
Oracle Endeca Commerce
Content Acquisition System Extension API Guide

Version 11.0 • January 2014

Contents
Preface..7
About this guide..7
Who should use this guide...7
Conventions used in this guide..7
Contacting Oracle Support...8

Chapter 1: Introduction to the CAS Extension API...9
System requirements...9
Overview of the CAS Extension API..9

About CAS extensions..9
About the CAS extension interfaces and classes...10
About CAS annotations...11
Record access interfaces ...13

Common record properties...14

Chapter 2: Implementing a data source...15
Creating a data source class..15
Creating a pipeline component configuration class for a data source..17
Creating a runtime class for a data source..18
Supporting filtering in a data source...20
Supporting document conversion in a data source..20
Specifying which documents to convert...21
Full and incremental crawling modes...21
Supporting incremental acquisition in a data source..22

Chapter 3: Implementing a manipulator...25
Creating a manipulator class..25
Creating a pipeline component configuration class for a manipulator ...27
Creating a runtime class for a manipulator..28
Supporting incremental acquisition in a manipulator..30

Chapter 4: Extension life cycle and threading..33
Life cycle of a data source..33
Life cycle of a manipulator..34
About threading..35

Chapter 5: Common implementation tasks...37
Stopping an extension when an acquisition stops ..37
Cleaning up resources used by an extension..38
Storing state information for an extension..38
Exceptions that trigger fatal and non-fatal failures...39
Enabling logging in an extension...39
Unit testing an extension..40
Packaging an extension into a plug-in...41
Running an extension...41

Appendix A: Sample extensions...43
About the sample extensions...43
Sample extensions files and directories...43
Building the sample extensions..44
Unit testing the sample extensions..45
Installing the sample plug-in into CAS...46
Running the sample CSV data source...47
Running the sample Substring manipulator...48
Running the sample Blob database data source...48

iii

Running the sample Document Directory data source...49
Running the sample Change Tracking data source...49

Oracle Endeca Commerceiv

Copyright and disclaimer

Copyright © 2003, 2014, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific
supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs,
including any operating system, integrated software, any programs installed on the hardware, and/or
documentation, shall be subject to license terms and license restrictions applicable to the programs. No other
rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMDOpteron logo are trademarks or registered trademarks of Advanced Micro Devices.
UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim
all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and
its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services.

v

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Oracle customers have access to electronic support through My Oracle Support. For information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Oracle Endeca Commercevi

Preface

Oracle Endeca Commerce is the most effective way for your customers to dynamically explore your storefront
and find relevant and desired items quickly. An industry-leading faceted search and Guided Navigation solution,
Oracle Endeca Commerce enables businesses to help guide and influence customers in each step of their
search experience. At the core of Oracle Endeca Commerce is the MDEX Engine™, a hybrid search-analytical
database specifically designed for high-performance exploration and discovery. The Endeca Content Acquisition
System provides a set of extensible mechanisms to bring both structured data and unstructured content into
the MDEX Engine from a variety of source systems. Endeca Assembler dynamically assembles content from
any resource and seamlessly combines it into results that can be rendered for display.

Oracle Endeca Experience Manager is a single, flexible solution that enables you to create, deliver, and manage
content-rich, cross-channel customer experiences. It also enables non-technical business users to deliver
targeted, user-centric online experiences in a scalable way — creating always-relevant customer interactions
that increase conversion rates and accelerate cross-channel sales. Non-technical users can determine the
conditions for displaying content in response to any search, category selection, or facet refinement.

About this guide
This guide describes how to implement, test, and package CAS extensions using the CAS Extension API.
CAS extensions include data source extensions and manipulator extensions.

The guide assumes that you are familiar with Endeca concepts and introductory concepts of the Endeca
Content Acquisition System. You can find an introduction to the Content Acquisition System in Chapter 1 of
the CAS Developer's Guide.

Who should use this guide
This guide is intended for Java developers who implement, unit test, and package extensions for use in the
Content Acquisition System.

In this guide and in other CAS documentation, there are two developer roles who work with CAS extensions.
There is an extension developer and a CAS application developer.

An extension developer creates extensions and packages extensions into one or more plug-ins and hands off
the plug-ins to a CAS application developer. The CAS application developer installs the plug-ins. After installation,
the CAS application developer can configure the extensions, and run the extensions as part of acquiring data
from a data source.

Conventions used in this guide
This guide uses the following typographical conventions:

Code examples, inline references to code elements, file names, and user input are set in monospace font. In
the case of long lines of code, or when inline monospace text occurs at the end of a line, the following symbol
is used to show that the content continues on to the next line: ¬

When copying and pasting such examples, ensure that any occurrences of the symbol and the corresponding
line break are deleted and any remaining space is closed up.

Contacting Oracle Support
Oracle Support provides registered users with important information regarding Oracle Endeca software,
implementation questions, product and solution help, as well as overall news and updates.

You can contact Oracle Support through Oracle's Support portal, My Oracle Support at
https://support.oracle.com.

Oracle Endeca Commerce Content Acquisition System Extension API Guide

| Preface8

https://support.oracle.com

Chapter 1

Introduction to the CAS Extension API

This section introduces the basics of the CAS Extension API.

System requirements
The CAS Extension API requires the following software installed on the system where you develop CAS
extensions:

• A full CAS installation. No other Endeca components are required to create CAS extensions.
• Java Development Kit (JDK) 1.7
• A Java development environment
• If you want to open and build the sample extensions, you need Eclipse™ IDE for Java version 3.4.2 or later.
• if you want to use Ant to build the sample extensions, you need Apache Ant 1.7.1 or later.

Overview of the CAS Extension API
The CAS Extension API provides interfaces and classes to build extensions to CAS such as data source
extensions and manipulator extensions. An extension developer packages extensions into a JAR and a CAS
application developer installs the JAR and any additional JARs (for third-party dependencies) into the Content
Acquisition System. After installation, the extensions are available and configurable using the CAS Console,
the CAS Server API, and the CAS Server Command-line Utility.

The CAS Extension API is installed by default as part of the Content Acquisition System.

The components of the CAS Extension API include the following:
• The CAS Extension API, utility, and record access packages (CAS\version\lib\cas-extension-api)
• The CAS Extension sample implementations (CAS\version\sample\cas-extensions)
• Endeca CASExtension API Reference (Javadoc) (CAS\version\doc\cas-extension-api-javadoc)
• Endeca CAS Extension API Guide (this guide).

About CAS extensions
An extension developer can use the CAS Extension API to create data source extensions and manipulator
extensions.

Data source extensions can access any type of data source that you want to include in the Content Acquisition
System. For example, data source extensions might access flat files, databases, content management
repositories (that do not already have a corresponding CMS Connector), and so on.

Manipulator extensions transform Endeca records as part of data processing in a CAS acquisition. In a typical
usage, manipulators run in a CAS acquisition to provide record pre-processing before a Forge pipeline runs.

About the CAS extension interfaces and classes
The interfaces of the CAS Extension API are contained in two Java packages. The com.endeca.cas.exten¬
sion package provides interfaces to interact with the CAS framework and interfaces to represent data source
andmanipulator extensions. The com.endeca.cas.extension.annotation package provides annotations
to describe the configuration of an extension.

Primary classes in com.endeca.cas.extension

The following diagram shows the inheritance hierarchy of several classes you will work with in the package.
The classes in com.endeca.cas.extension are declared in the API as abstract classes. Most of the abstract
classes have default implementations of their methods. You can often use the default implementation of the
methods, or if necessary, you can override the default implementation. The key abstract classes in the package
declare abstract methods which you must implement to provide extension functionality.

Oracle Endeca Commerce Content Acquisition System Extension API Guide

Introduction to the CAS Extension API | Overview of the CAS Extension API10

About CAS annotations
The CAS Extension API provides Java annotations that define extensions to the Content Acquisition System
and also define configuration properties for an extension. Annotations can describe whether configuration
properties are required or optional, whether they have a default value, and their display properties in CAS
Console.

Annotations define extensions

An extension requires an annotation of either @CasDataSource or @CasManipulator to indicate whether
the extension is a data source or a manipulator.

After a CAS application developer installs a plug-in, the Content Acquisition System scans for extensions by
checking for classes that have an annotation of either @CasDataSource or @CasManipulator and by
checking the uniqueness of extension IDs.

Here is an example annotation that defines a data source extension:
@CasDataSource(displayName="CSV File", description="Reads comma separated files")
public class CsvDataSource extends DataSource<CsvDataSourceConfig>

Here is an example annotation that defines a manipulator extension:
@CasManipulator(
 supportsIncrementals=true,
 deleteRecordsBypassManipulator = true,
 displayName="Substring Manipulator",
 description="Generates a new property that is a substring of another property
value")
public class SubstringManipulator extends Manipulator<SubstringManipulatorConfig>

Annotations define configuration properties for an extension

You annotate a Java field in a PipelineComponentConfiguration class to expose the field as a
configuration property for an extension. The fields that you annotate display in CAS Console and are available
to the CAS Server Command-line Utility and the CAS Server API. If you do not annotate a field, CAS Server
ignores it.

CAS Console renders all annotated Java fields as configuration properties on the Data Source tab. When a
user specifies values for the fields in CAS Console, and saves the data source, then CAS Console sends the
value of the field to CAS Server as a configuration property.

Each Java field has a CAS annotation that corresponds to the data type of the Java field. Field annotations
include the following:
• @StringProperty
• @BooleanProperty
• @DoubleProperty
• @IntegerProperty

Annotations contain attributes that specify additional information about a configuration property. This information
may control rendering in CAS Console, the order in which fields render, default values for the fields, and so
on.

Here is an example annotation of two string fields:
@StringProperty(isRequired=true, name="inputFile", displayName="Input File",
 description="Path to the input csv file e.g. c:\\incoming\\data.csv")
 private String mInputFile;

@StringProperty(isRequired=true, name="keyColumn", displayName="Key Column",

Oracle Endeca Commerce Content Acquisition System Extension API Guide

11Introduction to the CAS Extension API | Overview of the CAS Extension API

 description="Name of the column with the record key")
 private String mKeyColumn;

When CAS Console renders the mInputFile property and the mKeyColumn property, they display as the
Input File and Key Column configuration properties shown here:

Here is an example annotation for a field which is a list of strings (a multi-valued property):
@StringProperty(isRequired=true, name="sourcePropertyList", displayName="Source
Property List")
 private List<String> mSourcePropertyList;

Here is an example annotation for an integer field with four attributes:
@IntegerProperty(isRequired=false, name="startIndex", displayName="Substring Start
 Index",
 description="Substring start index (zero based)", defaultValue=0)
 private int mStartIndex;

Annotations specify groups and the order of fields in a group

A group organizes fields for display as configuration properties in CAS Console. You can annotate an extension
to organize a set of fields into a group and specify the order of fields in a group.

The @ConfigurationGroup annotation specifies that the fields contained within it are a group from the
perspective of CAS Console and from the CAS Server Command-line Utility.

The groupName attribute of @ConfigurationGroup specifies the label for the group, and the propertyOrder
attribute specifies the order in which the properties display in CAS Console and display as output from tasks
in CAS Server Command-line Utility. If you omit the propertyOrder attribute, the properties are sorted
alphabetically and display alphabetically.

Here is an example group named User Credentials that defines three configuration properties:
@ConfigurationGroup(groupName="User Credentials", propertyOrder={"userName","user¬
Password"})

Oracle Endeca Commerce Content Acquisition System Extension API Guide

Introduction to the CAS Extension API | Overview of the CAS Extension API12

Annotations specify the order of multiple groups of fields

You can annotate an extension to specify the order of multiple groups of fields. As mentioned above, you
specify each group with a @ConfigurationGroup annotation. You specify the order of multiple groups with
a @ConfigurationGroupOrder annotation.

This may be useful if you want to enforce the order of groups and order of the fields within each group. For
example, suppose a data source extension accesses a database. The first group is called User Credentials
and it displays a userName property and a userPassword property.

Next you want a second group of fields called Database Settings, and it displays serverName,
databasePath, and portNumber.

Last you want a third group called Advanced Settings, and it displays settingA, settingB, and
settingC.

This scenario requires the following annotations:
@ConfigurationGroupOrder({
 @ConfigurationGroup(groupName="User Credentials", propertyOrder={
 "userName","userPassword"})
 @ConfigurationGroup(groupName="Database settings", propertyOrder={
 "serverName","databasePath","portNumber"})
 @ConfigurationGroup(groupName="Advanced Settings", propertyOrder={
 "settingA","settingB","settingC"})})

Record access interfaces
The CAS Extension API contains the com.endeca.itl.record package necessary for both Manipulator¬
Runtime and DataSourceRuntime record processing.

Structure of an Endeca record

Endeca records are made up of property key-value pairs. Each of the key-value pairs are strings. In some
cases, a property key can have multiple values. Here is a simple representation of an example record produced
by acquiring data from a file system. This representation illustrates the makeup of a record as key-value pairs.
For example, the property key named Endeca.SourceType has a value of FILESYSTEM.

To manipulate the key-value pairs in a record, you implement ManipulatorRuntime.processRecord()
in a manipulator. For a list of the properties CAS can produce in a record, see "Record properties generated
by crawling" in the CAS Developer's Guide.

Oracle Endeca Commerce Content Acquisition System Extension API Guide

13Introduction to the CAS Extension API | Overview of the CAS Extension API

The Record class

The Record class represents an individual Endeca record. The methods in this class access the name and
value of a property value.

The PropertyValue class

The PropertyValue class represents individual property values on an Endeca record. The methods in this
class access and modify one or more values of a property.

Common record properties
The CAS Server generates certain properties whether you acquire data from a file system, a CMS, or custom
data source.

The CAS Server generates record properties and assigns each property a qualified name, with a period (.) to
separate qualifier terms. The CAS Server constructs the qualified name as follows:
• The first term is always Endeca and is followed by one or more additional terms.
• The second term describes a property category, for example: Document or CMS.

The CAS Server generates the following properties for all records:

Property ValueEndeca Property Name

The action that was taken with the document. Values are UPSERT
(the file or folder has been added or modified) or DELETE (the
file or folder has been deleted since the last acquisition).

Endeca.Action

Provides a unique identifier for each record. For data source
extensions, an extension developer must add Endeca.Id to
each record and assign it a value appropriate for the data source.

Endeca.Id

Indicates the name of the acquisition source.Endeca.SourceId

Oracle Endeca Commerce Content Acquisition System Extension API Guide

Introduction to the CAS Extension API | Common record properties14

Chapter 2

Implementing a data source

This section describes how to implement a data source with the CAS Extension API.

Creating a data source class
You create a data source by extending the DataSource abstract class and other supporting classes.

A DataSource requires an @CasDataSource annotation. The annotation has several important attributes
you can configure:
• displayName. Optional. The name of a data source as it displays in CAS Console and as it is returned
from the listModules task of the CAS Server Command-line Utility. If not specified, displayName
defaults to the name value.

• description. Optional. The description of a what the data source can access. The description displays
in CAS Console and it is returned from the listModules task of the CAS Server Command-line Utility.

• id. Optional. If unspecified, the extension defaults to using the fully qualified class name as its id.

The listModules task of the CAS Server Command-line Utility and the listModules()call of the CAS
Server API both return the attribute values you specify in the @CasDataSource annotations.

To create a data source extension:

1. Create a Java project in your development environment of your choice.
If you are creating several extensions in one plug-in, you can use the same Java project for each extension.

2. Add the CAS Extension API libraries to your compile classpath. These include all the libraries available in
<install path>\CAS\version\lib\cas-extension-api.

3. Create a subclass of DataSource and specify the PipelineComponentConfiguration subclass that
the extension uses. The DataSource requires a zero-argument constructor.
For example:
public class CsvDataSource extends DataSource<CsvDataSourceRuntime,CsvDataSource¬
Config>{

}

4. Add a @CasDataSource annotation to the DataSource class.
For example:
@CasDataSource(displayName="CSV File", description="Reads comma separated
files")
public class CsvDataSource extends DataSource<CsvDataSourceRuntime,CsvDataSource¬

Config>{

}

5. Implement the getConfigurationClass()method to return the appropriate PipelineComponentCon¬
figuration subclass.
For example:
public Class<CsvDataSourceConfig> getConfigurationClass() {
 return CsvDataSourceConfig.class;
}

6. Implement thecreateDataSourceRuntime()method to create an implementation of theDataSourceRun¬
time class.
For example:
public CsvDataSourceRuntime createDataSourceRuntime(
 CsvDataSourceConfig config, PipelineComponentRuntimeContext context) {
 return new CsvDataSourceRuntime(context, config);
 }

7. Implement the getRuntimeClass() method to return the runtime class the data source creates.
For example:
 public Class<CsvDataSourceRuntime> getRuntimeClass() {
 return CsvDataSourceRuntime.class;
 }

8. Optionally, override the deleteInstance() method. CAS Server calls deleteInstance() when it
removes an extension. In this method, you can perform any clean up that is necessary when CAS Server
calls deleteInstance() to remove the extension from an acquisition. The default implementation of
deleteInstance() is empty.

Example of a data source extension

To see many of the steps above, refer to the sample data source extension in <install
path>\CAS\version\sample\cas-extensions\src\main\com\endeca\cas\extension\sample\
datasource\csv\CsvDataSource.java.

Related Links
Life cycle of a data source on page 33

The following actions indicate key points in the life cycle of a data source. The events take place after
a data source extension has been implemented, packaged, and installed into the Content Acquisition
System.

About threading on page 35
Data sources and manipulators must be thread safe.

Creating a runtime class for a data source on page 18
The DataSourceRuntime is the runtime representation of a data source instance. It is created by
DataSource.createDataSourceRuntime() and exists for the life span of the data source.

Creating a pipeline component configuration class for a data source on page 17
A data source extension requires a PipelineComponentConfiguration class to describe the
extension's configuration, to validate the data source's configuration, and to determine whether a
configuration change requires a full acquisition for the data source.

Oracle Endeca Commerce Content Acquisition System Extension API Guide

Implementing a data source | Creating a data source class16

Creating a pipeline component configuration class for a data
source

A data source extension requires a PipelineComponentConfiguration class to describe the extension's
configuration, to validate the data source's configuration, and to determine whether a configuration change
requires a full acquisition for the data source.

To create a data source configuration:

1. In the Java project that contains your DataSource implementation, create a subclass of PipelineCom¬
ponentConfiguration.
For example:
public class CsvDataSourceConfig extends
 PipelineComponentConfiguration<CsvDataSourceConfig>{

}

2. Add each field that you want available as a configuration property in the data source.
For example:
private String mInputFile;

private String mKeyColumn;

3. Add an annotation to each field. The annotation type must match the field's data type. See package
com.endeca.cas.extension.annotation in theCASExtension API Reference (Javadoc) to determine
which annotations have required attributes and to determine which attributes are appropriate for the field.
For example:
@StringProperty(isRequired=true, name="inputFile",
 displayName="Input File", description="Path to the input csv file e.g.
c:\\incoming\\data.csv")
private String mInputFile;

@StringProperty(isRequired=true, name="keyColumn",
 displayName="Key Column", description="Name of the column with the record
key")
private String mKeyColumn;

4. If you want to order configuration properties within a single group, add a @ConfigurationGroupOrder
annotation to the PipelineComponentConfiguration class and then add a nested @Configura¬
tionGroup annotation.
For example, here is one group of fields that display in order — filePath, headerRow, and separator:
@ConfigurationGroupOrder({@ConfigurationGroup(groupName="Basic",
 propertyOrder={"filePath","headerRow","separator"})})
public class CsvDataSourceConfig implements
 PipelineComponentConfiguration<CsvDataSourceConfig>{

}

If you omit propertyOrder, the properties are sorted alphabetically and display alphabetically.
5. If you want to order multiple groups of user-interface fields on a tab, add additional @ConfigurationGroup

annotations within @ConfigurationGroupOrder for each group of user-interface fields that you want
ordered.

6. Optionally, override the default implementation of isFullAcquisitionRequired(). The default
implementation determines whether a configuration change should force full acquisition the next time an

Oracle Endeca Commerce Content Acquisition System Extension API Guide

17Implementing a data source | Creating a pipeline component configuration class for a data source

acquisition is run by comparing the old PipelineComponentConfiguration and the new
PipelineComponentConfiguration using the equals() method. The default implementation of the
equals() method uses reflection to compare all non-transient fields for equality.
You can write code that checks a specific property to determine if a full acquisition is required (rather than
the entire PipelineComponentConfiguration). If you want to force a full acquisition, write code that
always returns true.

7. Optionally, override the default implementation of validate(). CAS Server performs data type and
constraint validation (constraints may include minValue and maxValue for integer properties). Any code
you write in validate() performs additional custom validation.
For example:
public List<ValidationFailure> validate(
 CsvFileDataSourceConfiguration configuration) {

 List<ValidationFailure> validationFailures =
 new LinkedList<ValidationFailure>();
 File checkFile = new File(configuration.getFilePath());

 if (!checkFile.exists()) {
 validationFailures.add(new ValidationFailure("File " +
 checkFile.getAbsolutePath() + " does not exist"));
 }

 return validationFailures;
}

If validation fails, the PipelineComponentConfiguration.validate() method returns a collection
ValidationFailure objects.

8. If it is necessary for unit testing or for the implementation of the data source runtime, you may also need
to write getter and setter methods for each user-interface field that you added.

Example of a pipeline component configuration for a data source

To see many of the steps above, refer to the sample data source extension in <install
path>\CAS\version\sample\cas-extensions\src\main\com\endeca\cas\extension\sample\
datasource\csv\CsvDataSourceConfig.java.

Related Links
About CAS annotations on page 11

The CAS Extension API provides Java annotations that define extensions to the Content Acquisition
System and also define configuration properties for an extension. Annotations can describe whether
configuration properties are required or optional, whether they have a default value, and their display
properties in CAS Console.

Creating a runtime class for a data source
The DataSourceRuntime is the runtime representation of a data source instance. It is created by Data¬
Source.createDataSourceRuntime() and exists for the life span of the data source.

CASServer creates and passes a PipelineComponentRuntimeContext class to DataSource.create¬
DataSourceRuntime(). The PipelineComponentRuntimeContext specifies an output channel, error
channel, a state directory, and several other runtime properties.

Oracle Endeca Commerce Content Acquisition System Extension API Guide

Implementing a data source | Creating a runtime class for a data source18

The ErrorChannel.discard() method discards any invalid records from the record acquisition process.
Also, in addition to discarding records, the ErrorChannel class processes exceptions that you catch. This
processing includes incrementing the appropriate metric for a record and also logging a record in the
cas-service.log file. The ErrorChannel logs events at level WARN and higher.

To create a runtime class for a data source:

1. In the Java project that contains the DataSource implementation, create a subclass of DataSourceRun¬
time.
For example:
public class CsvDataSourceRuntime extends DataSourceRuntime {

}

2. Implement the DataSourceRuntime constructor.
3. Implement the abstract method runFullAcquisition() to define how to acquire content from the data

source. The implementation depends on your custom data source.
4. Within your implementation of runFullAcquisition(), call ErrorChannel.discard() as necessary

to discard any records that are invalid or have errors, and also call OutputChannel.output() for each
record that has been processed.

5. Optionally, implement either the BinaryContentFileProvider interface or the BinaryContentInput¬
StreamProvider interface if the data source needs to support text extraction.

6. Optionally, implement the IncrementalDataSourceRuntime interface calculate the changes in your
data source extension, rather than have the Content Acquisition System determine the changes for you.

7. Optionally, handle requests to stop an acquisition by providing a mechanism to stop an extension's runtime
object in a timely way. This may include polling PipelineComponentRuntimeContext.isStopped()
and may include overriding PipelineComponentRuntime.stop(). For guidance, see Stopping an
extension when an acquisition stops on page 37.

8. Optionally, override PipelineComponentRuntime.endAcquisition() to clean up any resources
used by PipelineComponentRuntime. For guidance, see Cleaning up resources used by an extension
on page 38.

Example of a data source runtime

To see many of the steps above, refer to the sample data source extension in <install
path>\CAS\version\sample\cas-extensions\src\main\com\endeca\cas\
extension\sample\datasource\csv.

Related Links
Creating a data source class on page 15

You create a data source by extending the DataSource abstract class and other supporting classes.
Supporting document conversion in a data source on page 20

You add support for document conversion by making the DataSourceRuntime class implement
either theBinaryContentFileProvider interface or theBinaryContentInputStreamProvider
interface.

Supporting incremental acquisition in a data source on page 22
There are two approaches for determining the incremental difference between acquisitions from a
data source: you can either let the Content Acquisition System determine the incremental difference,
or you can implement the IncrementalDataSourceRuntime interface to determine the incremental
difference.

Oracle Endeca Commerce Content Acquisition System Extension API Guide

19Implementing a data source | Creating a runtime class for a data source

Supporting filtering in a data source
An extension developer can add support for including or excluding content by adding filtering logic to the
DataSourceRuntime.runFullAcquisition()methodand theIncrementalDataSourceRuntime.run¬
IncrementalAcquisition() method.

Filtering logic may be necessary because in this release of the Content Acquisition System, data source
extensions do not have the same filtering features as the File System data source and the CMS connectors.
In particular, data source extensions have the following limitations:
• Filter objects, as represented by the Filter base class in the CAS Server API, are not currently supported
for a data source extension.

• No Filters tab is available in CAS Console for a data source extension.
• Document conversion filters specified in DocumentConversionFilters.xml do not apply to a data
source extension.

A CAS application developer encounters these filtering limitations when he or she configures a data source.
If you work around these limitations, be sure to communicate the expected filtering behavior of a data source
to the CAS application developer.

Supporting document conversion in a data source
You add support for document conversion by making the DataSourceRuntime class implement either the
BinaryContentFileProvider interface or the BinaryContentInputStreamProvider interface.

The BinaryContentFileProvider interface allows the extension to pass a file to CAS Server so CAS
Server can perform document conversion. The interface provides a getBinaryContentFile()method that
takes a Record as input and uses a property on the Record to identify the file to read. CAS Server then reads
the file directly or caches it locally (optional) and then reads the file.

The BinaryContentInputStreamProvider interface allows the extension to download and convert binary
contents to an input stream so CAS Server can read the input stream and perform document conversion. A
common scenario is one where the data source extension connects to a database to read content. The interface
provides a getBinaryContentInputStream() method that takes a Record as input and uses a property
on the Record to identify the content to read. CAS Server then caches the content locally (not optional) and
reads the content as an input stream.

During the document conversion process, CAS Server examines the file, extracts the text of the file, and stores
the text as the Endeca.Document.Text property on the Record. In both interfaces, the CAS Server manages
file access, local file download (if enabled), temporary files, and caching.

Enabling document conversion in the data source

An extension developer needs to implement one of the binary content provider interfaces, but not both, to
support document conversion. A CAS application developer specifies whether document conversion is enabled
by configuring the data source in CAS Console, using the CAS Server API (TextExtractionConfig), or
using the CAS Server Command-line Utility.

If document conversion is enabled, a CAS application developer can also specify whether CAS Server should
cache the file locally before reading it.

Oracle Endeca Commerce Content Acquisition System Extension API Guide

Implementing a data source | Supporting filtering in a data source20

Example code in the CAS extension samples

To see an example of how BinaryContentFileProvider.getBinaryContentFile() is used, see the
CAS sample extension in <install
path>\CAS\version\sample\cas-extensions\src\main\com\endeca\cas\extension\sample\
datasource\directory\DirectoryDataSourceRuntime.java.

To see an example of how BinaryContentInputStreamProvider.getBinaryContentInputStream()
is used, see the CAS sample extension in <install
path>\CAS\version\sample\cas-extensions\src\main\com\endeca\cas\extension\sample\datasource
\blob\BlobDataSourceRuntime.java.

Specifying which documents to convert
There may be cases where you want to specify which documents you want to convert. For example, you may
want to create a record for a specific document but exclude that record from the document conversion process
because the document size is too large.

You cannot use document conversion filters specified in DocumentConversionFilters.xml because it
does not apply to data source extensions.

There are two approaches for specifing which documents to convert:
• Add logic in the extension that identifies a property in the record to examine, tests the property during
acquisition, and returns null from either getBinaryContentFile() or getBinaryContentInput¬
Stream() for those records you want to exclude from the document conversion process.

• Add logic in the extension that examines a configuration file, determines which property to examine, returns
null from either getBinaryContentFile() or getBinaryContentInputStream() for those records
you want to exclude from the document conversion process.

Full and incremental crawling modes
The CAS Server crawls a data source in one of two modes:

• full mode, in which all content is processed.
• incremental mode, in which only new, modified, or deleted content is processed.

Crawling in full mode

Crawling in full mode means that CAS processes all the content in a data source according to the filtering
criteria you specify. As part of crawling a data source, CAS creates metadata information and stores it in a
crawl history. This history includes the Id of each record and information about all properties on the record.

Crawling in incremental mode

Crawling in incremental mode means that CAS processes only that content whose metadata information,
stored in the crawl history, has changed since the last crawl. Specifically, CAS checks all properties on the
record to see if any have changed. If any properties have changed, the CAS Server crawls the content again.
This is true in cases where CAS is calculating the incremental difference. An extension developer, using the
CAS Extension API, may choose to calculate incremental changes in a data source extension.

Oracle Endeca Commerce Content Acquisition System Extension API Guide

21Implementing a data source | Specifying which documents to convert

CAS automatically determines which crawling mode is necessary. By default, CAS attempts to crawl in
incremental mode. If necessary, CAS switches to crawling in full mode, if a crawl's configuration has unavail¬
ableIncrementalSwitchesToFullCrawl set to true, and any of the following conditions are true:
• A data source has not been crawled before, which means no crawl history exists.
• A Record Store instance does not contain at least one record generation. (This applies to cases where the
CAS Server is configured to output to a Record Store instance rather than a file on disk.)

• Seeds have been removed from the data source configuration (adding seeds does not require crawling in
full mode).

• The document conversion setting has changed.
• Folder filters or file filters have been added, modified, or removed in the data source configuration.
• Repository properties have been changed, such as the Gather native properties option for file system
data sources.

If unavailableIncrementalSwitchesToFullCrawl is set to false and any of the above conditions are
true, the crawl fails and throw and exception.

This switch from incremental to full mode can occur no matter how you run a crawl (using the CAS Console,
the CAS Server API, or the CAS Server Command-line Utility).

After you click Start in CAS Console, you can click the link under Acquisition Status to see a status message
indicating whether a full or incremental crawl is running. After you crawl a data source using the API, the status
message is returned.

Incremental mode and MDEX compatible output

An incremental crawl processes only data records. It does not process any configuration stored in the Endeca
Configuration Repository (such as dimensions and properties, precedence rules, and so on), and it does not
crawl dimension value records. By contrast, a full crawl processes data records, configuration in the Endeca
Configuration Repository, and dimension value records.

Supporting incremental acquisition in a data source
There are two approaches for determining the incremental difference between acquisitions from a data source:
you can either let the Content Acquisition System determine the incremental difference, or you can implement
the IncrementalDataSourceRuntime interface to determine the incremental difference.

If you are accessing a data source that tracks content revisions, it can be more efficient to implement Incre¬
mentalDataSourceRuntime and calculate the changes in your data source extension, rather than have the
Content Acquisition System determine the changes for you.

The Content Acquisition System determines the incremental difference

The Content Acquisition System maintains a history of each acquisition (full or incremental) that runs against
a data source. This history includes the Id of each record and information about all properties on each record.
To determine the incremental change between acquisitions, CAS compares all the properties on a given record
to determine if a record has changed between acquisitions.

If an acquisition does not find content that is listed in the history, CAS treats that content as deleted. That
removal is part of the incremental change. Similarly, if an acquisition finds new content, CAS adds a record to
the history. That addition is part of the incremental change.

This comparison can take a significant amount of time in large data sets.

Oracle Endeca Commerce Content Acquisition System Extension API Guide

Implementing a data source | Supporting incremental acquisition in a data source22

An extension developer determines the incremental difference

Some data source types and repositories provide features to identify incremental content changes. For example,
many data source types such as content management systems, version control systems, and enterprise
management systems have the capability to track modification dates, user changes, and other types of content
changes.

If this kind of information is available, a data source extension can programmatically request it and then acquire
only content that has changed as part of an incremental acquisition. This approach to identifying incremental
content changes is often more efficient than having the Content Acquisition System create and compare
metadata histories to identify the incremental difference.

You can support this approach in a data source extension by implementing the IncrementalDataSourceRun¬
time interface. This includes the following steps:
• Implement IncrementalDataSourceRuntime.checkFullAcquisitionRequired().

The logic of this method should do whatever is necessary to determine whether a full acquisition is required.
For example, this may involve checking whether any manipulator extension in an acquisition requires state
produced by a full acquisition. If a manipulator does require state, it would return true from checkFul¬
lAcquisitionRequired().

If the Boolean is true, CAS Server then sets the AcquisitionMode to FULL_ACQUISITION. If the
Boolean returned from checkFullAcquisitionRequired() is false, then CAS Server sets the Ac¬
quisitionMode to INCREMENTAL_ACQUISITION.

If the AcquisitionMode is set to FULL_ACQUISITION, the CAS Server switches from an incremental
acquisition to a full acquisition and calls DataSourceRuntime.runFullAcquistion().

• Implement IncrementalDataSourceRuntime.runIncrementalAcquisition().

Example code in the CAS extension samples

To see an example of how IncrementalDataSourceRuntime is used, see the CAS sample extension in
<install
path>\CAS\version\sample\cas-extensions\src\main\com\endeca\cas\extension\sample
\datasource\incremental.

Related Links
Storing state information for an extension on page 38

The Content Acquisition System automatically creates directories under <install
path>\CAS\workspace\state that you can use to store state information for a data source or
manipulator extension. An extension can read, write, or delete state information from these directories
as necessary.

Oracle Endeca Commerce Content Acquisition System Extension API Guide

23Implementing a data source | Supporting incremental acquisition in a data source

Chapter 3

Implementing a manipulator

This section describes how to implement a manipulator with the CAS Extension API.

Creating a manipulator class
You create a manipulator by extending the Manipulator abstract class and other supporting classes.

A Manipulator requires an @CasManipulator annotation. The annotation has several important attributes
you can configure:
• supportsIncrementals. Required. A Boolean value that indicates whether the manipulator supports
input from an incremental acquisition. If one manipulator in an incremental acquisition has this set to false,
the incremental acquisition runs in full mode.

• deleteRecordsBypassManipulator. Required. A Boolean value that indicates whether to send deleted
input records directly to the manipulator's output channel or to send deleted input records into the
manipulator. A value of true sends records to the output channel (by passing the manipulator). A value
of false sends records into the manipulator.

• displayName. Optional. The name of a manipulator as returned from the listModules task of the CAS
Server Command-line Utility.

• description. Optional. The description of a what themanipulator does to Endeca records that it processes.
The description is returned from the listModules task of the CAS Server Command-line Utility, and the
description displays in the Add Manipulator dialog of CAS Console.

• id. Optional. If unspecified, the extension defaults to using the fully qualified class name as its id.

The listModules task of the CAS Server Command-line Utility and the listModules() call of the CAS
Server API both return the attribute values you specify in the @CasManipulator annotations.

To create a manipulator extension:

1. Create a Java project in your development environment of your choice.
If you are creating several extensions in one plug-in, you can use the same Java project for each extension.

2. Add the CAS Extension API libraries to your compile classpath. These include all the libraries available in
CAS\version\lib\cas-extension-api.

3. Create a subclass of Manipulator and specify the PipelineComponentConfiguration subclass
that the extension uses.
For example:
public class SubstringManipulator extends Manipulator<SubstringManipulatorCon¬
fig>{

}

4. Add a @CasManipulator annotation to the Manipulator class and any attributes as described above.
For example:
@CasManipulator(
 supportsIncrementals=true,
 deleteRecordsBypassManipulator = true,
 displayName="Substring Manipulator",
 description="Generates a new property that is a substring of another property
 value")
public class SubstringManipulator extends Manipulator<SubstringManipulatorConfig>

5. Implement the getConfigurationClass()method to return the appropriate PipelineComponentCon¬
figuration subclass.
For example:
public Class<SubstringManipulatorConfig> getConfigurationClass() {
 return SubstringManipulatorConfig.class;
 }

6. Implement the createManipulatorRuntime()method to create an implementation of the Manipula¬
torRuntime class.
For example:
public ManipulatorRuntime createManipulatorRuntime(
 SubstringManipulatorConfig configuration, PipelineComponentRuntimeContext
context) {
 return new SubstringManipulatorRuntime(context, configuration);
}

7. Implement the getRuntimeClass() method to return the runtime class the manipulator creates.
For example:
 public Class<SubstringManipulatorRuntime> getRuntimeClass() {
 return SubstringManipulatorRuntime.class;
 }

8. Optionally, override the deleteInstance() method. CAS Server calls deleteInstance() when it
removes an extension from an acquisition. In this method, you can perform any clean up that is necessary
when CAS Server calls deleteInstance() to remove the extension from an acquisition. The default
implementation of deleteInstance() is empty.

Example of a manipulator extension

To see many of the steps above, refer to the sample manipulator extension in <install
path>\CAS\version\sample\cas-extensions\src\main\com\endeca\cas\extension
\sample\manipulator\substring\SubstringManipulator.java.

Related Links
Creating a pipeline component configuration class for a manipulator on page 27

A manipulator requires a PipelineComponentConfiguration class to describe the extension's
configuration, to validate the manipulator's configuration, and to determine whether a full acquisition
is required by the manipulator.

Creating a runtime class for a manipulator on page 28

Oracle Endeca Commerce Content Acquisition System Extension API Guide

Implementing a manipulator | Creating a manipulator class26

The ManipulatorRuntime is the runtime representation of a manipulator instance. The Manipu¬
latorRuntime is created by Manipulator.createManipulatorRuntime() and exists for the
life span of the manipulator.

Creating a pipeline component configuration class for a
manipulator

Amanipulator requires a PipelineComponentConfiguration class to describe the extension's configuration,
to validate the manipulator's configuration, and to determine whether a full acquisition is required by the
manipulator.

To create a manipulator configuration class:

1. In the Java project that contains the Manipulator implementation, create a subclass of PipelineCom¬
ponentConfiguration.
For example:
public class SubstringManipulatorConfig extends PipelineComponentConfigura¬
tion<SubstringManipulatorConfig> {

}

2. Add each field that you want available as a configuration property in the manipulator.
For example:
private String mSourceProperty;

private String mTargetProperty;

private int mStartIndex;

3. Add an annotation to each field. The annotation type must match the field's data type. See package
com.endeca.cas.extension.annotation in theCASExtension API Reference (Javadoc) to determine
which annotations have required attributes and to determine which attributes are appropriate for the field.
For example:
@StringProperty(isRequired=true, name="sourceProperty", displayName="Source
Property")
 private String mSourceProperty;

 @StringProperty(isRequired=true, name="targetProperty", displayName="Target
Property")
 private String mTargetProperty;

 @IntegerProperty(isRequired=false, name="startIndex", displayName="Substring
 Start Index",
 description="Substring start index (zero based)", defaultValue="0")
 private int mStartIndex;

4. If you want to order fields within a single group, add a @ConfigurationGroupOrder annotation to the
PipelineComponentConfiguration class and then add a nested @ConfigurationGroup annotation.
For example, here is one group of fields that display in order — sourceProperty, targetProperty,
length and startIndex:
@ConfigurationGroupOrder({
 @ConfigurationGroup(propertyOrder={"sourceProperty", "targetProperty", "length",
 "startIndex"})

Oracle Endeca Commerce Content Acquisition System Extension API Guide

27Implementing a manipulator | Creating a pipeline component configuration class for a manipulator

})
public class SubstringManipulatorConfig extends PipelineComponentConfigura¬
tion<SubstringManipulatorConfig> {

}

5. If you want to order multiple groups of user-interface fields on a tab, add additional @ConfigurationGroup
annotations within @ConfigurationGroupOrder for each group of user-interface fields that you want
ordered.

6. Optionally, override the default implementation of isFullAcquisitionRequired(). The default
implementation determines whether a configuration change should force full acquisition the next time an
acquisition is run by comparing the old PipelineComponentConfiguration and the new
PipelineComponentConfiguration using the equals() method. The default implementation of the
equals() method uses reflection to compare all non-transient fields for equality.
You can write code that checks a specific property to determine if a full acquisition is required (rather than
check the entire PipelineComponentConfiguration). If you want to force a full acquisition, write code
that always returns true.

7. Optionally, override the default implementation of validate(). CAS Server performs data type and
constraint validation (constraints may include minValue and maxValue for integer properties). Any code
you write in validate() performs additional custom validation.
If validation fails, the PipelineComponentConfiguration.validate() method returns a collection
ValidationFailure objects.

8. If it is necessary for unit testing or the implementation of the manipulator runtime, you may also need to
write getter and setter methods for each field that you added.

Example of a pipeline component configuration for a manipulator

To see many of the steps above, refer to the sample data source extension in <install
path>\CAS\version\sample\cas-extensions\src\main\com\endeca\cas\extension\sample\
source\csv\SubstringManipulatorConfig.java.

Related Links
About CAS annotations on page 11

The CAS Extension API provides Java annotations that define extensions to the Content Acquisition
System and also define configuration properties for an extension. Annotations can describe whether
configuration properties are required or optional, whether they have a default value, and their display
properties in CAS Console.

Creating a runtime class for a manipulator
The ManipulatorRuntime is the runtime representation of a manipulator instance. The ManipulatorRun¬
time is created by Manipulator.createManipulatorRuntime() and exists for the life span of the
manipulator.

CASServer creates and passes a PipelineComponentRuntimeContext class to Manipulator.create¬
ManipulatorRuntime(). The PipelineComponentRuntimeContext specifies an output channel, error
channel, a state directory, and several other runtime properties.

The ErrorChannel.discard() methods discards any invalid records from record processing. Also, in
addition to discarding records, the ErrorChannel class processes exceptions that you catch. This processing

Oracle Endeca Commerce Content Acquisition System Extension API Guide

Implementing a manipulator | Creating a runtime class for a manipulator28

includes incrementing the appropriate metric for a record and also logging a record in the cas-service.log
file. The ErrorChannel logs events at level WARN and higher.

To create a runtime class for a manipulator:

1. In the Java project that contains the Manipulator implementation, create a subclass of Manipulator¬
Runtime.
For example:
public class SubstringManipulatorRuntime extends ManipulatorRuntime {

}

2. Implement the ManipulatorRuntime constructor.
3. Optionally, override the default implementation of ManipulatorRuntime.checkFullAcquisitionRe¬

quired() to allow each manipulator in an acquisition to indicate whether it requires a full acquisition. This
check could be necessary if a manipulator has state-based dependencies that should force a full acquisition.

4. Optionally, override the default implementation of prepareForAcquisition(AcquisitionMode) if
the manipulator has to prepare state to process records that result from an incremental acquisition. CAS
Server passes in an acquisition mode of either FULL_ACQUISITION or INCREMENTAL_ACQUISITION
based on the results of running checkFullAcquisitionRequired().

5. Implement the abstract method processRecord() to define how tomanipulate records. The implementation
depends the manipulation you wish to perform.

6. Optionally, call ErrorChannel.discard() as necessary to discard any records that are invalid or have
errors.

7. Call OutputChannel.output() for each record that has been processed by processRecord().
For example:
getContext().getOutputChannel().output(record);

A manipulator should not modify any records that have already been output by output(). If you are doing
significant processing between calls to output(), you may want to periodically call PipelineComponen¬
tRuntimeContext.isStopped() to see if any requests to stop the acquisition have been made while
OutputChannel.output() is running.

8. Optionally, implement onInputClose() to perform any cleanup or post-processing after process¬
Record() finishes processing the last record.

9. Optionally, handle requests to stop an acquisition by providing a mechanism to stop an extension's runtime
object in a timely way. This may include polling PipelineComponentRuntimeContext.isStopped()
and may include overriding PipelineComponentRuntime.stop().

10. Optionally, override PipelineComponentRuntime.endAcquisition() to clean up any resources
used by PipelineComponentRuntime or ManipulatorRuntime and also clean up any state-based
dependencies.

Example of a manipulator runtime

To see many of the steps above, refer to the sample manipulator extension in <install
path>\CAS\version\sample\cas-extensions\src\main\com\endeca\cas\extension\
sample\manipulator\substring\SubstringManipulatorRuntime.java.

Related Links
Stopping an extension when an acquisition stops on page 37

When an acquisition stops, it may take time for an extension within an acquisition to stop. Therefore,
Oracle recommends that you provide a mechanism to stop an extension's runtime object in a more
timely way (recall that a runtime object is either a DataSourceRuntime or a ManipulatorRuntime).

Oracle Endeca Commerce Content Acquisition System Extension API Guide

29Implementing a manipulator | Creating a runtime class for a manipulator

Cleaning up resources used by an extension on page 38
The CAS Server calls endAcquisition() after all extensions in a acquisition have completed data
acquisition and record processing. Your implementation of endAcquisition() can override
PipelineComponentRuntime.endAcquisition() to perform any necessary cleanup for an
extension.

Supporting incremental acquisition in a manipulator
A manipulator can be implemented to support record input from an incremental acquisition of a data source.
Broadly speaking, support means that a manipulator can take record input from an incremental acquisition,
process the records, and generate correct output.

More specifically, a manipulator generates correct output if it can produce records from an incremental acquisition
that represent the delta between two full acquisitions.

This situation is more complicated than supporting record input from a full acquisition. During a full acquisition,
a manipulator processes every record as a new record. During an incremental acquisition, a manipulator
processes incremental changes that may include added records, updated records, and deleted records.

Here is a simple example that illustrates how a manipulator generates correct output for changes (creates,
updates, and deletes) to an input record named record A:
• Record A is passed into a manipulator. Based on the new record A, the manipulator creates new records
A1 and A2.

• An updated record A is passed into a manipulator. Based on the update to record A, the manipulator
updates records A1 and A2.

• Record A is deleted from the data source. A corresponding delete record is passed into the manipulator.
Based on the delete record, the manipulator deletes records A1 and A2.

Generating correct output

In simple cases, a manipulator produces correct output and can be annotated with "supportsIncremen¬
tals=true" if it meets all of the following criteria:
• Does the manipulator output only the records it receives? That is, does it always output records with a
recordId that was input to it?

• Does the manipulator output all the records that it receives?
• Does the manipulator generate output for one record that depends only on the input of the same record
and not on any other records?

• Does the manipulator produce the same output over time in response to a given input record?

If the answer is yes to these four questions, then a manipulator can be annotated with "supportsIncremen¬
tals=true". If the answer is no to any one of these questions, then further analysis is required to determine
whether correct output can be produced, and further work is required to produce correct output. This work
typically involves maintaining state.

If the answer is yes to all but the second question, it may be possible to support incremental input with only a
little extra work to address the records that the manipulator does not output. To be correct, a manipulator
should emit a delete record for any record that it had previously output but is now not being output. (Recall
that a record marked for deletion has an Endeca.Action property set to DELETE.)

This would require the manipulator to track what records it had previously output. To make such implementation
easier, a manipulator can replace input records that it should not output with a delete record instead.

For example, suppose a manipulator filters records to include only those records that contain a color property
that is set to red. Record A has the property color set to red, so the manipulator includes record A. In a

Oracle Endeca Commerce Content Acquisition System Extension API Guide

Implementing a manipulator | Supporting incremental acquisition in a manipulator30

subsequent incremental acquisition, record A has changed so that now the color property is set to blue. Record
A no longer meets the manipulator's filtering criteria. Instead of dropping the record, the manipulator emits a
delete record for record A.

Delete records can bypass a manipulator

If a delete record does not require manipulator processing, you can set deleteRecordsBypassManipulator
to true and any delete record will bypass the manipulator and be routed directly to a manipulator's Out¬
putChannel. Setting deleteRecordsBypassManipulator to true allows you to avoid writing special
case code to handle delete records.

Setting deleteRecordsBypassManipulator to false routes delete records into the manipulator for
processing.

Related Links
About CAS annotations on page 11

The CAS Extension API provides Java annotations that define extensions to the Content Acquisition
System and also define configuration properties for an extension. Annotations can describe whether
configuration properties are required or optional, whether they have a default value, and their display
properties in CAS Console.

Creating a runtime class for a manipulator on page 28
The ManipulatorRuntime is the runtime representation of a manipulator instance. The Manipu¬
latorRuntime is created by Manipulator.createManipulatorRuntime() and exists for the
life span of the manipulator.

Oracle Endeca Commerce Content Acquisition System Extension API Guide

31Implementing a manipulator | Supporting incremental acquisition in a manipulator

Chapter 4

Extension life cycle and threading

This section describes several life cycle and threading issues to consider when implementing an extension to
the Content Acquisition System.

Life cycle of a data source
The following actions indicate key points in the life cycle of a data source. The events take place after a data
source extension has been implemented, packaged, and installed into the Content Acquisition System.

Corresponding life cycle eventAction

CAS Server instantiates any DataSource that is
installed and correctly annotated.

The Endeca CAS Service starts.

CAS Server instantiates the PipelineComponent¬
Configuration specified by the DataSource.

The following items perform the same action.
• In the CAS Console - Configuring the data source
and clicking Save. CAS Server performs data type and constraint

validation and also calls PipelineComponentCon¬• In the CAS Server API - Calling either
CasCrawler.createCrawl() or
CasCrawler.updateCrawl().

figuration.validate() to execute any additional
custom validation code you wrote in the method's
implementation.• In the cas-cmd utility - Running either

createCrawls or updateCrawls.

CASServer re-creates thePipelineComponentCon¬
figuration specified by the DataSource andThe following items perform the same action.

• In the CAS Console - Clicking Start in theAcquire
Data column of the Data Sources page.

re-validates the PipelineComponentConfigura¬
tion by calling validate(). (CAS Server injects

• In the CAS Server API - Calling
CasCrawler.startCrawl().

configuration property values via reflection before
calling validate().)

CAS Server calls createDataSourceRuntime()
on the DataSource instance.

• In the cas-cmd utility - Running cas-cmd
startCrawl.

The resulting DataSourceRuntime exists for the
duration of the acquisition.

If an incremental acquisition is requested, CAS Server
calls checkFullAcquisitionRequired() on the
new DataSourceRuntime. The check returns a

Corresponding life cycle eventAction

Boolean value to indicate whether a full acquisition is
required or not.

If any data source or manipulator in the CAS pipeline
returns true, CAS Server calls DataSourceRun¬
time.runFullAcquisition().

If all extensions return false, CAS Server calls In¬
crementalDataSourceRuntime.runIncremen¬
talAcquisition().

After all records have been processed by all
extensions, CAS Server calls PipelineComponen¬
tRuntime.endAcquisition().

CAS Server passes in an AcquisitionEndState
value to endAcquisition() to indicate whether the
extension succeeded, failed, or requires a full
acquisition to recover from a failure.

CASServer calls PipelineComponent.deleteIn¬
stance() when a data source is removed from anThe following items perform the same action.

• In the CAS Console - Clicking the delete icon for
a data source on the Data Sources page.

application as part of updating or deleting an
acquisition, and deleteInstance() is also called if

• In the CAS Server API - Calling
CasCrawler.deleteCrawl().

the data source type of the acquisition has changed.
(The data source type is represented by a ModuleId
setting in the CAS Server API).• In the cas-cmd utility - Running cas-cmd

deleteCrawl.

Life cycle of a manipulator
The following actions mark key points in the life cycle of a manipulator. The events take place after a manipulator
extension has been implemented, packaged, and installed into the Content Acquisition System.

Corresponding life cycle eventAction

CAS Server instantiates any Manipulator that is
installed and correctly annotated.

The Endeca CAS Service starts.

CASServer instantiates a PipelineComponentCon¬
figuration specified by the Manipulator for each
Manipulator occurrence in a given acquisition.

The following items perform the same action.
• In the CAS Console - Configuring the data source
and clicking Save.

CAS Server performs data type and constraint
validation and also calls PipelineComponentCon¬

• In the CAS Server API - Calling either
CasCrawler.createCrawl() or
CasCrawler.updateCrawl(). figuration.validate() to execute any additional

custom validation code you wrote in the method's
implementation.

• In the cas-cmd utility - Running either
createCrawls or updateCrawls.

Oracle Endeca Commerce Content Acquisition System Extension API Guide

Extension life cycle and threading | Life cycle of a manipulator34

Corresponding life cycle eventAction

CASServer re-creates thePipelineComponentCon¬
figuration and re-validates the PipelineCompo¬

The following items perform the same action.
• In the CAS Console - Clicking Start in theAcquire
Data column (of the Data Sources page). nentConfiguration by calling validate(). (CAS

Server injects configuration property values via
reflection before calling validate().)• In the CAS Server API - Calling

CasCrawler.startCrawl().
CAS Server calls createManipulatorRuntime()
on the Manipulator instance.

• In the cas-cmd utility - Running startCrawl.

The ManipulatorRuntime exists for the duration of
the acquisition.

If an incremental acquisition is requested, CAS Server
calls checkFullAcquisitionRequired() on the
new ManipulatorRuntime. The check returns a
Boolean value to indicate whether a full acquisition is
required or not before record processing. If any one
data source or manipulator in a CAS pipeline returns
true, CAS runs a full acquisition. All extensions in a
CAS pipeline must return false for CAS to run an
incremental acquisition.

Before processing records, CASServer calls prepare¬
ForAcquisition() to prepare state.

During the acquisition, CAS Server calls Manipula¬
torRuntime.processRecord() concurrently for
separate records to manipulate every input record.

After all records have been processed by all
extensions, CAS Server calls ManipulatorRun¬
time.onInputClose() and then calls
PipelineComponentRuntime.endAcquisi¬
tion() on each manipulator.

CAS Server passes in an AcquisitionEndState
value to endAcquisition() to indicate whether the
extension succeeded, failed, or requires a full
acquisition to recover from a failure.

CASServer calls PipelineComponent.deleteIn¬
stance() when a manipulator is removed from an
acquisition.

The following items perform the same action.
• In the CAS Server API - Calling
CasCrawler.deleteCrawl() or

• In the cas-cmd utility - Running deleteCrawl.

About threading
Data sources and manipulators must be thread safe.

The stop() method can be called concurrently when any of the following methods are running:

Oracle Endeca Commerce Content Acquisition System Extension API Guide

35Extension life cycle and threading | About threading

• DataSouceRuntime.runFullAcquisition()
• ManipulatorRuntime.processRecord()
• ManipulatorRuntime.onInputClose()
• IncrementalDataSourceRuntime.runIncrementalAcquisition()

Recommendations for data sources

The requirement to be thread safe has a few implementation implications for data sources:
• Any state that is shared with runFullAcquisition() needs to be synchronized with stop(). State
may be share with checkFullAcquisitionRequired() and the binary content interfaces (BinaryCon¬
tentFileProvider and BinaryContentInputStreamProvider).

• If you are supporting text extraction by implementing either the BinaryContentFileProvider interface
or the BinaryContentInputStreamProvider interface, the data source must be thread safe because
CASServer calls BinaryContentFileProvider.getBinaryContentFile() or BinaryContentIn¬
putStreamProvider.getBinaryContentInputStream() from multiple threads.

Recommendations for manipulators

The requirement to be thread safe has a few implementation implications for manipulators:
• If possible, use only local variables or final immutable fields.
• Persist internal state across calls to processRecord() or onInputClose() only if it is absolutely
necessary. If it is necessary, access state in a synchronized way.

For optimal performance, it is a good idea to minimize the time you hold locks in processRecord().

Manipulators should not hold locks when calling OutputChannel.output() from processRecord(). The
call to output()may take a while to return, which blocks other threads that are concurrently calling process¬
Record(). One way of holding locks is by using the Java synchronize keyword for a method. However,
synchronizing processRecord() adversely affects performance. Synchronizing effectively makes the
manipulator single threaded by preventing other threads from entering processRecord().

Configuration and context synchronization

As part of the implementation of an extension, the CAS Server passes in a PipelineComponentConfigu¬
ration object and a PipelineComponentRuntimeContext object to either DataSource.createData¬
SourceRuntime() (in the case of data sources) and Manipulator.createManipulatorRuntime() (in
the case of manipulators). The CAS Server does not modify the PipelineComponentConfiguration after
createManipulatorRuntime() or createDataSourceRuntime() has been called.

When the CAS Server runs an acquisition, the PipelineComponentRuntimeContext and everything
accessible from it is thread safe.

Related Links
Creating a runtime class for a data source on page 18

The DataSourceRuntime is the runtime representation of a data source instance. It is created by
DataSource.createDataSourceRuntime() and exists for the life span of the data source.

Creating a runtime class for a manipulator on page 28
The ManipulatorRuntime is the runtime representation of a manipulator instance. The Manipu¬
latorRuntime is created by Manipulator.createManipulatorRuntime() and exists for the
life span of the manipulator.

Oracle Endeca Commerce Content Acquisition System Extension API Guide

Extension life cycle and threading | About threading36

Chapter 5

Common implementation tasks

This section describes general implementation tasks that are common to both data source and manipulator
extensions.

Stopping an extension when an acquisition stops
When an acquisition stops, it may take time for an extension within an acquisition to stop. Therefore, Oracle
recommends that you provide a mechanism to stop an extension's runtime object in a more timely way (recall
that a runtime object is either a DataSourceRuntime or a ManipulatorRuntime).

There are several requests or conditions that may cause CAS Server to stop an acquisition:
• A CAS application developer requests a stop by running the stopCrawl task of the CAS Server
Command-line Utility (cas-cmd).

• A CAS application developer requests a stop by calling the stopCrawl()method of the CAS Server API.
• A CAS Console user requests a stop by clicking Abort for the data source.
• An acquisition may abort because it encounted a fatal error during the acquisition processing or record
manipulation processing.

When an acquisition stops, it has the following effects in the CAS Extension API:
• Calls to PipelineComponentRuntimeContext.isStopped() return true.
• Calls to OutputChannel.output() throw a PipelineStoppedException exception.
• Calls to ErrorChannel.discard() throw a PipelineStoppedException exception.
• CAS Server calls PipelineComponentRuntime.stop() on all data source and manipulator extensions
in the acquisition.

There are several mechanisms to stop an extension's runtime in a more timely way:
• You can poll the PipelineComponentRuntimeContext.isStopped()method, and if it returns true,
you throw a PipelineStoppedException and let the exception propagate through the system. There
is example code that implements isStopped() in the CSV data source extension provided with the
Content Acquisition System.

• In addition to polling, you can override PipelineComponentRuntime.stop() on an extension. Your
implementation of stop() should peform any tasks that help the extension stop more quickly, for example,
terminating any pending network requests or closing or cancelling any output requests. This approach is
particularly useful in situations where the extension is doing time-consuming work between calls to Out¬
putChannel.output().

Cleaning up resources used by an extension
The CAS Server calls endAcquisition() after all extensions in a acquisition have completed data acquisition
and record processing. Your implementation of endAcquisition() can override PipelineComponentRun¬
time.endAcquisition() to perform any necessary cleanup for an extension.

The endAcquisition()method has an input parameter, an AcquisitionEndState object that indicates
the state of the acquisition process when it ended. The AcquisitionEndState can have one of the following
enumerated values:
• SUCCESS
• FAILURE
• FULL_ACQUISITION_RECOVERY_REQUIRED

Your implementation of endAcquisition() should account for each of the values of AcquisitionEndState
that CAS might pass to the extension.

In general, this means if CAS passes endAcquisition() a value of SUCCESS, the extension typically
maintains any state changes it made during the acquisition. For example, this could include a data source
extension writing out timestamp information for a successful acquisition and later reading in that timestamp
for a subsequent acquisition in order to determine the incremental difference between acquisitions.

If CAS passes endAcquisition() a value of FAILURE, the extension typically reverts any state changes it
made during the acquisition. For example, this could include reverting timestamp information for a failed
acquisition.

If CAS passes endAcquisition() a value of FULL_ACQUISITION_RECOVERY_REQUIRED, the extension
could either maintain or revert state information. You want to do whatever is necessary to prepare for a new
acquisition and also throw a FullAcquisitionRecoveryRequiredException exception.

Storing state information for an extension
The Content Acquisition System automatically creates directories under <install
path>\CAS\workspace\state that you can use to store state information for a data source or manipulator
extension. An extension can read, write, or delete state information from these directories as necessary.

A data source may require state information to run an incremental acquisition. For example, by relying on a
file that stores the last date that the data source read from a CMS. The data source may later read from the
file and pass in the date in order to run an incremental acquisition.

The path for a data source's state directory is <install
path>\CAS\workspace\state\cas\crawls\crawlId\source\.

The path for a manipulator's state directory is <install
path>\CAS\workspace\state\cas\crawls\crawlId\manipulators\manipulatorId .

At end of an extension's life cycle, CAS calls PipelineComponent.deleteInstance() and then CAS
also deletes the contents of the state directory.

Related Links
Supporting incremental acquisition in a data source on page 22

There are two approaches for determining the incremental difference between acquisitions from a
data source: you can either let the Content Acquisition System determine the incremental difference,
or you can implement the IncrementalDataSourceRuntime interface to determine the incremental
difference.

Oracle Endeca Commerce Content Acquisition System Extension API Guide

Common implementation tasks | Cleaning up resources used by an extension38

Exceptions that trigger fatal and non-fatal failures
It is important to distinguish exceptions that indicate a fatal error and therefore stop an acquisition from
exceptions that indicate a non-fatal error and continue acquisition processing.

Methods that cause a fatal error throw a FatalExecutionException. Fatal errors indicate a more global
problem. Methods that cause a non-fatal error throw an ExecutionException. Non-fatal errors indicate a
more local problem.

If an ExecutionException is thrown by a manipulator extension, the record is discarded from processing.
If an ExecutionException is thrown by a data source extension, all records acquired to that point are
discarded.

Enabling logging in an extension
You can enable logging in an extension to provide diagnostic information about the extension as it runs in an
acquisition. An extension writes to the <install path>\CAS\workspace\logs\cas-service.log file
using one of the common logging frameworks.

Supported logging frameworks

The Content Acquisition System supports the following logging frameworks:
• SLF4J
• Apache Commons Logging
• java.util.logging
• Log4J

Oracle recommends the SLF4J framework because its parameterized logging minimizes the performance
impact of disabled logging statements. For details, see the SLF4J documentation at http://www.slf4j.org.

Integrating logging

Integration is largely transparent. You import the logging framework into the PipelineComponentRuntime
and call getLogger(). If any logging requests come in from any of the frameworks, the Content Acquisition
System detects the requests and redirects them to Log4J which CAS then uses to write to cas-service.log.

For example, if you are using SLF4J, integration is similar to the following:
import org.slf4j.LoggerFactory
...

LoggerFactory.getLogger(getClass()).info("A logging message.");

Changing log levels

You can change log levels by modifying log4j.logger.loggerName properties in <install
path>\CAS\workspace\conf\cas-service-log4j.properties. The default log level is set to WARN.

For example, this Log4J entry sets the log level to DEBUG for the sample substring manipulator.
log4j.logger.com.endeca.cas.extension.sample.manipulator.substring.SubstringManip¬
ulatorRuntime=DEBUG

After you modify, save, and close the cas-service-log4j.properties file, you must restart the Endeca
CAS Service for the change to take effect.

Oracle Endeca Commerce Content Acquisition System Extension API Guide

39Common implementation tasks | Exceptions that trigger fatal and non-fatal failures

http://www.slf4j.org

The Log level setting in the data source's configuration

Data sources include several advanced configuration properties by default: you do not need to implement
these properties as Java fields in an PipelineComponentConfiguration class. An application developer
can set these properties using the CAS Server Command-line Utility, the CAS Server API, and in the CAS
Console (on the Advanced Settings tab). The log level setting applies to high-level aspects of a data acquisition,
such as logging crawl history, but the log level setting does not apply to the data source extension itself.

Unit testing an extension
Unit testing a CAS extension involves writing mock Java classes, writing unit tests, and running these tests
through a tool of your choice.

Developers should mock out the following interfaces for their unit tests:
• PipelineComponentContext
• PipelineComponentRuntimeContext
• OutputChannel
• ErrorChannel

Oracle recommends the JUnit testing framework but it is not required. For information about using the JUnit
framework, see http://junit.org/.

There is a set of sample JUnit tests included with the sample implementation. These are available in <install
path>\CAS\version\sample\cas-extensions.

About testing the PipelineComponentConfiguration

The general strategy for unit testing the PipelineComponentConfiguration involves:
• Constructing an PipelineComponentConfiguration and invoking setPipelineComponentContext
with a mock PipelineComponentContext.

• Invoking the methods on the implementation and ensuring correct behavior.

About testing the DataSourceRuntime

The general strategy for unit testing the DataSourceRuntime involves:
• Constructing a DataSourceRuntimewith amock PipelineComponentRuntimeContext that contains
a mock OutputChannel, a mock ErrorChannel, and a mock PipelineComponentContext.

• Constructing an IncrementalDataSourceRuntime if a data source extension determines its own
incrementals.

• Invoking DataSourceRuntime.runFullAcquisition() and verifying that the correct records are
output to the mock OutputChannel.

• Invoking IncrementalDataSourceRuntime.runIncrementalAcquisition() and verifying that
the correct records are output to the mock OutputChannel. This is necessary if you constructed a Incre¬
mentalDataSourceRuntime.

• Invoking ErrorChannel.discard() as necessary to discard any records that are invalid or have errors,
and verifying that the invalid records are discarded to the mock ErrorChannel.

About testing the ManipulatorRuntime

The general strategy for unit testing the ManipulatorRuntime involves:

Oracle Endeca Commerce Content Acquisition System Extension API Guide

Common implementation tasks | Unit testing an extension40

http://junit.org/

• Constructing a ManipulatorRuntimewith amock PipelineComponentRuntimeContext that contains
a mock OutputChannel a mock ErrorChannel, and a mock PipelineComponentContext.

• InvokingManipulatorRuntime.checkFullAcquisitionRequired() and verifying that themanipulator
correctly identifies whether a full acquisition is required.

• Invoking ManipulatorRuntime.prepareForAcquisition() and verifying that the manipulator
performs any required preparation before the acquisition starts.

• Constructing test records, passing the test records to ManipulatorRuntime.processRecord() and
verifying that the correct records are output to the mock OutputChannel.

• Invoking ErrorChannel.discard() as necessary to discard any records that are invalid or have errors,
and verifying that the invalid records are discarded to the mock ErrorChannel.

• Invoking ManipulatorRuntime.onInputClose() and verifying that the manipulator performs any
required clean up after the acquisition completes its record processing.

Packaging an extension into a plug-in
A plug-in is a JAR or set of JAR files that contain an extension or set of extensions. After implementing one
or more extensions, you package them into one or more JAR files and distribute them, and any dependent
JAR files, to a CAS application developer.

This topic assumes you have already implemented one or more extensions.

To package an extension into a plug-in:

1. In your Java project, build the classes for an extension into a JAR or a set of JARs.
For an example, see the procedure in Building the sample extensions.

2. Distribute the JARs, and any dependent JARs, to the CAS application developer who installs the plug-in
into the Content Acquisition System. For installation instructions, see the CAS Installation Guide.

Note: There are several CAS JAR files that are available to the extensions in a plug-in and do not
need to be packaged as dependencies with a plug-in. These JAR files include the following:
• cas-extension-api.jar
• itl-api-common.jar
• commons-logging.jar
• log4j.jar
• slf4j-api.jar

Running an extension
After you have implemented, unit tested, packaged, and installed an extension, you can run it as part of an
acquisition to ensure it works as expected.

Before starting this procedure, you must have already packaged the extension into a plug-in and installed the
plug-in into the Content Acquisition System. For installation instructions, see the CAS Installation Guide.

To run an extension:

1. On the machine where the Content Acquisition System is installed, confirm that the plug-in is installed by
running the listModules task of cas-cmd.

Oracle Endeca Commerce Content Acquisition System Extension API Guide

41Common implementation tasks | Packaging an extension into a plug-in

If you installed a plug-in with a data source, specify a moduleType of SOURCE to the listModules
task.

•

• If you installed a plug-in with amanipulator, specify a moduleType of MANIPULATOR to the listModules
task.

For example:
C:\Endeca\CAS\11.0.0\bin>cas-cmd listModules -t SOURCE
Blob Database
 *Id: com.endeca.cas.extension.sample.datasource.blob.BlobDataSource
 *Type: SOURCE
 *Description: Reads a database table containing documents

2. Configure the data source in CAS Console as follows:
a) Log in to Endeca Workbench and select the Data Sources page.
b) On the Data Sources page, click Add Data Source and select the data source.
c) Specify configuration properties as appropriate for the data source.
d) Click Save.

3. To configure a manipulator, add it to a data source, and configure it as follows:
a) Log in to Endeca Workbench and select the Data Sources page.
b) On the Data Sources page, click a data source name to access its acquisition steps.
c) Click Add Manipulator...
d) Select a manipulator and click Add.
e) Specify configuration properties as appropriate for the data source.
f) Click Save.

4. On the Data Sources page, run the extension by clicking Start for the data source.
5. When the Acquisition Status reads Completed, click on this status to verify that the CAS Server created

Endeca records.
6. If desired, you can confirm that the new records exist in the Record Store instance by running the

read-baseline task of recordstore-cmd.
For example:
C:\Endeca\CAS\11.0.0\bin>recordstore-cmd read-baseline -a Test

Oracle Endeca Commerce Content Acquisition System Extension API Guide

Common implementation tasks | Running an extension42

Appendix A

Sample extensions

This section describes the sample extensions that are installed with the Content Acquisition System.

About the sample extensions
There are sample extensions that illustrate how to build, test, install, and run extensions.

• A sample data source that reads from a database table containing blobs. See <install
path>\CAS\version\sample\cas-extensions\src\main\com\endeca\cas\extension\sample
\datasource\blob.

• A sample data source that reads a folder of files. See <install
path>\CAS\version\sample\cas-extensions\src\main\com\endeca\cas\extension\sample
\datasource\directory.

• A sample data source that reads from a comma-separated file. This sample also illustrates how to use
ErrorChannel.discard(). See <install
path>\CAS\version\sample\cas-extensions\src\main\com\endeca\cas\extension\sample
\datasource\csv.

• A sample manipulator that generates a new property based on a substring of another property value. See
<install
path>\CAS\version\sample\cas-extensions\src\main\com\endeca\cas\extension\sample
\manipulator\substring.

• A sample data source that performs incremental acquisitions from a database. See <install
path>\CAS\version\sample\cas-extensions\src\main\com\endeca\cas\extension\sample\datasource\incremental.

The sample data sources rely on data that is installed in <install
path>\CAS\version\sample\cas-extensions\data.

Sample extensions files and directories
The sample extensions have the following directory structure:
\sample
 \cas-extensions
 \build
 \data
 \lib
 \src

 .classpath
 .project
 build.xml

The contents are as follows:
• build – Contains the generated classes and JAR files for the extensions. This directory is not present
after installing the Content Acquisition System. Building the extensions creates this directory.

• data – Contains a data.csv file for use with the CSV data source, a database for use with the Blob
Database data source, and a folder of documents for the Document Directory data source.

• lib\cas – Contains the CAS Extension API and API dependencies.
• lib\cas-test – Contains dependencies for the sample extension unit tests.
• lib\main – Contains dependencies for the sample extensions.
• lib\test – Contains dependencies for the sample extension unit tests.
• src – Contains the Java source files and the unit tests for the extensions.
• .classpath – The classpath file for the Eclipse project.
• .project – The Eclipse project file for the extensions.
• build.xml – The Ant build file for the extensions.

Building the sample extensions
You can build the sample extensions using either Ant or Eclipse.

Note: The JUnit Testing Framework has been removed from this software distribution. Please download
and install JUnit version 3.8.1 before building cas-sample-extensions using Ant. To download JUnit, see
http://sourceforge.net/projects/junit/files/junit/3.8.1/junit3.8.1.zip/download. Once you download JUnit,
extract the JAR, and place it in cas-extensions\lib\test directory.

Building the sample extensions with Ant

The Ant build file has the following targets:
• clean – Cleans previous build output.
• compile – Compiles source code for the sample extensions.
• package – Builds the JAR file for the plug-in.
• test-compile – Compiles source code for the unit tests.
• test-run – Runs unit tests. You can skip this target by passing the -DskipTests=true flag to Ant.
• dist – Cleans previous build output, builds the plug-in, and runs unit tests.

To build the sample extensions with Ant:

1. Open a command prompt and navigate to the \CAS\version\sample\cas-extensions directory.
2. Issue the following command:

ant dist

For example:
C:\Endeca\CAS\11.0.0\sample\cas-extensions>ant dist

The Ant build file runs all the targets listed above including the unit tests for the extensions. The output messages
of the CAS sample extension indicate that the build file compiles the source and then runs unit tests for the

Oracle Endeca Commerce Content Acquisition System Extension API Guide

Sample extensions | Building the sample extensions44

http://sourceforge.net/projects/junit/files/junit/3.8.1/junit3.8.1.zip/download

sample extensions. It also instructs you to Copy the folder build/cas-sample-extensions to
$CAS_ ROOT/lib/cas-server-plugins to deploy the plugin.

Building the sample extensions with Eclipse

To build the sample extensions with Eclipse:

1. Start Eclipse and select File > Import... > General > Existing Projects into Workspace > Next.
2. Browse to the project in CAS\version\sample\cas-extensions and click OK > Finish.
3. In the Project Explorer, right-click on the cas-sample-extensions directory and select Export.
4. Select Java > JAR file and click Next.
5. In the JAR File Specification dialog:

Select the resources to export (the cas-sample-extensions package).

If it is not already checked, select Export generated class files and resources.

Select an export destination.

Select Compress the contents of the JAR file.

Click Next when you are satisfied with the specification.

6. In the JAR Packaging Options dialog, select any options that you want and click Finish.

Building the sample extensions using Eclipse to run Ant

To build the sample extensions using Eclipse to run Ant:

1. Start Eclipse and import the cas-extensions project as in steps 1 - 2 above.
2. In the Project explorer, expand the cas-sample-extensions directory.
3. Right-click build.xml and select Run As > Ant Build.

The Ant build file runs all the targets listed above including the unit tests for the extensions. The output messages
of the CAS sample extension indicate that the build file compiles the source and then runs unit tests for the
sample extensions. It also instructs you to Copy the folder build/cas-sample-extensions to
$CAS_ ROOT/lib/cas-server-plugins to deploy the plugin.

Unit testing the sample extensions
You can separately unit test the sample extensions using Ant or Eclipse. Remember that building the extensions
with ant dist also runs the ant test-run target, so in that scenario, the tests will already have run.

Unit testing the sample extensions with Ant

To unit test the sample extensions with Ant:

1. Open a command prompt and navigate to the cas-extensions directory.
2. Issue the following command to compile and unit test the sample extensions:

ant test-run

Unit testing the sample extensions with Eclipse

To unit test the sample extensions with Eclipse:

Oracle Endeca Commerce Content Acquisition System Extension API Guide

45Sample extensions | Unit testing the sample extensions

1. In the Project Explorer, expand the cas-sample-extensions project.
2. Right-click src/test, and select Run as... > JUnit Test.
3. On the JUnit tab, verify that the unit tests ran successfully (their status should appear green).

Unit testing the sample extensions using Eclipse to run Ant

To unit test the sample extensions using Eclipse to run Ant:

1. In the Project explorer, expand the cas-sample-extensions directory.
2. Right-click build.xml and select Run As > Ant Build....
3. Select the test-run target (de-select dist [default] to only run tests).
4. Click Run.

Installing the sample plug-in into CAS
After you build the sample extensions into a plug-in, install the resulting plug-in files into the Content Acquisition
System.

To install the sample plug-in into CAS:

1. Stop the Endeca CAS Service.
2. If you built the extensions using Ant, copy the cas-sample-extensions directory from

CAS\version\sample\cas-extensions\build\ to CAS\version\lib\cas-server-plugins.
3. If you built the extensions using Eclipse, do the following:

a) Create a new folder named cas-sample-extensions under
CAS\version\lib\cas-server-plugins\.

b) Locate the JAR you built and copy it to
CAS\version\lib\cas-server-plugins\cas-sample-extensions\.

c) Copy the JARs from \CAS\version\sample\cas-extensions\lib\main into
CAS\version\lib\cas-server-plugins\cas-sample-extensions\. (These JARs are
dependencies that the sample extensions require.)

4. Start the Endeca CAS Service.

You can confirm that the extensions are installed by running the listModules task of the CAS Server
Command-line Utility. The task returns the installed modules.
C:\Endeca\CAS\11.0.0\bin>cas-cmd listModules
Blob Database
 *Id: com.endeca.cas.extension.sample.datasource.blob.BlobDataSource
 *Type: SOURCE
 *Description: Reads a database table containing documents
 *Capabilities:
 *Has Binary Content

CSV File
 *Id: com.endeca.cas.extension.sample.datasource.csv.CsvDataSource
 *Type: SOURCE
 *Description: Reads comma separated files
 *Capabilities: None

Document Directory
 *Id: com.endeca.cas.extension.sample.datasource.directory.DirectoryDataSource
 *Type: SOURCE
 *Description: Reads a directory of documents

Oracle Endeca Commerce Content Acquisition System Extension API Guide

Sample extensions | Installing the sample plug-in into CAS46

 *Capabilities:
 *Binary Content Accessible via FileSystem
 *Has Binary Content

Change Tracking Data Source
 *Id: com.endeca.cas.extension.sample.datasource.incremental.ChangeTrackingDataS
ource
 *Type: SOURCE
 *Description: A data source that can incrementally crawl a change tracking data

 base
 *Capabilities: None

File System
 *Id: File System
 *Type: SOURCE
 *Description: No description available for File System
 *Capabilities:
 *Binary Content Accessible via FileSystem
 *Data Source Filter
 *Has Binary Content
 *Expand Archives

Substring Manipulator
 *Id: com.endeca.cas.extension.sample.manipulator.substring.SubstringManipulator

 *Type: MANIPULATOR
 *Description: Generates a new property that is a substring of another property
value
 *Capabilities:
 *Supports Incrementals

Running the sample CSV data source
After you install the extensions into the Content Acquisition System, you can configure and then run the sample
CSV data source in CAS Console.

To run the sample CSV data source:

1. Log in to Endeca Workbench and select the Data Sources page.
2. On the Data Sources page, click Add Data Source and select CSV File.
3. In Name, specify a unique name for the data source to distinguish it from others in the CAS Console.
4. In Input File, specify the path to the data.csv file. For example,

C:\Endeca\CAS\version\sample\cas-extensions\data\data.csv

5. In Key Column, specify the name of the column containing the record key: P_WineID
6. Click Save.
7. Click Start to start acquiring data from this data source.
8. When the Acquisition Status reads Completed, click on this status to verify that the CAS Server created

50 Endeca records and failed on 2 records (these are intentionally discarded records).
9. If desired, you can confirm that the new records exist in the Record Store instance by running the

read-baseline task of recordstore-cmd.
For example:
C:\Endeca\CAS\11.0.0\bin>recordstore-cmd read-baseline -a TestCSV

Oracle Endeca Commerce Content Acquisition System Extension API Guide

47Sample extensions | Running the sample CSV data source

Running the sample Substring manipulator
After you install the extensions into the Content Acquisition System, you can add, configure, and run the sample
Substring manipulator in CAS Console.

Recall that the Substring manipulator examines a source property and creates a target property based on a
substring of the source.

To run the sample Substring manipulator:

1. Create a crawl that uses the sample CSV data source. (You will add the sample Substring manipulator to
the sample CSV data source and run the crawl.)

2. On the Data Sources page, click the name of the data source that contains the sample CSV data source.
3. Click Add Manipulator.
4. Select the Substring Manipulator and click Ok.
5. Configure the manipulator to examine the P_Wine property (wine name) and create a five character

P_Wine_short property. This configuration requires the following sub-steps:

• Specify a unique value for Manipulator Id, for example Compute_P_Wine_short.
• Specify a Source Property of P_Wine.
• Specify a Target Property of P_Wine_short.
• Specify a Substring Length of 5.

6. Click Save.
7. Click Start to acquire data from this data source.
8. If desired, you can confirm that the new target properties exist by running the read-baseline task of

recordstore-cmd and examining the records for the new properties.
For example:
C:\Endeca\CAS\11.0.0\bin>recordstore-cmd read-baseline -a TestCSV

Running the sample Blob database data source
After you install the extensions into the Content Acquisition System, you can configure and then run the sample
Blob database data source in CAS Console.

This data source illustrates an implementation of the BinaryContentInputStreamProvider interface.
This interface provides an input stream so CAS Server can read the input stream and perform text extraction.

To run the sample Blob database data source:

1. Log in to Endeca Workbench and select the Data Sources page.
2. On the Data Sources page, click Add Data Source and select Blob Database.
3. In Name, specify a unique name for the data source to distinguish it from others in the CAS Console.
4. In Database Directory, specify the path to the database: <install

path>\CAS\version\sample\cas-extensions\data\document-db

5. Click Save.
6. Click Start to start acquiring data from this data source.
7. When the Acquisition Status reads Completed, click on this status to verify that the CAS Server created

5 Endeca records.

Oracle Endeca Commerce Content Acquisition System Extension API Guide

Sample extensions | Running the sample Substring manipulator48

8. If desired, you can confirm that the new records exist in the Record Store instance by running the
read-baseline task of recordstore-cmd.
For example:
C:\Endeca\CAS\11.0.0\bin>recordstore-cmd read-baseline -a DBExample

Running the sample Document Directory data source
After you install the extensions into the Content Acquisition System, you can configure and then run the sample
Document Directory data source in CAS Console.

This data source illustrates an implementation of the BinaryContentFileProvider interface. This interface
allows the extension to pass a file to CAS Server and perform text extraction.

To run the sample Document Directory data source:

1. Log in to Endeca Workbench and select the Data Sources page.
2. On the Data Sources page, click Add Data Source and select Document Directory.
3. In Name, specify a unique name for the data source to distinguish it from others in the CAS Console.
4. In Document Directory, specify the path to the documents:

CAS\version\sample\cas-extensions\data\documents

5. Click Save.
6. Click Start to start acquiring data from this data source.
7. When the Acquisition Status reads Completed, click on this status to verify that the CAS Server created

5 Endeca records.
8. If desired, you can confirm that the new records exist in the Record Store instance by running the

read-baseline task of recordstore-cmd.
For example:
C:\Endeca\CAS\11.0.0\bin>recordstore-cmd read-baseline -a DocExample

Running the sample Change Tracking data source
After you install the extensions into the Content Acquisition System, you can configure and then run the sample
Change Tracking data source in CAS Console.

This data source illustrates an implementation of the IncrementalDataSourceRuntime interface. This
interface provides support to check whether a full acquisition is required from the Change Tracking data source.
If a full acquisition is not required, then the data source provides an implementation of runIncrementalAc¬
quisition() to acquire only the changed records.

To run the sample Change Tracking data source:

1. Log in to Endeca Workbench and select the Data Sources page.
2. On the Data Sources page, click Add Data Source and select Change Tracking Data Source.
3. In Name, specify a unique name for the data source to distinguish it from others in the CAS Console.
4. In Database File Path, specify the absolute path to the Change Tracking database in <install

path>\CAS\version\sample\cas-extensions\data\change-tracking-db.xml.
5. Click Save.

Oracle Endeca Commerce Content Acquisition System Extension API Guide

49Sample extensions | Running the sample Document Directory data source

6. Click Start to start acquiring data.
7. When the Acquisition Status reads Completed, click on this status to verify that the CAS Server created

3 Endeca records.
8. If desired, you can confirm that the new records exist in the Record Store instance by running the

read-baseline task of recordstore-cmd.
For example:
C:\Endeca\CAS\11.0.0\bin>recordstore-cmd read-baseline -a CTTest
[DATA=base line data..., Endeca.Id=1, Endeca.Action=UPSERT, Endeca.Sour¬
ceId=CTTest]
[DATA=some incremental data..., Endeca.Id=3, Endeca.Action=UPSERT, Endeca.Source
Id=CTTest]
[DATA=some incremental data..., Endeca.Id=5, Endeca.Action=UPSERT, Endeca.Source
Id=CTTest]

9. Navigate to <install path>\CAS\version\sample\cas-extensions\data and open
change-tracking-db.xml in a text editor.

10. Update one record in the change-tracking-db.xml file by doing the following:
a) Add a new <changeHistory> entry to the file as shown in the example below.
b) Ensure that the <key> value corresponds to an existing <row> entry in the <database>.
c) Modify the <time> value to indicate a time after the acquisition in step 7 and before the current time.

(The time is expressed in UTC format. See http://www.w3.org/TR/NOTE-datetime for guidance
about the syntax.)

For example:
<changeHistory>
 <key>5</key>
 <changeType>UPDATE</changeType>
 <time>2010-02-02T19:19:43.471-05:00</time>
</changeHistory>

Acquiring data from this file results in an incremental update to record 5.
11. Add one record in the change-tracking-db.xml file by doing the following:

a) Add a <row> entry to the file and ensure the <key> value is unique, as shown:
<row>
 <key>7</key>
 <data>some incremental data...</data>
</row>

b) Add a <changeHistory> entry for the <row> as shown:
<changeHistory>
 <key>7</key>
 <changeType>CREATE</changeType>
 <time>2010-02-02T19:19:43.471-05:00</time>
</changeHistory>

c) Ensure that the <key> value corresponds to a <row> entry in the <database>.
d) Ensure that the <changeType> value is set to CREATE.
e) Modify the <time> value to indicate a time after the acquisition in step 7 and before the current time.

(The time is expressed in UTC format. See http://www.w3.org/TR/NOTE-datetime for guidance
about the syntax.)

Acquiring data from this file results in an incremental change that adds record 7.
12. Delete one record in the change-tracking-db.xml file by doing the following:

Oracle Endeca Commerce Content Acquisition System Extension API Guide

Sample extensions | Running the sample Change Tracking data source50

Add a <changeHistory> entry for the <row> that has been removed as shown:
<changeHistory>
 <key>8</key>

a)

 <changeType>DELETE</changeType>
 <time>2010-02-02T19:19:43.471-05:00</time>
</changeHistory>

b) Ensure that the <key> value corresponds to a <row> that does not exist in the <database>.
c) Ensure that the <changeType> value is set to DELETE.
d) Modify the <time> value to indicate a time after the acquisition in step 7 and before the current time.

(The time is expressed in UTC format. See http://www.w3.org/TR/NOTE-datetime for guidance
about the syntax.)

Acquiring data from this file results in an incremental change that removes record 8.
13. Save and close change-tracking-db.xml.
14. In CAS Console, run an incremental acquisition by clicking Start.
15. When the Acquisition Status reads Completed, click on this status to verify that the CAS Server update,

added, and deleted the records you modified.

Oracle Endeca Commerce Content Acquisition System Extension API Guide

51Sample extensions | Running the sample Change Tracking data source

	Contents
	Preface
	About this guide
	Who should use this guide
	Conventions used in this guide
	Contacting Oracle Support

	Introduction to the CAS Extension API
	System requirements
	Overview of the CAS Extension API
	About CAS extensions
	About the CAS extension interfaces and classes
	About CAS annotations
	Record access interfaces

	Common record properties

	Implementing a data source
	Creating a data source class
	Creating a pipeline component configuration class for a data source
	Creating a runtime class for a data source
	Supporting filtering in a data source
	Supporting document conversion in a data source
	Specifying which documents to convert
	Full and incremental crawling modes
	Supporting incremental acquisition in a data source

	Implementing a manipulator
	Creating a manipulator class
	Creating a pipeline component configuration class for a manipulator
	Creating a runtime class for a manipulator
	Supporting incremental acquisition in a manipulator

	Extension life cycle and threading
	Life cycle of a data source
	Life cycle of a manipulator
	About threading

	Common implementation tasks
	Stopping an extension when an acquisition stops
	Cleaning up resources used by an extension
	Storing state information for an extension
	Exceptions that trigger fatal and non-fatal failures
	Enabling logging in an extension
	Unit testing an extension
	Packaging an extension into a plug-in
	Running an extension

	Sample extensions
	About the sample extensions
	Sample extensions files and directories
	Building the sample extensions
	Unit testing the sample extensions
	Installing the sample plug-in into CAS
	Running the sample CSV data source
	Running the sample Substring manipulator
	Running the sample Blob database data source
	Running the sample Document Directory data source
	Running the sample Change Tracking data source

