
Net-Net® ASC
Web Services

SOAP/REST API

Release Version E3.6.0m5

Acme Packet, Inc.
100 Crosby Drive
Bedford, MA 017303 USA
t 781-328-4400
f 781-425-5077
www.acmepacket.com

Last Updated: August 3, 2012
Document Number: 780-0181-00 Rev. 1.0.0

http://www.acmepacket.com

Notices
©2012 Acme Packet, Inc., Bedford, Massachusetts. All rights reserved. Acme Packet®, Session Aware
Networking®, Net-Net®, and related marks are registered trademarks of Acme Packet, Inc. All other brand
names are trademarks, registered trademarks, or service marks of their respective companies or organizations.

Patents Pending, Acme Packet, Inc.

The Acme Packet Documentation Set and the Net-Net systems described therein are the property of Acme
Packet, Inc. This documentation is provided for informational use only, and the information contained within
the documentation is subject to change without notice.

Acme Packet, Inc. shall not be liable for any loss of profits, loss of use, loss of data, interruption of business, nor
for indirect, special, incidental, consequential, or exemplary damages of any kind, arising in any way in
connection with the Acme Packet software or hardware, third party software or hardware, or the
documentation. Some jurisdictions do not allow the exclusion or limitation of incidental or consequential
damages, so the above exclusions may not apply. These limitations are independent from all other provisions
and shall apply notwithstanding the failure of any remedy provided herein.

Copying or reproducing the information contained within this documentation without the express written
permission of Acme Packet, Inc., 100 Crosby Drive, Bedford, MA 01730, USA is prohibited. No part may be
reproduced or retransmitted.

Acme Packet Net-Net products are protected by one or more of the following patents: United States: 7072303,
7028092, 7002973, 7133923, 7031311, 7142532, 7151781. France: 1342348, 1289225, 1280297, 1341345, 1347621.
Germany: 1342348, 1289225, 1280297, 1341345, 1347621. United Kingdom: 1342348, 1289225, 1280297,
1341345, 1347621. Other patents are pending.
Proprietary & Confidential

Contents

About This Guide . vii

Overview . vii

Audience . vii

Who is Acme Packet? . vii

Technical Assistance . vii

Customer Questions, Comments, or Suggestions . viii

Contact Us . viii

About Net-Net OS-E Documentation. viii

1 About the Web Service Interface . 11

Introduction . 11

What is the ASC? . 11

What Are SOAP-Based Web Services? . 11

What is WSDL? . 11

What is REST? . 11

What is WADL?. 12

Specifying Output and Callback. 12

Accessing the ASC . 12

Supported ASC Functionality. 12

Terminology. 12

Authentication . 13

Configuring Access . 13

Legacy and New Schema . 15

Legacy and Custom Event Messages. 15

Web Services Requests . 16

Get Configuration . 17

SOAP . 17

REST . 17

Set Configuration . 18

SOAP . 18

REST . 18

Get Status. 19
Proprietary & Confidential

CONTENTS
SOAP .19

REST. .19

Query Status .19

SOAP .19

REST. .20

Execute Action .20

SOAP .21

REST. .21

Configuring the ASC. .22

Instructions and Examples. .22

2 Using ASC Callouts . 25

Web Service Callouts .25

External Policy Service .25

Configuring External Policy Service .26

External Event Service .29

Configuring External Event Service. .29

Executing dynamic-event-service .32

Generating Event Messages .38

Sending SIP Event Messages .38

Eventpush Service .39

3 ASC Call Control Action . 45

Web Service Call Control .45

Identifying Calls and Sessions. .45

Request IDs .45

Session IDs .45

Call Leg Handles. .45

SIP Call-IDs. .45

Configuring To and From URIs .46

Action Results .46

Configuring Call Events .47

Common Call Events .49

Call-Control Actions .54

call .54

disconnect .55

park .55

connect. .56

terminate .56

hold .57

retrieve .57
iv Net-Net ASC Web Services SOAP/REST API Guide

Proprietary & Confidential

CONTENTS
transfer . 58

join . 59

memo-begin. 59

memo-end . 60

play . 60

drop-file . 60

message . 61

insert-dtmf . 62

annotate . 62

get-annotation . 62

identify . 63

notify. 63

call-control-fork. 63

call-control-redirect. 64

call-control-media-pause . 65

call-control-media-resume. 65

call-control-media-stop . 65

call-control-send-message . 65

file-info . 66

On-Demand Three-Way Conferencing . 66

Media Forking . 67

Attended Voice Insertion . 68

On-Demand Call Monitoring and Recording. 69

Rendezvous Session Support . 73

Manually Attaching and Detaching From an Endpoint. 73

Appendix AASC API Examples. 75

getConfig . 75

SOAP . 75

Request . 75

Response . 75

REST . 77

Request . 77

Response . 77

setConfig. 80

SOAP . 80

Request . 80

Response . 80

REST . 80

Request . 80

Response . 81

doAction . 81
 Net-Net ASC Web Services SOAP/REST API Guide v

Proprietary & Confidential

CONTENTS
SOAP. .81

Request .81

Unstructured Response .82

Structured Response. .82

REST .82

Flat Request .82

Hierarchical Request. .82

Unstructured Response .82

Structured Response. .83

getStatus .83

SOAP. .83

Request .83

Response .84

REST .84

Flat Request .84

Hierarchical Request. .84

Response .84

queryStatus .84

SOAP. .84

Request .84

Response .85

REST .85

Flat Request .85

Hierarchical Request. .85

Response .85

Appendix BEvent Message Examples . 87

New Schema / Legacy Content .87

New Schema / Custom Content .88
vi Net-Net ASC Web Services SOAP/REST API Guide

Proprietary & Confidential

About This Guide

Overview
Net-Net ASC Web Service is a WSDL/REST Application Programming Interface
(API) enabling enterprises, service providers, and third-party developers to
streamline business processes by integrating their applications with IP
communications services.

Audience
This guide is written for application developers and network administrators, and
provides information about the Net-Net ASC WSDL/REST-based Web Services
implementation.

For information about Net-Net system training, contact your Acme Packet sales
representative directly or email support@acmepacket.com

Who is Acme Packet?

Acme Packet enables service providers to deliver trusted, first class interactive
communications-voice, video and multimedia sessions-across IP network borders.
Our family of Multiservice Security Gateways satisfy critical security, service
assurance and regulatory requirements in cable and wireless networks.

Acme Packet, located in Bedford, MA, was established by networking industry
veterans in August 2000. Acme Packet is public company that is traded on the
NASDAQ stock exchange.

Technical Assistance
If you need technical assistance with Acme Packet products, you can obtain it on-
line by going to https://support.acmepacket.com. With your customer identification
number and password, you can access Acme Packet’s on-line resources 24 hours a
day. If you do not have the information required to access the site, send an email to
tac@acmepacket.com requesting a login.

In the event that you are experiencing a critical service outage and require live
assistance, you can contact the Acme Packet Technical Assistance Center emergency
hotline:

• From the United States, Canada, and Mexico call: 1 866 226 3758

• From all other locations, call: +1 781 756 6920

Please note that a valid support/service contract with Acme Packet is required to
obtain technical assistance.
Version E3.6.0m5 Acme Packet, Inc. Technical Publications vii

Proprietary & Confidential

ABOUT THIS GUIDE
Customer
Questions,
Comments, or
Suggestions

Acme Packet is committed to providing our customers with reliable documentation.
If you have any questions, comments, or suggestions regarding our documentation,
please contact your Acme Packet customer support representative directly or email
support@acmepacket.com.

Contact Us Acme Packet, Inc.
100 Crosby Drive
Bedford, MA 01730 USA
t 781 328 4400
f 781 425 5077
www.acmepacket.com

About Net-Net OS-E Documentation
The Net-Net OS-E references in this documentation apply to the Net-Net OS-E
operating system software that is used for the following Acme Packet and third-
party SBC products:

• Net-Net Application Session Controller (ASC)

• Net-Net OS-E Session Director (SD) Session Border Controller (SBC)

• Net-Net 2600 Session Director (SD) Session Border Controller (SBC)

• Third-party products that license and use Net-Net OS-E software on an OEM
basis

Unless otherwise stated, references to Net-Net OS-E in this document apply to all
of the Acme Packet and third-party vendor products that use Net-Net OS-E
software.

The following documentation set supports the current release of the OS-E software.

• Net-Net OS-E – USB Creation and Commissioning Instructions

• Net-Net OS-E – Virtual Machine Information Guide

• Net-Net OS-E – System Installation and Commissioning Guide

• Net-Net OS-E – Management Tools

• Net-Net OS-E – System Administration Guide

• Net-Net OS-E – Session Services Configuration Guide

• Net-Net OS-E – Objects and Properties Reference

• Net-Net OS-E – System Operations and Troubleshooting

• Net-Net ASC — Web Services Samples Guide

• Net-Net OS-E – Release Notes
viii Net-Net ASC Web Services WSDL/REST API Guide Version E3.6.0m5

Proprietary & Confidential

mailto:support@acmepacket.com
http://www.acmepacket.com
http://www.acmepacket.com

ABOUT THIS GUIDE
Revision History

This section contains a revision history for this document.

Date Revision
Number Description

August 3, 2012 Revision
1.00

Initial release of the OS-E 3.6.0m5 software.
Version E3.6.0m5 Acme Packet, Inc. Technical Publications ix

Proprietary & Confidential

ABOUT THIS GUIDE
x Net-Net ASC Web Services WSDL/REST API Guide Version E3.6.0m5

Proprietary & Confidential

1 About the Web Service Interface

Introduction
The Net-Net ASC Web Service is a SOAP/REST Application Programming Interface
(API) which enables enterprises, service providers, and third-party developers to
streamline business processes by integrating their applications with IP
communications services.

A web service is a software system that supports interoperable machine-to-machine
interaction over a network using HTTP/HTTPS transport.

This document provides a full description of the individual interface definitions that
make up the ASC API.

What is the ASC?
The Net-Net ASC is a programming platform that enables enterprises, service
providers, and third-party developers to streamline business processes by
integrating their applications with IP communications services. The ASC
implements both a SOAP-based web service interface, as well as a RESTful web
service interface for invoking remote web services.

What Are SOAP-
Based Web
Services?

SOAP is a protocol that uses XML for exchanging structured information in the
implementation of web services. A SOAP message consists of three parts:

• An envelope that defines what is included in the message and how to process it.

• A set of encoding rules which define data objects and types.

• The convention that is used to represent call and response procedures.

What is WSDL? For SOAP-based web service, the ASC uses Web Service Description Language
(WSDL) to define its available actions and types.

What is REST? The ASC also supports REST for its web service API. REST is another API style for
the ASC web service and implements a URI using HTTP and a collection of resources
with three defined aspects:
Version E3.6.0m5 Acme Packet, Inc. Technical Publications 11

Proprietary & Confidential

ABOUT THE WEB SERVICE INTERFACE
• The base URI for the web service.

• The format of the data returned by the REST URL. This is usually either XML or
JavaScript Object Notation (JSON).

• A set of ASC web service operations.

There are two action and status report request formats available when using RESTful
web service, flat and hierarchical. When possible, Acme Packet recommends using
the hierarchical format, which is a simpler way to encode REST requests.

What is WADL? For RESTful web service, the ASC uses Web Application Description Language
(WADL) to define its available actions and types.

Specifying Output and
Callback

When using REST, the default format returned by the REST URL is XML. However,
you can request the output format to be JavaScript Notation (JSON) instead.

To change the output to JSON, include output=json in the URI.

The ASC supports JavaScript callbacks when using REST. If you specify a JavaScript
function name in a callback, the ASC calls the JavaScript function with the string as
its parameter.

To configure a callback, include callback=xxx in the URI, where xxx is the name of
the JavaScript function to call back with the output.

Accessing the ASC
The ASC web service interfaces are platform-agnostic. Any application
environment, programming language, or development environment capable of
sending HTTP requests may be used, including:

• Programming languages (ie., C#, Java)

• Mobile platforms (ie., iOS, Android)

• Purely web-based languages (ie., JavaScript, PHP, Python)

To access the web services homepage, the default is

http://x.x.x.x:8080

where x.x.x.x is the IP static-address where the web-services configuration is
enabled.

The ASC web services homepage is where all user documentation and samples are
located.

Supported ASC
Functionality

The ASC API supports retrieving and setting all configuration objects, invoking all
actions, and retrieving all status reports available on the Net-Net OS-E.
Configuration, action, and status objects are referred to in this document and in the
API as objects and sub-objects.

Terminology
The following terms are used throughout the document:

• Object – Configuration, status, or action data.

• Property – Attribute of an object
12 Net-Net ASC Web Services SOAP/REST Provisioning API Guide Version E3.6.0m5

Proprietary & Confidential

ABOUT THE WEB SERVICE INTERFACE
• Alias – Display name of an object or property

Authentication
The ASC requires authentication of client endpoints for security purposes. When a
request is sent by a web services application to the ASC, a session cannot be
established without authentication being performed.

The ASC can perform either basic authentication, which requires HTTP basic
authentication for client connections, or it can perform certificate-based
authentication. This requires an HTTPS certificate for authentication of client
connections. Upload a unique certificate via the vsp > tls object.

NOTE: In order for authentication information to be encrypted, you must be
using HTTPS.

When SOAP-based messages are used to send requests to the ASC and access
permissions have been configured, the SOAP client endpoint sending the request
must also send the username and password with the request. Basic HTTP
authentication is supported, as well as certificate-based HTTPS authentication.

REST requests can be authenticated using basic HTTP authentication, or can use the
REST-specific login action, defined in all WADLs published by the ASC.

The ASC communicates with web services applications in “sessions”. A session
timeout is not configurable and is hard-coded to 30 minutes.

Configuring Access For authentication to work, you must have at least one user configured under the
access object, with access > permissions > web-services set to enabled.

NOTE: Users with the web-services permission enabled have access to the
entire ASC system (all configuration objects, statuses, and actions).

The first step is to create a permission set with web-services enabled. Once this has
been done, create a user and assign that user the web-services enabled permission
set.

To create a web-services permission set:

1. Click the Access tab and select access.

2. Click Add permissions.
Version E3.6.0m5 Acme Packet, Inc. Technical Publications 13

Proprietary & Confidential

ABOUT THE WEB SERVICE INTERFACE
3. Name the permission set and click Create. The page listing all available
permissions appears. This example shows a permission set named “Web-
services admin.”

4. Enable web-services and click Set. The permission set is created.

5. Update and save the running configuration.

6. Click users and select Add user.

7. Enter the user name and password.
14 Net-Net ASC Web Services SOAP/REST Provisioning API Guide Version E3.6.0m5

Proprietary & Confidential

ABOUT THE WEB SERVICE INTERFACE
8. Select the permission set just created with web-services enabled. This example
shows a user named Admin.

9. Click Create.

10. Click Set. The user is created.

11. Save and update the configuration.

Legacy and New Schema
There are two types of schema the ASC supports, legacy and new. The schema is the
WSDL’s .xsd file’s specification of all configuration, status, action, and event objects
on the ASC. These schemas are equivalent and support the same functionality. The
ASC supports the existing legacy format for backwards compatibility and in the
cxc.wsdl file, generates verbose Java and C# code.

The new format is much more compact and concise than the legacy. The file name
for the new format is AcmePacketASCManagement.wsdl.

NOTE: Acme Packet recommends you use the new schema, particularly if you
are implementing a new ASC application. Existing ASC applications may
continue to use the legacy format for backwards compatibility purposes only.

Legacy and Custom Event Messages
The ASC includes certain standard information in the event messages it sends.
However, you can choose to include new information not included in the standard
format. You can configure the ASC to include custom content in these event
messages.

See Appendix B: Event Message Examples for examples of both legacy and new
format and legacy and custom content event messages.

To include custom information in event messages:

1. Click the Configuration tab and select either default-session-config or
session-config-pool > entry.

2. Click on the third-party-call-control object.
Version E3.6.0m5 Acme Packet, Inc. Technical Publications 15

Proprietary & Confidential

ABOUT THE WEB SERVICE INTERFACE
3. Set admin to enabled.

4. Select custom from the call-control-events-version drop-down box. The
default is legacy.

5. Click Configure next to custom-event-fields to set the custom event fields to
include in the event messages.

For more information on configuring named variables and regular expressions,
see Using Regular Expressions in Chapter 1: How to Use the ACLI of the Net-
Net OS-E Objects and Properties Reference Guide.

6. Click Set.

7. Update and save the configuration.

Web Services Requests
A web service request is a request made by a web services application sent via
HTTP/HTTPS to the ASC web services server. When the server receives a request, it
processes it and sends back a response.

The response that the ASC sends back contains a code number and a message. If the
action was successful, the code is 0. If there is an error with the request, the code will
be a value other than 0. The error message describes what error occurred.

When processed successfully, the response can contain:

• Information requested via the following top-level APIs

• get configuration

• get status
16 Net-Net ASC Web Services SOAP/REST Provisioning API Guide Version E3.6.0m5

Proprietary & Confidential

ABOUT THE WEB SERVICE INTERFACE
• query status

• Status for an operation being performed via the following top-level APIs

• set configuration

• execute action

Get Configuration
The ASC “Get configuration” API is a request to the server to receive all or a portion
of the configuration. Specify the configuration objects or properties you want
returned. If you specify no parameters, the entire configuration is returned.

The internal names for the top level configuration objects are:

• cluster—Cluster

• services—Services

• master-services—MasterServices

• vsp—SCP

• external-services—ExternalServices

• preferences—Preferences

• access—CXCAccess

• features—Features

• box—Box

SOAP The SOAP “Get configuration” request name is getConfig.

Response Content:

XML Format: The configuration. The schema is defined in cxc.xsd (legacy) or
AcmePacketASCManagement.xsd (new).

REST The REST “Get configuration” request resource path is

/cms/config

using the HTTP GET method.

If parameters are specified, include the path of the configuration under the top level
object to be retrieved.

Response Content:

XML or JSON format (XML is the default if no format is specified): ExtPageList
structure. This includes:

• objects—Configuration objects
Version E3.6.0m5 Acme Packet, Inc. Technical Publications 17

Proprietary & Confidential

ABOUT THE WEB SERVICE INTERFACE
• resultCode—0 if success; error code if error occurs

• resultStr—”Success” if success; error message if error occurs

Set Configuration
The ASC “Set configuration” API is a request to the server to change all or a portion
of the configuration.

SOAP The SOAP “Set configuration” name is setConfig. Specify the configuration
parameters you want to set, then specify a mode. The valid modes are:

• merge—Merges the configuration in the request with the existing configuration
on the ASC.

• replace-full—Replaces the entire existing configuration on the ASC with the
configuration in the request.

• replace-partial—Replaces only top-level existing ASC configuration with top-
level configuration objects in the request.

Response Content:

XML Format: setConfigResponse structure. This includes:

• Code—”Success” or “Error”

• Text—Error code if error occurs

REST The REST “Set Configuration” API request resource path is

/cms/config

using the HTTP POST method.

Specify a mode. The valid modes are:

• merge—Merges the configuration in the request with the existing configuration
on the ASC.

• replace-full—Replaces the entire existing configuration on the ASC with the
configuration in the request.

• replace-partial—Replaces only top-level existing ASC configuration with top-
level configuration objects in the request.

Specify an operation. The valid operations are:

• add—Add an object to the configuration.

• modify—Modify an existing object in the configuration.

• delete—Delete an object from the configuration.

Specify the configuration to be added or used to update the XML by entering the
configuration path. If you specify no configuration parameters, the entire
configuration is modified.

If applicable, specify the property of an object to which new configuration is being
added.

Response Content:

XML or JSON format (XML is the default if no format is specified): structure
18 Net-Net ASC Web Services SOAP/REST Provisioning API Guide Version E3.6.0m5

Proprietary & Confidential

ABOUT THE WEB SERVICE INTERFACE
• Result code—0 if success; non-zero if error occurs

• Result string—”Success” if success; error message if error occurs

Get Status
The ASC “Get status” API is a request to the server to receive all or a portion of the
statuses on the ASC. When working with SOAP, you cannot specify a filter and must
receive the entire status report. When working with REST, you can specify a filter to
return a subset of the status report. If no filter is specified, the entire status report is
returned.

SOAP The SOAP “Get status” request name is getStatus.

Response Content:

XML format: getStatusResponse structure

REST The REST “Get status” request resource path is

/cms/status/<status alias>

using the HTTP GET method.

Specify the pageSize. This is the number of entries returned per page. This is only
sent on the first request.

Specify the page. This is the page number to retrieve. This value always starts with 1.

Response Content:

XML or JSON format (XML is the default if no format is specified).

• objects—A list of status objects being returned.

• totalPages—The number of pages of status objects.

• pageSize—The number of entries on each page.

• currentPage—The page number for the current page. This number always starts
with 1.

• resultCode—The result code. This number is 0 if the request is successful and a
non-zero if an error occurs.

• resultStr—The result string. This string is “Success” if the request is successful
and an error message if an error occurs.

Query Status
The ASC “Query status” API is a request to the server to retrieve the status report
from the server.

SOAP The SOAP “Query status” request name is queryStatus.

Specify the status you want to retrieve in XML format. The following example
returns the entire show processes status report:

<status><Processstatus/>
Version E3.6.0m5 Acme Packet, Inc. Technical Publications 19

Proprietary & Confidential

ABOUT THE WEB SERVICE INTERFACE
You can also specify a property value in the status object to filter the results further.
To do this, include

<condition>condition</condition>

in the request where condition is the status filter you want to use.

Response Content:

XML format: queryStatusResponse structure

REST The REST “Query status” request source path is

/cms/status/<status alias>

using the HTTP GET method.

Specify the pageSize. This is the number of entries returned per page. This is only
sent on the first request.

Specify the page. This is the page number to retrieve. This value always starts with 1.

You can further narrow the status results by using the search.x parameter, where x
is the property used for filtering status results.

Response Content:

XML or JSON format (XML is the default if no format is specified).

• objects—A list of status objects being returned.

• totalPages—The number of pages of status objects.

• pageSize—The number of entries on each page.

• currentPage—The page number for the current page. This number always starts
with 1.

• resultCode—The result code. This number is 0 if the process is a success and a
non-zero if an error occurs.

• resultStr—The result string. This string is “Success” if the process is a success
and an error code if an error occurs.

Execute Action
The ASC “Execute action” API is a request to the server to perform an action. The
ASC can return action data in one of two ways, unstructured or structured. The
majority of ASC actions only support unstructured data.

The following actions return structured data:

• arp request

• call-control-attach

• call-control call

• call-control connect

• call-control-create-session

• call-control disconnect

• call-control fork

• call-control hold
20 Net-Net ASC Web Services SOAP/REST Provisioning API Guide Version E3.6.0m5

Proprietary & Confidential

ABOUT THE WEB SERVICE INTERFACE
• call-control join

• call-control-monitor-session

• call-control park

• call-control annotate

• call-control-redirect

• call-control retrieve

• call-control terminate

• call-control transfer

• call-control-intercept

• call-control-send-message

• config validate

• file-info

• file-play

• ping

• dynamic-event-service

For information on the structured information returned by each of these actions,
access the Actions > Response Structures in the web services on-line REST
documentation.

SOAP The ASC supports two SOAP APIs for “Execute action”, doAction and doActionEx.
The doAction API is used for returning unstructured data and the doActionEx API is
used for actions that return structured data.

Specify the action you want performed in XML format, including all properties.

Response Content:

XML format: doActionResponse structure. This includes:

• Code—”Success” or “Failure”

• Text—Error message if error occurs

• Message—Informational text

• Structured Content if a structured response is being provided.

REST The REST “Execute action” request resource path is

/cms/action/<action alias>

using the HTTP GET method.

The parameters you must specify vary depending on the action. To view this
information see the web services on-line REST documentation. To do this:

1. Type http://<ip:port> into the browser.

2. Click on REST in the left panel of the screen.

3. Click on the Actions link on the REST documentation page.

Response Content:
Version E3.6.0m5 Acme Packet, Inc. Technical Publications 21

Proprietary & Confidential

ABOUT THE WEB SERVICE INTERFACE
XML or JSON format (XML is the default if no format is specified): structure. This
includes:

• resultCode—0 if success; non-zero if error occurs

• resultString—”Success” if success; error message if error occurs

• Info—Informational text

• Structured Content if a structured response is being provided.

Configuring the ASC
This section describes how to configure the web-service object. This is necessary for
the ASC to function properly.

Instructions and Examples
To access web-service on the ASC:

1. Click on the Configuration tab and select web-services. This can be done via
the box object using the following path.

Or it can also be done via the vrrp object using the following path.

2. admin—Set this property to enabled to start the ASC web services process.
This property is enabled by default.

3. protocol—Select the protocol you want to use. After selecting the protocol,
select the web services listening port (or accept the default). This is the port the
server listens on for HTTP(S) requests. If HTTPS is specified, specify the vsp >
tls certificate to use with encryption.

The default values for this property are http 8080 or https 8443. The valid values
are:

• http [port]—Sets an insecure (unencrypted) protocol for use in web
transmission. Optionally, you can configure a listening port different than
the default.

• https [port] <certificate> [alias]—Sets a secure transmission of data by using
HTTP over SSL. Optionally, you can configure a listening port different than
22 Net-Net ASC Web Services SOAP/REST Provisioning API Guide Version E3.6.0m5

Proprietary & Confidential

ABOUT THE WEB SERVICE INTERFACE
the default. Enter the vsp\tls certificate to use with encryption along with an
optional alias value.

4. max-threads—Enter the number of threads available to process a request. This
includes the number of simultaneous requests and users for your application.
The default setting is 10. The valid values are:

• Minimum—1

• Maximum—50

5. min-spare-threads—Leave this value at 1, the default. This is the minimum
number of idle threads for processing requests.

6. max-spare-threads—Leave this value at 5, the default. This is the maximum
number of idle threads for processing requests.

7. max-message-process-threads—Enter the maximum number of threads used
by the web services process to receive messages from other ASC processes. The
default setting is 10. The valid values are:

• Minimum—10

• Maximum—200

8. max-http-connections—Enter the maximum number of outbound
connections for callbacks from the ASC to the web services application for
external event notification and external policy processing. The default value is
100.

• Minimum—100

• Maximum—300

9. max-http-client-connections—Enter the maximum number of outbound
connections to any single host running web services application for callbacks
such as external event notification and external policy processing. The default
value is 10.

• Minimum—5

• Maximum—100

10. authentication—Select the type of authentication you want to use for the ASC
web service. The default setting for this property is certificate.

• Basic—This requires the ASC to use HTTP basic authentication for client
connections.

• Certificate—Uses HTTPS SSL certificates authentication for client
connections.

NOTE: You must have at least one user configured under the access object with
access > permission > web-services set to enabled in order for authentication
Version E3.6.0m5 Acme Packet, Inc. Technical Publications 23

Proprietary & Confidential

ABOUT THE WEB SERVICE INTERFACE
to work. Users with the web-services permission enabled have access to the
entire system (all configuration, statuses, and actions).

11. Update and save the running configuration.
24 Net-Net ASC Web Services SOAP/REST Provisioning API Guide Version E3.6.0m5

Proprietary & Confidential

2 Using ASC Callouts

Web Service Callouts
The Net-Net ASC supports web service callouts. A callout is when the ASC initiates
contact with the web service client. Web service callouts are only supported in
WSDL.

The ASC API supports two uses of callouts.

• External policy service—Sends policies when the ASC processes SIP messages

• External event service—Sends event notifications

External Policy Service
The external policy service sends a request to the web services application whenever
the ASC is processing a SIP message. The web services application examines
information about the SIP message and based on that information, returns the policy
that it wants applied to the SIP message.

The WSDL request name is getAuthSessionPolicy.

Policies are configured and applied on the ASC in a specific order. The following is
the hierarchy of session-config and normalization application:

• default-session-config

• policy

• server inbound session-config

• server inbound normalization

• dial-plan/registration-plan > normalization

• dial-plan/registration-plan > arbiter > session-config

• dial-plan/registration-plan > route normalization

• dial-plan/registration-plan > route > session-config

• Policy sent from the web services application to the ASC via the
getAuthSessionPolicy request

• server outbound session-config

• server outbound normalization

• server outbound normalization session-config
Version E3.6.0m5 Acme Packet, Inc. Technical Publications 25

Proprietary & Confidential

USING ASC CALLOUTS
Configuring External
Policy Service

To configure the ASC so that the external policy service works properly, you must
configure a policy-group with a policy-service. Then, you must configure an
authorization policy.

To configure policy-group and policy-service objects:

1. Click the Services tab and select external-services.

2. Select new from the policy-services-type drop-down box.

3. Click Set.

4. Click Add policy-group.

5. Enter a name for the policy-group you are creating.

6. Click Create.

7. failover-detection—Leave this value at none, the default. The ASC performs
no failover detection. If a request is not serviced, the system continues to send
requests until a configured timeout value is reached or the request is manually
withdrawn.

8. max-queue-length—Leave this value at 64, the default. This is the maximum
number of WSDL requests that can be queued for a policy group (awaiting
assignment to a server). If the queue grows to this number, subsequent requests
are rejected, with the result “queue-clipped,” until the queue drops below this
level.

9. connection-mode—Specify the manner in which connections between the
ASC and WSDL client are established and maintained. The default value is
persistent 10 /covws,callouts?wsdl. The valid values are:

• persistent [seconds][page]—Connections are initiated at boot time, and
maintained using periodic keepalives. Specify an inactivity timeout, between
2 and 120 seconds, and a keepalive page.

• lingering—Connections are made on demand, then linger until broken by
the remote server.
26 Net-Net ASC Web Services SOAP/REST API Guide Version E3.6.0m5

Proprietary & Confidential

USING ASC CALLOUTS
• transient—Connections are made on demand, then broken when a response
is received.

10. overall-request-timeout—Leave this value at 5, the default. This specifies the
number of seconds a request can remain in the queue for a policy server before
it is timed out by the ASC.

11. Click Set.

12. Click Add policy-service.

13. Enter a name for the policy-service.

14. Enter the service-url. This is the web service client’s endpoint URL.

15. Click Create.

16. admin—Leave this enabled, the default. This enables this policy service for use.

17. connect-timeout—Leave this value at 500, the default. This specifies the length
of time, in milliseconds, that the ASC allows to complete a connection to the
external policy service before cancelling the request.

18. read-timeout—Leave this value at 2000, the default. This specifies the length of
time, in milliseconds, that the ASC waits for a response from the external policy
service before cancelling the request.
Version E3.6.0m5 Acme Packet, Inc. Technical Publications 27

Proprietary & Confidential

USING ASC CALLOUTS
19. priority—Leave this value at 1, the default. This specifies the priority of this
server within the policy group. The lower the number, the higher the priority.

20. connection-count—Leave this value at 1, the default. This specifies the number
of simultaneous connections allowed to this server.

21. Click Set. Update and save the configuration.

To configure the authorization policy object:

1. Click the Configuration tab and select vsp.

2. Select either default-session-config or session-config-pool > entry. (If you
configure entry, you must reference it.)

3. Click Configure beside the authorization property.

4. mode—Select WSDL from the drop-down box. The ASC sends the request for
authorization data retrieval to the external services policy server specified in the
policy-group object. The default is None.

When you select WSDL, the following properties appear.

• PolicyServices—Select the previously configured policy-group object from
the drop-down box. If it is not there, you can create it by clicking Create and
entering the path to the policy group.

• send-sip-message-headers—Select true. This allows SIP message headers
to be sent to the web services client.

• send-sip-message-content—Select true. This allows SIP message content
to be sent to the web services client.

• routing-mode—Leave this set to override, the default. This means any
routes returned by authorization override the dial plan results.

• Priority—Leave this set to 100, the default.

5. always-perform-lookup—Leave this set to true, the default. This means the
ASC retrieves authorization data regardless of other configuration settings.
28 Net-Net ASC Web Services SOAP/REST API Guide Version E3.6.0m5

Proprietary & Confidential

USING ASC CALLOUTS
6. apply-to-methods—Select the SIP messages to which the ASC applies
authorization processing. The default is INVITE.

7. Click Set. Save and activate the configuration.

External Event Service
The external event service sends, or “pushes,” notifications of all events generated
by the ASC to a web services application. These events are all available as SNMP
traps, however, this service allows you to receive events without having to use
SNMP.

The WSDL request name for this service is processEvent.

Using Cometd 2.0, the OS-E supports channels, a dynamic, path-like hierarchy
describing the topic of an event. Third-party applications can subscribe to events on
specific channels and, thus, narrow the scope of events to process.

In releases prior to 36.0m5, users could subscribe only to specific, hard-coded,
request-ID based channels. By default, the OS-E still emits the legacy channels,
however, you can disable them if they are no longer used. To stop the OS-E from
using the legacy channels, set the eventpush-service > legacy-events property to
disabled.

There are two ways to enable web services event processing, configuring external-
event-groups or via the dynamic-event-service action.

Configuring External
Event Service

To configure the ASC so that the external event service works properly, you must
configure an event-group with an event-service. Then reference the event-group
in the vsp > external-event-group object. You must also set the third-party-call-
control > status-events property to both.
Version E3.6.0m5 Acme Packet, Inc. Technical Publications 29

Proprietary & Confidential

USING ASC CALLOUTS
To configure event-group and event-service objects:

1. Click the Services tab and select external-services.

2. Click Add event-group.

3. Enter a name for the event-group and click Create.

4. Click Edit trap-filter. A list of categories appears. If you don’t select any
categories, all events are sent.

To receive events only pertaining to calls, set trap-filter to csta.

5. Click OK.

6. Click Add event-service.

7. Enter a name for the event-service.
30 Net-Net ASC Web Services SOAP/REST API Guide Version E3.6.0m5

Proprietary & Confidential

USING ASC CALLOUTS
8. Enter a service-url for this event-service. This is the web services client
endpoint.

9. Click Create. Update and save the configuration.

To reference the event-group to the vsp > external-policy-group:

1. Click the Configuration tab and select vsp.

2. Click Edit external-event-group next to the external-event-group property.

Note: This is an Advanced property. You must click the Show advanced button
at the top of the page to see this property.

3. Select the previously created event-group you are referencing. A list of all
event-groups configured on the box appear. If no event-groups have been
created you can create one.
Version E3.6.0m5 Acme Packet, Inc. Technical Publications 31

Proprietary & Confidential

USING ASC CALLOUTS
4. Click OK. Update and save the configuration.

To receive call-control events:

1. Click the Configuration tab and select vsp.

2. Select either the default-session-config or the session-config-pool > entry
property.

3. Click Configure next to third-party-call-control. The third-party-call-
control object appears.

4. Select both from the status-events drop-down box.

5. Click OK. Update and save the configuration.

Executing dynamic-
event-service

A web application can register itself by using the web service REST and SOAP clients
to call the dynamic-event-service register action. Using the dynamic-event-
service keepalive action you can keep current registrations alive, and via the
dynamic-event-service unregister action, the web application can unregister
itself. The action syntax is:

dynamic-event-service register <endpoint> [channels] [xml-format]
[time-to-live] [connect-timeout] [read-timeout] [character-set]
[request-style] [include-channels-in-events]

dynamic-event-service keepalive <registration-id>

dynamic-event-service unregister <registration-id>

Valid arguments for the dynamic-event-service register action are:

• <endpoint>—The application endpoint that receives events.

• [channels]—The channels for which the endpoint is getting events.

• [xml-format]—The XML format used by this server. This can be either simplified
(the default) or legacy.

• [time-to-live]—The time to live, in minutes, for the keepalive on this registration.
The default is untilRestart, meaning the registration stays alive until the system
is restarted.

• [connect-timeout]—The connect timeout, in milliseconds, for the endpoint. The
default is 1000.

• [read-timeout]—The read timeout, in milliseconds, for the endpoint. The default
is 1000.

• [character-set]—The character set to use when forming requests to this endpoint.
This can be utf-8 (the default) or iso-8859-1.

• [request-style]—The style to use when sending events to this listener. This can be
SOAP (the default), XML, or JSON.

• [include-channels-in-events]—Whether channels are included in events. This is
enabled by default.

Once an application has registered itself to receive events, you can view information
about the registration via the show dynamic-event-services status provider.

NNOS-E>show dynamic-event-services

 endpoint: 10.0.0.10

registration-id: d710c03c-70b3-454d-9ee2-c1b6f60dd5b7

 created: 12:10:20.857000 Thu 2012-03-01

 time-to-live: untilRestart seconds
32 Net-Net ASC Web Services SOAP/REST API Guide Version E3.6.0m5

Proprietary & Confidential

USING ASC CALLOUTS
 last-keepalive: 12:10:20.857000 Thu 2012-03-01

 channels:

connect-timeout: 1000 ms

 read-timeout: 1000 ms

 character-set: utf-8

 request-style: soap

 requests: 0

 failures: 0

•

The session-config > event-settings object configures events and user-specified
event channels on the OS-E.

The event-settings > channel property configures user-specified channels on the
OS-E. Each time the OS-E needs to emit an event for a session, the event
configuration component dynamically regenerates all of the appropriate channels
specified by the user based on the this property.

This property consists of an array of strings used to compose channel paths. These
strings can contain named-variables that are replaced with a value extracted from
the current state of the session. Named-variables must start and end with percent
(%) characters.

Named variables can be added to sessions on the OS-E in multiple ways. They can
be added via the session-config > named-variables object. For more information
on configuring named-variables in the session-config, see Configuring Session
Configuration Objects in the Net-Net OS-E Objects and Properties Reference Guide.

Field Description

endpoint The application endpoint being called out.

registration-id The registration identifier.

created The date and time this registration was created.

time-to-live The configured time to live, in minutes, on this
registration.

last-keepalive The date and time that the last keep alive was
received.

channels The channels for which the endpoint is getting
events.

connect-timeout The configured connect timeout, in milliseconds,
for the endpoint.

read-timeout The configured read timeout, in milliseconds, for
the endpoint.

character-set The character set used when forming requests to
this endpoint. This can be either utf-8 or iso-8859-
1.

request-style The style used when sending events to this
listener. This could be either XML, JSON, or SOAP.

requests The number of requests that have been made to
the endpoint.

failures The number of requests that have failed to reach
the endpoint.
Version E3.6.0m5 Acme Packet, Inc. Technical Publications 33

Proprietary & Confidential

USING ASC CALLOUTS
Named-variables can also be added via the named-variable-add action. For
information on this action, see the Named Variable Actions section of this guide.

Under the event-settings object you can insert named-variables into events. This is
done via the named-variable-entry property.

NOTE: In order for named-variables to work in either the event-settings >
channel or named-variable-entry properties, named-variables must be
configured elsewhere on the OS-E, either within the session-config > named-
variables object or via the named-variables-add action.

The following example shows adding one variable called my-variable with a value
of my-value to the default-session-config > named-variable object.

NNOS-E>config vsp

config vsp>config default-session-config

config default-session-config>config named-variables

config named-variables>config named-variable my-variable

Creating 'named-variable my-variable'

config named-variable my-variable>set value my-value

config named-variable my-variable>return

config named-variables>return

This next example shows the event-settings object configured with a channel and
named-variable-entry that correspond with the session-config > named-
variables configuration in the above example.

Specific-channel-name is a static channel name and the OS-E does not attempt to
look up the value of this string. Because it is enclosed in percentage signs, the /%my-
variable% value signifies a named-variable channel name. The named-variable-
entry property’s my-variable my-variable-name value represents the inclusion of
the named-variable configured in the first example in the contents of the events.
My-variable-name is the name that is shown inside the events for this variable.

NNOS-E>config vsp

config vsp>config default-session-config

config default-session-config>config event-settings

config event-settings>set channel /specific-channel-name

config event-settings>set channel /%my-variable%

config event-settings>set named-variable-entry my-variable my-
variable-name

config event-settings>return

Here is an example of an event for a session that has the above configuration. Note
the two channels: specific-channel-name and my-value. There is also an <nvpData>
entry (which stands for named-value-pair) for my-variable-name and my-value.

<Event box="1" process="SIP" timestamp="16:41:26.000001 Wed 2012-03-
21" channel="">

<object>

 <CallCreatedEvent>

 <callEvent>

 <CallEvent>

 <requestID/>

 <handle>15217493</handle>

 <sessionID>343475565090092753</sessionID>

 <callID>1-11664@10.33.5.10</callID>

 <to>sip:service@10.33.80.65:5060</to>

 <from>sip:sipp@10.33.5.10:6021</from>

 <nvpData>
34 Net-Net ASC Web Services SOAP/REST API Guide Version E3.6.0m5

Proprietary & Confidential

USING ASC CALLOUTS
 <name>my-variable-name</name>

 <value>my-value</value>

 </nvpData>

 </CallEvent>

 </callEvent>

 </CallCreatedEvent>

</object>

<channels>/specific-channel-name</channels>

<channels>/my-value</channels>

<userData>0x00000000</userData>

</Event>

The same named variables can be used to configure both the channel and named-
variable-entry properties.

NOTE: Named variables used in the channel property must start and end with
percentage (%) characters to work properly.

These variables can be broken down into three types: event, session, and call, in-leg,
and out-leg.

Event named variables are derived from the current event being published. The
object of these variables can be any of the events the OS-E can generate. To view the
full list of OS-E events, see Events in the web services home page’s REST
documentation.

You can retrieve a property in the event object by specifying $event.<property>
where <property> is the name or alias of a property in the event object being
generated.

For example, for a call control event with a requestID of 123456, specifying
/req/%$event.requestID% results in the channel /req/123456 being created.

Specifying /event-name/%$event._alias% results in the channel /event-
name/call-terminated being created for call-terminated events.

Available variables for the event class are:

• $event—Event-based named variables.

• $event._alias—Alias for a generated event.

Session named variables are derived from the current session for the events being
published. Available variables for this class are:

• $session-session-id—Session ID for this session.

• $session.request-id—Request ID for this session.

• $session.caller-id—Caller ID for this session.

• $session.diversion-header—Diversion-header for this session.

• $session.pcharging-vector—P-charging-vector for this session.

• $session.digest-realm—Digest realm for this session.

• $session.source-lnp—Source-lnp for this session.

• $session.destination-lnp—Destination-lnp for this session.

Call, in-leg, and out-leg named variables are derived from the call legs of the current
session for events being published. Call events are generated on a specific leg.
Therefore the call variables provide access to the leg on which the event is being
generated.
Version E3.6.0m5 Acme Packet, Inc. Technical Publications 35

Proprietary & Confidential

USING ASC CALLOUTS
Each call session has one or two legs, deemed the in-leg and out-leg based on call
direction. In-leg variables use the in-leg for the session that generated this event and
out-leg variables use the out-leg for the session that generated this event.

Available variables for these classes are:

• $call.request-id—Request ID for this call.

• $call.to—To: URI for this call.

• $call.to.user—User portion of the To: URI for this call.

• $call.to.host—Host portion of the To: URI for this call.

• $call.from—From: URI for this call.

• $call.from.user—User portion of the From: URI for this call.

• $call.from.host—Host portion of the From: URI for this call.

• $call.request—Request: URI for this call.

• $call.request.user—User portion of the Request: URI for this call.

• $call.request.host—Host portion of the Request: URI for this call.

• $call.call-id—Call-id for this call.

• $call.to-contact—Local endpoint for this call.

• $call.to-contact.user—User portion of the local endpoint for this call.

• $call.to-contact.host—Host portion of the local endpoint for this call.

• $call.from-contact—Remote endpoint for this call.

• $call.from-contact.user—User portion of the remote endpoint for this call.

• $call.from-contact.host—Host portion of the remote endpoint for this call.

• $call.p-assert—P-asserted-identity header for this call.

• $call.p-assert-user—User portion of the p-asserted-identity header for this
call.

• $call.p-assert-host—P-asserted-identity header for this call.

• $in-leg.request-id—Request-id for the in-leg.

• $in-leg.to—To: URI for the in-leg.

• $in-leg.to.user—User portion of the To: URI for the in-leg.

• $in-leg.to.host—Host portion of the To: URI for the in-leg.

• $in-leg.from—From: URI for the in-leg.

• $in-leg.from.user—User portion of the From: URI for the in-leg.

• $in-leg.from.host—Host portion of the From: URI for the in-leg.

• $in-leg.request—Request: URI for the in-leg.

• $in-leg.request.user—User portion of the Request: URI for the in-leg.

• $in-leg.request.host—Host portion of the Request: URI for the in-leg.

• $in-leg.call-id—Call-id for the in-leg.

• $in-leg.to-contact—Local endpoint for the in-leg.

• $in-leg.to-contact.user—User portion of the local endpoint for the in-leg.

• $in-leg.to-contact.host—Host portion of the local endpoint for the in-leg.
36 Net-Net ASC Web Services SOAP/REST API Guide Version E3.6.0m5

Proprietary & Confidential

USING ASC CALLOUTS
• $in-leg.from-contact—Remote endpoint for the in-leg.

• $in-leg.from-contact.user—User portion of the remote endpoint for the in-
leg.

• $in-leg.from-contact.host—Host portion of the remote endpoint for the in-
leg.

• $in-leg.p-assert—P-asserted-identity header for the in-leg.

• $in-leg.p-assert.user—User portion of the p-asserted-identity header for the in-
leg.

• $in-leg.p-assert.host—Host portion of the p-asserted-identity header for the
in-leg.

• $out-leg.request-id—Request ID for the out-leg.

• $out-leg.to—To: URI for the out-leg.

• $out-leg.to.user—User portion of the To: URI for the out-leg.

• $out-leg.to.from—Host portion of the To: URI for the out-leg.

• $out-leg.from—From: URI for the out-leg.

• $out-leg.from.user—User portion of the From: URI for the out-leg.

• $out-leg.from.host—Host portion of the From: URI for the out-leg.

• $out-leg.request—Request: URI for the out-leg.

• $out-leg.request.user—User portion of the Request: URI for the out-leg.

• $out-leg.request.host—Host portion of the Request: URI for the out-leg.

• $out-leg.call-id—Call-id for the out-leg.

• $out-leg.to-contact—Local endpoint for the out-leg.

• $out-leg.to-contact.user—User portion of the local endpoint for the out-leg.

• $out-leg.to-contact.host—Host portion of the local endpoint for the out-leg.

• $out-leg.from-contact—Remote endpoint for the out-leg.

• $out-leg.from-contact.user—User portion of the remote endpoint for the out-
leg.

• $out-leg.from-contact.host—Host portion of the remote endpoint for the out-
leg.

• $out-leg.p-assert—P-asserted-identity header for the out-leg.

• $out-leg.p-assert.user—User portion of the p-asserted-identity header for the
out-leg.

• $out-leg.p-assert.host—Host portion of the p-asserted-identity header for the
out-leg.

To configure channels on the OS-E:

1. Select the Configuration tab and click the vsp > default-session-config or vsp
> session-config-pool > entry object.

2. Click the event-settings object.

3. Click Edit channel.

4. Enter the string to use to generate events for this session. Click Add. Click OK.

5. Click Set. Update and save the configuration.
Version E3.6.0m5 Acme Packet, Inc. Technical Publications 37

Proprietary & Confidential

USING ASC CALLOUTS
To configure named-variable-entries on the OS-E.

1. Select the Configuration tab and click the vsp > default-session-config or vsp
> session-config-pool > entry object.

2. Click the event-settings object.

3. Click Add named-variable-entry.

4. Enter a variable or select one from the drop-down list.

5. Click Create. You are returned to the event-settings object.

6. To give the variable a display-name, click Edit next to the variable name.

7. Enter the display-name. This is the name that will be displayed within the
event instead of the actual named-variable name.

8. Click Set. Update and save the configuration.

Generating Event Messages
Two of the most common types of event messages that the ASC can generate are SIP
event messages and call-control event messages. To enable the ASC to generate SIP
event messages, see the following section. To work with call-control event
messages, see Chapter 3, Configuring Events.

Sending SIP Event
Messages

You can configure the ASC to send SIP message events when the ASC receives and
transmits SIP messages. The event-settings > inbound-sip-messages and
outbound-sip-messages objects configure the ASC to send SIP message events for
incoming and outgoing SIP messages.

To configure the ASC to send SIP event messages:

1. Select the Configuration tab and click the vsp > default- session-config or
vsp > session-config-pool > entry object.

2. Click the event-settings object.
38 Net-Net ASC Web Services SOAP/REST API Guide Version E3.6.0m5

Proprietary & Confidential

USING ASC CALLOUTS
3. Click Configure next to inbound-sip-messages to enable events for incoming
SIP messages. Click Configure next to outbound-sip-messages to enable
events for outgoing SIP messages.

NOTE: Inbound-sip-messages and outbound-sip-messages are advanced
properties. To see advanced properties, click the Show advanced button at the
top of the window.

4. admin—Set to enabled.

5. apply-to-methods-for-events—Select the SIP methods you want the OS-E to
create events for.

6. Click Set. Update and save the configuration.

Eventpush Service
The ASC supports a web services application called eventpush service. Eventpush
service is a solution which allows you to forward event information from the ASC to
clients on external web applications which are unable to implement a SOAP/WSDL
endpoint.

Eventpush service is configured as its own process within the ASC under the
eventpush-service object.

Eventpush service supports a publish/subscribe interface using Cometd. There is a
JavaScript API that wraps the Cometd technology. The customer application
Version E3.6.0m5 Acme Packet, Inc. Technical Publications 39

Proprietary & Confidential

USING ASC CALLOUTS
subscribes by indicating that it only wants to receive call events for calls with a specific
requestID.

The eventpush web application then publishes, or sends, only the events with that
subscribed requestID.

To enable cross-domain communication between the eventpush application and the
customer web service application, the ASC’s eventpush service DNS suffix must be
the same as the customer web service application’s.

To test the publish/subscribe interface, access the ASC eventpush service page. The
URI for this page is:

http(s)://ip:port/cometapp/comet_test.html

Enter either http or https, the IP and port you have configured under the
eventpush-service object.

Specify the requestID to which you are subscribing. This tells the ASC to publish
only call events with that requestID.
40 Net-Net ASC Web Services SOAP/REST API Guide Version E3.6.0m5

Proprietary & Confidential

USING ASC CALLOUTS
For more information on publish/subscribe technology, see
http://en.wikipedia.org/wiki/Publish/subscribe.

For more information on cometd technology, see
http://cometdproject.dojotoolkit.org.

To configure eventpush-service:

1. Click the Configuration tab and select Cluster.

2. Select the box, interface, and ip address on which you want to configure the
eventpush-service.

3. Click Configure next to eventpush-service.

4. Set the protocol type and port and click Create.
Version E3.6.0m5 Acme Packet, Inc. Technical Publications 41

Proprietary & Confidential

USING ASC CALLOUTS
5. Set the page-domain to the domain name of the ASC.

6. Click Set. Update and save the configuration.

Two status providers provide information on the current set of active cometd
channels.

The show cometd-channel-summary action provides a summary of channel
information for the cometd server.

NNOS-E>show cometd-channel-summary

name subscriber-count

---- ----------------

/** 1

/call 0

/call/to 0

/call/to/019785551212 1

/cometd 0

/cometd/meta 1

/meta 0

/meta/connect 0

/meta/disconnect 0

/meta/handshake 0

/meta/subscribe 0

/meta/unsubscribe 0

•

The show cometd-channel-detail action provides more detailed channel
information, specifically, on the subscribers to each of the channels.

Note that if a channel appears in the summary but not in the details, it means that
the channel exists without any active cometd client subscriptions.

NNOS-E>show cometd-channel-details

Field Description

name The name of the channel.

subscriber-count The number of subscribers on this channel.
42 Net-Net ASC Web Services SOAP/REST API Guide Version E3.6.0m5

Proprietary & Confidential

USING ASC CALLOUTS
name remote-address remote-port id user-agent

---- -------------- ----------- -- ----------

/** 10.1.21.57 49804 372tj5ikmvga8ant2b6m2wcjs
Mozilla/5 .0 (Windows NT 6.1; WOW64)
AppleWebKit/535.11 (KHTML, like Gecko) Chrome/17.0.96
3.79 Safari/535.11

/call/to/019785551212 10.1.21.57 49728
21sxpszu2lkikc1pnadt0mdfzvg Mo zilla/5.0
(Windows NT 6.1; WOW64) AppleWebKit/535.11 (KHTML, like Gecko) Chrome/
17.0.963.79 Safari/535.11

/cometd/meta 10.1.21.57 49804 372tj5ikmvga8ant2b6m2wcjs
Mozilla/5 .0 (Windows NT 6.1; WOW64)
AppleWebKit/535.11 (KHTML, like Gecko) Chrome/17.0.96
3.79 Safari/535.11

•

Two status providers have been added to provide information on the current set of
active cometd subscribers.

The show cometd-subscriber-summary action provides high-level information
about the subscribers.

NNOS-E>show cometd-subscriber-summary

remote-address remote-port id channel-count message-count
user-agent

-------------- ----------- -- ------------- ------------- -

10.1.21.57 49728 21sxpszu2lkikc1pnadt0mdfzvg 1 0
Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/535.11 (KHTML, like
Gecko) Chrome/17.0.963.79 Safari/535.11

10.1.21.57 49804 372tj5ikmvga8ant2b6m2wcjs 2 0
Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/535.11 (KHTML, like
Gecko) Chrome/17.0.963.79 Safari/535.11

•

Field Description

name The name of the channel.

remote-address The remote address for this subscriber.

remote-port The remote port for this subscriber.

id The identifier assigned internally by the OS-E for
this publisher.

user-agent The user agent the subscriber used to establish
the session.

Field Description

remote-address The remote address for the subscriber.

remote-port The remote port for the subscriber.

id The identifier assigned internally by the OS-E for
this publisher.

channel-count The number of channels to which the subscriber is
currently subscribed.

message-count The number of messages a subscriber has
currently been sent.

user-agent The user agent the subscriber used to establish
the session.
Version E3.6.0m5 Acme Packet, Inc. Technical Publications 43

Proprietary & Confidential

USING ASC CALLOUTS
The show cometd-subscriber-details action provides more detailed information,
specifically on the channels subscribed to by each subscriber.

Note that if a subscriber appears in the summary but not the details, it means that
the subscriber exists without any active cometd channel subscriptions.

NNOS-E>show cometd-subscriber-details

remote-address remote-port channel

-------------- ----------- -------

10.1.21.57 49728 /call/to/019785551212

10.1.21.57 49804 /**

10.1.21.57 49804 /cometd/meta

•

Field Description

remote-address The remote address for the subscriber.

remote-port The remote port for the subscriber.

channel The name of the channel.
44 Net-Net ASC Web Services SOAP/REST API Guide Version E3.6.0m5

Proprietary & Confidential

3 ASC Call Control Action

Web Service Call Control
Many of the applications you can create via the Net-Net ASC will use the call-
control action. This chapter describes how to use call-control, its parameters, as
well as the results and event messages that are subsequently generated.

Identifying Calls and Sessions
When the Net-Net ASC creates calls, it uses several elements to identify specific calls
and portions of calls. These unique markers are request IDs, session IDs, call leg
handles, and SIP call-IDs.

For more information on which elements appear in what event messages and which
are parameters for call-control actions, see

Request IDs When creating new calls, an application identifies the endpoints involved using their
SIP URIs. An application may also supply a request ID to the ASC. If it does supply
a request ID, the ASC labels the resulting session with that request ID. This ID is
returned in the subsequent responses to the request and any events pertaining to
that session. In actions which add new call legs mid-call, like call-control fork and
conference, each new leg creates a new session between it and the originating leg.
These new sessions inherit the original request ID.

The request ID is an obscure string as far as the ASC is concerned. Any interpretation
of its contents is solely a matter for the application writer.

Session IDs Each session in the ASC is given a session ID, internally represented as a 64-bit
number, which functions as a globally unique ID (GUID). This means session IDs are
not repeated even after the ASC reboots and are unique between multiple ASCs. The
session ID is returned in response to all call creation, disconnection and
manipulation actions, and in all events pertaining to the session.

Call Leg Handles Each leg of a call is identified by a handle, internally represented as a 32-bit number.
You must reference a call leg handle in all actions performed on calls after they have
been created.

SIP Call-IDs Within SIP, calls are identified by Call-IDs, which functions as a GUID. Every call leg
has a unique call ID, and these are reported in the CallCreated, CallConnected, and
CallTerminated events. The call-ID should be used when you need to correlate calls
with other systems. If this is not sufficient, you can populate call events with custom
parameters that can be obtained from arbitrary SIP headers.
Version E3.6.0m5 Acme Packet, Inc. Technical Publications 45

Proprietary & Confidential

ASC CALL CONTROL ACTION
Configuring To and From URIs
When you use the call-control call action, you need to include to and from
properties. You can configure the ASC so that you don’t have to include the SIP
scheme and domain parts every time you place a call. By configuring a condition list
and header normalization, then adding them to a policy rule, the ASC looks for the
absence of a host portion in the To URI in a call-control action, and adds the
necessary components to the To and From URIs.

The following example displays a configuration where the ASC applies the condition
list to the call-control action. It creates four header-normalization rules which
prepend sip: to the call-control to and from properties and append
@acmepacket.com to these properties.

config rule check-for-host

 config condition-list

 set to-uri-condition host match ^$

 set action-condition call-control

 return

 config session-config

 config header-settings

 config header-normalization 1

 set destination To

 set value prepend sip:

 return

 config header-normalization 2

 set destination From

 set value prepend sip:

 return

 config header-normalization 3

 set destination To

 set value append @acmepacket.com

 return

 config header-normalization 4

 set destination From

 set value append @acmepacket.com

 return

 return

 return

 return

For more information about configuring condition lists and normalization, see the
Net-Net OS-E Object and Properties Reference Guide.

Action Results
When the call-control action is executed, you receive an XML result containing
information about whether the action was successful or not.

The following is an example of an XML result generated from a successful call-
control action:

<ExtActionResponse>

 <resultCode>0</resultCode>

 <resultStr>Success</resultStr>

 <info>343196502737231705
46 Net-Net ASC Web Services SOAP/REST API Guide Version E3.6.0m5

Proprietary & Confidential

ASC CALL CONTROL ACTION
14490500:14490499</info>

 <structure>

 <CallControlCallResult>

 <requestId>foo123</requestId>

 <sessionId>343196502737231705</sessionId>

 <inCallLegHandle>14490500</inCallLegHandle>

 <outCallLegHandle>14490499</outCallLegHandle>

 </CallControlCallResult>

 </structure>

</ExtActionResponse>

A <resultCode> of zero indicates the action was successful. Any other value
indicates a failure, which is described by the <resultStr> object.

The <info> element provides supplementary information about the executed call-
control action. In the case of a successful call the first line is the session ID. The
second line consists of the two call-leg handles, separated by a colon.

Structured information equivalent to the content of the <info> element is also
returned for some of the call-control actions, making the extraction of the required
fields easier. If it was provided in the original request, the requestId is returned in the
structured information.

NOTE: Not all call-control actions return structured data. This only happens when
the <info> element contains useful information that needs parsing.

When using a RESTful API, you can request the result in a simplified XML format by
adding &_format=simplified to the URL. The following is an example of a
simplified XML result.

<object xsi:type="ExtActionResponseType">

 <resultCode>0</resultCode>

 <resultStr>Success</resultStr>

 <info>343196530540399894

14490520:14490519</info>

 <structure xsi:type="CallControlCallResultType">

 <request-id>foo123</request-id>

 <session-id>343196530540399894</session-id>

 <in-call-leg-handle>14490520</in-call-leg-handle>

 <out-call-leg-handle>14490519</out-call-leg-handle>

 </structure>

</object>

Configuring Call Events
When enabled to do so, the ASC can generate event messages, two of the most
common types being call-control event messages and SIP event messages. To enable
the ASC to generate call-control event messages, see the following section. To work
with SIP event messages, see Chapter 2, Sending SIP Event Messages.

To generate call-control event messages:

1. Select the Configuration tab and click the vsp > default- session-config or
vsp > session-config-pool > entry object.
Version E3.6.0m5 Acme Packet, Inc. Technical Publications 47

Proprietary & Confidential

ASC CALL CONTROL ACTION
2. Click the event-settings object.

3. call-control-events—Set to enabled for the OS-E to send call-control events.

4. Click Set. Update and save the configuration.

The ASC includes certain standard information in the event messages it sends.
However, if you want to include information not included in the standard format,
you can configure the ASC to include custom content in the CallCreated,
CallConnected, and CallTerminated event messages.

See Appendix B: Event Message Examples for examples of both legacy and new
format and legacy and custom content event messages.

To include custom information in event messages:

1. Click the Configuration tab and select third-party-call-control.

2. Select custom from the call-control-events-version drop-down box. The
default is legacy.

3. Click Configure next to custom-event-fields to set the custom event fields to
include in the event messages.

For more information on configuring named variables and regular expressions,
see Using Regular Expressions in Chapter 1: How to Use the ACLI of the Net-
Net OS-E Objects and Properties Reference Guide.

4. Click Set.

5. Update and save the configuration.
48 Net-Net ASC Web Services SOAP/REST API Guide Version E3.6.0m5

Proprietary & Confidential

ASC CALL CONTROL ACTION
Common Call Events
The call-control actions create call events. The following table lists and describes
common call events.

Event Name Description Parameters

CallCreated Generated every time a call leg is
created.

• [requestId]
• handle
• sessionID
• callID
• to
• from
• sessConfig (legacy schema

only)
• dtmfCapability (legacy

schema only)

CallCreatedEventCustom Generated every time a call leg is
created and the ASC is configured
to include custom event fields in
event messages.

• [requestId]
• handle
• sessionID
• callID
• to
• from
• sessConfig (legacy schema

only)
• dtmfCapability (legacy

schema only)
• customField

CallConnected Generated every time a call leg is
connected.

• [requestId]
• handle
• sessionID
• callID
• to
• from
• content

CallConnectedEventCustom Generated every time a call leg is
connected and the ASC is
configured to include custom event
fields in event messages.

• [requestId
• handle
• sessionID
• callID
• to
• from
• content
• customField

CallTerminated Generated when a party hangs up
and every time a call leg is
terminated.

• [requestId]
• handle
• callDuration
• reason
• sessionID
• callID

CallTerminatedEventCustom Generated when a party hangs up
and every time a call leg is
terminated.

• [requestId]
• handle
• callDuration
• reason
• sessionID
• callID
• customField
Version E3.6.0m5 Acme Packet, Inc. Technical Publications 49

Proprietary & Confidential

ASC CALL CONTROL ACTION
CallHeld Generated every time a call leg is
placed on hold.

• [requestID]
• handle
• heldByRemote—can be

true or false

CallRetrieved Generated every time a call leg is
retrieved from being on hold.

• [requestID]
• handle

PlayInitiated • [requestID]
• handle
• scanTime

PlayComplete Generated whenever an audio file
has finished playing or when it has
been stopped.

• [requestID]
• handle
• fileTime
• playedTime

PlayPaused Generated every time an audio
message is paused.

• [requestID]
• handle
• fileTime
• playedTime

PlayResumed Generated every time you resume
playing an audio message.

• [requestID]
• handle
• fileTime
• playedTime

PlayStopped Generated every time you stop
playing an audio message.

• [requestID]
• handle
• fileTime
• playedTime

PlayFailed • [requestID]
• handle
• reason
• scanTime

RecordComplete Generated every time the
recording of an audio message is
finished.

• [requestID]
• handle
• fileName

FileInformation Generated every time you request
file information.

• [requestID]
• fileTime

MessageSend Generated every time you
manually send a message.

• [requestID]
• sessionID
• responseCode—the SIP

response code from the
message recipient

• responseString—the
corresponding string

• callID
• to
• from
• ContentType
• body

Event Name Description Parameters
50 Net-Net ASC Web Services SOAP/REST API Guide Version E3.6.0m5

Proprietary & Confidential

ASC CALL CONTROL ACTION
MessageReceived Generated every time SIP
MESSAGE messages are received.

• [requestID]
• sessionID
• callID
• to
• from
• contentType—normally has

the value of text/plain
• body—content of the

message

IncomingDtmfDigitStart Generated when the start of a
DTMF digit is received on a call leg.
Every digits receives its own event.
You must set session-config > in-
dtmf-preferences to detect DTMF
methods of choice. For parked
calls, you must set nnos-call-policy
> apply-policy-to-nnos-calls to
enabled.

• [requestID]
• handle
• method—identifies the

method used to receive
DTMF

• digit
• volume
• duration—the initial

duration in milliseconds;
reflects how many
milliseconds were are
received in the first packet
if received as an RFC 2833
event in the media stream

IncomingDtmfDigitUpdate Generated when the end of a DTMF
digit is detected on a call leg.

• [requestID]
• handle
• method
• digit
• volume
• duration—reflects the

duration of the entire
DTMF tone.

OutgoingDtmfDigitStart Generated when the start of a
DTMF digit is sent on a call leg.
You must set session-config > out-
dtmf-preferences to detect DTMF
methods of choice. The actual
method used depends on the
capabilities of the endpoint.
Note that you cannot send DTMF
digits to a parked endpoint.

• [requestID]
• handle
• method—identifies the

method used to receive
DTMF

• digit
• volume
• duration—the initial

duration in milliseconds;
reflects how many
milliseconds were are
received in the first packet
if received as an RFC 2833
event in the media stream

OutgoingDtmfDigitUpdate Generated when the end of a DTMF
digit is sent on a call leg.

• [requestID]
• handle
• method
• digit
• volume
• duration—reflects the

duration of the entire
DTMF tone.

Event Name Description Parameters
Version E3.6.0m5 Acme Packet, Inc. Technical Publications 51

Proprietary & Confidential

ASC CALL CONTROL ACTION
CallRedirected Generated when a party redirects a
call leg.

• requestId
• handle
• sessionID
• callID
• to
• from

AttachedEvent Generated when a call leg is
attached to a session.

• handle
• sessionID
• callID
• to
• from
• requestID

DetachedEvent Generated when a call leg is
detached from a session.

• handle
• sessionID
• callID
• to
• from
• requestID

MediaStartedEvent Generated when a media event is
started, such as playing a file.

• handle
• sessionID
• callID
• to
• from
• requestID
• capabilities
• media-file-status

MediaCompleteEvent Generated when a media event is
complete.

• handle
• sessionID
• callID
• to
• from
• requestID
• media-file-status

MediaStoppedEvent Generated when a media event is
stopped.

• handle
• sessionID
• callID
• to
• from
• requestID
• media-file-status

MediaPausedEvent Generated when media playback is
paused.

• handle
• sessionID
• callID
• to
• from
• requestID
• media-file-status

MediaResumedEvent Generated when a media playback
is resumed.

• handle
• sessionID
• callID
• to
• from
• requestID
• media-file-status

Event Name Description Parameters
52 Net-Net ASC Web Services SOAP/REST API Guide Version E3.6.0m5

Proprietary & Confidential

ASC CALL CONTROL ACTION
The following is a list of elements commonly found in event messages:

• requestID—The ID provided by the call-control caller. This element only
appears if it was originally provided.

• handle—The call leg handle, expressed as a decimal number.

• sessionID/session-id—The internally applied session ID, expressed as a decimal
number.

• callID/call-id—The call-ID field from the SIP message. Each call leg should have
distinct Call-IDs.

• to—The To URI.

• from—The From URI.

• sessConfig/session-config—The session configuration that was applied to the
call.

• callDuration—The length of a call, expressed as an ISO 8601-format time
duration. This may either look like PnDTnHnMnS (legacy format) or
PnYnMnDTnHnMn.nS (simplified format), where n represents the integer.

• reason—The reason a call was terminated, based on the SIP response message
(200 for normal termination, 404 for not found, 500 for internal error, etc.)

• fileTime—The length of an audio file, in milliseconds.

• playTime—The number of milliseconds of an audio file that was played.

• fileName—The name of the file that was recorded.

MediaSeekEvent Generated when the location in a
media source is changed.

• handle
• sessionID
• callID
• to
• from
• requestID
• media-file-status

RecordCompleteEvent Generated when a recording event
has completed.

• handle
• sessionID
• callID
• to
• from
• requestID
• filename

RecordingStartedEvent Generated when on demand
recording is started.

• handle
• sessionID
• callID
• to
• from
• requestID
• filename

RecordingStoppedEvent Generated when on demand
recording is stopped.

• handle
• sessionID
• callID
• to
• from
• requestID
• filename

Event Name Description Parameters
Version E3.6.0m5 Acme Packet, Inc. Technical Publications 53

Proprietary & Confidential

ASC CALL CONTROL ACTION
Call-Control Actions
This section describes all of the call-control actions, their parameters, structure of
their result XML, and events generated.

Parameters surrounded by brackets ([]) are optional.

call Initiates a call using To and From SIP URIs you provide.

You can set the ASC to add post-dial digits to a call-control call action. Append the
string postd=digits to the user portion of the to parameter. The following example
shows the ASC adding post-dial digits 12345@acmepacket.com to a call.

call-control call sip:2001;postd=12345@acmepacket.com
sip:1001@acmepacket.com

Parameters

• to—The destination SIP URI of the call.

• from—The originating SIP URI of the call.

• [requestId]—A unique identifier provided by an external application. This value
can be used to identify the call in subsequent events and actions. If a requestId
is specified, there is a corresponding XML element in the event messages
generated for the session.

• [originatorFirst]—When enabled (the default), the originating party is
connected first. When disabled, the called party is connected first.

• [async]—When enabled, causes the ASC to return a response immediately
without waiting for the action to complete. When disabled (the default), the
ASC waits for the action to complete before returning a response.

• [transport]—The transport method to use for the call. This can be set to any,
TCP, UDP, or TLS.

• [config]—The session-config on the ASC to use to process a call. Use the full
path to the session-config. For example:

vsp\session-config-pool\entry MyConfig

Enclose the value in quotation marks when using the CLI.

Result XML

<resultCode />

<resultStr />

<info />

<structure>

 <CallControlCallResult>

 <requestId />

 <sessionId />

 <inCallLegHandle />

 <outCallLegHandle />

 </CallControlCallResult>

</structure>

Events Generated

• CallCreated (originator)

• CallCreated (called party)

• CallConnected (originator)
54 Net-Net ASC Web Services SOAP/REST API Guide Version E3.6.0m5

Proprietary & Confidential

ASC CALL CONTROL ACTION
• CallConnected (leg two)

If the originatorFirst parameter is disabled, the CallCreated (originator) event is
omitted. If a call is terminated, there are two CallTerminated events, one for each leg.

disconnect Disconnects both legs of a call. The handle parameter can be the handle of either
call leg.

Parameters

• handle—Identifies the leg of a call. Handles are returned as part of the <info>
element of call-control results and can be used to manipulate each leg of a call
independently.

Result XML

<resultCode />

<resultStr />

<info />

<structure>

 <CallControlDisconnectResult>

 <requestId />

 <sessionId />

</CallControlDisconnectResult>

</structure>

Events Generated

• CallTerminated (disconnected party)

• CallTerminated (other party, if present)

park Creates a call to an endpoint from a given SIP URI. If you specify a From URI, it is
used as the From URI in the SIP message; if you specify no From URI, the From URI
is that of the given endpoint.

Parameters

• endpoint—The URI of the call’s destination.

• [from]—The originating SIP URI of the call.

• [requestId]—A unique identifier provided by an external application. This value
can be used to identify the call in subsequent events and actions. If a requestId
is specified, there is a corresponding XML element in the event messages
generated for the session.

• [async]—When enabled, causes the ASC to return a response immediately
without waiting for the action to complete. When disabled (the default), the
ASC waits for the action to complete before returning a response.

• [config]—The session-config on the ASC to use to process a call. Use the full
path to the session-config. For example:

vsp\session-config-pool\entry MyConfig

Enclose the value in quotation marks when using the CLI.

Result XML

<resultCode />

<resultStr />

<info />

<structure>
Version E3.6.0m5 Acme Packet, Inc. Technical Publications 55

Proprietary & Confidential

ASC CALL CONTROL ACTION
 <CallControlParkResult>

 <requestId />

 <sessionId />

 <parkedCallLegHandle />

</CallControlParkResult>

</structure>

Events Generated

• CallCreated

• CallConnected

connect Connects an existing parked call leg to a given endpoint. If the called party ends the
call, the original call reverts back to a parked state.

Parameters

• handle—Identifies the leg of a call. Handles are returned as part of the <info>
element of call-control results and can be used to manipulate each leg of a call
independently.

• endpoint—The URI of the call’s destination.

• [async]—When enabled, causes the ASC to return a response immediately
without waiting for the action to complete. When disabled (the default), the
ASC waits for the action to complete before returning a response.

• [requestId]—A unique identifier provided by an external application. This value
can be used to identify the call in subsequent events and actions. If a requestId
is specified, there is a corresponding XML element in the event messages
generated for the session.

• [config]—The session-config on the ASC to use to process a call. Use the full
path to the session-config. For example:

vsp\session-config-pool\entry MyConfig

Enclose the value in quotation marks when using the CLI.

Result XML

<resultCode />

<resultStr />

<info />

<structure>

 <CallControlConnectResult>

 <requestId />

 <sessionId />

 <pakredCallLegHandle />

 <remoteCallLegHandle />

 </CallControlConnectResult>

</structure>

Events Generated

• CallCreated

• CallConnected

terminate Terminates the call leg indicated by the handle you specify. This parameter is only
available for calls with a parked status.
56 Net-Net ASC Web Services SOAP/REST API Guide Version E3.6.0m5

Proprietary & Confidential

ASC CALL CONTROL ACTION
Parameters

• handle—Identifies the leg of a call. Handles are returned as part of the <info>
element of call-control results and can be used to manipulate each leg of a call
independently.

Result XML

<resultCode />

<resultStr />

<info />

<structure>

 <CallControlTerminatedResult>

 <requestId />

 <sessionId />

 <parkedCallLegHandle />

</CallControlTerminatedResult>

</structure>

Events Generated

• CallTerminated

hold Places the specified call leg on hold. This puts the media of that call leg into send-
only mode. The media of the other call leg, if present, is put into receive-only mode.

Parameters

• handle—Identifies the leg of a call. Handles are returned as part of the <info>
element of call-control results and can be used to manipulate each leg of a call
independently.

Result XML

<resultCode />

<resultStr />

<info />

<structure>

 <CallControlHoldResult>

 <requestId />

 <sessionId />

 <heldCallLegHandle />

 <remoteCallLegHandle />

 </CallControlHoldResult>

</structure>

Events Generated

• CallHeld (held party)

• CallHeld (other party, if present)

retrieve Retrieves the held call leg you specify by call handle. This reconnects the call’s media
for that call leg and, if present, the other call leg.

Parameters

• handle—Identifies the leg of a call. Handles are returned as part of the <info>
element of call-control results and can be used to manipulate each leg of a call
independently.

Result XML
Version E3.6.0m5 Acme Packet, Inc. Technical Publications 57

Proprietary & Confidential

ASC CALL CONTROL ACTION
<resultCode />

<resultStr />

<info />

<structure>

 <CallControlRetrieveResult>

 <requestId />

 <sessionId />

 <retrieveCallLegHandle />

 <remoteCallLegHandle />

 </CallControlRetrieveResult>

</structure>

Events Generated

• CallRetrieved (held party)

• CallRetrieved (other party, if present)

• CallConnected (held party)

• CallConnected (other party, if present)

transfer Transfers the specified call leg to the specified To SIP URI. The original call leg,
referred to by its handle, is disconnected. Handle can be thought of as belonging to
the party doing the transfer, even though the transfer is done via a third-party action.

Parameters

• handle—Identifies the leg of a call. Handles are returned as part of the <info>
element of call-control results and can be used to manipulate each leg of a call
independently.

• to—The destination SIP URI of the call.

Result XML

<resultCode />

<resultStr />

<info />

<structure>

 <CallControlTransferResult>

 <requestId />

 <sessionId />

 <newCallLegHandle />

 <remoteCallLegHandle />

 </CallControlTransferResult>

</structure>

Events Generated

• CallCreated (new call leg)

• CallHeld (party to be transferred)

• CallHeld (party doing the transfer)

• CallConnected (transferred party)

• CallConnected (new call leg)

• CallTerminated (transferring party)
58 Net-Net ASC Web Services SOAP/REST API Guide Version E3.6.0m5

Proprietary & Confidential

ASC CALL CONTROL ACTION
join Connects the parties of two separate calls together. The original call legs, identified
by handle1 and handle2, are disconnected.

Parameters

• handle1—Identifies the leg of the first call. Handles are returned as part of the
<info> element of call-control results and can be used to manipulate each leg
of a call independently.

• handle2—Identifies the leg of the second call. Handles are returned as part of
the <info> element of call-control results and can be used to manipulate each
leg of a call independently.

Result XML

<resultCode />

<resultStr />

<info />

<structure>

 <CallControlJoinResult>

 <requestId />

 <sessionId />

 <inCallLegHandle />

 <outCallLegHandle />

 </CallControlJoinResult>

</structure>

Events Generated

• CallTerminated (party identified by handle2)

• CallConnected (party identified by handle3, correspondent of handle1)

• CallConnected (party identified by handle4, correspondent of handle2)

• CallTerminated (party identified by handle1)

•

memo-begin Records a message from the parked party, identified by a call leg handle, and stores
it in a file you specify.

Note: When cluster is enabled, master-service > file-mirror must be enabled for
it to work properly.

Parameters

• handle—Identifies the leg of a call. Handles are returned as part of the <info>
element of call-control results and can be used to manipulate each leg of a call
independently.

• filename—The name of the audio file where a message is recorded or from
where a message is played. Audio files must be .wav files in 44.1 kHz, 16-bit
mono PCM format. If you give an invalid filename, it is placed in or taken from
the /cxc directory.

• [greeting]—A greeting file that may be applied first as a prompt.

• [cluster]—When enabled, the file is available to all ASCs in the cluster. When
disabled (the default), the file is only available on the local ASC.

Result XML

<resultCode />

<resultStr />
Version E3.6.0m5 Acme Packet, Inc. Technical Publications 59

Proprietary & Confidential

ASC CALL CONTROL ACTION
Events Generated

• PlayComplete (for greeting, if used)

memo-end Ends a recording on the specified call leg.

Parameters

• handle—Identifies the leg of a call. Handles are returned as part of the <info>
element of call-control results and can be used to manipulate each leg of a call
independently.

Result XML

<resultCode />

<resultStr />

Events Generated

• RecordComplete

play Plays a given audio file to the specified call leg. If two call legs are connected, the file
is played to both parties.

If the session-config > media-scanner-settings is configured, the ASC waits until
the recipient (or an answering machine) has finished speaking before delivering the
message. If the media scanner times out waiting for the recipient to finish speaking,
the file is not played.

Parameters

• handle—Identifies the leg of a call. Handles are returned as part of the <info>
element of call-control results and can be used to manipulate each leg of a call
independently.

• filename—The name of the audio file where a message is recorded or from
where a message is played. Audio files must be .wav files in 44.1 kHz, 16-bit
mono PCM format. If you give an invalid filename, it is placed in or taken from
the /cxc directory.

• [startTime]—The number of milliseconds the ASC waits before playing the file.

• [async]—When enabled, causes the ASC to return a response immediately
without waiting for the action to complete. When disabled (the default), the
ASC waits for the action to complete before returning a response.

Result XML

<resultCode />

<resultStr />

Events Generated

• PlayInitiated

• PlayComplete

drop-file Plays the specified audio file to the party connected to the call leg. When finished,
the ASC terminates the call leg.

Parameters
60 Net-Net ASC Web Services SOAP/REST API Guide Version E3.6.0m5

Proprietary & Confidential

ASC CALL CONTROL ACTION
• handle—Identifies the leg of a call. Handles are returned as part of the <info>
element of call-control results and can be used to manipulate each leg of a call
independently.

• filename—The name of the audio file where a message is recorded or from
where a message is played. Audio files must be .wav files in 44.1 kHz, 16-bit
mono PCM format. If you give an invalid filename, it is placed in or taken from
the /cxc directory.

Result XML

<resultCode />

<resultStr />

Events Generated

• PlayComplete

• CallTerminated

message Connects to a given endpoint, plays the file you specify, then disconnects the call. If
you specify a From URI, that appears in the From header as the calling party; if no
URI is specified, the To URI is used as the From header.

Parameters

• filename—The name of the audio file where a message is recorded or from
where a message is played. Audio files must be .wav files in 44.1 kHz, 16-bit
mono PCM format. If you give an invalid filename, it is placed in or taken from
the /cxc directory.

• endpoint—The URI of the call’s destination.

• [from]—The originating SIP URI of the call.

• [requestId]—A unique identifier provided by an external application. This value
can be used to identify the call in subsequent events and actions. If a requestId
is specified, there is a corresponding XML element in the event messages
generated for the session.

• [async]—When enabled, causes the ASC to return a response immediately
without waiting for the action to complete. When disabled (the default), the
ASC waits for the action to complete before returning a response.

• [config]—The session-config on the ASC to use to process a call. Use the full
path to the session-config. For example:

vsp\session-config-pool\entry MyConfig

Enclose the value in quotation marks when using the CLI.

Result XML

<resultCode />

<resultStr />

<info />

Events Generated

• CallCreated

• CallConnected

• PlayComplete

• CallTerminated
Version E3.6.0m5 Acme Packet, Inc. Technical Publications 61

Proprietary & Confidential

ASC CALL CONTROL ACTION
insert-dtmf Inserts DTMF digits into the call leg. DTMF is inserted only into the call leg specified;
the other party does not hear it.

Note also that DTMF insertion is currently only supported for two-legged calls, not
parked calls.

Parameters

• handle—Identifies the leg of a call. Handles are returned as part of the <info>
element of call-control results and can be used to manipulate each leg of a call
independently.

• digits—Specifies the digits inserted into the call leg.

• [volume]—The volume of the DTMF digits, in decimals from -36 to 0. The value
1 is the default.

• [duration]—The duration of each digit in milliseconds, from 100 to 10000. The
value 0 is the default.

Result XML

<resultCode />

<resultStr />

Events Generated

• OutgoingDtmfDigitStart

• OutgoingDtmfDigitUpdate

annotate Annotates the text you specify to a call leg.

Parameters

• handle—Identifies the leg of a call. Handles are returned as part of the <info>
element of call-control results and can be used to manipulate each leg of a call
independently.

• text—The text you specify to a call leg.

Result XML

<resultCode />

<resultStr />

Events Generated

None

get-annotation Retrieves the annotated text given to the call leg.

Parameters

• handle—Identifies the leg of a call. Handles are returned as part of the <info>
element of call-control results and can be used to manipulate each leg of a call
independently.

Result XML

<resultCode />

<resultStr />

<info />

Events Generated

None
62 Net-Net ASC Web Services SOAP/REST API Guide Version E3.6.0m5

Proprietary & Confidential

ASC CALL CONTROL ACTION
identify Associates the requestId you specify with a call whose leg is identified by the
handle. The requestId subsequently appears in events associated with that call.
Note that the requestId is associated with the entire call, not the individual leg.

Parameters

• handle—Identifies the leg of a call. Handles are returned as part of the <info>
element of call-control results and can be used to manipulate each leg of a call
independently.

• requestId—A unique identifier provided by an external application. This value
can be used to identify the call in subsequent events and actions. If a requestId
is specified, there is a corresponding XML element in the event messages
generated for the session.

Result XML

<resultCode />

<resultStr />

Events Generated

None

notify Causes a SIP NOTIFY message to be sent to the party you specify in the handle
parameter, with the value of the Event header set by the event parameter.

Parameters

• handle—Identifies the leg of a call. Handles are returned as part of the <info>
element of call-control results and can be used to manipulate each leg of a call
independently.

• event—The content of the Event header.

Result XML

<resultCode />

<resultStr />

Events Generated

None

call-control-fork Adds a new endpoint’s SIP URI to the parked call. The endpoint can receive media
but cannot send it. Multiple endpoints can be added using this action.

Parameters

• handle—Identifies the leg of a call. Handles are returned as part of the <info>
element of call-control results and can be used to manipulate each leg of a call
independently.

• endpoint—The URI of the call’s destination.

• [async]—When enabled, causes the ASC to return a response immediately
without waiting for the action to complete. When disabled (the default), the
ASC waits for the action to complete before returning a response.

• [requestId]—A unique identifier provided by an external application. This value
can be used to identify the call in subsequent events and actions. If a requestId
is specified, there is a corresponding XML element in the event messages
generated for the session.
Version E3.6.0m5 Acme Packet, Inc. Technical Publications 63

Proprietary & Confidential

ASC CALL CONTROL ACTION
• [config]—The session-config on the ASC to use to process a call. Use the full
path to the session-config. For example:

vsp\session-config-pool\entry MyConfig

Enclose the value in quotation marks when using the CLI.

Result XML

<resultCode />

<resultStr />

<info />

<structure>

 <CallControlForkResult>

 <requestId />

 <sessionId />

 <forkedSessionId />

 <parkedCallLegHandle />

 <remoteCallLegHandle />

 </CallControlForkResult>

</structure>

Events Generated

• CallCreated

• CallConnected (new call leg)

call-control-redirect Redirects an initiated call to a new endpoint, prior to the call being answered. This
creates a new call leg and cancels the original one.

Parameters

• handle—Identifies the leg of a call. Handles are returned as part of the <info>
element of call-control results and can be used to manipulate each leg of a call
independently.

• endpoint—The URI of the call’s destination.

• [config]—The session-config on the ASC to use to process a call. Use the full
path to the session-config. For example:

vsp\session-config-pool\entry MyConfig

Enclose the value in quotation marks when using the CLI.

Result XML

<resultCode />

<resultStr />

<info />

<structure>

 <CallControlRedirectResult>

 <requestId />

 <sessionId />

 <inCallLegHandle />

 <outCallLegHandle />

 </CallControlRedirectResult>

</structure>

Events Generated

• CallTerminated (abandoned call leg)
64 Net-Net ASC Web Services SOAP/REST API Guide Version E3.6.0m5

Proprietary & Confidential

ASC CALL CONTROL ACTION
• CallCreated

• CallConnected (new call leg)

call-control-media-
pause

Pauses the playing of an audio file on an active call leg.

Parameters

• handle—Identifies the leg of a call. Handles are returned as part of the <info>
element of call-control results and can be used to manipulate each leg of a call
independently.

Result XML

<resultCode />

<resultStr />

Events Generated

• PlayPaused

call-control-media-
resume

Resumes the playing of an audio file on an active call leg.

Parameters

• handle—Identifies the leg of a call. Handles are returned as part of the <info>
element of call-control results and can be used to manipulate each leg of a call
independently.

Result XML

<resultCode />

<resultStr />

Events Generated

• PlayResumed

call-control-media-
stop

Stops the playing of an audio file on an active call leg.

Parameters

• handle—Identifies the leg of a call. Handles are returned as part of the <info>
element of call-control results and can be used to manipulate each leg of a call
independently.

Result XML

<resultCode />

<resultStr />

Events Generated

• PlayStopped

• PlayComplete

call-control-send-
message

Sends a message to the endpoint specified by the To URI. If you specify a From URI,
it is used for the From URI. If a From URI is not specified, the From URI is the same
as the To URI.

Parameters

• to—The destination SIP URI of the call.
Version E3.6.0m5 Acme Packet, Inc. Technical Publications 65

Proprietary & Confidential

ASC CALL CONTROL ACTION
• [from]—The originating SIP URI of the call.

• [requestId]—A unique identifier provided by an external application. This value
can be used to identify the call in subsequent events and actions. If a requestId
is specified, there is a corresponding XML element in the event messages
generated for the session.

• [content-type]—Should be set to text/plain.

• [body]—The content of the message.

• [config]—The session-config on the ASC to use to process a call. Use the full
path to the session-config. For example:

vsp\session-config-pool\entry MyConfig

Enclose the value in quotation marks when using the CLI.

Result XML

<resultCode />

<resultStr />

<info />

Events Generated

• CallConnected

• MessageSend

• CallTerminated

file-info Causes an event to be generated containing information about the specified file.

Parameters

• [requestId]—A unique identifier provided by an external application. This value
can be used to identify the call in subsequent events and actions. If a requestId
is specified, there is a corresponding XML element in the event messages
generated for the session.

• filename—The name of the audio file where a message is recorded or from
where a message is played. Audio files must be .wav files in 44.1 kHz, 16-bit
mono PCM format. If you give an invalid filename, it is placed in or taken from
the /cxc directory.

Result XML

<resultCode />

<resultStr />

Events Generated

• FileInformation

On-Demand Three-
Way Conferencing

The OS-E now supports on-demand three-way conferencing, meaning a third-party
can selectively join a target session. A target session is an existing call between two
parties and a third-party is a call-leg that can attach itself to a target session and
participate in the ongoing conversation.

An on-demand three-way conference is initiated via the call-control- attach action.
The action is syntax is:

call-control-attach <handle> [session-id]

Valid arguments for this action are:
66 Net-Net ASC Web Services SOAP/REST API Guide Version E3.6.0m5

Proprietary & Confidential

ASC CALL CONTROL ACTION
• <handle>—The call-leg handle of the third-party to attach to an existing target
session.

• <session-id>—The session-id of the target session to join.

Once the third-party is finished with the conference, it can detach itself from the
target session and the two original parties can continue the call. To detach the third-
party from the three-way conference, use the call-control-detach action. The action
syntax is:

call-control-detach <handle> <session-id>

Valid arguments for this action are:

• <handle>—The call-leg handle of the third-party to detach from the target
session.

• <session-id>—The rendezvous session-id that the detached call-leg becomes
attached to.

Media Forking
The OS-E now supports audio and video media forking, meaning a source endpoint
can fork media to one or more target endpoints. The source endpoint is a one-legged
call which initiates a call to the OS-E. The OS-E then initiates a call to each forked
target. In this type of media forking, the media flows in one direction only, from the
source endpoint, through the OS-E, to each of the targets.

Media forking is initiated via the call-control-fork action. This action establishes a
call from the source endpoint and replicates the media to the newly established
target sessions. The action syntax is:

call-control-fork <handle> <endpoint> [async] [requestID] [config]

Valid arguments for this action are:

• <handle>—The call-leg handle of the source endpoint.

• <endpoint>—The URL of the target endpoint.

• [async]—When enabled, this action returns immediately as opposed to waiting
for the action to complete the call.

• [requestID]—This call’s request identifier. If included, this value is returned in all
of this action’s events.

• [config]—The session-config to use when calling the endpoint.

To end a media forking session, use the call-control disconnect action. If you
disconnect a target endpoint, the call from the source and remaining targets is still
active. If you disconnect the source endpoint, all call-legs to the target endpoints are
disconnected. The action syntax is:

call-control disconnect <handle>

Valid arguments for this action are:

• <handle>—The handle of the call-leg to disconnect.
Version E3.6.0m5 Acme Packet, Inc. Technical Publications 67

Proprietary & Confidential

ASC CALL CONTROL ACTION
Attended Voice Insertion
This feature allows a caller to play a pre-recorded message that both the caller and
callee can hear. The caller can start playing the message at any point, pause, resume,
or stop playing the message.

The OS-E allows the caller to begin playing a file with the option of seeking to a
specified point via the call-control play action. The action syntax is:

call-control play <handle> <filename> [startTime] [async]

Valid arguments for this action are:

• <handle>—The call-leg handle on which the file is played.

• <filename>—The .wav file being played.

• [startTime]—The optional start time in milliseconds. This is used if the caller
does not want to begin playing the file right at the beginning. The default value
is 0.

• [async]—When enabled, this action completes immediately as opposed to
waiting for the action to complete the call.

The OS-E stops the playing of a file via the call-control media-stop action. The
action syntax is:

call-control-media-stop <handle>

Valid arguments for this action are:

• <handle>—The call-leg handle where the file is stopped.

The OS-E pauses the playing of a file via the call-control media-pause action. The
action syntax is:

call-control-media-pause <handle>

Valid arguments for this action are:

• <handle>—The call-leg handle where the file is paused.

The OS-E resumes the playing of a file via the call-control media-resume action.
The action syntax is:

call-control-media-resume <handle>

Valid arguments for this action are:

• <handle>—The call-leg handle where the file is resumed.

You can configure the OS-E to send events regarding the status of the file being
played by the call-control play action. For more information on call-control events,
see Chapter 3: ASC Call Control Action in the Net-Net ASC Web Services SOAP/REST
API Guide.

When configured, the OS-E sends the following events:

• PlayInitiated—The file has begun to play.

• PlayPaused—The file has been paused.

• PlayResumed—The file has resumed playing.

• PlayStopped—The file has stopped playing.

• PlayCompleted—The file has completed playing.
68 Net-Net ASC Web Services SOAP/REST API Guide Version E3.6.0m5

Proprietary & Confidential

ASC CALL CONTROL ACTION
On-Demand Call Monitoring and Recording
The OS-E now supports on-demand call monitoring, meaning an endpoint, known
as the monitor session, has the ability to attach itself to either a live target session or
recording file, for the purpose of listening.

When monitoring a live target session, you have the ability to start and stop
monitoring. Any time a monitor session starts listening, it joins the session in-
progress.

You can configure one or more locations to which the OS-E writes files for on-
demand recording files via the services > data-locations > rtp-on-demand-
recorded <directory> [directory] property. By default the OS-E writes on-demand
recording files to the /cxc_common/rtp_on_demand_recorded directory.

Once you have the rtp-on-demand-recorded property configured, you can set a
rotation scheme for writing on-demand recorded files to a directory using the
services > data-locations > rtp-on-demand-recorded-rotation property. This
property can be set to either first-available or round-robin. First-available means
the OS-E writes to the first directory that has enough space to hold the recording
listed under the rtp-on-demand-recorded property and continues to write to that
directory until the disk is full and then moves onto the next directory on the list.
Round-robin means the OS-E rotates through all configured directories in a round-
robin manner. This allows for an increase in the volume of simultaneous on-demand
recorded calls by spreading the load across multiple disks.

There are four types of monitoring you can perform when working with a recording
file: a live target session currently being recorded, a previously recorded session, an
on-demand recording session, and a memo actively being recorded. When
monitoring a recording file, the monitor session does have the ability to pause,
resume, and seek forward or backward to a particular point in the file.

The OS-E attaches a monitor session to a live target session via the call-control-
monitor-session action. The monitor session must join the target session in-
progress as it has no ability to seek forward or backward during a live recording. The
action syntax is:

call-control-monitor-session <handle> <session-id>

Valid arguments for this action are:

• <handle>—The monitor session handle to attach to a target session.

• <session-id>—The session-id of the target session to begin monitoring.

NOTE: The session-config > nnos-call-policy > apply-policy-to-nnos-calls
property must be enabled for this feature to work.

The call-control-monitor-file action attaches a monitor session to a recording file.
A recording file can be a live session currently being recorded, an old session that
was recorded, an on-demand recording of a session, or a memo actively being
recorded. The action syntax is:

call-control-monitor-file <handle> <session-id> <monitor-target>
[seek-offset] [position]

Valid arguments for this action are:

• <handle>—The monitor session handle to attach to a target session.

• <session-id>—The session-id of the recording file to begin monitoring.

• <monitor-target>—The type of recording file. This can be:
Version E3.6.0m5 Acme Packet, Inc. Technical Publications 69

Proprietary & Confidential

ASC CALL CONTROL ACTION
• session—A session recording file is going to be monitored.

• memo—A memo actively being recorded is going to be monitored.

• name—The on-demand <filename> specified in the call-control-record-
start <session-id> <filename> action is being monitored.

• [seek-offset]—Indicates the offset, in milliseconds, to begin seeking. A negative
seek value seeks backwards. The seeking starts at the spot specified by the
position parameter. The default value is 0.

• [position]—Indicates the position to begin seeking:

• start—Seek from the start of the file. This is the default behavior.

• current—Seek from the existing position being played.

• end—Seek from the end of the file.

NOTE: The session-config > nnos-call-policy > apply-policy-to-nnos-calls
property must be enabled for this feature to work.

To stop monitoring a target session or a recording file, use the call-control media-
stop file. The action syntax is:

call-control-media-stop <handle>

Valid arguments for this action are:

• <handle>—The monitor session handle to stop listening.

The call-control media-pause action pauses the monitor of a recording file. The
action syntax is:

call-control-media-pause <handle>

Valid arguments for this action are:

• <handle>—The monitor session handle to pause listening.

To resume monitoring a stopped or paused recording file, use the call-control
media-resume action. The monitoring resumes from the point at which the
monitoring was stopped or paused. The action syntax is:

call-control-media-resume <handle>

Valid arguments for this action are:

• <handle>—The monitor session handle to resume listening.

To seek to a specific point in a monitored recording file, use the call-control media-
seek action. This action can also be used to seek to a certain point of a file when the
call-control play action is used to play a file. The action syntax is:

call-control-media-seek <handle> <seek-offset> [position]

Valid arguments for this action are:

• <handle>—The monitor session handle seeking to a point in a monitored
recording file or to a point in the file being played.

• <seek-offset>—The offset, in milliseconds, to begin seeking. A negative value
seeks backwards. Seeking starts at the spot specified by the position parameter.

• [position]—Indicates the position to begin seeking:

• start—Seek from the start of the file. This is the default behavior.

• current—Seek from the current position of the file.

• end—Seek from the end of the file.
70 Net-Net ASC Web Services SOAP/REST API Guide Version E3.6.0m5

Proprietary & Confidential

ASC CALL CONTROL ACTION
The call-control-record-start action starts the on-demand recording of a target
session to a specific <filename> file. This recording can then be monitored via the
call-control-monitor-file action. You can execute this command one or more times
for a given target session, provided you give it a different <filename> each time. If a
<filename> already exists for a given target session, the existing <filename> is
preserved and the action fails. The action syntax is:

call-control-record-start <session-id> <recording-name>

Valid arguments for this action are:

• <session-id>—The session-id of the target session to begin recording.

• <filename>— The name of the recording for this particular target session.

The call-control-record-stop action stops the on-demand recording of a target
session to a specific <filename>. The action syntax is:

call-control-record-stop <session-id> <filename>

Valid arguments for this action are:

• <session-id>—The session-id of the target session to stop recording.

• <filename>—The name of the recording for this particular target session.

The media-on-demand-delete command deletes on-demand recording files by
specifying a session-id and filename. The action syntax is:

media-on-demand-delete <session-id> <filename>

Valid arguments for this action are:

• <session-id>—The session-id of the on-demand recording file to delete.

• <filename>—The on-demand recording filename to delete.

The media-on-demand-delete-old action deletes all on-demand recording files
that are older than the specified time. The time units can be specified in days or
seconds. The default value in which to purg3e old on-demand recording files is 7
days. The action syntax is:

media-on-demand-delete-old <age> [units]

Valid arguments for this action are:

• <age>—The age at which to delete on-demand recordings. The default is 7 days.

• [units]—This optional parameter allows you to specify the units in which the age
is measured. This can be either days or seconds. If you do not specify, the
default is days.

You can archive on-demand recordings using the existing archiving support when
the session-config > media > recording-policy object is configured. This existing
archiver has been extended to support the archiving of one or more on-demand
recordings per session. Note that multiple on-demand recordings can be created for
the same session. The archiver also supports mixing the ras media files to a .wav file
and archiving that file.

The on-demand-mixed-media command can be configured under either the vsp
> accounting > archive-local > path <name> object or vsp > accounting >
archive-external > url <url> object. It has been created to control whether the on-
demand recordings associated with a session are mixed to a .wav file and included
in the archive for a call. It also determines whether the raw on-demand recordings
are included in the archive if the mixing of the on-demand recording fails.

The on-demand-mixed-media syntax is:
Version E3.6.0m5 Acme Packet, Inc. Technical Publications 71

Proprietary & Confidential

ASC CALL CONTROL ACTION
on-demand-mixed-media <include> <include-raw-media-on-mix-fail>

Valid arguments for this property are:

• <include>—Can be set to true or false and determines whether on-demand
mixed media is included in the archive.

• <include-raw-media-on-mix-fail>—Can be set to true or false and determines
whether on-demand raw media is included in the archive if the mixing fails.

To always include raw media in the archive use the include-on-demand-raw-
media property configured under either the vsp > accounting > archive-local >
path <name> object or vsp > accounting > archive-external > url <url> object.
This property can be set to either true or false.

The mix-session-threaded action has been extended to support the mixing of on-
demand recorded files. A new <recorded-filename> argument has been added to this
action to indicate the on-demand recording filename that is being mixed. For more
information on the mix-session-threaded action see the Net-Net OS-E Objects and
Properties Reference Guide.

Two status show commands have been created to allow you to view on-demand call
monitoring information.

The show media-on-demand-recordings status displays the on-demand
recording files for a given session. This information displayed with this status
provider can be used with the call-control monitor-file command to listen to these
on-demand recording files.

NNOS-E>show media-on-demand-recordings

session-id filename start-time

---------- -------- ----------

0x4c42b6e0e5a6577 r9 15:57:30.798092 Tue 2011-12-06

0x4c42be1a934be68 r10 12:12:17.890681 Thu 2011-12-08
•

The show media-memo-recordings status provider displays the sessions that are
actively recording memos. The information displayed with this status provider can
be used with the call-control monitor-file command to listen to these memos as
they are being recorded.

NNOS-E>show media-memo-recordings

session-id filename start-time

---------- -------- ----------

0x4c43a6bb77329a3 frank.wav 15:00:04.295810 Mon 2012-02-06
•

Field Description

session-id The session-id of the session that is recorded.

filename The on-demand recording filename.

start-time The date and time the on-demand recording was
started.

Field Description

session-id The session-id of the session that is recording a
memo.

filename The filename of the memo recording
72 Net-Net ASC Web Services SOAP/REST API Guide Version E3.6.0m5

Proprietary & Confidential

ASC CALL CONTROL ACTION
Rendezvous Session Support
The OS-E now supports rendezvous sessions. Rendezvous sessions are useful for
accumulating information in named variables before attaching call legs. They have
unique 64 bit session IDs as with other OS-E sessions but do not have any call-legs
attached. Once a rendezvous session is created, you can add call-legs, remove call-
legs, destroy the session, or add named-variables.

Using the call-control-create-session action, you can create a rendezvous session
to which you can then add call-legs, add named-variables, or destroy the session.
The OS-E automatically assigns the session a unique 64 bit session ID. The action
syntax is:

call-control-create-session

To destroy a rendezvous session manually, use the call-control-destroy-session
action. The action syntax is:

call-control-destroy-session <session-id>

Valid arguments for this action are:

• <session-id>—Specify the session-id for the rendezvous session you are
destroying. This is the unique 64 bit session ID given to the session by the OS-
E when it was created.

The OS-E also destroys a rendezvous session if you have the session-config > sip-
settings > session-duration-max property set. This property specifies how many
seconds the OS-E maintains a session after the session has been successfully
established. It puts a timer on the session and forces it to close upon expiration. If set
to 0 (the default), the session remains open until it is complete and does not timeout.
This property applies to all sessions on the OS-E, including rendezvous sessions.

To add call-legs to a rendezvous session dynamically, use the call-control park and
call-control call actions. These have been enhanced to include an optional [session-
id] argument. Once a rendezvous session has a call-leg attached, it is “promoted” to
a connected session. All subsequent interactions can be accomplished using the call
control handles as you would with a normal session.

Manually Attaching and Detaching From an Endpoint

The OS-E supports functionality which provides control over managing session
endpoints. The call-control-attach and call-control-detach actions allow you to
attach and detach from rendezvous sessions and endpoints manually.

Rendezvous sessions can be created by one of two ways. Via the call-control-
create-session action or by detaching an endpoint from a single endpoint session.
For more information on rendezvous sessions, see the Rendezvous Session Support
section in this guide.

Endpoints can be created in a few different ways. You can create an outbound call-
leg via the call-control park action, enable the third-party-call-control > park-

start-time The date and time the memo recording file was
started.

Field Description
Version E3.6.0m5 Acme Packet, Inc. Technical Publications 73

Proprietary & Confidential

ASC CALL CONTROL ACTION
incoming-calls property, or use the call-control-detach command during a
rendezvous session.

You can manually attach an endpoints to either rendezvous sessions or sessions
resulting from a SIP DIALOG. When attached to a rendezvous session, an endpoint
remains in a PARKED state. When attached to a single endpoint session, the OS-E
joins the two endpoints and two-way communication can take place. When the call
is terminated, a previously PARKED endpoint reverts back to PARKED and the
session remains active.

When you attach an endpoint to a session already containing two endpoints, a
three-way conference call is created and three-way communication can take place.
When one endpoint terminates the call, the remaining two endpoints remain joined
and two-way communication commences.

To attach an endpoint to an existing session, use the call-control-attach action. The
action syntax is:

call-control-attach <handle> <session-id>

Valid arguments for this action are:

• <handle>—The handle of the endpoint to be attached.

• <session-id>—The session to which the endpoint is being attached.

Just as you can manually attach endpoints, you can also manually detach endpoints.
If you detach a PARKED endpoint from a session that is not a rendezvous session,
the endpoint is terminated. If you detach a CONNECTED endpoint, both endpoints
from the two-way session are placed in a PARKED state. If you detach a
CONFERENCED endpoint, the detached endpoint is placed in a PARKED state and
the remaining two endpoints continue as a two-way call.

To detach an endpoint from a session, use the call-control-detach action. The
action syntax is:

call-control-detach <handle> [session-id]

Valid arguments for this action are:

• <handle>—The handle of the endpoint to be detached.

• <session-id>—The rendezvous session ID with which the endpoint is associated
after it is detached. If no <session-id> is provided, a new (non-rendezvous)
session is created.
74 Net-Net ASC Web Services SOAP/REST API Guide Version E3.6.0m5

Proprietary & Confidential

Appendix A ASC API Examples

This appendix provides examples for the ASC top-level APIs. Included are both
SOAP and REST web services requests and responses. REST actions are broken
down to include both flat and hierarchical request examples.

ASC top-level APIs are:

• getConfig

• setConfig

• doAction

• getStatus

• queryStatus

getConfig
The ASC getConfig API uses the HTTP GET Method.

The following examples display a getConfig API request from the server for the
cluster object. The responses received from the client include the cluster
configuration, including all of its subobject configurations.

SOAP

Request <soapenv:Envelope
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:mgmt="http://www.acmepacket.com/asc/ws/mgmt">

 <soapenv:Header/>

 <soapenv:Body>

 <mgmt:getConfig>

 <!--Zero or more repetitions:-->

 <config homogeneous="false">

 <!--Zero or more repetitions:-->

 <object xsi:type="MasterServicesType"
xmlns="http://www.acmepacket.com/asc/ws/common"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <!--Optional:-->

 </object></config>

 <!--Zero or more repetitions:-->

 </mgmt:getConfig>

 </soapenv:Body>

</soapenv:Envelope>

Response <cov:getConfigResponse
xmlns:cov="http://www.acmepacket.com/asc/ws/mgmt">

 <config>
Version E3.6.0m5 Acme Packet, Inc. Technical Publications 75

Proprietary & Confidential

ASC API EXAMPLES
 <object xsi:type="data:MasterServicesType" revision="1"
xmlns:data="http://www.acmepacket.com/asc/ws/common"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <cluster-master>

 <admin>enabled</admin>

 <host-box name="cluster\box 1"/>

 <group>0</group>

 <preempt>false</preempt>

 <takeover-timer-value>1000</takeover-timer-value>

 </cluster-master>

 <directory>

 <admin>disabled</admin>

 <host-box name="cluster\box 1"/>

 <group>0</group>

 <preempt>false</preempt>

 <takeover-timer-value>1000</takeover-timer-value>

 </directory>

 <accounting>

 <admin>disabled</admin>

 <host-box name="cluster\box 1"/>

 <group>0</group>

 <preempt>false</preempt>

 <takeover-timer-value>1000</takeover-timer-value>

 </accounting>

 <database>

 <admin>enabled</admin>

 <host-box name="cluster\box 1"/>

 <group>0</group>

 <preempt>false</preempt>

 <takeover-timer-value>1000</takeover-timer-value>

 <maintenance>

 <time-of-day>

 <time>2012-01-30T03:00:00.000-05:00</time>

 </time-of-day>

 </maintenance>

 <database-threads-max>4</database-threads-max>

 <sip-cache-size>30000</sip-cache-size>

 <performance>call-details</performance>

 <dos-tcp-connect-multiplier>5</dos-tcp-connect-multiplier>

 <dos-tls-connect-multiplier>10</dos-tls-connect-multiplier>

 <sip-registers>enabled</sip-registers>

 <max-queue-depth>4000</max-queue-depth>

 <caching-threshold>3500</caching-threshold>

 <media>enabled</media>

 <write-mode>copy</write-mode>

 </database>

 <registration>

 <admin>enabled</admin>

 <host-box name="cluster\box 1"/>

 <group>0</group>

 <preempt>false</preempt>

 <takeover-timer-value>1000</takeover-timer-value>

 <mirror-all-entries>enabled</mirror-all-entries>

 <mirror-location-cache>enabled</mirror-location-cache>

 <force-regdb-lookup>disabled</force-regdb-lookup>
76 Net-Net ASC Web Services SOAP/REST API Guide Version E3.6.0m5

Proprietary & Confidential

ASC API EXAMPLES
 <cache-poll-interval>86400</cache-poll-interval>

 <max-poll-duration>1000</max-poll-duration>

 <max-entries-per-poll>100</max-entries-per-poll>

 </registration>

 <route-server>

 <admin>enabled</admin>

 <host-box name="cluster\box 1"/>

 <group>0</group>

 <preempt>false</preempt>

 <takeover-timer-value>1000</takeover-timer-value>

 <max-routes>automatic</max-routes>

 <client-request-sender>only-master</client-request-sender>

 <simple-updates>enabled</simple-updates>

 </route-server>

 <sampling>

 <admin>enabled</admin>

 <host-box name="cluster\box 1"/>

 <group>0</group>

 <preempt>false</preempt>

 <takeover-timer-value>1000</takeover-timer-value>

 <SamplingTarget xsi:type="data:SamplingDatabaseType">

 <admin>enabled</admin>

 <duration>7</duration>

 <status>

 <cpu-usage>

 <admin>enabled</admin>

 <interval>P0Y0M0DT0H5M0.000S</interval>

 </cpu-usage>

 </status>

 </SamplingTarget>

 </sampling>

 <jtapi>

 <admin>disabled</admin>

 <host-box name="cluster\box 1"/>

 <group>0</group>

 <preempt>false</preempt>

 <takeover-timer-value>1000</takeover-timer-value>

 </jtapi>

 <advertisement-interval>60</advertisement-interval>

 <boot-interval>30</boot-interval>

 </object>

 </config>

</cov:getConfigResponse>

REST

Request http://172.30.80.24:8080/cms/config?name=MasterServices

Response <?xml version="1.0"?>

<object xsi:type="ExtPageListType"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<version>E3.6.0.M5P0</version>
Version E3.6.0m5 Acme Packet, Inc. Technical Publications 77

Proprietary & Confidential

ASC API EXAMPLES
<resultCode>0</resultCode>

<resultStr>Success</resultStr>

<objects revision="1" xsi:type="MasterServicesType">

 <cluster-master>

 <admin>enabled</admin>

 <host-box name="cluster\box 1"/>

 <group>0</group>

 <preempt>false</preempt>

 <takeover-timer-value>1000</takeover-timer-value>

 </cluster-master>

 <directory>

 <admin>disabled</admin>

 <host-box name="cluster\box 1"/>

 <group>0</group>

 <preempt>false</preempt>

 <takeover-timer-value>1000</takeover-timer-value>

 </directory>

 <accounting>

 <admin>disabled</admin>

 <host-box name="cluster\box 1"/>

 <group>0</group>

 <preempt>false</preempt>

 <takeover-timer-value>1000</takeover-timer-value>

 </accounting>

 <database>

 <admin>enabled</admin>

 <host-box name="cluster\box 1"/>

 <group>0</group>

 <preempt>false</preempt>

 <takeover-timer-value>1000</takeover-timer-value>

 <maintenance>

 <time-of-day>

 <time>2012-01-30T03:00:00.000-05:00</time>

 </time-of-day>

 </maintenance>

 <database-threads-max>4</database-threads-max>

 <sip-cache-size>30000</sip-cache-size>

 <performance>call-details</performance>

 <dos-tcp-connect-multiplier>5</dos-tcp-connect-multiplier>

 <dos-tls-connect-multiplier>10</dos-tls-connect-multiplier>

 <sip-registers>enabled</sip-registers>

 <max-queue-depth>4000</max-queue-depth>

 <caching-threshold>3500</caching-threshold>

 <media>enabled</media>

 <write-mode>copy</write-mode>

 </database>

 <registration>

 <admin>enabled</admin>

 <host-box name="cluster\box 1"/>

 <group>0</group>

 <preempt>false</preempt>

 <takeover-timer-value>1000</takeover-timer-value>

 <mirror-all-entries>enabled</mirror-all-entries>

 <mirror-location-cache>enabled</mirror-location-cache>
78 Net-Net ASC Web Services SOAP/REST API Guide Version E3.6.0m5

Proprietary & Confidential

ASC API EXAMPLES
 <force-regdb-lookup>disabled</force-regdb-lookup>

 <cache-poll-interval>86400</cache-poll-interval>

 <max-poll-duration>1000</max-poll-duration>

 <max-entries-per-poll>100</max-entries-per-poll>

 </registration>

 <route-server>

 <admin>enabled</admin>

 <host-box name="cluster\box 1"/>

 <group>0</group>

 <preempt>false</preempt>

 <takeover-timer-value>1000</takeover-timer-value>

 <max-routes>automatic</max-routes>

 <client-request-sender>only-master</client-request-sender>

 <simple-updates>enabled</simple-updates>

 </route-server>

 <sampling>

 <admin>enabled</admin>

 <host-box name="cluster\box 1"/>

 <group>0</group>

 <preempt>false</preempt>

 <takeover-timer-value>1000</takeover-timer-value>

 <SamplingTarget xsi:type="data:SamplingDatabaseType">

 <admin>enabled</admin>

 <duration>7</duration>

 <status>

 <cpu-usage>

 <admin>enabled</admin>

 <interval>P0Y0M0DT0H5M0.000S</interval>

 </cpu-usage>

 </status>

 </SamplingTarget>

 </sampling>

 <jtapi>

 <admin>disabled</admin>

 <host-box name="cluster\box 1"/>

 <group>0</group>

 <preempt>false</preempt>

 <takeover-timer-value>1000</takeover-timer-value>

 </jtapi>

 <advertisement-interval>60</advertisement-interval>

 <boot-interval>30</boot-interval>

</objects>

</object>
Version E3.6.0m5 Acme Packet, Inc. Technical Publications 79

Proprietary & Confidential

ASC API EXAMPLES
setConfig
This API uses the HTTP POST Method.

The following examples display a setConfig API request from the server, configuring
a CLI banner via the cli object’s banner property. The responses received from the
client indicate the action was successful.

SOAP

Request <soapenv:Envelope
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:cal="http://www.covergence.com/ws/callouts">

 <soapenv:Header/>

 <soapenv:Body>

 <cal:setConfig mode="merge">

 <config>

 <Cluster>

 <box>

 <Box number="1">

 <cli>

 <CLI>

 <banner>The Acme Packet Application Session
Controller sure has Web Service

interfaces!</banner>

 </CLI>

 </cli>

 </Box>

 </box>

 </Cluster>

 </config>

 </cal:setConfig>

 </soapenv:Body>

</soapenv:Envelope>

Response <soapenv:Envelope
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">

 <soapenv:Body>

 <setConfigResponse xmlns="http://www.covergence.com/ws/callouts">

 <Code>success</Code>

 <Text>Success</Text>

 </setConfigResponse>

 </soapenv:Body>

</soapenv:Envelope>

REST

Request POST
http://172.44.10.59:8080/cms/config?operation=modify&output=xml&mode=
merge&_format=legacy HTTP/1.1
80 Net-Net ASC Web Services SOAP/REST API Guide Version E3.6.0m5

Proprietary & Confidential

ASC API EXAMPLES
Accept-Encoding: gzip,deflate

Content-Type: application/xml

User-Agent: Jakarta Commons-HttpClient/3.1

Host: 172.44.10.59:8080

Content-Length: 34

<SCP><admin>disabled</admin></SCP>

HTTP/1.1 200 OK

Server: Apache-Coyote/1.1

Set-Cookie: JSESSIONID_WS=3C747DF0159B1E36714096B99FE2A7EA; Path=/;
HttpOnly

Cache-Control: no-cache

Content-Type: text/xml

Transfer-Encoding: chunked

Date: Thu, 13 Oct 2011 16:50:35 GMT

Response <ExtActionResponse>

 <resultCode>0</resultCode>

 <resultStr>Success</resultStr>

</ExtActionResponse>

doAction
This API uses the HTTP GET Method.

Included are two examples for each SOAP and REST, the first example includes an
unstructured response and the second example is a structured example. These
examples display an API request from the server, performing the PING action. The
ASC is pinging host 169.55.3.5. The responses received from the client indicate the
action is a success.

SOAP

Request Unstructured:

<soapenv:Envelope
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:cal="http://www.covergence.com/ws/callouts">

 <soapenv:Header/>

 <soapenv:Body>

 <cal:doAction>

 <action>

 <PingAction>

 <host>169.55.3.5</host>

 </PingAction>

 </action>

 </cal:doAction>

 </soapenv:Body>

</soapenv:Envelope>
Version E3.6.0m5 Acme Packet, Inc. Technical Publications 81

Proprietary & Confidential

ASC API EXAMPLES
Unstructured
Response

<soapenv:Envelope
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">

 <soapenv:Body>

 <doActionResponse xmlns="http://www.covergence.com/ws/callouts">

 <Code>success</Code>

 <Text>Success</Text>

 <message>3 packets sent, 3 packets received, 0 packets lost (0%)

roundtrip minimum/average/maximum: 0.588/0.825/1.291 ms</message>

 </doActionResponse>

 </soapenv:Body>

</soapenv:Envelope>

Structured Response <env:Envelope xmlns:env="http://schemas.xmlsoap.org/soap/envelope/">

 <env:Body>

 <cov:doActionExResponse xsi:type="data:ActionResultsType"
xmlns:cov="http://www.acmepacket.com/asc/ws/mgmt"
xmlns:data="http://www.acmepacket.com/asc/ws/common"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <result-code>0</result-code>

 <message>Success!</message>

 <info>28 bytes from 169.55.3.5: 0.134 milliseconds

28 bytes from 169.55.3.5: 0.107 milliseconds

28 bytes from 169.55.3.5: 0.102 milliseconds

3 packets sent, 3 packets received, 0 packets lost (0%)

Round trip minimum/average/maximum: 0.102/0.114/0.134
milliseconds</info>

 <structure xsi:type="data:ActionResultsPingType">

 <requests-sent>3</requests-sent>

 <replies-lost>0</replies-lost>

 <replies-received>3</replies-received>

 <round-trip-minimum>102</round-trip-minimum>

 <round-trip-average>114</round-trip-average>

 <round-trip-maximum>134</round-trip-maximum>

 </structure>

 </cov:doActionExResponse>

 </env:Body>

</env:Envelope>

REST

Flat Request GET http://175.66.15.95:8080/cms?action=PingAction&Host=169.55.3.5
HTTP/1.1

Hierarchical Request GET http://175.66.15.95:8080/cms/action/ping?host=169.55.3.5 HTTP/1.1

Unstructured
Response

<ExtActionResponse>

 <Code>Success</Code>

 <Text>Success</Text>

 <message>3 packets sent, 3 packets received, 0 packets lost (0%)
roundtrip minimum/average/maximum: 0.588/0.825/1.291 ms</message>

</ExtActionResponse>
82 Net-Net ASC Web Services SOAP/REST API Guide Version E3.6.0m5

Proprietary & Confidential

ASC API EXAMPLES
Structured Response <?xml version="1.0"?>

<ExtActionResponse>

<resultCode>0</resultCode>

<resultStr>Success</resultStr>

<info>28 bytes from 169.55.3.5: 0.103 milliseconds 28 bytes from
169.55.3.5: 0.111 milliseconds 28 bytes from 169.55.3.5: 0.102
milliseconds 3 packets sent, 3 packets received, 0 packets lost (0%)
Round trip minimum/average/maximum: 0.102/0.105/0.111
milliseconds</info>

<structure>

<ActionResultsPing>

<RequestsSent>3</RequestsSent>

<RepliesLost>0</RepliesLost>

<RepliesReceived>3</RepliesReceived>

<RoundTripMinimum>102</RoundTripMinimum>

<RoundTripAverage>105</RoundTripAverage>

<RoundTripMaximum>111</RoundTripMaximum>

</ActionResultsPing>

</structure>

</ExtActionResponse>

getStatus
This ASC API uses the HTTP GET Method.

The following examples display a getStatus API request sent from the server,
requesting the status of all current processes. The responses received from the client
indicate the action was successful.

SOAP

Request POST http://172.44.10.59:8080/ws HTTP/1.1

Accept-Encoding: gzip,deflate

Content-Type: text/xml;charset=UTF-8

SOAPAction: "getStatus"

User-Agent: Jakarta Commons-HttpClient/3.1

Host: 172.44.10.59:8080

Content-Length: 324

<soapenv:Envelope
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:cal="http://www.covergence.com/ws/callouts">

 <soapenv:Header/>

 <soapenv:Body>

 <cal:getStatus>

 <status>

 <ClusterStatus />

 </status>

 </cal:getStatus>

 </soapenv:Body>

</soapenv:Envelope>

HTTP/1.1 200 OK
Version E3.6.0m5 Acme Packet, Inc. Technical Publications 83

Proprietary & Confidential

ASC API EXAMPLES
Server: Apache-Coyote/1.1

Set-Cookie: JSESSIONID_WS=35AC602AAB7ADC597C9BAFD27653FB5F; Path=/;
HttpOnly

Content-Type: text/xml

Transfer-Encoding: chunked

Date: Thu, 13 Oct 2011 17:47:12 GMT

Response <?xml version='1.0' encoding='UTF-8'?><env:Envelope

xmlns:env="http://schemas.xmlsoap.org/soap/envelope/"><env:Body><cov:
getStatusResponse

xmlns:cov="http://www.covergence.com/ws/callouts"><status><ClusterSta
tus

IPAddress="0.0.0.0"><boxID>1</boxID><bGetsConfig>false</bGetsConfig><
bGotConfig>false</bGotConfig></ClusterStatus></status></cov:getStatus
Response></env:Body></env:Envelope>

REST

Flat Request GET http://175.66.15.95:8080/cms?status=ProcessStatus HTTP/1.1

Hierarchical Request GET http://175.66.15.95:8080/cms/status/processes HTTP/1.1

Response <ExtPageList><version>E3.6.0.M5P0</version><resultCode>0</resultCode>
<resultStr>Success</resultStr><objects><ClusterStatusIPAddress="0.0.0
.0"><boxID>1</boxID><bGetsConfig>false</bGetsConfig><bGotConfig>false
</bGotConfig></ClusterStatus></objects><totalPages>1</totalPages><cur
rentPage>1</currentPage><pageSize>1</pageSize></ExtPageList>

queryStatus
This ASC API uses the HTTP GET Method.

The following examples display a queryStatus API request sent from the server for
the status of all running processes. The responses from the client server indicate the
action was successful.

SOAP

Request <soapenv:Envelope
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:mgmt="http://www.acmepacket.com/asc/ws/mgmt">

 <soapenv:Header/>

 <soapenv:Body>

 <mgmt:queryStatus>

 <!--1 or more repetitions:-->

 <status homogeneous="false">

 <!--Zero or more repetitions:-->

 <object xsi:type="ns574:ProcessStatusType"
xmlns:ns574="http://www.acmepacket.com/asc/ws/common"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" process="ws">

 <!--Optional:-->
84 Net-Net ASC Web Services SOAP/REST API Guide Version E3.6.0m5

Proprietary & Confidential

ASC API EXAMPLES

 <!--Optional:-->

 <!--Optional:-->

</object></status>

 </mgmt:queryStatus>

 </soapenv:Body>

</soapenv:Envelope>

Response <cov:queryStatusResponse
xmlns:cov="http://www.acmepacket.com/asc/ws/mgmt">

 <status>

 <object xsi:type="data:ProcessStatusType" process="WS"
xmlns:data="http://www.acmepacket.com/asc/ws/common"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <id>14817</id>

 <condition>running</condition>

 <run-level>7</run-level>

 <state>sleeping</state>

 <starts>1</starts>

 <uptime>P0Y0M4DT18H5M32.000S</uptime>

 <fds>198</fds>

 </object>

 </status>

</cov:queryStatusResponse>

REST

Flat Request http://172.30.80.24:8080/cms?status=ProcessStatus&_format=simplified&
search.process=WS

Hierarchical Request http://172.30.80.24:8080/cms/status/processes?search.process=WS&_form
at=simplified

Response <?xml version="1.0"?>

<object xsi:type="ExtPageListType"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<version>E3.6.0.M5P0</version>

<resultCode>0</resultCode>

<resultStr>Success</resultStr>

<objects xsi:type="ProcessStatusType" process="WS">

 <id>14817</id>

 <condition>running</condition>

 <run-level>7</run-level>

 <state>sleeping</state>

 <starts>1</starts>

 <uptime>P0Y0M4DT18H9M7.008S</uptime>

 <fds>195</fds>

 </objects>

<totalPages>1</totalPages>

<current-page>1</current-page>

<page-size>1</page-size>
Version E3.6.0m5 Acme Packet, Inc. Technical Publications 85

Proprietary & Confidential

ASC API EXAMPLES
</object>
86 Net-Net ASC Web Services SOAP/REST API Guide Version E3.6.0m5

Proprietary & Confidential

Appendix B Event Message Examples

This appendix provides examples of the different types of event messages that can
be sent by the ASC. The following examples are given:

• New Schema / Legacy Content

• New Schema / Custom Content

For more information on the different types of event message formatting and
content, see the Legacy and New Schemas section of Chapter 1.

New Schema / Legacy Content
The following example shows a CallConnected event message sent from an ASC
that is using the new schema and is configured to include the legacy content.

With the new simplified format, some of the names of the event attributes are
hyphenated, rather than using “camelCase”. The SOAP message use a different
namespace, and the event name is an attribute of the <object> element.

<env:Envelope xmlns:env="http://schemas.xmlsoap.org/soap/envelope/">

 <env:Body>

 <cov:processEvent
xmlns:cov="http://www.acmepacket.com/asc/ws/mgmt">

 <cov:event>

 <object xmlns:data="http://www.acmepacket.com/asc/ws/common"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:type="data:CallConnectedType">

 <handle>14287669</handle>

 <session-id>343194204702856025</session-id>

 <call-id>ZDk2MTQwOGFkNTY0ZmMyMTViYmUyNGJmN2EzNmVkNTY.</call-
id>

 <to>sip:1001@acmepacket.com</to>

 <from>sip:2001@acmepacket.com</from>

 <content>v=0

o=3cxVCE 49342965 311118690 IN IP4 192.168.220.1

s=3cxVCE Audio Call

c=IN IP4 192.168.220.1

t=0 0

m=audio 40030 RTP/AVP 0 8 101

a=rtpmap:0 PCMU/8000

a=rtpmap:8 PCMA/8000

a=rtpmap:101 telephone-event/8000

a=fmtp:101 0-15

 </content>

 </object>

 </cov:event>

 </cov:processEvent>

 </env:Body>

</env:Envelope>
Version E3.6.0m5 Acme Packet, Inc. Technical Publications 87

Proprietary & Confidential

EVENT MESSAGE EXAMPLES
New Schema / Custom Content
The following example shows a CallConnectedEventCustom event message sent
from an ASC that is using the new schema and is configured to include custom
content.

<env:Envelope xmlns:env="http://schemas.xmlsoap.org/soap/envelope/">

 <env:Body>

 <cov:processEvent
xmlns:cov="http://www.acmepacket.com/asc/ws/mgmt">

 <cov:event>

 <object xmlns:data="http://www.acmepacket.com/asc/ws/common"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:type="data:CallConnectedEventCustomType">

 <handle>14287667</handle>

 <session-id>343194196653337756</session-id>

 <call-id>CXC-103-4b6001b8-8d14010a-13c4-4eaeffe4-c6764eb-
53ce4bcc</call-id>

 <cookie>3389006614</cookie>

 <to>sip:2001@acmepacket.com</to>

 <from>sip:1001@acmepacket.com</from>

 <customField>user-agent=X-Lite 4 release 4.1 stamp
63214;</customField>

 <content>v=0

o=- 12964565220154654 1 IN IP4 192.168.220.1

s=CounterPath X-Lite 4.1

c=IN IP4 192.168.220.1

t=0 0

m=audio 51518 RTP/AVP 107 0 8 101

a=rtpmap:107 BV32/16000

a=rtpmap:101 telephone-event/8000

a=fmtp:101 0-15

a=sendrecv

 </content>

 </object>

 </cov:event>

 </cov:processEvent>

 </env:Body>

</env:Envelope>
88 Net-Net ASC Web Services SOAP/REST API Guide Version E3.6.0m5

Proprietary & Confidential

	About This Guide
	Overview
	Audience
	Who is Acme Packet?

	Technical Assistance
	Customer Questions, Comments, or Suggestions
	Contact Us

	About Net-Net OS-E Documentation

	1 About the Web Service Interface
	Introduction
	What is the ASC?
	What Are SOAP- Based Web Services?
	What is REST?
	Accessing the ASC
	Terminology
	Authentication
	Legacy and New Schema
	Legacy and Custom Event Messages

	Web Services Requests
	Get Configuration
	Set Configuration
	Get Status
	Query Status
	Execute Action

	Configuring the ASC
	Instructions and Examples

	2 Using ASC Callouts
	Web Service Callouts
	External Policy Service
	External Event Service
	Generating Event Messages
	Eventpush Service

	3 ASC Call Control Action
	Web Service Call Control
	Identifying Calls and Sessions
	Configuring To and From URIs
	Action Results
	Configuring Call Events
	Common Call Events
	Call-Control Actions
	Media Forking
	Attended Voice Insertion
	On-Demand Call Monitoring and Recording
	Rendezvous Session Support
	Manually Attaching and Detaching From an Endpoint

	Appendix A ASC API Examples
	getConfig
	SOAP
	REST

	setConfig
	SOAP
	REST

	doAction
	SOAP
	REST

	getStatus
	SOAP
	REST

	queryStatus
	SOAP
	REST

	Appendix B Event Message Examples
	New Schema / Legacy Content
	New Schema / Custom Content

