
Start

Oracle® Documaker

Documaker Web-Enabled
Solut ions

Part number: E51709-01

Version 12.3

March 2014

Copyright © 2009, 2014, Oracle and/or its affiliates. All rights reserved.

The Programs (which include both the software and documentation) contain proprietary information; they are provided under a license
agreement containing restrictions on use and disclosure and are also protected by copyright, patent, and other intellectual and industrial
property laws. Reverse engineering, disassembly, or decompilation of the Programs, except to the extent required to obtain
interoperability with other independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems in the documentation, please
report them to us in writing. This document is not warranted to be error-free. Except as may be expressly permitted in your license
agreement for these Programs, no part of these Programs may be reproduced or transmitted in any form or by any means, electronic or
mechanical, for any purpose.

If the Programs are delivered to the United States Government or anyone licensing or using the Programs on behalf of the United States
Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS
Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are "commercial
computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific
supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the Programs, including documentation
and technical data, shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement, and, to the extent
applicable, the additional rights set forth in FAR 52.227-19, Commercial Computer Software--Restricted Rights (June 1987). Oracle
USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently dangerous applications. It shall
be the licensee's responsibility to take all appropriate fail-safe, backup, redundancy and other measures to ensure the safe use of such
applications if the Programs are used for such purposes, and we disclaim liability for any damages caused by such use of the Programs.

The Programs may provide links to Web sites and access to content, products, and services from third parties. Oracle is not responsible
for the availability of, or any content provided on, third-party Web sites. You bear all risks associated with the use of such content. If
you choose to purchase any products or services from a third party, the relationship is directly between you and the third party. Oracle is
not responsible for: (a) the quality of third-party products or services; or (b) fulfilling any of the terms of the agreement with the third
party, including delivery of products or services and warranty obligations related to purchased products or services. Oracle is not
responsible for any loss or damage of any sort that you may incur from dealing with any third party.

Oracle, JD Edwards, and PeopleSoft are registered trademarks of Oracle Corporation and/or its affiliates. Other names may be
trademarks of their respective owners.

Notice

THIRD PARTY SOFTWARE NOTICES

This product includes software developed by Apache Software Foundation (http://www.apache.org/).

THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Copyright © 2000-2009 The Apache Software Foundation. All rights reserved.

This product includes software distributed via the Berkeley Software Distribution (BSD) and licensed for binary distribution
under the Generic BSD license.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ``AS IS'' AND ANY EXPRESS
OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Copyright © 2009, Berkeley Software Distribution (BSD)

This product includes software developed by the JDOM Project (http://www.jdom.org/).

THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE JDOM AUTHORS OR THE PROJECT CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Copyright (C) 2000-2004 Jason Hunter & Brett McLaughlin. All rights reserved.

This product includes software developed by the Massachusetts Institute of Technology (MIT).

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

Copyright © 2009 MIT

This product includes software developed by Jean-loup Gailly and Mark Adler. This software is provided 'as-is', without any
express or implied warranty. In no event will the authors be held liable for any damages arising from the use of this software.

Copyright (c) 1995-2005 Jean-loup Gailly and Mark Adler

This software is based in part on the work of the Independent JPEG Group (http://www.ijg.org/).

This product includes software developed by the Dojo Foundation (http://dojotoolkit.org).

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS
OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Copyright (c) 2005-2009, The Dojo Foundation. All rights reserved.

This product includes software developed by W3C.

Copyright © 2009 World Wide Web Consortium, (Massachusetts Institute of Technology, Institut National de Recherche en
Informatique et en Automatique, Keio University). All Rights Reserved. (http://www.w3.org/Consortium/Legal/)

This product includes software developed by Mathew R. Miller (http://www.bluecreststudios.com).

Copyright (c) 1999-2002 ComputerSmarts. All rights reserved.

This product includes software developed by Shaun Wilde and distributed via Code Project Open License (http://
www.codeproject.com).

THIS WORK IS PROVIDED "AS IS", "WHERE IS" AND "AS AVAILABLE", WITHOUT ANY EXPRESS OR IMPLIED
WARRANTIES OR CONDITIONS OR GUARANTEES. YOU, THE USER, ASSUME ALL RISK IN ITS USE, INCLUDING
COPYRIGHT INFRINGEMENT, PATENT INFRINGEMENT, SUITABILITY, ETC. AUTHOR EXPRESSLY DISCLAIMS
ALL EXPRESS, IMPLIED OR STATUTORY WARRANTIES OR CONDITIONS, INCLUDING WITHOUT LIMITATION,
WARRANTIES OR CONDITIONS OF MERCHANTABILITY, MERCHANTABLE QUALITY OR FITNESS FOR A
PARTICULAR PURPOSE, OR ANY WARRANTY OF TITLE OR NON-INFRINGEMENT, OR THAT THE WORK (OR ANY
PORTION THEREOF) IS CORRECT, USEFUL, BUG-FREE OR FREE OF VIRUSES. YOU MUST PASS THIS
DISCLAIMER ON WHENEVER YOU DISTRIBUTE THE WORK OR DERIVATIVE WORKS.

This product includes software developed by Chris Maunder and distributed via Code Project Open License (http://
www.codeproject.com).

THIS WORK IS PROVIDED "AS IS", "WHERE IS" AND "AS AVAILABLE", WITHOUT ANY EXPRESS OR IMPLIED
WARRANTIES OR CONDITIONS OR GUARANTEES. YOU, THE USER, ASSUME ALL RISK IN ITS USE, INCLUDING
COPYRIGHT INFRINGEMENT, PATENT INFRINGEMENT, SUITABILITY, ETC. AUTHOR EXPRESSLY DISCLAIMS
ALL EXPRESS, IMPLIED OR STATUTORY WARRANTIES OR CONDITIONS, INCLUDING WITHOUT LIMITATION,
WARRANTIES OR CONDITIONS OF MERCHANTABILITY, MERCHANTABLE QUALITY OR FITNESS FOR A
PARTICULAR PURPOSE, OR ANY WARRANTY OF TITLE OR NON-INFRINGEMENT, OR THAT THE WORK (OR ANY
PORTION THEREOF) IS CORRECT, USEFUL, BUG-FREE OR FREE OF VIRUSES. YOU MUST PASS THIS
DISCLAIMER ON WHENEVER YOU DISTRIBUTE THE WORK OR DERIVATIVE WORKS.

This product includes software developed by PJ Arends and distributed via Code Project Open License (http://
www.codeproject.com).

THIS WORK IS PROVIDED "AS IS", "WHERE IS" AND "AS AVAILABLE", WITHOUT ANY EXPRESS OR IMPLIED
WARRANTIES OR CONDITIONS OR GUARANTEES. YOU, THE USER, ASSUME ALL RISK IN ITS USE, INCLUDING
COPYRIGHT INFRINGEMENT, PATENT INFRINGEMENT, SUITABILITY, ETC. AUTHOR EXPRESSLY DISCLAIMS
ALL EXPRESS, IMPLIED OR STATUTORY WARRANTIES OR CONDITIONS, INCLUDING WITHOUT LIMITATION,
WARRANTIES OR CONDITIONS OF MERCHANTABILITY, MERCHANTABLE QUALITY OR FITNESS FOR A
PARTICULAR PURPOSE, OR ANY WARRANTY OF TITLE OR NON-INFRINGEMENT, OR THAT THE WORK (OR ANY
PORTION THEREOF) IS CORRECT, USEFUL, BUG-FREE OR FREE OF VIRUSES. YOU MUST PASS THIS
DISCLAIMER ON WHENEVER YOU DISTRIBUTE THE WORK OR DERIVATIVE WORKS.

This product includes software developed by Erwin Tratar. This source code and all accompanying material is copyright (c) 1998-
1999 Erwin Tratar. All rights reserved.

THIS SOFTWARE IS PROVIDED "AS IS" WITHOUT EXPRESS OR IMPLIED WARRANTY. USE IT AT YOUR OWN
RISK! THE AUTHOR ACCEPTS NO LIABILITY FOR ANY DAMAGE/LOSS OF BUSINESS THAT THIS PRODUCT MAY
CAUSE.

This product includes software developed by Sam Leffler of Silicon Graphics.

THE SOFTWARE IS PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, EXPRESS, IMPLIED OR
OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE.

IN NO EVENT SHALL SAM LEFFLER OR SILICON GRAPHICS BE LIABLE FOR ANY SPECIAL, INCIDENTAL,
INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY KIND, OR ANY DAMAGES WHATSOEVER RESULTING FROM
LOSS OF USE, DATA OR PROFITS, WHETHER OR NOT ADVISED OF THE POSSIBILITY OF DAMAGE, AND ON ANY
THEORY OF LIABILITY, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS
SOFTWARE

Copyright (c) 1988-1997 Sam Leffler
Copyright (c) 1991-1997 Silicon Graphics, Inc.

This product includes software developed by Guy Eric Schalnat, Andreas Dilger, Glenn Randers-Pehrson (current maintainer),
and others. (http://www.libpng.org)

The PNG Reference Library is supplied "AS IS". The Contributing Authors and Group 42, Inc. disclaim all warranties, expressed
or implied, including, without limitation, the warranties of merchantability and of fitness for any purpose. The Contributing
Authors and Group 42, Inc. assume no liability for direct, indirect, incidental, special, exemplary, or consequential damages,
which may result from the use of the PNG Reference Library, even if advised of the possibility of such damage.

This product includes software components distributed by the Cryptix Foundation.

THIS SOFTWARE IS PROVIDED BY THE CRYPTIX FOUNDATION LIMITED AND CONTRIBUTORS ``AS IS'' AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
CRYPTIX FOUNDATION LIMITED OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE

Copyright © 1995-2005 The Cryptix Foundation Limited. All rights reserved.

This product includes software components distributed by Sun Microsystems.

This software is provided "AS IS," without a warranty of any kind. ALLEXPRESS OR IMPLIED CONDITIONS,
REPRESENTATIONS AND WARRANTIES, INCLUDING ANYIMPLIED WARRANTY OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE HEREBY EXCLUDED. SUN AND ITS
LICENSORS SHALL NOT BELIABLE FOR ANY DAMAGES SUFFERED BY LICENSEE AS A RESULT OF USING,
MODIFYING OR DISTRIBUTING THE SOFTWARE OR ITS DERIVATIVES. IN NO EVENT WILL SUN OR ITS
LICENSORS BE LIABLE FOR ANY LOST REVENUE, PROFIT OR DATA, OR FOR DIRECT, INDIRECT, SPECIAL,
CONSEQUENTIAL, INCIDENTAL OR PUNITIVE DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE
THEORY OF LIABILITY, ARISING OUT OF THE USE OF OR INABILITY TO USE SOFTWARE, EVEN IF SUN HAS
BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Copyright (c) 1998 Sun Microsystems, Inc. All Rights Reserved.

This product includes software components distributed by Dennis M. Sosnoski.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS'" AND ANY EXPRESS
OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Copyright © 2003-2007 Dennis M. Sosnoski. All Rights Reserved

It also includes materials licensed under Apache 1.1 and the following XPP3 license

THIS SOFTWARE IS PROVIDED "AS IS'" AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Copyright © 2002 Extreme! Lab, Indiana University. All Rights Reserved

This product includes software components distributed by CodeProject. This software contains material that is © 1994-2005 The
Ultimate Toolbox, all rights reserved.

This product includes software components distributed by Geir Landro.

Copyright © 2001-2003 Geir Landro (drop@destroydrop.com) JavaScript Tree - www.destroydrop.com/hjavascripts/tree/version
0.96

This product includes software components distributed by the Hypersonic SQL Group.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS'" AND ANY EXPRESS
OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE

Copyright © 1995-2000 by the Hypersonic SQL Group. All Rights Reserved

This product includes software components distributed by the International Business Machines Corporation and others.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

Copyright (c) 1995-2009 International Business Machines Corporation and others. All rights reserved.

This product includes software components distributed by the University of Coimbra.

University of Coimbra distributes this software in the hope that it will be useful but DISCLAIMS ALL WARRANTIES WITH
REGARD TO IT, including all implied warranties of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. In
no event shall University of Coimbra be liable for any special, indirect or consequential damages (or any damages whatsoever)
resulting from loss of use, data or profits, whether in an action of contract, negligence or other tortious action, arising out of or in
connection with the use or performance of this software.

Copyright (c) 2000 University of Coimbra, Portugal. All Rights Reserved.

This product includes software components distributed by Steve Souza.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS "AS IS'" AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

Copyright © 2002, Steve Souza (admin@jamonapi.com). All Rights Reserved.

This product includes software developed by the OpenSymphony Group (http://www.opensymphony.com/.)"

Copyright © 2001-2004 The OpenSymphony Group. All Rights Reserved.

PANTONE (R) Colors displayed in the software application or in the user documentation may not match PANTONE-identified
standards. Consult current PANTONE Color Publications for accurate color. PANTONE(R) and other Pantone LLC trademarks
are the property of Pantone LLC. (C) Pantone LLC, 2011.

Pantone LLC is the copyright owner of color data and/or software which are licensed to Oracle to distribute for use only in
combination with Oracle Documaker. PANTONE Color Data and/or Software shall not be copied onto another disk or into
memory unless part of the execution of Oracle Documaker.

9

Contents

Chapter 1, Web-Enabled Solutions

16 Business Scenarios

17 What Your Agents, Customers, or End Users See When You Add WIP Edit

18 Improving the Process

19 Architecture Overview

21 Using WIP Edit vs. HTML Forms

22 How WIP Edit, IDS, and Documaker Workstation Interact

Chapter 2, Installation and Configuration

26 How to configure INI request types

27 Overview

28 Setting Up the WIP Edit Client

29 Setting Up WIP Edit

32

32

33 Upgrading WIP Edit

34 Setting Up IDS

36 REQUEST TYPE

41 Requesting a Dictionary from IDS

42 Customizing How User Dictionaries are Stored

42 Storing Dictionaries on the Client

43 Sending Passwords to WIP Edit

10

44 Understanding Rule Sets

50 Setting Up iPPS

50 iPPS COM+ Software Prerequisites

50 iPPS COM+ on Microsoft Windows Server 2003

51 Setting Global XML Options

51 Global XML File Structure

60 Request Types and Attachment Variables

72 Starting the System

73 Using the WIP Edit ActiveX Control

73 Additional Client Side Information

73 DPW Files

74 Checking Spelling

75 Fonts

75 Printing

75 Saving

76 Zoom in and Zoom out

76 WIP Edit APIs

85 USING THE WIP EDIT PLUG-IN

87 Customizing iDocumaker, iPPS, and WIP Edit

89 Sending Passwords

89 Requesting a Dictionary

90 Trapping Events

91 Tracking Session Information

66

Advanced Topics

67 Debugging

67 Server Side Debugging

69 Client Side Debugging

72 Troubleshooting

72 Linux Character Sets

74 WIP Edit Registration

75 Internet Explorer Warnings

76 Could Not Parse the DPW File

11

77 Another Could Not Parse DPW File Message

78 Bind Error

78 Errors while Saving Documents

79

79 Authentication Errors

79 Debugging Tip 1

81 Debugging Tip 2

82 Handling Error Messages

82 Client Side Errors

83 Server Side Errors

86 Integrating Custom Code

86 Installing Custom DLLs

87 Using the Print Preview Application

Appendix A, Setting Up Print Preview with Tomcat as the Mid-tier

89 Overview

90 Installing the JSP and ASP Files

91 Copying the Jar Files

92 Copying the Properties File

93 Creating Scripts to Set Environment Variables

94 Editing the Tomcat Startup Script

94 Editing the dsimsgclient.properties File

96 Setting the Location of the dsimsgclient.properties File

96 Making Tomcat Use the Properties File at Startup

99 Starting Tomcat

Appendix B, Setting Up Print Preview with WebSphere 5.1 as the Mid-tier

101 Creating the WAR File

103 Deploying the WAR File with the WAS Administrative Console

120 Testing the WebSphere Installation

12

Appendix C, Modifying the GLOBAL.XML File

123 Modifying the System Element in GLOBAL.XML

124 Modifying the MRL Element in GLOBAL.XML

126 Changing the Request Types

126 LOW.LEVEL.SERVICE Changes

126 Adding Request Types

130 Updating Request Types

131 Changing the WIPEDIT.INI File

Appendix D, Optimizing Performance

133 WebSphere Application Server (WAS)

133 Static Content Serving

133 Web Server Tuning

133 WebSphere Tuning Parameters

134 JVM Heap Size

134 WebSphere 5 Classloader Mode Setting

134 JNDI/JDBC Provider Setup

135 For Additional Information

136 Database

136 Indexes

136 Maximum Connections

137 WebSphere MQ

137 MQ Client Mode (Binding or TCP/IP Channels)

137 Maximum Channels

137 Max Queue Depth

138 Docupresentment (IDS)

138 IDS Instances

138 SAR Request

139 Logging

140 Documaker Server, Documaker Server Shared Object (Bridge) to Docupresent-
ment

140 Indexes for Archive

13

140 Indexes for WIP

140 Logging

141 Bitmap Sizes

141 PDF Compression

142 Documanage and Documanage Bridge to Docupresentment

142 DBMS Connections

142 Instances

142 Indexes

143 iPPSj

143 Session/State Management

143 Table Indexes

143 Sending/Receiving Files via Queues

144 JNDI/JDBC providers and iPPSj caching options

144 HTML Location in the IMAGE_VERSION Table

145 Translets vs. XSLT

145 Compression

146 Network

14

15

Chapter 1

Web-Enabled Solutions

This document discusses Oracle Documaker web-
enabled solutions that use WIP Edit, the web-enabled
version of Documaker Workstation, such as iPPS and
iDocumaker Workstation.

The iPPS and iDocumaker Workstation solutions let
you import and export data, create, modify, print, and
archive transactions via the Internet.

WIP Edit is a browser-based application for the
Windows workstation. It lets you edit transactions via
the internet in a what you see is what you get (WYSIWYG)
format.

In this document you will find details about the iPPS and
iDocumaker components, features, and a brief
definition of the markets served by these products.

This chapter includes these topics:

• Business Scenarios on page 16

• Improving the Process on page 18

• Architecture Overview on page 19

•

Chapter 1
Web-Enabled Solutions

16

BUSINESS
SCENARIOS

There are several configuration scenarios that are designed to meet your needs. This
document discusses those that use WIP Edit.

Previously, the iPPS solution was sold to the MGA (Managing General Agents) market.
Oracle Documaker now typically sells the iDocumaker Workstation solution to insurance
carriers and other large enterprises.

Standard IPPS - What your Agents, Customers, or End Users See

With this configuration your users access a Windows based web site, log-on, access
HTML forms to select lines of businesses, and so on, that determine which forms to fill
in. The forms are presented to the user in HTML format in a browser. The end user can
save the transactions to WIP for future use and also print and archive the transactions.

Typically, an end user enters or imports data from an XML file onto the forms, then
reviews the information on screen, and prints the transaction to a local printer for further
review. The end user may want to print the transaction as a PDF file and send this file via
email to a customer or co-worker for review and approval. After approval, the end user
can finalize the transaction and send it to archive.

The archived data can be accessed via the end user for endorsements, renewals, or
correspondence. Additionally, customer service people or the end user can help with any
customer questions by accessing the archived data on-line in PDF WYSIWYG format to
see exactly what a customer has received.

This approach uses HTML forms throughout the process. One benefit to using HTML
forms is that your end users may be able to perform rapid data entry tasks where collecting
data quickly is more important than seeing exactly how it will be presented on a form.

Prior to the 11.0 Documaker Bridge, with this configuration you would maintain a master
library of resources (MRL) and convert those forms into a set of HTML files. Now, the
11.x and higher Documaker Bridge generates HTML files dynamically from the form set
in the MRL.

Standard iDocumaker Workstation - What your Agents, Customers, or End Users See

With this configuration your users access a Windows or UNIX-based web site, log on,
access HTML forms to select lines of businesses, and so on, that determine which forms
to fill in. The forms are presented in HTML format via a browser. The end user can save
the transactions to WIP for future use and also print and archive the transactions.

Typically, an end user may want to enter or import data from an XML file onto the forms,
then preview the information on screen, and print the transaction to a local printer. The
end user may then want to create a PDF file of the transaction and send the PDF file via
email to a customer or co-worker for review and approval. After approval, the end user
can then finalize the transaction and send it to archive.

iDocumaker Workstation users who have licensed Documaker Server can also submit a
job to a batch process to print the data for multiple recipients on high speed Xerox or
AFP printers. The final copies are ready to be mailed to the customers, agents, and so on.

Finally the archived data can be accessed via the end user for endorsements, renewals, or
correspondence. Additionally, customer service people or the end user can help with any
customer questions by accessing the archived data on-line in PDF format to see exactly
what a customer has received.

Business Scenarios

17

This approach uses HTML forms throughout the process. One benefit to using HTML
forms is that your end users may be able to perform rapid data entry tasks where collecting
data quickly is more important than seeing exactly how it will be presented on a form.

With this configuration you maintain a master library of forms (MRL) and convert those
forms into a set of HTML files.

WHAT YOUR AGENTS, CUSTOMERS, OR END USERS SEE
WHEN YOU ADD WIP EDIT

• Install the plug-in application from the edelivery.oracle.com.With the installed
Configurations, log on to the website and enter appropriate values in the Customer
Transaction Information screen.Open the Form Selection screen to select various
forms associated with the MRL, Lines of Business etc and choose the forms you want
to complete and then select the Work On Forms option to edit the documents.

• Within this view using the WIP Edit Plug-In 12.0 and higher

• The navigation tree will show the list of forms within the document, but not the
recipient associated with them.

• The navigation tree also shows the required field status of the document and allows
users to activate a check required field function via right click menu option.

• WIP Edit plugin supports the Can Split section level rule. When defined on a section
in the library, the plug-in will allow the section to dynamically split across pages as its
pushed down by additional the content added above it. When content above the
section is removed, the split section will also merge back into one section on the first
page.

• By default, users can only view forms with editable fields. To allow users to view all
forms, both variable and static/print only, enable the Control group option
ViewPrintOnly within the WIPEdit.ini and set the value to Yes. In versions 12.0 and
12.1 you will also need to set the LoadPrintOnly option to Yes. Starting in 12.2, all
print only forms are loaded by default so the second option is no longer needed.

• On completion of updating/editing the fields, the user is directed to Processing
Options page to complete the printing process.

Chapter 1
Web-Enabled Solutions

18

IMPROVING THE
PROCESS

• To take full advantage of iPPS or iDocumaker Workstation with WIP Edit you need
version 3.11 or higher. This version and all subsequent patch levels of the web-based
product set let you use new Documaker 11.x shared objects, WIP Edit, a single MRL,
and 11.0 and higher Studio format files.

• This means is less resource maintenance for you while letting your end users work
with the familiar interface and form sets you provide. Your end users install WIP
Edit, then use the application each time they work with transactions.

• This document will help you with the setup process.

NOTE: Version 3.1 will continue to be supported.

Operating system
support

• Documaker iPPS and iDocumaker Workstation systems let you install and configure
the COM+ system for Windows operating systems.

• iDocumaker Workstation system lets you install and configure the Java (J2EE)
system for UNIX operating systems as well as Microsoft Windows.

• This document reviews the server side and client side setup tasks you have to
perform. Assumptions about the software applications and versions are also
discussed. Parts of this document describe how to install and configure the various
components, how to run a simple test, and how to troubleshoot the system to make
sure the test works accurately.

• Product upgrades

• Oracle Documaker has a product upgrade path that usually consists of applying
patches to existing installations. Steps guide you through the process necessary to
apply base product patches from Oracle Documaker, modify your system, and
reapply custom file settings accordingly.

Architecture Overview

19

ARCHITECTURE
OVERVIEW

• This topic provides an architectural overview of Documaker web-enabled solutions.
This discussion focuses on these areas:

• iPPS core system

• iPPS for managing general agents

• iDocumaker Workstation

iPPS Core System • Oracle Documaker is a provider of web-enabled electronic document
correspondence and policy production solutions. At the center of these solutions is
a set of core technology called iPPS — Internet Policy Processing System.

• The iPPS Core System is a web application with these key features:

• Leverages a common Documaker/PPS forms electronic library

• Enables an operator to browse a list of candidate forms in the forms library

• Enables an operator to select a set of forms for data entry

• Enables an operator to enter data into variable field areas on the forms in the form set

• Enables data to be imported from an external system into the form set

• Enables the operator to create, view, and print PDF proofs of the form set

• Enables the operator to save a form set in WIP (Work-in-process)

• Enables the operator to assign form sets in WIP to other operators

• Enables the operator to complete and publish a final output document from the form
set in multiple output formats and delivery methods

• Enables data to be exported from the form set to an external system

• Offers exits and hooks for integrating with an archive system

• Enables completed form sets to be archived into an archive system

• Enables the operator to browse the index of previously archived form sets

• Enables the operator to start new documents using data from previously archived
form sets

• The iPPS Core System is able to display the selected forms in the form set, and accept
user data entry into the forms in the form set, using either of two ways:

• Using dynamic HTML forms presented in a frame in the browser within the
application

• Using Documaker WIP Edit component (an ActiveX control) hosted within a frame
in the browser within the application

• The modules of the iPPS Core System are part of the packaging of two products:

• iPPS for the MGA market

• iDocumaker Workstation

Chapter 1
Web-Enabled Solutions

20

iPPS for the MGA
market

• MGAs are Managing General Agents. MGAs are independent insurance companies
that act as agents for other companies and are empowered to rate, quote, and bind
insurance policies on behalf of carriers, typically in the domestic excess and surplus
insurance market. The excess and surplus insurance market is typically dominated by
specialty or unusual-risk commercial insurance policies.

• Oracle Documaker sells a product in the MGA market called PPS — Policy
Processing System. iPPS for the MGA market is a web-enabled version of PPS.

• iPPS requires a license to PPS, and is licensed by host server site, and also by each
end-user client location. PPS and iPPS are designed for use with electronic libraries
provided by licensed carriers. Additional licensing of development tools may be
required.

• iPPS for the MGA market consists of these components:

• iPPS Core System for one of the following platforms:

• Windows 2000 Server (COM+ technology)

• Windows 2003 Server (COM+ technology)

• Documaker WIP using a standard xBase index

• Documaker archive system using a standard xBase index and flat CAR repository

• A subset of Docupresentment (for Windows only) consisting of these components:

• Internet Document Server (IDS)

• Bridge to Documaker WIP and Archive

• HTML conversion tools

 PDF driver

iDocumaker
Workstation

• Insurance carriers and other large enterprises can license an expanded version of the
same core technology found in PPS in a product called Documaker Workstation.
Similar to how iPPS is a web-enabled version of PPS, iDocumaker Workstation is a
web-enabled version of Documaker Workstation.

• iDocumaker Workstation is sold as component of the following solutions:

• Policy Generation web-enabled

• Policy Generation web-enabled with Archive

• Correspondence web-enabled

• Correspondence web-enabled with Archive

• iDocumaker Workstation consists of the following:

• iPPS Core System for one of the following platforms:

• Windows 2000 Server (COM+ technology)

• Windows 2003 Server (COM+ technology)

• AIX (J2EE technology)

• Solaris (J2EE technology)

Architecture Overview

21

• HP-UX (PA-RISC) (J2EE technology)

• Intel PC-based Linux (J2EE technology)

• Documaker WIP using one of these index methods:

• Standard XBASE index

• SQL database index

• Interface to archive system (Documanage sold separately)

• The full Docupresentment system (Docupresentment sold separately)

USING WIP EDIT VS. HTML FORMS

Once the mid-tier and back end servers are configured, you decide which client best suites
your organizational requirements. You can choose between an HTML view of your forms
and data or a WYSIWYG view. This topic provides guidelines to help you decide which
approach better suits your needs.

Use HTML when:

Pure thin-client is a requirement (other than Acrobat)

Users that are not known to the enterprise may need to enter onto the forms

Forms involve relatively standard forms-fill and not a lot of field-level editing

A reasonably accurate rendition of the form is required, but not an exact WYSIWYG
representation

Use WIP Edit when:

You have an existing Documaker or PPS library that is rich with user edits and scripts
already exists

The only users are internal users known to the enterprise and fidelity is more important
than being thin-client

The forms are highly dynamic, word-processor type forms, or have barcodes, charts, or
other features not available in HTML

Chapter 1
Web-Enabled Solutions

22

HOW WIP EDIT, IDS, AND DOCUMAKER WORKSTATION
INTERACT

Figure 1 shows Oracle Documaker Thin Client architecture from a logical view. This
represents a fully configured system in terms of the thin client, mid-tier, and back-end
servers in a physical implementation. It also references the Master Resource Library
(MRL) you create to use with the system.

Prior to the 11.0 Documaker Bridge, if you created an iPPS application you had to create
your MRL and then generate HTML files that corresponded to your forms,
correspondence, and so on. If you changed the forms in the MRL, you also had to change
the HTML files. For large applications, keeping these entities in sync could be a problem.

The 11.x and higher Documaker Bridge solves this problem by automating the process.
It now queries the MRL through IDS, for a list of forms and then dynamically generates
the HTML. Now you have a choice about whether you want to use HTML based forms
or true WYSIWYG forms. WIP Edit provides the latter functionality by rendering the
forms directly from the MRL. The previous topic provided some guidelines on when to
choose HTML based forms versus WYSIWYG forms.

Figure 1: Oracle Documaker Thin Client Logical Architecture

Specific hardware and software platform requirements for the thin client architecture and
the various software components are described elsewhere in this document.

In Figure 1, the client side consists of a workstation running Microsoft Windows, Internet
Explorer and Documaker WIP Edit ActiveX component. When a user logs into the
system and makes a request, it is sent to iPPS.

iPPS acts as a front end to all of the back end server components IDS (Internet Document
Server) and Shared Objects. iPPS looks at the request made by the client, encodes that
into a message and places it on the message queue.

End user

Archive

W
eb S

erver /

Master
Resource
Library

WIP

Message Queue
Middleware

iPPS

 A
pplication S

erver

IDS and Shared
Objects Internet or Intranet

with WIP Edit

End user
with WIP Edit

End user
with WIP Edit

Architecture Overview

23

IDS checks the message queue for incoming requests. When it sees a new message, it pulls
it off the queue. It determines the action the client wants to perform and initiates the
action. The action could be retrieving documents from archive storage, printing
documents, retrieving documents from WIP, and so on. All of these actions are
performed against the MRL that is in use and rule sets that constitute the business logic
of the application. When the request has completed, IDS sends a result (which depends
on the request type) back to iPPS. iPPS forwards the result back to the client browser. If
the request is to retrieve a form set and display a particular form, WIP Edit renders a form
in the user’s browser.

When configuring IDS and iPPS, you typically have to define things like web server
settings, queue mangers, and any custom rule sets that required for specific request types.
Later in this document you will see how to configure these items.

Central to the execution of the system is an item referred to as a request type. A request
type is an action the user wants to perform. A request type triggers an action like saving a
document or running a spell check on this document. On the back-end server (IDS), the
request types are identified in identified by files accessible to the IDS. The request types
for the web application or plug-in could be put in the docserv.xml but request types are
usually configured in the INI file that is defined in the docserv.xml. The file contains all
of the configuration information for the IDS server. iPPS has its own configuration file
called GLOBAL.XML. As the file extension implies, this is an XML file, whereas the IDS
configuration file is an INI file.

Here is an example of a request type.

< ReqType:i_PluginInit >

;Plugin initialization. Get DPW file

 function= atcw32->ATCLoadAttachment

function= atcw32->ATCUnloadAttachment

function= atcw32->ATCSendFile,RF_POSTFILE,PRINTFILE,BINARY

function= dprw32->DPRSetConfig

 function= dprw32->DPRInitLby

function= dprw32->DPRGetWipFormset

 function= dprw32->DPRPrintDpw

Listing 1: Listing 1: Typical Request Type

This listing shows a typical request type This is one of the request types supported by WIP
Edit. The general format of a request type is the keyword ReqType: followed by the name
(with no spaces). The type is placed in square brackets.

Under the request type, a series of entries that begin with function= is found. These are
the specific rules that are run by the Rules Processor component of IDS. The order of the
listing is the order in which the rules are run. For a complete list of the rules, see the SDK
Reference. This book contains all of the information needed to write custom rules. The
document explains the purpose of each function and identifies the required input and
output variables (attachment variables) associated with each function

Chapter 1
Web-Enabled Solutions

24

The specific modifications you must make to the configuration files for IDS and iPPS
recovered in separate topics. However, the request types listed in the configuration files
will match each other. The IDS configuration files contain request types and rules that are
run for each request. The GLOBAL.XML file contains request types and attachment
variables. Attachment variables are input and output variables described in a name/value
pair, such as USERID=JOHNSMITH.

When iPPS sends a message to IDS via the message queue middleware (such as
WebSphere MQ or MSMQ) it typically packs the request type up with the attachment
variables, and posts the message on the queue. When IDS is notified that a message is
waiting, it retrieves the message from the queue, identifies the request type, and then
begins to run the rule set identified in the IDS configuration files.

In most cases, the first rule that is run is

atcw32->ATCLoadAttachment

This rule takes the attachment variables sent by iPPS and stores them in an internal data
structure. Additional code is run on the back end that corresponds to the request type.

If IDS needs to send data back to the client, it transforms the data from the internal data
structures to a message for the middleware. This rule set builds up the message and places

it in the message queue:

atcw32->ATCUnloadAttachment

When IDS needs to send a file to the client, this rule is run:

function = atcw32->ATCSendFile, RF_POSTFILE, PRINTFILE, BINARY

This says IDS will post a file of type PRINTFILE that is a binary file, back to the client.
The parameters for the ATCSendFile rule may vary dependent on the web page that
makes the request.

This rule:

function = dprw32->DPRSetConfig” and “function= dprw32->DPRInitLby

Gets the configuration information for the print functionally and initializes a library, while
this rule:

function = dprw32->DPRGetWipFormset

Retrieves the form set that was request (identified by one of the input attachment
variables) by the client. IDS writes the information to a file (the extension is DPW).

Finally, this rule:

function= dprw32->DPRPrintDpw

Generates a DPW file from a WIP record and sends the file back to iPPS, which in turn
forwards it on to the client. WIP Edit takes the DPW file, unpacks it, and displays
information to the user. The information displayed depends on the request type.

The following chapter on Setting Up IDS and Setting Up iPPS goes into additional detail
on the request types, attachment variables and typical patterns that are seen in most
requests. Please refer to those topics for more information.

25

Chapter 2

Installation and
Configuration

This chapter discusses how you install and configure
iDocumaker Workstation and iPPS and includes
information on these topics:

How to configure INI request types on page 26

Setting Up the WIP Edit Client on page 28

Setting Up IDS on page 34

Setting Up iPPS on page 50

Setting Global XML Options on page 51

Using the WIP Edit ActiveX Control on page 73

USING THE WIP EDIT PLUG-IN on page 85

Customizing iDocumaker, iPPS, and WIP Edit on page
87

Chapter 2
Installation and Configuration

26

HOW TO
CONFIGURE INI

REQUEST TYPES

There should be an INI file defined in the docserv.xml. Request types for web application
or plug-in could be put in the docserv.xml but it is usually INI file that is defined in the
docserv.xml section.This is the section in the docserv.xml that defines the request types
for plug-in/web app.

- <section name="INIFiles">

<entry name="File">[INIFiles:~Platform] File =</entry>

<entry name="File">idmk_java_requests.ini</entry>

</section>

Format of request type in docserv.xml

<section name="ReqType:GETRESOURCE">

<entry name="function">atcw32->ATCLogTransaction</entry>

<entry name="function">atcw32->ATCLoadAttachment</entry>

<entry name="function">atcw32->ATCUnloadAttachment</entry>

<entry name="function">dprw32->DPRSetConfig</entry>

<entry name="function">dprw32->DPRDecryptLogin</entry>

<entry name="function">dprw32->DPRDefaultLogin</entry>

<entry name="function">dprw32->DPRCheckLogin</entry>

<entry name="function">atcw32-

>ATCSendFile,RETURNFILE,RETURNFILE,Binary</entry>

<entry name="function">dprw32->DPRGetResource,RETURNFILE</entry>

<!-- -->

</section>

INI file format

; Gets a resource for the Plugin

[ReqType:iDM_PluginGetResource] function = atcw32-ATCLoadAttachment function
= atcw32ATCUnloadAttachment function = dprw32->DPRSetConfig

function = atcw32->ATCSendFile,DOCUMENTSTREAM,RETURNFILE,Binary
function = dprw32->DPRGetResource,RETURNFILE

function = java;com.docucorp.ids.rules.CopyDataRule;copyit;transaction;copyMes
sageVariables;TAG_AND_FOLLOW,CONFIG

; Returns entries from standard RP table

Overview

27

OVERVIEW The installation and configuration steps are covered in detail throughout this chapter.
Here is a brief overview of the steps you will perform to get your system running:

Install IDS 1.8 Patch 42 or higher and Shared Objects 12.2 or higher. See Setting Up IDS
on page 34 for more information.

Install and configure MQSeries and modified the INI files to reflect the MQSeries
settings.

Install WIP Edit 12.3. See Setting Up the WIP Edit Client on page 28 for more
information.

If you are running iPPS Com+, make sure your Windows server has IIS installed.

Install MDAC and MSXML. See iPPS COM+ Software Prerequisites on page 50 for more
information.

Install the iPPS 3.11 resources. See Setting Up iPPS on page 50 for more information.

Install the iPPS 3.11 DLL files. See Setting Up iPPS on page 50 for more information.

Install the AMERGEN resources. See MRL section on page 56 for more information.

Configure the IDS INI files for your queue manager and verify the settings identified in
this document. See Setting Up IDS on page 34 for more information.

Make sure the Amergen and WIP Edit INI files are configured as shown throughout this
document. See MRL section on page 56 and Changing the WIPEDIT.INI File on page
124 for more information.

Modify the GLOBAL.XML file as shown in Modifying the GLOBAL.XML File on page
115

Chapter 2
Installation and Configuration

28

SETTING UP
THE WIP EDIT

CLIENT

This topic discusses how to install and configure a WIP Edit client.

To use Oracle iDocumaker Workstation or iPPS/MGA document management solution,
you need several components on the client machine. The basic components are:

You can not have a mixed environment of WIP Edit and non-WIP Edit users. The server
configuration is not dynamic depending on the client machine. All your users must either
run in HTML mode or WIP Edit mode.

The WIP Edit plug-in must be at version 12.3 or higher. Oracle Insurance provides a
setup program to install all of the necessary WIP Edit components, including the program
files, fonts, INI files, and so on.

The installation of the third party client side basic components is documented by the
vendors that supply the software. The WIP Edit component installation is described in
Setting Up WIP Edit on page 29.

Component Description

Operating System This must be a 32-bit Microsoft Windows-based system such as
Windows 2000 Professional or Windows XP Professional.

Browser The default output of the iPPS core system is HTML. You must
have Microsoft’s Internet Explorer version 6.0 and
above.Documaker Interactive will support Firefox.

Adobe Acrobat Reader WIP Edit supports version 6.0 and above. WIP Edit can generate
PDF files that can be printed on the client machine through Adobe
Acrobat.

WIP Edit WIP Edit is an optional Oracle Documaker component that
provides a WYSIWYG (what you see is what you get) form view
from within Microsoft’s Internet Explorer. This control renders
forms produced by the iPPS core system directly from your MRL.

Setting Up the WIP Edit Client

29

SETTING UP WIP EDIT

The version of WIP Edit you install should be compatible with the version of Shared
Objects used on the back-end IDS server. This means that if the IDS server Shared
Objects is running at version 12.3, it would be a good idea to patch the corresponding
WIP Edit installation to the same revision level.

The WIP Edit installation program is identified by revision level on the Oracle Insurance
Support software download web site. For example, a version of the WIP Edit setup
program may be identified as ODWE12.3.00.22498W32, indicating version 12.3, and
patch 00. So make sure you download the compatible version for your IDS Shared
Objects installation.

The client side configuration for WIP Edit consists of these steps:

Wipedit now uses install4j program for install.

Configuring Internet Explorer for ActiveX controls.

NOTE: You must have Administrator rights to install WIP Edit. You can install
and run the WIP Edit from either a local or network drive.

Installing WIP Edit The installation program automatically installs and sets up WIP Edit. To run the
installation program:

Double click on the file you downloaded from the Oracle Insurance web site, such as
ODWE12.3.00.22498W32.

Follow the instructions that appear on your screen.

At the end of the installation process on a Windows 7 -64bit environment, system may
display the following:

Microsoft Visual C++ 2008 Re distributable Setup dialog for Maintenance mode.

Select one of the options below:

 Repair Microsoft Visual C++ 2008 Re distributable to its original state.

 Uninstall - Uninstall Microsoft Visual C++2008 Re distributable from this computer.

Choose Repair to go ahead with the installation process.

In a scenario when the re distributable is still installed post Documaker Uninstallation,
Maintenance: Repair/uninstall screen appears when you re-install Documaker.

NOTE: At the end of the installation, you do not have to reboot your computer

Chapter 2
Installation and Configuration

30

12.0 install and higher doesn't use TrueType fonts

The installation program installs and registers several TrueType fonts which are then
available to any Windows program. In addition, it sets a registry value to point to the WIP
Edit installation path. You must have Administrator rights on the machine when you run
the install program. The entire footprint of the install, including the TrueType fonts, is
approximately 25MB.

The registry value is set as shown here:

HKEY_LOCAL_MACHINE\\SOFTWARE\\DocuCorp International\\Docucorp
WIPEdit\\12.3\\InstallP\[install location]

Controlling when a font
file is created

You can use the DownloadDPWFonts INI option to control whether the system creates
a font file when it creates the DPW file. The default is No, which means the font file is
not created.

< WIP2DPW >

DownloadDPWFonts = Yes

If you set this option to Yes, the system includes any font used in the document in a
temporary FXR file that is downloaded to WIP Edit. This may affect text edit mode if the
user wants a font that is not used in the document.

If a font is needed but is not used in the document, use the File2DPW control group to
download an existing FXR file to WIP Edit and then set the DownloadDPWFonts option
to No, as shown here:

< File2DPW >

XRFToken = yourfxrfile.fxr

< WIP2DPW >

DownloadDPWFonts= No

Configuring Internet
Explorer for ActiveX

controls

Once the installation program completes, you need to configure Internet Explorer to set
up the permission levels for ActiveX controls.

NOTE: No ActiveX controls are downloaded when you perform this task. In this task,
you are only enabling your browser to run the ActiveX control that was installed
when you ran the WIP Edit installation program.

1 Start Internet Explorer.

2 Select Tools, Internet Options from the main menu and click the Security tab. A
window similar to the one shown here appears:

Setting Up the WIP Edit Client

31

Figure 2: Internet Explorer’s Internet Options window

If you are running only on an intranet, skip to step 5. Otherwise, make sure the Internet
icon near the top of the window is selected and click on Custom Level to change the
security levels for this zone. A window similar to the one shown here appears:

Figure 3: Internet Explorer's Security Settings window

3 Enable these ActiveX control settings in the list:

 Run ActiveX controls and plug-ins

 Script ActiveX controls marked safe for scripting

Chapter 2
Installation and Configuration

32

4 Skip this step if you are only running on the internet, not a local intranet. Otherwise,
click on the Local Intranet icon near the top of the window to select it. Then repeat
step 4. Once you’ve enabled the ActiveX control settings. Click Ok to close the
Internet Options window.

5 Close your browser and restart it for the changes to take effect.

Setting up a secure web
server (SSL/HTTPS)

If you are using SSL for your server connections, there is one setting that can affect WIP
Edit. In the Internet Explorer Options window, choose Advanced Tab, Security List and
make sure the Do not save encrypted pages to disk option is not checked.

If you are using SSL/HTTPS and this item is checked, when you click on the link to
download the DPW file the setting prohibits the file from being stored on disk. WIP Edit
will try to open the file from the disk location. If it cannot locate the file, this message
appears:

Transaction Error (transaction invalid)

If the web site where you access the WIP documents is secured using SSL, you must use
https:// as a prefix in the URL to the web server you use to save data, which is called the
PUTURL. Here is an example:

<https://www.docucorp.com>

PUTURL is in the global.xml for iDocumaker and IPPS COM. DI 12.0 and 12.3 uses
Documaker Administrator to setup PUTURL.12.3 it is no longer required.

When formatting the PUTURL variable, specify the URL the same way you would using
a web browser. Here are some examples:

Example Description

Localhost

MACHINENAME Net bios machine name if using an intranet

www.docucorp.com Normal HTTP

http://www.docucorp.com Normal HTTP

https://www.docucorp.com Secure web site using default port 443

https://www.docucorp.com:51000 Secure web site using port 51000

http://somemachine:8080 An intranet with a port specified

http://www.docucorp.com:8080 An intranet with a port specified

Setting Up the WIP Edit Client

33

Upgrading WIP Edit
To upgrade the WIP Edit plugin, follow the below steps:

1 In the Control Panel, click Programs and Features.

2 Select Wip Edit plugin from the Programs list and remove the older version of the
plugin.

3 Install the new version of WIP Edit Plugin, see Installing WIP Edit on page 29 for
installation process.

Chapter 2
Installation and Configuration

34

SETTING UP
IDS

You must make some modifications to the IDS configuration files request types files, and
WIPEDIT.INI) for WIP Edit, iPPS, and IDS to work together.

If this is a new installation the configuration files are written to the appropriate directory.
The new request types will be in the configuration files.

If you have an existing installation of IDS or iPPS COM+, then sample configuration files
will be written to the installation directories. No existing configuration files will be over-
written. You will, however, see configuration files installed that have the word Sample in
their name, such as Sample (*REQUEST TYPE INI FILE) and so on. Using a merge tool
or text editor, you can copy and paste the new configuration items into an existing
installation.

NOTE: Make sure you have the latest version, including patches of IDS and
Shared Objects installed before you begin to modify the configuration
files.

Most of the changes to the request types are adding new request types that are supported
by WIP Edit. Also, you must configure a queuing service such as MQ Series, MSMQ, or
the HTTP queues. iPPS does not work without a queue system in place.

A small change to the WIPEDIT.INI file is also required. By making these changes, the
back-end server is set to handle requests from WIP Edit.

The following table shows a list of the request types that are required for WIP Edit
functionality. A high level description of the function each type performs is also provided.

Request Type Description

New Request Types

SPELL*1 Checks spelling using IDS

RETUSERDICT*1 Returns a user dictionary as XML

EDTUSERDICT*1 Edits a user dictionary

i_GetMRLResource*2 Obtains various MRL resource data

i_PluginInit Initializes WIP Edit and returns a DPW file

i_PluginSave Saves the DPW to WIP

i_PluginGetResource Gets a resource and returns it to the client browser

i_Tbllkup*2 Returns entries from standard Documaker table

Modified Request Types

i_DPRArcWIP Archives a WIP entry

*1- This request type is only used for the HTML version of iPPS

*2- The i_GetMRLResource and iTbllkup request types are new to version 3.11 of iPPS. They
are not required for WIP Edit. However, they are required to get resources real time from IDS.

Setting Up IDS

35

i_ArcWIP Archives a WIP entry for the Java version

i_DPRModifyWIPData Modifies and updates the form set data in WIP

i_ModifyWIPData Modifies and updates the form set data in WIP for the Java version

Request Type Description

*1- This request type is only used for the HTML version of iPPS

*2- The i_GetMRLResource and iTbllkup request types are new to version 3.11 of iPPS. They
are not required for WIP Edit. However, they are required to get resources real time from IDS.

Chapter 2
Installation and Configuration

36

REQUEST TYPE
If you are installing a new copy of IDS, you do not have to make the following changes.
If, however, you have an existing copy of IDS and you are modifying it to
supportWIP.Edit, you must add the following request types.

The following listing shows the request types you have to modify to work with WIP Edit.
Some of the rules methods in the request types have been deleted and replaced with new
entries to accommodate the WIP Edit functionality. The next topic explains what
happens in IDS when these rules are executed

; Archive WIP Entry

< ReqType:i_DPRArcWIP >

function = atcw32->ATCLogTransaction

function = atcw32->ATCLoadAttachment

function = atcw32->ATCUnloadAttachment

function = dprw32->DPRSetConfig

function = dprw32->DPRGetWipFormset

function = dprw32->DPRArchiveFormset

; Archive WIP Entry for Java version

[ReqType:i_ArcWIP]

function = atcw32->ATCLogTransaction

function = atcw32->ATCLoadAttachment

function = atcw32->ATCUnloadAttachment

function = dprw32->DPRSetConfig

function = dprw32->DPRGetWipFormset

function = dprw32->DPRArchiveFormset

; Modify/Update the form set data in WIP

[ReqType:i_DPRModifyWIPData]

function = atcw32->ATCLoadAttachment

function = atcw32->ATCUnloadAttachment

function = dprw32->DPRSetConfig

function = dprw32->DPRInitLby

function = dprw32->DPRGetWipFormset

function = dprw32->DPRLoadXMLAttachment

function = dprW32->DPRUpdateFormsetFromXML

function = dprW32->DPRModifyWipData

; Modify/Update the form set data in WIP for Java Version

[ReqType:i_ModifyWIPData]

function = atcw32->ATCLoadAttachment

function = atcw32->ATCUnloadAttachment

function = dprw32->DPRSetConfig

function = dprw32->DPRInitLby

function = dprw32->DPRGetWipFormset

Setting Up IDS

37

function = dprw32->DPRLoadXMLAttachment

function = dprW32->DPRUpdateFormsetFromXML

function = dprW32->DPRModifyWipData

Listing 2: Request Types modified for WIP Edit

The following request types file comparison shows the changes you need to make to an
existing request types. This example shows the (*REQUEST TYPES INI FILE) file that
ships with Shared Objects version 11.0, patch 17 (on the left side) and Shared Objects
version 11.0, patch 23 (on the right). The strike through on the left indicates that you
delete that rule.

The request type from...

Shared Objects version 11.0, patch 17 Shared Objects version 11.0, patch 23

; Archive WIP Entry and then delete it from wip ; Archive WIP Entry and then delete it from wip

< ReqType:i_ArcWIP > < ReqType:i_ArcWIP >

function = atcw32->ATCLogTransaction function = atcw32->ATCLogTransaction

function = atcw32->ATCLoadAttachment function = atcw32->ATCLoadAttachment

function = atcw32->ATCUnloadAttachment function = atcw32->ATCUnloadAttachment

function = dprw32->DPRSetConfig function = dprw32->DPRSetConfig

function = dprw32->DPRGetWipFormset function = dprw32->DPRGetWipFormset

function = dprw32->DPRArchiveFormset function = dprw32->DPRArchiveFormset

function = dprw32->DPRDeleteWipRecord

; Archive WIP Entry and then delete it from wip ; ; Archive WIP Entry and then delete it from wip

< ReqType:i_DPRArcWIP > < ReqType:i_DPRArcWIP >

function = atcw32->ATCLogTransaction function = atcw32->ATCLogTransaction

function = atcw32->ATCLoadAttachment function = atcw32->ATCLoadAttachment

function = atcw32->ATCUnloadAttachment function = atcw32->ATCUnloadAttachment

function = dprw32->DPRSetConfig function = dprw32->DPRSetConfig

function = dprw32->DPRGetWipFormset function = dprw32->DPRGetWipFormset

function = dprw32->DPRArchiveFormset function = dprw32->DPRArchiveFormset

function = dprw32-vDPRDeleteWipRecord

; Modify/Update the formset data in wip ; ; Modify/Update the formset data in wip

Chapter 2
Installation and Configuration

38

< ReqType:i_DPRModifyWIPData > < ReqType:i_DPRModifyWIPData >

function = atcw32->ATCLogTransaction

function = atcw32->ATCLoadAttachment function = atcw32->ATCLoadAttachment

function = dprw32->DPRSetConfig

function = atcw32->ATCUnloadAttachment function = atcw32->ATCUnloadAttachment

function = dprw32->DPRLoadImportFile function = dprw32->DPRSetConfig

function = dprw32->DPRInitLby

function = dprw32->DPRGetWipFormset

function = dprw32->DPRLoadXMLAttachment

function = dprw32->DPRUpdateFormsetFromXML

function = dprw32->DPRModifyWipData function = dprw32->DPRModifyWipData

; Modify/Update the formset data in wip ; ; Modify/Update the formset data in wip

< ReqType:i_ModifyWIPData > < ReqType:i_ModifyWIPData >

function = atcw32->ATCLogTransaction

function = atcw32->ATCLoadAttachment function = atcw32->ATCLoadAttachment

function = dprw32->DPRSetConfig

function = atcw32-
>ATCReceiveFile,XMLIMPORT,IMPORTFILE,*.XML

function = atcw32->ATCUnloadAttachment function = atcw32->ATCUnloadAttachment

function = dprw32->DPRLoadImportFile function = dprw32->DPRSetConfig

; Need to add this rule to existing request types if using DMSudio.

function = dprw32->DPRInitLby

function = dprw32->DPRGetWipFormset

function = dprw32->DPRLoadXMLAttachment

function = dprw32->DPRUpdateFormsetFromXML

function = dprw32->DPRModifyWipData function = dprw32->DPRModifyWipData

The request type from...

Shared Objects version 11.0, patch 17 Shared Objects version 11.0, patch 23

Setting Up IDS

39

The following listing shows the new request types you have to add to the (*REQUEST
TYPE INI FILE) file to support the WIP Edit requests:

[ReqType:SPELL]

; Spell check utilizing IDS

function = atcw32->ATCLogTransaction

function = atcw32->ATCLoadAttachment

function = atcw32->ATCUnloadAttachment

function = dprw32->DPRSetConfig

function = atcw32->ATCReceiveFile,XMLIMPORT,IMPORTFILE,*.XML

function = atcw32->ATCSendFile,DOCUMENTSTREAM,EXPORT,BINARY

function = dprW32->DPRSpellCheck

[ReqType:RETUSERDICT]

; Returns a user dictionary as XML

function = atcw32->ATCLogTransaction

function = atcw32->ATCLoadAttachment

function = atcw32->ATCUnloadAttachment

function = dprw32->DPRSetConfig

function = atcw32->ATCSendFile,DOCUMENTSTREAM,RETFILE,BINARY

function = dprW32->DPRRetFromUserDict

[ReqType:EDTUSERDICT]

; Edits a user dictionary

function = atcw32->ATCLogTransaction

function = atcw32->ATCLoadAttachment

function = atcw32->ATCUnloadAttachment

function = dprw32->DPRSetConfig

function = atcw32->ATCReceiveFile,XMLIMPORT,EDITFILE,*.XML

function = dprW32->DPREditUserDict

[ReqType:i_GetMRLResource]

; Obtains various MRL resource data

function = atcw32->ATCLoadAttachment

function = atcw32->ATCUnloadAttachment

function = dprw32->DPRSetConfig

function = dprw32->DPRInitLby

function = dprw32->DPRGetFormList

[ReqType:i_PluginInit]

; Plugin initialization. Get a DPW file

function = atcw32->ATCLoadAttachment

function = atcw32->ATCUnloadAttachment

function = atcw32->ATCSendFile,RF_POSTFILE,PRINTFILE,Binary

function = dprw32->DPRSetConfig

function = dprw32->DPRInitLby

Chapter 2
Installation and Configuration

40

function = dprw32->DPRGetWipFormset

function = dprw32->DPRPrintDpw

[ReqType:i_PluginSave]

; Saves the DPW to WIP

function = atcw32->ATCLoadAttachment

function = dprw32->DPRSetConfig

function = dprw32->DPRInitLby

function = Atcw32-
>ATCReceiveFile,RF_POSTFILE,RF_POSTFILE,carfile.*

function = atcw32->ATCUnloadAttachment

function = dprw32->DPRDpw2Wip

[ReqType:i_PluginGetResource]

; Gets a resource for the Plugin

function = atcw32->ATCLoadAttachment

function = atcw32->ATCUnloadAttachment

function = dprw32->DPRSetConfig

function = dprw32->DPRInitLby

function = atcw32->ATCSendFile,RETURNFILE,RETURNFILE,Binary

function = dprw32->DPRGetResource,RETURNFILE

[ReqType:i_Tbllkup]

; Returns entries from standard Documaker RP table

function = atcw32->ATCLoadAttachment

function = atcw32->ATCUnloadAttachment

function = dprw32->DPRSetConfig

function = dprw32->DPRInitLby

function = dprw32->DPRTblLookUp

Listing 3: Request types you must add

Setting Up IDS

41

REQUESTING A DICTIONARY FROM IDS
You can set up a separate dictionary under IDS for each user ID. WIP Edit determines
whether it needs to get another copy of the dictionary. It also updates the spelling
dictionary on the server if you make changes.

Follow these steps to configure separate dictionaries for each user:

1 Since IDS must know where the spell dictionaries are kept for each user, you need to
define the location in the configuration-specific INI file located in the \Docserv
directory (such as AMERGEN.INI). Open this INI file and use the UserDictPath
option to establish a directory called Spell under \Docserv, as shown here:

< Spell >
UserDictPath = Spell

2 Next, add the following to the configuration-specific INI file:

< INI2XML >
CalcCRC = #USERID.tlx!TLX

3 This entry lets the WIP Edit get the CRC from IDS and determines whether it needs
to download another copy. This example assumes each user’s spell dictionary is kept
in a separate file based on his or her login user ID. This is the default behavior. The
software automatically substitutes the user’s ID for #USERID.

Next, make sure you have the following request types defined

< ReqType:PUTRESOURCE >

function = atcw32->ATCLoadAttachment

function = atcw32->ATCUnloadAttachment

function = dprw32->DPRSetConfig

function = dprw32->DPRDecryptLogin

function = dprw32->DPRDefaultLogin

function = dprw32->DPRCheckLogin

function = dprw32->DPRPutResource

function = atcw32->ATCReceiveFile,RF_POSTFILE,RF_POSTFILE
,.\recv.txt

< ReqType:GETRESOURCE >

function = atcw32->ATCLogTransaction

function = atcw32->ATCLoadAttachment

function = atcw32->ATCUnloadAttachment

function = dprw32->DPRSetConfig

function = dprw32->DPRDecryptLogin

function = dprw32->DPRDefaultLogin

function = dprw32->DPRCheckLogin

function = atcw32->ATCSendFile,RETURNFILE,RETURNFILE,Binary

function = dprw32->DPRGetResource,RETURNFILE

Listing 4: Get and Put Resource Request Types

Chapter 2
Installation and Configuration

42

CUSTOMIZING HOW USER DICTIONARIES ARE STORED

You can create an INI file WIP Edit will use to override the default file name where user
spell dictionaries are stored. This example uses an INI file called WIPEDIT.INI. The
configuration-specific INI contains these options:

< File2DPW >

INIToken = wipedit.ini

< INI2XML >

CalcCRC = C:\docserv\Spell\#ORIGUSER.tlx!TLX

NOTE: The variable #ORIGUSER can be set to another variable in the WIP index (such
as a custom field). See the Documaker Workstation Administration Guide for
additional information.

The WIPEDIT.INI file contains this option:

< Spell >

UserDict = ~WIPFIELD ORIGUSER

STORING DICTIONARIES ON THE CLIENT

If you want to store the user spell dictionary on a user’s local PC instead of the server,
remove the CalcCRC option from the INI2XML control group. You may still need the
WIPEDIT.INI file to identify the spell dictionary. In this case, however, the user’s
dictionary will not be available to that user if that user uses a different computer to access
the web.

If the spell dictionary is at c:\spell\userspell.tlx, then in the configuration-specific INI file
enter:

< File2DPW >

INIToken = wipedit.ini

In the WIPEDIT.INI file enter:

< Spell >

UserDict = c:\spell\userspell.tlx

Setting Up IDS

43

SENDING PASSWORDS TO WIP EDIT

If you are using WIP Edit with a web site that requires basic authentication for browsers,
you must provide a password and user ID to save a document. You can use the same user
ID and password you entered when you logged onto the browser.

To do this, set the following INI options in the configuration-specific INI file.

< INI2XML >

HTTPUserID = userID

HTTPPassword = password

The DPRIni2Xml rule must be in the request type that contains the DPRWip2Dpw rule.

;Edit record

< ReqType:WEDIT >

function = atcw32->ATCLogTransaction

function = atcw32->ATCLoadAttachment

function = atcw32->ATCUnloadAttachment

function = dprw32->DPRSetConfig

function = dprw32->DPRGetWipFormset

function = dprw32->DPRLockWip

function = atcw32->ATCSendFile,RF_POSTFILE,RF_POSTFILE,Binary

function = dprw32->DPRWipIndex2XML

function = dprw32->DPRFile2Dpw,RF_POSTFILE

function = dprw32->DPRWip2Dpw,RF_POSTFILE

function = dprw32->DPRIni2XML

Encrypting IDs and
passwords

If you do not want the user ID or password viewed in the INI file, use the cryruw32.exe
program to encrypt them. The encrypted value can be put into the INI file.

To encrypt both the user ID and password, follow these steps:

1 To encrypt the user ID, from the command line enter:

cyruw32 myuserid

You will get the following output:

Encrypted string (2W9M-z_QGlBZd-5XS4nmB2000)

The parentheses are not part of the encrypted string.

2 To encrypt the password, enter:

cryruw32 password

The program will output:

Encrypted string (2XAUnkxUYlx7i5AnQ4m4E1m00)

3 Make these changes in the configuration-specific INI file:

< INI2XML >
HTTPUserID = 2W9M-z_QGlBZd-5XS4nmB2000
HTTPPassword = 2XAUnkxUYlx7i5AnQ4m4E1m00

Chapter 2
Installation and Configuration

44

UNDERSTANDING RULE SETS

The topic, Architecture Overview on page 19, explains how a client request is processed
through iPPS and IDS. The key to understanding what is happening in the system is to
understand request types and their associated rules.

This topic describes each WIP Edit request type and provides a walk through of what
happens on the IDS side when the request and rule sets are processed. For an explanation
of the attachment variables and return values for each request type, refer to Setting Global
XML Options on page 51.

One thing that will become apparent when looking at the request types/rule sets is that
there are patterns to the execution of the requests. Oracle Insurance lets you write your
own rule sets that can be folded into the requests. This provides a high degree of flexibility
and customization of the server side software to meet changing business needs.

NOTE: Writing custom rules is beyond the scope of this document.

The rest of this topic presents each request type and describes the rules executed when
IDS is presented with a client request. Because you can customize IDS by adding your
own rules, this topic describes the rule sets defined for the software as it is originally
installed.

Request Type Rule Description

i_DPRArcWIP Archives WIP entry.

atcw32->ATCLogTransaction Writes transaction information to log file.

atcw32->ATCLoadAttachment Parses the input attachment variables from the input queue
and stores the data in an internal data structure.

atcw32-vATCUnloadAttachment Converts the attachment variables from internal format into
the queue attachment format in the output queue.

dprw32->DPRSetConfig Sets the current INI file context based on the CONFIG value.
The CONFIG value is passed from the client in the
attachment. If this value does not exist, the rule does nothing
and returns.

dprw32->DPRGetWipFormset Retrieves a form set from the WIP record. If the record exists,
it loads the WIP form set by loading POL and NA files.

dprw32->DPRArchiveFormset Sends a form set to DAP archive.

i_ArcWIP Archives the WIP entry for the Java version.

atcw32->ATCLoadAttachment Parses the input attachment variables from the input queue
and stores the data in an internal data structure.

atcw32->ATCUnloadAttachment Converts the attachment variables from internal format into
the queue attachment format in the output queue.

Setting Up IDS

45

dprw32->DPRSetConfig Sets the current INI file context based on the CONFIG value.
The CONFIG value is passed from the client in the
attachment. If this value does not exist, the rule does nothing
and returns.

dprw32->DPRGetWipFormset Retrieves a form set from the WIP record. If the record exists,
it loads the WIP form set by loading POL and NA files.

dprw32->DPRArchiveFormset Sends a form set to DAP archive.

i_DPRModifyWIPData Modifies and updates the form set data in WIP.

atcw32->ATCLoadAttachment Parses the input attachment variables from the input queue
and stores the data in an internal data structure.

atcw32->ATCUnloadAttachment Converts the attachment variables from internal format into
the queue attachment format in the output queue.

dprw32->DPRSetConfig Sets the current INI file context based on the CONFIG value.
The CONFIG value is passed from the client in the
attachment. If this value does not exist, the rule does nothing
and returns.

dprw32->DPRInitLby Initializes Library Manager.

dprw32->DPRGetWipFormset Retrieves a form set from the WIP record. If the record exists,
it loads the WIP form set by loading POL and NA files.

dprw32->DPRLoadXMLAttachment Loads the XML attachment into memory.

dprW32->
DPRUpdateFormsetFromXML

Compares the existing and incoming form sets in WIP and
synchronizes the changes.

dprW32->DPRModifyWipData Updates the form set information when the user changes the
form data.

i_ModifyWIPData Modifies and updates the form set data in WIP for the Java
version.

atcw32->ATCLoadAttachment Parses the input attachment variables from the input queue
and stores the data in an internal data structure.

atcw32->ATCUnloadAttachment Converts the attachment variables from internal format into
the queue attachment format in the output queue.

dprw32->DPRSetConfig Sets the current INI file context based on the CONFIG value.
The CONFIG value is passed from the client in the
attachment. If this value does not exist, the rule does nothing
and returns.

dprw32->DPRInitLby Initializes Library Manager.

dprw32->DPRGetWipFormset Retrieves a form set from the WIP record. If the record exists,
it loads the WIP form set by loading POL and NA files.

Request Type Rule Description

Chapter 2
Installation and Configuration

46

dprw32->DPRLoadXMLAttachment Loads the XML attachment into memory.

dprW32->
DPRUpdateFormsetFromXML

Compares the existing and incoming form sets in WIP and
synchronizes the changes.

dprW32->DPRModifyWipData Updates the form set information when the user changes the
form data.

SPELL Checks spelling using IDS.

atcw32->ATCLogTransaction Writes transaction information to log file.

atcw32->ATCLoadAttachment Parses the input attachment variables from the input queue
and stores the data in an internal data structure.

atcw32->ATCUnloadAttachment Converts the attachment variables from internal format into
the queue attachment format in the output queue.

dprw32->DPRSetConfig Sets the current INI file context based on the CONFIG value.
The CONFIG value is passed from the client in the
attachment. If this value does not exist, the rule does nothing
and returns.

atcw32->
ATCReceiveFile,XMLIMPORT,IMPO
RTFILE,*.XML

Merges a series of attachment variables into a file and writes
that file to disk. Generally, this rule is used to re-assemble a
file that has been posted in segments to an IDS queue by the
ATCSendFile rule. The file that is received can be either a
binary or text file.

atcw32->
ATCSendFile,DOCUMENTSTREAM,
EXPORT,BINARY

Posts a file in segments to the output attachment and sends it
over the IDS queue. The ATCReceiveFile rule or the
DSIReceiveFile API can then re-assemble the file from the
input attachment and save it. The file can be binary or text.

dprW32->DPRSpellCheck Initializes the spell check.

RETUSERDICT Returns a user dictionary as XML.

atcw32->ATCLogTransaction Writes transaction information to log file.

atcw32->ATCLoadAttachment Parses the input attachment variables from the input queue
and stores the data in an internal data structure.

atcw32->ATCUnloadAttachment Converts the attachment variables from internal format into
the queue attachment format in the output queue.

dprw32->DPRSetConfig Sets the current INI file context based on the CONFIG value.
The CONFIG value is passed from the client in the
attachment. If this value does not exist, the rule does nothing
and returns.

Request Type Rule Description

Setting Up IDS

47

atcw32->
ATCSendFile,DOCUMENTSTREAM,
RETFILE,BINARY

Posts a file in segments to the output attachment and sends it
over the IDS queue. The ATCReceiveFile rule or the
DSIReceiveFile API can then re-assemble the file from the
input attachment and save it. The file can be binary or text.

dprW32->DPRRetFromUserDict Returns the user dictionary.

EDTUSERDICT Edits a user dictionary.

atcw32->ATCLogTransaction Writes transaction information to a log file.

atcw32->ATCLoadAttachment Parses the input attachment variables from the input queue
and stores the data in an internal data structure.

atcw32->ATCUnloadAttachment Converts the attachment variables from internal format into
the queue attachment format in the output queue.

dprw32->DPRSetConfig Sets the current INI file context based on the CONFIG value.
The CONFIG value is passed from the client in the
attachment. If this value does not exist, the rule does nothing
and returns.

atcw32->
ATCReceiveFile,XMLIMPORT,EDITF
ILE, *.XML

Merges a series of attachment variables into a file and writes
that file to disk. Generally, this rule is used to re-assemble a
file that has been posted in segments to an IDS queue by the
ATCSendFile rule. The file that is received can be either a
binary or text file.

dprW32->DPREditUserDict Posts the changes for the user dictionary to the back end
server.

i_GetMRLResource Gets MRL resource data.

atcw32->ATCLoadAttachment Parses the input attachment variables from the input queue
and stores the data in an internal data structure.

atcw32->ATCUnloadAttachment Converts the attachment variables from internal format into
the queue attachment format in the output queue.

dprw32->DPRSetConfig Sets the current INI file context based on the CONFIG value.
The CONFIG value is passed from the client in the
attachment. If this value does not exist, the rule does nothing
and returns.

dprw32->DPRInitLby Initializes Library Manager.

dprw32->DPRGetFormList Returns a set of information that is based on the XML sent as
an input variable.

i_PluginInit Initializes the plug-in and gets a DPW file.

atcw32->ATCLoadAttachment Parses the input attachment variables from the input queue
and stores the data in an internal data structure.

Request Type Rule Description

Chapter 2
Installation and Configuration

48

atcw32->ATCUnloadAttachment Converts the attachment variables from internal format into
the queue attachment format in the output queue.

atcw32->
ATCSendFile,RF_POSTFILE,PRINTF
ILE, Binary

Posts a file in segments to the output attachment and sends it
over the IDS queue. The ATCReceiveFile rule or the
DSIReceiveFile API can then re-assemble the file from the
input attachment and save it. The file can be binary or text.

dprw32->DPRSetConfig Sets the current INI file context based on the CONFIG value.
The CONFIG value is passed from the client in the
attachment. If this value does not exist, the rule does nothing
and returns.

dprw32->DPRInitLby Initializes Library Manager.

dprw32->DPRGetWipFormset Retrieves a form set from the WIP record. If the record exists,
it loads the WIP form set by loading POL and NA files.

dprw32->DPRPrintDpw Writes the WIP record to a DPW file and sends the results
back to the caller.

i_PluginSave Saves the DPW to WIP.

atcw32->ATCLoadAttachment Parses the input attachment variables from the input queue
and stores the data in an internal data structure.

dprw32->DPRSetConfig Sets the current INI file context based on the CONFIG value.
The CONFIG value is passed from the client in the
attachment. If this value does not exist, the rule does nothing
and returns.

dprw32->DPRInitLby Initializes Library Manager.

Atcw32->ATCReceiveFile,
RF_POSTFILE,RF_POSTFILE,
C:\docserv\data\carfile.*

Merges a series of attachment variables into a file and writes
that file to disk. Generally, this rule is used to re-assemble a
file that has been posted in segments to an IDS queue by the
ATCSendFile rule. The file that is received can be either a
binary or text file.

atcw32->ATCUnloadAttachment Converts the attachment variables from internal format into
the queue attachment format in the output queue.

dprw32->DPRDpw2Wip WIP Edit uses this to save to WIP.

i_PluginGetResource Gets a resource for the plug-in.

atcw32->ATCLoadAttachment Parses the input attachment variables from the input queue
and stores the data in an internal data structure.

atcw32->ATCUnloadAttachment Converts the attachment variables from internal format into
the queue attachment format in the output queue.

Request Type Rule Description

Setting Up IDS

49

dprw32->DPRSetConfig Sets the current INI file context based on the CONFIG value.
The CONFIG value is passed from the client in the
attachment. If this value does not exist, the rule does nothing
and returns.

dprw32->DPRInitLby Initializes Library Manager.

atcw32->
ATCSendFile,RETURNFILE,RETUR
NFILE,Binary

Posts a file in segments to the output attachment and sends it
over the IDS queue. The DSIReceiveFile API can then re-
assemble the file from the input attachment and save it. The
file can be binary or text.

dprw32->
DPRGetResource,RETURNFILE

Returns an item from IDS. The result depends on the input
variable request.

i_Tbllkup Returns entries from a standard Documaker table.

atcw32->ATCLoadAttachment Parses the input attachment variables from the input queue
and stores the data in an internal data structure.

atcw32->ATCUnloadAttachment Converts the attachment variables from internal format into
the queue attachment format in the output queue.

dprw32->DPRSetConfig Sets the current INI file context based on the CONFIG value.
The CONFIG value is passed from the client in the
attachment. If this value does not exist, the rule does nothing
and returns.

dprw32->DPRInitLby Initializes Library Manager.

dprw32->DPRTblLookUp Returns the name value pairs from IDS that are stored in the
Workstation table data files.

Request Type Rule Description

Chapter 2
Installation and Configuration

50

SETTING UP
IPPS

Follow these instructions to set up iPPS COM+.

IPPS COM+ SOFTWARE PREREQUISITES

The COM+ version of iPPS operates on the Microsoft Windows Server platform. As
such, there are certain software components available from Microsoft you must install
before you install the Oracle Insurance product. You can get the following software at...

 www.microsoft.com

• Windows Installer 2.0 or higher

• Data Access Components 2.6 or higher

• MSXML Parser 4 or 6 (see note below)

NOTE: iPPS versions 3.1 and 3.11 work with MSXML Parser 4 Service Pack 2
or higher.

iPPS versions 3.12 and higher require MSXML Parser 6.0 Service
Pack 1 or higher.

Be aware that Microsoft has announced plans to end support for
MSXML Parser 4 on 12/31/2008. Oracle Insurance recommends that
you move to version 3.12 at your convenience. Moving to version 3.12
consists of upgrading to iPPS COM version 3.12 base objects and
modifying your custom ASP pages to start using MSXML Parser 6.

For more information on Microsoft XML Parser (MSXML) versions, see
Microsoft’s Help and Support web site (http://support.microsoft.com/).

Once the prerequisite software has been installed, you can install iPPS. There is a specific
installation order that must be followed:

1 Make sure Docupresentment (IDS) version 1.8 and the Documaker Bridge are
installed first on your back-end server (or on this server if you want IDS and iPPS to
reside on the same computer).

2 iPPS 3.1x Web Resources COM+

3 iPPS 3.1x COM+

4 (Optional) The Amergen sample MRL. This can be used to test the system.

IPPS COM+ ON MICROSOFT WINDOWS SERVER 2003
Microsoft made changes to the default settings on IIS between Windows 2000 Server and
Windows 2003 Server. With Windows 2000 Server, almost everything was turned on.
They went in the opposite direction for Windows 2003 Server.

If you install iPPS COM+ on Windows 2003 Server, there are three things that you must
do to get the system to work:

http://www.microsoft.com
http://support.microsoft.com/

Setting Up iPPS

51

1 In Control Panel, Administrative Tools, Component Services, Computers, My
Computer, COM+ Applications, Docucorp – iPPS311, right click the Docucorp
item and select Properties from the menu. Then select the Security tab and uncheck
the Enforce access checks for this application field. Click Ok to save the change.

2 In the Control Panel, Administrative Tools, IIS Manager select the Default Web Site
(or the one you selected during your installation). Right click on this and open the
properties menu. Go to the Home Directory tab and click Configuration.

3 Select the Options tab and check the Enable Parent Paths field. Click Ok. Then click
Ok again to save the changes.

4 While still in the IIS Manager window, select the Web Service Extensions field. On
the right side, select Active Server Pages and click Allow. Then select Server Side
Includes and click Allow again.

5 Restart the web server to make sure the changes take effect.

SETTING GLOBAL XML OPTIONS

Both the COM+ and Java versions of iPPS ship with a GLOBAL.XML file that controls
the configuration of the iPPS application. The system administrator modifies this file to
establish settings for the server environment. This topic describes the structure of this file
to clarify some aspects of what is required to properly configure the iPPS software.

Keep in mind that all entries in the GLOBAL.XML file are case sensitive. While
discussing various settings in the text portion of this document, an entry may be referred
to in mixed case for easier reading. However, the examples shown in the listings will have
the correct case utilization for the GLOBAL.XML file.

Global XML File Structure

As shipped from Oracle Insurance, the Global XML has two main sections as shown
here:

<?xml version=”1.0” ?>

<XMLINI TYPE=”IPPS” VERSION=”1.0”>

<CONFIG NAME=”SYSTEM”>

<CONFIG NAME=”AMERGEN” LIBRARY=”Amergen Insurance”>

</XMLINI>

Listing 5: GLOBAL.XML Basic Structure

The root element name is XMLINI. Within that structure there are configuration
elements, called CONFIG. The first configuration is labeled System. This configuration is
a global type of setting that all other configurations are derived from. All of the elements
that appear under the System configuration are available to any other configuration.
However, each configuration (excluding the System configuration) is independent of any
other configuration. So your individual configuration can access the System
configuration, but not the Amergen configuration.

Chapter 2
Installation and Configuration

52

When you create an MRL for your application, you will add an element to the
GLOBAL.XML file for that configuration. In general, you can copy the Amergen
configuration and edit it to reflect the settings for your MRL.

System Element Listing 6 shows the basic elements that are under the System configuration. The
Encoding element establishes the encoding mechanism for the iPPS system. In this case,
the default is the ISO-8859-1 standard.

The ApplicationData element contains settings that affect the web server iPPS uses. The
DBASE element contains the user ID and password information, along with other system
connection information, for using a database for storing the Users database. The
ReqTypes element holds all of the request types for the iPPS system. Specific requests can
also be defined within a configuration. For example, the Amergen configuration can have
custom request types that are not available to other configurations.

The Services element applies to the Java version of iPPS. For each service, this setting lets
the system know which of the presentation layers should have XSL templates applied for
the default system settings.

The Logging element applies to the Java version of iPPS only and controls whether the
system is set in debug mode. If debugging is turned on, then this defines where the debug
log files are written and stored on the server.

The Mail element defines parameters for your mail server. If this is set up, then when a
user completes a transaction, they can mail a form to someone else.

When configuring iPPS, the system administrator has to edit the GLOBAL.XML file to
set various parameters. In general, anywhere a variable is shown with a dollar sign ($) in
front of the name, the administrator must edit the value with information for his particular
system.

<?xml version=”1.0” ?>

<XMLINI TYPE=”IPPS” VERSION=”1.0”>

<CONFIG NAME=”SYSTEM”>

<ENCODING>ISO-8859-1</ENCODING>

<APPLICATIONDATA>

<DBASE>

<REQTYPES>

<SERVICES>

<LOGGING NAME=”” LEVEL=”DEBUG”/>

<MAIL TYPE=”SMTP” HOST=”$EMAILHOST” DOMAIN=”$EMAILDOMAIN”
PASSWORD=”” USERID=”” PORT=”25” />

</CONFIG>

<CONFIG NAME=”AMERGEN” LIBRARY=”Amergen Insurance”>

</XMLINI>

Listing 6: Elements under System

Listing 7 shows the XML file with the Application Data element expanded. This element
contains information about the web server location and how the administrator wants to
do session management.

<?xml version=”1.0” ?>

Setting Up iPPS

53

<XMLINI TYPE=”IPPS” VERSION=”1.0”>

<CONFIG NAME=”SYSTEM”>

<ENCODING>ISO-8859-1</ENCODING>

<APPLICATIONDATA>

<ACTIVESERVER PORT=”80” HOST=”$HOST” DOMAIN=”$DOMAIN”
ROOT=”$IPPSROOT” TRANSLATED_PATH=”$WWWPATH”>

<STATEMGT DOMAIN=”$DOMAIN” HOST=”$HOST” ROOT=”$ROOT” PORT=”21”
PASSWORD=”guest” USERID=”anonymous”>$STATEMGT</STATEMGT>

</APPLICATIONDATA>

<DBASE>

<REQTYPES>

<SERVICES>

<LOGGING NAME=”” LEVEL=”DEBUG”/>

<MAIL TYPE=”SMTP” HOST=”$EMAILHOST” DOMAIN=”$EMAILDOMAIN”
PASSWORD=”” USERID=”” PORT=”25” />

</CONFIG>

<CONFIG NAME=”AMERGEN” LIBRARY=”Amergen Insurance”>

</XMLINI>

Listing 7: Application Data section information

Chapter 2
Installation and Configuration

54

Listing 8 shows an Application Data element section configured for an iPPS COM+
server. It illustrates the values that an administrator puts into the GLOBAL.XML file.

One key setting is the Translated_Path. On a Microsoft Windows server running iPPS
COM+, this points to the location of the ASP directory under this directory:

C:\InetPub\wwwroot_iPPS311 (Adjusted for your installation)

For iPPSj (the Java implementation), Translated_Path always points to the location of
your web application’s WEB-INF directory.

<APPLICATIONDATA>

<ACTIVESERVER PORT="80" HOST="www" DOMAIN="http://localhost"
ROOT="iPPS31" TRANSLATED_PATH="c:\inetpub\wwwroot_iPPS311\asp">

<STATEMGT DOMAIN="http://localhost" HOST="www" ROOT="iPPS31"
PORT="21" PASSWORD="guest"
USERID="anonymous">c:\inetpub\wwwroot_iPPS311\import</STATEMGT>

<!--DESTINATION = MEMORY | FILESYSTEM

TYPES OF CACHE:

0. DATABASE QUERIES (NA)

1. DBF2XML

2. XSLT_TRANSFORMS (NA)

3. ENTRY_FORMS

4. IMAGES (JPG, GIF) (NA)

5. NOT USED

6. NOT USED

7. TOOLBAR (NA)

8. TEMPLATES (NA)

9. GROUPS

10. FORMS LIST

11. NOT USED

12. FORMSET SHELL

CACHE BIT SETTING

=================================

0001000000000 = ENTRY_FORMS CACHE ACTIVE

-->

<OBJECTCACHE ACTIVE="YES" EXPIRETIME="" MAXSIZE=""
TYPE="0001000000000" DESTINATION="" SERIALIZE=""/>

</ACTIVESERVER>

</APPLICATIONDATA>

Listing 8: Sample Application Data section

Setting Up iPPS

55

Listing 9 shows a DBASE section for a COM+ installation. In this instance, the server is
using a Microsoft Access database file for the Users database. The driver and file location
are identified in the settings. On UNIX, you must use some other database since Access
is not available.

<?xml version=”1.0” ?>

<XMLINI TYPE=”IPPS” VERSION=”1.0”>

<CONFIG NAME=”SYSTEM”>

<APPLICATIONDATA>

<DBASE>

<TABLENAME=”iUserDB”>

<DSN USERID=”” PASSWORD=”” CLASS=””>driver={Microsoft Access Driver
(*.mdb)};dbq=c:\inetpub\wwwroot_iPPS311\user\USER.mdb;uid=Admin</
DSN>

</TABLE>

</DBASE>

<REQTYPES>

<SERVICES>

</CONFIG>

<CONFIG NAME=”AMERGEN” LIBRARY=”Amergen Insurance”>

</XMLINI>

Listing 9: A sample DBASE section from a COM+ installation

Listing 10 shows a typical request type from the GLOBAL.XML file. All
request types follow a general structure of elements. The first
element is a ReqType Description. This identifies the name of the
request type and associates an internal number to it
(Low.Level.Service). For each request type in the GLOBAL.XML file,
there will be a corresponding request type on the IDS side. The names
will match (even in capitalization).

<REQTYPE DESCRIPTION="" NAME="i_Print" LOW.LEVEL.SERVICE="5180">

<INPUT>

 <VAR NAME="USERID" SOURCE="" XPATHSOURCE="1" DATAXPATH="DOCUMENT/
SESSION/USERID" />

 <VAR NAME="CONFIG" SOURCE="" XPATHSOURCE="1" DATAXPATH="DOCUMENT/
DOCSET/LIBRARY/@CONFIG" />

 <VAR NAME="IMPORTFILE" SOURCE="" SENDVIAQUEUE="NO" />

 <VAR NAME="FILETYPE" SOURCE="" XPATHSOURCE="2"
DATAXPATH="PUBLISHEXPORT" />

 <VAR NAME="PRINTFILE" SOURCE="" RETURNVIAQUEUE="NO" />

 <VAR NAME="PRTTYPE" SOURCE="" />

 <VAR NAME="RECIPIENT" SOURCE="" />

 <VAR NAME="DSITIMEOUT" SOURCE="">30000</VAR>

 </INPUT>

- <OUTPUT>

 <VAR NAME="RESULTS" />

 <VAR NAME="PRINTFILE" />

Chapter 2
Installation and Configuration

56

 </OUTPUT>

 </REQTYPE>

Listing 10: Sample Request Type Element

Following the request type description is the input parameter section. This consists of one
or more elements that begin with VAR. These are input values for the request type. When
the rule set is run against the request type, each rule has access to these input values.

The Output element defines what is sent back in the COM+ version of iPPS. In
comparison, the Java version of iPPS returns all output, not just the specific output listed
in these elements.

For each request type, the ReqType Description element is repeated. All of the individual
MRLs defined in the GLOBAL.XML file have access to the request types listed in the
System section. Custom request types are written for specific MRLs and are contained in
their own section as we’ll see in the next topic.

MRL section Oracle Insurance ships a sample MRL for use with iPPS called Amergen. You can use the
Amergen sections of the GLOBAL.XML file as a template when you set up your own
MRLs. The elements in the Amergen section of the GLOBAL.XML file are customized
for that specific application. None of these settings are visible to the other MRLs you
define in the GLOBAL.XML file.

Listing 11 shows the high level view of the Amergen section. The items in this portion
of the GLOBAL.XML file are specific to the MRL.

Allcaps tells the system to convert data entry text values to upper case. MaxSelectList
establishes the maximum number of items that will be displayed in a list. For example, in
the WIP list or Archive list, the setting shown below would only show up to 10 items in
the list. You can adjust this value if you want a different number of items to appear.
PublishExport deals with the format of exported items. By default, it is in XML format.

<CONFIG NAME= “AMERGEN” LIBRARY=”Amergen Insurance”>

<ALLCAPS>true</ALLCAPS>

<MAXSELECTLIST>10</MAXSELECTLIST>

<PUBLISHEXPORT>XML</PUBLISHEXPORT>

<PPS>

<APPLICATIONDATA>

<DBASE>

<MESSAGEQUEUE>

<REQTYPES>

<SERVICES>

<LOOkUP>

</CONFIG>

Listing 11: Amergen configuration settings

The PPS element establishes values for the iPPS system. These options are not covered
here but are documented in the PPS documentation. Essentially, they let you customize
some of the PPS system level behavior.

Setting Up iPPS

57

Listing 12 shows the Amergen ApplicationData section of the GLOBAL.XML file. The
ActiveServer settings re-state the web server settings. This information has to be the same
as the ActiveServer information in the System section of the GLOBAL.XML file.

- <APPLICATIONDATA>

- <ACTIVESERVER PORT="80" HOST="$HOST" DOMAIN="$DOMAIN"
ROOT="$IPPSROOT">

 <IDSIMPORT>$IDSIMP</IDSIMPORT>

 <IDSSPOOL>$IDSSPL</IDSSPOOL>

 <IIMPORT DOMAIN="$DOMAIN" HOST="$HOST" ROOT="$ROOT" PORT="21"
PASSWORD="guest" USERID="anonymous">$IPPSIMPPATH</IIMPORT>

 <ISPOOL DOMAIN="$DOMAIN" HOST="$HOST" ROOT="$ROOT" PORT="21"
PASSWORD="guest" USERID="anonymous">$IPPSSPLPATH</ISPOOL>

 <CACHE ROOT="$CACHEPATH" CLEARONSTARTUP="TRUE" ACTIVE="TRUE" />

- <!--

Use this node if define HTML location if not using MRL database

PROTOCOL Attribute valid values:

DBMS, IDS, URL, URLMULTIPART, PLUGIN

 -->

- <!-- <IFORMS PROTOCOL="URL" DOMAIN="$DOMAIN" HOST="$HOST"
ROOT="$ROOT" PORT="21" PASSWORD="guest"
USERID="anonymous">$FORMSLOC</IFORMS>

 -->

 </ACTIVESERVER>

</ APPLICATIONDATA>

Listing 12: Amergen Application Data section of the GLOBAL.XML file

The IDSImport and IDSSpool elements identify directories where the system gets and
puts files for the IDS system. For HTML-based PPS systems, the Cache Root establishes
the directory where the HTML files are cached. For this to work, set the Active setting to
True. The ClearOnStartup setting flushes the cache when the system starts.

The IFORMS PROTOCOL setting is commented out in Listing 12. However, that
section will be added to support the WIP Edit ActiveX control. Specific changes to
support WIP Edit are discussed in Modifying the GLOBAL.XML File on page 115.

Chapter 2
Installation and Configuration

58

Listing 13 shows the Amergen DBASE section of the GLOBAL.XML file. The section
tells where the MRL database is stored. It also specifies the location of any lookup tables
used for the MRL. This tells you who the provider is for your MRL information. You can
choose either a database or IDS. If the value is set to...

MRLSOURCE = IDS

resources are pulled form IDS in real time.

<DBASE>
<TABLE NAME="iMRLDB">
<!--
 MRLSOURCE attribute defines the location for MRL resources

MRLSOURCE Attribute valid values:
DBMS, IDS

 -->
 <DSN USERID="" PASSWORD="" CLASS="" MRLSOURCE="DBMS">$MRLDB</DSN>
 </TABLE>
 <!-- Example of table lookup entry. Only used if applicable
 -->
 <TABLE NAME="LOOkUP">
 <DSN USERID="" PASSWORD="" CLASS="">$LOOkUPDB</DSN>
 </TABLE>

 </TABLE>
 </DBASE>

Listing 13: Amergen DBASE section of the GLOBAL.XML file

Setting Up iPPS

59

Listing 14 shows a typical queuing service configuration for an MRL. These settings are
only used by the Java version of iPPS. The COM+ version uses the disco.dll, which is
solely dependent on the configuration specified in the DSI.INI file on the back end
server.

<MESSAGEQUEUE>
 <QUEUEMANAGER NAME="QM">
 <REQUESTQ WAITSECONDS="30">REQUESTQ</REQUESTQ>
 <REPLYQ>RESULTQ</REPLYQ>
 <MODELQUEUE>SYSTEM.DEFAULT.MODEL.QUEUE</MODELQUEUE>
 <CHANNEL>SYSTEM.DEF.SVRCONN</CHANNEL>
 <PORT>1414</PORT>
 <HOST>127.0.0.1</HOST>
 <TRANSPORT>MQSeries Client</TRANSPORT>
 <EXPIRYTIME>1800</EXPIRYTIME>
 <CHARACTERSET>819</CHARACTERSET>
<QUEUEFACTORY> DSIMQMessageQueueFactory</QUEUEFACTORY>
 </QUEUEMANAGER>
 </MESSAGEQUEUE>

Listing 14: Queue Configuration for Amergen

In Listing 14, the Amergen MRL is using MQ Series for the queue service. The system
administrator configures items to identify things like the queue manager, the IP address
of the machine running MQ Series, the port used, the default channel, and so on.

To use WIP Edit, you must have a queue configured. You have a choice between MQ
Series (or WebSphere MQ), Microsoft Queue Manager (MSMQ) or HTTP queues.

The GLOBAL.XML file also has a ReqType section in the MRL section of the file. This
is where you any custom request types that you have created. Custom request types is
discussed in the IPPS manual.

Modifying the GLOBAL.XML File on page 115 provides detailed instructions on
modifying the GLOBAL.XML file for use with WIP Edit.

Chapter 2
Installation and Configuration

60

Request Types and Attachment Variables

The iPPS server is responsible for getting the client input via HTTP Gets/Puts and
Submits and translating that to a message that can trigger an action on IDS. To process
requests, iPPS must know how to assemble and disassemble messages used by IDS. The
iPPS server deals with request types and attachment variables. The attachment variables
consist of input variables and results.

This table shows you the request types and the attachment variables associated with the
request types. This information is stored in the GLOBAL.XML file.

Request type Direction Attachment variable Description

i_Print

In USERID The user’s login ID

CONFIG Defines the MRL resources that are available

IMPORTFILE The input attachment for the request type

FILETYPE Specifies the IMPORTFILE type

PRINTFILE Specifies the return file with the absolute name

PRTTYPE The type of file to print (PDF, XML, and so on)

RECIPIENT Specifies the recipient for a published document

DSITIMEOUT Timeout interval for the request

Out RESULTS Returns SUCCESS or FAILURE

PRINTFILE Specifies the return file with the absolute name

i_PrintFomrsetXML

In USERID The user’s login ID

CONFIG Defines the MRL resources that are available

IMPORTFILE The input attachment for the request type

FILETYPE Specifies the IMPORTFILE type

PRINTFILE Specifies the return file with the absolute name

PRTTYPE The type of file to print (PDF, XML, and so on)

XMLALLFIELDS All of the section (image) level, form level, and global level fields
are defined per transaction

ALLRECIPIENTS All the defined recipients per form set

DSITIMEOUT Timeout interval for the request

Setting Up iPPS

61

Out RESULTS Returns SUCCESS or FAILURE

PRINTFILE Specifies the return file with the absolute name

i_Proof

In USERID The user’s login ID

CONFIG Defines the MRL resources that are available

IMPORTFILE The input attachment for the request type

FILETYPE Specifies the IMPORTFILE type

PRINTFILE Specifies the return file with the absolute name

PRTTYPE The type of file to print (PDF, XML, and so on)

RECIPIENT Specifies the recipient for a published document

DSITIMEOUT Timeout interval for the request

Out RESULTS Returns SUCCESS or FAILURE

PRINTFILE Specifies the return file with the absolute name

i_CheckPolicy

In USERID The user’s login ID

CONFIG Defines the MRL resources that are available

FIELDS Searchable fields from an DFD index

<Key1> The Name attribute is blank, which lets the customer specify a
custom name setting in the IDS configuration file. Internally,
Key1 is mapped to this name.

<KeyID> The Name attribute is blank, which lets the customer specify a
custom name setting in the IDS configuration file. Internally,
KeyID is mapped to this name.

CASESENSITIVE Specifies whether the search is case sensitive

DSITIMEOUT Timeout interval for the request

Out RESULTS Returns SUCCESS or FAILURE

i_DPRAddWIP

In USERID The user’s login ID

Request type Direction Attachment variable Description

Chapter 2
Installation and Configuration

62

CONFIG Defines the MRL resources that are available

IMPORTFILE The input attachment for the request type

<Key1> The Name attribute is blank, which lets the customer specify a
custom name setting in the IDS configuration file. Internally,
Key1 is mapped to this name.

<Key2> The Name attribute is blank, which lets the customer specify a
custom name setting in the IDS configuration file. Internally,
Key2 is mapped to this name.

<KeyID> The Name attribute is blank, which lets the customer specify a
custom name setting in the IDS configuration file. Internally,
KeyID is mapped to this name.

<TRANCODE> The Name attribute is blank, which lets the customer specify a
custom name setting in the IDS configuration file. Internally,
TranCode is mapped to this name.

<STATUSCODE> The Name attribute is blank, which lets the customer specify a
custom name setting in the IDS configuration file. Internally,
StatusCode is mapped to this name.

CURRUSER Specifies the current user based on the XML session

DESC The user’s description entry

ASSIGNDESC Same as above

ASSIGNUSERID Targeted user for the transaction defined in the UserInfo
database.

UNIQUE Unique identifier for this transaction

FILETYPE Specifies the IMPORTFILE type

DSITIMEOUT Timeout interval for the request

Out None.

i_DPRModifyWIPDat
a

In USERID The user’s login ID

CONFIG Defines the MRL resources that are available

RECNUM Unique identifier for a transaction

IMPORTFILE The input attachment for the request type

FILETYPE Specifies the IMPORTFILE type

DSITIMEOUT Timeout interval for the request

Request type Direction Attachment variable Description

Setting Up iPPS

63

Out RESULTS Returns SUCCESS or FAILURE

i_DPRArcWIP

In USERID The user’s login ID

CONFIG Defines the MRL resources that are available

<ArchiveKeyNodes> The Name attribute is blank, which lets the customer specify a
custom name setting in the IDS configuration file. Internally,
ArchiveKeyNodes is mapped to this name.

DSITIMEOUT Timeout interval for the request

Out RESULTS Returns SUCCESS or FAILURE

i_DPRAssignWIP

In USERID The user’s login ID

CONFIG Defines the MRL resources that are available

RECNUM Unique identifier for a transaction

ASSIGNUSERID Targeted user for the transaction defined in the UserInfo
database.

ASSIGNDESC The user’s description entry

DSITIMEOUT Timeout interval for the request

Out RESULTS Returns SUCCESS or FAILURE

i_DPRFindWIPRecord

In USERID The user’s login ID

CONFIG Defines the MRL resources that are available

STARTRECORD Starting record for the search

MAXRECORDS Max number of records to return in the result set

CURRUSER Specifies the current user based on the XML session

<STATUSCODE> The Name attribute is blank, which lets the customer specify a
custom name setting in the IDS configuration file. Internally,
StatusCode is mapped to this name.

<Key1> The Name attribute is blank, which lets the customer specify a
custom name setting in the IDS configuration file. Internally,
Key1 is mapped to this name.

Request type Direction Attachment variable Description

Chapter 2
Installation and Configuration

64

<Key2> The Name attribute is blank, which lets the customer specify a
custom name setting in the IDS configuration file. Internally,
Key2 is mapped to this name.

<KeyID> The Name attribute is blank, which lets the customer specify a
custom name setting in the IDS configuration file. Internally,
KeyID is mapped to this name.

DSITIMEOUT Timeout interval for the request

Out RESULTS Returns SUCCESS or FAILURE

RECORDS Returns the search results

i_DPRUpdateWIP

In USERID The user’s login ID

CONFIG Defines the MRL resources that are available

WIPS Key for the update

WIPS1.RECNUM The specific index field based on the DFD to change

GOCHANGE Value specifies that the change should occur

DSITIMEOUT Timeout interval for the request

Out RESULTS Returns SUCCESS or FAILURE

i_DPRDeleteWIP

In USERID The user’s login ID

CONFIG Defines the MRL resources that are available

RECNUM Unique identifier for a transaction

DSITIMEOUT Timeout interval for the request

Out RESULTS Returns SUCCESS or FAILURE

i_DPRGetWIPEntry

In USERID The user’s login ID

CONFIG Defines the MRL resources that are available

RECNUM Unique identifier for a transaction

EXPORT The file to export

Request type Direction Attachment variable Description

Setting Up iPPS

65

FILETYPE Specifies the export file type

DSITIMEOUT Timeout interval for the request

Out RESULTS Returns SUCCESS or FAILURE

i_DPRWIPSearch

In USERID The user’s login ID

CONFIG Defines the MRL resources that are available

STARTRECORD Starting record for the search

MAXRECORDS Max number of records to return in the result set

<STATUSCODE> The Name attribute is blank, which lets the customer specify a
custom name setting in the IDS configuration file. Internally,
StatusCode is mapped to this name.

CURRUSER Specifies the current user based on the XML session

DSITIMEOUT Timeout interval for the request

Out RESULTS Returns SUCCESS or FAILURE

RECORDS Returns the search results

i_PrintWIPFormset

In USERID The user’s login ID

CONFIG Defines the MRL resources that are available

RECNUM Unique identifier for a transaction

PRINTFILE Specifies the return file with the absolute name

PRTTYPE The type of file to print (PDF, XML, and so on)

ALLRECIPIENTS All the defined recipients per form set

DPRPROOFLOGO Add a proof logo to the print output

DSITIMEOUT Timeout interval for the request

Out RESULTS Returns SUCCESS or FAILURE

i_ArcRetrieve

In USERID The user’s login ID

Request type Direction Attachment variable Description

Chapter 2
Installation and Configuration

66

CONFIG Defines the MRL resources that are available

<ARCKEY> The Name attribute is blank, which lets the customer specify a
custom name setting in the IDS configuration file. Internally,
ArcKey is mapped to this name.

<KEYID> The Name attribute is blank, which lets the customer specify a
custom name setting in the IDS configuration file. Internally,
KeyID is mapped to this name.

<TRANSCODE> The Name attribute is blank, which lets the customer specify a
custom name setting in the IDS configuration file. Internally,
TransCode is mapped to this name.

<STATUSCODE> The Name attribute is blank, which lets the customer specify a
custom name setting in the IDS configuration file. Internally,
StatusCode is mapped to this name.

DESC The user’s description entry

EXPORT The file to export

FILETYPE Specifies the export file type

DSITIMEOUT Timeout interval for the request

Out RESULTS Returns SUCCESS or FAILURE

i_ArchSearch

In USERID The user’s login ID

CONFIG Defines the MRL resources that are available

FIELDS The fields to search

MAXRECORDS Max number of records to return

MAXSELECTLIST Max number of records to include in the return

PARTIALMATCH Specifies that partial matches are permitted in the search.

CASESENSITIVE Whether the search is case sensitive

<ARCKEY> The Name attribute is blank, which lets the customer specify a
custom name setting in the IDS configuration file. Internally,
ArcKey is mapped to this name.

DSITIMEOUT Timeout interval for the request

Out RESULTS Returns SUCCESS or FAILURE

RECORDS The record set returned

Request type Direction Attachment variable Description

Setting Up iPPS

67

LASTRECORD Record indicator for the last record returned

MAXRECORDS Max number of records to return in the result set

MORERECORDS Indicates that there are more records that match the search
criteria

i_ArcRecip

In USERID The user’s login ID

CONFIG Defines the MRL resources that are available

<ARCKEY> The Name attribute is blank, which lets the customer specify a
custom name setting in the IDS configuration file. Internally,
ArcKey is mapped to this name.

DSITIMEOUT Timeout interval for the request

Out RESULTS Returns SUCCESS or FAILURE

RECORDS The record set returned

i_ArcPrint

In USERID The user’s login ID

CONFIG Defines the MRL resources that are available

<ARCKEY> The Name attribute is blank, which lets the customer specify a
custom name setting in the IDS configuration file. Internally,
ArcKey is mapped to this name.

RECIPIENT Specifies the recipient for a published document

PRTTYPE The type of file to print (PDF, XML, and so on)

PRINTPATH A fully qualified path to the print file

DSITIMEOUT Timeout interval for the request

Out RESULTS Returns SUCCESS or FAILURE

REMOTEPRINTFILE The name of the output file

SENDBACKPAGE

i_ArchiveFormset

In USERID The user’s login ID

CONFIG Defines the MRL resources that are available

Request type Direction Attachment variable Description

Chapter 2
Installation and Configuration

68

IMPORTFILE The input attachment for the request type

FILETYPE Specifies the IMPORTFILE type

CREATETIME

<Key1> The Name attribute is blank, which lets the customer specify a
custom name setting in the IDS configuration file. Internally,
Key1 is mapped to this name.

<Key2> The Name attribute is blank, which lets the customer specify a
custom name setting in the IDS configuration file. Internally,
Key2 is mapped to this name.

<KeyID> The Name attribute is blank, which lets the customer specify a
custom name setting in the IDS configuration file. Internally,
KeyID is mapped to this name.

<STATUSCODE> The Name attribute is blank, which lets the customer specify a
custom name setting in the IDS configuration file. Internally,
StatusCode is mapped to this name.

<TRANSCODE> The Name attribute is blank, which lets the customer specify a
custom name setting in the IDS configuration file. Internally,
TransCode is mapped to this name.

Out RESULTS Returns SUCCESS or FAILURE

i_GetMRLResource Returns groups from IDS

In USERID The user’s login ID

CONFIG Defines the MRL resources that are available

DOCUMENTSTREA
M

The returned attachment

DSITIMEOUT Timeout interval for the request

Out RESULTS Returns SUCCESS or FAILURE

SPELL Performs a spell check

In USERID The user’s login ID

CONFIG Defines the MRL resources that are available

IMPORTFILE The print file for the request type

EXPORTFILE The print file for the output

USERDICT Defines which user dictionary to use

LANGUAGEOPT Language used in the dictionary

Request type Direction Attachment variable Description

Setting Up iPPS

69

DSITIMEOUT Timeout interval for the request

Out RESULTS Returns SUCCESS or FAILURE

RETUSERDICT Returns the user dictionary

In USERID The user’s login ID

CONFIG Defines the MRL resources that are available

EDITFILE The user’s file with changes

USERDICT Defines which user dictionary to use

LANGUAGEOPT Language used in the dictionary

DSITIMEOUT Timeout interval for the request

Out RESULTS Returns SUCCESS or FAILURE

EDTUSERDICT Edits the user dictionary

In USERID The user’s login ID

CONFIG Defines the MRL resources that are available

EDITFILE The file that will be spell checked

USERDICT Defines which user dictionary to use

LANGUAGEOPT Language used in the dictionary

DSITIMEOUT Timeout interval for the request

Out RESULTS Returns SUCCESS or FAILURE

i_Tbllkup Pulls data from IDS for tables

In USERID The user’s login ID

CONFIG Defines the MRL resources that are available

TABLEFILE The table lookup file

TABLEID The ID within the table file

TABLERETURNS Returns for a particular table ID

DSITIMEOUT Timeout interval for the request

Out RESULTS Returns SUCCESS or FAILURE

Request type Direction Attachment variable Description

Chapter 2
Installation and Configuration

70

RECORDS The record set returned

i_PluginInit

In USERID The user’s login ID

PASSWORD The user password

CONFIG Defines the MRL resources that are available

PRTTYPE The type of file to print (PDF, XML, and so on)

RF_POSTFILE Filename for the DPW file

RECNUM Unique identifier for the item in WIP

HTTPQUERYSTRIN
G

Defaults to 1

HTTPQUERYSTRIN
G1.NAME

Used to pass any number of query string variables to pass through
WIP Edit. By default the system sets the Session ID internally.

HTTPQUERYSTRIN
G1.VALUE

Session information

SAVE_REQTYPE i_PluginSave (Request name defined in the REQTYPE section
for saving plug-in data to WIP.

SCRIPT $IPPSROOT/wipsave.asp

GETSCRIPT $IPPSROOT/wipdownload.asp

PUTURL The URL to the web server used to save data

DSITIMEOUT Timeout interval for the request

Out RESULTS Returns SUCCESS or FAILURE

i_PluginSave Saves Plug-in data back to WIP

In USERID The user’s login ID

CONFIG Defines the MRL resources that are available

RF_POSTFILE DPW file used for saving

DPWRECNUM The unique identifier for the WIP transaction

DSITIMEOUT Timeout interval for the request

Out RESULTS Returns SUCCESS or FAILURE

Request type Direction Attachment variable Description

Setting Up iPPS

71

i_PluginGetResource Retrieves resource from IDS

In USERID The user’s login ID

CONFIG Defines the MRL resources that are available

RETURNFILE The resource requested

RESOURCENAME Name of the resource to retrieve

RESOURCETYPE One of the following:
DAL = DAL script
FAP = FAP file
TLX = dictionary for spell check
TBL = table
HLP = help file

DSITIMEOUT Timeout interval for the request

Out RESULTS Returns SUCCESS or FAILURE

i_DPRFindWIPRecord This request type performs a WIP filter

In USERID The user’s login ID

CONFIG Defines the MRL resources that are available

STARTRECORD Starting record number

MAXRECORDS Max number of records to search

DSITIMEOUT Timeout interval for the request

Out RESULTS Returns SUCCESS or FAILURE

MORERECORDS Indicates if more records are available

RECORDS The record set returned

Request type Direction Attachment variable Description

Chapter 2
Installation and Configuration

72

STARTING THE
SYSTEM

You have now completed the installation and initial configuration necessary to have iPPS
work with WIP Edit. The next step is to start your system and test it. Follow these
instructions:

NOTE: For Windows, you can install the WIP Edit plug-in on the iPPS server
for testing purposes.

1 Go to the docserv directory and start IDS. On Windows, you enter this command:

docserver.bat

Current version of IDS, is started with docserver.bat on windows or docserver.sh on
unix. This is applicable for IDS 2.0 and greater.

2 If you have installed iPPS on Windows along with WIP Edit, start your browser and
enter

http://localhost/ipps311

If you are using the Amergen MRL, you will see the login window. You can use this
ID and password to log in:

You are now finished with the initial installation and configuration. The next step is to
customize your system and the resources to meet your business needs.

For Enter

Login ID demo1

Password demo1

Using the WIP Edit ActiveX Control

73

USING THE WIP
EDIT ACTIVEX

CONTROL

ADDITIONAL CLIENT SIDE INFORMATION

DPW Files

When the user requests a form, the information necessary to construct that form such as
sections, graphics, tables, and so on, is placed into a file with a DPW file extension and
sent to the client browser.

NOTE: DPW is a proprietary Oracle Insurance file format.

The system prompts the user to open or save the DPW file. If the user has WIP Edit
installed and opens the file, a WYSIWYG image of the form appears, as shown below.
The objects that make up the DPW file are unpacked on the user’s hard drive in the
location pointed to by the TEMP environment variable. By default, TEMP points to a
directory similar to the one shown here:

C:\Documents and Settings\user name\local settings\temp

Figure 4: Requested Form Displayed in Browser

Chapter 2
Installation and Configuration

74

Figure 5: DPW File Expanded into a Temp Directory

The DPW file is extracted under the temp directory into a folder named tmpformPID,
where PID is the process ID. As seen in Figure 5, the tmpform directory contains the files
necessary to build the form image. The directory contains the DAT and POL files, several
FAP files, graphics files (*.log), and the MEN.RES file. It also has a local copy of the
FSIUSER.INI file and the USERINFO.DBF and USERINFO.MDX database files.

NOTE: If you are having trouble receiving files, check for a temp directory like
this and see if the files are being downloaded to the client machine. If
you cannot locate this directory on the client, check the settings in
Internet Explorer’s Tools, Folder Options window and make sure the
Show Hidden files and directories option is selected.

When the user exits the form currently displayed in the browser, the tmpform directory
is erased from the client side hard drive.

Checking Spelling

Once a document is displayed on the client side, the user can run a spell check against it.
Oracle Insurance supplies a common dictionary that resides on the server side (IDS). In
addition, each user can have a custom dictionary. This dictionary can be stored on the
user’s local machine or it can reside on the server. The storage location is define using an
INI option on the server side. The dictionary files have an extension of *.TLX (an index
file) and *.CLX (the data file). Refer to Requesting a Dictionary from IDS on page 41 for
specific information on how to set up local and server side dictionary storage.

Using the WIP Edit ActiveX Control

75

Locally stored dictionary A user can have a local copy of the dictionary. For local storage, however, it is
implementation specific on how a dictionary is obtained. Locally stored dictionaries are
not automatically synchronized with server side dictionaries. Any change the user makes
to that dictionary only affects the local copy.

Server side dictionary

Alternatively, each iPPS user can have a dictionary stored on the server. In this case, when
the user logs onto the system, his user ID is captured as part of the session information.
When a spell check is run, the spell checker acquires an existing dictionary with that user’s
ID or creates one if no dictionary with that user ID exists. A copy of this dictionary is
downloaded to the client machine. For the duration of the session, spell checks will use
this local copy. If the user changes the dictionary, the changes are confined to the local
copy until the session ends. At the end of the session, the local dictionary copy is sent back
to the server.

If there are 100 users, each with a unique ID, there will be 100 user dictionaries stored in
the default or specified path. If many users login using the same user ID (such as Clerk or
Underwriter), then a single shared dictionary is created or used for that group of users.

Regardless of local or server storage, the dictionary gets put in the same directory as the
plug-in binaries on the client machine. On the default install, this is...

C:\Program Files\Docucorp International\Docucorp WipEdit\

When the user with a server side dictionary terminates his session, a copy of his local
working dictionary is uploaded to the server and saved. The next time the user logs in, a
copy of this dictionary is downloaded to the user’s local machine.

Fonts

The WIP Edit installation program installs and registers a set of True Type fonts. It stores
them in the directory where the main WIP Edit program files are located. The default
location for the files is:

C:\Program Files\Docucorp International\Docucorp WIP Edit

If your MRL requires additional fonts, you must install them on the client side and register
them with the Windows Font Manager. Refer to the Help files on your client machine for
information on how to register a font in Windows.

Printing

There is a glyph button bar at the top. Those should be used. Tell the user not to print
locally. Instead they should click on the Proof button. This generates a PDF file and
launches it in Adobe Reader. Users should print using Acrobat Reader’s File, Print option.

Saving

Use the Save to WIP button. This lets you specify a description and other options. When
you click Submit, the system sends the WIP to the server where it is saved.

Chapter 2
Installation and Configuration

76

Zoom in and Zoom out

You can update the zoom by clicking on the Zoom in/out button on the tool bar. The
default zoom can be set in the wipedit.ini based on the Control group option:

<Control>

Zoom = value

The following are the values:

• ToWidth: ToWidth indicates to fit to width.

• ToWindow: ToWindow indicates to fit the display to the current window size.

• 25, 50, 75, Normal, 100, 125, 150, 200, 300, and 400: The numeric values are actual
zoom values. Normal and 100 are equivalent.

Note: Any other values other than the above listed will be ignored.

There is an additional Control group option for Zoom settings, that is The SaveZoom
option, when set to Yes, indicates that the user’s last zoom setting is retained. If
SaveZoom is Yes, the Zoom option default value is not used.

WIP Edit APIs

This listing shows the WIP Edit IDL. Since WIP Edit is an ActiveX control, it is derived
from IDispatch. The methods listed in that section of the interface are callable by external
programs or scripts. You can write custom scripts or code and call the interfaces in WIP
Edit to customize how you want the control to display your forms or sections.

WIP Edit IDL // Generated .IDL file (by the OLE/COM Object Viewer)
//
// typelib filename: wipctl.dll

[
 uuid(39B7F35B-067C-488A-8D01-717DA4D9E1DF),
 version(1.0),
 helpstring("wipctl 1.0 Type Library"),
 custom(DE77BA64-517C-11D1-A2DA-0000F8773CE9, 100663657),
 custom(DE77BA63-517C-11D1-A2DA-0000F8773CE9, 1116428288),
 custom(DE77BA65-517C-11D1-A2DA-0000F8773CE9, Created by MIDL version
6.00.0361 at Wed May 18 10:58:07 2005
)

]
library WIPCTLLib
{
 // TLib : // TLib : OLE Automation : {00020430-0000-0000-C000-000000000046}
 importlib("stdole2.tlb");

 // Forward declare all types defined in this typelib
 interface IWipEd;

 [
 uuid(76469354-4683-4ECE-B0A0-52A56A590275),
 helpstring("WipEd Class")
]

Using the WIP Edit ActiveX Control

77

 coclass WipEd {
 [default] interface IWipEd;
 };

 [
 odl,
 uuid(24654DF4-8E2B-42D3-A323-AABDD41F23B9),
 helpstring("IWipEd Interface"),
 dual,
 oleautomation
]
 interface IWipEd : IDispatch {
 [id(0x00000001), helpstring("method cmd")]
 HRESULT cmd(int cmd);
 [id(0x00000002), helpstring("method GotoForm")]
 HRESULT GotoForm(
 BSTR formname,
 int formno,
 int pageno);
 [id(0x00000003), helpstring("method Save")]
 HRESULT Save();
 [id(0x00000004), helpstring("method FitToWidth")]
 HRESULT FitToWidth();
 [id(0x00000005), helpstring("method FitToWindow")]
 HRESULT FitToWindow();
 [id(0x00000006), helpstring("method ZoomIn")]
 HRESULT ZoomIn();
 [id(0x00000007), helpstring("method ZoomOut")]
 HRESULT ZoomOut();
 [id(0x00000008), helpstring("method ZoomNormal")]
 HRESULT ZoomNormal();
 [id(0x00000009), helpstring("method FormPrevious")]
 HRESULT FormPrevious();
 [id(0x0000000a), helpstring("method FormNext")]
 HRESULT FormNext();
 [id(0x0000000b), helpstring("method FormSelect")]
 HRESULT FormSelect();
 [id(0x0000000c), helpstring("method Refresh")]
 HRESULT Refresh();
 [id(0x0000000d), helpstring("method FieldTemplate")]
 HRESULT FieldTemplate();
 [id(0x0000000e), helpstring("method AutoFocus")]
 HRESULT AutoFocus();
 [id(0x0000000f), helpstring("method Information")]
 HRESULT Information();
 [id(0x00000010), helpstring("method FixedEdit")]
 HRESULT FixedEdit();
 [id(0x00000011), helpstring("method FixedPrompt")]
 HRESULT FixedPrompt();
 [id(0x00000012), helpstring("method Cascade")]
 HRESULT Cascade();
 [id(0x00000013), helpstring("method Tile")]
 HRESULT Tile();
 [id(0x00000014), helpstring("method Stack")]
 HRESULT Stack();

Chapter 2
Installation and Configuration

78

 [id(0x00000015), helpstring("method StackOnly")]
 HRESULT StackOnly();
 [id(0x00000016), helpstring("method HelpContents")]
 HRESULT HelpContents();
 [id(0x00000017), helpstring("method HelpHowTo")]
 HRESULT HelpHowTo();
 [id(0x00000018), helpstring("method HelpGlossary")]
 HRESULT HelpGlossary();
 [id(0x00000019), helpstring("method UsingHelp")]
 HRESULT UsingHelp();
 [id(0x0000001a), helpstring("method PagePrevious")]
 HRESULT PagePrevious();
 [id(0x0000001b), helpstring("method PageNext")]
 HRESULT PageNext();
 [id(0x0000001c), helpstring("method SelectSection")]
 HRESULT SelectSection();
 [id(0x0000001d), helpstring("method ProductionInformation")]
 HRESULT ProductionInformation();
 [id(0x0000001e), helpstring("method HelpShortcuts")]
 HRESULT HelpShortcuts();
 [id(0x0000001f), helpstring("method CmdWithMessage")]
 HRESULT cmdWithMessage(
 int cmd,
 VARIANT* v);
 [id(0x00000020), helpstring("method Terminate")]
 HRESULT Terminate();
 [id(0x00000021), helpstring("method ReservePort")]
 HRESULT ReservePort(VARIANT* port);
 [id(0x00000022), helpstring("method SetBasePort")]
 HRESULT SetBasePort(int basePort);
 [id(0x00000023), helpstring("method FreePort")]
 HRESULT FreePort(int FreePort);
 [id(0x00000024), helpstring("method GetWipField")]
 HRESULT GetWipField(
 VARIANT name,
 VARIANT* value);
 [id(0x00000025), helpstring("method SetWipField")]
 HRESULT SetWipField(
 VARIANT name,
 VARIANT value);
 [id(0x00000026), helpstring("method SetCurrentPort")]
 HRESULT SetCurrentPort(int basePort);

 [id(0x00000024), helpstring("method GetWipField")]

 };
};

Listing 15: ActiveX IDL File for the WIP Edit Control

Using the WIP Edit ActiveX Control

79

WIP Edit ActiveX control
methods

This table shows a list of methods exposed in the WIP Edit ActiveX control. If you write
custom scripts, you can call these methods to make the control display your forms and
sections in customized ways.

Method Description Comments

void cmd(int cmd) Executes functions defined in
WIPEDIT.RES. WIPEDIT.RES is the
file that defines the menu for WIP Edit.

Available for 12.1+.
While the WIPEdit.res is no
longer supported in 12.0+, the
following commands are still
available:

260 - Save

262 - Check required fields

263 - Get Formset field data.

1014 - Fit to Width.

1072 - Fit to Window

1010 - zoom in

1011 - zoom out

1012 - zoom normal

1008 - previous form

1007 - next form

1034 - previous page

1033 - next page

264 - hide form navigation
window

265 - show form navigation
window

266 - toggle between show/
navigation show window.

void
GotoForm(BSTR
formname, int
formno, int pageno

Changes the current form that is being
edited.

Form name is the name of the form in
the form set.

Form no is the instance of the form.

Form set can have multiple forms with
the same name. Page no is the page
within the form.

Not available in version 12.0+
due to the revised user
interface (UI).

void Save(void) Saves the document. The document is
saved on the server but does not close
the document in WIP Edit.

void
FitToWidth(void)

Displays the full width of the section in
the active window.

void
FitToWindow(void
)

Displays the entire section in the active
window

*1 - Only available in version 11.1 of WIP Edit.

Chapter 2
Installation and Configuration

80

void ZoomIn(void) Increases the magnification

void
ZoomOut(void)

Decreases the magnification

void
ZoomNormal(void
)

Returns to the 100% magnification
value

void
FormPrevious(voi
d)

Moves to the previous form in the form
set

void
FormNext(void)

Moves to the next form in the form set

void
PagePrevious(void)

Moves to the previous page

void
PageNext(void)

Moves to the next page.

void
hideNavBar(void)

Hides the form from the navigation
window.

void
showNavBar(void)

Displays the form in the navigation
window.

void
toggleNavBar(void
)

Select to toggle navigation bar.

void
FormSelect(void)

Selects the form in a form set. This is
helpful when you view a stacked form
set.

void Refresh(void) Redraws the display Not available for version
12.0+.

void
FieldTemplate(voi
d)

Allows to view the size and location of
variable fields in a form.

Not available for version
12.0+.

void
AutoFocus(void)

Tells the system to scroll the form as
you move through the fields on the
form. The current field always stays in
the view. If you turn this off, your
current field may not stay displayed on
screen.

Not available for version
12.0+. This is a default action.

void
Information(void)

Displays additional information about
the variable fields in the section.

Not available in version
12.0+.This information is
always displayed.

Method Description Comments

*1 - Only available in version 11.1 of WIP Edit.

Using the WIP Edit ActiveX Control

81

void
FixedEdit(void)

Anchors the data entry area at the top of
your screen instead of having it move as
you move through various fields.

Not available for version 12.0
and 12.1 and Implemented for
12.1.1+.

void
FixedPrompt(void)

Displays the fixed prompt information. Not available in version
12.0+.This information is
always displayed.

void Cascade(void) Displays multiple form or section
windows in layers.

Not available in version 12.0+
due to the revised user
interface (UI).

void Tile(void) Displays multiple form or section
windows in an arrangement on the
screen.

Not available in version 12.0+
due to the revised user
interface (UI.

void Stack(void) Displays multiple form or section
windows stacked on top of each other

Not available in version 12.0+
due to the revised user
interface (UI)

void
StackOnly(void)

Displays a form set in a stack. This is the
default mode when you retrieve
archived form sets.

Not available in version 12.0+
due to the revised user
interface (UI).

void
HelpContents(void
)

Displays the Help file table of contents. Not available in version 12.0+.
User can view the help content
on OTN by accessing the link
from the Documaker
Interactive or from the
application.

void
HelpHowTo(void)

Displays the How to topics from the
help file.

Not available in version 12.0+.
User can view the help content
on OTN by accessing the link
from the Documaker
Interactive or from the
application.

void
HelpGlossary(void
)

Displays the Help file glossary. Not available in version 12.0+.
User can view the help content
on OTN by accessing the link
from the Documaker
Interactive or from the
application.

void
UsingHelp(void)

Displays the How to use Help topic Not available in version 12.0+.
User can view the help content
on OTN by accessing the link
from the Documaker
Interactive or from the
application.

void
PagePrevious(void)

Moves to the previous page in a form set

Method Description Comments

*1 - Only available in version 11.1 of WIP Edit.

Chapter 2
Installation and Configuration

82

void
PageNext(void)

Moves to the next page in a form set

void
SelectSection(void)

Selects the specific page you want to
view. This is helpful when you are
viewing a stacked form set.

Not available in version 12.0+
due to the revised user
interface (UI).

void
ProductInformatio
n(void)

Displays the product information Not available in version 12.0+.

void
HelpShortcuts(voi
d)

Displays the shortcuts in the Help file Not available in version 12.0+.
User can view the help content
on OTN by accessing the link
from the Documaker
Interactive or from the
application.

void
cmdWithMessage(i
nt cmd, variant v)

If a user writing a script receives a
response message from WIP Edit. The
function in WIPEDIT.RES must return
a result. A MEN.RES function must be
written to handle the said situation.

For an example, see Not available.
replaced with cmdGetResponse

RACCCheckRequiredFields. The
variant contains the response from IDS.

Not available. replaced with
cmdGetResponse

BSTR
cmdGetResponse(i
nt cmd)

Can be used with cmd id's 260 and 262
to determine the status of save attempt
and check required fields.

void Terminate Reserved Not available in version 12.0+.

void
ReservePort(VARI
ANT *port)

Gets the next available port address.
The parameter returns a valid port
address.

Not available in version 12.0+.

void
SetBasePort(int
basePort)

Sets the beginning address of the port.
All port addresses will be greater than or
equal to this one. If you do not use this
method, the default will be 49180. This
is available to fix conflicts with other
applications.

Not available in version 12.0+.

void FreePort(int
FreePort);

Makes the port address available to
another instance of IDS.

Not available in version 12.0+.

void
GetWipField(VAR
IANT name,
VARIANT
*value);

Lets you retrieve a WIP index field from
the document open in WIP Edit.

Method Description Comments

*1 - Only available in version 11.1 of WIP Edit.

Using the WIP Edit ActiveX Control

83

void
SetWipField(VARI
ANT name,
VARIANT value);

Lets you set a WIP index field in the
document that is open in WIP Edit.

void
SetCurrentPort(int
port);

Tells the WIPCTL.dll to use this port
address.

Not available in version 12.0+.

BSTR
GetWipIndex(VA
RIANT fldName);

Lets you retrieve a WIP index field from
the document open in WIP Edit.

BSTR isdirty() Returns 1 if formset has changed.
Returns 0 if formset has not been
changed the same.

BSTR
ReturnReservePort
()

Gets the next available port address.
The parameter returns a valid port
address.

BSTR
checkRequiredFiel
d()

Returns true if all required fields have
data.

Returns false if a field retires data and is
empty.

BSTR
getRequiredFieldN
ame();

Returns true if all required fields have
data.

Returns false if a field requires data and
is empty.

Method Description Comments

*1 - Only available in version 11.1 of WIP Edit.

Chapter 2
Installation and Configuration

84

void
cmdCallBack(long
cmd, VARIANT
callback)

When the cmd function is completed a
javascript function is called and the
name of the javascript function is
defined by the callback parameter

The WIPEdit.res is no longer
supported in 12.0+.
The following commands are
still available:

260 - Save 2

62 - Check required fields

263 - Get Formset field data.
1014 - Fit to Width.

1072 - Fit to Window

1010 - zoom in

1011 - zoom out

1012 - zoom normal

 1008 - previous form

1007 - next form 1034 -
previous page

 1033 - next page

 264 - hide form navigation
window

 265 - show form navigation
window

266 - toggle between show/
navigation show window.

void
checkRequiredFiel
dCallBack()

Returns true if all required fields have
data.

 Returns false if a field retries data and is
empty.

BSTR
cmdGetResponse
WithParm(int cmd,
VARIANT parm);

It can only be used with custom
functions.

Not available in version 12.0+.

BSTR
SetPortByUniqueI
d(BSTR sessid)

obsolete obsolete

void
setInputEncoding(
int encode);

If encode flag is set to 1 then it is
assumed parameters to all functions are
already UTF-8.

BSTR
getVersion(void)

Return version of plug-in.

Method Description Comments

*1 - Only available in version 11.1 of WIP Edit.

Using the WIP Edit ActiveX Control

85

USING THE WIP EDIT PLUG-IN
The Documaker wipedit plug-in allows you to present WIP documents in the
browser.The Internet Explorer version of the plug-in uses an Active Document Server
for Documaker 12.0 and lower.Version 12.3 uses ActiveX control. Firefox version of the
plug-in uses the NPAPI plug-in.

The plug-in is utilized by Documaker web applications to enable document editing.
Alternatively, you may use the plug-in within your own web application to enable editing.
The following examples show how to implement the plug-in within your own web
application.

Internet Explorer
Markup below.

<object classid="clsid:F894A210-B1E8-44D2-A3DB-5C2E86C7408D"
id='plugin' height='1000' width='1000'/>

<!--param id='cookie' name='cookie'
value=<%out.write(UUID.randomUUID().toString());%>-->

<param id='cookie' name='cookie' value="<%

String cookieName = "username";

Cookie cookies [] = request.getCookies ();

if (cookies != null)

{

for (int i = 0; i < cookies.length; i++)

{

out.write(cookies[i].getName() + "=" + cookies[i].getValue() +";
");

}

}

%>">

<param name = 'docsavescript' value='save_script'>

<param name = 'getscript' value='get_script'>

<!-- The puturl will need to be customized for your system -->

<param name = 'puturl' value='url'>

<!-- The src parameter will need to be customized for your system -->

<param name = 'src' value='url for dpw file'>

</object>

Firefox plug-in mark-up:

Chapter 2
Installation and Configuration

86

<object id='plugin' data=path to generate a DPW file height='1000'

width='1000' type='application/x-dpwfile'/>

<param id='cookie' name='cookie' value=list of cookies name value
pairs>

<param name = 'docsavescript' value='save_script'>

<param name = 'getscript' value='get_script'>

<param name = 'puturl' value=url to save DPW file>

The WIP Edit plug-in dynamically requests the downloading of the following
resourcesfrom IDS. The DPRGetResource rule looks in your INI options to locate any
resources requested. Once obtained, the resources are packaged into a DPW file and
downloaded to the client machine.

• FAP files

• DAL scripts

• Tables

• Help files

We use the docserv.xml or the include file specified in the docserv.xml to provide the
rules and functions needed to perform the GetResource activity.

<section name="INIFiles">

</section>

[ReqType:GETRESOURCE]

function = atcw32->ATCLogTransaction

function = atcw32->ATCLoadAttachment

function = atcw32->ATCUnloadAttachment

function = dprw32->DPRSetConfig

function = dprw32->DPRDecryptLogin

function = dprw32->DPRDefaultLogin

function = dprw32->DPRCheckLogin

function = atcw32->ATCSendFile,RETURNFILE,RETURNFILE,Binary

function = dprw32->DPRGetResource,RETURNFILE

You can add entries to WIP by including these request types. This
request type creates a DPW file that triggers the Form Selection
window.

[ReqType:GETEMPTYWIP]

function = atcw32->ATCLogTransaction

function = atcw32->ATCLoadAttachment

function = atcw32->ATCUnloadAttachment

Using the WIP Edit ActiveX Control

87

function = dprw32->DPRSetConfig

function = dprw32->DPRDecryptLogin

function = dprw32->DPRDefaultLogin

function = dprw32->DPRCheckLogin

function = atcw32->ATCSendFile,RETURNFILE,RETURNFILE,Binary

function = dprw32->DPRCreateEmptyWipXML,RETURNFILE

function = dprw32->DPRFile2Dpw,RETURNFILE

function = dprw32->DPRIni2XML

Set this request type to determine if a policy number is already being
used.

[ReqType:WFIND]

function = atcw32->ATCLogTransaction

function = atcw32->ATCLoadAttachment

function = atcw32->ATCUnloadAttachment

function = dprw32->DPRSetConfig

function = dprw32->DPRDecryptLogin

function = dprw32->DPRDefaultLogin

function = dprw32->DPRCheckLogin

function = dprw32->DPRFindWipRecords

Here are examples of entries in the INI2XML control group:

< INI2XML >

PolicyScript = doc-prog/iwip/sampco/wipfound.asp

GetScript = doc-prog/iwip/sampco/wipdownload.asp

Key1 = FORMMAKER PACKAGE

Key2 = PROPERTY;INLAND MARINE

CUSTOMIZING IDOCUMAKER, IPPS, AND WIP EDIT

Here are some things to keep in mind as you use the WIP Edit plug-in:

Turning on debugging

You can use the Debug option to turn on debugging. This lets you turn on debugging
without having to individually set the environment variable on client machines running
the WIP Edit plug-in.

Chapter 2
Installation and Configuration

88

To turn on debugging using the Debug option, include this option in the wipedit.ini file:

< WIPEdit >

Debug = Yes

Automatically sending
the WIPEDIT.FXR file

The IDS rules that create the DPW file can automatically send the WIPEDIT.FXR file to
the WIP Edit plug-in when these conditions are met in the INI file:

 The DownloadDPWFonts option in the WIP2DPW control group is set to No.

 The XRFToken option is not set in the File2DPW control group.

In the sampco.ini file, comment out the XRFToken option, as shown in this example:

< File2DPW >

; XRFToken = mstrres\sampco\deflib\rel102sm.fxr

NOTE: You can only have one installation of the WIP Edit plug-in on a PC.

Saving documents with
invalid certificates

The WIP Edit plug-in ignores invalid web certificates, such as when the web certificate
has expired. If the certificate is invalid, the system can save the document from the WIP
Edit plug-in with the following INI options:

To begin, download an INI file to the WIP Edit plug-in. For this example, use the
USER.INI file. Add the following to the configuration specific INI:

< File2DPW>

INIToken = user.ini

The USER.INI file should contain the following.

< ICMLib>

IgnoreInvalidCertificate = Yes

Running the plug-in
outside the browser

You can run the WIP Edit plug-in in its own window (outside the browser) by changing
the content type header in the WIPEDIT.ASP or WIPEDIT.JSP web page.

Changing values in the
WIP index

Use the UpdateDpwIndex INI option to change values in the WIP index based on session
variables created in the wipedit.jsp or wipedit.asp page. This option will probably always
be used with a customization to the web page to update the WIP index with data from an
external source.

If you need to change a WIP index field with a value that originates in the ASP/JSP page,
you can use the UpdateDPWIndex option to modify the WIP record when the document
is saved. For example, you can use this option to track some other user ID than the login
ID the page prompts for.

The following lines are in the wipedit.asp page. A session variable is created called
SETORIGUSER. This information is passed to IDS in the form of an attachment
variable by the DSI.ProcessQ:

session("SETORIGUSER") = "testchange"

Using the WIP Edit ActiveX Control

89

On Error Resume Next

DSI.ProcessQ 'Execute Request From Attachment

The configuration specific INI must have the following UpdateDpwIndex option:

< UpdateDPWIndex >

OrigUser = #SETORIGUSER

The # character tells the system to get the data from the attachment variable named
SETORIGUSER. Without the #, the WIP index is updated with the text in the INI file.

The DPRIndex2Xml rule reads the UpdateDpwIndex control group and makes changes
in the index portion of the DPW file. When the DPW file is saved, the DPRDpw2Wip
rule updates the WIP index with the change.

Using WIP Edit with SiteMinder®

You can use the WIP Edit plug-in with web sites protected by SiteMinder® and with web
sites that use clustered web servers. SiteMinder stores security information in a cookie.
The WIP Edit plug-in looks for this cookie and attaches the cookie information to
requests for resources and the saving of documents.

SENDING PASSWORDS

IDS can use the DPRIni2Xml rule to pass an encrypted password to the WIP Edit plug-
in to provide authentication when saving data back to IDS.

< INI2XML >

HTTPUserID = encrypteduserID

HTTPPassword = encryptedpassword

You can also use the cryruw32 program to create an encrypted value that can be
understood by the WIP Edit plug-in. This lets you avoid putting passwords in the INI file
where they can easily be read. For instance, if you enter this from the command line:

cryruw32.exe password

you will see the output similar to the following:

Encrypted string (2XAUnkxUYlx7i5AnQ4m4E1m00)

REQUESTING A DICTIONARY

The WIP Edit plug-in can request a user spelling dictionary from IDS when running a
spell check.

Use the DPRINI2XML rule to calculate a CRC (Cyclic Redundancy Check) that will be
stored in the DPW file. This line will calculate the CRC of a spelling dictionary specified
by the user ID:

< INI2XML >

CalcCRC = d:\docserv1\spell\#USERID.tlx!TLX

To update the spelling dictionary if the WIP Edit plug-in has changed it, use the
DPRPutResource rule:

[ReqType:PUTRESOURCE]

Chapter 2
Installation and Configuration

90

function = atcw32->ATCLogTransaction

function = atcw32->ATCLoadAttachment

function = atcw32->ATCUnloadAttachment

function = dprw32->DPRSetConfig

function = dprw32->DPRDecryptLogin

function = dprw32->DPRDefaultLogin

function = dprw32->DPRCheckLogin

function = dprw32->DPRPutResource

Specifying the user
dictionary

Use the UserDict option to specify the name of the dictionary file you want to use in the
WIP Edit spell check process. If you omit this option, the spell dictionary file name is
based on the user ID.

To begin, download an INI file to the WIP Edit plug-in. For this example, use USER.INI.
Add the following to the configuration-specific INI file:

< File2DPW >

INIToken = user.ini

< Spell >

UserDict = dictionary.tlx

TRAPPING EVENTS

The options to control the trapping of events were implemented because web pages that
use anchor tags cause WIP Edit to exit prematurely. If your web page contains anchor tags
you may need these options.

These INI options are in the INI file downloaded to WIP Edit, usually named
WIPEDIT.INI. The INI file is specified in the INIToken option, as shown below:

< INI2XML >

INIToken = wipedit.ini

< WIPEdit >

DisableRightClick =

TrapEvents =

TrapOnlyQuitEvent =

NOTE: Whether the document is saved or whether you are prompted to save the
document depends on the following options in the WIPEDIT.INI file. If you set
the OverridePrompt option to Yes, you are not prompted when the plug-in
closes. The default is No.

< WIPSave >
OverridePrompt =

If you want WIP Edit to automatically save the document. Set the
OverridePrompt option to Yes and set the SaveOnExit option to Yes.

< WIPSave >

Using the WIP Edit ActiveX Control

91

SaveOnExit =

The default for the SaveOnExit option is No.

Note: Whether the document is saved or whether you are prompted to save the
document depends on the following options in the WIPEDIT.INI file. If you set
the OverridePrompt option to Yes, you are not prompted when the plug-in
closes. The default is No.

< WIPSave >
OverridePrompt =

If you want WIP Edit to automatically save the document. Set the
OverridePrompt option to Yes and set the SaveOnExit option to Yes.

< WIPSave >
SaveOnExit =

The default for the SaveOnExit option is No.

TRACKING SESSION INFORMATION

The WIP Edit plug-in will let a web application specify data that will be sent back to the
web server when a document is saved. This lets iPPS or iDocumaker send session
information to the web server/IDS when saving data or getting resources.

The DPRPrintDpw rule looks for groups of attachment variables to add information to
the DPW file. This information is used by WIP Edit to add data to the GETRESOURCE
and WIPSAVE request.

Use HTTPFORMDATA variables to add multiform post data:

Use HTTPQUERYSTRING variables to add the query string:

Use the HTTPHEADER variables to add the HTTP header:

Variable Description

HTTPFORMDATA The number of variables to add multiform post data

HTTPFORMDATA#.NAME The name of the variable.

HTTPFORMDATA#.VALUE The value of the variable.

Variable Description

HTTPQUERYSTRING The number of variables to add to the query string

HTTPQUERYSTRING#.NAME The name of the variable.

HTTPQUERYSTRING#.VALUE The value of the variable.

Chapter 2
Installation and Configuration

92

Use the HTTPCOOKIE variables to add the cookie header:

Examples Here are some examples:

To add multipart form data to the HTTP request the following attachment variables were
added to the request that creates the DPW file:

HTTPFORMDATA = 1
HTTPFORMDATA1.NAME = nameformdata1
HTTPFORMDATA1.VALUE = valueformdata1

The resulting line in the HTTP request would look like this:

-----------------------------7d32f01b1003de
Content-Disposition:form-data; name="nameformdata1"

valueformdata1

To add data to the query string for the HTTP request these attachment variables were
added to the request that creates the DPW file.

HTTPQUERYSTRING 1
HTTPQUERYSTRING1.NAME = SESSIONID
HTTPQUERYSTRING1.VALUE = 8010e572-001b-43e3-98f4-e1b0e0116933

In the resulting line in the HTTP request, HTTPQUERYSTRING adds the following
information to the URL. Here is an example:

/doc-prog/iwip/sampco/wipsave.asp?SESSIONID= 8010e572-001b-43e3-98f4-
e1b0e0116933 HTTP/1.1

To create a header for the HTTP request these attachment variables were added to the
request that creates the DPW file:

HTTPHEADER = 1
HTTPHEADER1.NAME = someheader1
HTTPHEADER1.VALUE = someVALUE1

In the resulting line in the HTTP request, HTTPHEADER adds information to the
HTTP header. The following example is from a save request:

someheader1:someVALUE1

Variable Description

HTTPHEADER The number of variables to add to the HTTP header

HTTPHEADER#.NAME The name of the variable.

HTTPHEADER#.VALUE The value of the variable.

Variable Description

HTTPCOOKIE The number of variables to add to the cookie header

HTTPCOOKIE#.NAME The name of the variable.

HTTPCOOKIE#.VALUE The value of the variable.

Using the WIP Edit ActiveX Control

93

To add data to the cookie header the HTTP request the following attachment variables
were added to the request that creates the DPW file:

HTTPCOOKIE = "1"
HTTPCOOKIE1.NAME = "cookie"
HTTPCOOKIE1.VALUE = "Toolfloat=false; Toolbottom=false; IX=%E9%C4%92%
08%C9%D3xo%D9%2D%AF%D3%A0%AC%26%15%7E%FA%23M%01%D9%FDt%23%
A2%13%7E%CAN%95%80%B2%
E5cC%0Enj%E7%1E%E4;
ASPSESSIONIDACRTQSCA=EGPPLAECPNDMGOIIMANOAPPB"

The resulting cookie header in the HTTP request would look like this:

Cookie: Toolfloat=false; Toolbottom=false;
IX=%E9%C4%92%08%C9%D3xo%D9%2D%AF%D3%A0%AC%26%15%7E%FA%23M%
01%D9%FDt%23%A2%13%7E%CAN%95%80%B2%E5cC%0Enj%E7%1E%E4;
ASPSESSIONIDACRTQSCA=EGPPLAECPNDMGOIIMANOAPPB;
ASPSESSIONIDQSBCQTCA=JHCKEELAANHOGDGAPMABIHDL

Chapter 2
Installation and Configuration

94

66

Advanced Topics

This chapter discussed a variety of tasks you can to do
enhance and customize your web-enabled solution once
you perform the initial installation and configuration.

These topics include:

• Debugging on page 67

• Troubleshooting on page 72

• Handling Error Messages on page 82

• Integrating Custom Code on page 86

• Using the Print Preview Application on page 87

NOTE: For information on how to configure
passwords with basic Windows authentication,
refer to Sending Passwords to WIP Edit on
page 28.

Advanced Topics

67

DEBUGGING Server Side Debugging

DPW file contents You can set an option your configuration INI file (such as AMERGEN.INI) to turn on
server side debugging for the WIP Edit. The configuration option looks like this:

< WIP2DPW >

Debug = Yes

When IDS is configured with this setting, it retains a copy of all of the files that comprise
the DPW file and store them in a local temporary directory. This increases the amount of
storage required and the files are not automatically erased. Therefore, only use this
debugging option when you need to track down a problem.

The files are stored in directories that are named by GUIDs under the data directory
within the Docserv directory as shown in Figure 6. There will be a directory for each
instance of IDS.

Figure 6: Debug Files in the Temp directory

In addition to retaining the files that make up the DPW file that is sent to the client side
WIP Edit ActiveX control, additional logging information is also generated. With this
option set, information is written to the Docserv trace log file (C:\Docserv\dsrvtrc.log).
Listing 16 shows an extract of a Docserv trace file with this debugging option turned on.

1. Thu May 26 06:36:03.298 2005 pid=00001996 DPWInitDpwPi() - Begin

2. Thu May 26 06:36:03.308 2005 pid=00001996
dpwpi.currDirectory=<C:\docserv>

3. Thu May 26 06:36:03.308 2005 pid=00001996
dpwpi.dataPath=<C:\docserv\data>

4. Thu May 26 06:36:03.308 2005 pid=00001996
dpwpi.wipPath=<mstrres\sampco\wip\>

5. Thu May 26 06:36:03.308 2005 pid=00001996
dpwpi.wipFile=<mstrres\sampco\wip\wip>

Debugging

68

6. Thu May 26 06:36:03.308 2005 pid=00001996
dpwpi.menuFile=<C:\docserv\wipedit.res>

7. Thu May 26 06:36:03.308 2005 pid=00001996
dpwpi.fileName=<0upm3sx_cweebhues2h76kilf_vmj4nkh-ecktyvvokp7>

8. Thu May 26 06:36:03.308 2005 pid=00001996
dpwpi.transactionId=<1146>

9. Thu May 26 06:36:03.308 2005 pid=00001996
dpwpi.groupName1=<DOCUCORP PACKAGE>

10. Thu May 26 06:36:03.308 2005 pid=00001996
dpwpi.groupName2=<DOCUMENT AUTOMATION LANGUAGE>

11. Thu May 26 06:36:03.308 2005 pid=00001996 dpwpi.groupName3=<>

12. Thu May 26 06:36:03.308 2005 pid=00001996 dpwpi.recipient=<>

13. Thu May 26 06:36:03.308 2005 pid=00001996
dpwpi.arcPath=<C:\docserv\data\233b86f9fb1f4baa88de624c6ed800df>

14. Thu May 26 06:36:03.308 2005 pid=00001996
dpwpi.appidxFile=<C:\docserv\data\233b86f9fb1f4baa88de624c6ed800df\
appidx>

15. Thu May 26 06:36:03.308 2005 pid=00001996
dpwpi.catalogFile=<C:\docserv\data\233b86f9fb1f4baa88de624c6ed800df
\>

16. Thu May 26 06:36:03.308 2005 pid=00001996 dpwpi.dpwFile=<0uS-
FvQQu9wVduVNivwh5ywMCkBZvz29ViUEj0Q0KS0nT.DPW>

17. Thu May 26 06:36:03.308 2005 pid=00001996
dpwpi.naFile=<C:\docserv\data\233b86f9fb1f4baa88de624c6ed800df\0000
000000.dat>

18. Thu May 26 06:36:03.318 2005 pid=00001996
dpwpi.polFile=<C:\docserv\data\233b86f9fb1f4baa88de624c6ed800df\000
0000000.pol>

19. Thu May 26 06:36:03.318 2005 pid=00001996
dpwpi.indexFile=<C:\docserv\data\233b86f9fb1f4baa88de624c6ed800df\0
000000000.xml>

20. Thu May 26 06:36:03.318 2005 pid=00001996 DPWGetDpwIndex() -
Begin

21. Thu May 26 06:36:03.369 2005 pid=00001996 DPWGetDpwIndex() - End

Listing 16: Sample DSRVTRC.LOG file output

Seeing messages sent by
client and server

IDS dumps the contents of the send and receive messages to a file if you add a debug
statement to the DOCSERV.INI file.

If the environment does not appear to be working and you get errors that say the system
cannot initialize the queue, open the DOCSERV.INI file and add this option:

< DBHandler:MQSERIES >

Debug = Yes

This option tells the system to include detailed debug information in the error
descriptions. This will help you determine the actual problem. The system writes this
information into the DSRVTRC.LOG file (the trace log file).

In the DOCSERV.INI file there is or can be a separate section for debugging. This table
shows the items you can include in a Debug section:

Advanced Topics

69

Listing 17: DOCSERV.INI File Debug section

CLIENT SIDE DEBUGGING

You can download a copy of the WIPEDIT.INI locally on the client machine and make
it available to the WIP Edit ActiveX control. The INI file will be transformed to a
FSIUSER.INI file and will be stored in the tmpform(pid) directory. To do this, modify
your configuration file (such as AMERGEN.INI) and add the following settings:

< File2Dpw >

INIToken = wipedit.ini

To turn on debugging and logging you have these choices. Pick one of these options:

• Modify the WIPEDIT.INI file (on the server side) and add the following:

< WIPEdit >

Debug = Yes

• Set an environment variable (WIPEDITDEBUG=Yes) on the client machine.

Either approach creates a log file on the client machine. Listing 18 shows a sample output
of the log file that is created on the client machine when debugging is turned on. You
should only activate this setting if you are having difficulty and need to do some
troubleshooting.

1. Thu May 26 08:08:20.991 2005 pid=00002124 IE instance matched=0

2. Thu May 26 08:08:46.688 2005 pid=00002124 Attempting to load
icmw32.dll

3. Thu May 26 08:08:46.688 2005 pid=00002124 Loaded icmw32.dll
successful

4. Thu May 26 08:08:46.688 2005 pid=00002124 Query Function
ICMGetConnection

5. Thu May 26 08:08:46.688 2005 pid=00002124 Query Function
ICMGetTermConnection

6. Thu May 26 08:08:46.688 2005 pid=00002124 Query Function
ICMGetStatus

7. Thu May 26 08:08:46.688 2005 pid=00002124 Query Function
ICMBuildIdsVariables

8. Thu May 26 08:08:46.688 2005 pid=00002124 Query Function
ICMSendRequest

9. Thu May 26 08:08:46.688 2005 pid=00002124 Query Function
ICMGetResponse

10. Thu May 26 08:08:46.688 2005 pid=00002124 icmw32.dll loaded and
all functions queried successfully

11. Thu May 26 08:08:46.688 2005 pid=00002124 From DPW file recnum =
90 config = SAMPCO url = stevesmith2:49200

Item Description

[debug]

 xmlmessage = yes Creates two files: send.msg and receive.msg that have all messages
sent to and from IDS.

 xmlmessageappend = yes Works with xmlmessage. Appends messages rather than over write
them.

Debugging

70

12. Thu May 26 08:08:46.688 2005 pid=00002124 Port ID obtained from
URL port = 1242888

13. Thu May 26 08:08:46.688 2005 pid=00002124 Attempting connection
to url=stevesmith2 port=49200

14. Thu May 26 08:08:46.728 2005 pid=00002124 Attempting to get
URLPARM

15. Thu May 26 08:08:46.728 2005 pid=00002124 Attempting to get
ENCRYPTEDLOGIN

16. Thu May 26 08:08:46.728 2005 pid=00002124 Got ENCRYPTEDLOGIN from
DPW file 181ckbwMchEiTvkIYfR_Ev-iAuUa5D-
We6FdzuzcWyeQKbgS3pkp2zLzUUZi02Yu0

17. Thu May 26 08:08:46.728 2005 pid=00002124 Attempting to set IDS
variable (ENCRYPTEDLOGIN)(181ckbwMchEiTvkIYfR_Ev-iAuUa5D-
We6FdzuzcWyeQKbgS3pkp2zLzUUZi02Yu0)

18. Thu May 26 08:08:46.728 2005 pid=00002124 Attempting to set IDS
variable (REQTYPE)(WIPSAVE)

19. Thu May 26 08:08:46.728 2005 pid=00002124 Attempting to set IDS
variable (CONFIG)(SAMPCO)

20. Thu May 26 08:08:46.728 2005 pid=00002124 Attempting to set IDS
variable (DPWRECNUM)(90)

21. Thu May 26 08:08:46.728 2005 pid=00002124 Attempting to Send
(doc-prog/iwip/sampco/wipsave.asp)

22. Thu May 26 08:08:47.439 2005 pid=00002124 Number bytes recv'd=26
HTTP status=200

23. Thu May 26 08:08:47.439 2005 pid=00002124 Sent request to IDS
succesfully

24. Thu May 26 08:09:28.789 2005 pid=00002124 Attempting to load
icmw32.dll

25. Thu May 26 08:09:28.789 2005 pid=00002124 Loaded icmw32.dll
successful

26. Thu May 26 08:09:28.789 2005 pid=00002124 Query Function
ICMGetConnection

27. Thu May 26 08:09:28.789 2005 pid=00002124 Query Function
ICMGetTermConnection

28. Thu May 26 08:09:28.789 2005 pid=00002124 Query Function
ICMGetStatus

29. Thu May 26 08:09:28.789 2005 pid=00002124 Query Function
ICMBuildIdsVariables

30. Thu May 26 08:09:28.789 2005 pid=00002124 Query Function
ICMSendRequest

31. Thu May 26 08:09:28.789 2005 pid=00002124 Query Function
ICMGetResponse

32. Thu May 26 08:09:28.789 2005 pid=00002124 icmw32.dll loaded and
all functions queried successfully

33. Thu May 26 08:09:28.789 2005 pid=00002124 From DPW file recnum =
90 config = SAMPCO url = stevesmith2:49200

34. Thu May 26 08:09:28.789 2005 pid=00002124 Port ID obtained from
URL port = 1242888

35. Thu May 26 08:09:28.789 2005 pid=00002124 Attempting connection
to url=stevesmith2 port=49200

36. Thu May 26 08:09:28.789 2005 pid=00002124 Attempting to get
URLPARM

37. Thu May 26 08:09:28.789 2005 pid=00002124 Attempting to get
ENCRYPTEDLOGIN

38. Thu May 26 08:09:28.789 2005 pid=00002124 Got ENCRYPTEDLOGIN from
DPW file 181ckbwMchEiTvkIYfR_Ev-iAuUa5D-
We6FdzuzcWyeQKbgS3pkp2zLzUUZi02Yu0

39. Thu May 26 08:09:28.789 2005 pid=00002124 Attempting to set IDS
variable (ENCRYPTEDLOGIN)(181ckbwMchEiTvkIYfR_Ev-iAuUa5D-
We6FdzuzcWyeQKbgS3pkp2zLzUUZi02Yu0)

Advanced Topics

71

40. Thu May 26 08:09:28.789 2005 pid=00002124 Attempting to set IDS
variable (REQTYPE)(WIPSAVE)

41. Thu May 26 08:09:28.789 2005 pid=00002124 Attempting to set IDS
variable (CONFIG)(SAMPCO)

42. Thu May 26 08:09:28.789 2005 pid=00002124 Attempting to set IDS
variable (DPWRECNUM)(90)

43. Thu May 26 08:09:28.789 2005 pid=00002124 Attempting to Send
(doc-prog/iwip/sampco/wipsave.asp)

44. Thu May 26 08:09:29.390 2005 pid=00002124 Number bytes recv'd=26
HTTP status=200

45. Thu May 26 08:09:29.390 2005 pid=00002124 Sent request to IDS
succesfully

46. Thu May 26 08:09:36.780 2005 pid=00002124 Attempting to load
icmw32.dll

47. Thu May 26 08:09:36.780 2005 pid=00002124 Loaded icmw32.dll
successful

48. Thu May 26 08:09:36.780 2005 pid=00002124 Query Function
ICMGetConnection

49. Thu May 26 08:09:36.780 2005 pid=00002124 Query Function
ICMGetTermConnection

50. Thu May 26 08:09:36.780 2005 pid=00002124 Query Function
ICMGetStatus

51. Thu May 26 08:09:36.780 2005 pid=00002124 Query Function
ICMBuildIdsVariables

52. Thu May 26 08:09:36.780 2005 pid=00002124 Query Function
ICMSendRequest

53. Thu May 26 08:09:36.780 2005 pid=00002124 Query Function
ICMGetResponse

54. Thu May 26 08:09:36.780 2005 pid=00002124 icmw32.dll loaded and
all functions queried successfully

55. Thu May 26 08:09:36.780 2005 pid=00002124 From DPW file recnum =
90 config = SAMPCO url = stevesmith2:49200

56. Thu May 26 08:09:36.780 2005 pid=00002124 Port ID obtained from
URL port = 1241664

57. Thu May 26 08:09:36.780 2005 pid=00002124 Attempting connection
to url=stevesmith2 port=49200

58. Thu May 26 08:09:36.780 2005 pid=00002124 Attempting to get
URLPARM

59. Thu May 26 08:09:36.780 2005 pid=00002124 Attempting to get
ENCRYPTEDLOGIN

60. Thu May 26 08:09:36.780 2005 pid=00002124 Got ENCRYPTEDLOGIN from
DPW file 181ckbwMchEiTvkIYfR_Ev-iAuUa5D-
We6FdzuzcWyeQKbgS3pkp2zLzUUZi02Yu0

61. Thu May 26 08:09:36.780 2005 pid=00002124 Attempting to set IDS
variable (ENCRYPTEDLOGIN)(181ckbwMchEiTvkIYfR_Ev-iAuUa5D-
We6FdzuzcWyeQKbgS3pkp2zLzUUZi02Yu0)

62. Thu May 26 08:09:36.780 2005 pid=00002124 Attempting to set IDS
variable (REQTYPE)(WIPUNLOCK)

63. Thu May 26 08:09:36.780 2005 pid=00002124 Attempting to set IDS
variable (CONFIG)(SAMPCO)

64. Thu May 26 08:09:36.780 2005 pid=00002124 Attempting to set IDS
variable (DPWRECNUM)(90)

65. Thu May 26 08:09:36.780 2005 pid=00002124 Attempting to Send
(doc-prog/iwip/sampco/wipsave.asp)

66. Thu May 26 08:09:36.940 2005 pid=00002124 Number bytes recv'd=24
HTTP status=200

67. Thu May 26 08:09:36.940 2005 pid=00002124 Sent request to IDS
succesfully

Listing 18: Sample client-side log file

Troubleshooting

72

TROUBLESHOOTING LINUX CHARACTER SETS

There is an issue with iPPS for Java and Red Hat’s Linux, version 7.3. The default
character encoding causes problems for iPPSj when the save2WIP call is made. Linux 7.3
default encoding is ISO-8859-15 which has no mapping for the following eight characters
which caused an issue when saving to WIP.

For more information, go to this web site:

http://www.fileformat.info/info/charset/ISO-8859-15/encode.htm

For this Windows character Press

¤ ALT + 0164

¦ ALT + 0166

¨ ALT + 0168

´ ALT + 0180

¸ ALT + 0184

¼ ALT + 0188

½ ALT + 0189

¾ ALT + 0190

Character Encoding

¤ (unmappable)

¥ a5

¦ (unmappable)

§ a7

¨ (unmappable)

³ b3

´ (unmappable)

µ b5

· b7

¸ (unmappable)

¹ b9

º ba

» bb

http://www.fileformat.info/info/charset/ISO-8859-15/encode.htm

Advanced Topics

73

Any issue involving character encoding should be handled in these steps:

1 Request the default encoding and operating system version

 From a Linux/UNIX shell enter this command:

env | [less][more]

 Find the entry for: LANG=en_US.iso885915. This entry may be slightly
different on other operating systems.

2 Start the AppServer to make sure you have set the operating system to the LANG
encoding causing the issue.

 Set the encoding by using this command:

 export LANG=[TARGET ENCODING]

For example, Ex. en_US. You can find a list of supported OS encoding at:

 /usr/lib/locale [Red Hat 7.3] standard install

The location may vary, depending on the operating system.

 Launch the AppServer startup script from the same shell the LANG env was set.

3 Start the iPPSj web application.

 Test the characters that are causing the problem by entering them in a rich text
area. Reload the page in the browser by clicking the highlighted page.

 Notice any issues with the entered characters.

 Save the transaction to WIP.

 Retrieve the transaction from WIP.

 Navigate to the data Entry page. Note any issues with character encoding for
data entry fields.

The results of this test will determine if iPPSj has an issue with a particular character
mapping.

If your current environment does not support the character set, research an acceptable
replacement. Also, be careful that characters entered from the client side browser are
supported by the AppServer/OS. If they are not you will likely get question marks (?)
when a character mapping is not possible. Remember iPPSj can only use characters that
are supported by the AppServer/OS. If the AppServer returns a question mark that’s
what the iPPSj application has to use.

¼ (unmappable)

½ (unmappable)

¾ (unmappable)

Character Encoding

Troubleshooting

74

WIP EDIT REGISTRATION

The WIP Edit installation program should automatically take care of registering the
ActiveX control with the Windows operating system. However, when you try to display
a form and see something similar to Figure 7 instead, this indicates that the plug-in is not
properly registered with the Windows environment. To correct this, you can either re-
install the plug-in or you can enter this command in an operating system window:

wipedw32.exe

This should properly register the ActiveX control with the environment.

Figure 7: WIP Edit Plug-in is not registered

Advanced Topics

75

INTERNET EXPLORER WARNINGS

You can have buttons on your ASP page that tells WIP Edit to save the document, for
instance. If the buttons do not seem to work, check to see if Internet Explorer is reporting
an error in the lower left corner of the screen. If you see this message:

ActiveX component can’t create object Wipctl.WipEd.1

Try reinstalling the plug-in or register wipctl.dll using regsvr32

If you have buttons defined on the ASP page that tell WIP Edit to save the document and
perform other common tasks, but they do not seem to perform the operation, Internet
Explorer may report an error similar to Figure 8. If you see this message:

ActiveX component can’t create object Wipctl.WipEd.1

Try re-installing the plug-in or register wipctl.dll using regsvr32 in a DOS window.

Figure 8: WIP Edit control error in Internet Explorer

Troubleshooting

76

COULD NOT PARSE THE DPW FILE

If you see an error message like the one shown in Figure 9, check the page that opens the
plug-in. In the sample Amergen application it is named WIPEDIT.ASP or
WIPEDIT.JSP. Look for a statement like the following (the items in red should match):

buff = DSI.ReceiveFileAsBuffer ("RF_POSTFILE")

The variable post file should match the second parameter of the ATCSendFile rule that is
located in the DOCSERV.INI file. Refer to Listing 19 on page 76 for the argument
settings.

Figure 9: Could not parse DPW File message

 < ReqType:WEDIT >

function = atcw32->ATCLogTransaction

function = atcw32->ATCLoadAttachment

function = atcw32->ATCUnloadAttachment

function = dprw32->DPRSetConfig

function = dprw32->DPRGetWipFormset

function = dprw32->DPRLockWip

function = atcw32->ATCSendFile,RF_POSTFILE,RF_POSTFILE,Binary

function = dprw32->DPRWipIndex2XML

function = dprw32->DPRFile2Dpw,RF_POSTFILE

function = dprw32->DPRWip2Dpw,RF_POSTFILE

 function = dprw32->DPRIni2XML

Listing 19: WIP Edit Section of DOCSERV.INI file

Also, there can be a problem if the rules have different file name parameters. All the
parameters in red must match. If the ATCSendFile has a certain value for the first
parameter the other rules must match as shown in Listing 20.

< ReqType:WEDIT >

function = atcw32->ATCLogTransaction

function = atcw32->ATCLoadAttachment

function = atcw32->ATCUnloadAttachment

function = dprw32->DPRSetConfig

function = dprw32->DPRGetWipFormset

function = dprw32->DPRLockWip

function = atcw32->ATCSendFile,RF_POSTFILE,RF_POSTFILE,Binary

function = dprw32->DPRWipIndex2XML,RF_POSTFILE

function = dprw32->DPRFile2Dpw,RF_POSTFILE

function = dprw32->DPRWip2Dpw,RF_POSTFILE

function = dprw32->DPRIni2XML,RF_POSTFILE

Listing 20: File parameters in the WIP Edit Request Type

Advanced Topics

77

ANOTHER COULD NOT PARSE DPW FILE MESSAGE

After Documaker Bridge 11.0 Patch 04, you can use the DPRPrintDpw rule as shown in
Listing 21 and Listing 22. The rules that were separate in early version have been
consolidated. This, however, can cause problems if you do not change the
WIPEDIT.ASP page to reflect the new attachment variable names.

Change RF_POSTFILE to PRINTFILE in the DSI.ReceiveFileAsBuffer call. Otherwise,
you will see this message:

Could not Parse DPW file

because zero (0) bytes will be downloaded in the DPW file.

< ReqType:WEDIT >

function = atcw32->ATCLogTransaction

function = atcw32->ATCLoadAttachment

function = atcw32->ATCUnloadAttachment

function = dprw32->DPRSetConfig

function = atcw32->ATCSendFile,PRINTFILE,PRINTFILE,Binary

function = dprw32->DPRInitLby

function = dprw32->DPRGetWipFormset

function = dprw32->DPRPrintDpw

Listing 21: Post Documaker Bridge 11.0 p04 Changes for Print Preview

< ReqType:i_PluginInit >

; Plugin initialization. Get a DPW file

function = atcw32->ATCLoadAttachment

function = atcw32->ATCUnloadAttachment

function = atcw32->ATCSendFile,RF_POSTFILE,PRINTFILE,Binary

function = dprw32->DPRSetConfig

function = dprw32->DPRInitLby

function = dprw32->DPRGetWipFormset

function = dprw32->DPRPrintDpw

Listing 22: DPRPrintDpw Rule for iPPS

Troubleshooting

78

BIND ERROR

If you see the bind error as shown in Figure 10, you probably have more than one instance
of WIP Edit running. However, it is possible that another application could be using the
same port.

The WIPEDITPORT environment variable lets you change the port that is used. Version
11.0 and 10.3 of WIP Edit default to port 49150. The default for version 11.1 will use port
49180. Only version 11.1 can support more than one instance of the plug-in running at
the same time. ASP pages and INI options, however, must be modified to allow multiple
instances of the plug-in to work.

Figure 10: Bind error message

ERRORS WHILE SAVING DOCUMENTS

When a WIP document is saved, the ActiveX control retrieves the address information
that will be used, from the DPW file. If any information is incorrect, you will not be able
to save the changes. The information is contained in the MRL INI file (such as the
AMERGEN.INI file) in the INI2XML control group.

If the PUTURL item is incorrect in the INI file you will see an error message similar to
Figure 11. There is a article on line that explains error codes such as 12007. For more
information, go to this web site:

http://support.microsoft.com/default.aspx?scid=kb;en-us;193625

Figure 11: Platform error message while saving a document

The following entries in the MRL configuration file (such as AMERGEN.INI) are used
to save the document back to WIP. It may be useful to take the values for PUTURL and
SCRIPT and paste them together in your browser. This lets you see whether the browser
has access to the web page when it tries to save changes. Here is an example:

 => http://pd.mysite.com:8080/doc-progr/iwip/amergen/wipsave.asp

This URL is based on the following entries in your MRL INI file:

< INI2XML >

PUTURL = pd.mysite.com:8080

SCRIPT = doc-prog/iwip/amergen/wipsave.asp

http://support.microsoft.com/default.aspx?scid=kb;en-us;193625

Advanced Topics

79

Error while saving
documents on 12.0 P1

If you are running WIPEdit 12.0 P1 or earlier and you experience a failure when saving
documents in the WIP Edit plugin, check to see if the web application is running on Unix
and if the error code generated by IDS/Docupresentment is DPR0039. In that case, it’s
possible that you need to update your version of WIP Edit plugin to 12.0 P02 or higher
to eliminate the issue as that version has been updated to resolve an issue where the
content-type header was improperly set to text type.

NOTE: If you upgrade to 12.0 P02 or higher and start to experience WipEdit plug-in
save errors where you didn’t previously, there may be a content-header type mis-
match and Support should evaluate to determine if this option could correct the
issue.

 <icmlib>
 contenttype = "Content-Type: text/plain"

AUTHENTICATION ERRORS

If the web site has authentication turned on and you have not setup the DPW file to
provide password and user information you will see an error message similar to the one
shown in Figure 12. Look for You are not authorized to view this page. See Sending Passwords
to WIP Edit on page 28 for additional information.

Figure 12: Authentication error message

DEBUGGING TIP 1
If you look at the windows temporary directory while the WIP Edit ActiveX control has
a document open you can find the directory where WIP Edit stores the individual files
that make up the DPW file on the client machine.

You will always have a FSIUSER.INI file in this directory regardless of whether the file
was downloaded from IDS. The WIP Edit control always creates a FSIUSER.INi file and
you can view this to determine the behavior of the control.

Troubleshooting

80

The temp directory that is used can be located by looking at some environment variables
on the client machine. If you have an environment variable called WIPEDITTMP defined,
the WIP Edit control will use that directory to store temporary files. If that variable is not
defined, look for the path defined by the TMP environment variable.

Using Windows Task Manager, look for the process ID associated with the wipedw32.exe
program. The format for the temp directory name is as follows:

Temp Dir defined by Env variable + tmpform + process ID

So if you have TMP set to C:\winnt\temp and the process ID is 872, the temp WIP Edit
directory on the client machine will be C:\Winnt\temp\tmpform872. If you look in this
directory, you will find the individual files that were shipped in the DPW file from IDS.

Advanced Topics

81

DEBUGGING TIP 2
When the WIP Edit ActiveX control attempts to download resources from IDS and if
fails to receive one, you will get an error message similar to the one shown in Figure 13.

Figure 13: Platform Error Resource Not Found

On the IDS side you will see the following error.

**

DPRGetResource <1> <1> FAPLoadImage failed (4column)

**

**

ATCSendFile <1> <1> Unable to ATCLocateValue for <RETURNFILE>.

**

The following list identifies the types of files that can be downloaded dynamically:

• FAP (default location <Mstrres><FormLib>)

• DAL scripts (default location <Mstrres> <Deflib>)

• Tables (default location <Mstrres> <Tablelib>)

• Helps (default location <Mstrres> <Helplib>)

• FOR, GRP, BDF

If you see an error, check the MRL INI file for the values set in GETSCRIPT and
PUTURL. If either of these is incorrect, the dynamic resource download will not work.
The control group in the MRL INI file looks like this:

< INI2XML >

GetScript = /doc-prog/iwip/amergen/wipdownload.asp

PutURL = localhost

Handling Error Messages

82

HANDLING
ERROR

MESSAGES

This topic discusses the various errors that can occur. Each subsection identifies the error
classification, the error message, and a resolution on what to do about it.

CLIENT SIDE ERRORS

Errors when opening a
document

These errors can occur when opening a document:

INIMakeContext failed

 If you see this error, get the latest patch level and reinstall WIP Edit.

Could not parse DPW file

See the item in the debugging section.

Could not Set INI file

If you see this error, get the latest patch level and reinstall WIP Edit.

Could not RACInitCtrl

If you see this error, get the latest patch level and reinstall WIP Edit.

Errors if the temp
directory can’t be

removed

The following error messages can appear if you cannot remove the tmpform(pid)
directory where the DPW file contents have been extracted. The message appears in a
message box when you try to navigate the browser to another page.

dir not empty

invalid path

Unknown Error removing directory

The corrective action is to manually delete the directory.

Problem with the
installation

The following error messages can only occur if there is something wrong with the
installation. These will appear in a message box. Remove the current WIP Edit Control
installation and reinstall.

LoadRacDLL failed

could not get racw32.dll

could not get RACSetCmdLineArg

could not get RACThread

could not get RACGetClientWindow

could not get RACTerminate

could not get RACGetAccelHandle

could not get RACSave

could not get RACSetWndProc2Close

could not get RACSetParent

could not get RACSetWhatSystem

could not get RACSetAfeHab

could not get RACRetrieveFile

could not get RACLoadMenu

could not get RACEnableMenu

could not get RACSubClass

could not get RACLoadMenuToolbar

could not get RACWorkingPath

could not get RACSetMenuFile

could not get RACUpdateWipFile

could not get RACSetIniFile

could not get RACInitCtrl

Advanced Topics

83

could not get RACSetWorkingPath

could not get RACBreakDpwFile

could not get RACRemoveTmpFiles

could not get RACSetCmdLineArg

could not get RACCommand

could not get RACPostCommand

could not get RACSaveDpwFile

could not get RACClose

could not get RACLoadForms

could not get RACGetWipField

could not get RACSetWorkingPath

could not get RACSetWipField

SERVER SIDE ERRORS

When opening a DPW file When IDS produces an error, the web page receive san error code. Figure 14 shows an
example of a web page error generated by IDS.

Figure 14: Web Page Error on File Open

IDS print errors The DPRPrintDpw rule can create the following errors. This is how you will see the errors
in the DOS window if you are running IDS from a command line.

DPRPrintDpw <1> <1> Cannot DSICreateValue(DPRPRINTDPW_RUNFLAG)

DPRPrintDPW <1> <1> VMMCreateList failed

DPRPrintDPW <1> <1> RF_POSTFILE cannot be created

If the error reoccurs, restart IDS. You should also contact Oracle Insurance Support and
provide a copy of your log files (DPRTRC.LOG and DSRVTRC.LOG).

Handling Error Messages

84

Failure to create a DPW
file

If you see the following error on the console and in the error handling web page, you have
failed to create the DPW file.

DPR0039 LOCATION DPRPrintDpw APINAME DPRPrint failed.

See the following link for more information on the DPRPrint rule.

https://support.docucorp.com/doss/document/idsdoc/Int018/V110sofeat.pdf

Cannot open WIP
database

If you see the following error on the console screen and in the error handling web page
you cannot open the WIP database. Check the INI options for WIP.

DPR0039 LOCATION DPRPrintDpw APINAME WIPOpenWIP failed.

Could not open the WIP database. Check INI options for WIP.

Name or value errors The following attachment variables are used by iPPS to add information to the save
request for WIP Edit.

HTTPHEADER group puts in the information in an HTTP header.

HTTPHEADER = "3"

HTTPHEADER1.NAME = "someheader1"

HTTPHEADER1.VALUE = "someVALUE1"

HTTPHEADER2.NAME = "someheader2"

HTTPHEADER2.VALUE = "someVALUE2"

HTTPHEADER3.NAME = "someheader3"

HTTPHEADER3.VALUE = "someVALUE3"

HTTPFORMDATA group post the information as form data.

HTTPFORMDATA = "3"

HTTPFORMDATA1.NAME = "nameformdata1"

HTTPFORMDATA1.VALUE = "valueformdata1"

HTTPFORMDATA2.NAME = "nameformdata2"

HTTPFORMDATA2.VALUE = "valueformdata2"

HTTPFORMDATA3.NAME = "nameformdata3"

HTTPFORMDATA3.VALUE = "valueformdata3"

HTTPQUERYSTRING group puts the information in the query string

HTTPQUERYSTRING = "1"

HTTPQUERYSTRING1.NAME = "SESSIONID"

HTTPQUERYSTRING1.VALUE = "222"

HTTCOOkIE puts the information in the HTTP cookie header.

HTTPCOOkIE = "1"

HTTPCOOkIE1.NAME = "cookie"

HTTPCOOkIE1.VALUE = "Toolfloat=false; Toolbottom=false;
IX=%E9%C4%92%08%C9%D3xo%D9%2D%AF%D3%A0%AC%26%15%7E%FA%23M%01%D9%FDt
%23%A2%13%7E%CAN%95%80%B2%E5cC%0Enj%E7%1E%E4;
ASPSESSIONIDACRTQSCA=EGPPLAECPNDMGOIIMANOAPPB"

If the server expects another variable present and cannot find it you will see the following
error on the IDS console screen.

Could not find HTTPCOOkIE#.NAME in attachment

Could not find HTTPCOOkIE#.VALUE in attachment

This is probably due to a problem in the web page that request the DPW file (such as
WIPEDIT.ASP or WIPEDIT.JSP).

Resource error when
building a DPW file

If the IDS cannot access a resource when building the DPW file you will see the error
shown in Figure 15.

https://support.docucorp.com/doss/document/idsdoc/Int018/V110sofeat.pdf

Advanced Topics

85

Figure 15: Resource Error

You will see the following error on the IDS console screen.

DocuCorp International Internet Server ready!

Version 100.018.

DocuMaker shared objects version 400.111

**

FAP <0> <0> Unable to open/create FAP object

**

Integrating Custom Code

86

INTEGRATING
CUSTOM CODE

Installing Custom DLLs
If you write a custom ASP web application that uses a COM object that is not registered
as a COM+ object under Component Services, you may run into a problem. An example
of this is the ASP version of Print Preview, which uses the IDSASP.dll COM object. The
problem occurs when you use the default account name of IWAM_boxname, where
boxname is the name of the machine you are running on.

If you are using a message queuing system such as MQ Series or WebSphere MQ, you will
need to make sure that the user ID (IWAM_boxname) is part of the mqm group on the
machine where MQ Series is installed. If MQ Series is installed on a different machine
than IIS, you will have to create the IWAM_boxname account on the MQ Series machine
and provide the same password used to create the account on the IIS machine.

The account is created during the IIS installation and you won’t know directly what the
password is. So you have to reset it using the Security tab of the virtual directory. You will
also have to reset it on the Identity tab of the appropriate node under Component
Services.

When you run com objects that are not registered as COM+ in Component Services, they
run under the identity of the IIS-In Process applications node or under the identity of the IIS
Out-Of-Process pooled applications node, depending on how your virtual directory was
configured to use application protection. See the virtual directory tab of the virtual
directory after right-clicking on it and selecting properties (see the Application protection
drop-down option).

low = in process

medium, pooled = out of process pooled

Alternatively, you could register the COM objects used by the application under a new
node in Component Services and configure the identity you want to use there, then make
sure that identity has the appropriate access rights to MQ Series.

Advanced Topics

87

USING THE
PRINT PREVIEW

APPLICATION

You can use WIP Edit without iPPS to provide a subset of functionality. WIP Edit can
communicate with a mid-tier server that connects to the IDS application to retrieve WIP
documents. You can preview these documents, edit them, or print them locally in PDF
format using Adobe’s Acrobat Reader. In this mode, you can do everything WIP Edit
allows, except create a new transaction.

Oracle Insurance provides a sample web application that can be used to try the WIP Edit
print preview features. The sample application is called Sampco. Setting Up Print Preview
with Tomcat as the Mid-tier on page 88 and Setting Up Print Preview with WebSphere
5.1 as the Mid-tier on page 100 shows how to deploy the Sampco print preview web
application using Tomcat as the mid-tier server, and using IBM’s WebSphere 5.1 as an
application server.

The details of how to configure and deploy the sample application are left to the
appendices. If you want to have a group of users with only the Print Preview capability,
you can use the Sampco web application as a starting point to customize your own
application.

NOTE: If you are not using iDocumaker 3.2 (J2EE) without customizations, but are using
it as an integration point for WIP Edit or any other feature, make sure your
integration point properly handles application-specific session data.

If multiple invocations to this integration point use the same application session,
make sure old session data is removed at the start of the integration point.

As a best practice, model your integration point after an existing integration point
by duplicating and renaming an existing application integration point. For more
information about integration with iDocumaker 3.2 (J2EE) talk with a Services
Professional.

88

Appendix A

Setting Up Print Preview
with Tomcat as the Mid-
tier

This appendix shows you how to install and configure
the Tomcat servlet container on Linux. In general, there
is nothing in this appendix that is specific to Linux. What
is discussed here should apply to any UNIX
environment.

This appendix covers these topics:

• Overview on page 89

• Installing the JSP and ASP Files on page 90

• Copying the Jar Files on page 91

• Copying the Properties File on page 92

• Creating Scripts to Set Environment Variables on
page 93

• Editing the Tomcat Startup Script on page 94

• Starting Tomcat on page 99

Appendix A
Setting Up Print Preview with Tomcat as the Mid-tier

89

OVERVIEW The mid-tier for this document is hosted on a VMWare workstation Linux machine
running Red Hat 9.0. You will need access to the root account. The Tomcat software is
built for specific version of the Java virtual machine. Your Linux/UNIX machine needs
to have a JVM installed and the JAVA_HOME environment variable set to the top level
JVM directory. Different versions of Tomcat use different JVMs. For example, Tomcat
5.0.28 uses Java 1.4 SE, while Tomcat 5.5.x uses Java 1.5 SE. So make sure you get the
correct JVM for the version you are installing. You can get a JVM at this web site:

http://www.javasoft.com

Once you log onto the Linux machine as root, make a subdirectory in your home directory
called tomcat. If your graphical environment desktop is not running, enter startx. This lets
you use your browser to get the Tomcat software. Download the Tomcat software from
the Apache web site and save it to the tomcat subdirectory you created. The Jakarta
Tomcat servlet container can be downloaded from this web site:

http://jakarta.apache.org/tomcat/index.html

The Tomcat software is available as a gzip compress tar file. For this appendix, Tomcat
version 5.0.28 was used. The download file name is shown here:

jakarta-tomcat-5.0.28.tar.gz

The file name contains the version information. Once the download has completed, go
to the tomcat subdirectory and enter this command:

zcat jakarta-tomcat-5.0.28.tar.gz | tar xvf –

The zcat program runs the file through the gunzip decompression program. The pipe
symbol (|) sends the result to the next command; in this case, the tar command. The
dash character at the end of the line is important. It specifies that the piped result is used
as the input to the tar command.

The result of this command is a fully extracted Tomcat installation in a subdirectory called
jakarta-tomcat-5.0.28. Depending on the version you downloaded, the name may differ. In
general, you want to put this directory some place other than in root’s home tree. Linux
distributions like to have 3rd party software installed on the /opt partition. Unless you
manually sized this partition during your Red Hat install, however, it is too small. There
are ways to create a larger partition, but that information is not covered in this manual.

In the absence of a suitable /opt partition, you can put this directory structure in the /
usr/local subdirectory. Red Hat provides enough space in the /usr partition. To move the
entire Tomcat directory, enter the following command from the tomcat directory:

mv jakarta-tomcat-5.0.28 /usr/local

Now change to that directory (‘cd /usr/local/Jakarta-tomcat-5.0.28’). These tasks must
be done within this directory structure to get the iWIP software to work:

1 Install the JSP and ASP files in the proper web application directory.

2 Copy the jar files needed for the application into the correct directory.

3 Copy a properties file to the proper directory

4 Create a script that sets the Tomcat environment variables if one is not present.

5 Edit the Tomcat startup script. At the appropriate points, we will specify the
properties file to use.

http://www.javasoft.com
http://jakarta.apache.org/tomcat/index.html

Installing the JSP and ASP Files

90

INSTALLING THE
JSP AND ASP

FILES

Figure 16 shows the iWIP application directory on the back-end Docserv machine
(Docserv\html\iWIP). This directory (and all of the subdirectories) contains the WIP
Edit application JSP and ASP files. Copy this directory and all of the subdirectories to the
Linux machine. One easy way to collect these files is to zip them (recursively) on the
Docserv machine, then move them to the Linux machine. Once the ZIP file is there, you
can unzip them into the proper place.

NOTE: On a UNIX install of IDS, you have to run the setupsdk.xxx file. This creates a
resource directory in the location where you run this file. The JSP files are then
located in:

resource\clientjsp\html\iwip

To create a place to put these files, change directories to

cd /usr/local/Jakarta-tomcat-5.0.28/webapps

If you created a recursive ZIP file on the Docserv machine, copy the ZIP file to
this directory (the webapps directory). Then unzip the file. It should create an
iWIP directory and put all the files under it. Look inside the iWIP directory to
make sure your files made it.

That completes the installation of the JSP and ASP files and their related sub directories.

Figure 16: Docserv iWIP Directory

Appendix A
Setting Up Print Preview with Tomcat as the Mid-tier

91

COPYING THE
JAR FILES

Figure 17 shows the Docserv directory where the WIP Edit jar files are located. These can
be found under this directory:

Docserv\DSI_SDK\JAVA\jars

With one exception, you will want to copy all of these jar files over to the Linux machine.
The one exception is a choice between DSIJAVA.jar and DSIJAVAMsg.jar. Both of these
files do perform the same function. One uses Java and the other uses C++/JNI. You only
need to use one of these files. If both are in the directory, the application will not work.

The easy way to move these files is to zip them up and copy them over to the Linux
machine. Unzip the jar files into:

/usr/local/Jakarta-tomcat-5.0.28/common/lib

NOTE: On a UNIX install, the jar files are located in resource/DSI_SDK/JAVA/jars.

Once these jar files are in that location, this aspect of the configuration is complete.

Figure 17: Docserv iWIP Jar Files Directory

Copying the Properties File

92

COPYING THE
PROPERTIES

FILE

Figure 18 shows the location of the dsimsgclient.properties file. This file must be copied
over to the Linux machine and placed in the following directory:

/usr/local/Jakarta-tomcat-5.0.28/bin

Next, edit the Tomcat startup file to point to this property file.

Figure 18: dsimsgclient.properties file location

Appendix A
Setting Up Print Preview with Tomcat as the Mid-tier

93

CREATING
SCRIPTS TO SET

ENVIRONMENT
VARIABLES

Several environment variables must be set for Tomcat to work properly. The easiest way
to do this is to create a script file that sets them. On the Linux machine, change directories
to:

/usr/local/jakarta-tomcat-5.0.28/bin

Check to see if a file called setenv.sh exists in the directory. If it doesn’t, using a Linux/
UNIX editor, create the file and add these lines to it:

#!/bin/sh

TOMCAT_HOME=/usr/local/jakarta-tomcat-5.0.28

CATALINA_HOME=/usr/local/jakarta-tomcat-5.0.28

J2SE_HOME=$JAVA_HOME

export TOMCAT_HOME CATALINA_HOME J2SE_HOME

The first line is specific to the shell that is running on the Linux machine. In this case, the
Bash shell. If you are running on Solaris or AIX, you will have to change this line to reflect
your operating system’s way of identifying the shell in script files. The $JAVA_HOME
variable should have been set up when you installed your JVM.

You will not have to manually run this file. You can edit the Tomcat startup script to do
this automatically. However, you will have to change its mode to executable. Enter the
following on the command line:

chmod 755 setenv.sh

This makes the file read/write/executable for root, and read/executable for everyone
else.

Editing the Tomcat Startup Script

94

EDITING THE
TOMCAT
STARTUP

SCRIPT

Tomcat ships with a startup script file in the bin directory, named catalina.sh. This file is
called by the startup.sh script. Edit this file to make sure:

• The dsimsgclient.properties file location is correctly identified.

• Tomcat starts with the proper option to use the dsimsgclient.properties file.

Editing the dsimsgclient.properties File
The dsimsgclient.properties file contains information about the location and names of the
queues you have defined. This information is read by the JSP scripts on the mid-tier.
When a request is posted to the mid-tier, it posts a message on the request queue. If you
do not have this file properly configured or if it is missing, when the client side makes a
request a timeout interval will occur. The timeout message tells you the mid-tier could
not be reached and timed out. It also instructs you to make sure IDS is running.

The following shows how the dsimsgclient.properties file was configured for WebSphere
MQ. You will need to replace the entries for your specific system information. You will
need to edit the following entries:

The remaining options can remain set to their default values.

The class that implements queuing, in this case MQSeries

queuefactory.class=com.docucorp.messaging.mqseries.DSIMQMessageQueu
eFactory

The class that formats the DSIMessage to send to a IDS server.
Uncomment

the following line to communicate with IDS version 1.6, leave
commented for

subsequent versions.

#marshaller.class=com.docucorp.messaging.data.marshaller.LegacyByte
ArrayDSIMessageMarshaller

Here are some sample MQSeries parameters

Queue manager for system hosting MQSeries

mq.queue.manager=IDSQM

MQSeries channel that the messaging client and IDS server
communicate through

mq.queue.channel=SYSTEM.DEF.SVRCONN

Option Set to the

mq.queue.manager Name of your queue manager.

mq.queue.channel Name of your channel. In the listing below, the default channel is
used.

mq.tcpip.host IP address of the machine that is running your queue manager.

mq.tcpip.port Port your queue manager is using.

mq.outputqueue.name Request queue name that you defined within your queue manager.

mq.inputqueue.name Response queue name that you defined within your queue
manager.

Appendix A
Setting Up Print Preview with Tomcat as the Mid-tier

95

MQSeries communication can be either in 'bindings' mode (the
program is running

on the same machine as the MQSeries server) or 'client' mode (the
program is

running on a different machine and communicates with the MQSeries
server through

TCP/IP). If the setting 'mq.tcpip.host' is defined then we use
client mode else

we use bindings mode.

mq.tcpip.host=10.1.13.185

TCP/IP port that the MQSeries server is listening to, 1414 is most
commonly used.

mq.tcpip.port=1414

A client program sends requests out and gets results in

mq.outputqueue.name=REQ1

mq.inputqueue.name=RES1

How long, in seconds, that the MQSeries Server will keep a message
in the queue

if a program doesn't get it.

mq.outputqueue.expiry=120

Listing 23: The dsimsgclient.properties File

Editing the Tomcat Startup Script

96

SETTING THE LOCATION OF THE DSIMSGCLIENT.PROPERTIES
FILE

Once again, using your favorite editor, load up the catalina.sh file located in the Tomcat
bin directory. Scroll down through the file until you see where the CATALINA_HOME
environment variable is set. The script code will look like this:

Only set CATALINA_HOME if not already set

[-z “$CATALINA_HOME”] && CATALINA_HOME=`cd “$PRGDIR/..” ; pwd`

if [-r “$CATALINA_HOME”/bin/setenv.sh]; then

 . “$CATALINA_HOME”/bin/setenv.sh

fi

This code...

• Makes sure the CATALINA_HOME environment variable is set. (We actually
override this in our setenv.sh file.) If not, it sets it for us.

• Checks to see if the setenv.sh file is in the bin directory. If it is, it will automatically
be run.

NOTE: The line inside the IF statement is difficult to read, but there is one key thing to
remember in the Bash shell: to execute a script file, you enter a period (.) followed
by a space, followed by the script file name. If you try to run the script with ./
setenv.sh (dot/setenv.sh) it would not run in the Bash shell (even after you have
made it executable). You can verify this by running it with the dot/ method first
and typing env | less on the command line to see if the variables actually got set.

Right after this block, we can be assured the CATALINA_HOME environment variable
is set. So now we can define the location of the dsimsgclient.properties file. Right after the
block of code discussed above, add the following:

PROPSFILE=$CATALINA_HOME/bin/dsimsgclient.properties

export PROPSFILE

This defines a variable within the catalina.sh file that will be used to set the location of the
properties file.

Making Tomcat Use the Properties File at Startup
This is the hardest part of the Tomcat configuration. The reason is there are several blocks
of code within the script that can start the servlet container. Which block of code executes
depends on the logic of the various IF blocks. Therefore, the startup option that tells
Tomcat to use the properties file must be put in various places.

If you scroll through the catalina.sh script, you will see blocks of code that resemble this:

 if ["$1" = "-security"] ; then
 echo "Using Security Manager"

 shift

 exec "$_RUNJDB" $JAVA_OPTS $CATALINA_OPTS \

 -Djava.endorsed.dirs="$JAVA_ENDORSED_DIRS" -classpath
"$CLASSPATH" \

Appendix A
Setting Up Print Preview with Tomcat as the Mid-tier

97

 -sourcepath "$CATALINA_HOME"/../../jakarta-tomcat-catalina/
catalina/src/share \

 -Djava.security.manager \

 -Djava.security.policy=="$CATALINA_BASE"/conf/catalina.policy
\

 -Dcatalina.base="$CATALINA_BASE" \

 -Dcatalina.home="$CATALINA_HOME" \

 -Djava.io.tmpdir="$CATALINA_TMPDIR" \

 org.apache.catalina.startup.Bootstrap "$@" start

 else

 exec "$_RUNJDB" $JAVA_OPTS $CATALINA_OPTS \

 -Djava.endorsed.dirs="$JAVA_ENDORSED_DIRS" -classpath
"$CLASSPATH" \

 -sourcepath "$CATALINA_HOME"/../../jakarta-tomcat-catalina/
catalina/src/share \

 -Dcatalina.base="$CATALINA_BASE" \

 -Dcatalina.home="$CATALINA_HOME" \

 -Djava.io.tmpdir="$CATALINA_TMPDIR" \

 org.apache.catalina.startup.Bootstrap "$@" start

 fi

Based on the logic tested, different blocks can execute. The options on the command line
all begin with -Doption_name. The last part of each block starts Tomcat:

“org.apache.catalina.startup.Bootstrap "$@" start”

Just before that line in each block, add the following:

 -Ddsimessage.properties="$PROPSFILE" \

So the modified block of code would look like this:

 if ["$1" = "-security"] ; then

 echo "Using Security Manager"

 shift

 exec "$_RUNJDB" $JAVA_OPTS $CATALINA_OPTS \

 -Djava.endorsed.dirs="$JAVA_ENDORSED_DIRS" -classpath
"$CLASSPATH" \

 -sourcepath "$CATALINA_HOME"/../../jakarta-tomcat-catalina/
catalina/src/share \

 -Djava.security.manager \

 -Djava.security.policy=="$CATALINA_BASE"/conf/catalina.policy
\

 -Dcatalina.base="$CATALINA_BASE" \

 -Dcatalina.home="$CATALINA_HOME" \

 -Djava.io.tmpdir="$CATALINA_TMPDIR" \

 -Ddsimessage.properties="$PROPSFILE" \

 org.apache.catalina.startup.Bootstrap "$@" start

 else

 exec "$_RUNJDB" $JAVA_OPTS $CATALINA_OPTS \

 -Djava.endorsed.dirs="$JAVA_ENDORSED_DIRS" -classpath
"$CLASSPATH" \

 -sourcepath "$CATALINA_HOME"/../../jakarta-tomcat-catalina/
catalina/src/share \

 -Dcatalina.base="$CATALINA_BASE" \

 -Dcatalina.home="$CATALINA_HOME" \

 -Djava.io.tmpdir="$CATALINA_TMPDIR" \

 -Ddsimessage.properties="$PROPSFILE" \

 org.apache.catalina.startup.Bootstrap "$@" start

 fi

Editing the Tomcat Startup Script

98

Make sure you go through the entire file and put this line in each block that can execute
the code. In the version of Tomcat used in this example, that line was inserted in seven
locations. Once you finish editing the file, save it and exit to the command line.

Appendix A
Setting Up Print Preview with Tomcat as the Mid-tier

99

STARTING
TOMCAT

To start Tomcat, make sure you are in the /usr/local/jakarta-tomcat-5.0.28/bin directory
and type the following:

startup.sh

Tomcat will start and begin to write information to the console window (STDOUT),
shown below. You will see lines that begin with INFO. Look for a line that says something
like this:

INFO: Installing web application at context path /iWIP from URL
file:/usr/local/jakarta-tomcat-5.0.28/webapps/iWIP

This shows that Tomcat successfully loaded the iWIP web application. At the bottom of
the window you will see something like:

INFO: Server startup in 5122 ms

This indicates that Tomcat is ready and waiting for a connection. If you get these kinds of
results, you have successfully deployed the iWIP web application to your servlet
container.

Figure 19: Tomcat Startup

100

Appendix B

Setting Up Print Preview
with WebSphere 5.1 as
the Mid-tier

Instead of using the Tomcat server on Linux (or
Windows), another alternative is to use the WebSphere
application server. For this appendix, WebSphere 5.1
Application Server (WAS) was installed on a Windows
2000 machine. IBM can change the user interface to the
Administration Console between version numbers. So if
you are deploying to a different, the screen examples
may be different. However, the process describe should
be similar between versions.

This appendix guides you through the steps necessary to
deploy the mid-tier on WebSphere. It is more
complicated than Tomcat, so there are screen examples
to guide you through the process. For each screen
examples, there will be a comment telling you what to do
on that screen.

This appendix includes these topics:

• Creating the WAR File on page 101

• Deploying the WAR File with the WAS
Administrative Console on page 103

• Testing the WebSphere Installation on page 120

Appendix B
Setting Up Print Preview with WebSphere 5.1 as the Mid-tier

101

CREATING THE
WAR FILE

To deploy an application to WAS you have to have the application packaged in a WAR
file or an EAR file. WAR is defined as Web Application Archive file, and EAR is
Enterprise Application Archive. These files have a jar file extension. Essentially, they are
like ZIP files and can have a hierarchy inside them. One of the important directories that
appear inside one of these files is WEB-INF. This directory holds information about the
web application.

In the Tomcat discussion in this document, we found the Sampco web application JSP
files (and other related things) on IDS as shown in Figure 1.16 on page 90. For Tomcat,
we made a ZIP file, copied that over to the mid-tier machine, created an iWIP directory
under the webapps directory, and unzipped the files there. The process will be different
for a WAS deployment.

The first step is to create a WAR file with the web application. To do that, follow these
steps.

1 On the back-end server, located the iWIP directory under the Docserv\html\iWIP.
As in the case of the Tomcat example, zip these files up into iWIP.ZIP (make sure
you do this recursively and grab all the contents under this directory).

2 Copy the iWIP.ZIP file to your WebSphere box. Make a working directory, like
c:\temp\iWIP, and unzip this file in that location.

3 Look under the iWIP directory and you should see a directory called WEB-INF. If it
does not have a subdirectory called lib, create that directory.

4 On the back-end server, open a copy of Explorer and find the jar files as shown in
Figure 1.17 on page 91. Make a ZIP file of these jar files and copy that to the
WebSphere box temporary directory you created in step 2.

5 Unzip the jar files into the iWIP\WEB-INF\lib directory.

6 On the WebSphere server, open a console (DOS) window and change directories to:

C:\temp\iWIP

This assumes you created your temporary directory in that location. If not, change to
where you unzipped the iWIP.ZIP file.

7 Make sure that the Java/bin directory is in your path. You can set this in My
Computer, Environment Variables.

8 From within the iWIP directory (make sure you see WEB-INF in that directory), type
the following:

jar cvf ../iWIP.war *

The jar utility ships with the Java Runtime Environment. It is very similar to the ZIP
utility, however, the command line switches like cvf are taken from the UNIX tar
utility program. When you issue this command you are telling the jar utility to create
a file in the directory above where you are sitting and call it iWIP.war. The asterisk (*)
at the end of the line tells it to gather everything in the current directory and all
subdirectories and include them in the WAR file. If you get errors when you run this
command, you probably don’t have the Java/bin directory set correctly in your path.

9 Once the iWIP.war file is created, copy it to the following directory:

C:\Program Files\WebSphere\AppServer\InstallableApps

Creating the WAR File

102

This directory is a staging area for applications that you install into WebSphere.

10 Now locate the dsimsgclient.properties file on the back-end server, as shown in
Figure 1.18 on page 92.

11 Make a directory on the WAS machine called Sampco and copy this file into that
location. Note: It is recommended that you make this directory directly under the
root of one of your drives. Also, it is recommended that you avoid putting spaces in
directory and names.

12 If you haven’t edited the dsimsgclient.properties file to point to your queue manager,
follow the instructions in Editing the dsimsgclient.properties File on page 94

Now you are ready to deploy the application using the WAS Administration console.

Appendix B
Setting Up Print Preview with WebSphere 5.1 as the Mid-tier

103

DEPLOYING THE
WAR FILE WITH

THE WAS
ADMINISTRATIVE

CONSOLE

On your WebSphere 5.1 server, bring up a browser window and type in this URL:

http://localhost:9090/admin

NOTE: Your administrator can change ports during the install. If the default installation
is performed, port 9090 will be assigned to the Administrative Console.

You will be presented with a login screen as shown in Figure 20. Unless your
administrator has setup the security server, or has required logins via LDAP, operating
system, or some other method of authentication, you can enter anything you want in the
user ID edit control. Try logging in as admin. If that doesn’t work, contact your
administrator to find out the login ID you need to use.

Figure 20: WAS Login Screen

Deploying the WAR File with the WAS Administrative Console

104

If your login ID is valid, you will see the WAS main screen, as shown in Figure 21. On the
left hand side, there are dynamic menu items. Click the Applications item to expand the
menu tree. You will see an item called Install new Application. Click on that and the screen
shown in Figure 1.22 on page 105 appears.

Figure 21: WAS Main Screen

Appendix B
Setting Up Print Preview with WebSphere 5.1 as the Mid-tier

105

In Figure 22, you enter the path where the iWIP.war file is located. In this case, we copied
it to the following directory in the previous topic:

C:\Program Files\WebSphere\AppServer\InstallableApps

You can click Browse to set this path.

The other setting is for the context root. This tells WebSphere the name you will use in the
URL to identify this application. The URL to access the iWIP application is shown in
Figure 22. Enter iWIP in the Context Root field and click Next.

Figure 22: Install a New Application

Deploying the WAR File with the WAS Administrative Console

106

Figure 23 shows the next screen that lets you bind a host to the application. WebSphere
lets you set up virtual hosts. Consult the IBM documentation for more information on
how to do this. In this example, use the default host. Click Next to continue.

Figure 23: WAS Host Bindings

Appendix B
Setting Up Print Preview with WebSphere 5.1 as the Mid-tier

107

Figure 24 shows the Application Security Warnings page. In a production environment,
you will want to take a look at these and address each item. Consult the IBM
documentation for more information on WebSphere security settings. For this document,
the defaults are acceptable. Click Next to continue.

Figure 24: WAS Security Warnings

Deploying the WAR File with the WAS Administrative Console

108

Figure 25 shows the next screen that lets you set options for the install. WebSphere
automatically filled out the Application Name setting. That value was set when the
Context Root was defined. In a production environment, you can set items like Pre-
compile JSP. For now, however, make your settings look like those shown in the figure.
We will not try any optimizations. Once you’ve filled out this form, click Next to continue.

Figure 25: WAS Installation Options (Step 1)

Appendix B
Setting Up Print Preview with WebSphere 5.1 as the Mid-tier

109

Figure 26 shows the WAS screen that lets you map the virtual host to use for the
application. The default value will be used. Click Next to continue.

Figure 26: WAS Virtual Host Settings (Step 2)

Deploying the WAR File with the WAS Administrative Console

110

Figure 27 shows the next screen where the WAR file module is mapped to the application
server. The default value will be used. Click Next to continue.

Figure 27: Map Modules to Application Servers

Appendix B
Setting Up Print Preview with WebSphere 5.1 as the Mid-tier

111

Figure 28 shows the WebSphere summary page for the application installation. You can
review the settings you made during the installation on this page. If your screen looks like
the figure, then you are ready to deploy the application to WebSphere. Click Finish to
complete the installation.

Figure 28: WAS Install Application Summary Page

Deploying the WAR File with the WAS Administrative Console

112

Figure 29 shows the WebSphere screen that appears when the application is installed. You
will be informed on the success of the install. In this instance, the installation was
successful.

The installation must be saved to the Master Configuration file. Click Save to Master
Configuration to continue.

Figure 29: Installation Screen

Appendix B
Setting Up Print Preview with WebSphere 5.1 as the Mid-tier

113

Figure 30 shows the application server Master Configuration save screen. Even though
you clicked on the Save to Master Configuration link, the deployment information has not
been written to the WebSphere configuration files. You need to click Save near the top of
the window (the “Message(s)” area) in Figure 30 to really save the configuration
information.

Figure 30: WAS Save Screen

Deploying the WAR File with the WAS Administrative Console

114

Now that the deployed application has been saved to the WebSphere Master
Configuration File, you can check on the status by clicking the Enterprise Application
hyperlink shown in Figure 31. You will see a list of applications that have been deployed
to this server. In this case, there are many example files that IBM shipped with the
application server. The icons under the Status column show the running state of each
application.

Before you start the iWIP application, there are two more major steps in the configuration
you must perform.

Figure 31: WAS Applications | Enterprise Applications Screen

WebSphere ships with an HTTP server (their own version of the Apache web server). The
HTTP server does not automatically know how to route requests to the Application
Server. IBM requires a plug-in for the web server that binds URL requests to the
application server.

Click the Environment hyperlink on the left hand side of the WebSphere main admin
window to expand the menu tree. Click Update Web Server Plugin and you will see the
screen shown in Figure 32.

Appendix B
Setting Up Print Preview with WebSphere 5.1 as the Mid-tier

115

Click Ok to generate the plug-in file. WebSphere will generate the plug-in file and
automatically transfer it to the web server if it is installed on the same machine as the
application server.

For this appendix, we do have the built-in web server installed on the same machine. This
lets you test the iWIP application once the configuration settings are complete. In a
production environment, your HTTP server will probably be located on another machine.
Consult the IBM documentation to see where you need to install the plug-in in that
instance.

Figure 32: WAS Server Plugin Configuration Page

Deploying the WAR File with the WAS Administrative Console

116

The final part of the configuration consists of telling the JVM that is running the iWIP
application to load the dsimsgclient.properties file when it starts up. This file defines the
configuration parameters for the queue manager that is used with IDS and the iWIP
application.

To configure the JVM, do the following:

1 From the WebSphere Main Admin Console page (Figure 21) click on the Servers
item on the left hand side.

2 The menu will expand to show a Application Servers link. Click this link.

3 The screen that appears has two tabs: Runtime and Configuration. Click the
Configuration tab to select it.

4 Scroll down this window. In a section called Additional Properties you will see a link
called Process Definition as shown in Figure 33. Click this link.

Figure 33: Application Server Configuration

Appendix B
Setting Up Print Preview with WebSphere 5.1 as the Mid-tier

117

The screen shown in Figure 34 appears. Under the Additional Properties section there is
a Java Virtual Machine hyperlink. This is where you can set parameters for the specific
JVM that is running your web server application. Each server in WebSphere has its own
JVM. The settings will apply to the JVM, so any applications deployed to that server will
inherit these settings as well. Click the Java Virtual Machine hyperlink.

Figure 34: JVM Configuration

Deploying the WAR File with the WAS Administrative Console

118

Scroll down the page shown in Figure 35 and you will see a text box entry labeled Generic
JVM arguments. Earlier you created a directory called Sampco off your root drive and
copied the dsimsgclient.properties file to that location. Now enter that information into
the Generic JVM arguments edit control. Assuming the Sampco directory is on the C:\
drive, enter this in the edit control:

-Ddsimessage.properties=C:\Sampco\dsimsgclient.properties

The -D flag tells the JVM to define a property called simessage.properties and set the value
equal to C:\Sampco\dsimsgclient.properties. The next time the server starts, the JVM loads this
value into memory where it can be accessed by the iWIP application.

NOTE: The entry in the text box is case sensitive (except for the drive and directory
name). Make sure you enter it exactly as shown.

Figure 35: JVM Additional Arguments

Appendix B
Setting Up Print Preview with WebSphere 5.1 as the Mid-tier

119

Now you must re-start the WebSphere application server for this value to be loaded into
memory by the JVM. The easiest way to start and stop the server is through the First Steps
application IBM ships with the application server. It should be on the Start button,
Programs, IBM WebSphere, Application Server v5.1 menu.

Before launching it, log out of the Admin Console browser window — there is a log out
option near the top of the window. Launch the First Steps application and click on the
Stop Server hyperlink. Once it confirms that the server status is stopped, click the Start
Server hyperlink. When you see this message in the console window, the server is ready:

open for e-business

Testing the WebSphere Installation

120

TESTING THE
WEBSPHERE

INSTALLATION

Use the web server that is built into WebSphere to test WIP Edit. The default port for
this web server is 9080. You use that port when you launch a browser on the same
machine that hosts the WebSphere application server.

We will test the client side on the WebSphere machine. This provides an added feature of
eliminating any communications or access issues that may be associated with your
environment (such as firewalls, and so on). By testing the client side on the WebSphere
box, you can tell whether the installation was successful.

Install the client side WIP Edit on the machine that is running WebSphere. Refer to
Setting Up the WIP Edit Client on page 13 for more information. After you install WIP
Edit, you have to configure Internet Explorer for ActiveX controls.

You have to use a different URL for WebSphere (compared to Tomcat). Once the
browser has been configured, enter the following URL:

http://localhost:9080/iWIP/login.jsp

Once you get the login screen, you can proceed to Configuring Internet Explorer for
ActiveX controls on page 16 and pick up with step 2.

Appendix B
Setting Up Print Preview with WebSphere 5.1 as the Mid-tier

121

122

Appendix C

Modifying the
GLOBAL.XML File

This appendix identifies the modifications required in
the GLOBAL.XML file to use the WIP Edit ActiveX
component with iPPS. The assumption is that you
already have a working iPPS system that generates
HTML.

The basics of setting up a GLOBAL.XML file from
scratch are not covered here. However, a complete
example of a GLOBAL.XML file is included.

This appendix discusses these topics:

• Modifying the System Element in GLOBAL.XML
on page 123

• Modifying the MRL Element in GLOBAL.XML on
page 124

• Changing the Request Types on page 126

• Changing the WIPEDIT.INI File on page 131

Appendix C
Modifying the GLOBAL.XML File

123

MODIFYING THE
SYSTEM

ELEMENT IN
GLOBAL.XML

The COM+ implementation of iPPS supports caching to application object when the
MRL resources are obtained from IDS.

To enable caching, in the System element, under the ApplicationData, ActiveServer node,
add the following:

<OBJECTCACHE Active=”YES” EXPIRETIME=”” MAXSIZE=””
TYPE=”0101000001101” DESTINATION=”” SERIALIZE=””/>

Modifying the MRL Element in GLOBAL.XML

124

MODIFYING THE
MRL ELEMENT

IN
GLOBAL.XML

This section will use the Amergen MRL as an example. To use the WIP Edit ActiveX
control to display forms, put the following in your file:

1 Under the Amergen element, ApplicationData, ActiveServer add this entry:

<!--Use this node to define HTML location if not using MRL database

PROTOCOL Attribute valid values:

DBMS, IDS, URL, PLUGIN

-->

<IFORMS PROTOCOL="PLUGIN" DOMAIN="" HOST="$HOST" ROOT="$ROOT"
PORT="21" PASSWORD="guest" USERID="anonymous">$FORMSLOC</IFORMS>

IFORMS is a new element to support WIP Edit. The PLUGIN setting for Protocol
tells iPPS to send the forms to WIP Edit on the client side.

If you have the <IFORMS> element node uncommented and you set the value of
PROTOCOL to DBMS, then the value for $FORMSLOC must match the value you
have entered in the DBASE, TABLE, NAME attribute. For instance, if the entry
looks like this:

<DBASE>

<TABLE NAME="iMRLDB">

[Other entries omitted]

</DBASE>

The value of $FORMSLOC will be iMRLDB.

If you set PROTOCOL to IDS then the value set in $FORMSLOC is not used. If
you set PROTOCOL equal to URL then the value of $FORMSLOC must provide a
valid URL location to the forms.

2 In the DBASE element, under Table there is a DSN element. Edit the
MRLSOURCE field. Valid entries are DBMS or IDS. If you enter IDS the Internet
Document Server generates resources in real time.

3 The PUBLISHEXPORT element specifies the export type to use when calling
Documaker Server for the print engine. It tells the system to just export the
combined NA/POL file when calling RunRP.

<PUBLISHEXPORT RPEXPORT="CMBNA">XML</PUBLISHEXPORT>

4 You can specify where the form navigation will go when you choose to work on a
WIP item. In the PPS element add the following:

<!--

 Valid WIPMODES

SERVICE_ENTRY_NEW_TRANSACTION (comp_lob.asp)

SERVICE_ENTRY_FORMS_Selection (formset.asp)

SERVICE_ROUTE_PROCESSINGOPTIONS (control.asp)

SERVICE_ENTRY_WORK_ON_FORM (form.asp)

 -->

 <WIPMODE>SERVICE_ENTRY_NEW_TRANSACTION</WIPMODE>

Appendix C
Modifying the GLOBAL.XML File

125

5 You can configure the system to provide a WIP search screen. These settings must
be in place:

Searchable = Yes

Key = Yes

Under the Amergen, Services, Service Name =”WIP” section, set the Searchable
parameter to Yes, as shown here:

<SERVICE NAME="WIP" TYPE="iWip" SEARCHABLE="YES">

In Amergen, Services, Service Name=”WIP” | “WIPKeys”, add a Key = Yes entry,
as shown here:

<WIPKEYS>

<!-- Base 23 Keys. The keys match the base wip.dfd

 -->

 <KEY1 KEY="YES" NAME="KEY1" DOCSETHEADINGS="Company" DISPLAY="YES"
/>

 <KEY2 KEY="YES" NAME="KEY2" DOCSETHEADINGS="Line of Business"
DISPLAY="YES" />

 <KEYID KEY="YES" NAME="KEYID" DOCSETHEADINGS="Policy Number"
DISPLAY="YES" />

…

6 If you want to be able to mail a completed form to someone, you need to configure
a mail server in the GLOBAL.XML file. In the System configuration element, add
the following and fill out the entries for your mail server:

<MAIL TYPE="SMTP" HOST="$EMAILHOST" DOMAIN="$EMAILDOMAIN"
PASSWORD="" USERID="" PORT="25"/>

7 Under the MRL data application section there is an element called Cache. Make sure
the Root attribute points to the CachePath. Active must be set to True. For example,
on Windows it would look like this:

<CACHE ROOT="c:\inetpub\wwwwroot_ipps311\cache"
CLEARONSTARTUP="TRUE" ACTIVE="TRUE" />

8 In the i_PluginInit request type, the PUTURL setting should be either LocalHost or
the IP address of the server. Here is an example:

<VAR NAME=”PUTURL”>localhost</VAR>

Changing the Request Types

126

CHANGING THE
REQUEST TYPES

There are several types of changes to request types you must make in the GLOBAL.XML
file:

• LOW.LEVEL.SERVICE attribute changes

• New request types to support WIP Edit functionality

• Updated request types

The LOW.LEVEL.SERVICE binds a numeric value to the request type. This number is
used internally by iPPS. The changes you need to make are for going forward with the
product evolution.

LOW.LEVEL.SERVICE CHANGES

<REQTYPE DESCRIPTION="" NAME="i_Print" LOW.LEVEL.SERVICE="5180">

<REQTYPE DESCRIPTION="" NAME="i_PrintFormsetXML"
LOW.LEVEL.SERVICE="5181">

<REQTYPE DESCRIPTION="" NAME="i_Proof" LOW.LEVEL.SERVICE="5191">

<REQTYPE DESCRIPTION="" NAME="i_CheckPolicy"
LOW.LEVEL.SERVICE="2175">

<REQTYPE DESCRIPTION="" NAME="i_DPRModifyWIPData"
LOW.LEVEL.SERVICE="1012">

<REQTYPE DESCRIPTION="" NAME="i_DPRAssignWIP"
LOW.LEVEL.SERVICE="1005">

<REQTYPE DESCRIPTION="" NAME="i_ArchiveFormset"
LOW.LEVEL.SERVICE="3070">

ADDING REQUEST TYPES

The new request types should be added to the System element, REQTYPES section of
the GLOBAL.XML file. This is a multi-page listing. If you are upgrading an existing
installation, the best way to edit your files is to copy the sections from the sample
GLOBAL.XML file that ships with iPPS into your existing GLOBAL.XML file. One
particular request type to look at is i_PluginInit. Make sure you edit any field with a
$Variable placeholder.

<REQTYPE DESCRIPTION="Returns groups from IDS"
NAME="i_GetMRLResource" LOW.LEVEL.SERVICE="7000">

<INPUT>

<VAR NAME="USERID" SOURCE="" XPATHSOURCE="1"
DATAXPATH="DOCUMENT/SESSION/USERID"/>

<VAR NAME="CONFIG" SOURCE="" XPATHSOURCE="1"
DATAXPATH="DOCUMENT/DOCSET/LIBRARY/@CONFIG"/>

<VAR NAME="DOCUMENTSTREAM" SOURCE=""
RETURNVIAQUEUE="YES" ATTACHMENTPREFIX="DOCUMENTSTREAM"/>

<VAR NAME="DSITIMEOUT" SOURCE="">30000</VAR>

</INPUT>

<OUTPUT>

<VAR NAME="RESULTS"/>

</OUTPUT>

</REQTYPE>

<REQTYPE DESCRIPTION="Returns forms list from IDS" NAME="
i_GetMRLResource " LOW.LEVEL.SERVICE="7001">

<INPUT>

Appendix C
Modifying the GLOBAL.XML File

127

<VAR NAME="USERID" SOURCE="" XPATHSOURCE="1"
DATAXPATH="DOCUMENT/SESSION/USERID"/>

<VAR NAME="CONFIG" SOURCE="" XPATHSOURCE="1"
DATAXPATH="DOCUMENT/DOCSET/LIBRARY/@CONFIG"/>

<VAR NAME="IMPORTFILE" SOURCE="" SENDVIAQUEUE="YES"
ATTACHMENTPREFIX="XMLIMPORT"/>

<VAR NAME="DOCUMENTSTREAM" SOURCE=""
RETURNVIAQUEUE="YES" ATTACHMENTPREFIX="DOCUMENTSTREAM"/>

<VAR NAME="DSITIMEOUT" SOURCE="">30000</VAR>

</INPUT>

<OUTPUT>

<VAR NAME="RESULTS"/>

</OUTPUT>

</REQTYPE>

<REQTYPE DESCRIPTION="Returns formset shell from IDS" NAME="
i_GetMRLResource " LOW.LEVEL.SERVICE="7002">

<INPUT>

<VAR NAME="USERID" SOURCE="" XPATHSOURCE="1"
DATAXPATH="DOCUMENT/SESSION/USERID"/>

<VAR NAME="CONFIG" SOURCE="" XPATHSOURCE="1"
DATAXPATH="DOCUMENT/DOCSET/LIBRARY/@CONFIG"/>

<VAR NAME="IMPORTFILE" SOURCE="" SENDVIAQUEUE="YES"
ATTACHMENTPREFIX="XMLIMPORT"/>

<VAR NAME="DOCUMENTSTREAM" SOURCE=""
RETURNVIAQUEUE="YES" ATTACHMENTPREFIX="DOCUMENTSTREAM"/>

<VAR NAME="DSITIMEOUT" SOURCE="">30000</VAR>

</INPUT>

<OUTPUT>

<VAR NAME="RESULTS"/>

</OUTPUT>

</REQTYPE>

<REQTYPE DESCRIPTION="Returns html from IDS" NAME="
i_GetMRLResource " LOW.LEVEL.SERVICE="7003">

<INPUT>

<VAR NAME="USERID" SOURCE="" XPATHSOURCE="1"
DATAXPATH="DOCUMENT/SESSION/USERID"/>

<VAR NAME="CONFIG" SOURCE="" XPATHSOURCE="1"
DATAXPATH="DOCUMENT/DOCSET/LIBRARY/@CONFIG"/>

<VAR NAME="IMPORTFILE" SOURCE="" SENDVIAQUEUE="YES"
ATTACHMENTPREFIX="XMLIMPORT"/>

<VAR NAME="DOCUMENTSTREAM" SOURCE=""
RETURNVIAQUEUE="YES" ATTACHMENTPREFIX="DOCUMENTSTREAM"/>

<VAR NAME="DSITIMEOUT" SOURCE="">30000</VAR>

</INPUT>

<OUTPUT>

<VAR NAME="RESULTS"/>

</OUTPUT>

</REQTYPE>

<REQTYPE DESCRIPTION="Performs a spell check" NAME="SPELL"
LOW.LEVEL.SERVICE="2135">

<INPUT>

<VAR NAME="USERID" SOURCE="" XPATHSOURCE="1"
DATAXPATH="DOCUMENT/SESSION/USERID"/>

<VAR NAME="CONFIG" SOURCE="" XPATHSOURCE="1"
DATAXPATH="DOCUMENT/DOCSET/LIBRARY/@CONFIG"/>

<VAR NAME="IMPORTFILE" SOURCE="" SENDVIAQUEUE="YES"
ATTACHMENTPREFIX="XMLIMPORT"/>

<VAR NAME="EXPORTFILE" SOURCE="" RETURNVIAQUEUE="YES"
ATTACHMENTPREFIX="DOCUMENTSTREAM"/>

Changing the Request Types

128

<VAR NAME="USERDICT" SOURCE="" XPATHSOURCE="1"
DATAXPATH="DOCUMENT/SESSION/USERID"/>

<VAR NAME="LANGUAGEOPT" SOURCE=""/>

<VAR NAME="DSITIMEOUT" SOURCE="">30000</VAR>

</INPUT>

<OUTPUT>

<VAR NAME="RESULTS"/>

</OUTPUT>

</REQTYPE>

<REQTYPE DESCRIPTION="Returns the user dictionary"
NAME="RETUSERDICT" LOW.LEVEL.SERVICE="2136">

<INPUT>

<VAR NAME="USERID" SOURCE="" XPATHSOURCE="1"
DATAXPATH="DOCUMENT/SESSION/USERID"/>

<VAR NAME="CONFIG" SOURCE="" XPATHSOURCE="1"
DATAXPATH="DOCUMENT/DOCSET/LIBRARY/@CONFIG"/>

<VAR NAME="EDITFILE" SOURCE="" RETURNVIAQUEUE="YES"
ATTACHMENTPREFIX="DOCUMENTSTREAM"/>

<VAR NAME="USERDICT" SOURCE="" XPATHSOURCE="1"
DATAXPATH="DOCUMENT/SESSION/USERID"/>

<VAR NAME="LANGUAGEOPT" SOURCE=""/>

<VAR NAME="DSITIMEOUT" SOURCE="">30000</VAR>

</INPUT>

<OUTPUT>

<VAR NAME="RESULTS"/>

</OUTPUT>

</REQTYPE>

<REQTYPE DESCRIPTION="Edits the user dictionary"
NAME="EDTUSERDICT" LOW.LEVEL.SERVICE="2137">

<INPUT>

<VAR NAME="USERID" SOURCE="" XPATHSOURCE="1"
DATAXPATH="DOCUMENT/SESSION/USERID"/>

<VAR NAME="CONFIG" SOURCE="" XPATHSOURCE="1"
DATAXPATH="DOCUMENT/DOCSET/LIBRARY/@CONFIG"/>

<VAR NAME="EDITFILE" SOURCE="" SENDVIAQUEUE="YES"
ATTACHMENTPREFIX="XMLIMPORT"/>

<VAR NAME="USERDICT" SOURCE="" XPATHSOURCE="1"
DATAXPATH="DOCUMENT/SESSION/USERID"/>

<VAR NAME="LANGUAGEOPT" SOURCE=""/>

<VAR NAME="DSITIMEOUT" SOURCE="">30000</VAR>

</INPUT>

<OUTPUT>

<VAR NAME="RESULTS"/>

</OUTPUT>

</REQTYPE>

<REQTYPE DESCRIPTION="Pulls Data from IDS for Tables"
NAME="i_Tbllkup" LOW.LEVEL.SERVICE="2165">

<INPUT>

<VAR NAME="USERID" SOURCE="" XPATHSOURCE="1"
DATAXPATH="DOCUMENT/SESSION/USERID"/>

<VAR NAME="CONFIG" SOURCE="" XPATHSOURCE="1"
DATAXPATH="DOCUMENT/DOCSET/LIBRARY/@CONFIG"/>

<VAR NAME="TABLEFILE" SOURCE=""/>

<VAR NAME="TABLEID" SOURCE=""/>

<VAR NAME="TABLERETURNS" SOURCE="">DESCRIPTION</VAR>

<VAR NAME="DSITIMEOUT" SOURCE="">30000</VAR>

</INPUT>

<OUTPUT>

Appendix C
Modifying the GLOBAL.XML File

129

<VAR NAME="RESULTS"/>

<VAR NAME="RECORDS" RETURNROWSET="YES"/>

</OUTPUT>

</REQTYPE>

<REQTYPE DESCRIPTION="" NAME="i_PluginInit"
LOW.LEVEL.SERVICE="7006">

<INPUT>

<VAR NAME="USERID" SOURCE="" XPATHSOURCE="1"
DATAXPATH="DOCUMENT/SESSION/USERID"/>

<VAR NAME="PASSWORD" SOURCE="">DEMO1</VAR>

<VAR NAME="CONFIG" SOURCE="" XPATHSOURCE="1"
DATAXPATH="DOCUMENT/DOCSET/LIBRARY/@CONFIG"/>

<VAR NAME="PRTTYPE" SOURCE="">DPW</VAR>

<VAR NAME="RF_POSTFILE" SOURCE=""
RETURNVIAQUEUE="YES" ATTACHMENTPREFIX="RF_POSTFILE"/>

<VAR NAME="RECNUM" SOURCE="" XPATHSOURCE="1"
DATAXPATH="DOCUMENT/DOCSET/WIPKEYS/RECNUM"/>

<VAR NAME="HTTPQUERYSTRING">1</VAR>

<VAR NAME="HTTPQUERYSTRING1.NAME">SessionID</VAR>

<VAR NAME="HTTPQUERYSTRING1.VALUE" SOURCE=""
XPATHSOURCE="1" DATAXPATH="DOCUMENT/SESSION/ID"/>

<VAR NAME="SAVE_REQTYPE">i_PluginSave</VAR>>

<VAR NAME="SCRIPT">ipps3.2/wipsave.asp</VAR>

<VAR NAME="GETSCRIPT">ipps3.2/wipdownload.asp</VAR>

<VAR NAME="PUTURL">$HOST</VAR>

</INPUT>

<OUTPUT>

<VAR NAME="RESULTS"/>

</OUTPUT>

</REQTYPE>

<REQTYPE DESCRIPTION="Saves Plugin data back to wip"
NAME="i_PluginSave" LOW.LEVEL.SERVICE="7007">

<INPUT>

<VAR NAME="USERID" SOURCE="" XPATHSOURCE="1"
DATAXPATH="DOCUMENT/SESSION/USERID"/>

<VAR NAME="CONFIG" SOURCE="" XPATHSOURCE="1"
DATAXPATH="DOCUMENT/DOCSET/LIBRARY/@CONFIG"/>

<VAR NAME="RF_POSTFILE" SOURCE="" SENDVIAQUEUE="YES"
ATTACHMENTPREFIX="RF_POSTFILE"/>

<VAR NAME="DPWRECNUM" SOURCE="" XPATHSOURCE="1"
DATAXPATH="DOCUMENT/DOCSET/WIPKEYS/RECNUM"/>

<VAR NAME="RF_POSTFILE.FILENAME" SOURCE=""/>

<VAR NAME="DSITIMEOUT" SOURCE="">30000</VAR>

</INPUT>

<OUTPUT>

<VAR NAME="RESULTS"/>

</OUTPUT>

</REQTYPE>

<REQTYPE DESCRIPTION="Retrieves resource from IDS"
NAME="i_PluginGetResource" LOW.LEVEL.SERVICE="7008">

<INPUT>

<VAR NAME="USERID" SOURCE="" XPATHSOURCE="1"
DATAXPATH="DOCUMENT/SESSION/USERID"/>

<VAR NAME="CONFIG" SOURCE="" XPATHSOURCE="1"
DATAXPATH="DOCUMENT/DOCSET/LIBRARY/@CONFIG"/>

<VAR NAME="RETURNFILE" SOURCE="" RETURNVIAQUEUE="YES"
ATTACHMENTPREFIX="RETURNFILE"/>

<VAR NAME="RESOURCENAME" SOURCE=""/>

Changing the Request Types

130

<VAR NAME="RESOURCETYPE" SOURCE=""/>

<VAR NAME="DSITIMEOUT" SOURCE="">30000</VAR>

</INPUT>

<OUTPUT>

<VAR NAME="RESULTS"/>

</OUTPUT>

</REQTYPE>

<REQTYPE DESCRIPTION="This request type performs a wip filter"
NAME="i_DPRFindWipRecord" LOW.LEVEL.SERVICE="1108">

<INPUT>

<VAR NAME="USERID" SOURCE="" XPATHSOURCE="1"
DATAXPATH="DOCUMENT/SESSION/USERID"/>

<VAR NAME="CONFIG" SOURCE="" XPATHSOURCE="1"
DATAXPATH="DOCUMENT/DOCSET/LIBRARY/@CONFIG"/>

<VAR NAME="STARTRECORD" SOURCE="">1</VAR>

<VAR NAME="MAXRECORDS" SOURCE=""/>

<VAR NAME="" SOURCE="SERVICES/SERVICE/WIPKEYS/
node()[@KEY='YES']"/>

<VAR NAME="" SOURCE="SERVICES/SERVICE/WIPKEYS/CUSTOMKEYS/
KEY[@KEY='YES']"/>

<VAR NAME="DSITIMEOUT" SOURCE="">30000</VAR>

</INPUT>

<OUTPUT>

<VAR NAME="RESULTS"/>

<VAR NAME="MORERECORDS"/>

<VAR NAME="RECORDS" RETURNROWSET="YES"/>

</OUTPUT>

</REQTYPE>

UPDATING REQUEST TYPES

This update to the i_PrintWIPFormset request type lets you put a watermark graphic in
the PDF file when you click the Proof button in WIP Edit.

This element is found in the System, REQTYPE section of the GLOBAL.XML file:

<REQTYPE DESCRIPTION="" NAME="i_PrintWIPFormset"
LOW.LEVEL.SERVICE="1010">

<INPUT>

<VAR NAME="USERID" SOURCE="" XPATHSOURCE="1"
DATAXPATH="DOCUMENT/SESSION/USERID"/>

<VAR NAME="CONFIG" SOURCE="" XPATHSOURCE="1"
DATAXPATH="DOCUMENT/DOCSET/LIBRARY/@CONFIG"/>

<VAR NAME="RECNUM" SOURCE=""/>

<VAR NAME="PRINTFILE" SOURCE=""/>

<VAR NAME="PRTTYPE" SOURCE="">PDF</VAR>

<VAR NAME="ALLRECIPIENTS" SOURCE=""/>

<VAR NAME="DPRPROOFLOGO">NO</VAR>

<VAR NAME="DSITIMEOUT" SOURCE="">30000</VAR>

</INPUT>

<OUTPUT>

<VAR NAME="RESULTS"/>

</OUTPUT>

</REQTYPE>

Appendix C
Modifying the GLOBAL.XML File

131

CHANGING THE
WIPEDIT.INI

FILE

There are some minor changes required for the WIPEDIT.INI file, located in the
Docserv directory. This listing shows how this file should look:

< WIPSave >

OverridePrompt = Yes

SaveOnExit = Yes

< WIPUnlock >

UnlockOnExit = No

< Control ?

NoLoadFormList = Yes

< WIPEdit >

TrapEvents = No

Listing 24: WIPEDIT.INI in the Docserv directory

132

Appendix D

Optimizing Performance

Tuning web applications for maximum response times is
usually approached by first knowing the target
workflows/use-cases where tuning is desired in relation
to how they interact with the web application server and
the back-end services such as DBMS and message
queuing systems. This appendix can assist in initial
configuration of the web application server, web
application and the back-end services it uses to get initial
acceptable performance for response times.

The settings and parameters described in this appendix
are based on load tests conducted in our environment on
our hardware. Since your environment differs, keep in
mind that your test results will need to be analyzed, and
subsequent retuning must occur based on those results.
These settings are mere guidelines.

This appendix includes information on optimizing these
components:

• WebSphere Application Server (WAS) on page 133

• Database on page 136

• WebSphere MQ on page 137

• Docupresentment (IDS) on page 138

• Documaker Server, Documaker Server Shared
Object (Bridge) to Docupresentment on page 140

• Documanage and Documanage Bridge to
Docupresentment on page 142

• iPPSj on page 143

• Network on page 146

Appendix D
Optimizing Performance

133

WEBSPHERE
APPLICATION

SERVER (WAS)

STATIC CONTENT SERVING

All content that can be served up by the web server should be served up by the web server
and not by WAS's internal HTTP server. The fileServingEnabled property is the key to
controlling static file serving. This setting is contained in the ibm-web-ext.xmi file in the
WAR. It should be set to False so static content is served up by the web server and not
by the web applications internal HTTP server.

Web application servers' internal HTTP servers are typically provided to ease setup and
configuration for development purposes and should not be used in production. Even
PDF files created dynamically by Oracle Insurance products can and usually should be
served up by the web server instead of being piped through MQ if at all possible.

WEB SERVER TUNING

Generally you should set up the maximum number of processes so the web server passes
performance tests.

NOTE: For IBM’s HTTP Server (IHS) or Apache's Web Server v2.x these are called
threads. Typically, the number of processes should be set to 1000 for MaxClient
in IHS v1.3.x.

The KeepAliveTimeout, MinSpareServers, and MaxSpareServers should usually be left at
the defaults. However, some people prefer to set the MinSpareServers and
MaxSpareServers to equal values. This will keep forking to a minimum which will reduce
CPU utilization if that becomes a concern.

WEBSPHERE TUNING PARAMETERS

Tuning the inbound queue for WAS depends on a number of factors:

• Number of concurrent users to support

• Memory requirements of the web application

• Amount of database access from the web application

In Oracle Insurance performance tests, we are able to push up to 200 concurrent users
for our hardware for Linux, AIX, and HP-UX platforms. Because these machines are
robust in terms of memory, the web container’s maximum thread size can be set fairly
higher then the default value of 50. For most testing, this number should be half the
number of virtual users in the load test. If we determine after initial testing that the
application has heap space and CPU time to spare, then the maximum thread size can be
increased. If there is plenty of room, then set the flag to allow this number to grow beyond
the maximum.

WebSphere Application Server (WAS)

134

JVM HEAP SIZE

For most web applications set the following:

• Minimum heap size to 512MB

• Maximum heap size to 1024MB/1GB.

Analysis of JVM performance will show if garbage collection is a performance bottleneck.
This can occasionally be remedied by setting the maximum/minimum heap size to equal
values (such as 1024MB each). Keep in mind that these settings depend on the amount of
RAM on the system and how much is available.

It is helpful to use LoadRunner monitor or other tools to collect system resource usage
values to determine RAM usage statistics. If too much physical RAM is being used, the
JVM heap uses the less-efficient virtual RAM, which can cause excessive swapping to
occur. Here are some statistics to monitor:

• Rstat service statistics

• Swap-in

• Page-in

• Disk transfer rate

WEBSPHERE 5 CLASSLOADER MODE SETTING

There is a known memory leak in JAXP1.1 that comes with WebSphere AS v5. iPPSj is
distributed with Sun’s endorsed JAXP1.2. This version is newer than the version that
ships with J2EE1.3. To guarantee that WAS uses the version of JAXP included in iPPSj
a configuration parameter must be set for the WebModule. This configuration parameter
is Classloader mode and should be set to PARENT_LAST.

NOTE: There are a few other Classloader Mode settings in WAS. These can be left at
their default values.

JNDI/JDBC PROVIDER SETUP

The Connection Pool settings for the DataSource should be tuned to allow the maximum
number of connections that the application may need for performance. Typically this
should be set relatively low so that the database is not overwhelmed by the application.
Our performance testing yields optimum results these starting points:

minimum= 1

maximum=30

You can tune up from there based on your hardware and configuration.

Appendix D
Optimizing Performance

135

WAS's Resource Analyzer or the perfServlet EAR can be used to collect statistics during
initial load testing through the performance testing tool, such as LoadRunner with the
appropriate monitor for WAS. The statistics related to the data source connection pooling
(Pool Size, Percentage Used, Concurrent Waiters) can be collected and used to determine
the best settings for the minimum and maximum connection pool values.

You should understand that the WebSphere architecture is divided into several logical
queues. These queues are used to hold work units until resources are available to process
them. Typically you want to configure the queues to get smaller as the work units progress
through the WebSphere queue system. Normally it is less expensive to hold a work unit
in an upper level queue than a lower level queue. WebSphere queues are shown below in
order of largest to smallest.

• Web (HTTP)

• Web Container

• EJB

• Database

FOR ADDITIONAL INFORMATION

This is a good document on understanding tuning parameters in WAS:

http://www-306.ibm.com/software/webservers/appserv/doc/v40/ae/
infocenter/was/0901.html#b206

http://www-306.ibm.com/software/webservers/appserv/doc/v40/ae/infocenter/was/0901.html#b206
http://www-306.ibm.com/software/webservers/appserv/doc/v40/ae/infocenter/was/0901.html#b206

Database

136

DATABASE It is always best during initial performance tests of the web application to have a qualified
DBA monitor the DBMSs during testing for any bottlenecks such as:

• Full table scans

• Maximum connection utilization

Additionally, the DBA should collect statistics on database queries executed to assist in
tuning the tables and indexes for maximum performance.

WAS v4 also uses DBMS tables for its housekeeping, so setup and tuning of this database
may be required if a bottleneck is evident, however this is a rare occurrence.

Use monitoring tools such as LoadRunner’s monitors to track DBMS usage values.
LoadRunner comes with various monitors for several popular DBMS systems. With some
monitors, even full table scans can be detected.

As a rule of thumb it is typically better to locate the database on a dedicated server. For
internal WAS tables, the same node/server is best.

Also, see related DBMS information in the Oracle Insurance components list below.

INDEXES

Appropriate indexes must be in place to avoid full table scans especially on tables that are
fairly large. See details on indexes necessary for the various back-end services such as
Documaker Server and Docupresentment below. Additionally, the Documanage DBA
Guide contains a list of default indexes that should be implemented in the various
Documanage housekeeping tables.

MAXIMUM CONNECTIONS

Various database servers have different means of setting the maximum connections and
related attributes. In DB2 there is the MaxAgents setting. Depending on the number of
virtual users in the performance test, this attribute might need to be increased.

Appendix D
Optimizing Performance

137

WEBSPHERE
MQ

MQ CLIENT MODE (BINDING OR TCP/IP CHANNELS)
There are two methods that an MQ client can connect to an MQ server. Better
performance is gained in the queuing layer between Oracle Insurance components if the
MQ server can be accessed locally through binding mode. This means having the MQSeries
server on the same node as the client application. The trade-off here is that not all MQ
clients will be running on the same node, and running MQSeries server will consume
system resources.

The other option is to connect through the network over an MQ channel via TCP/IP,
which is the typical scenario if MQSeries server is on a dedicated node.

The difference between the two methods is diminished if the network is tuned and
bandwidth is high between the MQ client and the MQ server.

MAXIMUM CHANNELS

MQSeries server has a maximum number of concurrent connections (“channels”) that
can be open. Since MQ clients (such as Oracle Insurance components, client applications,
and so on) connect via TCP/IP channels, high levels of concurrent users may exceed the
maximum number of channels available.

In WebSphere MQ each queue manager has a MaxChannels attribute, if not specified the
default is typically 100. For performance testing this should be set relatively high, to at
least four times the number of virtual users.

This setting is in the QM.INI file:

< Channels: >

MaxChannels = 800

MAX QUEUE DEPTH

The default MAXDEPTH of 5000 for the local queues used in MQ for communications
between Oracle Insurance components is typically more than enough. However, based on
use-cases, some performance tests may require this number to be increased at least on the
request queue (to accommodate the backlog of messages). This use-case would be one
where the number of virtual users (or requestors) is relatively high (600-1000) and the
response time is relatively slow due to the nature of the request.

Some configurations of Docupresentment use asynchronous processing. There are two
methods of asynchronous processing, either in request, response, or both. In this setup,
many requests may be put into a queue and held for any period of time — in other words,
they are not immediately processed. Similarly, many responses may be put into a queue
and held for any period of time. If any asynchronous Docupresentment setup is being
used, the MAXDEPTH setting should be relatively high on the queues that are affected.

Docupresentment (IDS)

138

DOCUPRESENTM
ENT (IDS)

The IDS server designed as a request/response engine with bridges to other Oracle
Insurance products, such as Documanage and Documaker Server. Each Bridge has its
own services that it exercises from Docupresentment, so some performance tuning
parameters are specific to the bridges being used, and some are general to the IDS server.

IDS INSTANCES

Depending on what use-case is being exercised, some requests are CPU intensive and
some are I/O intensive. If the requests in the use-case are CPU intensive, some tuning
can be applied to lessen the CPU usage, such as lowering the PDF compression level. If
the CPU resource(s) is maximized to the point of causing contention, then the number of
IDS instances should be reduced. If the requests in the use-case are disk I/O intensive or
network I/O intensive, the number of instances should also be reduced to lessen the
effect of contention for OS resources.

Finding the optimal number of IDS instances is therefore specific to the use-case and to
the hardware that is hosting the IDS servers. There is a “sweet spot” that represents the
optimal number of instances – too few or too many will result in poor response time. The
results of performance testing can be plotted as a 2-dimensional graph that will have a
bell-curve appearance to illustrate this effect.

An initial setting of 6-8 IDS instances per CPU is a good start. From there, tune the
number of instances with repeated load testing.

SAR REQUEST

IDS has a built in request named SAR used for house-keeping tasks such as file cache
maintenance and queue maintenance. Each IDS instance calls this request to itself on a
regular interval and it is processed by the main request processing thread of each IDS
instance. Some bridges such as Documanage Bridge also use this request to run their own
house-keeping tasks by inserting functions/rules into this Request Type in the IDS
configuration file.

The interval for the SAR request can be controlled which can be useful for performance
tuning. This is an IDS instance that is running a housekeeping task is unavailable for
processing incoming requests.

To determine if the SAR request is causing bottlenecks, collect minimum logging
(TransactionTime and RuleTime) from IDS during initial performance testing. If the
duration of the SAR request is excessively high or extremely low, then the interval
between these requests can be increased. This will increase throughput by causing fewer
interruptions in IDS instance availability.

The IDS configuration file (usually DOCSERV.INI) contains an option to set the interval
between housekeeping requests. This value is in seconds.

< DOCSRVR >

AutoRunInterval = 1000

Appendix D
Optimizing Performance

139

LOGGING

IDS logging should be minimized during performance testing. Turning on
TransactionTime and RuleTime has a minimal affect on performance but all other logging
should be turned off. Verify during the initial testing that these settings to not affect
performance.

Additionally, the default request types defined in the IDS configuration file include the
rules ATCLogTransaction. This rule writes data to the srvlog.dbf and srverr.dbf. These
files are usually not used, and so this rule can be commented-out of all request types. An
example:

< ReqType:MTC>

; function = atcw32->ATCLogTransaction

Documaker Server, Documaker Server Shared Object (Bridge) to Docupresentment

140

DOCUMAKER
SERVER,

DOCUMAKER
SERVER
SHARED
OBJECT

(BRIDGE) TO
DOCUPRESENTM

ENT

INDEXES FOR ARCHIVE

Documaker Server makes requests to Documanage using query criteria on the Line-of-
Business (LOB) table (such as folder filters) as well as the OT_DOCS table (such as
document filters). These criteria are used when archiving to and retrieving from
Documanage. Tuning the indexes on these tables is necessary to avoid full table scans.
Without the appropriate indexes, performance is affected in a very negative manner.

These filters cause WHERE clauses to be used in the Documanage Server queries to the
DBMS. The LOB table should include indexes on what is defined in the Documaker
Server configuration files for the FolderBy option (see below) as well as the
POWER_TAG column.

< DMIA:cabinetname >

FolderBy = field1[,fieldn…]

Also, any searches allowed by end-users on the column values generated by search
interfaces should be coordinated with appropriate indexes in the LOB table.

The OT_DOCS table should contain indexes on these columns:

• ObjectClass

• DocID

• RecordID

• RecordID + DocId

• ObjectClass + DocId

Additionally, all default indexes recommended in the Documanage DBA Guide should
be implemented.

INDEXES FOR WIP
Documaker Server interfaces with its WIP index table and makes queries based on how
the users search for item in WIP. The appropriate indexes should exist on this table to
avoid full table scans based on the way that the WIP index table is accessed. A DBA
should be used to gather query statistics on this table and create the appropriate indexes.
Usually an index is necessary based on the Key1, Key2, and KeyID used in WIP.

LOGGING

Logged should be greatly reduced or turned off when performance testing with the rules
processor (Documaker Server and the Documaker Bridge). There should be no
DPRTRC.LOG file output from Docupresentment and no trace file output in the
working directory for RunRP/GenData. If any of these logging files appear the cause of
the logging should be determined and turned off.

Appendix D
Optimizing Performance

141

BITMAP SIZES

If MRL resources contain LOG files or other graphics, they should be checked to make
sure that excessive and unnecessary settings that affect size of the graphic are not used.
For example, 24-bit color bitmaps should not be used if the actual bitmap has few or no
colors used. The size of the resulting output files such as print files will slow down
performance, in some cases significantly.

PDF COMPRESSION

Documaker Server and other bridges can produce PDF files. The settings for these PDF
files in regards to compression can affect performance. High levels of compression can
use up considerable amounts of CPU resources. Lower settings on compression can cause
fairly large PDF sizes.

The default for the Compression option in the PrtType:PDF control group is 2. A lower
number results in less compression and larger PDF files. Conversely, higher compression
yields smaller PDF files. If the average size of the PDF files is small, less than 50K, then
compression 0 will increase performance. If the average size is very large, 500K or higher
then a value of 2 or 3 should work. If they are mixed it is best to find a setting that
provides the best performance through repeated performance tests. Possible settings are:

0 – no compression

1 – best speed

2 – default compression

3 – best compression

NOTE: The PrtType:PDF control group can appear in a number of places, such as the
DAP.INI, CONFIG.INI, FSIUSER.INI, or FSISYS.INI files.

Documanage and Documanage Bridge to Docupresentment

142

DOCUMANAGE
AND

DOCUMANAGE
BRIDGE TO

DOCUPRESENTM
ENT

DBMS CONNECTIONS

Documanage server maintains a pool of database connections. The default is one per
DSN defined in Documanage. Under heavy load more connections are necessary. Any
DSN that is defined in Documanage and is used by the Documanage Bridge or
Documaker Bridge/Documanage Interface should be tuned.

Generally, the number of database connections should be set to the number of IDS
instances hosting the Documanage Bridge, plus the number of IDS instances hosting
Documaker Bridge using the Documanage interface, plus 1. This setting is configured in
the POFFICE.INI file:

< DS_{DatasSurceName} >

Connections = n

Additionally a DBA can monitor the database connections on the database server during
load testing to determine if connections are being saturated by Documanage activity. If
the connections are saturated, then additional connections can be configured in the
POFFICE.INI file.

INSTANCES

Multiple instances of Documanage Servers can increase throughput if Documanage has
been determined to be a bottleneck in performance.

INDEXES

See Documaker Server section on specific indexes needed for Documaker's interface to
Documanage for Archive.

Most other indexes that Documanage Server needs for its internal housekeeping tables are
typically created during the installation phase. However, Documanage Bridge can be used
for search queries into the Documanage LOB and OT_DOCS tables, and appropriate
indexes should be determined by what columns are allowed to be searched upon and what
typical user searches are performed. Monitoring the tables during performance testing
should catch any full table scans and collecting the queries made to the DBMS server by
qualified DBAs is the best resource for fine tuning the table indexes.

Appendix D
Optimizing Performance

143

IPPSJ Most iPPSj tuning and configuration is controlled in the global.xml file. iPPSj has many
options for configuring DBMS access, session management and caching. Here are the
highlights of the configuration settings in the current iPPSj version that have the most
affect on performance.

SESSION/STATE MANAGEMENT

iPPSj can store session data in several repositories. When using enterprise-level web
application servers to host iPPSj applications, the best performance option is to use
internal session management system provided by the application server. Other options
such as file-system based and DBMS-based are not optimal for performance, but have
their advantages. In some DBMS, using BLOB fields in DBMS-based solutions can be
very costly for performance.

The global.xml configuration node for this is listed below. Setting the value to SESSION
enables the use of the web application server's internal session management. Other
parameters in this node are not necessary unless using other methods for session
management.

<STATEMGT DOMAIN="docucorp.com" PORT="21" HOST="???" ROOT="????"
PASSWORD="***" USERID="????">SESSION</STATEMGT>

TABLE INDEXES

The tables created during the initial installation of the iPPSj base system should include
default indexes needed. Normally the data in these tables does not change, so by default
iPPSj caches query results from these tables.

If additional tables are added to iPPSj from further customization and the tables contain
more than a few hundred rows, then appropriate indexes should be added. A DBA should
be able to analyze query statements used to determine the appropriate indexes to be
added.

For example, if a table named AGENT is queried on the columns FULLNAME,
AGENCYCODE, OFFICEID, NAME, and AGENTCODEID then the appropriate
index on these columns should be created in the database.

SENDING/RECEIVING FILES VIA QUEUES

iPPSj can send and receive files to and from IDS through the queue layer. If large files are
being sent through the queue performance will be affected negatively. Ensure that all
REQTYPES defined in the global.xml explicitly disable sending files via queues if this
functionality is not required. This is accomplished by setting the SENDFILE and
GETFILE attributes to NONE as shown below:

<REQTYPE DESCRIPTION="" NAME="i_AssignWIP" LOW.LEVEL.SERVICE="1005"
SENDFILE="NONE" GETFILE="NONE">

iPPSj

144

JNDI/JDBC PROVIDERS AND IPPSJ CACHING OPTIONS

iPPSj provides the ability to cache a number of different data entities. Some are illustrated
below:

• Database query results

• XSLT transformation results

• HTML entry forms

• Static resources (such as JPG/GIF files)

Caching should never be disabled in a production environment. If custom code
components of an iPPSj implementation make use of iPPSj database objects for querying
tables other than those included in the base implementation, caching must be disabled at
the API level.

JNDI should always be used for database access to avoid DBMS connection overhead for
all tables that the web application accesses. The global.xml configuration file will tell iPPSj
to use JNDI if the DATASOURCE parameter in the DSN node contains a value. Other
parameters are not used when there is a value in the DATASOURCE parameter.

Here is an example:

<TABLE NAME="iMRLDB">

<DSN PORT="50000" HOST="youdbserver" USERID="yourdbuser"
PASSWORD="****" CLASS="com.ibm.db2.jcc.DB2Driver" DATASOURCE="jdbc/
MemoDB">jdbc:db2://yourdbserver:50000/YOURDATABASE

</DSN>

</TABLE>

HTML LOCATION IN THE IMAGE_VERSION TABLE

The IMAGE_VERSION table contains the IMAGE_DATA column. This column is
used to indicate the location of the HTML version of a FAP file (section). The column
can contain two types of data:

• Text data that references a file on the file system (using the file:// prefix), or a URL
(http:// prefix) to the file location.

• BLOB data that contains the HTML form in the database

iPPSj performs better using the text referencing method instead of BLOB method.

Appendix D
Optimizing Performance

145

TRANSLETS VS. XSLT
iPPSj uses XSLT templates to render the HTML presentation layer. These templates can
be compiled into translets contained in JAR files if they conform to the compiler’s
standards. CPU usage is significantly reduced if translets are used instead of the standard
text-based XSLT templates.

Translet compilation can be performed on-the-fly by the iPPSj application. This is
controlled by an attribute setting for each <PRESENTATIONLAYER> node in the
GLOBAL.XML file. The sample shown below creates a translet in ~/WEB-INF/
classes/com/DocuCorp/jeds/translets/system:

<XSLT>

<PRESENTATIONLAYER NAME=”SERVICE_DEFAULT_MRLSelection”

DOTRANSLET=”YES”>4000</PRESENTATIONLAYER>

</XSLT>

This tells iPPSj to create a translet in the com/DocuCorp/jeds/translets/system directory
under WEB-INF/classes. Note that the on-the-fly compilation feature is available in
iPPSj version 3.x, patch 024 and higher. For prior versions, you will need to run the
compilation manually.

COMPRESSION

iPPSj uses varying levels of compression that are controlled via the global.xml. iPPSj will
apply the selected compression level to session state management, collection state
management and cached resources. You will get optimal speed when the setting is zero
(0), however, this setting requires more RAM resources. Possible settings are:

These settings are applied to the STATE_TABLE, COLLECTION_TABLE and
OBJECT_TABLE nodes using the attribute COMPRESS=”n” as shown below:

<STATE_TABLE COLNAME="state_id" SQLTYPE="-4" COMPRESS="2"
OWNER="">iSession</STATE_TABLE>

iPPSj compression is also applied in the screens.xml configuration file to cache page
templates. Caching the page templates reduces file I/O and results in faster performance,
however it requires more RAM resources. A sample setting is shown below:

<screen id="/mrlselection" tcache="true" description="Agent Access">

Depending on this setting, iPPSj will cache the page template for later use. Normally in a
production environment, you want to use this setting:

TCache=True

For Enter

No serialization and no compression 0 (zero)

Serialization, but no compression 1

Serialization and compression 2 (the default)

Network

146

NETWORK An inefficient and untested network can affect performance results of any web
application. Back-end services such as DBMS and MQ should be on a separate network
from other unrelated business processes. This will prevent unrelated network access and
use from saturating bandwidth and hampering the performance of communications
between the web application and the back-end services. This architecture also allows
security services such as firewalls and secure socket layers to be avoided so that they do
not affect performance.

Load testing tools have monitors that can also collect statistics from firewalls and network
devices if necessary. Load tests can be run both inside and outside the autonomous
network to compare network performance from the web client. Some monitoring tools
are available that can be used to monitor web application performance and network
performance in real-time and alert administrators if there is a problem detected.

Appendix D
Optimizing Performance

147

	Start
	Notice
	Contents
	Web-Enabled Solutions
	Business Scenarios
	What Your Agents, Customers, or End Users See When You Add WIP Edit

	Improving the Process
	Architecture Overview
	Using WIP Edit vs. HTML Forms
	How WIP Edit, IDS, and Documaker Workstation Interact

	Installation and Configuration
	How to configure INI request types
	Overview
	Setting Up the WIP Edit Client
	Setting Up WIP Edit
	Upgrading WIP Edit

	Setting Up IDS
	REQUEST TYPE
	Requesting a Dictionary from IDS
	Customizing How User Dictionaries are Stored
	Storing Dictionaries on the Client
	Sending Passwords to WIP Edit
	Understanding Rule Sets

	Setting Up iPPS
	iPPS COM+ Software Prerequisites
	iPPS COM+ on Microsoft Windows Server 2003
	Setting Global XML Options
	Global XML File Structure
	Request Types and Attachment Variables

	Starting the System
	Using the WIP Edit ActiveX Control
	Additional Client Side Information
	DPW Files
	Checking Spelling
	Fonts
	Printing
	Saving
	Zoom in and Zoom out
	WIP Edit APIs

	USING THE WIP EDIT PLUG-IN
	Customizing iDocumaker, iPPS, and WIP Edit
	Sending Passwords
	Requesting a Dictionary
	Trapping Events
	Tracking Session Information

	Advanced Topics
	Debugging
	Server Side Debugging
	Client Side Debugging

	Troubleshooting
	Linux Character Sets
	WIP Edit Registration
	Internet Explorer Warnings
	Could Not Parse the DPW File
	Another Could Not Parse DPW File Message
	Bind Error
	Errors while Saving Documents
	Authentication Errors
	Debugging Tip 1
	Debugging Tip 2

	Handling Error Messages
	Client Side Errors
	Server Side Errors

	Integrating Custom Code
	Installing Custom DLLs

	Using the Print Preview Application

	Setting Up Print Preview with Tomcat as the Mid- tier
	Overview
	Installing the JSP and ASP Files
	Copying the Jar Files
	Copying the Properties File
	Creating Scripts to Set Environment Variables
	Editing the Tomcat Startup Script
	Editing the dsimsgclient.properties File
	Setting the Location of the dsimsgclient.properties File
	Making Tomcat Use the Properties File at Startup

	Starting Tomcat

	Setting Up Print Preview with WebSphere 5.1 as the Mid-tier
	Creating the WAR File
	Deploying the WAR File with the WAS Administrative Console
	Testing the WebSphere Installation

	Modifying the GLOBAL.XML File
	Modifying the System Element in GLOBAL.XML
	Modifying the MRL Element in GLOBAL.XML
	Changing the Request Types
	LOW.LEVEL.SERVICE Changes
	Adding Request Types
	Updating Request Types

	Changing the WIPEDIT.INI File

	Optimizing Performance
	WebSphere Application Server (WAS)
	Static Content Serving
	Web Server Tuning
	WebSphere Tuning Parameters
	JVM Heap Size
	WebSphere 5 Classloader Mode Setting
	JNDI/JDBC Provider Setup
	For Additional Information

	Database
	Indexes
	Maximum Connections

	WebSphere MQ
	MQ Client Mode (Binding or TCP/IP Channels)
	Maximum Channels
	Max Queue Depth

	Docupresentm ent (IDS)
	IDS Instances
	SAR Request
	Logging

	Documaker Server, Documaker Server Shared Object (Bridge) to Docupresentm ent
	Indexes for Archive
	Indexes for WIP
	Logging
	Bitmap Sizes
	PDF Compression

	Documanage and Documanage Bridge to Docupresentm ent
	DBMS Connections
	Instances
	Indexes

	iPPSj
	Session/State Management
	Table Indexes
	Sending/Receiving Files via Queues
	JNDI/JDBC providers and iPPSj caching options
	HTML Location in the IMAGE_VERSION Table
	Translets vs. XSLT
	Compression

	Network

