
1

Application Services Framework was introduced in PeopleTools 8.57 to provide easy
to build and maintain REST services used only by PeopleSoft digital assistant
skills. Prior to 8.59, these skills were referred to as chatbots. With PT 8.59
Application Services Framework has been enhanced to create application services
that conform to Oracle REST standards and can be used anywhere Provider REST
services are supported.

2

In this video, we will introduce the Application Services Framework enhancements
and demonstrate how to:
• Create a new Application Service.
• Administer Application Services.
• Test Application Services.
And describe the chatbot conversion when upgrading to PeopleTools 8.59.

3

With the Application Services Framework, you can create and manage Provider-only
REST Services.
The Application Services Designer simplifies the process of maintaining REST
services and enforces naming standards.
PeopleSoft-delivered Application Services including skills will be modified to meet
the Oracle REST standard and delivered when the PeopleSoft Image for your
application is available on PeopleTools 8.59.

4

With the Application Services Framework, you can create and manage Provider-only
REST Services.
The Application Services Designer simplifies the process of maintaining REST
services and enforces naming standards.
PeopleSoft-delivered Application Services including skills will be modified to meet
the Oracle REST standard and delivered when the PeopleSoft Image for your
application is available on PeopleTools 8.59.

5

We will begin by creating a new Application Service.

6

To access Application Services from the menu, select PeopleTools, Integration Broker,
Application Services.

Select Manage Application Services.

7

Prior to 8.59 Application Services were only used to create digital assistant skills,
referred to as chatbots. As a part of the PeopleTools Upgrade to 8.59, these services
are converted to the new format and will run in PeopleTools 8.59, however they will
not be compliant as REST Web Services.
We will discuss the conversion later in this video.
To create a new Application Service, select Create Application Service.

8

For this demo we will create an application service for music.
By default new Application Services are primary.
The service URLID name must be lowercase.
The default status is active.
You can enable SSL.
Optionally you can assign a service group and owner id.
We’ll create a service group – demo.
Enter a description for the service and then click Save.

When you save the Application Service, the system will verify that the service ID
meets the Oracle standards and that it is unique.

9

The save process generates the necessary IB metadata, updates the Service Name
and enables the Create Root Resource and Import Root Resource buttons.
We will create a new root resource.

10

The root resource is the URL to the web service.
Enter a root resource name and description.
Select the application package that contains the application logic to execute.

11

The application class must extend the PCBAPPLSVCDEFN:ApplicationServiceBase
application class and then implement the invokeService() method to define the
application logic.

Use the %This.ServiceAPI property to read and write parameters and other
Application Services metadata.

After you have entered the Application Package information, click Done for the root
resource.

12

After creating the root resource, select the resource to add URI Templates.

13

URI templates are strings that can be transformed into URIs after embedded
variables are substituted.

Select the Add URI Template button.

By default, the expression type is Simple String, which is used for Provider services.
Currently no base template parameters exist for this Application Service.

Select Add Base Template Parameter.

14

We will add a parameter for instrument.

The parameter name must adhere to Oracle's naming standard.
Select the data type and length if appropriate.
Select the collection checkbox if this parameter will be part of a collection of values.
Enter a description, then click Done to add the parameter.

Once defined the parameter is available to be used in all the URI templates for this
application service.

15

To form the URI, click the Add to workspace push button. This will display the
parameter in brackets in the Expression workspace section.

You can then click Append to URI to add the variable to the URI template.

Select done when the URI template is complete.

16

When the Application Service is saved, a restricted document is created defining the
primitives used for value replacement within the URI template.

The document is created in the ASF_SERVICE document package with the App
service ID.

17

Next we will add a method to the URI Template.
Click the Add Method button.

Select the REST method from the drop-down list.
For this demo, we will use GET. We want to get a list of all students for an
instrument.
Indicate if there are multiple rows of input or output. Since this is a GET, multi row
input is grayed out.
Indicate if a token is required. The default token type is oAuth2, the type can be
changed when you set up security.
For this demo, a token is not required.
Enter the description, then click Done.

18

Click the Parameters link to add an output parameter.
Output parameters can be added directly from the parameters page for the
application method or by selecting the Base Parameters menu item for the
Application Service.
For REST methods other than GET, you can add input and output parameters.

19

We will create an output parameter for student.
Click Create Output Parameter.

The parameter data type will be Compound Array as we want to return multiple
students.
Indicate if IB is required and enter a description.
Since this is a compound array, we must supply the JSON schema for the parameter.

Click Done.
The output parameter was added.

Click Done again on the Parameters page.

20

Select the Result States link to review the result states.

By default a single Result State will be created indicating success with a Status Code
of 200. You can modify the status and add additional result states.
We will change the application state for success and add a category for failure.
We will use failure code 400.
After updating the result states, click Done.

21

Base template parameters are also available from the left-panel.
Select this link to view the base template parameters and add additional parameters.
We will add a parameter for a collection of music codes.

Click Add Base Template Parameter.

Use camel case for the name.
The parameter type is Integer with a length of 5.
This will be a collection of music codes.
Enter the description and click Done.

Save the Application Service and click OK.

22

Use the Base Parameters page to define a set of parameters that can be reused for
any root resource as input or output parameters.
We will create three base parameters to use as output.
Select Add Base Parameter.

First we will create a parameter for number of players – the data type is number and
we will enter the description, then click Done.
Next we will add a parameter for instrument. The data type is string with a length of
30. Enter the information and click Done.
We also need an output parameter for music code, which will be an integer. Enter the
information and click Done.

The base parameters are now available to use as input or output for this Application
Service.
Save the Application Service and then OK on the message that the save was
successful.

23

Now we will add another URI template.
Click on the root resource band.
Select Add URI Template.

The existing base template parameters for this Application Service are listed.
For this template, we will add instrument and musicCode.
Click Add to Workspace for instrument, then Append to URI.
Add a Separator.
Add musicCode to the Workspace, then Append to URI.
We can see the URI template, click Done.

24

We will add a GET method.
Click Add Method.
This method will have multi row output to return the number of players for an
instrument and code.
We will not use a token.
Enter a description and click Done.

25

Now we will add the output parameters.
Select the Parameters link.
Expand Base parameters, note that the base parameters we added are now available.
Select Use as Output for each of these.

We will have 3 output parameters.
Click Done.

26

We will also add a request and response header for this method.
Select the Header link.
We will add a request header for language.
Enter the property name, value and description.
Select the Add row icon to add the response header for location.
The header type is response.
Enter the property name and description.
Click Done.
Click Done again on the HTTP Headers page.

27

We will add one more method for POST.
Click Add Method.

The REST Method is POST.
This method does not have multi row input or output and does not require a token.
Add the description and click Done.

Select the Parameters link to add the input parameters.
Expand the Base Parameters.
Select the Use as Input Button for instrument and musicCode.
Click Done.
Click Done again on the Root Resource page.

Save the Application Service.
Click OK on the message that the save was successful.

28

Once you have entered the URI Templates, you can use the Summary link to review
the Application Service.
This page displays all the metadata necessary to code the application class for the
Application Service.

29

The ability to create a Service Alias provides customers with the flexibility to change
the application logic in a registered Application Service, thereby avoiding
customization.

To create a service alias, search for the Application Service.
We will select Music.

Click the Create Service Alias button.

30

Enter an Alias name.
We will add this to the service group demo and add a description.
Select the root resource or resources to alias.
Click Create Alias.
Click OK on the message that the Alias was created.

The Service URL ID remains the same for the Alias and the Primary Application
Service from which it was created. The application logic is executed based on the
Application Service that is active.

31

A new application class must be created for the alias which contains the application
logic for the Application Service. If the primary Application Service is modified in a
delivered update, it will not affect the alias application service.

To add the application logic for the Alias, select the root resource, in this case band.

Enter the root package id, class path and application class for the alias.

Click Done.

32

Make any other modification necessary for the alias, such as adding additional root
resource or changing parameters. For this demo, we will save the Application Service
without any further changes.

Save the Application Service and click OK on the message.

33

Next we will look at administering Application Services.

34

From the menu select PeopleTools, Integration Broker, Application Services,
Administration.

Administration includes activating a service, setting security, deleting a service and
exporting a service. We will look at each of these.

35

To activate or inactivate a service, select Activate Application Services.

Use Search to find the Application Service, we will search by the service group. Click
Search.

An Alias Root Resource will always have priority over its associated Primary if both
are Active.

If the Alias is not active, the primary Application Service is used.

If the Alias Root Resource is not active, the primary Application Service root resource
is used.

36

For this demo we will inactivate the Alias.

Click the actions for Activate Option and select In-Active.
Notice that the Action now shows In-Active.
Select MUSIC_ALIAS and then click Save.
Click OK on the message that the save was successful.

We now see that MUSIC_ALIAS is inactive.

37

Next we will look at Application Service Security.
Return to the menu and select Application Services Security.
Use Search to select the Application Service. We will search by service group.

Use the Set Security link to set security for a specific root resource, index and
method.

Enter the permission list and access, then Save.
Click OK.
We can see that the security is only set for that row.

38

Use the Bulk Update feature to apply security for multiple root resources and rest
methods.
You can use the Select All button or individually select the Application services.
We will select the MUSIC Application Services, then click Bulk Update.

Select the Permission list or lists and access level, then save.
Click OK.
Then click the Return to Bulk Permissions link.

39

Use the Token Required tab to set the authentication option where token is required.
The default is oAuth2. You can change this to Basic Auth.

Use the SSL tab to set SSL to indicate that SSL is required for the Application Service.

40

To delete an Application service, select Delete Application Services from the menu.

When you delete an application service, all of the associated metadata is also
deleted.
Only one application service can be deleted at a time.

Click the Delete button for the Application Service ID to delete.
Click Yes to confirm the delete. Then click OK on the delete successful message.

41

Let’s search for the service group demo.
Notice that the delete button is grayed out for music.
An application service defined as primary can only be deleted if the associated Alias
has been deleted.
The delete button will also be grayed out if the Application Service has been
exported. In order to delete the Application Service, you must first delete the export
of the Application Service.

42

Next we will look at exporting an Application Service. Return to the menu and select
Export Application Service.
First we will search by service group.

Only the root resources with a status of active can be exported.

The Application Service must be exported to create the REST API web service.
Exporting the Application Service will create an Open API document describing the
Service.

To export the service, select Export in the actions. Select Yes for the service and save.
Click OK on the message that the Application Service was exported.

43

For Exported Services an OpenAPI link will be displayed.
When selected the OpenAPI document will be displayed in JSON format.

44

The JSON can be copied and loaded into any OpenAPI Editor to view the document
in a human readable form.

This is an example of the OpenAPI in Swagger.

45

The Application Service Tester utility enables you to create a URI template with
variables to test your Application Service.

The Application Service Tester provides the ability to test both standard and ChatBot
Application Services .

46

From the homepage, you can search for Test Application Services.

47

Use Search to select the application service to test.

We will test Music.

When you click on the Application Service to test, the indexes for the service are
displayed.

We will select the first index.

48

By default, the test option is standard.
A Chatbot test option is also available. Use this option to test converted Chatbots or
new skills created on the new Application Service framework.

49

Music is a standard Application Service.

Select the Populate URI Template link to enter the variables for your test.

Notice that the URI Template format is displayed. We need to enter a value for
instrument.

50

Click the instrument link.
Enter a value and click Done.

When you close the URI Template Builder window, the URL is displayed with the
variables.

51

When you close the URI Template Builder window, the URL is displayed with the
variables.

Click Execute Request to test the Application Service.

The results will be displayed.

52

To test another path, expand the Select a Path Item section.

Select the path to test.

This time we will select index 2.

53

Again we need to populate the URI. Select the Populate URI Template link.
This URL includes both instrument and a collection of music codes.
The value for instrument is populated from our previous test. Click instrument to
change the value.

First we will enter the instrument value.
We will enter a new value and click done.

54

Click on musicCode to select the collection actions.
For collections, you can append a collection item or delete the last collection item.
We want to append a collection item.

Click Done.
First we will enter a value for the first music code.
Enter a value and click Done.
Select the second music code, enter a value and click Done

55

When we close the URI Template Builder, we see the URL with the variables.
Again we can execute the request.
The response shows 2 items.

56

For this method, we created request and response headers.
Select the Request Header link to view the request header.

Select the Response Headers link to view the response header and then click Done.

57

Oracle Digital Assistant Skills created in a PeopleTools release prior to 8.59 were
referred to as chatbots, these chatbots require conversion to comply with all Oracle
REST standards. This conversion is performed as part of the upgrade to PeopleTools
8.59.

58

A chatbot conversion utility is available and can be used if necessary, to run the
conversion again.

Enter Chatbot Services Conversion in the Search bar to access the utility.

59

The conversion page displays converted ID for service URL (new) which conforms to
the Oracle REST standard.

In this example, the chatbots that were converted as part of the PeopleTools 8.59
upgrade have a converted Application service name.

60

Click the number to view the non-compliant naming items.

Close the window.

61

Any existing chatbots that were not converted during the upgrade or were deleted
can be manually converted by selecting the Application Service.

Optionally, you can update the value in the Service URL ID (new) edit box.

62

When you select Convert, the conversion page will copy the data out of the old
Application Service tables and build a new Application Service in the new framework.

Click OK on the message that the service was created.

63

This is an example of the Chatbot Conversion utility on a PeopleSoft Update Image.

PeopleSoft applications will update the delivered Digital Assistant Skills as REST
compliant Application Services. The updated Application Services will be delivered in
the PeopleSoft Update Image for the application.

Since the customer’s target database may be on a previous release, it is necessary to
map the modified Application Service to the original old Application Service.

64

Select the Mapping page on the PUM source to view the mapping.

This mapping is required for proper backporting and to generate a properly defined
chatbot discovery document.

This mapping is also used to ensure proper conversion of customer's Alias
Application Services and to remove orphaned new Application Services.

65

The BackPort page is used for Application Services that need to be backported to an
earlier PeopleTools release (8.58 or 8.57).

66

The clean-up page will list any orphaned Primary Application Services and Mapping
of Orphaned Alias Application Services.

67

In order for Oracle Digital Assistant (ODA) to make call backs into PeopleSoft, the skill
must be created in ODA.

To access the Export Chatbot page from the menu, select PeopleTools, Integration
Broker, Administration, Export Application Service.

68

Select the Export Chatbot page to generate custom components for ODA usage
from the Application Service metadata.

When you select YES in the Export Service column for the Application service, a
Chatbot Discovery document is created.

69

Click the link to view it.

70

For more information on Application Services Framework

71

You can download the Companion Slides, with images and notes from this video,
from the Oracle Learning Library.
From the PeopleSoft Information Portal, you can find information about PeopleSoft
PICASO, digital assistants, and skills.
And refer to the PeopleTools Application Service Framework documentation from the
PeopleTools Help Center.

72

73

