Regression Testing Tool

Oracle Financial Services Lending and Leasing

Release 14.0.0.0.0
[April] [2013]
Oracle Part Number E51531-01

ORACLE’
FINANCIAL SERVICES

Glossary

Term Description

OFSLL Oracle Financial Services Lending and Leasing
DLS Oracle Daybreak Lending Suite

Bl Business Intelligence Publisher

XML Extensible Mark up Language

ul User Interface

WSDL Web services Description Language

API Application Programming Interface

SQL Structured Query Language

Table of Contents

1. REGRESSIONS TESTING TOOL....cccoitiiiiirisiiisieteisieieiesieeesieesessssesessesesassssessssesesassssessssesessssesessssesessnses 1-1
S 0] = TSRS 2-1

2.1 ORIGINATION ...t tetestitesertsteeestatesessasesessssesessssesesessasessssesessasesessssesessssesessssesessesesessssesessnsesessesesessasesessnsesessnss 2-2

2.2 CUSTOMER SERVICE ...cutuiititiiatesesssesesessesessssesessssasessssesassssessssssesessssesessssesessssesessssesessssesessssesessasesessssessssnses 2-2
3. ARCHITECTURE / TECHNICAL DESIGNcccoiiitiiiietieiee ettt sttt 3-1
4. STEPS TO CLONE BASE OFSLL ENVIRONMENT . ..iciiiiititiese et 4-1
5. AUTOMATED TESTING PROCEDUREccooi ittt e s 5-1
LTS N I =t = T 1 N L 1 SRR PR 6-1
7. VALIDATIONS AND CHECKS.ottt ettt e et e e te e e nbe e e snaeesabeesnaeennee s 7-1
8. COMPARING RESULTS ...ttt ittt sttt s e st e st e e be e et e e be e e be e e atee e teeesseeestbeessaeessbeennaeennres 8-1
9. TESTING TOOL EXCEPTIONScoitiititiisteesistee sttt ettt st se e s ssese s saesesassesessssenesanas 9-1

L0t R A S T3 = 7Y T ST R 9-1

9.2 B) SCENARIO 2 — THIS SCENARIO RESULTS IN AN EXCEPTION DUE TO MISMATCH OF BALANCES 9-2
10. TESTING TOOL TEST CASEScotit ittt sa bt st st s st s st s ssenens 10-1
11, FOR NEXT RELEASES......cco ottt sttt ettt ettt ettt st et e sa et e st 11-1

ORACLE

1. Regressions testing tool

The purpose of this document is to outline the high level requirements of the scope of the
Testing tool for regression tests during DLS/OFSLL upgrades by performing a parallel
testing between a lower version of DLS/OFSLL (production) and a higher one (test).

11 ORACLE

2. Scope

The testing tool will log certain operations done in the production system and replicate them in
the Test system. This will enable parallel testing by comparison of the production and test
systems, specifically with regards to the General Ledger transactions. The aim is not to replicate
user keystrokes in the Production system but instead is to ensure that the eventual Posted
values are captured in the Test system in the same way they were in the Production system.

Log Tables

Production System
(Lower Version)

Test System
(Higher Version)

o —
_——— e == -

—— e - ~ e e e ==

Final
Results

Automated
Regression
Testing Tool

This tool was designed to work for all DLS/OFSLL upgrades, independently of versions and
customizations.

21 ORACLE

2.1

2.2

The Testing Tool covers the Origination (App Entry, Funding, Account Creation) and Customer
Service, as detailed below:

Origination

The testing tool will perform the following: -

App Entry:

1. Applications entered in Production on that day will be replicated in the Application tables of
the Test system.

2. The application will pass through the Data Entry and Pre screen edits

3. The application will pull the Credit bureau as defined by the current system parameter
configuration

4. The application will be placed in a New: Review Required status

Funding:

1. All applications funded in Production on that day will be replicated in the Test environment.
The application in the Test environment will be funded using the same values that were used
to fund the application in Production.

Assumptions/Restrictions:

e« Changes to the application values by the users in the Underwriting screen will not be
replicated in the Test Environment.

e Intermediate steps between Application Entry and Funding viz. Fax/Letters on Status
change, NADA pulls will not be replicated in the test system. This will require manual
testing efforts. (The final values in the Production system will be used to fund the
application)

e As part of the manual testing the user will not set the Application to Approved: Funded
since it is possible that the values used by the user in the test system will be
different from the values used in Production resulting indifferent GL entries.

e As part of the manual testing, the Fax numbers of all producers must be set to an internal
fax number to avoid fax documents being set back to producers.

Customer Service

The testing tool will perform the following: -
Monetary Transactions posted on Accounts in Production will be replicated in Test for that
particular day. This will allow comparison of the Transaction history on Accounts in the Test and

Production instances. To replicate the monetary transactions, the Testing tool will perform the
following

1. Payments applied to Accounts in Production will be replicated in Test

22 ORACLE

e Payment batches and details will be created in the replicated in the test system
(TXNS_GROUP_TEMP, TXNS_TEMP table will be created)

2. Monetary transactions posted on Accounts in Production will be replicated in Test

e Corresponding entries in the Customer Service > Maintenance tab will be available
(BATCH_MODE_TXNS, BATCH_MODE_TXNS_TEMP)

3. Assessment of Work Order expenses on an Account will be handled as a monetary
transaction on an account.

Assumptions

e Work Order actions will not be replicated. Work Order Expenses assessed on an account
will be handled by the monetary transactions replication.

e A one-time refresh at the beginning of the testing will be done instead of a daily refresh.
The only caveat would be that any errors, that affect data found during the testing, would
remain in the database till the fix is received.

e The need for subsequent refreshes during the testing period will be discussed.

e Test environment Setup will be in sync with the setup in the Production environment.
Setup changes to the production environment during the day will be replicated in the Test
environment, before the Testing tool is run for that day.

23 ORACLE

3. Architecture / Technical Design

The Testing Tool was only possible due to OFSLL architecture, based on a wrapper- engine
model. Like in OFSLL customizations, the Testing Tool takes advantage of the existing Exit
Points to log and re-post the actions done by the users, allowing an automated parallel
testing between the Production (lower version) and Test (higher version) environments
of OFSLL.

Fre-processing
= e Wi

Frocessing
Feplacement
Exit Point

Engine Fro

Fost-processing
Exit ot

(Exit Point Diagram)

31 ORACLE

The next two Diagrams show where in the Transaction Processing Engine the Testing Tool was

introduced:

Mon Monetary Transaction Processing Engine

Library Function Grid User Interface (GUI)
tnmfn_el_ 100 _ 01 uesbmt_el_ 100 _D2

Engire Wirapper Bateh hiade Ten
tnmbmt _ew _ 100_01

Engine Batch hode Transaction Processing
trmbmt _ em_ 100 _01

Engine Wirapper Mon hdonetany Transaction Processing
tnmprs _ew_ 1000 _01

Engine Mon Monetary Transaction Processing
tnmprc _em_ 100_01

Engine Exits Non Monetary Transaction Processing
tnmprs _es_ 100 _0M1

Funetion Agcount Function Customer
tnmace_en _ 100 _01 tnmeus_en _ 100_ 01

Library Funiction Grid
tnrmfn_el_ 100 _01

ORACLE

Menetary Transaction Processing Engine

Bench Job Aocrusl Bal Balch Job Charge O Baich Job Firsl Pmi deduciion Baich Job Rate Change
bnacr b 100 01 i b 100 barchg b 100 04 txnfpd_bj 100 01 el b 100 0 irsger Advanca | Wrepmar Advanca
— benarte_ow_100_071 | tenante_ew 100 02
. ermmination in
Batch Acooint Acivation Banch Job Ao Close Bateh Mode Tan Post Banch o Menth To Date
Prograss ‘Weapper Paymoeni | Weapper Paymeant
tnast_ B 100 1 tarcks b1 ferbrw_b) 100 01 tenmed 5140001 ik 100 01 ienpr, @w 100 01 | benpm ew 100 02
[T Fre e |
Batch b Amrversary Batch Job Payment Fosting Baich Job Schediie fr Batch Job Promoion Bach Jon ¥TD Fetund ":“{W' p‘;’&g*&"
tann_bj_10)_(4 argrnt_By 1001 ; W 100 01 tepm_fy 100 01 eyt 100 {4 amipr_gwe fg | Eree_ev 10
2 - Wirappar Bath Main Enging Bahch
Baln dab Pt PYTEN | pogen don Advance Posting | Balch Job Lote Cherge | Ditch Jei Prormatian Cenvael o100 | sriomd_em_100_01
oripL Bl 1101 iy 11201 bk b_100 01 pgrn_tj_100 03

Engine Wrapper Moneiar

Linprc
Engines Moretary Tan | Ergire Moretry Tan | Engine Py Ergires Payment Engine Payrment Ergires First Fre
Processing Fromessing Erucessing Frocessing Processing Fiefured Prucsssing O e
tenpr_em_112 01 srprc_em_121_01 tenprr_em 100 01 | tegent_em_100 02 tenpirt_em 100 93 | tnpent_em 100 04 arfdr_em_111_01 : LR
Engre Exits haetary Transasion Processing Ergire: Exits bion Periaming Transactions
EATpRT._g3_T11_{1, bareees_and_1 1100 tanwe_sm_1 12,00, tarmoce_ee_121_501 {0ex = angine huncaon} et _ax_11.01
Eurctian Acrsd Siop Fureclicn Aceount Furelicn Credl Furiction Credi Functian g Gaurter | Funcion Belinquency Fureion Ertor Function Efrol Furclion Experse Function Fayatike
taracs_en_ 1401 Bured Feetund tvic_an 100 00| farcdg_en 100 01 Procesisig Processing Procegaing swriap_en_t40_01
e landa en 100 01 vl en 100 01 1&nam_en 100 01 e - Lener_en_100 01 bt _en_100 02 Gareap &n 100 01 T
Furctian FTP Furctian Funging Funetian GL Function Interest e Furkzin YTD Fureticn MTD Fureticn st Tin
toriflp_en_100_01 tenfun_en_100_01 brygla_en 100_01 tarint_en_100 01 tenykd_en_t00_01 tanirid_en_100_01 tenitse_er_100_01
Furction Athance . Funmion Anrivarsary GCraate Ralmed Tens " " Funtion Extension
Fﬁm k::anc:] {Before and Ater] F_uvimhn]nefsg]rf {Before and Aier} Creeng heia\])ed T;:\s fictora ard Adar) Funclicn B‘:amgfl\ Betarn and Afer)
Eeneck_en_Tin, tarechy_an_117 Tnann_en_inn, tanarn_en_tom_fp | LEnIOn pencrt_en_irn_(12 brest_en_irn arwet_en_fmn_(2
Funcion Insurance Function InsLrsnce Funczion Maturity Funzion Payment: Function Payoft fg;ﬂﬁ:ﬂ;ﬁ Funcion Promation F"EEL",‘;'Mm:":m Function Riate Change F"Im':'ﬁ qﬂh‘:r“lge
benins_sn_11n_ ire_en_17n_03 snmat_en_Trn 14 tenprm_an_1rn_31 amgeni_sn_Tnn_01 ingrt_en,_Tre 42 tenprm_en_11n_01 '.nruml_en_nn_'ﬂz tenrat_en_11n_1 el 1n_0i
i e E "
Fureticn Reschaoie F‘:;::'glmb Funmion Semunittation F""g?a"n;m Change (Befora ard Furetion Stmomen Upen Annaunt Furctinnivalidate Cthar | Function Reschedule Fun?n Hesdlbdule
i |
twnrss_en_11n_ 01 ress en in 02 tensne_en_11n 01 stz & Inn 01 . Akar) terstm_en_1rn 01 mrupd_ern_tnn 01 tenet_en_tnm 01 barrsc_an_111_04 benet e 111 05
s on inn (2
Furction Credt Limit Furction CTD Funcion Insurancs Furion Loss Gan Furction Lesss Roy Function Rent Funcion Sake of Asset Function Tax Funcion Termirate Function Recaivatike
tned_en 112 01 wretd en 112 01 taris_en 112 01 terdgas en 12 01 biker_een 12104 tnre_en_121 04 areoa en 121 01 tenkax_en_121 01 tentrm_en 12101 tenrey_en 10001
g LR T
Function Due Date Funzion Statemants Function Paymants Functian Sahs Furction Reschadule | Funcion Reschecde Function Escrow Furetian Dealer Loss.
{ Escrow | | Escron) | Escrow) { Escrow | | Escrow) { Escrow | Trarsactiors T?’“"‘;@ﬁ M“:J?e: Betae & Reseroe
tevint_en_ 19103 terstrm_an_111_013 wrmpmd_en_111_03 tirsta_en_111_03 tnrse_en 111_(3 tarese_en 1491 08 terwesc_an 11101 . ! tunks_er 11101
- PO TR PR Fas ST | PO Form LTerne PR S| 4
P e | procassrgipeors | pmoe e | preseg Processnq (Bt | Procasang (Stes | FurargDraw Fenod | Faameters (Crangn | Fracaseing csoktier & | Frocaseing (SCRA)
Bunine, & 1?? o and Atar \ring :?. 141 03 {BackDated] and Afiar} Fundng Draw Pariod) (Batora & After) Paramenars) Salkor Act) {Before: & Afar)
- - Janre an 111402 - e am 100 02 briat en 111 02 tarare en 111 01 o an 111 01 tnbip en 117 01 prectan 10 01 f#nser &0 110 07|

The Testing Tool is divided in 3 main processes:

» Logging: Transactions done by users in Production environment
CMN_TEST_TOOL_LOGGING (Y/N)

> Posting: done sequentially and automatically by the Testing Tool in Test environment

> Reporting: Comparison between Production and Test Environments

33 ORACLE

I. Logging: Transactions done by users in Production environment

The logging process in Production environment can be turned on/off by setting the System
Parameter CMN_TEST_TOOL_LOGGING. When its value is “N” system will behave normally. When its
value is “Y”, the system will log all the transactions done by the users.

System Parameter

DLSMFSLL Wrapper
Before Exit Point Yes
Testing Tool Logaing Engine
_ . Serializes &
Main Processing Mo Capturing Transaction
Data hefore posting
After Exit Point |
Log Tables

34 ORACLE

Posting: Done sequentially and automatically by the Testing Tool in Test environment

— e

Log Tables

From Production

Testing Tool Paosting Engine

Selects & Inserts
Transaction Data
Sequentially

Call

3-5

OFSLL Wrapper

Before Exit Point

Main Processing

After Exit Point

ORACLE

Reporting: Comparison between Production and Test Environments

Production System
(Lower Version)

Test System
(Higher Version)

———————

Final
Results

36 ORACLE

o & 0N

o

10.
11.
12.
13.
14.

15.

16.

4. Steps to Clone Base OFSLL Environment:

Copy x* packages and so from production to test after patch up of test schema. (some of
these objects in production are newer versions than ones in upgrade patches.)

Perform export from production schema.
Confirm that CMN_SERVER_HOME path is identical between test and production servers.
Run ‘alter table’ and ‘alter index’ scripts against production schema.

Run ‘compare schema’ scripts between the production and test schemas. Reconcile
differences.

Perform export (no data) from test (upgraded) schema.

Perform import (ignore=yes) on production schema from step five’s export. Confirm that
packages, views, and types are correct versions.

Perform export from test (upgraded) schema of ‘setup’ tables (LESS producers tables!).
Copy schema specific system parameters values from production schema

Truncate ‘setup’ tables on production schema.

Perform import on production schema from step seven’s export.

Overlay system parameters value from step 8

Create backup copies of folders in the CMN_SERVER_HOME tree on production app server.

Copy CMN_SERVER_HOME tree from test to production app servers. Consider results of
step two.

Copy any other patch objects (.s0’s, etc.) into production environment. (If step 1 is done, we
can copy without risk of overwriting newer versions in prod)

Restore any X* packages necessary. (if step 1 is done, we can copy without risk of
overwriting newer versions in prod).

a1 ORACLE

5. Automated Testing Procedure

Following is the ‘suggested’ sequence of steps that would need to be performed on a daily basis
as part of the ‘Automated Testing’

Day 1

Test Database to be refreshed with Production values *

1. Truncate the Log tables in Production

2. Logging is Turned On in Production after last job has completed

Cut of time for manual transactions/user activities in the Production Environment. Logging by
testing tool will be turned off.

1. Take a Production database snapshot (S1) of the required tables

2. Ensure sequences on test match sequences on Production (for applications and accounts)

3. Dat files and log tables are moved to the Test database

4. Testing tool is Run on Test instance (Ensure previous files are removed)

Comparison/Validation scripts are run against S1 and the Test database. Report (R1) is
generated. (This gives us the comparison before the jobs are run)

A copy of input file in Production (lockbox) should be available in Test

Batch jobs are run (Batch job setup is identical to production) on both Test & Production

Take a Production database snapshot (S2) of the required tables

Comparison Scripts are run against S2 and the Test database. Report (R2) is generated. (This
gives us the comparison before the jobs are run)

Day 2

Validates R1 & R2 and reports discrepancies to OFSLL

Investigate the discrepancies. Some may be reconciled and some may require a fix

Manual testing proceeds in the interim

Next run is planned

>1 ORACLE

Test Database to be refreshed with Production values.

* Refresh Test database

Example: To run the testing tool in the Test environment on 4/23, a snapshot of the Production
database AFTER the batch jobs have completed on the morning of 4/23 and before any other
user activity for 4/23 begins needs to be taken. This snapshot will be used to refresh the test
database for the testing tool to be run on the evening of 4/23.

52 ORACLE

6. Stepsto Run

On production environment

Turn off Logging (after SET-LBT3)

Take snapshot of prod before end of day batch jobs have run

Remove old .dat files

Run SET-TST1->GET APPLICATION DATA to create the .dat files

Move .dat files to test system

Move log tables to test system (execute steps 2-6 on test environment as listed below)

Run batch jobs

Take snapshot of prod after end of day batch jobs have run

On Test environment

Refresh from backup of Production data.

Run after_refresh_before_import.sql — This steps needs to be executed ONLY for a fresh
export-import.

Run all_refreshes.sql

Run before_import_log.sql

Fetch the log tables

Copy the .dat files from the production environment.

Run after_import_log.sql

Tool execution (on Test)

Reset the sequences (reset_sequences_origination_log.sql)

Run Jobs under SET-TST1

61 ORACLE

APPLICATION DATA LOAD

FUNDED DATA LOAD

GENERATE ACCOUNTS FOR TESTING TOOL

Run SET-TST2

Run Testing Tool reports - save results (Test before EOD)

Turn the Scheduler on - Run the required batch jobs

Run Testing Tool reports - save results (Test after EOD)

Compare the 3 reports extracted during the process

ORACLE

7. Validations and Checks

Before txns posting

Set logging parameter to 'N'

Turn scheduler off on Test system

Ensure that setup tables are not truncated before refresh (only in case of a new
refresh).

Ensure that jobs, job_sets, job_threads and job_buckets are copied over from Prod
onto test (only in the case of new refresh).

Make sure that the batch jobs are setup the same in Prod and Test.

Ensure sequences are in sync with Production

Bump up sequences - recreate sequences

Ensure that the Test specific setup scripts are run for 1) all seed data 2) DML scripts to
create data in the new tables

Check GL post date

Check log tables have just one day's transactions

Query by txn_tcd_code, check numbers match on Prod and Test

Drop index TXNT_LOG_UDX

Make sure that the batch jobs have no sequence numbers overlapping - the scheduler
might not start because of this.

Run all the DML scripts - for seed data and others

Check for database locks on both test systems

Check run_dt_nxt on all batch jobs - should be updated correctly

1 ORACLE

8.

Comparing Results

Once the tool run, we will be able to start comparing the results. Below is an example of a high
level results extracted from a Production and a Test environment, where the tool replicated all

the user actions executed during one day.

PRODUCTION TEST
TXN_TCD_CO | SUM(TXN_AM TXN_TCD_CO | SUM(TXN_AM
DE T) DE T
ACCRUAL_ST |0 ACCRUAL_ST |0
oP oP
ACC_MAINT_ | -1 ACC_MAINT_ | -1
MONETARY_ MONETARY_
CBT CBT
ACTIVE 0 ACTIVE 0
ADV_RECOU |5.25 CHGOFF 0
RSE_CHGOFF
_CBT
ADV_WAIVE |7 CREDIT_REF | 6312.85
UND_REV
CHGOFF 0 DDT 29034.13
CREDIT_REF | 2875.01 DDT_REV 12494.97
UND
CREDIT_REF | 6762.65 ERPO 15262
UND_REV
DDT 403310.84 ERPO_REV 855
DDT_REV 12494.97 ERPO_WAIVE | 90
ERPO 18762 ERPO_WAIVE | 5
_REV
ERPO_REV 4355 ESVC 175
ERPO_WAIVE | 108.42 ESVC_REV 75
ERPO_WAIVE |5 EXTENSION | 606.9
_REV

ORACLE

ESVC 175
ESVC_REV 75
ESVC_WAIVE | 0.2
EXTENSION | 606.9
EXTENSION_ | 0

REV

FEXT 2093.28
FEXT_REV 68.18
FIN_1 2521.19
FIN_2 2357.28
FIN_3 10210
FLC 8071.77
FLC_REV 209.44
FLC_WAIVE | 15
FNSF 0
FOTHL WAIV |5

E

FPHP 1659
FUN_1 630790.18
FUN_2 13648.2
FUN_3 85
FUN_4 284.55

EXTENSION_ | 0
REV

FEXT 2093.28
FEXT_REV 68.18
FIN_1 2521.19
FIN_2 2357.28
FIN_3 10605
FLC 263.63
FLC_REV 195.15
FLC_WAIVE |15

FNSF 0

FUN_1 658203.33
FUN_2 14259.2
FUN_3 85
FUN_4 305.55
INT 88904.16
INT_ESTIMAT | 128900.35
ED

INT_REBATE | 8654.78
INT_REV 3038.93
LNR 788796.75
NP_EXCESS | 2388.78

Based on the results above, we are able to investigate further the reason for each discrepancy, if

any.

ORACLE

9.1

9. Testing Tool Exceptions

Following is the list of exceptions/limitations of the testing tool

1. Direct Reversal of an Indirect transaction
2. Multiple Payment Hold Assessments/Reversals

3. Payment not allocated to Phone Pay Fee

Direct Reversal of an ‘Indirect’ transaction.

An Indirect transaction is one that is created by a different transaction. For example, FNSF is an
indirect transaction created by the PAYMENT_VOID transaction. The tool replicates the
PAYMENT_VOID transaction that in turn creates the FNSF. Along the same lines, reversal of the
PAYMENT_VOID transaction will result in the reversal of the FNSF transaction (This is normal
Ofsll processing) and will be replicated by the tool.

However when the FNSF transaction is reversed directly, by using the Reverse button on the
Transactions screen, the tool is unable to replicate that.

Another example is the PAYMENT_NONCASH created by modifying the PAYMENT_ERROR
transaction on the Payment Maintenance screen. The non-cash transaction is an indirect
transaction and directly reversing it or further modifying it will not get replicated in the Test
environment. To summarize direct reversal/modification of the ‘child’ transaction is not replicated.

Note, the above restriction applies only for the same dataset. If the database is refreshed after
the creation of the ‘child’ transaction and before its direct reversal, the tool replicates the reversal.

Multiple Payment Hold Assessment/Reversals

Since the tool is not recording the call activities, multiple payment holds applied or removed on
the same day is NOT replicated. To paraphrase, the existence/absence of the Payment Hold
condition will match that in production, however intermediate changes will not be reflected.

Examples

A) Scenario 1

Production
e Pmt Hold condition exists on an Account
e Payment applied, payment goes into PAYMENT_ERROR
e Pmt Hold removed on the same day

e Payment reapplied from Payment Maintenance > Suspense screen. Payment
successfully applied to the account as a PAYMENT _NONCASH

e Removal of Pmt hold is replicated on Test
e Payment will be applied successfully to the Account as a PAYMENT.
¢ No PAYMENT_ERROR is created

o1 ORACLE

9.2 B) Scenario 2 — This scenario results in an exception due to mismatch of balances

Production
e Pmt Hold condition exists on an Account
e Payment applied, payment goes into PAYMENT_ERROR
e Pmt Hold removed on the same day

e Payment reapplied from Payment Maintenance > Suspense screen. Payment
successfully applied to the account as a PAYMENT_NONCASH

e Payment Hold condition reapplied

e Since the final state of the account is a PMT HOLD condition no change will be made to
the account in test

e Consequently the payment will go into a PAYMENT_ERROR and will not get applied to
the account

In this scenario the account balances DO NOT match.

Phone Pay Fee
Currently in Production One time Phone Pays created during the day are picked up by the SET-
CBT-ACHO > ACCOUNT ACH PROCESSING JOB in the middle of the day (3:15 pm). This job

creates the Phone Pay fee (FPHP) (The payment batch is created by the same job). The
payments, which post later in the day, get allocated to the FPHP.

On the test environment, the tool posts transactions including Phone pay payments for the entire
day. The SET-CBT-ACHO > ACCOUNT ACH PROCESSING JOB runs AFTER the tool posting is
complete. When the payment hits the account, the FPHP is not present on the account. This
results in: -

$7 - additional Principal (ADV) being paid

$.01 — less interest being accrued since additional principal has been paid

92 ORACLE

10. Testing Tool Test Cases

Module Function S.No | Test cases
Origination
App Entry
1 Direct loan
2 Indirect loan
3 With CRB pull
4 Without CRB pull
5 Application in different stages: New Review Required,
Auto Approved,

Approved Blank, Approved Verifying, Approved Verified

Funding
6 Loan with Insurances
7 Loan without Insurances
8 Loan with Dealer's commission
9 PreCompute loan
10 Simple interest loan
Customer
Service
Payments
11 Back dated payment posting across billing for Simple

Interest Loan.

12 Back dated payment reversal across billing for Simple
Interest Loan
Payment reversal from Payment Maintenance screen.

13 Back dated payment reversal across billing for Simple
Interest Loan

Already existing payment.

Payment reversal from Payment Maintenance screen.

14 Back dated payment posting across billing for
PreCompute Loan.

10-1 ORACLE

15 Back dated payment reversal across billing for
PreCompute Loan
Payment reversal from Payment Maintenance screen.

16 Back dated payment reversal across billing for
PreCompute Loan

Already existing payment.

Payment reversal from Payment Maintenance screen.

17 Overpayment to an account within tolerance.
18 Overpayment to an account outside tolerance.
19 Erroneous Payment Batch posting.

20 ACH Payment Batch posting.

21 Post backdated payment across billing and NSF the
same.
NSF from Payment Maintenance screen.

22 NSF already existing payment.
NSF from Payment Maintenance screen.

23 Create a Payment Batch and Hold the same.

24 Erroneous Payment Batch posting.
Correct the same erroneous transaction and repost
successfully.

Already existing erroneous Payment Batch posting.
Correct the same erroneous transaction:

Add one row

Update one row for date as well as for amount and
repost successfully.

Already existing Open/Hold payment batch:

Add one row

Remove one row

Update one row for date as well as for amount and
repost successfully.

25 Create open Payment Batch and posting the same by
running SET-LBT: PAYMENT POSTING

Payments
Combinations

26 Create sequence of Payment Batch & post the same,
having mix of valid and erroneous batches.

Few erroneous payment batches not corrected and
reposted and few corrected and reposted.

10-2 ORACLE

27 Post payments thru lock box with the ach file having:

- non-existing a/c no

- closed a/c

- a/c having payment hold condition

- a/c having non-accrual condition, and txn date for the
payment is before non-accrual

Correct the erroneous payment batches (suspense
payments) and repost it.

Reverse the payments:
- posted correctly first time
- corrected and reposted

28 Post the already existing hold payment batch.
Reverse the payment.

29 Create an erroneous payment batch.
Correct the payment batch.

Put it on hold.

Post the payment batch.

Reverse the payment

30 Create a payment batch with:

- more than one payments

- correct and incorrect payments
Post the payment batch.
Reverse payments:

- one which was valid initially

- one which was invalid initially

31 Crete payment batches with:

- more than one payments

- correct and incorrect payment batches
Run the SET-LBT batch job.

Reverse the payments:

- one which was valid initially

- one which was invalid initially

Transactions
32 PreCompute loan put into non-performing.
33 PreCompute loan to Simple Interest conversion.
34 Simple Interest loan put into non-performing
35 Work order Service Expense assessment.
36 Post Extension.

37 Post Due Date Change.

10-3 ORACLE

38 Charge off an account.

39 Pay off an account.

40 Insurance cancellation on a PreCompute loan a/c.

41 Insurance cancellation on a Simple Interest loan a/c.

42 Waive Late Charge on an a/c.

43 Waive Advance on an a/c.

44 Waive Interest on an a/c.

45 Reduce Interest Rebate for PreCompute loan a/c.

46 A/c Monetary maintenance on an a/c to change the
advance, rate, payment amount and maturity dates.

a7 Account Due Paid Amount Maintenance posted on an
a/c to update the amount paid in due buckets 1 through
4

48 Post any of the non-monetary transaction.

49 Reverse any of the already existing monetary
transaction.

50 Post and reverse any of the monetary transaction.

51 Reverse the charge off transaction for an a/c already
charged off.

52 Post and reverse the charge off transaction.

53 Reverse the paid off transaction for an a/c already paid
off.

54 Post and reverse the paid off transaction.

55 Post a monetary erroneous transaction from
maintenance screen.

56 Post a non-monetary erroneous transaction from
maintenance screen.

57 Post an erroneous monetary transaction for which we
get the error result in the results pane, correct the same
and repost successfully.

58 Post an erroneous monetary transaction for which we

get the popup error message, correct the same and
repost successfully.

10-4 ORACLE

59 Void any monetary transaction.

60 Void any non-monetary transaction.

Transactions
Combinations

61 Put a PreCompute loan into non-performing.
Convert the same to Simple Interest.
Put the converted loan into non-performing.

62 Sequence of monetary transactions from maintenance
screen, having mix of:

- erroneous monetary transaction, for which we get the
error result in the results pane

- successful non-monetary transactions

- erroneous monetary transaction, for which we get the
error result in the results pane, corrected and reposted
successfully

- erroneous transactions for which we get the popup
error message

- erroneous transactions for which we get the popup
error message, corrected and reposted successfully

- void monetary transactions

- successful monetary transactions

Full Run 63 - Fund a new backdated loan from scratch.
- Post payments.

- Post monetary transactions.

- Post non-monetary transactions.

105 ORACLE

11. For Next Releases

Though the Testing Tool is totally dynamic and automates the tests by logging all actions
executed on a Production environment, then replicating them in a Test environment, which will
have a higher version of OFSLL. This tool still requires technical people, with technical knowledge
of OFSLL processes and architecture to be installed and run. For future releases, we can create
an installation package and a user friendly front end in order to users to be able to do all the tests
independently. Also, some of the current exceptions and limitations could be worked on in order
to incorporate to the tool’s functionalities.

-t ORACLE

ORACLE

Regression Testing Tool
April [2013]
Version 14.0.0.0.0

Oracle Financial Services Software Limited
Oracle Park

Off Western Express Highway

Goregaon (East)

Mumbai, Maharashtra 400 063

India

Worldwide Inquiries:

Phone: +91 22 6718 3000

Fax:+91 22 6718 3001
www.oracle.com/financialservices/
Copyright © [2008] , [2013] , Oracle and/or its affiliates. All rights reserved.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed on the
hardware, and/or documentation, delivered to U.S. Government end users are “commercial computer software” pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the programs, including any operating system, integrated software, any programs installed on the hardware, and/or
documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S.
Government.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended
for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or
hardware in dangerous applications, then you shall be responsible to take all appropriate failsafe, backup, redundancy, and other measures
to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware
in dangerous applications.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are
protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy,
reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish or display any part, in any form, or by any
means. Reverse engineering, disassembly, or recompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please
report them to us in writing.

This software or hardware and documentation may provide access to or information on content, products and services from third parties.
Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party
content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to
your access to or use of third-party content, products, or services.

ORACLE

	1. Régressions testing tool
	2. Scope
	2.1 Origination
	2.2 Customer Service

	3. Architecture / Technical Design
	4. Steps to Clone Base OFSLL Environment:
	5. Automated Testing Procedure
	6. Steps to Run
	7. Validations and Checks
	8. Comparing Results
	9. Testing Tool Exceptions
	9.1 A) Scenario 1
	9.2 B) Scenario 2 – This scenario results in an exception due to mismatch of balances

	10. Testing Tool Test Cases
	11. For Next Releases

