
Oracle Utilities Mobile Workforce
Management
Plug-Ins Guide
Release 1.5.0.21

August 2013

Oracle Utilities Mobile Workforce Management, Release 1.5.0.21

Copyright © 1994, 2013 Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on behalf
of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS

Programs, software, databases, and related documentation and technical data delivered to U.S. Government
customers are "commercial computer software" or "commercial technical data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication,
disclosure, modification, and adaptation shall be subject to the restrictions and license terms set forth in the
applicable Government contract, and, to the extent applicable by the terms of the Government contract, the
additional rights set forth in FAR 52.227-19, Commercial Computer Software License (December 2007).
Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications which may
create a risk of personal injury. If you use this software in dangerous applications, then you shall be
responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure the safe use of
this software. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks
of their respective owners.

This software and documentation may provide access to or information on content, products, and services
from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and its
affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-
party content, products, or services.

Contents
Chapter 1
Plug-In Processing... 1-1

AWsCustomCodeDll ... 1-1
AWsPreProcessMIDCompleteFo::PreProcessMIDCompleteFo .. 1-1
AWsPostActionsAddDlg::PostActionsAddDlg .. 1-2
AWsPostCreateRelatedPickups::PostCreateRelatedPickups... 1-2
AWsProcessCustomCrewFrameCmds::ProcessCustomCrewFrameCmds .. 1-3
AWsProcessCustomFoFrameCmds::ProcessCustomFoFrameCmds ... 1-4
AWsProcessCustomIcds::ProcessCustomIcds.. 1-4
AWsProcessCustomMailFrameCmds:: ProcessCustomMailFrameCmds .. 1-5
AwsProcessCustomMainfrmFrameCmds::ProcessCustomMainfrmFrameCmds 1-5
AwsProcessCustomMapFrameCmds::ProcessCustomMapFrameCmds .. 1-6
AwsPreCreateAssistOrder:: PreCreateAssistOrder .. 1-6
AwsGetGPSCoordinates:: GetGPSCoordinates .. 1-7
AWsPostChangeOperator:: PostChangeOperator ... 1-7
AWsPostLogonProcess:: PostLogonProcess .. 1-7
AwsCustomOrderDeleteReassignReturnMsg::ProcessCustomDeleteReassignReturnMsg 1-8

ASvCustomCodeDll... 1-9
ASvBuildGeocodeAddresses::BuildGeocodeAddresses .. 1-9
ASvCustomDispatchNotification::CustomDispatchNotification .. 1-10
ASvCustomFieldOrderEODProcess::CustomFieldOrderEODProcess... 1-10
ASvFillFoSpares::FillFoSpares ... 1-11
Remarks: .. 1-11
ASvModifyCrewMaintInfo::ModifyCrewMaintInfo .. 1-11
Remarks: .. 1-12
ASvModifySchedulingInfo::ModifySchedulingInfo ... 1-12
ASvPostCreateOrderProcess::PostCreateOrderProcess.. 1-13
ASvPostUpdateOrderProcess::PostUpdateOrderProcess... 1-13
ASvPreArchiveFieldOrdersEOD::PreArchiveFieldOrdersEOD .. 1-14
ASvPreCompletionToRouter::PreCompletionToRouter .. 1-14
ASvPreOrderCreateProcess::PreOrderCreateProcess.. 1-15
ASvPreValidateMeterReqToRouter::PreValidateMeterReqToRouter... 1-15
ASvProcessAvlCustomIcds::ProcessAvlCustomIcds .. 1-16
ASvProcessCustomIcds::ProcessCustomIcds ... 1-17
ASvProcessCustomWarnings::ProcessCustomWarnings .. 1-17
ASvProcessFoCustomIcds::ProcessFoCustomIcds ... 1-19
ASvProcessLogoffCustomIcds::ProcessLogoffCustomIcds .. 1-19
ASvProcessLogonCustomIcds::ProcessLogonCustomIcds.. 1-21
ASvProcessMiscCustomIcds::ProcessMiscCustomIcds .. 1-21
ASvReScheduleOrderProcess::ReScheduleOrderProcess ... 1-22
ASvSetCreatedUpdatedFoFields::SetCreatedUpdatedFoFields.. 1-23
ASvProcessMfCompletionIcd::ProcessMfCompletionIcd.. 1-23

ARtrCustomCodeDll ... 1-25
ARtrProcessCustomIcds::ConvertCustomTransactions.. 1-25
iii

iv
ARtrCustomConversion::PreConvertFSMSOrderIssue .. 1-26
ARtrCustomConversion::PreConvertFSMSOrderStatus... 1-27
Remarks: .. 1-27
ARtrCustomConversion::PreConvertFSMSOrderComplete .. 1-28
ARtrDetermineEmergencyOrder::DetermineEmergencyOrder .. 1-29
ARtrCustomConversion::PreConvertFoStatusExToClick .. 1-29
Remarks: .. 1-29
ARtrCustomConversion::PreConvertMobilitySchedFoToClick .. 1-30

ACustomIcdsDll... 1-30
CECustomCodeDll .. 1-31

ACEPreProcessTableDownload::PreProcessTableDownload ... 1-31
Remarks: .. 1-31
ACEByteToUni::ParamsToUni ... 1-31
ACEByteToUni::ByteToUni .. 1-32
ACEUniToByte::ParamsToByte.. 1-32
ACEUniToByte::ParamsToByte.. 1-33
ACECustomWirelessConnectivity::GetConnectivity ... 1-33
ACECustomWirelessConnectivity::IsConnected.. 1-34
ACECustomWirelessConnectivity::IsWired .. 1-34
ACECustomProcs::PreProcessLogon .. 1-34
ACEPostCreatePickupOrder::PostCreatePickupOrder... 1-35
CECustomIcdsDll.. 1-35

Chapter 1
Plug-In Processing

This document outlines the Custom code (Plug-in) specifications for the Oracle Utilities Mobile
Workforce Management applications. Most of the functionalities is specified and named as the
base function (Pre/Post) in which will be provided as much as the base code/parameter(s) that is
used within the application.

Topics include:

• AWsCustomCodeDll

• ASvCustomCodeDll

• ARtrCustomCodeDll

• ACustomIcdsDll

• CECustomCodeDll

AWsCustomCodeDll
The Workstation application utilizes the AWsCustomCodeDll.dll library for processing Plug-in
functionalities. Plug-in functionalities will be the primary methodology used by the
Implementation team. Any static object/pointer/call defined in Utility.dll library will be allowed
to be used/called within any of the plug-in functionalities (i.e.: AUtil::ms_pDwDbConn,
AUtil::ms_user, etc…). The different function calls are described in the following sections.

AWsPreProcessMIDCompleteFo::PreProcessMIDCompleteFo
BOOL PreProcessMIDCompleteFo(
CString& p_sOrderNum_i
)

Remarks:
This method is used to manipulate the field order fields (Flat File) as they were received from the
Screen completion prior to insert/update into the XFoEx object before it can be sent to the
Server application. It may entail truncating fields, combining fields, and/or changing the format
of fields.

The parameter will be provided the order number, which is the name of the file in the orders
directory. Any of the modification will be I/O to the file, any error occurs will be logged within
the function, and the function will be returned as the TRUE/FALSE based on the requirements/
critical errors.
Plug-In Processing 1-1

Return:

Parameter(s):
Field order number

Example:
• Overwrite the Tracking status based on the specific criteria that was made from the screen or

a particular order/meter type.

• Split field into multiple tables, joint/move fields into a table, or load descriptions into order
remarks.

AWsPostActionsAddDlg::PostActionsAddDlg
BOOL PostActionsAddDlg(

CString& p_sOrderNum_i,
BOOL& p_fLoadOrderInDetail_o

)

Remarks:
This method is used to manipulate the field order fields as they were received from the AddOrder
dialog (DwAddOrder.def/MwAddorder.def) prior to insert/update into the XFoEx object before
it can be sent to the Server application. It may entail truncating fields, combining fields, and/or
changing the format of fields.

The parameter will be provided the order number which is the name of the file in the orders
directory and the indication of loading the pickup order in detail/completion mode. Any of the
modification will be I/O to the file, any error occurs will be logged within the function, and the
function will be returned as the TRUE/FALSE based on the requirements/critical errors.

Return:

Parameter(s):
Field order number

Load order in completion mode flag

Example:
• Overwrite the field order/parent number based on the specific criteria that was made from

the screen or a particular order/meter type.

• Rename the field order file based on the order name that was entered from the dialog.

• Split field into multiple tables, joint/move fields into a table, or load descriptions into order
remarks

• Load indication into different field as the PICKUP_ORD_FLG

AWsPostCreateRelatedPickups::PostCreateRelatedPickups
BOOL PostCreateRelatedPickup(

CString& p_sOrderNum_i
)

Remarks:
This method is used to manipulate the field order fields as they were received from the Related-
Pickup screen prior to insert/update into the XFoEx object before it can be sent to the Server
application. It may entail truncating fields, combining fields, and/or changing the format of fields.
1-2 Oracle Utilities Mobile Workforce Management Plug-Ins Guide

The parameter will be provided the order number which is the name of the file in the orders
directory and the indication of loading the pickup order in detail/completion mode. Any of the
modification will be I/O to the file, any error occurs will be logged within the function, and the
function will be returned as the TRUE/FALSE based on the requirements/critical errors.

Return:

Parameter(s):
• Field order number

Example:

• Overwrite the field order/parent number based on the specific criteria that was made from
the screen or a particular order/meter type.

• Load indication into different field as the PICKUP_ORD_FLG

• Default specific custom field(s) from a table.

• Create a Meter Selections dialog if it’s a Set meter order.

• Create a New Customer Info dialog if it’s a new account.

• Prefix/suffix meter number or any field within the Set meter record.

• Populate spare columns in the DHTFOCMN record

AWsProcessCustomCrewFrameCmds::ProcessCustomCrewFrameCmds
BOOL ProcessCustomCrewFrameCmds(

WPARAM wp,
LPARAM lp

)

Remarks:
This method is used to process custom ICDs in the crew subsystem. Custom Icds can be sent to
the crew subsystem by adding the appropriate code to the ProcessCustomIcds plug-in. The base
version of this method simply returns FALSE, since there are no custom ICDs in the base.

Any errors that occur should be logged within the plug-in. If FALSE is returned, it is assumed to
be an invalid ICD.

Return:
TRUE: Custom ICD was processed

FALSE: No plug-in code or invalid custom ICD found

Parameter(s):
• Custom ICD’s ID

• Custom ICD object

Example:
• Switch on the ICD ID and call methods to process the custom ICDs
Plug-In Processing 1-3

AWsProcessCustomFoFrameCmds::ProcessCustomFoFrameCmds
BOOL ProcessCustomFoFrameCmds(

WPARAM wp,
LPARAM lp

)

Remarks:
This method is used to process custom ICDs in the field order subsystem. Custom Icds can be
sent to the field order subsystem by adding the appropriate code to the ProcessCustomIcds plug-
in. The base version of this method simply returns FALSE, since there are no custom ICDs in the
base.

Any errors that occur should be logged within the plug-in. If FALSE is returned, it is assumed to
be an invalid ICD.

Return:
TRUE: Custom ICD was processed

FALSE: No plug-in code or invalid custom ICD found

Parameter(s):
Custom ICD’s ID

Custom ICD object

Example:
Switch on the ICD ID and call methods to process the custom ICDs

AWsProcessCustomIcds::ProcessCustomIcds
BOOL ProcessCustomIcds(

long p_iId_i,
XIcd* p_pIcd_i,
int& p_iSubSys_i

)

Remarks:
This method is used to process custom ICDs in the OnShipMail function. Custom Icds can be
routed to the FO, CREW, MAIL, MAP, or SYS-MESSAGE subsystem by adding the appropriate
code (AlistCtrl::eSubSystems) to the ProcessCustomIcds plug-in and the ICD will be not delete/
destroyed at the end of the function(OnShipMail). The custom ICD can also be processed in this
plug-in instead of routing it to another thread, but the processing that can be done is limited. The
base version of this method simply returns FALSE, since there are no custom ICDs in the base.

Any errors that occur may be logged within the function or logged by the calling function by
setting the return message and returning FALSE.

Return:
TRUE: Custom ICD was processed

FALSE: No plug-in code or invalid custom ICD found

Parameter(s):
• Custom ICD’s ID

• Custom ICD object

• Subsystem’s ID, which the ICD will be forward to.
1-4 Oracle Utilities Mobile Workforce Management Plug-Ins Guide

Example:
• Switch on the ICD ID and route to the appropriate subsystem for processing

AWsProcessCustomMailFrameCmds:: ProcessCustomMailFrameCmds
BOOL ProcessCustomMailFrameCmds(

WPARAM wp,
LPARAM lp

)

Remarks:
This method is used to process custom ICDs in the mail subsystem. Custom Icds can be sent to
the mail subsystem by adding the appropriate code to the ProcessCustomIcds plug-in. The base
version of this method simply returns FALSE, since there are no custom ICDs in the base.

Any errors that occur should be logged within the plug-in. If FALSE is returned, it is assumed to
be an invalid ICD.

Return:
TRUE: Custom ICD was processed

FALSE: No plug-in code or invalid custom ICD found

Parameter(s):
• Custom ICD’s ID

• Custom ICD object

Example:
• Switch on the ICD ID and call methods to process the custom ICDs

AwsProcessCustomMainfrmFrameCmds::ProcessCustomMainfrmFrameCmds
BOOL ProcessCustomMainfrmFrameCmds(

WPARAM wp,
LPARAM lp

)

Remarks:
This method is used to process custom ICDs in the main application(CMainFrame). Custom Icds
can be sent to the main application by adding the appropriate code to the ProcessCustomIcds
plug-in. The base version of this method simply returns FALSE, since there are no custom ICDs
in the base.

Any errors that occur should be logged within the plug-in. If FALSE is returned, it is assumed to
be an invalid ICD.

Return:
TRUE: Custom ICD was processed

FALSE: No plug-in code or invalid custom ICD found

Parameter(s):
• Custom ICD’s ID

• Custom ICD object
Plug-In Processing 1-5

Example:
Switch on the ICD ID and call methods to process the custom ICDs

AwsProcessCustomMapFrameCmds::ProcessCustomMapFrameCmds
BOOL ProcessCustomMapFrameCmds(

WPARAM wp,
LPARAM lp

)

Remarks:
This method is used to process custom ICDs in the map subsystem. Custom Icds can be sent to
the map subsystem by adding the appropriate code to the ProcessCustomIcds plug-in. The base
version of this method simply returns FALSE, since there are no custom ICDs in the base.

Any errors that occur should be logged within the plug-in. If FALSE is returned, it is assumed to
be an invalid ICD.

Return:
TRUE: Custom ICD was processed

FALSE: No plug-in code or invalid custom ICD found

Parameter(s):
• Custom ICD’s ID

• Custom ICD object

Example:
• Switch on the ICD ID and call methods to process the custom ICDs

AwsPreCreateAssistOrder:: PreCreateAssistOrder

Remarks:
This plug-in will be added to the AWsCustomCodeDll project. It will be called after the screen
has been validated and prior to inserting the new assist order in the database. This plug-in will give
the implementation team the ability to further manipulate the XFoEx data prior to creating the
order in the database.

Input
The XFoEx object should be passed into the plug-in, so that the field order data can be
manipulated before insertion in to the database.

Output
No value will be returned from the plug-in. If any logging should occur, it should log the
appropriate messages without the plug-in code.

Main Processing
The base plug-in will contain no code, but a return.
1-6 Oracle Utilities Mobile Workforce Management Plug-Ins Guide

AwsGetGPSCoordinates:: GetGPSCoordinates

Remarks:
This plug-in will be used within a separate design at a later date to create a Custom GPS device at
the time of GPSSupport object creation in the Station. This is needed in order to facilitate Custom
GPS info for AVL timed transactions. Currently, Oracle Utilities Mobile Workforce Management
already accommodates 3 custom GPS devices determined by the GPSSupport.ini parameter
DEVICE_TYPE. Further customization can be added at a later time by setting this parameter
value to CUSTOM and adding the plug-in point into the GPSSupportMain class to create and set
its pointer to a custom device type.

AWsPostChangeOperator:: PostChangeOperator

Remarks:
This plug-in will be added to the AWsCustomCodeDll project. It will be called after the screen
has been validated and prior to loading the new user options from the database. This plug-in will
give the implementation team the ability to further manipulate the monitor dispatch area(s) prior
to load the orders from the database.

Input
The string list object of the dispatch areas, indicator to reload the dispatch areas, and indicator to
save the new dispatch areas to DHTLSTDA table locally, should be passed into the plug-in, so that
the dispatch areas can be manipulated before reloading from the database.

Output
No value will be returned from the plug-in. If any logging should occur, it should log the
appropriate messages without the plug-in code.

Main Processing
The base plug-in will contain no code, but a return.

AWsPostLogonProcess:: PostLogonProcess

Remarks:
This plug-in will be added to the AWsCustomCodeDll project. It will be called after the screen
has been validated and prior to log on process to the Station. This plug-in will give the
implementation team the ability to further manipulate any additional process once the user has
successfully logged on to the Station.

Input
None.

Output
No value will be returned from the plug-in. If any logging should occur, it should log the
appropriate messages without the plug-in code.

Main Processing
The base plug-in will contain no code, but a return.
Plug-In Processing 1-7

AwsCustomOrderDeleteReassignReturnMsg::ProcessCustomDeleteReassign
ReturnMsg

Remarks:
This method is used to process the XIcdDeleteOrder, XIcdReassignFo, XIcdReturnFoAck ICDs
in the MobileStation. This plug-in will give the implementation team the ability to further
manipulate the process and the user notification message(s) based the order on the MobileStation.
The base version of this method would have the existing process and simple user notification
message(s).

Input
The XIcd object should be passed into the plug-in, so that the process and the message can be
manipulated before deletion of the order file.

Output
List of Field order numbers and the user notification messages will be returned from the plug-in
and the messages will be populated when it returns TRUE, otherwise no message will be shown.

Main Processing
The base plug-in will contain the existing code to process the ICDs and the simple user
notification messages.

Example:
• · Add external field order/parent/meter number based on particular order/meter type.

• · Custom user message format.
1-8 Oracle Utilities Mobile Workforce Management Plug-Ins Guide

ASvCustomCodeDll
ASvCustomCodeDll
The Server application utilizes the ASvCustomCodeDll.dll library for processing Plug-in
functionalities. Plug-in functionalities will be the primary methodology used by the
Implementation team. These are the different functions calls:

ASvBuildGeocodeAddresses::BuildGeocodeAddresses
BOOL BuildGeocodeAddresses (

XFoEx& p_oFoEx_o,
CDatabase* p_pDb_i,
XThreadSvBase* p_pThread_i,
XSvThreadData* p_pThreadData_i,
CString& p_strStreetAddress_o,
CString& p_strCityStateZip_o,
CString& p_strCountry_o,
CString& p_strMatchMode_o

)

Remarks:
This method is used to build the address fields that will be used by the GEOCODER to geocode
the order. The GEOCODER requires 2 address fields: Street Address and City/State/Zip, plus
the Country code. The base version of this plug-in will load DHTFOEXT.CUST_ADDR_1 into
the street address field and DHTFOEXT.CUST_ADDR_3 concatenated with
DHTFOCMN.ZIP_CODE into the city/state/zip field, default the country to “US”, and default
the match mode to “DEFAULT”. If this works for a particular implementation, then no changes
are needed; if not, this plug-in should be modified to load the geocode address fields with the
appropriate data.

This plug-in is called from the ProcessMfFieldOrderIcd and ProcessMobilityCreatedFoIcd
methods in the XThreadSvFoEx class. It is called before the field order is inserted in the database.

Returns:
 TRUE: Auccess

FALSE: Error occurred in plug-in code – no geocoding will be performed and an error will be
generated.

Parameter(s):
• Field Order object
• Pointer to a database connection
• Pointer to the thread
• Pointer to the global server thread data
• Reference to the street address field (output)
• Reference to the city/state/zip field (output)
• Reference to the country field (output)
• Reference to the match mode field (output)

Example:
• Load CUST_ADDR_1 into Street address field
• Concatenate ZIP_CODE to CUST_ADDR_3 to build city/state/zip field
• Change the default country of “US” to something else
• Change the default match mode of “DEFAULT” to something
Plug-In Processing 1-9

ASvCustomCodeDll
ASvCustomDispatchNotification::CustomDispatchNotification
BOOL CustomDispatchNotification(

CString& p_strMessage_o,
CString& p_strFoNumber_i,
CString& p_strCrewId_i,
CDatabase* p_pDb_i,
XThreadSvBase* p_pThread_i,
XSvThreadData* p_pThreadData_i

)

Remarks:
This method is used to perform customized code when an order is successfully dispatched to a
mobile device. This plug-in is called from the ProcessDealFoTxnQueue method in the
XThreadSvDispatch class after each order is updated to dispatched. It may contain custom
dispatch related code like paging for emergencies.

Any errors that occur may be logged within the function or logged by the calling function by
setting the return message and returning FALSE.

Returns:
TRUE: No plug-in code or success

FALSE: Error occurred in plug-in code

Parameter(s):
• Return error message

• Field order number of dispatched order

• Id of crew assigned to dispatched order

• Pointer to a database connection

• Pointer to the thread

• Pointer to the global server thread data

Example:
• Paging for emergency order

ASvCustomFieldOrderEODProcess::CustomFieldOrderEODProcess
BOOL CustomFieldOrderEODProcess(

CString& p_strMessage_o,
CDatabase* p_pDb_i,
XThreadSvBase* p_pThread_i,
XSvThreadData* p_pThreadData_i

)

Remarks:
This method is used to perform customized code during the End of Day process. This plug-in is
called from the EodProcess method in the XThreadSvEod class before the main or normal field
order archiving is carried out.

Any errors that occur may be logged within the function or logged by the calling function by
setting the return message and returning FALSE.

Return:
TRUE: No plug-in code or success

FALSE: Error occurred in plug-in code
1-10 Oracle Utilities Mobile Workforce Management Plug-Ins Guide

ASvCustomCodeDll
Parameter(s):
• Return error message

• Pointer to a database connection

• Pointer to the thread

• Pointer to the global server thread data

Example:
• Remove duplicate historical field orders

ASvFillFoSpares::FillFoSpares
void FillFoSpares(

XFoEx& p_oFoEx_o,
CDatabase* p_pDb_i,
XThreadSvBase* p_pThread_i,
XSvThreadData* p_pThreadData_i

)

Remarks:
This method is used to fill the Spare columns in the field order object with the appropriate data.
This plug-in is called from the ProcessMfFieldOrderIcd, ProcessMobilityCreatedFoIcd, and
PickupOrderNew methods in the XThreadSvFoEx class. It is called before the field order is
inserted/updated in the database

Return:

Parameter(s):
Field Order object

Pointer to a database connection

Pointer to the thread

Pointer to the global server thread data

Example:
Set Customer address number as the spare column

Set default remarks

Duplicate the contact number

Store the order type description in a spare column

ASvModifyCrewMaintInfo::ModifyCrewMaintInfo
void ModifyCrewMaintInfo(

XCrewMaintInfo& p_oCrewInfo_io,
CDatabase* p_pDb_i,
XThreadSvBase* p_pThread_i,
XSvThreadData* p_pThreadData_i

)

Remarks:
This method is used to manipulate the crew maintenance information before it is sent to the
scheduling module via the Router and XIM. This plug-in is called from the ProcessCrewUpdated
method in the XThreadSvMisc class when a crew record is created/updated. It is called before
the XIcdMobilityUpdatedCrew ICD is built with the XCrewMaintInfo object.
Plug-In Processing 1-11

ASvCustomCodeDll
Return:

Parameter(s):
Crew maintenance information object

Pointer to a database connection

Pointer to the thread

Pointer to the global server thread data

Example:
• Populate the custom property fields in the crew maintenance information object

• Parse existing field (e.g. Pull state from City field and store in State field).

ASvModifySchedulingInfo::ModifySchedulingInfo
void ModifySchedulingInfo(

XSchedulingInfo& p_oSchedInfo_io,
XFoEx& p_oFoEx_o,
CDatabase* p_pDb_i,
XThreadSvBase* p_pThread_i,
XSvThreadData* p_pThreadData_i

)

Remarks:
This method is used to manipulate the scheduling information before it is sent to the scheduling
module via the Router and XIM. This plug-in is called from the ProcessSchedulingInfo method in
the XThreadSvFo class when a field order is created/updated. It is called before the
XIcdMobilitySchedFo ICD is built with the XSchedulingInfo object.

Return:

Parameter(s):
• Scheduling information object

• Field Order object

• Pointer to a database connection

• Pointer to the thread

• Pointer to the global server thread data

Example:
• Populate the custom property fields in the scheduling information object

ASvPostCreateOrderProcess::PostCreateOrderProcess
void PostCreateOrderProcess(

XFoEx& p_oFoEx_o,
CDatabase* p_pDb_i,
XThreadSvBase* p_pThread_i,
XSvThreadData* p_pThreadData_i

)

Remarks:
This plug-in is called from the ProcessMfFieldOrderIcd method in the XThreadSvFoEx class. It
is called after the order has been successfully inserted into the database.
1-12 Oracle Utilities Mobile Workforce Management Plug-Ins Guide

ASvCustomCodeDll
Returns:

Parameter(s):
• Field Order object

• Pointer to a database connection

• Pointer to the thread

• Pointer to the global server thread data

Example:
• Send notification to the Dispatcher(s) for a specific order type

• Send internal email to the Dispatcher(s)

ASvPostUpdateOrderProcess::PostUpdateOrderProcess
void PostUpdateOrderProcess(

XFoEx& p_oFoEx_o,
CDatabase* p_pDb_i,
XThreadSvBase* p_pThread_i,
XSvThreadData* p_pThreadData_i

)

Remarks:
This plug-in is called from the ProcessMfFieldOrderIcd method in the XThreadSvFoEx class. It
is called after the order has been successfully updated in the database.

Returns:

Parameter(s):
• Field Order object

• Pointer to a database connection

• Pointer to the thread

• Pointer to the global server thread data

Example:
• Send notification to the Dispatcher(s) for a specific order type

• Send internal email to the Dispatcher(s)

ASvPreArchiveFieldOrdersEOD::PreArchiveFieldOrdersEOD
BOOL PreArchiveFieldOrderEOD(

CString& p_strMessage_o,
CDatabase* p_pDb_i,
XThreadSvBase* p_pThread_i,
XSvThreadData* p_pThreadData_i

)

Remarks:
This method is used to perform customized code during the End of Day process. This plug-in is
called from the ArchiveFieldOrders method in the XThreadSvEod class before the main or
normal field order archiving is carried out.

Any errors that occur may be logged within the function or logged by the calling function by
setting the return message and returning FALSE.
Plug-In Processing 1-13

ASvCustomCodeDll
Return:
TRUE: No plug-in code or success

FALSE: Error occurred in plug-in code

Parameter(s):
Return error message

Pointer to a database connection

Pointer to the thread

Pointer to the global server thread data

Example:
• Archiving host system orders only

• Expiration of field orders

ASvPreCompletionToRouter::PreCompletionToRouter
void PreCompletionToRouter(

XFoEx& p_oFoEx_o,
CDatabase* p_pDb_i,
XThreadSvBase* p_pThread_i,
XSvThreadData* p_pThreadData_i

)

Remarks:
This plug-in is called from the ProcessMobileCompletionIcd, ProcessFsmsFieldOrderIcd, and
PickupOrderNew methods in the XThreadSvFoEx class. It is called immediately before
“sending” the completion ICD to the Router.

Returns:

Parameter(s):
• Field Order object

• Pointer to a database connection

• Pointer to the thread

• Pointer to the global server thread data

Example:
• Set default value with a specific order type

• Trim/replace value within the order

ASvPreOrderCreateProcess::PreOrderCreateProcess
BOOL PreOrderCreateProcess(

XFoEx& p_oFoEx_io,
CString& p_strErr_o,
CDatabase* p_pDb_i,
XThreadSvBase* p_pThread_i,
XSvThreadData* p_pThreadData_i

)

1-14 Oracle Utilities Mobile Workforce Management Plug-Ins Guide

ASvCustomCodeDll
Remarks:
This plug-in is called from the ProcessMfFieldOrderIcd method in the XThreadSvFoEx class
before the bulk of the create/update order processing has been done.

Any errors that occur may be logged within the function or logged by the calling function by
setting the return message and returning FALSE.

Return:
TRUE: No plug-in code or success

FALSE: Error occurred in plug-in code

Parameter(s):
• Field order object

• Return error message

• Pointer to a database connection

• Pointer to the thread

• Pointer to the global server thread data

Example:
• Set default value with a specific order type

• Add column/table value(s) to match with Oracle Utilities Mobile Workforce Management
database

• Trim/replace value within the order

ASvPreValidateMeterReqToRouter::PreValidateMeterReqToRouter
BOOL PreValidateMeterReqToRouter (

XIcdMfValidateMeterReq& p_oIcd_i,
CDatabase* p_pDb_i,
XThreadSvBase* p_pThread_i,
XSvThreadData* p_pThreadData_i

)

Remarks:
This method is used to process the Validate Meter Request from a mobile device. The base
version of this method simply routes the ICD to the Router application for processing. This plug-
in is called from the ProcessValidateMeterRequest method in the XThreadSvMiscEx class.

Any errors that occur may be logged within the function or logged by the calling function by
setting the return message and returning FALSE.

Returns:
TRUE: No plug-in code or success

FALSE: Error occurred in plug-in code

Parameter(s):
• Validate Meter Request ICD object

• Pointer to a database connection

• Pointer to the thread

• Pointer to the global server thread data
Plug-In Processing 1-15

ASvCustomCodeDll
Example:
• Directly call a Meter Management database to validate the request

ASvProcessAvlCustomIcds::ProcessAvlCustomIcds
BOOL ProcessAvlCustomIcds(

XIcd& p_oIcd_i,
CDatabase* p_pDb_i,
BOOL& p_fAck_o,
XThreadSvBase* p_pThread_i,
XSvThreadData* p_pThreadData_i

)

Remarks:
This method is used to process custom ICDs in the AVL thread. Custom Icds can be sent to the
AVL thread by adding the appropriate code to the ProcessCustomIcds plug-in. The base version
of this method simply returns FALSE, since there are no custom ICDs in the base. This plug-in is
called from the Thread method in the XThreadSvAvl class.

If the custom ICD is guaranteed, the logic to generate an RfAck can be put in the plug-in or, using
the passed in fAck flag and the DHTICDPR table, the RfAck can be generated automatically by
the base code.

Any errors that occur should be logged within the plug-in. If FALSE is returned, it is assumed to
be an invalid ICD.

Return:
TRUE: Custom ICD was processed

FALSE: No plug-in code or invalid ICD found

Parameter(s):
• Custom ICD object

• Pointer to a database connection

• Acknowledgement flag

• Pointer to the thread

• Pointer to the global server thread data

Example:
• Switch on the ICD ID and call methods to process the custom ICDs

ASvProcessCustomIcds::ProcessCustomIcds
BOOL ProcessCustomIcds(

XIcd& p_oIcd_i,
XThreadSvBase* p_pThread_i,
XSvThreadData* p_pThreadData_i

)

Remarks:
This method is used to process custom ICDs in the ProcessIcds thread. Custom Icds can be
routed to the AVL, FO, Logoff, Logon, or Miscellaneous thread by adding the appropriate code to
the ProcessCustomIcds plug-in. The custom ICD can also be processed in this plug-in instead of
routing it to another thread, but the processing that can be done is limited. This plug-in does not
have access to a database connection. The base version of this method simply returns FALSE,
1-16 Oracle Utilities Mobile Workforce Management Plug-Ins Guide

ASvCustomCodeDll
since there are no custom ICDs in the base. This plug-in is called from the ProcessExtendedIcds
method in the XThreadSvProcessEx class.

Any errors that occur may be logged within the function or logged by the calling function by
setting the return message and returning FALSE.

Return:
TRUE: Custom ICD was processed

FALSE: No plug-in code or invalid custom ICD found

Parameter(s):
• Custom ICD object

• Pointer to the thread

• Pointer to the global server thread data

Example:
• Switch on the ICD ID and route to the appropriate thread for processing

ASvProcessCustomWarnings::ProcessCustomWarnings
BOOL ProcessCustomWarnings(

CDatabase* p_pDb_i,
XThreadSvBase* p_pThread_i,
XSvThreadData* p_pThreadData_i

)

Remarks:
This method is used to generate custom warnings in the Warnings thread. The base version of
this method simply returns TRUE, since there are no custom warnings in the base. This plug-in is
called from the Thread method in the XThreadSvWarning class.

Any errors that occur may be logged within the function or logged by the calling function by
returning FALSE.

Return:
TRUE: No plug-in or successful generation of custom warning

FALSE: Error occurred generating custom warnings

Parameter(s):
• Pointer to database connection

• Pointer to the thread

• Pointer to the global server thread data

Example:
• Crew has been working too many hours
Plug-In Processing 1-17

ASvCustomCodeDll
ASvProcessFoCustomIcds::ProcessFoCustomIcds
BOOL ProcessFoCustomIcds(

XIcd& p_oIcd_i,
CDatabase* p_pDb_i,
BOOL& p_fAck_o,
XThreadSvBase* p_pThread_i,
XSvThreadData* p_pThreadData_i

)

Remarks:
This method is used to process custom ICDs in the FO thread. Custom Icds can be sent to the
FO thread by adding the appropriate code to the ProcessCustomIcds plug-in. The base version of
this method simply returns FALSE, since there are no custom ICDs in the base. This plug-in is
called from the ProcessExtendedIcds method in the XThreadSvFoEx class.

If the custom ICD is guaranteed, the logic to generate an RfAck can be put in the plug-in or, using
the passed in fAck flag and the DHTICDPR table, the RfAck can be generated automatically by
the base code.

Any errors that occur should be logged within the plug-in. If FALSE is returned, it is assumed to
be an invalid ICD.

Return:
TRUE: Custom ICD was processed

FALSE: No plug-in code or invalid custom ICD found

Parameter(s):
• Custom ICD object

• Pointer to a database connection

• Acknowledgement flag

• Pointer to the thread

• Pointer to the global server thread data

Example:
• Switch on the ICD ID and call methods to process the custom ICDs

ASvProcessLogoffCustomIcds::ProcessLogoffCustomIcds
BOOL ProcessLogoffCustomIcds(

XIcd& p_oIcd_i,
CDatabase* p_pDb_i,
BOOL& p_fAck_o,
XThreadSvBase* p_pThread_i,
XSvThreadData* p_pThreadData_i

)

Remarks:
This method is used to process custom ICDs in the Logoff thread. Custom Icds can be sent to
the Logoff thread by adding the appropriate code to the ProcessCustomIcds plug-in. The base
version of this method simply returns FALSE, since there are no custom ICDs in the base. This
plug-in is called from the ProcessExtendedIcds method in the XThreadSvLogoffEx class.

If the custom ICD is guaranteed, the logic to generate an RfAck can be put in the plug-in or, using
the passed in fAck flag and the DHTICDPR table, the RfAck can be generated automatically by
the base code.
1-18 Oracle Utilities Mobile Workforce Management Plug-Ins Guide

ASvCustomCodeDll
Any errors that occur should be logged within the plug-in. If FALSE is returned, it is assumed to
be an invalid ICD.

Return:
TRUE: Custom ICD was processed

FALSE: No plug-in code or invalid custom ICD found

Parameter(s):
• Custom ICD object

• Pointer to a database connection

• Acknowledgement flag

• Pointer to the thread

• Pointer to the global server thread data

Example:
• Switch on the ICD ID and call methods to process the custom ICDs
Plug-In Processing 1-19

ASvCustomCodeDll
ASvProcessLogonCustomIcds::ProcessLogonCustomIcds
BOOL ProcessLogonCustomIcds(

XIcd& p_oIcd_i,
CDatabase* p_pDb_i,
BOOL& p_fAck_o,
XThreadSvBase* p_pThread_i,
XSvThreadData* p_pThreadData_i

)

Remarks:
This method is used to process custom ICDs in the Logon thread. Custom Icds can be sent to
the Logon thread by adding the appropriate code to the ProcessCustomIcds plug-in. The base
version of this method simply returns FALSE, since there are no custom ICDs in the base. This
plug-in is called from the ProcessExtendedIcds method in the XthreadSvLogonEx class.

If the custom ICD is guaranteed, the logic to generate an RfAck can be put in the plug-in or, using
the passed in fAck flag and the DHTICDPR table, the RfAck can be generated automatically by
the base code.

Any errors that occur should be logged within the plug-in. If FALSE is returned, it is assumed to
be an invalid ICD.

Return:
TRUE: Custom ICD was processed

FALSE: No plug-in code or invalid custom ICD found

Parameter(s):
• Custom ICD object

• Pointer to a database connection

• Acknowledgement flag

• Pointer to the thread

• Pointer to the global server thread data

Example:
• Switch on the ICD ID and call methods to process the custom ICDs

ASvProcessMiscCustomIcds::ProcessMiscCustomIcds
BOOL ProcessMiscCustomIcds(

XIcd& p_oIcd_i,
CDatabase* p_pDb_i,
BOOL& p_fAck_o,
XThreadSvBase* p_pThread_i,
XSvThreadData* p_pThreadData_i

)

Remarks:
This method is used to process custom ICDs in the miscellaneous thread. Custom Icds can be
sent to the miscellaneous thread by adding the appropriate code to the ProcessCustomIcds plug-
in. The base version of this method simply returns FALSE, since there are no custom ICDs in the
base. This plug-in is called from the ProcessExtendedIcds method in the XThreadSvMiscEx
class.
1-20 Oracle Utilities Mobile Workforce Management Plug-Ins Guide

ASvCustomCodeDll
If the custom ICD is guaranteed, the logic to generate an RfAck can be put in the plug-in or, using
the passed in fAck flag and the DHTICDPR table, the RfAck can be generated automatically by
the base code.

Any errors that occur should be logged within the plug-in. If FALSE is returned, it is assumed to
be an invalid ICD.

Return:
TRUE: Custom ICD was processed

FALSE: No plug-in code or invalid custom ICD found

Parameter(s):
• Custom ICD object

• Pointer to a database connection

• Acknowledgement flag

• Pointer to the thread

• Pointer to the global server thread data

Example:
• Switch on the ICD ID and call methods to process the custom ICDs

ASvReScheduleOrderProcess::ReScheduleOrderProcess
void ReScheduleOrderProcess(

XFoEx& p_oFoEx_i,
BOOL& p_fReschedule_io,
CDatabase* p_pDb_i,
XThreadSvBase* p_pThread_i,
XSvThreadData* p_pThreadData_i

)

Remarks:
This plug-in is called from the ProcessMfFieldOrderIcd method in the XThreadSvFoEx class to
indicate if the order may need to be rescheduled.

Return:

Parameter(s):
• Field order object

• Reschedule flag

• Pointer to a database connection

• Pointer to the thread

• Pointer to the global server thread data

Example:
• Set/Fill with the appointment window code based on the schedule start time / early start time

• Reset Reschedule flag if order should not be rescheduled
Plug-In Processing 1-21

ASvCustomCodeDll
ASvSetCreatedUpdatedFoFields::SetCreatedUpdatedFoFields
void SetCreatedUpdatedFoFields(

XFoEx& p_oFoEx_io,
CDatabase* p_pDb_i,
XThreadSvBase* p_pThread_i,
XSvThreadData* p_pThreadData_i

)

Remarks:
This method is used to manipulate the field order fields as they were received from the Router
prior to inserting/updating the order in the database. This plug-in is called from the
ProcessMfFieldOrderIcd method in the XThreadSvFoEx class prior to calling the Insert/Update
database method.

Return:

Parameter(s):
• Field order object

• Pointer to a database connection

• Pointer to the thread

• Pointer to the global server thread data

Example:
• Set/Fill with the meter rate code based on the status or order type

• Set Taken by, District, Division, or Service Area

• Duplicate/Spit Address

• Set default Remarks

• Add column/table value(s) to match with Oracle Utilities Mobile Workforce Management
database

ASvProcessMfCompletionIcd::ProcessMfCompletionIcd
BOOL ProcessMfCompletionIcd(

XFoSchedule& p_oFoSch_i,
XFoEx& p_oFoEx_o,
BOOL& p_fUseFoEx_i,
CDatabase* p_pDb_i,
XThreadSvBase* p_pThread_i,
XSvThreadData* p_pThreadData_i

)

Remarks:
This plug-in is called from the ProcessMfCompletionIcd method in the XThreadSvFoEx class. It
is called immediately before the database update call.

Returns:

Parameter(s):
• Schedule object in database

• Field Order object from Mf

• Indicator to use data from Mf
1-22 Oracle Utilities Mobile Workforce Management Plug-Ins Guide

ASvCustomCodeDll
• Pointer to a database connection

• Pointer to the thread

• Pointer to the global server thread data

Example:
• Set completion date time based on the data from Mf

• Empty/blank the Crew field if it’s voided?
Plug-In Processing 1-23

ARtrCustomCodeDll
ARtrCustomCodeDll
The Router application utilizes the ARtrCustomCodeDll.dll library for processing Plug-in
functionalities. Plug-in functionalities will be the primary methodology used by the
Implementation team. These are the different functions calls:

ARtrProcessCustomIcds::ConvertCustomTransactions
BOOL ConvertCustomTransactions(
const CString& p_strDataFormat_i,
const CString& p_strOrigTransId_i,
const CString& p_strConvertToId_i,
XIcd& p_oMsgToConvert_i,
int& p_iErrorCode_o,
const CString& p_strExtConnName_i,
XList<XIcd>& p_IcdListing_o,
XRtrAckWaitBox* p_pNonAckedMsgLog_io
)

Remarks:
This method is used to process custom ICDs created by the project implementation teams in the
router. This enables the project implementation team to process or format custom ICDs to the
customer specific xml or other flat file messages. Inside of this function, custom-switching code
can be written to process multiple custom ICDs and call individual custom created classes to post-
process the data and format any individual custom ICD to the appropriate xml or other format.
The plug-in also provides access to the the AckBox (XRtrAckWaitBox object) so the custom
transactions can be guaranteed.

Return:
TRUE: Custom ICD was converted successfully

FALSE: Custom ICD was not converted successfully

Parameter(s):
• Data Format as specified in the router.ini file. For example: XML or text

• The original transaction ID from the originating application.

• The destination or receiving application transaction ID

• The original ICD that needs to be converted

• Error Code 0 means there was no error. Error Code -1 means there is an error occurred and
the base class XMessageRouter will check for the error that occurred and post it to the error
log. Any other error codes will tell the router to ignore the message and no need to further
process it.

• External Connection for this message to be sent to.

• The converted ICD should be added the p_IcdListing_o to be placed in the appropriate
destination.

Example:
Switch on the original ICD ID and call custom methods to convert them to either XML or other
format messages and place the converted ICD to the return list.
1-24 Oracle Utilities Mobile Workforce Management Plug-Ins Guide

ARtrCustomCodeDll
ARtrCustomConversion::PreConvertFSMSOrderIssue
BOOL PreConvertFSMSOrderIssue(
const CString& p_strDataFormat_i,
int& p_iErrorCode_o,
const CString& p_strDstConnName_i,
const CString& p_strExtConnName_i,
XFoEx& p_oFoEx_io
)

Remarks:
This plug-in is called from the ConvertFSMSOrderIssue method in the XRtrConversions class.
This method is used to preprocess orders created in Oracle Utilities Mobile Workforce
Management before sending to the external systems. This allows the implementation team to
change the data in the XFoEx object if it's necessary and can set the error code greater than 0 and
that will tell the router to ignore the message. For example, you can check for the service point in
the XFoEx object and set the p_iErrorCode_o to be greater than 0 and the message will be
ignored and will not be sent to the external systems. Please compare the Dst Conn and Ext
Connection Name to make sure that you would like to ignore the transaction.

Return:
TRUE: Everything was fine and no errors occurred

FALSE: Errros occurred and check for the error.

Parameter(s):
• Data Format as specified in the router.ini file. For example: XML or text

• Error Code 0 means there was no error. Error Code -1 means there is an error occurred and
the base class XMessageRouter will check for the error that occurred and post it to the error
log. Any other error codes will tell the router to ignore the message and no need to process it
further.

• External destination Connection for this message to be sent to. This field should be the
current destination from the external connection list. . For example, orders created in Oracle
Utilities Mobile Workforce Management may need to be sent to the CSS, OMS, SCHED. But
this field will only contain CSS if this message pass is for CSS only. This field is populated by
the settings in the DHTTXNPR table. This determines from the ICD level which ICD
should go to which external connections.

• The full external connection list will contain the list of external connections specified in the
DHTFOTYP table. So if it is specified in the DHTFOTYP external application list with
CSS,OMS,SCHED. This field will contain that full list. This field determines from the field
order level which field order type should go to which external connection.

• The XFoEx object

Example:
• Check for specific fields in the XFoEx object and make data changes or ignore the message if

certain criteria are met.
Plug-In Processing 1-25

ARtrCustomCodeDll
ARtrCustomConversion::PreConvertFSMSOrderStatus
BOOL PreConvertFSMSOrderStatus(
const CString& p_strDataFormat_i,
int& p_iErrorCode_o,
const CString& p_strDstConnName_i,
const CString& p_strExtConnName_i,
XFoEx& p_oFoEx_io
)

Remarks:
This plug-in is called from the ConvertFSMSFoStatus method in the XRtrConversions class. This
method is used to preprocess Oracle Utilities Mobile Workforce Management order status before
sending to external systems. This allows the implementation team to change the data in the
XFoEx object if it's necessary and can set the error code greater than 0 and that will tell the router
to ignore the message. For example, you can check for the service point in the XFoEx object and
set the p_iErrorCode_o to be greater than 0 and the message will be ignored and will not be sent
to the external systems. Please compare the Dst Connection Name and Ext Connection name to
make sure that you would like to ignore the transaction.

Return:
TRUE: Everything was fine and no errors occurred

FALSE: Errros occurred and check for the error.

Parameter(s):
• Data Format as specified in the router.ini file. For example: XML or text

• Error Code 0 means there was no error. Error Code -1 means there is an error occurred and
the base class XMessageRouter will check for the error that occurred and post it to the error
log. Any other error codes will tell the router to ignore the message and no need to process it
further.

• External destination Connection for this message to be sent to. This field should be the
current destination from the external connection list. . For example, orders created in Oracle
Utilities Mobile Workforce Management may need to be sent to the CSS, OMS, SCHED. But
this field will only contain CSS if this message pass is for CSS only. This field is populated by
the settings in the DHTTXNPR table. This determines from the ICD level which ICD
should go to which external connections.

• The full external connection list will contain the list of external connections specified in the
DHTFOTYP table. So if it is specified in the DHTFOTYP external application list with
CSS,OMS,SCHED. This field will contain that full list. This field determines from the field
order level which field order type should go to which external connection.

• The XFoEx object

Example:
• Check for specific fields in the XFoEx object and make data changes or ignore the message if

certain criteria are met.
1-26 Oracle Utilities Mobile Workforce Management Plug-Ins Guide

ARtrCustomCodeDll
ARtrCustomConversion::PreConvertFSMSOrderComplete
BOOL PreConvertFSMSOrderComplete(
const CString& p_strDataFormat_i,
int& p_iErrorCode_o,
const CString& p_strDstConnName_i,
const CString& p_strExtConnName_i,
XFoEx& p_oFoEx_io
)

Remarks:
This plug-in is called from the ConvertFSMSOrderComplete method in the XRtrConversions
class. This method is used to preprocess Oracle Utilities Mobile Workforce Management order
completion before sending to external systems. This allows the implementation team to change
the data in the XFoEx object if it's necessary and can set the error code greater than 0 and that will
tell the router to ignore the message. For example, you can check for the service point in the
XFoEx object and set the p_iErrorCode_o to be greater than 0 and the message will be ignored
and will not be sent to the external systems. Please compare the Dst Conn and Ext Connection
Name to make sure that you would like to ignore the transaction.

Return:
TRUE: Everything was fine and no errors occurred

FALSE: Errros occurred and check for the error.

Parameter(s):
• Data Format as specified in the router.ini file. For example: XML or text

• Error Code 0 means there was no error. Error Code -1 means there is an error occurred and
the base class XMessageRouter will check for the error that occurred and post it to the error
log. Any other error codes will tell the router to ignore the message and no need to process it
further.

• External destination Connection for this message to be sent to. This field should be the
current destination from the external connection list. . For example, orders created in Oracle
Utilities Mobile Workforce Management may need to be sent to the CSS, OMS, SCHED. But
this field will only contain CSS if this message pass is for CSS only. This field is populated by
the settings in the DHTTXNPR table. This determines from the ICD level which ICD
should go to which external connections.

• The full external connection list will contain the list of external connections specified in the
DHTFOTYP table. So if it is specified in the DHTFOTYP external application list with
CSS,OMS,SCHED. This field will contain that full list. This field determines from the field
order level which field order type should go to which external connection.

• The XFoEx object

Example:
• Check for specific fields in the XFoEx object and make data changes or ignore the message if

certain criteria are met.
Plug-In Processing 1-27

ARtrCustomCodeDll
ARtrDetermineEmergencyOrder::DetermineEmergencyOrder
BOOL DetermineEmergencyOrder(
XFoEx* p_pFoEx_i,
BOOL& p_fEmerOrder_o
)

Remarks:
This method is used to set the passed in emergency order flag. The flag should be set to TRUE, if
the order should be written to the emergency order queue in the Server for processing; otherwise,
set the flag to FALSE. If the flag is set, return TRUE; otherwise return FALSE (base
implementation) and the order type will be used to make the determination.

Return:
The return value indicates if the passed emergency order flag was set. If the flag was set within the
plug-in, return TRUE; otherwise return FALSE.

Parameter(s):
• Point to the Field order object

• Reference to the emergency order flag

Example:
• Set the emergency order flag to indicate whether the order ICD should be written to the

emergency order queue or the regular order queue for processing in the Server.

ARtrCustomConversion::PreConvertFoStatusExToClick
BOOL PreConvertFoStatusExToClick(
XIcdFoStatusEx* p_pIcd_io
)

Remarks:
This plug-in is called from the ConvertMobilityOrderStatusUpdate method in the
XRtrConversions class. This method is used to preprocess FoStatusEx ICDs before sending the
status data to Click. This allows the implementation team to manipulate the data in the
XIcdFoStatusEx object if it's necessary. If the ICD should not be sent to Click, the plug-in should
return FALSE and the ICD will be ignored.

Return:
TRUE: Send the ICD data to Click

FALSE: Ignore the ICD and do not send to Click

Parameter(s):
• Pointer to the XIcdFoStatusEx ICD

Example:
• Check for specific fields in the XIcdFoStatusEx and determine if the ICD should be ignored

• Make data changes to the ICD data before processing.
1-28 Oracle Utilities Mobile Workforce Management Plug-Ins Guide

ARtrCustomCodeDll
ARtrCustomConversion::PreConvertMobilitySchedFoToClick
BOOL PreConvertMobilitySchedFoToClick(
XIcdMobilitySchedFo* p_pIcd_io
)

Remarks:
This plug-in is called from the ConvertMobilityOrderCr method in the XRtrConversions class.
This method is used to preprocess MobilitySchedFo ICDs before sending the order data to Click.
This allows the implementation team to manipulate the data in the XIcdMobilitySchedFo object if
it's necessary. If the ICD should not be sent to Click, the plug-in should return FALSE and the
ICD will be ignored.

Return:
TRUE: Send the ICD data to Click

FALSE: Ignore the ICD and do not send to Click

Parameter(s):
• Pointer to the XIcdFoStatusEx ICD

Example:
• Check for specific fields in the XIcdFoStatusEx and determine if the ICD should be ignored

• Make data changes to the ICD data before processing.

ACustomIcdsDll
The Oracle Utilities Mobile Workforce Management applications utilize the ACustomIcdsDll.dll
library for creating and processing custom ICDs. When a new ICD class is created for a project
implementation, it will be added to this DLL project. This DLL project is linked in with
AwsCustomCodeDll, AsvCustomCodeDll, and ArtrCustomCodeDll.

All references to the custom ICDs will be made through the Plug-ins provided in the custom
DLLs.

To ensure that the project teams do not create a custom ICD with the same ID as a base ICD, the
project teams are asked to restrict their custom ICD Ids to a specific range. The same holds true
with custom transactions that will be sent/received by the Oracle Utilities Mobile Workforce
Management Router application; their code should fall in the specified custom code range.

• Custom ICD Ids – 900 through 999

• Custom Inbound Transaction (from external applications) codes – 0900 – 0999

• Custom Outbound Transaction (to external applications) codes – 1900 – 1999

If the project teams adhere to these ranges, there should be no conflicts between the base ICDs/
transaction and custom ICDs/transactions.
Plug-In Processing 1-29

ARtrCustomCodeDll
CECustomCodeDll
The CE Station application utilizes the CECustomCodeDll.dll library for processing Plug-in
functionalities. Plug-in functionalities will be the primary methodology used by the
Implementation team. These are different functions call:

ACEPreProcessTableDownload::PreProcessTableDownload
BOOL PreProcessTableDownload(
CWnd* p_pParent_i
)

Remarks:
This method is used to manipulate any validation/customize requirement prior to the table
download request icd (XicdUpdateTable) is being sent to the Server application.

Return:
TRUE: Custom process/dialog was processed

FALSE: Invalid custom process, Station will be shut down.

Parameter(s):
• Pointer of the main window.

Example:

• Populate a validation dialog.

• Verify MW user equipment that was previous saved/downloaded.

ACEByteToUni::ParamsToUni
static int ParamsToUni(
PBYTE& p_pbSingle,
PBYTE& p_pbUni,
Int p_iCnt
)

Remarks:
This method is used to manipulate any data conversion of the icd that is received from the Server
application.

Return:
TRUE: Custom process was processed

FALSE: Invalid custom process.

Parameter(s):
• Buffer in Byte

• Buffer in Unicode

• Number of fields is passed in w/ the buffer

Example:
• lXIcd_ID_MAIL_MESSAGE - ACEByteToUni::ParamsToUni(pbData_by,pbData,5);
1-30 Oracle Utilities Mobile Workforce Management Plug-Ins Guide

ARtrCustomCodeDll
ACEByteToUni::ByteToUni
int ByteToUni(
PBYTE& p_pbSingle,
PBYTE& p_pbUni
)

Remarks:
This method is used to manipulate any data conversion of the icd that is received from the Server
application.

Return:
TRUE: Custom process was processed

FALSE: Invalid custom process.

Parameter(s):
• Buffer in Byte

• Buffer in Unicode

Example:
• lXIcd_ID_MISSED_APPT_WARNING

ACEUniToByte::ParamsToByte
static int ParamsToByte(
PBYTE& p_pbUni,
PBYTE& p_pbSingle,
int p_iLen,
int p_iCnt
)

Remarks:
This method is used to manipulate any data conversion of the icd that is being sent to the Server
application.

Return:
TRUE: Custom process was processed

FALSE: Invalid custom process.

Parameter(s):
• Buffer in Unicode

• Buffer in Byte

• Length of the buffer (after conversion)

• Number of fields is passed in w/ the buffer

Example:
• lXIcd_ID_AVL
Plug-In Processing 1-31

ARtrCustomCodeDll
ACEUniToByte::ParamsToByte
int UniToByte(
PBYTE& p_pbUni,
PBYTE& p_pbSingle
)

Remarks:
This method is used to manipulate any data conversion of the icd that is being sent to the Server
application.

Return:
TRUE: Custom process was processed

FALSE: Invalid custom process.

Parameter(s):
• Buffer in Unicode

• Buffer in Byte

Example:
• lXIcd_ID_AVL

ACECustomWirelessConnectivity::GetConnectivity
CString GetConnectivity()

Remarks:
This method is used to obtain the current type of network card connectivity on the particular CE
device.

Return:
“SERIAL”: This is a serial LAN Active Sync connection.

“USB”: This is a serial LAN Active Sync connection.

“WLAN”: This is a Wireless LAN network connection.

“GPRS”: This is a GPRS WWAN connection.

“OFFLINE: err string”: There is no current network connection. The err string portion has the
reason (if any) why no connection was obtained.

Parameter(s):
• none

Example:
• ACELogonDlg.cpp: Autodetect of the login type
1-32 Oracle Utilities Mobile Workforce Management Plug-Ins Guide

ARtrCustomCodeDll
ACECustomWirelessConnectivity::IsConnected
BOOL IsConnected()

Remarks:
This method is used to pass a boolean back to the base code determining current network
connectivity status.

Return:
TRUE: CE device is connected to network.

FALSE: CE device is notconnected to network.

Parameter(s):
• none

Example:
• XThreadWirelessConnectivity.cpp: determine if the connection has been lost

ACECustomWirelessConnectivity::IsWired
BOOL IsWired()

Remarks:
This method is used to pass a boolean back to the base code determining current network wired
status. This may vary depending on the customer needs. Certain processes on the CE such as
table download are only performed while wired.

Return:
TRUE: CE device is “wired”.

FALSE: CE device is not “wired”.

Parameter(s):
• none

Example:
• ACELogonDlg.cpp: Prevent table download if not wired

ACECustomProcs::PreProcessLogon
BOOL PreProcessLogon(
CWnd* p_pParent_I

)

Remarks:
This method is used to pass a boolean back to the base code prior to logon to determine whether it
is OK to proceed with logon. During this call, a custom screen may be displayed to interact with
the user to perform custom pre-login actions. This may vary depending on the customer needs.
This may include actions such as initiating GPRS or EDACS connectivity.

Return:
TRUE: OK to proceed with login.

FALSE: Abort login and close program.
Plug-In Processing 1-33

ARtrCustomCodeDll
Parameter(s):
• Pointer of the main window.

Example:
• Starting the GPRS VPN connection prior to login.

ACEPostCreatePickupOrder::PostCreatePickupOrder
BOOL PostCreatePickupOrder(
CString& p_sOrderNum_i
)

Remarks:
This method is used to manipulate the field order fields in the field order flat file before it is sent
to the Server application for creation. It may entail truncating fields, combining fields, and/or
changing the format of fields.

The parameter will be provided the order number, which is the name of the file in the orders
directory and the indication of loading the pickup order in detail/completion mode. Any of the
modification will be I/O to the file, any error occurs will be logged within the function, and the
function will be returned as the TRUE/FALSE based on the requirements/critical errors.

Return:

Parameter(s):
Field order number

Example:
• Overwrite the field order/parent number based on the specific criteria that was made from

the screen or a particular order/meter type.

• Load indication into different field as the PICKUP_ORD_FLG

• Default specific custom field(s) from a table.

• Prefix/suffix meter number or any field within the Set meter record.

• Populate spare columns in the DHTFOCMN record

CECustomIcdsDll
The Oracle Utilities Mobile Workforce Management (CE) applications utilize the
CECustomIcdsDll.dll library for creating and processing custom ICDs. When a new ICD class is
created for a project implementation, it will be added to this DLL project. This DLL project is
linked in with CECustomCodeDll.

All references to the custom ICDs will be made through the Plug-ins provided in the custom
DLLs.

To ensure that the project teams do not create a custom ICD with the same ID as a base ICD, the
project teams are asked to restrict their custom ICD Ids to a specific range. The same holds true
with custom transactions that will be sent/received by the Oracle Utilities Mobile Workforce
Management Router application; their code should fall in the specified custom code range.

• Custom ICD Ids – 900 through 999

• Custom Inbound Transaction (from external applications) codes – 0900 – 0999

• Custom Outbound Transaction (to external applications) codes – 1900 – 1999
1-34 Oracle Utilities Mobile Workforce Management Plug-Ins Guide

ARtrCustomCodeDll
If the project teams adhere to these ranges, there should be no conflicts between the base ICDs/
transaction and custom ICDs/transactions.
Plug-In Processing 1-35

ARtrCustomCodeDll
1-36 Oracle Utilities Mobile Workforce Management Plug-Ins Guide

	Contents
	Chapter 1
	Plug-In Processing
	AWsCustomCodeDll
	AWsPreProcessMIDCompleteFo::PreProcessMIDCompleteFo
	AWsPostActionsAddDlg::PostActionsAddDlg
	AWsPostCreateRelatedPickups::PostCreateRelatedPickups
	AWsProcessCustomCrewFrameCmds::ProcessCustomCrewFrameCmds
	AWsProcessCustomFoFrameCmds::ProcessCustomFoFrameCmds
	AWsProcessCustomIcds::ProcessCustomIcds
	AWsProcessCustomMailFrameCmds:: ProcessCustomMailFrameCmds
	AwsProcessCustomMainfrmFrameCmds::ProcessCustomMainfrmFrameCmds
	AwsProcessCustomMapFrameCmds::ProcessCustomMapFrameCmds
	AwsPreCreateAssistOrder:: PreCreateAssistOrder
	AwsGetGPSCoordinates:: GetGPSCoordinates
	AWsPostChangeOperator:: PostChangeOperator
	AWsPostLogonProcess:: PostLogonProcess
	AwsCustomOrderDeleteReassignReturnMsg::ProcessCustomDeleteReassign ReturnMsg

	ASvCustomCodeDll
	ASvBuildGeocodeAddresses::BuildGeocodeAddresses
	ASvCustomDispatchNotification::CustomDispatchNotification
	ASvCustomFieldOrderEODProcess::CustomFieldOrderEODProcess
	ASvFillFoSpares::FillFoSpares
	Remarks:
	ASvModifyCrewMaintInfo::ModifyCrewMaintInfo
	Remarks:
	ASvModifySchedulingInfo::ModifySchedulingInfo
	ASvPostCreateOrderProcess::PostCreateOrderProcess
	ASvPostUpdateOrderProcess::PostUpdateOrderProcess
	ASvPreArchiveFieldOrdersEOD::PreArchiveFieldOrdersEOD
	ASvPreCompletionToRouter::PreCompletionToRouter
	ASvPreOrderCreateProcess::PreOrderCreateProcess
	ASvPreValidateMeterReqToRouter::PreValidateMeterReqToRouter
	ASvProcessAvlCustomIcds::ProcessAvlCustomIcds
	ASvProcessCustomIcds::ProcessCustomIcds
	ASvProcessCustomWarnings::ProcessCustomWarnings
	ASvProcessFoCustomIcds::ProcessFoCustomIcds
	ASvProcessLogoffCustomIcds::ProcessLogoffCustomIcds
	ASvProcessLogonCustomIcds::ProcessLogonCustomIcds
	ASvProcessMiscCustomIcds::ProcessMiscCustomIcds
	ASvReScheduleOrderProcess::ReScheduleOrderProcess
	ASvSetCreatedUpdatedFoFields::SetCreatedUpdatedFoFields
	ASvProcessMfCompletionIcd::ProcessMfCompletionIcd

	ARtrCustomCodeDll
	ARtrProcessCustomIcds::ConvertCustomTransactions
	ARtrCustomConversion::PreConvertFSMSOrderIssue
	ARtrCustomConversion::PreConvertFSMSOrderStatus
	Remarks:
	ARtrCustomConversion::PreConvertFSMSOrderComplete
	ARtrDetermineEmergencyOrder::DetermineEmergencyOrder
	ARtrCustomConversion::PreConvertFoStatusExToClick
	Remarks:
	ARtrCustomConversion::PreConvertMobilitySchedFoToClick

	ACustomIcdsDll
	CECustomCodeDll
	ACEPreProcessTableDownload::PreProcessTableDownload
	Remarks:
	ACEByteToUni::ParamsToUni
	ACEByteToUni::ByteToUni
	ACEUniToByte::ParamsToByte
	ACEUniToByte::ParamsToByte
	ACECustomWirelessConnectivity::GetConnectivity
	ACECustomWirelessConnectivity::IsConnected
	ACECustomWirelessConnectivity::IsWired
	ACECustomProcs::PreProcessLogon
	ACEPostCreatePickupOrder::PostCreatePickupOrder
	CECustomIcdsDll

