| packet

Acme Packet, Inc.

100 Crosby Drive
Bedford, MA 017303 USA
t 781-328-4400

f 781-425-5077
www.acmepacket.com

Last Updated: August 3, 2012
Document Number: 780-0181-00 Rev. 1.0.0

Net-Net® ASC
Web Services
SOAP/REST API

Release Version E3.6.0m5

http://www.acmepacket.com

Notices

©2012 Acme Packet, Inc., Bedford, Massachusetts. All rights reserved. Acme Packet®, Session Aware
Networking®, Net-Net®, and related marks are registered trademarks of Acme Packet, Inc. All other brand
names are trademarks, registered trademarks, or service marks of their respective companies or organizations.

Patents Pending, Acme Packet, Inc.

The Acme Packet Documentation Set and the Net-Net systems described therein are the property of Acme
Packet, Inc. This documentation is provided for informational use only, and the information contained within
the documentation is subject to change without notice.

Acme Packet, Inc. shall not be liable for any loss of profits, loss of use, loss of data, interruption of business, nor
for indirect, special, incidental, consequential, or exemplary damages of any kind, arising in any way in
connection with the Acme Packet software or hardware, third party software or hardware, or the
documentation. Some jurisdictions do not allow the exclusion or limitation of incidental or consequential
damages, so the above exclusions may not apply. These limitations are independent from all other provisions
and shall apply notwithstanding the failure of any remedy provided herein.

Copying or reproducing the information contained within this documentation without the express written
permission of Acme Packet, Inc., 100 Crosby Drive, Bedford, MA 01730, USA is prohibited. No part may be
reproduced or retransmitted.

Acme Packet Net-Net products are protected by one or more of the following patents: United States: 7072303,
7028092, 7002973, 7133923, 7031311, 7142532, 7151781. France: 1342348, 1289225, 1280297, 1341345, 1347621.
Germany: 1342348, 1289225, 1280297, 1341345, 1347621. United Kingdom: 1342348, 1289225, 1280297,
1341345, 1347621. Other patents are pending.

Proprietary & Confidential

Contents

About This Guideco it e e e et e et et e vii
(@ 1 V2 7<) 7P vii
AUdIeNCe vii
Whois Acme Packet? vii
Technical ASSIStanCe . ..ottt it e ettt et ettt et ettt e e aen vii
Customer Questions, Comments, or Suggestions viii
Contact Us ..o e viii
About Net-Net OS-E Documentation.ccoutititnn ittt ineenenenenn. viii
About the Web ServiceInterface............cciiiiiiiii i, 11
INtrOdUCH ON . o .ttt e e e e e e e e 11
Whatis the ASC? ... e 11
What Are SOAP-Based Web Services? 11
What is WS DL ? . . . 11

What is REST? . . .o 11
Whatis WAD L. . .o 12
Specifying Output and Callback.o 12
Accessing the ASC 12
Supported ASC Functionality. 12
Terminology. 12
Authentication. 13
Configuring ACCESSttt 13
Legacyand New Schema 15
Legacy and Custom Event Messages. o i .. 15
Web Services RequUests 16
Get Configuration 17
SOAP . o 17

REST . oo 17

Set CoNfIGUIAtIONttt 18
SOAP . o e, 18

REST . oo 18

Gt StatUS. . o oot 19

Proprietary & Confidential

CONTENTS

SOAD . . 19

REST. . 19
Query Status 19
SOAD . . 19

RES . 20
Execute Action 20
SOAP . . 21

REST. 21
Configuringthe ASC. i e e 22
Instructions and Examples. 22

2 Using ASCCallouts.........oouuiiiiiiiiiiiiiiiii it 25
Web Service Callouts 25
External Policy Service 25
Configuring External Policy Service 26
External Event Service o 29
Configuring External Event Service. 29
Executing dynamic-event-serviceuuuuuutit e 32
Generating Event Messages 38
Sending SIP Event Messages.ouuuuuune e 38
Eventpush Service 39

3 ASCCall Control Action..........couuiuiiiiiiiiiiiiiiiiiiiiinn, 45
Web Service Call Control. ..ot e e 45
Identifying Calls and Sessions. 45
Request IDso 45
Session IDs . ..o 45

Call Leg Handles. 45

SIP Call-IDs. . ..o 45
Configuring Toand From URIs. 46
Action Results. 46
Configuring Call Events. 47
Common Call Events 49
Call-Control ACHONS 54
call L 54
AISCOMMECE . . . vt 55

ALK . 55
COMMECE. . .ot e 56
terminate 56

hold ... 57
TELTIOVE . L . oo 57

iv Net-Net ASC Web Services SOAP/REST API Guide

Proprietary & Confidential

CONTENTS

EFANSTET « .« .o 58
125 o 59
memo-begin. 59
MEMO-ENt 60
Play o 60
drop-file 60
IMESSAZE .« -« e v v e et e e e e e e e e e e 61
insert-dtmf. 62
annotate 62
get-annotation. 62
Identify 63
MOty . .. 63
call-control-fork. 63
call-control-redirect. 64
call-control-media-pause 65
call-control-media-resume. 65
call-control-media-stop 65
call-control-send-message 65
fille-INfO . . . 66
On-Demand Three-Way Conferencing 66
Media Forking 67
Attended Voice Insertion 68
On-Demand Call Monitoring and Recording. 69
Rendezvous Session SUPPOTIt.ttt 73
Manually Attaching and Detaching From an Endpoint. 73
Appendix AASC APIExamples. ...ttt 75
getConfig ... 75
SOAD 75
Request.o 75
ReSPONSE . . o 75
REST . 77
Request. . ..o 77
Response o 77
SetCONfig. . . oo 80
SOAD 80
Request. 80
Response 80
REST . 80
Request.o 80
ReSPONSE . . oo 81
dOAction ... 81

Net-Net ASC Web Services SOAP/REST API Guide v

Proprietary & Confidential

CONTENTS

SO A . 81
Request 81
Unstructured ResSponseo i 82
Structured Response. 82

REST 82
Flat Request. 82
Hierarchical Request. 82
Unstructured Response 82
Structured Response. o 83

getStatus ... e e 83

SO AP . 83
Request 83
ReSpoOnSe . . oo 84

REST 84
Flat ReqUest. . .« oo 84
Hierarchical Request. 84
ReSponSe . . oo 84

QUeTyStatuso e e 84

SO A . 84
Request 84
Response 85

REST 85
Flat Request. 85
Hierarchical Request.o 85
ReSponse 85

Appendix BEvent Message Examples.................ol 87

New Schema / Legacy Content. i i i i 87

New Schema / Custom Content............. 88

vi Net-Net ASC Web Services SOAP/REST API Guide

Proprietary & Confidential

About This Guide

Overview
Net-Net ASC Web Service is a WSDL/REST Application Programming Interface
(API) enabling enterprises, service providers, and third-party developers to
streamline business processes by integrating their applications with IP
communications services.

Audience

Who is Acme Packet?

This guide is written for application developers and network administrators, and
provides information about the Net-Net ASC WSDL/REST-based Web Services
implementation.

For information about Net-Net system training, contact your Acme Packet sales
representative directly or email support@acmepacket.com

Acme Packet enables service providers to deliver trusted, first class interactive
communications-voice, video and multimedia sessions-across IP network borders.
Our family of Multiservice Security Gateways satisfy critical security, service
assurance and regulatory requirements in cable and wireless networks.

Acme Packet, located in Bedford, MA, was established by networking industry
veterans in August 2000. Acme Packet is public company that is traded on the
NASDAQ stock exchange.

Technical Assistance

If you need technical assistance with Acme Packet products, you can obtain it on-
line by going to https://support.acmepacket.com. With your customer identification
number and password, you can access Acme Packet’s on-line resources 24 hours a
day. If you do not have the information required to access the site, send an email to
tac@acmepacket.com requesting a login.

In the event that you are experiencing a critical service outage and require live
assistance, you can contact the Acme Packet Technical Assistance Center emergency
hotline:

» From the United States, Canada, and Mexico call: 1 866 226 3758
e From all other locations, call: +1 781 756 6920

Please note that a valid support/service contract with Acme Packet is required to
obtain technical assistance.

Version E3.6.0m5

Acme Packet, Inc. Technical Publications vii

Proprietary & Confidential

ABOUT THIS GUIDE

Customer
Questions,
Comments, or
Suggestions

Contact Us

Acme Packet is committed to providing our customers with reliable documentation.
If you have any questions, comments, or suggestions regarding our documentation,
please contact your Acme Packet customer support representative directly or email

support@acmepacket‘com.

Acme Packet, Inc.
100 Crosby Drive
Bedford, MA 01730 USA
781 328 4400
781 425 5077

www.acmepacket.com

About Net-Net OS-E Documentation

The Net-Net OS-E references in this documentation apply to the Net-Net OS-E
operating system software that is used for the following Acme Packet and third-
party SBC products:

* Net-Net Application Session Controller (ASC)
¢ Net-Net OS-E Session Director (SD) Session Border Controller (SBC)
e Net-Net 2600 Session Director (SD) Session Border Controller (SBC)

* Third-party products that license and use Net-Net OS-E software on an OEM
basis

Unless otherwise stated, references to Net-Net OS-E in this document apply to all
of the Acme Packet and third-party vendor products that use Net-Net OS-E
software.

The following documentation set supports the current release of the OS-E software.
* Net-Net OS-E — USB Creation and Commissioning Instructions
* Net-Net OS-E — Virtual Machine Information Guide

* Net-Net OS-E — System Installation and Commissioning Guide
* Net-Net OS-E — Management Tools

* Net-Net OS-E — System Administration Guide

* Net-Net OS-E — Session Services Configuration Guide

* Net-Net OS-E — Objects and Properties Reference

* Net-Net OS-E — System Operations and Troubleshooting

* Net-Net ASC — Web Services Samples Guide

* Net-Net OS-E — Release Notes

viii Net-Net ASC Web Services WSDL/REST API Guide Version E3.6.0m5

Proprietary & Confidential

mailto:support@acmepacket.com
http://www.acmepacket.com
http://www.acmepacket.com

ABOUT THIS GUIDE

Revision History

This section contains a revision history for this document.

Revision

Date Number Description
August 3, 2012 Revision Initial release of the OS-E 3.6.0m5 software.
1.00
Version E3.6.0m5 Acme Packet, Inc. Technical Publications ix

Proprietary & Confidential

ABOUT THIS GUIDE

x Net-Net ASC Web Services WSDL/REST API Guide Version E3.6.0m5

Proprietary & Confidential

1

Introduction

About the Web Service Interface

What is the ASC?

What Are SOAP-
Based Web
Services?

What is WSDL?

What is REST?

Applications

The Net-Net ASC Web Service is a SOAP/REST Application Programming Interface
(API) which enables enterprises, service providers, and third-party developers to
streamline business processes by integrating their applications with IP
communications services.

A web service is a software system that supports interoperable machine-to-machine
interaction over a network using HTTP/HTTPS transport.

This document provides a full description of the individual interface definitions that
make up the ASC APL.

The Net-Net ASC is a programming platform that enables enterprises, service
providers, and third-party developers to streamline business processes by
integrating their applications with IP communications services. The ASC
implements both a SOAP-based web service interface, as well as a RESTful web
service interface for invoking remote web services.

Net-Net

Application
Session Controller IP Communications

P>
IP Communication @

Protocols

Web Services

API
Web 2.0 » IP Communications
Business Applications Infrastructure

SOAP is a protocol that uses XML for exchanging structured information in the
implementation of web services. A SOAP message consists of three parts:

* Anenvelope that defines what is included in the message and how to process it.
* Aset of encoding rules which define data objects and types.

* The convention that is used to represent call and response procedures.

For SOAP-based web service, the ASC uses Web Service Description Language
(WSDL) to define its available actions and types.

The ASC also supports REST for its web service API. REST is another API style for
the ASC web service and implements a URI using HTTP and a collection of resources
with three defined aspects:

Version E3.6.0m5

Acme Packet, Inc. Technical Publications 11

Proprietary & Confidential

ABOUT THE WEB SERVICE INTERFACE

What is WADL?

Specifying Output and
Callback

Accessing the ASC

Supported ASC
Functionality

* The base URI for the web service.

* The format of the data returned by the REST URL. This is usually either XML or
JavaScript Object Notation (JSON).

* Aset of ASC web service operations.

There are two action and status report request formats available when using RESTful
web service, flat and hierarchical. When possible, Acme Packet recommends using
the hierarchical format, which is a simpler way to encode REST requests.

For RESTful web service, the ASC uses Web Application Description Language
(WADL) to define its available actions and types.

When using REST, the default format returned by the REST URL is XML. However,
you can request the output format to be JavaScript Notation (JSON) instead.

To change the output to JSON, include output=json in the URI.

The ASC supports JavaScript callbacks when using REST. If you specify a JavaScript
function name in a callback, the ASC calls the JavaScript function with the string as
its parameter.

To configure a callback, include callback=xxx in the URI, where xxx is the name of
the JavaScript function to call back with the output.

The ASC web service interfaces are platform-agnostic. Any application
environment, programming language, or development environment capable of
sending HTTP requests may be used, including:
+ Programming languages (ie., C#, Java)
« Mobile platforms (ie., iOS, Android)
» Purely web-based languages (ie., JavaScript, PHP, Python)
To access the web services homepage, the default is

http://x.x.x.x:8080
where x.x.x.x is the IP static-address where the web-services configuration is
enabled.

The ASC web services homepage is where all user documentation and samples are
located.

The ASC API supports retrieving and setting all configuration objects, invoking all
actions, and retrieving all status reports available on the Net-Net OS-E.
Configuration, action, and status objects are referred to in this document and in the
API as objects and sub-objects.

Terminology
The following terms are used throughout the document:
* Object — Configuration, status, or action data.
* Property — Attribute of an object
12 Net-Net ASC Web Services SOAP/REST Provisioning API Guide Version E3.6.0m5

Proprietary & Confidential

Authentication

Configuring Access

ABOUT THE WEB SERVICE INTERFACE

» Alias — Display name of an object or property

The ASC requires authentication of client endpoints for security purposes. When a
request is sent by a web services application to the ASC, a session cannot be
established without authentication being performed.

The ASC can perform either basic authentication, which requires HTTP basic
authentication for client connections, or it can perform certificate-based
authentication. This requires an HTTPS certificate for authentication of client
connections. Upload a unique certificate via the vsp > tls object.

NOTE: In order for authentication information to be encrypted, you must be
using HTTPS.

When SOAP-based messages are used to send requests to the ASC and access
permissions have been configured, the SOAP client endpoint sending the request
must also send the username and password with the request. Basic HTTP
authentication is supported, as well as certificate-based HTTPS authentication.

REST requests can be authenticated using basic HITP authentication, or can use the
REST-specific login action, defined in all WADLSs published by the ASC.

The ASC communicates with web services applications in “sessions”. A session
timeout is not configurable and is hard-coded to 30 minutes.

For authentication to work, you must have at least one user configured under the
access object, with access > permissions > web-services set to enabled.

NOTE: Users with the web-services permission enabled have access to the
entire ASC system (all configuration objects, statuses, and actions).

The first step is to create a permission set with web-services enabled. Once this has
been done, create a user and assign that user the web-services enabled permission
set.

To create a web-services permission set:
1. Click the Access tab and select access.

2. Click Add permissions.

3 o .
Access Permissions
acme /¢ packet
Status Summary Logout admin it bty beesieciisionten hade seicenetd bikinsbissains el iisosien i ol gsuseusinstaii ipubeind s oot g . poiiod Access [rmmm——
Access Permissions: Configure access Help Index
all
Set Reset Delete
|Conﬁguration| Setup View ‘
B et permissions Add permissions
users
directories directories | admin
Edit Delete |users enabled
Add enterprise

Add radius

Add users

permission-filters copfiqure

ﬂ Reset

Version E3.6.0m5

Acme Packet, Inc. Technical Publications 13

Proprietary & Confidential

ABOUT THE WEB SERVICE INTERFACE

3. Name the permission set and click Create. The page listing all available
permissions appears. This example shows a permission set named “Web-
services admin.”

Access Permissions
acme /¢ packet

Stotus Summary._ Logout sgmin O ————— O Access LLICH
Access Permissions: all Configure access\permissions "Web-services admin” Help Index

‘ Configuration ‘ Setup | View | Set RBSBT-I BE‘CKJ COW] Delete I

=l access

permissions "Web-senices admin” * name Wb senscas admn
users
cli |normal ™| (Standard CLI access)

gui |W~j (Full access to the NNOS-E GUL)
user-portal |Tsab\ed V| {No portal access)
config [enabled % (readiwrite configuration access)
status |enabled %| (Resource is active)

actions EEEEE_\E_d;V-I (Resource is active)

call-logs Ienab\ed ¥| (Resource is active)
1 lat: i v

emplates Lenab\ed ™| (Resource is active)
troubleshooting |ﬂab\ed ¥| (Resource is active)

web-services Ienab\ed ‘j] (Resource is active)
g | : L

debug ienab\ed ™| (Resource is active)

N | PETEW

ler-import |enabled ¥| (readiwrite configuration access)

login-attempts enter |unlimited {from 3 to 12 default=unlimited) or select from I“”“L,Ed"]
(no limit on the number of failed login attempts)

permitted-views Edit permitted-views

config-filter M| Create

actionfilter ,_v Create

gui-tools-update- [enabled v (Resource is active)

software

gui-tools-upload-iles [e?ag\e_d_‘j {Resource is active)

gui-tools-download- | enabled (Resource is active)

files

4. Enable web-services and click Set. The permission set is created.
5. Update and save the running configuration.

6. Click users and select Add user.

* o
Access Permissions
acm%ﬁacket

Status Summary Logout admin [FTTOTIve -0 guratro

Access Permissions: all Configure access\lusers Help Index

| Configuration | Setup ‘ View | Set Reset I BECKI Delete

B access
permissions "Web-senices admin” admin | enabled *’I (Resource is active)
users R

password-policy Configure

uses Add user

-Sitj Reset Back

7. Enter the user name and password.

14 Net-Net ASC Web Services SOAP/REST Provisioning API Guide Version E3.6.0m5

Proprietary & Confidential

ABOUT THE WEB SERVICE INTERFACE

8. Select the permission set just created with web-services enabled. This example
shows a user named Admin.

* Lrezis
Access Permissions
acme /¢ packet
Status Summary Logout admin Home T Conmguration™Statis™ "Call Cogs™ " Event Dogs™MATHoNS ™ "SEvICes™ "Reys™ RbEt iy T0015™
Access Permissions: all Create accesslusersiuser - Step 1 of 1: Edit user Help Index

|Cnnﬁgurahun| Setup ‘ View |

Please provide some basic information for user. Then press "Create”.

E access

permissions "Web-senices admin”
users

* name Admin
* password E——
confirm essas|

permissions access\permissions "Web-senices admin” ¥ | Create

Createl Reset] Cancel |

9. C(lick Create.
10. Click Set. The user is created.
11. Save and update the configuration.

Legacy and New Schema

There are two types of schema the ASC supports, legacy and new. The schema is the
WSDL'’s .xsd file’s specification of all configuration, status, action, and event objects
on the ASC. These schemas are equivalent and support the same functionality. The
ASC supports the existing legacy format for backwards compatibility and in the
cxc.wsdl file, generates verbose Java and C# code.

The new format is much more compact and concise than the legacy. The file name
for the new format is AcmePacketASCManagement.wsdl.

NOTE: Acme Packet recommends you use the new schema, particularly if you
are implementing a new ASC application. Existing ASC applications may
continue to use the legacy format for backwards compatibility purposes only.

Legacy and Custom Event Messages

The ASC includes certain standard information in the event messages it sends.
However, you can choose to include new information not included in the standard
format. You can configure the ASC to include custom content in these event
messages.

See Appendix B: Event Message Examples for examples of both legacy and new
format and legacy and custom content event messages.

To include custom information in event messages:

1. Click the Configuration tab and select either default-session-config or
session-config-pool > entry.

2. Click on the third-party-call-control object.

Version E3.6.0m5

Acme Packet, Inc. Technical Publications 15

Proprietary & Confidential

ABOUT THE WEB SERVICE INTERFACE

3. Set admin to enabled.

& 5
@/ Yot Configuration
Status Summarv Logout admin gy Configuration g et s ol il ool el
~
Configuration: all Configure vsp\default-session-config\third-party-call-control _ Show basic Help
Index
‘Conﬁguration‘ Setup | View
Set Reset | Back | Delete |
B cluster
E vsp
= default-session-config dinii R |
authentication At i,‘mﬂ"r‘ [Resource is active)
accounting i
third-party-call-contral status-events ‘:l (both call-legs)
H tls leeerereereere L 4
static-stack-settings handle-refer-locally | enabled V‘ (Resource is active)
= session-config-pool e
B enterprise forward-unresolved-replaces | disabled ?‘ (Resource is inactive)
accounting T &

4. Select custom from the call-control-events-version drop-down box. The
default is legacy.

5. Click Configure next to custom-event-fields to set the custom event fields to
include in the event messages.

* -
Configuration
acme /(¢ packet
R S | LORS My Configuration e ol e s il sl
~
Conﬁguration: all 3 RLSErH Browse System Files
allow-lcr-for-refer
‘ Configuration ‘ Setup | View
inhibit-provisional-r after-
Bl cluster Ipnralckl il "
box 1
B wsp call-control-events-version

= default-session-config

authentication custom-event fields

accounting
third-party-call-control
tls it propagate reinvite-from-header
static-stack-settings
session-config-pool E dtmf-detected-events

enterprise

For more information on configuring named variables and regular expressions,
see Using Regular Expressions in Chapter 1: How to Use the ACLI of the Net-
Net OS-E Objects and Properties Reference Guide.

6. Click Set.
7. Update and save the configuration.

Web Services Requests

A web service request is a request made by a web services application sent via
HTTP/HTTPS to the ASC web services server. When the server receives a request, it
processes it and sends back a response.

The response that the ASC sends back contains a code number and a message. If the
action was successful, the code is 0. If there is an error with the request, the code will
be a value other than 0. The error message describes what error occurred.

When processed successfully, the response can contain:
+ Information requested via the following top-level APIs
+ get configuration

* get status

16 Net-Net ASC Web Services SOAP/REST Provisioning API Guide Version E3.6.0m5

Proprietary & Confidential

Get Configuration

SOAP

REST

ABOUT THE WEB SERVICE INTERFACE

* query status
+ Status for an operation being performed via the following top-level APIs
+ set configuration

* execute action

Request

Web Service Web Service
Application Response Server

The ASC “Get configuration” APl is a request to the server to receive all or a portion
of the configuration. Specify the configuration objects or properties you want
returned. If you specify no parameters, the entire configuration is returned.

The internal names for the top level configuration objects are:
+ cluster—Cluster

* services—Services

* master-services—MasterServices

+ vsp—SCP

» external-services—ExternalServices

+ preferences—Preferences

* access—CXCAccess

» features—Features

* box—Box

The SOAP “Get configuration” request name is getConfig.
Response Content:

XML Format: The configuration. The schema is defined in cxc.xsd (legacy) or
AcmePacketASCManagement.xsd (new).

The REST “Get configuration” request resource path is

/cms/config
using the HTTP GET method.

If parameters are specified, include the path of the configuration under the top level
object to be retrieved.

Response Content:

XML or JSON format (XML is the default if no format is specified): ExtPageList
structure. This includes:

+ objects—Configuration objects

Version E3.6.0m5

Acme Packet, Inc. Technical Publications 17

Proprietary & Confidential

ABOUT THE WEB SERVICE INTERFACE

Set Configuration

* resultCode—O0 if success; error code if error occurs

+ resultStr—"Success” if success; error message if error occurs

The ASC “Set configuration” APl is a request to the server to change all or a portion
of the configuration.

SOAP The SOAP “Set configuration” name is setConfig. Specify the configuration
parameters you want to set, then specify a mode. The valid modes are:
+ merge—Merges the configuration in the request with the existing configuration
on the ASC.
+ replace-full—Replaces the entire existing configuration on the ASC with the
configuration in the request.
+ replace-partial—Replaces only top-level existing ASC configuration with top-
level configuration objects in the request.
Response Content:
XML Format: setConfigResponse structure. This includes:
+ Code—"Success” or “Error”
» Text—Error code if error occurs
REST The REST “Set Configuration” API request resource path is
/cms/config
using the HTTP POST method.
Specify a mode. The valid modes are:
+ merge—Merges the configuration in the request with the existing configuration
on the ASC.
+ replace-full—Replaces the entire existing configuration on the ASC with the
configuration in the request.
+ replace-partial—Replaces only top-level existing ASC configuration with top-
level configuration objects in the request.
Specify an operation. The valid operations are:
+ add—Add an object to the configuration.
+ modify—Modify an existing object in the configuration.
* delete—Delete an object from the configuration.
Specify the configuration to be added or used to update the XML by entering the
configuration path. If you specify no configuration parameters, the entire
configuration is modified.
If applicable, specify the property of an object to which new configuration is being
added.
Response Content:
XML or JSON format (XML is the default if no format is specified): structure
18 Net-Net ASC Web Services SOAP/REST Provisioning API Guide Version E3.6.0m5

Proprietary & Confidential

Get Status

SOAP

REST

Query Status

SOAP

ABOUT THE WEB SERVICE INTERFACE

* Result code—O0 if success; non-zero if error occurs

* Result string—"Success” if success; error message if error occurs

The ASC “Get status” APl is a request to the server to receive all or a portion of the
statuses on the ASC. When working with SOAP, you cannot specify a filter and must
receive the entire status report. When working with REST, you can specify a filter to
return a subset of the status report. If no filter is specified, the entire status report is
returned.

The SOAP “Get status” request name is getStatus.
Response Content:

XML format: getStatusResponse structure

The REST “Get status” request resource path is
/cms/status/<status alias>

using the HTTP GET method.

Specify the pageSize. This is the number of entries returned per page. This is only
sent on the first request.

Specify the page. This is the page number to retrieve. This value always starts with 1.
Response Content:

XML or JSON format (XML is the default if no format is specified).

» objects—A list of status objects being returned.

+ totalPages—The number of pages of status objects.

* pageSize—The number of entries on each page.

+ currentPage—The page number for the current page. This number always starts
with 1.

+ resultCode—The result code. This number is 0 if the request is successful and a
non-zero if an error occurs.

+ resultStr—The result string. This string is “Success” if the request is successful
and an error message if an error occurs.

The ASC “Query status” APl is a request to the server to retrieve the status report
from the server.

The SOAP “Query status” request name is queryStatus.

Specify the status you want to retrieve in XML format. The following example
returns the entire show processes status report:

<status><Processstatus/>

Version E3.6.0m5

Acme Packet, Inc. Technical Publications 19

Proprietary & Confidential

ABOUT THE WEB SERVICE INTERFACE

REST

Execute Action

You can also specify a property value in the status object to filter the results further.
To do this, include

<condition>condition</condition>
in the request where condition is the status filter you want to use.

Response Content:

XML format: queryStatusResponse structure

The REST “Query status” request source path is
/cms/status/<status alias>

using the HTTP GET method.

Specify the pageSize. This is the number of entries returned per page. This is only
sent on the first request.

Specify the page. This is the page number to retrieve. This value always starts with 1.

You can further narrow the status results by using the search.x parameter, where x
is the property used for filtering status results.

Response Content:

XML or JSON format (XML is the default if no format is specified).
» objects—A list of status objects being returned.

+ totalPages—The number of pages of status objects.

* pageSize—The number of entries on each page.

+ currentPage—The page number for the current page. This number always starts
with 1.

+ resultCode—The result code. This number is 0 if the process is a success and a
non-zero if an error occurs.

+ resultStr—The result string. This string is “Success” if the process is a success
and an error code if an error occurs.

The ASC “Execute action” APl is a request to the server to perform an action. The
ASC can return action data in one of two ways, unstructured or structured. The
majority of ASC actions only support unstructured data.

The following actions return structured data:
* arp request

» call-control-attach

+ call-control call

» call-control connect

» call-control-create-session

+ call-control disconnect

» call-control fork

» call-control hold

20 Net-Net ASC Web Services SOAP/REST Provisioning API Guide Version E3.6.0m5

Proprietary & Confidential

SOAP

REST

ABOUT THE WEB SERVICE INTERFACE

+ call-control join

+ call-control-monitor-session
+ call-control park

+ call-control annotate

» call-control-redirect

» call-control retrieve

» call-control terminate

» call-control transfer

+ call-control-intercept

+ call-control-send-message
+ config validate

+ file-info

+ file-play

* ping

* dynamic-event-service

For information on the structured information returned by each of these actions,
access the Actions > Response Structures in the web services on-line REST
documentation.

The ASC supports two SOAP APIs for “Execute action”, doAction and doActionEx.
The doAction APl is used for returning unstructured data and the doActionEx APl is
used for actions that return structured data.

Specify the action you want performed in XML format, including all properties.
Response Content:

XML format: doActionResponse structure. This includes:

+ Code—"Success” or “Failure”

» Text—Error message if error occurs

* Message—Informational text

+ Structured Content if a structured response is being provided.

The REST “Execute action” request resource path is
/cms/action/<action alias>
using the HTTP GET method.
The parameters you must specify vary depending on the action. To view this
information see the web services on-line REST documentation. To do this:
1. Type http://<ip:port> into the browser.
2. Click on REST in the left panel of the screen.
3. Click on the Actions link on the REST documentation page.

Response Content:

Version E3.6.0m5

Acme Packet, Inc. Technical Publications 21

Proprietary & Confidential

ABOUT THE WEB SERVICE INTERFACE

XML or JSON format (XML is the default if no format is specified): structure. This
includes:

» resultCode—O0 if success; non-zero if error occurs

: V4 Y/ :
+ resultString—"Success” if success; error message if error occurs
e Info—Informational text

+ Structured Content if a structured response is being provided.

Configuring the ASC

This section describes how to configure the web-service object. This is necessary for
the ASC to function properly.

Instructions and Examples

To access web-service on the ASC:

1. Click on the Configuration tab and select web-services. This can be done via
the box object using the following path.

Configuration: all

Configuration
B cluster
B box 1
B interface eth0
Hipa

telnat
ssh
web
web-senice
icmp

routing
cli

Or it can also be done via the vrrp object using the following path.

Configuration: all

|C0nﬁguralmn| Setup | View

B cluster
box 1
= virp
B vinterface w0
E ip "IP Int1"
web-senvice

2. admin—Set this property to enabled to start the ASC web services process.
This property is enabled by default.

3. protocol—Select the protocol you want to use. After selecting the protocol,
select the web services listening port (or accept the default). This is the port the
server listens on for HTTP(S) requests. If HTTPS is specified, specify the vsp >
tls certificate to use with encryption.

The default values for this property are http 8080 or https 8443. The valid values
are:

+ http [port]—Sets an insecure (unencrypted) protocol for use in web
transmission. Optionally, you can configure a listening port different than
the default.

+ https [port] <certificate> [alias]—Sets a secure transmission of data by using
HTTP over SSL. Optionally, you can configure a listening port different than

22 Net-Net ASC Web Services SOAP/REST Provisioning API Guide Version E3.6.0m5

Proprietary & Confidential

ABOUT THE WEB SERVICE INTERFACE

the default. Enter the vsp\tls certificate to use with encryption along with an
optional alias value.

4. max-threads—Enter the number of threads available to process a request. This
includes the number of simultaneous requests and users for your application.
The default setting is 10. The valid values are:

e Minimum—1
e Maximum—>50

5. min-spare-threads—Leave this value at 1, the default. This is the minimum
number of idle threads for processing requests.

6. max-spare-threads—Leave this value at 5, the default. This is the maximum
number of idle threads for processing requests.

7. max-message-process-threads—Enter the maximum number of threads used
by the web services process to receive messages from other ASC processes. The
default setting is 10. The valid values are:

e Minimum—10
e Maximum—200

8. max-http-connections—Enter the maximum number of outbound
connections for callbacks from the ASC to the web services application for
external event notification and external policy processing. The default value is
100.
¢ Minimum—100
* Maximum—300

9. max-http-client-connections—Enter the maximum number of outbound
connections to any single host running web services application for callbacks
such as external event notification and external policy processing. The default
value is 10.
¢ Minimum—>5
* Maximum—100

10. authentication—Select the type of authentication you want to use for the ASC
web service. The default setting for this property is certificate.

» Basic—This requires the ASC to use HTTP basic authentication for client
connections.

« Certificate—Uses HTTPS SSL certificates authentication for client
connections.

NOTE: You must have at least one user configured under the access object with
access > permission > web-services set to enabled in order for authentication

Version E3.6.0m5 Acme Packet, Inc. Technical Publications 23

Proprietary & Confidential

ABOUT THE WEB SERVICE INTERFACE

to work. Users with the web-services permission enabled have access to the
entire system (all configuration, statuses, and actions).

Configuration

acme/¢' packet

Status Summary Logout admin PHome" Rl e UL T StatsT T Call Togs™ "Tools |

Configuration: all Configure clusteribox 1linterface eth0lip a\web-service Help Index

| Configuration | Setup | View ‘ Set Reset j BﬂCkJ Delete J

= cluster Press "Set” to keep these values.

B box 1
E interface eth(
Hipa et admin enab\ed_:i (Resource is active)
fvii * protocol

web-service e
icm -
roul‘\)ng poG 8787 (at minimum 1 default=8443)
cli : i
virp certificate vsp\isicertificate cet00 % | Edit Create

B vsp
default-session-config alias l—
tls

static-stack-settings alithertication

iif:f\;:l;cewﬁg-pool type [certificate (¥ (Use HTTPS SSL certiicates authentication for client
accoumm_g connections)
h323-zettings A @i@ Cin
application EJ Create
max.threads flo (om1to 500 default=10)
min.spare-threads [(fom 0 to 50 defauli=1)
max-spare-threads [(rom0to 50 defaut=5)
siex e procdsy: [le (rom 10 to 200, default=10)
max-http-connections 100 {fram 100 to 300 default=100)

max-http-client- 10 (from 5 to 100 default=10)

connections

11. Update and save the running configuration.

24 Net-Net ASC Web Services SOAP/REST Provisioning API Guide Version E3.6.0m5

Proprietary & Confidential

Using ASC Callouts

Web Service Callouts

The Net-Net ASC supports web service callouts. A callout is when the ASC initiates
contact with the web service client. Web service callouts are only supported in
WSDL.

Request

Neb S ~ag
Web Services ASC
Application Response

The ASC API supports two uses of callouts.

» External policy service—Sends policies when the ASC processes SIP messages

+ External event service—Sends event notifications

External Policy Service

The external policy service sends a request to the web services application whenever
the ASC is processing a SIP message. The web services application examines
information about the SIP message and based on that information, returns the policy
that it wants applied to the SIP message.

The WSDL request name is getAuthSessionPolicy.

Policies are configured and applied on the ASC in a specific order. The following is
the hierarchy of session-config and normalization application:

+ default-session-config

+ policy

+ server inbound session-config

+ server inbound normalization

+ dial-plan/registration-plan > normalization

+ dial-plan/registration-plan > arbiter > session-config
+ dial-plan/registration-plan > route normalization

+ dial-plan/registration-plan > route > session-config

+ Policy sent from the web services application to the ASC via the
getAuthSessionPolicy request

+ server outbound session-config
+ server outbound normalization

* server outbound normalization session-config

Version E3.6.0m5

Acme Packet, Inc. Technical Publications 25

Proprietary & Confidential

USING ASC CALLOUTS

Configuring External To configure the ASC so that the external policy service works properly, you must
Policy Service configure a policy-group with a policy-service. Then, you must configure an
authorization policy.

To configure policy-group and policy-service objects:

1. Click the Services tab and select external-services.

2. Select new from the policy-services-type drop-down box.

* Services
acmeﬁfacket

Status Summary Logout admin RomeT M Contiguration™ Statdas™ T Call" Cogs™ " Event Logs ™ ACons™| Services | KeysTTACCesS 00
Services: all Configure external-services Help Index
‘ Configuration ‘ Setup | View | Set Reset Delete
El semvices P
event-log policy-servicestype |new (v (New style)
Bl master-services)
Ul policy-group Add policy-group
route-server
extemnal-services K
=l preferences location-group Add location-group
qui-preferences
features event-grouy Add event-group
3. Click Set.

4. Click Add policy-group.

5. Enter a name for the policy-group you are creating.

* Services
acme /¢ packet

Status Summary Logout admin ome™FConfgration™ = Statis™CallCogs “FEvent Logs™Actions e plIeel " Reys™ M AcEess o015
Services: all Create external-services\policy-group - Step 1 of 1: Edit policy-group Help _Index

| i | I ‘ e Please provide some basic information for policy-group. Then press "Create”.

B senices -
name
event-log group |
=l master-senices
database
e b Create | Reset] Cancel]

external-senices

6. Click Create.

7. failover-detection—Leave this value at none, the default. The ASC performs
no failover detection. If a request is not serviced, the system continues to send
requests until a configured timeout value is reached or the request is manually
withdrawn.

8. max-queue-length—Leave this value at 64, the default. This is the maximum
number of WSDL requests that can be queued for a policy group (awaiting
assignment to a server). If the queue grows to this number, subsequent requests

are rejected, with the result “queue-clipped,” until the queue drops below this
level.

9. connection-mode—Specify the manner in which connections between the
ASC and WSDL client are established and maintained. The default value is
persistent 10 /covws,callouts?wsdl. The valid values are:

+ persistent [seconds][page] —Connections are initiated at boot time, and
maintained using periodic keepalives. Specify an inactivity timeout, between
2 and 120 seconds, and a keepalive page.

+ lingering—Connections are made on demand, then linger until broken by
the remote server.

26 Net-Net ASC Web Services SOAP/REST API Guide Version E3.6.0m5

Proprietary & Confidential

USING ASC CALLOUTS

+ transient—Connections are made on demand, then broken when a response
is received.

10. overall-request-timeout—Leave this value at 5, the default. This specifies the
number of seconds a request can remain in the queue for a policy server before
it is timed out by the ASC.

11. Click Set.

* Services
acme /¢ packet

e RN B g o i i ey i SeTviIces R il
Services: all Configure external-services\policy-group group1 Show advanced Help Index
| Configuration | Setup ‘ View | Set Reset Back Copy Delete
E senices
& gvent-log * name {—'
= master-senices group?
® database o z
ot eaner failover-detection
= external-senices type ‘ none "‘ {Do not detect or react to external serice failures)
policy-group groupd
S pretances max.queue lerigth gy (from 1 to 512 defauli=64)
qgui-preferences
features connection-mode e
'39"';795"9”' }_persislem ¥| (Connection is made immediately, and kept active with
it periodic keepalive messages)
inactivity-time 10 seconds(from 2 to 120 default=10)
keepalive- fcovws/callouts ?wsdl
page
overall-request- 5 seconds{from 1 to 30 default=5)

timeout

policy-service Add policy-service

request-format i_legacy | (use the legacy format)

12. Click Add policy-service.
13. Enter a name for the policy-service.

14. Enter the service-url. This is the web service client’s endpoint URL.

Services
acme /¢ packet
Status Summary Logout admin R N —
Services: all Create external-services\policy-group group1\policy-service - Step 1 of 1: Edit policy-service Help

Index

‘Cnnﬁguraﬂun‘ Setup | View

Please provide some basic information for policy-senice. Then press "Create”.

El senices
event-log .
storage-device name servicel
El master-services . .
database service-url http://10.0.1.10:8081

route-server
El external-services
policy-group group1 Createl Reset| Cancel |
El preferences
qui-preferences

15. Click Create.

16. admin—Leave this enabled, the default. This enables this policy service for use.

17. connect-timeout—Leave this value at 500, the default. This specifies the length
of time, in milliseconds, that the ASC allows to complete a connection to the
external policy service before cancelling the request.

18. read-timeout—Leave this value at 2000, the default. This specifies the length of
time, in milliseconds, that the ASC waits for a response from the external policy
service before cancelling the request.

Version E3.6.0m5 Acme Packet, Inc. Technical Publications 27

Proprietary & Confidential

USING ASC CALLOUTS

19. priority—Leave this value at 1, the default. This specifies the priority of this
server within the policy group. The lower the number, the higher the priority.

20. connection-count—Leave this value at 1, the default. This specifies the number
of simultaneous connections allowed to this server.

* Services
acmeﬂﬁs'cket

e Il e i e PRI Ll —
Services: all Configure external-services\policy-group group1\policy-service servicel Help Index
| Configuration | Setup ‘ View | Set Reset ‘ Back ‘ Copy | Delete |
= senices
svent-log * name W

storage-device
B master-senices

database S enabled ¥/ (Resource is active)
route-server A .
B external-senices service-url http-//10.0.1.10-8081
policy-group groupd
=l preferences heartbeat-url
qgui-preferences
features LR L ’5007 ms(from 100 to 30,000, default=500)
LCER T 2000 msffrom 100 to 30,000, default=2000)
priority 1 (from 1 to 99 default=1)
G S LT hil'fmm 1 to 16,default=1)

21. Click Set. Update and save the configuration.

To configure the authorization policy object:

1. Click the Configuration tab and select vsp.

2. Select either default-session-config or session-config-pool > entry. (If you
configure entry, you must reference it.)

Click Configure beside the authorization property.

4. mode—Select WSDL from the drop-down box. The ASC sends the request for
authorization data retrieval to the external services policy server specified in the
policy-group object. The default is None.

When you select WSDL, the following properties appear.

+ PolicyServices—Select the previously configured policy-group object from
the drop-down box. If it is not there, you can create it by clicking Create and
entering the path to the policy group.

+ send-sip-message-headers—Select true. This allows SIP message headers
to be sent to the web services client.

+ send-sip-message-content—Select true. This allows SIP message content
to be sent to the web services client.

+ routing-mode—Leave this set to override, the default. This means any
routes returned by authorization override the dial plan results.

*» Priority—Leave this set to 100, the default.

5. always-perform-lookup—Leave this set to true, the default. This means the
ASC retrieves authorization data regardless of other configuration settings.

28 Net-Net ASC Web Services SOAP/REST API Guide Version E3.6.0m5

Proprietary & Confidential

USING ASC CALLOUTS

6. apply-to-methods—Select the SIP messages to which the ASC applies
authorization processing. The default is INVITE.

& -
Configuration
acmeﬁﬁ?cket

Stalus Summarv Locout admin R Configuration e et bl bl il o Gl il il
Configuration: all Configure vsp\default-session-configlauthorization Help Index
[Configuration | Setwp [View | Set Reset‘ BackJ Delete
= cluster Press "Set” to keep these values.
box 1
= vsp
default-session-config mode i i
Uls type |WSDL % | (Perfarm WSDL autharization)
static-stack-settings 5 :
session-config-pool * Policy Services xt [\pol 1 % Edit Cra
R | extemal-senices\policy-group groupt ¥ | £ Create
accounting send-sip-message- |
h323-settings header[; 3 e 0§
= external-services
policy-group group1 send-sip-message- |true (%
content i
routing-mode | override v {Any routes return by authorization override the dial
plan results)
priority {100
always-perform- [true
lookup = &5
apply-to-methods INVITE ~
REFER =
MESSAGE
INFO ~
Select All | Unselect All ‘
sequence [~

| Create

7. Click Set. Save and activate the configuration.

External Event Service

Configuring External

Event Service

The external event service sends, or “pushes,” notifications of all events generated
by the ASC to a web services application. These events are all available as SNMP
traps, however, this service allows you to receive events without having to use
SNMP.

The WSDL request name for this service is processEvent.

Using Cometd 2.0, the OS-E supports channels, a dynamic, path-like hierarchy
describing the topic of an event. Third-party applications can subscribe to events on
specific channels and, thus, narrow the scope of events to process.

In releases prior to 36.0m5, users could subscribe only to specific, hard-coded,
request-ID based channels. By default, the OS-E still emits the legacy channels,
however, you can disable them if they are no longer used. To stop the OS-E from

using the legacy channels, set the eventpush-service > legacy-events property to
disabled.

There are two ways to enable web services event processing, configuring external-
event-groups or via the dynamic-event-service action.

To configure the ASC so that the external event service works properly, you must
configure an event-group with an event-service. Then reference the event-group
in the vsp > external-event-group object. You must also set the third-party-call-
control > status-events property to both.

Version E3.6.0m5

Acme Packet, Inc. Technical Publications 29

Proprietary & Confidential

USING ASC CALLOUTS

To configure event-group and event-service objects:

1. Click the Services tab and select external-services.

2. Click Add event-group.

* Services
acme /¢ packet

TR TRy L O By [PHTOTTIC S COTUT AHOT Sttt AT COU= “CVCI COs = RCHONS ™~ BEL L PREY S PACCCSS T 0015
Services: all Configure external-services Help Index
| Configuration | Setup ‘ View | Set Reset Delete
B semices = -
event-log policy-services-type . (01d style (via Java))

= master-senices
database
route-server
external-senices
= preferences
gui-preferences
features event-group

policy-group Add policy-group

location-group Add location-group

Enter a name for the event-group and click Create.

4. Click Edit trap-filter. A list of categories appears. If you don't select any
categories, all events are sent.

To receive events only pertaining to calls, set trap-filter to csta.

Services
acme /¢ packet

Slatus Summary Locout sdmin i e il S e i Services Rl i s

Services: all Configure external-services\event-group group1 trap-filter
‘ Configuration ‘ Setup | View | Back | view option list
Bl senices I” generic
event-log [hta
El master-senvices
database I dos
route-server I™ h323
El external-services b
event-group groupl :
El preferences I sip
gui-preferences I system
features I tls
Select all I Unselect all
B
5. Click OK.

6. Click Add event-service.

7. Enter a name for the event-service.

30 Net-Net ASC Web Services SOAP/REST API Guide Version E3.6.0m5

Proprietary & Confidential

USING ASC CALLOUTS

8. Enter a service-url for this event-service. This is the web services client

endpoint.

acme /¢ packet

Status Summary Logout admin

Services: all

|Conﬁguratmn| Setup ‘ View

B senices
event-log
storage-device
B master-senices
database
route-server
B external-senices
policy-group groupd
event-group group1

Services

Create external-services\event-group groupi\event-service - Step 1 of 1: Edit event-service Help
Index

Please provide some basic information for event-service. Then press "Create”.

* name senicel
“service-url http://10.0.10.10:8080

Create | Reset | Cancel |

9. C(lick Create. Update and save the configuration.

To reference the event-group to the vsp > external-policy-group:

1. Click the Configuration tab and select vsp.

2. Click Edit external-event-group next to the external-event-group property.

Note: This is an Advanced property. You must click the Show advanced button
at the top of the page to see this property.

other properties:

displayname-character-set-info Configure

access Configure
phones Configure
presence-database Configure
database Configure
admission-control Configure
oci-settings Configure

external-event-group
authorization-settings
dtmf-generation
codec-payload-type-bindings
sip-manipulation-pool

multimedia-streaming-config

Edit external-event-group
Configure
Configure
Configure
Configure

Configure

3. Select the previously created event-group you are referencing. A list of all
event-groups configured on the box appear. If no event-groups have been
created you can create one.

acme pabket

Configuration

Status Summary Logout admin

AL Configuration. MU0 M e L R

Configuration: all

|Cunﬁgur3{mn| Setup | View ‘

= cluster
box 1
B vsp
default-session-config
session-config-pool
enterprise
accounting
h323-settings

e

Configure vsp external-event-group

Back

¥ external-sernvices\event-group groupd

o

Enter a path for: external-serices\event-group
Path: Create

Version E3.6.0m5

Acme Packet, Inc. Technical Publications 31

Proprietary & Confidential

USING ASC CALLOUTS

4. Click OK. Update and save the configuration.

To receive call-control events:

1. Click the Configuration tab and select vsp.

2. Select either the default-session-config or the session-config-pool > entry
property.

3. Click Configure next to third-party-call-control. The third-party-call-
control object appears.

4. Select both from the status-events drop-down box.

Click OK. Update and save the configuration.

Executing dynamic- A web application can register itself by using the web service REST and SOAP clients
event-service to call the dynamic-event-service register action. Using the dynamic-event-
service keepalive action you can keep current registrations alive, and via the
dynamic-event-service unregister action, the web application can unregister
itself. The action syntax is:
dynamic-event-service register <endpoint> [channels] [xml-format]

[time-to-T1ive]l [connect-timeout] [read-timeout] [character-set]
[request-style] [include-channels-in-events]

dynamic-event-service keepalive <registration-id>
dynamic-event-service unregister <registration-id>

Valid arguments for the dynamic-event-service register action are:
+ <endpoint>—The application endpoint that receives events.
* [channels]—The channels for which the endpoint is getting events.

* [xml-format]—The XML format used by this server. This can be either simplified
(the default) or legacy.

» [time-to-live]—The time to live, in minutes, for the keepalive on this registration.
The default is untilRestart, meaning the registration stays alive until the system
is restarted.

* [connect-timeout]—The connect timeout, in milliseconds, for the endpoint. The
default is 1000.

* [read-timeout]—The read timeout, in milliseconds, for the endpoint. The default
is 1000.

* [character-set]—The character set to use when forming requests to this endpoint.
This can be utf-8 (the default) or is0-8859-1.

* [request-style]—The style to use when sending events to this listener. This can be
SOAP (the default), XML, or JSON.

e [include-channels-in-events]|—Whether channels are included in events. This is
enabled by default.

Once an application has registered itself to receive events, you can view information
about the registration via the show dynamic-event-services status provider.

NNOS-E>show dynamic-event-services

endpoint: 10.0.0.10
registration-id: d710c03c-70b3-454d-9ee2-clb6f60dd5b7
created: 12:10:20.857000 Thu 2012-03-01
time-to-live: untilRestart seconds

32 Net-Net ASC Web Services SOAP/REST API Guide Version E3.6.0m5

Proprietary & Confidential

USING ASC CALLOUTS

Tast-keepalive: 12:10:20.857000 Thu 2012-03-01

channels:

connect-timeout: 1000 ms
read-timeout: 1000 ms
character-set: utf-8
request-style: soap
requests: 0
failures: 0
Field Description
endpoint The application endpoint being called out.

registration-id

The registration identifier.

created

The date and time this registration was created.

time-to-live

The configured time to live, in minutes, on this
registration.

last-keepalive

The date and time that the last keep alive was
received.

channels

The channels for which the endpoint is getting
events.

connect-timeout

The configured connect timeout, in milliseconds,
for the endpoint.

read-timeout

The configured read timeout, in milliseconds, for
the endpoint.

character-set

The character set used when forming requests to
this endpoint. This can be either utf-8 or is0-8859-
1.

request-style

The style used when sending events to this
listener. This could be either XML, JSON, or SOAP.

requests The number of requests that have been made to
the endpoint.
failures The number of requests that have failed to reach

the endpoint.

The session-config > event-settings object configures events and user-specified
event channels on the OS-E.

The event-settings > channel property configures user-specified channels on the
OS-E. Each time the OS-E needs to emit an event for a session, the event
configuration component dynamically regenerates all of the appropriate channels
specified by the user based on the this property.

This property consists of an array of strings used to compose channel paths. These
strings can contain named-variables that are replaced with a value extracted from

the current state of the session. Named-variables must start and end with percent
(%) characters.

Named variables can be added to sessions on the OS-E in multiple ways. They can
be added via the session-config > named-variables object. For more information
on configuring named-variables in the session-config, see Configuring Session
Configuration Objects in the Net-Net OS-E Objects and Properties Reference Guide.

Version E3.6.0m5

Acme Packet, Inc. Technical Publications 33

Proprietary & Confidential

USING ASC CALLOUTS

Named-variables can also be added via the named-variable-add action. For
information on this action, see the Named Variable Actions section of this guide.

Under the event-settings object you can insert named-variables into events. This is
done via the named-variable-entry property.

NOTE: In order for named-variables to work in either the event-settings >
channel or named-variable-entry properties, named-variables must be
configured elsewhere on the OS-E, either within the session-config > named-
variables object or via the named-variables-add action.

The following example shows adding one variable called my-variable with a value
of my-value to the default-session-config > named-variable object.

NNOS-E>config vsp

config vsp>config default-session-config

config default-session-config>config named-variables
config named-variables>config named-variable my-variable
Creating 'named-variable my-variable'

config named-variable my-variable>set value my-value
config named-variable my-variable>return

config named-variables>return

This next example shows the event-settings object configured with a channel and
named-variable-entry that correspond with the session-config > named-
variables configuration in the above example.

Specific-channel-name is a static channel name and the OS-E does not attempt to
look up the value of this string. Because it is enclosed in percentage signs, the / %my-
variable% value signifies a named-variable channel name. The named-variable-
entry property’s my-variable my-variable-name value represents the inclusion of
the named-variable configured in the first example in the contents of the events.
My-variable-name is the name that is shown inside the events for this variable.

NNOS-E>config vsp

config vsp>config default-session-config

config default-session-config>config event-settings
config event-settings>set channel /specific-channel-name
config event-settings>set channel /%my-variable%

config_event-settings>set named-variable-entry my-variable my-
variable-name

config event-settings>return

Here is an example of an event for a session that has the above configuration. Note
the two channels: specific-channel-name and my-value. There is also an <nvpData>
entry (which stands for named-value-pair) for my-variable-name and my-value.
<Event box="1" process="SIP" timestamp="16:41:26.000001 wed 2012-03-
21" channel="">
<object>
<CallcCreatedEvent>
<callEvent>
<CallEvent>
<requestiD/>
<handle>15217493</handle>
<sessionID>343475565090092753</sessionID>
<cal11D>1-11664@10.33.5.10</callID>
<to>sip:service@l0.33.80.65:5060</to>
<from>sip:sipp@10.33.5.10:6021</from>
<nvpData>

34 Net-Net ASC Web Services SOAP/REST API Guide Version E3.6.0m5

Proprietary & Confidential

USING ASC CALLOUTS

<name>my-variable-name</name>
<value>my-value</value>
</nvpbata>
</callEvent>
</callEvent>
</callCreatedEvent>
</object>
<channels>/specific-channel-name</channels>
<channels>/my-value</channels>
<userbata>0x00000000</userbData>
</Event>

The same named variables can be used to configure both the channel and named-
variable-entry properties.

NOTE: Named variables used in the channel property must start and end with
percentage (%) characters to work properly.

These variables can be broken down into three types: event, session, and call, in-leg,
and out-leg.

Event named variables are derived from the current event being published. The
object of these variables can be any of the events the OS-E can generate. To view the
full list of OS-E events, see Events in the web services home page’s REST
documentation.

You can retrieve a property in the event object by specifying $event.<property>
where <property> is the name or alias of a property in the event object being
generated.

For example, for a call control event with a requestID of 123456, specifying
Ireq/%%$event.requestID% results in the channel /req/123456 being created.

Specifying /event-name/%$event._alias% results in the channel /event-
name/call-terminated being created for call-terminated events.

Available variables for the event class are:
* $event—Event-based named variables.
* $event._alias—Alias for a generated event.

Session named variables are derived from the current session for the events being
published. Available variables for this class are:

* S$session-session-id—Session ID for this session.

+ $session.request-id—Request ID for this session.

+ $session.caller-id—Caller ID for this session.

* $session.diversion-header—Diversion-header for this session.
+ $session.pcharging-vector—P-charging-vector for this session.
* $session.digest-realm—Digest realm for this session.

* $session.source-Inp—Source-Inp for this session.

+ $session.destination-Inp—Destination-Inp for this session.

Call, in-leg, and out-leg named variables are derived from the call legs of the current
session for events being published. Call events are generated on a specific leg.
Therefore the call variables provide access to the leg on which the event is being
generated.

Version E3.6.0m5

Acme Packet, Inc. Technical Publications 35

Proprietary & Confidential

USING ASC CALLOUTS

Each call session has one or two legs, deemed the in-leg and out-leg based on call
direction. In-leg variables use the in-leg for the session that generated this event and
out-leg variables use the out-leg for the session that generated this event.

Available variables for these classes are:

$call.request-id—Request ID for this call.

$call.to—To: URI for this call.

$call.to.user—User portion of the To: URI for this call.

$call.to.host—Host portion of the To: URI for this call.

$call.from—From: URI for this call.

$call.from.user—User portion of the From: URI for this call.
$call.from.host—Host portion of the From: URI for this call.
$call.request—Request: URI for this call.

$call.request.user—User portion of the Request: URI for this call.
$call.request.host—Host portion of the Request: URI for this call.
$call.call-id—Call-id for this call.

$call.to-contact—Local endpoint for this call.

$call.to-contact.user—User portion of the local endpoint for this call.
$call.to-contact.host—Host portion of the local endpoint for this call.
$call.from-contact—Remote endpoint for this call.
$call.from-contact.user—User portion of the remote endpoint for this call.
$call.from-contact.host—Host portion of the remote endpoint for this call.
$call.p-assert—P-asserted-identity header for this call.

$call.p-assert-user—User portion of the p-asserted-identity header for this
call.

$call.p-assert-host—P-asserted-identity header for this call.
$in-leg.request-id—Request-id for the in-leg.

$in-leg.to—To: URI for the in-leg.

$in-leg.to.user—User portion of the To: URI for the in-leg.
$in-leg.to.host—Host portion of the To: URI for the in-leg.
$in-leg.from—From: URI for the in-leg.

$in-leg.from.user—User portion of the From: URI for the in-leg.
$in-leg.from.host—Host portion of the From: URI for the in-leg.
$in-leg.request—Request: URI for the in-leg.
$in-leg.request.user—User portion of the Request: URI for the in-leg.
$in-leg.request.host—Host portion of the Request: URI for the in-leg.
$in-leg.call-id—Call-id for the in-leg.

$in-leg.to-contact—Local endpoint for the in-leg.
$in-leg.to-contact.user—User portion of the local endpoint for the in-leg.

$in-leg.to-contact.host—Host portion of the local endpoint for the in-leg.

36 Net-Net ASC Web Services SOAP/REST API Guide Version E3.6.0m5

Proprietary & Confidential

USING ASC CALLOUTS

$in-leg.from-contact—Remote endpoint for the in-leg.

$in-leg.from-contact.user—User portion of the remote endpoint for the in-
leg.
$in-leg.from-contact.host—Host portion of the remote endpoint for the in-
leg.

$in-leg.p-assert—P-asserted-identity header for the in-leg.

$in-leg.p-assert.user—User portion of the p-asserted-identity header for the in-
leg.

$in-leg.p-assert.host—Host portion of the p-asserted-identity header for the
in-leg.

$out-leg.request-id—Request ID for the out-leg.

$out-leg.to—To: URI for the out-leg.

$out-leg.to.user—User portion of the To: URI for the out-leg.
$out-leg.to.from—Host portion of the To: URI for the out-leg.
$out-leg.from—From: URI for the out-leg.

$out-leg.from.user—User portion of the From: URI for the out-leg.
$out-leg.from.host—Host portion of the From: URI for the out-leg.
$out-leg.request—Request: URI for the out-leg.
$out-leg.request.user—User portion of the Request: URI for the out-leg.
$out-leg.request.host—Host portion of the Request: URI for the out-leg.
$out-leg.call-id—Call-id for the out-leg.

$out-leg.to-contact—Local endpoint for the out-leg.
$out-leg.to-contact.user—User portion of the local endpoint for the out-leg.
$out-leg.to-contact.host—Host portion of the local endpoint for the out-leg.
$out-leg.from-contact—Remote endpoint for the out-leg.

$out-leg.from-contact.user—User portion of the remote endpoint for the out-
leg.

$out-leg.from-contact.host—Host portion of the remote endpoint for the out-
leg.

$out-leg.p-assert—P-asserted-identity header for the out-leg.
$out-leg.p-assert.user—User portion of the p-asserted-identity header for the
out-leg.

$out-leg.p-assert.host—Host portion of the p-asserted-identity header for the
out-leg.

To configure channels on the OS-E:

1.

AN ol N

Select the Configuration tab and click the vsp > default-session-config or vsp
> session-config-pool > entry object.

Click the event-settings object.

Click Edit channel.

Enter the string to use to generate events for this session. Click Add. Click OK.
Click Set. Update and save the configuration.

Version E3.6.0m5

Acme Packet, Inc. Technical Publications 37

Proprietary & Confidential

USING ASC CALLOUTS

To configure named-variable-entries on the OS-E.

1. Select the Configuration tab and click the vsp > default-session-config or vsp
> session-config-pool > entry object.

Click the event-settings object.

Click Add named-variable-entry.

Enter a variable or select one from the drop-down list.

Click Create. You are returned to the event-settings object.

To give the variable a display-name, click Edit next to the variable name.

S S

Enter the display-name. This is the name that will be displayed within the
event instead of the actual named-variable name.

8. Click Set. Update and save the configuration.

Generating Event Messages

Two of the most common types of event messages that the ASC can generate are SIP
event messages and call-control event messages. To enable the ASC to generate SIP
event messages, see the following section. To work with call-control event
messages, see Chapter 3, Configuring Events.

Sending SIP Event You can configure the ASC to send SIP message events when the ASC receives and

Messages transmits SIP messages. The event-settings > inbound-sip-messages and
outbound-sip-messages objects configure the ASC to send SIP message events for
incoming and outgoing SIP messages.

To configure the ASC to send SIP event messages:

1. Select the Configuration tab and click the vsp > default- session-config or
vsp > session-config-pool > entry object.

2. Click the event-settings object.

38 Net-Net ASC Web Services SOAP/REST API Guide Version E3.6.0m5

Proprietary & Confidential

acmeﬂﬁ?cket

Status Summary Logout admin

USING ASC CALLOUTS

Click Configure next to inbound-sip-messages to enable events for incoming
SIP messages. Click Configure next to outbound-sip-messages to enable
events for outgoing SIP messages.

Configuration

gy Configuration e et b il bl o o el

Configuration: all

|Conﬁguration| Setup | View ‘

= cluster
box 1
B vsp
B default-session-config
authentication
accounting
event-settings
tls
static-stack-settings
session-config-pool
enterprise
accounting
location-senice
h323-settings

Eventpush Service

Configure vsp\default-session-configlevent-settingslinbound-sip-messages Show basic
Help Index

Set Reset | Back | Delete |

admin enabled ™| (Resource is active)

apply-to-methods-for-events INVITE A
REFER

MESSAGE

INFO i

Select All ‘ Unselect All

apply-to-responses

" type no ¥ (Do not apply to responses (requests only))

apply-to-dialog bath ~| {Apply to both inbound and outbound dialogs.)

——

cseq

NOTE: Inbound-sip-messages and outbound-sip-messages are advanced
properties. To see advanced properties, click the Show advanced button at the
top of the window.

admin—Set to enabled.

apply-to-methods-for-events—Select the SIP methods you want the OS-E to
create events for.

Click Set. Update and save the configuration.

The ASC supports a web services application called eventpush service. Eventpush
service is a solution which allows you to forward event information from the ASC to
clients on external web applications which are unable to implement a SOAP/WSDL
endpoint.

Eventpush service is configured as its own process within the ASC under the
eventpush-service object.

External i
JavaScript JavaScrllpt Event SOAP XML ASC
i Object Event | Call Created
Client
push Event

Web WS Process

App

—

Eventpush service supports a publish/subscribe interface using Cometd. There is a
JavaScript API that wraps the Cometd technology. The customer application

Version E3.6.0m5

Acme Packet, Inc. Technical Publications 39

Proprietary & Confidential

USING ASC CALLOUTS

subscribes by indicating that it only wants to receive call events for calls with a specific

requestID.
External RegisteIrDRequest Subscribe
JavaScript »| | Eventpush Web Comet
Client App Client Side

Call-Control with
Request ID WS Process

The eventpush web application then publishes, or sends, only the events with that

subscribed requestID.
Call Event for Call Event for
External : :
JavaScript | Slbscrived 1D Eventpush Web | SPecificlD || Comet
Client App Client Side

All Call Events

WS Process

Eventpush Web |) call Events
App Server Side |«

To enable cross-domain communication between the eventpush application and the
customer web service application, the ASC’s eventpush service DNS suffix must be
the same as the customer web service application’s.

To test the publish/subscribe interface, access the ASC eventpush service page. The
URI for this page is:

http(s)://ip: port/cometapp/comet_test.html
Enter either http or https, the IP and port you have configured under the
eventpush-service object.

Specify the requestID to which you are subscribing. This tells the ASC to publish
only call events with that requestID.

/X packet Acme Packet Push Event Application Test
Event Type: @ Call © Presence
Request ID: [foa123 |[se)
Events

of Events received:

subscribed to /call/fool23

40 Net-Net ASC Web Services SOAP/REST API Guide Version E3.6.0m5

Proprietary & Confidential

USING ASC CALLOUTS

For more information on publish/subscribe technology, see
http://en.wikipedia.org/wiki/Publish/subscribe.

For more information on cometd technology, see
http://cometdproject.dojotoolkit.org.

To configure eventpush-service:

1.
2.

3.

acme%ﬁ;'cket

Click the Configuration tab and select Cluster.

Select the box, interface, and ip address on which you want to configure the
eventpush-service.

Click Configure next to eventpush-service.

Configuration

S Suy Vo S iy OIS 0T i sl o i i i i el
Configuration: all i Al
| Configuration | Setup ‘ View | ssh Ot
=
CIIUE‘Et;;x 1 snmp Configure
interface eth(b =
B interface eth1 e, Configure
Eip1111
web-senice [Hweb-service
routing [Delste]
cli g
vap eventpush-service Configure
4. Set the protocol type and port and click Create.

i Configuration
acme /¢ packet

ol st O O e i s st o el i
Configuration: all Create cluster\box 1linterface eth1lip 1.1.1.1\eventpush-service - Step 1 of 1: Edit eventpush-

service _Help Index

|Cnnﬁguratmn| Setup | View ‘

Please provide some basic information for eventpush-senice. Then press "Create”.

= cluster
B box 1 x
interface eth(protocol * type W;
B interface eth1 ’.__E'____J
= ip1.1.1.1 -
web-service poit 8081 (at minimum 1_default=86080)
routing

cli
vSp

Create] Reset] Cancel I

Version E3.6.0m5

Acme Packet, Inc. Technical Publications 41

Proprietary & Confidential

USING ASC CALLOUTS

Field

5. Set the page-domain to the domain name of the ASC.

&
acmsﬁﬁacket

Status Summary Logout admin

Configuration: all

‘Conﬁguration‘ Setup | View |

B cluster
E box 1
[interface eth0
3 interface eth1
Hip11.11
web-senvice
eventpush-senice
routing
cli

default-session-config
tls
static-stack-settings
session-config-pool
enterprise
accounting
h323-settings

Configuration

"Home™ et THE DD = Statns ™ Calr Cogs™ ™ ogs™|TActions™ServicesT TReys T TiccessT T ToolsT
Configure cluster\box 1linterface eth1lip 1.1.1.1\eventpush-service Help Index
Set Reset | Back | Delete
admin | enabled || (Resource is active)
* protocol
‘type |hitp v
*port 8081 (at minimum 1,default=6080)
max-threads 10 (from 1 to 500 default=10)
min-spare-threads 1 {from 0 to 50 default=1)
max-spare-threads 5 (from 0 to 50 default=5)
page-domain

6. Click Set. Update and save the configuration.

Two status providers provide information on the current set of active cometd

channels.

The show cometd-channel-summary action provides a summary of channel
information for the cometd server.

NNOS-E>show cometd-channel-summary

name
/7“:7‘:
/call
/call/to

/call/to/019785551212

/cometd

/cometd/meta

/meta

/meta/connect
/meta/disconnect
/meta/handshake
/meta/subscribe
/meta/unsubscribe

subscriber-count

OO OO0 OO R ORr OOoOHR

Description

name

The name of the channel.

subscriber-count

The number of subscribers on this channel.

The show cometd-channel-detail action provides more detailed channel
information, specifically, on the subscribers to each of the channels.

Note that if a channel appears in the summary but not in the details, it means that
the channel exists without any active cometd client subscriptions.

NNOS-E>show cometd-channel-details

42 Net-Net ASC Web Services SOAP/REST API Guide

Version E3.6.0m5

Proprietary & Confidential

Field

USING ASC CALLOUTS

name remote-address remote-port id user-agent
VA 10.1.21.57 49804 372tj5ikmvga8ant2bbm2wcijs
Mozilla/5 .0 (windows NT 6.1; wow64)

ApplewebKit/535.11 (KHTML, Tike Gecko) Chrome/17.0.96
3.79 safari/535.11

/call/to/019785551212 10.1.21.57 49728
21sxpszu21kikclpnadtOmdfzvg Mo zilla/5.0
(WindowsNT6.1; wow64) ApplewebKit/535.11 (KHTML, 1ikeGecko) Chrome/
17.0.963.79 safari/535.11

/cometd/meta 10.1.21.57 49804 372tj5ikmvga8ant2b6m2wcijs
Mozilla/5 .0 (Windows NT 6.1; wow64)
ApplewebKit/535.11 (KHTML, Tike Gecko) Chrome/17.0.96

3.79 safari/535.11

Description

name

The name of the channel.

remote-address

The remote address for this subscriber.

remote-port

The remote port for this subscriber.

id

The identifier assigned internally by the OS-E for
this publisher.

user-agent

The user agent the subscriber used to establish
the session.

Field

Two status providers have been added to provide information on the current set of
active cometd subscribers.

The show cometd-subscriber-summary action provides high-level information
about the subscribers.

NNOS-E>show cometd-subscriber-summary

remote-address remote-port id channel-count message-count
user-agent

10.1.21.57 49728 21sxpszu2lkikclpnadtOmdfzvg 1 0
Mozilla/5.0 (windows NT 6.1; wow64) ApplewebKit/535.11 (KHTML, 1ike
Gecko) Chrome/17.0.963.79 safari/535.11

10.1.21.57 49804 372tj5ikmvga8ant2b6m2wcjs 2 0
Mozilla/5.0 (windows NT 6.1; wow64) ApplewebKit/535.11 (KHTML, Tike
Gecko) Chrome/17.0.963.79 safari/535.11

Description

remote-address

The remote address for the subscriber.

remote-port

The remote port for the subscriber.

id

The identifier assigned internally by the OS-E for
this publisher.

channel-count

The number of channels to which the subscriber is
currently subscribed.

message-count

The number of messages a subscriber has
currently been sent.

user-agent

The user agent the subscriber used to establish
the session.

Version E3.6.0m5

Acme Packet, Inc. Technical Publications 43

Proprietary & Confidential

USING ASC CALLOUTS

The show cometd-subscriber-details action provides more detailed information,
specifically on the channels subscribed to by each subscriber.

Note that if a subscriber appears in the summary but not the details, it means that
the subscriber exists without any active cometd channel subscriptions.

NNOS-E>show cometd-subscriber-details

remote-address remote-port channel

10.1.21.57 49728 /call/to/019785551212
10.1.21.57 49804 /e
10.1.21.57 49804 /cometd/meta
Field Description
remote-address The remote address for the subscriber.
remote-port The remote port for the subscriber.
channel The name of the channel.
44 Net-Net ASC Web Services SOAP/REST API Guide Version E3.6.0m5

Proprietary & Confidential

ASC Call Control Action

Web Service Call Control

Many of the applications you can create via the Net-Net ASC will use the call-
control action. This chapter describes how to use call-control, its parameters, as
well as the results and event messages that are subsequently generated.

Identifying Calls and Sessions

Request IDs

Session IDs

Call Leg Handles

SIP Call-IDs

When the Net-Net ASC creates calls, it uses several elements to identify specific calls
and portions of calls. These unique markers are request IDs, session IDs, call leg
handles, and SIP call-IDs.

For more information on which elements appear in what event messages and which
are parameters for call-control actions, see

When creating new calls, an application identifies the endpoints involved using their
SIP URIs. An application may also supply a request ID to the ASC. If it does supply
a request ID, the ASC labels the resulting session with that request ID. This ID is
returned in the subsequent responses to the request and any events pertaining to
that session. In actions which add new call legs mid-call, like call-control fork and
conference, each new leg creates a new session between it and the originating leg.
These new sessions inherit the original request ID.

The request ID is an obscure string as far as the ASCis concerned. Any interpretation
of its contents is solely a matter for the application writer.

Each session in the ASC is given a session ID, internally represented as a 64-bit
number, which functions as a globally unique ID (GUID). This means session IDs are
not repeated even after the ASC reboots and are unique between multiple ASCs. The
session ID is returned in response to all call creation, disconnection and
manipulation actions, and in all events pertaining to the session.

Each leg of a call is identified by a handle, internally represented as a 32-bit number.
You must reference a call leg handle in all actions performed on calls after they have
been created.

Within SIP, calls are identified by Call-IDs, which functions as a GUID. Every call leg
has a unique call ID, and these are reported in the CallCreated, CallConnected, and
CallTerminated events. The call-ID should be used when you need to correlate calls
with other systems. If this is not sufficient, you can populate call events with custom
parameters that can be obtained from arbitrary SIP headers.

Version E3.6.0m5

Acme Packet, Inc. Technical Publications 45

Proprietary & Confidential

ASC CALL CONTROL ACTION

Configuring To and From URIs

Action Results

When you use the call-control call action, you need to include to and from
properties. You can configure the ASC so that you don’t have to include the SIP
scheme and domain parts every time you place a call. By configuring a condition list
and header normalization, then adding them to a policy rule, the ASC looks for the
absence of a host portion in the To URI in a call-control action, and adds the
necessary components to the To and From URIs.

The following example displays a configuration where the ASC applies the condition
list to the call-control action. It creates four header-normalization rules which
prepend sip: to the call-control to and from properties and append
@acmepacket.com to these properties.

config rule check-for-host
config condition-Tist
set to-uri-condition host match A$
set action-condition call-control
return
config session-config
config header-settings
config header-normalization 1
set destination To
set value prepend sip:
return
config header-normalization 2
set destination From
set value prepend sip:
return
config header-normalization 3
set destination To
set value append @acmepacket.com
return
config header-normalization 4
set destination From
set value append @acmepacket.com
return
return
return
return

For more information about configuring condition lists and normalization, see the
Net-Net OS-E Object and Properties Reference Guide.

When the call-control action is executed, you receive an XML result containing
information about whether the action was successful or not.

The following is an example of an XML result generated from a successful call-
control action:

<ExtActionResponse>
<resultCode>0</resultCode>
<resultStr>Success</resultStr>
<inf0>343196502737231705

46 Net-Net ASC Web Services SOAP/REST API Guide Version E3.6.0m5

Proprietary & Confidential

ASC CALL CONTROL ACTION

14490500:14490499</info>
<structure>
<Callcontrolcallresult>
<requestId>fool23</requestid>
<sessionId>343196502737231705</sessionId>
<inCallLegHand1le>14490500</inCallLegHand]le>
<outCallLegHandTe>14490499</outCallLegHandle>
</callcontrolcallRrResult>
</structure>
</ExtActionResponse>

A <resultCode> of zero indicates the action was successful. Any other value
indicates a failure, which is described by the <resultStr> object.

The <info> element provides supplementary information about the executed call-
control action. In the case of a successful call the first line is the session ID. The
second line consists of the two call-leg handles, separated by a colon.

Structured information equivalent to the content of the <info> element is also
returned for some of the call-control actions, making the extraction of the required
fields easier. If it was provided in the original request, the requestld is returned in the
structured information.

NOTE: Not all call-control actions return structured data. This only happens when
the <info> element contains useful information that needs parsing.

When using a RESTful API, you can request the result in a simplified XML format by
adding &_format=simplified to the URL. The following is an example of a
simplified XML result.

<object xsi:type="ExtActionResponseType">
<resultCode>0</resultCode>
<resultStr>Success</resultStr>
<inf0>343196530540399894
14490520:14490519</1info>
<structure xsi:type="callControlcCallResultType">
<request-id>fool23</request-id>
<session-1d>343196530540399894</session-id>
<in-call-Tleg-hand1e>14490520</in-call-1leg-handle>
<out-call-Teg-hand1e>14490519</out-call-leg-handle>
</structure>
</object>

Configuring Call Events

When enabled to do so, the ASC can generate event messages, two of the most
common types being call-control event messages and SIP event messages. To enable
the ASC to generate call-control event messages, see the following section. To work
with SIP event messages, see Chapter 2, Sending SIP Event Messages.

To generate call-control event messages:

1. Select the Configuration tab and click the vsp > default- session-config or
vsp > session-config-pool > entry object.

Version E3.6.0m5

Acme Packet, Inc. Technical Publications 47

Proprietary & Confidential

ASC CALL CONTROL ACTION

2. Click the event-settings object.

s .
A/ % Configuration
Status Summary Looout admin L S N iy S —
Configuration: all Configure vspldefault-session-configlevent-settings Show basic Help Index
\ Configuration \ Setup \ View | Set Reset ‘ Back ‘ Delete |
=l cluster
box 1 | adin: |
B vsp
Bl default-session-config callconizolevents (Resource is active)
authentication .
accounting media-control-events (Resource is active)
event-settings
tls
static-sack-setings [channels:]

session-config-pool

enterprise
accounting

location-service
h323-settings Edit channel

channel call

3. call-control-events—Set to enabled for the OS-E to send call-control events.
4. Click Set. Update and save the configuration.

The ASC includes certain standard information in the event messages it sends.
However, if you want to include information not included in the standard format,
you can configure the ASC to include custom content in the CallCreated,
CallConnected, and CallTerminated event messages.

See Appendix B: Event Message Examples for examples of both legacy and new
format and legacy and custom content event messages.

To include custom information in event messages:

1. Click the Configuration tab and select third-party-call-control.

2. Select custom from the call-control-events-version drop-down box. The
default is legacy.

3. Click Configure next to custom-event-fields to set the custom event fields to
include in the event messages.

& "
Configuration
acm%a*cket

Status Summary Logout admin Home™ R TEIL L Status™ "Call Cogs™ "Event Cogs™ "Actions™ “Services™ | "Keys™ "Access™ "Tools™|
A
transfer-file

Configuration: all

= allow-lcr-for-refer
|Conﬁgurat|on| Setup | View

inhibit-provisional-r after-
= cluster prack P s
box 1
S call-coniroLeyeats uersion ™ | (the events generated will have new custom fields)
B default-session-config W] Y Y
authentication
accounting custom-event-fields Configure
third-party-call-control e Yy
tls propagate-reinvite-from-header | disabled | (Resourca is inactive)
static-stack-settings
session-config-pool i dtmf-detected-events

enterprise

For more information on configuring named variables and regular expressions,
see Using Regular Expressions in Chapter 1: How to Use the ACLI of the Net-
Net OS-E Objects and Properties Reference Guide.

4. Click Set.
5. Update and save the configuration.

48 Net-Net ASC Web Services SOAP/REST API Guide Version E3.6.0m5

Proprietary & Confidential

Common Call Events

ASC CALL CONTROL ACTION

The call-control actions create call events. The following table lists and describes

common call events.

Event Name

CallCreated

CallCreatedEventCustom

CallConnected

CallConnectedEventCustom

CallTerminated

CallTerminatedEventCustom

Description

Generated every time a call leg is
created.

Generated every time a call leg is
created and the ASC is configured
to include custom event fields in
event messages.

Generated every time a call leg is
connected.

Generated every time a call leg is
connected and the ASC is
configured to include custom event
fields in event messages.

Generated when a party hangs up
and every time a call leg is
terminated.

Generated when a party hangs up
and every time a call leg is
terminated.

Parameters

* [requestld]

* handle

* sessionlD

e calllD

* to

e from

* sessConfig (legacy schema
only)

* dtmfCapability (legacy
schema only)

* [requestid]

* handle

* sessionlD

e calllD

s to

e from

* sessConfig (legacy schema
only)

¢ dtmfCapability (legacy
schema only)

* customField

* [requestid]
* handle

* sessionlD
e calllD

* to

e from

e content

* [requestid

* handle

* sessionlD

e calllD

* to

e from

e content

¢ customField

* [requestid]
* handle

* callDuration
* reason

* sessionlD

e calllD

* [requestld]

* handle

¢ callDuration
* reason

* sessionlD

e calllD

* customField

Version E3.6.0m5

Acme Packet, Inc. Technical Publications 49

Proprietary & Confidential

ASC CALL CONTROL ACTION

Event Name

CallHeld

CallRetrieved

Playlnitiated

PlayComplete

PlayPaused

PlayResumed

PlayStopped

PlayFailed

RecordComplete

FileInformation

MessageSend

Description

Generated every time a call leg is
placed on hold.

Generated every time a call leg is
retrieved from being on hold.

Generated whenever an audio file
has finished playing or when it has
been stopped.

Generated every time an audio
message is paused.

Generated every time you resume
playing an audio message.

Generated every time you stop
playing an audio message.

Generated every time the
recording of an audio message is
finished.

Generated every time you request
file information.

Generated every time you
manually send a message.

Parameters

* [requestiD]

* handle

* heldByRemote—can be
true or false

* [requestiD]
* handle

¢ [requestID]
* handle
* scanTime

* [requestiD]
* handle

o fileTime

* playedTime

* [requestiD]
* handle

o fileTime

* playedTime

* [requestID]
* handle

* fileTime

* playedTime

* [requestID]
* handle

* fileTime

¢ playedTime

* [requestID]
* handle

* reason

e scanTime

¢ [requestID]
* handle
* fileName

¢ [requestID]
o fileTime

¢ [requestID]

* sessionlD

¢ responseCode—the SIP
response code from the
message recipient

¢ responseString—the
corresponding string

e calllD

s to

e from

¢ ContentType

* body

50 Net-Net ASC Web Services SOAP/REST API Guide

Proprietary & Confidential

Version E3.6.0m5

Event Name

MessageReceived

IncomingDtmfDigitStart

IncomingDtmfDigitUpdate

OutgoingDtmfDigitStart

OutgoingDtmfDigitUpdate

Description

Generated every time SIP
MESSAGE messages are received.

Generated when the start of a
DTMF digit is received on a call leg.
Every digits receives its own event.
You must set sesslon-conflg > In-
dtmf-preferences to detect DTMF
methods of choice. For parked
calls, you must set nnos-call-policy
> apply-policy-to-nnos-calls to
enabled.

Generated when the end of a DTMF
digit is detected on a call leg.

Generated when the start of a
DTMF digit is sent on a call leg.
You must set session-config > out-
dtmf-preferences to detect DTMF
methods of choice. The actual
method used depends on the
capabilities of the endpoint.

Note that you cannot send DTMF
digits to a parked endpoint.

Generated when the end of a DTMF
digit is sent on a call leg.

ASC CALL CONTROL ACTION

Parameters

* [requestiD]

* sessionlD

e calllD

e to

e from

* contentType—normally has
the value of text/plain

¢ body—content of the
message

¢ [requestID]

* handle

* method—identifies the
method used to receive
DTMF

o digit

¢ volume

* duration—the initial
duration in milliseconds;
reflects how many
milliseconds were are
received in the first packet
if received as an RFC 2833
event in the media stream

* [requestID]

* handle

* method

o digit

* volume

* duration—reflects the
duration of the entire
DTMF tone.

* [requestID]

* handle

* method—identifies the
method used to receive
DTMF

o digit

* volume

¢ duration—the initial
duration in milliseconds;
reflects how many
milliseconds were are
received in the first packet
if received as an RFC 2833
event in the media stream

¢ [requestID]

* handle

* method

o digit

* volume

¢ duration—reflects the
duration of the entire
DTMF tone.

Version E3.6.0m5

Acme Packet, Inc. Technical Publications 51

Proprietary & Confidential

ASC CALL CONTROL ACTION

Event Name

CallRedirected

AttachedEvent

DetachedEvent

MediaStartedEvent

MediaCompleteEvent

MediaStoppedEvent

MediaPausedEvent

MediaResumedEvent

Description

Generated when a party redirects a
call leg.

Generated when a call leg is
attached to a session.

Generated when a call leg is
detached from a session.

Generated when a media event is
started, such as playing a file.

Generated when a media event is
complete.

Generated when a media event is
stopped.

Generated when media playback is
paused.

Generated when a media playback
is resumed.

Parameters

requestid
handle
sessionlD
calllD

to

from

handle
session|D
calllD

to

from
requestiD

handle
session|D
calllD

to

from
requestiD

handle
session|D

calllD

to

from

requestiD
capabilities
media-file-status

handle
sessionlD

calllD

to

from

requestiD
media-file-status

handle
sessionlD

calllD

to

from

requestiD
media-file-status

handle
sessionlD

calllD

to

from

requestiD
media-file-status

handle
sessionlD

calllD

to

from

requestiD
media-file-status

52 Net-Net ASC Web Services SOAP/REST API Guide

Proprietary & Confidential

Version E3.6.0m5

Event Name

MediaSeekEvent

Description

Generated when the location in a

ASC CALL CONTROL ACTION

Parameters

* handle

RecordCompleteEvent

RecordingStartedEvent

RecordingStoppedEvent

media source is changed. e sessionlD
e calllD
e to
e from
* requestiD
* media-file-status

Generated when a recording event * handle
has completed. ¢ sessionlD
e calllD
¢ to
e from
* requestiD
¢ filename

Generated when on demand * handle
recording is started. * sessionlD
* calllD
s to
e from
* requestiD
¢ filename

Generated when on demand * handle
recording is stopped. ¢ sessionlD
e calllD
* to
e from
¢ requestiD
¢ filename

The following is a list of elements commonly found in event messages:

requestID—The ID provided by the call-control caller. This element only
appears if it was originally provided.

handle—The call leg handle, expressed as a decimal number.

sessionlD/session-id—The internally applied session ID, expressed as a decimal
number.

calllD/call-id—The call-ID field from the SIP message. Each call leg should have
distinct Call-IDs.

to—The To URI.
from—The From URI.

sessConfig/session-config—The session configuration that was applied to the
call.

callDuration—The length of a call, expressed as an ISO 8601-format time
duration. This may either look like PnDTnHnMnS (legacy format) or
PrnYnMnDTnHnMn.nS (simplified format), where n represents the integer.

reason—The reason a call was terminated, based on the SIP response message
(200 for normal termination, 404 for not found, 500 for internal error, etc.)

fileTime—The length of an audio file, in milliseconds.
playTime—The number of milliseconds of an audio file that was played.

fileName—The name of the file that was recorded.

Version E3.6.0m5

Acme Packet, Inc. Technical Publications 53

Proprietary & Confidential

ASC CALL CONTROL ACTION

Call-Control Actions

This section describes all of the call-control actions, their parameters, structure of
their result XML, and events generated.

Parameters surrounded by brackets ([]) are optional.

call Initiates a call using To and From SIP URIs you provide.

You can set the ASC to add post-dial digits to a call-control call action. Append the
string postd=digits to the user portion of the to parameter. The following example
shows the ASC adding post-dial digits 12345@acmepacket.com to a call.

call-control call sip:2001;postd=12345@acmepacket.com
sip:1001@acmepacket.com

Parameters

to—The destination SIP URI of the call.
from—The originating SIP URI of the call.

[requestld]—A unique identifier provided by an external application. This value
can be used to identify the call in subsequent events and actions. If a requestld
is specified, there is a corresponding XML element in the event messages
generated for the session.

[originatorFirst}—When enabled (the default), the originating party is
connected first. When disabled, the called party is connected first.

[async]—When enabled, causes the ASC to return a response immediately
without waiting for the action to complete. When disabled (the default), the
ASC waits for the action to complete before returning a response.

[transport]—The transport method to use for the call. This can be set to any,
TCP, UDP, or TLS.

[config] —The session-config on the ASC to use to process a call. Use the full
path to the session-config. For example:

vsp\session-config-pool\entry MyConfig

Enclose the value in quotation marks when using the CLI.

Result XML

<resultCode />

<resultstr />

<info />

<structure>
<callcontrolcallRresult>
<requestid />
<sessionid />
<inCallLegHandle />
<outCallLegHandle />
</CallcontrolcallrResult>

</structure>

Events Generated

CallCreated (originator)
CallCreated (called party)
CallConnected (originator)

54 Net-Net ASC Web Services SOAP/REST API Guide Version E3.6.0m5

Proprietary & Confidential

disconnect

park

ASC CALL CONTROL ACTION

+ CallConnected (leg two)

If the originatorFirst parameter is disabled, the CallCreated (originator) event is
omitted. If a call is terminated, there are two CallTerminated events, one for each leg.

Disconnects both legs of a call. The handle parameter can be the handle of either
call leg.

Parameters

* handle—Identifies the leg of a call. Handles are returned as part of the <info>
element of call-control results and can be used to manipulate each leg of a call
independently.

Result XML

<resultCode />
<resultstr />
<info />
<structure>
<CallcontrolDisconnectResult>
<requestid />
<sessionId />
</callcontrolDisconnectResult>
</structure>

Events Generated
+ CallTerminated (disconnected party)
+ CallTerminated (other party, if present)

Creates a call to an endpoint from a given SIP URL. If you specify a From UR], it is
used as the From URI in the SIP message; if you specify no From URI, the From URI
is that of the given endpoint.

Parameters
+ endpoint—The URI of the call’s destination.
* [from]—The originating SIP URI of the call.

* [requestld]—A unique identifier provided by an external application. This value
can be used to identify the call in subsequent events and actions. If a requestld
is specified, there is a corresponding XML element in the event messages
generated for the session.

* [async]|—When enabled, causes the ASC to return a response immediately
without waiting for the action to complete. When disabled (the default), the
ASC waits for the action to complete before returning a response.

* [config]—The session-config on the ASC to use to process a call. Use the full
path to the session-config. For example:

vsp\session-config-pool\entry MyConfig
Enclose the value in quotation marks when using the CLI.

Result XML

<resultCode />
<resultstr />
<info />
<structure>

Version E3.6.0m5

Acme Packet, Inc. Technical Publications 55

Proprietary & Confidential

ASC CALL CONTROL ACTION

<CallcontrolParkRresult>
<requestId />
<sessionid />
<parkedcallLegHandle />
</callcontrolParkresult>
</structure>

Events Generated
* CallCreated
e (CallConnected

connect Connects an existing parked call leg to a given endpoint. If the called party ends the
call, the original call reverts back to a parked state.

Parameters

* handle—Identifies the leg of a call. Handles are returned as part of the <info>
element of call-control results and can be used to manipulate each leg of a call
independently.

* endpoint—The URI of the call’s destination.

* [async]|—When enabled, causes the ASC to return a response immediately
without waiting for the action to complete. When disabled (the default), the
ASC waits for the action to complete before returning a response.

* [requestld]—A unique identifier provided by an external application. This value
can be used to identify the call in subsequent events and actions. If a requestld
is specified, there is a corresponding XML element in the event messages
generated for the session.

* [config]—The session-config on the ASC to use to process a call. Use the full
path to the session-config. For example:

vsp\session-config-pool\entry MyConfig
Enclose the value in quotation marks when using the CLI.

Result XML

<resultCode />

<resultstr />

<info />

<structure>
<callcontrolConnectResult>
<requestid />
<sessionid />
<pakredcallLegHandle />
<remoteCallLegHandle />
</callcControlConnectResult>

</structure>

Events Generated
» (CallCreated
» CallConnected

terminate Terminates the call leg indicated by the handle you specify. This parameter is only
available for calls with a parked status.

56 Net-Net ASC Web Services SOAP/REST API Guide Version E3.6.0m5

Proprietary & Confidential

ASC CALL CONTROL ACTION

Parameters

* handle—Identifies the leg of a call. Handles are returned as part of the <info>
element of call-control results and can be used to manipulate each leg of a call
independently.

Result XML

<resultCode />

<resultstr />

<info />

<structure>
<CallcontrolTerminatedResult>
<requestid />
<sessionId />
<parkedcallLegHandle />

</CallcontrolTerminatedResult>

</structure>

Events Generated

+ (CallTerminated

hold Places the specified call leg on hold. This puts the media of that call leg into send-
only mode. The media of the other call leg, if present, is put into receive-only mode.

Parameters

* handle—Identifies the leg of a call. Handles are returned as part of the <info>
element of call-control results and can be used to manipulate each leg of a call
independently.

Result XML

<resultCode />

<resultstr />

<info />

<structure>

<CallcontrolHoTdrResult>
<requestIid />
<sessionId />
<heldcallLegHandle />
<remoteCallLegHandle />

</CallcontrolHoldResult>

</structure>

Events Generated
« CallHeld (held party)
+ CallHeld (other party, if present)

retrieve Retrieves the held call leg you specify by call handle. This reconnects the call’s media
for that call leg and, if present, the other call leg.

Parameters

* handle—Identifies the leg of a call. Handles are returned as part of the <info>
element of call-control results and can be used to manipulate each leg of a call
independently.

Result XML

Version E3.6.0m5 Acme Packet, Inc. Technical Publications 57

Proprietary & Confidential

ASC CALL CONTROL ACTION

<resultCode />
<resultstr />
<info />
<structure>
<CallcControlRetrieveResult>
<requestid />
<sessionid />
<retrieveCallLegHandle />
<remoteCallLegHandle />
</callcontrolRetrieveResult>
</structure>

Events Generated

+ CallRetrieved (held party)

+ CallRetrieved (other party, if present)

+ CallConnected (held party)

+ CallConnected (other party, if present)

transfer Transfers the specified call leg to the specified To SIP URI. The original call leg,
referred to by its handle, is disconnected. Handle can be thought of as belonging to
the party doing the transfer, even though the transfer is done via a third-party action.

Parameters

* handle—Identifies the leg of a call. Handles are returned as part of the <info>
element of call-control results and can be used to manipulate each leg of a call

independently.
e to—The destination SIP URI of the call.
Result XML

<resultCode />

<resultstr />

<info />

<structure>
<CallcontrolTransferresult>
<requestid />
<sessionid />
<newCallLegHandle />
<remoteCallLegHandle />
</callcontrolTransferresult>

</structure>

Events Generated

+ CallCreated (new call leg)

« CallHeld (party to be transferred)

+ CallHeld (party doing the transfer)
+ CallConnected (transferred party)

+ CallConnected (new call leg)

+ CallTerminated (transferring party)

58 Net-Net ASC Web Services SOAP/REST API Guide Version E3.6.0m5

Proprietary & Confidential

join

memo-begin

ASC CALL CONTROL ACTION

Connects the parties of two separate calls together. The original call legs, identified
by handlel and handle2, are disconnected.

Parameters

* handlel—Identifies the leg of the first call. Handles are returned as part of the
<info> element of call-control results and can be used to manipulate each leg
of a call independently.

» handle2—Identifies the leg of the second call. Handles are returned as part of
the <info> element of call-control results and can be used to manipulate each
leg of a call independently.

Result XML

<resultCode />

<resultstr />

<info />

<structure>

<CallcontrolloinResult>
<requestid />
<sessionid />
<inCallLegHandle />
<outCallLegHandle />

</callcontrolloinResult>

</structure>

Events Generated

+ CallTerminated (party identified by handle2)

+ CallConnected (party identified by handle3, correspondent of handle1)
» CallConnected (party identified by handle4, correspondent of handle?)
+ CallTerminated (party identified by handlel)

Records a message from the parked party, identified by a call leg handle, and stores
it in a file you specify.

Note: When cluster is enabled, master-service > file-mirror must be enabled for
it to work properly.

Parameters

* handle—Identifies the leg of a call. Handles are returned as part of the <info>
element of call-control results and can be used to manipulate each leg of a call
independently.

+ filename—The name of the audio file where a message is recorded or from
where a message is played. Audio files must be .wav files in 44.1 kHz, 16-bit
mono PCM format. If you give an invalid filename, it is placed in or taken from
the /cxc directory.

* [greeting]—A greeting file that may be applied first as a prompt.

e [cluster]|—When enabled, the file is available to all ASCs in the cluster. When
disabled (the default), the file is only available on the local ASC.

Result XML

<resultCode />
<resultstr />

Version E3.6.0m5

Acme Packet, Inc. Technical Publications 59

Proprietary & Confidential

ASC CALL CONTROL ACTION

Events Generated

» PlayComplete (for greeting, if used)

memo-end Ends a recording on the specified call leg.

Parameters

* handle—Identifies the leg of a call. Handles are returned as part of the <info>
element of call-control results and can be used to manipulate each leg of a call
independently.

Result XML
<resultCode />
<resultstr />

Events Generated

* RecordComplete

play Plays a given audio file to the specified call leg. If two call legs are connected, the file
is played to both parties.

If the session-config > media-scanner-settings is configured, the ASC waits until

the recipient (or an answering machine) has finished speaking before delivering the

message. If the media scanner times out waiting for the recipient to finish speaking,
the file is not played.

Parameters

* handle—Identifies the leg of a call. Handles are returned as part of the <info>
element of call-control results and can be used to manipulate each leg of a call
independently.

+ filename—The name of the audio file where a message is recorded or from
where a message is played. Audio files must be .wav files in 44.1 kHz, 16-bit
mono PCM format. If you give an invalid filename, it is placed in or taken from
the /cxc directory.

+ [startTime]—The number of milliseconds the ASC waits before playing the file.

* [async]|—When enabled, causes the ASC to return a response immediately
without waiting for the action to complete. When disabled (the default), the
ASC waits for the action to complete before returning a response.

Result XML
<resultCode />
<resultstr />

Events Generated

+ Playlnitiated

+ PlayComplete

drop-file Plays the specified audio file to the party connected to the call leg. When finished,
the ASC terminates the call leg.

Parameters

60 Net-Net ASC Web Services SOAP/REST API Guide Version E3.6.0m5

Proprietary & Confidential

message

ASC CALL CONTROL ACTION

» handle—Identifies the leg of a call. Handles are returned as part of the <info>
element of call-control results and can be used to manipulate each leg of a call
independently.

+ filename—The name of the audio file where a message is recorded or from
where a message is played. Audio files must be .wav files in 44.1 kHz, 16-bit
mono PCM format. If you give an invalid filename, it is placed in or taken from
the /cxc directory.

Result XML

<resultCode />
<resultstr />

Events Generated
+ PlayComplete

* CallTerminated

Connects to a given endpoint, plays the file you specify, then disconnects the call. If
you specify a From UR], that appears in the From header as the calling party; if no
URL is specified, the To URI is used as the From header.

Parameters

+ filename—The name of the audio file where a message is recorded or from
where a message is played. Audio files must be .wav files in 44.1 kHz, 16-bit
mono PCM format. If you give an invalid filename, it is placed in or taken from
the /cxc directory.

+ endpoint—The URI of the call’s destination.
* [from]—The originating SIP URI of the call.

+ [requestld]—A unique identifier provided by an external application. This value
can be used to identify the call in subsequent events and actions. If a requestld
is specified, there is a corresponding XML element in the event messages
generated for the session.

+ [async]| —When enabled, causes the ASC to return a response immediately
without waiting for the action to complete. When disabled (the default), the
ASC waits for the action to complete before returning a response.

* [config]—The session-config on the ASC to use to process a call. Use the full
path to the session-config. For example:

vsp\session-config-pool\entry MyConfig
Enclose the value in quotation marks when using the CLI.

Result XML

<resultCode />
<resultstr />
<info />

Events Generated
+ CallCreated

+ CallConnected
+ PlayComplete

» (CallTerminated

Version E3.6.0m5

Acme Packet, Inc. Technical Publications 61

Proprietary & Confidential

ASC CALL CONTROL ACTION

insert-dtmf

annotate

get-annotation

Inserts DTMF digits into the call leg. DTMF is inserted only into the call leg specified;
the other party does not hear it.

Note also that DTMF insertion is currently only supported for two-legged calls, not
parked calls.

Parameters

* handle—Identifies the leg of a call. Handles are returned as part of the <info>
element of call-control results and can be used to manipulate each leg of a call
independently.

+ digits—Specifies the digits inserted into the call leg.

* [volume]—The volume of the DTMF digits, in decimals from -36 to 0. The value
1 is the default.

* [duration]—The duration of each digit in milliseconds, from 100 to 10000. The
value 0 is the default.

Result XML

<resultCode />
<resultstr />

Events Generated
+ OutgoingDtmfDigitStart
+ OutgoingDtmfDigitUpdate

Annotates the text you specify to a call leg.
Parameters

* handle—Identifies the leg of a call. Handles are returned as part of the <info>
element of call-control results and can be used to manipulate each leg of a call
independently.

+ text—The text you specify to a call leg.
Result XML

<resultCode />
<resultstr />

Events Generated

None

Retrieves the annotated text given to the call leg.
Parameters

» handle—Identifies the leg of a call. Handles are returned as part of the <info>
element of call-control results and can be used to manipulate each leg of a call
independently.

Result XML

<resultCode />
<resultstr />
<info />

Events Generated

None

62 Net-Net ASC Web Services SOAP/REST API Guide Version E3.6.0m5

Proprietary & Confidential

identify

notify

call-control-fork

ASC CALL CONTROL ACTION

Associates the requestld you specify with a call whose leg is identified by the
handle. The requestld subsequently appears in events associated with that call.
Note that the requestld is associated with the entire call, not the individual leg.

Parameters

* handle—Identifies the leg of a call. Handles are returned as part of the <info>
element of call-control results and can be used to manipulate each leg of a call
independently.

+ requestld—A unique identifier provided by an external application. This value
can be used to identify the call in subsequent events and actions. If a requestld
is specified, there is a corresponding XML element in the event messages
generated for the session.

Result XML

<resultCode />
<resultstr />

Events Generated

None

Causes a SIP NOTIFY message to be sent to the party you specify in the handle
parameter, with the value of the Event header set by the event parameter.

Parameters

* handle—Identifies the leg of a call. Handles are returned as part of the <info>
element of call-control results and can be used to manipulate each leg of a call
independently.

+ event—The content of the Event header.
Result XML

<resultCode />
<resultstr />

Events Generated

None

Adds a new endpoint’s SIP URI to the parked call. The endpoint can receive media
but cannot send it. Multiple endpoints can be added using this action.

Parameters

* handle—Identifies the leg of a call. Handles are returned as part of the <info>
element of call-control results and can be used to manipulate each leg of a call
independently.

» endpoint—The URI of the call’s destination.

* [async]| —When enabled, causes the ASC to return a response immediately
without waiting for the action to complete. When disabled (the default), the
ASC waits for the action to complete before returning a response.

* [requestld]—A unique identifier provided by an external application. This value
can be used to identify the call in subsequent events and actions. If a requestld
is specified, there is a corresponding XML element in the event messages
generated for the session.

Version E3.6.0m5

Acme Packet, Inc. Technical Publications 63

Proprietary & Confidential

ASC CALL CONTROL ACTION

call-control-redirect

[config] —The session-config on the ASC to use to process a call. Use the full
path to the session-config. For example:

vsp\session-config-pool\entry MyConfig

Enclose the value in quotation marks when using the CLI.

Result XML

<resultCode />

<resultstr />

<info />

<structure>
<CallcontrolForkresult>
<requestid />
<sessionId />
<forkedsessionid />
<parkedcallLegHandle />
<remoteCallLegHandle />
</callcontrolForkResult>

</structure>

Events Generated

CallCreated
CallConnected (new call leg)

Redirects an initiated call to a new endpoint, prior to the call being answered. This
creates a new call leg and cancels the original one.

Parameters

handle—Identifies the leg of a call. Handles are returned as part of the <info>
element of call-control results and can be used to manipulate each leg of a call
independently.

endpoint—The URI of the call’s destination.

[config]—The session-config on the ASC to use to process a call. Use the full
path to the session-config. For example:

vsp\session-config-pool\entry MyConfig

Enclose the value in quotation marks when using the CLI.

Result XML

<resultCode />

<resultstr />

<info />

<structure>
<callcontrolRedirectResult>
<requestIid />
<sessionid />
<inCallLegHandle />
<outCallLegHandle />
</CallcontrolRedirectResult>

</structure>

Events Generated

CallTerminated (abandoned call leg)

64 Net-Net ASC Web Services SOAP/REST API Guide Version E3.6.0m5

Proprietary & Confidential

call-control-media-
pause

call-control-media-
resume

call-control-media-
stop

call-control-send-
message

ASC CALL CONTROL ACTION

+ CallCreated
+ CallConnected (new call leg)

Pauses the playing of an audio file on an active call leg.
Parameters

* handle—Identifies the leg of a call. Handles are returned as part of the <info>
element of call-control results and can be used to manipulate each leg of a call
independently.

Result XML

<resultCode />
<resultstr />

Events Generated

+ PlayPaused

Resumes the playing of an audio file on an active call leg.
Parameters

* handle—Identifies the leg of a call. Handles are returned as part of the <info>
element of call-control results and can be used to manipulate each leg of a call
independently.

Result XML

<resultCode />
<resultstr />

Events Generated

+ PlayResumed

Stops the playing of an audio file on an active call leg.
Parameters

* handle—Identifies the leg of a call. Handles are returned as part of the <info>
element of call-control results and can be used to manipulate each leg of a call
independently.

Result XML

<resultCode />
<resultstr />

Events Generated
+ PlayStopped
+ PlayComplete

Sends a message to the endpoint specified by the To URL. If you specify a From URI,
it is used for the From URL. If a From URL is not specified, the From URI is the same
as the To URL

Parameters

* to—The destination SIP URI of the call.

Version E3.6.0m5

Acme Packet, Inc. Technical Publications 65

Proprietary & Confidential

ASC CALL CONTROL ACTION

file-info

On-Demand Three-
Way Conferencing

* [from]—The originating SIP URI of the call.

* [requestld]—A unique identifier provided by an external application. This value
can be used to identify the call in subsequent events and actions. If a requestld
is specified, there is a corresponding XML element in the event messages
generated for the session.

* [content-type]—Should be set to text/plain.
» [body]—The content of the message.

* [config]—The session-config on the ASC to use to process a call. Use the full
path to the session-config. For example:

vsp\session-config-pool\entry MyConfig
Enclose the value in quotation marks when using the CLI.

Result XML

<resultCode />
<resultstr />
<info />

Events Generated
+ (CallConnected
* MessageSend

+ (CallTerminated

Causes an event to be generated containing information about the specified file.
Parameters

* [requestld]—A unique identifier provided by an external application. This value
can be used to identify the call in subsequent events and actions. If a requestld
is specified, there is a corresponding XML element in the event messages
generated for the session.

+ filename—The name of the audio file where a message is recorded or from
where a message is played. Audio files must be .wav files in 44.1 kHz, 16-bit
mono PCM format. If you give an invalid filename, it is placed in or taken from
the /cxc directory.

Result XML

<resultCode />
<resultstr />

Events Generated

» FileInformation

The OS-E now supports on-demand three-way conferencing, meaning a third-party
can selectively join a target session. A target session is an existing call between two
parties and a third-party is a call-leg that can attach itself to a target session and
participate in the ongoing conversation.

An on-demand three-way conference is initiated via the call-control- attach action.
The action is syntax is:

call-control-attach <handle> [session-7id]

Valid arguments for this action are:

66 Net-Net ASC Web Services SOAP/REST API Guide Version E3.6.0m5

Proprietary & Confidential

ASC CALL CONTROL ACTION

* <handle>—The call-leg handle of the third-party to attach to an existing target
session.

+ <session-id>—The session-id of the target session to join.

Once the third-party is finished with the conference, it can detach itself from the
target session and the two original parties can continue the call. To detach the third-
party from the three-way conference, use the call-control-detach action. The action
syntax is:

call-control-detach <handle> <session-id>

Valid arguments for this action are:

* <handle>—The call-leg handle of the third-party to detach from the target
session.

» <session-id>—The rendezvous session-id that the detached call-leg becomes
attached to.

Media Forking

The OS-E now supports audio and video media forking, meaning a source endpoint
can fork media to one or more target endpoints. The source endpoint is a one-legged
call which initiates a call to the OS-E. The OS-E then initiates a call to each forked
target. In this type of media forking, the media flows in one direction only, from the
source endpoint, through the OS-E, to each of the targets.

Media forking is initiated via the call-control-fork action. This action establishes a
call from the source endpoint and replicates the media to the newly established
target sessions. The action syntax is:

call-control-fork <handile> <endpoint> [async] [requestID] [config]
Valid arguments for this action are:
* <handle>—The call-leg handle of the source endpoint.
+ <endpoint>—The URL of the target endpoint.

* [async]—When enabled, this action returns immediately as opposed to waiting
for the action to complete the call.

» [requestID]—This call’s request identifier. If included, this value is returned in all
of this action’s events.

* [config]—The session-config to use when calling the endpoint.

To end a media forking session, use the call-control disconnect action. If you
disconnect a target endpoint, the call from the source and remaining targets is still
active. If you disconnect the source endpoint, all call-legs to the target endpoints are
disconnected. The action syntax is:

call-control disconnect <hand]le>

Valid arguments for this action are:

* <handle>—The handle of the call-leg to disconnect.

Version E3.6.0m5 Acme Packet, Inc. Technical Publications 67

Proprietary & Confidential

ASC CALL CONTROL ACTION

Attended Voice Insertion

This feature allows a caller to play a pre-recorded message that both the caller and
callee can hear. The caller can start playing the message at any point, pause, resume,
or stop playing the message.

The OS-E allows the caller to begin playing a file with the option of seeking to a
specified point via the call-control play action. The action syntax is:

call-control play <handle> <filename> [startTime] [async]
Valid arguments for this action are:
* <handle>—The call-leg handle on which the file is played.
* <filename>—The .wav file being played.

* [startTime]—The optional start time in milliseconds. This is used if the caller
does not want to begin playing the file right at the beginning. The default value
is 0.

* [async]|—When enabled, this action completes immediately as opposed to
waiting for the action to complete the call.

The OS-E stops the playing of a file via the call-control media-stop action. The
action syntax is:

call-control-media-stop <handle>
Valid arguments for this action are:
* <handle>—The call-leg handle where the file is stopped.

The OS-E pauses the playing of a file via the call-control media-pause action. The
action syntax is:

call-control-media-pause <handle>
Valid arguments for this action are:
* <handle>—The call-leg handle where the file is paused.

The OS-E resumes the playing of a file via the call-control media-resume action.
The action syntax is:

call-control-media-resume <handie>
Valid arguments for this action are:
* <handle>—The call-leg handle where the file is resumed.

You can configure the OS-E to send events regarding the status of the file being
played by the call-control play action. For more information on call-control events,
see Chapter 3: ASC Call Control Action in the Net-Net ASC Web Services SOAP/REST
API Guide.

When configured, the OS-E sends the following events:
+ Playlnitiated—The file has begun to play.

+ PlayPaused—The file has been paused.

+ PlayResumed—The file has resumed playing.

+ PlayStopped—The file has stopped playing.

+ PlayCompleted—The file has completed playing.

68 Net-Net ASC Web Services SOAP/REST API Guide Version E3.6.0m5

Proprietary & Confidential

ASC CALL CONTROL ACTION

On-Demand Call Monitoring and Recording

The OS-E now supports on-demand call monitoring, meaning an endpoint, known
as the monitor session, has the ability to attach itself to either a live target session or
recording file, for the purpose of listening.

When monitoring a live target session, you have the ability to start and stop
monitoring. Any time a monitor session starts listening, it joins the session in-

progress.

You can configure one or more locations to which the OS-E writes files for on-
demand recording files via the services > data-locations > rtp-on-demand-
recorded <directory> [directory] property. By default the OS-E writes on-demand
recording files to the /cxc_common/rtp_on_demand_recorded directory.

Once you have the rtp-on-demand-recorded property configured, you can set a
rotation scheme for writing on-demand recorded files to a directory using the
services > data-locations > rtp-on-demand-recorded-rotation property. This
property can be set to either first-available or round-robin. First-available means
the OS-E writes to the first directory that has enough space to hold the recording
listed under the rtp-on-demand-recorded property and continues to write to that
directory until the disk is full and then moves onto the next directory on the list.
Round-robin means the OS-E rotates through all configured directories in a round-
robin manner. This allows for an increase in the volume of simultaneous on-demand
recorded calls by spreading the load across multiple disks.

There are four types of monitoring you can perform when working with a recording
file: a live target session currently being recorded, a previously recorded session, an
on-demand recording session, and a memo actively being recorded. When
monitoring a recording file, the monitor session does have the ability to pause,
resume, and seek forward or backward to a particular point in the file.

The OS-E attaches a monitor session to a live target session via the call-control-
monitor-session action. The monitor session must join the target session in-
progress as it has no ability to seek forward or backward during a live recording. The
action syntax is:

call-control-monitor-session <handle> <session-id>
Valid arguments for this action are:
* <handle>—The monitor session handle to attach to a target session.
+ <session-id>—The session-id of the target session to begin monitoring.

NOTE: The session-config > nnos-call-policy > apply-policy-to-nnos-calls
property must be enabled for this feature to work.

The call-control-monitor-file action attaches a monitor session to a recording file.
A recording file can be a live session currently being recorded, an old session that
was recorded, an on-demand recording of a session, or a memo actively being
recorded. The action syntax is:

call-control-monitor-file <handile> <session-id> <monitor-target>
[seek-offset] [position]

Valid arguments for this action are:
* <handle>—The monitor session handle to attach to a target session.
+ <session-id>—The session-id of the recording file to begin monitoring.

* <monitor-target>—The type of recording file. This can be:

Version E3.6.0m5

Acme Packet, Inc. Technical Publications 69

Proprietary & Confidential

ASC CALL CONTROL ACTION

+ session—A session recording file is going to be monitored.
* memo—A memo actively being recorded is going to be monitored.

* name—The on-demand <filename> specified in the call-control-record-
start <session-id> <filename> action is being monitored.

* [seek-offset]—Indicates the offset, in milliseconds, to begin seeking. A negative
seek value seeks backwards. The seeking starts at the spot specified by the
position parameter. The default value is 0.

* [position]—Indicates the position to begin seeking:
+ start—Seek from the start of the file. This is the default behavior.
+ current—Seek from the existing position being played.
+ end—Seek from the end of the file.

NOTE: The session-config > nnos-call-policy > apply-policy-to-nnos-calls
property must be enabled for this feature to work.

To stop monitoring a target session or a recording file, use the call-control media-
stop file. The action syntax is:

call-control-media-stop <handle>
Valid arguments for this action are:
* <handle>—The monitor session handle to stop listening.

The call-control media-pause action pauses the monitor of a recording file. The
action syntax is:

call-control-media-pause <hand]le>
Valid arguments for this action are:
* <handle>—The monitor session handle to pause listening.

To resume monitoring a stopped or paused recording file, use the call-control
media-resume action. The monitoring resumes from the point at which the
monitoring was stopped or paused. The action syntax is:

call-control-media-resume <handle>
Valid arguments for this action are:
* <handle>—The monitor session handle to resume listening.

To seek to a specific point in a monitored recording file, use the call-control media-
seek action. This action can also be used to seek to a certain point of a file when the
call-control play action is used to play a file. The action syntax is:

call-control-media-seek <handle> <seek-offset> [position]

Valid arguments for this action are:

* <handle>—The monitor session handle seeking to a point in a monitored
recording file or to a point in the file being played.

+ <seek-offset>—The offset, in milliseconds, to begin seeking. A negative value
seeks backwards. Seeking starts at the spot specified by the position parameter.

* [position]—Indicates the position to begin seeking:
+ start—Seek from the start of the file. This is the default behavior.
+ current—Seek from the current position of the file.

* end—Seek from the end of the file.

70 Net-Net ASC Web Services SOAP/REST API Guide Version E3.6.0m5

Proprietary & Confidential

ASC CALL CONTROL ACTION

The call-control-record-start action starts the on-demand recording of a target
session to a specific <filename> file. This recording can then be monitored via the
call-control-monitor-file action. You can execute this command one or more times
for a given target session, provided you give it a different <filename> each time. If a
<filename> already exists for a given target session, the existing <filename> is
preserved and the action fails. The action syntax is:

call-control-record-start <session-id> <recording-name>

Valid arguments for this action are:
+ <session-id>—The session-id of the target session to begin recording.
+ <filename>— The name of the recording for this particular target session.

The call-control-record-stop action stops the on-demand recording of a target
session to a specific <filename>. The action syntax is:

call-control-record-stop <session-id> <filename>

Valid arguments for this action are:
+ <session-id>—The session-id of the target session to stop recording.
+ <filename>—The name of the recording for this particular target session.

The media-on-demand-delete command deletes on-demand recording files by
specifying a session-id and filename. The action syntax is:

media-on-demand-delete <session-iad> <f7lename>

Valid arguments for this action are:
+ <session-id>—The session-id of the on-demand recording file to delete.
+ <filename>—The on-demand recording filename to delete.

The media-on-demand-delete-old action deletes all on-demand recording files
that are older than the specified time. The time units can be specified in days or
seconds. The default value in which to purg3e old on-demand recording files is 7
days. The action syntax is:

media-on-demand-delete-old <age> [wnits]

Valid arguments for this action are:
+ <age>—The age at which to delete on-demand recordings. The default is 7 days.

* [units]—This optional parameter allows you to specify the units in which the age
is measured. This can be either days or seconds. If you do not specify, the
default is days.

You can archive on-demand recordings using the existing archiving support when
the session-config > media > recording-policy object is configured. This existing
archiver has been extended to support the archiving of one or more on-demand
recordings per session. Note that multiple on-demand recordings can be created for
the same session. The archiver also supports mixing the ras media files to a .wav file
and archiving that file.

The on-demand-mixed-media command can be configured under either the vsp
> accounting > archive-local > path <name> object or vsp > accounting >
archive-external > url <url> object. It has been created to control whether the on-
demand recordings associated with a session are mixed to a .wav file and included
in the archive for a call. It also determines whether the raw on-demand recordings
are included in the archive if the mixing of the on-demand recording fails.

The on-demand-mixed-media syntax is:

Version E3.6.0m5

Acme Packet, Inc. Technical Publications 71

Proprietary & Confidential

ASC CALL CONTROL ACTION

on-demand-mixed-media <include> <include-raw-media-on-mix-fail>

Valid arguments for this property are:

e <include>—Can be set to true or false and determines whether on-demand
mixed media is included in the archive.

» <include-raw-media-on-mix-fail>—Can be set to true or false and determines
whether on-demand raw media is included in the archive if the mixing fails.

To always include raw media in the archive use the include-on-demand-raw-
media property configured under either the vsp > accounting > archive-local >
path <name> object or vsp > accounting > archive-external > url <url> object.
This property can be set to either true or false.

The mix-session-threaded action has been extended to support the mixing of on-
demand recorded files. A new <recorded-filename> argument has been added to this
action to indicate the on-demand recording filename that is being mixed. For more
information on the mix-session-threaded action see the Net-Net OS-E Objects and
Properties Reference Guide.

Two status show commands have been created to allow you to view on-demand call
monitoring information.

The show media-on-demand-recordings status displays the on-demand
recording files for a given session. This information displayed with this status
provider can be used with the call-control monitor-file command to listen to these
on-demand recording files.

NNOS-E>show media-on-demand-recordings

session-id filename start-time
0x4c42b6e0e5a6577 r9 15:57:30.798092 Tue 2011-12-06
0x4c42bela934be68 r10 12:12:17.890681 Thu 2011-12-08
Field Description
session-id The session-id of the session that is recorded.
filename The on-demand recording filename.
start-time The date and time the on-demand recording was
started.
The show media-memo-recordings status provider displays the sessions that are
actively recording memos. The information displayed with this status provider can
be used with the call-control monitor-file command to listen to these memos as
they are being recorded.
NNOS-E>show media-memo-recordings
session-id filename start-time
0x4c43a6bb77329a3 frank.wav 15:00:04.295810 Mon 2012-02-06
Field Description
session-id The session-id of the session that is recording a
memo.
filename The filename of the memo recording
72 Net-Net ASC Web Services SOAP/REST API Guide Version E3.6.0m5

Proprietary & Confidential

Field

ASC CALL CONTROL ACTION

Description

start-time

The date and time the memo recording file was
started.

Rendezvous Session Support

The OS-E now supports rendezvous sessions. Rendezvous sessions are useful for
accumulating information in named variables before attaching call legs. They have
unique 64 bit session IDs as with other OS-E sessions but do not have any call-legs
attached. Once a rendezvous session is created, you can add call-legs, remove call-
legs, destroy the session, or add named-variables.

Using the call-control-create-session action, you can create a rendezvous session
to which you can then add call-legs, add named-variables, or destroy the session.
The OS-E automatically assigns the session a unique 64 bit session ID. The action
syntax is:

call-control-create-session

To destroy a rendezvous session manually, use the call-control-destroy-session
action. The action syntax is:

call-control-destroy-session <session-id>

Valid arguments for this action are:

+ <session-id>—Specify the session-id for the rendezvous session you are
destroying. This is the unique 64 bit session ID given to the session by the OS-
E when it was created.

The OS-E also destroys a rendezvous session if you have the session-config > sip-
settings > session-duration-max property set. This property specifies how many
seconds the OS-E maintains a session after the session has been successfully
established. It puts a timer on the session and forces it to close upon expiration. If set
to 0 (the default), the session remains open until it is complete and does not timeout.
This property applies to all sessions on the OS-E, including rendezvous sessions.

To add call-legs to a rendezvous session dynamically, use the call-control park and
call-control call actions. These have been enhanced to include an optional [session-
id] argument. Once a rendezvous session has a call-leg attached, it is “promoted” to
a connected session. All subsequent interactions can be accomplished using the call
control handles as you would with a normal session.

Manually Attaching and Detaching From an Endpoint

The OS-E supports functionality which provides control over managing session
endpoints. The call-control-attach and call-control-detach actions allow you to
attach and detach from rendezvous sessions and endpoints manually.

Rendezvous sessions can be created by one of two ways. Via the call-control-
create-session action or by detaching an endpoint from a single endpoint session.
For more information on rendezvous sessions, see the Rendezvous Session Support
section in this guide.

Endpoints can be created in a few different ways. You can create an outbound call-
leg via the call-control park action, enable the third-party-call-control > park-

Version E3.6.0m5

Acme Packet, Inc. Technical Publications 73

Proprietary & Confidential

ASC CALL CONTROL ACTION

incoming-calls property, or use the call-control-detach command during a
rendezvous session.

You can manually attach an endpoints to either rendezvous sessions or sessions
resulting from a SIP DIALOG. When attached to a rendezvous session, an endpoint
remains in a PARKED state. When attached to a single endpoint session, the OS-E
joins the two endpoints and two-way communication can take place. When the call
is terminated, a previously PARKED endpoint reverts back to PARKED and the
session remains active.

When you attach an endpoint to a session already containing two endpoints, a
three-way conference call is created and three-way communication can take place.
When one endpoint terminates the call, the remaining two endpoints remain joined
and two-way communication commences.

To attach an endpoint to an existing session, use the call-control-attach action. The
action syntax is:
call-control-attach <handle> <session-id>

Valid arguments for this action are:
* <handle>—The handle of the endpoint to be attached.
+ <session-id>—The session to which the endpoint is being attached.

Just as you can manually attach endpoints, you can also manually detach endpoints.
If you detach a PARKED endpoint from a session that is not a rendezvous session,
the endpoint is terminated. If you detach a CONNECTED endpoint, both endpoints
from the two-way session are placed in a PARKED state. If you detach a
CONFERENCED endpoint, the detached endpoint is placed in a PARKED state and
the remaining two endpoints continue as a two-way call.

To detach an endpoint from a session, use the call-control-detach action. The
action syntax is:

call-control-detach <handle> [session-id]
Valid arguments for this action are:
* <handle>—The handle of the endpoint to be detached.

+ <session-id>—The rendezvous session ID with which the endpoint is associated
after it is detached. If no <session-id> is provided, a new (non-rendezvous)
session is created.

74 Net-Net ASC Web Services SOAP/REST API Guide Version E3.6.0m5

Proprietary & Confidential

Appendix A ASC APl Examples

This appendix provides examples for the ASC top-level APIs. Included are both
SOAP and REST web services requests and responses. REST actions are broken
down to include both flat and hierarchical request examples.

ASC top-level APIs are:
+ getConfig

+ setConfig

* doAction

» getStatus

* queryStatus

getConfig

The ASC getConfig API uses the HTTP GET Method.

The following examples display a getConfig API request from the server for the
cluster object. The responses received from the client include the cluster
configuration, including all of its subobject configurations.

SOAP
Request <soapenv:Envelope
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmIns :mgmt="http://www.acmepacket.com/asc/ws/mgmt">
<soapenv:Header/>
<soapenv:Body>
<mgmt:getConfig>
<!--Zero or more repetitions:-->
<config homogeneous="false">
<!--Zero or more repetitions:-->
<object xsi:type="MasterServicesType"
xmIns="http://www.acmepacket.com/asc/ws/common"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">
<!--optional:-->
</object></config>
<l--Zero or more repetitions:-->
</mgmt:getConfig>
</soapenv:Body>
</soapenv:Envelope>
Response <cov:getConfigResponse
xmlns:cov="http://www.acmepacket.com/asc/ws/mgmt">
<config>
Version E3.6.0m5 Acme Packet, Inc. Technical Publications 75

Proprietary & Confidential

ASC API EXAMPLES

<object xsi:type="data:MasterServicesType" revision="1"
xmlns:data="http://www.acmepacket.com/asc/ws/common"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">

<cluster-master>

<admin>enabled</admin>

<host-box name="cluster\box 1"/>

<group>0</group>

<preempt>false</preempt>
<takeover-timer-value>1000</takeover-timer-value>

</cluster-master>
<directory>

<admin>disabled</admin>

<host-box name="cluster\box 1"/>

<group>0</group>

<preempt>false</preempt>
<takeover-timer-value>1000</takeover-timer-value>

</directory>
<accounting>

<admin>disabled</admin>

<host-box name="cluster\box 1"/>

<group>0</group>

<preempt>false</preempt>
<takeover-timer-value>1000</takeover-timer-value>

</accounting>
<database>

<admin>enabled</admin>
<host-box name="cluster\box 1"/>
<group>0</group>
<preempt>false</preempt>
<takeover-timer-value>1000</takeover-timer-value>
<maintenance>

<time-of-day>

<time>2012-01-30T03:00:00.000-05:00</time>

</time-of-day>
</maintenance>
<database-threads-max>4</database-threads-max>
<sip-cache-size>30000</sip-cache-size>
<performance>call-details</performance>
<dos-tcp-connect-multiplier>5</dos-tcp-connect-multiplier>
<dos-tls-connect-multiplier>10</dos-tls-connect-multiplier>
<sip-registers>enabled</sip-registers>
<max-queue-depth>4000</max-queue-depth>
<caching-threshold>3500</caching-threshold>
<media>enabled</media>
<write-mode>copy</write-mode>

</database>
<registration>

<admin>enabled</admin>

<host-box name="cluster\box 1"/>

<group>0</group>

<preempt>false</preempt>
<takeover-timer-value>1000</takeover-timer-value>
<mirror-all-entries>enabled</mirror-all-entries>
<mirror-location-cache>enabled</mirror-Tocation-cache>
<force-regdb-Tookup>disabled</force-regdb-lookup>

76 Net-Net ASC Web Services SOAP/REST API Guide

Version E3.6.0m5

Proprietary & Confidential

ASC API EXAMPLES

<cache-pol1-interval>86400</cache-poll1-interval>
<max-pol1-duration>1000</max-poll-duration>
<max-entries-per-pol1>100</max-entries-per-poll>
</registration>
<route-server>
<admin>enabled</admin>
<host-box name="cluster\box 1"/>
<group>0</group>
<preempt>false</preempt>
<takeover-timer-value>1000</takeover-timer-value>
<max-routes>automatic</max-routes>
<client-request-sender>only-master</client-request-sender>
<simple-updates>enabled</simple-updates>
</route-server>
<sampTling>
<admin>enabled</admin>
<host-box name="cluster\box 1"/>
<group>0</group>
<preempt>false</preempt>
<takeover-timer-value>1000</takeover-timer-value>
<SamplingTarget xsi:type="data:SamplingbDatabaseType'>
<admin>enabled</admin>
<duration>7</duration>
<status>
<cpu-usage>
<admin>enabled</admin>
<interval>POYOMODTOH5MO0.000S</interval>
</cpu-usage>
</status>
</SamplingTarget>
</sampling>
<jtapi>
<admin>disabled</admin>
<host-box name="cluster\box 1"/>
<group>0</group>
<preempt>false</preempt>
<takeover-timer-value>1000</takeover-timer-value>
</jtapi>
<advertisement-interval>60</advertisement-interval>
<boot-interval>30</boot-interval>
</object>
</config>
</cov:getConfigResponse>

REST

Request http://172.30.80.24:8080/cms/config?name=MastersServices

Response <?xml version="1.0"7>
<object xsi:type="ExtPageListType"
xmIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">
<version>E3.6.0.M5P0</version>

Version E3.6.0m5 Acme Packet, Inc. Technical Publications 77

Proprietary & Confidential

ASC API EXAMPLES

<resultCode>0</resultCode>

<resultStr>Success</resultStr>

<objects revision="1" xsi:type="MasterServicesType'>
<cluster-master>

<admin>enabled</admin>

<host-box name="cluster\box 1"/>

<group>0</group>

<preempt>false</preempt>
<takeover-timer-value>1000</takeover-timer-value>

</cluster-master>
<directory>

<admin>disabled</admin>

<host-box name="cluster\box 1"/>

<group>0</group>

<preempt>false</preempt>
<takeover-timer-value>1000</takeover-timer-value>

</directory>
<accounting>

<admin>disabled</admin>

<host-box name="cluster\box 1"/>

<group>0</group>

<preempt>false</preempt>
<takeover-timer-value>1000</takeover-timer-value>

</accounting>
<database>

<admin>enabled</admin>
<host-box name="cluster\box 1"/>
<group>0</group>
<preempt>false</preempt>
<takeover-timer-value>1000</takeover-timer-value>
<maintenance>

<time-of-day>

<time>2012-01-30T03:00:00.000-05:00</time>

</time-of-day>
</maintenance>
<database-threads-max>4</database-threads-max>
<sip-cache-size>30000</sip-cache-size>
<performance>call-details</performance>
<dos-tcp-connect-multiplier>5</dos-tcp-connect-multiplier>
<dos-tls-connect-multiplier>10</dos-tls-connect-multiplier>
<sip-registers>enabled</sip-registers>
<max-queue-depth>4000</max-queue-depth>
<caching-threshold>3500</caching-threshold>
<media>enabled</media>
<write-mode>copy</write-mode>

</database>

<registration>

<admin>enabTled</admin>

<host-box name="cluster\box 1"/>

<group>0</group>

<preempt>false</preempt>
<takeover-timer-value>1000</takeover-timer-value>
<mirror-all-entries>enabled</mirror-all-entries>
<mirror-location-cache>enabled</mirror-Tocation-cache>

78 Net-Net ASC Web Services SOAP/REST API Guide

Version E3.6.0m5

Proprietary & Confidential

ASC API EXAMPLES

<force-regdb-Tookup>disabled</force-regdb-lookup>
<cache-pol1-interval>86400</cache-pol1-interval>
<max-pol1-duration>1000</max-poll-duration>
<max-entries-per-pol1>100</max-entries-per-poll>
</registration>
<route-server>
<admin>enabled</admin>
<host-box name="cluster\box 1"/>
<group>0</group>
<preempt>false</preempt>
<takeover-timer-value>1000</takeover-timer-value>
<max-routes>automatic</max-routes>
<client-request-sender>only-master</client-request-sender>
<simple-updates>enabled</simple-updates>
</route-server>
<sampTling>
<admin>enabled</admin>
<host-box name="cluster\box 1"/>
<group>0</group>
<preempt>false</preempt>
<takeover-timer-value>1000</takeover-timer-value>
<SamplingTarget xsi:type="data:SamplingDatabaseType'>
<admin>enabTled</admin>
<duration>7</duration>
<status>
<cpu-usage>
<admin>enabled</admin>
<interval>POYOMODTOH5MO.000S</interval>
</cpu-usage>
</status>
</SamplingTarget>
</sampling>
<jtapi>
<admin>disabled</admin>
<host-box name="cluster\box 1"/>
<group>0</group>
<preempt>false</preempt>
<takeover-timer-value>1000</takeover-timer-value>
</jtapi>
<advertisement-interval>60</advertisement-interval>
<boot-interval>30</boot-interval>
</objects>
</object>

Version E3.6.0m5 Acme Packet, Inc. Technical Publications 79

Proprietary & Confidential

ASC API EXAMPLES

setConfig

This API uses the HTTP POST Method.

The following examples display a setConfig APl request from the server, configuring
a CLI banner via the cli object’s banner property. The responses received from the
client indicate the action was successtul.

SOAP

Request <soapenv:Envelope
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:cal="http://www.covergence.com/ws/callouts">
<soapenv:Header/>
<soapenv:Body>
<cal:setConfig mode="merge">
<config>
<Cluster>
<box>
<Box number="1">
<cli>
<CLI>

<banner>The Acme Packet Application Session
controller sure has web Service

interfaces!</banner>
</CLI>
</cli>
</BoX>
</box>
</Cluster>
</config>
</cal:setConfig>
</soapenv:Body>
</soapenv:Envelope>

Response <soapenv:Envelope
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">

<soapenv:Body>
<setcConfigResponse xmlns="http://www.covergence.com/ws/callouts">
<Code>success</Code>
<Text>Success</Text>
</setConfigResponse>
</soapenv:Body>
</soapenv:Envelope>

REST

Request POST
http://172.44.10.59:8080/cms/config?operation=modify&output=xmi&mode=
merge&_format=Tlegacy HTTP/1.1

80 Net-Net ASC Web Services SOAP/REST API Guide Version E3.6.0m5

Proprietary & Confidential

Response

doAction

ASC API EXAMPLES

Accept-Encoding: gzip,deflate
Content-Type: application/xml

User-Agent: Jakarta Commons-HttpClient/3.1
Host: 172.44.10.59:8080

Content-Length: 34

<SCP><admin>disabled</admin></SCP>

HTTP/1.1 200 OK
Server: Apache-Coyote/1.1

Set-Cookie: JSESSIONID_WS=3C747DF0159B1E36714096B99FE2A7EA; Path=/;
Httponly

Cache-Control: no-cache
Content-Type: text/xml
Transfer-Encoding: chunked

Date: Thu, 13 Oct 2011 16:50:35 GMT

<ExtActionResponse>
<resultCode>0</resultCode>
<resultStr>Success</resultstr>

</ExtActionResponse>

SOAP

Request

This API uses the HTTP GET Method.

Included are two examples for each SOAP and REST, the first example includes an
unstructured response and the second example is a structured example. These
examples display an API request from the server, performing the PING action. The
ASC s pinging host 169.55.3.5. The responses received from the client indicate the
action is a success.

Unstructured:

<soapenv:Envelope
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

xmIns:cal="http://www.covergence.com/ws/callouts">
<soapenv:Header/>
<soapenv :Body>
<cal:doAction>
<action>
<PingAction>
<host>169.55.3.5</host>
</PingAction>
</action>
</cal:doAction>
</soapenv:Body>
</soapenv:Envelope>

Version E3.6.0m5

Acme Packet, Inc. Technical Publications 81

Proprietary & Confidential

ASC API EXAMPLES

Unstructured
Response

Structured Response

REST

Flat Request

Hierarchical Request

Unstructured
Response

<soapenv:Envelope

xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

<soapenv:Body>

>

<doActionResponse xmlns="http://www.covergence.com/ws/callouts">

<Code>success</Code>
<Text>Success</Text>

<message>3 packets sent, 3 packets received, 0 packets lost (0%)
roundtrip minimum/average/maximum: 0.588/0.825/1.291 ms</message>

</doActionResponse>
</soapenv:Body>
</soapenv:Envelope>

<env:Envelope xmins:env="http://schemas.xmlsoap.org/soap/envelope/">

<env:Body>

<cov:doActionExResponse xsi:type="data:ActionResultsType"

xmlns:cov="http://www.acmepacket.com/asc/ws/mgmt"
xmlns:data="http://www.acmepacket.com/asc/ws/common"
xmIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance'>

<result-code>0</result-code>
<message>Success!</message>

<info>28 bytes from 169.55.3.5: 0.134 milliseconds

28 bytes from 169.55.3.5: 0.107 milliseconds
28 bytes from 169.55.3.5: 0.102 milliseconds
3 packets sent, 3 packets received, 0 packets lost (0%)

Round trip minimum/average/maximum: 0.102/0.114/0.134
milliseconds</info>

<structure xsi:type="data:ActionResultsPingType">

<requests-sent>3</requests-sent>
<replies-lost>0</replies-lost>
<replies-received>3</replies-received>
<round-trip-minimum>102</round-trip-minimum>
<round-trip-average>11l4</round-trip-average>
<round-trip-maximum>134</round-trip-maximum>
</structure>
</cov:doActionExResponse>
</env:Body>
</env:Envelope>

GET http://175.66.15.95:8080/cms?action=PingAction&Host=169.55.3.5

HTTP/1.1

GET http://175.66.15.95:8080/cms/action/ping?host=169.55.3.5 HTTP/1.1

<ExtActionResponse>
<Code>Success</Code>
<Text>Success</Text>

<message>3 packets sent, 3 packets received, 0 packets Tost (0%)
roundtrip minimum/average/maximum: 0.588/0.825/1.291 ms</message>

</ExtActionResponse>

82 Net-Net ASC Web Services SOAP/REST API Guide

Proprietary & Confidential

Version E3.6.0m5

Structured Response

getStatus

ASC API EXAMPLES

<?xml version="1.0"7>
<ExtActionResponse>
<resultCode>0</resultCode>
<resultStr>Success</resultStr>

<info>28 bytes from 169.55.3.5: 0.103 milliseconds 28 bytes from
169.55.3.5: 0.111 milliseconds 28 bytes from 169.55.3.5: 0.102
milliseconds 3 packets sent, 3 packets received, 0 packets lost (0%)
Round trip minimum/average/maximum: 0.102/0.105/0.111
milliseconds</info>

<structure>

<ActionResultsPing>
<RequestsSent>3</RequestsSent>
<RepliesLost>0</RepliesLost>
<RepliesReceived>3</RepliesReceived>
<RoundTripMinimum>102</RoundTripMinimum>
<RoundTripAverage>105</RoundTripAverage>
<RoundTripMaximum>111</RoundTripMaximum>
</ActionResultsPing>

</structure>

</ExtActionResponse>

SOAP

Request

This ASC API uses the HTTP GET Method.

The following examples display a getStatus API request sent from the server,
requesting the status of all current processes. The responses received from the client
indicate the action was successful.

POST http://172.44.10.59:8080/ws HTTP/1.1
Accept-Encoding: gzip,deflate
Content-Type: text/xml;charset=UTF-8
SOAPAction: "getStatus"

User-Agent: Jakarta Commons-HttpClient/3.1
Host: 172.44.10.59:8080

Content-Length: 324

<soapenv:Envelope
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/

xmlns:cal="http://www.covergence.com/ws/callouts">
<soapenv:Header/>
<soapenv:Body>
<cal:getStatus>
<status>
<Clusterstatus />
</status>
</cal:getStatus>
</soapenv:Body>
</soapenv:Envelope>

HTTP/1.1 200 OK

Version E3.6.0m5

Acme Packet, Inc. Technical Publications 83

Proprietary & Confidential

ASC API EXAMPLES

Response

REST

Flat Request
Hierarchical Request

Response

queryStatus

Server: Apache-Coyote/1.1

Set-Cookie: JSESSIONID_WS=35AC602AAB7ADC597C9BAFD27653FB5F; Path=/;
Httponly

Content-Type: text/xml
Transfer-encoding: chunked
Date: Thu, 13 Oct 2011 17:47:12 GMT

<?xml version="'1.0" encoding='UTF-8'?><env:Envelope

xmlns:env="http://schemas.xmlsoap.org/soap/envelope/"><env:Body><cov:

getStatusResponse
xmIns:cov="http://www.covergence.com/ws/callouts"><status><Clustersta
tus

IPAddress="0.0.0.0"><boxID>1</boxID><bGetsConfig>false</bGetsConfig><
bGotConfig>false</bGotConfig></Clusterstatus></status></cov:getStatus
Response></env:Body></env:Envelope>

GET http://175.66.15.95:8080/cms?status=ProcessStatus HTTP/1.1

GET http://175.66.15.95:8080/cms/status/processes HTTP/1.1

<ExtPageList><version>E3.6.0.M5P0</version><resultCode>0</resultCode>
<resultstr>Success</resultStr><objects><ClusterstatusIPAddress="0.0.0
.0"><boxID>1</boxID><bGetsConfig>talse</bGetsConfig><bGotConfig>false
</bGotConfig></Clusterstatus></objects><totalPages>1</totalPages><cur
rentPage>1l</currentPage><pageSize>l</pageSize></ExtPageList>

SOAP

Request

This ASC API uses the HTTP GET Method.

The following examples display a queryStatus API request sent from the server for
the status of all running processes. The responses from the client server indicate the
action was successful.

<soapenv:Envelope
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:mgmt="http://www.acmepacket.com/asc/ws/mgmt">

<soapenv:Header/>
<soapenv:Body>
<mgmt:queryStatus>
<!--1 or more repetitions:-->
<status homogeneous="false">
<!--Zero or more repetitions:-->

<object xsi:type="ns574:ProcessStatusType"
xmIns:ns574="http://www.acmepacket.com/asc/ws/common"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance" process="ws">

<!--optional:-->

84 Net-Net ASC Web Services SOAP/REST API Guide Version E3.6.0m5

Proprietary & Confidential

Response

REST

Flat Request

Hierarchical Request

Response

ASC API EXAMPLES

<!--optional:-->

<!--optional:-->
</object></status>
</mgmt:queryStatus>
</soapenv:Body>
</soapenv:Envelope>

<cov:queryStatusResponse
xmlns:cov="http://www.acmepacket.com/asc/ws/mgmt">

<status>

<object xsi:type="data:ProcessStatusType" process="Wws"
xmlns:data="http://www.acmepacket.com/asc/ws/common"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">

<id>14817</1id>
<condition>running</condition>
<run-Tlevel>7</run-level>
<state>sleeping</state>
<starts>1l</starts>
<uptime>POYOM4DT18H5M32.000S</uptime>
<fds>198</fds>
</object>
</status>
</cov:queryStatusResponse>

http://172.30.80.24:8080/cms?status=ProcessStatus&_format=simplified&
search.process=Ws

http://172.30.80.24:8080/cms/status/processes?search.process=wS&_form
at=simplified

<?xml version="1.0"7>

<object xsi:type="ExtPageListType"
xmIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance'>

<version>E3.6.0.M5P0</version>
<resultCode>0</resultCode>
<resultStr>Success</resultstr>
<objects xsi:type="ProcessStatusType" process="wS">
<id>14817</1id>
<condition>running</condition>
<run-level>7</run-Tevel>
<state>sleeping</state>
<starts>1l</starts>
<uptime>POYOM4DT18HIM7 .008S</uptime>
<fds>195</fds>
</objects>
<totalPages>l</totalPages>
<current-page>l</current-page>
<page-size>l</page-size>

Version E3.6.0m5

Acme Packet, Inc. Technical Publications 85

Proprietary & Confidential

ASC API EXAMPLES

</object>

86 Net-Net ASC Web Services SOAP/REST API Guide Version E3.6.0m5

Proprietary & Confidential

Appendix B Event Message Examples

This appendix provides examples of the different types of event messages that can
be sent by the ASC. The following examples are given:

* New Schema / Legacy Content
* New Schema / Custom Content

For more information on the different types of event message formatting and
content, see the Legacy and New Schemas section of Chapter 1.

New Schema / Legacy Content

The following example shows a CallConnected event message sent from an ASC
that is using the new schema and is configured to include the legacy content.

With the new simplified format, some of the names of the event attributes are
hyphenated, rather than using “camelCase”. The SOAP message use a different
namespace, and the event name is an attribute of the <object> element.

<env:Envelope xmlns:env="http://schemas.xmlsoap.org/soap/envelope/">
<env:Body>

<cov:processEvent
xmIns:cov="http://www.acmepacket.com/asc/ws/mgmt">

<cov:event>

<object xmlns:data="http://www.acmepacket.com/asc/ws/common"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

xsi:type="data:CallConnectedType">
<hand1e>14287669</handTle>
<session-1d>343194204702856025</session-id>

” <cal1-id>zDk2MTQWOGFKNTYOZmMMyMTViYmMUyNGIMN2EZNmVKNTY.</call-

id>
<to>sip:1001l@acmepacket.com</to>
<from>sip:2001@acmepacket.com</from>
<content>v=0

0=3CXVCE 49342965 311118690 IN IP4 192.168.220.1

s=3cxVCE Audio call

c=IN IP4 192.168.220.1

t=0 0

m=audio 40030 RTP/AVP 0 8 101

a=rtpmap:0 PCMU/8000

a=rtpmap:8 PCMA/8000

a=rtpmap:101 telephone-event/8000

a=fmtp:101 0-15

</content>
</object>
</cov:event>
</cov:processEvent>
</env:Body>
</env:Envelope>

Version E3.6.0m5

Acme Packet, Inc. Technical Publications 87

Proprietary & Confidential

EVENT MESSAGE EXAMPLES

New Schema / Custom Content

The following example shows a CallConnectedEventCustom event message sent
from an ASC that is using the new schema and is configured to include custom
content.

<env:Envelope xmlns:env="http://schemas.xmlsoap.org/soap/envelope/">
<env:Body>

<cov:processEvent
xmlns:cov="http://www.acmepacket.com/asc/ws/mgmt">

<cov:event>

<object xmlns:data="http://www.acmepacket.com/asc/ws/common"
xmIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

xsi:type="data:CallConnectedEventCustomType'>
<handle>14287667</handle>
<session-i1d>343194196653337756</session-id>

<call-id>CxCc-103-4b6001b8-8d14010a-13c4-4eaeffe4-c6764eb-
53ce4bcc</call-id>

<cookie>3389006614</cookie>
<to>sip:2001l@acmepacket.com</to>
<from>sip:1001@acmepacket.com</from>

<customField>user-agent=X-Lite 4 release 4.1 stamp
63214;</customField>

<content>v=0
0o=- 12964565220154654 1 IN IP4 192.168.220.1
s=CounterPath X-Lite 4.1
c=IN IP4 192.168.220.1
t=0 0
m=audio 51518 RTP/AVP 107 0 8 101
a=rtpmap:107 BvV32/16000
a=rtpmap:101 telephone-event/8000
a=fmtp:101 0-15
a=sendrecv

</content>
</object>
</cov:event>
</cov:processEvent>
</env:Body>
</env:Envelope>

88 Net-Net ASC Web Services SOAP/REST API Guide Version E3.6.0m5

Proprietary & Confidential

	About This Guide
	Overview
	Audience
	Who is Acme Packet?

	Technical Assistance
	Customer Questions, Comments, or Suggestions
	Contact Us

	About Net-Net OS-E Documentation

	1 About the Web Service Interface
	Introduction
	What is the ASC?
	What Are SOAP- Based Web Services?
	What is REST?
	Accessing the ASC
	Terminology
	Authentication
	Legacy and New Schema
	Legacy and Custom Event Messages

	Web Services Requests
	Get Configuration
	Set Configuration
	Get Status
	Query Status
	Execute Action

	Configuring the ASC
	Instructions and Examples

	2 Using ASC Callouts
	Web Service Callouts
	External Policy Service
	External Event Service
	Generating Event Messages
	Eventpush Service

	3 ASC Call Control Action
	Web Service Call Control
	Identifying Calls and Sessions
	Configuring To and From URIs
	Action Results
	Configuring Call Events
	Common Call Events
	Call-Control Actions
	Media Forking
	Attended Voice Insertion
	On-Demand Call Monitoring and Recording
	Rendezvous Session Support
	Manually Attaching and Detaching From an Endpoint

	Appendix A ASC API Examples
	getConfig
	SOAP
	REST

	setConfig
	SOAP
	REST

	doAction
	SOAP
	REST

	getStatus
	SOAP
	REST

	queryStatus
	SOAP
	REST

	Appendix B Event Message Examples
	New Schema / Legacy Content
	New Schema / Custom Content

