
Workbench where it should read reports for the application. In addition, the files need to be named with a date
stamp to conform to Oracle Endeca Workbench's naming convention. The Deployment Template includes
report generation scripts that perform these naming and copying steps to deliver reports for Oracle Endeca
Workbench to read. Common extension or customization of this functionality may occur when one or more of
the components in the reporting lifecycle run in different environments. The AppConfig.xml allows components
to work independently of each other. Specifically, the LogServer can be configured to deliver files to an arbitrary
directory, from where the files can be copied to another environment for report generation. Similarly, the Report
Generator's output report can be delivered to an arbitrary target directory, from where the files can be copied
to another environment for display in Oracle Endeca Workbench.

Configuration Manager

The Configuration Manager component is a custom component that does not correlate to an Oracle Endeca
process.

]
7~ Note: In Tools and Frameworks 3.0, the Configuration Manager was deprecated and replaced by
Workbench Manager.

Oracle Endeca Commerce Deployment Template Usage Guide

Configuring an EAC Application | Configuring the application configuration files 41

Instead, this object implements logic used to manage configuration files. Specifically, the current implementation
supports retrieving and merging configuration from Developer Studio with files maintained in Oracle Endeca
Workbench.

The following configuration properties and custom directories are used to implement the logic of the Config
Manager component.

» webStudioEnabled - "true" or "false," indicating whether integration with Oracle Endeca Workbench is
enabled.

+ webStudioHost - Hostname of the server on which Oracle Endeca Workbench is running.

+ webStudioPort - Port on which Oracle Endeca Workbench listens. This is the port of the Endeca Tools
Service on the Oracle Endeca Workbench host.

+ webStudioMaintainedFile* - Specifies the name of a file that will be maintained in Oracle Endeca
Workbench. The ConfigManager respects all properties prefixed with "webStudioMaintainedFile" but
requires that all properties have unique names. When configuring files, each should be given a unique
suffix. Note that the names of files specified may use wildcards (e.g. <property name="‘webStudioMain-
tainedFilel™ value="merch_rule_group_*.xml" />).

» devStudioConfigDir - Directory from which Developer Studio configuration files are retrieved.

» webStudioConfigDir - Directory to which Workbench configuration files are downloaded.

» webStudioDgraphConfigDir - Directory from which Workbench configuration files are retrieved.

* mergedConfigDir - Directory to which merged configuration is copied.

» webStudioTempDir - Temporary directory used for Workbench interaction. Post-Forge dimensions are
uploaded from this directory to the Workbench.

» skipTestingForFilesDuringCleanup - Used for directory-cleaning operations. If set to "true", will
skip the directory-contents test and instead proceed directly to cleaning the directory. The default behavior
is to test the directory contents and skip cleanup if the directory is not empty.

» The properties documented in the "Fault tolerance and polling interval properties" topic.

<l--
BHHH BT R R R R
Config Manager. Manages Dev Studio and Workbench config sources.
#
-——>
<custom-component id="ConfigManager'™ host-id="I1TLHost"
class=""com.Endeca.soleng.eac.toolkit.component.ConfigManagerComponent">
<properties>
<property name="webStudioEnabled"” value="true" />
<property name="webStudioHost" value="localhost" />
<property name="webStudioPort" value='8006" />
<property name="webStudioMaintainedFilel"
value=""thesaurus.xml" />
<property name="webStudioMaintainedFile2"
value="merch_rule_group_default.xml" />
<property name="webStudioMaintainedFile3"
value="merch_rule_group_ default redirects.xml" />
</properties>
<directories>
<directory name="devStudioConfigDir'>
-/config/pipeline
</directory>
<directory name="webStudioConfigDir'>
./data/web_studio/config
</directory>
<directory name="webStudioDgraphConfigDir">
-/data/web_studio/dgraph_config
</directory>
<directory name="mergedConfigDir'>

Oracle Endeca Commerce Deployment Template Usage Guide

42 Configuring an EAC Application | Configuring the BeanShell scripts

-/data/complete_index_config
</directory>
<directory name="webStudioTempDir'>
./data/web_studio/temp
</directory>
</directories>
</custom-component>

Configuring the BeanShell scripts

The following list describes a number of customization approaches that you can implement to extend the
existing functionality or add new functionality to the template.

» For example, if a deployment uses JDBC to read data into the Forge pipeline instead of using extracted
data files, the following changes would be implemented in the BaselineUpdate script:

1. Remove the line that retrieves data and configuration for Forge: Forge .getData();
2. Insert a new copy command to retrieve configuration for Forge to process:

// get Workbench config, merge with Dev Studio config
ConfigManager .downloadWsConfig();
ConfigManager . fetchMergedConfig();

// fetch extracted data files, run ITL

srcDir = PathUtils.getAbsolutePath(Forge.getWorkingDir(),
Forge.getConfigDir()) + "/*";

destDir = PathUtils.getAbsolutePath(Forge.getWorkingDir(),
Forge.getlnputDir());

dimensionCopy = new CopyUtility(Forge.getAppName(),
Forge.getEacHost(), Forge.getEacPort(), Forge.isSslEnabled());
dimensionCopy. init(‘'copy_dimensions", Forge.getHostld(),
Forge.getHostld(), srcDir, destDir, true);
dimensionCopy-run();

Forge.getData();
Forge.run(Q);
Dgidx.run(Q);

Note that this amended BeanShell script imports two classes from the classpath, references variables that
point to elements in the AppConfig.xml document (e.g. Forge, Dgidx) and defines new variables without
specifying their type (e.g. srcDir, destDir). Details about BeanShell scripting can be found in Appendix A
of this guide.

» Write new BeanShell scripts - Some use cases may call for greater flexibility than can easily be achieved
by modifying existing BeanShell scripts. In these cases, writing new BeanShell scripts may accomplish the
desired goal. For example, the following BeanShell script extends the previous example by pulling the new
functionality into a separate script:
<script id="CopyConfig">

<bean-shell-script>
<I[CDATAL

// fetch extracted data files, run ITL
srcDir = PathUtils.getAbsolutePath(Forge.getWorkingDir(),

Oracle Endeca Commerce Deployment Template Usage Guide

Configuring an EAC Application | Configuring the BeanShell scripts 43

Forge.getConfigDir()) + "/*";
destDir = PathUtils.getAbsolutePath(Forge.getWorkingDir(),
Forge.getlnputDir(Q));

dimensionCopy = new CopyUtility(Forge.getAppName(),
Forge.getEacHost(), Forge.getEacPort(), Forge.isSslEnabled());
dimensionCopy.- init(‘'copy_dimensions™, Forge.getHostld(),
Forge.getHostld(), srcDir, destDir, true);
dimensionCopy.run();

11> .
</bean-shell-script>
</script>

Once the new script is defined, the BaselineUpdate script simplifies to the following:

// get Workbench config, merge with Dev Studio config
ConfigManager .downloadWsConfig();
ConfigManager . fetchMergedConfig();

// fTetch extracted data files, run ITL
CopyConfig.run();

Forge.getData();

Forge.run(Q);

Dgidx.run(Q);

Define utilities in AppConfig.xml - A common use case for customization is to add or adjust the functionality
of utility invocation. Our previous example demonstrates the need to invoke a new copy utility when the
Forge implementation changes. Other common use cases involve invoking a data pre-processing script
from the shell and archiving a directory. In order to enable this, the Deployment Template allows utilities
to be configured in the AppConfig.xml document. To configure the copy defined above in the document,
use the copy element:
<copy id="CopyConfig" src-host-id="1TLHost" dest-host-id="I1TLHost"
recursive=""true'">
<src>./data/complete_index_config/*</src>
<dest>./data/processing</dest>
</copy>

Once configured, this copy ultility is invoked using the same command that was previously added to the
BaselineUpdate to invoke the custom BeanShell script: CopyConfig.run();

Extend the Java EAC Development Toolkit - In rare cases, you may need to implement complex custom
functionality that would be unwieldy and difficult to maintain if implemented in the AppConfig.xml
document. In these cases, you can extend objects in the toolkit to create new Java objects that implement
the desired custom functionality. Staying with the previous example, the developer might implement a
custom Forge object to change the behavior of the getData() method to simply copy configuration without
looking for extracted data files.

package com.Endeca.soleng.eac.toolkit.component;

import java.util.logging.Logger;
import com.Endeca.soleng.eac.toolkit.exception.™;

public class MyForgeComponent extends ForgeComponent

{

private static Logger log =
Logger .getLogger (MyForgeComponent.class.getName());

protected void getData() throws AppConfigurationException,

Oracle Endeca Commerce Deployment Template Usage Guide

44

Configuring an EAC Application | Configuration overrides

EacCommunicationException, EacComponentControlException,
InterruptedException

// get dimensions for processing
getConfig(;

+
}

Obviously, this trivial customization is too simple to warrant the development of a new class. However, this
approach can be used to override the functionality of most methods in the toolkit or to implement new
methods.

In order to use the new functionality, the developer will compile the new class and ensure that it is included

on the classpath when invoking scripts. The simplest way to do this is to deploy the compiled .class file

tothe <app dir>/config/scriptdirectory. Once on the classpath, the new component can be loaded

in place of the default Forge component by making the following change to the Forge configuration in

AppConfig.xml:

<forge class="com.Endeca.soleng.eac.toolkit.component.MyForgeComponent"
id="Forge" host-id="ITLHost">

</forge>

Some types of customization will require more complex configuration. Refer to Appendix A ("EAC
Development Toolkit") for information about configuring custom Java classes using the Spring Framework
namespace in the AppConfig.xml document.

Configuration overrides

The Deployment Template allows the use of one or more configuration override files.

These files can be used to override or substitute values into the configuration documents. For example,
developers may want to separate the specification of environment-specific configuration (e.g. hostnames,
ports, etc.) from the application configuration and scripts. This may be useful for making configuration documents
portable across environments and for dividing ownership of configuration elements between system
administrators and application developers.

Override files are specified by using the -—config-override flag to the EAC development toolkit's controller.
For example, the runcommand script in the template includes an environment.properties file by default, though
this file only contains examples of overrides and does not specify any active overrides.

Two types of properties can be specified in an override file:

1. [object].[Ffield] = [value] - This style of override specifies the name of an object and field and

sets the value for that field, overriding any value specified for that field in the XML configuration document
or documents. For example:

Dgraphl._port = 16000

Dgraphl.properties[“restartGroup®] = B

ITLHost.hostName = itl._mycompany.com

. [token] = [value] - This style of override specifies the name of a token defined in the XML config file

and substitutes the specified value for that token. For example, if the AppConfig . xml defines the following
host:

<host id="I1TLHost" hostName="${itl._host}" port="${itl.port}"” />

Oracle Endeca Commerce Deployment Template Usage Guide

Configuring an EAC Application | Configuration overrides 45

The override can specify the values to substitute for these tokens:

itl.host = it.mycompany.com
itl.port = 83888

It is important to note that both styles of substitution are attempted for every value defined in the override file.
When a token fails to match, a low-severity warning is logged and ignored. This is required because most
tokens will only match one of the two styles of substitution. It may be important to avoid using token names
that coincide with object names. For example, defining the token ${Forge.tempDir} will cause the
corresponding value to substitute for both the token as well as the tempDir field of the Forge component.

Oracle Endeca Commerce Deployment Template Usage Guide

Chapter 3
Replacing the Default Forge Pipeline

This chapter describes how to modify or create a Forge pipeline that is designed for use within the deployment
template operational structure. This includes pipeline naming requirements, common errors encountered, etc.
Note: This chapter only applies to applications that use Forge to process source data. If your application uses
CAS to produce MDEX-compatible output, this chapter does not apply.

About the sample pipelines

For testing purposes, the Deployment Template includes a Developer Studio project with two Forge pipelines
(a baseline and a partial). The sample pipelines facilitate testing the deployment template; however, the files
should be replaced with project-specific files immediately after a deployed application has been properly
configured.

The pipelines are located in <app dir>/config/pipeline. The pipeline for a baseline update processes
10 records, and the pipeline for a partial update that adds 2 more records.

Sample pipeline overview

This section describes the high-level steps that are necessary to integrate a new/existing pipeline with a
deployment template.

Additional detail on each of these steps is provided in later sections.

1. Ensure that the application name and pipeline configuration prefix match the data prefix configured in the
deployment template.

2. Place pipeline configuration files in the <app dir>/config/pipeline/ directory of the primary server.

3. In order to enable partial updates, ensure that the project is configured with a record spec (i.e., a unique
record identifier property).

4. Ensure that any input Record Adapters requiring filenames specify the file location relative to the <app
dir>/data/processing/ (or <app dir>/data/partials/processing) directory.

Specifying a pipeline

By default, the Deployment Template checks the <app dir>/config/pipeline for the pipeline to run.
This includes baseline updates and partial updates. It is simplest to put your pipeline files in this directory.

48

Replacing the Default Forge Pipeline | Creating a new project

Alternatively, the devStudioConfigDir attribute in the ConFigManager custom component specifies the
pipeline to run.

To specify a pipeline to run in AppConfig.xml:

. Ensure that your pipeline files are located in <app dir>/config/pipeline.
2. Alternatively, modify the devStudioConfigDir property in the ConfigManager custom component to

reference the pipeline directory.
In this example, the pipeline is stored in the pipel ine directory:

<custom-component id="ConfigManager" host-id="I1TLHost"

class=""com.Endeca.soleng.eac.toolkit.component.ConfigManagerComponent">
<properties>
</properties>
<directories>

<directory

name=""devStudioConfigDir'>._/config/pipeline
</directory>

</directories>

. If you modified the value in step 2, also modify the value of the configDir attribute in the Partial update

Forge section to reference the config/pipel ine directory.
For example:

<I—
BHHHHEH
Partial update Forge
——
<forge id="PartialForge" host-id="I1TLHost">

<properties>

;}broperties>

<directories>

QAirectory name=""configDir">_/config/pipeline</directory>

</directories>

Creating a new project

Once the reference configuration files have been deleted, a new pipeline configuration project can be created.

When creating a new project using the Oracle Endeca Developer Studio, you are prompted with the following
dialog box:

Oracle Endeca Commerce Deployment Template Usage Guide

Replacing the Default Forge Pipeline | Creating a new project 49

New Project

Select a project Description

& pipeline that loads recards
from a single pipe delimited
data file, maps properties into
dimensions, and ouiputs the
data for indexing.

Froject name:

Save project as.

‘ & Select...
® Hep Ok | Cancel |

To create a new project:

1. In order for a new pipeline to be run properly within the deployment template, the following must be properly
specified:

a) The Project Name field must be the same as the data prefix specified for the "app" element in <app
dir>/config/script/AppConfig.xml. By default, this data prefix will have been set to the name
of the application that was specified when running deploy .bat or deploy.sh.

b) Recall that the [appname] specified was also used to create the base <app dir> directory. For
example, if "myapp" was supplied as the [appname], and "c:\Endeca\apps" was supplied as the
Deployment Directory, then <app dir> would be c:\Endeca\apps\myapp. In this example, the
Project Name should also be specified as "myapp".

2. The Save Project As field should be <app dir>\config\pipeline\[appname].esp

In the example above, the Save Project As field would be
c:\Endeca\apps\myapp\config\pipeline\myapp.esp.

Oracle Endeca Commerce Deployment Template Usage Guide

50 Replacing the Default Forge Pipeline | Modifying an existing project

New Project

Select a project Description

& pipeline that loads recards
from a single pipe delimited
data file, maps properties into
dimensions, and ouiputs the
data for indexing.

Froject name:

| myapp

Save project as.

‘ CEndecatappsimyapptconfighpipelineymyapp.esp

® Hep Ok, |

& Select...

Cancel |

After clicking the "OK" button, a number of files are created in the <app dir>/config/pipeline/ directory.
The primary files to be concerned with are listed below:

File name

pipeline.epx

[appname] -esp

[appname] - *.xml

dimensions.xml

Modifying an existing project

Description

This is the main pipeline file that the deployment
template will reference when running forge.

This is the Developer Studio project file that will be
used whenever reopening the project. Although this
file does not actually require the [appname] prefix, it
is good practice to keep it consistent with other project
files.

These are the various configuration files that will be
used later by the indexer and MDEX Engine processes.
It is important that they have the same prefix as the
deployment template Application Name.

This is the dimension file referenced by the default
Dimension Adapter.

Modifying an existing Developer Studio project to match a new deployment template application is a somewhat
tedious task. In fact, it is often easier to simply create a new deployment template application instead.

The important key is that the [appname] . * . xml files share the same [appname] as the deployment template
project. Since there are 30+ XML files, you can either:

* Rename each of the XML files with a new prefix, and update the [appname].esp file to reference each new
file.

Oracle Endeca Commerce Deployment Template Usage Guide

Replacing the Default Forge Pipeline | Configuring a record specifier 51

» Update the deployed application's AppConfig.xml file to specify the [appname] of your configuration
files. For example, if your configuration files are named myapp - * . xml, update the configuration as follows:

<app appName="myapp' eacHost="hostl.company.com'" eacPort="8888"
dataPrefix="myapp" sslEnabled="false"
lockManager="LockManager">
<working-dir>C:\Endeca\apps\myapp</working-dir>
<log-dir>_/logs/baseline</log-dir>
</app>

In most cases, the appName attribute and the dataPrefix attribute will be identical. However, this is not
required and an application can be configured to support files with a data prefix other than the application
name. If the data prefix is not specified, the application defaults to using the application name.

Note that opening an existing project in the Oracle Endeca Developer Studio and using the Save As feature
will not rename the corresponding * . xml files. It will only rename the [appname] - esp file. The prefix for the
XML files can only be specified when a new project is created.

Related Links

Common errors on page 54
This section provides troubleshooting information for commonly received errors.

Configuring a record specifier

The deployment includes support for both baseline and partial index updates. In order to support partial updates,
an application must include a record specifier, which is a property marked as the unique identifier of records
in the index.

For details about the record specifier property, refer to the Platform Services Forge Guide.
When configuring your application, identify a property for which each record will have a unique assigned value.
To enable the use of that property as a record spec:

1. Open the Property dialog box in Developer Studio.
2. Check the box labeled "Use for record spec."

Property: P_WinelD

MName: Type:
|P_WinelD | Alpha |

General | Search

[¥ Prepare sort offline [Use for record spec

[~ Rollup [Show with record list

[Enable for record filters [Show with record
Language:

| <Default> ﬂ

% Help Ok | Cancel ‘

Oracle Endeca Commerce Deployment Template Usage Guide

52 Replacing the Default Forge Pipeline | Forge flags

Forge flags

In order to reduce the amount of configuration required to integrate a pipeline into a deployment template, a
standard deployment template application runs the primary and partial update Forge processes with an

abbreviated set of flags.

Since the deployment template already specifies directory structures and file prefixes, the following flags are
used to override a pipeline's input and output components, specifying the appropriate directories and prefixes

for either reading or writing data

Primary Forge flags

Flag
——-inputDir
--stateDir
—-—tmpDir
--logDir
—--outputDir
--outputPrefix

Partial update Forge flags
Flag

——inputDir
--stateDir
——tmpDir
--logDir
—--outputDir
--outputPrefix

Input record adapters

The record adapters load the source data.

Description

<app dir>/data/processing
<app dir>/data/state

<app dir>/data/forge_temp
<app dir>/logs/baseline
<app dir>/data/forge_output
[dataPrefix]

Description

<app dir>/data/partials/processing
<app dir>/data/state

<app dir>/data/forge_temp

<app dir>/logs/partial

<app dir>/data/partials/forge_output
[dataPrefix]

To start, here is a quick review of how sample data included with the deployment template is processed. The
sample application includes a sample dataset in <app dir>/test_data/baseline directory. When
processing the sample data, the load_basel ine_test_data script copies the contents of this directory
into the <app dir>/data/incoming/ directory and sets a flag in the EAC.

This flag, named basel ine_data_ready, indicates to the deployment template scripts that the data extraction
process is complete and data is ready for processing. Once that has occurred, the baseline update process
copies these files into the <app dir>/data/processing directory before running the Forge process.

When using a default deployment template application, it is therefore necessary for all input record adapters
tolook in the <app dir>/data/processing directory forincoming data extracts. The deployment template

Oracle Endeca Commerce Deployment Template Usage Guide

Replacing the Default Forge Pipeline | Dimension adapters 53

handles this automatically by specifying the ——inputDir flag when running the primary forge process. This
flag overrides any absolute path specified for specific input adapters with the proper deployment template path:
<app dir>/data/processing. However, the ——inputDir flag respects relative paths, resolving them
relative to the path specified as the input directory.

The URL property of any record adapter component therefore only needs to specify the relative path to a
specific file or subdirectory within the <app dir>/data/incoming directory. (Remember that files and
subdirectories in the incoming directory are copied to the processing directory by the deployment template
before Forge is run.)

For example, if a single extract file called data. txt is copied into the <app dir>/data/incoming directory
before running a baseline, the URL property of that data's input record adapter should specify a URL of
data.txt.

For a more complex deployment where, for instance, multiple text extract files are copied into the <app
dir>/data/Zincoming/extracted_data directory before running a baseline update, the URL property of
a single input record adapter configured to read these files should be set to extracted data/*.txt.

Related Links
Output record adapters on page 53
Output record adapters are often used to generate debug or state information. By default, the location
to which this data is written will be overridden by the -—outputDir flag.

Dimension adapters

The —--inputDir flag specified to forge overrides the input URL for dimension adapters.

Since the dimensions for a project are usually stored in the <app dir>/config/pipeline directory along
with other configuration files, the deployment template copies these files into the <app
dir>/data/processing/ directory before running the Forge process. The URLs specified in dimension
adapters should follow the same rules as those described for input record adapters, specifying dimension XML
file URLSs relative to the ——inputDir directory. In most cases, this is as simple as specifying the URL for the
main dimension adapter as Dimensions.xml, which is the value used by the default "Dimensions" adapter
created by Developer Studio's project template.

More complex deployments that include multiple dimension adapters or external delivery of dimension files
should ensure that the dimension XML files are copied into the <app dir>/data/incoming/ directory
before the forge process runs.

Indexer adapters

Because the -—outputPrefix and --outputDir flags are both included, the deployment template will
override any values specified for the Indexer Adapter "URL" and "Output prefix" properties.

Therefore, it is unnecessary to modify these properties in most cases.

Output record adapters

Output record adapters are often used to generate debug or state information. By default, the location to which
this data is written will be overridden by the -—outputDir flag.

Oracle Endeca Commerce Deployment Template Usage Guide

54

Replacing the Default Forge Pipeline | Dimension servers

In most cases, however, it is undesirable for these files to be written to the same location as the Forge output
files.

In these cases, an output record adapter can be configured to instead respect the --stateDir flag by selecting
the "Maintain State" checkbox.

Eeodng [~ Fagre dard [ki
[Filker empty W Maintain
properkies skate
[T Custom compression level
| 1 1 1 1 1 1 1 1 |
A
E
‘E Help | K, I iZancel

Now any files generated by this output record adapter will be written to the <app dir>/data/state/
directory.

Note that the output file name must still be specified in the "URL" property of the record adapter. The —--out-
putPrefix flag only overrides the indexer adapter output file names, not output record adapter file names.

Related Links

Input record adapters on page 52
The record adapters load the source data.

Dimension servers

The --stateDir flag will override the URL value for all Dimension Server components, and place any autogen
state files in the <app dir>/data/state/ directory.

Common errors

This section provides troubleshooting information for commonly received errors.

Unable to Find Pipeline.epx

If Forge fails, check the logs (<app dir>/logs/baseline/err.forge)to make sure that Forge was able
to find the pipel ine.epx file in its proper location. Remember that a basic deployment template application
assumes that it will find the project's pipeline.epx file in <app dir>\config\pipeline\.

On UNIX platforms, file names are case sensitive. The deployment template expects the primary pipeline file
to be named pipeline.epx and the partial update pipeline (if one is required for the deployed application)
to be named partial_pipeline.epx. Ensure that the files in your deployment use this capitalization.

Oracle Endeca Commerce Deployment Template Usage Guide

Replacing the Default Forge Pipeline | Common errors 55

Missing Configuration Files

This more common error is also more difficult to detect. Since all pipelines created by the Oracle Endeca
Developer Studio typically contain a Pipeline._epx file, it is unlikely that the Forge process will be unable to
find the file, unless it was placed in the wrong directory. If the XML configuration files, however, have a different
prefix from the deployment template [appname], these files will not be copied into the <app
dir>/data/forge_output/, <app dir>/data/dgidx_output/, and <app
dir>/data/dgraphs/*/dgraph_input/ directories. All processes will likely complete successfully, but
any configuration information specified by these XML files, such as search interfaces, business rules, sort
keys, etc. will be missing from the resulting MDEX Engine. To correct this problem, check the XML files located
in <app dir>/config/pipeline/ and make sure they have the correct prefix. Also check the directories
mentioned above to make sure that these XML files are being properly copied.

MDEX Engine Fails to Start

If an MDEX Engine fails to start, check the log for the appropriate Dgraph in <app
dir>/logs/dgraphs/[dgraph]/[dgraph]. log. If the log indicates that the Dgraph failed to start because
no record specifier was found, follow the steps in this document to create a unique record specifier property
for you project.

Record Adapter Unable to Open File

Another common error may occur if a record adapter is unable to find or open a specified file for either input
or output. In this case, the Forge error log (<app dir>/logs/baseline/err.forge) should specify which
file or directory could not be found. To correct this problem, make sure the files or directories specified by the
record adapters correspond to the directory structure established by the deployment template application. Note
that this error may be masked if the "Require Data" property is not checked for a given input adapter, since
Forge will only log a warning instead of a fatal error.

Oracle Endeca Commerce Deployment Template Usage Guide

Chapter 4
Modifying Index Configuration for an Application

This section describes how to modify index configuration using the Index Configuration Command-line Utility
in a CAS-based processing model. If you are using Forge to process updates, this chapter does not apply to
your deployment.

Overview of the Index Configuration Command-line Utility

The Index Configuration Command-line Utility modifies index configuration stored in the Endeca Configuration
Repository for an application. This utility is typically used to modify data after it has been exported from a
product catalog system and modify the search configuration settings for the data. In many cases, the utility is
also used to manually create index configuration that is not part of a product catalog system.

The Index Configuration Command-line Utility is a script named index-config-cmd that you run from a
command prompt. After you deploy a new application, the index-config-cmd script is available in the <app
name>\control directory.

Help options

The Index Configuration Command-line Utility has two help options that display the usage syntax. The --help
option displays a summary of the tasks. The —-help-detail option displays detailed usage information for
a specified task. For example:
C:\Endeca\apps\Discover\control>index_config _cmd.bat --help
usage: index-config-cmd <task-name> [options]
where <task-name> is one of the following:

get-config

set-config

delete-owner

get-merged-config
For detailed usage information for individual task options, use <task-name> --
help

Command-line options

The command syntax for executing the tasks is:
index_config_cmd <task-name> [options]

The <task-name> argument is the task to be performed by the utility, such as the get-config task. The task
options vary, depending on the task. However, the following option can be used with any task:

58

Modifying Index Configuration for an Application | About index configuration ownership

» -0 (or --owner) specifies an import owner for a task. If you specify the —o option, the task applies only
to the owner specified. The option can have an argument of al I, system, or user-specified owner name.
The al I owner includes both the system owner and all user-specified owners. If you omit this option, the
task applies to the system owner.

About index configuration ownership

The index configuration for an application is associated with one or more import owners. An import owner
provides a way of indicating that a portion of an application's configuration came from one source rather than
another source. The name of the import owner typically identifies the source. For example, the name of an
import owner could reflect a product catalog system.

In addition to any number of import owners, there is also one default system owner. The system owner is
typically a developer who uses the utility to augment index configuration and troubleshoot data issues as part
of update processing.

Creating and deleting import owners

An import owner is typically created during the data import operation using the Endeca Configuration Import
API. The owner name is specified as argument to the ConfigRepositorylmporter constructor. For details,
see the Endeca Configuration Import APl Reference (Javadoc). You can also create an import owner using
the -0 option of the set-config task. If the owner does not already exist, the utility creates it.

The index configuration associated with an owner is removed using the delete-owner task.

Examining index configuration for an owner

You can retrieve and examine index configuration for an owner using the get-config task and the -o option.
The task returns a JSON file with the index configuration for the specified owner. If the file contains configuration
from multiple import owners, each import owner's configuration is represented as a node within the file.

Overwriting index configuration per owner

As described in Setting the index configuration for an application on page 71, the set-config task overwrites
all previous index configuration for a specified owner.

Setting global configuration

Only the system owner can set global index configuration.

Merging index configuration from multiple owners

During baseline update processing, the Content Acquisition System merges and processes index configuration
from all owners into a consolidated set of MDEX-compatible output files.

If multiple import owners modify the same attribute, the configuration from the system owner always overrides
other import owners during the merge process.

For example, suppose an import owner named ATG creates an attribute that represents an Endeca property.
Then the system owner updates the Endeca property to become an Endeca dimension with isAutogen set
to true. The merged configuration processes the attribute and updates it to become an autogen dimension.

Oracle Endeca Commerce Deployment Template Usage Guide

Modifying Index Configuration for an Application | About the schema for the index configuration file 59

About the schema for the index configuration file

The Index Configuration Command-line Utility writes and reads index configuration as JSON. The schema for
the JSON file varies depending on whether you retrieve configuration for one owner or more than one owner
and whether you restrict the types of configuration that you retrieve.

Types of configuration include:

» Endeca properties, derived properties, and dimensions. These are specified under the attributes node.
» Precedence rules. These are specified under the precedenceRules node.
» Search configuration. These are specified under the searchIndexConfig node.

See the topics and examples below that illustrate the schema for each index configuration type.

Schema for an Endeca property, derived property, or dimension

You specify an Endeca property or dimension as an attribute in the index configuration file. Each attribute
has a jcr:primaryType property with one of the following values:

* endeca:property - indicates that the attribute is an Endeca property.
* endeca:derivedProperty - indicates that the attribute is a derived property.
» endeca:dimension - indicates that the attribute is an Endeca dimension.

Properties, dimensions, and precedence rules must be named uniquely across the index configuration. The
only exception to this is where you update a property by setting the mergeAction property to UPDATE.

Schema for an attribute node that defines an Endeca property

An attribute that is an endeca:property can have the following schema properties:

Name Data Type Description

isEnabled BOOLEAN Optional. Indicates whether the property is processed by CAS
when CAS writes MDEX-compatible output. A value of true
includes the property during processing; fal se excludes the
property. This setting is useful when troubleshooting data
issues for specific attributes. If omitted, the default value is

true.
isRecordFilter- BOOLEAN Optional. Indicates whether the property can be used to filter
able records. Record filtering presents a subset of the data to the
end-user. If omitted, the default value is false.
isRecordSearchEn- | BOOLEAN Optional. Specifies whether or not record search should be
abled enabled for this property. Record search finds all records in

an Endeca application that are tagged with an Endeca
property that matches a term the user provides. You must
enable each property that you want available for record
search. If omitted, the default value is false.

isRol lupKey BOOLEAN Optional. Indicates whether the property can be used as a
rollup key. This allow aggregated records to be based on this
Endeca property. If omitted, the default value is false.

Oracle Endeca Commerce Deployment Template Usage Guide

60 Modifying Index Configuration for an Application | About the schema for the index configuration file

Name Data Type

isWildcardEn- BOOLEAN
abledInRecord-
Search

mergeAction STRING

propertyDataType STRING

sourceProperty- |STRING (multi-valued)
Names

Description

Optional. Indicates whether wildcard search is enabled for
this Endeca property. Wildcard searching allows user queries
that contain a wildcard character (*) to match against
fragments of words in a property value. You must enable each
property that you want available for wildcard searching. If
isWildcardEnabledInRecordSearch is set to true,
then isRecordSearchEnabled must also be set to true
for a property. (Enabling wildcard record search depends on
first enabling record search.) If omitted, the default value is
false.

Optional. The mergeAction specifies how to merge the
attribute into the index configuration. Valid enumerations are
ADD and UPDATE. Specify a value of ADD to merge new
attributes that are not already in the system. Specify a value
of UPDATE to merge changes to an existing attribute. If
omitted, the default value of mergeAction is ADD.

Optional. The propertyDataType enumerates the valid
values for the data type of an Endeca property. The valid
enumerations are ALPHA, INTEGER, DOUBLE, GEOCODE,
DATET IME, DURATION, and TIME. Such data types have
several uses. Non-alpha properties can be used for range
filtering. Temporal properties can be used for record sorting
and analytics. If omitted, the default value of property-
DataType is ALPHA.

Optional. Specifies an explicit mapping between one or more
source properties and an Endeca property. An Endeca
property is populated with data from the source property that
it is mapped to. If specified, the sourcePropertyNames
value can be empty, single-valued, or multi-valued.

If empty (a zero-length list), no source property is mapped to
an Endeca property. This allows you to define an Endeca
property but not populate it with any data.

If single-valued, then the source property has its value mapped
to the Endeca property.

If multi-valued, then each source property in this list has its
value mapped to the Endeca property.

If omitted, the source property has its value mapped to an
Endeca property of the same name. In other words, a source
property with a name that is identical to an Endeca property
is automatically mapped to that Endeca property. This is the
default behavior.

Schema for an attribute node that defines an Endeca derived property

An attribute that is an endeca:derivedProperty can have the following schema properties:

Oracle Endeca Commerce Deployment Template Usage Guide

Modifying Index Configuration for an Application | About the schema for the index configuration file 61

Name Data Type

derivedProperty- | STRING
Function

derivedProper- |STRING
tySource

isEnabled BOOLEAN

mergeAction STRING

Description

Required. The derivedPropertyFunction enumerates

the the valid functions that can be applied to the derived-

PropertySource property. The valid enumerations are MIN,
MAX, SUM, and AVG.

Required. Specifies the Endeca property from which the
derived property is calculated.

Optional. Indicates whether the property is processed by CAS
when CAS writes MDEX-compatible output. A value of true
includes the property during processing; false excludes the
property. This setting is useful when troubleshooting data
issues for specific attributes.

Optional. The mergeAction specifies how to merge the
attribute into the index configuration. Valid enumerations are
ADD and UPDATE. Specify a value of ADD to merge new
attributes that are not already in the system. Specify a value
of UPDATE to merge changes to an existing attribute. If
omitted, the default value of mergeAction is ADD.

Schema for an attribute node that defines an Endeca dimension

An attribute that is an endeca:dimension can have the following schema properties:

Name Data Type
displayOrder INTEGER
isAutogen BOOLEAN
isEnabled BOOLEAN
isHierarchi- BOOLEAN
calDimension-
SearchEnabled

Description

Optional. Specifies the display order of a dimension relative
to other dimensions in refinement results. Dimensions with
lower values display before dimensions with higher values.
Valid values are integers between 0 and 2147483647. If
omitted, the dimension displays lower than dimensions with
specified display orders. If dimensions have the same display
order value (a tie), the dimensions are ordered alphabetically
by dimension name.

Optional. Specifies whether the dimension values for a
dimension are automatically generated during a CAS crawl.
A value of true generates dimension values for a dimension.
If omitted, the default value is False. (An error results if you
set this to true and also specify dimension values for the
dimension.)

Optional. Indicates whether the dimension is processed by
CAS when CAS writes MDEX-compatible output. A value of
true includes the dimension during processing; false
excludes the dimension. This setting is useful when
troubleshooting data issues for specific attributes.

Optional. Specifies whether a dimension search also considers
ancestor dimension values in this dimension when matching
a dimension search query. If omitted, the default value is
false.

Oracle Endeca Commerce Deployment Template Usage Guide

62 Modifying Index Configuration for an Application | About the schema for the index configuration file

Name Data Type

isHierarchical- BOOLEAN
RecordSearchEn-
abled

isRecordSearchEn- | BOOLEAN
abled

isWildcardEn- BOOLEAN
abledInRecord-
Search

mergeAction STRING

multiSelectType [STRING

rangeComparison—- STRING
Type

sourceProperty- | STRING (multi-valued)
Names

Oracle Endeca Commerce Deployment Template Usage Guide

Description

Optional. Specifies whether a record search also considers
ancestor dimension values in this dimension when matching
a record search query.

If isHierarchicalRecordSearchEnabledis setto true,
then isRecordSearchEnabled must also be set to true
for a dimension. (Enabling hierarchical search depends on
first enabling record search.) If omitted, the default value of
isHierarchicalRecordSearchEnabled is set to the
value of isRecordSearchEnabled.

Optional. Specifies whether or not record search should be
enabled for this dimension. Record search finds all records
in an Endeca application that are tagged with a dimension
value that matches a term the user provides. You must enable
each property that you want available for record search. If
omitted, the default value is false.

Optional. Indicates whether wildcard search is enabled for
this dimension. Wildcard searching allows user queries that
contain a wildcard character (*) to match against fragments
of words in a dimension. You must enable each dimension
that you want available for wildcard searching.

If isWildcardEnabledInRecordSearch is set to true,
then 1sRecordSearchEnabled must also be set to true
for a dimension. (Enabling wildcard dimension search depends
on first enabling dimension search.) If omitted, the default
value is false.

Optional. The mergeAction specifies how to merge the
attribute into the index configuration. Valid enumerations are
ADD and UPDATE. Specify a value of ADD to merge new
attributes that are not already in the system. Specify a value
of UPDATE to merge changes to an existing attribute. If
omitted, the default value of mergeAction is ADD.

Optional. The multiSelectType enumerates the valid
values for specifying multiselect dimensions. When AND is
specified on a dimension, the MDEX Engine returns all records
from all the select dimension values. The result set is
expanded with each additional dimension value that a user
selects. The OR enumeration returns the records from one
selected dimension value. The result set is reduced with each
dimension value that a user selects. The valid enumerations
are NONE, OR, and AND.

Optional. The rangeCompar isonType enumerates the types
that can be used to map source properties to dimension values
that represent ranges. The valid enumerations are STRING,
INTEGER, and FLOAT.

Optional. Specifies an explicit mapping between one or more
source properties and an Endeca dimension. A dimension is

Modifying Index Configuration for an Application | About the schema for the index configuration file 63

Name Data Type

Description

populated with data from the source property that it is mapped
to. If specified, the sourcePropertyNames value can be
empty, single-valued, or multi-valued.

If empty (a zero-length list), no source property is mapped to
a dimension. This allows you to define a dimension but not
populate it with any data. This is useful when creating trigger
dimension values for content spotlighting cartridges.

If single-valued, then the source property has its value mapped
to the Endeca dimension.

If multi-valued, then each source property in this list has its
value mapped to the Endeca dimension.

If omitted, the source property has its value mapped to an
Endeca dimension of the same name. In other words, a source
property with a name that is identical to a dimension is
automatically mapped to that dimension. This is the default
behavior.

Example index configuration for two owners and all configuration types

In this example, the utility returns index configuration for the system owner. The configuration in this case is
made up of attributes and global index configuration settings:

"indexConfig" : {
"system"™ : {
"attributes" : {

"product.price” : {
"propertyDataType' : "DOUBLE",
“"jeriprimaryType" : "endeca:property"

"6roduct.brand.name" - {
""IsRecordSearchEnabled" : true,
"isAutogen' : true,
"JeriprimaryType'™ : "endeca:dimension',
"multiSelectType" : "OR™

}1

"product.review.count" : {
"propertyDataType" : "INTEGER",
“jeriprimaryType'™ : "endeca:property”

"5roduct-sku" - {
""iIsRecordSearchEnabled" : true,
""propertyDataType" : "ALPHA",
“"jeriprimaryType"™ : "endeca:property"

}1

"product.id" : {
"isRecordFilterable" : true,
""iIsRecordSearchEnabled" : true,
""propertyDataType" : "ALPHA™,
“"jeriprimaryType"™ : "endeca:property"

}1

“camera.color™ : {

"'sourcePropertyNames™ :

["camera.Colour of product"],

Oracle Endeca Commerce Deployment Template Usage Guide

64 Modifying Index Configuration for an Application | About the schema for the index configuration file

"isAutogen' : true,
“"jeriprimaryType"™ : "endeca:dimension'

}1

"product.category" : {
"'sourcePropertyNames"™ : ["product.category id"],
""IsRecordSearchEnabled" : true,
“jeriprimaryType'™ : "endeca:dimension'

"5roduct-name" - {

""iIsRecordSearchEnabled” : true,
""propertyDataType" : "ALPHA",
“"jer:iprimaryType"™ : "endeca:property"

"5roduct-features" - {

"isAutogen' : true,
"JeriprimaryType'™ : "endeca:dimension',
"multiSelectType"™ : "AND"

},

"product.min_price” : {
"derivedPropertySource'™ : "product.price’,
"derivedPropertyFunction™ : "MIN",
“"jer:iprimaryType" : "endeca:derivedProperty"

},

"product.price_range"™ : {
"'sourcePropertyNames™ : ["product.price”],
"rangeComparisonType"™ : "FLOAT",
“"jer:iprimaryType" : "endeca:dimension"

}1

"common.id" : {

"isRecordFilterable™ : true,
""propertyDataType' : "ALPHA",
“"jeriprimaryType'™ : "endeca:property"

},

"precedenceRules" : {

"éearchlndexConfig" - {
"spellingDictMinNumWordOccurrences" : 4,
"spellingDictMaxWordLength™ : 16,
"isWildcardEnabledInDimensionSearch™ : true,

"spellingDictMinWordLength" : 3

Schema for precedence rules

You specify a precedence rule in the precedenceRules node of the index configuration file. The prece-
denceRules node is a sibling of the attributes node.

Schema for a precedenceRule node to define a precedence rule

Each node representing a precedence rule under precedenceRules can have the following schema properties:

Oracle Endeca Commerce Deployment Template Usage Guide

Name

Modifying Index Configuration for an Application | About the schema for the index configuration file 65

Data Type Description

isEnabled BOOLEAN Optional. Indicates whether the precedence rule is processed

by CAS when CAS writes MDEX-compatible output. A value
of true includes the precedence rule during processing;
false excludes the precedence rule. This setting is useful
when troubleshooting data issues for specific attributes.

isLeafTrigger BOOLEAN Optional. Specifies a Boolean to indicate if the trigger is a leaf

trigger or not. If set to true, the rule only triggers on leaf
dimension values.

mergeAction STRING Optional. The mergeAction enumerates the valid values that

describe how to merge the precedence rule into the index
configuration. Valid enumerations are ADD and UPDATE.
Specify a value of ADD to merge new precedence rules that
are not already in the system. Specify a value of UPDATE to
merge changes to an existing precedence rule. If omitted, the
default value of mergeAction is ADD.

triggerDimension STRING Required. Specifies the trigger dimension for a precedence

rule. Recall that a user's selection of the trigger dimension
reveals the previously unavailable target dimension to the
user.

triggerDimensionVal- | STRING Optional. Specifies the dimension value specification of the
ueSpec triggerDimension. If omitted, the precedence rule fires for

any selection from the trigger dimension.

targetDimension STRING Required. Specifies the target dimension for a precedence

rule.

Example index configuration for precedence rules

In this example, the utility returns index configuration from one owner, named ATG, and the precedenceRules
configuration type.

C:\Endeca\apps\Discover\control>index config cmd.bat get-config -o ATG -t prece-
denceRules

[07.26.12 12:57:19] INFO: Using site Discover at URL http://JSMITH-WIN7:8006/
ifcr with username admin

The output contains a precedenceRules root node, because that was the specified configuration type, and
then child nodes for two precedence rules:

{

"precedenceRules" : {

"aspectRatioDigitalCamerasRule” : {
"targetDimension"™ : "camera.aspect ratio',
"triggerDimensionValueSpec'™ : "'575",
"triggerDimension™ : "product.category”,
"isLeafTrigger” : false

}.

"digitalZoomDigitalCamerasRule" : {
"targetDimension"™ : "camera.digital zoom",
"triggerDimensionValueSpec'™ : 575",
"triggerDimension™ : "product.category”,
"isLeafTrigger” : false

}

Oracle Endeca Commerce Deployment Template Usage Guide

66 Modifying Index Configuration for an Application | About the schema for the index configuration file

}

Schema for global index configuration

You specify search configuration in the searchlIndexConfig node of the index configuration file. In this
release, the settings control spelling dictionary configuration and wildcard search. The searchlndexConfig
node is a sibling of the attributes and precedenceRules nodes.

Schema for a searchindexConfig node

Each property under searchIndexConfig represents an index configuration setting. The following properties

are available:
Name Data Type Description
spellingDictMin- |LONG Optional. Specifies the minimum number of times the word
NumWordOccur- must appear in the source data before the word should be
rences included in the spelling dictionary. This setting applies to record
search only. If omitted, the default value is 4.
For dimension search, this setting is always set to 1. (All
dimension value names are included in the spelling dictionary
by default.)
spellingDictMax- |LONG Optional. Specifies the maximum length of a word that should
WordLength be included in the spelling dictionary. Words longer than this
value are excluded. This setting applies to both dimension
search and record search. If omitted, the default value is 16.
isWildcardEn- BOOLEAN Optional. Specifies a Boolean to indicate that a query can
abledInDimension— contain a wildcard character (*) to match against fragments of
Search words in a dimension value. If omitted, the default value is
true.
spellingDictMin- |LONG Optional. Specifies the minimum character length for a word
WordLength to be included in the spelling dictionary. This setting applies

to both dimension search and record search. If omitted, the
default value is 3.

Example index configuration for global settings

In this example, the utility returns index configuration for the system owner. The index configuration is restricted
to only the searchIndexConfig type.
C:\Endeca\apps\Discover\control>index config _cmd.bat get-config -0 system -t
searchlndexConfig

[07.26.12 12:57:19] INFO: Using site Discover at URL http://JSMITH-WIN7:8006/
ifcr with username admin

The output contains a searchlndexConfig root node, because that was the specified configuration type,
and then properties for each configuration setting:

"searchlndexConfig"” : {
"spellingDictMinNumWordOccurrences" : 4,
"spellingDictMaxWordLength" : 16,

Oracle Endeca Commerce Deployment Template Usage Guide

Modifying Index Configuration for an Application | Getting the index configuration for an application 67

"isWildcardEnabledInDimensionSearch' : true,
"spellingDictMinWordLength™ : 3

Getting the index configuration for an application

The get-config task retrieves the index configuration for an application.

The syntax for this task is:

index_config_cmd get-config [-o OwnerName] [-f FileName]
[-r] [-t precedenceRules]attributes|searchlndexConfig]

Where:

» -0 (or —-owner) specifies an import owner for a task. If you specify the —o option, the task applies only
to the owner specified. The option can have an argument of al I, system, or user-specified owner. The
all owner includes both the system owner and all import owners. If you omit this option, the task applies
to the system owner. Optional.

+ —F (or —--File) specifies a path to a JSON output file that contains the index configuration. Omitting the
—T option prints the index configuration to standard out. Optional.

* —-r (or --repositoryMetadata) specifies whether to return metadata about each attribute value in the
index configuration. Metadata for an attribute includes properties such as jcr: lastModifiedBy,
jcr:createdBy, jcr:created, jcr:lastModified, and so on. Optional.

» —t (or —--type) specifies the type of index configuration you want the task to return. The arguments are
precedenceRules, attributes, and searchlndexConfig. Specifying precedenceRules returns
only precedence rules in the index configuration, or none. Specifying attributes returns the attributes
in the index configuration. Specifying searchIndexConfig returns only the global index configuration
settings. Omitting the -t option returns all types of index configuration. Optional.

&
77 Note: There is a size limit on the total number of attributes and precedence rules the task can retrieve.
If the index configuration that you are retrieving contains more than approximately 10,000 attributes and
precedence rules, the get-config task returns a Multiple Choices (300) error.

To get the index configuration for an application:

1. Start a command prompt and navigate to <app dir>\control (for Windows) or <app dir>/control
(for UNIX).

2. Type index_config_cmd and specify the get-config task.

-$. . .
7~ Note: This task name is case sensitive.

Example of getting the index configuration for an application

C:\Endeca\apps\Discover\control>index _config_cmd.bat get-config
[07.23.12 15:50:54] INFO: Using site Discover at URL http://JSMITH-WIN7:8006/
ifcr with username admin

"indexConfig" : {
"system™ : {
“attributes” : {
"product.price” : {
"propertyDataType'™ : "DOUBLE'",

Oracle Endeca Commerce Deployment Template Usage Guide

68 Modifying Index Configuration for an Application | Getting the index configuration for an application

“"JeriprimaryType"™ : "endeca:property"

"6roduct.brand.name" : {
""IsRecordSearchEnabled”™ : true,
"isAutogen' : true,

“"jeriprimaryType'™ : "endeca:dimension',
"multiSelectType"™ : "OR™

"éroduct.review.count" - {
"propertyDataType™ : "INTEGER",
"jeriprimaryType' : "endeca:property"

}1

"product.sku™ : {
""IsRecordSearchEnabled" : true,
"propertyDataType'™ : "ALPHA",
“JeriprimaryType" : "endeca:property"

}1

“"product.id” : {

"iIsRecordFilterable™ : true,
""IsRecordSearchEnabled" : true,
"propertyDataType"™ : "ALPHA",
"jeriprimaryType' : “endeca:property"

}1

"camera.color™ : {

"'sourcePropertyNames™ : ["camera.Colour of product™],
"iIsAutogen' : true,
“"jeriprimaryType' : "endeca:dimension'

},

"product.category"” : {
"'sourcePropertyNames™ : ['product.category_ id"],
""IsRecordSearchEnabled™ : true,
"JeriprimaryType" : "endeca:dimension"

"6roduct.name" - {
""IsRecordSearchEnabled" : true,
"propertyDataType' : "ALPHA",
“"jecriprimaryType'™ : "endeca:property"

"éroduct.features" : {

"iIsAutogen' : true,
"jeriprimaryType'™ : "endeca:dimension',
"multiSelectType™ : "AND"

},

"product.min_price" : {
"derivedPropertySource'" : "product.price",
"derivedPropertyFunction®™ : "MIN",
“jeriprimaryType"™ : "endeca:derivedProperty"

"6roduct-price_range" - {
"'sourcePropertyNames"™ : ["product.price"],
"rangeComparisonType' : "FLOAT",
“"Jer:iprimaryType" : "endeca:dimension"

}1

‘common. id" :

"iIsRecordFilterable™ : true,
"propertyDataType’ : "ALPHA",
"jeriprimaryType' : “endeca:property"

},

}1

Oracle Endeca Commerce Deployment Template Usage Guide

Modifying Index Configuration for an Application | Getting the merged index configuration for an application 69

"precedenceRules™ : {

}1

"searchlndexConfig"” : {
"spellingDictMinNumWordOccurrences" : 4,
"spellingDictMaxWordLength™ : 16,
"isWildcardEnabledInDimensionSearch™ : true,

"spellingDictMinWordLength™ : 3

Getting the merged index configuration for an application

The get-merged-config task retrieves the merged index configuration for an application. In other words,
the output of this task is the consolidated index configuration for all import owners.

This task is primarily used as a debugging tool to troubleshoot configuration and data issues in the
MDEX-compatible output files produced by a CAS crawl.

In some ways, the get-merged-config task is logically similar to get-config task with the owner option
(-o) set to al 1. However, there are several important differences between the two tasks:

» get-conTfig outputs configuration that is grouped in nodes by the owner name. get-merged-config
outputs the consolidated configuration with no distinction for ownership.

» get-config does not remove copies of attributes from other owners. For example, if an ATG owner adds
attribute A and system owner updates attribute A, get-config returns attribute A in the node for the
ATG owner and also the node for the system owner. Whereas, get-merged-config merges the copies
of the attribute and returns only one instance of attribute A which is from the system owner.

The syntax for this task is:
index_config_cmd get-merged-config [-f FileName]
[-t precedenceRules]attributes]|searchlndexConfig]

Where:

» —T (or —--File) specifies a path to a JSON output file that contains the index configuration. Omitting the
—f option prints the index configuration to standard out. Optional.

» —t (or —--type) specifies the type of index configuration you want the task to return. The arguments are
precedenceRules, attributes, and searchlndexConfig. Specifying precedenceRules returns
only precedence rules in the index configuration, or none. Specifying attributes returns the attributes
in the index configuration. Specifying searchIndexConfig returns only the global index configuration
settings. Omitting the -t option returns all types of index configuration. Optional.

To get the merged index configuration for an application:

1. Start a command prompt and navigate to <app dir>\control (for Windows) or <app dir>/control
(for UNIX).

2. Type index_config_cmd and specify the get-merged-config task.

5]
Note: This task name is case sensitive.

Oracle Endeca Commerce Deployment Template Usage Guide

70 Modifying Index Configuration for an Application | Getting the merged index configuration for an application

Example of getting the merged index configuration for an application

C:\Endeca\apps\Discover\control>index_config_cmd.bat get-merged-config

[08.17.12 11:48:05] INFO: Using site Discover at URL http://JSMITH-WIN7:8006/
ifcr with username admin

"indexConfig" : {
“attributes” : {
"product.price’ :

"propertyDataType'™ : "DOUBLE'",
"jeriprimaryType' : “endeca:property"
"product.brand.name"™ : {
""IsRecordSearchEnabled™ : true,
"isAutogen’ : true,
"JeriprimaryType' : "endeca:dimension',
"multiSelectType"™ : "OR"
},

"product.sku™ : {

""IsRecordSearchEnabled™ : true,
"propertyDataType' : "ALPHA"™,
"JeriprimaryType" : "endeca:property"

"product.id" : {

"isRecordFilterable™ : true,
""IsRecordSearchEnabled™ : true,
"propertyDataType' : "ALPHA"™,
"JeriprimaryType"™ : "endeca:property"

"camera.megapixel range" : {
"'sourcePropertyNames™ : ["camera.Megapixel™],
"rangeComparisonType™ : "FLOAT",
“"jJeriprimaryType"™ : "endeca:dimension"

},

"product.category" : {
"'sourcePropertyNames"™ : ["product.category id"],
""IsRecordSearchEnabled" : true,
“jJeriprimaryType"™ : "endeca:dimension'

"product.name" : {

""IsRecordSearchEnabled" : true,
"propertyDataType" : "ALPHA",
"JjecriprimaryType"™ : "endeca:property"

"product.features™ : {

"iIsAutogen' : true,
"JeriprimaryType'" : "endeca:dimension',
"multiSelectType"™ : "AND"

},

"product.min_price™ : {
"derivedPropertySource'™ : "product.price’,
"derivedPropertyFunction™ : "MIN",
"JeriprimaryType"™ : "endeca:derivedProperty"

"6roduct.code" - {
"isRollupKey™ : true,

""IsRecordSearchEnabled™ : true,

"JeriprimaryType" : "endeca:property",

"propertyDataType' : "ALPHA"
"6roduct.price_range" - {

Oracle Endeca Commerce Deployment Template Usage Guide

Modifying Index Configuration for an Application | Setting the index configuration for an application 7

"'sourcePropertyNames™ : ["product.price"”],
"rangeComparisonType" : "FLOAT",
“"jeriprimaryType' : "endeca:dimension'
"6roduct.max_price" - {
"derivedPropertySource™ : 'product.price’,
"derivedPropertyFunction™ : "MAX",
"JeriprimaryType" : "endeca:derivedProperty"
"6roduct.long_desc" - {
""IsRecordSearchEnabled" : true,
"propertyDataType' : "ALPHA",
“"JeriprimaryType'™ : "endeca:property"
}1
"product.short_desc™ : {
""IsRecordSearchEnabled” : true,
"propertyDataType"™ : "ALPHA",
“"jJeriprimaryType™ : "endeca:property"
}1
"precedenceRules" : {
}1
"searchIndexConfig™ : {
"spellingDictMinNumWordOccurrences™ : 4,
"spellingDictMaxWordLength™ : 16,
"isWildcardEnabledInDimensionSearch”™ : true,
"spellingDictMinWordLength" : 3
he

Setting the index configuration for an application

The set-config task sets the index configuration for a specified owner. You provide the index configuration
in a JSON file.

Running this task overwrites any previous index configuration for the owner. Oracle recommends that developers
who modify the index configuration, use the default system owner. This usage separates index configuration
that comes from the system owner from configuration that comes from import operations which are owner by
a user-specified owner. If the JSON configuration file contains index configuration from multiple owners, you
must specify the -0 option with a value of al I.

If desired, you can also update an Endeca property to become a dimension by modifying the jcr:primaryType
from endeca:property to endeca:dimension. However, you cannot modify it from dimension to property.
The syntax for this task is:

index_config_cmd set-config [-o0 OwnerName] -f FileName

Where:

* -0 (or -—owner) specifies an import owner for a task. If you specify the —o option, the task applies only
to the owner specified. The option can have an argument of al I, system, or a user-specified import owner.
The al Il owner includes both the system owner and all import owners. If you omit this option, the task
applies to the system owner. Optional.

« —F (or --File) specifies a path to a JSON file that contains the index configuration. Required.

Oracle Endeca Commerce Deployment Template Usage Guide

72

Modifying Index Configuration for an Application | Deleting the index configuration associated with an owner

To set the index configuration for an application:

1. Start a command prompt and navigate to <app dir>\control (for Windows) or <app dir>/control
(for UNIX).

2. Type index_config_cmd and specify the set-config task and the -F option with a path to the JSON
file.

S
Note: This task name is case sensitive.

Examples of setting the index configuration for an application

This example sets index configuration from three owners.

C:\Endeca\apps\Discover\control>index_ config_cmd.bat set-config -f C:\temp\index-
ConfigAllOwners.json -o all

[07.24.12 15:53:58] INFO: Using site Discover at URL http://JSMITH-WIN7:8006/
ifcr with username admin

You are attempting to write schema configuration that will be overwritten in the

event of a fresh import.
Are you sure you want to continue? (y/n)
Yy

This example sets index configuration from an owner named ATG.

C:\Endeca\apps\Discover\control>index_config_cmd.bat set-config -f C:\temp\index-
ConfigATGOwner . json -o ATG

[07.24.12 16:23:06] INFO: Using site Discover at URL http://JSMITH-WIN7:8006/
ifcr with username admin

You are attempting to write schema configuration that will be overwritten in the

event of a fresh import.
Are you sure you want to continue? (y/n)

y

Deleting the index configuration associated with an owner

The delete-owner task removes index configuration from an application that is associated with an owner
that you specify.

The syntax for this task is:
index_config_cmd delete-owner -o OwnerName
Where:

» -0 (or —-owner) specifies an import owner for a task. If you specify the —o option, the task applies only
to a user-specified owner. You cannot delete the system or al | owners. Required.

To delete the index configuration associated with an owner:
1. Start a command prompt and navigate to <app dir>\control (for Windows) or <app dir>/control
(for UNIX).

2. Type index_config_cmd and specify the delete-owner task with an argument for the owner's index
configuration that you want to remove.

Oracle Endeca Commerce Deployment Template Usage Guide

Modifying Index Configuration for an Application | An example of changing multi-select on a dimension 73
‘ . . e
Note: This task name is case sensitive.

Example of deleting the index configuration associated with an owner

This example deletes the index configuration for the ATG owner.

C:\Endeca\apps\Discover\control>index config cmd.bat delete-owner -o ATG
[07.24.12 17:14:50] INFO: Using site Discover at URL http://JSMITH-WIN7:8006/
ifcr with username admin

An example of changing multi-select on a dimension

This topic provides a simple example of using the Index Configuration Command-line Utility to update index
configuration. In this example, suppose an import owner named ATG has added index configuration to an
Endeca application. You want to update the index configuration by adding multiSelectType to the prod-
uct.category dimension.

The steps to accomplish this are as follows:

1. Retrieve the index configuration by running:
C:\Endeca\apps\<app dir>\control>index_config_cmd.bat get-config -o ATG -f
C:\temp\indexConfig-json

2. Open the resulting JSON file and locate the product.category attribute:
"indexConfig" : {

"attributes" : {
"product.category™” : {

"'sourcePropertyNames™ : ["product.category id"],
""IsRecordSearchEnabled" : true,
“"jer:iprimaryType" : "endeca:dimension"
},
},

3. Add multiSelectType and set the value to OR, and also add the mergeAction with a value of UPDATE.
You can delete other properties of the attribute because they are not changing as part of the update:

"indexConfig" : {
"attributes" : {
"product.category" : {
"mergeAction" : "UPDATE",
"multiSelectType™ : "OR™,
}.
}.

4. Set the revised index configuration by running:

C:\Endeca\apps\<app dir>\control>index_config_cmd.bat set-config -o ATG
-f C:\temp\indexConfig. json

5. If desired, examine the merged configuration by running:

C:\Endeca\apps\<app dir>\control>index_config_cmd.bat get-merged-config
-f C:\temp\indexConfig.json

Oracle Endeca Commerce Deployment Template Usage Guide

Modifying Index Configuration for an Application | An example of changing a product.brand.name property to
a dimension

You see the following:

"indexConfig" : {
“"ATG" @ {
“attributes” : {
"product.category" : {
"'sourcePropertyNames™ : ["product.category id"],
""IsRecordSearchEnabled” : true,
"multiSelectType"™ : "OR",
“jeriprimaryType'™ : "endeca:dimension'
3,
}.

An example of changing a product.brand.name property to a
dimension

This topic provides a simple example of using the Index Configuration Command-line Utility to update index
configuration. In this example, suppose an import owner named ATG has added index configuration to an
Endeca application. You want to update the index configuration by changing the product.brand.name
attribute from an Endeca property to an Endeca dimension.

The steps to accomplish this are as follows:

1. Retrieve the index configuration by running:

C:\Endeca\apps\<app dir>\control>index_config_cmd.bat get-config -o ATG -f
C:\temp\indexConfig.-json

2. Open the resulting JSON file and locate the product.brand.name attribute:

"indexConfig" : {
"attributes" : {

"product.brand.name" : {
""IsRecordSearchEnabled” : true,
“jeriprimaryType'™ : "endeca:property™

}1

}.

3. Change jcr:primaryType from endeca:property to endeca:dimension, add the mergeAction
with a value of UPDATE, and also add isAutogen with a value of true:

"indexConfig" : {
"attributes" : {

"product.brand.name™ : {
"mergeAction' : "UPDATE",
"isAutogen' : true,
"Jer:iprimaryType'™ : "endeca:dimension',
"multiSelectType" : "OR™
3.

Oracle Endeca Commerce Deployment Template Usage Guide

Modifying Index Configuration for an Application | An example of setting dimension display order 75

4. Set the revised index configuration by running:

C:\Endeca\apps\<app dir>\control>index_config_cmd.bat set-config -o ATG
-f C:\temp\indexConfig. json

5. If desired, examine the merged configuration by running:

C:\Endeca\apps\<app dir>\control>index_config_cmd.bat get-merged-config
-f C:\temp\indexConfig.json

You see the following:

"indexConfig" : {
“attributes” : {

"product.brand.name"™ : {
"isHierarchicalDimensionSearchEnabled" : true,
""IsRecordSearchEnabled" : true,
"isAutogen' : true,
"jer:iprimaryType"™ : "endeca:dimension',
"multiSelectType™ : "OR™

3,

An example of setting dimension display order

This topic provides an example of how the displayOrder property sets the display order of dimensions in
the discover-data-cas application.

The following JSON snippet shows the displayOrder property for the Category dimension, Price Range
dimension, and Brand Name dimension, where displayOrder is set to 0, 1, and 2, respectively.

"product.category" : {
"displayOrder"™ : 0,

"'sourcePropertyNames™ : ["product.category id"],

""isRecordSearchEnabled™ : true,

“"jer:iprimaryType" : "endeca:dimension"
"product.price_range"™ : {

"'sourcePropertyNames"™ : ["product.price"],

“displayOrder™ : 1,

"rangeComparisonType' : "FLOAT",

“"jer:iprimaryType" : "endeca:dimension"
"product.brand.name" : {

"isHierarchicalDimensionSearchEnabled™ : true,

“displayOrder™ : 2,

""IsRecordSearchEnabled" : true,

"isAutogen' : true,

"jeriprimaryType'™ : "endeca:dimension',

"multiSelectType"™ : "OR™

}

When the dimensions are rendered in the Discover Electronics reference application, they render in the order
specified by the property value. Category displays first, Price Range second, and Brand Name third:

Oracle Endeca Commerce Deployment Template Usage Guide

76 Modifying Index Configuration for an Application | An example of setting dimension display order

Narrow Your Results

Category
Bags 8 Cases (665)
Cameras (4851)

Price Range
Under 25 (81)

25 - 50 (98)

50 - 100 (170)
100 - 250 (548)
250 - 500 (915)
500 - 1000 (1912)
Over 1000 (1934)

Brand Name

AdTech {13)
Alecto (5)
Approx (3)

Asus (1)

Belkin (2)

Benq (38)

Canon (2306)
Canyon (13)
Case Logic (176)
Cisco (24)

Oracle Endeca Commerce Deployment Template Usage Guide

Chapter 5
Managing Data Operations

This section describes how to incorporate test data and production data into an application.

Running a baseline update with test data

A deployed application includes test data that you can process with baseline update scripts, baseline test data,
and a baseline Forge pipeline. Because this task describes test data, not production data, you use the
load_baseline_test_data script to simulate the data extraction process (or to set the data readiness
signal, in the case of an application that uses a non-extract data source).

The load_baseline_test data script loads the test data stored in <app dir>/test_data/baseline
and runs the set_baseline_data ready_flag script which sets a flag in the EAC indicating that data has
been extracted and is ready for baseline update processing.

&
77" Note: This script is not required in applications that use CAS to produce MDEX-compatible output.

When you are done familiarizing yourself with the data processing steps and the test data, see Running a
baseline update with production data on page 78. Processing production data requires the following changes
to an application' s configuration:

* Replace the steptorun load_baseline_test_ data with a data extraction process that delivers production
data into the <app dir>/test_data/baseline directory. Delete the data. txt file from <app
dir>/test_datas/baseline. This step is not necessary if your application does not use data extracts:
for example, if your application retrieves data directly from a database via ODBC or JDBC or from a CAS
crawl.

» Set the baseline_data_ready flag in the EAC. You set the basel ine_data_ready flag by making
a Web service call to the EAC or by running the set_baseline_data_ready_flag script.

To run a baseline update with test data:

1. Ensure that the Endeca HTTP Service is running on each server in the deployment environment and that
you have already deployed and initialized an application.

2. Start a command prompt (on Windows) or a shell (on UNIX).
3. Navigate to the control directory of deployed application.

This is located under your application directory. For example: C:\Endeca\apps\<app dir>\control.

4. Run the load_baseline_test data script.

78 Managing Data Operations | Running a baseline update with production data

5.

6.

* On Windows:
<app dir>\control\load baseline_test data.bat

* On UNIX:
<app dir>/control/load_baseline_test data.sh

Run the basel ine_update script.

* On Windows:
<app dir>\control\baseline_update.bat

+ On UNIX:
<app dir>/control/baseline_update.sh

Examine the indexed data in an Endeca front-end application.

For example, start a Web browser and open the JSP reference application at
http://l1ocalhost:8006/endeca_jspref.

You should see 10 records.

Running a baseline update with production data

You run the basel ine_update script to process production data and distribute the resulting index files to
one or more Dgraphs. Production data may come from any number of sources including data extracts, CAS
crawls, or direct calls to a database via ODBC or JDBC.

To run a baseline update with production data:

1.

Ensure that the Endeca HTTP Service is running on each server in the deployment environment and that
you have already deployed and initialized an application.

Replace the default Forge pipeline (Developer Studio configuration files) in <app dir>/config/pipeline
with the Developer Studio configuration files for your application. For details, see Replacing the Default
Forge Pipeline on page 47.

Replace the baseline test data stored in <app dir>/test_data/baseline with production data for the
application. This step varies depending on your application requirements. It can include any of the following
approaches:

* Add a data extract file to the <app dir>/test_data/baseline and delete the test data extract.
» Set up a CAS crawl to run as part of the basel ine_update script.
* Make a direct call to a database via ODBC or JDBC.

Start a command prompt (on Windows) or a shell (on UNIX).
Navigate to the control directory of deployed application.

This is located under your application directory. For example: C:\Endeca\apps\<app dir>\control.

Set the baseline_data_ready flag in the EAC by running the set_baseline_data_ready_flag
script.

e On Windows:
<app dir>\control\set baseline_data_ready flag.bat

Oracle Endeca Commerce Deployment Template Usage Guide

7.

8.

Managing Data Operations | Running a partial update with production data 79

* On UNIX:
<app dir>/control/set baseline_data ready flag.sh

&
7~ Note: This script is not required in applications that use CAS to produce MDEX-compatible output.

Run the basel ine_update script.

¢ On Windows:
<app dir>\control\baseline update.bat

+ On UNIX:
<app dir>/control/baseline_update.sh

Examine the indexed data in an Endeca front-end application.
For example, start a Web browser and open the JSP reference application at
http://1ocalhost:8006/endeca_jspref.

Running a partial update with production data

You run the partial_update script to process incremental changes in production data and distribute the
resulting index files to one or more Dgraphs. Production data may come from any number of sources including
data extracts, CAS crawls, or direct calls to a database via ODBC or JDBC.

For more information on partial updates, see the MDEX Engine Partial Updates Guide.

To run a partial update with production data:

1.

Ensure that the Endeca HTTP Service is running on each server in the deployment environment and that
you have already deployed and initialized an application.

Replace the default Forge pipeline (Developer Studio configuration files) in <app dir>/config/pipeline

with the Developer Studio configuration files for your application. For details, see Replacing the Default
Forge Pipeline on page 47.

. Provide the partial data (incremental data changes since the last baseline update). This step varies depending

on the application requirements. It can include any of the following approaches:

» Add a data extract file to the <app dir>/test_data/partial.
» Set up a CAS crawl to run as part of the basel ine_update script.
* Make a direct call to a database via ODBC or JDBC.

Start a command prompt (on Windows) or a shell (on UNIX).
Navigate to the control directory of deployed application.

This is located under your application directory. For example: C:\Endeca\apps\<app dir>\control.

Setthe partial_data_ready flag in the EAC by running the set_partial_data_ready_flag script.

* On Windows:
<app dir>\control\set partial_data ready flag.bat

* On UNIX:
<app dir>/control/set partial _data ready flag.sh

Oracle Endeca Commerce Deployment Template Usage Guide

80 Managing Data Operations | Running CAS crawls

7. Run the partial_update script.
* On Windows:
<app dir>\control\partial update.bat

+ On UNIX:
<app dir>/control/partial_update.sh

8. Examine the indexed data in an Endeca front-end application.
For example, start a Web browser and open the JSP reference application at
http://1ocalhost:8006/endeca_jspref.

Running CAS crawls

In your Datalngest.xml code, you can run baseline or partial updates that include CAS crawls using the
methods available in ContentAcquisitionServerComponent.

For details about ContentAcquisitionServerComponent, see the EAC Component API Reference for
CAS Server (Javadoc) installed in CAS\<ver si on>\doc\cas-dt-javadoc and see the CAS examples in
Script Reference on page 81.

Oracle Endeca Commerce Deployment Template Usage Guide

Chapter 6
Script Reference

This section describes scripts that are included with the Deployment Template, provides additional sample
scripts, and provides information about running and configuring them.

Analyzing Deployment Script Errors

When errors occur during the execution of a deployment template script, consult the error messages in the
log files of the Endeca Application Controller (EAC) or the Workbench for information about the errors. These
messages can help you analyze the cause of the errors by revealing the server state, operations performed,
and exceptions encountered by Workbench or EAC Note that deployment template scripts rely primarily on
EAC and Workbench web services, invoking their operations in sequence to accomplish the overall task.

Deployment Template script reference

The Deployment Template includes a set of utility scripts with deployed applications.

The following scripts are available in the control directory of a deployed application:

Script Purpose

baseline_update Runs a baseline update.

export_site Takes a path to an XML file as an argument and exports the content

in the Endeca Configuration Repository to the specified XML file.

If no file is specified, site data is exported to
<App_Name>-<timestamp>.xml, where the timestamp format is
YYYY-MM-DD_HH-MM-SS.

get_editors_config Exports editor configuration to the <app

dir>\config\editors\config directory.

get_media Exports media configuration to the <app dir>\config\media

directory.

82 Script Reference | Deployment Template script reference

Script
get_templates

import_site

load_baseline_test _data

load_partial_test data

partial_update

promote_content

runcommand

set _baseline _data ready flag

set_editors_config

set_media

set_partial_data ready_ flag

set_templates

Purpose

Exports template configuration to the <app
dir>\config\cartridge_templates directory.

Takes a path to an XML file and imports the content to the Endeca
Configuration Repository. Optionally, you can use the —-force flag
to override the confirmation prompt for overwriting site content that
already exists.

Copies data from the <app dir>\test _data\basel ine\ directory
to <app dir>\data\incoming for a baseline update and calls the
set baseline_data_ready flag script.

Copies data from the <app dir>\test_data\partial\ directory
to<app dir>\data\partials\incoming fora partial update and
calls the set_partial_data_ready flag script.

Runs a partial update.

Promotes content and configuration in the authoring environment to
the live environment.

Provides a means of invoking methods in AppConfig.xml against
specified instances of objects.

You can run runcommand with the —-hel p flag for a list of command
line arguments and flags.

Sets the basel ine_data_ready flag in the EAC.

5.3
Note: This script is not required in applications that use CAS
to produce MDEX-compatible output.

Imports editor configuration from <app
dir>\config\editors\config to the Endeca Configuration
Repository.

Imports media from <app dir>\config\media to the Endeca
Configuration Repository.

Sets the partial_extract flag in the EAC.

Imports templates from <app
dir>\config\cartridge_templates to the Endeca Configuration
Repository.

Oracle Endeca Commerce Deployment Template Usage Guide

Script Reference | Provisioning scripts 83

Script Purpose
initialize_services This script should be run once after deploying an application. It does
the following:

* Removes existing application provisioning

» Sets new EAC provisioning and performs initial setup
+ Calls set_editors_config

+ Calls set_media

» Calls set_templates

Provisioning scripts

The EAC allows scripts to be provisioned and invoked via Web service calls. A script is provisioned by specifying
a working directory, a log directory into which output from the script is recorded, and a command to execute
the script.

The AppConfig.xml document allows defined scripts to be provisioned by specifying the command used to
invoke the script from the command line. When the provisioning configuration information is included, the script
is provisioned and becomes available for invocation via Web service calls or from the EAC Admin console in
Oracle Endeca Workbench. When excluded, the script is not provisioned.
<script id="BaselineUpdate'>
<log-dir>_/logs/provisioned_scripts</log-dir>
<provisioned-script-command>
-/control/baseline_update.bat
</provisioned-script-command>
<bean-shell-script>
<I[CDATA[

11>)
</bean-shell-script>
</script>

The command line used to invoke scripts can always be specified in this form, relative to the default Deployment
Template working directory:

-/control/runcommand. [sh]bat] [script id]

Forge-based data processing

The Deployment Template supports running baseline and partial updates using Forge. In this processing
model, an update essentially runs a CAS crawl (if applicable), Forge, Dgidx, and then updates the Dgraphs in
an application.

Oracle Endeca Commerce Deployment Template Usage Guide

84 Script Reference | Forge-based data processing

Dgraph baseline update script using Forge

The baseline update script defined in the Datalngest.xml document for a Dgraph deployment is included
in this section, with numbered steps indicating the actions performed at each point in the script.

<script id="BaselineUpdate'>
<I[CDATA[
log.info('Starting baseline update script.™);

1. Obtain lock. The baseline update attempts to set an ""update_lock"" flag in the EAC to serve as a lock
or mutex. If the flag is already set, this step fails, ensuring that the update cannot be started more than
once simultaneously, as this would interfere with data processing. The flag is removed in the case of an
error or when the script completes successfully.

// obtain lock
if (LockManager.acquireLock("'update lock™)) {

2. Validate data readiness. Check that a flag called "basel ine_data_ready" has been set in the EAC. This
flag is set as part of the data extraction process to indicate that files are ready to be processed (or, in the
case of an application that uses direct database access, the flag indicates that a database staging table
has been loaded and is ready for processing). This flag is removed as soon as the script copies the data
out of the data/incoming directory, indicating that new data may be extracted.

// test if data is ready for processing
if (Forge.isDataReady()) {

3. Clean processing directories. Files from the previous update are removed from the data/processing,
data/forge_output, data/temp, data/dgidx_output and
data/partials/cumulative_partials directories.

// clean directories

Forge.cleanDirs();
PartialForge.cleanCumulativePartials();
Dgidx.cleanDirs();

4. Copy data to processing directory. Extracted data in data/Zincoming is copied to data/processing.
// fetch extracted data files to forge input
Forge.getlncomingData();

5. Release Lock. The "basel ine_data_ready" flag is removed from the EAC, indicating that the incoming
data has been retrieved for baseline processing.

LockManager .releaselLock(*'baseline_data ready');

6. Copy config to processing directory. Configuration files are copied from data/complete_index_config
to data/processing.
// fetch config files to forge input
Forge.getConfig();

7. Archive Forge logs. The logs/forges/Forge directory is archived, to create a fresh logging directory
for the Forge process and to save the previous Forge run's logs.

// archive logs
Forge.archiveLogDir(Q);

8. Forge. The Forge process executes.
Forge.run();

Oracle Endeca Commerce Deployment Template Usage Guide

9.

10.

1.

12

13

Script Reference | Forge-based data processing 85

Archive Dgidx logs. The logs/dgidxs/Dgidx directory is archived, to create a fresh logging directory for
the Dgidx process and to save the previous Dgidx run's logs.

// archive logs
Dgidx.archiveLogDir();

Dgidx. The Dgidx process executes.
Dgidx.runQ);

Distribute index to each server. A single copy of the new index is distributed to each server that hosts a
Dgraph. If multiple Dgraphs are located on the same server but specify different srcIndexDir attributes,
multiple copies of the index are delivered to that server.

Update MDEX Engines. The Dgraphs are updated. Engines are updated according to the restartGroup
property specified for each Dgraph. The update process for each Dgraph is as follows:

Create dgraph_input_new directory.

Create a local copy of the new index in dgraph_input_new.
Stop the Dgraph.

Archive Dgraph logs (e.g. logs/dgraphs/Dgraphl) directory.
Rename dgraph_input to dgraph_input_old

Rename dgraph_input_new to dgraph_input.
Start the Dgraph.

Remove dgraph_input_old.

Se@ o0 a0 T

This somewhat complex update functionality is implemented to minimize the amount of time that a Dgraph
is stopped. This restart approach ensures that the Dgraph is stopped just long enough to rename two
directories.

// distributed index, update Dgraphs
DistributelndexAndApply.run(Q);

<script id="DistributelndexAndApply'>
<bean-shell-script>
<I[CDATAL
DgraphCluster.cleanDirs();
DgraphCluster.copylndexToDgraphServers();
DgraphCluster.applylndex();
11>
</bean-shell-script>
</script>

If Workbench integration is enabled, upload post-Forge dimensions to Oracle Endeca Workbench. The
latest dimension values generated by the Forge process are uploaded to Oracle Endeca Workbench, to
ensure that any new dimension values (including values for autogen dimensions and external dimensions)
are available to Oracle Endeca Workbench for use in, for example, dynamic business rule triggers.

]
7 Note: This action does not add new dimensions or remove existing dimensions. These changes can
be made by invoking the update _web_studio_config. [bat]sh] script.

// if Workbench is integrated, update Workbench with latest

// dimension values

if (ConfigManager.isWebStudioEnabled()) {
ConfigManager.cleanDirs();
Forge.getPostForgeDimensions();
ConfigManager .updateWsDimensions();

Oracle Endeca Commerce Deployment Template Usage Guide

86 Script Reference | Forge-based data processing

14. Archive index and Forge state. The newly created index and the state files in Forge's state directory are
archived on the indexing server.
// archive state files, index

Forge.archiveState();
Dgidx.archivelndex();

15. Cycle LogServer. The LogServer is stopped and restarted. During the downtime, the LogServer's error and
output logs are archived.

// cycle LogServer
LogServer.cycle();

16. Release Lock. The "update_lock" flag is removed from the EAC, indicating that another update may be
started.

// release lock
LockManager . releaseLock('update_lock™);

log.info("'Baseline update script finished.");

} else {

log.warning(""Failed to obtain lock."™);

11> .
</bean-shell-script>
</script>

Related Links
Dgraph partial update script using Forge on page 86
The partial update script defined in the Datalngest.xml document for a Dgraph deployment is

included in this section, with numbered steps indicating the actions performed at each point in the
script.

Dgraph partial update script using Forge

The partial update script defined in the Datalngest.xml document for a Dgraph deployment is included in
this section, with numbered steps indicating the actions performed at each point in the script.

<script id="PartialUpdate">
<bean-shell-script>
<I[CDATAL

1. Obtain lock. The partial update attempts to set an "update_lock" flag in the EAC to serve as a lock or
mutex. If the flag is already set, this step fails, ensuring that the update cannot be started more than once
simultaneously, as this would interfere with data processing. The flag is removed in the case of an error or
when the script completes successfully.

log.info(''Starting partial update script.');
// obtain lock
iT (LockManager.acquireLock('update_lock™)) {

2. Validate data readiness. Test that the EAC contains at least one flag with the prefix "partial_extract: :".
One of these flags should be created for each successfully and completely extracted file, with the prefix
"partial_extract: :" prepended to the extracted file name (e.g. "partial_extract: :adds.txt.gz").
These flags are deleted during data processing and must be created as new files are extracted.

// test if data is ready for processing
if (PartialForge.isPartialDataReady()) {

Oracle Endeca Commerce Deployment Template Usage Guide

Script Reference | Forge-based data processing 87

3. Archive partial logs. The logs/partial directory is archived, to create a fresh logging directory for the
partial update process and to save the previous run's logs.

// archive logs
PartialForge.archivelLogDir();

4. Clean processing directories. Files from the previous update are removed from the
data/partials/processing, data/partials/forge_output, and data/temp directories.

// clean directories
PartialForge.cleanDirs();

5. Move data and config to processing directory. Extracted files in data/partials/incoming with matching
"partials_extract: :" flags in the EAC are moved to data/partials/processing. Configuration
files are copied from config/pipeline to data/processing

// Tetch extracted data files to forge input
PartialForge.getPartial IncomingData();

// fTetch config files to forge input
PartialForge.getConfig();

6. Forge. The partial update Forge process executes.

// run ITL
PartialForge.run(Q);

7. Apply timestamp to updates. The output XML file generated by the partial update pipeline is renamed to
include a timestamp, to ensure it is processed in the correct order relative to files generated by previous
or following partial update processes.

// timestamp partial, save to cumulative partials dir
PartialForge.timestampPartials();

8. Copy updates to cumulative updates. The timestamped XML file is copied into the cumulative updates
directory.

PartialForge.fetchPartialsToCumulativeDir();

9. Distribute update to each server. A single copy of the partial update file is distributed to each server specified
in the configuration.
// distribute partial update, update Dgraphs
DgraphCluster.copyPartialUpdateToDgraphServers();

10. Update MDEX Engines. The Dgraph processes are updated. Engines are updated according to the update-
Group property specified for each Dgraph. The update process for each Dgraph is as follows:

a. Copy update files into the dgraph_input/updates directory.
b. Trigger a configuration update in the Dgraph by calling the URL admin?op=update.

DgraphCluster.applyPartialUpdates();

11. Archive cumulative updates. The newly generated update file (and files generated by all partial updates
processed since the last baseline) are archived on the indexing server.
// archive partials
PartialForge.archiveCumulativePartials();

12 Release Lock. The "update_lock" flag is removed from the EAC, indicating that another update may be
started.

// release lock
LockManager .releaselLock("update_ lock™™);

Oracle Endeca Commerce Deployment Template Usage Guide

88 Script Reference | Forge-based data processing

log.info(""Partial update script finished.™);

else {
log.warning("'Failed to obtain lock.");
}

1>
</bean-shell-script>
</script>

Preventing non-nillable element exceptions

When running the partial updates script, you may see a Java exception similar to this example:

INFO: Starting copy utility "copy partial _update to host MDEXHostl".

Oct 20, 2008 11:46:37 AM org.apache.axis.encoding.ser_BeanSerializer serialize
SEVERE: Exception:

Java.io.10Exception: Non nillable element "fromHostID" is null.

If this occurs, make sure that the following properties are defined in the AppConfig.xml configuration file:
<dgraph-defaul ts>
<properties>

<property name="'srcPartialsDir" value="_/data/partials/forge_output" />
<property name="'srcPartialsHostld" value="ITLHost" />
<property name="'srcCumulativePartialsDir" value="_/data/partials/cumula-
tive partials" />
<property name="'srcCumulativePartialsHostld" value="I1TLHost" />
</properties>

</dgraph-defaults>

The reason is that the script is obtaining the FfromHost D value from this section.

Related Links
Dgraph baseline update script using Forge on page 84
The baseline update script defined in the Datalngest.xml document for a Dgraph deployment is
included in this section, with numbered steps indicating the actions performed at each point in the
script.

Dgraph baseline update script using Forge and a CAS full crawl script

After running a full CAS crawl, you can run a baseline update using Forge to incorporate the records from a
Record Store instance.

This example runs a baseline update that includes a full CAS crawl. The crawl writes output to a Record Store
instance and then Forge incorporates the records from the crawl. To create this sequential workflow of CAS
crawl and then baseline update, you can do the following:

* Remove the default Forge . isDataReady check from the baseline update script. This call handles
concurrency control around Forge input files. The Record Store has built-in logic to handle concurrency
between read and write operations, so no external concurrency control is required. Removing this call
means that the lock manager does not check the flag or wait on the flag to be cleared before running a
CAS crawl.

» Add a call to runBasel ineCasCrawl () to run the full CAS crawl.

* Remove the call to Forge.getlncomingData() that fetches extracted data files.

Oracle Endeca Commerce Deployment Template Usage Guide

Script Reference | Forge-based data processing 89

For example, this baseline update script calls CAS. runBasel ineCasCrawl (""MyCrawl'™) which runs a full
CAS crawl that writes output to a Record Store instance. Then the script continues with baseline update
processing.

<l--
HHHHHH
Baseline update script
#
-——>
<script id="BaselineUpdate">
<log-dir>./logs/provisioned_scripts</log-dir>
<provisioned-script-command>./control/baseline_update.bat</provisioned-script-
command>
<bean-shell-script>
<I[CDATAL
log.info(''Starting baseline update script.');
// obtain lock
iT (LockManager.acquireLock("'update lock™)) {

// call the baseline crawl script to run a full CAS
// crawl.
CAS.runBaselineCasCrawl (""MyCrawl™);

// clean directories

Forge.cleanDirs();
PartialForge.cleanCumulativePartials();
Dgidx.cleanDirs();

// fTetch extracted data files to forge input
Forge.getlncomingData();
LockManager .removeFlag(“'baseline_data_ready™);

// fetch config Files to forge input
Forge.getConfig();

// archive logs and run ITL
Forge.archivelLogDir();
Forge.runQ);
Dgidx.archiveLogDir();
Dgidx.runQ);

// distributed index, update Dgraphs
DistributelndexAndApply.run();

WorkbenchManager .cleanDirs();
Forge.getPostForgeDimensions();
WorkbenchManager .updateWsDimensions();

// archive state files, i1ndex
Forge.archiveState();
Dgidx.archivelndex();

// (start or) cycle the LogServer
LogServer.cycle();

// release lock
LockManager .releaselLock("'update_lock™);
log.info("'Baseline update script finished.");

} else {
log.warning(""Failed to obtain lock."™);
}

Oracle Endeca Commerce Deployment Template Usage Guide

90 Script Reference | Forge-based data processing

11>)
</bean-shell-script>
</script>

You run the baseline update by running basel ine_update in the apps/<app dir>/control directory.

For example:
C:\Endeca\apps\DocApp\control>baseline_update.bat

Dgraph partial update script using Forge and a CAS incremental crawl script

After running an incremental CAS crawl, you can run a partial update that incorporates the records from a
Record Store instance.

To create this sequential workflow of incremental CAS crawl and then partial update, you can do the following:

* Remove the default PartialForge. isPartialDataReady check from the partial update script. This
call handles concurrency control around Forge input files. The Record Store has built-in logic to handle
concurrency between read and write operations, so no external concurrency control is required. Removing
this call means that the lock manager does not check the flag or wait on the flag to be cleared before
running a CAS crawl.

* Add a call runlncrementalCasCrawl () to run the incremental CAS crawl.

+ If the pipeline does not read from sources in the Forge incoming directory, remove the call to Partial-
Forge.getPartial IncomingData() that fetches extracted data files.

For example, this partial update script calls CAS. runlncrementalCasCrawl (*"MyCrawl'") which runs an
incremental CAS crawl named MyCrawl. Then the script continues with partial update processing.

<l--
HHHHH
Partial update script
#
-——>
<script id="PartialUpdate'>
<log-dir>./logs/provisioned_scripts</log-dir>
<provisioned-script-command>./control/partial_update.bat</provisioned-script-
command>
<bean-shell-script>
<I[CDATAL
log.info("'Starting partial update script.');

// obtain lock
if (LockManager.acquireLock("'update lock™)) {

// call the partial crawl script to run an incremental
// CAS crawl.
CAS.runlncrementalCasCrawl (""MyCrawl™);

// archive logs
PartialForge.archivelLogDir();

// clean directories
PartialForge.cleanDirs();

// Tetch config files to forge input
PartialForge.getConfig();

// run ITL
PartialForge.run();

Oracle Endeca Commerce Deployment Template Usage Guide

Script Reference | CAS-based data processing 91

// timestamp partial, save to cumulative partials dir
PartialForge.timestampPartials();
PartialForge.fetchPartialsToCumulativeDir();

// distribute partial update, update Dgraphs
DgraphCluster.cleanLocalPartialsDirs();
DgraphCluster.copyPartialUpdateToDgraphServers();
DgraphCluster.applyPartialUpdates();

// archive partials
PartialForge.archiveCumulativePartials();

// release lock

LockManager .releaselLock('update_lock™™);

log.info("Partial update script finished.");
} else {

log.warning("'Failed to obtain lock."™);

11>)
</bean-shell-script>
</script>

You run the partial update by running partial_update in the apps/<app dir>/control directory. For
example:

C:\Endeca\apps\DocApp\control>partial_update.bat

Multiple CAS crawls and Forge updates

There are more complicated cases where multiple CAS crawls are running on their own schedules, and Forge
updates are running on their own schedules. To coordinate this asynchronous workflow of CAS crawls and
baseline or partial updates, you add code that calls methods in ContentAcquisitionServerComponent.

In your Datalngest.xml code, the main coordination task is one of determining how you time running CAS
crawls and how you time running baseline or partial updates that consume records from those crawls. For
example, suppose you have an application that runs three full CAS crawls and those records are consumed
by a single baseline update. In that scenario, each of the three full crawls has its own full crawl script in
Datalngest.xml that runs on a nightly schedule. And the Datalngest.xml file contains a baseline update
that runs nightly to consume the latest generation of records from each of the three crawls. The Forge. is-
DataReady check is not required in the baseline update script because the source data is not locked.

CAS-based data processing

The Deployment Template supports running baseline and partial updates using CAS as a replacement for
Forge. In this processing model, the update runs a CAS crawl to produce MDEX-compatible output. This is
the step that removes the need for Forge. Then the update runs Dgidx and updates the Dgraphs in an application.

Dgraph baseline update script using CAS

You do not need to run Forge if you run a CAS crawl that is configured to produce MDEX-compatible output
as part of your update process.

Oracle Endeca Commerce Deployment Template Usage Guide

92 Script Reference | CAS-based data processing

This example runs a baseline update that includes a full CAS crawl. The crawl writes MDEX compatible output
and then the update invokes Dgidx to process the records, dimensions, and index configuration produced by
the crawl. To create this sequential workflow of CAS crawl and then baseline update, you add a call to run-
BaselineCasCrawl () to run the CAS crawl.

For example, this baseline update script calls CAS . runBasel ineCasCrawl (""'${lastMi leCrawIName}'")
which runs a CAS crawl that writes MDEX-compatible output. Then the script continues with baseline update
processing by running Dgidx and distributing the index files.

<l--
HHHHE
Baseline update script
#
-——>
<script id=""BaselineUpdate">
<log-dir>_/logs/provisioned_scripts</log-dir>
<provisioned-script-command>./control/baseline_update.bat</provisioned-script-
command>
<bean-shell-script>
<I[CDATAL
log.info(''Starting baseline update script.');
// obtain lock
if (LockManager.acquireLock("'update lock™)) {
// clean directories
CAS.cleanCumulativePartials();
Dgidx.cleanDirs();

// run crawl and archive any changes in the dvalld mappings
CAS.runBaselineCasCrawl (""'${lastMi leCrawlName}'");
CAS.archiveDval ldMappingsForCrawl I fChanged("'${lastMileCrawlName}');

// archive logs and run the Indexer
Dgidx.archiveLogDir(Q);
Dgidx.runQ;

// distributed index, update Dgraphs
DistributelndexAndApply.run();

// Upload the generated dimension values to Workbench

WorkbenchManager.cleanDirs();

CAS.copyOutputDimensionsFile("'${lastMileCrawlName}', WorkbenchManager.get-
WorkbenchTempDir());

WorkbenchManager .updateWsDimensions();

// Upload the generated config to Workbench
WorkbenchManager . updateWsConfig();

// archive state files, index
Dgidx.archivelndex();

// (start or) cycle the LogServer
LogServer.cycle();

// release lock

LockManager .releaselLock(*'update_lock™);
log.info("'Baseline update script finished.');

} else {

log.warning("'Failed to obtain lock."™);

}
11> .
</bean-shell-script>
</script>

Oracle Endeca Commerce Deployment Template Usage Guide

Script Reference | CAS-based data processing 93

You run the baseline update by running basel ine_update in the apps/<app dir>/control directory.

For example:
C:\Endeca\apps\DocApp\control>basel ine_update.bat

Dgraph partial update script using CAS

You do not need to run Forge if you run a CAS crawl that is configured to produce MDEX-compatible output
as part of your update process.

This example runs an incremental CAS crawl that writes MDEX compatible output and then runs a partial
update to process data records. Remember that in an incremental CAS crawl, the index configuration and
dimension value records are not processed.

To create this sequence of CAS crawl and then partial update, you add a call to runlncrementalCasCrawl ()
to run the CAS crawl. For example, this partial update script calls CAS . runIncrementalCasCrawl ("'${last-
Mi leCrawlIName}') which runs a CAS crawl that writes MDEX-compatible output. Then the script continues
with update processing by running Dgidx and distributing the index files.

%
Note: In some applications, the archiveDval ldMappingsForCrawl I fChanged call can take modest
amounts of processing time (for example, typically less than 10 seconds). This method is recommended
in all but the most time-sensitive partial update scenarios.

<l--
BHHH BT R R R R R R R R R R R R
Partial update script
#
——>
<script id="PartialUpdate">
<log-dir>./logs/provisioned_scripts</log-dir>
<provisioned-script-command>./control/partial_update.bat</provisioned-script-
command>
<bean-shell-script>
<I[CDATA[
log.info(''Starting partial update script.');
// obtain lock
if (LockManager.acquireLock(*'update_ lock™)) {

// run crawl and archive any changes in the dvalld mappings
CAS.runincrementalCasCrawl (""'${lastMileCrawlName}');
CAS.archiveDval ldMappingsForCrawl 1 fChanged("'${lastMi leCrawlIName}');

// Copy the partial to the master cumulative directory
CAS. fetchPartialsToCumulativeDir("${lastMileCrawlName}'");

// copy from srcPartials to localCumulative for authoring
AuthoringDgraphCluster.copyPartialUpdateToDgraphServers();

// copy from local to mdex"s update-dir and trigger the update for authoring
AuthoringDgraphCluster.applyPartialUpdates();

// copy from srcPartials to localCumulative for live
LiveDgraphCluster.copyPartialUpdateToDgraphServers();

// copy from localCumulative to mdex"s update-dir and trigger the update
LiveDgraphCluster.applyPartialUpdates();

Oracle Endeca Commerce Deployment Template Usage Guide

94 Script Reference | CAS-based data processing

// Archive accumulated partials
CAS.archiveCumulativePartials();

// release lock

LockManager .releaselLock("'update_ lock™™);

log.info("Partial update script finished.™);
} else {

log.warning('Failed to obtain lock.™);

>

</bean-shell-script>
</script>

You run the baseline update by running partial_update in the apps/<app dir>/control directory.
For example:
C:\Endeca\apps\DocApp\control>partial_update.bat

CAS crawl scripts for Record Store output

This topic provides an example CAS crawl script with a crawl that is configured to write to Record Store output.
To create a similar CAS crawl script in your application, add code to AppConfig.xml that specifies the CAS
crawl to run locks the crawl (to wait for any running crawls to complete), runs the crawl, and releases the lock.

Depending on your environment, you may need a script that runs a full CAS crawl and a script that runs an
incremental CAS crawl.

This example AppConfig.xml code runs a full crawl that writes to a Record Store instance:

<l--
BRI R R R R R R R R R A
full crawl script

#
—-—>

<script id="MyCrawl_ fullCrawl">
<log-dir>_/logs/provisioned_scripts</log-dir>
<provisioned-script-command>./control/runcommand.bat MyCrawl fullCrawl
run</provisioned-script-command>
<bean-shell-script>
<I[CDATAL
crawlName = "MyCrawl";

log.info('Starting full CAS crawl "' + crawlName + ""_.");

// obtain lock
if (LockManager.acquireLock(*'crawl_lock " + crawlName)) {

CAS.runBaselineCasCrawl (crawlName) ;

LockManager .releaselLock(*'crawl_lock "™ + crawlName);

else {
log.warning(""Failed to obtain lock."™);
}
log.info("'Finished full CAS crawl "' + crawlName + "".");

11>

Oracle Endeca Commerce Deployment Template Usage Guide

Script Reference | CAS-based data processing 95

</bean-shell-script>
</script>

This example runs an incremental crawl! that writes to a Record Store instance:
<l--
HHHHH
incremental crawl script
#
-2
<script id="MyCrawl_IncrementalCrawl'>
<log-dir>./logs/provisioned_scripts</log-dir>
<provisioned-script-command>./control/runcommand.bat MyCrawl IncrementalCrawl
run</provisioned-script-command>
<bean-shell-script>
<I[CDATAL
crawlName = "MyCrawl"';

log.info("'Starting incremental CAS crawl "' + crawlName + ""_.');

// obtain lock
if (LockManager.acquireLock(*'crawl_lock "™ + crawlName)) {

CAS.runlncrementalCasCrawl (crawlName) ;

LockManager .releaseLock(*'crawl lock "™ + crawlName);

else {
log.-warning(*"Failed to obtain lock.");

log.info("Finished incremental CAS crawl "™ + crawlName + ""_.'");
>
</bean-shell-script>
</script>

CAS crawl scripts for record file output

This topic provides an example CAS crawl script with a crawl that is configured to write to record file output.
To create a similar CAS crawl script in your application, add code to Datalngest.xml that specifies the CAS
crawl to run locks the crawl (to wait for any running crawls to complete), runs the crawl, and releases the lock.

Depending on your environment, you may need a script that runs a full CAS crawl and a script that runs an
incremental CAS crawl.

This example Datalngest.xml code runs a full crawl that writes to record file output:
<I--

HHHH R R R R R R R R R R R R R R R R
Ffull crawl script
#

S

<script id="MyCrawl_ fullCrawl">
<log-dir>_/logs/provisioned_scripts</log-dir>
<provisioned-script-command>./control/runcommand.bat MyCrawl_fullCrawl
run</provisioned-script-command>
<bean-shell-script>
<I[CDATAL
crawlName = "MyCrawl";

Oracle Endeca Commerce Deployment Template Usage Guide

96 Script Reference | CAS-based data processing

log.info('Starting full CAS crawl "' + crawlName + "".'");
// obtain lock
if (LockManager.acquireLock(*'crawl_lock " + crawlName)) {

if (ICAS.isCrawlFileOutput(crawlName)) {
throw new UnsupportedOperationException(**'The crawl "™ + crawlName +
' does not have a File System output type. The only supported output
type for this script is File System.');

log.info("Starting full CAS crawl """ + crawlName + "".');
// Remove all files from the crawl®"s output directory
CAS.cleanOutputDir(crawlName);

CAS.runBaselineCasCrawl (crawlName) ;

// Rename the output to files to include the crawl name

// so they do not collide with the output from other crawls
CAS.renameBasel ineCrawlOutput(crawlName) ;

destDir = PathUtils.getAbsolutePath(CAS.getWorkingDir(),
CAS.getCasCrawlFul I0utputDestDir());

// create the target dir, if it doesn"t already exist
mkDirUtil = new CreateDirUtility(CAS.getAppName(),
CAS.getEacHost(), CAS.getEacPort(), CAS.isSslEnabled());
mkDirUtil.init(CAS.getCasCrawlOutputDestHost(), destDir, CAS.getWork-
ingDirQ));
mkDirUtil.runQ;

// clear the destination dir of full crawl from previous crawls
CAS.clearFullCrawlOutputFromDestinationDir(crawlName);

// remove previously collected incremental crawl files,
// which are expected to be incorporated in this full crawl
CAS.clearlIncrementalCrawlOutputFromDestinationDir(crawlName);

// copy the full crawl output to destination directory
CAS.copyBaselineCrawlOutputToDestinationDir(crawlName) ;
LockManager .releaselLock(*'crawl _lock "™ + crawlName);

}

else {
log.warning(*"Failed to obtain lock.™);

log.info(""Finished full CAS crawl "' + crawlName + "".");
11>
</bean-shell-script>
</script>

This example Datalngest.xml code runs an incremental crawl that writes to record file output:

<l_-
HHH R R R R R R R R R R R R R R R R
incremental crawl script
#
-——>
<script id="MyCrawl_ IncrementalCrawl">
<log-dir>_/logs/provisioned_scripts</log-dir>
<provisioned-script-command>./control/runcommand.bat MyCrawl_IncrementalCrawl
run</provisioned-script-command>

Oracle Endeca Commerce Deployment Template Usage Guide

Script Reference | Report generation 97

<bean-shell-script>
<I[CDATAL
crawlName = "MyCrawl"';

log.info(""'Starting incremental CAS crawl "' + crawlName + ""_.'");

// obtain lock
if (LockManager.acquireLock(*'crawl_lock "™ + crawlName)) {

if (ICAS.isCrawlFileOutput(crawlName)) {
throw new UnsupportedOperationException(*'The crawl "™ + crawlName +

" does not have a File System output type. The only supported output
type for this script is File System.™);

log.info("'Starting incremental CAS crawl "' + crawlName + ""_'"");
// Remove all files from the crawl®s output directory
CAS.cleanOutputDir(crawlName);

CAS.runlncrementalCasCrawl (crawlName) ;

// Timestamp and rename the output to files to include the

// crawl name so they do not collide with the output from

// previous incremental output from this crawl or incremental
// output from other crawls
CAS.renamelncrementalCrawlOutput(crawlName) ;

destDir = PathUtils.getAbsolutePath(CAS.getWorkingDir(),
CAS.getCasCrawl IncrementalOutputDestDir());

// create the target dir, if it doesn"t already exist
mkDirUtil = new CreateDirUtility(CAS.getAppName(),
CAS.getEacHost(), CAS.getEacPort(), CAS.isSslEnabled());
mkDirUtil.init(CAS.getCasCrawlOutputDestHost(), destDir, CAS.getWork-
ingDirQ));
mkDirUtil.runQ;

// copy crawl output to destination directory

// Note: We assume a downstream process removes incremental crawl output
// from this directory that has already been processed.
CAS.copylncrementalCrawlOutputToDestinationDir(crawlName);

LockManager.releaseLock(*'crawl lock " + crawlName);

}

else {
log.warning(*'Failed to obtain lock.");
}

log.info("Finished incremental CAS crawl "' + crawlName + ""_.'");
11>
</bean-shell-script>
</script>

Report generation

Four report generation scripts are defined in the Datalngest.xml document.

Oracle Endeca Commerce Deployment Template Usage Guide

98

Script Reference | Report generation

Two of the scripts are used to generate XML reports for Oracle Endeca Workbench and two generate HTML
reports that can be viewed in a browser. All scripts share similar functionality, so only one is included below,
with numbered steps indicating the actions performed at each point in the script.

<script id="DailyReports'>
<bean-shell-script>
<I[CDATAL
log.info('Starting daily Workbench report generation script.’™);

. Obtain lock. The report generation script attempts to set a "report_generator_lock" flag in the EAC

to serve as a lock or mutex. If the flag is already set, this step fails, ensuring that the report generator cannot
be started more than once simultaneously, as the default report generators share input directories and
working directories. The flag is removed in the case of an error or when the script completes successfully.

if (LockManager.acquireLock(*'report_generator_lock™)) {

. Clean working directories. Clear any files in the report generator's input directory.

// clean report gen input dir
Dai lyReportGenerator._cleanlnputDir();

. Distribute configuration files to each server. A single copy of the Dgraph configuration files is distributed to

each server specified in the configuration.
DgraphCluster.copyDgraphConfigToDgraphServers();

. Roll LogServer. If the LogServer is actively writing to a file and the file is required for the specified time

range, the LogServer needs to be rolled in order to free up the log file. This code handles that test and
invokes the roll administrative URL command on the LogServer, if necessary.

// roll the logserver, if the report requires the active log file
if (LogServer.isActive() &&
LogServer._yesterdaylncludesLatestLogFile()) {
LogServer.callLogserverRollIUrl();

. Retrieve logs for specified report. The LogServer identifies log files in its output directory that are required

to generate a report for the requested date range. Those files are copied to the target directory configured
for the LogServer. Note that this step could be modified to include retrieving logs from multiple LogServers,
if more than one is deployed.

// retrieve required log files for processing
LogServer.copyYesterdaylLogFilesToTargetDir();

. Update Report Generator to the appropriate time range and output file name. Oracle Endeca Workbench

requires reports to be named according to a time stamp convention. The Report Generator component’s
provisioning is updated to specify the appropriate time range, time series and output filename. The output
file path in the existing provisioning is updated to use the same path, but to use the date stamp as the
filename. Files default to a “. xml” extension, though the component will attempt to retain a “.html”
extension, if specified in the AppConfig.xml.

// update report generator to the appropriate dates, time series

// and to output a timestamped file, as required by Workbench
Dai lyReportGenerator .updateProvisioningForYesterdayReport();

. Archive logs. If one or more files were copied into the report generator's input directory, report generation

will proceed. Start by archiving logs associated with the previous report generator execution.

ifT (DailyReportGenerator.reportinputDirContainsFiles()) {
// archive logs
Dai lyReportGenerator.archivelLogDir();

Oracle Endeca Commerce Deployment Template Usage Guide

Script Reference | Report generation 99

8. Run report generator. Execute the report generation process.

// generate report
Dai lyReportGenerator.run();

9. Copy report to Oracle Endeca Workbench report directory. By default, Oracle Endeca Workbench reads
reports from a directory in its workspace. Typically, the directory is
[ENDECA_TOOLS_CONF]/reports/[appName]/daily or
[Endeca_TOOLS_ CONF]/reports/[appName]/weekly. Starting in Oracle Endeca Workbench 1.0.1,
this location can be configured by provisioning a host named "webstudio" with a custom directory named
"webstudio-report-dir." The Deployment Template provisions this directory and delivers generated
reports to that location for Workbench to read. The report file (and associated charts) will be copied to this
directory, as specified in the AppConfig.xml, which defaults to <app dir>/reports. Note that this
step is not necessary for HTML reports, as those reports are not viewed in Oracle Endeca Workbench.

// copy generated report and charts

// defined in "webstudio” host and its "webstudio-report-dir"

// directory

reportHost = "webstudio';

absDestDir = PathUtils.getAbsolutePath(webstudio.getWorkingDir(),
webstudio.getDirectory(“'webstudio-report-dir:"));

isDaily = true;

Dai lyReportGenerator .copyReportToWebStudio(reportHost,
absDestDir, isDaily);

else {
log.-warning("’"No log files for report generator to process.');
}

LockManager .releaselLock(*'report_generator_lock'™);
log.info(""Finished daily Workbench report generation.');

else {
log.-warning(""Failed to obtain lock.™);

>

</bean-shell-script>
</script>

Oracle Endeca Commerce Deployment Template Usage Guide

Appendix A
EAC Development Toolkit

The EAC Development Toolkit provides a common set of objects, a standard and robust configuration file
format and a lightweight controller implementation that developers can leverage in order to implement operational
controller applications. The toolkit is designed to enable quick deployment, while providing complete flexibility
for developers to extend and override any part of the implementation to create custom, project-specific
functionality.

EAC Development Toolkit distribution and package contents

The EAC Development Toolkit is distributed as a set of JAR files bundled with the Deployment Template.

The toolkit consists of three JAR files and depends on two others that are distributed with this package. The
following sections describe the JAR files. Details about classes and methods can be found in Javadoc distributed
with the EAC Development Toolkit. These JAR files must be on the classpath of any application built using
the EAC Development Toolkit.

eacTool kit.jar

This JAR contains the source and compiled class files for the core EAC Development Toolkit classes. These
classes encompass core EAC functionality, from which all component implementations extend. Included are
low-level classes that access the EAC's central server via SOAP calls to its Web Service interface as well as
higher level objects that wrap logic and data associated with hosts, components, scripts and utilities. In addition,
this JAR includes the controller implementation used to load the Toolkit's application configuration file, and to
invoke actions based on the configuration and the user's command line input.

eacConponents. jar

This JAR contains the source and compiled class files for common implementations of Oracle Endeca
components. These classes extend core functionality in eacToolkit. jar and implement standard versions
of Forge, Dgidx, Dgraph and other components of an Oracle Endeca deployment.

eacHandl ers.j ar

This JAR contains the source and compiled class files for parsing application configuration documents. In
addition, the EAC Dev Toolkit's application configuration XML document format is defined by an XSD file
packaged with this JAR. Finally, the JAR includes files required to register the schema and the toolkit's
namespace with Spring, the framework used to load the toolkit's configuration.

102 EAC Development Toolkit | EAC Development Toolkit usage

spring.jar

The toolkit uses the Spring framework for configuration management.

bsh-2. 0b4.j ar

The toolkit uses BeanShell as the scripting language used by developers to write scripts in their application
configuration documents.

EAC Development Toolkit usage

The EAC Development Toolkit provides a library of classes that developers can use to develop and configure
EAC scripts.

Classes in the library expose low level access to the EAC's web services and implement high level functionality
common to many EAC scripts. Developers may implement applications by simply configuring functionality built
in the toolkit or by extending the toolkit at any point to develop custom functionality.

This document discusses the toolkit's configuration file format, BeanShell scripting, command invocation and
logging. This document does not provide a reference of the classes in the toolkit, or the functionality implemented
in various objects and methods. Developers should refer to Javadoc or Java source files distributed with this
package for details about the implementation.

Oracle Endeca Commerce Deployment Template Usage Guide

Appendix B
Application Configuration File

The EAC toolkit uses an XML configuration file to define the elements that make up an application. In most
deployments, this document will serve as the primary interface for developers and system administrators to
configure, customize, and maintain a deployed application.

Spring framework

The EAC Development Toolkit uses the Spring Framework's Inversion of Control container to load an EAC
application based on configuration specified in an XML document.

A great deal of functionality and flexibility is provided in Spring's loC Container and in the default bean definition
XML file handled by Spring's XmIBeanDefinitionReader class. For details about either of these, refer to
Spring Framework documentation and JavaDoc.

The EAC Development Toolkit uses a customized document format and includes a schema and custom XML
handlers to parse the custom document format. It uses Spring to convert this customized configuration metadata
into a system ready for execution. Specifically, the toolkit uses Spring to load a set of objects that represent
an EAC application with the configuration specified for each object in the configuration document.

XML schema

A customized document format is used to provide an intuitive configuration format for EAC script developers
and system administrators.

However, this customization restricts the flexibility of the configuration document. The following sections
describe elements available in the custom namespace defined by the eacToolkit.xsd XML schema. Each
element name is followed by a brief description and an example configuration excerpt. For details, refer to the
eacToolkit.xsd schema file distributed within the file eacHandlers. jar.

Application elements

This section describes the application elements available in the custom namespace defined by the
eacToolkit._xsd XML schema.

For more details, refer to the eacToolkit.xsd schema file distributed within the file eacHandlers. jar.

104 Application Configuration File | XML schema

Element Description
app This element defines the global application settings inherited by all other objects in the
document, including application name, EAC central server host and port, data file prefix,
the lock manager used by the application and whether or not SSL is enabled. In addition,
this object defines global defaults for the working directory and the logs directory, which
can be inherited or overridden by objects in the document.

<app appName="myApp" eacHost="devhost.company.com" eacPort="8888"
dataPrefix="myApp" sslEnabled="false" lockManager="LockManager"
>

<working-dir>C:\Endeca\apps\myApp</working-dir>
<log-dir>_/logs/baseline</log-dir>
</app>

lock-manager This element defines a LockManager object used by the application to interact with the

EAC's synchronization web service. Lock managers can be configured to release locks
when a failure is encountered, ensuring that the system returns to a "neutral" state if a script
or component fails. Multiple lock managers can be defined.

<lock-manager id="LockManager'" releaselLocksOnFailure="true" />

Hosts

This section describes the host element available in the custom namespace defined by the eacToolkit.xsd
XML schema.

The host element defines a host associated with the application, including the 1D, hostname and EAC agent
port of the host. Multiple host elements can be defined.

<host id="1TLHost" hostName=""itlhost.company.com" port='8888" />

Components

This section describes the component elements available in the custom namespace defined by the
eacToolkit.xsd XML schema.

For more details, refer to the eacToolkit.xsd schema file distributed within the file eacHandlers. jar.

Element Description

forge This element defines a Forge component, including attributes that define the

functionality of the Forge process as well as custom properties and directories used
to configure the functionality of the Forge object's methods. Multiple forge elements
can be defined.

<forge id="Forge'" host-id="ITLHost">
<properties>
<property name="numStateBackups'" value="10" />
<property name="numLogBackups' value="10" />
</properties>
<directories>
<directory name="incomingDataDir'>./data/incoming</directo-
ry>

Oracle Endeca Commerce Deployment Template Usage Guide

Element

forge-cluster

dgidx

indexing-cluster

dgraph

Application Configuration File | XML schema 105

Description

<directory name="configDir'>./data/complete_config</direc-
tory>
<directory name="wsTempDir'>_/data/web_studio_temp_dir</di-
rectory>
</directories>
<args>
<arg>-vw</arg>
</args>
<input-dir>./data/processing</input-dir>
<output-dir>./data/forge_ output</output-dir>
<state-dir>./data/state</state-dir>
<temp-dir>./data/temp</temp-dir>
<num-partitions>1</num-partitions>
<pipeline-file>_/data/processing/pipeline.epx</pipeline-file>
</forge>

This element defines a Forge cluster, including a list of ID references to the Forge
components that belong to this cluster. This object can be configured to distribute
data to Forge servers serially or in parallel.

<forge-cluster id="ForgeCluster"™ getDatalnParallel=""true">
<forge ref="ForgeServer" />
<forge ref="ForgeClientl" />
<forge ref="ForgeClient2" />

</forge-cluster>

This element defines a Dgidx component, including attributes that define the
functionality of the Dgidx process as well as custom properties and directories used
to configure the functionality of the Dgidx object's methods. Multiple dgidx elements
can be defined.

<dgidx id="Dgidx"™ host-id="ITLHost>

<args>
<arg>-v</arg>

</args>
<input-dir>./data/forge_output</input-dir>
<output-dir>./data/dgidx_output</output-dir>
<temp-dir>./data/temp</temp-dir>
<run-aspell>true</run-aspell>

</dgidx>

This element defines an indexing cluster, including a list of ID references to the Dgidx
components that belong to this cluster. This object can be configured to distribute
data to indexing servers serially or in parallel.

<indexing-cluster id="IndexingCluster" getDatalnParallel=""true'>
<dgidx ref="Dgidx1l" />

<dgidx ref="Dgidx2" />
</indexing-cluster>

This element defines a Dgraph component, including attributes that define the
functionality of the Dgraph process as well as custom properties and directories used
to configure the functionality of the Dgraph object's methods. Multiple dgraph elements

Oracle Endeca Commerce Deployment Template Usage Guide

106 Application Configuration File | XML schema

Element

dgraph-defaults

dgraph-cluster

logserver

Description

can be defined. Each dgraph element inherits, and potentially overrides, configuration
specified in the dgraph-defaul ts element (see below).

<dgraph id="Dgraphl" host-id="MDEXHost" port="'15000">
<properties>
<property name="‘restartGroup’ value="A" />
<property name="‘updateGroup' value="a" />
</properties>
<log-dir>./logs/dgraphs/Dgraphl</log-dir>
<input-dir>./data/dgraphs/Dgraphl/dgraph_input</input-dir>
<update-dir>./data/dgraphs/Dgraphl/dgraph_input/updates</up-
date-dir>
</dgraph>

This element defines the default settings inherited by all dgraph elements specified
in the document. This enables a single point of configuration for common Dgraph
configuration such as command line arguments, and script directory configuration.
Only one dgraph-defaults element can be defined.

<dgraph-defaul ts>
<properties>
<property name="'srclndexDir" value="_/data/dgidx_output"
/>
<property name="srclndexHostld" value="ITLHost" />
<property name="numLogBackups' value="10" />
</properties>
<directories>
<directory name="local IndexDir">
-/data/dgraphs/local_dgraph_input
</directory>
</directories>

<args>
<arg>--threads</arg>
<arg>2</arg>

<arg>--spl</arg>
<arg>--dym</arg>
</args>
<startup-timeout>120</startup-timeout>
</dgraph-defaults>

This element defines a Dgraph cluster, including a list of ID references to the Dgraph
components that belong to this cluster. This object can be configured to distribute
data to Dgraph servers serially or in parallel.

<dgraph-cluster id="DgraphCluster' getDatalnParallel="true">
<dgraph ref="Dgraphl" />
<dgraph ref="Dgraph2" />

</dgraph-cluster>

This element defines a LogServer component, including attributes that define the
functionality of the LogServer process as well as custom properties and directories

Oracle Endeca Commerce Deployment Template Usage Guide

Element

report-generator

custom-component

Application Configuration File | XML schema 107

Description

used to configure the functionality of the LogServer object's methods. Multiple
logserver elements can be defined.

<logserver id="LogServer" host-id="ITLHost" port="15002">
<properties>
<property name="numLogBackups' value="10" />
<property name=""targetReportGenDir" value="_/reports/input"
/>
<property name="'targetReportGenHostld" value="ITLHost" />
</properties>
<log-dir>_/logs/logserver</log-dir>
<output-dir>_/logs/logserver_output</output-dir>
<startup-timeout>120</startup-timeout>
<gzip>false</gzip>
</logserver>

This element defines a ReportGenerator component, including attributes that define
the functionality of the ReportGenerator process as well as custom properties and
directories used to configure the functionality of the ReportGenerator object's methods.
Multiple report-generator elements can be defined.

<report-generator id="WeeklyReportGenerator' host-id="1TLHost"">

<properties>
<property name="webStudioReportDir"
value=""C:\Endeca\MDEXEngine\workspace/reports/MyApp" />
<property name="webStudioReportHostld" value="I1TLHost" />
</properties>
<log-dir>_/logs/report_generators/WeeklyReportGenerator</log-
dir>
<input-dir>./reports/input</input-dir>
<output-file>_./reports/weekly/report.xml</output-file>
<stylesheet-file>
./config/report_templates/tools_report_stylesheet.xsl
</stylesheet-file>
<settings-file>
-/config/report_templates/report_settings.xml
</settings-file>
<time-range>LastWeek</time-range>
<time-series>Daily</time-series>
<charts-enabled>true</charts-enabled>
</report-generator>

This element defines a custom component, including custom properties and directories
used to configure the functionality of the custom component object's methods. Multiple
custom-component elements can be defined, though each must specify the name
of the implemented class that extends
com.Endeca.soleng.eac.toolkit.component.CustomComponent.

The custom component is also used to implement the Configuration Manager,
Workbench Manager, and IFCR components.

<custom-component id="1FCR" host-id="ITLHost" class="'com.ende—
ca.soleng.eac.toolkit.component. IFCRComponent''>
<properties>
<property name="‘repositoryUrl" value="http://local-

Oracle Endeca Commerce Deployment Template Usage Guide

108 Application Configuration File | XML schema

Element Description

host:8006/ifcr” />
<property name="‘username’ value="admin™ />
<property name="‘password’” value="admin"™ />
<property name="numExportBackups' value="3" />
</properties>
</custom-component>

Related Links
Display component status on page 117
The controller provides a convenience method for displaying the status of all components defined in
the configuration document.

Utilities
This section describes the utility elements available in the custom namespace defined by the eacToolkit.xsd
XML schema.

For more details, refer to the eacToolkit.xsd schema file distributed within the file eacHandlers. jar.

Element Description

copy This element defines a copy utility invocation, including the source and destination and whether

or not the source pattern should be interpreted recursively. Multiple copy elements can be
defined.

<copy id="CopyData’" src-host-id="ITLHost" dest-host-id="1TLHost"
recursive=""true" >
<src>./data/incoming/*.txt</src>
<dest>./data/processing/</dest>

</copy>
shell .) I L .
This element defines a shell utility invocation, including the command to execute and the host
on which the command will be executed. Multiple shel I elements can be defined.
<shell id="ProcessData" host-id="ITLHost" >
<command>perl procesDataFiles.pl ./data/incoming/data.txt</command>
</shell>
backup

This element defines a backup utility invocation, including the directory to archive, how many
archives should be saved and whether the archive should copy or move the source directory.
Multiple backup elements can be defined.
<backup id="ArchiveState" host-id=""1TLHost" move='"true" num-back-
ups="5">

<dir>C:\Endeca\apps\myApp\data\state</dir>
</backup>

Oracle Endeca Commerce Deployment Template Usage Guide

Application Configuration File | XML schema 109

Element Description
rolTback This element defines a rollback utility invocation, including the directory whose archive should
be recovered. Multiple rol Iback elements can be defined.

<rollback id="RollbackState" host-id="ITLHost'>
<dir>./data/state</dir>
</rollback>

Customization/extension within the toolkit's schema

Most configuration tasks are performed by simply altering an element in the configuration document, by adding
elements to the document, or by removing elements from the configuration.

These three actions enable users to alter the behavior of objects in their application, change which objects
make up their application and change the way scripts acts on the objects in their application.

In addition to these simple actions, users can customize the behavior of objects in their application or create
new objects while continuing to use the EAC development toolkit's XML configuration document format. The
following are examples of customization that are possible within the constructs of the XML schema defined in
the eacToolkit.xsd schema file.

Implement a custom component

Users can develop new custom components by extending the class
com.Endeca.soleng.eac.toolkit.component.CustomComponent. This class and its associated XML element
allow any number of properties and directories to be specified and accessed by methods in the object. This
customization method may be appropriate for cases where functionality needs to be developed that is not
directly associated with an Oracle Endeca process.

Extend an existing object

Users can implement customizations on top of existing objects by creating a new class that extends an object
in the toolkit. Most elements in the configuration document (with the notable exception of the "app" element,
which specifies global configuration, but does not directly correspond to an object instance) can specify a class
attribute to override the default class associated with each element. For example, a user could implement a
MyForgeComponent class by extending the toolkit's ForgeComponent class.

package com.Endeca.soleng.eac.toolkit.component;
import java.util_logging.Logger;

import com.Endeca.soleng.eac.toolkit.exception.AppConfigurationException;
import com.Endeca.soleng.eac.toolkit.exception.EacCommunicationException;
import com.Endeca.soleng.eac.toolkit.exception.EacComponentControlException;

public class MyForgeComponent extends ForgeComponent

{

private static Logger log =
Logger.getLogger(MyForgeComponent.class.getName());

protected void getlncomingData() throws AppConfigurationException,

EacCommunicationException, EacComponentControlException,
InterruptedException

Oracle Endeca Commerce Deployment Template Usage Guide

110 Application Configuration File | XML schema

// custom data retrieval implementation

}
}

The new class can override method functionality to customize the behavior of the object. As long as the new
object does not require configuration elements unknown to the ForgeComponent from which it inherits, it can
continue to use the forge element in the XML document to specify object configuration.

<forge class=""com.Endeca.soleng.eac.toolkit.component.MyForgeComponent"
id=""CustomForge" host-id="I1TLHost">

</forge>

Implement custom functionality in BeanShell scripts

Users can implement custom functionality by writing new code in the XML document in new or existing BeanShell
scripts. This form of customization can be used to add new functionality or to override functionality that is built
in to toolkit objects. While this customization approach is very flexible, it can become unwieldy and hard to
maintain and debug if a large amount of custom code needs to be written.

Customization/extension beyond the toolkit's schema

Customization approaches within the existing schema will be sufficient for the majority of applications, but
some developers will require even greater flexibility than can be supported by the XML document exposed by
the toolkit.

This type of customization can still be achieved, by switching out of the default eacTool kit namespace in
the XML document and leveraging the highly flexible and extensible Spring Framework bean definition format.

As an example, a developer might implement a new class, PlainOldJavaObject, which needs to be loaded
and accessed by EAC scripts. If the object is implemented, compiled and added to the classpath, it can be
loaded based on configuration in the XML document by specifying its configuration using the "spr" namespace.

<spr:bean id="MyP0JO" class=""com.company.PlainOldJavaObject">
<spr:constructor-arg>true</spr:constructor-arg>
<spr:property name="Fieldl" value="StrValue™ />
<spr:property name="Mapl'>
<spr:map>
<spr:key>one</spr:key>
<spr:value>1</spr:value>
<spr:key>two</spr:key>
<spr:value>2</spr:value>
</spr:map>
</spr:property>
</spr:bean>

Oracle Endeca Commerce Deployment Template Usage Guide

Appendix C
BeanShell Scripting

The EAC Development Toolkit uses BeanShell to interpret and execute scripts defined in the app configuration
document. The following sections describe the toolkit's use of the BeanShell interpreter and provide sample
BeanShell script excerpts.

Script implementation

In the toolkit, the com.Endeca.soleng.eac.toolkit.script.Script class implements scripts.

This class exposes simple execution logic that either uses a BeanShell interpreter to execute the script specified
in the configuration file or, if no BeanShell script is specified in the script's configuration, uses the Script object's
scriptimplementation method. By default, the scriptimplementation method has no logic and must
be overridden by an extending class to take any action. This allows developers to leverage BeanShell to
implement their scripts or to extend the Script object, overriding and implementing the scriptimplementation
method.

By implementing scripts as BeanShell scripts configured in the toolkit's XML configuration document, developers
can quickly develop and adjust scripts, and system administrators can adjust script implementations without
involving developers. The scripting language should be familiar to any Java developer, as it is a Java based
scripting language that can interpret strict Java code (i.e. code that could be compiled as a Java class).
BeanShell also provides a few flexibilities that are not available in Java; for example, BeanShell allows
developers to import classes at any point in the script, rather than requiring all imports to be defined up front.
In addition, BeanShell allows variables to be declared without type specification.

Note: For details about BeanShell and ways in which it differs from Java, developers should refer to
BeanShell documentation and Javadoc.

BeanShell interpreter environment

The most common use of BeanShell scripts in the EAC Development Toolkit is to orchestrate the elements
defined in the application configuration document.

More precisely, BeanShell scripts are used to orchestrate the execution of methods on the objects that are
loaded from the configuration document. In order to enable this, when the toolkit constructs the BeanShell
Interpreter environment, it sets internal variables associated with each element defined in the configuration
document. While additional variables can be declared at any point in a script, this allows scripts to immediately
act on objects defined in the document without declaring any variables.

112 BeanShell Scripting | BeanShell interpreter environment

Take, for example, the following configuration document:

<app appName="myApp'" eacHost="devhost.company.com" eacPort="8888"
dataPrefix="myApp" sslEnabled="false" lockManager="LockManager" >
<working-dir>C:\Endeca\apps\myApp</working-dir>
<log-dir>_/logs/baseline</log-dir>
</app>

<host i1d="1TLHost" hostName="itlhost.company.com" port='38888" />

<copy i1d="CopyData" src-host-id="I1TLHost" dest-host-id="ITLHost"
recursive="true" >
<src>./data/incoming/*_txt</src>
<dest>./data/processing/</dest>
</copy>

<backup i1d="ArchiveState"” host-id="ITLHost" move=""true' num-backups="5">
<dir>C:\Endeca\apps\myApp\data\state</dir>
</backup>

<forge id="Forge" host-id="ITLHost">
<properties>
<property name="‘numStateBackups' value="10" />
<property name="numLogBackups' value="10" />
</properties>
<directories>
<directory name="incomingDataDir'>_/data/incoming</directory>
<directory name="configDir'>./data/processing</directory>
</directories>
<args>
<arg>-vw</arg>
</args>
<input-dir>./data/processing</input-dir>
<output-dir>./data/forge_ output</output-dir>
<state-dir>./data/state</state-dir>
<temp-dir>_/data/temp</temp-dir>
<num-partitions>1</num-partitions>
<pipeline-file>_/data/processing/pipeline.epx</pipeline-file>
</forge>

A BeanShell script defined in this document will have five variables immediately available for use: 1 TLHost,
CopyData, ArchiveState, Forge, and 1og. Note that there is no variable associated with the app element
in the document, as this element does not correspond to an object instance. Each of the other elements is
instantiated, loaded with data based on its configuration and made available in the BeanShell interpreter. In
addition, a special variable called log is always created for each script with a java.util _Logger instance.

A simple BeanShell script can then be written without importing a single class or instantiating a single variable.

<script id="SimpleForgeScript'>
<bean-shell-script>
<I[CDATAL
log.info("'Starting Forge script.');
CopyData.run();
Forge.run(Q;
ArchiveState.setNumBackups(Forge.getProperty("'numStateBackups'));
ArchiveState.run();
log.info(""Finished Forge script.');

11>

Oracle Endeca Commerce Deployment Template Usage Guide

BeanShell Scripting | About implementing logic in BeanShell 113

</bean-shell-script>
</script>

In addition to exposing objects defined in the document, the toolkit imports and executes a default script each
time a BeanShell script is invoked. If a file named "beanshel I . imports" is successfully loaded as a classpath
resource, that file is executed each time a BeanShell script is executed. This allows a default set of imports to
be defined. For example, the following default file imports all of the classes in the toolkit, exposing them to
BeanShell scripts:

import com.Endeca.soleng.eac.toolkit.*;

import com.Endeca.soleng.eac.toolkit._application.*;
import com.Endeca.soleng.eac.toolkit.base.*;

import com.Endeca.soleng.eac.toolkit.component.™;

import com.Endeca.soleng.eac.toolkit.component.cluster.*;
import com.Endeca.soleng.eac.toolkit.exception.*;

import com.Endeca.soleng.eac.toolkit.host.*;

import com.Endeca.soleng.eac.toolkit.logging.*;

import com.Endeca.soleng.eac.toolkit.script.™;

import com.Endeca.soleng.eac.toolkit.utility.>;

import com.Endeca.soleng.eac.toolkit.utility._perl_*;
import com.Endeca.soleng.eac.toolkit.utility.webstudio.*;
import com.Endeca.soleng.eac.toolkit_utility.wget.*;
import com.Endeca.soleng.eac.toolkit.utils.*;

About implementing logic in BeanShell

BeanShell scripts will typically be used to orchestrate method execution for objects defined in the configuration
document.

However, scripts can also implement logic, instantiating objects to provide a simple point of extension for
developers to implement new logic without compiling additional Java classes.

For example, the following script excerpt demonstrates how a method can be defined and referenced in a
script:

<script id="Status'">
<bean-shell-script>
<I[CDATAL

// define function for printing component status
import com.Endeca.soleng.eac.toolkit.component.Component;
void printStatus(Component component) {

log. info(component.getAppName() + "." +

component.getElementld() + ": +
component._getStatus().toString());

// print status of forge, dgidx, logserver
printStatus(Forge);

printStatus(Dgidx);

printStatus(LogServer);

// print status for dgraph cluster
dgraphs = DgraphCluster.getDgraphs().iterator();

while(dgraphs.hasNext()) {
printStatus(dgraphs.next());
}

11>

Oracle Endeca Commerce Deployment Template Usage Guide

114 BeanShell Scripting | About implementing logic in BeanShell

</bean-shell-script>
</script>

Oracle Endeca Commerce Deployment Template Usage Guide

Appendix D
Command Invocation

The toolkit provides a simple interface for invoking commands from the command line.

Invoke a method on an object

By default, the controller tries to invoke a method called "run" with no arguments on the specified object.

The following simple command invokes the run method on the BaselineUpdate script object:
jJava Controller --app-config AppConfig.xml BaselineUpdate
If a method name is specified, the controller looks for a method with that name on the specified object and

invokes it. For example, the following command executes the apply Index method on the DgraphCluster
object:

jJava Controller --app-config AppConfig.xml DgraphCluster applylndex
In addition to no-argument method invocation, the controller allows any number of String arguments to be

passed to a method. The following example shows the releaselLock method being invoked on the
LockManager object with the single String argument "update_lock" specifying the name of the lock to release:

jJava Controller --app-config AppConfig.xml LockManager releaselLock
update_ lock

Identify available methods

In order to help users identify the objects and methods available for invocation, the controller provides a help
argument that can be called to list all available objects or methods available on an object.

If specified with an app configuration document, the help command displays usage and available objects:
jJava Controller --app-config AppConfig.xml --help

The following objects are defined in document "AppConfig.xml":
[To see methods available for an object, use the --help command line argument and
specify the name of the object.]

[com_Endeca.soleng.eac.toolkit.base.lLockManager]
LockManager
[com.Endeca.soleng.eac.toolkit.component.ConfigManagerComponent]

116

Command Invocation | Identify available methods

ConfigManager
[com.Endeca.soleng.eac.toolkit.component.DgidxComponent]

Dgidx
[com.Endeca.soleng.eac.toolkit.component.DgraphComponent]

Dgraphl

Dgraph2
[com.Endeca.soleng.eac.toolkit.component.ForgeComponent]

Forge

PartialForge
[com.Endeca.soleng.eac.toolkit.component.LogServerComponent]

LogServer
[com.Endeca.soleng.eac.toolkit.component.ReportGeneratorComponent]

WeeklyReportGenerator

Dai lyReportGenerator
[com.Endeca.soleng.eac.toolkit.component.cluster.DgraphCluster]

DgraphCluster
[com.Endeca.soleng.eac.toolkit.host.Host]

ITLHost

MDEXHost
[com.Endeca.soleng.eac.toolkit.script.Script]

Basel ineUpdate

DistributelndexAndApply

PartialUpdate

DistributePartialsAndApply

ConfigUpdate

The name of each object loaded from the configuration document is printed along with the object's class. To
identify the available methods, the help command can be invoked again with the name of an object in the
document:

java Controller --app-config AppConfig.xml --help DgraphCluster

The following methods are available for object "DgraphCluster”:

[Excluded: private, static and abstract methods; methods inherited from Object;
methods with names that start with "get®, "set” or "is". For details, refer to
Javadoc for class com.Endeca.soleng.eac.toolkit.component.cluster.DgraphCluster.]

start(), stop(), removeDefinition(), updateDefinition(), cleanDirs(),
applylndex(), applyPartialUpdates(), applyConfigUpdate(),
cleanLocallndexDirs(), cleanLocalPartialsDirs(),
cleanLocalDgraphConfigDirs(), copylndexToDgraphServers(),
copyPartialUpdateToDgraphServers(),
copyCumulativePartialUpdatesToDgraphServers(),
copyDgraphConfigToDgraphServers(), addDgraph(DgraphComponent)

Note that not all methods defined for the class com.Endeca.soleng.eac.toolkit.component.clus-
ter.DgraphCluster are displayed. As the displayed message notes, methods declared as private, static
or abstract are excluded, as are methods inherited from Object, getters and setters, and a few reserved methods
that are known not to be useful from the command line. These restrictions are intended to make the output of
this help command as useful as possible, but there are likely to be cases when developers will need to refer
to Javadoc to find methods that are not displayed using the help command.

Oracle Endeca Commerce Deployment Template Usage Guide

Command Invocation | Update application definition 117

Update application definition

By default, the controller will test the application definition in the configuration document against the provisioned
definition in the EAC and update EAC provisioning if the definition in the document has changed.

This will happen by default any time any method is invoked on the command line.

System administrators may find it useful to update the definition without invoking a method. To facilitate this,
a flag has been provided to perform the described definition update and exit.

jJava Controller --app-config AppConfig.xml --update-definition

In addition, there may be a need to invoke a method without testing the application definition. This can be
accomplished by using an alternate command line argument:

jJava Controller --app-config AppConfig.xml --skip-definition
Basel ineUpdate

Remove an application

The controller provides a convenience method for removing an application from the EAC's central store.

When invoked, this action checks whether the application loaded from the configuration document is defined
in the EAC. Ifitis, all active components are forced to stop and the application's definition is completely removed
from the EAC.

java Controller --remove-app --app-config AppConfig.xml

Display component status

The controller provides a convenience method for displaying the status of all components defined in the
configuration document.

When the following method is invoked, the controller iterates over all defined components, querying the EAC
for the status of each one and printing it.
java Controller —-print-status --app-config AppConfig.xml

Related Links

Components on page 104
This section describes the component elements available in the custom namespace defined by the
eacToolkit.xsd XML schema.

Oracle Endeca Commerce Deployment Template Usage Guide

Index

A

AppConfig.xml file

schema for 22
Application configuration 22
Application descriptors 13
Application settings

Report Generator 38

CAS Server 27

Configuration Manager 40

Dgidx 31

Dgraphs 32

Forges 30

global 24

hosts 24

IFCR 38

Lock Manager 25

log server 37

WorkbenchManager 39
Applications, custom 13
Automated deployments 12

custom 16

B

Baseline update
Forge flags 52
running sample scripts 77
BeanShell scripting
about implementing logic 113
interpreter environment 111
script implementation 111

Cc

CAS Server 27
Command invocation
display component status 117
identify available methods 115
method on an object 115
remove an application 117
update application definition 117
Configuration file, application 22
Configuration Manager 40
Configuration overrides 44
Configuring an application 23
customizations
commonly used 21
introduced 21

D

Deploying
EAC application 9
on UNIX 9

on Windows 9
Deployment Template
directories 11
Development Toolkit, See EAC Development Toolkit
Dgraph
clusters 32
enabling SSL 37
partial update script 86
Dimension adapters 53
Dimension servers 54

E

EAC
applications 9
deploying an EAC application 9
SSL-enabled 16
EAC Development Toolkit
application configuration file 103
BeanShell scripting 111, 113
command invocation 115, 117
distribution 101
package contents 101
Spring framework 103
usage 102
XML schema 103, 104, 108, 109, 110
deployment scripts 81

F

fault tolerance for components, configuring 25
File-based deployment 12
custom 16
Forge cluster 30
Forge flags 52

G

Global application settings 24

Indexer adapters 53
Indexing cluster 31
Installer tokens 13

Index

L

LockManager
configuring 25
default 24

Log directory, default 24

(0]

Oracle Endeca Deployment Template
automated deployment 12, 16
configuration overrides 44
deploying XQuery modules 36
Dgraph partial update script 86
displaying version 19
integration with Oracle Endeca Workbench, reporting 40
provisioning scripts 83
report generation script 98
sample pipelines 47
standard Forge flags 52
with SSL-enabled EAC 16

Oracle Endeca Workbench
reporting 40

Output record adapters 54

P

Partial updates
Dgraph scripts 86
Forge flags 52
Pipeline configuration
creating a new project 48
modifying a project 50
record spec 51
polling intervals for components, configuring 26

R

Report generation script 98
Report Generator 38

120

S

Sample pipeline
common errors 54
creating a new project 48
dimension adapters 53
dimension servers 54
Forge flags 52
indexer adapters 53
modifying a project 50
output record adapters 54
overview 47
record spec 51
sample scripts
baseline update script 77
scripts 81
Spring framework 103
SSL-enabled deployments 16

U

utilities, setting fault tolerance and polling intervals for 26

\"

version of Deployment Template, displaying 19

w
Working directory, default 24

X

XML schema 103
application elements 103
components 104
customization 109, 110
extension 109, 110
hosts 104
utility elements 108
XQuery modules, deploying 36

Oracle Endeca Commerce

	Contents
	Preface
	About this guide
	Who should use this guide
	Conventions used in this guide
	Contacting Oracle Support

	Deploying and initializing an EAC Application
	Deployment prerequisites
	About deploying EAC applications
	Deploying and initializing an EAC application
	Directories created by the Deployment Template

	Configuring automated/file-based deployment
	Modifying the template files to support custom applications
	Custom application descriptors
	Configuring an automated/file-based deployment for a custom application

	Communicating with SSL-enabled Oracle Endeca components
	Displaying the Deployment Template version

	Configuring an EAC Application
	About configuring an EAC application
	About the application configuration files
	About the schema for AppConfig.xml
	Configuring the application configuration files
	Global application settings
	Hosts
	Lock Manager
	Fault tolerance and polling interval properties
	CAS Server
	Forges
	Dgidxs
	Dgraphs
	Log server
	Report Generators
	IFCR
	Workbench Manager
	Reporting

	Configuration Manager

	Configuring the BeanShell scripts
	Configuration overrides

	Replacing the Default Forge Pipeline
	About the sample pipelines
	Sample pipeline overview
	Specifying a pipeline
	Creating a new project
	Modifying an existing project
	Configuring a record specifier
	Forge flags
	Input record adapters
	Dimension adapters
	Indexer adapters
	Output record adapters
	Dimension servers
	Common errors

	Modifying Index Configuration for an Application
	Overview of the Index Configuration Command-line Utility
	About index configuration ownership
	About the schema for the index configuration file
	Schema for an Endeca property, derived property, or dimension
	Schema for precedence rules
	Schema for global index configuration

	Getting the index configuration for an application
	Getting the merged index configuration for an application
	Setting the index configuration for an application
	Deleting the index configuration associated with an owner
	An example of changing multi-select on a dimension
	An example of changing a product.brand.name property to a dimension
	An example of setting dimension display order

	Managing Data Operations
	Running a baseline update with test data
	Running a baseline update with production data
	Running a partial update with production data
	Running CAS crawls

	Script Reference
	Analyzing Deployment Script Errors
	Deployment Template script reference
	Provisioning scripts
	Forge-based data processing
	Dgraph baseline update script using Forge
	Dgraph partial update script using Forge
	Dgraph baseline update script using Forge and a CAS full crawl script
	Dgraph partial update script using Forge and a CAS incremental crawl script
	Multiple CAS crawls and Forge updates

	CAS-based data processing
	Dgraph baseline update script using CAS
	Dgraph partial update script using CAS
	CAS crawl scripts for Record Store output
	CAS crawl scripts for record file output

	Report generation

	EAC Development Toolkit
	EAC Development Toolkit distribution and package contents
	EAC Development Toolkit usage

	Application Configuration File
	Spring framework
	XML schema
	Application elements
	Hosts
	Components
	Utilities
	Customization/extension within the toolkit's schema
	Customization/extension beyond the toolkit's schema

	BeanShell Scripting
	Script implementation
	BeanShell interpreter environment
	About implementing logic in BeanShell

	Command Invocation
	Invoke a method on an object
	Identify available methods
	Update application definition
	Remove an application
	Display component status

	Index

