

Oracle Health Insurance Back Office

Installation, Configuration and DBA Manual

Version 3.26

Part number: E51467-01

December 17, 2013

Copyright © 2011-2013, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS

Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications which may create a risk of personal injury. If you use this software in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure the safe use of this software. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks of their respective owners.

This software and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.

Where an Oracle offering includes third party content or software, we may be required to include related notices. For information on third party notices and the software and related documentation in connection with which they need to be included, please contact the attorney from the Development and Strategic Initiatives Legal Group that supports the development team for the Oracle offering. Contact information can be found on the Attorney Contact Chart.

The information contained in this document is for informational sharing purposes only and should be considered in your capacity as a customer advisory board member or pursuant to your beta trial agreement only. It is not a commitment to deliver any material, code, or functionality, and should not be relied upon in making purchasing decisions. The development, release, and timing of any features or functionality described in this document remains at the sole discretion of Oracle.

This document in any form, software or printed matter, contains proprietary information that is the exclusive property of Oracle. Your access to and use of this confidential material is subject to the terms and conditions of your Oracle Software License and Service Agreement, which has been executed and with which you agree to comply. This document and information contained herein may not be disclosed, copied, reproduced, or distributed to anyone outside Oracle without prior written consent of Oracle. This document is not part of your license agreement nor can it be incorporated into any contractual agreement with Oracle or its subsidiaries or affiliates.

CHANGE HISTORY

Release	Version	Changes	
10.12.2.0.0	3.19	 Added change history paragraph. Added links to CPAN download pages for required Perl Modules in Appendix D - Installing Required Perl Modules. Changed references to configuration templates from Beehive Online to \$OZG_BASE/conf Removed Appendix G - Configuration Oracle Application Server 10G (OHI Back Office) 	
10.12.3.0.0	3.20	Added a paragraph about adjusting INITRANS and/or PCTFREE settings to prevent unnecessary lock messages.	
10.13.1.0.0	3.21	Added note that WLS_FORMS managed server must be up to implement configuration settings.	
10.13.1.0.0	3.22	 Updated description and references to Oracle Fusion Middleware software to 11g Release 2. Changed forms settings description to support language dependent keyboard mapping file. Added description of formParam1 and formParam2 to pass a startup form and keys on the URL for an OHI user interface session. Added definition of workingDirectory property for formsweb.cfg configuration. Changed location of .env file from \$OZG_ADMIN to \$OZG_BASE in examples. Added paragraph about customizing your toolbar icons and signing your own .jar file for toolbar icons. 	
10.13.1.1.0	3.23	Added an additional chmod command for Reports configuration as needed for 11gR2 release.	
10.13.2.0.0	3.24	 Enhanced the description about the formParam1 and formParam2 parameters. Added a paragraph about batch scheduler performance and parallelism for using parallel execution of the serial part of a batch request 	
10.13.2.1.0	3.25	Added description of new Oracle Scheduler jobs that 'assist' the background processing as implemented by the OHI Back Office batch scheduler. Added instructions about adding application server IP addresses. Added environment cloning tips. Web service consumers are now referenced using this correct term. Made clearer which system parameter specifies maximum number of parallel batch processes.	
10.13.3.0.0	3.26	Added paragraphs about SQL Plan Management (SPM) as a first implementation of this database functionality is supported with this OHI Back Office release. Also an Appendix that addresses setting up an OEM Metric for SPM space management is added Added descriptions for the newly introduced background Oracle Scheduler Jobs in the paragraph about the Batch Scheduler Specified maximum length of 10 for parameter p_mdi_window_label Adapted references to database software from DB11G2 to DB11204 as for OHI Back Office 10.13.3 database version 11.2.0.4 is the required version	

CONTENTS

Int	roduc	etion	2
	Purp	ose	2
	Targ	et Audience	2
	Турс	ographic Conventions	2
	Com	mand Syntax	2
	Nam	ing Products	3
	Rela	ted Documentation	3
1.	Com	ponents and Requirements	4
	1.1.	Architecture	4
	1.2.	Client-Only Installation	5
		Related Publications	5
		1.3.1. RAC	5
		1.3.2. Single Sign On	6
	1.4.	System Requirements	6
		1.4.1. Certification1.4.2. Hardware Requirements	6
		1.4.3. Configuration of Printers	6
		1.4.4. Software Requirements	6
		1.4.5. Operating System Requirements1.4.6. User Interface Requirements	8
	1.5	Disk Space and Memory Requirements	8
	1.0.	1.5.1. Database Layer	8
	1.6.	Restrictions	9
		1.6.1. National Language Support (NLS)	9
		1.6.2. Real Application Support configuration	9
	1 7	documentation (RAC)	
	1./.	Application Software and Templates 1.7.1. Application Software	9
		1.7.2. Templates, Utilities & Sample Scripts	9
2.	Setti	ng up the Environment	11
	2.1.	Performing the Pre-Installation Tasks	11
		2.1.1. Creating an OS Account for the OHI Back	
		Office Batch Scheduler	11
		2.1.2. Assigning Default Shells for the Required OS Accounts	11
		2.1.3. Creating an OHI Back Office Database	11
	2.2.	Setting up the Environment Variables	17
		2.2.1. Syntax of the Environment Variables	17
		2.2.2. Setting up the Environment Variables	17

	2.3.	Setting up the OHI Directory Structure	23
		2.3.1. bin	23
		2.3.2. help	23
		2.3.3. install	24
		2.3.4. java	24
		2.3.5. report	24
		2.3.6. sh	24
		2.3.7. sql 2.3.8. xml	24 24
		2.3.9. Custom	24
		2.3.10. log	24
		2.3.11. out	25
		2.3.12. admin	25
		2.3.13. patch	26
	2.4.	Installation of OHI Back Office Application Logos	26
	2.5.	Setting up Universal Oracle OS Scripts	26
		2.5.1. oratab	26
		2.5.2. oraenv	27
	2.6.	Install additional Perl modules	28
	2.7.	Customizing Toolbar Icons	28
		2.7.1. Signing a .jar file	28
3.	Conf	iguration Oracle Fusion Middleware Software for	
	O	HI Back Office	29
	3.1.	\mathcal{E}	20
		Software	29
		3.1.1. Acquire the Software	29
		3.1.2. Install Oracle WebLogic Server3.1.3. Install Oracle Portal, Forms, Reports and	29
		Discoverer Product	31
		3.1.4. Configure Oracle Forms and Reports Domain and Instance	32
	3.2.	Configure opmn.xml	35
		3.2.1. Forms	35
		3.2.2. Reports	36
	3.3.	Configure Oracle HTTP Server	36
		3.3.1. Virtual Directories	36
		3.3.2. Viewing the Release Documentation	37
	3.4.	Configure Forms Server	37
		3.4.1. Configuration formsweb.cfg	37
		3.4.2. Configure Environment Specific Settings	41
		3.4.3. Configure Registry.dat	43
	3.5.	Configure Reports Server	44
		3.5.1. Change File System Access Rights	45
		3.5.2. Dynamic Environment Switching	45
	3.6.	Configure Security and Manage Startup/Shutdown	47
		3.6.1. Node Manager - Additional User Definition	48 48
		3.6.2. Node Manager - Change Properties File	40

			Secure Storing of Credentials Server Lifecycles – Starting/Stopping Server	48
		3.6.5.	Instances Securing Console Communication	49 50
	3.7.		ng Run-time Footprint of WLS Servers	50
	3.8.		g Managed Servers to 'Cluster forms'	52
	3.9.	Unders	standing the batch scheduler	53
	3.10.	Optimi	zing Oracle Reports	56
		3.10.1.	Reports Server System Parameter Settings in OHI Back Office	58
		3.10.2.	cacheSize	58
		3.10.3.	maxEngine	59
			engLife minEngine	59 59
			keepConnection	59 59
			maxConnect	59
4.	Insta	llation	OHI Back Office Application Software	60
	4.1.	Creatin	ng Accounts & Authorization	60
		4.1.1.	Security of the batch scheduler Account	60
	4.2.	Installa	ation of the Application	63
			An Initial Installation A Copy of an Existing Installation	63 64
	4.3.		ure authorized Application Servers	64
	4.4.	Compil	le and Check Application Software	64
		4.4.1. 4.4.2.	Compilation Check	64 65
	4.5.	Config	uring Directories	65
	4.6.	Registr	ration Reports Server	65
			Registration of the Account in the Application Registration Reports Server	65 65
	4.7.	Registr	ration batch scheduler Account	66
5.	Com	pleting	the Installation	67
	5.1.	Synony	yms for Database links	67
	5.2.	Starting	g OHI Back Office Batch Scheduler	67
	5.3.	Checki	ng the Installation	67
	5.4.	Creatin	ng Backups	67
	5.5.	Activat	ting Jobs	68
	5.6.	Installa	ation Oracle Designer	68
6.	Orac	le Adm	inistration Related to OHI Back Office	69
	6.1.		o & Recovery	69
		6.1.1. 6.1.2.	General RAC	69 70
	6.2			70
	U.Z.	Startup	and Shutdown	/ U

		6.2.1. Order	70
		6.2.2. Automation of Startup/Shutdown	70
		6.2.3. Checks 6.2.4. RAC	70
			71
	6.3.	Performance Tuning and Monitoring	71
		6.3.1. RAC	71
		6.3.2. Rebuilding Indexes	72
	6.4.	Using SQL Plan Management	72
		6.4.1. Introduction	72
		6.4.1.1. SQL Plan Management 6.4.1.2. Prerequisites	72 73
		6.4.2. Enabling SPM for OHI BO	74
		6.4.2.1. Initial Support for SPM	74
		6.4.2.2. Enabling SPM for a specific Batch	
		definition	74
		6.4.3. SPM Maintenance and Administration	75
		6.4.3.1. Monitoring SYSAUX Tablespace Usage 6.4.3.2. Monitoring Evolve Job results	75 76
		6.4.3.3. Undoing results of Evolve Job	76
		6.4.3.4. Packing SPM repository	76
	6.5.		
		Version Control	77
		6.5.1. RAC	77
	6.6.	Access Control and Security Privileges	77
	6.7.	Space and Storage Management	78
	6.8.	License Control	78
	6.9.	Networking	78
		6.9.1. RAC	78
7.	OHI	Back Office Management	80
	7.1.	System Management/DBA	80
		7.1.1. Oracle Environment	80
		7.1.2. Clients	80
		7.1.3. OHI Back Office Database	81
		7.1.4. OHI Back Office Batch Scheduler	81
		7.1.5. Changing Settings7.1.6. Adding New OHI Back Office Application	82
		Environments	83
	7.2.	Creating New Application Users	83
		7.2.1. Creating an Oracle Account	84
		7.2.2. Creating Directories for the New User	84
		7.2.3. Storing Application Authorization	84
	7.3.	Installation OHI (Patch) Releases	85
	7.4.	Cloning an OHI Back Office environment	85
8.	Refe	rences for Active Management of OHI Back Office	87
	8.1.	Performance General	87
		8.1.1. Memory and CPU	87

		8.1.2.	I/O	89
	8.3.	Perform Schedu	mance & Management of the OHI Batch uler	90
			Parallellism used in batch requests Batch scheduler settings	90 91
	8.4.	Perfori	mance Database	92
		8.4.2.	Database Settings Statistics Collecting Performance Data	92 94 100
		8.4.4. 8.4.5.	Assess Settings during 'Regular' Performance Preventive Application Management Actions	108 109
			Examining Performance Problems Notifying Performance Problems	109 113
	8.5.	Perform	mance Application Server	113
			Load Balancing Oracle Forms Tuning Oracle Reports	113 113
	8.6.	Preven	t Unnecesary Lock Messages	114
	8.7.	Anticip	pate Preventive Resource Messages	116
			Prevent Database Management Messages Other Points of Special Interest	116116
9.	Unine		GOHI Back Office	117
		_	Configuration of Multiple batch Schedulers	117
· ·PI			Partition	118
			ties of NFS Server	118
			Command under Sun Solaris	118
		Securit	Command under IBM AIX	118119
			ies of NFS Client	119
	Starti	_	opping the Batch Scheduler	119
			g the Batch Scheduler ng the Batch Scheduler	119 119
	Dyna	mic Lo	ad Balancing Mechanism	120
		Function		120
	».T	Examp		120
		0 1	oorts Server	121
App		x B - In Ivironn	stallation & Configuration of OHI in a RAC	2 122
		duction		122
	Relat	ed Pub	lications	122
	Arch	itecture		122
	Hard	ware ar	nd Software Requirements	123
			Performance	123
		SYSA	UX Tablespace ce Memory	123 123

	Installation and Configuration	123
	Migration	124
	RAC Parameterization	127
	Working with Services	128
	Batch Processing	129
	Failover	129
	Management	129
	Backup and Recovery Startup and Shutdown Networking Performance Tuning and Monitoring	129 129 129 129
A p	pendix C - Installation & Configuration of SSO in OHI Back Office	130
	Introduction	130
	Related Publications	130
	Architecture	130
	Hardware and Software Requirements	131
	Some Important Remarks Regarding the Configuration of the OHI Back Office SSO Environment	132
	Planning the (LDAP) Directory Tree Migrating Database Users to Oracle Internet Directo Oracle Internet Directory Single Point of Failure Integration with other LDAP Directory Servers	132 ry132 132 132
	Database Configuration	133
	Creating the Idap.ora Registering the Database in OID Database Parameter Idap_directory_access Configuring Database Authentication	133 133 133 133
	Forms & Reports Configuration	133
	Configuring the Forms Servlet	134
	SSO System Administration	134
	Managing Enterprise Users Monitoring the Single Sign-On Server Administering the Oracle Internet Directory	134 135 135
٩p	pendix D - Installing Required Perl Modules	136
	Introduction	136
	Installation Procedure	136
	Example	137
	Specific Installation Instructions for DBD::Oracle	138
	Prerequisites SELinux on RHEL/OEL 5 Specific Set up for Root Account before Installing	138 138
	DBD::Oracle 32-/64-bit	139 139

Install DBD::Oracle	140
Change OZG_DBDHOME variable in ozg_init.env	140
Term::ReadKey Issue	140
Appendix E - Installation Checklist	141
<u>1 – Prerequisites</u>	141
<u>2 – Install Database</u>	141
3 – Install Application Server	142
<u>4 – Prepare OHI Back Office Installation</u>	142
<u>5 – Install OHI Back Office</u>	143
Appendix F - Migration from OAS10g to FMW WLS11G	145
What Has Changed?	145
Install and Configure Software	145
Post Install Steps	146
Recommendation	146
Appendix G – Setting up OEM Metric for SQL Plan	
Management	147

INTRODUCTION

Purpose

This document describes the installation and configuration information for Oracle Health Insurance Back Office. This is the working name for a set of products as present in My Oracle Support.

TARGET AUDIENCE

This document is intended for database managers and others responsible for installation of Oracle products. Even though various command samples are provided in this document, this document does not at all intend to offer a course in Oracle management.

TYPOGRAPHIC CONVENTIONS

Given that UNIX/Linux are case sensitive, conventions in this document may differ from the ones included in other Oracle product documentation.

COMMAND SYNTAX

Command syntax is represented in font monospace. The following conventions apply to command syntax:

monospace

Monospace type indicates OS commands, directory names, user names, path names, and file names.

brackets []

Words enclosed by brackets indicate keys (e.g., Key [Return]). Attention that brackets have a different meaning when used in command syntax.

italics

Italics indicates a variable, including variable parts of the file names. It is also used for emphasizing.

UPPERCASE

Uppercase letters indicate Structured Query Language (SQL) reserved words, initialization parameters and environment variables.

backslash \

Each backslash indicates a command that is too long to fit on one line:

```
dd if=/dev/rdsk/c0t1d0s6 of=/dev/rst0 bs=10b \
count=10000
braces { }
Braces indicate mandatory items: .DEFINE {macro1}
brackets [ ]
Brackets indicate optional items: cvtcrt termname [outfile]
```

Attention that brackets have a different meaning when used in ordinary text.

ellipses ...

Ellipses indicate a random number of similar items:

CHKVAL fieldname value1 value2 ... valueN

italics

Italics indicates a variable. Replace the variable by value:

library_name

vertical bar

The vertical bar allows choosing either braces or brackets:

SIZE filesize [K|M]

NAMING PRODUCTS

Whenever Oracle Health Insurance (OHI) Back Office is mentioned in this document, the *entire suite* is intended (containing products like Oracle Insurance Claims Management for Health, Oracle Insurance Policy Management for Health and others).

RELATED DOCUMENTATION

\equiv	Oracle Health Insurance Certification on MOS
	Reading, Writing and Authorizing Oracle Health Insurance Application Files
\equiv	Oracle Health Insurance Release Installation

1. COMPONENTS AND REQUIREMENTS

In order to perform a quick and successful installation, a number of requirements have to be met regarding Oracle Software in the system. This chapter describes the requirements for the installation of OHI Back Office, an integrated suite of products. Check to ensure that the system meets these requirements before starting the installation process.

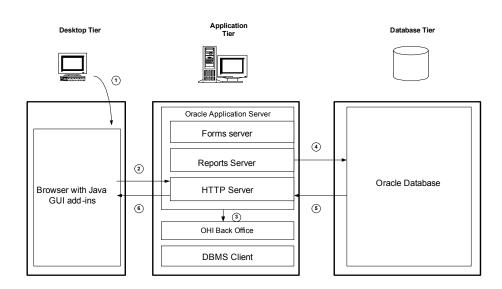
1.1. ARCHITECTURE

Application suite OHI Back Office is implemented in the so-called *web-architecture*. This architecture is based on 3 layers:

1. Database Layer

The Database Server (RDBMS), which contains the OHI Back Office data and business logic, runs on this layer.

2. Application Layer


The Application Server (AS), Database Client and the OHI Back Office application software run on this layer.

3. Desktop Layer

The browser software runs on this layer. The browser software is either installed on the PCs or runs via a *terminal server* architecture.

Attention: This refers to *logical* layers; the structure does not entail the *physical* implementation of the layers; the physical aspects and any other relevant details can be implemented on 1 or multiple servers.

This architecture results in the following software layers:

Software layers
OHI Back Office application software
Oracle Application Server software
Oracle Database Client software
Oracle Database Server software
Operating System software

The Application Server, Database Client and Database Server software are also referred to as *Oracle system software*.

Installation of this Oracle system software is required in order to run the OHI Back Office application software.

It is very convenient to install all related Oracle software such as Application Server, Database Client and Database Server under the same operating system user.

Attention: If OHI Back Office is used in a RAC environment, then a number of layers will be added. For a complete overview, see appendix B.

1.2. CLIENT-ONLY INSTALLATION

OHI Back Office has to be installed in an ORACLE_HOME directory, separated from the ORACLE_HOME directories which contain the Oracle Database and/or Oracle Application Server software.

Installation of OHI in the same home directory as Oracle system software is not supported.

1.3. RELATED PUBLICATIONS

Additional information regarding Oracle Database and Oracle Application Server software is available in the following documentation for the relevant platform:

Oracle Database Installation Guide

Oracle Fusion Middleware Documentation Library

1.3.1. RAC

Additional information regarding Oracle Real Application Clusters software is available in the following documentation for the relevant platform:

Oracle Clusterware and Oracle Real Application Clusters Installation and Configuration Guide

Oracle Clusterware and Oracle Real Application Clusters Administration and Deployment Guide

1.3.2. Single Sign On

Single Sign On is temporarily not supported starting with OHI Back Office release 2011.01. In a future release renewed support will be implemented. At this moment that release is not known.

1.4. SYSTEM REQUIREMENTS

1.4.1. Certification

OHI Back Office is certified for a number of platforms and specific Database, RAC, ASM, Application Server and browser versions.

Before starting the installation, check if the desired product combination is certified for OHI Back Office.

The certification information is available online:

Certification on My Oracle Support

1.4.2. Hardware Requirements

Depending on e.g. the number of users, the usage type of OHI Back Office and the desired performance, a number of requirements regarding CPU, memory, disk space, networking, etc. have to be met.

A specific sizing check has to be performed in order to determine the numbers for a specific customer environment. Such a sizing check can be performed by Oracle.

1.4.3. Configuration of Printers

The printers that will be used for OHI Back Office have to be configured and tested under your OS.

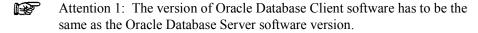
This step has to be performed on the Application layer.

1.4.4. Software Requirements

OHI Back Office uses the following Oracle system software, which should be installed and configured before OHI Back Office is installed:

Database Layer

- Oracle Database Server
- Oracle Database Server patch set
- Oracle Database Server interim patch(es) (if required)


The installation of the Database software is not described in this manual.

Application Layer

- Oracle Fusion Middleware WebLogic Server
- Oracle Fusion Middleware Portal, Forms, Reports and Discoverer

- Oracle Fusion Middleware Portal, Forms, Reports and Discoverer patch set (if required)
- Oracle Fusion Middleware Portal, Forms, Reports and Discoverer interim patch(es) (if required)
- Oracle Database Client
- Oracle Database Examples (formerly Companion)
- Oracle Database Client patch set
- Oracle Database Client interim patch(es) (if required)

Installation and configuration of the Application Layer software is described in more detail in Chapter 3.

Attention 2: Of the Oracle Database Client software the DBMS Utilities and the Precompiler software are required.

To this end, install the Administrator software.

After installation, executables proc, imp, exp, sqlldr and tkprof have to be available in \$ORACLE_HOME/bin.

Attention 3: Of the Oracle Database Examples software, the Oracle Database Products software has to be installed (for the Pro*C precompiler demo software).

After installation, directory demo has to be available in \$ORACLE_HOME/precomp.

Attention 4: Please consider the fact that if the software is installed on an existing software tree, the required patch set will have to be reinstalled again (because otherwise the older, unpatched utility versions and/or precompiler software will be used).

Attention 5: In case of RAC, a description of the software requirements can be found in Appendix B.

Attention 6: In case of SSO a description of the software requirements can be found in Appendix C.

Furthermore, the following additional software is required on the OS:

- 1. ANSI C compiler
- 2. Perl
- 3. zip and unzip utilities for Unix/Linux
- 4. JDK
- 5. java utility

Desktop Layer

Browser

For exact versions of the required software and patch sets, see:

 \equiv

Oracle Health Insurance Certification Form

1.4.5. Operating System Requirements

For more information on the requirements, please refer to the following platformspecific documentation:

 \equiv

Oracle Database Installation Guide

In case of RAC, please refer to appendix B.

1.4.6. User Interface Requirements

For detailed requirements regarding OHI Back Office and different screen resolutions and Windows settings, see:

Oracle Health Insurance Certification Form

1.5. DISK SPACE AND MEMORY REQUIREMENTS

The Installation Guide provides an elaborate description of the requirements pertaining to Disk Space and memory.

The following table displays the required disk space for OHI Back Office components. These are minimum estimations, not exact calculations.

1.5.1. Database Layer

Product	Required Disk space (MB)
Initial OHI Back Office database (*)	2000
Total	2000

Application Layer

The components marked with (*) are variables and will develop as the number of end users increases.

Product	Required Disk space (MB)
Forms (Forms, Libraries & Menus)	1000
Reports (Reports & Libraries)	200
Other (Pro*C, OS shell scripts, tools, configuration files)	100
Batch Scheduler output (*)	150
Batch Scheduler log files (*)	50
Installation directory for patches	1000
Total	2500

For OHI Back Office no additional memory requirements apply, other than the requirements for the Application and Database Server.

For more information on these requirements, please refer to the following (platform-specific) information:

Oracle Database Installation Guide

Oracle Fusion Middleware Documentation Library

In case of RAC, please refer to appendix B.

1.6. RESTRICTIONS

1.6.1. National Language Support (NLS)

OHI Back Office can be used with a set of predefined languages that are all based on Latin characters.

However, one restriction has to be considered:

1. The *territory* component of the NLS parameter has to have a final status *before* the application goes live and *may not* be changed. If a change is required, however, this can be requested from OHI Back Office; software may be provided which allows for this change to be implemented.

1.6.2. Real Application Support configuration documentation (RAC)

ATTENTION: This document is not up to date regarding instructions for an Oracle RAC environment. References to RAC, CSR or ASM are still based on 10g experiences and might be updated in a future release.

1.7. APPLICATION SOFTWARE AND TEMPLATES

1.7.1. Application Software

OHI application software should not be modified, conform SLAs; this would annul the Oracle guarantee.

Reference software is maintained by Oracle and *issued via (patch) releases* and can be recognized by the uppercase prefix and lowercase extension.

Some samples of the reference software include e.g. OZG_PROC.sh,
OZG START BATCH.sh, SYS1107S.sh, etc.

1.7.2. Templates, Utilities & Sample Scripts

Templates, utilities and sample scripts, however, *can* be altered by customers. Templates are distributed in releases and are copied to the <code>SOZG_BASE/conf</code> directory. They contain non-generic, often customer-specific settings (e.g. directory paths, host names, etc.) and therefore they cannot be part of the OHI application software.

Templates, utilities and sample scripts can be recognized by the lowercase naming. Some examples include ozg_init.env, ozg_fmw11g2_main.sh and move.sql.

Change History

When personal changes are made in templates, utilities and scripts, it is advised to always keep a history of changes in a uniform way.

Indicate here when something is altered, who made the change and the reason for it.

Example

Change history					
=======	========				
Date	Author	Version: Change			
13-09-200	 7 M Koel	1 2. Use of MS Cabinetfiles is deleted			

2. SETTING UP THE ENVIRONMENT

This chapter deals with the preparations of the environment before installing OHI Back Office, after all requirements listed in chapter 1 have been checked and met.

2.1. Performing the Pre-Installation Tasks

2.1.1. Creating an OS Account for the OHI Back Office Batch Scheduler

The batch account is the OS account under which OHI Back Office batch scheduler software runs.

Log on as root under OS and use the operating system user administration utility for creating the batch account.

This task has to be performed on the Application layer.

The name batch is recommended, but this is not mandatory. A different account name can be used as well.

2.1.2. Assigning Default Shells for the Required OS Accounts

For the OS accounts batch and oracle the default shell in Unix has to be set to Korn shell (ksh), in Linux it has to be set to bash.

2.1.3. Creating an OHI Back Office Database

Before OHI Back Office is installed, a database has to be created because the OHI Back Office installation has to create a number of database accounts, roles and objects in this database.

Unicode Characterset

For non-western European customers the AL32UTF8 characterset must be used. After creating the database, set NLS_LENGTH_SEMANTICS to CHAR, using the following command:

alter system set NLS LENGTH SEMANTICS=CHAR scope=both;

The database needs a restart before it takes effect. See also My Oracle Support note 144808.1 for more information about this setting.

Install/check database component Oracle JVM

Starting with release 2012.01 it is required to install Oracle JVM. For instructions please read My Oracle Support document 1112983.1 (this relates to the 11gR2 database release).

With the select statement below you can check whether the JVM is present (for running the statements below it is assumed that you use user SYS or an account with DBA privileges):

```
select comp_id
, comp_name
, version
, status
from dba registry
```

This should return a line for comp_id JAVAVM:

```
JAVAVM JServer JAVA Virtual Machine 11.2.0.4.0 VALID
```

You should check whether all java objects are valid:

```
select owner
,         object_type
,         status
,         count(1)
from         all_objects
where         object_type like '%JAVA%'
group by
               owner
,               object_type
,               status
order by
               owner
,               object_type
,               status
```

This should return information like:

OWNER	OBJECT_TYPE	STATUS	COUNT (1)
EXFSYS	JAVA CLASS	VALID	43
EXFSYS	JAVA RESOURCE	VALID	1
SYS	JAVA CLASS	VALID	20017
SYS	JAVA DATA	VALID	308
SYS	JAVA RESOURCE	VALID	764

Numbers do not have to match exactly. The EXFSYS owned classes are not a requirement, so when they are not shown that is no issue.

Be sure the initialisation parameters SHARED_POOL_SIZE and JAVA_POOL_SIZE are large enough (when using automatic memory management set minimum values for it which are clearly large enough; for example at least 496Mb and 128Mb respectively; these values are relatively small but may apply to smaller environments running on limited footprint machines).

Prepare the OHI owner account for using the Oracle JVM

In order to be able to use the Web Service Call-Out feature from the OHI Back Office application the schema owner has to receive a series of grants for using the Oracle JVM. You can only do this in a new database of course after having created this account. Please see document 'Oracle Health Insurance Release Installation' for information regarding creating this account (paragraph 'Installing an initial release').

In order to implement the grants please execute the following anonymous plsql block as user SYS (and provide the schema owner name for variable '&OHI OWNER'):

```
declare
    1_schema varchar2(30) := '&OHI_OWNER';
begin
    dbms_java.grant_permission
    (1_schema, 'SYS:java.lang.RuntimePermission',
'accessClassInPackage.sun.util.calendar', '');
    dbms_java.grant_permission
```

```
(1 schema, 'SYS:java.lang.RuntimePermission', 'getClassLoader', ''
);
 dbms java.grant permission
  (1 schema, 'SYS:java.lang.RuntimePermission', 'shutdownHooks', '');
  dbms java.grant permission
  (1 schema, 'SYS:java.lang.RuntimePermission', 'setFactory', '');
  dbms java.grant permission
  (l schema, 'SYS:java.lang.RuntimePermission', 'createClassLoader',
'');
  dbms java.grant permission
  (1 schema, 'SYS:java.net.SocketPermission', '*', 'connect, resolve'
  dbms_java.grant_permission
  (l schema, 'SYS:java.util.PropertyPermission', '*', 'read,write');
  dbms java.grant permission
  (1 schema, 'SYS:java.util.logging.LoggingPermission', 'control', ''
);
end;
```

Also grant the JAVAUSERPRIV system privilege to the schema owner, e.g.:

```
grant JAVAUSERPRIV to &OHI OWNER
```

Install the DBWS callout utility in the OHI schema owner account

The database web service callout utility has to be loaded (once) in the application schema owner account. This should not be installed into the SYS account as described in some kind of notes and blogs! That refers to situations that do not longer apply.

Beware that the correct version of the DBWS callout utility is needed, version 10.1.3.1 until further notice. In document id 469588.1 as available on MOS the installation is described. However, this makes no distinction between a development and deployment situation.

For that reason this paragraph describes what you need to do for deploying the callout utility once (independent of the different web service consumers or newer versions of that service consumers). Only when a newer release might become available you might have to deploy that newer version but this will be communicated in this documentation.

First download the utility: dbws-callout-utility-10131.zip. This is available on the Oracle Technology Network (OTN) at location

http://download.oracle.com/technology/sample_code/tech/java/jsp/dbws-callout-utility-10131.zip.

When the link is broken, it can be found by searching OTN for "dbws-callout-utility-10131.zip".

From this zip the following two files are needed as present in the sqlj\lib folder within the zip:

```
dbwsclientdb11.jar
dbwsclientws.jar
```

These files should be placed on a file system location that is accessible on your database server so the files can be loaded into the database.

Set your database environment and load these files. For example for an environment identified with name 'vohi':

```
. ozg_init.env vohi
. ozg_init.env DB11204
loadjava -u ozg_owner/ozg_owner -r -v -f -genmissing dbwsclientws.jar
dbwsclientdb11.jar -fileout load dbwsclient.log
```

The loadjava command logs on to the database as set by the first ozg_init.env call with username/password combination ozg_owner/ozg_owner. The 2 files are passed as argument and the result is logged to file load_dbwsclient.log. The load action may take some minutes as several thousand classes are loaded into the schema.

After the —u option you can of course also specify only a username and connection string like ozg owner@vohi; the password will be asked for.

Check in your log file whether the load was executed correct, no ORA- errors should occur. At the end of the loadjava command feedback like below should be shown:

```
Classes Loaded: 4060
Resources Loaded: 81
Sources Loaded: 0
Published Interfaces: 0
Classes generated: 62
Classes skipped: 0
Synonyms Created: 0
Errors: 0
```

You can use the SQL query as described in the JVM installation paragraph to check whether the OHI Back Office schema owner now contains several thousands of VALID Java objects.

When the load does not succeed for some reason reload the files after having resolved the cause (or first drop the files and reload them afterwards).

For dropping you can use the example commands below:

```
. ozg_init.env vohi
. ozg_init.env DB11204
dropjava -u ozg_owner/ozg_owner -genmissing dbwsclientws.jar
dbwsclientdb11.jar
```

When the dropjava command does not drop all classes (check user_objects with object_type like '%JAVA%') because a number of them are generated (because they were missing) you can generate individual drop commands with a command like:

When these loadjava actions are executed successfully your schema owner is prepared for deploying web service consumers. This deployment is done automatically during OHI release installations.

Install/check database component XML DB

Starting with release 2010.02 it is required to install XML DB. For instructions please read the XML DB documentation.

An example of the command to start the installation in sqlplus:

@\$ORACLE HOME/rdbms/admin/catqm.sql my password SYSAUX TEMP

Database Instance Parameters

The following non hidden (not prefixed by an underscore) database instance parameters have at least to be set according to the conditions specified; what is indicated is whether or not an alert or an error occurs, during installation of the database structure, if the value is not met. Please see the certification documentation for latest details about hidden parameters or additional different (temporary) settings.

A complete set of parameters and checks/settings that apply can be found in an Appendix of the Oracle Health Insurance Release Installation manual.

Warning

```
DB CACHE SIZE
                        = 16M*n # multiple of 16Mb
RESOURCE MANAGER PLAN
                      = MIXED WORKLOAD PLAN (or SYSTEM PLAN)
SHARED POOL SIZE
                       = 16M*n # multiple of 16Mb if ASMM not used
Error/Fatal
                        = 1
AQ TM PROCESSES
                        = 8192
DB BLOCK SIZE
                                 # can be left default
DML LOCKS
                       >= 500
EVENT
                         event 10195 not set
                     >= 10  # Needed for OZGISTAS; default ok
JOB QUEUE PROCESSES
NLS SORT
             = BIN
>= 500
                        = BINARY
OPEN CURSORS
OPTIMIZER INDEX COST ADJ = 25
OPTIMIZER_MODE = FIRST_ROWS_10
PGA_AGGREGATE_TARGET > 0
PARALLEL_MAX_SERVERS = 0 *
PROCESSES >= 200
SESSION CACHED CURSORS >= 500
STATISTICS_LEVEL = TYPICAL
UNDO MANAGEMENT
                        = AUTO
WORKAREA_SIZE_POLICY = AUTO/MANUAL **
* = during OHI Back Office installation > 1 is required
** = during OHI Back Office installation MANUAL is required,
    in all other cases AUTO
The following parameters are influenced by the environment variables
as used by the process of the connecting session. When they are not
set/specified the database instance values apply. Below example values
are shown for a Dutch environment.
NLS LANGUAGE
                        = DUTCH
                                    # Choose the appropriate language
NLS NUMERIC CHARACTERS = ",." *** # personal choice
                        = "THE NETHERLANDS"
NLS TERRITORY
```

Tablespaces

The following tablespaces have to be created for OHI Back Office data and indexes (OZG_DIM.. is for storing configuration data, OZG_FACT.. is for storing the operational changing data):

*** = this setting cannot be changed once the application is used

```
OZG DIM FIN IND
OZG DIM FIN TAB
OZG DIM REL IND
OZG_DIM_REL_TAB
OZG_DIM_SYS_IND
OZG DIM SYS TAB
OZG DIM ZRG IND
OZG DIM ZRG TAB
OZG FACT FIN IND
OZG_FACT_FIN_TAB
OZG_FACT_REL_IND
OZG FACT REL TAB
OZG FACT SYS IND
OZG FACT SYS TAB
OZG_FACT_ZRG_IND
OZG_FACT_ZRG_TAB
OZG LOG IND
OZG LOG TAB
```

The created tablespaces have to meet the following requirements:

- 1. Locally Managed
- 2. Automatic allocation
- 3. Automatic Segment Space Management
- 4. 8K block size

Attention 1: OHI Back Office requires the use of a *default temporary* table space for temporary segments.

Other Requirements

Other requirements that will be checked:

- NLS CHARACTERSET either WE8ISO8859P15 or AL32UTF8
- PLAN TABLE must exist
- System statistics must be available
- Direct grants from Secure Application Role ozg ROL are not allowed
- Table settings must be:

PCTFREE = 15% (5% for logging tables)
INITRANS = minimal 4 or 16 (table dependent)

Attention 2: It is *not* permitted in the production environment to have activated events in the database, unless this has been requested explicitly by OHI Development or Oracle Support Services.

Attention 3: It is *not* permitted in the production environment to have activated Reports Server tracing, unless this has been requested explicitly by OHI Development or Oracle Support Services.

For Reports tracing, see <u>Troubleshooting Reports Server</u>.

Attention 4: If in the Database or Application, Server settings have been changed which were not advised or prescribed, it is possible to ask the customer to have these settings reversed if problems occur that may be related to this.

The underlying reason is to prevent unnecessary instability risks. When using customized applications this has to be considered as well.

Advice 1: OHI advises the use of *Oracle Resource Management*. Script OZGI002S.sql can be used to set up a standard configuration.

For additional information please see the <u>Resource Management</u> paragraph.

Advice 2: For the Western Europe customers OHI advises the use of character set wesiso8859p15, which supports the Euro symbol €.

For non-western European customers OHI recommends AL32UTF8.

The character set can be selected when creating the database. When changing the character set of an existing database, see

Migration of database character set

Advice 3: OHI advises the use of *Flash Recovery Area*. The following parameters have to be set up for this:

```
DB_RECOVERY_FILE_DEST
DB_RECOVERY_FILE_DEST_SIZE
```


Advice 4: OHI advises the use of Oracle Managed Files.

The following parameters have to be set up for this:

```
DB_CREATE_FILE_DEST
DB_CREATE_ONLINE_LOG_DEST_n
```


Attention 1: If RAC is used, please refer to appendix B.

2.2. SETTING UP THE ENVIRONMENT VARIABLES

OHI applications require the necessary settings for environment variables (so these are *not* database parameters in the initialisation/server parameter file) to be included in the file <code>ozg_init.env</code>, to be called in the startup file, normally the file <code>.profile</code>.(or <code>.bash_profile</code> in Linux <code>bash</code> shell) in the OS login home directory, of the account under which OHI is installed (normally speaking <code>oracle</code>).

Log on with the oracle account and set up the environment variables analogous to the instructions in this section.

An example of a call in .profile:

. /u01/app/oracle/product/OHI/admin/ozg init.env

Setting up the mentioned variables is *mandatory*.

A sample file with the required settings for the OS environment variables is again available in the <code>\$OZG_BASE/conf/configuration-templates</code> directory.

Hint: Copy file <code>ozg_init.env</code> to the directory <code>\$ozg_ADMIN</code> (please read the next paragraph about the mandatory directory structure where this directory is introduced and the meaning of this variable later on in this paragraph) and apply the desired settings, using the instructions of this chapter.

2.2.1. Syntax of the Environment Variables

The syntax for setting up environment variables in Korn/Bash shell is as follows: export variable name=value

2.2.2. Setting up the Environment Variables

The environment variables required for OHI Back Office consist of 3 subsets:

1. Variables for Oracle Database Server

These variables have to be set up in the Database layer, analogous to the instructions in the *Oracle Database Installation Guide*.

2. Variables for Application Server

These variables have to be set up in the Application layer, analogous to the instructions in the *Fusion Middleware Installation Guides*.

3. Variables for OHI Back Office

These variables have to be set up in the Application layer and partly in the Database layer, if they are installed on separate servers.

The following sections provide a more detailed description of the configuration of the *specific* database/application server and OHI Back Office variables, for each variable.

Attention: *Other* Database and Application Server variables have to be set up analogous to the instructions in the relevant product installation manuals.

Attention 1: For specific environment variables for RAC, please refer to appendix B.

Globalization Support

The following languages are currently supported:

BRAZILIAN PORTUGUESE

CATALAN

CZECH

DANISH

GERMAN

AMERICAN

SPANISH

FINNISH

FRENCH

HUNGARIAN

ITALIAN

DUTCH

NORWEGIAN

POLISH

PORTUGUESE

ROMANIAN

SLOVAK

SWEDISH

TURKISH

Setting up the NLS_LANG Variable

This variable has to be configured for the desired language, territory and character set for use by the client tools (such as Oracle Forms and Oracle Reports).

For the Dutch implementation this is normally:

"DUTCH THE NETHERLANDS.WE8MSWIN1252".

For a Czech implementations this is normally:

```
"CZECH CZECH REPUBLIC.EE8MSWIN1250".
```

For the international implementations this is typically a combination of the desired language, territory and the UTF8 character set. ****

This variable has to be configured on the Application *and* Database layer.

Setting up the DBMS_LANG Variable

This variable has to be configured for the desired language, territory and character set for use by the database tools (such as import, export etc.).

For the Dutch implementation this is normally:

```
"DUTCH THE NETHERLANDS.WE8ISO8859P15".
```

For a Czech implementations this is normally:

```
"CZECH CZECH REPUBLIC.AL32UTF8".
```

The indicated character set has to be the character set of the database, which can, if needed, be determined by means of:

```
select property_value
from database_properties
where property_name = 'NLS_CHARACTERSET'
```

This variable has to be configured on the Application *and* Database layer.

Setting up the NLS_DATE_FORMAT Variable

This variable has to be configured for the desired date format. For the Dutch implementation this is normally DD-MM-RRRR.

This variable has to be configured on the Application *and* Database layer. This setting can not be changed once OHI Back Office is used.

Setting up the NLS_NUMERIC_CHARACTERS Variable

This variable has to be configured for the desired combination for decimal and group separator. For the Dutch implementation this is normally: ", .".

This variable has to be configured on the Application *and* Database layer. This setting can not be changed once OHI Back Office is used.

Setting up the NLS_SORT Variable

This variable has to be set on BINARY for performance reasons.

This variable has to be configured on the Application *and* Database layer.

Setting up the TNS_ADMIN Variable

This variable has to be configured to the directory which includes the Oracle Net files. On the application server (on which no Listener runs) this includes files tnsnames.ora and sqlnet.ora, on the database server (on which the Listener does run) the file listener.ora will be added.

This variable has to be configured on the Application *and* Database layer. It is recommendable (so as to keep the management easy) to set them in both layers referencing a location in the DBMS directory (given that this directory, within the

Database Client software, is also available on the application server), this means in the Oracle Home of the database, the <code>SORACLE HOME/network/admin</code> directory.

Setting up the OZG_ORATAB_OZG Variable

This variable has to specify the entry in \$ORATAB which refers to the home (root) directory of the OHI Back Office software. Typically this is an entry OZG.

This variable has to be configured on the Application *and* Database layer.

Setting up the OZG_ORATAB_DB11G2 Variable

This variable has to specify the entry in \$ORATAB which refers to the home directory of Oracle 11g R2 (11.2.0.3) Database software.

This variable has to be configured on the Application and Database layer.

Setting up the OZG_ORATAB_DB11204 Variable

This variable has to specify the entry in \$ORATAB which refers to the home directory of Oracle 11g R2 (11.2.0.4) Database software.

This variable has to be configured on the Application *and* Database layer.

Setting up the OZG_ORATAB_FRS10G2 Variable

This variable has to specify on the entry in \$ORATAB which refers to the home directory of Oracle 10g R2 Application Server Forms & Reports Service (used upon release 2010.03 of OHI Back Office).

This variable has to be configured on the Application layer.

Setting up the OZG_ORATAB_FRS11G1 Variable

This variable has to specify the entry in \$ORATAB which refers to the home directory of the Oracle 11g R1 Forms & Reports Service software (the Oracle Home directory within the Fusion Middleware home as used upon release 2012.03 of OHI Back Office).

This variable has to be configured on the Application layer.

Setting up the OZG_ORATAB_FRS11G2 Variable

This variable has to specify the entry in \$ORATAB which refers to the home directory of the Oracle 11g R2 Forms & Reports Service software (the Oracle Home directory within the Fusion Middleware home as used from release 10.13.1 of OHI Back Office).

This variable has to be configured on the Application layer.

Setting up the OZG_ORATAB_WLS1036 Variable

This variable has to specify the entry in \$ORATAB which refers to the home directory of the Oracle WebLogic Server software (the WebLogic Home directory within the Fusion Middleware home as used from release 10.13.1 of OHI Back Office).

This variable has to be configured on the Application layer.

Setting up the OZG_ORATAB_IDM10G Variable

This variable has to specify the entry in \$ORATAB which refers to the home directory of Oracle 10g Identity Management Infrastructure

This variable is *optional* and applies only if SSO is used.

Setting up the OZG_ORATAB_OMS10G Variable

This variable can be used to specify the entry in \$ORATAB which refers to the home directory of Oracle Enterprise Manager Management Server.

This variable is *optional* and can be configured on the Application and/or Database layer (in which Oracle Enterprise Manager Management Server is set up).

Setting up the OZG_ORATAB_OMA10G Variable

This variable can be used to specify the entry in \$ORATAB which refers to the home directory of Oracle Enterprise Manager Management Agent.

This variable is *optional* and can be configured on the Application and/or Database layer (in which Oracle Enterprise Manager Management Agent is set up).

Setting up the OZG_ORATAB_CRS10G2 variable

This variable can be used to specify the entry in \$ORATAB which refers to the home directory of the Oracle Clusterware.

This variable is *optional* and applies only if RAC is used. If this parameter is set, then this has to be chosen for all nodes.

Setting up the OZG_ROOT Variable

This variable has to specify the home directory of OHI: \$ORACLE BASE/OHI.

This variable has to be configured on the Application and Database layer.

Setting up the OZG_ADMIN Variable

This variable has to specify the directory in which OHI administration and configuration files are located: <code>\$OZG_ROOT/admin</code>.

This variable has to be configured on the Application *and* Database layer.

Setting up the PATH Variable

The directory in Sozg admin has to be included in the Path variable.

This variable has to be configured on the Application and Database layer.

Setting up the OZG_BASE Variable

This variable has to be configured to specify the home directory of OHI Back Office for the current environment (more than one OHI Back Office can exist next to each other within one OHI home directory; it is typically referring to a folder with the name of <code>\$ORACLE_SID</code> within <code>\$OZG_ROOT/\$ORACLE_SID</code>.

This variable has to be configured on the Application layer.

Setting up the OZG PATCH Variable

This variable has to be configured to specify the directory in which the OHI (patch) releases have to be downloaded and installed: <code>\$OZG ROOT/patch</code>.

This variable has to be configured on the Application layer.

Setting up the FORMS_PATH Variable

This variable has to be configured for the directory in which the OHI Back Office runtime Forms modules are located for the current environment: <code>\$OZG BASE/bin.</code>

This variable has to be configured on the Application layer.

Setting up the FORMS_USER_DATE_FORMAT Variable

This variable, which indicates the date format used in screens, has to be configured on <code>DD-MM-RRRR</code>.

This variable has to be configured on the Application layer.

Setting up the FORMS_SCROLL_ALL_BUT_ONE Variable

This variable, which is user-friendly when scrolling through records in a multi-record block in a screen, has to be set to TRUE.

This variable has to be configured on the Application layer.

Setting up the FORMS_TRACE_PATH Variable

This variable has to be set up to specify a directory in which the dump files due to crashes of the Forms runtime executables have to be located.

This variable has to be configured on the Application layer.

Setting up the FORMS_FLAG_DIFFERENT_SUBORD Variable

This variable has to be set to 1.

Setting up the REPORTS_PATH Variable

This variable has to be configured to specify the directory in which the OHI Back Office Reports library is located for the current environment: <code>\$OZG_BASE/report</code>.

This variable has to be configured on the Application layer.

Setting up the REPORTS_NO_DUMMY_PRINTER Variable

This variable has to be set to TRUE.

This variable has to be configured on the Application layer.

Setting up the ORACLE_PRINTER Variable

Due to an Oracle Reports bug, this variable has to be set up for a printer, which will be used for printing from OHI Back Office.

This variable has to be configured on the Application layer.

Setting up the OCR_BACKUP Variable (Only in Case of RAC)

This variable is used for creating a backup of the Oracle Cluster Registry and has to be configured on a location of a shared file system.

This variable has to be configured on *each* RAC node.

Setting up the OVD_BACKUP Variable (Only in Case of RAC)

This variable is used for creating a backup of the Oracle Voting Disk and has to be configured on a location of a shared file system.

This variable has to be configured on each RAC node.

Setting up the OZG_OUT Variable

This variable has to be configured to specify the *physical* directory in which the OHI Back Office batch scheduler writes the output, e.g. \$OZG BASE/out.

This variable can be used in the system parameters for OHI Back Office subsystem SYS ("System"); screen <code>SYS1010F</code>.

This variable has to be configured on the Application layer.

Setting up the OZG_LOG Variable

This variable has to be configured to specify the *physical* directory in which the OHI Back Office batch scheduler writes the log files, e.g. \$0ZG BASE/log.

This variable can be used in the system parameters for OHI Back Office subsystem SYS ("System"); screen SYS1010F.

For a detailed description of the use of OS environment variables for use in the output and log path of the OHI Back Office batch scheduler, please refer to the following document:

Reading, writing and authorising of OHI application files

This variable has to be configured on the Application layer.

2.3. SETTING UP THE OHI DIRECTORY STRUCTURE

Under operating system user oracle, the following *mandatory* directory structure (the "custom" directory being an exception) has to be created under the \$OZG_BASE directory on the Application Server. The OHI application source files and executables for each OHI Back Office environment (so for each 'environment' directory) require a separate environment subdirectory structure:

```
$OZG ROOT
                      #Oracle Health Insurance install directory
     /admin
                 #Configuration files
                                          = $OZG ADMIN
                #(Patch)releases
                                        = $OZG PATCH
     /patch
     /environment
                   #Directory for each environment = $OZG BASE
              #Can occur n times in 1 $OZG ROOT
          /bin #Forms
          /help #Online help documentation
          /install#DDL scripts
          /java #Java files
          /log #Batch scheduler log files
          /out #Batch scheduler output
          /report #Reports & Reports printer definitions
               #OS shell scripts
          /sql #SQL modules
          /xml #XML files
          /custom #Custom Development managed files
```

2.3.1. bin

This directory contains all OHI Back Office Forms (Forms, Menus, Forms Libraries, Reference Forms and Object Libraries), Pro*C software and application logos.

2.3.2. help

This directory contains all OHI Back Office online help documentation, which can be accessed from the application.

2.3.3. install

This directory contains all OHI Back Office DDL scripts e.g. tables, constraints, indexes and triggers.

These scripts are used to partition or compress large tables at any moment of your choice (this is possible only for tables characterized by OHI Back Office as *to be partitioned/compressed*).

2.3.4. java

This directory contains all OHI Back Office Java files.

Attention: Certification and/or keystores which are possibly required for secure connections on the Internet, have to be located in the <code>\$OZG_BASE</code> directory of the relevant environment.

2.3.5. report

This directory contains all OHI Back Office Reports (Reports and Reports Libraries) software & Reports printer definition files.

2.3.6. sh

This directory contains all OHI Back Office OS shell scripts and SQL*Loader control files.

2.3.7. sql

This directory contains all OHI Back Office SQL modules.

2.3.8. xml

This directory contains all OHI Back Office XML files.

2.3.9. Custom

This directory contains custom development managed files. For instance files that are processed by custom developed, so non system-native, scripts should be placed here or in a subdirectory of this directory. The "custom" directory is not mandatory, however the naming is prescribed.

Additionally, the following 2 directories have to be created.

Normally, this takes place under <code>\$OZG_BASE</code>; however, it is permitted to move these directories to a different physical location:

2.3.10. log

This directory contains all OHI Back Office batch scheduler log files (see the environment variable <code>\$OZG_LOG</code>).

The OS users oracle and batch have to have write rights for this directory.

2.3.11. out

This directory contains all OHI Back Office batch scheduler output files (see the environment variable \$0ZG OUT).

The OS users oracle and batch have to have write rights for this directory.

Under OS user oracle, the following *mandatory* directory structure has to be created under \$OZG_ROOT on the Application layer for the OHI Back Office application tools & utilities and releases:

2.3.12. admin

This directory contains all OHI Back Office tools, management files and configuration files.

Attention: If the Database layer and the Application layer have been installed on different servers, the directory \$OZG_ROOT/admin *also* has to be created on the Database layer.

In that case there is a <code>\$OZG_ADMIN</code> directory on the application server(s) and a <code>\$OZG_ADMIN</code> directory on the database server(s).

These directories can *not* be shared; the content of the directories happens to be different; also the content of the configuration files *in* the directories is different.

The directory <code>\$OZG_ADMIN</code> has to contain the following files on the application server. The directory <code>\$OZG_ADMIN</code> on the database server contains only the files that are marked with (***).

Filename	Purpose
d10g*/d11g*	Utilities for generation/compilation of Oracle Forms and Reports 10g or 11g sourcefiles.
ozdefine.sql	Configuration file for OHI Back Office SQL*Plus variables.
ozdefine.sql. <oracle_sid></oracle_sid>	Environment specific configuration file for OHI Back Office SQL*Plus variables.
ozg_init.env (***)	Environment file for OHI Back Office settings.
ozg_main.sh (***)	OS command file for starting/stopping the complete Oracle environment; Oracle system- and OHI Back Office software.
ozg_fmw11g2_main.sh	OS command file for starting/stopping the Forms/Reports application server environment (starting with 2011.01).
OZG_GIF.jar	OHI Back Office jarfile for Oracle Application Server.
OZG_CMD.sh	OS command file to set correct environment when executing Oracle utilities and executables (upon 2010.03).
OZG_CMD.pl	Perl command file to set correct environment when executing Oracle utilities and executables (starting with 2011.01).
OZGPATCH.pl	OHI Back Office Perl installation menu for installing major releases, patch sets and interim patches.
OZGPLIB.pm	OHI Back Office Perl library module.
ozg_web.cfg	Configuration file for Oracle Application Server (upon 2010.03).
OZG_BASEJINI.htm	Configuration file for Oracle Jinitiator implementation (upon 2010.03).
OZG_BASEJPI.htm	Configuration file for Sun's Plugin implementation (upon 2010.03).
OZG_JPI.htm	Conifguration file for forms Java Plugin implementation (starting with 2011.01).
ohirf34w_nl-NL.res;	OHI Back Office Forms Terminal Resource File (for configuring
ohirf34w_en-US.res;	keyboard mappings) for several languages. These are not all
ohirf34w_pt-BR.res;	required, just put overhere the one(s) you need. See the
	paragraph about forms configuration for more information.
ozg_batch_start.sh	OS command file to start OHI Back Office batch schedulers for all environments.

Filename	Purpose
ozg_batch_stop.sh	OS command file to stop OHI Back Office batch schedulers for all environments.
ozg_oracle_start.sh (***)	OS command file to start all Oracle software on the system.
ozg_oracle_stop.sh (***)	OS command file to stop all Oracle software on the system.

2.3.13. patch

This directory contains all OHI (patch) releases which have to be installed. This directory only applies to the application server(s).

2.4. Installation of OHI Back Office Application Logos

OHI Back Office uses 2 logos (which are loaded dynamically on runtime):

• OZGIMG01.gif

Is displayed on the OHI Back Office start screen OZGSTART. Size: 390 x 160 pixels

• OZGIMG02.gif

Is displayed on the OHI Back Office Info screen OZGABOUT. Size: 120 x 45 pixels

The logos have to be placed in directory <code>\$OZG_BASE/bin</code> on the Application layer. If they cannot be find an error message will be shown during startup of the user interface.

Initial logos are available in the <code>\$OZG_BASE/conf/configuration-templates</code> folder; the customer is free to replace these logos by private company logos; the only requirement is that the naming has to be maintained.

2.5. SETTING UP UNIVERSAL ORACLE OS SCRIPTS

2.5.1. oratab

In file \$ORATAB (normally /etc/oratab or /var/opt/oracle/oratab for SunSolaris) entries *have to be* included (Oracle home directories for the relevant software) for the following products.

Be sure to use transparent naming of the entries put in ORATAB. The best way is to name the entry the same as the directory where the software is stored. There are exceptions for this and these are DB<99>G and FRS11G2, these names usually do not point to a directory with the same name, all other entries should be the same.

The codes that are used for the entries can be selected freely (but they have to be indicated in uppercase characters). By means of variables <code>\$OZG_ORATAB_*</code> in <code>\$OZG_ADMIN/OZG_init.env</code> the entries become available in the environment:

1. Oracle Fusion Middleware Forms & Reports Services

Sample code: FRS11G2

2. Oracle Database

If the Application layer and the Database layer are installed on 1 server, the entry refers to the Database Server software home, otherwise to the Database Client software home on the application server.

Sample code: DB11204

3. **OHI**

Sample code: OHI (previously OZG)

The following entries are optional:

4. Oracle Enterprise Manager Management Agent

Sample code: OMA10G

5. Oracle Enterprise Manager Management Server

Sample code: OMS10G

Sample entries in \$ORATAB

```
FRS11G1:/u01/app/oracle/product/fmw11g1/pfrd_1:N
FRS11G2:/u01/app/oracle/product/fmw11g2/frs_1:N
DB11204:/u01/app/oracle/product/11.2.0.4/db_1:N
OHI:/u01/app/oracle/product/OHI:N
```

Sample corresponding variables \$OZG ADMIN/ozg init.env

```
export OZG_ORATAB_FRS11G1=FRS11G1
export OZG_ORATAB_FRS11G2=FRS11G2
export OZG_ORATAB_DB11204=DB11204
export OZG_ORATAB_OZG=OHI
```

The aforementioned entries in ozg_init.env are used by means of the standard Oracle utilities dbhome and oracnv.

It is of importance that no other oratab is indicated in these utilities; ensure to check that <code>\$ORATAB</code> in theses files (available in /usr/local/bin and the <code>\$ORACLE_HOME/bin</code> directories) does not refer to a non-existing oratab file. When reference is made to a non-existing oratab file, this can be modified in the relevant utilities, or a symbolic link can be created for the non-existing oratab file which refers to the correct oratab file.

2.5.2. oraenv

For certain (older) versions of oraenv error message "unlimited: bad number" may be encountered, or the performance of oraenv may get stuck (on exec \$ORACLE HOME/bin/osh).

In that case the workaround as described in My Oracle Support note 1023496.6, has to be introduced.

2.6. INSTALL ADDITIONAL PERL MODULES

In order to use the OHI installation menu ozgpatch, it is required to install additional Perl modules.

It is *mandatory* to install these modules *before* starting an initial installation of OHI software. The installation menu will not work until these modules are installed. For installation instructions, see Appendix D – Installing required Perl modules.

2.7. Customizing Toolbar Icons

When you are using the Online HTTP Link it is possible to define you own icons for the HTTP link buttons, so it becomes easier to distinguish their functionality. The GIF files should be added to a custom created jar file based on the OZG_GIF.jar file as delivered with the OHI Back Office application.

In order to use your own custom file please adjust the 'archive' setting as described in the paragraph about configuring your forms environment. In the paragraph about virtual directories the location of the jar file (normally OZG GIF.jar) is described.

To create a jar file of your own use the following command:

```
jar -cvf OZG GIF CUSTOM.jar *.gif
```

This will put all .gif files in your folder in the file OZG GIF CUSTOM.jar.

2.7.1. Signing a .jar file

When you created a new .jar file it is necessary to sign it to prevent security messages constantly appear when the .jar file is downloaded by a browser from the application servers.

The following commands offer you a way to do this.

Copy the file from your Oracle Forms Oracle home folder and create a local verion:

\$ORACLE_HOME/forms/templates/scripts/sign_webutil.sh

Adjust your local copy and at least specify a value for DN_CN and keystore password and private key password for variables KEYSTORE_PASSWORD and JAR_KEY_PASSWORD.

When you created your own copy please execute commands like below:

```
. ozg_init.env FRS11G2
my sign webutil.sh OZG GIF CUSTOM.jar
```

Beware that your keystore typically is located in file \$HOME/.keystore. As soon as it is created you need to user the same password as before.

After signing copy the .jar file to the appropriate location.

3. CONFIGURATION ORACLE FUSION MIDDLEWARE SOFTWARE FOR OHI BACK OFFICE

This chapter treats the configuration of the Oracle Forms and Reports components of the Oracle Fusion Middleware (OFM) product "Oracle Forms and Reports services" (FRS) as it is needed for the OHI Back Office application starting with release 10.13.1.0.0.

3.1. INSTALLATION AND INITIAL CONFIGURATION NECESSARY SOFTWARE

This installation has been verified on a Linux platform. Installations on different certified platforms are supported. Specific instructions for these platforms will be documented when available from customer experiences.

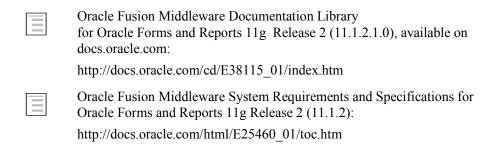
3.1.1. Acquire the Software

Make sure you download the correct software for your platform. As only the 64 bit platform is supported download the following components:

- 1. Oracle WebLogic Server 11gR1 (10.3.6) + Coherence Package Installer. This is available as download on Oracle Technology Network.
- 2. Oracle Forms and Reports 11gR2 (11.1.2.1.0), also available from the the Oracle Technology Network. We will refer to this product with FRS (formerly PFRD was used as also the Portal and Discoverer product were part of the distribution; now they no longer are).

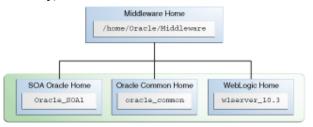
It is assumed you have a 64bit JDK for your platform available. Please make sure you use a certified JDK version. Check for certified versions on support.oracle.com. Typically a JDK 1.7+ version will be used.

Currently no other Oracle software is required (the Installer will check on most OS requirements).


3.1.2. Install Oracle WebLogic Server

OHI Back Office uses only the Forms and Reports services of the Oracle FMW product stack.

For the 11g 'application server' it is required to install the Oracle WebLogic Server (WLS). The WLS installation creates a Middleware home directory structure. After you have installed WLS you can install FRS.


For all documentation describing the Oracle Fusion Middleware environment	ί,
concepts, installation requirements, installation process, etc. please see:	

\equiv	Oracle Fusion Middleware Documentation Library for Oracle WebLogic Server 11g Release 1 (10.3.6), available on docs.oracle.com:
	http://docs.oracle.com/cd/E23943 01/wls.htm

When upgrading from Forms and Reports 11g Release 1 to 11g Release 2 a new additional directory structure is suggested for the FMW products to implement an "out of place" upgrade. A new Middleware home should be created next to the existing 11g Release 1 Middleware home.

For the top level Middleware home we will use variable \$MW_HOME to refer to it. As name we will use fmwllg2 (Fusion Middleware 11g R2) as for example in /ozg/app/oracle/product/fmwllg2. This is the top level folder in the directory structure below (we will refer to this as the FMW home, the middleware home directory).

The picture above contains a SOA Oracle Home within the middleware home directory, on the same level as the WebLogic Server (WLS) home directory. A FMW home will always contain one WLS home, which will be identified with variable \$WL_HOME. Name this for example wlserver_10.3 (resulting in /ozg/app/oracle/product/fmw11g2/wlserver_10.3).

Both environment variables \$MW_HOME and \$WL_HOME are set automatically when the WLS environment scripts are run (called by setWLSEnv.sh as present in \$WL_HOME/server/bin).

For starting the installation please run (be sure you use a certified JDK version; this JDK will be configured to run WLS with):

java -jar wls1036_generic.jar

Attention:

It is assumed the java bin directory is present in your PATH, otherwise prefix the executable name with the relevant path, like for example:

```
/usr/java/jdk1.7.0_10/bin/java -jar wls1036_generic.jar
```

This is typically needed when you use an existing older JDK for a previous FMW installation.

Because you are installing WebLogic Server on a 64-bit platform using a .jar installation program please:

• Include the -d64 flag in the installation command when using a 32/64-bit hybrid JDK (such as for the HP-PA, HPIA, and Solaris64 platforms). For example, if installing in graphical mode using the Package installer:

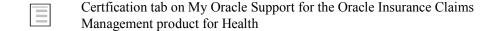
```
java -d64 -jar wls<version> generic.jar
```

- Run the java -version command (or java -d64 -version command on platforms using a 32/64-bit hybrid JDK) to ensure that your JAVA HOME refers to a 64-bit JDK.
- If you are using the Sun 64-bit JDK, use the following command to install WebLogic Server:

```
java -Xmx1024m -jar wls<version>_generic.jar
```

When you have started the installer please follow the instructions below:

- Specify a new location for the Fusion Middleware home, i.e. /ozg/app/oracle/product/fmw11g2
- At a certain moment you need to choose between a typical or custom installation: choose custom.
- Select ALL components for "Weblogic Server" except "Server Examples" and "Evaluation Database".
- Deselect Oracle Coherence.
- Leave the selected JDK checked (it should be the JDK you run the installer with).


Specify the name and location for the WebLogic home directory, i.e. /ozg/app/oracle/product/fmw11g2/wlserver_10.3 (the default)

• Do <u>not</u> (!) run the quickstart at the end of the installation.

3.1.3. Install Oracle Portal, Forms, Reports and Discoverer Product

After installation of the WebLogic Server software the FRS product has to be installed.

For exact versions of the required Oracle application software and patch sets, see:

Within the FMW home the FMW product FRS will be installed within its own Oracle Home directory (in the example figure in the previous paragraph the SOA product is installed in its own Oracle Home directory).

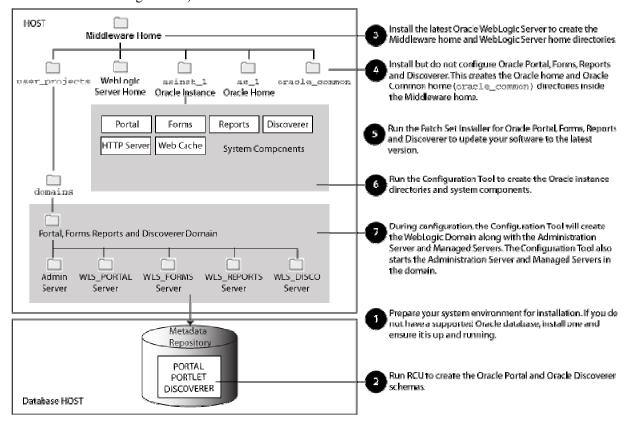
Use as <code>\$ORACLE_HOME</code> naming for example frs_1 for your FRS product install (resulting in for example <code>/ozg/app/oracle/product/fmw11g2/frs 1)</code>.

This makes clear an Oracle Home folder is on the same level as the WLS home directory. Several Oracle Home folders next to each other can be installed within one Middleware Home folder. Only one WLS installation is possible within a Middleware Home.

Summary of the installation steps for FRS:

- Start the installer of the complete distribution: cd to the first Disk directory and execute ./RunInstaller (it might be you have to run rootpre.sh scripts on certain platforms, for example for AIX; this is documented in platform specific installation guide instructions).
- Skip Software Updates
- Choose the option 'Install Software Do <u>Not</u> Configure' and proceed with the installation steps (and implement failing prerequisites if needed) until the installation is finished.

After this you might need to install the patches as indicated in the Certification Form (if any). In that case you need to install a recent version of Opatch in the FRS Oracle Home.


3.1.4. Configure Oracle Forms and Reports Domain and Instance

When the installation is finished the configuration can start. Only Forms and Reports services will be configured. Configuring these means both an *Oracle Instance* directory as well as a *WLS domain* will be created. The instance will contain the *system components* such as the Oracle HTTP server (OHS) and the reports server. The WebLogic domain will contain the *java components*, the Managed Servers (JVM's) for running the forms and reports services.

Middleware Home /home/Oracle/Middleware Instance Home Web Tier Oracle Home SOA Oracle Home Oracle Common Home WebLogic Home Domain Home Oracle_SOA1 wlserver_10.3 domains instance1 soa_domain instance1 Component Name Component Name Managed Serve webcache1 Admin Server

An example of a Middleware home with separate instance and domain structure is shown below.

A typical installation for the FRS product could look like below (PORTAL and DISCOVERER no longer exist!):

Before starting the forms and reports configuration make sure you implement the necessary settings in your environment:

ozg_init.env: an entry for OZG_ORATAB_FRS11G2 should be present
which looks like the settings in the template file in the
sozg_base/conf/configuration-templates folder. Most important is that
the additional settings for this environment are set like DOMAIN_NAME,
DOMAIN HOME and ORACLE INSTANCE.

• It is expected the file oratab (referred to by variable \$ORATAB) contains an entry for the identifier identified by OZG_ORATAB_FRS11G2 but also for OZG_ORATAB_WLS1036 (see again the template file or their definitions earlier in this manual).

When these settings are present please switch to the FRS environment settings through:

Start \$ORACLE HOME/bin/config.sh.

You might run into the errors below:

```
Could not reserve enough space for object heap Could not create the Java virtual machine
```

In that case first:

```
export JAVA OPTIONS=-XX:MaxPermSize=512m
```

When you run the configuration tool please take notice of:

- Configure for Deployment
- The WebLogic Server Location can be left default.

 The instance directory (Oracle Instance location) to be created can be inside or outside the middleware directory, for example location

 <\$MW_HOME>/frs_i2 or <\$ORACLE_BASE>/product/frs_i2 (frs_i2 for Forms Reports Services instance 2; please enter the complete path instead of using a variable) with instance name frs_i2 (you should enter frs_i2 in the Oracle Instance Name field, so you enter this in both fields!).

 Beware, in the template script ozg_init.env it is assumed to be located within the Middleware home directory.
- Specify a username/password combination for the domain to be created to manage it later through the console with this username/password combination.
- Where a domain name can be entered (default value ClassicDomain) we will create and enter domain name frs_d2 (frs_d2 for Forms Reports Services domain 2 for release 11gR2) and refer to this name in later documentation steps. So the Domain Location is left default and the other options 'extend domain' and 'expand cluster' are not chosen.
- When the screen is shown for choosing what to configure, only select the components Oracle Forms, Oracle Reports, Enterprise Manager and Oracle HTTP server. As a result of this only Forms and Reports services are configured.

It is advised to select the Developer Builder tools, which can be helpful in case of investigating problems.

If you will run on a stand alone application server machine and the environment is only used by a small user community (typically a custom development or test environment) you can deselect the 'clustered' option at the bottom of the screen.

For production environments and environments used for testing the production situation <u>always select the clustered option</u> because this offers

much more flexibility and ease of use for when more than one managed server is needed (the cluster can easily be extended when the forms and reports 'applications' are deployed on the cluster instead of a specific managed server).

- For port configuration there is no requirement, the option that fits best should be chosen. When you are adding this installation next to an existing Forms and Reports installation (FRS11G1) and using Auto Port Configuration make sure the processes of the other environment are running to prevent conflicts. Or assign specific ports by using that option and specify this in a file staticports.ini like provided in the folder <code>Disk1/stage/Response</code>.
- Deselect the option 'Use Application Level Identity Store'.
- When you apply the configuration it can take a considerable amount of time (up to half an hour or more) for executing all the steps.

Make sure you save the configuration results at the end as reported in the configuration report. Especially the URL of the Admin Server Console (../console) and the EM Console (../em) should be kept.

Beware that at the end of this step you have running WLS processes. In case you want to stop them at this moment you can follow these steps:

- Connect to the Admin Server console and shutdown the managed servers WLS FORMS and WLS REPORTS.
- \$DOMAIN_HOME/bin/stopWebLogic.sh

When you need the Admin Server Console to proceed, use the command below to start this server:

• \$DOMAIN HOME/bin/startWebLogic.sh

Starting and stopping will be discussed in more detail later.

3.2. CONFIGURE OPMN.XML

In file <code>\$ORACLE_INSTANCE/config/OPMN/opmn/opmn.xml</code> the generic environment variables have to be specified.

This involves the generic variables, OHI environment independent, that are required for Oracle Forms and Oracle Reports, and a generic OZG variable required for OZG CMD.pl.

3.2.1. Forms

For forms no specific entries are needed within opmn.xml. The environment variables as set within ozg_init.env are passed on.

3.2.2. Reports

Following to the entry

```
<variable id="TNS_ADMIN"
value="/u01/app/oracle/product/11.2.0/db_1/network/admin"/>
<variable id="OZG_ROOT" value="/u01/app/oracle/product/OHI"/>
```

And make sure you remove (!) the NLS_LANG variable setting within that location. It does not have a value and overrides in that way the existing environment variable. By removing this variable it will be derived from your environment when the OPMN processes are started. This prevents redundant settings which might be conflicting.

Example:

A reload and restart of your OPMN processes is necessary after implementing these changes.

3.3. CONFIGURE ORACLE HTTP SERVER

In a standard FRS installation an Oracle HTTP Server (OHS) is installed and configured.

The following settings have to be modified in the configuration file for OHI Back Office to work correct. Afterwards the HTTP Server has to be restarted.

3.3.1. Virtual Directories

In configuration file precise Directory Dire

This Virtual Directory Mapping can subsequently be used in the following setting:

path for ozg gif.jar file

Sample setting:

Alias /OHI/ "/u01/app/oracle/product/OHI/"

3.3.2. Viewing the Release Documentation

In order to allow for an interactive (via screen "Raadplegen release informatie" /"Consult release information") view of the release documentation, the following settings (with of course the sample directory replaced by your actual directory) have to be added in forms.conf:

<Directory "/u01/app/oracle/product/OHI/patch/2???.?????/doc/">

Options Indexes MultiViews

AllowOverride None

Order deny, allow

Allow from all

</Directory>

<Directory "/u01/app/oracle/product/OHI/patch/1?.??.?????/doc/">

Options Indexes MultiViews

AllowOverride None

Order deny, allow

Allow from all

</Directory>

This code ensures that the /doc directory of OHI (patch) releases (always in format 2999.99.9.9999 or 19.99.9.9999) can be viewed via a browser.

Other directories are deactivated.

3.4. CONFIGURE FORMS SERVER

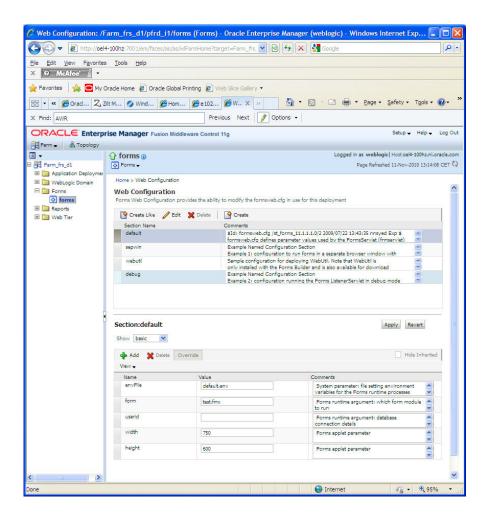
In this paragraph it is described how to configure your Forms Server environment.

Make sure you have a running WLS_FORMS managed server process, otherwise you might not be able to implement the configuration settings as described below.

3.4.1. Configuration formsweb.cfg

Configuration file

\$DOMAIN_HOME/config/fmwconfig/servers/WLS_FORMS/applications/formsapp_11.1.2/config/formsweb.cfg now has to be configured for the environment-specific settings.


This file can be edited manually but it is also possible to change this using Oracle Enterprise Manager Fusion Middleware Control (the

<hostname>:<consoleport>/em URL can be used to start this Oracle Enterprise
Manager based environment).

An example of the window page where the configuration parameters can be changed is shown below. This can be reached by using the Web Configuration hyperlink for the Forms branch shown in the left hierarchy pane.

The <default> configuration will be inherited by all other configurations, so generic changes can be added overthere. Specific configurations with different settings can be created to support different environment settings for example.

The settings itself are grouped logically together. The group name used in the screen will be used to help in finding where to specify the setting.

The table below shows the parameters which are required to be set for the use of OHI Back Office. These can best be specified in the default configuration because they are usually set identical for each OHI BO environment. Be sure you adapt file paths and names to your actual server setup!

Beware: When editing the field values initially locating the cursor in the field and scrolling through the values might not work. Relocating the cursor postion can help in this situation.

Parameter name	Group	Value	Comment
Form	basic	OZGSTART.fmx	First window to open when forms application is started (fixed value).
archive	plugin	<pre>frmall.jar, /OHI/admin/OZG_GIF.jar</pre>	Forms applet archive setting for other clients (fixed value).
term	advanced	/u01/app/oracle/product/OHI/a dmin/ohirf34w_n1-NL.res	Overhere you should define which keyboard mapping file to use. In the example it is defined as ohirf34w_nl-NL.res (delivered as configuration resource file for Dutch key descriptions; use a definition file for the language you like to use; OHI has delivered some example mapping files in \$OZG_BASE/conf/configuration-templates). When you want to use different mappings for different environments please use the "term" setting as documented in the next paragraph.

Parameter name	Group	Value	Comment
baseHTMLjpi	html	/u01/app/oracle/product/OHI/a dmin/OZG_JPI.htm	Location of OHI specific base HTML file for use with Sun's Java Plug-In: OZG_JPI.htm. Delivered in \$OZG_ADMIN.

The following parameters apply to the Sun Java Plug In (Sun JPI). It is possible to use static or dynamic versioning. Static versioning mandates an exact version of Sun JPI to be installed on the workstation, whereas dynamic versioning just states a minimum version and every higher version will also do.

Dynamic versioning means value clsid:8AD9C840-044E-11D1-B3E9-00805F499D93 for JPI_CLASSID while static versioning uses clsid:CAFEEFAC-<major version>-<minor version>-<patch version>-ABCDEFFEDCBA as format.

With static versioning JPI_CODEBASE should be a URL to the .CAB file to download this exact version.

JPI_MIMETYPE is a mime-type in a format like "application/x-java-applet;

version_type>=<implementation_version>". For static versioning,

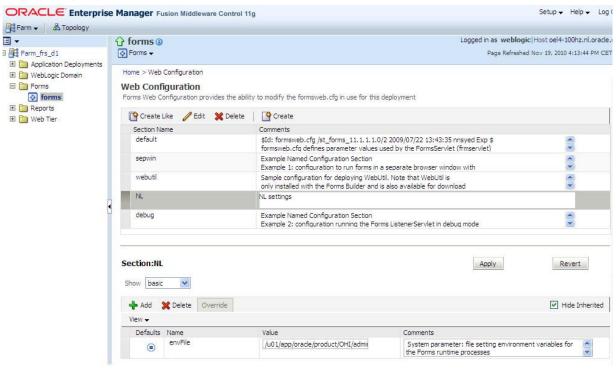
<version_type> should be set to "jpi-version" (use "version" for Firefox to accept higher JPI versions, meaning dynamic versioning).

Example values using static versioning are shown below (referencing Java SE 6 Update 20).

We advise to set these values also in the default environment.

Parameter name	Group	Value	Comment
jpi_classid	Plugin	clsid:CAFEEFAC-0016- 0000-0020-ABCDEFFEDCBA	The ClassID of the Sun JVM to use (Internet Explorer specific). Static versioning is used.
jpi_codebase	Plugin	http://java.sun.com/prod ucts/plugin/autodl/jinst all-1_6_0- windowsi586.cab#Version= 1,6,0,20	Download location of the CAB file for the Sun JVM (IE specific).
jpi_mimetype	Plugin	application/x-java- applet;version=1.6	Used primarily for Netscape/Firefox but also passed on to IE. Use ;version= instead of ; jpi_version= to get this working within Firefox and use dynamic
jpi_download_page	Plugin	http://java.sun.com/prod ucts/archive/j2se/6u20/ index.html	Download location of the JRE installer for Netscape/Firefox

Attention: If a newer version of Sun's Plugin is to be used, then the relevant JPI tags in file formsweb.cfg have to be changed.


The following parameters are optional. Values are given but are not required. Normally these settings are applied to the default configuration but you can implement these different for each (OHI BO) environment. This is typically done by implementing different sections within the web configuration (formsweb.cfg), which is done in the next paragraph.

Parameter name	Group	Value	Comment
splashScreen	Applet	no	Specifies the .GIF file that should appear before the applet appears. Set to NO for no splash. Leave empty to use the default splash image.
logo	Applet	no	Specifies the .GIF file that should appear at the Forms menu bar. Set to NO for no logo. Leave empty to use the default Oracle logo.
background	Applet	no	Specifies the .GIF file that should appear in the background. Set to NO for no background. Leave empty to use the default background.
separateFrame	Applet	false	If set to false the applet will appear within the browser window. If set to true the applet will appear as separate MDI window.
width	Applet	100%	Default width of the plugin. A percentage value uses all available browser space. Values above 100% will activate a scrollbar. Omitting the percentage sign means a size in pixels.
height	Applet	99%	Default height of the plugin. Values above 100% will activate a scrollbar.

Parameter name	Group	Value	Comment
clientDPI	<unliste d></unliste 	100	100 enforces the standard size (compatible with earlier releases). If not set the screens are a little smaller than in older releases which may result in prompts or characters partially invisible.

3.4.2. Configure Environment Specific Settings

Customer and/or OHI BO environment-specific entries in formsweb.cfg have to be set up depending on the actual situation.

It is advised to create a new section, which inherits the settings from the default section (use the **Create** button, do <u>not use</u> the **Create Like** button which copies the complete configuration), for each environment where at least the following variables should be overruled:

Parameter name	Group	Value	Comment
envFile	basic	/u01/app/oracle/prod uct/OHI/vohi/ozg_ser vlet_wls_vohi_NL.env	Specifies the environment specific file that contains environment specific environment settings. FORMS_PATH and NLS_LANG are examples. It is wise to store these files in the \$OZG_BASE location.
formParams	<unliste d></unliste 	p_mdi_window_label=O HIVM	OHI specific variable which is used in the title of the MDI window (only visible if separateFrame=true). Maximum length for the label is 10 characters.
pageTitle	html	OHI Test Environment	The title for the browser page which is used for this environment.
term	advanced	/u01/app/oracle/product /OHI/admin/ohirf34w_nl- NL.res	Optional: When a specific keyboard mapping is needed per environment specify this in the term parameter. You can create language specific keyboard mappings per environment in this way.
workingDirect ory	Advanced	/u01/app/oracle/product /OHI/vohi	The directory should specify the same folder as \$OZG_BASE. This is necessary for the online help and for tracing purposes.

Be sure to apply each separate change to prevent losing them when switching to a new group of settings.

An environment file as indicated by the envFile setting defines at least the environment specific values for the following environment variables:

Each environment file should be based on the default.env file which is delivered in folder:

\$DOMAIN_HOME/config/fmwconfig/servers/WLS_FORMS/applications/fo
rmsapp 11.1.2/config

In the example setting above a file \$OZG_BASE/ozg_servlet_wls_vohi_NL.env is referenced which contains settings for for example Dutch speaking production users.

From the settings in default.env you should normally comment out:

ORACLE HOME

ORACLE_INSTANCE
TNS_ADMIN (should already be set in environment)
FORMS_PATH (set it at the bottom of the file)
FORMS_RESTRICT_ENTER_QUERY
PATH

And in case you want to be able to export 'Medium' definitions (screen module SYS1101F) you need to specify OZG BASE also in this environment file.

Suppose the section is named NL, like in the screen print. These environment settings are applied within forms by using a URL like:

http://myhost.example.com:8890/forms/frmservlet?config=NL

If you want to add additional startup parameters to pass to the startup form you can use the parameters formParams, formParam1 and formParam2.

In this way you can specify a form and data context to start a specific form and query data in that form. You need to specify both the form and the data by means of parameters p_context_form and p_context_keys.

A fictitious call could be like this one:

http://myhost.example.com:8890/forms/frmservlet?config=PROD&formParam1=p_context_form=REL1234F&formParam2=p_context_keys=bl1_code=AB;bl1_nr=99

By means of the Info screen, button Module Info a list of potential queryable fields can be shown. Block name and field name should be concatenated with an underscore.

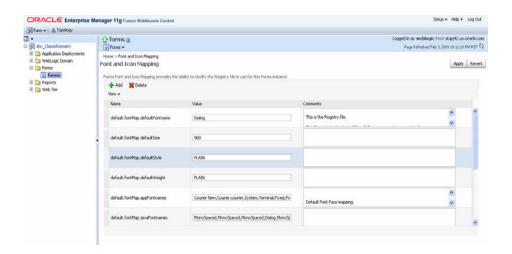
Fields for which a condition is entered while not being marked as a primary key field will result in a warning that the specified condition can slow down the query. That warning can be suppressed by adding the string '^!^' to the condition value.

A more realistic example is shown below, where the condition on block rel field n_sofi_nr does not result in a warning because of the postfix added to the fictitious value 234234234:

http://slc00tpo.us.oracle.com:8891/forms/frmservlet?config=ONTW&formParam1=p_context_form=REL1001F&formParam2=p_context_keys=rel_n_sofi_nr=234234234^!^

In the .env file also other environment settings can be specified like a different value for NLS_LANG in case a multi-language environment is configured.

3.4.3. Configure Registry.dat


Using Oracle Enterprise Manager Fusion Middleware Control it is possible to specify specific aspects of the look and feel of the application. This option is found Using the Fonts and Icons page from the drop down menu at the left top corner.

You can define whether an LOV button should appear at the right side of an item when a list of values function is defined for this item.

See the picture below for such a button on the active second field:

This setting can be activated using the screen below, which shows the Font and Icon mapping page. This page shows the settings which are stored in the file \$DOMAIN_HOME/config/fmwconfig/servers/WLS_FORMS/applications/formsapp_11.1.2/config/forms/registry/oracle/forms/registry/Registry.dat.

It is an option to specify true for the app.ui.lovButtons setting.

Be aware that the users need to know about this setting because the look and feel slightly changes. Also note that the button may temporarily cover part of a directly following field when the cursor is in the field.

On the same page the required field visual attribute should be set to highlight required fields:

Please specify true for the app.ui.requiredFieldVA setting. Adapt the color setting, for example to: 255,242,203

3.5. CONFIGURE REPORTS SERVER

In order to enable the Reports Server functionality for one or more environments a number of configuration steps are needed.

3.5.1. Change File System Access Rights

For the reports server configuration it is necessary to grant additional rights on the executables for the Oracle Instance and Oracle Home files.

It is assumed user batch is in the same group as the oracle software owner (typically user oracle and group dba). If not additional actions might be needed to get correct access rights.

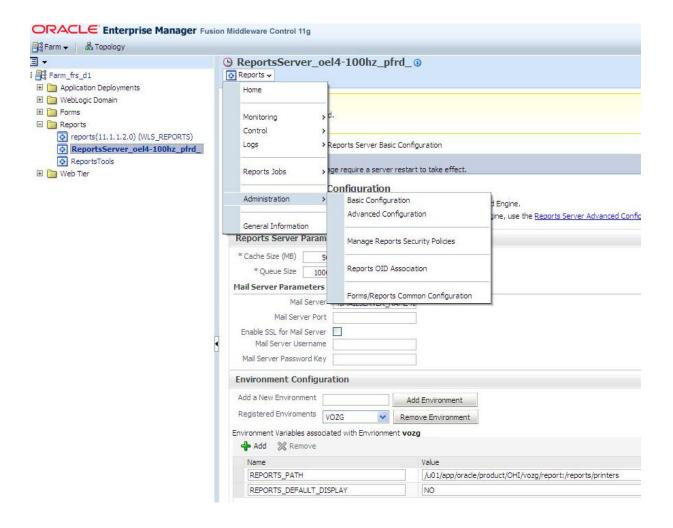
The following changes are needed (where world/other access is not strictly necessary):

```
. ozg_init.env $OZG_ORATAB_FRS11G2
# command below will produce 4 expected errors
chmod g+rX $ORACLE_HOME -R
# command below will produce 4 expected errors
chmod o+rX $ORACLE_HOME -R
chmod g+rX $ORACLE_INSTANCE -R
chmod o+rX $ORACLE_INSTANCE -R
chmod g+rwX $ORACLE_INSTANCE/diagnostics/logs -R
chmod o+rX $ORACLE_INSTANCE/diagnostics/logs -R
```

The chmod on <code>\$ORACLE_HOME</code> might result in some messages about insufficient privileges. These can be ignored.

The additional privilege settings make sure the Reports Server processes can be started by the operating system user batch which is used for running the batch scheduler and batch processes. User batch is typically part of the dba group and receives the necessary file system access rights in this way.

When other accounts than batch need read access to the FMW software tree (or batch is not in the same primary group as the oracle software owner, typically account oracle) please additionally execute the commands below:


```
chmod g+rX $MW_HOME
chmod o+rX $MW_HOME
chmod g+rX $WL_HOME -R
chmod o+rX $WL_HOME -R
chmod g+rX $MW_HOME/oracle_common -R
```

In this way also the WebLogic software tree (and no other \$MW_HOME folders) becomes available for other accounts.

3.5.2. Dynamic Environment Switching

For each OHI Back Office environment specific settings should be applied.

This can be arranged again using Oracle Enterprise Manager Fusion Middleware Control 11g as shown in following picture.

The picture shows in the left panel the navigation tree. Within the Reports branch the Reports Server definition is shown as created during the initial configuration of the FRS environment. The actual Reports Server name is shown.

Within the right panel the Reports drop down menu offers a 'Basic Configuration' option within the Administration option. When this Basic Configuration option is chosen an 'Environment Configuration' page appears which can be used to create an OHI Back Office environment specific setting section.

In the shown example an environment is added with name VOZG and for that environment the REPORTS_PATH and REPORTS_DEFAULT_DISPLAY variable definitions are set (this variable needs to be set at YES, which is the default for this setting, so in fact it can be omitted; the example above is only relevant if you want to use the DISPLAY variable, which normally is not necessary).

In this way the file $\CE/\CORRORCE/\CORORCE/\CORRORCE/\CORRORCE/\CORRORCE/\CORRORCE/\CORRORCE/\CORRORCE/$

Attention: The environment name is case sensitive. So enter it in lowercase or uppercase depending on what you use. And beware that the environment name as shown in Fusion Middleware Control is always uppercase, even if you entered it in lowercase.

So when you get the error...

The specified environment ID $\langle your\ environment \rangle$ is invalid for Job Type report in the command line.

... you should check in the specified rwserver.conf file whether the environment id is in matching case.

Beware that after changing these entries you execute a 'restartproc' of the reports server using opmnctl.

You need to define the following setting:

• the variable REPORTS_PATH (incl. path for printer definitions); specify typically \$OZG ROOT/<env>/report

The variable REPORTS_DEFAULT_DISPLAY is default set to YES (to remove the requirement of having to set the DISPLAY environment variable) so does not need to be set (as opposed to the screen print above; you can omit it!).

The stand-alone reports server is available by default and will be used by OHI Back Office. No additional configuration action is needed.

The In-process reports server is not used, which would require the WLS_REPORTS managed server in WebLogic. This means the WLS_REPORTS managed server process is not required for running reports within OHI Back Office. It does not have to be started (we leave it defined and shutdown though) for runtime use. However, for configuring the environment as described in this paragraph you need to start the WLS_REPORTS process. You can typically do this using the WLS console. Please do not forget to stop this Managed Server after the configuration is ready (otherwise the NodeManager may bring it up again in specific situations if configured to do so).

3.6. CONFIGURE SECURITY AND MANAGE STARTUP/SHUTDOWN

For production environments some basic actions should be executed to ensure a minimum level of robustness and security.

At least the communication with the console ports should be encrypted and the startup and shutdown should be automated. Automatic restart of servers in case of crashes is a requirement.

For this purpose a template script is delivered to automate starting and stopping of WebLogic Server and the additional Forms and Reports services components.

Principle is to use the node manager process to start WebLogic server processes. This will be configured in such a way that in case of failures of processes these servers will be automatically restarted. The steps for accomplishing that are described below as a guidance but there are other ways to do this.

Connecting to the Admin Server and firing shutdown commands is used for stopping the processes. This because there are experiences and known problems when stopping by the Node Manager is used: this results in hangs of the stop actions.

3.6.1. Node Manager - Additional User Definition

It is advised to setup an additional user definition for the Node Manager process. This is especially useful for potential integration with Enterprise Manager. The user name is typically "nodemanager".

```
Make sure you have a running Admin Server (use
$DOMAIN HOME/bin/startWebLogic.sh if needed).
The steps to create the additional user:
. ozg_init.env $OZG_ORATAB_FRS11G2
$WL_HOME/common/bin/wlst.sh
connect('weblogic','<pw>','t3://<host>:<port>')
edit()
startEdit()
secConfig = cmo.getSecurityConfiguration()
secConfig.setNodeManagerUsername('nodemanager')
secConfig.setNodeManagerPassword('<nodemanager pwd>')
save()
activate()
disconnect()
exit()
Make a note of the password.
```

3.6.2. Node Manager - Change Properties File

In order to enable automatic restart of failed/failing Admin or Managed servers you should enable crash recovery for the Node Manager as well as execution of start and stop scripts.

```
This is done by setting the properties 'CrashRecoveryEnabled', 'StartScriptEnabled' and 'StopScriptEnabled' in $WL_HOME/common/nodemanager/nodemanager.properties to true. The start script will implement the necessary domain environment settings.
```

3.6.3. Secure Storing of Credentials

In order to prevent having to specify an unencrypted username and password in scripts it is advised to store the weblogic and nodemanager credentials in a set of secure files.

The commands below save the credentials for both user definitions in two files per user (a credential file and an accompanying key file).

User weblogic:

Encrypted in file \$OZG_ADMIN/weblogic_frs_d1-WLSConfig.properties which can be decrypted by WLST using the key file \$OZG_ADMIN/weblogic_frs_d1-WLSKey.properties.

User nodemanager:

Encrypted in file \$OZG_ADMIN/nodemanager-WLSConfig.properties which can be decrypted by WLST using the key file \$OZG_ADMIN/nodemanager-WLSKey.properties.

Run the commands below while you have an Admin Server process running.

. ozg_init.env \$OZG_ORATAB_FRS11G2

\$WL HOME/common/bin/wlst.sh

lvOZGAdmin=os.environ.get("OZG ADMIN")

connect('weblogic','<pw>','t3://<host>:<port>')

storeUserConfig(userConfigFile=lvOZGAdmin+'/weblogic_frs_d1-WLSConfig.properties',userKeyFile=lvOZGAdmin+'/weblogic_frs_d1-WLSCONFIGERORY

WLSKey.properties')

Run the commands below while you have a Node Manager process running (use \$WL HOME/server/bin/startNodeManager.sh for starting).

. ozg_init.env \$OZG_ORATAB_FRS11G2

\$WL HOME/common/bin/wlst.sh

lvDomainHome=os.environ.get("DOMAIN HOME")

lvDomainName=os.environ.get("DOMAIN NAME")

lvOZGAdmin=os.environ.get("OZG ADMIN")

nmConnect('nodemanager','<pw>','<host>','<port>',lvDomainName,lvDomainHome)

storeUserConfig(userConfigFile=lvOZGAdmin+'/nodemanager-

WLSConfig.properties',userKeyFile=lvOZGAdmin+'/nodemanager-

WLSKey.properties',nm='true')

In order to have the Node Manager be able to start the Admin Server you need to store the credentials of the weblogic user once more: store them in the file

\$DOMAIN_HOME/servers/AdminServer/security/boot.properties. Please
create this file and add two lines as shown:

username=weblogic

password=<Password>

The first time the Admin Server is started this file will be encrypted. As a result of this the credentials of the weblogic user are stored twice. Be aware of that when you change the password.

3.6.4. Server Lifecycles – Starting/Stopping Server Instances

It is advised to use the provided template script ozg_fmw11g2_main.sh (this can be found in the <code>\$OZG_BASE/conf/configuration-templates</code> folder) to start and stop the Fusion Middleware WebLogic Server Forms and Reports services.

Please make sure you adapt this script: remove carriage returns at the end (make sure to store it as Unix script), give execute permissions and adapt the first hard coded call to ozg_init.env so it contains the correct file path for your system.

You can start the FMW WLS environment using:

\$OZG ADMIN/ozg fmw11g2 main.sh start

Attention: When you get errors during startup of the WLS_FORMS server and the server log file reports authentication errors, please startup manually by connecting to the AdminServer through WLST and issue the start('WLS_FORMS') command. This will update the files in \$DOMAIN_HOME/servers/<SERVER>/data/nodemanager directory. It might be such files are outdated.

And stopping is similar:

\$OZG_ADMIN/ozg_fmw11g2_main.sh stop

This script takes care of starting and stopping the following processes:

- WebLogic processes
 - NodeManager
 - AdminServer
 - WLS_FORMS (managed server)
- OPMN processes

When you start and stop the environment with the provided template script the Admin Server may already be started when issuing the start command after the stop command (indicated by message Error Starting server AdminServer: weblogic.nodemanager.NMException: Server 'AdminServer' has already been started) because of the way it has been stopped: during the stop the wlst session will be disconnected and the script continues with stopping the NodeManager process. When this is executed fast the NodeManager assumes the AdminServer was still running and restarts it during the NodeManager start.

After a server reboot without a graceful shutdown you will receive messages the Admin as well as the Managed server are already started. This is done again by the NodeManager, which takes considerably longer in such situations to start.

It is advised to incorporate the calls to the template script ozg_fmw11g2_main.sh within the ozg_main.sh template script so your environment can be started and stopped automatically when ozg_main.sh is called within a service definition.

3.6.5. Securing Console Communication

In order to protect your console access it is advised to secure the communication to the console port.

This is described in the WebLogic Server documentation. In a later version of this document instructions will be included for a potential setup using 'custom created' unregistered certificates by setting up your own certificate authority.

3.7. LIMITING RUN-TIME FOOTPRINT OF WLS SERVERS

As described in the "Managing Server Startup and Shutdown for Oracle Weblogic Server" the server processes can be started with an option to limit their footprint. This will limit their resource usage.

The option "wlx" starts all services except:

• Enterprise JavaBeans (EJB)

- Java EE Connector Architecture (JCA)
- Java Message Service (JMS)

Because these are not needed when running plain forms and reports services you can activate this limited footprint by editing file

```
$DOMAIN HOME/bin/setDomainEnv.sh.
```

Add the following lines behind the complete statement EXTRA_JAVA_PROPERTIES="-Xms512m -Xmx1024m.... followed by the export (so after the export statement):

```
EXTRA_JAVA_PROPERTIES="-DserverType=wlx ${EXTRA_JAVA_PROPERTIES}" export EXTRA JAVA PROPERTIES
```

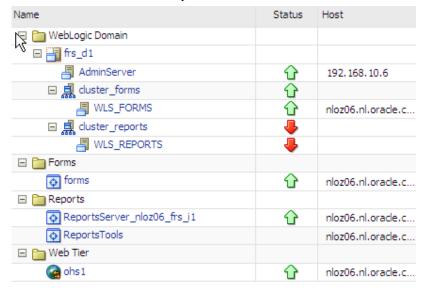
Be sure the line is added before the line where <code>JAVA_PROPERTIES</code> is set using this setting <code>EXTRA_JAVA_PROPERTIES</code>.

When you restart your server processes this setting is applied.

You can notice whether this setting is active by checking in the Administration console if "Messaging" services are available.

The picture below shows them:

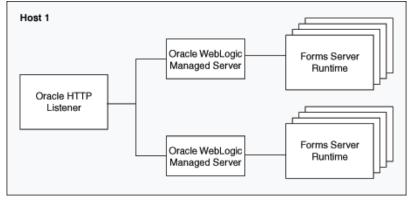
And this is the picture when the footprint is limited:



The "Messaging" branch below "Services" is now missing.

3.8. ADDING MANAGED SERVERS TO 'CLUSTER_FORMS'

As advised during configuration of the forms and reports services a cluster setup for the managed servers should be chosen. As a consequence of that a WebLogic cluster named 'cluster forms' will have been created.


In EM control this will show up like:

It might be that given your user community and their usage at a certain moment one managed server is not able to handle the load the listener servlet processes impose.

The steps for tuning the Forms Listener servlet are similar to steps for tuning any high throughput servlet application. You have to take into account resource management and user needs for optimal tuning of your particular Forms Services configuration. For more information, see Oracle Fusion Middleware Performance Guide.

One of the options is setting up additional managed server processes and load balance the requests. This is described in the Forms Services Deployment Guide. A potential configuration is shown below:

An option to add an additional Managed Server to the cluster 'cluster_forms' is creating a new server manually and adding it to the cluster or by cloning it (the Clone option in the Control tab in the Administration Console):

Servers (Filtered - More Columns Exist)

You need to specify a new name and port for the new managed server.

Attention: In the WebLogic Server Basic license, the use of the WebLogic Server Administration Console for cloning a Managed Server instance is not permitted.

When the new Managed Server has been added to the cluster it can be started. It should be added to the ozg fmw main.sh script.

In order to make sure the requests are balanced over the available Managed Servers the Oracle HTTP Server settings have to be adapted in

\$ORACLE_INSTANCE/config/OHS/<OHS INSTANCE
NAME>/moduleconf/forms.conf.

Please change the WebLogicCluster line and add the additional servers like in the example below:

<Location /forms>

SetHandler weblogic-handler

WebLogicCluster < HostName>:9001, < HostName>:9010

DynamicServerList OFF

</Location>

Of course you need to restart the OHS afterwards to enable these settings.

3.9. Understanding the batch scheduler

This section (briefly) describes the functioning of the batch scheduler.

This description serves to clarify the Oracle Reports Server settings described elsewhere.

Batch scheduler

The OHI Back Office batch scheduler is a Pro*C deamon (a continuous process), implemented as a single process that runs on the application server. If there is more than one application server it is possible to start a process per application server (please see this paragraph for more information regarding this).

The process is implemented by an executable named SYSS004S.

Background 'jobs'

Starting with release 10.13.2.0.0 the batch scheduler is 'assisted' by Oracle Scheduler database job processes, job scheduler processes implemented with the job scheduler as present in the database.

Currently there are a series of scheduler types of jobs used:

- A master job that takes care over the other job executions. This job is always
 active.
- Cleanup redundant/obsoleted units of work of the batch scheduler.
- Process business event handlers for near real time events. At least one job is always active, more than one job can be active. The nr of jobs is determined by a Back Office parameter and can be dynamically adjusted when the parameter value is changed (as soon as the master job implements house keeping, normally each batch scheduler polling interval, this is managed).
- Purge messages from the event handler (stored in ALG#MELDINGEN, table alias MEL, identified by column EDE_ID not being null) that passed the retention period for keeping them (specified in a Back Office parameter)
- Purge trace messages from ALG#TRACE_SESSION (TSS) and ALG#TRACE_LOG (TLG) that passed the retention period for keeping them (specified in a Back Office parameter)
- Purge payment messages form FSA#BET_VERKEER_REGEL_LOGGING (BLG) that passed the retention period for keeping them (specified in a Back Office parameter)
- Evolve SQL Plan Management plans (for more information about using SQL Plan Management please see information later in this manual)

You can query these jobs (and their execution interval) through the USER_SCHEDULER_JOBS view in the OHI application owner account.

When the OHI Back Office batch scheduler starts these scheduler jobs are started or scheduled when not yet present. When the stop command is issued for the batch scheduler the second job will be triggered to stop on its next dequeue or dequeue timeout operation (determined by the batch scheduler timeout setting).

The first job is stopped for a next execution when the batch scheduler gracefully stops (so stops because of receiving the stop signal). So be sure a graceful stop is executed if this job needs to be prevented from starting on its next interval.

Scheduled 'batch' processes

The OHI Back Office batch scheduler itself performs *iteratively* the following activities via the OHI Back Office application requested scripts:

- 1. Starting the new script requests
- 2. Checking the ongoing script requests

This process of starting and checking can be influenced by means of a number of settings in the application (screen *Systeem/Beheer/Algemeen/Systeemparameter*, tab page *Batch scheduler*) (for a more elaborate description of the batch scheduler functionality, see the description of Business Function SYSS004S in the Oracle Designer Repository).

One of the settings is the so-called *Polling interval*; during this period the batch scheduler "sleeps" and will only be wakened by a newly created request; in this condition you have to wait for already planned script requests to be started. So only newly created requests will wake the batch scheduler immediately.

1 - Starting new script requests

When incoming script requests (newly created or already planned) have to be started, first there is a check to see if the maximum number of parallel script request has been reached or not.

In order to determine this number (to be set up in OHI Back Office by means of *Max. parallel script requests*) the number of script requests with status <code>start</code> and <code>running</code> is summed.

If this number has not yet been reached, then the new script request can be started. If the number has been reached, then the script request to be started will still have status waiting.

The available "capacity", this means the number of script requests that can still be started, can be retrieved in the log file of the batch scheduler (<code>\$OZG_LOG/<batch_account>_<sid>_<host>.log)</code> when it runs in *verbose* mode.

If no script requests are created in the *Polling interval* period, and if therefore no new script requests have to be started, the batch scheduler will proceed with activity 2; checking the ongoing script requests.

2 - Checking the ongoing script requests

Regarding the started processes (= "ongoing script requests") 2 matters are checked:

- 1. Has the script request been started within the margin?
- 2. Is a script request with status "Running" (ongoing) indeed still active?

Re 1. Has the script request been started within the margin?

If the batch scheduler observes a script request in table ${\tt ALG_SCRIPT_AANVRAGEN}$ waiting to be started, then the status will have the value ${\tt W}$ (waiting). If the request has to be started, then the batch scheduler will change the status to ${\tt Start}$ and the process will be started on the ${\tt OS}$.

The data of the started process can be found in the log file of the batch scheduler if it runs in *verbose* mode.

An example of a script request process of the type Oracle Reports

11:07:10:nohup nice -10 OZG_CMD.pl rwclient.sh p_id=59384 recursive_load=no blankpages=no p_user=SCOTT batch=yes server=rep_myhost report=\$OZG_BASE/report/ZRG1234R desname=\$OZG_OUT/scott/59384.out mode=character nonblocksql=no destype=file envid=\$ORACLE_SID userid=OZG_BATCH/OZG_BATCH@\$ORACLE_SID >\$OZG_LOG/scott/59384.log 2>&1 & echo \$!

The script *itself* will (by means of the generic startup code) set the status of the relevant script request to Running.

If the status transition <code>start->Running</code> has not occurred within the configured period (batch scheduler setting *Start delay*), the "Bijzonderheden" (Details) section of the script request will display the following message "job niet gestart binnen marge" (job not started within the margin). The status of the script request will then be set to "Failed".

Normally, the script will be started though: the process has been started already, but it simply has not reached the startup code yet within the specified "start delay".

Once the script is ready it will then set the status of the relevant script request to Ready or Error (= functional error).

The possibly occurring **ERROR** *message* "job not started within the margin" will then be changed into an **INFO** message.

What are the possible causes of a script not starting in time?

1. Start delay too low

This setting has been configured so low that the server cannot activate the script fast enough.

2. Server capacity insufficient

The server is loaded so heavily that it takes long before a script is activated.

3. Insufficient Oracle Reports Server resources

There are insufficient available resources in Oracle Reports to start a script of the type Oracle Reports; the report will be on hold until these Oracle Reports resources become available.

Re 2. Is a script request with status "running" indeed still active?

If the script request has status Running, then there is a check on the OS or in the database (depending on the type of script) to ensure that a process is indeed still active for this script request.

If it turns out that this process is no longer active, then the script request is considered as Failed; the process has not been finalized correctly (given that the end code in which the status is set to ready or error has not been executed).

At the end of this check phase it will be checked whether the Oracle Scheduler job for processing real time events is still running. If not, it will be restarted.

After performing the above checks (= activity 2 – *Checking the ongoing script requests*) the batch scheduler will proceed with activity 1 (*Starting new script requests*), etc.

Different types of batches

The scripts started by the batch scheduler can be of different types. These types include for example *SQL module*, *OS shell script* and *Oracle Reports*. The behavior of scripts of the latter type can be influenced by the settings for *Oracle Reports*, a component of the *Application Server* (in case of OHI Back Office this refers to *Forms & Reports Services*). This is described in the next paragraph.

3.10. OPTIMIZING ORACLE REPORTS

Within the settings for Oracle Reports a distinction has to be made between the settings for the *Reports Server* and the settings for the *Reports Engines* (processes that actually handle the reports).

Functionality

What takes place in Oracle Reports when a script of this type (= a *report*) is requested?

By means of the batch scheduler, the previously mentioned (Oracle Reports) rwclient.sh process is started.

The Reports Server will now determine if a Reports Engine is active in order to handle the process.

If an Engine is active, this will be used to run the report.

If *no* Engine is active, one will be started.

An Engine is a java process (for which any relevant details can be set up by means of parameter jvmOptions), which can run *one report at the same time*, but with several reports after each other; the reports will then remain to use *the same* Engine (= java process).

Given that as starting overhead of an Engine has a price, it could be profitable to have one Engine process multiple reports sequentially (*recycling* the process).

This and other aspects can be configured using the Enterprise Manager control. The file which is edited in this way is named:

 $SORACLE_INSTANCE/config/ReportsServerComponent/ReportsServer_<host>_frs_i1/rwserver.conf$

The number of reports that can be handled by an Engine is set up by means of parameter <code>engLife</code> which is specified in the Basic Administration page of the reports server with the 'Maximum Jobs Before Restart' setting.

See below:

Reports Engine Parameters	
* Maximum Engines	1
* Minimum Engines	1
* Maximum Jobs Before Restart	50
* Maximum Idle Before Shutdown (min)	30
Default Env ID	N/A 💙
JVM Options	

After this value has been obtained, the Engine (and therefore the relevant java process) will be stopped. The following reports will then have to be handled by a different (existing or new) Engine.

The number of Engines that has to remain active at least is configured by means of parameter minEngine.

The maximum number of Engines is configured by means of parameter maxEngine. Both settings are shown above as the first two settings.

If an Engine has been idle longer than the configured parameter maxIdle allowed, it will stop automatically. This is the fourth setting shown above.

By means of parameter keepConnection, which must be set for OHI Back Office to "no" by means of the Advanced Configuration page with the 'Keep Database Connection' setting, it is indicated that for each report a new (database) connection has to be created; the various reports in 1 Engine therefore make use of different database sessions.

Reports Server Parameters	Reports Engine Parameters
Maximum Connections 50	Engine Response Timeout (min) 0
Connection Idle Timeout (min) 15	Reports Source Directory
Maximum Cached Files	Reports Temp Directory
Job Retries 0	 Keep Database Connection Enable Engine Diagnostics

The maximum number of connections permitted for Engines and reports is configured by means of the parameter maxconnect, the 'Maximum Connections' setting above.

If this value is configured too low, this will lead to message "REP-56055: Exceed max connections allowed: ...". This can happen based on the other settings (maxEngines & keepConnection) which may result in having more reports active than connections.

The documentation can provide additional information regarding this and other engine settings.

URLs

The following URLs display various data regarding Reports Server, Reports Engines and the Reports Server queue status:

http://<host>:<port>/reports/rwservlet

which contains an overview of other URL's like

http://<host>:<port>/reports/rwservlet/help

http://<host>:<port>/reports/rwservlet/showjobs

http://<host>:<port>/reports/rwservlet/getserverinfo

These URL's can only be used and are only useful when the Reports Managed Server is running, which is normally not necessary (see previously in this chapter, the In-Process Reports server is not used). As port the port of the running Reports Server should be used (as shown in the console).

Sizing

Of importance for the configuration of minEngine and maxEngine is that Oracle Reports Server *strives* to meet these values; *in case insufficient resources (CPU & RAM) are available, then the values cannot be obtained.*

It is therefore of importance for the DBA to determine the real values for their system.

Also for the (batch scheduler) setting *Max. parallel script requests* the DBA has to determine what their system can (and is allowed) to handle.

The value for "Max. parallelle scriptaanvragen" (max. parallel script requests) is strongly related to maxEngine & maxConnect.

If the parallel script requests are all of the type 'Oracle Reports' then this number of Engines & connections could be required to handle reports.

This number has to be greater than *Max. parallel script requests*; the reason for which is that a Reports process can still be active while writing the (very large) output file, while the status of the matching script request could be set to Ready (or Error) already.

The script request will no longer be considered as a "lopende scriptaanvraag" (running script request), while a process is still active though (during a short period of time); therefore it is (temporarily) required to have more connections than the allowed number of parallel script requests.

3.10.1. Reports Server System Parameter Settings in OHI Back Office

For a number of the settings mentioned earlier, the maximum number of parallel script requests is used, as can be configured in the system parameters of the OHI Back Office sub-system (*Max. parallel script requests*).

"Max. parallelle scriptaanvragen" (max. parallel script requests) has to be configured based on the capacity of the relevant server; a guideline is (2 to 4)*(the number of available CPU cores on the server). Settings that are too high can lead to an overload of the server.

3.10.2. cacheSize

Property cachesize has to be set to at least 3x the size of the largest *Reports* output file.

The value is indicated in MB.

The Basic Configuration offers the setting field for this.

* Cache Size (MB) 50 * Queue Size 1000

Example:

The largest Reports output file is 100MB; cachesize has to be 300MB

3.10.3. maxEngine

Parameter maxEngine has to be set to (the number of available CPU cores on the server) * (6 to 8 = recommended by Oracle for Unix/Linux platforms).

The value has to be at least identical to "Max. parallelle scriptaanvragen" (max. number of parallel script requests).

Example:

On a server with 8 CPU cores: 8*6 = 48

3.10.4. engLife

For the same tag, parameter englife has to be set to 4-30.

The default value of 50 (this means 1 Reports Engine, a java process, can process 50 reports sequentially before the process is started again) could lead to memory leaks.

3.10.5. minEngine

Parameter minEngine has to be configured based on the actual requirements; the setting depends on the load and the available capacity. It is recommended to choose *at least* 2-4. This setting will determine the minimum nr of engines which will be started.

See also **Tuning Oracle*Reports**.

3.10.6. keepConnection

For this same tag, property keepConnection has to be set to no (to this end the comment symbols for property have to be deleted!).

3.10.7. maxConnect

Parameter maxConnect has to be configured to 10x "Max. parallelle scriptaanvragen" (max. parallel script requests).

Example:

ALG_SYSTEEM_PARAMETERS.BATCH_MAX_PROCESSEN = 24 maxConnect=240

4. INSTALLATION OHI BACK OFFICE APPLICATION SOFTWARE

Installation of the OHI Back Office application software consists of the following steps:

4.1. CREATING ACCOUNTS & AUTHORIZATION

In order to create the required accounts and roles and to assign the correct authorizations, the OHI Back Office installation script <code>OZGI001s.sql</code> has to be run via SQL*Plus under account <code>SYS</code>.

This script creates an Oracle database scheme which contains OHI Back Office objects: OZG OWNER.

Additionally, for object authorization a secure database role is created: OZG_ROL. For the OHI Back Office batch scheduler a separate account is created (formerly, up to release 2009.03 "identified externally", currently a regular account in the database): BATCH. If necessary, it is possible to use a different account name; the name of the account to be used has to be registered in the System parameters.

In order to process script requests via the batch scheduler of type Oracle Reports by means of the Reports Server, account OZG_BATCH is created. Also here a different name can be used; the account name to be used can again be configured in the System parameters. However, the password of the account to be used always has to be *identical* to the account name.

Finally, all required authorizations will be distributed.

4.1.1. Security of the batch scheduler Account

Access to the batch scheduler account is arranged by means of a Secure External Password Store (SEPS) from release 2010.01 onwards. This SEPS feature uses an Oracle Wallet. A SEPS can store one or more username/password combinations in an encrypted file.

The wallet will be used to pass the username/password combination for the batch account during batch processing.

Before the wallet can be used to pass credential information to the database for Oracle Net connections, the Oracle Net client must know where to look for the wallet. It is specified in the sqlnet.ora file as the WALLET_LOCATION parameter and should specify the directory location of the wallet created in the next chapter.

In this example we will create the wallet in the <code>\$ORACLE_HOME/network/admin</code> directory, so the following entries will be added to the <code>sqlnet.ora</code> file:

These settings cause all sqlplus /@<db_connect_string> statements to use the information in the wallet at the specified location to authenticate to the database. The <db_connect_string> identifies a username/password combination in the wallet, if present. So a connect string which is known in the wallet identifies exactly one username/password combination.

The wallet itself consists of two files, ewallet.p12 and cwallet.sso. The last one contains the actual username/password combinations and must be protected with correct operating system access rights: any OS user who can read the wallet can use it to connect to the accounts stored in the wallet! Only the OS user batch and the oracle software owner need this file access.

Create the wallet using the syntax 'mkstore -wrl [wallet_location] -create'. The example below creates it in the current directory (identified with '.'):

mkstore -wrl . -create

The two files are now created which implement the store (ewallet.p12 and cwallet.sso). You will be asked to define a password to protect the contents of the wallet. This password will be asked for each later command you apply to the wallet.

Store a credential using:

mkstore -wrl [wallet_location] -createCredential [db_connect_string] [username] [password]

A credential consists of a combination of a database alias, username and password (the alias must be a known 'service name alias', a TNS entry, in tnsnames.ora; so add it to the tnsnames.ora if necessary).

The simplest way is creating an entry for the existing environment database alias, for example for 'acct' or 'prod'. However, this means that every OS user who uses for example the syntax 'sqlplus /@acct' (and has operating system read access to the wallet files) will connect as user batch to the acct environment.

When you want to make it more clear that a specific alias identifies the username/password combination for the batch account it might be a good idea to use an alias like 'acct' batch' and store the username/password for this connect string.

For a RAC environment this should be the way to go to have a specific service identifying the node(s) on which the batch scheduler (and the batches) should run.

When a connect string is used which is different from the standard connect string the starting and stopping command of the batch scheduler requires this special connect string as additional parameter (see later).

An example for when the wallet is in the current directory, a specific connect string is used and the password of the batch account has become 'ohibo':

mkstore -wrl . -createCredential prod_batch batch ohibo

Instead (or additional) you can add also an entry for the 'regular' Oracle Net alias, which is prod in the example below:

mkstore -wrl . -createCredential prod batch ohibo

This same change implies also for the BI environment. You should also create a credential for the alias that is used as database identification for the BI database in the BI related batches (ZRGOE01S, ZRGOS01S and ZRGOD01S).

IMPORTANT: If you do use a different connect string to identify the batch username/password combination for the BI batch user be aware that the 'application users' should use this new connect string to define the connection to the BI database. Inform them about this in that situation!

Using the following syntax a list of currently defined credentials can be shown:

mkstore -wrl [wallet location] -listCredential

Should it be necessary to change an existing credential, than use the following syntax:

mkstore -wrl [wallet_location] -modifyCredential [db_connect_string] [username] [password]

An example for when the password of the batch account above has changed to ohibo2010, issue the following command:

mkstore -wrl . -modifyCredential prod_batch batch ohibo2010

Finally, a credential can be removed by using the syntax:

mkstore -wrl [wallet location] -deleteCredential [db connect string]

So credential prod_batch can be removed by issuing:

mkstore -wrl . -deleteCredential prod_batch

Attention: When connecting as user oracle to the database using the syntax 'sqlplus / as sysdba' read access to the wallet file cwallet.sso is needed when the wallet is activated in the active sqlnet.ora file, even when TWO_TASK is unset. So make sure both the OS user which is owner of the oracle sofware as well as the batch user have read access but other users not.

In order to secure the batch scheduler account(s) additionally from unauthorized use, it is *possible* to create a logon database trigger under this account; starting with database version 11.1.0.7. this is no longer a *mandatory* activity.

Details

The Oracle user for batch processing is identified by means of the wallet file. So when someone gets hold of the wallet files he/she can log in with '/@<alias>' instead of by entering a username/password combination. When you know someone has 'stolen' the wallet you can of course change the password of the batch account but you can also additionally prevent unauthorized access.

Starting with database version 10.2.0.4, the batch user no longer acquires the secure application role OZG_ROL, which is a prerequisite for performing mutations. The privileges granted to this role are however also granted to the batch user specific role OZG_ROL_BATCH, which in turn should be granted to the batch account (and not to the ozg_batch account!).

The downside of a stolen wallet content is that PC users with sufficient permissions on their own computer may claim to be the batch user and they could then log in using the wallet on the OHI Back Office database. So it is clear the access to the wallet files must be limited.

This potential problem (which can easily be prevented) can be additionally safe guarded by checking, in a logon database trigger, for the Oracle batch user, by means of the IP address of the client session, to see if the client uses a reliable server and if he has the required permissions to log on. If the address is not included in the list of permitted IP addresses, then the session will be refused and the database connection will be aborted. In this way the administrator has an additional means to prevent improper use of the batch account.

Example

By way of an example, this is a logon trigger for a fictitious situation:

Batch user	batch (both under OS and the database)
Permitted servers	Local connection on the database server
	144.21.160.66 (database server via Oracle*Net)
	144.21.160.68 (application server)

The matching trigger code is included here (and is also available in the \$OZG BASE/conf/configuration-templates folder)

Implementation of Logon Trigger

The implementation of the logon trigger is as follows:

- Determine the name of the batch account
- Determine the servers that have access to the batch account
- Modify the trigger code from the sample to the actual situation
- Create the trigger using a user with DBA privileges (e.g. SYS or SYSTEM).
 If the trigger is not created under the batch user then it will not be activated when logging on!

4.2. INSTALLATION OF THE APPLICATION

There are a number of ways to install the application, of which the most important ones include:

4.2.1. An Initial Installation

This is involved if there is an empty scheme (created as described in the previous paragraph) in which all objects are installed from scratch.

In order to create the OHI Back Office objects for the owner account OZG_OWNER and to locate the application sources, an OHI Back Office initial release has to be installed.

A description can be found in the following document:

OHI Installation of releases

4.2.2. A Copy of an Existing Installation

This is involved when an existing environment is copied to the new environment;

- 1. on the one hand the database side of the application is transferred (see <u>database reorganisation</u> for a more elaborate description),
- 2. on the other hand the application side (by means of copying the \$OZG_BASE directory, and afterwards modifying a number of settings; to this end see the following paragraphs).

4.3. CONFIGURE AUTHORIZED APPLICATION SERVERS

When the database is installed you need to specify in the database which application server is allowed to start the OHI Back Office user interface against this database. The IP address of the application server (or servers) has (have) to be saved in the database for security reasons.

The 'granted' ip addresses will be stored in table ALG#IP ADRESSEN.

There are pl/sql packaged procedures to assist you in adding or deleting addresses:

- "Owner".ALG_IAS_PCK.INS("IP address") for adding a new IP address
- "Owner".ALG_IAS_PCK.DEL("IP address") for deleting an existing IP address

Use these routines while connected to the database as schema owner or privileged administrator account to execute these routines.

Finish the transaction with a commit to make a change permanent.

4.4. COMPILE AND CHECK APPLICATION SOFTWARE

4.4.1. Compilation

Now compile all relevant application objects (database and application server sid); execute this by means of the following activities in the installation menu:

- 1. Activity 120 for the compilation of database objects (e.g. packages and procedures in the database)
- 2. Activities 800 and 810 for the compilation of client objects (e.g. screens, menus and reports)

A description can be found in the following document:

OHI Installation of releases

4.4.2. Check

Now check the findings of OHI Back Office Object Check (via installation menu activity 900) or by starting a script request in the application (and process the findings).

4.5. CONFIGURING DIRECTORIES

On screen "System/Management/General/System parameter" directories have to be configured for reading, writing and authorizing OHI Back Office application files (such as output of script requests, online help information and release documentation).

For the virtual directories be sure to specify the correct port of the Oracle HTTP Server (OHS).

Attention: If RAC is used then the directories have to be created on a shared file system.

For a detailed description see:

Reading, Writing and Authorising OHI Back Office application files

4.6. REGISTRATION REPORTS SERVER

4.6.1. Registration of the Account in the Application

If after the creation of the Reports Server batch account name the name <code>OZG_BATCH</code> has not been selected, then the different name of this account has to be registered in the system parameters (screen "System/Management/General/System parameter", tab page "Batchscheduler", item "Reports batch account").

4.6.2. Registration Reports Server

Register the name of the Reports Server for OHI Back Office in the system parameters (screen "System/Management/General/System parameter", tab page "Batchscheduler", item "Reports server").

This name can be determined when listing the OPMN components likewise below:

```
. ozg_init.env <env>
```

\$ORACLE INSTANCE/bin/opmnctl status

This shows a table like below:

Processes in Instance: frs i1

ias-component	 process-type	+
<pre>emagent_frs_i1 ReportsServer_nloz05_frs_i1 forms ohs1</pre>	EMAGENT ReportsServerComp~ FormsRuntime OHS	15820 Alive 15818 Alive 8558 Alive 15819 Alive

The process-type line starting with 'Reports' identifies the 'ias-component' name which should be used as Reports Server.

4.7. REGISTRATION BATCH SCHEDULER ACCOUNT

The name of the batch scheduler account (normally batch) has to be registered in the system parameters (screen "System/Management/General/System parameter", tab page "Batchscheduler", item "Batch account").

5. COMPLETING THE INSTALLATION

This chapter describes the completion of installation of OHI Back Office.

5.1. SYNONYMS FOR DATABASE LINKS

If synonyms have to be created for objects regarding database links (e.g. for Oracle Business Intelligence and/or GL objects), then the database link has to meet the following requirements:

- 1. The domain has to be included in the database link (e.g. prod.world instead of prod);
- 2. The database link has to have the same name as the global name of the database.

5.2. STARTING OHI BACK OFFICE BATCH SCHEDULER

The OHI Back Office batch scheduler can now be started; see Starting.

5.3. CHECKING THE INSTALLATION

The technical installation now has to be tested in order to determine whether or not it has been successful.

The minimal requirements to be tested include:

- Menu authorization
- OHI Back Office batch scheduler
 - Functionality
 - Output
 - Messages in batch scheduler log file
 - Messages in log files of script requests
 - Availability of log and out directories for all users
 - Availability of database accounts for users of log and out directories
- Starting/stopping the complete OHI Back Office environment (including Database Server, Application Server, and OHI Back Office batch scheduler)
- Checking the log files (see also Checks)

5.4. CREATING BACKUPS

After testing the installation, a full offline backup has to be created for the relevant file systems.

Attention: In case of RAC: Because ASM is used the use of RMAN is mandatory when it comes to the database. RMAN in combination with ASM is further described in appendix B.

5.5. ACTIVATING JOBS

The regular jobs for administration now have to be activated. See the following chapters for possible jobs in the area of Oracle and OHI Back Office.

5.6. INSTALLATION ORACLE DESIGNER

The OHI Back Office metadata can be accessed by means of an Oracle Designer Repository.

With each OHI Back Office major release an Oracle Designer dump file is provided which can be imported in an Oracle Designer Repository.

For additional information involving Oracle Designer and OHI Back Office, see:

6. ORACLE ADMINISTRATION RELATED TO OHI BACK OFFICE

The OHI Back Office application runs on an Oracle database, and uses Application Server runtime software.

Administration of this environment is the responsibility of the DBAs of the customer.

Attention: As mentioned earlier on, this document does not intend to provide instructions in terms of the Oracle Database & Application Server administration.

The DBAs of the customer should have sufficient knowledge, skills and experience in order to perform this administration task in a correct way. If the administration is not performed correctly, Oracle can provide no guarantees as to the correct functioning of the OHI Back Office application.

In order to emphasize the importance, the most significant points of interest involving Oracle Database & Application Server administration *related to* OHI Back Office are mentioned here *explicitly*.

The following enumeration is therefore a *minimal set of mandatory tasks and activities, which are required for the correct implementation of* OHI Back Office, and they should *not* be considered as a "manual" for the DBAs. Evidently, each activity mentioned has to be tested and documented extensively.

Chapter 8 provides experience and advice as to how the administration could and should be completed. The administration activities described therein provide a good start to fill in the administration tasks actively (and therefore preventively).

6.1. BACKUP & RECOVERY

6.1.1. General

There are various options to create a database backup.

Oracle recommends the use of Recovery MANager as a database backup tool.

If ASM is used as a shared storage solution, the use of Oracle RMAN is mandatory.

Since the *10g* release of the DBMS, Oracle provides the possibility to use a Flash Recovery Area (FRA) for storing backup related data.

Oracle recommends using FRA, particularly for a faster recovery of the Database.

Ensure proper backup and restore procedures for the software used (e.g. Database, Application Server, ASM, RAC, OHI Back Office, etc.) and the relevant file systems;

Testing and checking of the backup restorations is considered a standard procedure for system management, and has to be performed on a regular basis.

When it comes to using hot or cold backups, no specific requirements apply in combination with OHI Back Office.

6.1.2. RAC

In an Oracle RAC environment some additional requirements apply.

In addition to the database backup, a backup has to be created of the Oracle Cluster Registry (OCR) and the Oracle Voting Disk (OVD).

This is the case particularly if nodes have to be added or deleted.

To this end the environment has to be configured by means of ozg init.env CRS10G.

Now two environment variables are configured; the link refers to the setting:

- 1. OCR BACKUP
- 2. OVD BACKUP

By means of command ocronfig -export \$OCR_BACKUP an export is created of the Oracle Cluster Registry.

Command dd allows for a backup to be created of the Voting Disk.

For example dd if=<nam voting_disk> or=\$OVD_BACKUP.

Ensure that the backups are available on the shared disk.

6.2. STARTUP AND SHUTDOWN

6.2.1. Order

- After starting the database, the OHI Back Office batch scheduler has to be started;
- Before the database shutdown, the OHI Back Office batch scheduler has to be stopped;

6.2.2. Automation of Startup/Shutdown

- It is highly recommended to restart the Application Server software on a daily basis, in order to initialize the relevant processes and memory use (to clear it). If this is not an option, then it is recommended to only restart the Reports Server; to this end the *standalone* Reports Server has to be used (started through OPMN) instead of the (default) *in-process* Reports Server (running in a WLS Managed Server, which is not needed).
- Handling automatic Oracle system software startup/shutdown for startup/shutdown of the relevant servers;

6.2.3. Checks

- Check of the various Oracle system software files, e.g. trace files, alert files, audit files, AS log files error_log*, access_log*, default-web-acces.log, em-web-acces.log, OPMN log files (o.a. opmn.log, ons.log (see e.g. Check port conflicts), ipm.log, application.log (Forms & Reports!)) etc.
- Check the OHI Back Office batch scheduler log files for possible errors;
- Check cause(s) for failed script requests (status M (failed)).

6.2.4. RAC

In an Oracle RAC environment some additional requirements apply.

In an Oracle RAC environment two or more instances may be active.

An important issue is that starting and stopping an Oracle RAC environment is performed in a slightly different manner than a single instance environment.

Use the srvctl command to start and stop RAC components *instead of* SOL*Plus.

When starting instances with SQL*Plus, services are not always started automatically as well. If afterwards these services are started manually, then CRS is not aware of these services.

6.3. Performance Tuning and Monitoring

- OHI Back Office uses e.g. the Oracle cost-based optimizer; to this end it is mandatory that regular jobs are run which e.g. perform the following tasks:
 Collecting statistics for tables and indexes, collecting system statistics, collecting statistics for the SYS schema.

 For the OHI Back Office tables, monitoring is selected by default, which allows for stale statistics to be used.
- Regular tracing of activities in order to recognize performance bottlenecks.
- Deployment of the right disk settings for Oracle; e.g. keeping in consideration RAID levels, striping, controllers etc.;
- Performing regular checks of OS, Oracle and application performance by using the relevant diagnostics tools;
- Monitoring network performance, memory, disk I/O etc.
- Configuring and implementing Oracle Resource Management;
- etc.

Advice: Oracle recommends using Enterprise Manager Grid Control for the active day to day monitoring.

6.3.1. RAC

Oracle recommends using Enterprise Manager Grid Control for managing and monitoring an Oracle RAC environment.

To this end an Oracle Enterprise Manager *Management Pack* license is required as an extra option.

In an Oracle RAC environment one or more instances can be active.

For Database Management this entails more emphasis on performance monitoring.

In an Oracle RAC environment the most important performance issues to be recognized include the following:

- Performance of the Interconnect
 As a guideline this is maximum 5ms.
- Performance of the Global Cache

If errors are encountered in terms of performance when using OHI Back Office in an Oracle RAC environment, the delivery of performance data will continue in the same way as described in section Collecting Performance Data.

Additional information regarding RAC Performance Monitoring can be found in the following documentation:

Oracle Clusterware and Oracle Real Application Clusters Administration and Deployment Guide, chapter 13 'Monitoring Performance'.

6.3.2. Rebuilding Indexes

In actual fact, few indexes ever need rebuilding. Conditions for rebuild would be

- Large free space (generally 50%+), which indexes rarely reach, and
- Large selectivity, which most index accesses never reach, and
- Response times are adversely affected, which rarely are.

Therefore the OHI general advice on rebuilding is:

- Do not rebuild indexes.
- Use REBUILD if the whole index structure is very poorly fragmented.
- Use coalesce to reduce index fragmentation in a portion of the index.
- Use SHRINK to reduce index fragmentation in a portion of the index and the actual blocks associated to the index

6.4. Using SQL Plan Management

As of release 10.13.3 the OHI Back Office application started with using SQL Plan Management (SPM) functionality. Reason is to reduce the possibility that non changed SQL statements 'suddenly' execute a lot slower than before. This paragraph describes the current support.

6.4.1. Introduction

A short introduction is given to SQL Plan Managemengt in combination with the Oracle Health Insurance Back Office application.

6.4.1.1. SQL Plan Management

These paragraphs describe how OHI BO supports the SQL Plan Management (SPM) feature of the Oracle RDBMS. A customer can enable SPM for OHI BO to achieve SQL execution plan stability, thereby preventing that execution

plans for SQL statements change. These changes could sometimes be for the worse and might be caused by for instance:

- the installation of a new database (and thus optimizer) version,
- the installation of a major patch set for the database (for instance an SPU),
- changes to optimizer statistics,
- other types of changes:
 - system statistics and system settings (eg. db_cache, pga aggregate target),
 - o optimizer related changes in the spfile,
 - schema and metadata definitions (new/modified indexes and/or constraints),
 - o SQL profile creation,
- the adaptive cursor sharing feature,
- the cardinality feedback feature.

All of the above can introduce a change in the execution plan of a SQL statement during a hard parse. Typically a changed plan will perform at least as good as the previously used execution plan for the SQL statement. However, every now and then the change encompasses a regression. And depending on the OHI BO process in which this regression occurs, the change can cause a significant performance issue and from that lead to a service disruption. To prevent this, SPM is introduced in the OHI BO application.

6.4.1.2. Prerequisites

Support for SPM was introduced in release 10.13.3.0.0 of the OHI BO application. Along with this release, RDBMS version 11.2.0.4 is required. This RDBMS version fixes some issues that SPM suffered from in earlier releases.

The following settings are required for SPM as from this OHI BO release:

- Optimizer_use_sql_plan_baselines needs to be set to FALSE Setting this parameter to FALSE at the instance level, may seem strange. However, we support the use of SPM on a database session-by-session basis. Starting in OHI BO release 10.13.3.0.0, this initialization parameter will be set to TRUE in those sessions that are configured to use SPM. This is done via 'alter session' statements embedded in OHI BO application software.
- We advise following defaults for the two SPM configuration parameters:

SPACE_BUDGET_PERCENT → 30%
PLAN_RETENTION_WEEKS → 60 weeks
SPM stores its data in the SYSAUX tablespace. The percentage parameter value denotes the threshold of storage used in SYSAUX by SPM above which the instance will write warnings to the alert.log file of the database. Depending on the size and usage of the SYSAUX tablespace on your site, you can increase the percentage threshold. The

second parameter, number of weeks during which execution plans will be retained by SPM, should be set to at least a full year.

You can set these parameters through commands like:

```
exec dbms_spm.configure('SPACE_BUDGET_PERCENT',30);
exec dbms spm.configure('PLAN RETENTION WEEKS',60);
```

- Following object and system privileges are required by OHI BO's owner schema:
 - execute on sys.dbms shared pool
 - administer sql management object

The above prerequisites are also documented in the installation instructions for OHI BO release 10.13.3.0.0. Moreover, these installation instructions detail how to correctly put these prerequisites into place (for completely new installations this is taken care of in the initial installation software).

6.4.2. Enabling SPM for OHI BO

6.4.2.1. Initial Support for SPM

Release 10.13.3.0.0 contains the first phase of the introduction of SPM into the OHI BO application. In this phase configurational support of SPM for batch jobs is delivered. A future release of OHI BO will extend SPM support to also encompass OHI BO's Forms modules.

6.4.2.2. Enabling SPM for a specific Batch definition

It is possible to configure a batch process to benefit from plan stability by registering the batch definition to use SPM baselines. This is done in the batch screen module (SYS1008F), which can be found from the menu via the following path: *System -> Management -> Module -> Batch -> Batch*.

In Figure 2.1 you see a screenshot of this module. Near the middle it has the 'Baselines?' checkbox. By checking this, you ensure that later runs of this batch will be using the SPM feature. Once this is checked all future runs will issue the following two statements at the beginning of the run:

```
alter session set optimizer_use_sql _plan_baselines = true;
```

```
• alter session set optimizer_capture_sql_plan_baselines = true;
```

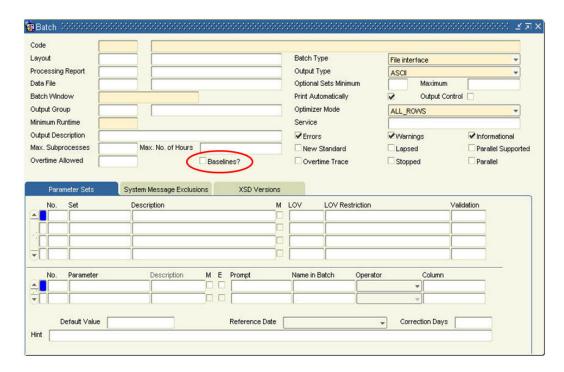


Figure 2.1: The Batch Management page (SYS1008) with baselines checkbox.

6.4.3. SPM Maintenance and Administration

Introduction of the SPM feature for OHI BO requires little attention of the application DBA. There are a few topics however that the DBA should be aware of. These are addressed in this paragraph.

6.4.3.1. Monitoring SYSAUX Tablespace Usage

SPM uses a repository of execution plans that are to be used for executing the application SQL statements. This repository is stored in the SYSAUX tablespace. The Oracle DBMS monitors the space usage of this repository. It will signal when the storage of the SPM repository has reached the threshold value as specified by the SPACE_BUDGET_PERCENT parameter discussed in the 'Prerequisites' paragraph. This is done by writing a message to the instance's alert.log file.

```
Tue Oct 22 04:20:04 2013
SPM: SMB space usage (...) exceeds ...% of SYSAUX size (...).
```

It is advised that the DBA monitors the appearance of this message in the alert.log file. A way to do this is by introducing a monitoring metric using OEM Cloud Control, see the <u>Appendix</u> for setting this up. Whenever this message appears you should ensure that SYSAUX still has enough room to cater for the storage growth of the SPM repository: either extend the tablespace, or increase the threshold value when enough free space is still available in the tablespace.

6.4.3.2. Monitoring Evolve Job results

When batch jobs run in 'SPM mode', not only will they use the execution plans that are stored in the SPM repository, but they can also introduce new execution plans into the SPM repository. SPM will prevent the use of these new execution plans until they have been proven to be at least equal to, or better than, the existing execution plans in the SPM repository. Validating that it is okay to use these new plans is called 'evolving' these plans.

The OHI BO application automatically evolves new plans through a daily job. This is implemented through a background job as described for the <u>batch</u> <u>scheduler</u>. A Back Office parameter is present to specify the number of days between actual executed evolves (usually set at 1) so the actual load can be planned to occur only once in a specified number of days. This can be used to postpone evolves during for example a period where all capacity is needed or you do no want other execution plans.

The results of this (normally daily) evolve job are recorded in the alg#sql_baselines_log table. It is advised that the DBA monitors the contents of this table on a regular (eg. weekly) basis to validate that the evolve job is doing its work correctly. You can do this by checking the output of this query:

```
select *
from alg#sql_baselines_log
where action = 'EXCEPTION'
```

There should be no exceptions reported. If there are, please log a service request with OHI support.

6.4.3.3. Undoing results of Evolve Job

You can undo the results of the most recent evolve job. In an exceptional situation, support may request you to do this. Evolve jobs are identified by a run_id. First you would need to determine the run_id value of the most recent evolve job. The following query will do this.

```
select max(run_id)
from alg#sql baselines log
```

Using that run_id's value execute the following packaged procedure, followed by a commit:

```
alg_qbl_pck.undo_evolve([run-id value]);
commit;
```

6.4.3.4. Packing SPM repository

OHI Support may request you to deliver the contents of the SPM repository. We may require the contents of your repository in order to resolve a performance related service request. Upon such request, execute the following packaged procedure.

alg_qbl_pck.export_baselines

This procedure will 'pack' your SPM repository into a table alg#sql_baselines_stage. Using datapump export you should then export this table into a dump file. This dump file can be sent to OHI support.

6.5. INSTALLATION, CONFIGURATION, UPGRADE, MIGRATION AND VERSION CONTROL

- Installation of new releases and patches for Oracle Database and Application Server, possibly by means of Rolling Upgrades.
- Installation of new releases and patches for OHI;
- Planning upgrades and migrations;
- etc.

6.5.1. RAC

- If setup correctly, CRS will automatically start and stop the components required for the cluster (incl. database and listeners); check this configuration of dependencies by means of crs stat;
- Use crsctl check cluster to check all nodes in CRS.
- Use ocrcheck to check the integrity of OCR (and mirror);
- Use before and after the different stages of the installation process the Cluster Verification Utility cluvfy.
- See <u>installation and configuration</u> for further information regarding the installation

6.6. Access Control and Security Privileges

- Access control of the relevant OS accounts (e.g. root, oracle and batch);
- Access control of the default Oracle database accounts (e.g. sys and system).
- Access control of the OHI Back Office Oracle database accounts (e.g. OZG_OWNER and MANAGER);
- Changing the passwords a.s.a.p. (after the initial installation);
- Configuring a password algorithm and validity duration, in other words setting up a policy in terms of password management;
- Access control when OHI Back Office is implemented in a web-based architecture on intranet or the Internet:
- Monitoring security alerts (http://otn.oracle.com/deploy/security/alerts.htm).
- etc.

6.7. SPACE AND STORAGE MANAGEMENT

- Managing the available and required disk space;
- Managing storage settings for objects;
- Shrinking objects (e.g. based on Segment Shrink Advisor);
- Managing the development of various Oracle system software files, e.g. trace files, alert files, audit files, AS log files error_log*, access_log*, default-web-acces.log, em-web-acces.log, OPMN log files etc.
- Managing the development of OHI Back Office Batch scheduler log and output files in \$0ZG LOG and \$0ZG OUT.
- etc.

6.8. LICENSE CONTROL

- Checking license issues for the installation of new releases and/or patches or the use of certain options and/or tools;
- etc.

6.9. **NETWORKING**

- Making use of Oracle Net dead connection detection by means of configuring parameter SQLNET.EXPIRE_TIME in file sqlnet.ora with a value larger than zero. For more information please see the Net Services Reference manual as being part of the standard database documentation.
- etc.

6.9.1. RAC

- For RAC environments it is crucial that the different nodes have the exact same system time; it is highly recommended to use NTP in this case (Network Time Protocol).
- If in an Oracle RAC environment an instance is positioned in restricted mode (= required for the installation of OHI (patch) releases), then the services for that instance will be stopped (by the Oracle Clusterware, only in case of *dynamic registration* with the listener). Connection to the instance will still be possible via:
 - 1. SID; this is to be used for the installation of OHI Back Office (patch) releases by means of the installation menu.

2. a Service Name; if this is used, then tnsnames.ora has to be modified in the connect string (see also My Oracle Support note 301099.1).

Between the CONNECT_DATA and SERVICE_NAME entries the following has to be added: (UR=A)

Remark: Working with service names is preferred.

7. OHI BACK OFFICE MANAGEMENT

The management activities for OHI Back Office can be subdivided into tasks for System management/DBA and tasks for creating new application users.

7.1. System Management/DBA

7.1.1. Oracle Environment

On the OS server *myhost* (a representative name for the servers on which OHI Back Office is run) the OS account oracle is the owner of the OHI Back Office files.

The OS account batch is the owner of the OHI Back Office batch scheduler.

Script <code>\$OZG_ADMIN/ozg_main.sh</code> can be used in the boot sequence and backup sequence of the OS server in order to stop and start the complete OHI Back Office environment (this means DBMS, AS, OHI Back Office batch schedulers, OEM etc.).

Starting

Under OS account root enter the following command: ozg_main.sh start

Stopping

Under OS account root enter the following command:

ozg main.sh stop

This script uses the scripts <code>ozg_oracle_start.sh/ozg_batch_start.sh</code> and <code>ozg_oracle_stop.sh/ozg_batch_stop.sh</code> to stop/start all Oracle related processes and batch schedulers.

If the Database layer and Application layer are installed on different servers, then script ozg main.sh has to be available on both servers.

For using RAC other start and stop scripts are used. For more information see appendix B.

7.1.2. Clients

The user interface of the application OHI Back Office can be started on a client PC or Terminal client via a browser by means of the following URL:

http://<host>:<port>/forms/frmservlet?config=Prod

It is recommended to configure a DNS server that enables all relevant clients in the network to access the relevant host. If a DNS server is used then it is not required to manage the local host files on each client PC.

Additionally, it is recommended to position all relevant URLs for OHI Back Office on a company portal or homepage, in order to simplify the implementation and management.

The value of parameter config refers to the configuration as it can be found in file \$DOMAIN_HOME/config/fmwconfig/servers/WLS_FORMS/applications/formsapp_11.1.2/config/formsweb.cfg.

7.1.3. OHI Back Office Database

The following provides an overview of the 4 general OHI Back Office database accounts and *initial* passwords:

- OZG_OWNER/OZG_OWNER
 Owner account for the OHI Back Office data structure.
- 2. MANAGER/MANAGER OHI Back Office application manager with full menu authorization.
- BATCH/BATCH
 Owner account for the OHI Back Office batch scheduler.
- OZG_BATCH/OZG_BATCH
 Reports Server batch account for the Reports modules via the OHI Back Office
 batch scheduler.

7.1.4. OHI Back Office Batch Scheduler

The OHI Back Office batch scheduler handles script requests which are submitted by the end users of the OHI Back Office application.

Starting

Service Name Versus Environment Name

Under OS account batch enter the following command for the environment in question; the Environment Name of the environment for which the batch scheduler has to be started is provided as a parameter.

```
. ozg_init.env environment_name
$OZG_BASE/sh/OZG_START_BATCH.sh environment_name
```

The script will start for 1 environment, 1 batch scheduler on 1 server.

It is possible to use a separate service name next to an environment name. This is typically useful when a Secure External Password Store is used with a name which is different from the environment name and which identifies the batch username/password combination. This service name can be passed as 'connect' parameter:

Verbose Mode

By means of parameter -verbose (optional) it is possible to start the batch scheduler in *verbose* mode; in this mode extra information is written in the log file, which allows for any problems or questions to be examined:

Retention Period for Log Files

When starting the batch scheduler, the last (optional) parameter is the retention term (in days) of the log files of the batch scheduler. By default this is 7 days.

```
. ozg_init.env environment_name

$OZG BASE/sh/OZG START BATCH.sh environment name 14
```

Stopping

Under OS account batch enter the following command for the relevant environment:

```
. ozg_init.env environment_name

$OZG_BASE/sh/OZG_STOP_BATCH.sh environment name
```

Or when a separate service name is used to connect to the user batch:

```
. ozg_init.env environment_name

$OZG_BASE/sh/OZG_STOP_BATCH.sh -connect service_name

environment_name
```

The script will stop for 1 environment, all batch schedulers on all servers.

In the overall scripts <code>ozg_batch_start.sh/ozg_batch_stop.sh</code>, which are called by <code>ozg_main.sh</code>, the aforementioned calls are included to start/stop all batch schedulers for all environments on 1 server.

The OHI Back Office batch scheduler runs on the Application layer.

See <u>Appendix A - configuration multiple batch schedulers</u> for the implementation of *multiple* batch schedulers in case multiple application servers are allocated.

For the configuration of the batch scheduler in an Oracle RAC environment, please refer to appendix B.

OHI Back Office batch scheduler Output and Log Files

OHI Back Office recommends to regularly clear the OHI Back Office batch scheduler output files in the directory $SOZG_OUT$ and the OHI Back Office batch scheduler log files in the directory $SOZG_OUT$ and the OHI Back Office batch scheduler log files in the directory $SOZG_OUT$

7.1.5. Changing Settings

Changing Software Trees

In a standard configuration, after the installation of OHI Back Office, the Oracle environment is setup in the Application Server software tree.

In order to configure the Oracle environment in the 11gR2 Database Server software tree (in a configuration for which the Database layer and Application layer are installed on the same server), the following script can be used:

```
. ozg_init.env $OZG_ORATAB_DB11204
```

In order to reset the environment for the 11g R2 Application Server software tree, the following calls can be used:

Example:

. ozg init.env \$OZG ORATAB FRS11G2

Changing Environments

In order to configure the OS environment for a specific environment for which the Application Service software tree is used, the following commands can be used, e.g.:

- . ozg init.env prod # configuring the prod environment settings
- . ozg_init.env test # configuring the test environment settings

In order to configure the OS environment for a specific environment for which the Database software tree is used (e.g. for startup/shutdown of the instance), the following commands can be used, e.g.:

- . ozg_init.env prod # configuring the prod service_name
- . ozg_init.env \$OZG_ORATAB_DB11204 # configuring the 11g database software
- . ozg_init.env test # configuring the test service_name
- . ozg_init.env \$OZG_ORATAB_DB11204 # configuring the 11g database software

7.1.6. Adding New OHI Back Office Application Environments

When a new OHI Back Office application environment within an existing software environment is required, the following steps have to be performed in the Application layer:

- Add a batch scheduler start command for the new environment in \$OZG_ADMIN/ozg_batch_start.sh.
- 2. Add a batch scheduler stop command for the new environment in <code>\$OZG_ADMIN/ozg_batch_stop.sh</code>.
- 3. Configure a new environment SID in \$DOMAIN_HOME/config/fmwconfig/servers/WLS_FORMS/applications/formsa pp_11.1.1/config/formsweb.cfg by means of the Enterprise Manager control application for the Forms and Reports services.
- 4. Add an ozg_servlet_wls_<SID>.env file with appropriate settings in \$OZG ADMIN (if you referenced this location in the variable.
- 5. Add an additional entry in the Reports Server setup for this environment to specify the correct REPORTS_PATH variable.
- 6. Create a new application directory <code>\$OZG_ROOT/environment_name</code> and complete it with the relevant OHI Back Office application software.
- 7. Install the OHI Back Office application software for the relevant environment.

7.2. CREATING NEW APPLICATION USERS

The following steps have to be performed when configuring a new end user for the OHI Back Office application:

7.2.1. Creating an Oracle Account

First of all, an Oracle account has to be created in the database for the new end user. Subsequently, the required system privileges have to be assigned to the new account. This step can be performed by means of the CREATE USER command in SQL*Plus as user SYS or SYSTEM

Example

```
create user scott identified by tiger default tablespace users temporary tablespace temp quota unlimited on users / grant create session to scott / grant alter session to scott /
```


If OHI Back Office is configured with SSO the user must be created in the Oracle Internet Directory, see section Configuring Database
Authentication

7.2.2. Creating Directories for the New User

For each new end user directories have to be created in the Application layer for OHI Back Office batch scheduler output files and OHI Back Office batch scheduler log files.

This has to be performed under OS account batch:

```
mkdir $OZG_OUT/<new account>
mkdir $OZG_LOG/<new account>
```

<new account> is the name of the Oracle account of the new end user, in *lower case*.

Example

```
mkdir $OZG_OUT/scott
mkdir $OZG LOG/scott
```


If a RAC environment is used then the directories have to be created on a shared file system. For more information see appendix B.

7.2.3. Storing Application Authorization

Now the new end user can be authorized for application OHI Back Office. In order to establish this, start the application and log on as MANAGER.

- Create a "Functionaris" (executive) for the new end user in screen "Systeem/Beheer/Autorisatie/Gebruiker" (system/management/authorization/user).
- 2. Now assign the required roles by means of menu authorization in the same screen. The standard menu role MANAGER_ROL has full menu authorization; other roles can be created and set up as desired.

- 3. Close the application, restart it and log on as the new end user in order to test the newly created account.
 - If desired, the user settings can be modified by means of screen "Bewerken/Instellingen" (Edit/Settings).
- 4. It is optional to configure the required functional application authorization (company access, authorization for administrative organizations, brands etc.)

7.3. INSTALLATION OHI (PATCH) RELEASES

The installation process of OHI (patch) releases is described in the OHI Release Installation Manual and is performed on the Application layer:

For new customers this and any other relevant details will be shown by Oracle in a knowledge transfer session.

7.4. CLONING AN OHI BACK OFFICE ENVIRONMENT

During the lifecycle of an OHI Back Office environment the wish may come up to copy an environment to a new environment or to overwrite an existing environment with another existing environment. In short we refer to this as 'cloning' an environment.

As technical setup and configuration may differ a lot between customers and technical infrastructures there is no standard way to describe this. Next to that the impact on interfaces with other applications and systems is environment specific.

For this reason only some generic guidelines can be given regarding what should be done to clone an OHI Back Office environment.

Definition of an 'Environment'

When an OHI Back Office environment should be cloned we expect the database, application server configuration and accompanying file system storage should be 'cloned': a copy should be made so it can run under a different 'name' (alias).

Identical Technology Stack

For cloning to succeed it is expected the 'OHI contents' are moved to a technical infrastructure that is identical, meaning it contains identical database and application server software, including the patches installed for this technology stack.

Database 'copy'

It is expected the database itself can be cloned (physical or virtual using for example storage technology) and started using a different name (export and import might be an option but requires a special approach and is much more time consuming).

Clone 'approach'

In rough lines the following actions should be executed to clone an OHI Back Office environment:

- 1. Determine a source environment that is stable (stopped or frozen) and can be 'copied'.
- 2. Choose an appropriate new name for the new environment (use useful naming conventions).
- Copy/clone the database and copy clone the application server file system
 with the OHI software. This is typically the \$OZG_BASE folder structure.
 Make sure it is copied to an environment where \$OZG_ADMIN is based on
 the same or newer releases of OHI Back Office.
- 4. Copy/clone additional file system structures as used by your environment (typically locations identified by \$OZG_OUT and \$OZG_LOG and file system locations you have defined in database directories), for as far as you need historic input and output files.
- 5. Update the database name and open it using the new name (typically identical to the application server environment, the name of the \$OZG_BASE folder).
- 6. Adapt the servlet .env files (it is assumed you store them in \$OZG_BASE): change the name when it contains the environment name; change the settings in the .env file where they contain environment specific settings such as TWO TASK or a file system location.
- 7. Change the WebLogic Server configuration for Forms and Reports so that new environment entries are present.
- 8. Adapt/add tnsnames.ora entries and wallet entries so they are present for the new environment.
- 9. Update startup/shutdown scripts that contain environment specific entries.
- 10. Update the oratab file with the new environment.
- 11. Update ozg init.env if you have environment specific settings in there.
- 12. <u>Update/add ip addresses</u> if the ip address of the application server that will be used is unknown.
- 13. When you are able to startup the database make suren you update the environment specific entries in tables ALG_SYSTEEM_PARAMETERS and ALG_BO_PARAMETERWAARDEN (this can be done through the System Parameter and Back Office parameter screen when you have configured the application server for the new environment; when you update the database you may script this for efficiency reasons). Typically the settings for the batch scheduler and file locations may have to change.
- 14. Update the database directories you may have configured for output so they reflect the different output location if that is environment specific.
- 15. Deploy the Connect to Back Office and Service Layer web services if they are needed for this environment.
- 16. Change database links if relevant.
- 17. Implement any additional changes for custom code (using dynamic code within OHI or using custom code schema owners or other interfaces).
- 18. Thoroughly check whether you are complete. Especially when you made a clone from a production environment, in which case you should be sure there is no interaction with any production functionality.

Make sure you understand the process above and identify any possible omissions. Test whether all functionality is working correct. After this publish the name, URL's, WSDL's, etc. of this environment to your 'user community'.

8. REFERENCES FOR ACTIVE MANAGEMENT OF OHI BACK OFFICE

In this chapter a possible approach is proposed as to 'actively manage' the OHI Back Office. This has to be used at the time that OHI Back Office is successfully configured and operational.

Active management entails the undertaking of preventive actions so as to prevent performance problems, in particular as a consequence of passive management. It also strives to simplify the search for the cause of performance problems when they do occur. Additionally, a number of matters are tackled to apply active space management.

In case performance issues are encountered, a suggestion is made for handling the issue.

The target group for this chapter is the OHI Back Office database manager, the DBA for an OHI Back Office environment. For Unix managers, the chapter could be useful to get the hang of the database management section of this chapter in particular. For functional application managers with a highly technical interest, certain sections could function as an illustration with respect to the cause of performance problems (and probably also possible solutions).

This chapter does not focus on the background of the techniques used. Sufficient documentation regarding this matter can be found elsewhere. Main goal is to provide sufficient information to handle the fundamental issues, even if not much expertise is available regarding the subject. Experts in certain subareas would want, and can collect better or more detailed information at times.

The setup has been selected so that acquired practical experiences are shared. As expected, the chapter is an evolving section of this document which will be further elaborated in the future (based on numerous acquired experiences, both internally at Oracle and externally at OHI Back Office customers). In that sense it will never be finished and always be open for improvement (and therefore also for comments and possible suggestions).

The setup is based on an OHI Back Office database. The content cannot simply be applied to an OHI Business Intelligence (open policy) environment given that additional or different matters may be applicable.

ATTENTION: No rights can be derived from this chapter. It is just a matter of advice (unless specifically indicated differently). This is to be used at your own risk.

8.1. Performance General

In this chapter some general sizing guidelines are given regarding the OHI Back Office application.

8.1.1. Memory and CPU

The following graphs provide minimum guidelines for the required CPU and memory capacity for OHI Back Office.

The guidelines are based on internal and particularly external key figures of used equipment and test results. No computed values are involved. The values, such as the ones of the equipment of various customers in the first months of 2009 can be found in

a graph. Based on additional customer-specific information and an estimate of the trend to be recognized, subsequently, a certain trend line can be defined. When using the customer key figures, it is important to understand that each customer runs more or less customer specific additional workload on the server in question, in addition to the OHI Back Office application. The graph figures should therefore not be followed blindly, but they could be used as an extra tool for sizing a server configuration.

Memory

In terms of memory, for each OHI Back Office user *at least* 20MB has to be available, but in reality users sometimes clearly require more when they use multiple sessions and screens.

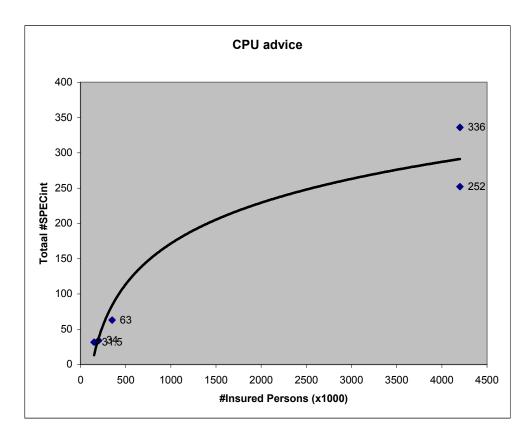
RAC

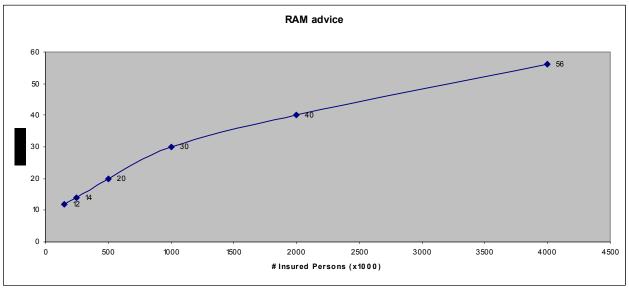
In case of RAC Oracle recommends setting up the following extra allocations per node:

- 1. 10% extra buffer cache
- 2. 15% extra shared pool

CPU

With respect to the number of CPUs, historically a *maximum* of 100 users has to be considered for each CPU. However, considering the multi core and multi threading techniques nowadays available exceeding this number is possible.


The CPU use is expressed in SPECint2006 benchmark values, which indicates the CPU capacity based on certain integer actions. This is not really a benchmark considered as representative for an application such as OHI Back Office, but it provides something to hold on to when comparing the CPU capacity of certain servers. Given that this value is available for a rather large diversity of equipment, this benchmark is applied. Transaction-oriented benchmark values would be preferable, but this is available for too few equipment in order to establish a thorough comparison of the equipment as is the case for the various customers.


On site http://www.spec.org/cpu2006 information can be found regarding the benchmark applied.

By means of http://www.spec.org/cgi-bin/osgresults?conf=cpu2006 it is possible to search for the benchmark values for certain types of servers. The figures used in the following CPU graph are the result of the value of field CINT2006 rates. For example Sun Fire E6900 with 16 dual core processors. The SPECint_rate2006 value for this server is 261.

The figures are based on combined database and application server allocation on a single server. However, for a separated database and application server, both servers will have to meet almost all of these criteria as the daytime work will primarily focus on the application server and the nighttime work primarily on the database server.

If RAC is used, Oracle recommends counting for each OHI Back Office RAC platform (i.e. all nodes together] with at least 10% extra CPU (SPECint).

8.1.2. I/O

With respect to I/O throughput it is possible to establish that a random I/O on a data file for OHI applications may take on average at the most about 5ms. More than 5ms can be considered as a potential bottle neck and cause for unwanted delay of the application response times.

In AWR output this is the column ${\tt Av}\ {\tt Rd\,(ms)}$ in the Tablespace IO Stats overview

8.3. PERFORMANCE & MANAGEMENT OF THE OHI BATCH SCHEDULER

The OHI Back Office 'batch scheduler' is the component that starts and monitors 'batch requests'. Its role is vital in processing the important batch and background processes of the application. Good tuning of the settings is required in order to maximize the use of available system capacity while preventing online usage response times degrade. This needs quite some attention and asks for a good insight in available system capacity, requirements of the 'business' and impact of changing certain database and application settings that influence this processing.

8.3.1. Parallellism used in batch requests

An important goal of the batch scheduler is to run the jobs that execute batch requests in parallel with each other. Over the years a new mechanism has been introduced for batch requests. Batch module definitions that are based on this 'Renewed' mechanism (this can be recognized by looking up this property in the batch module definition screen SYS1008F) do implement a standard way of workload distribution, over parallel processes, which consists of 2 phases:

First phase - Workload gathering

During the first phase the main process starts up and determines a smaller or larger amount of work units. Normally this is the 'serial phase' of processing a batch request.

Second phase - Workload execution

When all work units are determined by the main process this process creates a number of sub process batch requests to execute the workload in parallel. These sub processes are started for the same 'main' batch request and pick up units of work as long as there are units left and a possible maximum time limit is not exceeded. The main process monitors this until all parallel sub processes are stopped.

The first phase, the workload gathering, is typically the lighter part of the batch request execution and is normally processed by a single process ('serial') in quite a limited amount of time after which the real 'worker sub processes' start doing the actual work in parallel.

Parallelizing the first phase

However, for some batch requests this first phase can be time consuming because quite complicated conditions might need to be checked to determine which units of work need to be executed. For these jobs functionality has been introduced since release 10.13.2 of OHI Back Office to 'parallelize' the workload gathering. This is why for some batch request definitions parallel execution of the workload gathering 'query' is supported. Whether this is supported is defined by the 'Parallel Supported' property in the SYS1008F screen.

If this parallelism is supported it can be activated providing that the database settings have been set in such a way that this can be supported. Make sure activating this for a batch definition is only done when the database parameters described below are configured to support parallelism and that these settings have proven, during representative tests, to speed up the processing.

To support this parallelism during the first phase, starting with release 10.13.2 a setting of PARALLEL_MAX_SERVERS larger than zero is supported. Since that release a database trigger is introduced which disables by default parallel execution, so parallel execution (in fact 'parallel query') needs to be activated explicitly.

Before activating the parallel execution please make sure IO calibration inside the database has been performed. This is described in the 'Oracle Database Performance Tuning Guide' in the chapter about 'I/O Configuration and Design', the paragraph 'I/O Calibration inside the Database'.

Also take notice of paragraph 'Tuning General Parameters for Parallel Execution' as present in the chapter 'Using Parallel Execution' within the 'Oracle Database VLDB and Partitioning Guide'.

When you want to use this functionality please follow these recommendations:

- Specify a value larger than zero for PARALLEL_MAX_SERVERS but make sure not more than 25 to 50 percent of the original maximum number of parallel processes (specified as system parameter, in table ALG_SYSTEEM_PARAMETERS, column BATCH_MAX_PROCESSEN) for the batch scheduler is specified. And be sure to decrease the value of this system parameter that specifies this number of parallel processes. This parameter does not have to be reduced with an equal percentage because it is expected that the parallel execution by the database will be used a lot less than the parallel sub processes functionality of the batch scheduler. But beware not to overload the system with parallel execution processes next to parallel batch request processes and start with conservative settings.
- If you are using RAC set PARALLEL_FORCE_LOCAL to TRUE (this will be checked during installations and the 'object validation').
- Specify a value MANUAL or AUTO for PARALLEL_DEGREE_POLICY (LIMITED is not supported) and know what this means. Setting to AUTO activates the automatic degree or parallelism (auto DOP) functionality.
- Specify the value TRUE for PARALLEL ADAPTIVE MULTI USER.
- Optionally change the PARALLEL_MIN_TIME_THRESHOLD parameter.

The above settings enable you to use 11gR2 automatic degree of parallelism functionality, which enables statement queuing and in-memory parallel execution, or to stick with pre 11gR2 parallel execution functionality.

By enabling adaptive parallelism the system can reduce the degree of parallelism to prevent an overload of the system. As a consequence response times may vary.

To prevent parallel execution processes are flooding the system when auto DOP is used the parameter PARALLEL_DEGREE_LIMIT may be set to a non default value. Default the limit will be CPU based but as OHI environments have been seen to be read IO constrained, a setting to IO may be preferred in your environment.

8.3.2. Batch scheduler settings

With respect to the batch scheduler settings please consult the online help for screen module SYS1010F (use the search functionality to find this module). A number of parameters is defined for the batch scheduler where the 2 parameters for defining parallel characteristics are most important for using the available system capacity.

Especially the maximum number of batch requests that are allowed to run simultaneously is an important parameter, as it should typically not be higher than two times the number of available CPU threads (assuming quite some time is spent on average to waiting for IO, which is seen in most customer environments). For clarity,

this refers to the CPU threads in the database server(s) as the load in OHI Back Office is mainly concentrated in database processes performing the actual work for the batch processes.

8.4. PERFORMANCE DATABASE

This section elaborates on the various aspects of performance of OHI Back Office. Important settings are assigned but utilities are also offered that may be of assistance when zooming in on possible performance issues.

The objective is to provide an overview as to how it is possible to monitor and possibly improve the performance of OHI Back Office.

By getting familiar with a normal performance and by collecting data about it, in case of actual performance problems it is easier to zoom in on the cause and nature of the problem. Especially if reference measures of a representative period with a normal/acceptable performance are available.

8.4.1. Database Settings

A smooth performance of OHI Back Office starts with optimally setting up and configuring a number of database settings.

Initialization of the Parameters

It is of importance to configure some crucial parameters in a correct manner. We list the parameters that are particularly of importance and for some cases we recommend possible values. Also many other parameters can be configured, but at certain times the following are of importance for the performance of OHI Back Office.

With respect to the installation of OHI (patch) releases, different settings apply. See the following document for more details (a complete listing of database parameter requirements is present in an Appendix):

Oracle Health Insurance Installation of releases

The Most Crucial Parameters

There are 2 parameters that are very significant as they determine the greater part of the SGA:

- DB_CACHE_SIZE (=Ym)
 Use this instead of old parameter DB_BLOCK_BUFFERS. Specify the size of the buffer cache in multiples of 16MB. As a guideline use a value of 100MB per 50,000 insured persons in OHI Back Office. For environments with smaller numbers of insured persons, a clearly higher value has to be applied. For very large numbers millions this number can be adjusted.
- SHARED_POOL_SIZE (=Ym)
 Therefore it is best to also specify multiples of 16MB. A nice guideline to start with is 1 MB per user in case of 100 users, however, with a minimum

of 128 MB. For several hundreds of users it is possible to take a somewhat lower value.

Use the 'Advice' button in *Oracle Enterprise Manager* (OEM)/*Grid Control* to get a picture of the correctness of the configuration after the database has been used for a couple of hours (!) representatively. A good time is e.g. by the end of the morning of a typical weekday.

Currently complete use of Automatic (Shared) Memory Management is not adviced. If activated make sure sufficient minimum values are set for DB_CACHE_SIZE, SHARED_POOL_SIZE as well as SGA_TARGET (and also for PGA AGGREGATE TARGET, but more about that parameter follows).

Parameters for SQL Tuning

The parameters in v\$sys_optimizer_env are of importance in order to activate the *Cost Based Optimizer* properly for OHI Back Office.

Parameters for Session MemoryAllocation

There are various parameters to activate the allocation of memory for sessions, the allocation of the working memory. In the past it was possible to reserve a certain amount of memory per type of operation. However, it is possible to specify a target for all sessions together depending on the size of the total volume of working memory. The latter is normally preferred and is performed by means of the following PGA parameter.

• PGA_AGGREGATE_TARGET (= Ym)

It is recommended to use this setting to keep the total volume of working memory within certain limits. An automatic conversion takes place to the working memory allocation per session. The total target volume can become larger temporarily, but the memory is kept within certain limits. This has as the advantage that an objective can be set for all sessions together. A possible drawback is that specific optimization for a certain objective is not possible. Which ordinarily is not required anyway. As a guideline, a reserve of 5 MB per user can be kept for e.g. about 200 users. A multiple of 16 is not required.

For these parameters it is also possible to obtain some advice for optimization of this configuration by clicking the 'Advice' button. Advice can only be used after a representative load of the database has taken place. It is also possible to simply check if the PGA 'cache hit percentage' lies above 90% and if the maximum PGA volume and current volume do not exceed the objective by too much. Otherwise the value has to be revised upward.

Instead of automatically assigning working memory, it is possible to assign specific memory for certain operations by means of the so-called_AREA_SIZE parameters. These parameters are used only if the parameter workarea_size_policy is set to Manual. If the last parameter has not been set then this will be set to AUTO by default when PGA_AGGREGATE_TARGET has a value that is greater than zero. It is recommended to use the following parameters only for certain purposes and to activate them by temporarily setting workarea_size_policy to Manual.

• WORKAREA_SIZE_POLICY (=manual)
Set to manual in order to have the following parameter values be used.
Otherwise, set to auto or do not configure it at all.

SORT AREA SIZE (=Ym)

Configure this parameter explicitly in case of very heavy sorting operations that have to be optimized extra. During the installation of an OHI Back Office major release, sometimes e.g. indexes are created on very large tables that benefit in case of a large value for this parameter. This could lead to a difference in throughput time when creating index factors (e.g. 2 hours becomes 30 minutes). It is recommended to set the value to e.g. 50MB or 250MB in case very heavy sorting operations have to be expedited temporarily. The relevant quantity of memory is allocated per session in case this is required, so a value of 50 MB is not desirable when users log on. Otherwise, for certain sorting operations an unexpected high volume of memory could be allocated.

Parameters for Rollback (undo) Space

Management of the rollback space has to be automated by Oracle. The quantity of rollback space rendered available determines the throughput time for some batches as well. It is recommended to allocate some GBs of rollback space (or to allow for having this much space available by means of e.g. auto-extendable data files for the relevant table space).

The following parameter values are recommended:

• UNDO RETENTION (=10800)

This value indicates the time to Oracle as to how long the rollback space should not be overwritten to provide a long-term statement - read 'consistent' - image. This value is provided in seconds. 3 hours would be an appropriate value. If sufficient rollback space is available (to be assessed via Oracle Enterprise Manager/Grid Control) and based on one hour settings (or more) 'snapshot too old' messages pop up, then the software has to be adapted to it (an incident message has to be reported).

Parameters for parallel execution

When for batch execution parallelism is wished for the initial phase of batches please consult the previous paragraph about Batch Scheduler Performance and the optional use of parallel execution by enabling this through certain parameter settings.

8.4.2. Statistics

The statistics definitions have been changed since 10g. The 11g standard job is recommended for collecting statistics. This job handles collecting statistics of all schemes and for the dictionary statistics. The job will collect the statistics in the *maintenance window* for all objects in the database. The job determines the order of the database objects for which the statistics require altering. In that way, the most important statistics are defined at the moment that a *maintenance window* is closed.

System Statistics

For determining the optimum way to perform an SQL statement, the database uses a so-called execution plan. Depending on the postulated optimization objective for performing SQL statements - providing the first part of the result as soon as possible (FIRST_ROWS_10 optimizer_mode) or minimizing the time to determine all results (ALL ROWS optimizer mode), a different plan could be preferred.

In order to determine these 'execution plans', the 'Cost Based Optimizer' (CBO) may keep in consideration the speed of I/O of the system and the speed of the processors (the CPUs) of the server. To this end so-called 'system statistics' are required.

ATTENTION: The Cost Based Optimizer (CBO) is used by default to optimize the SQL statements as performed by the database. This is arranged via the aforementioned instance parameter.

What are System Statistics?

Up until database release Oracle 8*i* the Cost Based Optimizer considered the most appropriate execution plan for determining the I/O costs.

As of the launch of Oracle 9i, not only does the CBO have to keep account of the I/O costs, but also the CPU costs and the estimated required time table space (see 3 new columns in table PLAN_TABLE: CPU_COST, IO_COST and TEMP_SPACE).

The CBO since 9i can deal with CPU costs that are based on actual system characteristics, that allows for cost estimation for comparison of the complexity of planning which can take place that is close to reality.

A statement that requires relatively little (physical) I/O, but that uses a lot of CPU because many database blocks have to be accessed in cache, could clearly benefit from system statistics because the outcome of the required time for a certain plan is closely related to reality (in the past CPU and I/O used to be as expensive in a calculation, while in reality I/O is much more expensive, or more slow than CPU, although this might differ per machine used).

Therefore, the criteria for making the choice for most likely best execution plan can be established more reliably by the CBO.

Collecting System Statistics

Introduction

In order to optimize the performance of the CBO, the system statistics have to be collected again if the configuration or the use of the system undergoes clear changes (e.g. because the data is increasing and/or the database files are moved to a different location).

Collecting system statistics refers to an analysis of the database activity by Oracle during a certain period of time that is representative for the average database load (and the system as a whole).

Not having system statistics could result in choices for incorrect (or low performance) execution plans (if there are no records in table AUX_STATS\$ under user SYS then there are no system statistics).

Standard Values:

It is therefore possible to immediately create direct system statistics if these are not there yet, even though no representative load is involved. A number of standard settings are used (which are better than no statistics at all). To this end it is possible to indicate that statistics have to be determined without there being a representative 'workload'.

Since DBMS 10g this is by default performed by instance startup. It is possible to perform this manually by means of the following (SQL*Plus) command, under SYS (just like all other commands that follow afterwards):

exec dbms stats.gather system stats('NOWORKLOAD')

Attention: For OHI Back Office environments the NOWORKLOAD option (method *Standard values*) is the recommended setting for collecting system statistics, until further notice. This relates to negative experiences with respect to the actual collecting of system statistics.

Actually Measured Values

Subsequently, at the moment a representative load is involved 'verzamelen' (collect) can be activated. Collecting can be activated by entering the following command e.g. at 10 a m.

```
exec dbms_stats.gather_system_stats('START')
```

When closing the collecting around 3 p.m., the command will run:

```
exec dbms_stats.gather_system_stats('STOP')
```

ATTENTION: In the meantime the instance should not be stopped. Otherwise the user has to restart collecting the statistics all over.

Attention: Until further notice, the method of actually measured values should not be used, unless this is requested explicitly by OHI Development or Oracle Support Services.

Status Definition

By means of the following SQL*Plus commands it is possible to request the status of the collection system statistics

```
col sname format a20
col pname format a15
col pval2 format a30
select * from aux stats$;
```

If the statistics are defined without a representative work load, this results in:

SNAME	PNAME	PVAL1	PVAL2
SYSSTATS INFO	STATUS		NOWORKLOAD
SYSSTATS_INFO	DSTART		10-26-2004 13:59
SYSSTATS INFO	DSTOP		10-26-2004 13:59
SYSSTATS_INFO	FLAGS	1	

If afterwards collecting is activated, this provides the following output:

SNAME	PNAME	PVAL1	PVAL2
SYSSTATS INFO	STATUS		MANUALGATHERING
SYSSTATS INFO	DSTART		10-26-2004 14:01
SYSSTATS INFO	DSTOP		10-26-2004 14:01
SYSSTATS INFO	FLAGS	1	
SYSSTATS TEMP	SBLKRDS	125167	
SYSSTATS TEMP	SBLKRDTIM	391710	
SYSSTATS TEMP	MBLKRDS	97238	
SYSSTATS TEMP	MBLKRDTIM	73860	
SYSSTATS TEMP	CPUCYCLES	467124	
SYSSTATS TEMP	CPUTIM	1434067	
SYSSTATS TEMP	JOB	0	
SYSSTATS TEMP	MBRTOTAL	759624	

In that case initial values have been entered for certain values that are defined. If afterwards collecting is stopped then this could result in the following output:

SNAME	PNAME	PVAL1	PVAL2
SYSSTATS_INFO	STATUS		COMPLETED

SYSSTATS INFO	DSTART		10-26-2004	14:01
SYSSTATS INFO	DSTOP		10-26-2004	14:04
SYSSTATS INFO	FLAGS	1		
SYSSTATS_MAIN	SREADTIM	8.381		
SYSSTATS_MAIN	MREADTIM	.626		
SYSSTATS_MAIN	CPUSPEED	36		
SYSSTATS_MAIN	MBRC	4		
SYSSTATS_MAIN	MAXTHR	-1		
SYSSTATS_MAIN	SLAVETHR	-1		

What can be derived from this is that collecting statistics is based on a period of 3 minutes. In case the statistics collection is not successful the line with value STATUS for column PNAME could have value BADSTATS for column PVAL2, as represented below:

SNAME	PNAME	PVAL1	PVAL2	
SYSSTATS_INFO	STATUS		BADSTATS	
SYSSTATS_INFO	DSTART		10-25-2004	22:41
SYSSTATS_INFO	DSTOP		10-25-2004	22:41
SYSSTATS_INFO	FLAGS	1		
SYSSTATS_MAIN	SREADTIM	-1		
SYSSTATS_MAIN	MREADTIM	-1		
SYSSTATS_MAIN	CPUSPEED	221		
SYSSTATS_MAIN	MBRC	-1		
SYSSTATS_MAIN	MAXTHR	-1		
SYSSTATS_MAIN	SLAVETHR	-1		

In such cases, the collection of statistics has to be restarted.

Deleting System Statistics

For disabling/deleting system statistics

```
exec dbms_stats.delete_system_stats
```

is sufficient (in case this is desirable for whatever reason).

Committing is not required for the above actions.

System Statistics and Execution Plans

Collecting system statistics does *not* nullify the execution plans in the cache, as opposed to *editing the table statistics*. For existing SQL statements for which an execution plan was available, after the creation of system statistics no new execution plans will be defined again right away. These have to be deleted from the 'cache' first (for testing purposes it is possible to add an extra space to a statement to stress that a plan is defined again for that statement after the system statistics have been changed).

Table Statistics

In addition to having system statistics available, it is more important to have current table (and index) statistics collected. The Cost Based Optimizer uses the statistics of tables and indexes (e.g. how many records are included in a table, what is the division of values in a column, how many records are there in an index) to identify the execution plan that best meets the optimizer requirements. To this end, these statistics, in case they are estimates, have to lie near the actual content of the table (and index). The statistics could be 'estimated' based on a part of the content of a table or 'calculated' when going through the table content entirely.

In order to establish representative statistics, they have to be updated on a regular basis if the table content changes. Tables that undergo changes more and more often

when considering their total content have to be modified more regularly in terms of statistics than tables of which the content remains rather static. When a new OHI release is installed, for the adapted tables even the definition of statistics has to be performed again.

In order to abstract from this issue, a 'table monitoring' functionality has to be used in the database. Oracle keeps track of how many changes (inserts, updates, deletes) are performed on the data in a table. This data is used in certain utilities to determine statistics 'automatically' for the tables that require this. 'Temporary' tables (tables that are not permanent but that can store data only during a session) are dealt with in a different way.

Considering that there are various complicating factors for adequately collecting table statistics, script ozgistas.sql is included in the reference software. This script is called during the installation of a new release. The script is modified if changed understandings encourage doing so.

When determining the statistics, Oracle decides about which part of the table (the number of records of the total number of records) the statistics are defined. Whether this takes place based on an estimate or on a small percentage of the data of the table or based on an actual calculation of 100% of the data, the choice is up to the standard software.

The script implements required OHI settings (such as preventing and/or dropping column histograms, locking the statistics for certain tables, etc.) and uses spare runtime to collect statistics.

The script can only be run by the user who requires his objects to be analyzed. It contains two input parameters. Both of them are mandatory.

Parameter 1 involves the number of hours during which the script can run; providing a value is mandatory.

Parameter 2 involves the environment in which the script runs. Possible values include OBD (=OHI BUSINESS INTELLIGENCE) and OZG (=OHI Back Office).

When called by the installation menu (OZGPATCH) these are passed automatically.

Data Dictionary Table Statistics

In a 10g database the creation of dictionary statistics is *mandatory*; to this end dbms_stats.gather_dictionary_stats procedure can be used under sys account.

For a database with only OHI Back Office objects this takes about fifteen minutes. Should the data dictionary have experienced a lot of changes since the previous time the statistics were defined, then of course it is advisable to determine the statistics again in the aforementioned way.

Fixed Objects Statistics

Since the 10g database the creation of statistics is mandatory for so-called "fixed objects"; this allows to use <code>dbms_stats.gather_fixed_objects_stats</code> procedure under sys account.

At the moment, conditions for collecting these statistics include:

- 1. The SGA size and the init.ora database parameters have to be stable.
- 2. The system has to have a representative load.

Dividing I/O - if Possible

In the past it was common to divide the I/O over physical disks by dividing the often used table spaces and data files as well as across the available disks.

At present logical volumes and certain RAID levels are used mostly, for which the division of the I/O is assigned to the controller(s) (of which all sorts of variants are possible). In general this should guarantee a suitable I/O division, certainly considering the availability of fast read and write caches with intelligent algorithms to activate the content.

One of the few options that remain is the division across multiple controllers if these are available. For an I/O bottleneck problem this could offer a solution.

If there is a possibility for that, it is in any case desirable to locate the redo log files on a separate and fast I/O device. It would be even better to put each redo log group on a separate device or in any case successive redo log groups (e.g. even groups on disk 1 and odd groups on disk 2).

The archived redo logs (if these are used) have to be written to a separate device as well, so that the other I/O do not form an obstruction.

This two last recommendations are not strictly necessary, but first of all they have to be considered if the transaction speed slows down and if statistics show that the redo log actions tend to reduce the speed. After all, a database on which read actions take place does not easily experience problems with slow write actions with the redo logs.

Resource Management – Sessions Mutual Prioritizing

A tricky phenomenon with regard to the performance of a database refers to the performance of long-term heavy (in terms of CPU use) database processes (long-term in the sense of a few seconds up to possibly many hours). If more of this type of processes are active, then processors have to be available that can notably influence this performance of short-term (online!) database actions.

Within OHI Back Office such long-term processes are, generally speaking, batch processes for which the Oracle session consumes a lot of CPU during longer periods of time. Such processes can sometimes occupy a processor for about 100%.

In such cases it is desirable to prioritize the short-term database actions that usually take place in screens over the long-term database actions. It is, however, not recommended (or better, the opposite) to do this on the level of the operating system: if an Oracle session has certain latches (short-term locks to protect memory structures) and the process would be given lower priority and therefore 'not attended to' for longer periods of time, it is possible that other database processes will be put on hold for the relevant latches.

For this and other reasons, Oracle has so-called resource management options at its disposal to prioritize the use of resources such as CPU. The documentation contains a lot of descriptions about this, including options to 'check' resources other than CPU. For now the recommendation to use this for prioritizing short-term database sessions over long-term database sessions so that on-line users have priority over batch processes is sufficient.

A simple application has been provided for a number of years in script <code>OZGIOO2S.sql</code>. This script makes use of the standard resource plan <code>SYSTEM_PLAN</code>, as delivered in database releases up to 10g, in which there is a division between three groups of users (Resource Consumer Groups):

- Sessions of SYS/SYSTEM (SYS GROUP)
- Low priority sessions (LOW GROUP)
- Other users (OTHER GROUPS)

Resource plan SYSTEM_PLAN has been configured in such a way that when users wish to use the CPU, they get priority depending on the group they belong to: SYS_GROUP has priority to OTHER GROUPS and this has priority to LOW GROUP.

By default user SYS and SYSTEM are located in group SYS_GROUP and all other users in OTHER_GROUPS. By locating the batch users (typically BATCH and OZG_BATCH) now explicitly in LOW_GROUP by means of OZGI002S.sql online processes have priority over batch processes by default.

As of database release 11gR2 a more detailed plan is provided by default, MIXED_WORKLOAD_PLAN. For this plan to work optimal you should assign the INTERACTIVE_GROUP consumer group to the regular users and assign the BATCH GROUP consumer group to the users BATCH and OZG BATCH.

ATTENTION: An important limitation of the resource management is that prioritizing database processes takes place within a single database. If another database runs on the same server it previously was not possible to prioritize across multiple databases by means of the resource management mechanism. Prioritizing on operating system level was no solution either. Since release 11gR2 it is possible to use Instance Caging for this purpose. Please see the standard documentation for more information if you have more than one instance running on your server.

8.4.3. Collecting Performance Data

This section discusses the resources which can be activated to collect performance data.

Operating System Utilities

Simple use of some general operating system utilities (Unix based) will be discussed in some sections. These can be used to acquire insight into the load of the server(s). There are many more options, sometimes these are better and more advanced, but these tools allow for an initial impression of where the bottleneck is located in most cases.

vmstat

By means of e.g. 'vmstat 5' it is possible to acquire insight into memory-related statistics every 5 seconds, amongst which page swapping (a value of 300 seconds, or 5 minutes, could also be useful to assess the average load in a screen during a longer period; an hour consists of 12 lines).

Whether or not page swapping takes place can be derived from the value in front of the column 'sr' (scan rate) in the group page. If this has a constant value in hundreds or higher, swapping is clearly involved (the value has to be compared with the number of available pages). Additionally, for the CPU load the percentage of idle time is represented. If idle is nearly continuously close to 0, then the CPU is heavily loaded.

With regard to group 'procs', the number under r(un queue), b(locked) and (can be run but s)w(apped) is very interesting for an initial impression. Values not equal to zero indicate that processes are not serviced right away.

For more information, see the manual pages.

iostat

By means of for example 'iostat 5' the default output is given. In order to zoom in on I/O problems, specific options have to be used, but the four columns under CPU provide insight as to whether or not waiting for I/O is required. Column 'w' under CPU provides the percentage of the time required for I/O,

By means of 'iostat -xc 5 10' it is possible to have overviews provided of the average service time 10 times during 5 seconds, the busy percentage etc. of all devices including how the CPU time is used. A busy device could possibly be relieved by distributing the database files better across the devices (if the database files are an explanation for the load of the devices).

SAV

By means of the sar utility it is possible to register statistical data with a certain interval in a simple way. The data can be converted into readable reports by means of the same utility.

In order to optimize the use of this a set up is required with an interval of e.g. 10 minutes of 'recording' (24 *7). This allows reasonably well for zooming in on longer peak periods and in this way data involving half an hour can be compared with statistical data on a database level (this will be discussed at a later stage).

By means of the following 2 lines in the crontab for sar (user sys on a Sun Solaris system) every 10 minutes recording can be made that are converted into a readable report at the end of the day (11:55 p.m.)

```
0,10,20,30,40,50 * * * * /usr/lib/sa/sa1
```

55 23 * * * /usr/lib/sa/sa2 -s 0:00 -e 23:50 -i 600 -A

CPU load for previous period (all 'snapshots' of the day):

sar

Reading memory use for previous period:

sar –

Reading swapping of previous period:

sar -w

Reading the actual load five times every 10 seconds:

sar 10 5

Of course there are advanced tools to implement monitoring of the system. However, because of a comparison with other customers and installations and simply rendering available data to Oracle in case of performance problems, it is desirable to always have sar monitoring activated. The overhead is very limited and the advantage is that this allows for tracing the cause of performance problems faster because sometimes certain causes can be excluded.

top/topas/prstat

By means of a tool such as prstat, top or topas (or other system utilities) it is possible to retrieve which processes are used by most CPUs rather fast. Especially if certain processes are slow or if the CPU use on the server level is high, then it is possible to zoom in on the processes that require most CPU.

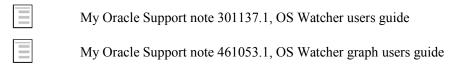
In case of frequent performance problems, it could also be desirable for Oracle to use such a utility. Access to one of these utilities (available via the 'remote connect' account) could speed up the process.

swap

By means of the swap command, certain data can be retrieved involving the swap memory. This could be desirable in case swapping seems to be involved.

Listing out the swap memory:

swap -l


Summary of the swap use:

swap -s

OS Watcher

Oracle's OS Watcher (OSW) is a collection of UNIX shell scripts intended to collect and archive operating system and network metrics to aid support in diagnosing performance issues.

Information on how to setup and use OS Watcher can be found in the following My Oracle Support notes:

Database Monitoring

Oracle Enterprise Manager

For monitoring the database for recent activities there are various options. Particularly, by using the Oracle Enterprise Manager (OEM) in combination with an OEM repository and configured agent processes, a lot of useful information can be retrieved.

It is highly recommended in that case to use OEM and to have its (web) user interface available for OHI Development to inventory the performance problems rather fast.

Automatic Work load Repository

Therefore we choose to collect data periodically in a relatively easy way, so that comparisons can be made between data of various customers. In case of more general performance problems, this data allows for the possibility to obtain a clear view as to the bottlenecks in the database (presuming that there are any). Therefore we use AWR, the Automatic Workload Repository which is installed by default and configured since DBMS 10g. AWR creates periodic 'snapshots' of the database statistics automatically and stores them in the SYSAUX table space. Reports can be released on these snapshots in tables.

By default one snapshot is created every hour. Every night a job runs which automatically removes snapshots taken more than 7 days ago (the default retention setting).

OHI advices to create snapshots each 20 minutes and use a retention period of at least 35 days. This consumes more SYSAUX space but can be very helpful to investigate problems (and look for example whether they also occurred the previous month in the same way).

RAC

In a 10g R2 RAC environment, each AWR snapshot gathers information regarding all instances in the cluster. This data will not be aggregated.

AWR - Reporting Statistics

When statistics are collected, they can be used to run reports about certain periods. These periods are characterized by a 'start' snapshot and an 'end' snapshot (identified by numbers; a list of snapshot periods with identifying numbers is displayed by each AWR utility that requires the snapshot numbers).

By means of report script awrrpt.sql it is possible to create a general report about a certain period. If a problem is encountered during a certain period, then it is useful to limit the period to be reported to a time span that keeps the problematic period to a minimum. If a reduced speed experienced from 9:45 a.m. to 11:55 a.m. then it would be recommended to run the report for the period 9 a.m. to 12 p.m.

If a name for the file requested in which the report is 'spooled' then it would be useful to apply the standard proposed naming.

All sorts of statistic information is displayed in the relevant report. Additionally, various lists are provided of the heaviest SQL and PL/SQL statements.

For the statements for which there are uncertainties regarding the legitimacy of their size, it is possible to create a more detailed report by means of a separate script <code>awrsqrpt.sql</code>. In this case the identifying numeric hash value (SQL ID) has to be provided which is reported for each statement if the SQL statement report is performed correctly with <code>awrrpt.sql</code>. Identifying 'wrongful heavy' statements will ordinarily be performed by the development department with OHI Back Office (the development team) after an AWR report is delivered.

However, it is not necessary to examine problem statements that may be present in the OHI Back Office application as customer of OHI Back Office. The OHI Back Office development team should perform this task. But by means of the AWR reports and any specific reports pertaining to certain statements, the development team can focus on pertinent solutions for any problems.

ADDM Report

When AWR reports are delivered to the development department for OHI Back Office, then for the relevant snapshot range also the ADDM (Automatic Database Diagnostics Monitor) report has to be delivered, which provides advice regarding the AWR collected data; to this end, script addmrpt.sql has to be run.

This script performs an ADDM analysis for the relevant range and creates a report about it.

In order to display the report of the *last* ADDM analysis, script get latest addm.sql can be used; this script does *not* first perform an analysis.

RAC

In a 10g R2 RAC environment, an ADDM report node is specific; for the different nodes therefore different ADDM reports have to be collected.

Tracing Sessions

Whereas AWR is used to collect all of the database data, in certain cases it may be desirable to zoom in on a specific process or a certain database session. Certainly when a specific session causes problems and no general problems are detected.

For such a session, creating so-called 'trace files' is recommended. Even though this is generally a known process, some indications are provided as to how to deal with tracing.

Setting a Session to Trace Mode

Activating tracing in a session is relatively easy by entering the following command:

```
alter session set sql_trace = true;
```

However, sometimes it may be required to set an ongoing session to trace mode. This is possible by entering command:

```
execute dbms system.set sql trace in session(&sid, &serialnr, true)
```

This has to be performed with an account that has relevant rights.

While doing so, it is necessary to determine the values for `sid' and `serial#'. These can be retrieved from view V\$SESSION and by means of column USERNAME it is usually possible to create a selection for the user sessions that are slow.

However, users who have opened multiple screens from the menu in OHI Back Office will have multiple sessions in the database. When a slow action in a screen has to be traced, it is possible to do as follows:

- Start the screen from the menu (or the calling screen once it appears in the start-up screen).
- As a first action, before performing the slow action, determine the 'sessionID': Start the Information window by means of the Help menu and the Info menu option. Determine the value of 'sessionID'. This value identifies a session by means of column AUDSID in V\$SESSION. As long as the 'problem screen' does not close, this value will remain constant and by means of selecting SID and SERIAL ON V\$SESSION the SERIAL# values can be determined:

- Use the sid and serial # values in order to perform the above command and to set the session to trace mode.
- Perform the slow action.
- Check the trace directory to see if a trace file has been created with the name oracle process number as provided by the above query.
- Close the screen (the trace file will be closed which would render the information complete and therefore easier to use).

In case a screen is already blocked by a long-term action and if it is still desirable to trace the session, try to identify it in the following way:

- Determine which oracle process uses a lot of CPU in the relevant database (by means of a peak-like tool). If there is no such process then the problem is supposedly not located in the database but in the forms. It is possible that the forms process consumes a lot of CPU. The database session does not have to be traced in that case.
- By means of the following query, it is possible to determine which sessions the relevant user has in the database. The oracle process that consumes a lot of CPU should have the ID available in the list of process numbers in the 'SQL Net' column as provided in this query.

```
select row number() over (order by b.process) | | '.' as row number
      b.osuser osuser
b.username user
                    sid
     b.sid
      b.serial#
                  serial#
programm
      b.program
      b.process
                     UNIXpid
      d.spid
                     SQL net
     a.sql text
                    sqltext
from v$sqlarea
      v$session
                      h
```

```
, v$process d
where b.sql_address = a.address (+)
and b.paddr = d.addr
and b.username = upper('&&usr) /* Oracle database account of
the user */
and b.osuser = 'oracle' /* f60webm processen are running
under the Unix account "oracle" */
order by row_number() over (order by b.process)||'.'
```

- Use all sid and serial# combinations that match the 'heavy' oracle process in order to set the relevant sessions to trace mode.
- Check if a trace file appears (see above). If this is not the case, then it is possible that the session requires a lot of time with a single SQL statement. Only after the statement provides results or if the session starts with other statements then a trace file will appear (for heavy statements in batches this may be the cause if no trace file appears, for screens this is the case less frequently).

For running batch processes, searching the sessions based on a username is not a solution if multiple batches run at the same time. The batches all run under the same Oracle user, often referred to as BATCH. Also the batch scheduler runs under this Oracle user and has to be recognized. This is possible because the relevant session in column MODULE of V\$SESSION has a value that starts with SYSSO04S. This session should therefore not be traced.

If multiple sessions are active in the user batch, it is possible to identify the correct session by selecting the ID process the session has under Unix. If everything goes right, the session will return as a heavy Oracle process in a tool that displays the top sessions (see above). The process ID that matches the Oracle process can then be used to select the correct values from the V\$SESSION and V\$PROCESS view by means of the following statement:

Should several heavy Oracle processes run, request the start time of the heavy processes by means of ps command (ps -eaf | grep procesid>) and compare this with the start time of the script requests as displayed in the screen. This will have to be about the same as the start time of the running script request. In this way it can often be determined which Oracle process matches which script request.

Trace File Points of Attention

Some points of attention

- If a session is set to trace mode then normally a trace file will be created in the location provided by means of the initialization parameter <code>DIAGNOSTIC_DEST</code> (within a subdirectory 'trace' deep within the directory structure designated by this location setting).

- used (a so-called Sxxx process, S001 for server process 1, etc.). Such a server process will also write statements of other sessions to the trace file. An MTS configuration is not as usable for tracing sessions.
- By means of the initialization parameter MAX_DUMP_FILE_SIZE a limit can be set for the size of trace files (in system block processes or in KB or MB). If this limit is set rather low (some MBs e.g.), then it is possible that trace information can be registered only for the first few minutes of an action, because afterwards the maximum volume is reached for the trace file. In order to trace a slow action in a screen this is generally not a problem, for tracing a slow batch sometimes hundreds of MBs of data per hour could be written already. Therefore it is of importance that these parameters are set to e.g. unlimited or to a high value when tracing long-term batch processes (and of course sufficient space has to be available on the volume on which the trace file will be written; if necessary use a symbolic link for the relevant directory for writing the trace files in a different location which has sufficient space available).
- If a trace file is filled up then it is no longer possible to get the writing of the trace information started by setting the parameter value higher dynamically. Only once a new session is started trace information will be written again.
- However, tracing may also be activated while no trace information is written (see the previous remark about tracing a screen which has been blocked for a longer period). Often the cause is that the session is occupied for a longer period with one and the same SQL statement and does not retrieve records (yet in case of a select statement). No trace information will be written in that case. This could be the case for batches if an SQL statement is included which would have a result only after a couple of hours. Whether or not this is concerned can usually be verified by assessing if the session has been occupied with the same SQL statement for a long time in Oracle Enterprise Manager.
- If possible, it is desirable to have the trace file as complete as possible. Particularly for the slow screen actions it is possible to close the screen after 'reproducing' a slow action after which even the trace file is closed. This will also contain certain counting information that could be useful for assessing the trace file. Also for the batch it is recommended to have a trace file about the entire process that is as complete as possible, but usually this is not possible due to the size. Or it is not possible because the batch has been running for too long and does not end.

Formatting a Trace File

When a session is set to trace mode and the trace file containing the trace information has been identified, then it is desirable to format it in a format what is easily readable and useful. It is possible to already format a trace file while it is still being created. If possible, it would be better to wait until it is entirely ready.

Formatting has to take place via utility 'tkprof'. The version that is located in the database bin directory of ORACLE_HOME has to be used. Switch therefore in advance the environment settings to the correct ORACLE HOME.

In order to get the heaviest statements of the trace file on top in the formatted output, it is of importance to apply good sorting techniques. This optimizes the output because

in that case it is not necessary to look for the slowest statements very long and therefore slow statements are missed less easily.

Useful sorting can be done on the sum of the elapsed times of parse, executing and fetching. In that way most long-term statements will for sure end up on top in the output. For this, parameter value 'sort=prsela, exeela, fchela' is very useful. An example of call:

```
tkprof ontw_ora_7222.trc trace.txt explain=ozg_owner/ozg_owner
sort=prsela,exeela,fchela
```

Some points of attention:

- Run tkprof under the account that has relevant rights for the objects used, for example the owner account of OHI Back Office. Or use an account that has SELECT ANY TABLE rights.
- Given that tkprof determines execution plans for the statements in the trace file at the moment on which tkprof is running, then it is important that nothing in the database is changed between the creation of the trace file and running tkprof (for example, the table statistics do not have to be updated in the meantime).

Statements - Determining Execution Plan

In case certain SQL statements are slow then it is desirable to examine the execution plan by consulting the explain plan output in which the execution plan is represented. By means of tkprof the execution plan is represented for the statements by default in the trace file. But it could also be desirable to assess a change in a statement in terms of execution plan.

In order to determine an execution plan it is important to have access to the right PLAN_TABLE. For this, the global temporary PLAN_TABLE has to be used. To facilitate this it is *mandatory* to remove any available PLAN_TABLE tables under all schemes. The following action list can be used to obtain this:

• Select the owners of the existing PLAN TABLEs:

```
select owner from dba_tables where table_name='PLAN_TABLE'
```

- Remove the PLAN TABLES for the various owners.
- Remove any public and private synonyms for PLAN_TABLE if they refer to a PLAN_TABLE.

Assessing the execution plans of slow statements is something that has to be performed by the development team of the OHI Back Office application and will not be discussed further in this document.

Check Index Use

It could be desirable to check if certain indexes are used. For this, it is required to activate the relevant monitoring for an index:

```
alter index &index name monitoring usage
```

Via view v\$object usage it is possible to trace if an index is used.

By default this is not required and the development team of OHI Back Office will be asked to activate this if required for studying a certain performance problem.

Use of SQL Access Advisor

After release 2007.02 script <code>ozgtunes.sql</code> (available in <code>sozg_base/sql</code>) is available, a report can be created for a (problematic) SQL statement. This can be run if it turns out that e.g. based on an AWR report an SQL statement leads to many problems.

The script starts the *SQL Access Advisor* and hereby generates information that contains advice regarding the steps to be taken in order to optimize the *SQL* statement performance. The output can be sent along with the rest of the mandatory information for incident notifications of performance problems. The OHI Development can then probably solve the problem faster.

Parameters OZGTUNES.sql

- 1. The ID of the SQL statement about which information/advice has to be printed.
- 2. Optional: the logical name of the directory (= directory object in the database). If nothing is indicated then OZG TMP is used.
- 3. Optional: product with permissible values ozg (=OHI Back Office) and OBD (OHI Business Intelligence). Parameter influences advice: either OLTP or datawarehouse. If nothing is indicated then ozg is used.

Examples of Possible Calls

@OZGTUNES ax0ufbmack2cg " " This command writes file ax0ufbmack2cg.out to OZG_TMP with product OZG (OLTP).

@ OZGTUNES ax0ufbmack2cg " OBD Writes file ax0ufbmack2cg.out to OZG TMP with product OBD (datawarehouse).

@ OZGTUNES ax0ufbmack2cg OZG_DIR "
Writes file ax0ufbmack2cg.out to OZG_DIR with product OZG (OLTP).

@ OZGTUNES ax0ufbmack2cg OZG_DIR OBD Writes file ax0ufbmack2cg.out to OZG_DIR with product OBD (datawarehouse).

SQL Profiles

Using the *SQL Tuning Advisor* it is possible to store SQL Profiles for specific statements. It is allowed to store SQL Profiles.

8.4.4. Assess Settings during 'Regular' Performance

This component will be developed in greater detail at a later stage.

Database

Components to be checked:

- Hit rate of the buffer cache. At least 90%, but preferably more than 95%.
- The same for shared pool.
- Checking the PGA settings

8.4.5. Preventive Application Management Actions

This component will be developed in greater detail at a later stage.

Max number of batches

Issues to be considered:

- Max number of processes for splitters
- Using splitters

8.4.6. Examining Performance Problems

In case there actually are complaints about performance it is recommended to zoom in on the problem before drawing conclusions as to a possible cause. In this section a description can be found about a possible approach that can be applied.

Finding out the Scope

When performance problems occur it is important to first find out the extent of the problems at the moment they are encountered (the problem perhaps only occurs during certain periods, also these periods are of importance):

- Does everyone experience the problems on all locations regardless of the operation?
- Is it possible for the problem to be encountered in various workstations but does it only occur when logging in on the system with a certain name?
- Is the slowness related to the location (only certain workstations or PCs)?
- Does the slowness occur only in certain sections of the application?
- Can the slowness be detected only if a certain action is performed on the data?
- At the moment the problem occurs, is it just OHI Back Office that has a slow performance on the PC or are all of the actions in the relevant workstation(s) experiencing this problem?

If the problem is time-driven it is of importance to note down the exact time (up to the minute with a note specifying where the time is read; the clock of the system could differ by a couple of minutes).

With the answers to these questions the scope can be determined. This would probably lead to one of the following delineations:

A PC-specific problem is involved.

In these cases the problem can be caused by the hardware, the network connection, the operating system, certain applications that run on the PC, alternative settings on the PC or, more tricky, a combination of these problems.

It is typical that the problem is encountered on one PC regardless of the user that logs in or the application and that the same user experiences no problem on other PCs.

• The problem is related to the network.

Only certain workstations in a specific section of the building or a specific

building experience this problem.

Typically, the problem is not encountered when the same user performs the same operations on workstations in a different section of the building.

• The problem is related to the server (database and/or application server).

All applications on the server(s) experience the problem. In that case, via monitoring utilities it is possible to check that the server is overloaded at a certain point (too much swapping/paging is involved; the server is occupying nearly 100% CPU all the time or is waiting for I/O regularly; or a combination of the above).

Typically, all users experience problems with the slowness in the applications that run on the relevant server and all server applications are rather slow.

• It is either a database or a general application problem.

All actions on the relevant database are performed relatively slowly (generally speaking this will result in a server problem but in that case particularly the database actions will cause problems). Typically, one particular application runs very slowly instead of other applications that run on the same server (if available).

On the outside it is often hard to make a distinction between the server and the application-specific database problems.

• The problem is caused by a problem in the application.

The problem is only encountered during certain actions. Depending on the gravity of the problem, only the relevant action experiences problems in performance or other components of the application are burdened by it as well because the database and/or server is overloaded.

Typically, some of the actions in the application are performed at a normal speed, but certain actions are much slower than before (if there is a frame of reference).

The problem is caused by wrong application use.

Typically, new users are involved or users who perform certain actions for the first time. Or a function is involved that is used for the first time since its introduction. Chances for incorrect use of certain functions or wrong expectation are the highest.

The problem is caused by a certain bottleneck in the infrastructure of the application.

Typically, for these problems no clear general overloading can be observed. A possible cause could be that many processes change the same file (outside of the database). An example, which actually did occur, involved many user sessions that wrote many messages at the same time in the Apache log files.

Zooming in on Problems

In order to figure out the cause of the performance problems experienced, the following suggestions are made:

- Checking the workstation: What is the CPU load of the PC like (e.g. use a 'task manager' to monitor the CPU load; if it is near 100% and this is not caused by the application process then usually this could be a reason).
- Does the relevant action (execute it as similarly as possible) run comparably slowly in a different workstation? If not, does it make a difference if the same account is used in a different workstation?
- Is a peak or an overload encountered on the server?
 - Is there hardly or no idle CPU time?
 - Is 'waiting for I/O' involved?

have to be ascertained.

- Is there a high paging or swapping rate and do all active processes insufficiently fit in the work memory of the server?

In case of one or more of these phenomena, the cause has to be ascertained. In case of a heavy CPU load the processes that cause the problems have to be defined as well as the application/database they belong to. In case of a high I/O rate, the processes that cause the problem have to be checked (as well as the application they belong to). If the memory use is too high, then what has to be checked is if there are certain processes that require large amount of memory or if the number of processes is higher than normally. The cause for that problem will then

- If no peak load is experienced, is there a clearly heavy process available at the moment the performance problems are experienced? Apparently the relevant operation is then very heavy and requires to be zoomed into.
- In case certain processes are heavy (a lot of I/O, CPU or memory usage) the kind of process has to be ascertained: For OHI Back Office only a few types of processes can be recognized:
 - an Oracle client process that handles the SQL and PL/SQL work;
 - a forms server process that runs on the server and that matches the applet screen processes that run on the workstations;
 - a batch 'client' process (reports, SQL*Plus, SQL*Loader, import/export or shell process).

In almost all cases the Oracle client process, which matches a certain database, will be the culprit. At times a web forms server process may crash or spin (users should never have such processes run for more than few CPU percentages; if this happens, it has to be killed). If the Oracle client process is identified then by means of the process ID it is possible to determine which database session matches it, after which it is possible to examine the relevant database session further.

• If a certain process is identified as the culprit it can be examined further. For Oracle client processes additional tools are available without problems, for other processes even the source will have to be examined. Oracle client processes can be set to trace mode so that the produced trace file can be assessed afterwards by formatting it with tkprof. Additionally, it is possible to zoom in to the SQL statements that perform the process and to have a look at the statistics in Oracle Enterprise Manager or by means of a different tool.

In the future zooming in on problems will be focused on what appear to be encountered in the database. If research shows that the problem is to be found elsewhere, then this section will probably not be of any further use.

Before continuing, the changes made since the problem has occurred will also have to be discussed further:

- Has the frequency increased?
- Is there a new version of a component of the total 'stack' technology (hardware and software) in use?
- Have multiple changes been implemented (this makes it more tricky to have a clear view as to the cause, which would call for making as many changes as possible successively rather than simultaneously).
- Is it for certain that the problem has not occurred before?
- Is the problem related to time periods? In other words, is the problem encountered during the beginning or the end of the week, the month or the year?

The more information available, the more plausible certain causes may be or the more easily others can be excluded.

Search the Oracle Database for a General Problem

At a certain moment a general database problem can be questionable. In that case it has to be clear that no other causes are involved:

- No additional users are involved which would stretch the limits of the machine.
- There is sufficient physical memory available or, not too much swapping is taking place.
- There are no processes that are more prominent in terms of consumption.

If this impression of having problems with the entire database performance persists, then the general database matters should be focused on. Particularly, the AWR output which reports on the slow period could be useful.

Now examine the following:

- Is the problem an I/O problem:
 - do the service times in AWR no longer correspond with the 'good' periods?
 - has the buffer hit percentage clearly decreased?
- Are there any unusual events in the top 5 of the wait events with a substantially higher waiting period than normally?

In case e.g. a latch problem is involved, then this is to be zoomed into. There could be numerous other problems like this. An initial approach is to search on My Oracle Support for similar problems.

Generally, general database problems - not caused by some specific processes - do not tend to cause application problems that easily. A parameter setting value that is too low would more likely be a cause to a problem.

Search Oracle Sessions for Problems

If it is clear that certain sessions are perceived as top processes, they require to be examined. At a later stage, more information will be provided about a possible approach, using the previously described possibilities.

8.4.7. Notifying Performance Problems

If performance problems occur which are caused by the OHI Back Office function, then when notifying a performance incident the following information is mandatory:

- 1. ADDM report
- 2. AWR report in HTML-format
- 3. Output of Object check (see *Installation manual, Oracle Health Insurance (patch) releases* on Beehive Online; start the Object check via the *application menu* so that the *runtime* checks are performed!)
- 4. In case of ORA-00600/07445 error messages; the number of the Service Request logged with Oracle Support Services, and the corresponding alert-& tracefiles

Based on this information it is possible to ask for more information with respect to specific SQL statements; subsequently, in that case a delivery of the following will be requested:

- 1. AWR SQL report in HTML-format
- 2. Output of OZGTUNES.sql

For more information, see Collecting Performance Data

8.5. Performance Application Server

This section briefly discusses the performance of Oracle Forms and Reports

8.5.1. Load Balancing Oracle Forms

In order to implement Load balancing for Oracle Forms (the screen interface component of OHI Back Office) the following My Oracle Support notes can be used:

294749.1 : Troubleshooting WebForms Tuning / Performance /Time out Problems

8.5.2. Tuning Oracle Reports

9i/10g Architecture

In order to set the use of Oracle Reports (one of the batch components of OHI Back Office) the following My Oracle Support Notes can be used (although they refer to previous releases they can still help):

282170.1: How and Which Options to Set in 'jvmOptions' for a Reports Server / Engine
282406.1: Engine Parameters, their significance and recommendations in

258225.1 : Oracle Reports 9 <i>i</i> Server Does Not Appear to Equally Load Requests Across Engines ?
296533.1: Reports Server is using one engine only, even when maxengine is set to a higher value

Troubleshooting Reports Server

Please read the paragraph 'Tracing Report Execution' (24.3.7 in 'Publishing Reports to the Web with Oracle Reports Services' which is incorporated in the FMW Documentation Library) to enable logging. The logging information might help in finding out what your problem is.

8.6. Prevent Unnecesary Lock Messages

The OHI Back Office application implements an intensive locking strategy to safeguard consistency of the data and a watertight business rule mechanism. This is a unique and distinguishing characteristic of the OHI Back Office application. But it may be that you need to adapt table storage settings to prevent 'preventable' (unnecessary) lock messages that can occur due to high concurrency load.

What do we mean with this? First follows a short explanation of some concepts.

- A table consists of a number of database blocks.
- An active transaction on a database block (having a lock or posted update, delete or insert on a record in the block that is not yet committed or rolled back) requires a transaction entry in that block.
- A transaction entry requires approximately 23 bytes in a block (the exact nr of bytes is operating system dependent).
- In each block there is a number of initially reserved transaction entries in the block header.
- When there are more transaction entries needed than initially reserved the free space in a block can be used for additional 'dynamically' allocated transaction entries.
- When a new transaction on a database block cannot acquire a
 transaction entry due to a lack of free space this is handled in the same
 way as if a lock on a record cannot be acquired. Depending on the
 executed statement the statement fails or hangs/waits until the
 transaction entry can be acquired.

What does this mean?

- When you have a lot of concurrent sessions that execute transactions on the same block (this is table and process dependent) and the free space in the block is already quite exhausted by former updates of records that consumed the free space, it may be a next session raises an exception during an attempt to lock data with a NOWAIT clause.
- Even though the record to be locked is not actually locked the exception is thrown that the 'resource is busy', meaning the lock cannot be obtained.

- This is no 'real' lock but a message indicating there is transaction congestion within the block.
- It is very hard to distinguish these lock messages from actual lock messages, where the data was locked by another session.

When you expect processes suffer from these unnecessary lock messages and these messages do obstruct your processes, you should adjust storage parameters for the table where this occurs. You have the option to increase the INITRANS setting for the table involved and/or increase the PCTFREE setting.

The INITRANS value determines the initially reserved number of transaction entries in the block header of a block where PCTFREE determines the amount of space to keep free in a block for row length increase. Inserts are allowed as long as that PCTFREE is obeyed.

Currently within OHI Back Office minimum values of 4 or 16 are implemented for the INITRANS setting, depending on the table. You may increase this value; OHI Back Office will implement the 4 or 16 as a minimum value during release installations. These values are based on an assumption that the maximum nr of parallel sub processes that is used is in the range 16 to 20. If you clearly use more parallel sub processes it might be needed to increase your actual setting for certain tables proportionally when you expect 'lock' messages occur because of a to low initrans setting.

You should trade off whether you want to reserve additional space in a block for transaction entries, that cannot be used for actual data storage, against the chance and implications of an unnecessary lock message due to high number of concurrent processes.

Do not blindly set high values on all tables, this will cost you valuable storage space and increase your IO rate. Only implement higher values on tables that clearly suffer from this issue.

If you are not sure whether a table suffers from this problem please contact OHI Support and ask for assistance in identifying potential problematic tables (this is dependent on your database block size, the order and way you run processes and the parallel degree you implement for batch processes).

As from release 2013.01.0.0000 / 10.13.1.0.0 onwards a message (as logged by a batch process) that a record is locked, occurring when an attempt to lock the record fails, will in most cases show the table involved in situations where that was not yet shown in older releases. This can help in identifying tables that may suffer from this issue. Typically this information is not present when a lock attempt fails due to an unavailable transaction entry but this does not mean that when this info is absent this is always caused by this problem. Other improvements and investigation may help in identifying the failing statement and whether your environment suffers from this problem.

Beware that when you adjust the INITRANS or PCTFREE setting the new values will only be applied to newly acquired blocks. All already acquired blocks do implement the original settings. A reorganization of the table (for

example by moving the table) is needed to implement the new settings on existing blocks.

8.7. ANTICIPATE PREVENTIVE RESOURCE MESSAGES

If a certain type of resource is insufficiently available (memory, free disk space, free table space, reserved memory space for extra database sessions, etc.) error messages may be encountered in the application.

The objective of this section is to discuss a number of matters as to how preventive action can be undertaken to prevent certain resource-related messages as much as possible.

In a subsequent phase, this section will be worked out further based on practical experiences. The following indicates the type of matters involved.

8.7.1. Prevent Database Management Messages

By use of active management certain database messages can be prevented. Therefore attention will be paid to the following subjects:

- Active space management for data and index storage
- Auto space management
- Redo and temporary space management
- Monitor the file system space (particularly swap space)
- Processes parameter
- Undo parameter settings
- Session cached cursors

8.7.2. Other Points of Special Interest

Additionally, attention will be paid to the following remaining related matters:

- Number of parallel processes
- Monitoring batch jobs
- Advice to application managers with regard to batches
- Error messages in batch scheduler log
- Compiling sources as a preventive measure
- Locks

9. Uninstalling OHI Back Office

The uninstallation of OHI Back Office consists of the following activities:

- Remove the OHI Back Office database(s);
- Uninstalling the Oracle Database and Application Server software on the database, application and desktop layers (if this Oracle system software is not used by other software any longer);
- Deleting directory \$0ZG_ROOT;
- Deleting the OS account batch;
- Deleting the OS account oracle (if this is no longer used by other software);
- Cleaning the file system.

APPENDIX A – CONFIGURATION OF MULTIPLE BATCH SCHEDULERS

For the same database multiple batch schedulers can be launched. However, for the database provided no more than one batch scheduler can be active per server. If for example four servers are available, then a maximum of 4 batch scheduler processes can be started for the same database.

The work between the different batch schedulers is divided based on a *dynamic load* balancing mechanism. This entails that if a batch scheduler process is added or deleted, the load will afterwards be divided equally across the active batch schedulers.

In case of multiple batch schedulers it is important that the output and log information is written to a central location, so that when consulting the log/output from the OHI Back Office application it does not matter on which server the batch process has run. For this purpose a SAN can be used. An alternative is the use of NFS, for which one of the servers renders a directory available for creating log and output files.

USE OF NFS PARTITION

This section discusses how batch scheduler processes can store their log and output files in the same directory structure on different servers. In this process one server renders a directory available, which is the NFS *server*. Other servers may 'share' this directory they are the NFS *clients*.

Activities of NFS Server

Enter the required command as root to render available the desired directory as NFS share.

Share Command under Sun Solaris

Under Sun Solaris share is used to have a directory used as NFS partition. The easiest form of this command is:

share <directory>

share \$OZG BASE

If directory ${\tt SOZG_BASE}$ is rendered available, then the Solaris command is:

Share Command under IBM AIX

Under IBM AIX exportfs is used to render available a directory as NFS partition. The easiest form of this command is:

exportfs <directory>

If directory $SOZG_BASE$ is rendered available, then the AIX command is as follows: exportfs $SOZG_BASE$

Security

The above commands provide read-write access to all hosts and for all users. The manuals of the Operating System used by you contain the information required to improve the security.

Activities of NFS Client

On servers that function as NFS client, the NFS share has to be uploaded. The first step entails defining the mount point:

```
mkdir -p <mountpoint>
```

Afterwards the remote NFS partition has to be uploaded

```
mount -F nfs <host>:<directory> <mountpoint>
```

If for example directory /u01/app/oracle/product/OHI/prod has to be uploaded on server myhost as /u01/app/oracle/product/OHI/prod then the command will look as follows:

STARTING / STOPPING THE BATCH SCHEDULER

Starting the Batch Scheduler

For each server only one batch scheduler can be active for a given database. If the batch scheduler process is activated, the batch scheduler reserves a user lock for the given server. If a batch scheduler process is active on the given server, the user lock is already occupied and the batch scheduler will stop.

If successful, the batch scheduler registers as an active process. This means that in table ${\tt ALG_BATCHSCHEDULERS}$ flag ${\tt IND_ACTIEF}$ of the row matching the server is set to J.

In the following example the batch schedulers are active on servers myhost1 and myhost2. Query

```
select server
,          ind_actief
,          pid
from     alg_batchschedulers
/
```

provides in that case the following result:

```
SERVER I PID
-----
myhost1 J 17015
myhost2 J 11098
```

Stopping the Batch Scheduler

The batch scheduler checks the row matching the process in table ALG_BATCHSCHEDULERS periodically. If column IND_ACTIEF is set to N, then the batch scheduler will stop.

The batch scheduler is stopped on server myhost by means of the following SQL statement:

```
update alg_batchschedulers
set    ind actief = 'N'
```

```
where server = 'myhost'
```

Script ozg_stop_batch.sh notifies *all* batch scheduler processes of a certain environment to stop, by performing the following statement:

```
update alg_batchschedulers
set    ind_actief = 'N'
/
```

DYNAMIC LOAD BALANCING MECHANISM

Functionality

Each batch scheduler process uses the dynamic load balancing mechanism in order to determine how many new script requests can be processed. As no central 'key player' has been appointed, each batch scheduler process can use the mechanism autonomously.

For this reason the following information is required:

- 1. The number of batch schedulers (# batchschedulers)
- 2. The number of active processes started by the batch schedulers (#active_processes)
- 3. The number of active processes started by the proper batch scheduler process (#child_processes)
- 4. The maximum number of batch processes for the given database (#batch_max_processes). This value is determined by the system parameter BATCH MAX PROCESSEN

The mechanism returns the smallest number of

- 1. #batch max processes #active processes
- 2. (#batch max processes / #batchschedulers) #child processes

Example

Imagine the following situation:

- The value of batch_max_processen is 100
- 4 batch schedulers online with 17, 22, 24 and 18 active processes respectively.
- 40 requests on hold

then we can see the following division:

Scheduler	1	2	3	4	Total
Max. #processes per batch scheduler	25	25	25	25	100
Active	17	22	24	18	81
To be started per batch scheduler	8	3	1	7	19

NAMING REPORTS SERVER

CAUTION: The instruction below still needs to be adapted for the situation where the new application server (Fusion Middleware WebLogic) is used. This will be updated soon (March 2011).

In case multiple application servers are active, the Reports Server to be used has to have the same name for each application server.

For this, a standalone Reports Server can be started by means of command rwserver.sh; for more details see the Oracle*Reports documentation.

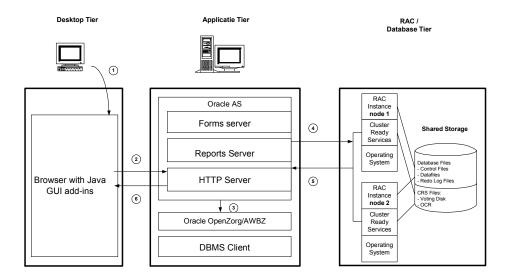
APPENDIX B - INSTALLATION & CONFIGURATION OF OHI IN A RAC ENVIRONMENT

INTRODUCTION

This chapter describes the installation and configuration of OHI Back Office in an Oracle RAC environment.

This chapter only applies for customers who would like to migrate their current OHI Back Office 'single instance' environment to an Oracle RAC environment.

Via the Oracle website, under the denominator *Oracle By Example (OBE) Series*, it is possible to listen to free Mini Lessons in order to learn how to use the different features of the Oracle Database.


There are e.g. training sessions for RAC, ASM, Clusterware and Manageability.

RELATED PUBLICATIONS

See Related publications/RAC.

ARCHITECTURE

The following provides a general overview of the architecture.

Some remarks about the architecture:

1. Deploying RAC alone is *not* a complete High Availability solution. If e.g. a SAN (Storage Area Network) breaks down, RAC does *not* offer protection and having a

second SAN (stretched cluster situation) could provide a solution.

For an overview of the Oracle Maximum Availability Architecture see:

http://www.oracle.com/technology/deploy/availability/htdocs/maa.htm

2. For additional information on shared storage solutions, see the following My Oracle Support note (which is one of the reasons why ASM is the only certified choice):

183408.1 : Raw Devices and Cluster File systems With Real Application Clusters

Oracle recommends using ASM as a Shared Storage solution for the Database Files and a Shared RAW device for the Oracle Cluster Registry and the Voting Disk.

- 3. In terms of availability and performance Oracle recommends using at least two Host Bus Adaptors and at least two Network Interface Cards per server/node.
- 4. In case of RAC, Oracle recommends to separate the Application tier from the RAC / Database tier. This supports the Oracle Grid Strategy.

HARDWARE AND SOFTWARE REQUIREMENTS

In order to run OHI Back Office in an Oracle RAC environment, the following software has to be installed completely:

Cluster Layer:

 Oracle Clusterware (consult <u>Oracle Health Insurance Certification Form</u> for required version and interim patches)

Database Layer:

 Oracle Database Server (consult <u>Oracle Health Insurance Certification</u> <u>Form</u> for required version and interim patches)

SIZING AND PERFORMANCE

SYSAUX Tablespace

In case of RAC more space is required in the SYSAUX tablespace; in order to determine its size, use script \$ORACLE HOME/rdbms/admin/utlsyxsz.sql.

Instance Memory

In case of RAC Oracle recommends to set up extra allocations per node; see <u>memory</u> advice RAC.

INSTALLATION AND CONFIGURATION

This section describes the installation steps that are required for configuring an Oracle RAC environment for OHI Back Office that has to be performed as a preparation for migration.

The steps have to be performed by the customer and go as follows:

- Installation of the OS
 Check if the kernel settings correspond with the values prescribed in the "Oracle® Database Oracle Clusterware and Oracle Real Application Clusters Installation Guide".
- 2. Configuration of the network

Keep in mind that RAC require at least three network interfaces:

- Public Interface used for regular network traffic
- Virtual (Public) Interface used for failover and RAC management
- Private Interface used for the Interconnect

Oracle recommends using the interconnect network cards of at least 1 Gigabyte Ethernet and these have to be connected to a switched network, preferable on a separate switch.

Attention: As of Release **2007.02** the use of *Net Service* names is mandatory. For this release, these have to be the same as <code>SORACLE SID</code> and <code>SOZG BASE</code>.

- Configuration of the shared storage.
 ASM and OCFS are supported. See the specific documentation for additional information.
- 4. Ensure that the Oracle user can log in automatically via ssh.
- 5. Move the OHI Back Office RAC installation and configuration scripts to the \$OZG ADMIN directory.
- 6. Install the Oracle Cluster Ready Service and any patch sets. See also the Certification Form **2007.02.0000** (RAC).
- 7. Install the Oracle DBMS and any patch sets. See also the Certification Form **2007.02.0000 (RAC)**.

MIGRATION

The following describes the steps that have to be taken to migrate a single instance database to an Oracle RAC environment.

This section is an addition to chapter 3.

In order to migrate an OHI Back Office Single Instance Database to an Oracle RAC environment, the following conditions have to be met:

- 1. OHI Back Office Release 2007.01.0000 has been installed.
- 2. ASM has to be used.
- 3. For ASM, Recovery MANager has to be used as a backup restore tool.
- 4. The steps described in section 14.5 have been completed successfully.

This section presumes ASM as a Shared Storage solution. Other migration options as well as choices for shared storage will not be described in this manual.

For additional information, see the relevant installation and configuration manuals

Creation of an ASM instance

Create an ASM instance with the following parameters:

INSTANCE_TYPE = ASM ASM DISKSTRING = ''

Parameter ASM_DISKSTRING is customer-dependent and has to contain a reference to the shared storage.

This parameter is additionally intended to exclude disks that are not to be used.

In case of Linux ASM Lib can be used for managing an ASM environment.

The RPMs are downloaded from Oracle Technet via the following URL:

http://www.oracle.com/technology/tech/linux/asmlib/index.html

Creation of ASM disk groups

For OHI Back Office the following disk groups have to be created:

OZG_DG_DATA OZG DG FRA

Oracle recommends ASM mirroring (normal redundancy), also external mirroring is supported.

The OZG DG FRA disk group (for Flash Recovery Area) is optional.

Migrating the database to ASM

For migrating the current OHI Back Office database to ASM the following whitepaper can be used:

Oracle Database 10g Migration to Automatic Storage Management

This is available on OTN via the following link:

www.oracle.com/technology/deploy/availability/pdf/Technical_WP_ASM_Migration.pdf

Check

Check if the files that are migrated to ASM have been moved to the correct disk group.

Migrating single instance to RAC

This section provides a description of how a single instance can be migrated to an Oracle RAC environment.

This calls for using the Database Configuration Assistant, abbreviated as dbca.

Oracle recommends performing the RAC migration by means of the *Database Configuration Assistant* (dbca).

- For database type select the Oracle Single Instance Database. Subsequently select Manage Templates
- 2. Create a template while retaining data of the 'single instance' database.
- 3. Option

```
create a database template / from existing database (structure as well data)
```


For ASM databases a different structure will have to be selected.

- 4. Choose the desired Database Instance, specify a name and possibly a description.
- 5. Subsequently, in this case, select the option: Maintain the file locations. The template will be stored in the

```
$ORACLE HOME/assistants/dbca/templates.
```

- Afterwards restart dbca but now with the database type Oracle Real Application Cluster Database.
- 7. From the list of nodes select the nodes that will be part of the cluster.
- 8. Subsequently select the template created in step 1.
- 9. For option Storage Mechanism choose the Cluster File System.
- 10. For option Specify File Locations for Database Files to be created select

```
Use Database File Locations from Template.
```

- 11. Dbca will subsequently convert the single instance database to an Oracle RAC environment
 - - For each instance a separate redo log and undo log will be created.
 - For each instance a new init.ora will be created.
 - For each instance a password file will be created.

During the conversion the following report may appear:

```
ORA-28010 cannot expire external or global accounts This report can be ignored. dbca lets all accounts expire.
```

12. Check if all instances are active by means of the following query:

```
SELECT *
FROM v$active_instances
```

13. After migration, check which accounts have expired with the following query and also restore any other relevant details:

```
SELECT username, lock_date, expiry_date
FROM dba users;
```

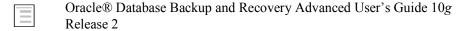
Migrate database to a different platform.

If the current OHI Back Office environment runs on a different platform than the RAC environment, migration can be performed by means of Transportable Tablespaces.

To recapitulate briefly, the following steps have to be performed:

1. check if both the source and destination are available in the list of supporting platforms, as well as the endian format.

```
SELECT *
FROM v$transportable_platform
```


2. Check if the tablespaces are 'self contained' by means of the procedure

```
dbms_tts.transport_set_check.
```

- 3. Set the tablespace to read only
- 4. Export the tablespace metadata
- 5. Perform the tablespace / data file conversion so that the 'endianness' is the same.

This conversion has to be performed through RMAN by means of commands convert tablespace, or convert datafile.

For an extended description of these commands, see:

- 6. Copy the data files to the RAC platform
- 7. Import the tablespace metadata

A description of steps 2, 3,4, and 7 can be found in section database reorganisation.

RAC PARAMETERIZATION

If OHI Back Office is used in an Oracle RAC environment then extra parameters will be configured for RAC in the parameter file.

Oracle recommends the use of an spfile in an Oracle RAC environment.

The advantage of an spfile is the joint use by multiple instances as well as the dynamic modification of the parameters.

If ASM is used, then the spfile will also have to be moved to ASM.

Spfiles of ASM instances are moved to the local file system.

The following parameters have to be configured to the indicated values.

When using an spfile a cluster consist of 2 nodes is presumed.

Mandatory RAC instance parameters:

CLUSTER_DATABASE_INSTANCES =

REMOTE_LISTENER =

LOCAL_LISTENER =

<INSTANCE1>.INSTANCE_NUMBER =

<INSTANCE2>.INSTANCE_NUMBER =

<INSTANCE1>.THREAD =

<INSTANCE2>.THREAD =

<INSTANCE1>.UNDO_TABLESPACE =

<INSTANCE2>.UNDO_TABLESPACE =

The aforementioned mandatory RAC instance parameters are completed during the dbca RAC migration.

If ASM is used as shared storage, then parameter CONTROL_FILES has to refer to a valid ASM Disk group.

Mandatory ASM instance parameters:

```
ASM_DISKGROUPS = ozg_dg_data

DB_CREATE_FILE_DEST = '+ozg_dg_data'

DB_CREATE_ONLINE_LOG_DEST = '+ozg_dg_data'
```

Optional ASM instance parameters, if an FRA is used:

```
DB_RECOVERY_FILE_DEST = '+ozg_dg_fra'
DB_RECOVERY_FILE_DEST_SIZE =
```


For the value of parameter <code>DB_RECOVERY_FILE_DEST_SIZE</code> take the size of the database including the generated archive log files on the busiest day and multiply this by 2 for an extra margin.

If ASM is not used then FRA has to be located on a shared file system.

WORKING WITH SERVICES

OHI Back Office uses services in an Oracle RAC environment. These have to be configured after the RAC installation.

For OHI Back Office two services have to be identified which are listed in the following table.

Service name _∈	Preferred Instance	TAF Policy
OLTP	All available nodes	none
ВАТСН	Preferred on n ode 1 Available on the other nodes	none

Oracle recommends using dbca for defining the services.

Ensure that for OHI Back Office the *Connection Load Balancing Goal* is set to "Long" for both services.

BATCH PROCESSING

In an Oracle RAC environment it is possible to run the batch processing across multiple nodes. OHI Back Office *requires*, however, running the batch processes (= the BATCH service) on *one node*. This has to do with unnecessary 'block pings' between multiple instances. The nodes have to run on a server with the most memory and the biggest CPU capacity.

For future releases of OHI Back Office, there is a possibility to assign batches dynamically to services that could run across one or multiple nodes.

FAILOVER

If all conditions for RAC Installation and Configuration are met, the failover test is the last step that has to be performed.

Attention that OHI Back Office does not support a full Transparent Application Failover.

This has to do with the fact that the PL/SQL variables and package states used by Oracle Forms are lost in case of instance failure.

Therefore OHI Back Office will provide the following messages in case of an instance failure:

FRM-21011 PL/SQL Unhandled Exception Program Error

ORA-03113: End of File on Communication Channel

FRM-40655 SQL error forced rollback: clear form and re-enter transaction.

This is predictable behavior and the user will have to start a new connection with an active instance.

OHI Back Office recommends *not* configuring TAF considering that TAF offers no added value in a Forms environment.

MANAGEMENT

Backup and Recovery

See Backup & Recovery/RAC.

Startup and Shutdown

See Startup & Shutdown/RAC.

Networking

See Networking/RAC.

Performance Tuning and Monitoring

See <u>Performance Tuning & Monitoring/RAC</u>.

APPENDIX C - INSTALLATION & CONFIGURATION OF SSO IN OHI BACK OFFICE

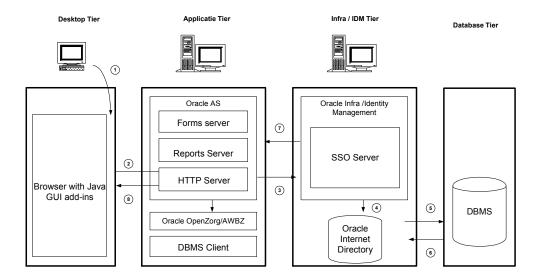
INTRODUCTION

This chapter describes the installation and configuration of Single Sign on for OHI Back Office and applies only to customers who would like to migrate their OHI Back Office database users to the Oracle Internet Directory for use with SSO.

As of release 2008.01 OHI Back Office is certified to work with SSO. This certification is valid upon release 2010.03. With release 2011.01 it was deprecated until further notice. With release 10.13.2.0 SSO is supported again but documentation still needs to be adapted for this.

Attention: Release 2008.01 SSO will only support database connections to exclusive schemas. In later releases, support will be added for shared schemas too.

Attention: In release 2008.01 only the Oracle Internet Directory is supported for SSO.


Attention: OHI Back Office release 2008.01 is only certified with password based authentication.

RELATED PUBLICATIONS

See #Related Publications SSO

ARCHITECTURE

The following picture provides a general overview of the architecture.

Global explanation of the architecture:

- User starts OHI Back Office in a Browser Session; If user is not validated, redirection takes place to the SSO Server with the use of the HTTP Server Module mod osso.
- The User is authenticated in the Oracle Internet Directory.
- If authentication has succeeded, the SSO Server sets the cookie in the user's browser.
- User is authorized in OHI Back Office with the use of the secure application role.

HARDWARE AND SOFTWARE REQUIREMENTS

OHI Back Office with SSO has been certified with the following software configuration:

- Forms & Reports Services 10.1.2.2.0;
- Oracle Application Server Identity Management 10.1.4.0.1 (Enterprise Edition).
- In the Oracle Application Server Documentation Library (Oracle Identity Management) see the OS specific Installation Guides for Hardware and Software requirements.
- SSO integration must be manually added with the existing Forms & Reports midtier, see Oracle® Application Server Forms and Reports Services Installation Guide, Chapter 6.
- In the user's browser, the security settings must be configured in a way that it can accept cookies.

SOME IMPORTANT REMARKS REGARDING THE CONFIGURATION OF THE OHI BACK OFFICE SSO ENVIRONMENT

Planning the (LDAP) Directory Tree

Before one can migrate the database users to the Oracle Internet Directory, one must make some decisions about the Directory Tree.

For more information about implementing the Directory Tree, consult the person, or department responsible for the Directory Server Administration,

Migrating Database Users to Oracle Internet Directory

For migrating the current database users to Enterprise (LDAP) users, one can use the Oracle supplied User Migration Utility (umu), which is available in the Oracle Database Server installation.

The umu tool will generate random passwords for the database and the directory.

For more information see the manual: Oracle® Database Enterprise User Administrator's Guide, Appendix A.

Another way to migrate local database users is by executing the following command:

ALTER USER <username> IDENTIFIED GLOBALLY AS '<user DN in OID>';

One condition to this method is that every user must be manually added to the Oracle Internet Directory by using either the oidadmin tool or the Delegated Administration Service (DAS).

Both methods require new passwords for every user migrated to the Oracle Internet Directory

Oracle Internet Directory Single Point of Failure

Important to know is that if all the database users are located in the Oracle Internet Directory, OID becomes a single point of failure. Therefore it is advised to have a second OID environment available in case the first one becomes unavailable.

Oracle recommends implementing some form of High Availability for the Oracle Internet Directory.

Integration with other LDAP Directory Servers

Integration with other LDAP Directory Servers like Microsoft Active Directory is possible by using the Oracle Directory Integration and Provisioning Platform (DIP).

This is explained in the document Oracle® Identity Management Integration Guide.

At this moment the Oracle Internet Directory is the only Directory Server that is certified for OHI Back Office, therefore OID must be leading.

DATABASE CONFIGURATION

For using SSO with OHI Back Office some configurations must be done to the Database and Oracle Net Services.

Creating the Idap.ora

First Oracle Net Services must be configured so that the database can find the right Directory Server.

One can configure the ldap.ora with the use of Net Configuration Assistant (netca).

In netca choose Directory Usage Configuration and for Directory type choose Oracle Internet Directory, and after that choose the right OracleContext.

Registering the Database in OID

With the use of dbca, the database must be registered in the Oracle Internet Directory so that the database can login to it.

The following values must be filled:

```
User DN directory superuser (e.g. orcladmin)
Password
Wallet password
```

DBCA creates a wallet and stores it in the \$ORACLE_BASE/admin/Oracle_SID/wallet This wallet is used to secure the connection between the database and the directory.

Database Parameter Idap_directory_access

Change the database parameter <code>ldap_directory_access</code> in the <code>pfile</code>, or <code>spfile</code>. For OHI Back Office, <code>password</code> is the only supported value at this moment.

Configuring Database Authentication

For Database authentication, OHI Back Office SSO uses the Oracle Internet Directory to store User Identities.

A new user must be created the following way:

```
CREATE USER <username> IDENTIFIED GLOBALLY AS '<user DN in OID'>;
```

And needs only the create and alter session privilege

```
GRANT GREATE SESSION TO <username>;
GRANT ALTER SESSION TO <username>;
```

FORMS & REPORTS CONFIGURATION

Because OHI Back Office is only certified with Forms & Reports the integration between the Midtier and the Identity Management Infrastructure must be manually configured.

This configuration is described in Oracle® Application Server Forms and Reports Services Installation Guide, Chapter 6.

After configuration, copy the following entries from the formsweb.cfg (located in de FRS10G2/forms/server) to the desired configuration section in the ozg_formsweb.cfg:

And for the reports services copy the following entry from the rwserver.template to the report server conf file.

```
cproperty name="oidEntity" value = "value for %REPORTS OID ENTITY%"
```

Configuring the Forms Servlet

If the user's password contains numeric and alphanumeric characters, then the following parameter must be added to the ozg_servlet file.

```
FORMS USERNAME CASESENSITIVE = 1
```

SSO SYSTEM ADMINISTRATION

Managing Enterprise Users

When the database users are migrated to the Oracle Internet Directory the best way to administer those users is by means of the Delegated Administration Service. This has a web-based interface where the IAS Administrator, and/or end-users can manage their accounts.

The Delegated Administration Service is part of the infrastructure / identity management and it's automatically configured after installation.

With DAS, the following privileges can be delegated:

- Creation, editing and deletion of users and groups;
- Assignment of privileges to users and groups;
- Management of services and accounts;
- DAS configuration;
- Resource Management of Oracle Forms & Reports Services.

An important issue for OHI Back Office working with SSO is the configuration of Resource Access Descriptors, RAD.

OHI Back Office as a forms application needs a RAD for making connection to the database.

The Forms Servlet reads the RAD from a named entry in the Oracle Internet Directory.

For creating a RAD the following parameter must be specified:

```
Resource name name of OHI Back Office configuration in ozg_web.cfg
Username username as specified in OID
Password the SSO password
Database to where OHI Back Office must make a connection
```


If no RAD exists and ssoDynamicResourceCreate = true, the user is redirected to the 'resource creation' page where he or she can create a new RAD.

At this moment, when the user changes his or her SSO password, the password in the RAD must also be changed.

For more information about configuring DAS see the manual Oracle® Identity Management Guide to Delegated Administration.

Monitoring the Single Sign-On Server

One can monitor following items of the SSO Server from the IAS Console (Infrastructure):

- Status of the SSO server;
- Number of logins, successful logins and failed logins.

For more information about monitoring the SSO server see the manual Oracle® Application Server Single Sign-On Administrator's Guide.

Administering the Oracle Internet Directory

One can administer the Oracle Internet Directory with the Oracle Directory Manager that is located in the IDM10G/bin directory.

There are some important issues regarding the administration of the Oracle Internet Directory:

1. Password policy management

The default password expiration is 120 days, and that includes the orcladmin account.

In case a certain password policy is enabled for the superuser account (orcladmin) and the account becomes locked, it can be unlocked by the ODS user with the use of the oidpasswd tool with the following parameters:

```
oidpasswd [connect=<OID schema database connect string>]
unlock su acct=true
```

My Oracle Support Note: 370247.1 gives a good explanation how to unlock the OID superuser account.

2. Statistics gathering

After an initial load, or significant changes in the OID Directory Data, one update the Oracle Directory Server (ODS) statistics. This can be achieved by running the oidstats.sql script that is located in the IDM HOME/ldap/admin/ directory with the following parameters:

```
sqlplus ods/ods password@connect string@oidstats.sql
```

For more information about administering OID see the manual Oracle® Internet Directory Administrator's Guide.

APPENDIX D - INSTALLING REQUIRED PERL MODULES

INTRODUCTION

The following additional Perl modules need to be installed for the OHI installation menu OZGPATCH to work.

Some modules are also used by OHI application software.

All modules can be retrieved from <u>www.cpan.org</u>, the links are provided in the table below.

Set	Installation order	Name of CPAN Perl module	Version
		File::NCopy	0.34
		File::Remove	0.34
		Shell::Source	0.01
		Term::ReadKey	2.30
1	1	Test::Simple	0.86
	2	DBI	1.607
	3	DBD::Oracle	1.22

Note 1: The gcc compiler is required for installation of the Term::ReadKey module on SunSolaris.

Note 2: All modules *in a set* should be installed in a *specific order*, as indicated in the table above.

Note 3: Installing module Term::ReadKey on Oracle Enterprise Linux can give errors during generating the module.

See Term::ReadKey issue.

INSTALLATION PROCEDURE

The following steps have to be followed to install each module. The steps must be executed by root.

- 1. Download the zip file concerned to the application server which will run the installation menu and place it in a temporary directory, e.g. \$TMP.
- 2. Unzip the zip file into a temporary directory with unzip.
- 3. Navigate to the directory created for the module.
- 4. Generate instructions for the installation by running the make file:

perl Makefile.PL

5. Run make to create the blib installation directory:

make

6. Test the functionality of the module with

```
make test
```

7. Install the module with

```
make install
```

8. Delete the temporarily created directory.

Example

The following is an example installation of the Term: :ReadKey module on IBM AIX:

```
# unzip term.zip # *** step 2 ***
Archive: term.zip
   creating: TermReadKey-2.30/
  inflating: TermReadKey-2.30/genchars.pl
  inflating: TermReadKey-2.30/Makefile.PL
  inflating: TermReadKey-2.30/Configure.pm
  inflating: TermReadKey-2.30/test.pl
 inflating: TermReadKey-2.30/ReadKey.pm
  inflating: TermReadKey-2.30/META.yml
  inflating: TermReadKey-2.30/ReadKey.xs
  inflating: TermReadKey-2.30/ppport.h
  inflating: TermReadKey-2.30/MANIFEST
 inflating: TermReadKey-2.30/README
 extracting: TermReadKey-2.30/blib/lib/Term/.exists
  inflating: TermReadKey-2.30/blib/lib/Term/ReadKey.pm
 extracting: TermReadKey-2.30/blib/lib/auto/Term/ReadKey/.exists
  inflating: TermReadKey-2.30/blib/lib/auto/Term/ReadKey/autosplit.ix
 extracting: TermReadKey-2.30/blib/arch/auto/Term/ReadKey/.exists
 inflating: TermReadKey-2.30/blib/arch/auto/Term/ReadKey/ReadKey.so
 extracting: TermReadKey-2.30/blib/arch/auto/Term/ReadKey/ReadKey.bs
 extracting: TermReadKey-2.30/blib/man3/.exists
  inflating: TermReadKey-2.30/blib/man3/Term::ReadKey.3pm
 inflating: TermReadKey-2.30/Makefile
 extracting: TermReadKey-2.30/pm_to_blib
  inflating: TermReadKey-2.30/cchars.h
 inflating: TermReadKey-2.30/ReadKey.o
 inflating: TermReadKey-2.30/ReadKey.c
 extracting: TermReadKey-2.30/ReadKey.bs
# cd TermReadKey-2.30 # *** step 3 ***
# 1s
Configure.pm Makefile.PL ReadKey.o
                                         cchars.h
                                                        test.pl
          README
                            ReadKey.pm
MANIFEST
                                         genchars.pl
META.yml
             ReadKey.bs
                            ReadKey.xs
                                         pm to blib
Makefile
             ReadKey.c
                           blib
                                          ppport.h
# perl Makefile.PL # *** step 4 ***
Writing Makefile for Term::ReadKey
# make # *** step 5 ***
cc -c -D ALL SOURCE -D ANSI C SOURCE -D POSIX SOURCE -qmaxmem=16384
1506-507 (W) No licenses available. Contact your program supplier to
Running Mkbootstrap for Term::ReadKey ()
chmod 644 ReadKey.bs
rm -f blib/arch/auto/Term/ReadKey/ReadKey.so
LD RUN PATH="" ld -bhalt:4 -bM:SRE -
I:/usr/local/lib/perl5/5.8.0/aix/CORE/per
chmod 755 blib/arch/auto/Term/ReadKey/ReadKey.so
cp ReadKey.bs blib/arch/auto/Term/ReadKey/ReadKey.bs
chmod 644 blib/arch/auto/Term/ReadKey/ReadKey.bs
Manifying blib/man3/Term::ReadKey.3
```

```
# make test # *** step 6 ***
PERL DL NONLAZY=1 /usr/local/bin/perl "-Iblib/lib" "-Iblib/arch" -w
test.pl
1 .. 8
ok 1
ok 2
ok 3
ok 4
ok 5
ok 6
ok 7
ok 8
# make install # *** step 7 ***
Installing
usr/local/lib/perl5/site perl/5.8.0/aix/auto/Term/ReadKey/ReadKey.so
Installing
usr/local/lib/perl5/site_perl/5.8.0/aix/auto/Term/ReadKey/ReadKey.bs
Files found in blib/arch: installing files in blib/lib into architec
Installing
/usr/local/lib/perl5/site perl/5.8.0/aix/auto/Term/ReadKey/autos
Installing /usr/local/lib/perl5/site perl/5.8.0/aix/Term/ReadKey.pm
Installing /usr/local/man/man3/Term::ReadKey.3pm
Installing /usr/local/man/man3/Term::ReadKey.3
Writing
/usr/local/lib/perl5/site perl/5.8.0/aix/auto/Term/ReadKey/.packlis
Appending installation info to
/usr/local/lib/perl5/5.8.0/aix/perllocal.pod
# rm -Rf TermReadKey-2.30 # *** step 8 ***
```

SPECIFIC INSTALLATION INSTRUCTIONS FOR DBD::ORACLE

To connect to the Oracle database, the Perl DBI module is used (independent database interface/access module), together with the Perl DBD::Oracle module (driver for Oracle databases).

This last module performs a *connection test* on the database.

To be able to successfully perform this test, as part of installing DBD::oracle, perform following steps:

Prerequisites

First install the Perl modules (if not already installed!):

- 1. Test::Simple
- 2. DBI

SELinux on RHEL/OEL 5

When running on Red Hat/Oracle Enterprise Linux 5, and SELinux (Security-enhanced Linux) is enabled and running in Enforcing mode (that is; as root the getenforce command returns Enforcing), you might run into Oracle Security Service bug 6140224.

This bug will cause following error when installing DBD::Oracle:

```
Can't load '/tmp/DBD-Oracle-1.22/blib/arch/auto/DBD/Oracle/Oracle.so' for module DBD::Oracle: /u01/app/oracle/product/11.1.0/db_1/lib/libnnz11.so: cannot restore segment prot after reloc: Permission denied at
```

/usr/lib64/perl5/5.8.8/x86_64-linux-thread-multi/DynaLoader.pm line 230.

To work around this bug (the workaround changes the file context (for 2 files), as SELinux is disallowing text-segment relocation in the shared object libnnz10.so) perform following commands as oracle user (on the application server):

```
. ozg_init.env $OZG_ORATAB_DB11204
cd $ORACLE_HOME/lib
ls -lZ libnnz11.so
chcon -t textrel_shlib_t libnnz11.so
ls -lZ libnnz11.so
ls -lZ libclntsh.so.11.1
chcon -t textrel_shlib_t libclntsh.so.11.1
ls -lZ libclntsh.so.11.1
```

For more information see

My Oracle Support note 454196.1 - ./sqlplus: error on libnnz11.so: cannot restore segment prot after reloc

Specific Set up for Root Account before Installing DBD::Oracle

As root user, now perform following steps to correctly indicate the Oracle OCI (Oracle Call Interface) environment for the connection test.

This is done by setting <code>\$ORACLE_SID</code> to a relevant database, and <code>\$ORACLE_HOME</code> to the database (client) software:

```
. <path to $OZG_ADMIN>/ozg_init.env
. ozg_init.env $OZG_ORATAB_DB11204
. ozg_init.env <SID>
export ORACLE_USERID=<OHI account>/<password OHI account>
export LD RUN PATH=$ORACLE HOME/lib
```

Example

(For this example, it is presumed ozg_owner is the OHI application owner account set up in the PROD database; the Oracle environment will therefore have to be set to PROD)

```
. /u01/app/oracle/product/OHI/admin/ozg_init.env
. ozg_init.env $OZG_ORATAB_DB11204
. ozg_init.env PROD
export ORACLE_USERID=ozg_owner/ozg_owner
export LD RUN PATH=$ORACLE HOME/lib
```

32-/64-bit

Be sure to use the right Perl version; when using 64-bit Oracle Database (Client) software, you should use the 64-bit version of Perl.

When switching from 32-bit to 64-bit, all of the Perl modules mentioned in the table in the Introduction paragraph, need to be reinstalled.

The Perl version can be checked with file /usr/bin/perl or perl -v (or -v).

AIX

On AIX both versions will be installed on your system; by switching Perl symbolic links it is possible to switch 32/64-bit. This is done as root, and is documented on your system (usually /usr/opt/perl5/README); ask system administrators for more info on your local system.

SunSolaris

When there's no 64-bit Perl on your local SunSolaris system, you can install the modules using 32-bit Perl (see the file README.64bit.txt in your local Perl installation).

For that, when installing DBD::Oracle, you should set following environment variables

```
export LD_LIBRARY_PATH=$ORACLE_HOME/lib32
export LD_RUN_PATH=$ORACLE_HOME/lib32
and set up the make file using
perl Makefile.PL -m $ORACLE HOME/rdbms/demo/demo rdbms32.mk
```

Install DBD::Oracle

Now install DBD::Oracle by following the standard installation procedure for Perl modules; see paragraph Installation procedure.

AIX

On AIX, following error during the make test phase may be ignored:

```
t/32xmltype....ok 3/4Unsupported named object type for bind parameter at t/32xmltype.t line 71.
```

Linux

On Linux, following error during the make test phase may be ignored:

Change OZG_DBDHOME variable in ozg_init.env

After (re-)installing <code>DBD::Oracle</code> the environment variable <code>OZG_DBDHOME</code> exported in <code>OZG_init.env</code> must be set to the oratab variable of the database it has been built with.

For example, when built with the 11gR2 version of the database, ozg_init.env should contain:

```
export OZG_DBDHOME=$OZG_ORATAB_DB11204
```

TERM::READKEY ISSUE

When installing the manadatory Perl modules on a Linux server a problem can occur with installing module Term::ReadKey. A workaround for this problem is to download and install the precompiled package.

The package for RedHat5 or OEL5

```
perl-TermReadKey-2.30-3.el5.rf.x86_64.rpm can be downloaded from: http://rpmfind.net/linux/rpm2html/search.php?query=perl-TermReadKey
```

APPENDIX E - INSTALLATION CHECKLIST

Following is a *quick reference checklist* for installing an OHI Back Office environment. The hyperlinks refer to the relevant paragraphs in this document.

1 - Prerequisites

- Check OHI Back Office certification
- Check hardware & software requirements
- <u>Check OS requirements</u> (for both Database & Application Server)
- <u>Download all required software</u> (OS, Database, Application Server, OHI, Perl, Java, etc.)
- <u>Install & configure OS</u>
- Install additional required Perl modules

Validation

Validate OS requirements by starting Oracle Universal Installer; all requirements should have been met.

2 - Install Database

- Install Oracle Database Server
- Install All Product Languages
- Install Oracle Database Examples (formerly Companion)
- Install Oracle Database Server patch set
- Install Oracle Database Server interim patches
- Apply Oracle Database Server workarounds for open bugs
- Configure Oracle Database Server
- Create an OHI Back Office database

Validation

Use OEM and/or OPatch to see if all interim patches are installed. Are all workarounds mentioned in Certification Form installed?

Check the Database languages.

```
. ozg_init.env <Net Service Name>
. ozg_init.env DB11204
sqlplus sys as sysdba
```

Enter a command that generates a message, for example:

```
SQL> exec dbms_output.put_line(1)
```

This command returns the message

PL/SQL procedure successfully completed.

Check if this message is in the correct language.

Check if the NLS NUMERIC CHARACTERS is set correctly.

3 - Install Application Server

- Install WebLogic Server
- Install Portal, Forms, Reports and Discoverer
- Install Portal, Forms, Reports and Discoverer patchset
- Install Portal, Forms, Reports and Discoverer interim patches
- Initial Configuration Forms and Reports services
- Detailed Configuration of Forms and Reports services

Validation

Check the connection to the database and the version of the database client.

Check the version of import and export utility and the Pro*C compiler.

```
. ozg_init.env <Net Service Name>
. ozg_init.env $OZG_ORATAB_DB11204
imp help=y => check version number
exp help=y => check version number
proc -version => check version number
```

Check the version of the Developer software.

Use the following command to ensure the Oracle*Forms software is valid and check the version.

```
$OZG ADMIN/OZG CMD.pl frmcmp batch.sh -help
```

Use the following command to ensure the Oracle*Reports software is valid and check the version.

```
$OZG_ADMIN/OZG_CMD.pl rwconverter.sh -help
```

Check if the NLS NUMERIC CHARACTERS is set correctly.

4 - Prepare OHI Back Office Installation

- Set up configuration templates (ozg init.env)
- Set up directory structure

Validation

Check if Operating System specific settings are correct.

```
For Linux
```

LD_LIBRARY_PATH must be set

For AIX

```
. ozg_init.env
```

MALLOCTYPE must be set

OBJECT MODE must be set

. ozg init.env \$OZG ORATAB DB11204

LIBPATH must be set

. ozg init.env \$OZG ORATAB FRS11G2

LIBPATH must be set

LDR_CNTRL must be set

. ozg init.env \$OZG ORATAB OWB10G

LIBPATH must be set

. ozg init.env \$OZG ORATAB OMA10G

LIBPATH must be set

. ozg init.env \$OZG ORATAB OMS10G

LIBPATH must be set

Check if the Perl installation software compiles without errors, and check the Perl version.

```
. ozg_init.env <Net Service Name>
. ozg_init.env $OZG_ORATAB_DB11204
perl -version
perl -c $OZG ADMIN/OZGPLIB.pm
```

perl -c \$OZG ADMIN/OZGPATCH.pl

Check if the installation menu can be started.

OZGPATCH.pl <Net Service Name>

Fill the parameters and a release.

If the menu options appear, the following is correct:

- Perl libraries
- Developer version
- database connection

5 - Install OHI Back Office

- Perform installation
- Configure the application
- Set up logo's
- Set up Forms Terminal Resource file

Validation

Test following URLs to check the valid configuration of the HTTP server.

```
http://<server>:<port>/forms/frmservlet?config=<env>http://<server>:<port>/OHI/<env>/bin/OZGIMG01.gif
http://<server>:<port>/OHI/<env>/bin/OZGIMG02.gif
http://<server>:<port>/OHI/admin/logo.gif
```

Start the application; use the URL:

http://<server>:<port>/forms/frmservlet?config=<env>

Now check:

- The images on the startform and Info screen;
- Icons on iconic toolbar;
- Availability release documentation => Double click on release in the Releases screen;
- Availability of Online Help (F1 key);
- Correct language of Forms messages (for example in login screen);
- Running Batch scheduler;
- Run script of type Reports => Overzicht medium definitie;
- Run script <> type Reports => Valideren Business Rules;
- Check logfiles of scripts;
- Run *Object Validation* => Parameter = B (Both database and filesystem) Ensure no errors are reported.

APPENDIX F - MIGRATION FROM OAS10G TO FMW WLS11G

Starting with release 2011.01 the OHI Back Office application requires Fusion Middleware Oracle WebLogic Server (FMW WLS) including Forms and Reports services instead of Oracle Application Server (OAS). This Appendix describes the activities to migrate an existing OHI Back Office environment from OAS to FMW WLS.

WHAT HAS CHANGED?

When you are familiar with managing an existing OHI Back Office environment which is running the Oracle Application Server it is good to know what the major changes are in the configuration.

An overview:

- The Jinitiator plugin, which could be used in the browser as Oracle specific Java plugin instead of the standard (formerly Sun and now Oracle) Java plugin is deprecated: only the standard Java plugin is allowed and supported.
- Management and configuration previously was done by editing configuration files and using command line commands. Now an Administration Console for managing the WebLogic components and an Enterprise Manager Control web application are available for implementing an important part of this task. Where previously OHI specific files were used now standardized configuration files are used which can be maintained by these tools. The relevant configuration files are listed separately.
- \$OZG_ADMIN/ozg_web.cfg is replaced by the standard formsweb.cfg configuration file (see the relevant chapter for the location).
- \$OZG_ADMIN/OHI.dat is replaced by the standard Registry.dat file (see the relevant chapter for the location).
- \$OZG_ADMIN/OZG_JPI.htm replaces both OZG_BASEJINI.htm and OZG_BASEJPI.htm.

INSTALL AND CONFIGURE SOFTWARE

This part is described in the regular <u>Chapter</u> because it is not different from when installing a new environment. The installation and initial configuration can be executed without affecting the existing application server environment when this is executed carefully. Additional software will be set up which can run aside of the existing software. Of course sufficient disk space and system resources should be available for this.

When the configuration is ready and prepared you can migrate the environment from the required 2010.03 patch set level to 2011.01 in the usual way, using the OZGPATCH.pl menu.

POST INSTALL STEPS

When the 2011.01 installation is ready there are a few additional steps necessary to complete the migration to the new application server environment.

The names of the directories in the system parameter screen need to be adapted because normally the port nr of the Oracle HTTP server has changed. Please follow the instructions as mentioned in the paragraph Configuring directories.

Next to that the reports server name has to be adapted so the new Reports server will be used. Please follow the instructions as described in <u>Registration Reports Server</u>.

After having implemented these settings be sure you restart the batch scheduler when it was already running.

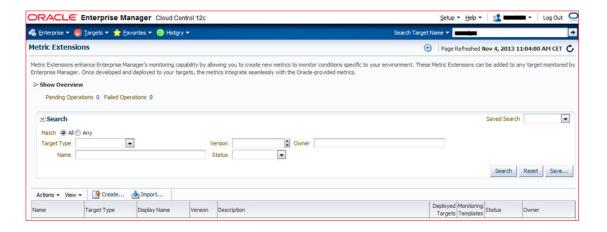
RECOMMENDATION

When you have an existing production environment running with Oracle Application Server make a list of all modifications you made to adapt the environment to your needs.

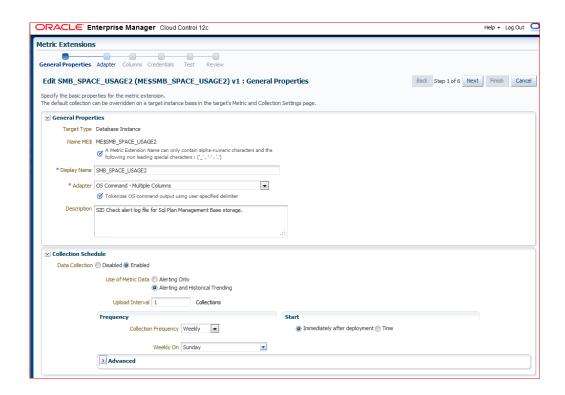
This can be tuning parameters or specific management settings to be informed, special logging configuration settings, etc.

During the acceptance test phase determine what to do with these settings:

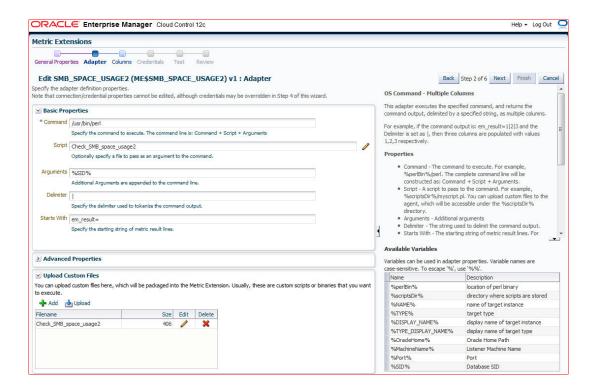
- Are they still needed?
- What is their equivalent?
- Can similar settings be used or might it be they need to be adapted?


When you pay attention to the changes you made in the past they can maybe help prevent problems from occurring when you migrate to the new environment.

And when things are not clear it is better to have time available for finding out what might be the reason for a certain setting before going into production. This compared to looking for old settings which helped with 'a similar problem in the past' when you run into a production problem after you have migrated.


APPENDIX G – SETTING UP OEM METRIC FOR SQL PLAN MANAGEMENT

In this appendix we will explain how to create a (new) metric extension to check SYSAUX tablespace overrun for the SQL Plan Base Management usage.


- Log in Cloud Control
- Go to the main menu "Enterprise", next "Monitoring", next "Monitoring Extensions".
- Click Create button.

- Enter the Display Name. In this example we used "SMB_SPACE_USAGE2".
- For Adapter use "OS Command Multiple columns".
- Enter a description, optional.
- For "Collection Schedule" you can use "Data Collection" "Disabled" during tests phase and enable it later on.

• Click "Adapter" on the left top or "Next" on the right top.

- For this script Perl is used.
- Use a local Perl executable. The available Perl executable in the variable might not work as expected.

- Enter the script name, in this example "Check_SMB_space_usage2".
- Enter arguments used in the script: "%SID%"
- Enter the script output delimiter: "|" (vertical bar).
- Specify the output starting string: "em result="
- Click "Add" button to add the script lines.

```
File Editor

**Filename [Theck_SMB_space_usage2]

File Contents

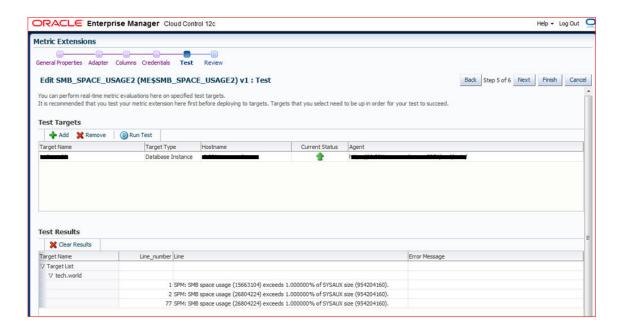
my $alert_log = "oxg/app/oracle/dag/idbms/$ARGV[0]/$ARGV[0]/trace/alert_$ARGV[0].log*;
my $sinenum = 0;
open my $FH, "< $alert_log* or die $!; # look in alert log for matches.
foreach (<$FH>)
{
    chomp;
    ++ $sinenum;
    next if ($f_- = ) || (/^*, #) || (/^*, #) || (/^*, #) || (/^*, #) || (/^*, #) || (/^*, #) || (/^*, #) || (/^*, #) || (/^*, #) || (/^*, #) || (/^*, #) || (/^*, #) || (/^*, #) || (/^*, #) || (/^*, #) || (/^*, #) || (/^*, #) || (/^*, #) || (/^*, #) || (/^*, #) || (/^*, #) || (/^*, #) || (/^*, #) || (/^*, #) || (/^*, #) || (/^*, #) || (/^*, #) || (/^*, #) || (/^*, #) || (/^*, #) || (/^*, #) || (/^*, #) || (/^*, #) || (/^*, #) || (/^*, #) || (/^*, #) || (/^*, #) || (/^*, #) || (/^*, #) || (/^*, #) || (/^*, #) || (/^*, #) || (/^*, #) || (/^*, #) || (/^*, #) || (/^*, #) || (/^*, #) || (/^*, #) || (/^*, #) || (/^*, #) || (/^*, #) || (/^*, #) || (/^*, #) || (/^*, #) || (/^*, #) || (/^*, #) || (/^*, #) || (/^*, #) || (/^*, #) || (/^*, #) || (/^*, #) || (/^*, #) || (/^*, #) || (/^*, #) || (/^*, #) || (/^*, #) || (/^*, #) || (/^*, #) || (/^*, #) || (/^*, #) || (/^*, #) || (/^*, #) || (/^*, #) || (/^*, #) || (/^*, #) || (/^*, #) || (/^*, #) || (/^*, #) || (/^*, #) || (/^*, #) || (/^*, #) || (/^*, #) || (/^*, #) || (/^*, #) || (/^*, #) || (/^*, #) || (/^*, #) || (/^*, #) || (/^*, #) || (/^*, #) || (/^*, #) || (/^*, #) || (/^*, #) || (/^*, #) || (/^*, #) || (/^*, #) || (/^*, #) || (/^*, #) || (/^*, #) || (/^*, #) || (/^*, #) || (/^*, #) || (/^*, #) || (/^*, #) || (/^*, #) || (/^*, #) || (/^*, #) || (/^*, #) || (/^*, #) || (/^*, #) || (/^*, #) || (/^*, #) || (/^*, #) || (/^*, #) || (/^*, #) || (/^*, #) || (/^*, #) || (/^*, #) || (/^*, #) || (/^*, #) || (/^*, #) || (/^*, #) || (/^*, #) || (/^*, #) || (/^*, #) || (/^*, #) || (/^*, #) || (/^*, #) || (/^*, #) || (/^*, #) || (/^*, #) || (/^*, #) || (/^*, #) || (/^*, #) || (/^*, #) || (/^*, #) || (/^*, #) || (/^*, #) || (/^*, #) || (/^*, #) || (/^*, #) || (/^*, #) || (/^*, #) || (/^*, #) || (/^*,
```

```
my $alert log =
"/ozg/app/oracle/diag/rdbms/$ARGV[0]/$ARGV[0]/trace/alert_$ARGV[
0].log";
my $linenum = 0;
open my $FH, "< $alert_log" or die $!; # look in alert log for
matches.
foreach (<$FH>)
  chomp;
  ++ $linenum;
  next if ((/^#/) || (/^$/)); # do not check commented lines
  if ($ =~ /.*SPM: SMB space usage*.*exceeds*.*of SYSAUX
size*./)
  {
    print "em_result=$linenum|$_ \n";
  }
}
close $FH;
```

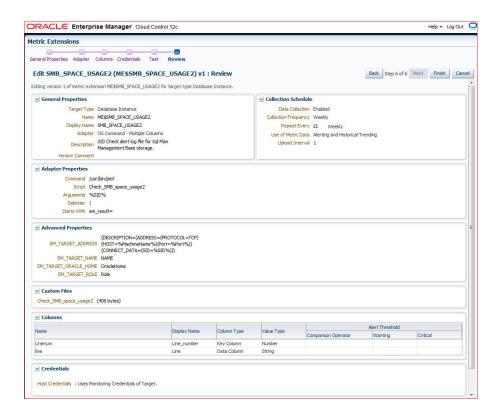
- Click "OK" to safe the script.
- Click "Columns" on the top left or "Next" on the right.



- Create columns as shown in the picture above.
- Click "Add" & "New Column" and enter the details
- Name: Linenum, Display Name: Line_number, Column Type: Key column, Value type: Number


Name: Line, Display Name: Line, Column Type: Data column, Value

type: String


• Click "Credentials" on the left top or "Next" on the top right.

- Use the default credentials or set other known credentials.
- Click "Test" on the top left or "Next on the top right.

- Click "Add" to add a test environment.
- When a test environment is present you may run a test using the "Run Test" button.
- Click "Finish" when done.
- Next step is to deploy the metric and add more environments to it to be checked for.
- Also the Data Collection disabled in the beginning can be enabled and set.

