
Oracle Endeca Platform Services
Data Foundry Expression Reference

Version 11.0 • January 2014

Contents

Preface..7
About this guide...7
Who should use this guide...7
Conventions used in this guide..7
Contacting Oracle Support..7

Chapter 1: Data Foundry Expressions...9
About Data Foundry expressions...9
XML syntax for EXPRESSION elements...10

EXPRESSION..10
EXPRNODE...12
EXPRBODY..12

DVAL expressions..13
DVAL CONST...13
DVAL MATCH ..14
DVAL PERL..15

FLOAT expressions..15
FLOAT CONST...15
FLOAT MATH..16

INTEGER expressions...16
INTEGER AND...16
INTEGER CONST..17
INTEGER MATH...18
INTEGER PERL ..20
INTEGER PROP_EXISTS..21

PROPERTY expressions...21
PROPERTY ALL...21
PROPERTY DVAL ...22
PROPERTY IDENTITY ..22
PROPERTY NVL..23
PROPERTY PERL..23

VOID expressions..24
VOID ADD_DVAL..24
VOID ADD_DVAL_PROP...24
VOID CLEAN_DVALS...25
VOID CONVERTTOTEXT...25
VOID CREATE ...26
VOID EXPORT_PROP...26
VOID IF...27
VOID IMPORT_PROP ...29
VOID PARSE_DOC ...30
VOID PERL...30
VOID REMOVE...31
VOID REMOVE_EXPORTED_PROP...32
VOID REMOVE_RECORD...32
VOID RENAME...33
VOID RETRIEVE_URL ..33
VOID SPLIT..34
VOID STRATIFY...35
VOID UNIQUE..35
VOID UPDATE..36
VOID UPDATE_RECORD..36

STRING expressions...37
STRING CONCAT..37
STRING CONST..38
STRING DIGEST..38
STRING FORMAT..39
STRING PERL..39

iii

STRING REPLACE..40

Oracle Endeca Platform Servicesiv

Copyright and disclaimer

Copyright © 2003, 2014, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific
supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs,
including any operating system, integrated software, any programs installed on the hardware, and/or
documentation, shall be subject to license terms and license restrictions applicable to the programs. No other
rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices.
UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim
all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and
its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services.

v

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Oracle customers have access to electronic support through My Oracle Support. For information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Oracle Endeca Platform Servicesvi

Preface

Oracle Endeca Commerce is the most effective way for your customers to dynamically explore your storefront
and find relevant and desired items quickly. An industry-leading faceted search and Guided Navigation solution,
Oracle Endeca Commerce enables businesses to help guide and influence customers in each step of their
search experience. At the core of Oracle Endeca Commerce is the MDEX Engine™, a hybrid search-analytical
database specifically designed for high-performance exploration and discovery.The Endeca Content Acquisition
System provides a set of extensible mechanisms to bring both structured data and unstructured content into
the MDEX Engine from a variety of source systems. Endeca Assembler dynamically assembles content from
any resource and seamlessly combines it into results that can be rendered for display.

Oracle Endeca Experience Manager is a single, flexible solution that enables you to create, deliver, and manage
content-rich, cross-channel customer experiences. It also enables non-technical business users to deliver
targeted, user-centric online experiences in a scalable way — creating always-relevant customer interactions
that increase conversion rates and accelerate cross-channel sales. Non-technical users can determine the
conditions for displaying content in response to any search, category selection, or facet refinement.

About this guide
This reference describes the Data Foundry expressions available for use in a record manipulator component
in Developer Studio.

Who should use this guide
This reference is intended for developers who are building Data Foundry pipelines using Endeca Developer
Studio.

Conventions used in this guide
This guide uses the following typographical conventions:

Code examples, inline references to code elements, file names, and user input are set in monospace font. In
the case of long lines of code, or when inline monospace text occurs at the end of a line, the following symbol
is used to show that the content continues on to the next line: ¬

When copying and pasting such examples, ensure that any occurrences of the symbol and the corresponding
line break are deleted and any remaining space is closed up.

Contacting Oracle Support
Oracle Support provides registered users with important information regarding Oracle Endeca software,
implementation questions, product and solution help, as well as overall news and updates.

You can contact Oracle Support through Oracle's Support portal, My Oracle Support at
https://support.oracle.com.

Oracle Endeca Platform Services Data Foundry Expression Reference

| Preface8

https://support.oracle.com

Chapter 1

Data Foundry Expressions

This section describes data foundry expressions.

About Data Foundry expressions
Expressions can be used in a record manipulator for any of the following purposes:

• Record manipulation (expressions describe which records, dimension values, or property values to change
and exactly how to change them).

• Document crawling and parsing.
• Performing partial updates.
• Interacting with third-party document classification systems such as Stratify Classification Server™.

Expressions are described in XML within EXPRESSION elements, which in turn are sub-elements of a
RECORD_MANIPULATOR.The TYPE attribute of an EXPRESSION element describes the data type of the return
value, and the NAME attribute of the expression describes the specific operation an expression performs. For
example, if an expression contains the attributes TYPE="FLOAT" and NAME="CONST", then the expression
returns a floating point constant value. Expressions are further qualified by EXPRNODE sub-elements that
provide additional data or instructions to the expression. Expression nodes are similar to parameters, and
expressions are similar to functions.

Oracle recommends that you perform record manipulation with a Perl manipulator rather than with a record
manipulator that uses EXPRESSION elements. However, if you need to access and modify dimension sources
(such as a dimension adapter or dimension server) you should still use expressions such as DVAL PERL. The
Perl manipulator does not access dimension sources. For more information about using a Perl manipulator,
see the Endeca Developer Studio Help.

Expressions are grouped by the data type of their return value. For example, all FLOAT expressions return a
floating-point value. There are six categories of expressions:

• FLOAT: Computes floating-point (numeric) values. These values can be constant, or can be constructed
from other data contained in a record.

• INTEGER: Computes integer (numeric) values. These values can be constant, or can be constructed from
other data contained in a record. Integer expressions can also be used in conditional expressions to modify
the processing to be done on a record based on the contents of the record.

• DVAL: Produces dimension values. These values can be constant, or can be the result of performing a
search for a dimension value within a dimension.

• PROPERTY: Retrieves property values.

• STRING: Creates text values.These values can be constant, or can be constructed from other data contained
in a record.

• VOID: Creates no value, but performs other work. There are VOID expressions to change property values
on a record, rename properties, add dimension values, delete records, test conditions, and to evaluate
arbitrary Perl code.

There are several dozen individual expressions distinguished by their TYPE and NAME attributes. Each expression
is described in detail in its particular help topic.

Related Links
Data Foundry Expressions on page 9

This section describes data foundry expressions.

XML syntax for EXPRESSION elements

EXPRESSION
An EXPRESSION element instructs Forge about how to modify records. An expression consists of an EXPRES¬
SION element with TYPE and NAME attributes.

Expressions may contain EXPRNODE sub-elements, which have NAME and VALUE attributes, to supply additional
configuration information. Expressions may also contain other expressions; the contained expressions may
provide values used by the containing expression, or the containing expression may provide control over which
of the contained expressions are evaluated.

Oracle recommends that you perform record manipulation with a Perl manipulator rather than use a record
manipulator and EXPRESSION elements. However, if you need to access and modify dimension sources (such
as a dimension adapter or dimension server), you should still use expressions such as DVAL PERL. The Perl
manipulator does not access dimension sources. For more information about using a Perl manipulator, see
the Endeca Developer Studio Help.

DTD

<!ELEMENT EXPRESSION

 (COMMENT?
 , EXPRBODY?
 , (EXPRNODE | EXPRESSION)*
)
>
<!ATTLIST EXPRESSION
 TYPE (PROPERTY
 | DVAL
 | INTEGER
 | STRING
 | STREAM
 | VOID
 | FLOAT) #REQUIRED
 NAME CDATA #REQUIRED
 LABEL CDATA #IMPLIED
 URL CDATA #IMPLIED
>

Oracle Endeca Platform Services Data Foundry Expression Reference

Data Foundry Expressions | XML syntax for EXPRESSION elements10

Attributes

The following points describe the EXPRESSION element's attributes.

• TYPE - Describes the return value for the expression. For example, a FLOAT expression returns a floating
point number. The valid values for TYPE are as follows: PROPERTY, DVAL, INTEGER, STRING, VOID, and
FLOAT.

Note: STREAM is used internally by the MDEX Engine.

• NAME - Describes the operation being performed. Expressions are typically referred to by the combination
of their TYPE and NAME values (for example DVAL CONST). This combination helps to distinguish cases
where there are several expressions with different TYPE values but the same NAME value (for example,
DVAL CONST, FLOAT CONST, and INTEGER CONST).

• URL - Used in PERL expressions. Specifies the URL (file) from which an expression can read Perl code.
The code can be up to 65534 characters long.

Sub-elements

The following table provides a brief overview of the EXPRESSION sub-elements.

DescriptionSub-element

Associates a comment with a parent element and
preserves the comment when the file is rewritten. This

COMMENT

element provides an alternative to using inline XML
comments of the form .

Contains Perl code that manipulates records.EXPRBODY

Provides a generic way of sending a variety of
information to an EXPRESSION.

EXPRNODE

Instructs Forge about how to modify records.EXPRESSION

Example

This example shows a mathematical expression that adds two constant values (5 and 6).

<EXPRESSION TYPE="INTEGER" NAME="MATH">
 <EXPRNODE NAME="TYPE" VALUE="INTEGER"/>
 <EXPRNODE NAME="OPERATOR" VALUE="ADD"/
 <EXPRESSION TYPE="INTEGER" NAME="CONST">
 <EXPRNODE NAME="VALUE" VALUE="5"/>
 </EXPRESSION>
 <EXPRESSION TYPE="INTEGER" NAME="CONST">
 <EXPRNODE NAME="VALUE" VALUE="6"/>
 </EXPRESSION>
</EXPRESSION>

This example adds a dimension value ID to the current record. The dimension value ID is determined by the
mapping between the value of the P_Score property in the source data and the dimension values contained
in the dimension with ID equal to 9.

<EXPRESSION NAME="ADD_DVAL" TYPE="VOID">
 <EXPRESSION NAME="MATCH" TYPE="DVAL">
 <EXPRNODE NAME="DIMENSION_ID" VALUE="9"/>
 <EXPRESSION NAME="IDENTITY" TYPE="PROPERTY">
 <EXPRNODE NAME="PROP_NAME" VALUE="P_Score"/>

Oracle Endeca Platform Services Data Foundry Expression Reference

11Data Foundry Expressions | XML syntax for EXPRESSION elements

 </EXPRESSION>
 </EXPRESSION>
</EXPRESSION>

EXPRNODE
An EXPRNODE element provides a generic way of sending a variety of information to an EXPRESSION. The
information could be descriptions, data types, constant values (parameters), and so on. Comparatively speaking,
this information is similar to a parameter for a function.

DTD

<!ELEMENT EXPRNODE (EXPRNODE*)>
<!ATTLIST EXPRNODE
 NAME CDATA #REQUIRED
 VALUE CDATA #IMPLIED
>

Attributes

The following points describe the EXPRNODE element's attributes.

• NAME - Describes the EXPRNODE element. Because EXPRNODE can be so broadly used to modify an
expression, the NAME attribute varies in relation to the expression that it modifies. For example, NAME can
specify a variety of values such as TYPE, NAME, OPERATOR, AUTO_GEN, OPERATION, and so on. See an
expression's help topic for details about how the NAME attribute of an expression node modifies an
expression.

• VALUE - Provides a value that corresponds to the NAME attribute. Because EXPRNODE can be so broadly
used, the VALUE attribute can specify a variety of values. For example, INTEGER may correspond to TYPE;
SUM may correspond to NAME; ADD may correspond to OPERATOR and so on. See an expression's help
topic for details about how the VALUE attribute of an expression node modifies an expression.

Sub-elements

The EXPRNODE element can contain additional EXPRNODE elements as sub-elements.

Example

This example shows an expression adding a dimension value ID to the current record. The second and third
expressions use EXPRNODE to provide name and value information for the parent EXPRESSION.

<EXPRESSION NAME="ADD_DVAL" TYPE="VOID">
 <EXPRESSION NAME="MATCH" TYPE="DVAL">
 <EXPRNODE NAME="DIMENSION_ID" VALUE="9"/>
 <EXPRESSION NAME="IDENTITY" TYPE="PROPERTY">
 <EXPRNODE NAME="PROP_NAME" VALUE="P_Score"/>
 </EXPRESSION>
 </EXPRESSION>
</EXPRESSION>

EXPRBODY
An EXPRBODY element contains Perl code that manipulates data. Perl code is often useful if a data manipulation
task is too complicated to perform using the Data Foundry expressions. EXPRBODY is a child of EXPRESSION.

Oracle Endeca Platform Services Data Foundry Expression Reference

Data Foundry Expressions | XML syntax for EXPRESSION elements12

Oracle recommends that you perform record manipulation with a Perl manipulator rather than with a record
manipulator that uses EXPRESSION elements. However, if you need to access and modify dimension sources
(e.g., a dimension adapter or dimension server), you should still use expressions such as DVAL PERL. The
Perl manipulator does not access dimension sources. For more information about using a Perl manipulator,
see the Endeca Developer Studio Help.

DTD

<!ELEMENT EXPRBODY (#PCDATA)>

Attributes

The EXPRBODY element has no attributes.

Sub-elements

The EXPRBODY element has no sub-elements.

Example

This example shows the outline of an expression using Perl.

<EXPRESSION TYPE=”VOID” NAME=”PERL”>
 <EXPRBODY>
 ...Perl code here...
 </EXPRBODY>
</EXPRESSION>

DVAL expressions

DVAL CONST
DVAL expressions return dimension values. DVAL CONST expressions return the dimension value (or set of
dimension values), specified in DIMENSION_ID/DVAL_ID expression node pairs.

For example, using a DVAL CONST expression within a VOID ADD_DVAL expression instructs Forge to add
the dimension value to each record processed. The DIMENSION_ID and DVAL_ID expression nodes may be
repeated in pairs to create sets of dimension values. Forge then adds the set of dimension values to each
record processed.

See the EXPRESSION element for DTD and attribute information.

Example

This example adds the dimension value to the record being processed.

<EXPRESSION TYPE="VOID" NAME="ADD_DVAL">
 <EXPRESSION TYPE="DVAL" NAME="CONST">
 <EXPRNODE NAME="DIMENSION_ID" VALUE="2090"/>
 <EXPRNODE NAME="DVAL_ID" VALUE="2091"/>
 </EXPRESSION>
</EXPRESSION>

Oracle Endeca Platform Services Data Foundry Expression Reference

13Data Foundry Expressions | DVAL expressions

DVAL MATCH
DVAL expressions return dimension values. Although the DVAL MATCH expression is not deprecated, we
strongly recommend that you use the PROP_MAPPER element to perform property and dimension value mapping
operations.

The DVAL MATCH expression is used to perform text matching within one or more dimensions.The dimensions
are specified in DIMENSION_ID EXPRNODE elements. Specify the values to match in one or more PROPERTY
expressions.The expression returns a set of matching dimension values.This is useful within a VOID ADD_DVAL
expression that contains PROPERTY IDENTITY sub-expressions, to assign the dimension values matching
each record’s property values to the record.

You can adjust the behavior of the DVAL MATCH expression by nesting EXPRNODE elements within the DVAL
MATCH expression.The nested expression node has a NAME attribute that specifies how to adjust the behavior.

The following list provides the supported values of the NAME attribute and describes their effects on the
behavior of DVAL MATCH.

• AUTO_GEN - Causes new dimension values to be generated automatically to match property values that
do not already match dimension values within the dimension. The VALUE attribute for AUTO_GEN may be
either TRUE or FALSE. The default value is TRUE.

• DEFAULT_SIFT_HIER_DEPTH - Builds a auto-generated sift hierarchy to the depth specified in the VALUE
attribute. For example, <EXPRNODE NAME="DEFAULT_SIFT_HIER_DEPTH" VALUE="2"/> builds to a
depth of two. See "Working with Large Dimension Hierarchies" in the Endeca Developer Studio Help for
details.

• LOG - Identifies the LOG to which MATCH errors should be written. To avoid duplicate error messages, this
is normally a unique log. See the LOG element's TYPE attribute to specify unique error message logging.

• MATCH_EMPTY_PROPS - Specifies that Forge create an empty dimension value for any empty property
value Forge finds during matching. This empty property to dimension value matching occurs when you
use AUTO_GEN with MATCH_EMPTY_PROPS set to TRUE. If this expression node is set to FALSE or omitted,
Forge ignores empty properties.

• MUST_MATCH - Specifies that every property value must match a dimension value within the specified
dimensions. If a property value does not have a match, an error is written out to the log named in the LOG
expression node. Note that MUST_MATCH should not be used in combination with AUTO_GEN, because all
property values match if AUTO_GEN is specified.

• REMOVE_PROP - Removes the properties used for the MATCH from the current record after the match is
performed. This is useful if the dimension is being indexed, but not the source property.

• SIFT_MATCH - SIFT_MATCH is a special variation of AUTO_GEN. See the Endeca Basic Development
Guide for details.

• SYN_MATCH - Uses the name of the first property value that matches a dimension value as the synonym
name for any property values that do not match to a dimension value. The Forge matching process goes
as follows: First, AUTO_GEN must set be FALSE. During matching, if more than one property value matches
a dimension value, Forge logs an error. If a property value does not match a dimension value, Forge creates
a new dimension value using the property value as its name. All the non-matching property values are
turned into synonyms of this dimension value.

See the EXPRESSION element for DTD and attribute information.

Example

This example assigns the dimension value 2090 to records with the property name FORMAT.

<EXPRESSION TYPE="VOID" NAME="ADD_DVAL">
 <EXPRESSION TYPE="DVAL" NAME="MATCH">
 <EXPRNODE NAME="DIMENSION_ID" VALUE="2090"/>
 <EXPRESSION TYPE="PROPERTY" NAME="IDENTITY">

Oracle Endeca Platform Services Data Foundry Expression Reference

Data Foundry Expressions | DVAL expressions14

 <EXPRNODE NAME="PROP_NAME" VALUE="FORMAT"/>
 <EXPRNODE NAME="LOG" VALUE="salog"/>
 </EXPRESSION>
 </EXPRESSION>
</EXPRESSION>

DVAL PERL
DVAL expressions return dimension values. The DVAL PERL expression uses Perl to manipulate the data.

The Perl code is contained in an EXPRBODY element. The Zinc Perl module provides classes and methods for
gaining access to and manipulating the current record. Objects accessed from Perl are copies of the current
data; changing the Perl objects has no effect on the current data until a function is called to explicitly copy the
Perl objects back.

See the EXPRESSION element for DTD and attribute information.

Example

This example assigns the dimension value 2090 to records with the property name FORMAT.

<EXPRESSION TYPE="DVAL" NAME="PERL">
 <EXPRBODY>
 ...your Perl code here. The VOID PERL topic has an example...
 </EXPRBODY>
</EXPRESSION>

FLOAT expressions

FLOAT CONST
FLOAT expressions return floating point (fractional) numbers.The FLOAT CONST expression returns the same
floating-point number, specified in the VALUE attribute of an EXPRNODE sub-element.

For example, using a FLOAT CONST expression within a VOID CREATE expression adds the new property
whose value is the constant specified to each record processed.

See the EXPRESSION element for DTD and attribute information.

Example

This example deletes discount properties if they are less than 20%. The FLOAT CONST expression defines
the value for the percentage.

<EXPRESSION TYPE="VOID" NAME="IF">
 <EXPRESSION TYPE="INTEGER" NAME="MATH">
 <EXPRNODE NAME="TYPE" VALUE="FLOAT"/>
 <EXPRNODE NAME="OPERATOR" VALUE="LT"/>
 <EXPRESSION TYPE="PROPERTY" NAME="IDENTITY">
 <EXPRNODE NAME="PROP_NAME" VALUE="DISCOUNT"/>
 </EXPRESSION>
 <EXPRESSION TYPE="FLOAT" NAME="CONST">
 <EXPRNODE NAME="VALUE" VALUE="20.00"/>
 </EXPRESSION>
 </EXPRESSION>

Oracle Endeca Platform Services Data Foundry Expression Reference

15Data Foundry Expressions | FLOAT expressions

 <EXPRESSION TYPE="VOID" NAME="REMOVE">
 <EXPRNODE NAME="PROP_NAME" VALUE="DISCOUNT"/>
 </EXPRESSION>
</EXPRESSION>

FLOAT MATH
FLOAT expressions return floating point (fractional) numbers. The FLOAT MATH expression performs a
floating-point arithmetic operation on two values.

The operation to be performed is supplied in the VALUE attribute of an EXPRNODE element. The values to be
operated on are supplied in two sub-expressions.

The possible operations that may be specified in the VALUE attribute are as follows:

• ADD

• SUBTRACT - expression 1 minus expression 2.
• MULTIPLY

• DIVIDE - expression 1 divided by expression 2.
• POWER - expression 1 raised to the power of expression 2.
• PERCENT - the percentage expression 1 is of expression 2 (100 * (expression 1 / expression 2)).

The sub-expressions can be PROPERTY, STRING, INTEGER, or FLOAT expressions (use PROPERTY expressions
to retrieve values from the current record). The values returned by the sub-expressions are converted to
floating-point numbers prior to performing the parent operation.

See the EXPRESSION element for DTD and attribute information.

Example

This example subtracts to constants and returns a floating point result.

<EXPRESSION TYPE="FLOAT" NAME="MATH">
 <EXPRNODE NAME="OPERATOR" VALUE="SUBTRACT"/>
 <EXPRESSION TYPE="FLOAT" NAME="CONST">
 <EXPRNODE NAME="VALUE" VALUE="9.25"/>
 </EXPRESSION>
 <EXPRESSION TYPE="FLOAT" NAME="CONST">
 <EXPRNODE NAME="VALUE" VALUE="11.75"/>
 </EXPRESSION>
</EXPRESSION>

INTEGER expressions

INTEGER AND
INTEGER expressions return integers (whole numbers). INTEGER expressions can be used to combine
expressions, do arithmetic, and test conditions for conditional evaluation. The INTEGER AND expression
evaluates one or more INTEGER expressions, returning 1 if all the sub-expressions return non-zero values,
and otherwise returning 0.

The evaluation of sub-expressions stops as soon as one returns 0.INTEGER AND is the equivalent of the “&&”
operator in Perl and C. Used in conjunction with an IF expression, an AND expression can check for more
than one condition. The syntax requires one or more nested INTEGER expressions.

Oracle Endeca Platform Services Data Foundry Expression Reference

Data Foundry Expressions | INTEGER expressions16

See the EXPRESSION element for DTD and attribute information.

Example

This example uses an INTEGER AND expression to evaluate whether the records processed have a subject
and sales rank property. If the records do not such properties, the REMOVE_RECORD deletes them.

<EXPRESSION TYPE="VOID" NAME="IF">
 <EXPRESSION TYPE="INTEGER" NAME="AND">
 <EXPRESSION TYPE="INTEGER" NAME="MATH">
 <EXPRNODE NAME="TYPE" VALUE="INTEGER"/>
 <EXPRNODE NAME="OPERATOR" VALUE="EQUAL"/>
 <EXPRESSION TYPE="INTEGER" NAME="PROP_EXISTS">
 <EXPRNODE NAME="PROP_NAME" VALUE="CATEGORY_ID"/>
 </EXPRESSION>
 <EXPRESSION TYPE="INTEGER" NAME="CONST">
 <EXPRNODE NAME="VALUE" VALUE="0"/>
 </EXPRESSION>
 </EXPRESSION>
 <EXPRESSION TYPE="INTEGER" NAME="MATH">
 <EXPRNODE NAME="TYPE" VALUE="INTEGER"/>
 <EXPRNODE NAME="OPERATOR" VALUE="EQUAL"/>
 <EXPRESSION TYPE="INTEGER" NAME="PROP_EXISTS">
 <EXPRNODE NAME="PROP_NAME" VALUE="SALESRANK"/>
 </EXPRESSION>
 <EXPRESSION TYPE="INTEGER" NAME="CONST">
 <EXPRNODE NAME="VALUE" VALUE="0"/>
 </EXPRESSION>
 </EXPRESSION>

 </EXPRESSION>
 <EXPRESSION TYPE="VOID" NAME="REMOVE_RECORD"/>
</EXPRESSION>

INTEGER CONST
INTEGER expressions return integers (whole numbers). INTEGER expressions can be used to combine
expressions, do arithmetic, and test conditions for conditional evaluation. The INTEGER CONST expression
returns the same integer constant, specified in the VALUE attribute of an EXPRNODE element.

For example, using an INTEGER CONST expression within a VOID CREATE expression adds a new property,
whose value is the specified constant to each record processed.

See the EXPRESSION element for DTD and attribute information.

Example

As part of an INTEGER AND expression, this example uses an INTEGER CONST sub-expression to test whether
the PROP_NAME value equals the constant value.

<EXPRESSION TYPE="VOID" NAME="IF">
 <EXPRESSION TYPE="INTEGER" NAME="AND">
 <EXPRESSION TYPE="INTEGER" NAME="MATH">
 <EXPRNODE NAME="TYPE" VALUE="INTEGER"/>
 <EXPRNODE NAME="OPERATOR" VALUE="EQUAL"/>
 <EXPRESSION TYPE="INTEGER" NAME="PROP_EXISTS">
 <EXPRNODE NAME="PROP_NAME" VALUE="CATEGORY_ID"/>
 </EXPRESSION>
 <EXPRESSION TYPE="INTEGER" NAME="CONST">

Oracle Endeca Platform Services Data Foundry Expression Reference

17Data Foundry Expressions | INTEGER expressions

 <EXPRNODE NAME="VALUE" VALUE="0"/>
 </EXPRESSION>
 </EXPRESSION>
 <EXPRESSION TYPE="INTEGER" NAME="MATH">
 <EXPRNODE NAME="TYPE" VALUE="INTEGER"/>
 <EXPRNODE NAME="OPERATOR" VALUE="EQUAL"/>
 <EXPRESSION TYPE="INTEGER" NAME="PROP_EXISTS">
 <EXPRNODE NAME="PROP_NAME" VALUE="SALESRANK"/>
 </EXPRESSION>
 <EXPRESSION TYPE="INTEGER" NAME="CONST">
 <EXPRNODE NAME="VALUE" VALUE="0"/>
 </EXPRESSION>
 </EXPRESSION>
 </EXPRESSION>
 <EXPRESSION TYPE="VOID" NAME="REMOVE_RECORD"/>
</EXPRESSION>

INTEGER MATH
INTEGER expressions return integers (whole numbers). INTEGER expressions can be used to combine
expressions, do arithmetic, and test conditions for conditional evaluation.The INTEGER MATH expression can
perform a variety of operations on two values, including arithmetic, Boolean tests, and string comparison.

Although the returned value is always an integer, the operation itself can be performed using a variety of data
types. A TYPE expression node tells the MATH expression what type to convert its sub-expressions into prior
to performing the operation. The operation to be performed is supplied in an OPERATOR expression node; the
values to be operated on are supplied in two sub-expressions.

In the TYPE expression node, the VALUE attribute has the following supported values:

• STRING

• INTEGER

• FLOAT

The following OPERATOR expression node require that the TYPE attribute of their sub-expressions have a value
of either INTEGER or FLOAT:

• ADD

• SUBTRACT - expression 1 minus expression 2.
• MULTIPLY

• DIVIDE - expression 1 divided by expression 2.
• POWER - expression 1 raised to the power of expression 2.
• PERCENT - the percentage expression 1 is of expression 2 (100 * (expression 1 / expression 2)).
• MOD - the remainder of expression 1 divided by expression 2.

The following OPERATOR expression nodes require that the TYPE attribute of their two sub-expressions have
a value of INTEGER, FLOAT, or STRING.

• EQUAL - returns 1 if expression 1 and expression 2 are equal, 0 otherwise.
• NE - returns 1 if expression 1 and expression 2 are not equal, 0 otherwise.
• GT - returns 1 if expression 1 is greater than expression 2, 0 otherwise.
• GTE - returns 1 if expression 1 is greater than or equal to expression 2, 0 otherwise.
• LT - returns 1 if expression 1 is less than expression 2, 0 otherwise.
• LTE - returns 1 if expression 1 is less than or equal to expression 2, 0 otherwise.
• CMP - returns 1 if expression 1 is greater than expression 2, 0 if the expressions are equal, –1 if expression

1 is less than expression 2.

Oracle Endeca Platform Services Data Foundry Expression Reference

Data Foundry Expressions | INTEGER expressions18

The following OPERATOR expression nodes require that the TYPE attribute of their two sub-expressions have
a value of STRING:

• CMP_SUBSTR - returns 1 if expression 1 contains expression 2 as a sub-string, 0 otherwise.
• CMP_START - returns 1 if expression 1 starts with expression 2, 0 otherwise.
• CMP_END - returns 1 if expression 1 ends with expression 2, 0 otherwise.

In the OPERATOR expression nodes, the following two values of the VALUE attribute have slightly different
behavior for STRING than for INTEGER:

• AND - used with STRING, returns 1 if neither expression 1 nor expression 2 is empty, 0 otherwise. Used
with INTEGER, returns 1 if neither expression 1 nor expression 2 is not equal to 0.

• OR - used with STRING, returns 1 if either expression 1 or expression 2 is not empty, 0 otherwise. Used
with INTEGER, returns 1 if either expression 1 or expression 2 does not equal 0. See Example 2 for the
use of this operator.

See the EXPRESSION element for DTD and attribute information.

Example 1

As part of an INTEGER AND expression, this example uses two INTEGER MATH sub-expressions to test
whether the PROP_NAME value equals the constant value.

<EXPRESSION TYPE="VOID" NAME="IF">
 <EXPRESSION TYPE="INTEGER" NAME="AND">
 <EXPRESSION TYPE="INTEGER" NAME="MATH">
 <EXPRNODE NAME="TYPE" VALUE="INTEGER"/>
 <EXPRNODE NAME="OPERATOR" VALUE="EQUAL"/>
 <EXPRESSION TYPE="INTEGER" NAME="PROP_EXISTS">
 <EXPRNODE NAME="PROP_NAME" VALUE="CATEGORY_ID"/>
 </EXPRESSION>
 <EXPRESSION TYPE="INTEGER" NAME="CONST">
 <EXPRNODE NAME="VALUE" VALUE="0"/>
 </EXPRESSION>
 </EXPRESSION>
 <EXPRESSION TYPE="INTEGER" NAME="MATH">
 <EXPRNODE NAME="TYPE" VALUE="INTEGER"/>
 <EXPRNODE NAME="OPERATOR" VALUE="EQUAL"/>
 <EXPRESSION TYPE="INTEGER" NAME="PROP_EXISTS">
 <EXPRNODE NAME="PROP_NAME" VALUE="SALESRANK"/>
 </EXPRESSION>
 <EXPRESSION TYPE="INTEGER" NAME="CONST">
 <EXPRNODE NAME="VALUE" VALUE="0"/>
 </EXPRESSION>
 </EXPRESSION>
 </EXPRESSION>
 <EXPRESSION TYPE="VOID" NAME="REMOVE_RECORD"/>
</EXPRESSION>

Example 2

This example illustrates the use of an OR in the OPERATOR expression node. The example reads: If Category
equals "A" or Category equals "B", then create a new instance of the property "ABCompanies" with the value
from the Company property. The syntax implicitly selects the first value of a given property if the property is
multi-assigned. "IDENTITY" gets the actual value of the property, while "CONST" is a literal.

<EXPRESSION LABEL="" NAME="IF" TYPE="VOID" URL="">
 <EXPRESSION LABEL="" NAME="MATH" TYPE="INTEGER" URL="">
 <EXPRNODE NAME="TYPE" VALUE="INTEGER"/>
 <EXPRNODE NAME="OPERATOR" VALUE="OR"/>

Oracle Endeca Platform Services Data Foundry Expression Reference

19Data Foundry Expressions | INTEGER expressions

 <EXPRESSION LABEL="" NAME="MATH" TYPE="INTEGER" URL="">
 <EXPRNODE NAME="TYPE" VALUE="STRING"/>
 <EXPRNODE NAME="OPERATOR" VALUE="EQUAL"/>
 <EXPRESSION LABEL="" NAME="IDENTITY" TYPE="PROPERTY" URL="">
 <EXPRNODE NAME="PROP_NAME" VALUE="Category"/>
 </EXPRESSION>
 <EXPRESSION LABEL="" NAME="CONST" TYPE="STRING" URL="">
 <EXPRNODE NAME="VALUE" VALUE="A"/>
 </EXPRESSION>
 </EXPRESSION>
 <EXPRESSION LABEL="" NAME="MATH" TYPE="INTEGER" URL="">
 <EXPRNODE NAME="TYPE" VALUE="STRING"/>
 <EXPRNODE NAME="OPERATOR" VALUE="EQUAL"/>
 <EXPRESSION LABEL="" NAME="IDENTITY" TYPE="PROPERTY" URL="">
 <EXPRNODE NAME="PROP_NAME" VALUE="Category"/>
 </EXPRESSION>
 <EXPRESSION LABEL="" NAME="CONST" TYPE="STRING" URL="">
 <EXPRNODE NAME="VALUE" VALUE="B"/>
 </EXPRESSION>
 </EXPRESSION>
 </EXPRESSION>
 <EXPRESSION LABEL="" NAME="CREATE" TYPE="VOID" URL="">
 <EXPRNODE NAME="PROP_NAME" VALUE="ABCompanies"/>
 <EXPRESSION LABEL="" NAME="IDENTITY" TYPE="PROPERTY" URL="">
 <EXPRNODE NAME="PROP_NAME" VALUE="Company"/>
 </EXPRESSION>
 </EXPRESSION>
</EXPRESSION>

INTEGER PERL
INTEGER expressions return integers (whole numbers). INTEGER expressions can be used to combine
expressions, do arithmetic, and test conditions for conditional evaluation. The INTEGER PERL expression
uses Perl to manipulate the data.

The Perl code is contained in an EXPRBODY element. The Zinc Perl module provides classes and methods for
gaining access to and manipulating the current record. Objects accessed from Perl are copies of the current
data; changing the Perl objects has no effect on the current data until a function is called to explicitly copy the
Perl objects back.

Oracle recommends that you perform record manipulation with the PERL_MANIPULATOR element rather than
with the EXPRESSION and RECORD_MANIPULATOR elements. However, if you need to access and modify
dimension sources (such as a dimension adapter or dimension server) you should still use expressions such
as DVAL PERL. The Perl manipulator does not access dimension sources.

See the EXPRESSION element for DTD and attribute information.

Example

<EXPRESSION TYPE="INTEGER" NAME="PERL">
 <EXPRBODY>
 ...your Perl code here. The VOID PERL topic has an example...
 </EXPRBODY>
</EXPRESSION>

Oracle Endeca Platform Services Data Foundry Expression Reference

Data Foundry Expressions | INTEGER expressions20

INTEGER PROP_EXISTS
INTEGER expressions return integers (whole numbers). INTEGER expressions can be used to combine
expressions, do arithmetic, and test conditions for conditional evaluation. The INTEGER PROP_EXISTS
expression checks for a specified property on each record being processed.

The name of the property is specified in a PROP_NAME expression node. The expression returns the number
of values of the property on each record. For example, if a record has three values from the “Color” property,
the PROP_EXISTS expression would return 3. If the record has no values for the “Color” property, it would
return 0. INTEGER PROP_EXISTS is useful as the condition expression in a VOID IF expression.

See the EXPRESSION element for DTD and attribute information.

Example

As part of an INTEGER AND expression, this example uses two INTEGER PROP_EXISTS sub-expressions
to test whether the specified PROP_NAME exists.

<EXPRESSION TYPE="VOID" NAME="IF">
 <EXPRESSION TYPE="INTEGER" NAME="AND">
 <EXPRESSION TYPE="INTEGER" NAME="MATH">
 <EXPRNODE NAME="TYPE" VALUE="INTEGER"/>
 <EXPRNODE NAME="OPERATOR" VALUE="EQUAL"/>
 <EXPRESSION TYPE="INTEGER" NAME="PROP_EXISTS">
 <EXPRNODE NAME="PROP_NAME" VALUE="CATEGORY_ID"/>
 </EXPRESSION>
 <EXPRESSION TYPE="INTEGER" NAME="CONST">
 <EXPRNODE NAME="VALUE" VALUE="0"/>
 </EXPRESSION>
 </EXPRESSION>
 <EXPRESSION TYPE="INTEGER" NAME="MATH">
 <EXPRNODE NAME="TYPE" VALUE="INTEGER"/>
 <EXPRNODE NAME="OPERATOR" VALUE="EQUAL"/>
 <EXPRESSION TYPE="INTEGER" NAME="PROP_EXISTS">
 <EXPRNODE NAME="PROP_NAME" VALUE="SALESRANK"/>
 </EXPRESSION>
 <EXPRESSION TYPE="INTEGER" NAME="CONST">
 <EXPRNODE NAME="VALUE" VALUE="0"/>
 </EXPRESSION>
 </EXPRESSION>
 </EXPRESSION>
 <EXPRESSION TYPE="VOID" NAME="REMOVE_RECORD"/>
</EXPRESSION>

PROPERTY expressions

PROPERTY ALL
PROPERTY expressions return properties (name-value pairs). They are typically used to provide data to other
expressions. The PROPERTY ALL expression returns all the values from all the properties on the current
record.

There are no EXPRNODE elements to configure it.

See the EXPRESSION element for DTD and attribute information.

Oracle Endeca Platform Services Data Foundry Expression Reference

21Data Foundry Expressions | PROPERTY expressions

Example

<EXPRESSION TYPE="PROPERTY" NAME="ALL"/>

PROPERTY DVAL
PROPERTY expressions return properties (name-value pairs). They are typically used to provide data to other
expressions. The PROPERTY DVAL expression creates a property value for each dimension value the current
record has from the specified dimension.

A PROP_NAME expression node specifies the name of the property to be created. The dimension can be
specified using either a DIMENSION_ID or a DIMENSION_NAME expression node. By default, values for the
property are created containing the name of each dimension value assigned to the record from the specified
dimension. If the FULL_PATH expression node is specified with a value of TRUE, then the names of all dimension
values in the path from the dimension root to the assigned dimension value are concatenated (separated by
‘/’) and used instead of the dimension value name.

See the EXPRESSION element for DTD and attribute information.

Example

This example creates the Price property for the specified dimension value in the record being processed.

<EXPRESSION TYPE="VOID" NAME="ADD_PROP">
 <EXPRESSION TYPE="PROPERTY" NAME="DVAL">
 <EXPRNODE NAME="DIMENSION_ID" VALUE="300"/>
 <EXPRNODE NAME="PROP_NAME" VALUE="Price"/>
 <EXPRNODE NAME="FULL_PATH" VALUE="TRUE"/>
 </EXPRESSION>
</EXPRESSION>

PROPERTY IDENTITY
PROPERTY expressions return properties (name-value pairs). They are typically used to provide data to other
expressions. The PROPERTY IDENTITY expression returns the specified property from the current record.

The name of the property to return is specified in a PROP_NAME expression node.

See the EXPRESSION element for DTD and attribute information.

Example

This example assigns the dimension value 2090 to records with the property name FORMAT. The property
name is specified within the PROPERTY IDENTITY sub-expression.

<EXPRESSION TYPE="VOID" NAME="ADD_DVAL">
 <EXPRESSION TYPE="DVAL" NAME="MATCH">
 <EXPRNODE NAME="DIMENSION_ID" VALUE="2090"/>
 <EXPRESSION TYPE="PROPERTY" NAME="IDENTITY">
 <EXPRNODE NAME="PROP_NAME" VALUE="FORMAT"/>
 <EXPRNODE NAME="LOG" VALUE="salog"/>
 </EXPRESSION>
 </EXPRESSION>
</EXPRESSION>

Oracle Endeca Platform Services Data Foundry Expression Reference

Data Foundry Expressions | PROPERTY expressions22

PROPERTY NVL
PROPERTY expressions return properties (name-value pairs). They are typically used to provide data to other
expressions. The PROPERTY NVL expression evaluates its sub-expressions and returns the properties from
the first sub-expression that has a non-empty result.

This is useful if there are several different properties that a record may or may not have, but only one of them
should be used in an expression. For example, a record may have a property for a home address or for a
business address.PROPERTY NVL expression evaluates each possibility and returns the first address it locates.

Note that a sub-expression that returns empty strings is returning values (empty values). For example, a record
may not have a value for the “Color” property; however, if the FILTER_EMPTY_PROPS attribute of the
RECORD_ADAPTER is not set to true, an identity expression referencing the property "Color” still has a return
value (that is, the property name “Color” with an empty value).

An NVL expression may therefore return properties with empty values; it skips only properties that do not exist.
There are no EXPRNODE elements to configure PROPERTY NVL.

See the EXPRESSION element for DTD and attribute information.

Example

As suggested in the above example, this expression returns the first address property that Forge locates in
the record.

<EXPRESSION TYPE="PROPERTY" NAME="NVL">
 <EXPRESSION TYPE="PROPERTY" NAME="IDENTITY">
 <EXPRNODE NAME="PROP_NAME" VALUE="address_home"/>
 </EXPRESSION>
 <EXPRESSION TYPE="PROPERTY" NAME="IDENTITY">
 <EXPRNODE NAME="PROP_NAME" VALUE="address_work"/>
 </EXPRESSION>
</EXPRESSION>

PROPERTY PERL
PROPERTY expressions return properties (name-value pairs). They are typically used to provide data to other
expressions. The PROPERTY PERL expression uses Perl to manipulate the data.

The Perl code is contained in an EXPRBODY element. The Zinc Perl module provides classes and methods for
gaining access to and manipulating the current record. Objects accessed from Perl are copies of the current
data; changing the Perl objects has no effect on the current data until a function is called to explicitly copy the
Perl objects back.

Oracle recommends that you perform record manipulation with the PERL_MANIPULATOR element rather than
with the EXPRESSION and RECORD_MANIPULATOR elements. However, if you need to access and modify
dimension sources (such as a dimension adapter or dimension server) you should still use expressions such
as DVAL PERL. The Perl manipulator does not access dimension sources.

See the EXPRESSION element for DTD and attribute information.

Example

<EXPRESSION TYPE="PROPERTY" NAME="PERL">
 <EXPRBODY>
 ...your Perl code here. The VOID PERL topic has an example...
 </EXPRBODY>
</EXPRESSION>

Oracle Endeca Platform Services Data Foundry Expression Reference

23Data Foundry Expressions | PROPERTY expressions

VOID expressions

VOID ADD_DVAL
VOID expressions return no value but are used to perform other work. The VOID ADD_DVAL expression adds
dimension values to the current record.

The dimension values to add are given by one or more sub-expressions of type DVAL.

See the EXPRESSION element for DTD and attribute information.

Example

This example adds the dimension value to the record being processed.

<EXPRESSION TYPE="VOID" NAME="ADD_DVAL">
 <EXPRESSION TYPE="DVAL" NAME="CONST">
 <EXPRNODE NAME="DIMENSION_ID" VALUE="2090"/>
 <EXPRNODE NAME="DVAL_ID" VALUE="2091"/>
 </EXPRESSION>
</EXPRESSION>

Related Links
VOID expressions on page 24

VOID ADD_DVAL_PROP
VOID expressions return no value but are used to perform other work.The VOID ADD_DVAL_PROP expression
adds dimension value attributes to a dimension value.

This expression is unique in that it does not modify the current record. The attributes are information for an
Endeca application's user interface; the attributes are not record processing information for Forge or the MDEX
Engine. For example, you might use attributes to indicate the display color or location of a dimension value.
See the Endeca Basic Development Guide for details.

The dimension to modify can be given in either a DIMENSION_NAME or a DIMENSION_ID expression node;
the dimension value to modify can be given in either a DVAL_PATH or DVAL_ID expression node.The properties
to be added are given by one or more PROPERTY sub-expressions.

By default, if the dimension value already has attributes attached, the new attributes are simply added. If the
optional REPLACE expression node is set to TRUE, any duplicate attributes are removed prior to adding the
new ones.

By default, the modifications are made to the dimension value immediately. In some cases (for example with
AutoGen), the specified dimension value may not exist at the time the expression is evaluated, so Forge should
wait and make the specified changes after all records have been processed. To do this, the optional DELAY
expression node should be set to TRUE.

See the EXPRESSION element for DTD and attribute information.

Example

This expression adds an attribute named display to the Red dimension value.

<EXPRESSION TYPE="VOID" NAME="ADD_DVAL_PROP">
 <EXPRNODE NAME="DIMENSION_NAME" VALUE="Colors"/>
 <EXPRNODE NAME="DVAL_PATH" VALUE="Colors/Red"/>

Oracle Endeca Platform Services Data Foundry Expression Reference

Data Foundry Expressions | VOID expressions24

 <EXPRESSION TYPE="PROPERTY" NAME="IDENTITY">
 <EXPRNODE NAME="PROP_NAME" VALUE="display"/>
 </EXPRESSION>
</EXPRESSION>

VOID CLEAN_DVALS
VOID expressions return no value but are used to perform other work. The VOID CLEAN_DVALS expression
removes ancestor classifications from records.

CLEAN_DVALS requires one or more DIMENSION_ID expression nodes to tell it which dimensions to clean.
You can also specify dimensions from more than one DIMENSION_SOURCE if necessary. One DIMEN¬
SION_SOURCE is required.

If a dimension value and one or more of its ancestors are assigned to a record, a CLEAN_DVALS expression
deletes the ancestor dimension values, leaving only the child dimension value on the record. A dimension
value and one or more of its ancestors would be assigned to a record in a situation where an ancestor and
dimension leaf value are both properties of a single record. This is the case in the following example for the
properties “Blue” and “Sky Blue”.

For example, suppose one navigation path within a “Colors” dimension looked like this: Colors->Blue->Sky
Blue. If a record has a property value of “Blue” and a property value of “Sky Blue”, then both the parent
dimension value “Blue” and its child “Sky Blue” will be assigned to it. A CLEAN_DVALS expression would remove
the dimension value “Blue” from the record. If there were more levels of hierarchy (for example, if the dimension
value “Blue” were a grandparent or great-grandparent), the CLEAN_DVALS expression would work in the same
way; only the child dimension value “Sky Blue” would remain on the record.

See the EXPRESSION element for DTD and attribute information.

Example

This example cleans ancestor dimension values from the indicated dimension.

<EXPRESSION TYPE="VOID" NAME="CLEAN_DVALS">
 <EXPRNODE NAME="DIMENSION_ID" VALUE="70000" />
 <EXPRNODE NAME="DIMENSION_SOURCE" VALUE="DimensionServer" />
</EXPRESSION>

VOID CONVERTTOTEXT
VOID expressions return no value but are used to perform other work.The VOID CONVERTTOTEXT expression
extracts document content, converts it to text, and assigns the text to a record.

This expression is available as part of the optional Document Conversion Module. Recall that the RETRIEVE_URL
expression fetches a document's content and writes the content to a file. The Endeca.Document.Body
property stores the absolute path of the file that contains the document's content. CONVERTTOTEXT read the
path and converts the content of the indicated file to text. The text is then assigned to a record as a property
with the name Endeca.Document.Text. If the expression fails, a warning is logged, and the property is not
assigned to the record.

The following optional expression nodes modify the behavior of VOID CONVERTTOTEXT:

• TIMEOUT - Specifies the maximum time allowed to convert a document. The default value is 300 seconds.
• RESPONSE_TIMEOUT - Specifies the messaging time out between Forge and the converter process. The

default value is 30 seconds.

Oracle Endeca Platform Services Data Foundry Expression Reference

25Data Foundry Expressions | VOID expressions

• CONVERT_EMBEDDED - If set to TRUE, specifies that embedded documents will also be extracted and
converted. If this option is not used, the default is FALSE.

See the EXPRESSION element for DTD and attribute information.

Example

This example converts Endeca.Document.Body to text if the property exists.

<EXPRESSION TYPE="VOID" NAME="IF">
 <EXPRESSION TYPE="INTEGER" NAME="PROP_EXISTS">
 <EXPRNODE NAME="PROP_NAME" VALUE="Endeca.Document.Body"/>
 </EXPRESSION>
 <EXPRESSION TYPE="VOID" NAME="CONVERTTOTEXT"/>
</EXPRESSION>

This example shows how to use the CONVERT_EMBEDDED option to process embedded documents.

<EXPRESSION TYPE="VOID" NAME="CONVERTTOTEXT">
 <EXPRNODE NAME="CONVERT_EMBEDDED" VALUE="TRUE" />
</EXPRESSION>

VOID CREATE
VOID expressions return no value but are used to perform other work.The VOID CREATE expression creates
a new property on the current record.

The name of the property is specified either by a PROP_NAME expression node, or by the first sub-expression,
which may be of type STRING, PROPERTY, INTEGER, or FLOAT. The value for the property comes from a
second sub-expression of type STRING, PROPERTY, INTEGER, or FLOAT.

See the EXPRESSION element for DTD and attribute information.

Example

This example creates a new property called Document-Digest.

<EXPRESSION TYPE="VOID" NAME="CREATE">
 <EXPRNODE NAME="PROP_NAME" VALUE="Document-Digest"/>
 <EXPRESSION TYPE="STRING" NAME="DIGEST">
 <EXPRESSION TYPE="PROPERTY" NAME="IDENTITY">
 <EXPRNODE NAME="PROP_NAME" VALUE="Endeca.Document.Body"/>
 </EXPRESSION>
 </EXPRESSION>
</EXPRESSION>

VOID EXPORT_PROP
VOID expressions return no value but are used to perform other work. The VOID EXPORT_PROP expression
writes a given property to a file and replaces the property value with the value of the newly created file’s URL.

Writing a property value to a file is useful when the property is a long text description.You can save memory
by writing the property to a file and accessing the file only when necessary via the new URL property value.
You can use VOID REMOVE_EXPORTED_PROP to delete this file and the property pointing to the file.

The property to export can be specified in either one of the following ways:

• Use the PROP_NAME expression node to specify the name of the property to export.

Oracle Endeca Platform Services Data Foundry Expression Reference

Data Foundry Expressions | VOID expressions26

• Use a STRING expression to generate the name of the file to export. This mode is useful when crawling
files: the file name is generated using a STRING DIGEST of the Endeca.Identifier property and the
expression generates a different file name for each URL identifier.

The following expression nodes can modify EXPORT_PROP:

• URL - Specifies the base URL that files are written to. This value may be either an absolute path or a path
relative to the location of Pipeline.epx.

• PREFIX - Specifies a file name prefix to use when Forge writes the property value to a file.

See the EXPRESSION element for DTD and attribute information.

Example

This example exports properties Prop1 and Prop2 from the props directory.

<EXPRESSION TYPE="VOID" NAME="EXPORT_PROP">
 <EXPRNODE NAME="PROP_NAME" VALUE="Prop1"/>
 <EXPRNODE NAME="PROP_NAME" VALUE="Prop2"/>
 <EXPRNODE NAME="URL" VALUE="props"/>
 <EXPRNODE NAME="PREFIX" VALUE="out."/>
</EXPRESSION>

VOID IF
VOID expressions return no value but are used to perform other work. The VOID IF expression provides a
way to perform conditional evaluation.

The sub-expressions are grouped into clauses: the first clause consists of all the sub-expressions up to the
first EXPRNODE element (if any) and any subsequent clauses consist of the sub-expressions between EXPRNODE
elements.The first clause is an IF clause; the first sub-expression is a condition, and must be of type INTEGER.
Subsequent sub-expressions form the action, and must be of type VOID. If the condition evaluates to anything
other than zero, then all of the actions are evaluated, in order. If the condition evaluates to zero, then processing
moves to the next clause.

A clause introduced by an ELSE_IF expression node (EXPRNODE) behaves just like the initial IF clause.
ELSE_IF clauses are optional. If included, there may be any number. For a sample usage, see the second
example below. In a clause introduced by an ELSE expression node, all sub-expressions form an action, and
must be of type VOID. The actions are evaluated in order. The ELSE clause is optional. If included, it must
come last. There can be at most one ELSE clause.

See the EXPRESSION element for DTD and attribute information.

Example 1

This example evaluates whether the Region property is equal to the constant Other Italy. If two are equal, then
the REMOVE expression deletes the property.

<EXPRESSION TYPE="VOID" NAME="IF">
 <EXPRESSION TYPE="INTEGER" NAME="MATH">
 <EXPRNODE NAME="TYPE" VALUE="STRING"/>
 <EXPRNODE NAME="OPERATOR" VALUE="EQUAL"/>
 <EXPRESSION TYPE="PROPERTY" NAME="IDENTITY">
 <EXPRNODE NAME="PROP_NAME" VALUE="Region"/>
 </EXPRESSION>
 <EXPRESSION TYPE="STRING" NAME="CONST">
 <EXPRNODE NAME="VALUE" VALUE="Other Italy"/>
 </EXPRESSION>
 </EXPRESSION>

Oracle Endeca Platform Services Data Foundry Expression Reference

27Data Foundry Expressions | VOID expressions

 <EXPRESSION TYPE="VOID" NAME="REMOVE">
 <EXPRNODE NAME="PROP_NAME" VALUE="Region"/>
 </EXPRESSION>
</EXPRESSION>

Example 2

This example implements the following logic using ELSE and ELSE_IF expression nodes:

 if (Endeca.Title == "Ad Rotator Test")
 Create Property AdRotate with Property Value "Yes"
 else if (Endeca.Title == "Sample Pages")
 Create Property "An Index" with Property Value "Yes"
 else
 Create Property "NoMatch" with Property Value "Nothing"
 end if

The example is as follows:

<EXPRESSION LABEL="" NAME="IF" TYPE="VOID" URL="">

 <EXPRESSION LABEL="" NAME="MATH" TYPE="INTEGER" URL="">
 <EXPRNODE NAME="TYPE" VALUE="STRING"/>
 <EXPRNODE NAME="OPERATOR" VALUE="EQUAL"/>
 <EXPRESSION LABEL="" NAME="IDENTITY" TYPE="PROPERTY" URL="">
 <EXPRNODE NAME="PROP_NAME" VALUE="Endeca.Title"/>
 </EXPRESSION>
 <EXPRESSION LABEL="" NAME="CONST" TYPE="STRING" URL="">
 <EXPRNODE NAME="VALUE" VALUE="Ad Rotator Test"/>
 </EXPRESSION>
 </EXPRESSION>

 <EXPRESSION LABEL="" NAME="CREATE" TYPE="VOID" URL="">
 <EXPRNODE NAME="PROP_NAME" VALUE="AdRotate"/>
 <EXPRESSION LABEL="" NAME="CONST" TYPE="STRING" URL="">
 <EXPRNODE NAME="VALUE" VALUE="Yes"/>
 </EXPRESSION>
 </EXPRESSION>

 <EXPRNODE NAME="ELSE_IF" VALUE=""/>

 <EXPRESSION LABEL="" NAME="MATH" TYPE="INTEGER" URL="">
 <EXPRNODE NAME="TYPE" VALUE="STRING"/>
 <EXPRNODE NAME="OPERATOR" VALUE="EQUAL"/>
 <EXPRESSION LABEL="" NAME="IDENTITY" TYPE="PROPERTY" URL="">
 <EXPRNODE NAME="PROP_NAME" VALUE="Endeca.Title"/>
 </EXPRESSION>
 <EXPRESSION LABEL="" NAME="CONST" TYPE="STRING" URL="">
 <EXPRNODE NAME="VALUE" VALUE="Sample Pages"/>
 </EXPRESSION>
 </EXPRESSION>

 <EXPRESSION LABEL="" NAME="CREATE" TYPE="VOID" URL="">
 <EXPRNODE NAME="PROP_NAME" VALUE="An Index"/>
 <EXPRESSION LABEL="" NAME="CONST" TYPE="STRING" URL="">
 <EXPRNODE NAME="VALUE" VALUE="Yes"/>
 </EXPRESSION>
 </EXPRESSION>

 <EXPRNODE NAME="ELSE" VALUE=""/>

 <EXPRESSION LABEL="" NAME="CREATE" TYPE="VOID" URL="">

Oracle Endeca Platform Services Data Foundry Expression Reference

Data Foundry Expressions | VOID expressions28

 <EXPRNODE NAME="PROP_NAME" VALUE="NoMatch"/>
 <EXPRESSION LABEL="" NAME="CONST" TYPE="STRING" URL="">
 <EXPRNODE NAME="VALUE" VALUE="Nothing"/>
 </EXPRESSION>
 </EXPRESSION>

</EXPRESSION>

VOID IMPORT_PROP
VOID expressions return no value but are used to perform other work. The VOID IMPORT_PROP expression
imports a property value from a specified file.

Typically, files containing property values were created using the complementary expression VOID EX¬
PORT_PROP. Another typical use of IMPORT_PROP is to read a document body created by VOID RE¬
TRIEVE_URL. (This is useful for HTML pre-processing with a spider.)

The property to import can be specified in either one of the following ways:

• Use the PROP_NAME expression node to specify the name of the property to import. The current value of
the property is the file name. The current value is replaced with the value read from the file. All properties
with a given name are affected in this mode.

• Use a STRING expression to generate the name of the file to import. Typically, the file name is generated
using a STRING DIGEST of the Endeca.Identifier property. If this expression is present, then one property
can be imported per record.This expression generates a different file name for each record. Existing values
are untouched.

The following expression nodes modify IMPORT_PROP. Several of these nodes are the same as those used
to identify the property during export in EXPORT_PROP.

• URL - Specifies the URL that files are imported from. This value may be either an absolute path or a path
relative to the location of Pipeline.epx.

• PREFIX - Specifies any prefix used in the file name to remove. This value often corresponds to the value
of PREFIX in the VOID EXPORT_PROP expression.

• REMOVE_FILES - Specifies whether to delete files, after importing their property values.When set to TRUE,
the files are deleted. The default value is FALSE.

• ENCODING - Specifies the encoding that should be used during import. If desired, this encoding may be
overriden by ENCODING_PROP.

• ENCODING_PROP - Specifies the name of the property containing the encoding. The RETRIEVE_URL
expression creates this property with a default property name of Endeca.Document.Encoding.

• ENCODING_ID_BYTES - Specifies the number of bytes used to identify the encoding. This value defaults
to its maximum of 1 MB and can be reduced if necessary to optimize performance.

See the EXPRESSION element for DTD and attribute information.

Example

This example imports properties Prop1 and Prop2 from the props directory. After importing, the expression
deletes the files.

<EXPRESSION TYPE="VOID" NAME="IMPORT_PROP">
 <EXPRNODE NAME="PROP_NAME" VALUE="Prop1"/>
 <EXPRNODE NAME="PROP_NAME" VALUE="Prop2"/>
 <EXPRNODE NAME="URL" VALUE="props"/>
 <EXPRNODE NAME="PREFIX" VALUE="out."/>
 <EXPRNODE NAME="REMOVE_FILES" VALUE="TRUE"/>
</EXPRESSION>

Oracle Endeca Platform Services Data Foundry Expression Reference

29Data Foundry Expressions | VOID expressions

VOID PARSE_DOC
VOID expressions return no value but are used to perform other work. The VOID PARSE_DOC expression
obtains metadata and extracts text from documents and adds the metadata and document text in the form of
property values to a record.

Both text/plain and text/html files can be extracted from documents by this expression; other file types are
passed to the Document Conversion Module converters for parsing. See "Implementing the Endeca Crawler"
in the Endeca Forge Guide for a description of each generated property that PARSE_DOC adds to the record.

The following list describes the optional expression nodes that can modify PARSE_DOC:

• FILE_PATH - Specifies whether the expression interprets the property value as a file path (to the contents
of the file) or the contents of the file itself.TRUE interprets the property value as a file path.FALSE interprets
the property value as the contents of the file.

• PARSE_META - Indicates whether to extract metadata of a document. TRUE extracts metadata; FALSE
does not. The default value is TRUE.

• PARSE_TEXT - Indicates whether to extract the body text of a document. TRUE extracts text; FALSE does
not. The default value is TRUE.

• MIMETYPE_PROP - Describes the name of the property containing the content type. The RETRIEVE_URL
expression creates this property with a default property name of Endeca.Document.MimeType.You do
not need to modify this name unless desired.

• ENCODING_PROP - Describes the name of the property containing the encoding. The RETRIEVE_URL
expression creates this property with a default property name of Endeca.Document.Encoding.You do
not need to modify this name unless desired.

• BODY_PROP - Describes the name of the property containing the document body. The RETRIEVE_URL
expression creates this property with a default property name of Endeca.Document.Body.You do not
need to modify this name unless desired.

• TEXT_PROP Describes the name of the property to put document text into.The RETRIEVE_URL expression
creates this property with a default property name of Endeca.Document.Text.You do not need to
modify this name unless desired.

See the EXPRESSION element for DTD and attribute information.

Example

This example parses the property and adds the contents to the record being processed.

<EXPRESSION TYPE="VOID" NAME="PARSE_DOC">
 <EXPRNODE NAME="BODY_PROP" VALUE="Endeca.Document.Body"/>
 <EXPRNODE NAME="FILE_PATH" VALUE="TRUE"/>
</EXPRESSION>

VOID PERL
VOID expressions return no value but are used to perform other work. The VOID PERL expression uses Perl
to manipulate the data.

The Perl code is contained in an EXPRBODY element. The Zinc Perl module provides classes and methods for
gaining access to and manipulating the current record.

Objects accessed from Perl are copies of the current data; changing the Perl objects has no effect on the
current data until a function is called to explicitly copy the Perl objects back.

Oracle recommends that you perform record manipulation with the PERL_MANIPULATOR element rather than
with the EXPRESSION and RECORD_MANIPULATOR elements. However, if you need to access and modify

Oracle Endeca Platform Services Data Foundry Expression Reference

Data Foundry Expressions | VOID expressions30

dimension sources (such as a dimension adapter or dimension server) you should still use expressions such
as DVAL PERL. The Perl manipulator does not access dimension sources.

See the EXPRESSION element for DTD and attribute information.

Example

<EXPRESSION TYPE=”PROPERTY” NAME=”PERL”>
 <EXPRBODY>
 <![CDATA[
 ### IF ITEM HAS "LPRINT" PROPERTY WITH VALUE OF "Y",
 ### REMOVE CURRENT "FORMAT" PROPERTY,
 ### AND CREATE NEW ONE WITH VALUE OF "LP"

 my @lprint = get_props_by_name("LPRINT");

 my @format = get_props_by_name("FORMAT");

 if (-1 != $#lprint) {
 my $large = ($lprint[0])->value();
 if ($large =~ /Y/) {
 if (-1 != $#format) {
 remove_props("FORMAT");
 }

 my $new_prop = new Zinc::PropVal("FORMAT", "LP");

 add_props($new_prop);
 }
 }

]]>
 </EXPRBODY>
</EXPRESSION>

VOID REMOVE
VOID expressions return no value but are used to perform other work.The VOID REMOVE expression removes
the specified properties from the current record.

The names of the properties to be removed are given in PROP_NAME expression nodes.

See the EXPRESSION element for DTD and attribute information.

Example

This example evaluates whether the Region property is equal to the constant Other Italy. If two are equal, then
the REMOVE expression deletes the property.

<EXPRESSION TYPE="VOID" NAME="IF">
 <EXPRESSION TYPE="INTEGER" NAME="MATH">
 <EXPRNODE NAME="TYPE" VALUE="STRING"/>
 <EXPRNODE NAME="OPERATOR" VALUE="EQUAL"/>
 <EXPRESSION TYPE="PROPERTY" NAME="IDENTITY">
 <EXPRNODE NAME="PROP_NAME" VALUE="Region"/>
 </EXPRESSION>
 <EXPRESSION TYPE="STRING" NAME="CONST">
 <EXPRNODE NAME="VALUE" VALUE="Other Italy"/>
 </EXPRESSION>
 </EXPRESSION>

Oracle Endeca Platform Services Data Foundry Expression Reference

31Data Foundry Expressions | VOID expressions

 <EXPRESSION TYPE="VOID" NAME="REMOVE">
 <EXPRNODE NAME="PROP_NAME" VALUE="Region"/>
 </EXPRESSION>
</EXPRESSION>

VOID REMOVE_EXPORTED_PROP
VOID expressions return no value but are used to perform other work. The VOID REMOVE_EXPORTED_PROP
expression deletes the file containing the value of an exported property and also the property value itself, if
desired.

Use REMOVE_EXPORTED_PROP to remove a file created by the VOID EXPORT_PROP or VOID RETRIEVE_URL
expressions. The following expression nodes can modify REMOVE_EXPORTED_PROP:

• PROP_NAME - Specifies the name of the property to remove.
• URL - Specifies the URL that files were written to. This value may be either an absolute path or a path

relative to the location of Pipeline.epx.
• PREFIX - Specifies any prefix used in the file name to remove. This value often corresponds to the value

of PREFIX in the VOID EXPORT_PROP expression.
• REMOVE_PROPS - Specifies whether to remove the property from the record after deleting the file where

the property was stored.TRUE removes the property from the record after removing the corresponding file.
FALSE does not remove the property.

See the EXPRESSION element for DTD and attribute information.

Example

As the COMMENT element indicates, this example removes the temporary file created by EXPORT_PROP.

<EXPRESSION TYPE="VOID" NAME="REMOVE_EXPORTED_PROP">
<COMMENT>This expression removes the temporary file that is created
on disk by the RETRIEVE_URL expression.</COMMENT>
 <EXPRNODE NAME="PROP_NAME" VALUE="Endeca.Document.Body"/>
 <EXPRNODE NAME="REMOVE_PROPS" VALUE="TRUE"/>
</EXPRESSION>

VOID REMOVE_RECORD
VOID expressions return no value but are used to perform other work.The VOID REMOVE_RECORD expression
removes the current record.

Processing of the record stops, and the next record is retrieved. REMOVE_RECORD is typically used within an
IF expression to remove records that meet or do not meet certain criteria.

See the EXPRESSION element for DTD and attribute information.

Example

This example removes the record if the value of Name and Text are the same.

<EXPRESSION TYPE="VOID" NAME="IF">
 <EXPRESSION TYPE="INTEGER" NAME="MATH">
 <EXPRNODE NAME="TYPE" VALUE="STRING"/>
 <EXPRNODE NAME="OPERATOR" VALUE="EQUAL"/>
 <EXPRESSION TYPE="PROPERTY" NAME="IDENTITY">
 <EXPRNODE NAME="PROP_NAME" VALUE="Name"/>
 </EXPRESSION>

Oracle Endeca Platform Services Data Foundry Expression Reference

Data Foundry Expressions | VOID expressions32

 <EXPRESSION TYPE="PROPERTY" NAME="IDENTITY">
 <EXPRNODE NAME="PROP_NAME" VALUE="Text"/>
 </EXPRESSION>
 </EXPRESSION>
 <EXPRESSION TYPE="VOID" NAME="REMOVE_RECORD"/>
</EXPRESSION>

VOID RENAME
VOID expressions return no value but are used to perform other work.The VOID RENAME expression changes
the name of the specified property for the current record.

The name of the property to change is given in an OLD_NAME expression node, and the new name is given in
a NEW_NAME expression node. Only the property name is affected—the property values stay the same.

See the EXPRESSION element for DTD and attribute information.

Example

This example renames PropPrice to Price.

<EXPRESSION TYPE="VOID" NAME="RENAME">
 <EXPRNODE NAME="OLD_NAME" VALUE="PropPrice"/>
 <EXPRNODE NAME="NEW_NAME" VALUE="Price"/>
</EXPRESSION>

VOID RETRIEVE_URL
VOID expressions return no value but are used to perform other work. The VOID RETRIEVE_URL expression
processes records that have a URL property by retrieving the URL, its corresponding document content, and
metadata.

RETRIEVE_URL requires a STRING sub-expression that names a file created to store the document content
from the URL. The STRING DIGEST expression is typically used to generate the file.

Forge adds the location of the file, the document content, and other values to the record as property values.
The file containing the document content must be unique for each record or Forge overwrites the content when
processing subsequent records.

Parameters that affect how this expression retrieves URLs can be expressed as record properties to configure
URL retrieval. These parameters include connection time outs (Endeca.Fetch.ConnectTimeout), data
transfer rates (Endeca.Fetch.TransferRateLowSpeedLimit), the use of proxy servers (Ende¬
ca.Fetch.Proxy), and so on. See "Implementing the Endeca Crawler" in the Endeca Forge Guide for
information about metadata properties and configuration properties that the expression retrieves or stores with
the record.

The following optional expression nodes modify the behavior of VOID RETRIEVE_URL:

• BODY_PROP_NAME - Specifies the name of the property containing the document body. The default value
of this property is Endeca.Document.Body.

• URL_PROP_NAME - Specifies the name of the property that contains the URL to retrieve. Only one URL is
retrieved per record. The default value of this property is Endeca.Identifier.

• REVISION_PROP_NAME - Specifies the name of the property that contains the URL's revision information.
The default value of this property is Endeca.Document.Revision.

Oracle Endeca Platform Services Data Foundry Expression Reference

33Data Foundry Expressions | VOID expressions

• KEY_RING - Specifies the path to a Key_ring.xml file that contains the authentication information which
a SPIDER uses when communicating with a host computer. Specify the path to this file in the VALUE
attribute. The path to the file may be absolute or relative to the location of the Pipeline.epx file.

See the EXPRESSION element for DTD and attribute information.

Example

This example generates a file name for the retrieved file and it specifies that a Key_ring.xml should be used
for authentication.

<EXPRESSION TYPE="VOID" NAME="RETRIEVE_URL">
 <!-- this expression generates a filename for the retrieved file -->
 <EXPRESSION TYPE="STRING" NAME="CONCAT">
 <EXPRESSION TYPE="STRING" NAME="CONST">
 <EXPRNODE NAME="VALUE" VALUE="&cwd;"/>
 </EXPRESSION>
 <EXPRESSION TYPE="STRING" NAME="DIGEST">
 <EXPRESSION TYPE="PROPERTY" NAME="IDENTITY">
 <EXPRNODE NAME="PROP_NAME" VALUE="Endeca.Identifier"/>
 </EXPRESSION>
 </EXPRESSION>
 </EXPRESSION>
 <!-- this expression node specifies the path to the key ring file -->
 <EXPRNODE NAME="KEY_RING" VALUE="key_ring.xml"/>
</EXPRESSION>

VOID SPLIT
VOID expressions return no value but are used to perform other work. The VOID SPLIT expression splits the
values of a single property into multiple values of a new property, or into multiple properties.

Configure the expression as follows:

• Specify the property to split in an OLD_NAME expression node.
• Specify the property to contain the new values in a NEW_NAME expression node.
• Specify the delimiter to split on in a SPLIT expression node.

After performing the split, Forge trims leading and trailing white space from the new property values, so leading
or trailing spaces do not have to be included in the delimiter. For example, if the value of the “Colors” property
for a certain record is “red, blue, green”, and you split that value on the comma delimiter, with a new name of
“Hue”, the output is three separate properties: “Hue1”=“red”, “Hue2”=“blue”, “Hue3”=“green”.

The default value of the optional ENUMERATE expression node is TRUE. If ENUMERATE is set to FALSE, all of
the new values are assigned to a single new property. In the previous example, the result would be a single
“Hue” property with the values “red”, “blue”, and “green," instead of three separate properties.

See the EXPRESSION element for DTD and attribute information.

Example

The example described above is expressed as follows:

<EXPRESSION TYPE="VOID" NAME="SPLIT">
 <EXPRNODE NAME="OLD_NAME" VALUE="Colors"/>
 <EXPRNODE NAME="NEW_NAME" VALUE="Hue"/>
 <EXPRNODE NAME="SPLIT" VALUE=","/>
 <EXPRNODE NAME="ENUMERATE" VALUE="TRUE"/>
</EXPRESSION>

Oracle Endeca Platform Services Data Foundry Expression Reference

Data Foundry Expressions | VOID expressions34

VOID STRATIFY
VOID expressions return no value but are used to perform other work. The VOID STRATIFY expression
identifies a Stratify Classification Server that classifies Endeca records.

For each record that passes through the record manipulator, the STRATIFY expression requests that the
Stratify Classification Server classify a document indicated by Endeca.Document.Body. Forge sends the
document as an attachment to a Stratify Classification Server. The Stratify Classification Server examines the
document including the document’s structure and classifies it according to the classification model you developed
in Stratify Taxonomy Manager.You indicate the classification model in the HIERARCHY_ID expression node.
The Classification Server then sends back property values containing a Stratify topic name, a unique ID, and
a confidence rating of the classification. Forge appends these values to the record for the document.

The following expression nodes are required in VOID STRATIFY:

• STRATIFY_HOST - Specifies the machine name or IP address of the Stratify Classification Server.
• STRATIFY_PORT - Specifies the port on which the Stratify Classification Server listens for requests from

Forge.
• HIERARCHY_ID - Specifies the identifier of a Stratify classification model. To determine the VALUE of HI¬
ERARCHY_ID: First, navigate to the working directory of the Stratify Classification Server that contains your
classification model and taxonomy files. This directory is typically located at <Stratify Install
Directory>\ClassificationServer\ClassificationServer\ClassificationServerWorkDir\Taxonomy-N,
where N is the number of the directory that contains the classification model you want to use with your
Endeca project. (Your environment may have multiple \Taxonomy-N directories each containing different
classification model and taxonomy files.) Second, note the number at the end of the of \Taxonomy-N
directory. This number is the value of HIERARCHY_ID. For example, if the classification model you want
to use is stored in ...\Taxonomy-2, then HIERARCHY_ID should have VALUE="2".

• IDENTIFIER_PROP_NAME - Specifies the unique ID for the Endeca record being processed. The default
is Endeca.Identifier.

• BODY_PROP_NAME - Specifies the property that the Stratify Classification Server examines to classify the
document. The default property is Endeca.Document.Body.You can provide either Endeca.Docu¬
ment.Body or Endeca.Document.Text. However, specifying Endeca.Document.Body provides better
classification because Forge can send the document to Stratify Classification Server as an attachment,
and Stratify Classification Server can use the attachment to determine structural information of the document
that aids in classification. If you specify Endeca.Document.Text, Forge sends the converted text of the
document without any of its structural information.

See the EXPRESSION element for DTD and attribute information.

Example

This example connects to the indicated Stratify Classification Server and requests that it classify the document
indicated by Endeca.Document.Body using against hierarchy ID 1.

<EXPRESSION NAME="STRATIFY" TYPE="VOID" >
 <EXPRNODE NAME="STRATIFY_HOST" VALUE="10.0.0.999"/>
 <EXPRNODE NAME="STRATIFY_PORT" VALUE="7021"/>
 <EXPRNODE NAME="HIERARCHY_ID" VALUE="1"/>
 <EXPRNODE NAME="IDENTIFIER_PROP_NAME" VALUE="Endeca.Identifier"/>
<EXPRNODE NAME="BODY_PROP_NAME" VALUE="Endeca.Document.Body"/>

VOID UNIQUE
VOID expressions return no value but are used to perform other work. The VOID UNIQUE expression deletes
every value of a property except the first.

Oracle Endeca Platform Services Data Foundry Expression Reference

35Data Foundry Expressions | VOID expressions

The name of the property is given in a PROP_NAME expression node. For example, if the “Color” property has
three values, “red”, “blue”, and “green”, then the UNIQUE expression removes the values “blue” and “green”,
leaving just the value “red”.

See the EXPRESSION element for DTD and attribute information.

Example

The example described above is expressed as follows:

<EXPRESSION TYPE="VOID" NAME="UNIQUE">
 <EXPRNODE NAME="PROP_NAME" VALUE="Color"/>
</EXPRESSION>

VOID UPDATE
VOID expressions return no value but are used to perform other work.The VOID UPDATE expression changes
the value of a property.

The name of the property to update is given in a PROP_NAME expression node, and the new value is given in
a sub-expression of type INTEGER, FLOAT, STRING, or PROPERTY. If the property has multiple values, all
values are changed.

See the EXPRESSION element for DTD and attribute information.

Example

This example updates records with the Endeca.Document.Body property by replacing "cwd" in paths with
the actual current working directory.

<EXPRESSION TYPE="VOID" NAME="UPDATE">
 <EXPRNODE NAME="PROP_NAME" VALUE="Endeca.Document.Body"/>
 <EXPRESSION TYPE="STRING" NAME="REPLACE">
 <EXPRNODE NAME="TARGET" VALUE="[cwd]"/>
 <EXPRNODE NAME="REPLACEMENT" VALUE="&cwd;"/>
 <EXPRESSION TYPE="PROPERTY" NAME="IDENTITY">
 <EXPRNODE NAME="PROP_NAME" VALUE="Endeca.Document.Body"/>
 </EXPRESSION>
 </EXPRESSION>
</EXPRESSION>

VOID UPDATE_RECORD
VOID expressions return no value but are used to perform other work.The VOID UPDATE_RECORD expression
is used as part of a partial update pipeline.epx file to update existing records by adding, removing, or replacing
dimensions, dimension values, or property values.

See the Endeca Partial Updates Guide for details about partial update processing. UPDATE_RECORD requires
an ACTION expression node to indicate the type of update to perform.You can add additional PROP_ACTION,
DIM_ACTION, and DVAL_ACTION expression nodes depending upon whether you want to modify properties,
dimensions, or dimension values of the record. The following list further describes the expression nodes that
refine the behavior of the UPDATE_RECORD expression:

• ACTION - Indicates the type of update to perform on a record. Valid values of the VALUE attribute are ADD,
ADD_OR_REPLACE, DELETE, DELETE_OR_IGNORE, REPLACE, and UPDATE.

Oracle Endeca Platform Services Data Foundry Expression Reference

Data Foundry Expressions | VOID expressions36

• PROP_ACTION - Modifies a property on the record. Valid values of the VALUE attribute are ADD, DELETE,
REPLACE. A PROP_ACTION expression node must be followed by a PROP_NAME expression node that
specifies the property to modify.

• DIM_ACTION - Modifies a dimension on the record. Valid values of the VALUE attribute are ADD, DELETE,
REPLACE. A DIM_ACTION expression node must be followed by a DIMENSION_ID expression node that
specifies the dimension ID of the dimension to modify.

• DVAL_ACTION - Modifies a dimension value on the record. The only valid value of the VALUE attribute is
DELETE. A DVAL_ACTION expression node must be followed by a DVAL_ID expression node that specifies
the dimension value ID of the dimension value to remove.

See the EXPRESSION element for DTD and attribute information.

Example

This example updates records in the Dgraph by replacing them with the values specified below.

<EXPRESSION TYPE="VOID" NAME="UPDATE_RECORD">
 <EXPRNODE NAME="ACTION" VALUE="UPDATE"/>
 <EXPRNODE NAME="PROP_ACTION" VALUE="REPLACE"/>
 <EXPRNODE NAME="PROP_NAME" VALUE="P_WineType1"/>
 <EXPRNODE NAME="PROP_ACTION" VALUE="REPLACE"/>
 <EXPRNODE NAME="PROP_NAME" VALUE="P_WineType2"/>
 <EXPRNODE NAME="DIM_ACTION" VALUE="REPLACE"/>
 <EXPRNODE NAME="DIMENSION_ID" VALUE="8000"/>
 <EXPRNODE NAME="PROP_ACTION" VALUE="REPLACE"/>
 <EXPRNODE NAME="PROP_NAME" VALUE="P_PriceStr"/>
</EXPRESSION>

STRING expressions

STRING CONCAT
STRING expressions return text strings.They are used to manipulate non-numeric data.The STRING CONCAT
expression returns a string that is the concatenation of two or more values.

The values to be concatenated are given by sub-expressions, which can be of type STRING, INTEGER, FLOAT,
or PROPERTY. There are no EXPRNODE elements to configure STRING CONCAT.

See the EXPRESSION element for DTD and attribute information.

Example

This example concatenates the value of the property ChapterNum and ChapterTitle with a space between
them.

<EXPRESSION TYPE="VOID" NAME="CREATE">
 <EXPRNODE NAME="PROP_NAME" VALUE="ChapterNumTitle"/>
 <EXPRESSION TYPE="STRING" NAME="CONCAT">
 <EXPRESSION TYPE="PROPERTY" NAME="IDENTITY">
 <EXPRNODE NAME="PROP_NAME" VALUE="ChapterNum"/>
 </EXPRESSION>
 <EXPRESSION TYPE="STRING" NAME="CONST">
 <EXPRNODE NAME="VALUE" VALUE=" "/>
 </EXPRESSION>
 <EXPRESSION TYPE="PROPERTY" NAME="IDENTITY">

Oracle Endeca Platform Services Data Foundry Expression Reference

37Data Foundry Expressions | STRING expressions

 <EXPRNODE NAME="PROP_NAME" VALUE="ChapterTitle"/>
 </EXPRESSION>
 </EXPRESSION>
</EXPRESSION>

STRING CONST
STRING expressions return text strings. They are used to manipulate non-numeric data. The STRING CONST
expression returns the same string constant, specified in a VALUE expression node.

See the EXPRESSION element for DTD and attribute information.

Example

This example creates a property called Name by concatenating three values, one of which is a constant
functioning as a term separator.

<EXPRESSION NAME="CREATE" TYPE="VOID">
 <EXPRNODE NAME="PROP_NAME" VALUE="Name"/>
 <EXPRESSION NAME="CONCAT" TYPE="STRING">
 <EXPRESSION NAME="IDENTITY" TYPE="PROPERTY">
 <EXPRNODE NAME="PROP_NAME" VALUE="file_name"/>
 </EXPRESSION>
 <EXPRESSION NAME="CONST" TYPE="STRING">
 <EXPRNODE NAME="VALUE" VALUE=", rev "/>
 </EXPRESSION>
 <EXPRESSION NAME="IDENTITY" TYPE="PROPERTY">
 <EXPRNODE NAME="PROP_NAME" VALUE="revision"/>
 </EXPRESSION>
 </EXPRESSION>
</EXPRESSION>

STRING DIGEST
STRING expressions return text strings.They are used to manipulate non-numeric data.The STRING DIGEST
expression creates a property identifier that is a digest of a specified PROP_NAME expression node.

STRING DIGEST generates Message Digest 5 (MD5) digest strings, also called MD5 hashes and message
digests. A STRING DIGEST expression requires a PROP_NAME expression node. Typically, a file name is
generated using a STRING DIGEST of the Endeca.Identifier property.

See the EXPRESSION element for DTD and attribute information.

Examples

This example creates a digest identifier based on the Endeca.Identifier property.

<EXPRESSION TYPE="STRING" NAME="DIGEST">
 <EXPRESSION TYPE="PROPERTY" NAME="IDENTITY">
 <EXPRNODE NAME="PROP_NAME" VALUE="Endeca.Identifier"/>
 </EXPRESSION>
</EXPRESSION>

This example shows how to use a STRING DIGEST expression as a sub-expression of the VOID RE¬
TRIEVE_URL expression, which is used to retrieve a document from its URL and store it in a file on disk.

<EXPRESSION LABEL="" NAME="RETRIEVE_URL" TYPE="VOID" URL="">

Oracle Endeca Platform Services Data Foundry Expression Reference

Data Foundry Expressions | STRING expressions38

 <COMMENT>Retrieve the document and store it as a temporary
 file in the state directory, named with the digest (MD5 hash)
 of its URL.
 </COMMENT>
 <EXPRESSION LABEL="" NAME="CONCAT" TYPE="STRING" URL="">
 <EXPRESSION LABEL="" NAME="CONST" TYPE="STRING" URL="">
 <EXPRNODE NAME="VALUE" VALUE="../partition0/state/"/>
 </EXPRESSION>
 <EXPRESSION TYPE="STRING" NAME="DIGEST">
 <EXPRESSION TYPE="PROPERTY" NAME="IDENTITY">
 <EXPRNODE NAME="PROP_NAME" VALUE="Endeca.Identifier"/>
 </EXPRESSION>
 </EXPRESSION>
 </EXPRESSION>
</EXPRESSION>

STRING FORMAT
STRING expressions return text strings.They are used to manipulate non-numeric data.The STRING FORMAT
expression returns the value from its sub-expression, converted to a floating-point number, and formatted as
specified.

The sub-expression may be a PROPERTY, STRING or FLOAT expression. A PRECISION expression node sets
the number of significant digits to include, and a SHOW_SIGN expression node sets whether or not to show the
sign of the number.

See the EXPRESSION element for DTD and attribute information.

Example

This example takes a value 8.99, formats it with 3 significant digits, and returns 8.990.

<EXPRESSION TYPE="STRING" NAME="FORMAT">
 <EXPRNODE NAME="PRECISION" VALUE="3"/>
 <EXPRNODE NAME="SHOW_SIGN" VALUE="FALSE"/>
 <EXPRESSION TYPE="FLOAT" NAME="CONST">
 <EXPRNODE NAME="VALUE" VALUE="8.99"/>
 </EXPRESSION>
</EXPRESSION>

STRING PERL
STRING expressions return text strings. They are used to manipulate non-numeric data. The STRING PERL
expression uses Perl to manipulate the data.

The Perl code is contained in an EXPRBODY element. The Zinc Perl module provides classes and methods for
gaining access to and manipulating the current record. Objects accessed from Perl are copies of the current
data; changing the Perl objects has no effect on the current data until a function is called to explicitly copy the
Perl objects back.

Oracle recommends that you perform record manipulation with the PERL_MANIPULATOR element rather than
with the EXPRESSION and RECORD_MANIPULATOR elements. However, if you need to access and modify
dimension sources (such as a dimension adapter or dimension server) you should still use expressions such
as DVAL PERL. The Perl manipulator does not access dimension sources.

See the EXPRESSION element for DTD and attribute information.

Oracle Endeca Platform Services Data Foundry Expression Reference

39Data Foundry Expressions | STRING expressions

Example

<EXPRESSION TYPE="STRING" NAME="PERL">
 <EXPRBODY>
 ...your Perl code here. The VOID PERL topic has an example...
 </EXPRBODY>
</EXPRESSION>

STRING REPLACE
STRING expressions return text strings.They are used to manipulate non-numeric data.The STRING REPLACE
expression returns a string where sections of the string have been replaced by another string.

The replacement occurs by taking an input string from a sub-expression, and replacing all occurrences of a
sub-string specified by a TARGET expression node, with a replacement sub-string, specified by a REPLACEMENT
expression node. The sub-expression may be a PROPERTY or a STRING expression.

See the EXPRESSION element for DTD and attribute information.

Example

This example replaces "cwd" in paths with the current working directory.

<EXPRESSION TYPE="VOID" NAME="UPDATE">
 <EXPRNODE NAME="PROP_NAME" VALUE="Endeca.Document.Body"/>
 <EXPRESSION TYPE="STRING" NAME="REPLACE">
 <EXPRNODE NAME="TARGET" VALUE="[cwd]"/>
 <EXPRNODE NAME="REPLACEMENT" VALUE="&cwd;"/>
 <EXPRESSION TYPE="PROPERTY" NAME="IDENTITY">
 <EXPRNODE NAME="PROP_NAME" VALUE="Endeca.Document.Body"/>
 </EXPRESSION>
 </EXPRESSION>
</EXPRESSION>

Oracle Endeca Platform Services Data Foundry Expression Reference

Data Foundry Expressions | STRING expressions40

Index

D

DVAL
CONST 13
MATCH 14
PERL 15

E

EXPRBODY 13
EXPRESSION 10
expressions

about 9
EXPRNODE 12

F

FLOAT
CONST 15
MATH 16

I

INTEGER
AND 16
CONST 17
MATH 18
PERL 20
PROP_EXISTS 21

P

PROPERTY
ALL 21
DVAL 22
IDENTITY 22

PROPERTY (continued)
NVL 23
PERL 23

S

STRING
CONCAT 37
CONST 38
DIGEST 38
FORMAT 39
PERL 39
REPLACE 40

V

VOID
ADD_DVAL 24
ADD_DVAL_PROP 24
CLEAN_DVALS 25
CONVERTTOTEXT 25
CREATE 26
EXPORT_PROP 26
IF 27
IMPORT_PROP 29
PARSE_DOC 30
PERL 30
REMOVE 31
REMOVE_EXPORTED_PROP 32
REMOVE_RECORD 32
RENAME 33
RETRIEVE_URL 33
SPLIT 34
STRATIFY 35
UNIQUE 36
UPDATE 36
UPDATE_RECORD 36

	Contents
	Preface
	About this guide
	Who should use this guide
	Conventions used in this guide
	Contacting Oracle Support

	Data Foundry Expressions
	About Data Foundry expressions
	XML syntax for EXPRESSION elements
	EXPRESSION
	EXPRNODE
	EXPRBODY

	DVAL expressions
	DVAL CONST
	DVAL MATCH
	DVAL PERL

	FLOAT expressions
	FLOAT CONST
	FLOAT MATH

	INTEGER expressions
	INTEGER AND
	INTEGER CONST
	INTEGER MATH
	INTEGER PERL
	INTEGER PROP_EXISTS

	PROPERTY expressions
	PROPERTY ALL
	PROPERTY DVAL
	PROPERTY IDENTITY
	PROPERTY NVL
	PROPERTY PERL

	VOID expressions
	VOID ADD_DVAL
	VOID ADD_DVAL_PROP
	VOID CLEAN_DVALS
	VOID CONVERTTOTEXT
	VOID CREATE
	VOID EXPORT_PROP
	VOID IF
	VOID IMPORT_PROP
	VOID PARSE_DOC
	VOID PERL
	VOID REMOVE
	VOID REMOVE_EXPORTED_PROP
	VOID REMOVE_RECORD
	VOID RENAME
	VOID RETRIEVE_URL
	VOID SPLIT
	VOID STRATIFY
	VOID UNIQUE
	VOID UPDATE
	VOID UPDATE_RECORD

	STRING expressions
	STRING CONCAT
	STRING CONST
	STRING DIGEST
	STRING FORMAT
	STRING PERL
	STRING REPLACE

	Index

