Table of Contents

Chapter 1: Introduction ... 13
 Overview .. 14
 Scope and Audience ... 15
 Manual Organization ... 15
 Documentation Admonishments .. 15
 Customer Care Center ... 16
 Emergency Response ... 18
 Related Publications .. 19
 Documentation Availability, Packaging, and Updates 19
 Locate Product Documentation on the Customer Support Site ... 19
 Maintenance and Administration Subsystem 20
 EAGLE 5 ISS Database Partitions .. 22

Chapter 2: Global Title Translation (GTT) Overview 25
 Introduction ... 28
 Global Title Translation Feature ... 28
 Enhanced Global Title Translation Feature 31
 Variable-length Global Title Translation Feature 35
 Advanced GT Modification Feature 37
 Intermediate GTT Load Sharing Feature 39
 ANSI/ITU SCCP Conversion Feature 39
 Support of SCCP XUDT Messages .. 42
 In-Sequence Delivery of Class 1 UDT Messages 43
 Flexible GTT Load Sharing .. 44
 Flexible Intermediate GTT Load Sharing 44
 Flexible Final GTT Load Sharing .. 48
 Origin-Based SCCP Routing .. 52
 Hex Digit Support for GTT ... 58
 Weighted GTT Load Sharing .. 60
 Transaction-Based GTT Load Sharing 67
 SCCP Loop Detection .. 72
 Flexible Linkset Optional Based Routing 73
 TCAP Opcode Based Routing .. 88
 GTT Actions ... 93
 MTP Routed Global Title Translation 107
Appendix B: MO SMS B-Party Routing Configuration Procedures ...815

Introduction ...816
Activating the MO SMS B-Party Routing Feature ..817
Configuring the GSM MO SMS B-Party Routing Options ..822
Configuring the IS-41 MO SMS B-Party Routing Options ..824
Adding a Service Selector Entry for the MO SMS B-Party Routing Feature ..826
Removing a Service Selector Entry ..828
Changing the Attributes of a Service Selector Entry for the MO SMS B-Party Routing Feature830
Turning the MO SMS B-Party Routing Feature Off ...847

Appendix C: MO SMS Prepaid Intercept on B-Party Configuration Procedures ...849
List of Figures

Figure 1: EAGLE 5 ISS Database Partitions (Legacy Control Cards) ..22
Figure 2: EAGLE 5 ISS Database Partitions (E5-Based Control Cards) ...23
Figure 3: ANSI and ITU MSU Fields affected by the Global Title Translation Feature30
Figure 4: ANSI and ITU MSU Fields affected by the Enhanced Global Title Translation Feature33
Figure 5: Transaction-Based GTT Load Sharing SCCP Options ...69
Figure 6: Message Routing using Transaction-Based GTT Load Sharing ...71
Figure 7: Message Relay Services and GTT Actions ...74
Figure 8: Action When the Subsequent Translation Search Fails ..80
Figure 9: Action When the Subsequent SELID Search Fails ...81
Figure 10: Action When the Same GTT Set Name is Referred to More Than Once82
Figure 11: Limiting the Number of Database Searches ...83
Figure 12: Limiting the Number of GTT Set Searches ...84
Figure 13: Discard GTT Action Entry ..93
Figure 14: UDTS GTT Action Entry ...94
Figure 15: TCAP Error GTT Action Entry ...95
Figure 16: Duplicate GTT Action Entry ..96
Figure 17: Forward GTT Action Entry ..97
Figure 18: Origin-Based SCCP Routing and XLAT=NONE ...100
Figure 19: Interaction between the FALLBACK Option and XLAT=NONE ..100
Figure 20: GTT Action Path Entry ...102
Figure 21: GTT Translation and GTT Action Path Table Relationship ...103
Figure 22: Example GTT Action Path Table Entry ...103
Figure 23: GTT Translation Lookup - Exact GTT Action Path Match ...104
Figure 24: GTT Translation Lookup - No GTT Action Path Match ...105
Figure 25: GTT Translation Lookup - Exact GTT Action Path Match (with Unspecified GTT Set-Value Combinations) ..106
Figure 26: Logical View of SCCP Subsystems ...119
Figure 27: SCCP Message Flow through the EAGLE 5 ISS ...120
Figure 28: Example of Using Translation Type and Global Title Translation Tables121
Figure 29: Example of Using GTT Selector, GTT Set, and GTA Tables ...124
Figure 30: EGTT Process ..127
Figure 31: An Example of Double Translation Type Mapping ..130
List of Tables

Table 1: Admonishments ...16
Table 2: Hex Digit Range Example ...58
Table 3: RC Group Weight Example ..61
Table 4: RC Group In-Service Threshold States ...62
Table 5: In-Service Threshold Example ...63
Table 6: Load Shared Group with Weighted GTT Load Sharing Example64
Table 7: Combined Dominant/Load Shared Group with Weighted GTT Load Sharing Example66
Table 8: GTT Set Type and GTT Selector Combinations ...73
Table 9: Services Supporting Fallback to GTT ..75
Table 10: Exceptions to Fallback to GTT ...75
Table 11: GTT Hierarchies ..78
Table 12: GTT Selector Key ..85
Table 13: CdPA GTT Selector Keys ..86
Table 14: CgPA GTT Selector Keys ..87
Table 15: Messages Generated by the EAGLE 5 ISS GTT Selector Keys87
Table 16: Search Order for the TCAP Opcode Based Routing Feature Translations with an ANSI Opcode ..90
Table 17: Valid and Invalid ACN Values ..91
Table 18: Search Order for the TCAP Opcode Based Routing Feature Translations with an ITU Opcode ...91
Table 19: GTT Action Events Recorded for Per-TT and System-Wide Measurements Reports ..101
Table 20: GTT Action Events Recorded for Per-Path Measurements Reports101
Table 21: GTT Selector Key for GTI=0 ...109
Table 22: Searching Order for CdPA GTI=0 GTT Selectors ..109
Table 23: Searching Order for CgPA GTI=0 GTT Selectors ..110
Table 24: SCCPMSGCNV Parameter Values ..112
Table 25: Parameter Values after UDT to XUDT or UDTS to XUDTS Conversion113
Table 26: Parameter Values after XUDT to UDT or XUDTS to UDTS Conversion114
Table 27: GTT Set and GTT Selector Advanced GTT Feature Default Parameter Values117
Table 28: Use of Aliases in GTT Selector Table ..118
Table 29: MSU Fields Modified by Global Title Translation ...122
Table 30: MSU Fields Modified by Enhanced Global Title Translation ..125
Table 31: Service Module and Feature Combinations ..138
Table 32: DSM Card Locations ..139
Table 33: ELAP-Based and EPAP-Based Features ...141
Table 34: SCCP Throughput Capacity ... 142
Table 35: Number Service Module Cards in the System 143
Table 36: Concerned Signaling Point Code Configuration Table 153
Table 37: MAP and MRN Point Code Parameter Combinations 166
Table 38: Maximum Number of True Point Code Entries 168
Table 39: Solitary Mated Application Parameter Combinations 178
Table 40: MAP and MRN Point Code Parameter Combinations 185
Table 41: Maximum Number of True Point Code Entries 187
Table 42: Dominant Mated Application Parameter Combinations for the ENT-MAP
Command .. 201
Table 43: Dominant Mated Application Parameter Combinations for the CHG-MAP
Command .. 206
Table 44: MAP and MRN Point Code Parameter Combinations 213
Table 45: Load Shared Mated Application Parameter Combinations for the ENT-MAP
Command .. 228
Table 46: Load Shared Mated Application Parameter Combinations for the CHG-MAP
Command .. 231
Table 47: MAP and MRN Point Code Parameter Combinations 239
Table 48: Combined Dominant/Load Shared Mated Application Parameter
Combinations for the ENT-MAP Command .. 253
Table 49: Combined Dominant/Load Shared Mated Application Parameter
Combinations for the CHG-MAP Command .. 256
Table 50: Subsystem Features ... 263
Table 51: Mated Application Parameters ... 275
Table 52: Mated Application Weight and In-Service Threshold Parameters 289
Table 53: MAP and MRN Point Code Parameter Combinations 300
Table 54: Parameter Combinations for the ENT-MRN Command 318
Table 55: Parameter Combinations for the CHG-MRN Command 323
Table 56: MRN and MAP Point Code Parameter Combinations 372
Table 57: GT Conversion Parameter Combinations ... 377
Table 58: GT Conversion Parameter Combinations ... 387
Table 59: Changing a Loopset Parameter Combinations .. 409
Table 60: SCCP Test Message Parameter Combinations .. 414
Table 61: NAIV/NAI Mapping ... 416
Table 62: NPV/NP Mapping .. 417
Table 63: Add GT Modification Parameter Values .. 424
Table 64: Change GT Modification Parameter Values ... 436
Table 65: RTRV-GTTSEL Parameters .. 447
Table 66: RTRV-GTTSEL GTT Set Name Parameters ... 456
Table 67: SEAS and Global Title Translation Parameter Conversion 460
Table 68: Feature Status .. 461
Table 69: Valid Parameter Combinations for the ent-gtt Routing Parameters ..463
Table 70: RTRV-GTTSEL Parameters ..465
Table 71: Add GTT Parameter Combinations ..480
Table 72: SEAS and Global Title Translation Parameter Conversion ..496
Table 73: Feature Status ...497
Table 74: Valid Parameter Combinations for the chg-gtt Routing Parameters499
Table 75: RTRV-GTTSEL Parameters ..501
Table 76: Change GTT Parameter Combinations ..514
Table 77: GTT Set Types ..520
Table 78: GTT Set Parameter Combinations - Only the EGTT feature is on521
Table 79: GTT Set Parameter Combinations - The OBSR Feature is Enabled, the FLOBR or the TOBR Features are Enabled or Turned On ...522
Table 80: SETTYPE Feature Requirements ..524
Table 81: RTRV-GTTSEL Parameters ..531
Table 82: NAIV/NAI Mapping ..540
Table 83: NPV/NP Mapping ...540
Table 84: Add GTT Selector Parameter Combinations - EGTT Only ...545
Table 85: Add GTT Selector Parameter Combinations - Origin-Based SCCP Routing Enabled Only ..547
Table 86: Add GTT Selector Parameter Combinations - Flexible Linkset Optional Based Routing Enabled and Turned On Only ..549
Table 87: Add GTT Selector Parameter Combinations - OBSR Enabled and FLOBR Enabled and Turned On Only ..551
Table 88: Add GTT Selector Parameter Combinations - FLOBR and TOBR Enabled and Turned On Only ..553
Table 89: Add GTT Selector Parameter Combinations - OBSR Enabled, and FLOBR and TOBR Enabled and Turned On Only ..555
Table 90: NAIV/NAI Mapping ..559
Table 91: NPV/NP Mapping ...559
Table 92: Remove GTT Selector Parameter Combinations - GTI=2 or GTI=4561
Table 93: Remove GTT Selector Parameter Combinations - GTI=0 ...562
Table 94: NAIV/NAI Mapping ..565
Table 95: NPV/NP Mapping ...565
Table 96: Change GTT Selector Parameter Combinations - EGTT Only ...568
Table 97: Change GTT Selector Parameter Combinations - Origin-Based SCCP Routing Enabled Only ..569
Table 98: Change GTT Selector Parameter Combinations - CDGTTSN and CGGTTSN Columns Shown in the RTRV-GTTSEL Output ..570
Table 99: GTTTSN and OPTSN Combinations ..574
Table 100: GTA Parameter Combinations - No SETTYPE Column in RTRV-GTTSET Output ...580
Table 139: Parameter Combinations for Changing Service Selectors for the MO SMS
B-Party Routing Feature...844
Table 140: CHG-PPSOPTS Parameter Combinations...857
Chapter 1

Introduction

Topics:

- Overview.....14
- Scope and Audience.....15
- Manual Organization.....15
- Documentation Admonishments.....15
- Customer Care Center.....16
- Emergency Response.....18
- Related Publications.....19
- Documentation Availability, Packaging, and Updates.....19
- Locate Product Documentation on the Customer Support Site.....19
- Maintenance and Administration Subsystem.....20
- EAGLE 5 ISS Database Partitions.....22

Chapter 1, Introduction, contains an overview of the features described in this manual, considerations when upgrading from the Global Title Translation (GTT) feature to the Enhanced Global Title Translation (EGTT) feature, general information about the database, and the organization of this manual.
Overview

The Database Administration Manual – Global Title Translation describes the procedures used to configure the EAGLE 5 ISS and its database to implement these features:

- Global Title Translation
- Enhanced Global Title Translation
- Variable-Length Global Title Translation
- Advanced GT Modification
- Intermediate GTT Load Sharing
- ANSI/ITU SCCP Conversion
- Flexible GTT Load Sharing
- Origin-Based SCCP Routing
- Hex Digit Support for GTT
- Weighted GTT Load Sharing
- Transaction-Based GTT Load Sharing
- SCCP Loop Detection
- MO SMS B-Party Routing
- MO SMS Prepaid Intercept on B-Party
- GTT Loadsharing between ITU Network Types
- GTT Loadsharing with Alternate Routing Indicator
- Support for 16 GTT Lengths in VGTT
- Flexible Linkset Optional Based Routing (FLOBR)
- TCAP Opcode Based Routing (TOBR)
- GTT Actions
- XUDT UDT Conversion

Note: Before enabling any of these features, make sure you have purchased the feature to be turned on. If you are not sure whether you have purchased the feature to be turned on, contact your Tekelec Sales Representative or Account Representative.

Note: Database administration privileges are password restricted. Only those persons with access to the command class “Database Administration” can execute the administrative functions. Refer to the Commands Manual for more information on command classes and commands allowed by those classes.

It is possible for two or more users to make changes to the same database element at any time during their database administration sessions. It is strongly recommended that only one user at a time make any changes to the database.

Throughout this manual, these terms are used to refer to either the original card or the EPM-B version or other replacement version of the card unless one of the card types is specifically required.

- E5-ENET - the original E5-ENET or the E5-ENET-B card
- E5-ATM - the original E5-ATM or the E5-ATM-B card
- E5-IPSM - the original E5-IPSM or the E5-ENET-B card that is running the IPSHC GPL
- E5-SM4G - the original E5-SM4G or the E5-SM8G-B card (not an EPM-B card)
- MCPM - the original MCPM or the E5-MCPM-B card
Scope and Audience

This manual is intended for database administration personnel or translations personnel responsible for configuring the EAGLE 5 ISS and its database to implement the Global Title Translation feature and the related features shown in the Overview section.

Manual Organization

Throughout this document, the terms database and system software are used. Database refers to all data that can be administered by the user, including shelves, cards, links, routes, global title translation tables, and gateway screening tables. System software refers to data that cannot be administered by the user, including generic program loads (GPLs).

This document is organized into the following sections.

Introduction contains an overview of the features described in this manual, considerations when upgrading from the Global Title Translation (GTT) feature to the Enhanced Global Title Translation (EGTT) feature, general information about the database, and the organization of this manual.

Global Title Translation (GTT) Overview describes the Global Title Translation feature and the procedures common to both the Global Title Translation (GTT) and Enhanced Global Title Translation (EGTT) features. This chapter also describes the features shown in the Overview section.

Global Title Translation (GTT) Configuration contains the procedures specific to configure the global title translation feature.

Enhanced Global Title Translation (EGTT) Configuration contains the procedures specific to configure the enhanced global title translation feature.

Controlled Feature Activation Procedures describes the procedures necessary to activate and deactivate features (features that require a feature access key to be activated) contained in this manual.

MO SMS B-Party Routing Configuration Procedures describes the procedures necessary to configure the EAGLE 5 ISS to perform global title translation on the MAP B-Party digits instead of the GTT called party address of the message.

MO SMS Prepaid Intercept on B-Party Configuration Procedures describes the procedures necessary to configure the EAGLE 5 ISS to redirect MO SMS messages from a prepaid B-party subscriber to a specific SMSC.

Documentation Admonishments

Admonishments are icons and text throughout this manual that alert the reader to assure personal safety, to minimize possible service interruptions, and to warn of the potential for equipment damage.
Table 1: Admonishments

<table>
<thead>
<tr>
<th>Icon</th>
<th>Admonishment</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>⏪</td>
<td>DANGER:</td>
<td>(This icon and text indicate the possibility of personal injury.)</td>
</tr>
<tr>
<td>⚠️</td>
<td>WARNING:</td>
<td>(This icon and text indicate the possibility of equipment damage.)</td>
</tr>
<tr>
<td>⚠️</td>
<td>CAUTION:</td>
<td>(This icon and text indicate the possibility of service interruption.)</td>
</tr>
</tbody>
</table>

Customer Care Center

The Tekelec Customer Care Center is your initial point of contact for all product support needs. A representative takes your call or email, creates a Customer Service Request (CSR) and directs your requests to the Tekelec Technical Assistance Center (TAC). Each CSR includes an individual tracking number. Together with TAC Engineers, the representative will help you resolve your request.

The Customer Care Center is available 24 hours a day, 7 days a week, 365 days a year, and is linked to TAC Engineers around the globe.

Tekelec TAC Engineers are available to provide solutions to your technical questions and issues 7 days a week, 24 hours a day. After a CSR is issued, the TAC Engineer determines the classification of the trouble. If a critical problem exists, emergency procedures are initiated. If the problem is not critical, normal support procedures apply. A primary Technical Engineer is assigned to work on the CSR and provide a solution to the problem. The CSR is closed when the problem is resolved.

Tekelec Technical Assistance Centers are located around the globe in the following locations:

Tekelec - Global

Email (All Regions): support@tekelec.com

- **USA and Canada**

 Phone:

 1-888-FOR-TKLC or 1-888-367-8552 (toll-free, within continental USA and Canada)

 1-919-460-2150 (outside continental USA and Canada)

 TAC Regional Support Office Hours:

 8:00 a.m. through 5:00 p.m. (GMT minus 5 hours), Monday through Friday, excluding holidays

- **Caribbean and Latin America (CALA)**

 Phone:

 USA access code +1-800-658-5454, then 1-888-FOR-TKLC or 1-888-367-8552 (toll-free)
TAC Regional Support Office Hours (except Brazil):
10:00 a.m. through 7:00 p.m. (GMT minus 6 hours), Monday through Friday, excluding holidays

- **Argentina**
 Phone:
 0-800-555-5246 (toll-free)

- **Brazil**
 Phone:
 0-800-891-4341 (toll-free)
 TAC Regional Support Office Hours:
 8:30 a.m. through 6:30 p.m. (GMT minus 3 hours), Monday through Friday, excluding holidays

- **Chile**
 Phone:
 1230-020-555-5468

- **Colombia**
 Phone:
 01-800-912-0537

- **Dominican Republic**
 Phone:
 1-888-367-8552

- **Mexico**
 Phone:
 001-888-367-8552

- **Peru**
 Phone:
 0800-53-087

- **Puerto Rico**
 Phone:
 1-888-367-8552 (1-888-FOR-TKLC)

- **Venezuela**
 Phone:
 0800-176-6497

- **Europe, Middle East, and Africa**
 Regional Office Hours:
 8:30 a.m. through 5:00 p.m. (GMT), Monday through Friday, excluding holidays

- **Signaling**
Emergency Response

In the event of a critical service situation, emergency response is offered by the Tekelec Customer Care Center 24 hours a day, 7 days a week. The emergency response provides immediate coverage, automatic escalation, and other features to ensure that the critical situation is resolved as rapidly as possible.

A critical situation is defined as a problem with the installed equipment that severely affects service, traffic, or maintenance capabilities, and requires immediate corrective action. Critical situations affect service and/or system operation resulting in one or several of these situations:

- A total system failure that results in loss of all transaction processing capability
- Significant reduction in system capacity or traffic handling capability
- Loss of the system’s ability to perform automatic system reconfiguration
- Inability to restart a processor or the system
- Corruption of system databases that requires service affecting corrective actions
- Loss of access for maintenance or recovery operations
- Loss of the system ability to provide any required critical or major trouble notification

Any other problem severely affecting service, capacity/traffic, billing, and maintenance capabilities may be defined as critical by prior discussion and agreement with the Tekelec Customer Care Center.
Related Publications

For information about additional publications that are related to this document, refer to the Related Publications document. The Related Publications document is published as a part of the Release Documentation and is also published as a separate document on the Tekelec Customer Support Site.

Documentation Availability, Packaging, and Updates

Tekelec provides documentation with each system and in accordance with contractual agreements. For General Availability (GA) releases, Tekelec publishes a complete EAGLE 5 ISS documentation set. For Limited Availability (LA) releases, Tekelec may publish a documentation subset tailored to specific feature content or hardware requirements. Documentation Bulletins announce a new or updated release.

The Tekelec EAGLE 5 ISS documentation set is released on an optical disc. This format allows for easy searches through all parts of the documentation set.

The electronic file of each manual is also available from the Tekelec Customer Support site. This site allows for 24-hour access to the most up-to-date documentation, including the latest versions of Feature Notices.

Printed documentation is available for GA releases on request only and with a lead time of six weeks. The printed documentation set includes pocket guides for commands and alarms. Pocket guides may also be ordered separately. Exceptions to printed documentation are:

- Hardware or Installation manuals are printed without the linked attachments found in the electronic version of the manuals.
- The Release Notice is available only on the Customer Support site.

Note: Customers may print a reasonable number of each manual for their own use.

Documentation is updated when significant changes are made that affect system operation. Updates resulting from Severity 1 and 2 Problem Reports (PRs) are made to existing manuals. Other changes are included in the documentation for the next scheduled release. Updates are made by re-issuing an electronic file to the customer support site. Customers with printed documentation should contact their Sales Representative for an addendum. Occasionally, changes are communicated first with a Documentation Bulletin to provide customers with an advanced notice of the issue until officially released in the documentation. Documentation Bulletins are posted on the Customer Support site and can be viewed per product and release.

Locate Product Documentation on the Customer Support Site

Access to Tekelec’s Customer Support site is restricted to current Tekelec customers only. This section describes how to log into the Tekelec Customer Support site and locate a document. Viewing the document requires Adobe Acrobat Reader, which can be downloaded at www.adobe.com.

1. Log into the Tekelec Customer Support site.
Note: If you have not registered for this new site, click the Register Here link. Have your customer number available. The response time for registration requests is 24 to 48 hours.

2. Click the Product Support tab.
3. Use the Search field to locate a document by its part number, release number, document name, or document type. The Search field accepts both full and partial entries.
4. Click a subject folder to browse through a list of related files.
5. To download a file to your location, right-click the file name and select Save Target As.

Maintenance and Administration Subsystem

The Maintenance and Administration Subsystem (MAS) is the central management point for the EAGLE 5 ISS. The MAS provides user interface, maintenance communication, peripheral services, alarm processing, system disk interface, and measurements. Management and redundancy are provided by use of two separate subsystem processors.

The MAS resides on two separate sets of Maintenance and Administration Subsystem Processor (MASP) cards and a Maintenance Disk and Alarm card (collectively referred to as control cards). The control cards are located in slots 1113 through 1118 of the EAGLE 5 ISS control shelf. The control cards can be either E5-based cards or legacy cards.

Note: In normal operation, the E5-based control cards and the legacy control cards cannot be mixed in one EAGLE 5 ISS control shelf.

Legacy Control Cards

The legacy set of EAGLE 5 ISS control cards consists of the following cards:

- Two MASP card sets; each set contains the following two cards:
 - A General Purpose Service Module II (GPSM-II) card
 - A Terminal Disk Module (TDM) card
- One Maintenance Disk and Alarm (MDAL) card

General Purpose Service Module II (GPSM-II) Card

Each GPSM-II card contains the Communications Processor and the Applications Processor and provides connections to the IMT bus. The card controls the maintenance and database administration activity and performs both application and communication processing. GPSM-II cards are located in slots 1113 and 1115 of the control shelf.

Terminal Disk Module (TDM) Card

Each TDM card provides the Terminal Processor for the 16 I/O ports, and interfaces to the Maintenance Disk and Alarm (MDAL) card. The TDM card also distributes Composite Clocks and High Speed Master clocks throughout the EAGLE 5 ISS, and distributes Shelf ID to the EAGLE 5 ISS. Each TDM card contains one fixed disk drive that is used to store primary and backup system databases, measurements, and Generic Program Loads (GPLs). The TDM cards are located in slots 1114 and 1116 of the control shelf.

Maintenance Disk and Alarm (MDAL) Card
The MDAL card processes alarm requests and provides fan control. There is only one MDAL card in a control card set. Critical, major, and minor system alarms are provided for up to 6 individual frames. In addition to the 3 system alarms, the MDAL card provides the system audible alarm. The MDAL card provides control of fans on a per-frame basis and allows for each fan relay to be set individually. The MDAL card contains a removable cartridge drive; the removable cartridge is used for installing new software; backing up the system software, the application software, and the database; and for downloading data for off-line processing. The MDAL card is located in slots 1117 and 1118 of the control shelf.

E5-based Control Cards

The E5-based set of EAGLE 5 ISS control cards consists of the following cards:

- Two Maintenance and Administration Subsystem Processor cards (E5-MASP) cards. Each dual-slot E5-MASP card is made up of the following two modules:
 - Maintenance Communication Application Processor (E5-MCAP) card
 - Terminal Disk Module (E5-TDM) card
- One Maintenance Disk and Alarm card (E5-MDAL card)

Maintenance Communication Application Processor (E5-MCAP) Card

The E5-MCAP card contains the Communications Processor and Applications Processor and provides connections to the IMT bus. The card controls the maintenance and database administration activity and performs both application and communication processing. E5-MCAP cards are located in slots 1113 and 1115 of the control shelf.

Each E5-MCAP card contains two USB ports. One latched USB port is used with removable flash media (“thumb drives”), and one flush-mounted USB port is used with a plug-in “credit card” flash drive. The removable media drive is used to install and back up customer data. The credit card drive is used for upgrade and could be used for disaster recovery.

Terminal Disk Module (E5-TDM) Card

The E5-TDM card provides the Terminal Processor for the 16 I/O ports, and interfaces to the Maintenance Disk and Alarm (E5-MDAL) card and fixed disk storage. The E5-TDM card also distributes Composite Clocks and High Speed Master clocks throughout the EAGLE 5 ISS, and distributes Shelf ID to the EAGLE 5 ISS. Each E5-TDM card contains one fixed SATA drive that is used to store primary and backup system databases, measurements, and Generic Program Loads (GPLs). E5-TDM cards are located in slots 1114 and 1116 of the control shelf.

Maintenance Disk and Alarm (E5-MDAL) Card

The E5-MDAL card processes alarm requests and provides fan control. There is only one E5-MDAL card in a control card set. Critical, major, and minor system alarms are provided for up to 6 individual frames. In addition to the 3 system alarms, the E5-MDAL card provides the system audible alarm. The E5-MDAL card provides control of fans on a per-frame basis, and allows for each fan relay to be set individually. The E5-MDAL card does not contain a removable cartridge drive; drives for removable media are located on the E5-MCAP card. The E5-MDAL card is located in slots 1117 and 1118 of the control shelf.
EAGLE 5 ISS Database Partitions

The data that the EAGLE 5 ISS uses to perform its functions are stored in two separate areas: the fixed disk drives, and the removable cartridge. The following sections describe these areas and data that is stored on them. These areas and their partitions are shown in Figure 1: EAGLE 5 ISS Database Partitions (Legacy Control Cards) and Figure 2: EAGLE 5 ISS Database Partitions (E5-Based Control Cards).

Figure 1: EAGLE 5 ISS Database Partitions (Legacy Control Cards)
There are two fixed disk drives on the EAGLE 5 ISS. The fixed disk drives contain the “master” set of data and programs for the EAGLE 5 ISS. The two fixed disk drives are located on the terminal disk modules (TDMs). Both disks have the same files. The data stored on the fixed disks is partially replicated on the various cards in the EAGLE 5 ISS. Changes made during database administration sessions are sent to the appropriate cards.

The data on the fixed disks can be viewed as four partitions.

- Current partition
• Backup partition
• Measurements partition
• Generic program loads (GPLs) partition

The data which can be administered by users is stored in two partitions on the fixed disk, a current database partition which has the tables which are changed by on-line administration, and a backup database partition which is a user-controlled copy of the current partition.

All of the on-line data administration commands affect the data in the current partition. The purpose of the backup partition is to provide the users with a means of rapidly restoring the database to a known good state if there has been a problem while changing the current partition.

A full set of GPLs is stored on the fixed disk, in the GPL partition. There is an approved GPL and a trial GPL for each type of GPL in this set and a utility GPL, which has only an approved version. Copies of these GPLs are downloaded to the EAGLE 5 ISS cards. The GPL provides each card with its functionality. For example, the ss7ansi GPL provides MTP functionality for link interface modules (LIMs).

Measurement tables are organized as a single partition on the fixed disk. These tables are used as holding areas for the measurement counts.

Removable Cartridge or Removable Media

The removable cartridge is used with the legacy MDAL control card in card location 1117. The removable media is used with the E5-MCAP card portion of the E5-MASP in card locations 1113 and 1115.

The removable cartridge or removable media is used for two purposes.

• To hold an off-line backup copy of the administered data and system GPLs
• To hold a copy of the measurement tables

Because of the size of the data stored on the fixed disk drives on the TDMs, a single removable cartridge or removable media cannot store all of the data in the database, GPL and measurements partitions.

To use a removable cartridge or removable media to hold the system data, it must be formatted for system data. To use a removable cartridge or removable media to hold measurements data, it must be formatted for measurements data. The EAGLE 5 ISS provides the user the ability to format a removable cartridge or removable media for either of these purposes. A removable cartridge or removable media can be formatted on the EAGLE 5 ISS by using the `format-disk` command. More information on the `format-disk` command can be found in the *Commands Manual*. More information on the removable cartridge or removable media drives can be found in the *Hardware Manual - EAGLE 5 ISS*.

Additional and preformatted removable cartridges or removable media are available from the Customer Care Center.
Chapter 2

Global Title Translation (GTT) Overview

Topics:
- Introduction.....28
- Global Title Translation Feature.....28
- Enhanced Global Title Translation Feature.....31
- Variable-length Global Title Translation Feature.....35
- Advanced GT Modification Feature.....37
- Intermediate GTT Load Sharing Feature.....39
- ANSI/ITU SCCP Conversion Feature.....39
- Support of SCCP XUDT Messages.....42
- In-Sequence Delivery of Class 1 UDT Messages.....43
- Flexible GTT Load Sharing.....44
- Origin-Based SCCP Routing.....52
- Hex Digit Support for GTT.....58
- Weighted GTT Load Sharing.....60
- Transaction-Based GTT Load Sharing.....67
- SCCP Loop Detection.....72
- Flexible Linkset Optional Based Routing.....73
- TCAP Opcode Based Routing.....88
- GTT Actions.....93
- MTP Routed Global Title Translation.....107
- Unique GTT Selectors.....108
- XUDT UDT Conversion Feature.....111
- Upgrading from Global Title Translation (GTT) to Enhanced Global Title Translation (EGTT).....116
- SCCP Overview.....119
- GTT Configuration.....131
- EGTT Configuration.....134
- Adding a Service Module.....137
- Removing a Service Module.....147
- Adding a Mapped SS7 Message Translation Type.....149

Chapter 2, Global Title Translation (GTT) Overview, describes the Global Title Translation feature and the procedures common to both the Global Title Translation (GTT) and Enhanced Global Title Translation (EGTT) features. This chapter also describes the features shown in the Overview section.
• Removing a Mapped SS7 Message Translation Type.....151
• Changing a Mapped SS7 Message Translation Type.....152
• Adding a Concerned Signaling Point Code.....153
• Removing a Concerned Signaling Point Code.....161
• Provisioning a Solitary Mated Application.....165
• Provisioning a Dominant Mated Application.....183
• Provisioning a Load Shared Mated Application.....211
• Provisioning a Combined Dominant/Load Shared Mated Application.....237
• Removing a Mated Application.....261
• Changing the Attributes of a Mated Application.....275
• Changing the Mated Application Type.....283
• Changing the Weight and In-Service Threshold Values of a Mated Application.....289
• Changing the MRNSET and MRN Point Code Values of MAP Entries.....299
• Provisioning MRN Entries.....304
• Removing MRN Entries.....332
• Changing the Relative Cost Values of MRN Entries.....341
• Changing MRN Entries with the ESWG Parameter.....348
• Changing the Weight and Threshold Values of MRN Entries.....357
• Changing the MAPSET, MAP Point Code, and MAP SSN Values of MRN Entries.....371
• Adding a GT Conversion Table Entry.....375
• Removing a GT Conversion Table Entry.....380
• Changing a GT Conversion Table Entry.....383
• Changing the ANSI/ITU SCCP Conversion Options.....389
• Changing SCCP Class 1 Sequencing Option.....391
• Changing the SCCP Alarm Thresholds.....393
• Changing the Transaction-Based GTT Load Sharing Options.....395
• Adding a Loopset.....398
• Removing a Loopset.....400
• Changing the Attributes of a Loopset.....404
• Configuring the ANSI to ITU-N SCCP Conversion Option.....412
• Configuring an SCCP Test Message.....413
Global Title Translation (GTT) Overview

- Adding Global Title Modification Information. 420
- Removing Global Title Modification Information. 425
- Changing Global Title Modification Information. 432
- Changing the MTP-Routed GTT Options. 437
Introduction

This chapter describes the Global Title Translation (GTT) and the Enhanced Global Title Translation (EGTT) features and these optional add-on features.

- Variable-length Global Title Translation
- Advanced GT Modification
- Intermediate GTT Load Sharing
- ANSI/ITU SCCP Conversion
- Flexible GTT Load Sharing
- Origin-Based SCCP Routing
- Hex Digit Support for GTT
- Weighted GTT Load Sharing
- Transaction-Based GTT Load Sharing
- SCCP Loop Detection
- Flexible Linkset Optional Based Routing
- TCAP Opcode Based Routing
- GTT Actions
- XUDT UDT Conversion

This chapter also contains the procedures that are common to configuring either the Global Title Translation (GTT) feature or the Enhanced Global Title Translation (EGTT) feature. To find out about the differences between Global Title Translation feature and the Enhanced Global Title Translation feature, refer to the Upgrading from Global Title Translation (GTT) to Enhanced Global Title Translation (EGTT) section.

Global Title Translation Feature

The Global Title Translation (GTT) feature is designed for the signaling connection control part (SCCP) of the SS7 protocol. The EAGLE 5 ISS uses this feature to determine to which service database to send the query message when a Message Signaling Unit (MSU) enters the EAGLE 5 ISS and more information is needed to route the MSU.

If an MSU enters the EAGLE 5 ISS and more information is needed to route the MSU, the SCCP of the SS7 protocol sends a query to a service database to obtain the information. The EAGLE 5 ISS uses the GTT feature for the SCCP to determine which service database to send the query messages to. These service databases are also used to verify calling card numbers and credit card numbers. The service databases are identified in the SS7 network by a point code and a subsystem number.

The GTT feature uses global title address (GTA) information to determine the destination of the MSU. The translation type (TT) indicates which global title translation table is used to determine the routing to a particular service database. Each global title translation table includes the point code (pc) of the node containing the service database, the subsystem number (ssn) identifying the service database on that node, and a routing indicator (ri). The routing indicator determines if further global title translations are required. GTA and TT are contained in the called party address (CDPA) field of the MSU.
The global title translation feature changes the destination point code and the origination point code in the routing label. The global title information is not altered. The routing label is changed to indicate the new destination point code retrieved from the global title translation and the origination point code is set to the EAGLE 5 ISS’s point code.

Depending on how the global title translation data is configured, the routing indicator, the subsystem number, or the translation type in the called party address may also be changed by the global title translation feature. The gray shaded areas in Figure 3: ANSI and ITU MSU Fields affected by the Global Title Translation Feature show the message fields affected by global title translation.
Figure 3: ANSI and ITU MSU Fields affected by the Global Title Translation Feature

The GTT feature allows global title translation on global title addresses of fixed length. There are three optional add-on features that enhance the functionality of the global title translation feature:
The Variable-length Global Title Translation feature (VGTT) feature allows global title translation on global title addresses of varying length. For more information on this feature, refer to the Variable-length Global Title Translation Feature section.

The Advanced GT Modification feature allows the EAGLE 5 ISS to modify other fields of an MSU in addition to the translation type when the MSU requires further global title translation and the translation type is to be replaced. For more information about this feature, refer to the Advanced GT Modification Feature section.

The ANSI/ITU SCCP Conversion Feature converts SCCP messages between the ANSI and ITU formats. For more information about this feature, refer to the ANSI/ITU SCCP Conversion Feature section.

The EAGLE 5 ISS supports:

- 269,999, 400,000, or 1,000,000 global title translations. The system default is 269,999 global title translations. This quantity can be increased to 400,000 by enabling the feature access key for part number 893-0061-01, or to 1,000,000 by enabling the feature access key for part number 893-0061-10. For more information on enabling these feature access keys, refer to the Enabling the XGTT Table Expansion Feature procedure.
- A maximum of 200,000 global title translations assigned to a translation type.
- 512 translation types, 256 translation types for ANSI MSUs, and 256 translation types for ITU MSUs.
- 1024, 2000, or 3000 remote point codes (mated applications), with up to 10 subsystems at each point code. The system default is 1024 mated applications. This quantity can be increased to 2000 by enabling the feature access key for part number 893-0077-01, or to 3000 by enabling the feature access key for part number 893-0077-10. For more information on enabling these feature access keys, refer to the Enabling the XMAP Table Expansion Feature procedure.

The GTT feature requires one of the following cards:

- Database Services Module (DSM)
- EAGLE 5-Service Module 4GB (E5-SM4G)
- E5-SM8G-B

For more information on these cards, refer to the Adding a Service Module procedure or to the Hardware Manual - EAGLE 5 ISS.

Enhanced Global Title Translation Feature

The Enhanced Global Title Translation (EGTT) feature is designed for the signaling connection control part (SCCP) of the SS7 protocol. The EAGLE 5 ISS uses this feature to determine to which service database to send the query message when a Message Signaling Unit (MSU) enters the EAGLE 5 ISS and more information is needed to route the MSU.

If an MSU enters the EAGLE 5 ISS and more information is needed to route the MSU, the SCCP of the SS7 protocol sends a query to a service database to obtain the information. The EAGLE 5 ISS uses the EGTT feature for the SCCP to determine which service database to send the query messages to. The service databases are identified in the SS7 network by a point code and a subsystem number.

The EGTT feature uses global title information (GTI) to determine the destination of the MSU. The EAGLE 5 ISS supports ANSI GTI format 2 and ITU GTI formats 2 and 4. The GTI is contained in the called party address (CDPA) field of the MSU. For ITU GTI format 4, the GTI is made up of the Numbering Plan (NP), Nature of Address Indicator (NAI), and Translation Type (TT) selectors.
The EGTT feature allows global title translation on global title addresses of fixed length. There are three optional add-on features that enhance the functionality of the enhanced global title translation feature:

• The Variable-length Global Title Translation feature (VGTT), allows global title translation on global title addresses of varying length. For more information on this feature, refer to the Variable-length Global Title Translation Features section.

• The Advanced GT Modification feature allows the EAGLE 5 ISS to modify other fields of an MSU in addition to the translation type when the MSU requires further global title translation and the translation type is to be replaced. For more information about this feature, refer to the section Advanced GT Modification Feature.

• The ANSI/ITU SCCP Conversion Feature converts SCCP messages between the ANSI and ITU formats. For more information about this feature, refer to the ANSI/ITU SCCP Conversion Feature section.

The EGTT feature requires one of the following cards:

• Database Services Module (DSM)

• EAGLE 5-Service Module 4GB (E5-SM4G) or E5-SM8G-B

For more information on these cards, refer to the Adding a Service Module procedure or to the Hardware Manual - EAGLE 5 ISS.

Inclusion of SSN in the CDPA

When the obtained translation data contains a subsystem, the translated SSN is placed in the SCCP CDPA before the message is sent to the next node. However, when no SSN is present in the CDPA, this insertion applies to ITU messages only. ANSI messages that do not contain an SSN in the CDPA will be rejected. The gray shaded areas in Figure 4: ANSI and ITU MSU Fields affected by the Enhanced Global Title Translation Feature show the message fields affected by enhanced global title translation.
Inclusion of OPC in the CGPA

When an ITU unitdata (UDT) message does not have a point code (PC) present in the CGPA, and the CGPA route indicator (RI) is set to “Route on SSN”, the EGTT feature will insert the OPC from the
Message Transfer Part (MTP) routing label into the CGPA before sending the message to the next node. The insertion does not apply to ANSI GTT processing.

Deletion of GT

The EGTT feature allows a Global Title (GT) in the CDPA to be deleted. For example, when the result of a GTT performed by the EAGLE 5 ISS is set to “Route on SSN”, there may be some end nodes that do not want to receive the GT information in the CDPA. The enhancement provides an option on a per translation basis (for both ANSI and ITU) to allow the GT to be deleted (ent-gta:gta=000:ri=ssn:ccgt=yes command). The option is not valid when the result of the GT is the EAGLE 5 ISS’s point code and local SSN.

New Commands

The EGTT feature introduces three new command sets:

- **GTSET commands**
 - ENT-GTSET – Enter GTT Set
 - CHG-GTSET – Change GTT Set
 - DLT-GTSET – Delete GTT Set
 - RTRV-GTSET – Retrieve GTT Set

- **GTSEL commands**
 - ENT-GTSEL – Enter GTT Selector
 - CHG-GTSEL – Change GTT Selector
 - DLT-GTSEL – Delete GTT Selector
 - RTRV-GTSEL – Retrieve GTT Selector

- **GTA commands**
 - ENT-GTA – Enter Global Title Address
 - CHG-GTA – Change Global Title Address
 - DLT-GTA – Delete Global Title Address
 - RTRV-GTA – Retrieve Global Title Address

GTT Set Commands

The GTT Set commands are used to provision new sets of GTTs, linking GTT Selector (-GTSET) and Global Title Address (-GTA) commands. This set of commands provides greater flexibility when provisioning the type of messages that require Global Title Translation. There are no SEAS equivalents for these commands.

GTT Selector Commands

The GTT Selector commands are used to provision new selectors for global title translation. Together with the GTT Set commands, these commands replace the Translation Type (-TT) commands, providing greater flexibility when provisioning the type of messages that require Global Title Translation. There are no SEAS equivalents for these commands.
GTA Commands

GTA commands are used to provision GTTs using the new selectors for GTT.

The EAGLE 5 ISS supports the following:

- Maximum of 950 GTT sets.
- Maximum of 200,000 global title addresses per GTT set.
- 269,999, 400,000, or 1,000,000 global title addresses. The system default is 269,999 global title addresses. This quantity can be increased to 400,000 by enabling the feature access key for part number 893-0061-01, or to 1,000,000 by enabling the feature access key for part number 893-0061-10. For more information on enabling these feature access keys, refer to the Enabling the XGTT Table Expansion Feature procedure.
- Maximum of 100,000 GTT selectors.
- 1024, 2000, or 3000 remote point codes (mated applications), with up to 10 subsystems at each point code. The system default is 1024 mated applications. This quantity can be increased to 2000 by enabling the feature access key for part number 893-0077-01, or to 3000 by enabling the feature access key for part number 893-0077-10. For more information on enabling these feature access keys, refer to the Enabling the XMAP Table Expansion Feature procedure.

Variable-length Global Title Translation Feature

A translation type or GTT set can contain global title addresses of varying length. If the Variable-length Global Title Translation (VGTT) feature is turned on with the chg-feat command, a translation type or GTT set contain up to 10 different length global title addresses. If the Support for 16 GTT Lengths in VGTT feature is enabled and turned on with the enable-ctrl-feat and chg-ctrl-feat commands, a translation type or GTT set can contain up to 16 different length global title addresses. The Support for 16 GTT Lengths in VGTT feature cannot be enabled and turned on unless the VGTT feature is turned on.

The length of the global title address is only limited by the range of values for the gta and egta parameters of either the ent-gtt and chg-gtt commands, if only the GTT feature is turned on, or the ent-gta and chg-gta commands, if the EGTT feature is turned on, and by the global title addresses already assigned to the translation type or GTT set. The length of a global title address is from 1 to 21 digits, or 1 to 21 hexadecimal digits if the Hex Digit Support for GTT feature is enabled. The ndgt parameter of the ent-tt or ent-gttsset command has no effect on the length of the global title address and cannot be used. If the ndgt parameter is specified with the ent-tt or ent-gttsset command and the VGTT feature is on or the Support for 16 GTT Lengths in VGTT feature is enabled and turned on, the ent-tt or ent-gttsset command is rejected with this message.

E4011 Cmd Rej: NDGT parameter is invalid for VGTT

As global title addresses of different lengths are assigned to a specific translation type, these lengths are displayed in the NDGT field of the rtrv-tt command output, as shown in the following example.
If the global title addresses are assigned to a GTT set, these lengths are displayed in the NDGT field of the rtrv-gttset command output, as shown in the following example.

```
rlghncxa03w 09-07-07 00:30:31 GMT EAGLE5 41.1.0
GTTSN NETDOM NDGT
lidb ansi 3, 7, 10
t800 ansi 6
si000 itu 15
imsi itu 15
abcd1234 itu 12
GTT-SET table is (5 of 2000) 1% full.
```

In the rtrv-tt output example, the ANSI translation type 1 contains three different length global title addresses; global title addresses containing 6 digits, 12 digits, and 15 digits.

In the rtrv-gttset example, the GTT set lidb contains three different length global title addresses; global title addresses containing 3 digits, 7 digits, and 10 digits.

When the VGTT feature is on, and the last global title address of a particular length is deleted for the specified translation type or GTT set, then that length is no longer supported. That length is not displayed in the NDGT field of the rtrv-tt or the rtrv-gttset output. For example, if the last 6-digit global title address is deleted from ANSI translation type 1 (from the previous example), the NDGT field of the rtrv-tt command shows only the numbers 12 and 15 in the NDGT field indicating that ANSI translation type 1 contains only 12- and 15-digit global title addresses. If the last 7-digit global title address is deleted from GTT set lidb (from the previous example), the NDGT field of the rtrv-gttset command shows only the numbers three and 10 in the NDGT field indicating that GTT set lidb contains only 3- and 10-digit global title addresses.

If the translation type has the maximum number of different length global title addresses assigned to it, and another global title address is specified for the translation type, the length of the global title address being added to the translation type must be the same as one of the lengths already assigned to the translation type. If the length of the global title address is not one of the lengths shown in the rtrv-tt output, the ent-gtt command is rejected with this message.

E4007 Cmd Rej: Exceeding max GTA Lengths supported per TT

If the GTT set has the maximum number of different length global title addresses assigned to it, and another global title address is specified for the GTT set, the length of the global title address being added to the GTT set must be the same as one of the lengths already assigned to the GTT set. If the length of the global title address is not one of the lengths shown in the rtrv-gttset output, the ent-gta command is rejected with this message.

E4008 Cmd Rej: Exceeding max GTA Lengths supported per GTTSET
If the translation type or GTT set has less than the maximum number of different length global title addresses assigned to it, and another global title address is specified for the translation type or GTT set, the length of the global title address can be from one to 21 digits and does not have to match the length of the other global title addresses assigned to the translation type or the GTT set.

If the VGTT feature is off, shown the entry \texttt{VGTT = off} in the \texttt{rtrv-feat} output, the global title address length must be equal to the number of digits specified by the given translation type or GTT set. The length of the global title address can be verified with the \texttt{rtrv-tt} or \texttt{rtrv-gttset} command.

The VGTT and the Support for 16 GTT Lengths in VGTT features require that a service module is installed in the EAGLE 5 ISS. \textit{Adding a Service Module} shows the type of service modules that can be used depending on which features are on or enabled.

Advanced GT Modification Feature

This feature allows the EAGLE 5 ISS to modify other fields of an MSU in addition to the translation type, destination point code, called party point code, called party SSN, routing indicator, numbering plan, and nature of address indicator when the MSU requires further global title translation and the translation type is to be replaced.

The numbering plan, nature of address indicator, and the prefix or suffix digits, in the called party address or calling party address portion of outbound MSUs can be changed with this feature to make the MSU more compatible with the network that the MSU is being sent to and to ensure that the MSU is routed correctly. These changes are made after the global title translation process, but before the MSU is routed to its destination.

This feature requires that service modules are installed in the EAGLE 5 ISS. \textit{Adding a Service Module} shows the type of service modules that can be used depending on which features are on or enabled.

For the EAGLE 5 ISS to be able to make these changes to the called party address or calling party address portion of the MSU, the one of the Advanced GT Modification features shown in the following list must be enabled with the \texttt{enable-ctrl-feat} command.

- **893021801 - AMGTT** - provides GT modification to both the called party address and the calling party address of SCCP messages. This part number can be specified only if no Advanced GT Modification feature is currently enabled.

- **893021802 - AMGTT CdPA Only** - provides GT modification to the called party address of SCCP messages only. This feature and its part number is shown in the \texttt{rtrv-ctrl-feat} output only if the MGTT feature from previous releases was turned on when the Eagle 5 ISS was upgraded to the release containing the Advanced GT Modification feature. This part number cannot be specified with the \texttt{enable-ctrl-feat} command.

- **893021803 - AMGTT CgPA Upgrade** - provides GT modification to the calling party address and called party address of SCCP messages. This part number can be specified only if the AMGTT CdPA Only feature (part number 893021802) is enabled.

Perform the \textit{Activating the Advanced GT Modification Feature} procedure to enable the Advanced GT Modification feature.

After the Advanced GT Modification feature has been enabled, the parameters shown in this list are used to modify the calling party address or called party address of the SCCP message.

- **gtmodid** – The name of the GT modification identifier
• **ntt** – The new translation type. None of the Advanced GT Modification features have to be enabled to create an entry in the GT modification table that contains only the `ntt` parameter value.
• **nnp** – The new numbering plan
• **nnai** – The new nature of address indicator
• **npdd** – The number of digits to be deleted from the beginning of the Global Title Address digits (the prefix digits)
• **npds** – The digits that are being substituted for the prefix digits
• **nsdd** – The number of digits to be deleted from the end of the Global Title Address digits (the suffix digits)
• **nsds** – The digits that are being substituted for the suffix digits
• **cgpassn** – The calling party subsystem number
• **gt0fill** – Specifies whether the final 0 of the global title address is considered a valid digit in the global title address or as a filler during the GT modification process when going from GTI=2 to GTI=4. If the final 0 is considered as a filler, then it is ignored during the GT modification process. This parameter has two values, on or off. If the `gt0fill` value is on, the final 0 in the global title address is a filler. If the `gt0fill` value is off, the final 0 in the global title address is a valid digit.
• **ngti** – The new global title indicator value
• **prec** – Specifies whether the prefix or suffix digits take precedence when modifying the received global title address. This parameter can be specified only when the `npdd`/`npds` and the `nsdd`/`nsds` parameters are specified. This parameter has two values, pfx and sfx. When the `prec` value is pfx, the prefix digits (npdd/npds values) are processed before the suffix digits (nsdd/nsds) values. When the `prec` value is sfx, the suffix digits (nsdd/nsds values) are processed before the prefix digits (npdd/npds) values
• **cggtmod** - The calling party GT modification indicator. This parameter specifies whether or not calling party global title modification is required. This parameter can be specified only if the AMGTT or AMGTT CgPA Upgrade feature is enabled. The `cggtmod` parameter can also be specified for when provisioning a linkset to indicate that calling party global title modification is required for SCCP traffic on the linkset. This parameter is configured with the `ent-gtt`, `chg-gtt`, `ent-gta`, or `chg-gta` commands.

All the parameters, except the `cggtmod` parameter, are configured as an entry in the the GT modification table using either the `ent-gtmod` or `chg-gtmod` commands. Each entry in the GT modification table is identified by the `gtmodid` parameter. The EAGLE 5 ISS can contain 100,000 GT modification identifier entries. Each entry is referenced in the GTT, GTA, and GTT actions tables. Perform one of these procedures to configure these parameters.

- *Adding Global Title Modification Information*
- *Changing Global Title Modification Information*

To configure the `cggtmod` parameter, perform one of these procedures.

- *Adding a Global Title Translation*
- *Changing a Global Title Translation*
- *Adding Global Title Address Information*
- *Changing Global Title Address Information.*
Intermediate GTT Load Sharing Feature

This feature allows GTT traffic between multiple nodes to be load shared when intermediate global title translation (routing indicator in the message is GT) is being performed. A mated relay node (MRN) group is provisioned in the database to identify the nodes that the traffic is load shared with, and the type of routing, either dominant, load sharing, or combined dominant/load sharing. This load sharing is performed after intermediate global title translation is performed on the message. For more information, refer to Provisioning MRN Entries.

ANSI/ITU SCCP Conversion Feature

Since some ANSI and ITU SCCP parameters are incompatible in format or coding, this feature provides a method for the EAGLE 5 ISS to convert these SCCP parameters in UDT, UDTS, XUDT, and XUDTS messages.

A specialized SCCP/TCAP conversion, introduced in EAGLE 5 ISS release 22.2 and used only in the Korean market, does not support this feature. The ANSI/ITU SCCP Conversion feature cannot be used with the EAGLE 5 ISS release 22.2 SCCP and TCAP Conversion features.

The ANSI/ITU SCCP Conversion feature provides a generic capability to correctly format and decode/encode these SCCP messages:
- UDT, UDTS, XUDT, and XUDTS messages - includes SCMG messages, which are a specialized form of UDT messages
- MTP routed SCCP messages
- GT routed SCCP messages.

This feature also provides SCCP management (SCMG) across network type boundaries. For example, concerned signaling point codes for a mated application may be of a different network type than the primary point code of the mated application.

Advanced GT Modification

The Advanced GT Modification feature allows the deletion or substitution of digits from the beginning (prefix digit modification) or the end (suffix digit modification) of the global title address in either the called party address or the calling party address of the MSU. Prefix and suffix digit modifications are performed based on the prefix and suffix digit modification parameter values that are contained in the GT modification identifier that is assigned to the GTT, GTA, or GTT Actions entry. If the Advanced GT Modification feature is enabled, each GTT, GTA, or GTT Actions entry can specify either prefix digit modification, suffix digit modification, or both prefix and suffix digit modification. Refer to the Advanced GT Modification Feature section for more information on the Advanced GT Modification feature.

ANSI/ITU SCCP Conversion Feature Configuration

This feature requires that service modules are present in the EAGLE 5 ISS. Adding a Service Module shows the type of service modules that can be used depending on which features are on or enabled.
The ANSI/ITU SCCP Conversion feature must be enabled with the `enable-ctrl-feat` command, and turned on with the `chg-ctrl-feat` command. Perform the Activating the ANSI/ITU SCCP Conversion Feature procedure to enable and turn on the ANSI/ITU SCCP Conversion feature.

The concerned signaling point code (CSPC) group configuration has been changed to allow CSPC groups to contain ANSI (pc/pca), ITU-I or ITU-I spare (pci), and either 14-bit ITU-N or 14-bit ITU-N spare (pcn), or 24-bit ITU-N (pcn24) point codes. A CSPC group cannot contain both 14-bit and 24-bit ITU-N point codes. Concerned signaling point code groups are configured in the Adding a Concerned Signaling Point Code procedure.

The format of the point codes in the CSPC group assigned to a mated application, specified with the `grp` parameter, must be the same as the primary point code specified with the `ent-map` or `chg-map` commands only if the ANSI/ITU SCCP Conversion feature is not enabled. If the ANSI/ITU SCCP Conversion feature is enabled, the CSPC group may contain a mixture of point code types, and the network type of the CSPC group can be different from the network type of the primary point code of the mated application. Mated applications are configured in these procedures.

- Provisioning a Solitary Mated Application
- Provisioning a Dominant Mated Application
- Provisioning a Load Shared Mated Application
- Provisioning a Combined Dominant/Load Shared Mated Application
- Changing the Attributes of a Mated Application.

The conversion of ANSI and ITU SCCP messages is performed according to the options in the STP Options table, and by the entries contained in the default GT conversion table.

There are five options in the STP Options table that control how this feature works.

- `:cnvcgda` – The CGPA point code in ANSI SCCP messages are discarded if the point code or alias point code of the destination network type is not defined.
- `:cnvcgdi` – The CGPA point code in ITU-I SCCP messages are discarded if the point code or alias point code of the destination network type is not defined.
- `:cnvcgdn` – The CGPA point code in ITU-N SCCP messages are discarded if the point code or alias point code of the destination network type is not defined.
- `:cnvcgdn24` – The CGPA point code in ITU-N24 SCCP messages are discarded if the point code or alias point code of the destination network type is not defined.
- `:gtcnvdflt` – SCCP messages are routed using system defaults when an appropriate entry is not found in the Default GT Conversion Table.

The values for these options are either `yes` or `no`. If these options are set to `yes`, the actions defined by these options will be performed. These options are configured using the `chg-stpopts` command in the Changing the ANSI/ITU SCCP Conversion Options procedure.

Note: If the value of the `cnvcgda`, `cnvcgdi`, or `cnvcgdn` options is `no`, and the calling party address of the MSU cannot be converted when the MSU is processed, then the MSU is discarded.

The Default GT Conversion Table contains the following items:

- The direction that the conversion takes place: ANSI to ITU, ITU to ANSI, or both directions.
- The global title indicator types being converted.
 - ANSI GTI type 2 to ITU GTI type 2
 - ANSI GTI type 2 to ITU GTI type 4
• The ANSI translation type
• The ITU translation type
• The numbering plan
• The nature of address indicator

The Default GT Conversion Table also provides for the provisioning of prefix or suffix address digit modification (refer to the Advanced GT Modification section. The Default GT Conversion Table is configured using either the `ent-gtcnv` command to add new entries to the Default GT Conversion Table (refer to the Adding a GT Conversion Table Entry procedure), or the `chg-gtcnv` command to change existing entries in the Default GT Conversion Table (refer to the Changing a GT Conversion Table Entry procedure).

The called party/calling party address indicator bit that is used when performing ANSI to ITU-N SCCP conversion is configured with the `chg-sccpopts` command. Perform the Configuring the ANSI to ITU-N SCCP Conversion Option procedure to select which called party/calling party address indicator bit will be used.

Note: The national indicator bit /international indicator bit for ANSI network or the ITU Reserved for National Use field (bit 8) within the calling party address/called party address indicator in the MSU may be modified as soon as the ANSI/ITU SCCP Conversion is enabled and turned on, depending on the destination network of the MSU. When an ANSI message is converted to an ITU message, the ITU Reserved for National Use field (bit 8) is set to the network associated with the post conversion DPC for MTP routed messages and the translated DPC for GT routed messages.

• If the DPC of the message is an ITU-N point code, then the ITU Reserved for National Use field is set to 1.
• If the DPC of the message is an ITU-I point code, then the ITU Reserved for National Use field is set to 0.

When an ITU message is converted to an ANSI message, the ANSI National/International Indicator (bit 8) is set to 1 (National).

If you wish to set the value of the Reserved for National Use bit (bit 8) in the calling party address/called party address indicator in the MSU after the ANSI/ITU SCCP Conversion is enabled and turned on, perform the Configuring the ANSI to ITU-N SCCP Conversion Option procedure.

Without the ANSI/ITU SCCP Conversion feature enabled, the domain of a GTT set must be the same as the domain of the GTI value of the GTT selectors. For example, an ANSI GTT set can be assigned to only ANSI GTT selectors and an ITU GTT set can be assigned to only ITU GTT selectors. When the ANSI/ITU SCCP Conversion feature is enabled a GTT set to be assigned to GTT selectors in both domains. This accomplished by creating a GTT set with the network domain of CROSS, a cross-domain GTT set. This allows the provisioning a single cross-domain GTT set with one set of GTA data and assign the cross-domain GTT set to multiple GTT selectors, regardless of their domain. The result is a GTT set that contains GTA data that can be used to translate both ANSI and ITU messages. Provisioning of the cross-domain GTT set is performed with the `ent-gttset` command. The EAGLE 5 ISS can contain more than one cross-domain GTT set. If the domain of the GTT set is either ANSI or ITU, the domain of a GTT set must be the same as the domain of the GTT selector. The domain of the GTT set can be changed from an ANSI GTT set or ITU GTT set to a cross-domain GTT set using the `chg-gttset` command. The EGT feature must be turned on and the ANSI/ITU SCCP Conversion feature must be enabled to provision a cross-domain GTT set.
Alias Point Codes

For MTP routed SCCP messages, the message’s DPC, OPC and CDPA must have alias point codes. The message’s DPC, which is an alias, is converted to its true point code. The OPC is converted to its alias of the same network type as the DPC’s true point code. If the message contains a CGPA PC, either it must have an alias of the same network type as the new DPC, or the Discard CGPA PC option for the original network type must be on.

For SCCP messages which receive GTT by the EAGLE 5 ISS, the message’s DPC, OPC and CDPA are not converted and thus may not need alias point codes. The message’s DPC is a result of GTT translation does not need conversion. The OPC is the EAGLE 5 ISS’s OPC of the same network type as the DPC’s network. If the message contains a CGPA PC, either it must have an alias of the same network type as the new DPC, or the Discard CGPA PC option for the original network type must be on.

For through-switched SCCP management messages, the message’s DPC, OPC, and affected point code must have an alias of the destination network type.

For EAGLE 5 ISS originated SCCP messages, a mated application’s PC(s) must have aliases of the same network types as the concerned point code group’s PC(s).

Alias point codes are configured using the “Adding a Destination Point Code” procedure, for adding a new destination point code with an alias point code, or the “Changing a Destination Point Code” procedure, for changing the alias point code value for an existing destination point code. The “Adding a Destination Point Code” and “Changing a Destination Point Code” procedures are found in Chapter 2, Configuring Destination Tables in the Database Administration Manual - SS7.

Support of SCCP XUDT Messages

The Support of SCCP XUDT Messages feature allows the global title translation feature and the following SCCP services to process XUDT messages.

- **G-FLEX** – supported for segmented or non-segmented XUDT messages. G-Flex Map Layer Routing only supports non-segmented XUDT messages.
- **INP** – Message Relay service supports segmented and non-segmented XUDT messages. Call related query service (INP-QS) only supports non-segmented XUDT messages.
- **G-PORT MNP** - XUDT response generation (that is, XUDT SRI_ack), when an XUDT SRI message is received, is supported if the SRI is not segmented. G-PORT treats any segmented message (SRI or non-SRI) as a non-SRI message and message relay is performed on the message. G-PORT Message Relay is supported for all non-SRI messages, including segmented and non-segmented, Class 0 and Class 1.
- **A-PORT MNP** - XUDT response generation, when an XUDT LocationRequest message is received, is supported if the XUDT message is not segmented. A-PORT treats any segmented message as a non-LocationRequest message and message relay is performed on the message. A-PORT Message Relay is supported for all non-LocationRequest messages, including segmented and non-segmented, Class 0 and Class 1.
- **EAGLE 5 ISS’s IS-41 to GSM Migration** - XUDT response generation, when an XUDT / GSM SRI, XUDT GSM SRI_for_SM, XUDT IS-41 LocationRequest, and XUDT IS-41 SMSRequest is received is supported if the message received by the EAGLE 5 ISS is not segmented. If the messages are segmented, the EAGLE 5 ISS performs message relay.
- **GSM MAP Screening/Enhanced GSM MAP Screening** - GSM MAP Screening (GMS) and Enhanced GSM MAP Screening (EGMS) supports screening on non-segmented XUDT messages, but does
not support screening on segmented XUDT messages. If a segmented XUDT message is received on a linkset which has GMS or EGMS activated, GMS/EGMS is bypassed for that message, even if the parameters in the message match the provisioned screening rules. The SCCP processing of the message continues.

- Intermediate GTT Loadsharing - Class 0 and Class 1 SCCP XUDT messages are supported.
- Prepaid SMS Intercept (PPSMS) supports only non-segmented XUDT messages.
- MNP Check for MO SMS (MNPSMS) supports only non-segmented XUDT messages.

The following features do not support this feature:

- North American Local Number Portability (LNP)
- ANSI-ITU SCCP Conversion
- GSM Equipment Identity Register (EIR)

XUDT messages can be screened by Gateway Screening and all gateway screening stop actions can be applied to XUDT messages.

In-Sequence Delivery of Class 1 UDT Messages

The In-Sequence Delivery of Class 1 UDT Messages provides for the sequencing for both UDT and XUDT Class 1 MSUs. All UDT/XUDT Class 1 messages are routed out of the EAGLE 5 ISS in the same order that they were received by the EAGLE 5 ISS. To enable the sequencing of UDT/XUDT Class 1 messages, the class1seq parameter value of the chg-sccpopts command is set to on.

When the class1seq parameter value is on, load sharing of these messages is performed in the dominant mode, overriding the load sharing configuration in the MAP and MRN tables. Delivering the UDT/XUDT Class 1 ITU messages in sequence is guaranteed only if the randsls parameter value of the chg-stpopts command is either off or class0. If you wish to guarantee delivering these messages in sequence, the class1seq=on and the randsls=all parameters should not be used together in the EAGLE 5 ISS. The value of the randsls parameter is shown in the rtrv-stpopts command.

When the class1seq parameter value is off, load sharing of the UDT/XUDT Class 1 messages is performed using the load sharing configuration in the MAP and MRN tables. The delivery of the UDT/XUDT Class 1 messages in sequence is not guaranteed.

CAUTION: If the randsls parameter value of the chg-stpopts command is all, thus activating the Random SLS feature for ITU Class 1 SCCP messages, the UDT/XUDT Class 1 messages are not delivered in sequence. To ensure that Class 1 UDT/XUDT messages are delivered in sequence, the randsls parameter value should be set to either off or class0.

CAUTION: However, if the randsls parameter value of the chg-stpopts command is all, Class 1 UDT/XUDT messages are load shared across equal cost destinations by the Weighted SCP Load Balancing and Intermediate Global Title Load Sharing (IGT TLS) features. If the randsls parameter value of the chg-stpopts command is either off or class0, load sharing for all Class 1 SCCP messages is supported only in the dominant mode.

If the messages are not in the correct sequence when they arrive at the EAGLE 5 ISS, they are not delivered to the next node in the correct sequence. The EAGLE 5 ISS does not perform message
re-sequencing for messages that are received out of sequence, because the EAGLE 5 ISS is a transit node. Message re-sequencing is the responsibility of the originating and destination nodes.

GT-routed Class 0 UDT/XUDT messages are not sequenced, therefore, the EAGLE 5 ISS does not guarantee routing these messages out of the EAGLE 5 ISS in the same order that they were received.

Flexible GTT Load Sharing

Flexible GTT Load Sharing (FGTTLS) provides more routing diversity for GTT traffic. There are two parts to Flexible GTT Load Sharing: Flexible Intermediate GTT Load Sharing applied to GTT traffic requiring intermediate global title translation, and Flexible Final GTT Load Sharing applied to traffic requiring final global title translation. See the following sections for details:

- Flexible Intermediate GTT Load Sharing
- Flexible Final GTT Load Sharing

Flexible Intermediate GTT Load Sharing

Flexible Intermediate GTT Load Sharing provides more flexible GTT load sharing arrangements for GTT traffic requiring intermediate global title translation (the routing indicator in the message is GT) than the load sharing arrangements provided by the Intermediate GTT Load Sharing feature. For the EAGLE 5 ISS to perform Flexible Intermediate GTT Load Sharing, the Flexible GTT Load Sharing and Intermediate GTT Load Sharing features must be enabled and turned on.

Intermediate Load Sharing Feature Only

With the Intermediate GTT Load Sharing feature enabled and turned on and the Flexible GTT Load Sharing feature not enabled, the EAGLE 5 ISS load shares post-GTT destinations when intermediate global title translation is being performed through the use of the MRN table. The destination point codes in the MRN table can appear in the MRN table only once. The MRN table contains groups of point codes with a maximum of 32 point codes in each group. This arrangement allows only one set of relationships to be defined between a given point code and any other point codes in the MRN group. All global title addresses in the GTT table that translate to a point code in the given MRN group will have the same set of load sharing rules applied.

For example, the following point codes and relative cost values are provisioned in the MRN table.

<table>
<thead>
<tr>
<th>PC</th>
<th>RC</th>
</tr>
</thead>
<tbody>
<tr>
<td>005-005-005</td>
<td>10</td>
</tr>
<tr>
<td>006-001-001</td>
<td>10</td>
</tr>
<tr>
<td>006-001-002</td>
<td>10</td>
</tr>
<tr>
<td>006-001-003</td>
<td>10</td>
</tr>
<tr>
<td>006-001-004</td>
<td>10</td>
</tr>
<tr>
<td>006-001-005</td>
<td>10</td>
</tr>
<tr>
<td>006-001-006</td>
<td>10</td>
</tr>
<tr>
<td>006-001-007</td>
<td>10</td>
</tr>
</tbody>
</table>

When the point code in the intermediate global title translation is translated to 005-005-005, all traffic routed using the global title addresses in the global title translations containing this point code are load shared equally, no matter what the global title address is.
Addition of Flexible GTT Load Sharing Feature

When the Intermediate GTT Load Sharing and the Flexible GTT Load Sharing features are enabled and turned on (thus allowing Flexible Intermediate GTT Load Sharing to be performed), the intermediate GTT load sharing arrangements are determined by the following:

- The MRN set assigned to the global title translation
- The translated point code in the message assigned to the global title translation
- The global title address in the message assigned to the global title translation

When a global title address in a global title translation is translated to a point code, the MRN set assigned to the global title translation and containing the translated point code determines how load sharing is applied to the traffic for this global title translation.

An MRN set is a group of point codes in the MRN table defining the GTT load sharing rules that are applied to a global title translation. The method of load sharing is determined by the relative cost (RC) value assigned to each point code in the MRN set. There are three types of load sharing that can be performed:

- Dominant
- Load shared
- Combined dominant/load shared

Dominant

All the point codes in a dominant MRN set have different relative cost values. The translated point code in the message is the preferred point code that the message is routed on. The relative cost value assigned to the preferred point code does not have to be the lowest value in the MRN set. All traffic is routed to the preferred point code, if it is available. If the preferred point code becomes unavailable, the traffic is routed to next alternate point code. When the preferred point code becomes available again, the traffic is then routed back to the preferred point code.

The following shows sample output from the `rtrv-mrn` command for a dominant map set.

<table>
<thead>
<tr>
<th>MRNSET</th>
<th>PC</th>
<th>RC</th>
</tr>
</thead>
<tbody>
<tr>
<td>DFLT</td>
<td>225-200-167</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>225-200-163</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>225-200-165</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>225-200-164</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>225-200-160</td>
<td>50</td>
</tr>
</tbody>
</table>

For example, if the preferred point code is 225-200-164 (relative cost 40) and it becomes unavailable, the traffic is routed to 225-200-160 (relative cost 50). If that point code is unavailable, the next point code that is attempted is at the top of the list, 225-200-167 (relative cost 10).

Load shared

All the point codes in a load shared MRN set have the same relative cost value. Traffic is shared equally between the point codes in this type of MRN set.

The following shows sample output from the `rtrv-mrn` command for a load shared map set.

<table>
<thead>
<tr>
<th>MRNSET</th>
<th>PCN</th>
<th>RC</th>
</tr>
</thead>
<tbody>
<tr>
<td>DFLT</td>
<td>15608</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>15728</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>15720</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>15712</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>15704</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>15696</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>15688</td>
<td>10</td>
</tr>
</tbody>
</table>
Combined dominant/load shared

A combined dominant/load shared MRN set is a combination of the dominant and load sharing MRN sets. At least two of the point codes in the MRN set have the same relative cost value, and at least one other point code has a different relative cost. The traffic is shared equally among the point codes with the same relative cost values. If the point codes with the same relative cost as the preferred point code all become unavailable, the traffic is routed to the next set of point codes in the MRN set and shared equally between them.

The following shows sample output from the `rtrv-mrn` command for a combined dominant/load shared map set.

<table>
<thead>
<tr>
<th>MRNSET</th>
<th>PC</th>
<th>RC</th>
</tr>
</thead>
<tbody>
<tr>
<td>DFLT</td>
<td>225-200-175</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>225-200-174</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>225-200-171</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>225-200-173</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>225-200-170</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>225-200-172</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>225-200-169</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>225-200-168</td>
<td>50</td>
</tr>
</tbody>
</table>

In this example, if the preferred point code is 225-200-173, the traffic is shared between the two point codes with a relative cost of 30. If those become unavailable, the traffic is routed to the point codes with a relative cost of 40. If those become unavailable, the traffic gets routed to the point code with a relative cost of 50. If that point code becomes unavailable, the traffic is routed back of the top of the list to the primary point code that has a relative cost of 10.

Point Code Assigned to Multiple MRN Sets

With the Flexible GTT Load Sharing feature enabled, the same point code can be assigned to multiple MRN sets. The relative cost value of this point code in each MRN set can be different.

In the following example, the point code 002-002-002 is assigned to three MRN sets.

<table>
<thead>
<tr>
<th>MRNSET</th>
<th>PC</th>
<th>RC</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>225-200-999</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>002-002-002</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>225-200-174</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>225-200-171</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>225-200-173</td>
<td>40</td>
</tr>
<tr>
<td>MRNSET</td>
<td>PC</td>
<td>RC</td>
</tr>
<tr>
<td>2</td>
<td>225-200-173</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>225-200-174</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>002-002-002</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>225-200-170</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>225-200-172</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>225-200-169</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>225-200-168</td>
<td>20</td>
</tr>
<tr>
<td>MRNSET</td>
<td>PC</td>
<td>RC</td>
</tr>
<tr>
<td>3</td>
<td>004-004-004</td>
<td>20</td>
</tr>
</tbody>
</table>
In MRN set 1, point code 002-002-002 is in a dominant MRN set and has a relative cost value of 10. In MRN set 2, point code 002-002-002 is one of eight point codes in a load shared MRN set, each with a relative cost value of 20. In MRN set 3, point code 002-002-002 is assigned the relative cost value of 30 in a combined dominant/load shared MRN set whose primary (first) point code is 004-004-004 with a relative cost value of 20.

MRN set 1 is assigned to a global title translation containing the global title address of 9195551212. When the point code in this intermediate global title translation is translated to 002-002-002, point code 002-002-002 handles all the traffic for this intermediate global title translation until this point code becomes unavailable. When point code 002-002-002 becomes unavailable, the next point code (225-200-174) in this dominant MRN set handles the traffic until this point code becomes unavailable, or until point code 002-002-002 becomes available again.

MRN set 2 is assigned to a global title translation containing the global title address of 8285551212. When the point code in this intermediate global title translation is translated to 002-002-002, the traffic for this intermediate global title translation is shared equally among all members of the MRN set.

MRN set 3 is assigned to a global title translation containing the global title address of 3365551212. When the point code in this intermediate global title translation is translated to 002-002-002, the traffic for this intermediate global title translation is shared equally among all members of the MRN set with the relative cost value of 30, including 002-002-002. When all of these point codes become unavailable, the traffic is shared equally among all the point codes with the relative cost value of 40. If these point codes become unavailable, the traffic is shared equally among the point codes with the relative cost of 20.

By allowing a point code to be assigned to multiple MRN sets, and by assigning an MRN set to a specific global title address, different load sharing arrangements can be made based on the global title address of the global title translation and the translated point code.

The same MRN set can be assigned to multiple global title translations.

For the EAGLE 5 ISS to perform Flexible Intermediate GTT Load Sharing, the Flexible GTT Load Sharing feature must be enabled with the enable-ctrl-feat command, and turned on with the chg-ctrl-feat command. Perform the Activating the Flexible GTT Load Sharing Feature procedure to enable and turn on the Flexible GTT Load Sharing feature. The Intermediate GTT Load Sharing feature must also be enabled with the enable-ctrl-feat command, and turned on with the chg-ctrl-feat command. Perform the Activating the IGTTS feature procedure to enable and turn on the Intermediate GTT Load Sharing feature.

The Flexible GTT Load Sharing feature can also be turned off with the chg-ctrl-feat command. If the Flexible GTT Load Sharing feature is turned off, and the Intermediate GTT Load Sharing feature enabled and turned on, provisioning for Flexible Intermediate GTT Load Sharing can be performed with the ent-mrn, dlt-mrn, chg-mrn, and rtrv-mrn commands. The EAGLE 5 ISS will not perform Flexible Intermediate GTT Load Sharing on GTT traffic requiring intermediate global title translation. Perform the Turning the Flexible GTT Load Sharing Feature Off procedure to turn off the Flexible GTT Load Sharing feature.
Flexible Final GTT Load Sharing

Flexible Final GTT Load Sharing provides more routing diversity for GTT traffic requiring final global title translation (the routing indicator in the message is SSN) than the load sharing arrangements provided by the mated applications without the Flexible GTT Load Sharing feature enabled. For the EAGLE 5 ISS to perform Flexible Final GTT Load Sharing, the Flexible GTT Load Sharing feature must be enabled and turned on.

Final Load Sharing Feature Only

With the Flexible GTT Load Sharing feature not enabled, the EAGLE 5 ISS load shares post-GTT destination point codes and subsystems when final global title translation is being performed by using the mated application (MAP) table. The destination point codes and subsystems in the MAP table can appear in the MAP table only once. The MAP table contains groups of point codes with a maximum of 32 point codes and subsystems in each group. This arrangement allows only one set of relationships to be defined between a given point code and subsystem and any other point codes and subsystems in the MAP group. All global title addresses in the GTT table that translate to a point code and subsystem in the given MAP group will have the same set of load sharing rules applied.

For example, the following point codes, subsystems, and relative cost values are provisioned in the MAP table.

<table>
<thead>
<tr>
<th>PCA</th>
<th>Mate PCA</th>
<th>SSN</th>
<th>RC</th>
<th>MULT</th>
<th>SRM</th>
<th>MRC</th>
<th>GRP</th>
<th>NAME</th>
<th>SSO</th>
</tr>
</thead>
<tbody>
<tr>
<td>005-005-005</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>006-001-001</td>
<td>254</td>
<td>10</td>
<td>SHR</td>
<td>*Y</td>
<td>*Y</td>
<td>grp01</td>
<td>OFF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>006-001-002</td>
<td>254</td>
<td>10</td>
<td>SHR</td>
<td>*Y</td>
<td>*Y</td>
<td>grp01</td>
<td>OFF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>006-001-003</td>
<td>254</td>
<td>10</td>
<td>SHR</td>
<td>*Y</td>
<td>*Y</td>
<td>grp01</td>
<td>OFF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>006-001-004</td>
<td>254</td>
<td>10</td>
<td>SHR</td>
<td>*Y</td>
<td>*Y</td>
<td>grp01</td>
<td>OFF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>006-001-005</td>
<td>254</td>
<td>10</td>
<td>SHR</td>
<td>*Y</td>
<td>*Y</td>
<td>grp01</td>
<td>OFF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>006-001-006</td>
<td>254</td>
<td>10</td>
<td>SHR</td>
<td>*Y</td>
<td>*Y</td>
<td>grp01</td>
<td>OFF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>006-001-007</td>
<td>254</td>
<td>10</td>
<td>SHR</td>
<td>*Y</td>
<td>*Y</td>
<td>grp01</td>
<td>OFF</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

When the point code and subsystem in the final global title translation is translated to 005-005-005, subsystem 251, all traffic routed using the global title addresses in the final global title translations containing this point code and subsystem are load shared equally, no matter what the global title address is.

Addition of Flexible GTT Load Sharing Feature

When the Flexible GTT Load Sharing feature enabled and turned on, allowing Flexible Final GTT Load Sharing to be performed, the GTT load sharing arrangements are determined by:

- The MAP set assigned to the final global title translation
- The translated point code and subsystem
- The global title address in the message assigned to the global title translation

When a global title address in a final global title translation is translated to a point code and subsystem, the MAP set assigned to the final global title translation containing the translated point code and subsystem determines how load sharing is applied to the traffic for this final global title translation.

A MAP set is a group of point codes and subsystems in the MAP table defining the GTT load sharing rules that are applied to a final global title translation. The method of load sharing is determined by the relative cost (RC) value assigned to each point code and subsystem in the MAP set. There are four types of load sharing that can be performed:
- Solitary
- Dominant
- Load sharing
- Combined dominant/load sharing

Solitary

A solitary MAP set contains only one point code and subsystem and no mate point codes and subsystems. Traffic can be routed only to this point code and subsystem.

The following shows sample output from the `rtrv-map` command for a solitary map set.

<table>
<thead>
<tr>
<th>MAPSET ID=1</th>
<th>MRNSET ID=----</th>
<th>MRNPC=-----------</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCI</td>
<td>Mate PCI</td>
<td>SSN RC MULT SRM MRC GRP NAME SSO WT %WT THR</td>
</tr>
<tr>
<td>7-111-1</td>
<td>255 10</td>
<td>SOL *N *N -------- OFF</td>
</tr>
</tbody>
</table>

Dominant

All the point codes in a dominant MAP set have different relative cost values. The translated point code and subsystem in the message is the preferred point code and subsystem that the message is routed on. The relative cost value assigned to the preferred point code and subsystem does not have to be the lowest value in the MAP set. All traffic is routed to the preferred point code and subsystem if it is available. If the preferred point code and subsystem becomes unavailable, the traffic is routed to the next alternate point code and subsystem that is available. When the preferred point code and subsystem becomes available again, the traffic is then routed back to the preferred point code and subsystem.

The following shows sample output from the `rtrv-map` command for a dominant map set.

<table>
<thead>
<tr>
<th>MAPSET ID=30</th>
<th>MRNSET ID=----</th>
<th>MRNPC=-----------</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCA</td>
<td>Mate PCA</td>
<td>SSN RC MULT SRM MRC GRP NAME SSO</td>
</tr>
<tr>
<td>254-007-221</td>
<td>250 10</td>
<td>SHR *Y *Y -------- OFF</td>
</tr>
<tr>
<td>254-007-220</td>
<td>234 15</td>
<td>COM YES *Y -------- OFF</td>
</tr>
<tr>
<td>254-007-219</td>
<td>250 20</td>
<td>COM YES *Y -------- OFF</td>
</tr>
<tr>
<td>254-007-234</td>
<td>10 25</td>
<td>COM YES *Y -------- OFF</td>
</tr>
<tr>
<td>254-007-233</td>
<td>26 30</td>
<td>COM YES *Y -------- OFF</td>
</tr>
<tr>
<td>254-007-232</td>
<td>42 35</td>
<td>COM YES *Y -------- OFF</td>
</tr>
<tr>
<td>254-007-231</td>
<td>58 40</td>
<td>COM YES *Y -------- OFF</td>
</tr>
<tr>
<td>254-007-230</td>
<td>74 45</td>
<td>COM YES *Y -------- OFF</td>
</tr>
</tbody>
</table>

In this example, the preferred point code and subsystem is 254-007-231, subsystem 58 (relative cost 40). If that point code and subsystem becomes unavailable, the traffic is routed down the list to the next available point code and subsystem (relative cost 45). If that point code and subsystem becomes unavailable, the traffic is routed to the top of the list to that primary point code and subsystem (relative cost 10), and so on.

Load shared

All the point codes and subsystems in a load shared MAP set have the same relative cost value. Traffic is shared equally between the point codes and subsystems in this type of MAP set.

The following shows sample output from the `rtrv-map` command for a load shared map set.

<table>
<thead>
<tr>
<th>MAPSET ID=32</th>
<th>MRNSET ID=----</th>
<th>MRNPC=-----------</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCA</td>
<td>Mate PCA</td>
<td>SSN RC MULT SRM MRC GRP NAME SSO</td>
</tr>
<tr>
<td>254-007-219</td>
<td>250 10</td>
<td>SHR *Y *Y -------- OFF</td>
</tr>
<tr>
<td>254-007-234</td>
<td>14 10</td>
<td>SHR *Y *Y -------- OFF</td>
</tr>
<tr>
<td>254-007-233</td>
<td>26 10</td>
<td>SHR *Y *Y -------- OFF</td>
</tr>
<tr>
<td>254-007-232</td>
<td>42 10</td>
<td>SHR *Y *Y -------- OFF</td>
</tr>
<tr>
<td>254-007-231</td>
<td>58 10</td>
<td>SHR *Y *Y -------- OFF</td>
</tr>
<tr>
<td>254-007-230</td>
<td>74 10</td>
<td>SHR *Y *Y -------- OFF</td>
</tr>
<tr>
<td>254-007-229</td>
<td>90 10</td>
<td>SHR *Y *Y -------- OFF</td>
</tr>
</tbody>
</table>
Combined dominant/load shared

A combined dominant/load shared MAP set is a combination of the dominant and load sharing MAP sets. At least two of the point codes and subsystems in this MAP set have the same relative cost values, and at least one other point code and subsystem has a different relative cost value. The traffic is shared equally between the point codes and subsystems with the same relative cost values. If these point codes and subsystems become unavailable, the traffic is routed to the next point codes and subsystems in the MAP set and shared equally between these point codes and subsystems.

The following shows sample output from the `rtrv-map` command for a combined dominant/load shared map set.

<table>
<thead>
<tr>
<th>MAPSET ID=31</th>
<th>Mate PCA</th>
<th>SSN</th>
<th>RC</th>
<th>MULT</th>
<th>SRM</th>
<th>MRC</th>
<th>GRP</th>
<th>NAME</th>
<th>SSO</th>
</tr>
</thead>
<tbody>
<tr>
<td>254-007-220</td>
<td></td>
<td>106</td>
<td>10</td>
<td>SHR</td>
<td>*Y</td>
<td>*Y</td>
<td>------</td>
<td>OFF</td>
<td></td>
</tr>
<tr>
<td>254-007-227</td>
<td></td>
<td>122</td>
<td>10</td>
<td>SHR</td>
<td>*Y</td>
<td>*Y</td>
<td>------</td>
<td>OFF</td>
<td></td>
</tr>
<tr>
<td>254-007-226</td>
<td></td>
<td>138</td>
<td>10</td>
<td>SHR</td>
<td>*Y</td>
<td>*Y</td>
<td>------</td>
<td>OFF</td>
<td></td>
</tr>
<tr>
<td>254-007-225</td>
<td></td>
<td>154</td>
<td>10</td>
<td>SHR</td>
<td>*Y</td>
<td>*Y</td>
<td>------</td>
<td>OFF</td>
<td></td>
</tr>
<tr>
<td>254-007-224</td>
<td></td>
<td>170</td>
<td>10</td>
<td>SHR</td>
<td>*Y</td>
<td>*Y</td>
<td>------</td>
<td>OFF</td>
<td></td>
</tr>
<tr>
<td>254-007-223</td>
<td></td>
<td>186</td>
<td>10</td>
<td>SHR</td>
<td>*Y</td>
<td>*Y</td>
<td>------</td>
<td>OFF</td>
<td></td>
</tr>
<tr>
<td>254-007-222</td>
<td></td>
<td>202</td>
<td>10</td>
<td>SHR</td>
<td>*Y</td>
<td>*Y</td>
<td>------</td>
<td>OFF</td>
<td></td>
</tr>
<tr>
<td>254-007-221</td>
<td></td>
<td>218</td>
<td>10</td>
<td>SHR</td>
<td>*Y</td>
<td>*Y</td>
<td>------</td>
<td>OFF</td>
<td></td>
</tr>
<tr>
<td>254-007-220</td>
<td></td>
<td>234</td>
<td>10</td>
<td>SHR</td>
<td>*Y</td>
<td>*Y</td>
<td>------</td>
<td>OFF</td>
<td></td>
</tr>
</tbody>
</table>

In this example, if the preferred point code is 254-007-231, subsystem 58 (relative cost 20), then the traffic is shared among the seven point codes/subsystems with a relative cost of 20. If those become unavailable, the traffic is sent to 254-007-221, subsystem 218, which has a relative cost of 30. Finally, if point code 254-007-221, subsystem 218 is unavailable, the traffic is shared among the point codes/subsystems with a relative cost of 10.

Point Code Assigned to Multiple MAP Sets

With the Flexible GTT Load Sharing feature enabled, the same point code and subsystem can be assigned to multiple MAP sets. The relative cost value of this point code and subsystem in each MAP set can be different.

In the following example, the point code 002-002-002, subsystem 254, is assigned to three MAP sets.

<table>
<thead>
<tr>
<th>MAPSET ID=1</th>
<th>Mate PCA</th>
<th>SSN</th>
<th>RC</th>
<th>MULT</th>
<th>SRM</th>
<th>MRC</th>
<th>GRP</th>
<th>NAME</th>
<th>SSO</th>
</tr>
</thead>
<tbody>
<tr>
<td>002-002-002</td>
<td></td>
<td>254</td>
<td>10</td>
<td>COM</td>
<td>YES</td>
<td>*Y</td>
<td>------</td>
<td>OFF</td>
<td></td>
</tr>
<tr>
<td>254-007-219</td>
<td></td>
<td>250</td>
<td>10</td>
<td>COM</td>
<td>YES</td>
<td>*Y</td>
<td>------</td>
<td>OFF</td>
<td></td>
</tr>
<tr>
<td>254-007-234</td>
<td></td>
<td>10</td>
<td>20</td>
<td>COM</td>
<td>YES</td>
<td>*Y</td>
<td>------</td>
<td>OFF</td>
<td></td>
</tr>
<tr>
<td>254-007-233</td>
<td></td>
<td>26</td>
<td>30</td>
<td>COM</td>
<td>YES</td>
<td>*Y</td>
<td>------</td>
<td>OFF</td>
<td></td>
</tr>
<tr>
<td>254-007-232</td>
<td></td>
<td>58</td>
<td>35</td>
<td>COM</td>
<td>YES</td>
<td>*Y</td>
<td>------</td>
<td>OFF</td>
<td></td>
</tr>
<tr>
<td>254-007-231</td>
<td></td>
<td>74</td>
<td>30</td>
<td>COM</td>
<td>YES</td>
<td>*Y</td>
<td>------</td>
<td>OFF</td>
<td></td>
</tr>
<tr>
<td>254-007-229</td>
<td></td>
<td>90</td>
<td>20</td>
<td>COM</td>
<td>YES</td>
<td>*Y</td>
<td>------</td>
<td>OFF</td>
<td></td>
</tr>
<tr>
<td>254-007-228</td>
<td></td>
<td>170</td>
<td>20</td>
<td>COM</td>
<td>YES</td>
<td>*Y</td>
<td>------</td>
<td>OFF</td>
<td></td>
</tr>
<tr>
<td>254-007-227</td>
<td></td>
<td>186</td>
<td>20</td>
<td>COM</td>
<td>YES</td>
<td>*Y</td>
<td>------</td>
<td>OFF</td>
<td></td>
</tr>
<tr>
<td>254-007-226</td>
<td></td>
<td>202</td>
<td>20</td>
<td>COM</td>
<td>YES</td>
<td>*Y</td>
<td>------</td>
<td>OFF</td>
<td></td>
</tr>
<tr>
<td>254-007-225</td>
<td></td>
<td>218</td>
<td>30</td>
<td>COM</td>
<td>YES</td>
<td>*Y</td>
<td>------</td>
<td>OFF</td>
<td></td>
</tr>
</tbody>
</table>
In MAP set 1, point code 002-002-002, subsystem 254, is the primary (first) point code and subsystem in a dominant MAP set with a relative cost value of 10. In MAP set 2, point code 002-002-002, subsystem 254, is one of eight point codes and subsystems in a load shared MAP set, each with a relative cost value of 20. In MAP set 3, point code 002-002-002, subsystem 254, is assigned the relative cost value of 30 in a combined dominant/load shared MAP set whose primary point code and subsystem is 004-004-004, subsystem 200, with a relative cost value of 20.

MAP set 1 is assigned to a global title translation containing the global title address of 9195551212. When the point code and subsystem in this final global title translation is translated to 002-002-002, subsystem 254, this point code and subsystem handles all the traffic for this final global title translation until it becomes unavailable. When point code 002-002-002, subsystem 254 becomes unavailable, the next point code and subsystem (254-007-219, subsystem 250) in this dominant MAP set handles the traffic until this point code and subsystem become unavailable, or until point code 002-002-002, subsystem 254 becomes available again.

MAP set 2 is assigned to a global title translation containing the global title address of 8285551212. When the point code and subsystem in this final global title translation is translated to 002-002-002, subsystem 254, the traffic for this final global title translation is shared equally among all members of the MAP set.

MAP set 3 is assigned to a global title translation containing the global title address of 3365551212. When the point code and subsystem in this final global title translation is translated to 002-002-002, subsystem 254, the traffic for this final global title translation is shared equally among all members of the MAP set.

By allowing a point code and subsystem to be assigned to multiple MAP sets, and by assigning a MAP set to a specific global title address, different load sharing arrangements can be made based on the global title address of the global title translation and the translated point code and subsystem.

The same MAP set can be assigned to multiple global title translations.
For the EAGLE 5 ISS to perform Flexible Final GTT Load Sharing, the Flexible GTT Load Sharing feature must be enabled with the `enable-ctrl-feat` command, and turned on with the `chg-ctrl-feat` command. Perform the *Activating the Flexible GTT Load Sharing Feature* procedure to enable and turn on the Flexible GTT Load Sharing feature.

The Flexible GTT Load Sharing feature can also be turned off with the `chg-ctrl-feat` command. If the Flexible GTT Load Sharing feature is turned off, provisioning for Flexible Final GTT Load Sharing can be performed with the `ent-map`, `dlt-map`, `chg-map`, and `rtrv-map` commands. The EAGLE 5 ISS will not perform Flexible Final GTT Load Sharing on GTT traffic requiring final global title translation. Perform the *Turning the Flexible GTT Load Sharing Feature Off* procedure to turn off the Flexible GTT Load Sharing feature.

Origin-Based SCCP Routing

The Origin-Based SCCP Routing feature provides additional options for routing SCCP messages. Without the Origin-Based SCCP Routing feature enabled, the routing of SCCP messages is based only on the called party address fields in the message. With the Origin-Based SCCP Routing feature enabled, SCCP messages can be routed based on the called party address (CdPA), the calling party address (CgPA), CgPA point code, CgPA subsystem number, or originating point code (OPC) fields in the message.

Origin-Based SCCP Routing provides three modes of global title translation:

- CdPA global title translation
- CgPA global title translation
- Advanced CdPA global title translation.

The CgPA global title translation and Advanced CdPA global title translation modes are performed only if the Origin-Based SCCP Routing feature is enabled and turned on. The CdPA global title translation mode is performed whether or not the Origin-Based SCCP Routing feature is enabled and turned on.

The CdPA global title translation mode is based on the CdPA global title address, translation type, and global title indicator in the incoming message. If the global title indicator value in the message is 4, the CdPA numbering plan and nature of address indicator is also used in the CdPA global title translation mode.

The CgPA global title translation mode is based on this criteria:

- CgPA global title address, translation type, global title indicator, and subsystem number in the incoming message. If the global title indicator value in the message is 4, the CgPA numbering plan and nature of address indicator is also used in the CgPA global title translation mode.
- CgPA point code, translation type, global title indicator, and subsystem number in the incoming message. If the global title indicator value in the message is 4, the CgPA numbering plan and nature of address indicator is also used in the CgPA global title translation mode.

The Advanced CdPA global title translation mode is based on this criteria:

- The CdPA global title address
- The CgPA global title address, or CgPA point code, or Selector ID. If the Selector ID is used in the Advanced CdPA global title translation mode, the CgPA translation type and CgPA global title indicator are also used in the Advanced CdPA global title translation mode if the CgPA global title
The CgPA subsystem number
• The OPC from the MTP Routing Label
• The CdPA translation type
• The CdPA global title indicator
• If the global title indicator value in the message is 4, the CdPA numbering plan and nature of address indicator is also used in the Advanced CdPA global title translation mode and in the CgPA global title translation mode.

GTT Mode Hierarchy
The GTT mode hierarchy determines the preference of GTT modes used by the global title translation process on an incoming message. The global title translation process starts with the first GTT mode of the GTT hierarchy. If the translation was found there, the global title translation process is stopped. If the translation was not found in this first GTT mode, the global title translation process tries to find a translation in the next GTT mode of the hierarchy. The GTT mode hierarchies are shown in the following list.

1. CdPA only
2. Advanced CdPA, CdPA
3. CgPA, Advanced CdPA, CdPA
4. Advanced CdPA, CgPA, CdPA
5. Advanced CdPA, CgPA, CdPA
6. CgPA, CdPA
7. CdPA, CgPA
8. CgPA only.

For example, GTT hierarchy 3 (CgPA, Advanced CdPA, CdPA) is selected for the global title translation process. When an incoming message is processed, the CgPA global title translation information is searched first, starting with a search in GTT selector table for CgPA selectors. If no match is found, the advanced CdPA global title translation information is searched next, including a search in GTT selector for CdPA selectors. If no match is found, the CdPA global title translation information is searched. If a match is still not found, the message is handled as a failed GTT lookup and the appropriate action is taken. When a match is found, the global title translation process is stopped and the message is processed according to the global title translation routing data.

The GTT mode hierarchy can be configured on a system wide basis and on a per linkset basis. The system wide option is configured using the dfltgttmode parameter of the chg-sccpopts command and is used to define the default GTT mode hierarchy value for all linksets by default. Each linkset can be configured to use one of the GTT mode hierarchies using the gttmode parameter of either the ent-ls or chg-ls command. The linkset option overrides the system default GTT mode value for only that linkset. If the gttmode parameter is not specified for a specific linkset, the system default GTT mode hierarchy is assigned to the linkset.

CdPA GTT Mode
The GTT functionality in previous releases of the EAGLE 5 ISS is now the CdPA GTT mode. The CdPA translation type and global title indicator in the incoming messages are used to select the GTT table (GTT set) used to process the message. If the global title indicator value in the message is 4, the CdPA numbering plan and nature of address indicator are also used to select the GTT table used to process
the message. Once the GTT table is selected, the CdPA global title address determines how the message
is translated.

Advanced CdPA GTT Mode

The Advanced CdPA GTT mode provides greater flexibility to route SCCP messages. The following
types of translations can be performed.

• CdPA GTA translation, along with either one or both of the following types of translations:
 • CgPA GTA or CgPA point code translation identified by a pre-provisioned GTT set in the CdPA
 translation or by a search in GTT selector table using the SELID value from the CdPA translation
 along with other CgPA selectors, with or without a subsequent CgPA subsystem number translation.
 The CgPA GTA, CgPA point code, and SELID translations are mutually exclusive.
 • OPC translation, with or without a subsequent CgPA subsystem number translation.

The translations are executed in a predefined order as displayed in the previous list and cannot be
changed.

These additional translations can be applied on top of the mandatory CdPA GTA translation:

• CgPA GTA translation only
• CgPA GTA and CgPA subsystem number translation
• CgPA point code translation only
• CgPA point code and CgPA subsystem number translation
• Translation based on the SELID
• CgPA GTA and OPC translation
• CgPA GTA, OPC, and CgPA subsystem number translation
• CgPA point code and OPC translation
• CgPA point code, OPC, and CgPA subsystem number translation
• SELID and OPC translation
• SELID, OPC, and CgPA subsystem number translation
• OPC translation only.
• OPC and CgPA subsystem number translation

Note: The CdPA global title indicator is always validated before GTT starts processing SCCP
messages. The CgPA global title indicator is not validated, which means, that when a subsequent
lookup in the Advanced CdPA GTT mode is based on the SELID value, the attempt to find a CgPA
GTT set in GTT selector table may fail because of an invalid or unsupported CgPA global title
indicator in the incoming message.

CgPA GTT Mode

The CgPA GTT mode offers two options for translating and routing SCCP messages, the CgPA GTA
translation with or without a subsequent CgPA subsystem number translation, or the CgPA point
code translation with or without a subsequent CgPA subsystem number translation search. The CgPA
GTA and CgPA point code are mutually exclusive.

When CgPA global title translation performs a lookup in the GTT selector table, two new selectors,
the CgPA subsystem number and SELID, are always members of the selectors. If CgPA global title
translation performs a lookup in the GTT selector table as a part of Advanced CdPA global title
translation because the SELID is specified in the CdPA entry, the only GTT selector match that will
be found is the entry with this particular SELID. If CgPA global title translation performs a lookup in
the GTT selector table in the CgPA GTT mode, the only GTT selector match that will be found is the entry with the SELID value equal to NONE.

The CgPA subsystem number for GTT selector lookups is used differently. If the MSU contains a CgPA subsystem number, then the first and the best match that will be found is the entry with this particular CgPA subsystem number. If the MSU does not have a CgPA subsystem number or if the match for a specific CgPA subsystem number was not found, CgPA global title translation attempts to find a GTT selector entry with the CgPA subsystem number equal to ANY, along with the rest of the selectors.

Note: The CdPA global title indicator is always validated before global title translation starts processing SCCP messages, even when the GTT mode is CgPA and the CdPA data is not used by global title translation. The CgPA global title indicator is not validated, which means, that the attempt to find a CgPA GTT set in the GTT selector table may fail because of an invalid or unsupported CgPA global title indicator in the incoming MSU.

Interaction with the Advanced GT Modification Feature

Any kind of SCCP translation (CdPA GTA, CgPA GTA, CgPA PC, OPC, SSN) can be provisioned with Advanced GT Modification data. This Advanced GT Modification data will be applied to a CdPA GTA if it exists, or to a CgPA GTA if it exists. If the CdPA or CgPA part of the message under translation does not contain a GTA, the Advanced GT Modification data from this translation will be ignored. The CdPA GTA is modified only if it is provisioned in a CdPA GTA set. If the CdPA GTA is provisioned in a CdPA GTA set, the CdPA GTA is not modified. The only exception to this is discussed in the **Interaction with the ANSI/ITU SCCP Conversion Feature** section.

Interaction with the ANSI/ITU SCCP Conversion Feature

When the ANSI/ITU SCCP Conversion feature attempts to perform a global title translation lookup on the CgPA in the message, the GTT hierarchy of the incoming linkset is ignored. The EAGLE 5 ISS performs a CdPA only global title translation using the CgPA data. The selectors from the CgPA part are used to find a CdPA GTA set in the GTT selector table, and the CgPA global title address is used to find a translation in the CdPA GTA set.

Interaction with MPS-based features

The messages from the MPS-based services are processed by global title translation using the GTT mode assigned to the linkset on which these messages arrived at the EAGLE 5 ISS.

GTT for EAGLE 5 ISS-generated MSUs

UDTS messages and responses generated by the EAGLE 5 ISS and the required global title translation are processed in the CdPA GTT mode only.

Wildcard Provisioning for the OPC and CgPA Point Code

Origin-Based SCCP Routing allows for the use of wildcards (asterisks) as values for an ANSI OPC or ANSI CgPA point code.

For example, the point code value 12-*-* indicates that any ANSI point code containing with the network indicator value 12, regardless of the network cluster and network cluster member values in the ANSI point code, is considered a match.

The point code value 12-34-* indicates that any ANSI point code containing the network indicator value 12 and the network cluster value 34, regardless of the network cluster member value in the ANSI point code, is considered a match.
When searches for ANSI point codes are performed, the search order tries to find the best possible match. For example, the incoming message contains the ANSI point code 12-24-25. The search mechanism first searches for the point code value 12-34-25 in the global title translation tables. If that search fails, the search mechanism searches for the point code value 12-34-* in the global title translation tables. If that search fails, the search mechanism searches for the point code value 12-*-* in the global title translation tables.

An ANSI OPC or ANSI CgPA point code value containing all asterisks is not allowed. Asterisks cannot be used for ITU point codes.

The Cluster Routing and Management Diversity or Network Routing features do not have to turned on to use asterisks for the ANSI OPC or ANSI CgPA point code value.

Provisioning the Origin-Based SCCP Routing Feature

To provision the Origin-Based SCCP Routing feature, perform these steps.

1. Turn the GTT and EGTT features on using the `chg-feat` command. Add the required DSMs, E5-SM4G, or E5-SM4G-B or E5-SM8G-B cards to the database using the `ent-card` command. Perform the *Adding a Service Module* procedure.

2. Enable the Origin-Based SCCP Routing feature using the `enable-ctrl-feat` command. Perform the *Activating the Origin-Based SCCP Routing Feature* procedure.

 Note: The Origin-Based SCCP Routing feature can be turned on in this step using the `chg-ctrl-feat` command. If the Origin-Based SCCP Routing feature is not turned on in this step, provisioning for the Origin-Based SCCP Routing feature can still be performed except for provisioning the Origin-Based SCCP Routing GTT mode hierarchy for linksets and system wide default GTT mode option with one of the Origin-Based SCCP Routing GTT mode hierarchies. The Origin-Based SCCP Routing GTT mode hierarchy for linksets and system wide default GTT mode option with one of the Origin-Based SCCP Routing GTT mode hierarchies can be provisioned only when the Origin-Based SCCP Routing feature is enabled and turned on. When the provisioning is completed, the Origin-Based SCCP Routing feature can be turned on. The Origin-Based SCCP Routing feature will not work until the feature is turned on either in this step or step 8.

3. Change the system wide default GTT mode, if desired, using the `chg-sccpopts` command. Perform the *Changing the Default GTT Mode Options* procedure.

4. Provision the required destination point codes, linksets, signaling links, and routes, by performing these procedures in the *Database Administration Manual - SS7*.

 - **Destination Point Codes** – Adding a Destination Point Code procedure in the *Database Administration Manual - SS7*.
 - **Linksets** – Perform one of these procedures depending on the type of linkset.
 - **SS7 Linkset** – Adding an SS7 Linkset procedure in the *Database Administration Manual - SS7*
 - **IP Gateway Linkset** – Configuring an IPGWx Linkset
 - **IPSG M2PA Linkset** – Adding an IPSG M2PA Linkset
 - **IPSG M3UA Linkset** – Adding an IPSG M3UA Linkset

 Note: If you wish to use a GTT mode hierarchy for the linkset other than the system default GTT mode hierarchy, specify the `gttmode` parameter when provisioning the linkset. The `gttmode` parameter values for the Origin-Based SCCP Routing GTT hierarchy can be specified only when the Origin-Based SCCP Routing feature is enabled and turned on.
• Signaling Links – Perform one of these procedures depending on the type of signaling link.
 • A low-speed SS7 signaling link – Adding an SS7 Signaling Link procedure in the *Database Administration Manual - SS7*
 • An E1 signaling link – Adding an E1 Signaling Link procedure in the *Database Administration Manual - SS7*
 • A T1 signaling link – Adding a T1 Signaling Link procedure in the *Database Administration Manual - SS7*
 • An ATM signaling link – Adding an ATM High-Speed Signaling Link procedure in the *Database Administration Manual - SS7*
 • These procedures in the *Database Administration Manual - IP7 Secure Gateway*.
 • IPLIMx Signaling Link - Adding an IPLIMx Signaling Link
 • IPGWx Signaling Link - Adding an IPGWx Signaling Link
 • IPSG M2PA Signaling Link - Adding an IPSG M2PA Signaling Link
 • IPSG M3UA Signaling Link - Adding an IPSG M3UA Signaling Link

• Routes – Perform one of these procedures in the *Database Administration Manual - SS7* depending on the type of route.
 • A route containing an SS7 DPC – Adding a Route Containing an SS7 DPC procedure
 • A route containing a cluster point code – Adding a Route Containing a Cluster Point Code procedure
 • A route containing an IPGWx Linkset – Adding a Route Containing an IPGWx Linkset procedure

5. Provision the required GTT sets using the `ent-gttset` command. Perform the *Adding a GTT Set* procedure.

6. Provision the required GTT translations using the `ent-gta` command. Perform the *Adding Global Title Address Information* procedure.

 Note: The command line on the terminal can contain up to 150 characters. If the parameters and values specified with the `ent-gta` command are too long to fit on the `ent-gta` command line, perform the `chg-gta` command to complete adding the GTA entry. If the parameters and values specified with the `chg-gta` command are too long to fit on the `chg-gta` command line, perform the `chg-gta` command as many times as necessary to complete the GTA entry.

7. Provision the required GTT selectors using the `ent-gttssel` command. Perform the *Adding a GTT Selector* procedure.

 Note: Performing this step is not required depending on how the GTT sets in Step 5 and the GTA entries in Step 6 are configured.

8. Turn the Origin-Based SCCP Routing feature on using the `chg-ctrl-feat` command. Perform the *Activating the Origin-Based SCCP Routing Feature* procedure.
Hex Digit Support for GTT

The Hex Digit Support for GTT feature, when enabled, allows the EAGLE 5 ISS to process incoming messages that contain either decimal (0-9) or hexadecimal digits (0-9, a-f, A-F) in the global title address in the called party address field of the messages.

If the Hex Digit Support for GTT feature is enabled and the Origin-Based SCCP Routing feature is enabled and turned on, the EAGLE 5 ISS can process messages containing decimal or hexadecimal digits in the global title address in either the calling party address or the called party address fields of the messages, depending on the GTT hierarchy that is used to process the messages. For more information on the Origin-Based SCCP Routing feature, refer to the Origin-Based SCCP Routing section.

With the Hex Digit Support for GTT feature enabled, hexadecimal digits can be specified for the gta and egta parameters of the ent-gtt, chg-gtt, ent-gta, and chg-gta commands. If the Advanced GT Modification feature is enabled, hexadecimal digits can be specified for the values of the prefix and suffix deletion digit parameters (npds and nsds) of the ent-gtmod, and chg-gtmod commands. For more information on the Advanced GT Modification feature, refer to the Advanced GT Modification Feature section.

If the ANSI/ITU SCCP Conversion feature is enabled, hexadecimal digits can be specified for the values of the prefix and suffix deletion digit parameters (npds and nsds) of the ent-gtcnv or chg-gtcnv commands. For more information on the ANSI/ITU SCCP Conversion feature, refer to the ANSI/ITU SCCP Conversion Feature section.

After the Hex Digit Support for GTT feature is enabled, any existing range entries for global title addresses are treated as a range of hexadecimal values instead of a range of decimal values. For example, the database contains an entry that contains the range of global title addresses from 20 to 30. With the Hex Digit Support for GTT feature not enabled, this translation would match MSUs containing the global title addresses 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, and 30. With the Hex Digit Support for GTT feature enabled, this translation would match MSUs containing the global title addresses 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 2A, 2B, 2C, 2D, 2E, 2F, and 30. Translations containing a single entry for the global title address are not changed.

If you wish to have different translated data for hexadecimal digits, the existing range entry can be split into 3 entries as follows in Table 2: Hex Digit Range Example.

<table>
<thead>
<tr>
<th>GTA=20</th>
<th>EGTA=29</th>
<th>with existing translation data</th>
</tr>
</thead>
<tbody>
<tr>
<td>GTA=2A</td>
<td>EGTA=2F</td>
<td>with user specified translation data</td>
</tr>
<tr>
<td>GTA=30</td>
<td></td>
<td>with existing translation data</td>
</tr>
</tbody>
</table>

Hexadecimal digits cannot be used as a value for the gta parameter for the ent-gws-redirect and chg-gws-redirect commands.

Hexadecimal digits can be used as values for GSM MAP screening entries only if the Enhanced GSM MAP Screening feature is enabled.

Provisioning the Hex Digit Support for GTT Feature

To provision the Hex Digit Support for GTT feature, perform these steps.
1. Turn the GTT feature on using the `chg-feat` command. Add the required service modules to the database using the `ent-card` command. Perform the Adding a Service Module procedure. If Enhanced Global Title Translation will be used, turn the EGTT feature on using the `chg-feat` command.

2. Enable the Hex Digit Support for GTT feature using the `enable-ctrl-feat` command. Perform the Activating the Hex Digit Support for GTT Feature procedure.

 Note: Once this feature is enabled, the feature is also turned on. The `chg-ctrl-feat` cannot be used to turn this feature on. Once this feature is enabled, the feature cannot be turned off.

3. Provision the required destination point codes, linksets, signaling links, and routes, by performing these procedures.

 - **Destination Point Codes** - Adding a Destination Point Code procedure in the *Database Administration Manual - SS7*.
 - **Linksets** - Perform one of these procedures depending on the type of linkset.
 - SS7 Linkset - Adding an SS7 Linkset procedure in the *Database Administration Manual - SS7*
 - These procedures in the *Database Administration Manual - IP7 Secure Gateway*.
 - IP Gateway Linkset - Configuring an IPGWx Linkset
 - IPSG M2PA Linkset - Adding an IPSG M2PA Linkset
 - IPSG M3UA Linkset - Adding an IPSG M3UA Linkset
 - **Signaling Links** - Perform one of these procedures depending on the type of signaling link.
 - A low-speed SS7 signaling link - Adding an SS7 Signaling Link procedure in the *Database Administration Manual - SS7*
 - An E1 signaling link - Adding an E1 Signaling Link procedure in the *Database Administration Manual - SS7*
 - A T1 signaling link - Adding a T1 Signaling Link procedure in the *Database Administration Manual - SS7*
 - An ATM signaling link - Adding an ATM High-Speed Signaling Link procedure in the *Database Administration Manual - SS7*
 - These procedures in the *Database Administration Manual - IP7 Secure Gateway*.
 - IPLIMx Signaling Link - Adding an IPLIMx Signaling Link
 - IPGWx Signaling Link - Adding an IPGWx Signaling Link
 - IPSG M2PA Signaling Link - Adding an IPSG M2PA Signaling Link
 - IPSG M3UA Signaling Link - Adding an IPSG M3UA Signaling Link
 - **Routes** - Perform one of these procedures in the *Database Administration Manual - SS7* depending on the type of route.
 - A route containing an SS7 DPC - Adding a Route Containing an SS7 DPC procedure
 - A route containing a cluster point code - Adding a Route Containing a Cluster Point Code procedure
 - A route containing an IPGWx Linkset - Adding a Route Containing an IPGWx Linkset procedure

 Note: If only the GTT feature was turned on in step 1, perform steps 4 and 5. If the EGTT feature was turned on in step 1, skip steps 4 and 5 and perform steps 6, 7, and 8.
4. Provision the required translation types using the `ent-tt` command. Perform the *Adding a Translation Type* procedure.

5. Provision the required global title translations using the `ent-gtt` command. Perform the *Adding a Global Title Translation* procedure.

 Note: After the required global title translations have been provisioned in step 5, skip steps 6, 7, and 8.

6. Provision the required GTT sets using the `ent-gttset` command. Perform the *Adding a GTT Set* procedure.

7. Provision the required GTT translations using the `ent-gta` command. Perform the *Adding Global Title Address Information* procedure.

 Note: The command line on the terminal can contain up to 150 characters. If the parameters and values specified with the `ent-gta` command are too long to fit on the `ent-gta` command line, perform the `chg-gta` command to complete adding the GTA entry. If the parameters and values specified with the `chg-gta` command are too long to fit on the `chg-gta` command line, perform the `chg-gta` command as many times as necessary to complete the GTA entry.

8. Provision the required GTT selectors using the `ent-gttsel` command. Perform the *Adding a GTT Selector* procedure.

Weighted GTT Load Sharing

The default behavior of the EAGLE 5 ISS for performing load sharing between nodes with the same relative cost is to perform the load sharing in a round-robin fashion. A limitation of this design is that all destinations have equal processing power and should receive an equal load. However, as new hardware is added to load-sharing groups, the load-sharing groups may have different processing capabilities. Customization of the load-sharing group would allow the traffic load to be distributed on the individual characteristics of each destination.

Another default behavior of the EAGLE 5 ISS is to route traffic to a load-shared group if any member of that group with the relative cost value is available. Depending on the traffic, this can overwhelm and congest a node, even though other nodes at different relative cost values could have handled the traffic.

Both of these scenarios can be solved with the Weighted GTT Load Sharing feature, which allows unequal traffic loads to be provisioned in mated application (MAP) and mated relay node (MRN) load sharing groups.

The MAP and MRN load sharing groups can be MAP or MRN load sharing groups without the Flexible GTT Load Sharing enabled, or MAP or MRN sets with the Flexible GTT Load Sharing feature enabled. Weighted GTT Load Sharing can be applied to only load shared or combined dominant/load shared MAP or MRN groups, and cannot be applied to solitary mated applications, or dominant MAP or MRN groups.

This feature also allows provisioning control over load sharing groups so that if insufficient capacity within the load sharing group is available, the load sharing group is not used.

Weighted GTT Load Sharing provides two controls for GTT traffic distribution through either the MAP or MRN groups:

- Individual weighting for each entity in a relative cost (RC) group
• In-Service threshold for each RC group

An RC group is a group of entries in either a MAP group or an MRN group that have the same relative cost value. An entity is either a point code entry in the MRN table or a point code and subsystem number entry in the MAP table.

A MAP group or MRN group can also be referred to as an entity set.

Weighted GTT Load Sharing can be applied to only load shared or combined dominant/load shared MAP or MRN groups, and cannot be applied to solitary mated applications, or dominant MAP or MRN groups.

Individual Weighting

Individual weighting is a method for assigning a different load capacity to each member of an RC group. Each entity is assigned a weight from 1 to 99 and receives a percentage of the traffic equal to its weight relative to the RC group’s total weight. To calculate the percentage of traffic that a particular entity receives within its RC group (assuming all nodes are active and available for traffic), use the following equation:

\[
\text{\% of traffic for the entity} = \left(\frac{\text{weight value assigned to the entity}}{\text{RC group weight}}\right) \times 100\%
\]

Note: With round-robin load-sharing, there is a concept of the preferred entity. The preferred entity is the outcome of GTT. It is the first entity used for load-sharing after initialization, and is the primary entity for Class 1 SCCP Sequenced traffic. When weights are applied, no entity has any preference over another based on GTT information. Distribution is based on the RC group chosen by GTT, not the specific entity.

Individual Weighting Example

Table 3: RC Group Weight Example shows how weighting affects traffic delivery. Entity A has a weight of 40 and the total RC group weight is 110, entity A receives 36% of the traffic. Entity C is has a weight of 10 and receives only 9% of the traffic for this group. The total group weight is the sum of the individual weight values assigned to each entity in the group.

Note: In order to maintain 100% for the RC group, some rounding may occur. This rounding error will always be ± 1%.

Table 3: RC Group Weight Example

<table>
<thead>
<tr>
<th>Entity</th>
<th>RC</th>
<th>Weight</th>
<th>RC Group Weight</th>
<th>Percentage of Traffic</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>10</td>
<td>40</td>
<td>110</td>
<td>(40 / 110) * 100% = 36%</td>
</tr>
<tr>
<td>B</td>
<td>10</td>
<td>30</td>
<td></td>
<td>(30 / 110) * 100% = 27%</td>
</tr>
<tr>
<td>C</td>
<td>10</td>
<td>10</td>
<td></td>
<td>(10 / 110) * 100% = 9%</td>
</tr>
<tr>
<td>D</td>
<td>10</td>
<td>30</td>
<td></td>
<td>(30 / 110) * 100% = 28%</td>
</tr>
</tbody>
</table>

If all entities in an RC group have the same weight, the outbound traffic pattern provides equal distribution. For weighted load shared or weighted combined load shared MRN or MAP groups with In-Sequence Class 1 SCCP option on, In-Sequence Class 1 SCCP traffic is routed using the provisioned
data as the initial method of routing and dynamic data (if the entity selected by provisioned data is prohibited) as the secondary method of routing. This allows all Class 1 traffic to be delivered to the same destination, and the traffic routing is affected unless the original destination changes status. If Transaction-Based GTT Load Sharing is not turned on, then the Weighted GTT Load Shared MSU Key is used. This provides a consistent MSU Key for the Class 1 SCCP traffic based on MTP parameters.

An MSU Key is a value calculated from parameters of an MSU that allows the MSU to be assigned to an entity within an RC group. An MSU Key always maps to the same entity until there is a status change to the MAP or MRN group.

In-Service Threshold

The in-service threshold defines the minimum percentage of weight that must be available for an RC group to be considered available. If the percentage of the available weight is less than the in-service threshold, then the entire RC group is considered unavailable for traffic. If the percentage of the available weight is equal to or greater than the in-service threshold, then the RC group is considered available, and traffic can be sent to any available entity in the RC group. The in-service threshold helps to prevent congestion when only a small portion of the RC group is available.

The in-service threshold has an initial value of 1%, and has a range of values from 1% to 100%. Current round-robin load sharing has an in-service threshold value of 1%, where if any entity in an RC group is available, it is always used.

The group weight that must be available to carry traffic (the required group weight) is determined by multiplying the total group weight (the sum of the individual weight values assigned to each entity in the group) by the in-service threshold value, expressed as a percentage. For example, if the RC group weight is 110, and the in-service threshold is 75%, the required group weight is 82.

An RC group can be in one of three states: Available, Prohibited, and Threshold-Prohibited. These states are determined by comparing the required RC group weight to the weight of the entities that are actually available for traffic, the entity available weight.

If the state of the entity in the RC group is Available, the entity available weight is the weight value assigned to the entity. If the state of the entity in the RC group is either Congested or Prohibited, the entity available weight is 0. The sum of all entity available weights in the RC group is the RC group available weight. **Table 4: RC Group In-Service Threshold States** shows how the states of the RC group are determined.

Table 4: RC Group In-Service Threshold States

<table>
<thead>
<tr>
<th>RC Group State</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Available</td>
<td>The RC group available weight is greater than or equal to the Required RC group weight. Traffic can routed to the RC group in all circumstances.</td>
</tr>
<tr>
<td>Prohibited</td>
<td>All entities in the RC group are prohibited (the RC group Available Weight = 0). No traffic can be routed to this RC group.</td>
</tr>
<tr>
<td>Threshold-Prohibited</td>
<td>At least one entity in the RC group is not prohibited, but RC group available weight is less than the required RC group weight. Even if the RC group available weight is 0, if one entity is congested, then the state</td>
</tr>
</tbody>
</table>
of the RC group is Threshold-Prohibited. Normally, no traffic is routed to this RC group.

The Transaction-based GTT Load Sharing and the SCCP Class 1 Sequencing features may route traffic to this group if the primary node is congested. Instead of moving this transaction-based traffic to another node and then back quickly when the congestion abates, routing will continue to the primary node.

In-Service Threshold Example

In the example shown in Table 5: In-Service Threshold Example, the RC group consisting of entities A, B, C, and D does not have sufficient available weight for the group (70 is less than 82), and therefore the RC group is considered Threshold-Prohibited. This RC group is unavailable for traffic.

The RC group consisting of entities E and F does have sufficient available weight for the group, and the RC group is considered Available.

The RC group consisting of entities G and H is Prohibited, since both entities G and H are Prohibited.

The RC group consisting of entities I and J is Threshold-Prohibited, since entity I is Congested. In order for the RC group status to be Prohibited, all entities in the RC group must be Prohibited.

Non-Transaction-Based GTT Load Sharing traffic is not routed to the RC group.

If the Transaction-Based GTT Load Sharing feature is enabled and turned on, or SCCP Class 1 Sequencing is used, then traffic can be routed to entity I if that is the primary entity for the traffic (traffic would be routed if entity I were Available).

Table 5: In-Service Threshold Example

<table>
<thead>
<tr>
<th>Entity</th>
<th>RC Group State</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RC Group State</td>
<td></td>
<td>of the RC group is Threshold-Prohibited. Normally, no traffic is routed to this RC group. The Transaction-based GTT Load Sharing and the SCCP Class 1 Sequencing features may route traffic to this group if the primary node is congested. Instead of moving this transaction-based traffic to another node and then back quickly when the congestion abates, routing will continue to the primary node.</td>
</tr>
<tr>
<td>RC Group</td>
<td>Available Weight</td>
<td>Available Weight</td>
</tr>
<tr>
<td>Required RC Group Weight</td>
<td>Available Status</td>
<td>Prohibited Status</td>
</tr>
<tr>
<td>In-Service Threshold</td>
<td>75%</td>
<td>82</td>
</tr>
<tr>
<td>In-Service Threshold</td>
<td>100%</td>
<td>40</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Entity</th>
<th>RC</th>
<th>Weight</th>
<th>RC Group Weight</th>
<th>In-Service Threshold</th>
<th>Required RC Group Weight</th>
<th>Entity Status</th>
<th>Entity Available Weight</th>
<th>RC Group Available Weight</th>
<th>RC Group In-Service Threshold Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>10</td>
<td>40</td>
<td>110</td>
<td>75%</td>
<td>82</td>
<td>Available</td>
<td>40</td>
<td>70</td>
<td>Threshold-Prohibited</td>
</tr>
<tr>
<td>B</td>
<td>10</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td>Prohibited</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>10</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td>Prohibited</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>10</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td>Available</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>20</td>
<td>30</td>
<td>40</td>
<td>100%</td>
<td>40</td>
<td>Available</td>
<td>30</td>
<td>40</td>
<td>Available</td>
</tr>
</tbody>
</table>
Load-Sharing Groups

Weighted GTT Load-Sharing can be applied to only load shared mated application or MRN groups, or combined dominant/load shared mated application or MRN groups.

A load shared MAP or MRN group is a MAP or MRN group containing entries whose RC (relative cost) values are equal.

When Weighted GTT Load Sharing is applied to load shared MAP or MRN groups, traffic is distributed among the entities according to:

- Entity Status – traffic is only routed to an entity if the entity is considered Available.
- Entity Available Weight – the entity receives a percentage of the traffic determined by its weight relative to the total available weight of the RC group.
- RC group status - refer to Table 4: RC Group In-Service Threshold States.
- Available RC group weight – The sum of all entity available weights in the RC group.

Table 6: Load Shared Group with Weighted GTT Load Sharing Example shows an example of Weighted GTT Load Sharing applied to a load shared MAP or MRN group.

<table>
<thead>
<tr>
<th>Entity</th>
<th>RC</th>
<th>Weight</th>
<th>RC Group Weight</th>
<th>In-Service Threshold</th>
<th>Required RC Group Weight</th>
<th>Entity Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>10</td>
<td>40</td>
<td>110</td>
<td>50%</td>
<td>55</td>
<td>Available</td>
</tr>
<tr>
<td>B</td>
<td>10</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td>Prohibited</td>
</tr>
</tbody>
</table>
All entities in the load shared group are in the same RC group, so if the RC group is unavailable for traffic, all traffic is discarded.

A combined dominant/load shared MAP or MRN group is a MAP or MRN group containing a minimum of two entries whose RC (relative cost) values are equal and a minimum of one entry whose RC value is different.

When Weighted GTT Load Sharing is applied to combined dominant/load shared MAP or MRN groups, traffic is distributed among the entities according to:

- **Entity Status** – traffic is only routed to an entity if the entity is considered Available.
- **Entity Available Weight** – the entity receives a percentage of the traffic determined by its weight relative to the total available weight of the RC group.
- **RC group status** – refer to Table 4: RC Group In-Service Threshold States.
- **Available RC group weight** – The sum of all entity available weights in the RC group.
- **MRN or MAP Group Status** – the MRN or MAP group must be considered Available in order to route traffic.

Table 7: Combined Dominant/Load Shared Group with Weighted GTT Load Sharing Example shows an example of a weighted combined load shared group.

Based on the results of global title translation, traffic is routed to one of the RC groups in the weighted combined load shared group. If that RC group is unavailable for traffic, the RC group with the next highest cost that is available for traffic is used to route the traffic. If a higher cost RC group is being used to route traffic, and a lower cost RC group becomes available, the lower cost RC group is then used to route the traffic.

The status of the combined dominant/load shared group is based on the status of the RC groups that make up the combined dominant/load shared group. If the status of any RC group is Available, then the status of the combined dominant/load shared group is Available. If no RC group is available for traffic, but the status of at least one of the RC groups is Threshold-Prohibited, then the status of the
combined dominant/load shared group is Threshold-Prohibited. If the status of all the RC groups is Prohibited, then the status of the combined dominant/load shared group is prohibited.

Table 7: Combined Dominant/Load Shared Group with Weighted GTT Load Sharing Example

<table>
<thead>
<tr>
<th>Entity</th>
<th>RC</th>
<th>Weight</th>
<th>RC Group Weight</th>
<th>In-Service Threshold</th>
<th>Required RC Group Weight</th>
<th>Entity Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>10</td>
<td>40</td>
<td>110</td>
<td>75%</td>
<td>82</td>
<td>Available</td>
</tr>
<tr>
<td>B</td>
<td>10</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td>Prohibited</td>
</tr>
<tr>
<td>C</td>
<td>10</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td>Prohibited</td>
</tr>
<tr>
<td>D</td>
<td>10</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td>Available</td>
</tr>
<tr>
<td>E</td>
<td>20</td>
<td>30</td>
<td>40</td>
<td>100%</td>
<td>40</td>
<td>Available</td>
</tr>
<tr>
<td>F</td>
<td>20</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td>Available</td>
</tr>
<tr>
<td>G</td>
<td>30</td>
<td>10</td>
<td>10</td>
<td>1%</td>
<td>1</td>
<td>Available</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Entity</th>
<th>Entity Available Weight</th>
<th>RC group Available Weight</th>
<th>RC group In-Service Threshold Status</th>
<th>MRN or MAP Group Status</th>
<th>Current Load %</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>40</td>
<td>70</td>
<td>Threshold - Prohibited</td>
<td>Available</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>0</td>
<td>70</td>
<td></td>
<td>Available</td>
<td>0</td>
</tr>
<tr>
<td>C</td>
<td>0</td>
<td>0</td>
<td></td>
<td>Available</td>
<td>0</td>
</tr>
<tr>
<td>D</td>
<td>30</td>
<td>0</td>
<td></td>
<td>Available</td>
<td>0</td>
</tr>
<tr>
<td>E</td>
<td>30</td>
<td>40</td>
<td>Available</td>
<td></td>
<td>75%</td>
</tr>
<tr>
<td>F</td>
<td>10</td>
<td>10</td>
<td>Available</td>
<td></td>
<td>25%</td>
</tr>
<tr>
<td>G</td>
<td>10</td>
<td>10</td>
<td>Available</td>
<td></td>
<td>100%</td>
</tr>
</tbody>
</table>

Note: The Current Load % column shows the percentage of traffic each entity in the RC group handles.

MSU Routing under Congestion

For Transaction-Based GTT Load Sharing or SCCP Class 1 Sequenced traffic, the original destination of the traffic must be maintained under congestion. Diverting traffic during congestion can lead to invalid transaction states, and the originator is not informed of any problem. If a congested node is
selected, then traffic is routed to that node. If the message is discarded, then a UDTS is generated so the originator is informed of a problem. If the node is prohibited, then the selection of an alternate node is acceptable. This action is equivalent to the action performed when the \texttt{mrc=no} parameter is specified with either the \texttt{ent-map} or \texttt{chg-map} commands.

For all other traffic, rerouting this traffic away from a congested node is acceptable, since no sequencing or state information needs to be maintained. This can be accomplished by considering a congested entity as Unavailable (thus, its available weight is 0). The congested node receives no traffic. The state of the RC group may transition from Available to Threshold-Prohibited. This action is equivalent to the action performed when the \texttt{mrc=yes} parameter is specified with either the \texttt{ent-map} or \texttt{chg-map} commands.

Provisioning the Weighted GTT Load Sharing Feature

To provision the Weighted GTT Load Sharing feature, perform these steps.

1. Turn the GTT and EGTT features on using the \texttt{chg-feat} command. Add the required DSMs or E5-SM4G cards to the database using the \texttt{ent-card} command. Perform \textit{Adding a Service Module}.
2. Enable the Weighted GTT Load Sharing feature using the \texttt{enable-ctrl-feat} command and turn the Weighted GTT Load Sharing feature on using the \texttt{chg-ctrl-feat} command. Perform \textit{Activating the Weighted GTT Load Sharing Feature}.
3. Provision load shared or combined dominant/load shared MRN groups with the \texttt{ent-mrn} and \texttt{chg-mrn} commands. To provision the MRN groups, the Intermediate GTT Load Sharing feature must be enabled with the \texttt{enable-ctrl-feat} command and turned on with the \texttt{chg-ctrl-feat} command. Perform \textit{Activating the IGTTLS feature}. Once the Intermediate GTT Load Sharing feature is enabled and turned on, perform \textit{Provisioning MRN Entries}.
4. Provision load shared or combined dominant/load shared MAP groups with the \texttt{ent-map} and \texttt{chg-map} commands. Perform one of these procedures:
 - \textit{Provisioning a Solitary Mated Application}.
 - \textit{Provisioning a Dominant Mated Application}.
 - \textit{Provisioning a Load Shared Mated Application}.
 - \textit{Provisioning a Combined Dominant/Load Shared Mated Application}.

Transaction-Based GTT Load Sharing

Transaction-Based GTT Load Sharing allows messages with the same transaction parameters (TCAP, SCCP, MTP, or ENHMTTP parameters) to be routed to the same destination within an entity set. An entity set is a group of entities that are used to determine the proper destination of a post-GTT message. This group of entities can be one of the following:

- A mated application (MAP) group
- A mated relay node (MRN) group
- A mated application set (MAPSET), if the Flexible GTT Load Sharing feature is enabled
- A mated relay node set (MRNSET), if the Flexible GTT Load Sharing feature is enabled.

This feature applies to the following types of SCCP messages:

- UDT/UDTS class 0 messages
- UDT/UDTS class 1 messages
- XUDT/XUDTS class 0 messages
- XUDT/XUDTS class 1 messages.

UDT/UDTS and XUDT/XUDTS messages are loadshared using a key derived from these elements in the message.

- MTP parameters - the first 3 bytes of the incoming OPC and 1 byte of the SLS.
- SCCP parameters - the last 4 bytes of the global title address field of the called party address.
- TCAP parameter - the TCAP Transaction ID in the messages.
- Enhanced MTP parameter - a combination of the SLS and the incoming OPC values.

The parameters used for Transaction-Based GTT Load Sharing are selected using the `chg-sccpopts` command. These parameters are:

- :tgtt0 - enable or disable Transaction-Based GTT Load Sharing for SCCP Class 0 UDT, UDTS, XUDT, or XUDTS messages.
- :tgtt1 - enable or disable Transaction-Based GTT Load Sharing for SCCP Class 1 UDT, UDTS, XUDT, or XUDTS messages.
- :tgtxudtkey - the Transaction Parameter for the incoming XUDT or XUDTS messages.
- :tgtxudtkey - the Transaction Parameter for the incoming XUDT or XUDTS messages.

Figure 5: Transaction-Based GTT Load Sharing SCCP Options describes how the Transaction-Based GTT Load Sharing SCCP options are used.
Transaction-Based GTT Load Sharing is enabled and turned on, and an SCCP message is received.

Is the message a Class 0 SCCP message?
- Yes
 - Is the message a UDT message?
 - Yes
 - Is the tgtt0 parameter value set to udt or both?
 - Yes
 - Transaction-Based GTT Load Sharing is performed on the message based on the tgttudtk key parameter value (either tcap, sccp, mtp, or enhmtp)
 - No
 - Transaction-Based GTT Load Sharing cannot be performed on the message.
 - No
 - Is the tgtt0 parameter value set to udt or both?
 - Yes
 - Transaction-Based GTT Load Sharing is performed on the message based on the tgttudtk key parameter value (either sccp, mtp, or enhmtp)
 - No
 - Transaction-Based GTT Load Sharing cannot be performed on the message.
 - No
 - Is the message a UDT/XUDTS message?
 - Yes
 - The same algorithm for an SCCP Class 1 message is performed using the tgtt0 parameter value.
 - No
 - Transaction-Based GTT Load Sharing cannot be performed on the message.

For more information on provisioning the Transaction-Based GTT Load Sharing option parameters, refer to the Changing the Transaction-Based GTT Load Sharing Options procedure.

Only load shared and combined dominant/load shared entity sets are used to determine the routing for messages that are processed by the Transaction-Based GTT Load Sharing feature.

Using a load shared entity set, the entire entity set is a part of one RC group and the messages are load-shared based on the Transaction Parameter in the entities in the entity set. If none of the entities...
in the entity set are available for routing, then the message is discarded and a UDTS/XUDTS message is generated if "Return on Error" is set in the SCCP message. A UIM is generated indicating that the message has been discarded.

Using a combined dominant/load shared entity set, the RC group containing the point code, or point code and SSN, obtained as a result of the global title translation process is used to determine how the message is routed. If none of the entities in this RC group are available for routing, the next higher cost RC group is chosen. This is repeated until an entity in an entity set is available for routing. When an entity is found that is available for routing, the message is routed according to the criteria in that entity. If none of the entities in the entity set are available for routing, the message is discarded. A UDTS/XUDTS message is generated if "Return on Error" is set in the SCCP message. A UIM is generated indicating that the message has been discarded.

Once the MSU key is generated, it is passed to the Weighted GTT Load Sharing mode entity sets to determine how the message will be routed. If the Weighted GTT Load Sharing feature is active and weights have been assigned to the entity set, the Weighted GTT Load Sharing feature uses these weights to determine how to route the message. If no weights have been assigned to the entity set, then each RC group in the entity set is considered to be equally weighted.

Static routing is performed on all the messages that the Transaction-Based GTT Load Sharing feature has assigned an MSU key. Static routing always assigns an MSU key to the same node within an RC group. If static routing does not provide an available entity for routing the message, dynamic routing is used to find an available entity for routing the message. Figure 6: Message Routing using Transaction-Based GTT Load Sharing illustrates this process.
Figure 6: Message Routing using Transaction-Based GTT Load Sharing

Provisioning the Transaction-Based GTT Load Sharing Feature

To provision the Transaction-Based GTT Load Sharing feature, perform these steps.

1. Turn the GTT and EGTT features on using the `chg-feat` command. Add the required DSMs or E5-SM4G cards to the database using the `ent-card` command. Perform *Adding a Service Module*.

End
2. Enable the Transaction-Based GTT Load Sharing feature using the `enable-ctrl-feat` command. Perform the Activating the Transaction-Based GTT Load Sharing Feature procedure.

Note: The Transaction-Based GTT Load Sharing feature can be turned on in this step using the `chg-ctrl-feat` command. If the Transaction-Based GTT Load Sharing feature is not turned on in this step, provisioning for the Transaction-Based GTT Load Sharing feature can still be performed. When the provisioning is completed, the Transaction-Based GTT Load Sharing feature can be turned on. The Transaction-Based GTT Load Sharing feature will not work until the feature is turned on either in this step or step 4.

3. Change the Transaction-Based GTT Load Sharing options, if desired, using the `chg-sccpopts` command. Perform the Changing the Transaction-Based GTT Load Sharing Options procedure.

4. Turn the Transaction-Based GTT Load Sharing feature on using the `chg-ctrl-feat` command. Perform the Activating the Transaction-Based GTT Load Sharing Feature procedure.

SCCP Loop Detection

This feature detects SCCP looping of UDT/UDTS and XUDT/XUDTS messages. The SCCP Loop Detection feature requires a feature access key (FAK) for part number 893-0165-01 to enable the feature.

Normally, an STP sends GTT messages to the capability point codes (CPCs) of mated nodes for load sharing. However, approach can result in SCCP looping if the destination point code is the same as the originating point code or the point code of any intermediate in the network.

This looping can be resolved by eliminating the use of CPCs and verifying at an intermediate STP whether the OPC of the incoming MSU is the same as the true point code (TPC) of the DPC after GTT. However, CPCs are often used to implement LNP in addition to the SCCP.

The SCCP Loop Detection feature resolves the looping issue by providing a correlation between the MTP-designated TPCs/secondary point codes (SFCs) and the CPCs for all concerned STPs.

The SCCP Loop Detection feature is provisioned by configuring the Loopset Table and adding a loopset to a to a Global Title Translation.

The loopset commands define the correlation between MTP-designated point codes and the capability point codes of the STPs that detect SCCP looping. The GTT commands allow the administration, deletion, and retrieval of loopset table entries for a particular Global Title Translation.

The SCCP Loop Detection feature operates in Regular or Discard modes. In the Regular (default) mode, the SCCP Loop Detection Feature generates a UIM when it detects SCCP looping but does not discard the MSU. This UIM allows the operator to capture and verify MSUs throughout the system for SCCP looping. In the Discard mode, the SCCP Loop Detection feature generates a UIM when it detects SCCP looping and discards the MSU.

Provisioning the SCCP Loop Detection Feature

1. Enable the SCCP Loop Detection feature using the `enable-ctrl-feat` command. Perform the Activating the SCCP Loop Detection Feature procedure.

 Note: The SCCP Loop Detection feature can be turned on in this step using the `chg-ctrl-feat` command. If the SCCP Loop Detection feature is not turned on in this step, provisioning for the SCCP Loop Detection feature can still be performed. When the provisioning is completed, the SCCP
Loop Detection feature can be turned on. The SCCP Loop Detection feature will not work until the feature is turned on in this step.

2. Provision the loopset table using the ent-loopset command. Perform the Adding a Loopset procedure.

3. Add a loopset to the global title translation using the ent-gtt or ent-gta commands. Perform Adding a Global Title Translation or Adding Global Title Address Information.

Flexible Linkset Optional Based Routing

Flexible Linkset Optional Based Routing allows the EAGLE 5 ISS to route GTT traffic based on the incoming link set and to route GTT traffic based on a variety of parameters (MTP, SCCP and TCAP depending on features that are enabled and turned on) in a flexible order on a per-translation basis.

Flexible Linkset Optional Based Routing can be used with or without the Origin-Based SCCP Routing or the TCAP Opcode Based Routing features. Flexible Linkset Optional Based Routing can be enabled and turned on only if the EGTT feature is turned on. If only the Flexible Linkset Optional Based Routing is enabled and turned on, the name of the incoming linkset that will help to determine how the GTT traffic is routed can be provisioned in the GTT selectors. If the Origin-Based SCCP Routing feature or the TCAP Opcode Based Routing feature is used with the Flexible Linkset Optional Based Routing feature, the name of the incoming linkset can be provisioned along with the provisioning for the Origin-Based SCCP Routing or the TCAP Opcode Based Routing features. Table 8: GTT Set Type and GTT Selector Combinations shows the type of GTT sets that can be provisioned for GTT selectors based on the features that are enabled and turned on.

Table 8: GTT Set Type and GTT Selector Combinations

<table>
<thead>
<tr>
<th>Feature Combinations</th>
<th>GTT Set Types for CdPA GTT Selectors</th>
<th>GTT Set Types for CgPA GTT Selectors</th>
</tr>
</thead>
<tbody>
<tr>
<td>EGTT Only</td>
<td>CdPA GTA</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>Origin-Based SCCP Based Routing Only</td>
<td>CdPA GTA</td>
<td>CgPA GTA, CgPA Point Code</td>
</tr>
<tr>
<td>Flexible Linkset Optional Based Routing</td>
<td>CdPA GTA, CdPA SSN, DPC</td>
<td>CdPA GTA, CdPA SSN, DPC</td>
</tr>
<tr>
<td>Flexible Linkset Optional Based Routing and TCAP Opcode Based Routing</td>
<td>CdPA GTA, Opcode, CdPA SSN, DPC</td>
<td>CdPA GTA, Opcode, CdPA SSN, DPC</td>
</tr>
<tr>
<td>Flexible Linkset Optional Based Routing and Origin-Based SCCP Based Routing</td>
<td>CdPA GTA, CgPA GTA, CgPA SSN, CgPA Point Code, CgPA SSN, DPC</td>
<td>CdPA GTA, CgPA GTA, CgPA SSN, CgPA Point Code, CgPA SSN, DPC</td>
</tr>
<tr>
<td>Flexible Linkset Optional Based Routing, Origin-Based SCCP Based Routing, and TCAP Opcode Based Routing</td>
<td>CdPA GTA, CgPA GTA, CgPA SSN, CgPA Point Code, Opcode, CdPA SSN, DPC</td>
<td>CdPA GTA, CgPA GTA, CgPA SSN, CgPA Point Code, Opcode, CdPA SSN, DPC</td>
</tr>
</tbody>
</table>

Enhancements to Flexible Linkset Optional Based Routing
In previous releases, the GTT and TT command sets were replaced by the GTTSET, GTTSEL, and GTA command sets when the EGTT feature is turned on. Now the GTT and TT command sets can be used when EGTT feature is turned on.

In previous releases, the `selid` parameter in the `ent-gttsel`, `dlt-gttsel`, and `chg-gttsel` commands could be configured only when the Flexible Linkset Optional Based Routing feature is enabled and turned on or the Origin-Based SCCP Routing feature is enabled. Now the `selid` parameter of these commands can be configured when the EGTT feature is turned on.

An SCCP message (RT-on-GT or MTP-routed) received by the EAGLE 5 ISS can be routed (Relayed or Redirected) to another destination based on the routing data obtained from the EPAP database or PPSOPTS table by the EPAP-based service. This type of message is called a Service Relayed MSU. In previous releases, global title translation is not performed on Service Relayed MSUs. These messages are directly sent to destination obtained from EPAP database or PPSOPTS table.

Now global title translation can be performed Service Relayed MSUs. To do this, these three optional parameters of the `ent-srvsel` and `chg-srvsel` commands are supported on per Service Selector basis for the non-GTT Message Relay Services.

- **GTT Required** (on=gttrqd, off=gttrqd) – This specifies whether or not global title translation is performed on Service Relayed MSUs. This parameter can be configured after the GTT feature is turned on.

- **GTT Selector ID** (gttselid for the `ent-srvsel` command, ngttselid for the `chg-srvsel` command) – This is used as the SELID value for the GTT selector search when global title translation is performed on the Service Relayed MSU. This parameter can be configured only after EGTT feature is turned on.

- **Default Action** (dfltact for the `ent-srvsel` command, ndfltact for the `chg-srvsel` command) – The action that is performed when the GTT selector search (using the GTT Selector ID from the Service Selector entry) fails for the Service Relayed MSU. This parameter can be configured only after EGTT feature is turned on or the GTT Action - DISCARD feature is enabled and turned on.

An example service selector entry is shown in Figure 7: Message Relay Services and GTT Actions.

Figure 7: Message Relay Services and GTT Actions

<table>
<thead>
<tr>
<th>GTT/</th>
<th>Translation Type</th>
<th>Numbering Plan</th>
<th>Nature of Address Indicator</th>
<th>Subsystem Number</th>
<th>Service</th>
<th>GTT Required?</th>
<th>SELID</th>
<th>Default Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>GFLEX</td>
<td>Yes</td>
<td>100</td>
<td>Fall through to GTT or Discard/UDTS/CAP Error GTT Action ID or Fallback to EPAP/PPSOPTS Routing Data</td>
</tr>
</tbody>
</table>

The GTT Required option indicates whether global title translation needs to be performed after successfully finding the routing data from the EPAP database or PPSOPTS database for non-GTT Message Relay Services. If the routing data is not found for non-GTT Relay Services from the EPAP database or PPSOPTS database, the standard Fall through to GTT procedure shall be performed.

Fallback to GTT

Fallback to GTT allows global title translation to be performed on Service Relayed MSUs by using the GTT Required parameter on per Service Selector basis for the non-GTT Message Relay Services shown in Table 9: Services Supporting Fallback to GTT. Provisioning of the GTT Required parameter can be performed only if the EAGLE 5 ISS contains E5-SM4G cards.
Table 9: Services Supporting Fallback to GTT

<table>
<thead>
<tr>
<th>Service Name</th>
<th>Corresponding Feature which may relay MSU-based on EPAP or PPSOPTS Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>MNP/GPORT</td>
<td>GPORT (Part Number: 893-0172-01)</td>
</tr>
<tr>
<td></td>
<td>APORT (Part Number: 893-0166-01)</td>
</tr>
<tr>
<td></td>
<td>IS41 GSM Migration (Part Number: 893-0173-01)</td>
</tr>
<tr>
<td>SMSMR</td>
<td>Prepaid SMS Intercept Ph1 (Part Number: 893-0067-01)</td>
</tr>
<tr>
<td>GFLEX</td>
<td>G-Flex MAP Layer Routing (Part Number: 893-0217-01)</td>
</tr>
<tr>
<td></td>
<td>G-Flex (Part Number: 893-0219-01)</td>
</tr>
<tr>
<td>INPMR</td>
<td>ANSI-41 INP Query (Part Number: 893-0178-01)</td>
</tr>
<tr>
<td></td>
<td>INP (Part Number: 893-0179-01)</td>
</tr>
<tr>
<td>IDPR</td>
<td>IDP A-Party Routing (Part Number: 893-0333-01)</td>
</tr>
<tr>
<td></td>
<td>IDP Service Key Routing (Part Number: 893-0336-01)</td>
</tr>
<tr>
<td>TTR</td>
<td>Currently no feature in this service performs message relay without encountering global title translation. The GTT Required parameter has no effect on this service.</td>
</tr>
</tbody>
</table>

The GTT Required parameter is invoked only if a message is required to be relayed based on the routing data from EPAP database or PPSOPTS table after the successful execution of a non-GTT Message Relay Service. Table 9: Services Supporting Fallback to GTT lists the non-GTT Message Relay Services and the corresponding feature(s) which may result in the message being relayed based on the routing data from EPAP database or PPSOPTS table. If the GTT Required parameter value indicates that global title translation is required on the Service Relayed MSU, then global title translation is performed on the MSU modified by the relay service according to GTT hierarchy of the incoming link set. The default value of GTT Required parameter is set to indicate that global title translation is not required on the Service Relayed MSU. If global title translation is performed on the Service Relayed MSU successfully, then the message is processed through all the GTT-related features that are enabled and turned on.

Note: Fallback to GTT applies only to the Service Relayed MSU. Query/Response and standard Fall Through to GTT procedures are do not apply to Fallback to GTT.

Exceptions to Fallback to GTT

If a service performs global title translation on service specific parameters to obtain information required for message routing (for example, the MO SMS B-Party Routing feature in the SMSMR service finds the routing information by performing global title translation on the CDPN), then Fallback to GTT is not applied on those messages. The exceptions to Fallback to GTT are shown in Table 10: Exceptions to Fallback to GTT.

Table 10: Exceptions to Fallback to GTT

<table>
<thead>
<tr>
<th>Service Name</th>
<th>Feature Name</th>
<th>Exception Description</th>
</tr>
</thead>
</table>
The IGM SRI_SM Relay to Default IS41 SMSC functionality relays the message to the default IS41 SMSC based on the global title translation of the GTA defined by the DEFIS41SMSC value shown in the rtrv-gsmsmsopts output.

All features under the MNP/GPORT service.

The MNP/GPORT service allows re-routing of messages when the service is offline. In this case, a global title translation parameter is already present that specifies whether global title translation is required when the service is offline.

MO SMS B-Party Routing performs global title translation on the TCAP B-Party digits (TCAP CDPN) and routes the message based on the global title translation results.

All features under the GFLEX service.

The GFLEX service allows re-routing of messages when the GFLEX service is offline. In this case, a global title translation parameter is already present that specifies whether global title translation is required when the service is offline.

The service selector search is not performed for the MTP-routed messages whose CDPA GTI value is 0 (zero). The parameters required to perform Fallback to GTT are not available for MTP-routed messages whose CDPA GTI value is 0 (zero). Fallback to GTT on Service Relayed MSUs does not apply to messages whose CDPA GTI value is 0 (zero). If a message whose CDPA GTI value is 0 (zero) is relayed by an EPAP-based service, then global title translation is not be performed on the message.

GTT Selector ID and the Service Selector

For the non-GTT Message Relay Services, shown in Table 9: Services Supporting Fallback to GTT, GTT selector IDs (SELIDs) can be provisioned. Only one GTT selector ID is allowed for each service selector entry. The GTT selector ID is used to perform GTT selector searches while performing global title translation on the Service Relayed MSUs. The GTT selector ID is not used while performing global title translation as a part of the existing Fall through to GTT message processing. The GTT selector ID from service selector shall be used only in first GTT selector search. If further GTT selector searches are required (when the matching translation is provisioned with a CDSELID or CGSELID), then the GTT selector ID found from the previous matched translation is used as is currently done when processing the translation for the Origin-Based SCCP Routing and Flexible Linkset Optional Based Routing features. The default value for the GTT selector ID in the service selector entry is none. The GTT selector ID in the service selector can be provisioned when the EGTT feature is on. The Origin-Based SCCP Routing and Flexible Linkset Optional Based Routing features are not required to be enabled or turned on to provision the GTT selector ID in the service selector.

Default Action and the Service Selector

For the non-GTT Message Relay Services shown in Table 9: Services Supporting Fallback to GTT, a default action can be provisioned for each service selector entry. The default action parameter in the service selector can be one of these values.

- Fall through to GTT
- The Discard GTT Action ID
- The UDTS GTT Action ID
• The TCAP Error GTT Action ID
• Fallback (route the MSU based on the relay data)

The default action from the service selector is used only if the GTT selector search using the GTT selector ID from the service selector fails while performing global title translation on the Service Relayed MSU.

If the GTT selector search using the GTT selector ID from the service selector fails and the default action in the service selector is Fall through to GTT, then the action that is performed depends on the value of the GTT selector ID in the service selector. If the GTT selector ID value in the service selector is none, then the message is discarded and UIM 1042 is generated. If the GTT selector ID value in the service selector is not none, then the GTT selector search is attempted again with GTT selector ID value of none. If the subsequent GTT selector search, attempted with GTT selector ID value of none, also fails, then the message is discarded and UIM 1042 is generated.

If the GTT selector search using the GTT selector ID from the service selector fails and the default action value in the service selector is either the Discard GTT Action ID, UDTS GTT Action ID, or the TCAP Error GTT Action ID, then the corresponding GTT action is performed.

If the GTT selector search using the GTT selector ID from the service selector fails and the default action value in the service selector is Fallback, then the message is relayed based on the routing data from the EPAP database or PPSOPTS table.

Overall Functionality

After successfully getting the routing data for non-GTT Message Relay Services, if the GTT Required value is set to yes and the GTT SELID is provisioned for this service, global title translation is performed on the MSU with specified SELID value to find the matching translation based on the GTT hierarchy on the linkset on which this MSU arrived.

- If a matching GTT selector is not found, the default action is applied to the MSU. The default action can be any of the actions shown in the Default Action and the Service Selector section. The default value of default action parameter is Fallback (route the MSU based on the relay data).
- If a global title translation is not found, then existing global title translation error handling procedures are applied.
- If a matching global title translation is found and:
 - If the matched global title translation contains routing data, the global title translation routing data is used on top of the EPAP or PPSOPTS routing data.
 - If the matched global title translation doesn’t contain routing data (xlat parameter value is none), the MSU continues to use the EPAP or PPSOPTS routing data.
 - If the matched global title translation contains values for the cggtmod or gtmodid parameters, then the cggtmod parameter value or the parameter values contained in the GT modification entry that is defined by the gtmodid parameter are applied to the MSU.
 - If a GTT action set is associated with the matched translation, then the GTT Actions feature is applied to the MSU.
 - If matched translation contains a value for the ccgt parameter, then the ccgt parameter value is applied to the MSU as is currently done with the Advanced GT Modification feature.

Linkset Based Routing

After the Flexible Linkset Optional Based Routing feature enabled and turned on, Eagle 5 ISS considers the incoming link set as part of the GTT selection process for performing global title translation. If EAGLE 5 ISS receives MSUs with the same routing information on different link sets, it has the flexibility
to route them based on different GTT rules. This also applies to the messages that fall through to GTT after being processed by MPS based services on the EAGLE 5 ISS. The incoming link set of the original MSU is used for these messages.

MSUs generated by the EAGLE 5 ISS that require global title translation are handled differently since they do not have a valid incoming link set. A separate set of GTT selector entries can be provisioned for these MSUs.

A separate set of GTT selector entries can be provisioned for messages generated by the EAGLE 5 ISS.

Flexible Linkset Optional Based Routing GTT Hierarchies

The Flexible Linkset Optional Based Routing feature introduced four more GTT hierarchies in addition to the GTT hierarchies used for the Origin-Based SCCP Routing feature. These hierarchies are shown in Table 11: GTT Hierarchies. These GTT hierarchies are available only when the corresponding feature is enabled, and turned on if necessary. All the GTT hierarchies are available when both the Origin-Based SCCP Routing and the Flexible Linkset Optional Based Routing features are enabled, and turned on if necessary. The GTT hierarchy can be provisioned on a link set basis or a system wide basis. The default GTT hierarchy is CdPA only.

Table 11: GTT Hierarchies

<table>
<thead>
<tr>
<th>EGTT Turned On Only</th>
<th>Origin-Based SCCP Routing Enabled Only</th>
<th>Flexible Linkset Optional Based Routing (FLOBR) Enabled and Turned On Only</th>
<th>Origin-Based SCCP Routing Enabled and Flexible Linkset Optional Based Routing Enabled and Turned On</th>
</tr>
</thead>
<tbody>
<tr>
<td>CdPA only</td>
<td>CdPA only</td>
<td>CdPA only</td>
<td>CdPA only</td>
</tr>
<tr>
<td></td>
<td>Advanced CdPA, CdPA</td>
<td>FLOBR CdPA only</td>
<td>Advanced CdPA, CdPA</td>
</tr>
<tr>
<td></td>
<td>CgPA, Advanced CdPA, CdPA</td>
<td>FLOBR CgPA only</td>
<td>CgPA, Advanced CdPA, CdPA</td>
</tr>
<tr>
<td></td>
<td>Advanced CdPA, CgPA</td>
<td>FLOBR CgPA, FLOBR CdPA</td>
<td>Advanced CdPA, CgPA, FLOBR CgPA, FLOBR CdPA</td>
</tr>
<tr>
<td></td>
<td>CdPA, CgPA</td>
<td>FLOBR CgPA, FLOBR CgPA</td>
<td>CdPA, CgPA, FLOBR CgPA</td>
</tr>
<tr>
<td></td>
<td>CdPA, CgPA</td>
<td></td>
<td>CgPA, CdPA, FLOBR CgPA</td>
</tr>
<tr>
<td></td>
<td>CgPA only</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

When a Flexible Linkset Optional Based Routing GTT hierarchy is provisioned on a link set, the translations do not have to be searched in a predetermined fashion as is done for the Origin-Based SCCP Routing GTT hierarchies (a specific translation can only point to specific GTT set types and the
CgPA SSN translation is the terminating point of the search). As long as a translation points to another GTT set/SELID, the search continues and this can lead to infinite searching. The number of searches is limited by these conditions.

- The same GTT set cannot be referred to more than once in the searching process.
- The number of database searches is limited to seven, including searches based on the calling party/called party SELID.

Note: The DPC and CDSSN GTT set types can be searched only in a Flexible Linkset Optional Based Routing GTT hierarchy.

Fallback Option

A fallback option can be provisioned for each translation that tells the EAGLE 5 ISS how to route an MSU under these conditions:

- Routing when the subsequent search failed in the Flexible Linkset Optional Based Routing feature.
- Routing when the same GTT set name is referred to more than once.
- Limiting the number of database searches to seven for the Flexible Linkset Optional Based Routing feature.

The fallback option can be configured on a system wide basis and on a per-translation basis. The system wide option is configured using `dfltfallback` parameter of the `chg-sccpopts` command and is used to define the default value (“No”) for all translations by default. Each translation may then be configured to use one of the fallback values. The fallback option is configured with the `fallback` parameter of the `ent-gta` or `chg-gta` commands. The `fallback` parameter has these values.

- `sysdflt` - use the `dfltfallback` parameter value of the `chg-sccpopts` command for the translation.
- `yes` - global title translation is performed based on the last matched entry.
- `no` - global title translation fails and the MSU is discarded.

The per-translation option overrides the system default just for that translation. The Origin-Based SCCP Routing hierarchies do not use the fallback option.

Routing when the Subsequent GTT Set Search Failed

In this example, Set 1 is used to start the search. The matching translation in Set 1 points to Set 2. The matching translation in Set 2 points to Set 3 and there is no matching translation found in Set 3. Since the fallback option for the matched translation in Set 2 set to No, the MSU is discarded.
Figure 8: Action When the Subsequent Translation Search Fails

If the matching translation is not found in Set 2 (Set 2 Translation in Figure 8: Action When the Subsequent Translation Search Fails is not found) and since the fallback option value in the Set 1 Translation is set to Yes, the MSU is routed based on the routing data in the Set 1 Translation. If the matching translation in Set 2 does not contain any GTT set/SELID combination (the Set 3 GTT set as shown in Figure 8: Action When the Subsequent Translation Search Fails is not provisioned), then the fallback option is ignored and the MSU is routed based on routing data in the Set 2 Translation. If the matching translation in Set 1 is not found, then the GTT process fails.

Routing When the Subsequent Search for the SELID Fails

In this example, Set 1 is used to start the search. The matching translation in Set 1 (for example, a CdPA SSN/Opcode/CdPA GTA translation) contains SELID/Set 2 and also Set 3 (in this case Set 3 is an OPC GTT set).
Figure 9: Action When the Subsequent SELID Search Fails

If a matching GTT selector is not found with an SELID in the Set 1 translation, the search continues searching for the matching translation in Set 3. If a matching translation is found in Set 3 and no matching translation is found in Set 4, the fallback option No in the Set 3 Translation is performed and the MSU is discarded. If a matching GTT selector is not found with an SELID in the Set 1 translation and a matching translation is not found in Set 3, the fallback option Yes in the Set 1 Translation is performed and the MSU is routed based on the routing data in the Set 1 Translation. If a GTT selector with an SELID results in a GTT set name that is already referred to, the action based on the fallback option in the Set 1 Translation is performed.

Routing When the Same GTT Set Name is Referred To More than Once
In Figure 10: Action When the Same GTT Set Name is Referred to More Than Once, even if the Set 5 Translation contains the Set 6 GTT set (Set 5 and Set 6 are the same type of GTT sets), the Set 6 Translation will be searched for the matching translation. If the Set 6 Translation contains the Set 1 GTT set and since Set 1 has already searched, the Set 1 translation is not searched again and the fallback option of the last matched translation is examined. Since the last matched translation is found in Set 6 and the fallback option is set to No, the MSU is discarded. UIM 1413 - GTT (FLOBR) failure: duplicate set name is generated to describe the condition. In Figure 10: Action When the Same GTT Set Name is Referred to More Than Once, if the Set 6 Translation was not found and since the fallback option in the Set 5 Translation is set to Yes, the MSU is routed based on the data in the Set 5 Translation.

Limiting the Number of Database Searches for the Flexible Linkset Optional Based Routing Feature
The number of database searches is limited to seven when the Flexible Linkset Optional Based Routing feature is enabled and turned on. This includes searching the GTT selector table when a translation contains the CgPA SELID or CdPA SELID parameter.

Figure 11: Limiting the Number of Database Searches

As shown in Figure 11: Limiting the Number of Database Searches, when a translation contains the CdPA SELID or CgPA SELID, the search in the GTT selector table is also counted toward the maximum seven searches. After completing seven searches, if the search is terminated because of the maximum seven search criteria, the action defined in the last matched Set 4 Translation fallback option (in this case No) is performed and MSU is discarded. UIM 1412 - GTT (FLOBR) failure: max search depth is generated to describe the condition. After completing seven searches, if the last matched translation contains no GTT set/SELID data (if the CdPA SELID data is not provisioned in the Set 4 Translation), the MSU is routed based on the routing data in the Set 4 Translation. The first GTT selector search
when the GTT functionality is selected (deriving Set 1 in *Figure 11: Limiting the Number of Database Searches*) is not counted toward the maximum seven search criteria.

Limiting the Number of GTT Set Searches for the Flexible Linkset Optional Based Routing Feature

The number of GTT set searches is limited to seven when the Flexible Linkset Optional Based Routing feature is enabled and turned on.

![Diagram](image)

Figure 12: Limiting the Number of GTT Set Searches
As shown in Figure 12: Limiting the Number of GTT Set Searches, after completing seven GTT set searches, if the search is terminated because of the maximum of seven searches have been performed, the action defined by the fallback option in Set 7 Translation, in this case No, is performed and the MSU is discarded. UIM 1412 - GTT (FLOBR) failure: max search depth is generated to describe the condition. If the Set 7 Translation contains no GTT sets, Set 8 is this case, the MSU is routed based on the routing data in the Set 7 Translation.

GTT for MSUs Generated by the EAGLE 5 ISS

The EAGLE 5 ISS performs global title translation on some messages generated by itself. These messages are sent in response to queries received by local subsystems. SCCP UDTS and XUDTS messages also fall under this category. Global title translation is performed to find the destination for the responses when the SCCP calling party address in query messages is Route-on-GT. Since there is no valid incoming link set for messages generated by the EAGLE 5 ISS, a special set of GTT selector entries are used when the Flexible Linkset Optional Based Routing feature is enabled and turned on. The eaglegen=yes parameter in the ent-/dlt-/chg-/rtrv-gttsel commands is used to provision a GTT selector for messages generated by the EAGLE 5 ISS. If the eaglegen=no parameter is specified for a GTT selector, the GTT selector is not provisioned for messages generated by the EAGLE 5 ISS.

When the eaglegen=yes parameter is specified for a GTT selector,

- Any CgPA related parameters, the linkset name, and SELID parameters cannot be specified.
- The Flexible Linkset Optional Based Routing feature must be enabled and turned on.
- A GTT set with the CdPA GTA set type must be specified.
- A dummy link set name Eagle-Gen is displayed in the rtrv-gttsel command output.

If the GTT set name assigned to a GTT selector for messages generated by the EAGLE 5 ISS is changed with the chg-gttsel command, the new GTT set must be a CdPA GTT set.

If no match is found in the GTT selector entries that contain the eaglegen=yes parameter, the entries with LSN value ANY are searched. If a matching entry is still not found, for GTI=4 entries, the GTT set with CdPA set type for NP and NAI values Default are returned. For GTI=2 entries, a match not found message is returned. The Flexible Linkset Optional Based Routing feature hierarchies do not apply for GTT selectors provisioned for messages generated by the EAGLE 5 ISS and the CDPA Only GTT mode is used for such translations.

GTT Selector Key

Table 12: GTT Selector Key defines the keys into GTT selector table based on the feature combination. If a feature supports specific parameters and that feature is not enabled or turned, if necessary, then default values for these parameters are entered into the database.

<table>
<thead>
<tr>
<th>Feature Combination</th>
<th>Selector Type</th>
<th>GTI, Domain, TT, (NP and NAI if the GTII/GTIN/GTIN24=4)</th>
<th>CgPA SSN</th>
<th>SELID</th>
<th>Linkset Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>EGTT</td>
<td>CdPA Only</td>
<td>X</td>
<td>-</td>
<td>X</td>
<td>(See Note 1)</td>
</tr>
<tr>
<td>Origin-Based SCCP Routing</td>
<td>CdPA</td>
<td>X</td>
<td>-</td>
<td>X</td>
<td>-</td>
</tr>
<tr>
<td>Feature Combination</td>
<td>Selector Type</td>
<td>GTI, Domain, TT, (NP and NAI if the GTII/GTIN/GTIN24=4)</td>
<td>CgPA SSN</td>
<td>SELID</td>
<td>Linkset Name</td>
</tr>
<tr>
<td>---</td>
<td>---------------</td>
<td>--</td>
<td>----------</td>
<td>-------</td>
<td>--------------</td>
</tr>
<tr>
<td></td>
<td>CgPA</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>-</td>
</tr>
<tr>
<td>Flexible Linkset Optional Based Routing</td>
<td>CdPA</td>
<td>X</td>
<td>-</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>CgPA</td>
<td>X</td>
<td>-</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Origin-Based SCCP Routing and Flexible Linkset Optional Based Routing</td>
<td>CdPA</td>
<td>X</td>
<td>-</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>CgPA</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Messages generated by the EAGLE 5 ISS</td>
<td>CdPA only</td>
<td>X</td>
<td>-</td>
<td>-</td>
<td>X (See Note 2)</td>
</tr>
</tbody>
</table>

Notes:
1. This is applicable only for service relayed MSUS whose GTT Required value is on and the GTT selector ID is not equal to none in the service selector entry.
2. See the GTT for MSUs Generated by the EAGLE 5 ISS section.

Searching Order in the GTT Selector Table with the Flexible Linkset Optional Based Routing Feature

The searching order for CgPA and CdPA GTT selectors when the Flexible Linkset Optional Based Routing feature is enabled and turned on are shown in these tables.

- Table 13: CdPA GTT Selector Keys
- Table 14: CgPA GTT Selector Keys
- Table 11: GTT Hierarchies

Table 13: CdPA GTT Selector Keys

<table>
<thead>
<tr>
<th>Priority</th>
<th>GTI, Domain, TT, (NP and NAI if the GTII/GTIN/GTIN24=4)</th>
<th>Linkset Name</th>
<th>SELID</th>
<th>CdPA GTT Selector Found or Not Found</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Exact</td>
<td>Exact</td>
<td>Exact</td>
<td>If a CdPA GTT set is provisioned for the GTT selector keys, the GTT selector is considered found. Otherwise, the GTT selector is not found. See the Note.</td>
</tr>
<tr>
<td>2</td>
<td>Exact</td>
<td>Any</td>
<td>Exact</td>
<td></td>
</tr>
</tbody>
</table>

Note: If an Origin-Based SCCP Routing GTT hierarchy is being used, the CdPA GTT set must be a CDGTA GTT set and the CgPA GTT set must be either a CGGTA or CGPC GTT set. If a Flexible Linkset Optional Based Routing feature GTT hierarchy is being used, any GTT set type can be used.
Table 14: CgPA GTT Selector Keys

<table>
<thead>
<tr>
<th>Priority</th>
<th>GTI, Domain, TT, (NP and NAI if the GTII/GTIN/GTIN24=4)</th>
<th>Linkset Name</th>
<th>SELID</th>
<th>CgPA SSN</th>
<th>CgPA GTT Selector Found or Not Found</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Exact</td>
<td>Exact</td>
<td>Exact</td>
<td>Exact</td>
<td>If a CgPA GTT set is provisioned for the GTT selector keys, the GTT selector is considered found. Otherwise, the GTT selector is not found. See the Note.</td>
</tr>
<tr>
<td>2</td>
<td>Exact</td>
<td>Exact</td>
<td>Exact</td>
<td>Any</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Exact</td>
<td>Any</td>
<td>Exact</td>
<td>Exact</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Exact</td>
<td>Any</td>
<td>Exact</td>
<td>Any</td>
<td></td>
</tr>
</tbody>
</table>

Note: If an Origin-Based SCCP Routing GTT hierarchy is being used, the CdPA GTT set must be a CDGTA GTT set and the CgPA GTT set must be either a CGGTA or CGPC GTT set. If a Flexible Linkset Optional Based Routing feature GTT hierarchy is being used, any GTT set type can be used.

Table 15: Messages Generated by the EAGLE 5 ISS GTT Selector Keys

<table>
<thead>
<tr>
<th>Priority</th>
<th>GTI, Domain, TT, (NP and NAI if the GTII/GTIN/GTIN24=4)</th>
<th>Linkset Name</th>
<th>Messages Generated by the EAGLE 5 ISS GTT Selector Found or Not Found</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Exact</td>
<td>Eagle=Gen</td>
<td>If a CdPA GTT set with the CDGTA GTT set type is provisioned for the GTT selector keys, the GTT selector is considered found. Otherwise, the GTT selector is not found. See the Note.</td>
</tr>
<tr>
<td>2</td>
<td>Exact</td>
<td>Any</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>For GTI=4, the GTT set with the values Default for the NP and NAI parameters.</td>
<td>Any</td>
<td></td>
</tr>
</tbody>
</table>

Note: If an Origin-Based SCCP Routing GTT hierarchy is being used, the CdPA GTT set must be a CDGTA GTT set and the CgPA GTT set must be either a CGGTA or CGPC GTT set. If a Flexible Linkset Optional Based Routing feature GTT hierarchy is being used, any GTT set type can be used.

Hardware Requirements

To enable the Flexible Linkset Optional Based Routing feature E5-SM4G cards must be provisioned in the database. Any DSMs must be replaced by the E5-SM4G cards.

Provisioning the Flexible Linkset Optional Based Routing Feature

To provision the Flexible Linkset Optional Based Routing feature, perform these steps.

1. Turn the GTT and EGTT features on using the chg-feat command. Add the required E5-SM4G cards to the database using the ent-card command. Perform Adding a Service Module.
2. Enable and turn on the Flexible Linkset Optional Based Routing feature using the enable-ctrl-feat and the chg-ctrl-feat commands. Perform Activating the Flexible Linkset Optional Based Routing Feature.
3. Provision the required GTT sets using the ent-gttset command. Perform Adding a GTT Set.
4. Provision the required GTT translations using the ent-gta command. Perform Adding Global Title Address Information.
5. Provision the required GTT selectors using the ent-gttsel command. Perform Adding a GTT Selector.
6. Change the default fallback option, if desired, using the chg-sccpopts command. Perform Changing the Default GTT Mode Options.
TCAP Opcode Based Routing

TCAP Opcode Based Routing allows the EAGLE 5 ISS to route messages based on their operation codes. When the TCAP Opcode Based Routing feature is enabled and turned on, this information contained in the TCAP portion of messages is used for performing global title translation.

- To perform global title translation on ITU messages.
 - Message Type / Package Type
 - Application Context Name
 - Operation Code

- To perform global title translation on ANSI messages.
 - Package Type
 - Operation Code Family
 - Operation Code Specifier

TCAP Opcode Based Routing requires that the Flexible Linkset Optional Based Routing feature is enabled and turned on. TCAP Opcode Based Routing can be used with or without the Origin-Based SCCP Routing feature. Table 8: GTT Set Type and GTT Selector Combinations shows the type of GTT sets that can be provisioned for GTT selectors based on the features that are enabled and turned on.

TCAP Decoding

As part of the TCAP Opcode Based Routing feature, the EAGLE 5 ISS attempts to decode TCAP portion of all UDT/UDTS/Unsegmented XUDT/Unsegmented XUDTS queries coming to service modules for global title translation. Messages are decoded only if a TOBR Opcode Quantity is enabled. The objective of this decoder is not to validate the correctness of the message but simply to obtain the required TCAP data. The message is validated only for the encoding rules that are required to successfully decode the required TCAP information. In general, Tag-Length-Value encoding is validated; unsupported Tag values are skipped if they are encountered, unless a specific Tag order is expected. If the decoding fails, global title translation is still performed on the message using some default values for the TCAP data that denote their absence in the message. The TCAP Opcode Based Routing feature supports the following messages.

- ITU TCAP Message/Package Types
 - Begin
 - Continue
 - End
 - Abort
 - Unidirectional

- ANSI TCAP Message/Package Types
 - Unidirectional
 - Query With Permission
 - Query Without Permission
 - Response
 - Conversation With Permission
Conversation Without Permission
Abort

Other message/package types are treated as an unknown message type and are not proceed with the decoding. This is not considered an error, because many non-TCAP SCCP messages are processed by the EAGLE 5 ISS. For these messages, the TCAP data is not used for routing. If an opcode translation set is encountered while performing global title translation, the opcode translation set is considered as a “translation not found” in that set. Such messages are routed based on last matched translation depending on its fallback option. Refer to Flexible Linkset Optional Based Routing for more details on the fallback option.

The application context name (ACN) is used for all supported ITU TCAP messages except Abort messages. No attempt to retrieve the ACN is made for Abort messages. All other supported messages may have a Dialog portion containing Dialogue Request / Unidirectional Dialogue / Dialogue Response PDU, from which the ACN is retrieved. If no Dialog portion is detected, then the ACN is assumed to be NONE. The TCAP Opcode Based Routing feature attempts to find the operation code (opcode) in all supported ITU TCAP messages except Abort. These messages must contain Invoke or Return Result (Last or Not Last) as the first component. If not, the opcode is assumed to be NONE.

The TCAP Opcode Based Routing feature attempts to find the Operation Family and Specifier in all supported ANSI TCAP messages (except Abort) containing an INVOKE component. For all other messages, the Family and Opcode values are assumed to be NONE. Unless otherwise specified, the TCAP length fields are validated because all formats of the TCAP lengths (short, long, and indefinite) are supported for ITU TCAP messages. Indefinite form of lengths are not supported for ANSI TCAP messages. However, the primitive elements in ITU or ANSI TCAP messages are allowed to have long format or indefinite lengths. In the long format, the TCAP Opcode Based Routing feature does not allow a field length of more than two bytes. This limitation is considered acceptable because:

- The SCCP data portion for UDT(S) / Unsegmented XUDT(S) messages is a 1-byte length field. It has a maximum value of 255 bytes.
- All TCAP lengths of 255 bytes or less can be encoded with a 2-byte length field.

At any point of time during the decoding process, if it is found that the current position in TCAP message is extending beyond the SCCP data portion length, the decoder process stops.

TCAP Opcode Based Routing GTT Sets

The TCAP Opcode Based Routing feature introduces one new GTT Set, Opcode, with set type opcode. The opcode GTT set supports translations for ANSI and ITU opcodes.

TOBR Opcode Quantities

To provision a TCAP Opcode Based Routing entry for global title translation, a TOBR opcode quantity must be enabled with the enable-ctrl-feat command. These are the quantities that can be enabled.

- 3 opcode translations (part number : 893027901)
- 6 opcode translations (part number : 893027902)
- 12 opcode translations (part number : 893027903)
- 24 opcode translations (part number : 893027904)
- 48 opcode translations (part number : 893027905)
- 96 opcode translations (part number : 893027906)
- 1 million opcode translations (part number : 893027907) - the GTT translation table capacity is controlled by the XGTT Table Expansion feature.

GTT Translations
The GTT translations provisioned for the TCAP Opcode Based Routing feature can also be provisioned for these features.

- Advanced GT Modification
- Variable Length Global Title Translation
- SCCP Loop Detection
- Intermediate GTT Load Sharing
- ANSI/ITU SCCP Conversion
- Flexible GTT Load Sharing

TCAP Opcode Based Routing Feature Translations with an ANSI Opcode

The key for ANSI opcode translations is the ANSI opcode specifier, the ANSI TCAP Package Type, and the Family (part of ANSI TCAP opcode field). The ANSI opcode specifier values can be 0 to 255, None, and * (any opcode specifier value). The value none indicates the absence of the opcode in the incoming MSU. The ANSI TCAP Package Type values are Unidirectional, Query with Permission, Query without Permission, Response, Conversation with Permission, Conversation without Permission, Abort, and Any. The Family value can be 0 to 255, None, and * (any family value). While provisioning, when ANSI TCAP Package type is specified as Abort, then the ANSI opcode specifier and Family values must be none. Since the opcode specifier and family values exist together in the incoming MSU, both values in the translation must be none if either value is specified as none.

Search Order for the TCAP Opcode Based Routing Feature Translations with an ANSI Opcode

Table 16: Search Order for the TCAP Opcode Based Routing Feature Translations with an ANSI Opcode shows the searching order for The TCAP Opcode Based Routing feature translations with an ANSI opcode. The ANSI opcode translations are matched to ANSI MSUs.

<table>
<thead>
<tr>
<th>Priority</th>
<th>TCAP Package Type</th>
<th>ANSI Opcode</th>
<th>Family</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Exact (package type value)</td>
<td>Exact (the value none or a number)</td>
<td>Exact (the value none or a number)</td>
</tr>
<tr>
<td>2</td>
<td>Exact</td>
<td>Exact</td>
<td>Any</td>
</tr>
<tr>
<td>3</td>
<td>Exact</td>
<td>Any</td>
<td>Exact</td>
</tr>
<tr>
<td>4</td>
<td>Exact</td>
<td>Any</td>
<td>Any</td>
</tr>
<tr>
<td>5</td>
<td>Any</td>
<td>Exact</td>
<td>Exact</td>
</tr>
<tr>
<td>6</td>
<td>Any</td>
<td>Exact</td>
<td>Any</td>
</tr>
<tr>
<td>7</td>
<td>Any</td>
<td>Any</td>
<td>Exact</td>
</tr>
<tr>
<td>8</td>
<td>Any</td>
<td>Any</td>
<td>Any</td>
</tr>
</tbody>
</table>

TCAP Opcode Based Routing Feature Translations with an ITU Opcode

The key for ITU opcode translations is the ITU opcode, the ITU TCAP Package Type, and the application context name (ACN). The ITU opcode values can be 0 to 255, None, and * (any opcode value). The value none indicates the absence of the opcode in the incoming MSU. The ITU TCAP Package Type values are Begin, End, Continue, Abort, Unidirectional, and Any. The ACN value can be 1 to 7 bytes - the value of each byte is from 0 to 255, none and Any. The none value indicates the absence of the
ACN value in the incoming MSU. Though the VGTT feature is not supported for opcode GTT set, different digit length ACNs for the opcode GTT set can be provisioned. While provisioning, when ITU TCAP Package type is specified as Abort, then the ITU opcode and ACN values must be none. An ACN value cannot contain a mixture numbers, the value none, or the value Any. Table 17: Valid and Invalid ACN Values shows the valid and invalid values for the ACN.

Table 17: Valid and Invalid ACN Values

<table>
<thead>
<tr>
<th>ACN Value</th>
<th>Does The TCAP Opcode Based Routing Feature Support this ACN?</th>
<th>Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bytes 1-2-3-4-5</td>
<td>Yes</td>
<td>The remaining bytes are treated as None.</td>
</tr>
<tr>
<td>Bytes 1-2-3-4-5-6-7</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Byte 1</td>
<td>Yes</td>
<td>The remaining bytes are treated as None.</td>
</tr>
<tr>
<td>None</td>
<td>Yes</td>
<td>All the bytes are treated as None.</td>
</tr>
<tr>
<td>Any</td>
<td>Yes</td>
<td>All the bytes are treated as Any.</td>
</tr>
<tr>
<td>Byte 1-none-Byte 2</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Byte 1-any-Byte 3-Byte4</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Any-Byte1</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>None-Any-Byte1</td>
<td>No</td>
<td></td>
</tr>
</tbody>
</table>

Search Order for the TCAP Opcode Based Routing Feature Translations with an ITU Opcode

Table 18: Search Order for the TCAP Opcode Based Routing Feature Translations with an ITU Opcode shows the search order for the TCAP Opcode Based Routing feature translations with an ITU opcode when the TCAP Opcode Based Routing feature is enabled and turned on. The ITU opcode translations are only matched to ITU MSUs. If any MSU contains a 7-byte ACN value, an attempt is made to match the 7-byte ACN values with the values in the database. If a match is not found, no attempt is made to match any 6-/5-/4-/3-/2-/1-byte ACN values in the database. An attempt is made to match to any ACN=ANY entries in the database, if these entries are provisioned in the database.

Table 18: Search Order for the TCAP Opcode Based Routing Feature Translations with an ITU Opcode

<table>
<thead>
<tr>
<th>Priority</th>
<th>TCAP Package Type</th>
<th>ANSI Opcode</th>
<th>ACN</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Exact (package type value)</td>
<td>Exact (the value none or a number)</td>
<td>Exact (the value none or a number)</td>
</tr>
<tr>
<td>2</td>
<td>Exact</td>
<td>Exact</td>
<td>Any</td>
</tr>
<tr>
<td>3</td>
<td>Exact</td>
<td>Any</td>
<td>Exact</td>
</tr>
<tr>
<td>4</td>
<td>Exact</td>
<td>Any</td>
<td>Any</td>
</tr>
<tr>
<td>5</td>
<td>Any</td>
<td>Exact</td>
<td>Exact</td>
</tr>
</tbody>
</table>
TCAP Segmentation SMS Support Phase 2

An objective of the TCAP Opcode Based Routing feature is to allow EAGLE 5 ISS to route segmented TCAP SMS messages in the same manner as non-segmented TCAP messages are routed. This would mean routing all TCAP SMS messages within a particular transaction to the same place. Routing rules based on the opcode are used to route messages for special application handling. These rules work well for non-segmented TCAP messages. However they do not work well for segmented TCAP messages, because the initial BEGIN message does not contain an opcode. These messages must be identified for special routing based on other criteria. The TCAP Opcode Based Routing feature achieves this discrimination by allowing the EAGLE 5 ISS to route messages based on the TCAP Opcode and Dialogue portion information in the message. The EAGLE 5 ISS uses the Application Context Name from the Dialogue portion to route the TCAP Begin messages without the component portion (and without the operation code). The same routing rules to route messages with an ACN and opcode, an ACN only, or an opcode only value can be used. GSM SMS messages work particularly well in this solution, because there is a 1 to 1 correspondence between the ACN and opcode values.

Hardware Requirements

To enable the TCAP Opcode Based Routing feature E5-SM4G cards must be provisioned in the database. Any DSMs must be replaced by the E5-SM4G cards.

Provisioning the TCAP Opcode Based Routing Feature

To provision the TCAP Opcode Based Routing feature, perform these steps:

1. Turn the GTT and EGTT features on using the `chg-feat` command. Add the required E5-SM4G cards to the database using the `ent-card` command. Perform the Adding a Service Module procedure.
2. Enable and turn on the TCAP Opcode Based Routing feature using the `enable-ctrl-feat` and the `chg-ctrl-feat` commands. Perform the Activating the TCAP Opcode Based Routing Feature procedure. To enable and turn on the TCAP Opcode Based Routing feature, the Flexible Linkset Optional Based Routing feature must be enabled and turned on. The status of the Flexible Linkset Optional Based Routing feature is verified when the Activating the TCAP Opcode Based Routing Feature procedure is performed.
3. Enable a TOBR Opcode Quantity using the `enable-ctrl-feat` command. Perform the Enabling a TOBR Opcode Quantity procedure.
4. Provision the required GTT sets using the `ent-gttset` command. Perform the Adding a GTT Set procedure.
5. Provision the required GTT translations using the `ent-gta` command. Perform the Adding Global Title Address Information procedure.
6. Provision the required GTT selectors using the `ent-gttssel` command. Perform the Adding a GTT Selector procedure.
GTT Actions

The GTT Actions allows these actions to be applied to MSUs during global title translation message processing.

- Discard
- UDTS
- Duplicate
- TCAP error
- Forward

A GTT action entry contains one GTT action, a GTT action ID, data specific to the action, and a reference count. These actions are contained in a GTT action entry. The EAGLE 5 ISS contain a maximum of 2000 GTT action entries. A GTT action entry, identified by the GTT action ID, is assigned to a GTT action set. The GTT action set is assigned to the global title address entry. The reference count in the GTT action entry shows the number of database entities that reference the GTT action entry. When a GTT action entry is referenced by a GTT action set, a service selector ID, a Forward GTT action entry, or an LNP service, the reference count is increased by 1. When a GTT action set, a service selector ID, a Forward GTT action entry, or an LNP service no longer references the GTT action entry, the reference count is decreased by 1. The GTT action entry can be removed only when the reference count is zero. The data for each GTT action entry is shown in the rtrv-gttact output.

Discard GTT Action

The Discard GTT action discards the MSU. A Discard GTT action entry is provisioned with the ent-gttact command using these parameters.

- actid - the GTT action ID
- act=disc - the discard GTT action
- on=uimreqd - UIM 1193 GTT Action DISCARD DISCARDED MSU is generated when the MSU is discarded.
- off=uimreqd - UIM 1193 GTT Action DISCARD DISCARDED MSU is not generated when the MSU is discarded.

Note: If neither the on=uimreqd or off=uimreqd parameters are specified, the UIMREQD value defaults to off.

An example of the Discard GTT action entry is shown in Figure 13: Discard GTT Action Entry.

<table>
<thead>
<tr>
<th>GTT Action ID</th>
<th>GTT Action</th>
<th>Action Specific Data</th>
<th>Reference Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACTID1</td>
<td>Discard</td>
<td></td>
<td>10</td>
</tr>
</tbody>
</table>

Figure 13: Discard GTT Action Entry

UDTS GTT Action

The UDTS GTT action discards the MSU with the UDTS error code that is provisioned for the GTT action entry which specifies the reason associated with the UDTS GTT action for discarding the message. A UDTS GTT action entry is provisioned with the `ent-gttact` command using these parameters:

- **actid** - the GTT action ID
- **act=udts** - the UDTS GTT action
- **udtserr= 0 to 255**
- **on=uimreqd** - UIM 1192 GTT Action UDTS DISCARDED MSU is generated when the MSU is discarded.
- **off=uimreqd** - UIM 1192 GTT Action UDTS DISCARDED MSU is not generated when the MSU is discarded.

Note: If neither the **on=uimreqd** or **off=uimreqd** parameters are specified, the UIMREQD value defaults to **off**.

An example of the UDTS GTT action entry is shown in **Figure 14: UDTS GTT Action Entry**.

```
<table>
<thead>
<tr>
<th>GTT Action ID</th>
<th>GTT Action</th>
<th>Action Specific Data</th>
<th>Reference Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACTID2</td>
<td>UDTS</td>
<td>UDTS Error Code</td>
<td>UIMREQD Value</td>
</tr>
<tr>
<td>10</td>
<td>Off</td>
<td>20</td>
<td></td>
</tr>
</tbody>
</table>
```

Figure 14: UDTS GTT Action Entry

TCAP Error GTT Action

The TCAP Error GTT action discards the MSU and a reject message is sent to the originator of the MSU with either an ANSI TCAP error code or an ITU TCAP error code that is provisioned for the GTT action entry. A TCAP Error GTT action entry is provisioned with the `ent-gttact` command using these parameters:

- **actid** - the GTT action ID
- **act=tcaperr** - the TCAP Error GTT action
- **atcaperr= 0 to 255** - the ANSI TCAP error code
- **itcaperr= 0 to 255** - the ITU TCAP error code
- **on=uimreqd** - UIM 1077 GTT Action TCAP ERROR DISCARDED MSU is generated when the MSU is discarded.
- **off=uimreqd** - UIM 1077 GTT Action TCAP ERROR DISCARDED MSU is not generated when the MSU is discarded.

Note: If neither the **on=uimreqd** or **off=uimreqd** parameters are specified, the UIMREQD value defaults to **off**.

An example of the TCAP Error GTT action entry is shown in **Figure 15: TCAP Error GTT Action Entry**.
Duplicate GTT Action

The Duplicate GTT action sends a copy of the MSU to the duplicate node. The Duplicate GTT action is in addition to the normal processing and routing of the translated MSU. The translated MSU is not modified with any of the Duplicate GTT action data. If the Duplicate GTT action fails, UIM 1078 GTT Action DUPLICATE FAILED is generated. A Duplicate GTT action entry is provisioned with the `ent-gttact` command using these parameters.

- **actid** - the GTT action ID
- **act=dup** - the Duplicate GTT action
- **pc/pca/pci/pcn/pcn24** - the point code of the duplicate node
- **ri=<gt, ssn>** - the routing indicator in the SCCP called party address of the duplicated copy of MSU.
- **mrsnset=<1 - 3000 or none>** - the MRN set ID, shown in the `rtrv-mrn` output, or no MRN set ID
- **mapset=<1 - 36000 or dflt>** - The MAP set ID or the default MAP set ID, shown in the `rtrv-map` output
- **ssn=<2 - 255>** - The subsystem number in the SCCP called party address of the duplicated copy of MSU.
- **loopset** - the name of the loopset, shown in the `rtrv-loopset` output, associated with the Duplicate GTT action entry
- **cggtmodid** - the calling party global title modification identifier, shown in the `rtrv-gtmod` output, associated with the calling party of a GTT action entry.
- **cdgtmodid** - the called party global title modification identifier, shown in the `rtrv-gtmod` output, associated with the called party of a GTT action entry.
- **cgpc/cgpcia/cgpcic/cgpcn/cgpcn24** - the calling party point code in the outgoing message when the cgpcgmsg parameter value is provcgpc. The network type of the cgpc/cgpcia/cgpci/cgpcn/cgpcn24 value must be the same as the pc/pca/pci/pcn/pcn24 value.
- **cgpcgmsg=<dflt, cgpcicmsg, opcicmsg, provcgpc>** - the data that is used as the calling party point code in the outgoing message.
- **dflt** - default. The standard Global Title Translation process supplies the calling party address point code.

Note: If the cgpc/cgpcia/cgpci/cgpcn/cgpcn24 and the cgpcgmsg parameters are not specified, the default value for the cgpcgmsg parameter is dflt.

- **cgpcicmsg** - the calling party address point code data from the incoming MSU
- **opcicmsg** - the OPC data from the incoming MSU
- **provcgpc** - the cgpc/cgpcia/cgpci/cgpcn/cgpcn24 value provisioned in the Duplicate GTT Action.
• *on=useicmsg* - The incoming MSU is duplicated to the MSU. The incoming MSU is the MSU before applying the translation data by any EPAP service or global title translation process and before applying the GTT actions data. However, it is possible that some data in the MSU may have been modified by the LIM before arriving on the service module. The TCAP layer may have been modified by any EPAP service.

• *off=useicmsg* - The translated MSU is duplicated to the MSU. The translated MSU is the MSU after applying the translation data by any EPAP/ELAP service or global title translation process and before applying the GTT actions data. However, it is possible that some data in the MSU may have been modified by the LIM before arriving on the service module. The TCAP layer may have been modified by any EPAP service.

Note: If neither the *on=useicmsg* or *off=useicmsg* parameters are specified, the USEICMSG value defaults to *off*.

An example of the Duplicate GTT action entry is shown in **Figure 16: Duplicate GTT Action Entry.**

![Figure 16: Duplicate GTT Action Entry](image)

Figure 16: Duplicate GTT Action Entry

During message processing, these actions are performed based on the *cgpcogmsg* parameter value in the Duplicate GTT action entry,

• The CgPA point code field in the duplicated MSU is updated.

• If the CgPA point code field is not present in the duplicated MSU, the OPC field is updated with the *cgpcogmsg* parameter value in the Duplicate GTT action entry.

• If a value other than *dflt* for the *cgpcogmsg* parameter value in the Duplicate GTT action entry and the CgPA point code or the OPC is not present or cannot be used in the MSU, The EAGLE 5 ISS uses the *dflt* value of the *cgpcogmsg* parameter; the CgPA point code supplied by standard global title translation process is applied.

Forward GTT Action

The Forward GTT action diverts the translated MSU to another node. If the EAGLE 5 ISS fails to forward the MSU, UIM 1079 GTT Action FORWARD FAILED is generated.

An example of the Forwarded GTT action entry is shown in **Figure 17: Forward GTT Action Entry.**
The Forward GTT Action entry uses the same parameters and values that is used in the Duplicate GTT Action entry, along with the default action (defactid) parameter. The defactid parameter indicates what action is taken when the EAGLE 5 ISS fails to route the forwarded MSU. These are the default actions are:

- Discard GTT action entry ID - perform the action defined by the Discard GTT entry ID.
- UDTS GTT Action ID - perform the action defined by the UDTS GTT action entry ID.
- TCAP Error GTT Action ID - perform the action defined by the TCAP Error GTT action entry ID.
- Fallback to the translated MSU (fallback). The translated MSU is routed according to the routing data in the translated MSU. The routing data can be from an EPAP service or the PPSOPTS table, or the global title translation process. Fallback to the translated MSU is the default value for the defactid parameter if the defactid parameter is not specified.

GTT Action Set

A GTT action set contains from one to six GTT action entries, the GTT action set ID which is used by global title address entries to reference the GTT action set, a test mode field whose value can be either on or off, and a reference count. The EAGLE 5 ISS can contain 20,000 GTT action sets.

A GTT action set is assigned to a global title address entry. The reference count in the GTT action set shows the number of global title address entries that reference the GTT action set. When a GTT action set is referenced by an global title address entry, the reference count is increased by 1. When a global title address entry no longer references the GTT action set, the reference count is decreased by 1. The GTT action set can be removed only when the reference count is zero. When the GTT action set is removed, the reference counts of GTT action entries that are in the GTT action set are decreased by 1.

The data for each GTT action set is shown in the rtrv-gttset output.

A GTT action set is provisioned using the ent-gttset command with these parameters.

- actsn - the GTT action set name
- actid1 - The GTT action entry ID shown in the rtrv-gttact output.
- actid2 - The GTT action entry ID shown in the rtrv-gttact output.
- actid3 - The GTT action entry ID shown in the rtrv-gttact output.
- actid4 - The GTT action entry ID shown in the rtrv-gttact output.
- actid5 - The GTT action entry ID shown in the rtrv-gttact output.
- actid6 - The GTT action entry ID shown in the rtrv-gttact output.
- on=testmode
- off=testmode

The following rules apply for a GTT Action Set.
A GTT action set contain only one GTT action entry that contains either the Forward, Discard, UDTS, and TCAP Error GTT actions. This GTT action entry must be the last entry in the GTT action set.

- The GTT action set can contain up to five GTT action entries that contain the Duplicate GTT action. Each Duplicate GTT action entry in the GTT action set must have a unique GTT action Entry ID.
- The GTT action set must contain at least one GTT action entry.
- The GTT action set Id must be unique in the GTT action set table.
- The GTT action entries can be provisioned in any order in the GTT action set as long as the GTT action entry that contains either the Forward, Discard, UDTS, and TCAP Error GTT action is the last entry in the GTT action set. For example, the actid4 parameter can be specified without specifying the actid1 parameter. However, after specifying the actid4 parameter with a Duplicate GTT action entry, the actid1 parameter cannot be specified with a GTT action entry that contains either the Forward, Discard, UDTS, or TCAP Error GTT action. Another Duplicate GTT action entry can be specified for the actid1 parameter.

A GTT action set can contain entries with these combinations of GTT actions.

- Forward
- Discard
- UDTS
- TCAP Error
- Duplicate (a maximum of 5 Duplicate Action Ids)
- Duplicate (a maximum of 5 Duplicate GTT Actions), Discard (the last entry in the GTT action set)
- Duplicate (a maximum of 5 Duplicate GTT Actions), UDTS (the last entry in the GTT action set)
- Duplicate (a maximum of 5 Duplicate GTT Actions), TCAP Error (the last entry in the GTT action set)
- Duplicate (a maximum of 5 Duplicate GTT Actions), Forward (the last entry in the GTT action set)

The test mode field of the GTT action set entry defines whether or not the GTT action set is used for real-time MSU processing. The test mode field is provisioned by these two parameters.

- on=testmode - indicates that the GTT action set is used only by the test message tool.
- off=testmode - indicates that the GTT action set is used for real-time MSU processing.

The default value for the test mode field, if neither the on=testmode or off=testmode parameters are specified, is off.

GTA Entries and the Discard/UDTS/TCAP Error GTT Action

In previous releases, only the Discard and UDTS GTT actions could be assigned to a GTA entry, but the GTA entry could contain no routing data (the point code, SSN, routing indicator, MRN set and MAP set values). With the GTT Actions feature, the GTA entry that references the GTT action set that contains the Discard, UDTS, or TCAP Error GTT actions can contain routing data, although the routing data is not used during message processing. This allows the user to change the GTT action set that is being referenced by the GTA entry to a GTT action set that requires routing data, a GTT action set that contains either the Duplicate or Forward GTT actions, without having to provision the routing data for the GTA entry.

GTA Entries with the XLAT=NONE Parameter

In previous releases, the Discard and UDTS GTT actions were specified for the GTA entry with the xlat=disc and the xlat=udts parameters of the ent-gta or chg-gta commands. The GTT Actions feature allows a GTA entry to be provisioned with the xlat=none parameter. The GTA entry that contains the xlat=none parameter can contain any data except the routing data (the point code, SSN,
and routing indicator). At any point of time, in a given GTT set, two GTA entries with same GTA value and different XLAT values are not allowed.

If during message processing a matching translation that contains the \texttt{xlat=none} parameter value is found, these actions occur.

- For successful non-GTT Message Relay Services, the MSU continues to use the routing data from the EPAP service or PPSOPTS table. If a GTT action set is associated with the matched translation, then the GTT actions in the GTT action set is applied to the MSU.
- For all other MSUs:
 - If the matching translation that contains the \texttt{xlat=none} parameter value and a GTT action set and:
 - The GTT action set contains only one of these actions: Discard, UDTS, or TCAP Error GTT Action, then the matching translation is considered a match.
 - The GTT action set that contains the Duplicate or Forward GTT actions, then the matching translation is not considered a match.
 - If a matching translation that contains the \texttt{xlat=none} parameter value and does not contain a GTT action set, the matching translation is not considered a match because there is no routing data. If none of the following conditions are present, the global title translation process has failed.
 - If the Support for 16 GTT Lengths in VGTT feature is not enabled and turned on, the global title translation process may find the best match with a lesser number of digits that contains an \texttt{xlat} parameter value other than \texttt{none}.
 - While searching for a matching translation using the Origin-Based SCCP Routing feature:
 - For the advanced CdPA Mode, the translation containing the \texttt{xlat=none} parameter value is found in the advanced portion of CdPA translation, (SELID, OPTSN, or OPCSN), and no further advanced CdPA processing is possible (for example, there is no optional OPCSN defined), the next GTT mode in the GTT hierarchy is considered.
 - For all other modes:
 - If there is no previously matched translation, the next GTT mode in the GTT hierarchy is considered, if the GTT mode is available.
 - If there is previously matched translation, the MSU is routed according to the data in the previously matched translation.

For example, while searching for a matching translation using the Origin-Based SCCP Routing feature, Set 3 Translation is found (see Figure 18: Origin-Based SCCP Routing and XLAT=NONE). A matching translation that contains the \texttt{xlat=none} parameter value is found in SELID/Set 4. This is not considered a match. The MSU is routed based on the routing data in Set 3 Translation.

If Set 3 Translation is a CdPA GTA translation with an optional OPC set and a matching translation that contains the \texttt{xlat=none} parameter value is found in SELID/Set 4, and a matching translation that contains the \texttt{xlat=none} parameter value is found in the OPC set also, the next mode in the GTT hierarchy is selected.
While searching for a matching translation using the Flexible Linkset Optional Based Routing feature, if a translation that contains the `xlat=none` parameter value is encountered, the FALLBACK option of the previously found translation is used. If the FALLBACK option is set to yes, a match is made to the previously found translation. If the FALLBACK option is set to no, the global title translation process has failed. For example, while searching for a matching translation using the Flexible Linkset Optional Based Routing feature, Set 1 Translation is found (see Figure 19: Interaction between the FALLBACK Option and XLAT=NONE). A matching translation that contains the `xlat=none` parameter value is found in SELID/Set 2. This is not a match. The FALLBACK option of Set 1 Translation is used. Since the FALLBACK option is set to yes in Set 1 Translation, the MSU is routed based on the Set 1 Translation routing data.

If Set 1 Translation is a CdPA GTA, CdPA SSN, or Opcode translation and a matching translation that contains the `xlat=none` parameter value is found in SELID/Set 2 as shown in Figure 18: Origin-Based SCCP Routing and XLAT=NONE, a check for a matching translation is made in the OPC set. If a matching translation that contains the `xlat=none` parameter value is found in the OPC set, the FALLBACK option of Set 1 Translation is used. Since the FALLBACK option in Set 1 Translation is set to yes, the MSU is routed based on the Set 1 Translation routing data.
Set 1 is the very first GTT set that is found in the searching process and Set 1 Translation is provisioned with the \texttt{xlat=none} parameter value, then the global title translation process fails.

- For opcode translations, the global title translation process used the TCAP Opcode Based Routing feature to find the best matching translation.

GTT Action Per-TT Measurements

GTT action-related events recorded by the SCCP application are reported as system-wide totals, on a per-translation type basis (per-TT), and a per-path basis. The events recorded for GTT Actions are shown in Table 19: GTT Action Events Recorded for Per-TT and System-Wide Measurements Reports and Table 20: GTT Action Events Recorded for Per-Path Measurements Reports.

Table 19: GTT Action Events Recorded for Per-TT and System-Wide Measurements Reports

<table>
<thead>
<tr>
<th>Event Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>GTTASET</td>
<td>The total number of messages receiving any GTT action.</td>
</tr>
<tr>
<td>GTTADUP</td>
<td>The total number of messages for which a Duplicate MSU was sent.</td>
</tr>
<tr>
<td>GTTADISC0</td>
<td>The total number of messages discarded by the DISCARD GTT action.</td>
</tr>
<tr>
<td>GTTADISC1</td>
<td>The total number of messages discarded by the UDTS GTT action.</td>
</tr>
<tr>
<td>GTTADISC2</td>
<td>The total number of messages discarded by the TCAP Error GTT action.</td>
</tr>
<tr>
<td>GTTAFWD</td>
<td>The total number of messages forwarded by the Forward GTT action.</td>
</tr>
</tbody>
</table>

Table 20: GTT Action Events Recorded for Per-Path Measurements Reports

<table>
<thead>
<tr>
<th>Event Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>GTTACTNA</td>
<td>The total number of messages for which no GTT actions were performed.</td>
</tr>
<tr>
<td>GTTADUP</td>
<td>The total number of messages for which a Duplicate MSU was sent.</td>
</tr>
<tr>
<td>GTTADISC0</td>
<td>The total number of messages discarded by the DISCARD GTT action.</td>
</tr>
<tr>
<td>GTTADISC1</td>
<td>The total number of messages discarded by the UDTS GTT action.</td>
</tr>
<tr>
<td>GTTADISC2</td>
<td>The total number of messages discarded by the TCAP Error GTT action.</td>
</tr>
<tr>
<td>GTTAFWD</td>
<td>The total number of messages forwarded by the Forward GTT action.</td>
</tr>
</tbody>
</table>

The per-translation type report contains a breakdown of the GTT action events for each of the translation types provisioned in the database, up to a maximum of 256 translation types. This data is available for every 30-minute interval, and for every 15-minute interval if the 15-Minute Measurements feature is enabled and turned on. The GTT Actions system-wide measurements report provides the totals of all the actions that were performed on the EAGLE 5 ISS for all the GTT action sets. This report is available for every 30-minute interval, and for every 15-minute interval if the 15-Minute Measurements feature is enabled and turned on.

GTT Action Per-Path Measurements

The GTT action per-path measurements provides measurement counts for the GTT actions applied to the messages that match a pre defined combination of “CgPA GTA”, “CdPA GTA”, and “Opcode” values. The combination of these values are provisioned in the GTT Path table with the \texttt{ent-gttapath}
command. Each entry in the GTT Path table must be unique combination of CdPA GTA, CgPA GTA and Opcode values and this combination is called a path. If a translation search in Global Title Translation table matches the path specified in GTT Path table, then the corresponding measurement counts for that path are incremented. However, if the \textit{ppmeasreqd} parameter (Per Path Measurements required) value for the final translation is no, then the per-path measurement counts for the matching path are not pegged.

A GTT action path entry set is provisioned using the \texttt{ent-gttapath} command with these parameters.

- \textit{gttpn} - the GTT action path name
- \textit{opgttsn} - the opcode GTT set name shown in the \texttt{rtrv-gttset} output.
- \textit{opcode} - the opcode value shown in the \texttt{rtrv-gta} output that is assigned to the \textit{opgttsn} value.
- \textit{pkgtype} - the package type value shown in the \texttt{rtrv-gta} output that is assigned to the \textit{opgttsn} value.
- \textit{family} - the family value shown in the \texttt{rtrv-gta} output that is assigned to the \textit{opgttsn} value.
- \textit{acn} - the ACN value shown in the \texttt{rtrv-gta} output that is assigned to the \textit{opgttsn} value.
- \textit{cggttsn} - the CGGTA GTT set name shown in the \texttt{rtrv-gttset} output.
- \textit{cggta} - the CGGTA shown in the \texttt{rtrv-gta} output that is assigned to the \textit{cggttsn} value.
- \textit{cdgttsn} - the CDGTA GTT set name shown in the \texttt{rtrv-gttset} output.
- \textit{cdgta} - the CDGTA shown in the \texttt{rtrv-gta} output that is assigned to the \textit{cggttsn} value.

An example of a GTT action path entry is shown in Figure 20: GTT Action Path Entry.

<table>
<thead>
<tr>
<th>Entry #</th>
<th>G TT SET Name (Opcode Type)</th>
<th>Package Type</th>
<th>Opcode</th>
<th>Application Context Name</th>
<th>Family</th>
<th>G TT Set Name (CdPA Type)</th>
<th>CGPA GTA</th>
<th>ECGPA GTA</th>
<th>G TT Set Name (CdPA Type)</th>
<th>CDPA GTA</th>
<th>ECDGTA GTA</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>opsn1</td>
<td>rsp</td>
<td>23</td>
<td>--</td>
<td>22</td>
<td>cgsn1</td>
<td>53652</td>
<td>--</td>
<td>csdn1</td>
<td>12345</td>
<td>--</td>
</tr>
<tr>
<td>2</td>
<td>opsn2</td>
<td>ansluri</td>
<td>23</td>
<td>--</td>
<td>22</td>
<td>--</td>
<td>--</td>
<td>csdn2</td>
<td>--</td>
<td>12345</td>
<td>--</td>
</tr>
</tbody>
</table>

Figure 20: GTT Action Path Entry

The GTT Action path table can contain a maximum of 10,000 entries. A GTT path entry shall have up to three GTT set-value combinations in it, where the GTT set and value must be a valid entry in the GTT Translation table. However, a GTT path must be provisioned with at least one GTT set and value (CdPA GTA/CgPA GTA/Opcode). For every GTT action path, the GTT set and the value must be specified together as a combination. If the GTT Set-value combination is not provisioned in a GTT action path then it is considered as no value and is displayed as “----” in the \texttt{rtrv-gttapath} output for that combination. Translation entries cannot be removed or modified (in case of GTA range splitting) if the entries are referenced in a GTT action path. Figure 21: GTT Translation and GTT Action Path Table Relationship shows the relation between the two tables.
The GTT actions per-path measurements report contains the GTT Action events for the predefined GTT paths that are provisioned in the database, up to a maximum of 10,000 predefined paths. The per-path measurement data is collected during the 60 minute interval period (per hour). The hourly data is retained for 24 hours. The daily collection data is retained for seven days. The data collection reports are available as both scheduled and on-demand reports. The events recorded for the GTT actions per-path measurements is shown in Table 20: GTT Action Events Recorded for Per-Path Measurements Reports.

Per path measurements for a GTT path are pegged if these conditions are present:

- A matching global title translation was found for at least one of the CdPA GTA/ CgPA GTA/ Opcode values.
- The ppmeasreqd parameter value in the global title translation is yes.
- The matching CdPA GTA/ CgPA GTA/ Opcode translation combination is provisioned in GTT action path table.

GTT Action Path Entry Searched with all the GTT Set-Value Combinations Specified

All three specified GTT Set-value combinations (opcode/CgPA/CdPA) are provisioned in a GTT action path in GTT action path table as shown in Figure 22: Example GTT Action Path Table Entry.

Figure 21: GTT Translation and GTT Action Path Table Relationship

![Figure 21: GTT Translation and GTT Action Path Table Relationship](image)

Figure 22: Example GTT Action Path Table Entry

The per-path measurements are pegged for this GTT action path entry only if:

- The ppmeasreqd parameter value in the global title translation is yes.
All the specified GTT set-value combinations were searched in any order during the global title translation lookup.

<table>
<thead>
<tr>
<th>Set 1 - Set Type CgPA GTA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Set Name: cgsn1</td>
</tr>
<tr>
<td>Translation Routing Data</td>
</tr>
<tr>
<td>CGGTA = 1234</td>
</tr>
<tr>
<td>Per path measurement required = Yes</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Set 2 - Set Type Opcode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Set Name: opsn1</td>
</tr>
<tr>
<td>Translation Routing Data</td>
</tr>
<tr>
<td>pkgtype=ituuni, opcode=22, can=1-2-1-1-1-1-1</td>
</tr>
<tr>
<td>Per path measurement required = No</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Set 3 - Set Type Cdsn1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Set Name: cdnsn1</td>
</tr>
<tr>
<td>Translation Routing Data</td>
</tr>
<tr>
<td>CDGTA = 2345</td>
</tr>
<tr>
<td>Per path measurement required = Yes</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Set 4 - Set Type Cdsn1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Set Name: cdssn1</td>
</tr>
<tr>
<td>Translation Routing Data</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Search Translation Table</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Set 5 - Set Type Cdsn1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Set Name: cdssn1</td>
</tr>
<tr>
<td>Translation Routing Data</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Search Translation Table</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Set 6 - Set Type OPC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Set Name: opcn1</td>
</tr>
<tr>
<td>Translation Routing Data</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Search Translation Table</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Set 7 - Set Type Cdsn1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Set Name: cdssn1</td>
</tr>
<tr>
<td>Translation Routing Data</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Per path measurement required = Yes</td>
</tr>
</tbody>
</table>

Figure 23: GTT Translation Lookup - Exact GTT Action Path Match

In Figure 23: GTT Translation Lookup - Exact GTT Action Path Match, searches are performed for this translation data.

- Set 1 - CGGTTSN = cgsn1 - CGGTA = 1234
- Set 2 - OPGTTSN = opsn1 - Opcode = 22
- Set 3 - CDGTTSN = cdnsn1 - CDGTA = 2345

This combination matches the entry # 1 in the GTT action path table shown in Figure 22: Example GTT Action Path Table Entry. Since the per-path measurement required value is set to Yes in Set 7 (the
translation result), entry #1 in Figure 22: Example GTT Action Path Table Entry is pegged in the per-path measurements report. If the per-path measurement required value is set to No in Set 7, then entry #1 in Figure 22: Example GTT Action Path Table Entry is not pegged in the per-path measurements report.

GTT Action Path Entry Not Searched in the Translation Lookup

If a GTT set-value combinations search is performed during the translation lookup, and all the searched combinations do not match any of the provisioned GTT action paths, then the per-path measurements are not pegged.

![GTT Translation Lookup - No GTT Action Path Match](image)

Figure 24: GTT Translation Lookup - No GTT Action Path Match

In Figure 24: GTT Translation Lookup - No GTT Action Path Match, a search is performed for this translation data during the global title translation lookup. CDPA GTA and CgPA GTA searches were not performed.

| Opcode GTT set type | Set 5 | OPGTTSN = opsn2 | OPCODE = 12 |

The entries in Figure 22: Example GTT Action Path Table Entry do not contain any entries that have only an Opcode entry, so the per-path measurements are not pegged.
GTT Path Entry Searched with Some GTT Set-Value Combinations Specified

Suppose only the Opcode and CgPA GTA GTT set-value combinations are provisioned in a GTT action path, as shown in entry #3 in Figure 22: Example GTT Action Path Table Entry. The per-path measurements are pegged for this GTT action path entry only if:

- The per-path measurement required value in the resulting translation is set to Yes.
- The matching translation entry was found for both the CgPA and Opcode GTT set-value combination.
- Either the search was not performed on CdPA GTA or no matching translation entry was found for the CdPA GTA.

In Figure 25: GTT Translation Lookup - Exact GTT Action Path Match (with Unspecified GTT Set-Value Combinations), searches are performed for this translation data during the global title translation lookup. CDPA GTA search was not performed.
• Opcode GTT set type - Set 5 - OPGTTSN = opsn3 - Opcode = 10
• CGPA GTT set type - Set 6 - CGGTTSN = cgsn3 - CGGTA = 12345678

The searched CGPA GTA/CdPA GTA/OPCODE values matches Entry #3 in Figure 22: Example GTT Action Path Table Entry where the CDPA GTA is provisioned as none. Since the per-path measurement required value is set to Yes in Set 6 (the translation result), entry #3 in Figure 22: Example GTT Action Path Table Entry is pegged in the per-path measurements report.

Provisioning the GTT Actions Feature

To provision the GTT Actions feature, perform these steps.

1. Turn the GTT and EGTT features on using the \texttt{chg-feat} command. Add the required service modules to the database using the \texttt{ent-card} command. Perform the \textit{Adding a Service Module} procedure.

2. Enable and turn on one or more of these features using the \texttt{enable-ctrl-feat} and the \texttt{chg-ctrl-feat} commands.
 • To perform the GTT actions Discard, UDTS, or TCAP Error - GTT Action – DISCARD – 893027501
 • To perform the GTT action Duplicate - GTT Action – DUPLICATE – 893027601
 • To perform the GTT action Forward - GTT Action – FORWARD – 893037501

 Perform the \textit{Activating the GTT Actions Features} procedure to enable and turn on these features.

3. Provision the required GTT actions using the \texttt{ent-gttact} command by performing the \textit{Adding a GTT Action} procedure.

4. Provision the required GTT action sets using the \texttt{ent-gttaset} command by performing the \textit{Adding a GTT Action Set} procedure.

5. Provision the required GTT translations using the \texttt{ent-gta} command. Perform \textit{Adding Global Title Address Information}.

To provision the GTT action paths, perform these steps.

1. Perform the \textit{Activating the GTT Actions Features} procedure to enable and turn on these features.
 • To perform the GTT actions Discard, UDTS, or TCAP Error - GTT Action – DISCARD – 893027501
 • To perform the GTT action Duplicate - GTT Action – DUPLICATE – 893027601
 • To perform the GTT action Forward - GTT Action – FORWARD – 893037501

2. Provision the required GTT sets using the \texttt{ent-gttset} command. Perform \textit{Adding a GTT Set}.

3. Provision the required GTT translations using the \texttt{ent-gta} command. Perform \textit{Adding Global Title Address Information}.

4. Provision the required GTT action paths using the \texttt{ent-gttapath} command by performing the \textit{Adding a GTT Action Path Entry} procedure.

MTP Routed Global Title Translation

In previous releases, MTP routed SCCP messages are routed to the service module if either the MTP Msgs for SCCP Apps feature, part number 893017401, is enabled and turned on, or the MSU is screened by the Gateway Screening stop action SCCP. These actions were performed on the service modules

1. EPAP service handling is performed.
2. If the EPAP service handling resulted in Fall through to MTP routing, then MTP Routed GSM MAP Screening is performed, if applicable.

3. The MSU is MTP routed if the message is not discarded by MTP Routed GSM MAP Screening.

In addition to the actions that were performed in previous releases, global title translation and GTT Actions are performed on MTP routed MSUs similar to the existing global title translation GTT handling for GT routed MSU’s. Global title translation on MTP routed MSUs is performed if the service handling results in Fall through to GTT or if the GTT required option in the service selector is set to on for the service relayed MSU.

Two parameters have been added to the chg-sccpopts command to determine how MTP routed MSUs are handled. The first parameter is `mtprgtt` which specifies whether global title translation is performed on an MTP routed MSU and the routing that is performed on the MSU after global title translation is performed. The `mtprgtt` parameter contains these values.

- `off` - global title translation is not performed on the MTP routed MSU.
- `usetppc` - global title translation is performed on the MTP routed MSUs and the MSU is sent to the original DPC.
- `fulgtt` - global title translation is performed on the MTP routed MSU and the MSU is sent to the translated DPC.

The second parameter is `mtprgttfallbk` which specifies whether an MTP routed MSU is MTP routed after the failure of the global title translation process.

- `mtproute` - perform MTP routing on the MSU if a failure occurs during the global title translation process.
- `gttfail` - discard the MSU if a failure occurs during the global title translation process. Send a UDTS message if required.

Unique GTT Selectors

In previous EAGLE 5 ISS releases that did not support the Unique GTT Selectors feature, all ITU GTT selectors shared the same space in the GTT selector table. Only one entry for an ITU GTT selector that contains a specific GTI and translation type value, regardless of the network type or domain of the ITU GTT selector, could be defined in the GTT selector table. For example, if the GTT selector table contained an ITU-I GTT selector with the GTI value 2 and the translation type value 5, this GTI and translation type value combination could not be assigned to an ITU-N or ITU-N24 GTT selector.

When the EAGLE 5 ISS is upgraded from a release that did not support the Unique GTT Selectors feature to a release that does support the Unique GTT Selectors feature, the ITU GTT selectors created in the previous release become overlapped GTT selectors.

The Unique GTT Selectors feature does not allow overlapped GTT selectors to be provisioned in the GTT selector table. All new GTT selectors that are created in the release that supports the Unique GTT Selectors feature are non-overlapped GTT selectors. The Unique GTT Selectors feature allows for ITU GTT selectors to be provisioned with these attributes.

- ITU-I spare and ITU-N spare GTT selectors
- Provisioning the same translation type and GTI values for ITU GTT selectors of all network types including the ITU-I spare and ITU-N spare network types.
- GTT selectors of all network types including ITU-I spare and ITU-N spare network types that contain the GTI value 0 (zero).
A non-overlapped GTT selector can contain the same the translation type and GTI value that is assigned to an overlapped GTT selector. For example, the GTT selector table contains an overlapped ITU-I GTT selector with the GTI value 2 (GTTI=2) and the translation type value 10. A non-overlapped ITU-I GTT selector that contains the GTI value 2 (GTTI=2) and the translation type value 10 can be created in the GTT selector table.

The provisioning of ITU-I spare and ITU-N spare GTT selectors is the same as provisioning ITU-I and ITU-N GTT selectors. This includes the provisioning of default GTT selectors using the `ent-tt` command. For more information about using the `ent-tt` command to provision default GTT selectors, see the Adding a Translation Type procedure.

GTI=0 GTT Selectors

With the Unique GTT Selectors feature, The EAGLE 5 ISS can process MSUs whose GTI value is 0 (a GTI=0 GTT selector) for all network types, including ITU-I spare and ITU-N spare. A GTI=0 GTT selector cannot contain `tt`, `np`, `nai`, and `Eagle-Gen` values. A GTI=0 GTT selector can contain `lsn` (the name of a linkset), `selid`, and `cgssn` values. The values that can be specified for a GTI=0 GTT selector is determined by the features that are enabled and turned on.

GT Selector Key for GTI=0 GTT Selectors

Table 21: GTT Selector Key for GTI=0 defines the keys in the GTT selector table based on the feature combination for GTI=0 GTT selectors. If a feature supports specific parameters and that feature is not enabled or turned on, then default values are entered into the database for those parameters.

<table>
<thead>
<tr>
<th>Feature Combination</th>
<th>Selector Type</th>
<th>GTI, Domain</th>
<th>CgPA SSN</th>
<th>SELID</th>
<th>Link Set Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>EGTT</td>
<td>CdPA Only</td>
<td>X</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Origin-Based SCCP Routing</td>
<td>CdPA</td>
<td>X</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>CgPA</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>-</td>
</tr>
<tr>
<td>Flexible Linkset Optional Based Routing</td>
<td>CdPA</td>
<td>X</td>
<td>-</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>CgPA</td>
<td>X</td>
<td>-</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Origin-Based SCCP Routing and Flexible Linkset Optional Based Routing</td>
<td>CdPA</td>
<td>X</td>
<td>-</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>CgPA</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

Searching Order for GTI=0 GTT Selectors

Table 22: Searching Order for CdPA GTI=0 GTT Selectors and Table 23: Searching Order for CgPA GTI=0 GTT Selectors shows the searching order for CdPA and CgPA GTI=0 GTT Selectors.

Table 22: Searching Order for CdPA GTI=0 GTT Selectors

<table>
<thead>
<tr>
<th>CdPA GTT Selector Keys</th>
</tr>
</thead>
</table>
If a meaningful CdPA GTT set is provisioned, then the GTT selector is considered found.

If a meaningful CdPA GTT set is not provisioned, then the GTT selector is considered not found.

Table 23: Searching Order for CgPA GTI=0 GTT Selectors

<table>
<thead>
<tr>
<th>Priority</th>
<th>GTA, Domain</th>
<th>Linkset ID</th>
<th>SELID</th>
<th>CgPA GTT Selector Found or Not Found</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Exact</td>
<td>Exact</td>
<td>Exact</td>
<td>If a meaningful CgPA GTT set is provisioned, then the GTT selector is considered found.</td>
</tr>
<tr>
<td>2</td>
<td>Exact</td>
<td>Any</td>
<td>Exact</td>
<td>If a meaningful CgPA GTT set is not provisioned, then the GTT selector is considered not found.</td>
</tr>
</tbody>
</table>

For the Origin-Based SCCP Routing feature GTT hierarchy, meaningful means following the Origin-Based SCCP Routing feature rules; the GTT set type of a CdPA GTT set must be CDGTA and the GTT set type of a CgPA GTT set must be either CGGTA or CGPC. If a Flexible Linkset Optional Based Routing feature GTT hierarchy is being used, then any GTT set type can be used.

The Linkset ID, SELID, and CGSSN parameters are controlled by the Flexible Linkset Optional Based Routing and Origin-Based SCCP Routing features. If a parameter is not allowed, it assumes the value of Any in the database. In Table 22: Searching Order for CdPA GTI=0 GTT Selectors and Table 23: Searching Order for CgPA GTI=0 GTT Selectors, if a parameter is specified as Exact and that parameter is not allowed, then the Exact value is the same as the Any value.

Using the Unique GTT Selectors Feature

To determine how a GTT selector search is performed on overlapped GTT selectors, the unqgttsel parameter of the chg-sccpopts command is used. The unqgttsel parameter contains these values.
bestmatch - search for overlapped GTT selectors if non-overlapped GTT selectors are not found.

exactmatch - search only for non-overlapped GTT selectors.

When the unqgttsel parameter is applied to GTIx=2 and GTIx=4 GTT selectors, these actions occur.

When the unqgttsel parameter value is bestmatch:

- A non-overlapped GTT selector is matched, if it is in the database, using the searching rules defined by the EGTT, Origin-Based SCCP Routing features, Flexible Linkset Optional Based Routing, and TCAP Opcode Based Routing features.
- If a non-overlapped GTT selector is not found, an overlapped GTT selector is matched, if it is in the database, using the searching rules defined by the EGTT, Origin-Based SCCP Routing features, Flexible Linkset Optional Based Routing, and TCAP Opcode Based Routing features.
- If a matching non-overlapped or overlapped GTT selector is not found, the search fails.

When the unqgttsel parameter value is exactmatch:

- A non-overlapped GTT selector is matched, if it is in the database.
- If a matching non-overlapped GTT selector is not found, the search fails.

When the unqgttsel parameter is applied to GTIx=0 GTT selectors, these actions occur.

When the unqgttsel parameter value is bestmatch:

- An exact GTIx=0 GTT selector is matched, if it is in the database, using the searching order shown in Table 22: Searching Order for CdPA GTI=0 GTT Selectors and Table 23: Searching Order for CgPA GTI=0 GTT Selectors.
- If an exact GTIx=0 GTT selector match is not found, an overlapped GTT selector (ANSI and ITU-I network types only) is matched, if it exists, using the searching order shown in Table 22: Searching Order for CdPA GTI=0 GTT Selectors and Table 23: Searching Order for CgPA GTI=0 GTT Selectors.
- If an exact GTIx=0 GTT selector match is not found and an overlapped GTT selector is not found, the search fails.

When the unqgttsel parameter value is exactmatch:

- An exact GTIx=0 GTT selector is matched, if it is in the database, using the searching order shown in Table 22: Searching Order for CdPA GTI=0 GTT Selectors and Table 23: Searching Order for CgPA GTI=0 GTT Selectors.
- If an exact GTIx=0 GTT selector match is not found, the search fails.

The unqgttsel parameter value can be changed at any time. Non-overlapped GTT selectors can be provisioned regardless of the unqgttsel parameter value. When there are no overlapping GTT selectors in the database and only non-overlapped GTT selectors are in the database, the exactmatch value of the unqgttsel parameter is applied to the GTIx=2 and GTIx=4 GTT selectors. The system default value of the unqgttsel parameter is bestmatch.

XUDT UDT Conversion Feature

This feature provides for the conversion of these SCCP messages.
An XUDT(S) message to a UDT(S) message
A UDT(S) message to an XUDT(S) message

The conversion is performed on a service module card if the message was generated by the EAGLE 5 ISS, or on a LIM receiving the message if the message is MTP-routed. The conversion takes place just before the message is sent to the LIM that will be transmitting the message out of the EAGLE 5 ISS.

An SCCP Class 1 message that requires SCCP processing is processed by a service module card and then sent back to the receiving LIM to maintain sequencing. Message routing and the XUDT(S) UDT(S) conversion is performed on the receiving LIM in this case.

To configure the EAGLE 5 ISS to perform the XUDT UDT Conversion, these entities must be configured in the database.

- The XUDT UDT Conversion feature must be enabled and turned on – perform the Activating the XUDT UDT Conversion Feature procedure.
- Configure the destination point code of the XUDT(S) or UDT(S) message using either the ent-dstn or chg-dstn commands and specifying the sccpmsgcnv parameter. Perform one of these procedures in the Database Administration Manual – SS7.
 - Adding a Destination Point Code
 - Adding a Cluster Point Code
 - Adding a Network routing Point Code
 - Changing a Destination Point Code
 - Changing the Attributes of a Cluster Point Code

Table 24: SCCPMSGCNV Parameter Values shows the values of the sccpmsgcnv parameter.

<table>
<thead>
<tr>
<th>SCCPMSGCNV Parameter Value</th>
<th>Parameter Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NONE</td>
<td>No conversion is performed on messages for the destination. This is the default value of the sccpmsgcnv parameter if the sccpmsgcnv parameter is not specified with the ent-dstn command.</td>
</tr>
<tr>
<td>SXUDT2UDT</td>
<td>All segmented XUDT(S) and non-segmented XUDT messages for the destination are converted to UDT(S) messages.</td>
</tr>
<tr>
<td>XUDT2UDT</td>
<td>All non-segmented XUDT(S) messages for the destination are converted to UDT(S) messages. Segmented XUDT(S) messages are not converted.</td>
</tr>
<tr>
<td>UDT2XUDT</td>
<td>All UDT(S) messages are converted to XUDT(S) messages.</td>
</tr>
</tbody>
</table>

UDT(S) to XUDT(S) Conversion

When converting a UDT(S) message to an XUDT(S) message, the changes shown in *Table 25: Parameter Values after UDT to XUDT or UDTS to XUDTS Conversion* are made to the message.

If the SCCP portion of the pre-converted message is longer that 270 bytes and the conversion results in the addition of the Hop Counter (1 byte) and Pointer to Optional Parameters (1 byte) fields causing the size of the SCCP portion to increase beyond a length of 272 bytes, then the segmentation of the message is not performed.
Table 25: Parameter Values after UDT to XUDT or UDTS to XUDTS Conversion

<table>
<thead>
<tr>
<th>Parameter</th>
<th>UDT to XUDT Conversion</th>
<th>UDTS to XUDTS Conversion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Message Type</td>
<td>XUDT (0x11)</td>
<td>Message Type</td>
</tr>
<tr>
<td>Protocol Class</td>
<td>Same as the pre-converted message.</td>
<td>Return Cause</td>
</tr>
<tr>
<td>Hop Counter</td>
<td>15, which is the maximum value.</td>
<td>Hop Counter</td>
</tr>
<tr>
<td>Pointer to Called Party Address (CDPA)</td>
<td>Incremented from the pre-converted UDT message value by the size of the Pointer to Optional Parameters value (1 byte).</td>
<td>Pointer to Called Party Address (CDPA)</td>
</tr>
<tr>
<td>Pointer to Calling Party Address (CGPA)</td>
<td>Incremented from the pre-converted UDT message value by the size of the Pointer to Optional Parameters value (1 byte).</td>
<td>Pointer to Calling Party Address (CGPA)</td>
</tr>
<tr>
<td>Pointer to Data</td>
<td>Incremented from the pre-converted UDT message value by the size of the Pointer to Optional Parameters value (1 byte).</td>
<td>Pointer to Data</td>
</tr>
<tr>
<td>Pointer to Optional Parameters</td>
<td>0, since no optional parameters are present in a converted XUDT message.</td>
<td>Pointer to Optional Parameters</td>
</tr>
<tr>
<td>Called Party Address (CDPA) Parameter</td>
<td>Same as the pre-converted message.</td>
<td>Called Party Address (CDPA) Parameter</td>
</tr>
<tr>
<td>Calling Party Address (CGPA) Parameter</td>
<td>Same as the pre-converted message.</td>
<td>Calling Party Address (CGPA) Parameter</td>
</tr>
<tr>
<td>Data</td>
<td>Same as the pre-converted message.</td>
<td>Data</td>
</tr>
</tbody>
</table>

XUDT(S) to UDT(S) conversion

When converting an XUDT(S) message to a UDT(S) message, the changes shown in Table 26: Parameter Values after XUDT to UDT or XUDTS to UDTS Conversion are made to the message.
If the `sccpmsgcnv` value for the destination is `xudt2udt`, only non-segmented XUDT(S) messages are converted to UDT(S) messages while segmented XUDT(S) messages, that is, messages that contain the Segmentation parameter are routed to the destination without being converted.

If the `sccpmsgcnv` value for the destination is `sxudt2udt`, both segmented and non-segmented XUDT(S) messages are converted to UDT(S) messages.

Table 26: Parameter Values after XUDT to UDT or XUDTS to UDTS Conversion

<table>
<thead>
<tr>
<th>Parameter</th>
<th>XUDT to UDT Conversion</th>
<th>XUDTS to UDTS Conversion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Message Type</td>
<td>UDT (0x09)</td>
<td>Message Type</td>
</tr>
<tr>
<td>Protocol Class</td>
<td>Same as the</td>
<td>Return Cause</td>
</tr>
<tr>
<td></td>
<td>pre-converted message</td>
<td>Same as the pre-converted</td>
</tr>
<tr>
<td></td>
<td></td>
<td>message.</td>
</tr>
<tr>
<td>Hop Counter</td>
<td>Dropped from the</td>
<td>Hop Counter</td>
</tr>
<tr>
<td></td>
<td>converted message.</td>
<td>Dropped from the</td>
</tr>
<tr>
<td></td>
<td></td>
<td>converted message.</td>
</tr>
<tr>
<td>Pointer to Called Party Address (CDPA)</td>
<td>Decrement</td>
<td>Pointer to Called Party</td>
</tr>
<tr>
<td></td>
<td>from the pre-converted</td>
<td>Address (CDPA)</td>
</tr>
<tr>
<td></td>
<td>XUDT message value by</td>
<td>Decrement from the</td>
</tr>
<tr>
<td></td>
<td>the size of the Pointer</td>
<td>pre-converted (XUDTS)</td>
</tr>
<tr>
<td></td>
<td>to Optional Parameters</td>
<td>message value by the</td>
</tr>
<tr>
<td></td>
<td>value (1 byte).</td>
<td>size of the Pointer</td>
</tr>
<tr>
<td></td>
<td></td>
<td>to Optional Parameters</td>
</tr>
<tr>
<td>Pointer to Calling Party Address (CGPA)</td>
<td>Decrement</td>
<td>Pointer to Calling Party</td>
</tr>
<tr>
<td></td>
<td>from the pre-converted</td>
<td>Address (CGPA)</td>
</tr>
<tr>
<td></td>
<td>XUDT message value by</td>
<td>Decrement from the</td>
</tr>
<tr>
<td></td>
<td>the size of the Pointer</td>
<td>pre-converted (XUDTS)</td>
</tr>
<tr>
<td></td>
<td>to Optional Parameters</td>
<td>message value by the</td>
</tr>
<tr>
<td></td>
<td>value (1 byte).</td>
<td>size of the Pointer</td>
</tr>
<tr>
<td></td>
<td></td>
<td>to Optional Parameters</td>
</tr>
<tr>
<td>Pointer to Data</td>
<td>Decrement from the</td>
<td>Pointer to Data</td>
</tr>
<tr>
<td></td>
<td>pre-converted XUDT</td>
<td>Decrement from the</td>
</tr>
<tr>
<td></td>
<td>message value by the</td>
<td>pre-converted (XUDTS)</td>
</tr>
<tr>
<td></td>
<td>size of the Pointer</td>
<td>message value by the</td>
</tr>
<tr>
<td></td>
<td>to Optional Parameters</td>
<td>size of the Pointer</td>
</tr>
<tr>
<td></td>
<td>value (1 byte).</td>
<td>to Optional Parameters</td>
</tr>
<tr>
<td>Pointer to Optional Parameters</td>
<td>Dropped from the</td>
<td>Pointer to Optional</td>
</tr>
<tr>
<td></td>
<td>converted message.</td>
<td>Parameters</td>
</tr>
<tr>
<td>Called Party Address (CDPA)</td>
<td>Same as the pre-converted message.</td>
<td>Called Party Address</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(CDPA) Parameter</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Same as the pre-converted</td>
</tr>
<tr>
<td>Calling Party Address (CGPA)</td>
<td>Same as the pre-converted message.</td>
<td>Calling Party Address</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(CGPA) Parameter</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Same as the pre-converted</td>
</tr>
<tr>
<td>Data</td>
<td>Same as the pre-converted message.</td>
<td>Data</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Same as the pre-converted</td>
</tr>
</tbody>
</table>
Feature Interactions

STP/LAN

Even though messages are selected for copying for the STP/LAN feature according to their received, non-converted values, the actual messages that are copied will have been converted since the flag for the STP/LAN feature is set on the incoming signaling link and the actual copy occurs on the outgoing signaling link. This applies to all MTP-routed and SCCP messages that are generated by the EAGLE 5 ISS.

Database Transport Access - DTA

The XUDT UDT Conversion feature does not affect the DTA feature’s functioning. The wrapper message is converted while the encapsulated message, which resides in the wrapper’s data area, is not converted. The destination has to extract and convert the encapsulated message if it wishes to route the encapsulated message back to the EAGLE 5 ISS.

Integrated Sentinel/IMF

Incoming messages are selected for copying according to their received, non-converted values. Outgoing messages are selected for copying according to their converted values. This applies to both MTP-routed and SCCP messages that are generated by the EAGLE 5 ISS.

ANSI/ITU SCCP Conversion

The XUDT UDT Conversion feature is applied to MTP-routed SCCP messages that do not reach the service module cards before they are processed by the ANSI/ITU SCCP Conversion feature. For GT-routed messages and MTP-routed SCCP messages that are processed on the service module cards, the XUDT UDT conversion feature is applied after the ANSI/ITU SCCP conversion feature is performed on the message.
GTT Actions

The XUDT UDT Conversion feature is applied after the GTT Actions have been performed on the message. This means that if 4 DUPLICATE GTT actions are performed on the message, the XUDT UDT conversion feature is applied separately on all of the duplicated messages.

Upgrading from Global Title Translation (GTT) to Enhanced Global Title Translation (EGTT)

The Enhanced Global Title Translation (EGTT) feature provides enhancements to existing global title translation functions and automatically updates the database when the EGTT feature is turned on. Turning on the EGTT feature overrides the Global Title Translation (GTT) feature. This section provides a high-level summary of feature enhancements, the upgrade process, and upgrade considerations for the GTT and EGTT features.

Note: Before upgrading to and/or turning on a new feature, make sure you have purchased the feature to be upgraded to and/or turned on. If you are not sure whether you have purchased the feature, contact your Tekelec Sales Representative or Account Representative.

Enhancements

The Enhanced Global Title Translation (EGTT) feature provides enhancements to existing global title translation functions:

- Increased number of selectors
- For ITU networks, addition of the translated subsystem number (SSN) in the called party address (CDPA) when octet is not equipped
- For ITU networks, inclusion of the originating point code (OPC) in the calling party address (CGPA)
- Capability to delete the global title (GT) in the called party address (CDPA)
- GTAs can be added offline to the EAGLE 5 ISS if the GTT set has not yet been assigned to a GTT selector.
- Aliasing is replaced by assigning multiple GTT selectors to an existing GTT set.
- Automatic upgrade of the database when the EGTT feature is turned on.

Upgrade Considerations

Enabling the Enhanced Global Title Translation (EGTT) feature overrides the Global Title Translation (GTT) feature. The GTT Selector, GTT Set, and GTA commands replace the Translation Type (-TT) and Global Title Translation (-GTT) commands. The SEAS equivalent of these commands will be maintained, mapping to ANSI with GTI of 2.

These commands can be executed when the EGTT feature is turned on, but will only produce CDGTA GTT sets and CDGTA GTT selectors.

- ENT-TT – Enter Translation Type
- CHG-TT – Change Translation Type
- DLT-TT – Delete Translation Type
- RTRV-TT – Retrieve Translation Type
- ENT-GTT – Enter Global Title Translation
- CHG-GTT – Change Global Title Translation
• DLT-GTT – Delete Global Title Translation
• RTRV-GTT – Retrieve Global Title Translation

If the point code that is specified with the ent-gtt or chg-gtt commands is an ANSI point code, only a CDGTA GTT selector entry that contains the translation type and the GTI value 2 will be shown in the rtrv-gttssel output. If the point code that is specified with the ent-gtt or chg-gtt commands is an ITU point code, two CDGTA GTT selector entries will be shown in the rtrv-gttssel output; one that contains the translation type and the GTI value 2 and another entry that contains the translation type and the GTI value 4. The CDGTA GTT sets and CDGTA GTT selectors will contain the default values for the Advanced GTT feature parameters, shown in Table 27: GTT Set and GTT Selector Advanced GTT Feature Default Parameter Values.

Table 27: GTT Set and GTT Selector Advanced GTT Feature Default Parameter Values

<table>
<thead>
<tr>
<th>SELID</th>
<th>CGSSN</th>
<th>LSN</th>
</tr>
</thead>
<tbody>
<tr>
<td>none</td>
<td>no value</td>
<td>any</td>
</tr>
<tr>
<td>NP</td>
<td>dflt (if GTI=4, no value if GTI=2)</td>
<td>NAI - dflt (if GTI=4, no value if GTI=2)</td>
</tr>
<tr>
<td></td>
<td>SETTYPE - CDGTA</td>
<td></td>
</tr>
</tbody>
</table>

The following commands will be turned on when the EGTT feature is turned on:

• ENT-GTTSET – Enter GTT Set
• CHG-GTTSET – Change GTT Set
• DLT-GTTSET – Delete GTT Set
• RTRV-GTTSET – Retrieve GTT Set
• ENT-GTTSEL – Enter GTT Selector
• CHG-GTTSEL – Change GTT Selector
• DLT-GTTSEL – Delete GTT Selector
• RTRV-GTTSEL – Retrieve GTT Selector
• ENT-GTA – Enter Global Title Address
• CHG-GTA – Change Global Title Address
• DLT-GTA – Delete Global Title Address
• RTRV-GTA – Retrieve Global Title Address

GTT Set Commands

GTT Set commands are used to provision new sets for global title translation, linking GTT Selector (-GTTSEL) and Global Title Address (-GTA) commands. This set of commands provides greater flexibility when provisioning the type of messages that require global title translation. There are no SEAS equivalents for these commands.

GTT Selector Commands

GTT Selector commands are used to provision new selectors for global title translation. Together with the GTT Set commands, they replace the Translation Type (-TT) commands, providing greater flexibility when provisioning the type of messages that require global title translation. There are no SEAS equivalents for these commands.
GTA Commands

GTA commands are used to provision GTTs using the new selectors for GTT. These commands replace the Global Translation Type (-GTT) commands.

Upgrade Process

When existing systems are upgraded from the GTT feature to the EGTT feature, the GTT_TBT table is converted to the GTT Selector and GTT Set tables using the data present in the GTT_TBT table. Set names are automatically picked for each entry in the GTT_TBT table, unless a TT Name is already provided. ANSI translation types are converted as is and given the GTI of 2. ITU translation types are converted to use two separate entries, one with the GTI of 2 and the other with the GTI of 4. During the conversion, DFLT (default) is assigned to the NP and NAI parameters for the GTI 4 entries. These values can then be changed to more specific values with the `ent-gttsel` command.

Aliases versus Selectors

One of the important differences between the GTT and EGTT features is the more flexible creation and use of “aliases”, which are replaced by selectors in the EGTT feature. Global title translation data can be built before bringing it into service and the service to existing global titles remains uninterrupted by allowing selector values to be changed instead of having to be deleted.

The flexibility in assigning selectors to sets of global title translation data is shown in Table 28: Use of Aliases in GTT Selector Table in the reuse of the selector for setint000. In this example, you can break up GTT selectors into more specific entries (other than dflt) without having to delete the entire GTT data set for a selector.

GTT data can be built without being used until a link is added to a selector (specifying GTTSN with the CHG-GTTSSEL command). At the same time, selectors can be changed without affecting existing global titles.

Table 28: Use of Aliases in GTT Selector Table shows an alias entry, GTII=4, TT=0, NP=E164, NAI=INTL, added to the same GTT set setint000 as several other selectors.

<table>
<thead>
<tr>
<th>GTTSN</th>
<th>GTI</th>
<th>TT</th>
<th>NP</th>
<th>NAI</th>
</tr>
</thead>
<tbody>
<tr>
<td>setans001</td>
<td>2</td>
<td>1</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>lidb</td>
<td>2</td>
<td>9</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>t800</td>
<td>2</td>
<td>10</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>t800</td>
<td>2</td>
<td>253</td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>GTTSN</th>
<th>GTI</th>
<th>TT</th>
<th>NP</th>
<th>NAI</th>
</tr>
</thead>
<tbody>
<tr>
<td>setint000</td>
<td>4</td>
<td>0</td>
<td>DFLT</td>
<td>DFLT</td>
</tr>
<tr>
<td>setint000</td>
<td>2</td>
<td>0</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>IMSI</td>
<td>4</td>
<td>9</td>
<td>DFLT</td>
<td>DFLT</td>
</tr>
<tr>
<td>IMSI</td>
<td>2</td>
<td>9</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>IMSI</td>
<td>4</td>
<td>18</td>
<td>DFLT</td>
<td>DFLT</td>
</tr>
</tbody>
</table>
SCCP Overview

The signaling connection control part (SCCP) is divided into two functions:

- SCCP Routing Control
- SCCP Management

Figure 26: Logical View of SCCP Subsystems shows the relationship of these two functions.

SCCP Routing Control

SCCP routing control receives messages from other nodes in the network via the MTP-Transfer indication.

A load balancing function assigns each LIM to a service module to distribute the SCCP traffic among the available service modules. When a LIM receives an SCCP message that is destined for the EAGLE 5 ISS, it sends the message to the service module assigned to that LIM. If that LIM does not have a service module assigned to it, the LIM discards the SCCP message. If no service modules are equipped...
or available, the SCCP message is discarded and the LIM transmits a User Part Unavailable MSU to the sending node.

When a LIM receives an SCCP message that is destined for another node, the LIM performs MTP routing and the SCCP message is not sent to the service module. *Figure 27: SCCP Message Flow through the EAGLE 5 ISS* shows the message flow for an SCCP message destined for the EAGLE 5 ISS and for an SCCP message destined for another node.

Figure 27: SCCP Message Flow through the EAGLE 5 ISS

When SCCP receives a message from MTP, it checks the routing indicator in the called party address. There are two types of routing shown by the called party address routing indicator.

1. **Subsystem (ssn)** – This indicates the message is destined for a subsystem at this node. For the EAGLE 5 ISS, the only valid local subsystem is SCCP management (ssn = 1). If the LNP feature is enabled, the EAGLE 5 ISS contains an LNP subsystem which can be numbered from 2 to 255. The LNP subsystem number can be configured with the "Adding a Subsystem Application" procedure in the *ELAP Administration and LNP Feature Activation* manual.

2. **Global Title (gt)** – This indicates that global title translation is required. The EAGLE 5 ISS performs the translation, determines the new DPC for the message, and routes the message to that DPC.
Global Title Translation Function

Interaction with the Global Title Translation (GTT) Feature

The SCCP routing function control uses two tables to perform global title translation: the translation type table and the global title translation table. *Figure 28: Example of Using Translation Type and Global Title Translation Tables* shows how these tables are organized.

![Figure 28: Example of Using Translation Type and Global Title Translation Tables](image)

The translation type table is used by SCCP to determine which global title translation table to access. This allows translation tables to be customized to the type of translations that need to be performed, (for example, 6 digit, 800, etc.). The translation block is accessed by using the translation type in the called party address and the network type of the MSU (ANSI or ITU) as an index within the table. Each entry points to the start of a global title translation table.

The translation type table is configured by the `ent-tt` command. For more information on the `ent-tt` command, refer to the *Commands Manual.*
Each translation type entry in the translation type table contains these fields:

- name of translation type (optional) (8 bytes)
- number of digits (1 byte)
- alias translation type (2 bytes)
- pointer to translation table (4 bytes)
- network type (1 byte)

The global title translation table is used by SCCP to map a global title address to an SS7 network address so that the SCCP message can be routed to its destination. The global title translation table is configured by the `ent-gtt` or `chg-gtt` commands. For more information on the `ent-gtt` or `chg-gtt` commands, refer to the Commands Manual.

Each global title translation entry in the global title translation table contains these fields:

- Global title address low value (up to 21 digits) (11 bytes)
- Global title address high value (up to 21 digits) (11 bytes)
- Destination point code (may be an ANSI, ITU national, or ITU international point code) (4 bytes)
- Field that contains either a subsystem number (for route on SSN translation results only) (1 byte) or a new translation type (for new GT translation result only) (1 byte)
- Translation result consisting of one of these conditions (1 byte):
 - Translate on the DPC only, route on GT (subsequent global title translation required)
 - Translate on the DPC only, route on SSN
 - Translate on the DPC and SSN, route on GT (subsequent global title translation required)
 - Translate on the DPC and SSN, route on SSN
 - Translate on new GT (subsequent global title translation required)

The translation result determines what data in the message is replaced. The DPC in the routing label is always replaced after the SCCP message is translated. If a point code exists in the called party address, it is also replaced. The subsystem number or the translation type in the called party address can be replaced, but neither have to be replaced. The routing indicator in the called party address can be set to “route on SSN,” or can remain set to “route on GT.” Table 29: MSU Fields Modified by Global Title Translation shows which fields in the MSU are modified for each translation result.

Table 29: MSU Fields Modified by Global Title Translation

<table>
<thead>
<tr>
<th>Translation result</th>
<th>Routing Label DPC replaced</th>
<th>CDPA SSN replaced</th>
<th>CDPA routing indicator replaced</th>
<th>CDPA translation type replaced</th>
<th>CDPA PC replaced (if it already exists)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Translate on DPC only, route on GT</td>
<td>yes</td>
<td>no</td>
<td>no – remains set to route on GT</td>
<td>Can be replaced (See note)</td>
<td>yes</td>
</tr>
<tr>
<td>Translate on DPC only, route on SSN</td>
<td>yes</td>
<td>no</td>
<td>yes – set to route on SSN</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>Translation result</td>
<td>Routing Label DPC replaced</td>
<td>CDPA SSN replaced</td>
<td>CDPA routing indicator replaced</td>
<td>CDPA translation type replaced</td>
<td>CDPA PC replaced (if it already exists)</td>
</tr>
<tr>
<td>---</td>
<td>----------------------------</td>
<td>------------------</td>
<td>-------------------------------</td>
<td>-------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Translate on DPC and SSN, route on GT</td>
<td>yes</td>
<td>yes</td>
<td>no – remains set to route on GT</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>Translate on DPC and SSN, route on SSN</td>
<td>yes</td>
<td>yes</td>
<td>yes – set to route on SSN</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>Translate on new GT</td>
<td>yes</td>
<td>no</td>
<td>no – remains set to route on GT</td>
<td>yes</td>
<td>yes</td>
</tr>
</tbody>
</table>

Note: The CDPA translation type can be replaced when translating on the DPC only and routing on GT only if the ANSI/ITU SCCP Conversion feature is enabled. If the ANSI/ITU-China SCCP Conversion feature is not enabled when translating on the DPC only and routing.

Route on GT

The “Route on GT” translate indicator (subsequent global title translation required) represents the need for a second translation after the initial one.

This need is indicated by the routing bit being set to “route on GT.” In this case, the remote point code table is not checked for status of the subsystem number. Instead, the MSU is sent directly to MTP for routing to the translated point code. If the point code is inaccessible, the MSU is discarded, and a UDTS (unitdata service) message is generated if the return on error option is set.

Interaction with the Enhanced Global Title Translation (EGTT) Feature

The SCCP routing function control uses three tables to perform global title translation: the GTT Selector table, the GTT Set table, and the global title address (GTA) table. The GTT Set table together with the GTT Selector table is used by the SCCP to determine which GTA table to access. This allows translation tables to be customized to the type of translations that need to be performed.
Figure 29: Example of Using GTT Selector, GTT Set, and GTA Tables

The GTT Set table is configured by the `ent-gttset` command; the GTT Selector table is configured by the `ent-gttsel`. For more information on this command, refer to the Commands Manual.

Each GTT Set table contains these fields:
- GTT Set name
- Network domain name
- Number of digits

Each GTT Selector table contains these fields:
- GTT Set name
- The global title indicator (GTI). The GTI defines the domain as
 - `gti` and `gtia` (ANSI) with GTI=2
 - `gtii` (ITU international) with GTI=2 or GTI=4, and
 - `gtin` (ITU national) with GTI=2 or GTI=4.

Note: The EAGLE 5 ISS can contain 14-bit ITU-N point codes and 24-bit ITU-N point codes, but not both at the same time.
The global title indicator is made up of the:

- name of the global title translation type (TT); and the
- numbering plan (NP) or numbering plan value (NPV) if GTI=4; and the
- nature of address indicator (NAI) or nature of address indicator value (NAIV) if GTI=4.

Note: Both the numbering plan and nature of address indicator parameters can be specified by supplying either a mnemonic or an explicit value. At no time may both the mnemonic and the explicit value be specified at the same time for the same parameter.

The GTA table is used by the SCCP to map a global title address to an SS7 network address so that the SCCP message can be routed to its destination. The GTA table is configured by the `ent-gta` or `chg-gta` commands. For more information on the `ent-gta` or `chg-gta` commands, refer to the Commands Manual.

Each global title address entry in the GTA table contains these fields:

- GTT Set name
- Start of the global title address (up to 21 digits)
- End of the global title address (up to 21 digits)
- Destination point code (may be an ANSI, ITU national, or ITU international point code)
- Translated subsystem number
- Translate indicator
- Cancel Called Global Title indicator
- Routing indicator (translation results)
 - Translate on the DPC only, route on GT (subsequent global title translation required)
 - Translate on the DPC only, route on SSN
 - Translate on the DPC and SSN, route on GT (subsequent global title translation required)
 - Translate on the DPC and SSN, route on SSN
 - Translate on new GT (subsequent global title translation required)

The translation result determines what data in the message is replaced. The DPC in the routing label is always replaced after the SCCP message is translated. If a point code exists in the called party address, it is also replaced. The subsystem number or the translation type in the called party address can be replaced, but neither have to be replaced. The routing indicator in the called party address can be set to “route on SSN” or can remain set to “route on GT.” Table 30: MSU Fields Modified by Enhanced Global Title Translation shows which fields in the MSU are modified for each translation result.

Table 30: MSU Fields Modified by Enhanced Global Title Translation

<table>
<thead>
<tr>
<th>Translation result</th>
<th>Routing Label DPC replaced</th>
<th>CDPA SSN modified</th>
<th>CDPA routing indicator replaced</th>
<th>CDPA translation type replaced</th>
<th>CDPA PC replaced (if it already exists)</th>
<th>GT Deleted</th>
</tr>
</thead>
<tbody>
<tr>
<td>Translate on DPC only, route on GT</td>
<td>yes</td>
<td>no</td>
<td>no – remains set to route on GT</td>
<td>Can be replaced (See note)</td>
<td>yes</td>
<td>no</td>
</tr>
</tbody>
</table>
Translation result

<table>
<thead>
<tr>
<th>Translation result</th>
<th>Routing Label DPC replaced</th>
<th>CDPA SSN modified</th>
<th>CDPA routing indicator replaced</th>
<th>CDPA translation type replaced</th>
<th>CDPA PC replaced (if it already exists)</th>
<th>GT Deleted</th>
</tr>
</thead>
<tbody>
<tr>
<td>Translate on DPC only, route on SSN</td>
<td>yes</td>
<td>no</td>
<td>yes – set to route on SSN</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Translate on DPC and SSN, route on GT</td>
<td>yes</td>
<td>yes</td>
<td>no – remains set to route on GT</td>
<td>no</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>Translate on DPC and SSN, route on SSN</td>
<td>yes</td>
<td>yes</td>
<td>yes – set to route on SSN</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Translate on new GT</td>
<td>yes</td>
<td>no</td>
<td>no – remains set to route on GT</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
</tr>
</tbody>
</table>

Note: The CDPA translation type can be replaced when translating on the DPC only and routing on GT only if the ANSI/ITU SCCP Conversion feature is enabled. If the ANSI/ITU SCCP Conversion feature is not enabled when translating on the DPC only and routing on GT, the CDPA translation type cannot be replaced.

Route on GT

The “Route on GT” translate indicator (subsequent global title translation required) represents the need for a second translation after the initial one.

This need is indicated by routing being set to “route on GT.” In this case, the remote point code table is not checked for status of the subsystem number. Instead, the MSU is sent directly to MTP for routing to the translated point code. If the point code is inaccessible, the MSU is discarded, and a UDTS (unitdata service) message is generated if the return on error option is set.

1. If an MSU enters the EAGLE 5 ISS and more information is needed to route the MSU (route-on-gt), the signaling connection control part (SCCP) of the SS7 protocol sends a query to a service database to obtain the information. The EAGLE 5 ISS uses the Enhanced Global Title Translation (EGTT) feature of SCCP to determine which service database to send the query messages to.

2. The EGTT feature uses global title information (GTI) to determine the destination of the MSU. The GTI is contained in the called party address (CDPA) field of the MSU. For gti=4, the GTI is made up of the Numbering Plan (NP), Nature of Address Indicator (NAI), and Translation Type (TT) selectors.

3. The EGTT feature does a Selector Table lookup based on the selector information extracted. If a match is found, then EGTT is performed on the message. If no match is found in the selector table for this entry, then EGTT performs SCRC error handling on the message.

4. The EGTT feature decodes the GTA digits and compares the GTA length with the fixed number of digits specified in the ndgt parameter of the ent-gttsel command and expected by the
translator. If the number of digits received in the CDPA is more than the number of digits specified in the \texttt{ndgt} parameter, then the EGTT feature considers the leading \texttt{ndgt} digits to perform the translation. If the number of digits received in the CDPA is less than the number of digits specified in the \texttt{ndgt} parameter, then EGTT discards the message and initiates the SCRC error handling.

\textbf{Note:} If the optional Variable-length Global Title Translation (VGTT) feature is enabled, the EGTT feature allows enhanced global title translation on global title addresses of varying length. For more information about this feature, refer to the \textit{Variable-length Global Title Translation Feature} section.

5. The EGTT feature uses the number of digits received in the CDPA to perform the Translation Table lookup. If a match is found in the database, the translation data associated with this entry is used to modify the message and the resultant message is routed to the next node. If the CDPA GTAI digits are not found in the database, then standard SCRC error handling is performed on this message. Refer to \textit{Figure 30: EGTT Process}.

\textbf{Figure 30: EGTT Process}

\textbf{Route on SSN}

The “Route on SSN” translate indicator indicates that the point code and SSN is the final destination for the MSU. In this case, the remote point code table is checked to determine the status of the point code and the subsystem number. If the point code or subsystem is unavailable and a backup point code and subsystem is available, the MSU is routed to the backup. Routing to the point codes or subsystems is based upon the data in the remote point code table. There can be up to 31 backup point codes and subsystems assigned to the primary point code and subsystem, thus forming a mated application (MAP) group.

The routing to these backup point codes is based on the relative cost values assigned to the backup point codes. The lower the relative cost value is, the higher priority the point code and subsystem has in determining the routing when the primary point code and subsystem is unavailable. The relative cost value of the primary point code and subsystem is defined by the \texttt{rc} parameter of the \texttt{ent-map} or \texttt{chg-map} commands. The relative cost value of backup point codes and subsystems is defined by the \texttt{materc} parameter of the \texttt{ent-map} or \texttt{chg-map} commands.

There are four routing possibilities for a point code and subsystem number.

- **Solitary** – there is no backup point code and subsystem for the primary point code and subsystem.
Dominant – a group of backup point codes and subsystems exists for the primary point code and subsystem. All the point codes and subsystems in this group have different relative cost values, with the primary point code and subsystem having the lowest relative cost value. All traffic is routed to the primary point code and subsystem, if it is available. If the primary point code and subsystem becomes unavailable, the traffic is routed to highest priority backup point code and subsystem that is available. When the primary point code and subsystem becomes available again, the traffic is then routed back to the primary point code and subsystem.

Load sharing – a group of backup point codes and subsystems is defined for the primary point code and subsystem. All the point codes and subsystems in this group have the same relative cost value. Traffic is shared equally between the point codes and subsystems in this group.

Combined dominant/load sharing – a group that is a combination of the dominant and load sharing groups. A combined dominant/load shared group is a group that contains a minimum of two RC (relative cost) values that are equal and a minimum of one RC value that is different. The traffic is shared between the point codes with the lowest relative cost values, where the relative cost value is considered the relative cost associated with the point code and subsystem of the global title translation and not the actual lowest relative cost in the MAP set. If these point codes and subsystems become unavailable, the traffic is routed to the other point codes and subsystems in the group and shared between these point codes and subsystems.

For each point code, the user has the option of setting the mrc (message reroute on congestion) parameter. The mrc parameter, as well as the other data in the remote point code table, is set with the ent-map or chg-map commands. For more information on the ent-map or chg-map commands, refer to the Commands Manual.

If the mrc parameter is set to no, and the primary point code is congested, the MSU is discarded, even if a backup point code and subsystem is available. If the mrc parameter is set to yes, and the primary point code is congested, the MSU is routed to the backup point code and subsystem, if it is available. The default value for the mrc parameter is no if the primary point code is an ITU national or international point code, and yes if the primary point code is an ANSI point code.

SCCP Management

SCCP management is responsible for rerouting signaling traffic when network failures or congestion conditions occur.

MTP network management informs SCCP of any changes in point code routing status. Changes in subsystem status are updated by using the subsystem allowed and subsystem prohibited procedures of SCCP management.

SCCP management updates the status of point codes and subsystems. Also, SCCP management broadcasts subsystem allowed and prohibited messages to concerned nodes. The EAGLE 5 ISS supports a broadcast list of up to 96 concerned nodes for each subsystem. This list is configured with the ent-cspc command. For more information on the ent-cspc command, refer to the Commands Manual.

For ANSI primary point codes, if the backup point code and subsystem are adjacent when the subsystem becomes prohibited or allowed, these messages are sent to the backup subsystem before routing any messages to it:

- Subsystem prohibited or allowed message
- Subsystem backup routing or subsystem normal routing message

These messages are not required in ITU networks, so if the primary point code is either an ITU national or international point code, these messages are not sent.
Translation Type Mapping

Certain SCCP messages contain a called party address parameter that contains a translation type field. The translation type field indicates the type of global title processing the EAGLE 5 ISS must perform. The values used within any particular network may be different than the standardized values that are defined for internetwork applications.

The translation type mapping feature maps standardized internetwork translation type values to intranetwork translation type values used within any particular network. This feature also maps intranetwork translation type values to standardized internetwork translation type values.

The only SCCP messages that are affected by translation type mapping are UDT and XUDT messages, received or transmitted, whose global title indicator is 0010 (ANSI/ITU) or 0100 (ITU). The translation type will be modified for these messages regardless of whether the destination point code in the MTP routing label is an EAGLE 5 ISS point code and regardless of the SCCP CdPA routing indicator value. Other messages that contain the called party address parameter are not affected. For example, UDTS messages are assumed to be MTP routed and need not be examined. XUDTS messages are either MTP routed or use one translation type value indicating global title to point code translation and should not be mapped.

Translation type mapping is performed on each LIM in the linkset. Incoming translation type mapping is performed on linksets bringing messages into the EAGLE 5 ISS, and is performed before the global title translation function, the gateway screening function, or the MSU copy function associated with the STPLAN feature. Outgoing translation type mapping is performed on linksets carrying messages out of the EAGLE 5 ISS to other destinations, and is performed after the global title translation function, the gateway screening function, or the MSU copy function associated with the STPLAN feature.

When outgoing translation type mapping is configured and the MSU is copied for the STPLAN feature, the copied MSU is mapped. This is done because the mapped translation type may have a different meaning in the local network, causing the MSU to be interpreted incorrectly.

When outgoing translation type mapping is configured and the MSU must be re-routed due to a changeback or signaling link failure, the re-routed MSU could be double mapped. This is a limitation since re-screening or re-translating (with possible incorrect results) can occur by performing the global title translation and gateway screening functions on the mapped MSU. Figure 31: An Example of Double Translation Type Mapping shows an example of a translation type that is double mapped.
Figure 31: An Example of Double Translation Type Mapping

In Figure 31: An Example of Double Translation Type Mapping, MSUs on the outgoing linkset LS1 containing the existing translation type (ETT) 251 are mapped to translation type 127 (MTT). MSUs on the outgoing linkset LS2 containing the existing translation type 127 are mapped to translation type 96. Linkset LS1 fails and the traffic is re-routed on linkset LS2. Any outgoing traffic that was on linkset LS1 containing the translation type 251 has been changed to translation type 127. When this traffic is re-routed on linkset LS2, the translation type of the messages that was changed to 127 remains 127 and is not changed back to 251. When the messages are sent over linkset LS2, the existing translation type 127 is changed to translation type 96. This is an example of double mapping a translation type. In this example, the messages leaving network 1 on linkset LS1 were mapped to translation type 127, an "800" translation type. Because of double mapping, that translation type was changed to 96, a "LIDB" translation type. These messages can be routed to the wrong subsystem database; or if gateway screening is configured to screen for these messages, these messages could be discarded before they leave network 1, and network 2 would never receive them.

To help prevent this from happening, configure the incoming traffic on the linkset to map the mapped translation type of the outgoing traffic on that linkset (MTT) to the existing translation type for outgoing traffic on that linkset (ETT). In this example, for incoming traffic on linksets LS1 and LS2, map the existing translation type 127 (the mapped translation type for outgoing traffic on these linksets) to the mapped translation type 251 (the existing translation type for outgoing traffic on these linkset). When linkset LS1 fails, the incoming messages on linkset LS2 containing translation type 127, including those that were mapped to 127 on linkset LS1 and are now being rerouted, are now mapped to translation type 251. When these messages become outgoing messages on linkset LS2, those messages containing translation type 251 are mapped to translation type 127 instead of 96. These messages can then continue to be routed to the proper subsystem database. If gateway screening is configured to screen for and discard messages with translation type 96, the rerouted messages are not effected by the results of the translation type mapping.

If the database transport access feature is being used, and the MSU encapsulated by the gateway screening redirect function contains a translation type that must be mapped on an incoming basis, the encapsulated MSU contains the mapped translation type. The translation type of the new MSU is obtained from the gateway screening redirect table.
The EAGLE 5 ISS supports 64 translation type mappings for each linkset. This includes both incoming and outgoing translation type mappings. Since the EAGLE 5 ISS supports a total of 1024 linksets, the total number of translation type mappings that can be configured in the EAGLE 5 ISS is 65,536.

The translation type mapping information is configured in the database using the ent-ttmap, chg-ttmap, dlt-ttmap, and rtrv-ttmap commands.

GTT Configuration

The following procedures describe the steps needed to add, remove, or change global title translation (GTT) data in the database.

Note: The Global Title Translation (GTT) feature must be purchased before enabling the features with the chg-feat:gtt=on command. If you are not sure whether you have purchased the GTT feature, contact your Tekelec Sales Representative or Account Representative.

The items configured in this section are:

- Service modules
- Translation type mapping
- Concerned signaling point codes
- Mated applications
- Mated relay nodes.
- GT conversion table entries for the ANSI/ITU SCCP Conversion feature
- Loopsets for the SCCP Loop Detection feature.
- GT modification identifiers for the Advanced GT Modification feature.

To configure the global title translation feature, translation types and global title translations must also be configured. The procedures to configure translation types and global title translations are located in the Global Title Translation (GTT) Configuration section.

The procedures shown in this chapter use a variety of commands. If more information on these commands is needed, refer to the Commands Manual to find the required information.

There must be SS7 routes to the nodes referenced by the global title translation entities in the database. Perform one of the Adding a Route procedures in the Database Administration Manual – SS7 to configure these routes.

The following is a brief description of the global title translation entities. These global title translation entities must be configured in the order that they are shown.

1. The GTT feature must be turned on with the chg-feat:gtt=on command. Verify this with the rtrv-feat command.

 Note: Once the Global Title Translation (GTT) feature is enabled with the chg-feat command, it cannot be disabled.

 The GTT feature must be purchased before enabling this feature. If you are not sure whether you have purchased the GTT feature, contact your Tekelec Sales Representative or Account Representative.

2. A service module must be configured in the database with the ent-card command. A service module can be one of these cards: DSM or E5-SM4G. The DSM or E5-SM4G is specified with the
type=dsm and appl=vsccp parameters of the ent-card command. Refer to the Adding a Service Module procedure for the required cards. The card configuration can be verified with the rtrv-card command.

3. A translation type must be defined in the database. Verify this with the rtrv-tt command. If the necessary translation types are not in the database, add them with the ent-tt command. The translation type is used by the ent-gtt command and defines the length of the global title address.

If the Variable-length Global Title Translation (VGTT) feature is being used, it must be enabled with the chg-feat:vgtt=on command. Verify this with the rtrv-feat command. Refer to the Variable-length Global Title Translation Feature section for more information on this feature.

Note: Once the Variable-length Global Title Translation (VGTT) feature is enabled with the chg-feat command, it cannot be disabled.

The VGTT feature must be purchased before enabling this feature. If you are not sure whether you have purchased the VGTT feature, contact your Tekelec Sales Representative or Account Representative.

4. The translation type can be mapped to another translation type. This is a function of the translation type mapping feature. The translation type mapping feature maps standardized internetwork translation type values to intranetwork translation type values used within any particular network. This feature also maps intranetwork translation type values to standardized internetwork translation type values. Enter the rtrv-ttmap command to verify that the necessary translation type mapping information is in the database. Enter the necessary translation type mapping information in the database using the ent-ttmap command.

5. The concerned signaling point code broadcast groups must be defined in the database. These groups define the point codes that receive subsystem allowed and subsystem prohibited status messages about a particular global title translation node. These messages are broadcast from SCCP management. Verify that these groups are in the database with the rtrv-cspc command. If these groups are not in the database, add them with the ent-cspc command.

6. The mated applications must be defined in the database. The mated applications are the point codes and subsystem numbers of the service databases along with parameters describing the routing between replicated pairs of service databases. Verify the mated application information in the database with the rtrv-map command. If the necessary mated application information is not in the database, add the necessary information with the ent-map command.

If the XMAP Table Expansion feature is to be used to increase the number of mated application entries in the mated application table to either 2000 or 3000 entries, the XMAP Table Expansion feature must be enabled with the enable-ctrl-feat command. Verify the status of the XMAP Table Expansion feature with the rtrv-ctrl-feat command.

The mated applications provide load sharing of the traffic between replicated pairs of service databases. The Flexible GTT Load Sharing feature provides more flexible load sharing capabilities for final global title translations (global title translation containing the routing indicator value SSN) than the mated applications can provide without the Flexible GTT Load Sharing feature enabled. With this feature enabled, MAP sets are provisioned. These MAP sets are assigned to global title translations. Refer to Flexible Final GTT Load Sharing for more information on using the Flexible GTT Load Sharing feature with mated applications.

Load sharing based on the transaction parameters of the message can be performed if the Transaction-Based GTT Load Sharing feature is enabled and turned on. Refer to the Transaction-Based GTT Load Sharing section for more information on using the Transaction-Based GTT Load Sharing feature.
Load sharing based on the weight assigned to an individual entities in a load sharing MAP group can be performed if the Weighted GTT Load Sharing feature is enabled and turned on. Refer to the **Weighted GTT Load Sharing** section for more information on using the Weighted GTT Load Sharing feature.

7. The mated relay node groups can be defined in the database if the Intermediate GTT Load Sharing feature is to be used. Verify this with the `rtrv-mrn` command. If the necessary global title translation information is not in the database, add it with the `ent-mrn` command.

The Intermediate GTT Load Sharing (IGTTLS) feature must be enabled with the `enable-ctrl-feat` and `chg-ctrl-feat` commands. Verify this with the `rtrv-ctrl-feat` command. Refer to the **Intermediate GTT Load Sharing Feature** section for more information on this feature.

The Flexible GTT Load Sharing feature provides more flexible load sharing capabilities for intermediate global title translations (global title translation containing the routing indicator value GT) than the Intermediate GTT Load Sharing feature can provide. With this feature enabled, MRN sets are provisioned. These MRN sets are assigned to global title translations. Refer to **Flexible Intermediate GTT Load Sharing** for more information on using the Flexible GTT Load Sharing feature with mated relay node groups.

Load sharing based on the transaction parameters of the message can be performed if the Transaction-Based GTT Load Sharing feature is enabled and turned on. Refer to the **Transaction-Based GTT Load Sharing** section for more information on using the Transaction-Based GTT Load Sharing feature.

Load sharing based on the weight assigned to an individual entities in a load sharing MRN group can be performed if the Weighted GTT Load Sharing feature is enabled and turned on. See the **Weighted GTT Load Sharing** section for more information on using the Weighted GTT Load Sharing feature.

8. The global title translation data must be defined in the database. This data is used to determine the destination of the service database that needs to queried for additional routing information. Verify this with the `rtrv-gtt` command. If the necessary global title translation information is not in the database, add it with the `ent-gtt` command.

If the Advanced GT Modification feature is being used, it must be enabled with the `enable-ctrl-feat` command. Verify this with the `rtrv-ctrl-feat` command. Refer to the **Advanced GT Modification Feature** section for more information on this feature.

Note: Once the Advanced GT Modification feature is enabled, it cannot be disabled.

If the XGTT Table Expansion feature is to be used to increase the number of mated application entries in the mated application table to either 400,000 or 1,000,000 entries, the XGTT Table Expansion feature must be enabled with the `enable-ctrl-feat` command. Verify the status of the XGTT Table Expansion feature with the `rtrv-ctrl-feat` command.

The ANSI/ITU SCCP Conversion feature provides a means to perform SCCP conversion between ANSI MSUs and ITU MSUs. To perform this conversion, the ANSI/ITU SCCP Conversion feature must be enabled with the `enable-ctrl-feat` command, and turned on with the `chg-ctrl-feat` command. Verify the status of the ANSI/ITU SCCP Conversion feature with the `rtrv-ctrl-feat` command. Entries must be also configured in the GT conversion table with the `ent-gtcnv` command. The content of the GT conversion table can be verified with the `rtrv-gtcnv` command.

Decimal digits (0-9) or hexadecimal digits (0-9, a-f, A-F) can be specified for these items that are assigned to the global title translation entry.
The global title address (gta and egta) values
Entries in the GT conversion table
The prefix (npds) and suffix (nsds) values in the GTMOD identifier that is assigned to the
global title translation entry.

Hexadecimal digits can be specified only if the Hex Digit Support for GTT feature is enabled. Verify the status of the Hex Digit Support for GTT feature with the rtrv-ctrl-feat command. Refer to the Hex Digit Support for GTT section for more information on this feature.

The SCCP Loop Detection feature provides a method for detecting SCCP looping. With this feature enabled, loopsets are provisioned. These loopsets are assigned to Global Title Translations. See the SCCP Loop Detection section for more information on using the SCCP Loop Detection feature with Global Title Translations.

EGTT Configuration

In addition to the items shown in the GTT Configuration section, some or all of these items must be configured to support the EGTT feature.

- GTT sets
- GTT selectors
- Global title address information
- GTT action sets
- GTT action per-path measurements

The procedures to configure these items are located in the Enhanced Global Title Translation (EGTT) Configuration section.

The translation type (ent-/dlt-/rtrv-tt) and the GTT (ent-/dlt-/chg-/rtrv-gtt) commands can be executed when the EGTT feature is turned on, but will only produce CDGTA GTT sets and CDGTA GTT selectors.

The following is a brief description of the enhanced global title translation entities. These entities must be configured in the order that they are shown.

1. The Enhanced Global Title Translation (EGTT) feature must be turned on with the chg-feat:egtt=on command. The Global Title Translation (GTT) must be on before the EGTT feature can be turned on. Verify this with the rtrv-feat command.

 Note: Once the Enhanced Global Title Translation (EGTT) feature is turned on with the chg-feat command, it cannot be turned off.

 The EGTT feature must be purchased before turning on the feature. If you are not sure whether you have purchased the EGTT feature, contact your Tekelec Sales Representative or Account Representative.

2. A service module must be configured in the database with the ent-card command. A service module can be either a DSM, or E5-SM4G. The DSM or E5-SM4G is specified with the type=dsm and appl=vsccp parameters of the ent-card command. Refer to the Adding a Service Module procedure for the required cards. The card configuration can be verified with the rtrv-card command.
3. A global title translation (GTT) set must be defined in the database. Verify this with the rtrv-gttset command. If the necessary GTT set is not in the database, add it with the ent-gttset command.

If the Variable-length Global Title Translation (VGTT) feature is being used, it must be turned on with the chg-feat:vgtt=on command. Verify this with the rtrv-feat command. Refer to the Variable-length Global Title Translation Feature section for more information on this feature.

Note: Once the Variable-length Global Title Translation (VGTT) feature is turned on with the chg-feat command, it cannot be turned off.

The VGTT feature must be purchased before turning it on. If you are not sure whether you have purchased the VGTT feature, contact your Tekelec Sales Representative or Account Representative.

4. A translation type must be defined in the database. Verify this with the rtrv-gttsel command. If the necessary translation types are not in the database, add them with the ent-gttsel command. The translation type is used by the ent-gta command and defines the length of the global title address.

5. The translation type can be mapped to another translation type. This is a function of the translation type mapping feature. The translation type mapping feature maps standardized internetwork translation type values to intranetwork translation type values used within any particular network. This feature also maps intranetwork translation type values to standardized internetwork translation type values. Enter the rtrv-ttmap command to verify that the necessary translation type mapping information is in the database. Enter the necessary translation type mapping information in the database using the ent-ttmap command.

6. The concerned signaling point code broadcast groups must be defined in the database. These groups define the point codes that receive subsystem allowed and subsystem prohibited status messages about a particular global title translation node. These messages are broadcast from SCCP management. Verify that these groups are in the database with the rtrv-cspc command. If these groups are not in the database, add them with the ent-cspc command.

7. The mated applications must be defined in the database. The mated applications are the point codes and subsystem numbers of the service databases along with parameters describing the routing between replicated pairs of service databases. Verify the mated application information in the database with the rtrv-map command. If the necessary mated application information is not in the database, add the necessary information with the ent-map command.

If the XMAP Table Expansion feature is to be used to increase the number of mated application entries in the mated application table to either 2000 or 3000 entries, the XMAP Table Expansion feature must be enabled with the enable-ctrl-feat command. Verify the status of the XMAP Table Expansion feature with the rtrv-ctrl-feat command.

The mated applications provide load sharing of the traffic between replicated pairs of service databases. The Flexible GTT Load Sharing feature provides more flexible load sharing capabilities for final global title translations (global title translation containing the routing indicator value SSN) than the mated applications can provide without the Flexible GTT Load Sharing feature enabled. With this feature enabled, MAP sets are provisioned. These MAP sets are assigned to global title translations. Refer to Flexible Final GTT Load Sharing for more information on using the Flexible GTT Load Sharing feature with mated applications.

Load sharing based on the transaction parameters of the message can be performed if the Transaction-Based GTT Load Sharing feature is enabled and turned on. Refer to the Transaction-Based GTT Load Sharing section for more information on using the Transaction-Based GTT Load Sharing feature.
8. The mated relay node groups can be defined in the database if the Intermediate GTT Load Sharing feature is to be used. Verify this with the `rtrv-mrn` command. If the necessary global title translation information is not in the database, add it with the `ent-mrn` command.

The Intermediate GTT Load Sharing (IGTTLs) feature must be enabled with the `enable-ctrl-feat` and `chg-ctrl-feat` commands. Verify this with the `rtrv-ctrl-feat` command. Refer to the Intermediate GTT Load Sharing Feature section for more information on this feature.

The Flexible GTT Load Sharing feature provides more flexible load sharing capabilities for intermediate global title translations (global title translation containing the routing indicator value GT) than the Intermediate GTT Load Sharing feature can provide. With this feature enabled, MRN sets are provisioned. These MRN sets are assigned to global title translations. Refer to Flexible Intermediate GTT Load Sharing for more information on using the Flexible GTT Load Sharing feature with mated relay node groups.

Load sharing based on the transaction parameters of the message can be performed if the Transaction-Based GTT Load Sharing feature is enabled and turned on. Refer to the Transaction-Based GTT Load Sharing section for more information on using the Transaction-Based GTT Load Sharing feature.

Load sharing based on the weight assigned to an individual entities in a load sharing MRN group can be performed if the Weighted GTT Load Sharing feature is enabled and turned on. Refer to the Weighted GTT Load Sharing section for more information on using the Weighted GTT Load Sharing feature.

9. The global title address data must be defined in the database. This data is used to determine the destination of the service database that needs to be queried for additional routing information. Verify this with the `rtrv-gta` command. If the necessary global title address information is not in the database, add it with the `ent-gta` command.

If the Advanced GT Modification feature is being used, it must be enabled with the `enable-ctrl-feat` command. Verify this with the `rtrv-ctrl-feat` command. Refer to the Advanced GT Modification Feature section for more information on this feature.

Note: Once the Advanced GT Modification feature is enabled, it cannot be disabled.

The XGTT Table Expansion feature is used to increase the number of entries in the GTT table to either 400,000 or 1,000,000 entries, the XGTT Table Expansion feature must be enabled with the `enable-ctrl-feat` command. Verify the status of the XGTT Table Expansion feature with the `rtrv-ctrl-feat` command.

The ANSI/ITU SCCP Conversion feature provides a means to perform SCCP conversion between ANSI MSUs and ITU MSUs. To perform this conversion, the ANSI/ITU SCCP Conversion feature must be enabled with the `enable-ctrl-feat` command, and turned on with the `chg-ctrl-feat` command. Verify the status of the ANSI/ITU SCCP Conversion feature with the `rtrv-ctrl-feat` command. Entries must be also configured in the GT conversion table with the `ent-gtcnv` command. The content of the GT conversion table can be verified with the `rtrv-gtcnv` command.

Decimal digits (0-9) or hexadecimal digits (0-9, a-f, A-F) can be specified for these items that are assigned to the global title address entry.

- The global title address (`gta` and `egta`) values
- Entries in the GT conversion table
- The prefix (`npds`) and suffix (`nsds`) values in the GTMOD identifier that is assigned to the global title address entry.
Hexadecimal digits can be specified only if the Hex Digit Support for GTT feature is enabled. Verify the status of the Hex Digit Support for GTT feature with the `rtrv-ctrl-feat` command. Refer to the Hex Digit Support for GTT section for more information on this feature.

The SCCP Loop Detection feature provides a method for detecting SCCP looping. With this feature enabled, loopsets are provisioned. These loopsets are assigned to Global Title Translations. Refer to the SCCP Loop Detection section for more information on using the SCCP Loop Detection feature with Global Title Translations.

10. A set of these actions, discard, UDTS, duplicate, TCAP error, and forward, can be assigned to the global title address entry. These actions are contained in a GTT action set. A GTT action set name identifies each set of these actions and this name is assigned to the global title address entry. The actions in the action set are performed on the MSU when global title translation finishes processing the MSU. Refer to the GTT Actions section for more information on using GTT actions with the global title address entries.

11. The GTT Action per-path measurements provides measurement counts for the GTT actions that are applied to messages that match a pre-defined combination of CgPA GTA, CdPA GTA, and Opcode values, called a path. The combination of these values are provisioned in the GTT Path table. Refer to the GTT Actions section for more information on using GTT Action per-path measurements.

Adding a Service Module

This procedure is used to add a service module to support the Global Title Translation or Enhanced Global Title Translation feature to the database using the `ent-card` command.

A service module can be one of these cards.

- DSM 1G
- DSM 2G
- DSM 3G
- DSM 4G
- E5-SM4G
- E5-SM8G-B

The card that is used as a service module depends on the GTT related features that are being used and the features that will enabled after this procedure is performed. The features or feature combinations shown in Table 31: Service Module and Feature Combinations show the type of card that must be installed in the EAGLE 5 ISS to meet the minimum EAGLE 5 ISS performance requirements. E5-SM4G cards can be used in place of DSMs when the feature combination requires DSMs. The features that are currently being used by the EAGLE 5 ISS are shown in the `rtrv-feat` or `rtrv-ctrl-feat` command outputs.
Table 31: Service Module and Feature Combinations

<table>
<thead>
<tr>
<th>Card</th>
<th>Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>E5-SM4G</td>
<td>Any of these features:</td>
</tr>
<tr>
<td></td>
<td>• E5-SM4G Throughput Capacity - DSMs can be used if this feature is enabled, but to achieve the maximum transactions per second for the EAGLE 5 ISS, shown in Table 34: SCCP Throughput Capacity, all service modules must be E5-SM4G cards.</td>
</tr>
<tr>
<td></td>
<td>• Support for 16 GTT Lengths in VGTT</td>
</tr>
<tr>
<td></td>
<td>• Flexible Linkset Optional Based Routing</td>
</tr>
<tr>
<td></td>
<td>• GTT Action - DUPLICATE</td>
</tr>
<tr>
<td>E5-SM8G-B</td>
<td>All of the features supported by the E5-SM4G card, plus the following:</td>
</tr>
<tr>
<td></td>
<td>• E5-SM4G Throughput Capacity 10,000 TPS</td>
</tr>
<tr>
<td>DSM 1G, DSM 2G, DSM 3G, DSM 4G</td>
<td>Any of these features:</td>
</tr>
<tr>
<td></td>
<td>• ANSI-41 Analyzed Information Query (ANSI41 AIQ)</td>
</tr>
<tr>
<td></td>
<td>• GTT Action - DISCARD</td>
</tr>
<tr>
<td></td>
<td>• GTT Action - FORWARD</td>
</tr>
<tr>
<td></td>
<td>• Info Analyzed Relay Base</td>
</tr>
<tr>
<td></td>
<td>• Service Portability</td>
</tr>
<tr>
<td></td>
<td>• Enhanced GSM MAP Screening</td>
</tr>
<tr>
<td></td>
<td>• G-FLEX</td>
</tr>
<tr>
<td></td>
<td>• V-FLEX</td>
</tr>
<tr>
<td></td>
<td>• G-Port</td>
</tr>
<tr>
<td></td>
<td>• INP</td>
</tr>
<tr>
<td></td>
<td>• Prepaid SMS Intercept Phase 1 (PPSMS)</td>
</tr>
<tr>
<td></td>
<td>• XGTT Table Expansion for 1,000,000 GTT entries</td>
</tr>
<tr>
<td></td>
<td>• Equipment Identity Register(EIR)</td>
</tr>
<tr>
<td></td>
<td>• Flexible GTT Load Sharing</td>
</tr>
<tr>
<td></td>
<td>• IDP Screening for Prepaid</td>
</tr>
<tr>
<td></td>
<td>• Prepaid IDP Query Relay</td>
</tr>
<tr>
<td></td>
<td>• Origin-Based SCCP Routing</td>
</tr>
<tr>
<td></td>
<td>• Hex Digit Support for GTT</td>
</tr>
<tr>
<td></td>
<td>• A-Port - must be 4 gigabyte DSMs (DSM 4G)</td>
</tr>
<tr>
<td></td>
<td>• IS41 GSM Migration</td>
</tr>
<tr>
<td></td>
<td>• Weighted GTT Load Sharing</td>
</tr>
<tr>
<td></td>
<td>• Transaction-Based GTT Load Sharing</td>
</tr>
<tr>
<td></td>
<td>• ANSI-41 INP Query - must be 4 gigabyte DSMs (DSM 4G)</td>
</tr>
<tr>
<td></td>
<td>• MO SMS B-Party Routing</td>
</tr>
<tr>
<td></td>
<td>• MO-based GSM SMS NP</td>
</tr>
<tr>
<td></td>
<td>• MO-based IS41 SMS NP</td>
</tr>
<tr>
<td></td>
<td>• MO SMS IS41-to-GSM Migration</td>
</tr>
<tr>
<td></td>
<td>• MO SMS ASD</td>
</tr>
<tr>
<td></td>
<td>• MO SMS GRN</td>
</tr>
<tr>
<td>Card</td>
<td>Features</td>
</tr>
<tr>
<td>------</td>
<td>----------</td>
</tr>
</tbody>
</table>
| | - Portability Check for MO SMS
| | - TIF Number Portability
| | - TIF SCS Forwarding
| | - TIF Simple Number Substitution
| | - TIF ASD
| | - TIF GRN
| | - ATI Number Portability Query (ATINP)
| | - GSM MAP Screening
| or | GTT and EGTT (if the Enhanced Global Title Translation feature is on) in combination with at least 2 of these features:
| | - Variable-Length Global Title Translation (VGTT)
| | - Advanced GT Modification (with or without the ANSI/ITU SCCP Conversion feature)
| | - IGTTLS
| | - XGTT Table Expansion enabled for 400,000GT entries
| | - XMAP Table Expansion enabled for either 3000 or 2000MAP table entries |

The DSM or E5-SM4G/E5-SM8G-B can be inserted only in the odd numbered card slots of the control or the extension shelf. Slots 09 and 10 of each shelf contains either the HMUX, HIPR, or HIPR2 card, thus the DSM or E5-SM4G/E5-SM8G-B cannot be inserted in slot 09 and 10. The DSM or E5-SM4G/E5-SM8G-B can be inserted in the control shelf, but only in slots 01, 03, 05, 07 and 11. The DSM or E5-SM4G/E5-SM8G-B occupies two card slots, so the even numbered card slot adjacent to the odd numbered slot where the DSM or E5-SM4G/E5-SM8G-B has been inserted must be empty, as shown in Table 32: DSM Card Locations. The DSM or E5-SM4G/E5-SM8G-B is connected to the network through the odd numbered card slot connector. The E5-SM4G/E5-SM8G-B requires two HIPR cards or two HIPR2 cards in the shelf where it is installed.

Table 32: DSM Card Locations

<table>
<thead>
<tr>
<th>Location of the DSM</th>
<th>Empty Card Location</th>
<th>Location of the E5-SM4G/E5-SM8G-B</th>
<th>Empty Card Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slot 01</td>
<td>Slot 02</td>
<td>Slot 11</td>
<td>Slot 12</td>
</tr>
<tr>
<td>Slot 03</td>
<td>Slot 04</td>
<td>Slot 13</td>
<td>Slot 14</td>
</tr>
<tr>
<td>Slot 05</td>
<td>Slot 06</td>
<td>Slot 15</td>
<td>Slot 16</td>
</tr>
<tr>
<td>Slot 07</td>
<td>Slot 08</td>
<td>Slot 17</td>
<td>Slot 18</td>
</tr>
</tbody>
</table>

The `ent-card` command uses these parameters.

`:loc` – The location of the card being added to the database.
The type of card being added to the database. The value of this parameter is dsm.

:appl – The application software that is assigned to the card. The value of this parameter is vsccp.

The shelf to which the card is to be added must already be in the database. This can be verified with the rtrv-shlf command. If the shelf is not in the database, perform the "Adding a Shelf" procedure in the Database Administration Manual – System Management.

The card cannot be added to the database if the specified card location already has a card assigned to it.

Note: If you want to add an E5-SM4G or E5-SM8G-Bcard as the service module, verify the temperature threshold settings for the E5-SM4G card by performing the "Changing the High-Capacity Card Temperature Alarm Thresholds" procedure in the Database Administration Manual - SS7. The E5-SM8G-B card also requires a fan tray.

1. Display the cards in the EAGLE 5 ISS using the rtrv-card command to verify that the card location for the new service module is not provisioned. This is an example of the possible output.

 Note: Cards should be distributed throughout the EAGLE 5 ISS for proper power distribution. Refer to the Installation Manual - EAGLE 5 ISS for the shelf power distribution.

 This is an example of the possible output.

   ```
   righncxa03w 09-07-25 09:58:31 GMT EAGLE5 41.1.0
   CARD   TYPE     APPL     LSET NAME     LINK SLC LSET NAME     LINK SLC
   1102   TSM       GLS      
   1113   GPM       OAM      
   1114   TDM-A     
   1115   GPM       OAM      
   1116   TDM-B     
   1117   MDAL      
   1118   RESERVED  
   1201   LIMDS0    SS7ANSI   sp2     A  0   sp1     B  0 
   1203   LIMDS0    SS7ANSI   sp3     A  0   
   1204   LIMDS0    SS7ANSI   sp3     A  1   
   1205   LIMDS0    SS7ANSI   sp3     A  1   nsp4    B  1   
   1216   DCM       STPLAN   
   1308   LIMDS0    SS7ANSI   sp6     A  1   sp7     B  0   
   1314   LIMDS0    SS7ANSI   sp7     A  1   sp5     B  1   
   1317   DCM       STPLAN   
   2101   DSM       VSCECP   
   2103   DSM       VSCECP   
   2111   DSM       VSCECP   
   2115   DSM       VSCECP   
   2117   DSM       VSCECP   
   ```

 If service modules are shown in the rtrv-card output, shown by the entry VSCECP in the APPL column, continue the procedure with **Step 4**.

 If service modules are not shown in the rtrv-card output, continue the procedure with **Step 2**.

2. Verify that the GTT feature is on by entering the rtrv-feat command. If the GTT feature is on, the GTT field should be set to on. For this example, the GTT feature is off.

 Note: The rtrv-feat command output contains other fields that are not used by this procedure. To see all the fields displayed by the rtrv-feat command, refer to the rtrv-feat command description in the Commands Manual.

 If the GTT feature is on, continue the procedure with **Step 4**.

 If the GTT feature is off, continue the procedure with **Step 3**.
3. Turn the global title translation feature on by entering this command.

 `chg-feat:gtt=on`

Note: Once the Global Title Translation (GTT) feature is turned on with the `chg-feat` command, it cannot be turned off.

The GTT feature must be purchased before turning it on. If you are not sure whether you have purchased the GTT feature, contact your Tekelec Sales Representative or Account Representative.

When the `chg-feat` has successfully completed, this message should appear.

```
rlghncxa03w 09-07-25 09:57:41 GMT EAGLE5 41.1.0
CHG-FEAT: MASP A - COMPLTD
```

Continue the procedure by performing one of these steps.

- If a DSM is being added, continue the procedure with **Step 8**.
- If an E5-SM4G/E5-SM8G-B card is being added, continue the procedure with **Step 6**.

4. Display the status of the features in the database by entering the `rtrv-ctrl-feat` command. The following is an example of the possible output.

```
rlghncxa03w 09-07-28 21:15:37 GMT EAGLE5 41.1.0
The following features have been permanently enabled:

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Partnum</th>
<th>Status</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Command Class Management</td>
<td>893005801</td>
<td>on</td>
<td>----</td>
</tr>
<tr>
<td>LNP Short Message Service</td>
<td>893006601</td>
<td>on</td>
<td>----</td>
</tr>
<tr>
<td>Intermed GTT Load Sharing</td>
<td>893006901</td>
<td>on</td>
<td>----</td>
</tr>
<tr>
<td>XGTT Table Expansion</td>
<td>893006101</td>
<td>off</td>
<td>----</td>
</tr>
<tr>
<td>XMAP Table Expansion</td>
<td>893007701</td>
<td>off</td>
<td>----</td>
</tr>
<tr>
<td>Large System # Links</td>
<td>893005910</td>
<td>on</td>
<td>2000</td>
</tr>
<tr>
<td>HC-MIM SLK Capacity</td>
<td>893012707</td>
<td>on</td>
<td>64</td>
</tr>
</tbody>
</table>

The following features have been temporarily enabled:

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Partnum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zero entries found.</td>
<td></td>
</tr>
</tbody>
</table>

The following features have expired temporary keys:

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Partnum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zero entries found.</td>
<td></td>
</tr>
</tbody>
</table>

**Table 33: ELAP-Based and EPAP-Based Features** shows the ELAP-Based and EPAP-Based features that can be enabled. These features can affect how many service modules can be provisioned in the EAGLE 5 ISS.

**Table 33: ELAP-Based and EPAP-Based Features**

<table>
<thead>
<tr>
<th>ELAP-Based Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>LNP</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>EPAP-Based Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>EIR</td>
</tr>
<tr>
<td>ANSI-41 INP Query</td>
</tr>
<tr>
<td>G-Flex</td>
</tr>
<tr>
<td>IS41 GSM Migration</td>
</tr>
</tbody>
</table>
Continue the procedure by performing one of these steps.

- If any of the features shown in Table 33: ELAP-Based and EPAP-Based Features are enabled, or if any the shown in Table 33: ELAP-Based and EPAP-Based Features will be enabled, continue the procedure with Step 5.
- If none of the features shown in Table 33: ELAP-Based and EPAP-Based Features are enabled and none of these features will be enabled, continue the procedure with Step 6.

5. Verify the number of service modules in the EAGLE 5 ISS by entering the `rept-stat-sccp` command. The number of service modules is shown in the SCCP Cards Configured field of the `rept-stat-sccp` output. This is an example of the possible output.

```
rlghncxa03w 09-07-25 09:57:31 GMT EAGLE5 41.1.0
SCCP Cards Configured=5 Cards IS-NR=5
CARD VERSION PST SST AST MSU USAGE CPU USAGE

2101 113-002-001 IS-NR Active ----- 47% 81%
2103 113-002-001 IS-NR Active ----- 34% 50%
2111 113-002-001 IS-NR Active ----- 21% 29%
2115 113-002-001 IS-NR Active ----- 35% 52%
2117 113-002-001 IS-NR Active ----- 40% 71%

SCCP Service Average MSU Capacity = 36% Average CPU Capacity = 56%
Command Completed.
```

Note: The `rept-stat-sccp` command output contains other fields that are not used by this procedure. If you wish to see all the fields displayed by the `rept-stat-sccp` command, refer to the `rept-stat-sccp` command description in the Commands Manual.

*Table 34: SCCP Throughput Capacity* shows the maximum SCCP throughput capacity based on the combinations of features and GPL/card.

**Table 34: SCCP Throughput Capacity**

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>GPL and Card</th>
<th>SCCPHC GPL on E5-SM4G A card</th>
<th>SCCPHC GPL on E5-SM8G-B card</th>
</tr>
</thead>
<tbody>
<tr>
<td>E5-SM4G</td>
<td>VSCCP GPL on DSM-4G card</td>
<td>1700, 1100, 850 based on the features enabled</td>
<td>6800 (see last 5 rows)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10000 (11000 - E5-SM8G-B only works)</td>
</tr>
</tbody>
</table>
Throughput Capacity 10K TPS
(see last 5 rows) when MFC is ON and FAN bit is ON.

E5-SM4G Throughput Capacity 6800 TPS
1700, 1100, 850 based on the other features enabled
(see last 5 rows) 6800 (7480 in MFC, 8000 in TVG )
6800 (7480)

E5-SM4G Throughput Capacity 5000 TPS
1700, 1100, 850 based on the features enabled
(see last 5 rows) 3125 (3440 in MFC, 4125 in TVG) - if EPAP-based features are enabled.
3125 (3440) - if EPAP-based features are enabled.
5000 (5500 in MFC, 6250 in TVG) - With ELAP or if no MPS-based features are enabled.
5000 (5500) - With ELP or if no MPS-based features are enabled.

LNP 1700 (1900) 5000 (6250 for TVG, 5500 for MFC) 5000 (5500)

ANSIGFLEX 1700 (1900) 1700 (1900) 1700 (1900)

GTT 1700 (1900) 1700 (1900) 1700 (1900)

1100 TPS 1100 (1210) 1100 (1210) 1100 (1210)

EPAP 850 (944) 850 (944) 850 (944)

The Eagle's total SCCP throughput capacity can be calculated as the number of SCCP cards in the system (N) times the SCCP throughput capacity per card (keeping in mind the SCCP configuration of the system: N or N+1). The number of SCCP cards in the system depends on whether the system is a pure GTT or EPAP or ELAP system and the specific Eagle/EPAP/ELAP release.

Table 35: Number Service Module Cards in the System

<table>
<thead>
<tr>
<th>MPS release</th>
<th>DSM cards (up to 1,700 TPS)</th>
<th>SM4G cards (up to 5K/6.8K/10KTPS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELAP 7.0</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Up to 192 mil TNs. 120 mil TNs and more – DSM 4GB is required</td>
</tr>
<tr>
<td>ELAP 8.0</td>
<td>N/A</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Up to 384 mil TNs</td>
</tr>
<tr>
<td>ELAP 9.0</td>
<td>N/A</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Up to 384 mil TNs</td>
</tr>
<tr>
<td>Up to Eagle 41.1+ EPAP 13</td>
<td>25</td>
<td>25</td>
</tr>
</tbody>
</table>
SM4G cards (up to 5K/6.8K/10K TPS)  

DSM cards (up to 1,700 TPS)  

<table>
<thead>
<tr>
<th>MPS release</th>
<th>DSM cards (up to 1,700 TPS)</th>
<th>SM4G cards (up to 5K/6.8K/10K TPS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>From Eagle 42.0 + EPAP 13 on AS T1000</td>
<td>25 (in N+1 config)</td>
<td>25 (in N+1 config)</td>
</tr>
<tr>
<td>From Eagle 42.0 + EPAP 13 on AS T1200</td>
<td>32 (in N+1 config)</td>
<td>32 (in N+1 config)</td>
</tr>
</tbody>
</table>

If the `rept-stat-sccp` output shows that the EAGLE 5 ISS has the maximum number of service modules, as shown in Table 35: Number Service Module Cards in the System, the remainder of this procedure cannot be performed.

If the `rept-stat-sccp` output shows that the EAGLE 5 ISS does not have the maximum number of service modules, as shown in Table 35: Number Service Module Cards in the System, continue the procedure by performing one of these steps.

- If a DSM is being added, continue the procedure with Step 8.
- If an E5-SM4G-B/E5-SM8G-B card is being added, continue the procedure with Step 6.

6. Verify that HIPR cards are installed at card locations 9 and 10 in the shelf where the E5-SM4G/E5-SM8G-B card will be installed. Enter this command.

```
rept-stat-gpl:gpl=hipr
```

This is an example of the possible output.

```
rlghncxa03w 09-07-01 11:40:26 GMT EAGLE5 41.1.0
GPL CARD RUNNING APPROVED TRIAL
HIPR 1109 126-002-000 126-002-000 126-003-000
HIPR 1110 126-002-000 126-002-000 126-003-000
HIPR 1209 126-002-000 126-002-000 126-003-000
HIPR 1210 126-002-000 126-002-000 126-003-000
HIPR 1309 126-002-000 126-002-000 126-003-000
HIPR 1310 126-002-000 126-002-000 126-003-000
HIPR 2109 126-002-000 126-002-000 126-003-000
HIPR 2110 126-002-000 126-002-000 126-003-000
Command Completed
```

If HIPR cards are installed at card locations 9 and 10 in the shelf where the E5-SM4G/E5-SM8G-B card will be installed, continue the procedure with Step 8.

If HIPR cards are not installed in the shelf where the E5-SM4G card will be installed, continue the procedure with Step 7.

7. Verify that HIPR2 cards are installed at card locations 9 and 10 in the shelf where the E5-SM4G/E5-SM8G-B card will be installed. Enter this command.

```
rept-stat-gpl:gpl=hipr2
```

This is an example of the possible output.

```
rlghncxa03w 09-07-01 11:40:26 GMT EAGLE5 41.1.0
GPL CARD RUNNING APPROVED TRIAL
HIPR2 1109 126-002-000 126-002-000 126-003-000
HIPR2 1110 126-002-000 126-002-000 126-003-000
HIPR2 1209 126-002-000 126-002-000 126-003-000
HIPR2 1210 126-002-000 126-002-000 126-003-000
HIPR2 1309 126-002-000 126-002-000 126-003-000
HIPR2 1310 126-002-000 126-002-000 126-003-000
HIPR2 2109 126-002-000 126-002-000 126-003-000
HIPR2 2110 126-002-000 126-002-000 126-003-000
Command Completed
```
If HIPR2 cards are installed at card locations 9 and 10 in the shelf where the E5-SM4G/E5-SM8G-B card will be installed, continue the procedure with Step 8.

If HIPR or HIPR2 cards are not installed in the shelf where the E5-SM4G/E5-SM8G-B card will be installed, refer to the Installation Manual - EAGLE 5 ISS to install the HIPR or HIPR2 cards. Once the HIPR or HIPR2 cards have been installed, continue the procedure with Step 8.

8. Verify that the service module has been physically installed into the proper location according to the feature requirements shown in Table 31: Service Module and Feature Combinations. Table 31: Service Module and Feature Combinations shows the type of service module that is required based on the GTT-related features that are currently being used (also shown in the rtrv-feat output in Step 2 as being on, and in the rtrv-ctrl-feat output in Step 4 as being enabled) and any features that will be enabled after this procedure is performed.

**CAUTION:** If the versions of the flash GPLs on the service module do not match the flash GPL versions in the database when the service module is inserted into the card slot, UAM 0002 is generated to indicate that these GPL versions do not match. If UAM 0002 has been generated, perform the alarm clearing procedure for UAM 0002 in the Unsolicited Alarm and Information Messages Manual before proceeding with this procedure.

9. Verify that the Eagle 5 ISS has a fan unit and the fan unit is on. If the fan unit is not on, use the enable-ctrl-feat:fan=on command to turn on the fan.

10. Verify that the MFC STP option is turned on. If the MFC STP option is not turned on, use the enable-ctrl-feat:MFC=on to turn it on.

11. Add the service module to the database using the ent-card command. For this example, enter this command.

    ```
 ent-card:loc=1301:type=dsm:appl=vsccp
    ```

**Note:** If any EPAP-based feature is enabled and turned on, and the service module quantity will exceed 25, the ent-card command must be entered twice within 30 seconds on the same terminal for the service module to be added to the database. The EAGLE 5 ISS must be connected to a TekServer 3 T1200 that is running EPAP version 13.0 or higher.

When this command has completed, one of these messages should appear.

- If any of these conditions will be present after the new service module is added to the database:
  - the total number of service modules will not be increased beyond 25
  - the total number of service modules will be greater than 25 and no EPAP-based features are enabled and turned on (see Table 33: ELAP-Based and EPAP-Based Features)
  - the total number of service modules will be from 27 to 32 and any EPAP-based features are enabled and turned on (see Table 33: ELAP-Based and EPAP-Based Features)

  this message should appear.

```
rlghncxa03w 10-07-25 09:57:51 GMT EAGLE5 42.0.0
ENT-CARD: MASP A - COMPLTD
```
If the addition of the new service module will increase the total number of service modules to 26 and any EPAP-based features are enabled and turned on (see Table 33: ELAP-Based and EPAP-Based Features), this message should appear.

```
rlghncxa03w 10-07-25 09:57:51 GMT EAGLE5 42.0.0
CAUTION: Please ensure EPAP Application Server is running on hardware supporting 32 SCCP cards e.g.: T1200.
Re-enter command within 30 seconds to confirm change.
```

After this message appears, re-enter the `ent-card` command within 30 seconds. This message should appear.

```
rlghncxa03w 10-07-25 09:57:51 GMT EAGLE5 42.0.0
ENT-CARD: MASP A - Command Aborted
```

If the `ent-card` command is not re-entered within 30 seconds, this message should appear and the new service module will not be added to the database.

```
ENT-CARD command (Type=DSM) confirmation timer expired
```

12. Verify the changes using the `rtrv-card` command with the card location specified. For this example, enter this command.

```
rtrv-card:loc=1301
```

This is an example of the possible output.

```
rlghncxa03w 09-07-25 09:58:31 GMT EAGLE5 41.1.0
CARD TYPE APPL LSET NAME LINK SLC LSET NAME LINK SLC
1301 DSM VSCCP
```

13. Put the card in service using the `rst-card` command with the card location specified in Step 11. For this example, enter this command.

```
rst-card:loc=1301
```

**Note:** The primary state of the service module will remain IS-ANR and the secondary state of the service module will remain MPS_UNAVAIL after the `rst-card` command is performed when these conditions are present.

- The EAGLE 5 ISS is not connected to an EPAP on the T1200 hardware platform.
- An EPAP-based feature is enabled and turned on.
- Adding the new service module increased the service module quantity beyond 25.

When this command has successfully completed, this message should appear.

```
rlghncxa03w 09-07-28 08:21:07 GMT EAGLE5 41.1.0
Card has been allowed.
```

Continue the procedure by performing one of these steps.
If the EGTT feature is on, shown by the entry \textit{EGTT = on} in the \texttt{rtrv-feat} command output in \textit{Step 2}, or if the EGTT feature is off and will not be turned on in this procedure, continue the procedure with \textit{Step 15}.

If the EGTT feature is off and will be turned on in this procedure, continue the procedure with \textit{Step 14}.

\textbf{14.} Turn the enhanced global title translation feature on by entering this command.

\textbf{Note:} Once the Enhanced Global Title Translation (EGTT) feature is turned on with the \texttt{chg-feat} command, it cannot be turned off.

The EGTT feature must be purchased before turning it on. If you are not sure whether you have purchased the EGTT feature, contact your Tekelec Sales Representative or Account Representative.

When the \texttt{chg-feat} has successfully completed, this message should appear.

\begin{verbatim}
rlghncxa03w 09-07-25 09:57:41 GMT EAGLE5 41.1.0
CHG-FEAT: MASP A - COMPLTD
\end{verbatim}

\textbf{15.} Backup the new changes using the \texttt{chg-db:action=backup:dest=fixed} command. These messages should appear, the active Maintenance and Administration Subsystem Processor (MASP) appears first.

\begin{verbatim}
BACKUP (FIXED) : MASP A - Backup starts on active MASP.
BACKUP (FIXED) : MASP A - Backup on active MASP to fixed disk complete.
BACKUP (FIXED) : MASP A - Backup starts on standby MASP.
BACKUP (FIXED) : MASP A - Backup on standby MASP to fixed disk complete.
\end{verbatim}

\section*{Removing a Service Module}

This procedure is used to remove a service module, used by global title translation, from the database using the \texttt{dlt-card} command. The card cannot be removed if it does not exist in the database.

\textbf{CAUTION:} If the service module is the last service module in service, removing this card from the database will cause global title translation traffic to be lost.

The examples in this procedure are used to remove the service module in card location 1204.

\textbf{1.} Display the status of the service modules by entering the \texttt{rept-stat-sccp} command.

This is an example of the possible output.

\begin{verbatim}
rlghncxa03w 06-10-25 09:57:31 GMT EAGLE5 36.0.0
CARD VERSION PST SST AST MSU USAGE CPU USAGE
----------------------------------------------------------------------------
2101 113-002-001 IS-NR Active ----- 47% 81%
2103 113-002-001 IS-NR Active ----- 34% 50%
2111 113-002-001 IS-NR Active ----- 21% 29%
2115 113-002-001 IS-NR Active ----- 35% 52%
2117 113-002-001 IS-NR Active ----- 40% 71%
----------------------------------------------------------------------------
\end{verbatim}
SCCP Service Average MSU Capacity = 36%
Average CPU Capacity = 56%

Command Completed.

Note: The rept-stat-sccp command output contains other fields that are not used by this procedure. If you wish to see all the fields displayed by the rept-stat-sccp command, refer to the rept-stat-sccp command description in the Commands Manual.

2. Remove the card from service using the rmv-card command and specifying the card location.

If the service module to be inhibited is the only service module in service, the force=yes parameter must also be specified. The cards that are in service are shown by the entry IS-NR in the PST field in the output in Step 1. For this example, enter this command.

rmv-card:loc=1204

When this command has successfully completed, this message should appear.

rlghncxa03w 06-10-25 09:57:41 GMT  EAGLE5 36.0.0
Card has been inhibited.

3. Remove the card from the database using the dlt-card command.

The dlt-card command has only one parameter, loc, which is the location of the card. For this example, enter this command.

dlt-card:loc=1204

When this command has successfully completed, this message should appear.

rlghncxa03w 06-10-25 09:57:51 GMT  EAGLE5 36.0.0
DLT-CARD: MASP A - COMPLTD

4. Verify the changes using the rtrv-card command specifying the card that was removed in Step 3.

For this example, enter this command.

rtrv-card:loc=1204

When this command has successfully completed, this message should appear.

E2144 Cmd Rej: Location invalid for hardware configuration

5. Backup the new changes using the chg-db:action=backup:dest=fixed command.

These messages should appear, the active Maintenance and Administration Subsystem Processor (MASP) appears first.

BACKUP (FIXED) : MASP A - Backup starts on active MASP.
BACKUP (FIXED) : MASP A - Backup on active MASP to fixed disk complete.
BACKUP (FIXED) : MASP A - Backup starts on standby MASP.
BACKUP (FIXED) : MASP A - Backup on standby MASP to fixed disk complete.
Adding a Mapped SS7 Message Translation Type

This procedure is used to add a mapped SS7 message translation type to the database. The mapped translation type is added to the database using the `ent-ttmap` command and is assigned to an ANSI SS7 linkset.

The `ent-ttmap` command uses these parameters:

- **:lsn** – the name of the linkset.
- **:io** – is translation type mapping to be performed on SS7 messages received in the linkset (incoming linkset) or on SS7 messages sent on the linkset (outgoing linkset).
- **:ett** – the translation type contained in the SS7 message before that translation type is mapped.
- **:mtt** – the translation type that the value of the `ett` parameter is mapped to.

The examples in this procedure are used to map the SS7 message translation type 250 to the translation type 001 for any incoming messages on linkset `ln01`.

**Canceling the RTRV-LS Command**

Because the `rtrv-1s` command used in this procedure can output information for a long period of time, the `rtrv-1s` command can be canceled and the output to the terminal stopped. There are three ways that the `rtrv-1s` command can be canceled.

- Press the F9 function key on the keyboard at the terminal where the `rtrv-1s` command was entered.
- Enter the `canc-cmd` without the `trm` parameter at the terminal where the `rtrv-1s` command was entered.
- Enter the `canc-cmd:trm=<xx>`, where `<xx>` is the terminal where the `rtrv-1s` command was entered, from another terminal other that the terminal where the `rtrv-1s` command was entered. To enter the `canc-cmd:trm=<xx>` command, the terminal must allow Security Administration commands to be entered from it and the user must be allowed to enter Security Administration commands. The terminal’s permissions can be verified with the `rtrv-secu-trm` command. The user’s permissions can be verified with the `rtrv-user` or `rtrv-secu-user` commands.

For more information about the `canc-cmd` command, go to the `Commands Manual`.

1. Display the mapped translation types in the database using the `rtrv-ttmap` command.

   This is an example of the possible output.

   ```bash
 righncxa03w 07-05-25 09:57:31 GMT EAGLE5 37.0.0
 LSN IO ETT MTT
 nc001 I 047 032
 nc001 I 128 055
 nc001 I 238 128
 nc001 I 254 016
 nc001 O 016 254
 nc001 O 128 238
   ```
2. Display the linksets in the database using the `rtrv-ls` command. This is an example of the possible output.

```
rlghncxa03w 09-05-25 09:57:41 GMT EAGLE5 41.0.0

<table>
<thead>
<tr>
<th>LSN</th>
<th>APCA</th>
<th>SCRN</th>
<th>SET</th>
<th>SET</th>
<th>BEI</th>
<th>LST</th>
<th>LNKs</th>
<th>ACT</th>
<th>MES</th>
<th>DIS</th>
<th>SLSCI</th>
<th>NIS</th>
</tr>
</thead>
<tbody>
<tr>
<td>lsa1</td>
<td>240-020-000</td>
<td>scr1</td>
<td>1</td>
<td>1</td>
<td>yes</td>
<td>1</td>
<td>off</td>
<td>off</td>
<td>off</td>
<td>off</td>
<td>yes</td>
<td>off</td>
</tr>
<tr>
<td>lsa2</td>
<td>240-030-000</td>
<td>scr2</td>
<td>1</td>
<td>2</td>
<td>no</td>
<td>c</td>
<td>3</td>
<td>on</td>
<td>on</td>
<td>on</td>
<td>yes</td>
<td>off</td>
</tr>
<tr>
<td>lsa3</td>
<td>240-040-000</td>
<td>scr3</td>
<td>1</td>
<td>3</td>
<td>yes</td>
<td>c</td>
<td>5</td>
<td>off</td>
<td>off</td>
<td>off</td>
<td>yes</td>
<td>off</td>
</tr>
<tr>
<td>lsn01</td>
<td>240-050-000</td>
<td>scr4</td>
<td>1</td>
<td>3</td>
<td>yes</td>
<td>c</td>
<td>5</td>
<td>off</td>
<td>off</td>
<td>off</td>
<td>yes</td>
<td>off</td>
</tr>
<tr>
<td>nc001</td>
<td>240-060-000</td>
<td>scr5</td>
<td>1</td>
<td>3</td>
<td>yes</td>
<td>c</td>
<td>5</td>
<td>off</td>
<td>off</td>
<td>off</td>
<td>yes</td>
<td>off</td>
</tr>
<tr>
<td></td>
<td>APCI</td>
<td>(SS7)</td>
<td>SCRN</td>
<td>SET</td>
<td>SET</td>
<td>BEI</td>
<td>LST</td>
<td>LNKs</td>
<td>ACT</td>
<td>MES</td>
<td>DIS</td>
<td>SLSCI</td>
</tr>
<tr>
<td>lsi1</td>
<td>1-111-1</td>
<td>scr1</td>
<td>1</td>
<td>1</td>
<td>yes</td>
<td>a</td>
<td>1</td>
<td>off</td>
<td>off</td>
<td>off</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>lsi2</td>
<td>1-111-2</td>
<td>scr2</td>
<td>1</td>
<td>2</td>
<td>no</td>
<td>c</td>
<td>3</td>
<td>on</td>
<td>on</td>
<td>on</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>lsi3</td>
<td>1-111-3</td>
<td>scr3</td>
<td>1</td>
<td>3</td>
<td>yes</td>
<td>c</td>
<td>5</td>
<td>off</td>
<td>off</td>
<td>off</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>APCN</td>
<td>(SS7)</td>
<td>SCRN</td>
<td>SET</td>
<td>SET</td>
<td>BEI</td>
<td>LST</td>
<td>LNKs</td>
<td>ACT</td>
<td>MES</td>
<td>DIS</td>
<td>SLSCI</td>
</tr>
<tr>
<td>lsn1</td>
<td>11111</td>
<td>scr1</td>
<td>1</td>
<td>1</td>
<td>yes</td>
<td>a</td>
<td>1</td>
<td>off</td>
<td>off</td>
<td>off</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>lsn2</td>
<td>11112</td>
<td>scr2</td>
<td>1</td>
<td>2</td>
<td>no</td>
<td>c</td>
<td>3</td>
<td>on</td>
<td>on</td>
<td>on</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>lsn3</td>
<td>11113</td>
<td>scr3</td>
<td>1</td>
<td>3</td>
<td>yes</td>
<td>c</td>
<td>5</td>
<td>off</td>
<td>off</td>
<td>off</td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>
```

Link set table is (11 of 1024) 1% full

If the required linkset is not in the database, perform the “Adding an SS7 Linkset” procedure in the Database Administration Manual - SS7 and add the linkset.

3. Add the mapped translation type to the database using the `ent-ttmap` command. For this example, enter this command.

```
ent-ttmap:lsn=lsn01:io=i:ett=001:mtt=250
```

When this command has successfully completed, this message should appear.

```
rlghncxa03w 07-05-25 09:58:31 GMT EAGLE5 37.0.0
ENT-TTMAP: MASP A - COMPLTD
```

TTMAP table for lsn01 is (1 of 64) 1% full

4. Verify the changes using the `rtrv-ttmap` command. This is an example of the possible output.

```
rlghncxa03w 07-05-25 09:58:31 GMT EAGLE5 37.0.0

<table>
<thead>
<tr>
<th>LSN</th>
<th>IO</th>
<th>ETT</th>
<th>MTT</th>
</tr>
</thead>
<tbody>
<tr>
<td>lsn01</td>
<td>I</td>
<td>001</td>
<td>250</td>
</tr>
<tr>
<td>nc001</td>
<td>I</td>
<td>047</td>
<td>032</td>
</tr>
<tr>
<td>nc001</td>
<td>I</td>
<td>128</td>
<td>055</td>
</tr>
<tr>
<td>nc001</td>
<td>I</td>
<td>238</td>
<td>128</td>
</tr>
<tr>
<td>nc001</td>
<td>I</td>
<td>254</td>
<td>016</td>
</tr>
<tr>
<td>nc001</td>
<td>O</td>
<td>016</td>
<td>254</td>
</tr>
<tr>
<td>nc001</td>
<td>O</td>
<td>128</td>
<td>238</td>
</tr>
</tbody>
</table>
```

5. Back up the new changes using the `chg-db:action=backup:dest=fixed` command. These messages should appear, the active Maintenance and Administration Subsystem Processor (MASP) appears first.

```
BACKUP (FIXED) : MASP A - Backup starts on active MASP.
BACKUP (FIXED) : MASP A - Backup on active MASP to fixed disk complete.
BACKUP (FIXED) : MASP A - Backup starts on standby MASP.
BACKUP (FIXED) : MASP A - Backup on standby MASP to fixed disk complete.
```
Removing a Mapped SS7 Message Translation Type

This procedure is used to remove a mapped SS7 message translation type from the database using the `dlt-ttmap` command.

The `dlt-ttmap` command uses these parameters.

- `lsn` – the name of the linkset.
- `io` – is translation type mapping to be performed on SS7 messages received in the linkset (incoming linkset) or on SS7 messages sent on the linkset (outgoing linkset).
- `ett` – the translation type contained in the SS7 message before that translation type is mapped.

The examples in this procedure are used to remove the translation type 016 for any outgoing messages on linkset nc001.

1. Display the mapped translation types in the database using the `rtrv-ttmap` command.
   This is an example of the possible output.

   ```
 rlgncxa03w 07-05-25 09:57:31 GMT EAGLE5 37.0.0
 LSN IO ETT MTT
 lsn01 I 001 250
 nc001 I 047 032
 nc001 I 128 055
 nc001 I 238 128
 nc001 I 254 016
 nc001 O 016 254
 nc001 O 128 238
   ```

2. Add the mapped translation type to the database using the `dlt-ttmap` command.
   For this example, enter this command.

   ```
 dlt-ttmap:lsn=nc001:io=o:ett=016
   ```

   When this command has successfully completed, this message should appear.

   ```
 rlgncxa03w 07-05-25 09:57:41 GMT EAGLE5 37.0.0
 DLT-TTMAP: MASP A - COMPLTD
 TTMAP table for nc001 is (5 of 64) 8% full
   ```

3. Verify the changes using the `rtrv-ttmap` command.
   This is an example of the possible output.

   ```
 rlgncxa03w 07-05-25 09:57:51 GMT EAGLE5 37.0.0
 LSN IO ETT MTT
 lsn01 I 001 250
 nc001 I 047 032
 nc001 I 128 055
 nc001 I 238 128
 nc001 I 254 016
 nc001 O 128 238
   ```

4. Backup the new changes using the `chg-db:action=backup:dest=fixed` command.
These messages should appear, the active Maintenance and Administration Subsystem Processor (MASP) appears first.

```
BACKUP (FIXED) : MASP A - Backup starts on active MASP.
BACKUP (FIXED) : MASP A - Backup on active MASP to fixed disk complete.
BACKUP (FIXED) : MASP A - Backup starts on standby MASP.
BACKUP (FIXED) : MASP A - Backup on standby MASP to fixed disk complete.
```

Changing a Mapped SS7 Message Translation Type

This procedure is used to change a mapped SS7 message translation type in the database using the \texttt{chg-ttmap} command.

The \texttt{chg-ttmap} command uses these parameters.

- \texttt{lsn} – the name of the linkset.
- \texttt{io} – is translation type mapping to be performed on SS7 messages received in the linkset (incoming linkset) or on SS7 messages sent on the linkset (outgoing linkset).
- \texttt{ett} – the translation type contained in the SS7 message before that translation type is mapped.
- \texttt{mtt} – the translation type that the value of the \texttt{ett} parameter is mapped to.

Only the mapped translation type (\texttt{mtt}) can be changed with this procedure. To change the \texttt{lsn}, \texttt{io}, or \texttt{ett} values, the mapped translation type entry has to be removed from the database using the \textit{Removing a Mapped SS7 Message Translation Type} procedure, then re-entered with the new \texttt{lsn}, \texttt{io}, or \texttt{ett} values using the \textit{Adding a Mapped SS7 Message Translation Type} procedure.

The examples in this procedure are used to change the mapped translation type 250, being mapped for translation type 001 for incoming messages on linkset \texttt{lsn01} to mapped translation type 255.

1. Display the mapped translation types in the database using the \texttt{rtrv-ttmap} command. This is an example of the possible output.

```
rlghncxa03w 07-05-25 09:57:31 GMT EAGLE5 37.0.0
LSN IO ETT MTT
lsn01 I 001 250
nc001 I 047 032
nc001 I 128 055
nc001 I 238 128
nc001 I 254 016
nc001 O 016 254
nc001 O 128 238
```

2. Change the mapped translation type in the database using the \texttt{chg-ttmap} command. For this example, enter this command.

```
chg-ttmap:lsn=lsn01:io=i:ett=001:mtt=255
```

When this command has successfully completed, this message should appear.

```
rlghncxa03w 07-05-25 09:57:41 GMT EAGLE5 37.0.0
CHG-TTMAP: MASP A - COMPLTD
TTMAP table for lsn01 is (1 of 64) 1% full
```
3. Verify the changes using the `rtrv-ttmap` command. This is an example of the possible output.

```
rlghncxa03w 07-05-25 09:57:51 GMT EAGLE5 37.0.0
LSN IO ETT MTT
lsn01 I 001 255
nc001 I 047 032
nc001 I 128 055
nc001 I 238 128
nc001 I 254 016
nc001 O 016 254
nc001 O 128 238
```

4. Backup the new changes using the `chg-db:action=backup:dest=fixed` command. These messages should appear, the active Maintenance and Administration Subsystem Processor (MASP) appears first.

```
BACKUP (FIXED) : MASP A - Backup starts on active MASP.
BACKUP (FIXED) : MASP A - Backup on active MASP to fixed disk complete.
BACKUP (FIXED) : MASP A - Backup starts on standby MASP.
BACKUP (FIXED) : MASP A - Backup on standby MASP to fixed disk complete.
```

Adding a Concerned Signaling Point Code

This procedure is used to add a concerned signaling point code (CSPC) group to the database using the `ent-cspc` command.

The `ent-cspc` command uses these parameters.

`:grp` – The name of the concerned signaling point code group that contains the point codes that should be notified of the subsystem status.

`:pc/pca/pci/pcn/pcn24` – The point code of the signaling point that is to be in the concerned signaling point code group, either an ANSI point code (`pc/pca`), ITU-I or ITU-I spare point code (`pci`), a 14-bit ITU-N or 14-bit ITU-N spare point code (`pcn`), or a 24-bit ITU-N (`pcn24`) point code.

**Note:** Refer to Chapter 2, Configuring Destination Tables in the Database Administration Manual - SS7 for a definition of the point code types that are used on the EAGLE 5 ISS and for a definition of the different formats that can be used for ITU national point codes.

**Note:** The EAGLE 5 ISS can contain 14-bit ITU-N point codes or 24-bit ITU-N point codes, but not both at the same time.

The examples in this procedure are used to add the concerned signaling point code (CSPC) groups shown in Table 36: Concerned Signaling Point Code Configuration Table.

**Table 36: Concerned Signaling Point Code Configuration Table**

<table>
<thead>
<tr>
<th>CSPC Broadcast Group Name</th>
<th>Concerned Signaling Point Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>grp05</td>
<td>002-002-002</td>
</tr>
<tr>
<td></td>
<td>008-008-008</td>
</tr>
</tbody>
</table>
The CSPC cannot be in the database for the indicated group. The point code must exist in the routing table and cannot already exist in the specified group. Verify that the point code is in the routing table by entering the `rtrv-rte` command with the point code. If the point code is an ANSI point code, it must be a full point code. The route must contain a minimum of one active signaling link.

The word "none" cannot be used to name a CSPC group.

The database can contain a maximum of 2550 CSPC groups. Each CSPC group can contain a maximum of 96 concerned signaling point codes.

The mated point codes in the mated application table will not automatically receive CSPC broadcasts unless each mated point code is contained in a CSPC group. A mated application group can contain up to 32 entries, a primary point code and up to 31 mated point codes. Each mated point code in a mated application group can be assigned to a different CSPC group.

The first point code entered for a CSPC group defines the network type for the CSPC group. If the first point code entered for a particular CSPC group is an ANSI point code (`pc` or `pca`), then that CSPC group is an ANSI CSPC group and only ANSI point codes can be added to it. If the first point code in the CSPC group is either an ITU international or ITU international spare point code (`pci`), then the CSPC group is an ITU international CSPC group and only ITU international or ITU international spare point codes can be added to it. If the first point code in the CSPC group is a 14-bit ITU national or 14-bit ITU national spare point code (`pcn`), then the CSPC group is an ITU national CSPC group and only 14-bit ITU national or 14-bit ITU national spare point codes can be added to it. If the first point code in the CSPC group is a 24-bit ITU national point code (`pcn24`), then the CSPC group is an ITU national CSPC group and only 24-bit ITU national point codes can be added to it.

If the ANSI/ITU SCCP Conversion feature is enabled, CSPC groups can contain ANSI point codes (`pc/pca`), ITU-I or ITU-I spare point codes (`pci`), and either 14-bit ITU-N or 14-bit ITU-N spare point codes (`pcn`), or 24-bit ITU-N (`pcn24`) point codes. A CSPC group cannot contain both 14-bit and 24-bit ITU-N point codes. The status of the ANSI/ITU SCCP Conversion feature can be verified with the `rtrv-ctrl-feat` command.

When the `ent-cspc` command is entered with a CSPC group name and a point code and the CSPC group name does not exist, the command will be rejected. If the group name does not exist, and a point code is not specified, a new group will be created.

1. Display the CSPC group names in the database using the `rtrv-cspc` command. This is an example of the possible output.

<table>
<thead>
<tr>
<th>CSPC Broadcast Group Name</th>
<th>Concerned Signaling Point Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>grp10</td>
<td>008-008-008</td>
</tr>
<tr>
<td></td>
<td>009-009-009</td>
</tr>
<tr>
<td>grp15</td>
<td>002-002-002</td>
</tr>
<tr>
<td></td>
<td>009-009-009</td>
</tr>
</tbody>
</table>
If the ANSI/ITU SCCP Conversion feature is enabled, and multiple network point code types are assigned to CSPC groups, the network types of the point codes in each CSPC group are displayed in the rtrv-cspc output as follows in this example.

```
rlghncxa03w 06-10-25 09:57:31 GMT EAGLE5 36.0.0
CSPC GRP NETWORK PERCENT FULL
grp01 ANSI, ITU-I, ITU-N 9%
grp02 ITU-I 9%
grp03 ANSI, ITU-N 6%
grp04 ANSI 15%
```

**Note:** If the point code is being added to a new CSPC group, continue the procedure with *Step 3*.

2. Display the point codes in the CSPC group that the new point code is being added to by entering the rtrv-cspc command with the CSPC group name.

For this example, enter this command.

```
rtrv-cspc:grp=grp01
```

This is an example of the possible output.

```
rlghncxa03w 07-05-25 09:57:31 GMT EAGLE5 37.0.0
CSPC GRP PCA
grp01 002-002-002
 003-003-003
```

If the ANSI/ITU SCCP Conversion feature is enabled, then point codes of multiple network types can be displayed, if point codes of multiple network types are assigned to the CSPC group, as shown in this example.

```
rlghncxa03w 07-05-25 09:57:31 GMT EAGLE5 37.0.0
CSPC GRP TYPE
grp01 003-003-003 A
 3-003-3 I
 00112 N
```

3. Enter the rtrv-rte command with the dpc parameter specifying the point code to be used with the ent-cspc command to verify whether or not the point code is the DPC of a route. For this example, enter these commands.

```
rtrv-rte:dpca=002-002-002
```

This is an example of the possible output.

```
rlghncxa03w 07-05-07 11:43:04 GMT EAGLE5 37.0.0
DPCA ALIASI ALIASN/N24 LSN RC APCA
002-002-002 ---------- -------------- ls02 10 002-002-002
RTX:No CLLI=ls02clli
rtrv-rte:dpca=008-008-008
```

This is an example of the possible output.
This is an example of the possible output.

If the point code is not shown in the rtrv-rte output, perform one of the Adding a Route procedures in the Database Administration Manual - SS7 and add the required route to the database. The route must contain a minimum of one active signaling link.

4. Display the signaling links that are in the linksets that are assigned to the route shown in Step 3 by entering the rtrv-ls command with the name of the linksets that are assigned to the route. For this example, enter these commands.

This is an example of the possible output.
This is an example of the possible output.

<table>
<thead>
<tr>
<th>LOC</th>
<th>PORT</th>
<th>SLC</th>
<th>TYPE</th>
<th>SET</th>
<th>BPS</th>
<th>ECM</th>
<th>N1</th>
<th>N2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1212</td>
<td>A</td>
<td>0</td>
<td>LIMDS0</td>
<td>1</td>
<td>56000</td>
<td>BASIC</td>
<td>---</td>
<td>-----</td>
</tr>
<tr>
<td>1212</td>
<td>B</td>
<td>1</td>
<td>LIMDS0</td>
<td>1</td>
<td>56000</td>
<td>BASIC</td>
<td>---</td>
<td>-----</td>
</tr>
</tbody>
</table>

Link set table is (12 of 1024) 1% full.

```
Link set table is (12 of 1024) 1% full.

rtrv-ls:lsn=ls09
```

If the linkset does not contain any signaling links, perform one of these procedures in these manuals to add the signaling link.

- Database Administration Manual – SS7
  - Adding an SS7 Signaling Link
  - Adding an E1 Signaling Link
  - Adding a T1 Signaling Link
  - Adding an ATM High-Speed Signaling Link

- Database Administration Manual – IP7 Secure Gateway
  - Adding an IPLIMx Signaling Link
  - Adding an IPGWx Signaling Link
  - Adding an IPSG M2PA Signaling Link
  - Adding an IPSG M3UA Signaling Link

Make sure the signaling link is placed into service.

Continue the procedure by performing one of these steps.

- If signaling links were added to all the linksets displayed in this step, continue the procedure with **Step 7**.
- If any of the linksets displayed in this step contain signaling links, continue the procedure with **Step 5**.
5. Display the status of the signaling links shown in Step 4 by entering the `rept-stat-slk` command with the signaling link displayed in Step 4. For this example, enter this command.

```
rept-stat-slk:loc=1211:link=a
```

This is an example of the possible output.

```
<table>
<thead>
<tr>
<th>SLK</th>
<th>LSN</th>
<th>CLLI</th>
<th>PST</th>
<th>SST</th>
<th>AST</th>
</tr>
</thead>
<tbody>
<tr>
<td>1211,A</td>
<td>ls02</td>
<td>ls02clli</td>
<td>OOS-MT-DSBLD Manual</td>
<td>----</td>
<td>ALARM STATUS = ** 0236 REPT-LKF: not aligned</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>UNAVAIL REASON = NA</td>
</tr>
</tbody>
</table>
```

```
rept-stat-slk:loc=1211:link=b
```

This is an example of the possible output.

```
<table>
<thead>
<tr>
<th>SLK</th>
<th>LSN</th>
<th>CLLI</th>
<th>PST</th>
<th>SST</th>
<th>AST</th>
</tr>
</thead>
<tbody>
<tr>
<td>1211,B</td>
<td>ls02</td>
<td>ls02clli</td>
<td>OOS-MT-DSBLD Manual</td>
<td>----</td>
<td>ALARM STATUS = ** 0236 REPT-LKF: not aligned</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>UNAVAIL REASON = NA</td>
</tr>
</tbody>
</table>
```

```
rept-stat-slk:loc=1212:link=a
```

This is an example of the possible output.

```
<table>
<thead>
<tr>
<th>SLK</th>
<th>LSN</th>
<th>CLLI</th>
<th>PST</th>
<th>SST</th>
<th>AST</th>
</tr>
</thead>
<tbody>
<tr>
<td>1212,A</td>
<td>ls20</td>
<td>ls20clli</td>
<td>IS-NR</td>
<td>Avail</td>
<td>----</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ALARM STATUS = No Alarms</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>UNAVAIL REASON = --</td>
</tr>
</tbody>
</table>
```

```
rept-stat-slk:loc=1212:link=b
```

This is an example of the possible output.

```
<table>
<thead>
<tr>
<th>SLK</th>
<th>LSN</th>
<th>CLLI</th>
<th>PST</th>
<th>SST</th>
<th>AST</th>
</tr>
</thead>
<tbody>
<tr>
<td>1212,B</td>
<td>ls20</td>
<td>ls20clli</td>
<td>IS-NR</td>
<td>Avail</td>
<td>----</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ALARM STATUS = No Alarms</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>UNAVAIL REASON = --</td>
</tr>
</tbody>
</table>
```

```
rept-stat-slk:loc=1213:link=a
```

This is an example of the possible output.

```
<table>
<thead>
<tr>
<th>SLK</th>
<th>LSN</th>
<th>CLLI</th>
<th>PST</th>
<th>SST</th>
<th>AST</th>
</tr>
</thead>
<tbody>
<tr>
<td>1213,A</td>
<td>ls09</td>
<td>ls09clli</td>
<td>IS-NR</td>
<td>Avail</td>
<td>----</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ALARM STATUS = No Alarms</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>UNAVAIL REASON = --</td>
</tr>
</tbody>
</table>
```

```
rept-stat-slk:loc=1213:link=b
```

This is an example of the possible output.

```
<table>
<thead>
<tr>
<th>SLK</th>
<th>LSN</th>
<th>CLLI</th>
<th>PST</th>
<th>SST</th>
<th>AST</th>
</tr>
</thead>
<tbody>
<tr>
<td>1213,B</td>
<td>ls09</td>
<td>ls09clli</td>
<td>IS-NR</td>
<td>Avail</td>
<td>----</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ALARM STATUS = No Alarms</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>UNAVAIL REASON = --</td>
</tr>
</tbody>
</table>
```
Continue the procedure by performing one of these steps.

- If the state of all the signaling links in a linkset displayed in this step is not IS-NR, continue the procedure with Step 6.
- If the state of one or more of the signaling links in the linksets displayed in this step is IS-NR, continue the procedure with Step 7.

6. The linkset shown in Step 5 must contain at least active (IS-NR) signaling link. Enter the act-slk command to put into service one or more of the signaling links in the linkset. For this example, enter this command.

```
act-slk:loc=1211:link=a
```

When this command has successfully completed, this message should appear.

```
rlghncxa03w 09-02-07 08:31:24 GMT EAGLE5 40.1.0
Activate Link message sent to card
```

Continue the procedure by performing one of these steps.

- If the network type of the point codes being added to the CSPC group will not be the same as the network type of the CSPC group, and multiple point code network types are not shown in the rtrv-cspc output in Step 1, continue the procedure with Step 7.
- If the network type of the point codes being added to the CSPC group is the same as the network type of the CSPC group, or if multiple point code network types are shown in the rtrv-cspc output in Step 1, continue the procedure with Step 8.

7. Verify that the ANSI/ITU SCCP Conversion feature is enabled by entering the rtrv-ctrl-feat:partnum=893012001 command. The following is an example of the possible output.

```
rlghncxa03w 07-05-28 21:15:37 GMT EAGLE5 37.0.0
The following features have been permanently enabled:

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Partnum</th>
<th>Status</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCCP Conversion</td>
<td>893012001</td>
<td>on</td>
<td>-----</td>
</tr>
</tbody>
</table>

The following features have been temporarily enabled:

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Partnum</th>
<th>Status</th>
<th>Quantity</th>
<th>Trial Period Left</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Zero entries found.

The following features have expired temporary keys:

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Partnum</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Zero entries found.

If the ANSI/ITU SCCP Conversion feature is not enabled, perform the Activating the ANSI/ITU SCCP Conversion Feature procedure and the ANSI/ITU SCCP Conversion feature.

8. Add the concerned signaling point code to the database using the ent-cspc command. For this example, enter these commands.

```
ent-cspc:grp=grp05
ent-cspc:grp=grp10
```
ent-cspc:grp=grp15
ent-cspc:grp=grp05:pca=002-002-002
ent-cspc:grp=grp05:pca=008-008-008
ent-cspc:grp=grp10:pca=008-008-008
ent-cspc:grp=grp10:pca=009-009-009
ent-cspc:grp=grp15:pca=002-002-002
ent-cspc:grp=grp15:pca=009-009-009

When each of these commands have successfully completed, this message should appear.

righncxa03w 07-05-25 09:57:41 GMT EAGLE5 37.0.0
ENT-CSPC: MASP A - COMPLTD

9. Verify the changes using the rtrv-cspc command, with the CSPC group names specified in Step 8. For this example enter these commands.

rtrv-cspc:grp=grp05

This is an example of the possible output.

righncxa03w 07-05-25 09:58:31 GMT EAGLE5 37.0.0
CSPC GRP
PCA
grp05 002-002-002
008-008-008

rtrv-cspc:grp=grp10

This is an example of the possible output.

righncxa03w 07-05-25 09:59:31 GMT EAGLE5 37.0.0
CSPC GRP
PCA
grp10 008-008-008
009-009-009

rtrv-cspc:grp=grp15

This is an example of the possible output.

righncxa03w 07-05-25 09:57:41 GMT EAGLE5 37.0.0
CSPC GRP
PCA
grp15 002-002-002
009-009-009

Note: If the ANSI/ITU SCCP Conversion feature is enabled, then point codes of multiple network types can be displayed in the rtrv-cspc output, if point codes of multiple network types are assigned to the CSPC group.

10. Backup the new changes using the chg-db:action=backup:dest=fixed command. These messages should appear, the active Maintenance and Administration Subsystem Processor (MASP) appears first.

BACKUP (FIXED) : MASP A - Backup starts on active MASP.
BACKUP (FIXED) : MASP A - Backup on active MASP to fixed disk complete.
BACKUP (FIXED) : MASP A - Backup starts on standby MASP.
BACKUP (FIXED) : MASP A - Backup on standby MASP to fixed disk complete.
Removing a Concerned Signaling Point Code

This procedure is used to remove a concerned signaling point code (CSPC) group from the database using the `dlt-cspc` command.

The `dlt-cspc` command uses these parameters.

:grp – The name of the concerned signaling point code group that contains the point codes that should be notified of the subsystem status.

:pc/pca/pci/pcn/pcn24 – The point code of the signaling point that is to be in the concerned signaling point code group, either an ANSI point code (pc/pca), ITU-I or ITU-I spare point code (pci), a 14-bit ITU-N or 14-bit ITU-N spare point code (pcn), or a 24-bit ITU-N (pcn24) point code.

Note: Refer to Chapter 2, Configuring Destination Tables in the *Database Administration Manual - SS7* for a definition of the point code types that are used on the EAGLE 5 ISS and for a definition of the different formats that can be used for ITU national point codes.

:all – Confirms that all entries for a particular concerned signaling point code group are to be removed.

The examples in this procedure are used to remove the concerned signaling point code 008-008-008 from the CSPC group grp10 from the database.

The CSPC must be in the database for the indicated group.

1. Display the group names in the database using the `rtrv-cspc` command.

 This is an example of the possible output.

<table>
<thead>
<tr>
<th>rlgncxa03w 07-05-25 09:47:31 GMT</th>
<th>EAGLE5 37.0.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSPCGRP</td>
<td>NETWORK</td>
</tr>
<tr>
<td>grp01</td>
<td>ANSI</td>
</tr>
<tr>
<td>grp02</td>
<td>ITU-I</td>
</tr>
<tr>
<td>grp03</td>
<td>ITU-N</td>
</tr>
<tr>
<td>grp04</td>
<td>ANSI</td>
</tr>
<tr>
<td>grp05</td>
<td>ANSI</td>
</tr>
<tr>
<td>grp10</td>
<td>ANSI</td>
</tr>
<tr>
<td>grp15</td>
<td>ANSI</td>
</tr>
</tbody>
</table>

 If the ANSI/ITU SCCP Conversion feature is enabled, and multiple network point code types are assigned to CSPC groups, the `rtrv-cspc` output is displayed as follows in this example.

<table>
<thead>
<tr>
<th>rlgncxa03w 07-05-25 09:57:31 GMT</th>
<th>EAGLE5 37.0.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSPCGRP</td>
<td>NETWORK</td>
</tr>
<tr>
<td>grp01</td>
<td>ANSI, ITU-I, ITU-N</td>
</tr>
<tr>
<td>grp02</td>
<td>ITU-I</td>
</tr>
<tr>
<td>grp03</td>
<td>ANSI, ITU-N</td>
</tr>
<tr>
<td>grp04</td>
<td>ANSI</td>
</tr>
<tr>
<td>grp05</td>
<td>ANSI</td>
</tr>
<tr>
<td>grp10</td>
<td>ANSI</td>
</tr>
<tr>
<td>grp15</td>
<td>ANSI</td>
</tr>
</tbody>
</table>

2. Display the point codes in the CSPC group that you wish to remove from that CSPC group using the `rtrv-cspc` command with the CSPC group name.

 For this example, enter this command.
This is an example of the possible output.

If the ANSI/ITU SCCP Conversion feature is enabled, then point codes of multiple network types can be displayed, if point codes of multiple network types are assigned to the CSPC group, as shown in this example.

Note: If only a point code entry in the CSPC group is being removed, skip steps 3 and 4, and go to step 5.

3. Display the status of the Flexible GTT Load Sharing feature by entering the `rtrv-ctrl-feat` command with the Flexible GTT Load Sharing feature part number.

Enter this command.

`rtrv-ctrl-feat:partnum=893015401`

The following is an example of the possible output.

If the Flexible GTT Load Sharing feature is not enabled, skip step 4 and go to step 5.

If the Flexible GTT Load Sharing feature is enabled, go to step 4.

4. Display the mated applications in the database using the `rtrv-map` command.

This is an example of the possible output.
If any of the following items are not shown in the `rtrv-map` output, then the feature corresponding to these items is not enabled, or turned on if required.

- The `MAPSET` field - the Flexible GTT Load Sharing feature is not enabled.
• The MRNSET and MRNPC fields - the GTT Load Sharing with Alternate Routing Indicator feature is not enabled.
• The WT, %WT, THR columns - the Weighted GTT Load Sharing feature is not enabled and turned on.

If the CSPC group being removed in this procedure is shown in the rtrv-map output, perform changing the Attributes of a Mated Application to change the CSPC group assigned to the mated applications that are currently referencing the CSPC group being removed. After the CSPC group assignments have been changed, go to step 5.

If the CSPC group being removed in this procedure is not shown in the rtrv-map output, go to step 5.

5. Remove the concerned signaling point code from the database using the dlt-cspc command.

For this example, enter this command.

dlt-cspc:grp=grp10:pca=008-008-008

This message should appear.

```
rlghncxa03w 07-05-25 09:49:31  GMT  EAGLE5 37.0.0
DLT-CSPC:  MASP A - COMPLTD
```

Note: If you wish to remove the entire CSPC group, enter the dlt-cspc command with the CSPC group name and the all=yes parameter. For this example, enter the dlt-cspc:grp=grp10:all=yes command.

6. Verify the changes using the rtrv-cspc command with the CSPC group name.

For this example, enter this command.

rtrv-cspc:grp=grp10

This is an example of the possible output.

```
rlghncxa03w 07-05-25 09:50:31  GMT  EAGLE5 37.0.0
CSPC GRP      PCA
grp10         009-009-009
```

Note: If the ANSI/ITU SCCP Conversion feature is enabled, then point codes of multiple network types can be displayed in the rtrv-cspc output, if point codes of multiple network types are assigned to the CSPC group.

7. Backup the new changes using the chg-db:action=backup:dest=fixed command.

These messages should appear, the active Maintenance and Administration Subsystem Processor (MASP) appears first.

```
BACKUP (FIXED) : MASP A - Backup starts on active MASP.
BACKUP (FIXED) : MASP A - Backup on active MASP to fixed disk complete.
BACKUP (FIXED) : MASP A - Backup starts on standby MASP.
BACKUP (FIXED) : MASP A - Backup on standby MASP to fixed disk complete.
```
Provisioning a Solitary Mated Application

This procedure is used to provision a solitary mated application in the database using the `ent-map` command. A solitary mated application contains only one entry. The `ent-map` command uses these parameters to provision a solitary mated application.

`:pc/pca/pci/pcn/pcn24` – The point code of the signaling point that is to receive the message.

Note: The point codes can be either an ANSI point code (`pc/pca`), ITU-I or ITU-I spare point code (`pci`), a 14-bit ITU-N or 14-bit ITU-N spare point code (`pcn`), or a 24-bit ITU-N (`pcn24`) point code.

Note: Refer to Chapter 2, Configuring Destination Tables in the Database Administration Manual - SS7 for a definition of the point code types that are used on the EAGLE 5 ISS and for a definition of the different formats that can be used for ITU national point codes.

`:ssn` – Subsystem number – the subsystem address of the point code that is to receive the message. The value for this parameter is 2 to 255.

`:grp` – The name of the concerned signaling point code (CSPC) group that contains the point codes that should be notified of the subsystem status. This parameter applies to both RPCs/SSNs. The value for this parameter is shown in the `rtrv-cspc` output. If the desired value is not shown in the `rtrv-cspc` output, perform the Adding a Concerned Signaling Point Code procedure to add the desired group. If this parameter is not specified, then a CSPC group name is not specified for the mated application.

`:sso` – Subsystem Status Option – defines whether the subsystem status option is on or off. This parameter allows the user the option to have the specified subsystem marked as prohibited even though an MTP-RESUME message has been received by the indicating that the specified point code is allowed. The `sso` parameter cannot be specified if the `pc/pca/pci/pcn/pcn24` value is the EAGLE 5 ISS’s true point code, shown in the `rtrv-sid` output. The value for this parameter is `on` or `off`. The default value is `off`.

`:mapset` – The MAP set ID that the mated applications are assigned to. This parameter can be specified only if the Flexible GTT Load Sharing feature is enabled. This parameter must be specified if the Flexible GTT Load Sharing feature is enabled. If the Flexible GTT Load Sharing feature is enabled, the point code and subsystem specified for the global title translation must be assigned to the MAP set specified by this parameter. The status of the Flexible GTT Load Sharing feature is shown in the `rtrv-ctrl-feat` output. To enable the Flexible GTT Load Sharing feature, perform the Activating the Flexible GTT Load Sharing Feature procedure.

The `mapset` parameter has three values.

- `dflt` – to assign the MAP to the default MAP set.
- `new` – to assign the mated application to a new MAP set.
- The specific number of an existing MAP set if you are assigning the mated application to an existing MAP set. This value can be specified only with the `chg-map` command.

Refer to the Provisioning a MAP Set section for information on provisioning MAP sets.

`:mrnset` – The MRN set ID that is being assigned to the mated application. This is the MRN set from which alternate routing indicator searches are performed.

`:mrnpc/mrnpca/mrnpci/mrnpcn/mrnpcn24` – The point code assigned to the `mrnset` that is being assigned to the MAP set.
The current values of the mrnset and :mrnpc/mrnpca/mrnpct/mrnpnc/mrnpnc24 parameters are shown in the rtrv-map output only if the Flexible GTT Load Sharing and the GTT Load Sharing with Alternate Routing Indicator features are enabled.

The new values for the mrnset and mrnpc/mrnpca/mrnpct/mrnpnc/mrnpnc24 parameters must be shown in the rtrv-mrn output.

The network type of the pc/pca/pci/pcn24 and mrnpc/mrnpca/mrnpct/mrnpnc/mrnpnc24 parameter values must be compatible, as shown in Table 37: MAP and MRN Point Code Parameter Combinations.

Table 37: MAP and MRN Point Code Parameter Combinations

<table>
<thead>
<tr>
<th>MAP Point Code Parameter</th>
<th>MRN Point Code Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>pc/pca</td>
<td>mrnpc/mrnpca</td>
</tr>
<tr>
<td>pci or pcn (See Notes 1 and 2)</td>
<td>mrnpci or mrnpncn (See Notes 1 and 2)</td>
</tr>
<tr>
<td>pcn24</td>
<td>mrnpnc24</td>
</tr>
</tbody>
</table>

Notes:
1. If the network type of the MAP point code parameter is ITU-I (pci), the network type of the MRN point code parameter can be either ITU-I (mappci) or ITU-N (mappcn).
2. If the network type of the MAP point code parameter is ITU-N (pcn), the network type of the MRN point code parameter can be either ITU-I (mappci) or ITU-N (mappcn).

:mrc – Message routing under congestion – specifies whether Class 0 messages are routed during congestion conditions. The values for this parameter are yes and no. This parameter can be specified for any type of mated application, but this parameter affects only the traffic for a dominant mated application. The default value for ANSI, ITU-I, and ITU-N solitary mated applications is yes. The default value for ITU-N24 solitary mated applications is no.

:srm – Subsystem routing messages – defines whether subsystem routing messages (SBR, SNR) are transmitted between the mated applications. The values for this parameter are yes and no. The srm=yes parameter can be specified only for ANSI mated applications. This parameter affects traffic only on dominant and combined dominant/load shared mated applications. The default value for ANSI solitary mated applications is yes. The default value for ITU solitary mated applications is no.

The ent-map command also contains other parameters that can be used to provision mated applications, but cannot be used to provision a solitary mated applications. These parameters are: mpc/mpcai/mpcn/mpcn24, mssn, rc, materc. If you wish to use these parameters to provision mated applications, perform one of these procedures.

- *Provisioning a Dominant Mated Application*
- *Provisioning a Load Shared Mated Application*
- *Provisioning a Combined Dominant/Load Shared Mated Application*

The rc parameter can be specified for a solitary mated application, but since a solitary mated application contains only one entry, the rc parameter does not need to be specified. If the rc parameter is not specified, the rc value is set to 10.
If the Weighted GTT Load Sharing feature is enabled, shown by the columns WT, %WT, and THR in the rtrv-map output, the parameters wt, mwt, and thr cannot be specified for a solitary mated application. If you wish to use these parameters to provision a mated application, perform one of these procedures:

- Provisioning a Load Shared Mated Application
- Provisioning a Combined Dominant/Load Shared Mated Application

If the Flexible GTT Load Sharing feature is not enabled, the point code and subsystem number combination can be in the database only once. If the Flexible GTT Load Sharing feature is enabled, the point code and subsystem number combination can be in multiple MAP sets, but can be in the default MAP set only once. Refer to the Provisioning a MAP Set section for information on provisioning MAP sets.

The point codes specified in the ent-map command (pc/pca, pci, pcn, or pcn24) must be either a full point code in the routing point code table or the EAGLE 5 ISS’s true point code. Cluster point codes or network routing point codes cannot be specified with this command. The rtrv-rte command can be used to verify the point codes in the routing table. The point codes in the routing table are shown in the DPCA, DPCI, DPCN, or DPCN24 fields of the rtrv-rte command output. The EAGLE 5 ISS’s true point code is shown in the PCA, PCI, PCN, or PCN24 fields of the rtrv-sid command output.

A solitary mated application can be provisioned with a point code that is assigned to other mated applications as long as the SSN is not assigned to other mated applications. A point code can be assigned to maximum of 12 different SSNs.

If the EAGLE 5 ISS’s true point code is specified in the mated application and the Flexible GTT Load Sharing feature is enabled, the mated application containing the EAGLE 5 ISS’s true point code can be assigned only to the default MAP set.

A mated application containing the LNP subsystem can contain only the EAGLE 5 ISS’s ANSI true point code. The LNP feature must be enabled for a quantity greater than zero.

A mated application containing the INP subsystem can contain only the EAGLE 5 ISS’s true14-bit ITU-N point code, 14-bit ITU-N spare point code, or 24-bit ITU-N point code. The INP or ANSI-41 INP Query feature must be enabled and turned on. The EAGLE 5 ISS can contain either 14-bit ITU-N point codes (spare or non-spare point codes) or 24-bit ITU-N point codes. Both types of point codes cannot be present on the EAGLE 5 ISS at the same time.

A mated application containing the EIR subsystem can contain only the EAGLE 5 ISS’s true ITU-I point code, ITU-I spare point code, 14-bit ITU-N point code, 14-bit ITU-N spare point code, or 24-bit ITU-N point code. The EIR feature must be enabled and turned on. The EAGLE 5 ISS can contain either 14-bit ITU-N point codes (spare or non-spare point codes) or 24-bit ITU-N point codes. Both types of point codes cannot be present on the EAGLE 5 ISS at the same time.

A mated application containing the VFLEX subsystem can contain any of the EAGLE 5 ISS’s true point codes. The V-Flex feature must be enabled and turned on. The EAGLE 5 ISS can contain either 14-bit ITU-N point codes (spare or non-spare point codes) or 24-bit ITU-N point codes. Both types of point codes cannot be present on the EAGLE 5 ISS at the same time.

A mated application containing the ATINPQ subsystem can contain only the EAGLE 5 ISS’s true ANSI point code, ITU-I point code, ITU-I spare point code, 14-bit ITU-N point code, or 14-bit ITU-N spare point code. The ATINP feature must be enabled.

A mated application containing the AIQ subsystem can contain any of the EAGLE 5 ISS’s true point codes. The ANSI41 AIQ feature must be enabled. The EAGLE 5 ISS can contain either 14-bit ITU-N point codes (spare or non-spare point codes) or 24-bit ITU-N point codes. Both types of point codes cannot be present on the EAGLE 5 ISS at the same time.
The EAGLE 5 ISS can contain multiple entries that contain the EAGLE 5 ISS’s true point code, shown in the `rtrv-sid` output. Table 38: Maximum Number of True Point Code Entries shows the numbers of entries that can be provisioned based on the type of point code.

Table 38: Maximum Number of True Point Code Entries

<table>
<thead>
<tr>
<th>True Point Code Type</th>
<th>Maximum Number of Entries</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANSI</td>
<td>1 - for the LNP subsystem</td>
</tr>
<tr>
<td></td>
<td>2 - one entry for the LNP subsystem and one entry for the AIQ subsystem</td>
</tr>
<tr>
<td></td>
<td>3 - one entry for the ATINPQ subsystem, one entry for the V-FLEX subsystem, and one entry for the AIQ subsystem</td>
</tr>
<tr>
<td></td>
<td>The LNP subsystem cannot be used if the ATINPQ, EIR, INP, and V-FLEX subsystems are used.</td>
</tr>
<tr>
<td>ITU-I</td>
<td>4 - one entry for the ATINPQ subsystem, one entry for the EIR subsystem, one entry for the V-FLEX subsystem, and one entry for the AIQ subsystem</td>
</tr>
<tr>
<td>ITU-N</td>
<td>5 - one entry for the ATINPQ subsystem, one entry for the EIR subsystem, one entry for the INP subsystem, one entry for the V-FLEX subsystem, and one entry for the AIQ subsystem</td>
</tr>
</tbody>
</table>

The format of the point codes in the CSPC group specified with the `grp` parameter must be the same as the point code specified with the `ent-map` command only if the ANSI/ITU SCCP Conversion feature is not enabled. If the ANSI/ITU SCCP Conversion feature is enabled, the CSPC group may contain a mixture of point code types (refer to the Adding a Concerned Signaling Point Code procedure), and the network type of the CSPC group can be different from the network type of the primary point code of the mated application. The status of the ANSI/ITU SCCP Conversion feature can be verified with the `rtrv-ctrl-feat` command.

If the `grp` and `sso` parameter values are specified, and the specified point code and SSN is assigned to multiple mated applications, the `grp` and `sso` values for all mated applications containing the specified point code and SSN will be changed to the values specified in this procedure.

The values of the `ssn` parameter must be from 2 to 255.

The EAGLE 5 ISS can contain 1024, 2000, or 3000 mated applications. The EAGLE 5 ISS default is 1024 mated applications. This quantity can be increased to 2000 by enabling the feature access key for part number 893-0077-01, or to 3000 by enabling the feature access key for part number 893-0077-10. For more information on enabling these feature access keys, refer to the Enabling the XMAP Table Expansion Feature procedure.

Provisioning a MAP Set

The Flexible GTT Load Sharing feature provides the ability to define multiple load sharing sets in the MAP table where the same point code and subsystem can be assigned to different load sharing sets.
The MAP table contains specific load sharing sets, designated by numbers, and a default MAP set. Flexible Final GTT Load Sharing provides flexible load sharing for global title translations defined in the GTT table and not for the MPS-based features. The MPS-based features do not support the MAP set ID parameter. The MPS-based features perform lookups for load sharing in the default MAP set and the GTT table. The entries in the GTT table can be linked to a MAP set ID, allowing lookups in a specific MAP set other than the default MAP set.

Any MAP entries that were provisioned in the database before the Flexible GTT Load Sharing feature is enabled are placed in the default MAP set when the Flexible GTT Load Sharing feature is enabled.

To provision entries in the default MAP set, the `mapset=dflt` parameter must be specified with the `ent-map` command.

To provision entries in a new MAP set, the `mapset=new` parameter must be specified with the `ent-map` command. The `mapset=new` parameter can be specified only with the `ent-map` command. When the `ent-map` command is executed with the `mapset=new` parameter, the new MAP set ID is automatically generated and displayed in the output of the `ent-map` command as follows.

```
New MAPSET Created : MAPSETID = <new MAP set ID>
```

The default MAP set can contain multiple MAP groups. The point code and subsystem number combination can appear only once in the default MAP set. The point code can appear in multiple MAP groups in the default MAP set with different subsystem numbers.

The point code and subsystem number combination provisioned in a MAP set can be provisioned in multiple MAP sets. All the point code and subsystem number combinations in a MAP set must be different.

Canceling the `RTRV-MAP` Command

Because the `rtrv-map` command used in this procedure can output information for a long period of time, the `rtrv-map` command can be canceled and the output to the terminal stopped. There are three ways that the `rtrv-map` command can be canceled.

- Press the F9 function key on the keyboard at the terminal where the `rtrv-map` command was entered.
- Enter the `canc-cmd` without the `trm` parameter at the terminal where the `rtrv-map` command was entered.
- Enter the `canc-cmd:trm=<xx>`, where `<xx>` is the terminal where the `rtrv-map` command was entered, from another terminal other that the terminal where the `rtrv-map` command was entered. To enter the `canc-cmd:trm=<xx>` command, the terminal must allow Security Administration commands to be entered from it and the user must be allowed to enter Security Administration commands. The terminal’s permissions can be verified with the `rtrv-secu-trm` command. The user’s permissions can be verified with the `rtrv-user` or `rtrv-secu-user` commands.

For more information about the `canc-cmd` command, refer to the `Commands Manual`.

1. Display the mated applications in the database using the `rtrv-map` command.

 This is an example of the possible output.

```
rlghncxa03w 09-07-07 00:34:31 GMT EAGLE5 41.1.0

MAPSET ID=DFLT
PCA       Mate PCA     SSN    RC    MULT    SRM    MRC    GRP    NAME    SSO
255-001-000                 250  10    SOL   *Y    *Y    grp01    ON
```
If any of the following items are not shown in the `rtrv-map` output, then the feature corresponding to these items is not enabled, or turned on if required.

- The MAPSET field - the Flexible GTT Load Sharing feature is not enabled.
The MRNSET and MRNPC fields - the GTT Load Sharing with Alternate Routing Indicator feature is not enabled.

The WT, %WT, THR columns - the Weighted GTT Load Sharing feature is not enabled and turned on.

Continue the procedure by performing one of these steps.

• If the maximum number of mated applications is 3000 and the current number of mated applications provisioned in the database is 3000, no mated applications with a new point code can be added. Continue the procedure with Step 3.

• If the rtrv-map output shows that the maximum number of mated applications is either 1024 or 2000, and the mated application being added increases the number beyond 1024 or 2000, perform the Enabling the XMAP Table Expansion Feature procedure to increase the maximum number of mated applications that can be in the database. After the Enabling the XMAP Table Expansion Feature procedure has been completed, continue the procedure with Step 3. If the maximum number of mated applications is not increased, no new point codes can be used to provision mated applications.

• If the rtrv-map output in shows that the maximum number of mated applications is either 1024, 2000, or 3000 and the mated application being added will not increase the number beyond the quantity shown in the rtrv-map output in, continue the procedure with Step 3.

• If the maximum number of mated applications is 36,000, continue the procedure with Step 2.

2. To verify the number of different point codes that can be provisioned for mated applications, enter the rtrv-tbl-capacity command.

If the maximum number of mated applications shown in the rtrv-map output in Step 1 is 36000, the Flexible GTT Load Sharing feature is enabled.

Note: The rtrv-tbl-capacity command output contains other fields that are not used by this procedure. If you wish to see all the fields displayed by the rtrv-tbl-capacity command, see the rtrv-tbl-capacity command description in the Commands Manual.

Although the rtrv-map output shows there can be 36000 entries, a maximum of 1024, 2000, or 3000 different point codes (depending on whether the XMAP Table Expansion feature is enabled for 2000 or 3000 mated applications) can be provisioned for mated applications.

The following is an example of the possible output.

rlghncxa03w 07-05-28 21:15:37 GMT EAGLE5 37.0.0

MAP table is (3000 of 3000) 100% full

Continue the procedure by performing one of these steps.

• If the maximum number of mated applications shown in this step is 3000 and the current number of mated applications provisioned in the database is 3000, no mated applications with a new point code can be added. Continue the procedure with Step 3.

• If the maximum number of mated applications is either 1024 or 2000, and the mated application being added increases the number beyond 1024 or 2000, perform the Enabling the XMAP Table Expansion Feature procedure to increase the maximum number of mated applications that can be in the database. After the Enabling the XMAP Table Expansion Feature procedure has been completed, continue the procedure with Step 3. If the maximum number of mated applications is not increased, no new point codes can be used to provision mated applications.
• If the maximum number of mated applications is either 1024, 2000, or 3000 and the mated application being added will not increase the number beyond the quantity shown in the rtrv-map output in, continue the procedure with Step 3.

3. A mated application can be provisioned with a point code that is assigned to other mated applications as long as the SSN is not assigned to other mated applications. A point code can be assigned to maximum of 12 different SSNs.

Verify the number of SSNs assigned to the point code that will be specified for the mated application in this procedure by entering the rtrv-map command with the point code of the new mated application. For this example, enter this command.

\texttt{rtrv-map:pca=255-001-000}

This is an example of the possible output.

<table>
<thead>
<tr>
<th>PCA</th>
<th>Mate PCA</th>
<th>SSN RC</th>
<th>MULT</th>
<th>SRM</th>
<th>MRC</th>
<th>GRP</th>
<th>NAME</th>
<th>SSO</th>
</tr>
</thead>
<tbody>
<tr>
<td>255-001-000</td>
<td>250</td>
<td>10</td>
<td>SOL</td>
<td>*Y</td>
<td>*Y</td>
<td>grp01</td>
<td>ON</td>
<td></td>
</tr>
<tr>
<td>255-001-000</td>
<td>251</td>
<td>10</td>
<td>SHR</td>
<td>*Y</td>
<td>*Y</td>
<td>grp01</td>
<td>OFF</td>
<td></td>
</tr>
<tr>
<td>253-001-002</td>
<td>254</td>
<td>10</td>
<td>SHR</td>
<td>*Y</td>
<td>*Y</td>
<td>grp01</td>
<td>OFF</td>
<td></td>
</tr>
<tr>
<td>255-001-000</td>
<td>252</td>
<td>10</td>
<td>SOL</td>
<td>*Y</td>
<td>*Y</td>
<td>grp01</td>
<td>ON</td>
<td></td>
</tr>
<tr>
<td>255-001-000</td>
<td>253</td>
<td>10</td>
<td>SHR</td>
<td>*Y</td>
<td>*Y</td>
<td>grp01</td>
<td>OFF</td>
<td></td>
</tr>
<tr>
<td>253-001-004</td>
<td>254</td>
<td>10</td>
<td>SHR</td>
<td>*Y</td>
<td>*Y</td>
<td>grp01</td>
<td>OFF</td>
<td></td>
</tr>
</tbody>
</table>

If the Flexible GTT Load Sharing feature is enabled, the MAPSET IDs for the mated applications are shown in the rtrv-map output.

If the Weighted GTT Load Sharing feature is enabled and turned, the WT, %WT, and THR columns are shown in the rtrv-map output.

If the point code is assigned to less than 12 different SSNs, then the existing point code in the rtrv-map output can be used to provision the mated application. Continue the procedure with Step 4.

If the point code is assigned to 12 different SSNs, another existing point code in the rtrv-map output or a new point code must be used to provision the mated application. If an existing point code in the rtrv-map output will be used to provision the mated application, repeat this step for that point code. Then continue the procedure with Step 4.

If a new point code will be used to provision the mated application, continue the procedure with Step 4.

If the point code is assigned to 12 different SSNs, and neither an existing point code in the rtrv-map output nor a new point code will be used to provision the mated application, then this procedure cannot be performed.

\textbf{Note:} If a concerned signaling point code (CSPC) group is not being assigned to the mated application, continue the procedure with Step 6.

4. Display the point codes in the CSPC group that you wish to assign to the mated application by first entering the rtrv-cspc command with no parameters.

This is an example of the possible output.

<table>
<thead>
<tr>
<th>righncxa03w 07-05-25 09:48:31 GMT EAGLE5 37.0.0</th>
<th>CSPC GRP</th>
<th>NETWORK</th>
<th>PERCENT</th>
<th>FULL</th>
</tr>
</thead>
<tbody>
<tr>
<td>grp01</td>
<td>ANSI</td>
<td>6%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>grp02</td>
<td>ITU-I</td>
<td>9%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>grp03</td>
<td>ITU-N</td>
<td>12%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>grp04</td>
<td>ANSI</td>
<td>15%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
If the desired CSPC group is shown in the rtrv-cspc output, re-enter the rtrv-cspc command with the CSPC group name. For this example, enter these commands.

rtrv-cspc:grp=grp05

This is an example of the possible output.

```
rlghncxa03w 07-05-25 09:48:31  GMT  EAGLE5 37.0.0
CSPC GRP      PCA
grp05         005-005-005
             007-007-007
             008-008-008
             009-009-009
```

rtrv-cspc:grp=grp10

This is an example of the possible output.

```
rlghncxa03w 07-05-25 09:59:31  GMT  EAGLE5 37.0.0
CSPC GRP      PCA
grp10         003-003-003
             004-004-004
             008-008-008
             009-009-009
```

rtrv-cspc:grp=grp15

This is an example of the possible output.

```
rlghncxa03w 07-05-25 09:48:31  GMT  EAGLE5 37.0.0
CSPC GRP      PCA
grp15         005-005-005
             006-006-006
             008-008-008
             009-009-009
```

Note: If the ANSI/ITU SCCP Conversion feature is enabled, then point codes of multiple network types can be displayed in the rtrv-cspc output, if point codes of multiple network types are assigned to the CSPC group.

If the CSPC group is not in the database, or if the required point code is not assigned to the CSPC group, perform the *Adding a Concerned Signaling Point Code* procedure to add the required CSPC group or point code to the database.

Note: If the output of the rtrv-cspc command performed in Step 4 shows CSPC groups containing a mixture of point code types, or if the new CSPC group that was added in Step 4 contains a mixture of point code types, continue the procedure with Step 6.

5. The format of the point codes in the CSPC group specified with the grp parameter must be the same as the primary point code specified with the ent-map command only if the ANSI/ITU SCCP Conversion feature is not enabled.

If the ANSI/ITU SCCP Conversion feature is enabled, the CSPC group may contain a mixture of point code types (refer to the *Adding a Concerned Signaling Point Code* procedure), and the network type of the CSPC group can be different from the network type of the primary point code of the mated application.
Verify the status of the ANSI/ITU SCCP Conversion feature by entering this command.

`rtrv-ctr1-feat:partnum=893012001`

The following is an example of the possible output.

```
rlghncxa03w 07-05-28 21:15:37 GMT EAGLE5 37.0.0
The following features have been permanently enabled:

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Partnum</th>
<th>Status</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCCP Conversion</td>
<td>893012001</td>
<td>on</td>
<td>----</td>
</tr>
</tbody>
</table>

The following features have been temporarily enabled:

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Partnum</th>
<th>Status</th>
<th>Quantity</th>
<th>Trial Period Left</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Zero entries found.

The following features have expired temporary keys:

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Partnum</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Zero entries found.

If the ANSI/ITU SCCP Conversion feature is not enabled, perform the Activating the ANSI/ITU SCCP Conversion Feature procedure to enable the ANSI/ITU SCCP Conversion feature.

6. If the MAPSET column is shown in the `rtrv-map` output in Step 1, the Flexible GTT Load Sharing feature is enabled. Continue the procedure with Step 7.

If the MAPSET column is not shown in Step 1 and you do not wish to provision MAP sets in this procedure, continue the procedure with Step 7.

If the MAPSET column is not shown in Step 1 and you wish to provision MAP sets in this procedure, perform the Activating the Flexible GTT Load Sharing Feature procedure to enable the Flexible GTT Load Sharing feature. After the Flexible GTT Load Sharing feature is enabled, continue the procedure with Step 7.

**Note:** If the EAGLE 5 ISS’s point code and subsystem number are being assigned to the mated application, continue the procedure with Step 11.

7. Display the destination point codes in the database by entering the `rtrv-dstn` command. This is an example of the possible output.

```
rlghncxa03w 10-12-10 11:43:04 GMT EAGLE5 43.0.0
Extended Processing Time may be Required

<table>
<thead>
<tr>
<th>DPDA</th>
<th>CLLI</th>
<th>BEI</th>
<th>ELEI</th>
<th>ALIASI</th>
<th>ALIASN/N24</th>
<th>DMN</th>
</tr>
</thead>
<tbody>
<tr>
<td>001-207-000</td>
<td>------</td>
<td>no</td>
<td>---</td>
<td>------</td>
<td>007</td>
<td>SS7</td>
</tr>
<tr>
<td>001-001-001</td>
<td>------</td>
<td>no</td>
<td>---</td>
<td>------</td>
<td>007</td>
<td>SS7</td>
</tr>
<tr>
<td>001-001-002</td>
<td>------</td>
<td>no</td>
<td>---</td>
<td>------</td>
<td>007</td>
<td>SS7</td>
</tr>
<tr>
<td>001-005-000</td>
<td>------</td>
<td>no</td>
<td>---</td>
<td>------</td>
<td>007</td>
<td>SS7</td>
</tr>
<tr>
<td>001-007-000</td>
<td>------</td>
<td>no</td>
<td>---</td>
<td>------</td>
<td>007</td>
<td>SS7</td>
</tr>
<tr>
<td>008-012-003</td>
<td>------</td>
<td>no</td>
<td>---</td>
<td>------</td>
<td>007</td>
<td>SS7</td>
</tr>
<tr>
<td>003-002-004</td>
<td>------</td>
<td>no</td>
<td>---</td>
<td>------</td>
<td>007</td>
<td>SS7</td>
</tr>
<tr>
<td>009-002-003</td>
<td>------</td>
<td>no</td>
<td>---</td>
<td>------</td>
<td>007</td>
<td>SS7</td>
</tr>
<tr>
<td>010-020-005</td>
<td>------</td>
<td>no</td>
<td>---</td>
<td>------</td>
<td>007</td>
<td>SS7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DPDA</th>
<th>CLLI</th>
<th>BEI</th>
<th>ELEI</th>
<th>ALIASA</th>
<th>ALIASN/N24</th>
<th>DMN</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-207-0</td>
<td>------</td>
<td>no</td>
<td>---</td>
<td>------</td>
<td>007</td>
<td>SS7</td>
</tr>
<tr>
<td>0-015-0</td>
<td>------</td>
<td>no</td>
<td>---</td>
<td>------</td>
<td>007</td>
<td>SS7</td>
</tr>
<tr>
<td>0-017-0</td>
<td>------</td>
<td>no</td>
<td>---</td>
<td>------</td>
<td>007</td>
<td>SS7</td>
</tr>
<tr>
<td>1-011-1</td>
<td>------</td>
<td>no</td>
<td>---</td>
<td>------</td>
<td>007</td>
<td>SS7</td>
</tr>
<tr>
<td>1-011-2</td>
<td>------</td>
<td>no</td>
<td>---</td>
<td>------</td>
<td>007</td>
<td>SS7</td>
</tr>
</tbody>
</table>
```
If the required point code is not shown in the `rtrv-dstn` output, perform the "Adding a Destination Point Code" procedure in the *Database Administration Manual - SS7* to add the required point code. A proxy point code cannot be assigned to the point code.

After the new point code has been added, skip Step 8 through Step 10 and perform one of the Adding a Route procedures in the *Database Administration Manual - SS7* and add the required route to the database. After the route has been added, continue the procedure with Step 14.

8. Display the point code that will be assigned to the mated application by using the `rtrv-dstn` command and specifying the point code. For this example, enter this command.

```
rtrv-dstn:dpca=010-020-005
```

This is an example of the possible output.

```
rlghncxa03w 10-12-10 11:43:04 GMT EAGLE5 43.0.0

<table>
<thead>
<tr>
<th>DPCA</th>
<th>CLLI</th>
<th>BEI</th>
<th>ELEI</th>
<th>ALIASI</th>
<th>ALIASN/N24</th>
<th>DMN</th>
</tr>
</thead>
<tbody>
<tr>
<td>010-020-005</td>
<td>----</td>
<td>---</td>
<td>----</td>
<td>------</td>
<td>--------</td>
<td>---</td>
</tr>
</tbody>
</table>

PPCA NCAI PRX RCAUSE NPRST SPLITIAM HMSMSC HMSCP SCCPMSGCNV
009-002-003 ---- no 50 on 20 no no none
```

If the adjacent point code is not shown in the `rtrv-dstn` command output, the following output is displayed.

```
rlghncxa03w 09-05-10 11:43:04 GMT EAGLE5 41.0.0

No destinations meeting the requested criteria were found
```

If the adjacent point code is not shown in the `rtrv-dstn` output, the following output is displayed.

```
rlghncxa03w 09-05-10 11:43:04 GMT EAGLE5 41.0.0

No destinations meeting the requested criteria were found
```

If the required point code is not shown in the `rtrv-dstn` output, the following output is displayed.

```
rlghncxa03w 09-05-10 11:43:04 GMT EAGLE5 41.0.0

No destinations meeting the requested criteria were found
```

A proxy point code (a point code value is shown in the PPC column) cannot be assigned to the point code. If a proxy point code is shown in this step, choose another point code from the `rtrv-dstn` output in the previous step and repeat this step.

After the new point code has been added, skip Step 9 through Step 10 and perform one of the Adding a Route procedures in the *Database Administration Manual - SS7* and add the required route to the database. After the route has been added, continue the procedure with Step 14.

9. Enter the `rtrv-rte` command with the `dpc` parameter specifying the point code to be used with the `ent-map` command to verify whether or not the point code is the DPC of a route.

For this example, enter these commands.

```
rtrv-rte:dpca=006-006-006
```

This is an example of the possible output.

```
rlghncxa03w 07-05-07 11:43:04 GMT EAGLE5 37.0.0
```
This is an example of the possible output.

If the point code is not shown in the rtrv-rte output, perform one of the Adding a Route procedures in the *Database Administration Manual - SS7* and add the required route to the database. After this step is performed, continue the procedure with by performing one of these steps.

- If the mrnset and MRN point code parameters will not be specified for the mated application, continue the procedure with Step 14.
- If the mrnset and MRN point code parameters will not be specified for the mated application, continue the procedure by performing one of these steps.
  - If the MRNSET and MRNPC fields are shown in the rtrv-map output in Step 1, continue the procedure with Step 10.
  - If the MRNSET and MRNPC fields are not shown in the rtrv-map output in Step 1, the GTT Load Sharing with Alternate Routing Indicator feature is not enabled. Perform the Activating the GTT Load Sharing with Alternate Routing Indicator Feature procedure to enable the GTT Load Sharing with Alternate Routing Indicator feature. After the Activating the GTT Load Sharing with Alternate Routing Indicator Feature procedure has been performed, continue the procedure with Step 10.

10. The MRN point code value must be assigned to an MRN set. The MRN set must be shown in the rtrv-mrn output. Display the MRN sets by entering the rtrv-mrn command. This is an example of the possible output.
If any of the following items are not shown in the `rtrv-mrn` output, then the feature corresponding to these items is not enabled, or turned on if required.

- The `MRNSET` field - the Flexible GTT Load Sharing feature is not enabled.
- The `MAPSET`, `MAPPC` and `MAPSSN` fields - the GTT Load Sharing with Alternate Routing Indicator feature is not enabled.
- The `WT`, `%WT`, `THR` columns - the Weighted GTT Load Sharing feature is not enabled and turned on.

If the MRN set that you wish to use, containing the desired point code, is shown in the `rtrv-mrn` output, continue the procedure with Step 14.

**Note:** The network type of the `pc/pca/pci/pcn/pcn24` and `mrnpca/mrnpci/mrnpcn/mrnpcn24` parameter values must be compatible, as shown in Table 37: MAP and MRN Point Code Parameter Combinations.

If the MRN set that you wish to use is not shown in the `rtrv-mrn` output, add the required MRN set by performing the Provisioning MRN Entries procedure.

After the MRN set has been added, continue the procedure with Step 14.

11. Display the EAGLE 5 ISS self-identification, using the `rtrv-sid` command.

The EAGLE 5 ISS’s true point code is shown in either the `PCA`, `PCI`, `PCN`, or `PCN24` fields. This is an example of the possible output.

```
rlghncxa03w 07-05-10 11:43:04 GMT EAGLE5 37.0.0

PCA PCI PCN CLLI PCTYPE
010-020-030 1-023-1 12-0-14-1 rlghncxa03w OTHER
s-1-023-1 s-12-0-14-1

CPCA
001-001-001 002-002-003 002-002-004 002-002-005
002-002-006 002-002-007 002-002-008 002-002-009
004-002-001 004-003-003 050-060-070

CPCI
1-001-1 1-001-2 1-001-3 1-001-4
1-002-1 1-002-2 1-002-3 1-002-4
2-001-1 7-222-7

CPCN
2-0-10-3 2-0-11-0 2-0-11-2 2-0-12-1
2-2-3-3 2-2-4-0 10-14-10-1
```

12. Verify whether or not either the LNP, ATINPQ, or ANSI41 AIQ feature is enabled, or the EIR, INP, V-Flex, or ANSI-41 INP Query feature is enabled and turned on by entering the `rtrv-ctrl-feat` command.

This list shows the entries that are displayed in the `rtrv-ctrl-feat` output for the features that are enabled, and turned on if required.

- **LNP** TNs with a quantity greater than zero - the LNP feature is enabled.
- **EIR** with the status on - the EIR feature is enabled and turned on.
- **VFLEX** with the status on - the V-Flex feature is enabled and turned on.
- **ATINP** - the ATINP feature is enabled.
- **INP** with the status on - the INP feature is enabled and turned on.
• **ANSI-41 INP Query** with the status on - the ANSI-41 INP Query feature is enabled and turned on.
• **ANSI41 AIQ** - the ANSI41 AIQ feature is enabled.

If the LNP, ATINPQ, or ANSI AIQ feature is enabled, or if the EIR, INP, V-Flex, or ANSI-41 INP Query feature is enabled and turned on, continue the procedure with *Step 14*.

**13.** Enable either the INP, ANSI-41 INP Query, EIR, V-Flex, ATINPQ, ANSI AIQ, or LNP features, depending on which subsystem you wish to use.

To use the INP subsystem, enable and turn on either the INP or ANSI-41 INP Query feature, perform the procedures in the *Feature Manual - INP/AINPQ*.

To use the LNP subsystem, enable the LNP feature, perform the procedures in the *ELAP Administration and LNP Feature Activation manual*.

To use the EIR subsystem, enable and turn on the EIR feature, perform the procedures in the *Feature Manual - EIR*.

To use the V-Flex subsystem, enable and turn on the V-Flex feature, perform the procedures in the *Feature Manual - V-Flex*.

To use the ATINPQ subsystem, enable the ATINP feature, perform the procedures in the *Feature Manual - ATINP*.

To use the AIQ subsystem, enable the ANSI AIQ feature, perform the procedures in the *Feature Manual - Analyzed Information Features*.

**Note:** If the LNP feature is enabled, the INP, ANSI-41 INP Query, V-Flex, ATINPQ, or EIR features cannot be enabled.

**14.** Add the mated application to the database using the `ent-map` command. Use *Table 39: Solitary Mated Application Parameter Combinations* as a guide for the parameters and values that can be specified with the `ent-map` command.

**Table 39: Solitary Mated Application Parameter Combinations**

<table>
<thead>
<tr>
<th>Other Subsystems</th>
<th>LNP Subsystem</th>
<th>INP Subsystem</th>
<th>EIR Subsystem</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mandatory Parameters</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><code>.pc</code>/<code>pca</code>/<code>pci</code>/<code>pcn</code>/<code>pcn24</code> (See Notes 1, 10, and 14)</td>
<td><code>.pc</code>/<code>pca</code> (See Note 2)</td>
<td><code>.pcn</code>/<code>pcn24</code> (See Notes 3 and 10)</td>
<td><code>.pci</code>/<code>pcn</code>/<code>pcn24</code> (See Notes 4 and 10)</td>
</tr>
<tr>
<td><code>.ssn=&lt;subsystem number, 2 - 255&gt;</code></td>
<td><code>.ssn=&lt;LNP subsystem number, 2 - 255&gt;</code></td>
<td><code>.ssn=&lt;INP subsystem number, 2 - 255&gt;</code></td>
<td><code>.ssn=&lt;EIR subsystem number, 2 - 255&gt;</code></td>
</tr>
<tr>
<td>Optional Parameters</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><code>.rc=&lt;0 - 99&gt;</code> (See Note 7)</td>
</tr>
<tr>
<td><code>.grp=&lt;CSPC group name&gt;</code> (See Note 8)</td>
</tr>
<tr>
<td><code>.mrc=&lt;yes, no&gt;</code> (See Note 11)</td>
</tr>
<tr>
<td>Other Subsystems</td>
<td>LNP Subsystem</td>
<td>INP Subsystem</td>
<td>EIR Subsystem</td>
</tr>
<tr>
<td>------------------</td>
<td>--------------</td>
<td>--------------</td>
<td>--------------</td>
</tr>
<tr>
<td>:mapset=&lt;&lt;new, dflt&gt; (See Note 9)</td>
<td>:mapset=dflt (See Note 9)</td>
<td>:mapset=dflt (See Note 9)</td>
<td>:mapset=dflt (See Note 9)</td>
</tr>
<tr>
<td>:srm=&lt;yes, no&gt; (See Note 11)</td>
<td>:srm=&lt;yes, no&gt; (See Note 11)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>:sso=&lt;on, off&gt;</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>:mrnset = &lt;MRN set ID from the rtrv-mrn output&gt; (See Note 12)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>:mrnpc/mrnpca/ mrnpcci/mrnpcn/ mrnpdn24=&lt;the point code value in the MRN set&gt; (See Notes 12 and 13)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>V-FLEX Subsystem</th>
<th>ATINPQ Subsystem</th>
<th>AIQ Subsystem</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mandatory Parameters</td>
<td></td>
<td></td>
</tr>
<tr>
<td>:pc/pca/pci/pcn/pcn24 (See Notes 5 and 10)</td>
<td>:pc/pca/pci/pcn (See Notes 6 and 10)</td>
<td>:pc/pca/pci/pcn/pcn24 (See Notes 10 and 14)</td>
</tr>
<tr>
<td>:ssn=&lt;V-Flex subsystem number, 2 - 255&gt;</td>
<td>:ssn=&lt;ATINPQ subsystem number, 2 - 255&gt;</td>
<td>:ssn=&lt;AIQ subsystem number, 2 - 255&gt;</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Optional Parameters</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>:rc=&lt;0 - 99&gt; (See Note 7)</td>
<td>:rc=&lt;0 - 99&gt; (See Note 7)</td>
<td>:rc=&lt;0 - 99&gt; (See Note 7)</td>
</tr>
<tr>
<td>:grp=&lt;CSPC group name&gt; (See Note 8)</td>
<td>:grp=&lt;CSPC group name&gt; (See Note 8)</td>
<td>:grp=&lt;CSPC group name&gt; (See Note 8)</td>
</tr>
<tr>
<td>:mrc=&lt;yes, no&gt; (See Note 11)</td>
<td>:mrc=&lt;yes, no&gt; (See Note 11)</td>
<td>:mrc=&lt;yes, no&gt; (See Note 11)</td>
</tr>
<tr>
<td>:mapset=dflt (See Note 9)</td>
<td>:mapset=dflt (See Note 9)</td>
<td>:mapset=dflt (See Note 9)</td>
</tr>
<tr>
<td>:srm=&lt;yes, no&gt; (See Note 11)</td>
<td>:srm=&lt;yes, no&gt; (See Note 11)</td>
<td>:srm=&lt;yes, no&gt; (See Note 11)</td>
</tr>
</tbody>
</table>

Notes
1. The primary point code is an ANSI, ITU-I, ITU-I spare, ITU-N, ITU-N spare, or ITU-N24 from the rtrv-rte or rtrv-map outputs.
2. The primary point code for the LNP subsystem is the ANSI point code from the rtrv-sid output.
3. The primary point code for the INP subsystem is the ITU-N, ITU-N spare, or ITU-N24 point code from the `rtrv-sid` output.

4. The primary point code for the EIR subsystem is the ITU-I, ITU-I spare, ITU-N, ITU-N spare, or ITU-N24 point code from the `rtrv-sid` output. Perform this step as necessary to provision an ITU-I and either a 14-bit ITU-N or a 24-bit ITU-N mated application containing the EIR subsystem.

5. The primary point code for the V-Flex subsystem is the ANSI, ITU-I, ITU-I spare, ITU-N, ITU-N spare, or ITU-N24 point code from the `rtrv-sid` output. Perform this step as necessary to provision an ANSI, ITU-I, and either a 14-bit ITU-N or a 24-bit ITU-N mated application containing the VFLEX subsystem.

6. The primary point code for the ATINPQ subsystem is the ANSI, ITU-I, ITU-I spare, ITU-N, or ITU-N spare point code from the `rtrv-sid` output. Perform this step as necessary to provision an ANSI, ITU-I, and a 14-bit ITU-N mated application containing the ATINPQ subsystem.

7. The `rc` parameter can be specified for a solitary mated application, but does not have to be specified. If the `rc` parameter is not specified, its value will be 10.

8. The format of the point codes in the CSPC group specified with the `grp` parameter must be the same as the primary point code specified with the `ent-map` command only if the ANSI/ITU SCCP Conversion feature is not enabled. If the ANSI/ITU SCCP Conversion feature is enabled, the CSPC group may contain a mixture of point code types (refer to the *Adding a Concerned Signaling Point Code* procedure), and the network type of the CSPC group can be different from the network type of the primary point code of the mated application.

9. If the Flexible GTT Load Sharing is enabled, the `mapset` parameter must be specified with the `ent-map` command.

If the Flexible GTT Load Sharing is not enabled, the `mapset` parameter cannot be specified with the `ent-map` command.

To provision entries in the default MAP set, the `mapset=dlf` parameter must be specified with the `ent-map` command.

To provision entries in a new MAP set, the `mapset=new` parameter must be specified with the `ent-map` command. When the `ent-map` command is executed with the `mapset=new` parameter, the new MAP set ID is automatically generated and displayed in the output of the `ent-map` command as follows.

```
New MAPSET Created : MAPSETID = <new MAP set ID>
```

The default MAP set can contain multiple MAP groups. Each group in the default MAP set can contain a maximum of 32 point code and subsystem entries.

The point code and subsystem entry can appear only once in the default MAP set, so the point code and subsystem entry can appear in only one MAP group in the default MAP set.

The point code and subsystem entry provisioned in a MAP set can be provisioned in multiple MAP sets. If a point code and subsystem entry is provisioned in different MAP sets, the relative cost value of the entry in each MAP set can be different. All the point code and subsystem entries in a MAP set, including the default MAP set, must be different.

If the EAGLE 5 ISS’s point code and subsystem number is being assigned to the mated application, and if the Flexible GTT Load Sharing feature is enabled, the EAGLE 5 ISS’s point code and subsystem number can be assigned only to the default MAP set using the `mapset=dlf` parameter.
10. If the point code selected from either the `rtrv-rte` or `rtrv-map` outputs is a 14-bit ITU-N point code, then the `pcn` parameter must be specified. If the point code selected from either the `rtrv-rte` or `rtrv-map` outputs is a 24-bit ITU-N point code, then the `pcn24` parameters must be specified.

11. The `srm=yes` parameter can be specified only for solitary mated applications containing ANSI point codes. The `srm` parameter affects traffic only on dominant and combined dominant/load shared mated applications. The `mrc` parameter can be specified for a solitary mated application, but this parameter affects only the traffic for a dominant mated application. These are the default values for the `srm` and `mrc` parameters.
   - ANSI mated applications - `srm=yes`, `mrc=yes`
   - ITU mated applications - `srm=no` (for all ITU mated applications), `mrc=yes` (for ITU-I and ITU-N mated applications), `mrc=no` (for ITU-N24 mated applications)

12. If either the `mrnset` or `mrnpc/mrnpca/mrnpci/mrnpcn/mrnpcn24` parameter is specified, then both parameters must be specified. The `mrnset` and `mrnpc/mrnpca/mrnpci/mrnpcn/mrnpcn24` parameters can be specified only if the GTT Load Sharing with Alternate Routing Indicator feature is enabled. Refer to the Activating the GTT Load Sharing with Alternate Routing Indicator Feature procedure for information about enabling the GTT Load Sharing with Alternate Routing Indicator feature. The `mrnset` and `mrnpc/mrnpca/mrnpci/mrnpcn/mrnpcn24` values must be shown in the `rtrv-mrn` output.

13. The network type of the `pc/pca/pci/pcn/pcn24` and `mrnpc/mrnpca/mrnpci/mrnpcn/mrnpcn24` parameter values must be compatible, as shown in Table 37: MAP and MRN Point Code Parameter Combinations.

14. The primary point code for the AIQ subsystem is the ANSI, ITU-I, ITU-I spare, ITU-N, ITU-N spare, or ITU-N24 point code from the `rtrv-sid` output. Perform this step as necessary to provision an ANSI, ITU-I, and either a 14-bit ITU-N or a 24-bit ITU-N mated application containing the AIQ subsystem.

If the Flexible GTT Load Sharing feature is not enabled for this example, enter these commands.

```
ent-map:pca=007-007-007:ssn=251:grp=grp05:sso=on
```

When each of these commands have successfully completed, this message should appear.

```
rlghncxa03w 07-05-07 11:44:13 GMT EAGLE5 37.0.0
ENT-MAP: MASP A - COMPLTD
```

If the Flexible GTT Load Sharing feature is enabled for this example, enter these commands.

```
ent-map:pca=007-007-007:ssn=251:grp=grp05:sso=on:mapset=dlft
```

If the GTT Load Sharing with Alternate Routing Indicator feature is enabled for this example, enter these commands.

```
```
If the Flexible GTT Load Sharing feature is enabled when each of these commands have successfully completed, and a new MAP set was created, a message similar to the following should appear.

```
rlghncxa03w 07-05-07 11:44:13 GMT EAGLE5 37.0.0
New MAPSET Created : MAPSETID = 9
ENT-MAP: MASP A - COMPLTD
```

If the Flexible GTT Load Sharing feature is enabled when each of these commands have successfully completed, and the mated application was added to the default MAP set, this message should appear.

```
rlghncxa03w 07-05-07 11:44:13 GMT EAGLE5 37.0.0
ENT-MAP: MASP A - COMPLTD
```

**Note:** If the Weighted GTT Load Sharing feature is enabled, shown by the columns WT, %WT, and THR in the `rtrv-map` output, the parameters `wt`, `mwt`, and `thr` cannot be specified for a solitary mated application.

15. Verify the changes using the `rtrv-map` command with the primary point code and subsystem specified in Step 14.

If the `mapset=dflt` parameter was specified in Step 14, the `mapset=dflt` parameter should be specified with the `rtrv-map` command.

If a new MAP set was created in Step 14, the `mapset` parameter should be specified with the `rtrv-map` command. The value for the mapset parameter should be the MAP set ID generated in Step 14. If the mated application was added to an existing MAP set in Step 14, the `mapset` parameter and value specified in Step 14 should be specified with the `rtrv-map` command.

If the Flexible GTT Load Sharing feature is not enabled for this example, enter these commands.

```
rtrv-map:pca=006-006-006:ssn=250
```

This is an example of the possible output.

```
rlghncxa03w 09-07-07 00:34:31 GMT EAGLE5 41.1.0

PCA Mate PCA SSN RC MULT SRM MRC GRP NAME SSO
006-006-006 250 10 SOL *Y *Y grp15 OFF

MAP TABLE IS (37 of 1024) 4 % FULL
```

```
rtrv-map:pca=007-007-007:ssn=251
```

This is an example of the possible output.

```
rlghncxa03w 09-07-07 00:34:31 GMT EAGLE5 41.1.0

PCA Mate PCA SSN RC MULT SRM MRC GRP NAME SSO
007-007-007 251 10 SOL *Y *Y grp05 ON

MAP TABLE IS (37 of 1024) 4 % FULL
```

**Note:** If the Weighted GTT Load Sharing feature is enabled, the `WT`, `%WT`, and `THR` columns are shown in the `rtrv-map` output.

If the Flexible GTT Load Sharing feature is enabled for this example, enter these commands.

```
```

If the Flexible GTT Load Sharing feature is enabled when each of these commands have successfully completed, and a new MAP set was created, a message similar to the following should appear.

```
rlghncxa03w 07-05-07 11:44:13 GMT EAGLE5 37.0.0
New MAPSET Created : MAPSETID = 9
ENT-MAP: MASP A - COMPLTD
```

If the Flexible GTT Load Sharing feature is enabled when each of these commands have successfully completed, and the mated application was added to the default MAP set, this message should appear.

```
rlghncxa03w 07-05-07 11:44:13 GMT EAGLE5 37.0.0
ENT-MAP: MASP A - COMPLTD
```

**Note:** If the Weighted GTT Load Sharing feature is enabled, shown by the columns WT, %WT, and THR in the `rtrv-map` output, the parameters `wt`, `mwt`, and `thr` cannot be specified for a solitary mated application.

15. Verify the changes using the `rtrv-map` command with the primary point code and subsystem specified in Step 14.

If the `mapset=dflt` parameter was specified in Step 14, the `mapset=dflt` parameter should be specified with the `rtrv-map` command.

If a new MAP set was created in Step 14, the `mapset` parameter should be specified with the `rtrv-map` command. The value for the mapset parameter should be the MAP set ID generated in Step 14. If the mated application was added to an existing MAP set in Step 14, the `mapset` parameter and value specified in Step 14 should be specified with the `rtrv-map` command.

If the Flexible GTT Load Sharing feature is not enabled for this example, enter these commands.

```
rtrv-map:pca=006-006-006:ssn=250
```

This is an example of the possible output.

```
rlghncxa03w 09-07-07 00:34:31 GMT EAGLE5 41.1.0

PCA Mate PCA SSN RC MULT SRM MRC GRP NAME SSO
006-006-006 250 10 SOL *Y *Y grp15 OFF

MAP TABLE IS (37 of 1024) 4 % FULL
```

```
rtrv-map:pca=007-007-007:ssn=251
```

This is an example of the possible output.

```
rlghncxa03w 09-07-07 00:34:31 GMT EAGLE5 41.1.0

PCA Mate PCA SSN RC MULT SRM MRC GRP NAME SSO
007-007-007 251 10 SOL *Y *Y grp05 ON

MAP TABLE IS (37 of 1024) 4 % FULL
```

**Note:** If the Weighted GTT Load Sharing feature is enabled, the `WT`, `%WT`, and `THR` columns are shown in the `rtrv-map` output.

If the Flexible GTT Load Sharing feature is enabled for this example, enter these commands.

```
```
This is an example of the possible output.

```
rlghncxa03w 09-07-07 00:34:31 GMT EAGLE5 41.1.0

MAPSET ID=10 MRNSET=1 MRNPC=007-007-007
PCA Mate PCA SSN RC MULT SRM MRC GRP NAME SSO
006-006-006 250 10 SOL *Y *Y grp15 OFF

MAP TABLE IS (37 of 36000) 1 % FULL

rtrv-map:pca=007-007-007:ssn=251:mapset=dflt
```

This is an example of the possible output.

```
rlghncxa03w 09-07-07 00:34:31 GMT EAGLE5 41.1.0

MAPSET ID=DFLT MRNSET=---- MRNPC=-----------
PCA Mate PCA SSN RC MULT SRM MRC GRP NAME SSO
007-007-007 251 10 SOL *Y *Y grp05 ON

MAP TABLE IS (37 of 36000) 1 % FULL
```

If the Weighted GTT Load Sharing feature is enabled, the WT, %WT, and THR columns are shown in the `rtrv-map` output.

If the GTT Load Sharing with Alternate Routing Indicator feature is not enabled, the MRNSET and MRNPC fields are not shown in the `rtrv-map` output.

16. Back up the new changes using the `chg-db:action=backup:dest=fixed` command.

These messages should appear, the active Maintenance and Administration Subsystem Processor (MASP) appears first.

```
BACKUP (FIXED) : MASP A - Backup starts on active MASP.
BACKUP (FIXED) : MASP A - Backup on active MASP to fixed disk complete.
BACKUP (FIXED) : MASP A - Backup starts on standby MASP.
BACKUP (FIXED) : MASP A - Backup on standby MASP to fixed disk complete.
```

**Provisioning a Dominant Mated Application**

This procedure is used to provision a dominant mated application in the database using the `ent-map` and `chg-map` commands. A dominant mated application is a mated application containing entries whose RC (relative cost) values are unique. The `ent-map` and `chg-map` commands use these parameters to provision a dominant mated application.

`:pc/pca/pci/pcn/pcn24` – The point code of the primary signaling point that is to receive the message.

`:mpc/mpca/mpci/mpcn/mpcn24` – The point code of the backup signaling point that is to receive the message.

**Note:** The point codes can be either an ANSI point code (`pc/pca`, `mpc/mpca`), ITU-I or ITU-I spare point code (`pci`, `mpci`), a 14-bit ITU-N or 14-bit ITU-N spare point code (`pcn`, `mpcn`), or a 24-bit ITU-N (`pcn24`, `mpcn24`) point code.
Note: Refer to Chapter 2, Configuring Destination Tables in the Database Administration Manual - SS7 for a definition of the point code types that are used on the EAGLE 5 ISS and for a definition of the different formats that can be used for ITU national point codes.

:ssn – Subsystem number – the subsystem address of the primary point code that is to receive the message. The value for this parameter is 2 to 255.

:mssn – Mate subsystem number – the subsystem address of the backup point code that is to receive the message. The value for this parameter is 2 to 255.

:rc – The relative cost value of the primary point code and subsystem, defined by the pc/pca/pci/pcn/pcn24 and ssn parameters. The rc parameter has a range of values from 0 to 99, with the default value being 10.

:materc – The relative cost value of the backup point code and subsystem, defined by the mpc/mpca/mpci/mpcn/mpcn24 and mssn parameters. The materc parameter has a range of values from 0 to 99, with the default value being 50.

:grp – The name of the concerned signaling point code (CSPC) group that contains the point codes that should be notified of the subsystem status. This parameter applies to both RPCs/SSNs. The value for this parameter is shown in the rtrv-cspc output. If the desired value is not shown in the rtrv-cspc output, perform the Adding a Concerned Signaling Point Code procedure to add the desired group. If this parameter is not specified, then a CSPC group name is not specified for the mated application.

:mrc – Message routing under congestion – defines the handling of Class 0 messages during congestion conditions. The value for this parameter is yes or no. The default value for ANSI dominant mated applications is yes. The default value for ITU dominant mated applications is no.

:ssr – Subsystem routing messages – defines whether subsystem routing messages (SBR, SNR) are transmitted between the mated applications.

:sso – Subsystem Status Option – defines whether the subsystem status option is on or off. This parameter allows the user the option to have the specified subsystem marked as prohibited even though an MTP-RESUME message has been received by the indicating that the specified point code is allowed. The sso parameter cannot be specified if the pc/pca/pci/pcn/pcn24 value is the EAGLE 5 ISS’s true point code, shown in the rtrv-sid output. The value for this parameter is on or off. The default value is off.

:mapset – The MAP set ID that the mated applications are assigned to. This parameter can be specified only if the Flexible GTT Load Sharing feature is enabled. This parameter must be specified if the Flexible GTT Load Sharing feature is enabled. If the Flexible GTT Load Sharing feature is enabled, the point code and subsystem specified for the global title translation must be assigned to the MAP set specified by this parameter. The status of the Flexible GTT Load Sharing feature is shown in the rtrv-ctrl-feat output. To enable the Flexible GTT Load Sharing feature, perform the Activating the Flexible GTT Load Sharing Feature procedure.

The mapset parameter has three values:

- dflt – to assign the MAP to the default MAP set. This value can be specified with both the ent-map and chg-map commands.
- new – to assign the mated application to a new MAP set. This value can be specified only with the ent-map command.
- the specific number of an existing MAP set if you are assigning the mated application to an existing MAP set. This value can be specified only with the chg-map command.

Refer to the Provisioning a MAP Set section for information on provisioning MAP sets.
:mrnset – The MRN set ID that is being assigned to the mated application. This is the MRN set from which alternate routing indicator searches are performed.

:mrnpc/mrn pca/mrnpci/mrnpcn/mrnpcn24 – The point code assigned to the mrnset that is being assigned to the MAP set.

The current values of the mrnset and :mrnpc/mrn pca/mrnpci/mrnpcn/mrnpcn24 parameters are shown in the rtrv-map output only if the Flexible GTT Load Sharing and the GTT Load Sharing with Alternate Routing Indicator features are enabled.

The new values for the mrnset and mrn pc/mrn pca/mrnpci/mrnpcn/mrnpcn24 parameters must be shown in the rtrv-mrn output.

The network type of the pc/pca/pci/pcn/pcn24 and mrn pc/mrn pca/mrnpci/mrnpcn/mrnpcn24 parameter values must be compatible, as shown in Table 40: MAP and MRN Point Code Parameter Combinations.

Table 40: MAP and MRN Point Code Parameter Combinations

<table>
<thead>
<tr>
<th>MAP Point Code Parameter</th>
<th>MRN Point Code Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>pc/pca</td>
<td>mrnpc/mrn pca</td>
</tr>
<tr>
<td>pci or pcn (See Notes 1 and 2)</td>
<td>mrnpci or mrnp cn (See Notes 1 and 2)</td>
</tr>
<tr>
<td>pcn24</td>
<td>mrnp cn24</td>
</tr>
</tbody>
</table>

Notes:
1. If the network type of the MAP point code parameter is ITU-I (pci), the network type of the MRN point code parameter can be either ITU-I (mappci) or ITU-N (mappcn).
2. If the network type of the MAP point code parameter is ITU-N (pcn), the network type of the MRN point code parameter can be either ITU-I (mappci) or ITU-N (mappcn).

If the Weighted GTT Load Sharing feature is enabled, shown by the columns WT, %WT, and THR in the rtrv-map output, the parameters wt, mw t, and thr cannot be specified for a dominant mated application. If you wish to use these parameters to provision a mated application, perform one of these procedures:

- Provisioning a Load Shared Mated Application
- Provisioning a Combined Dominant/Load Shared Mated Application.

A dominant mated application can contain up to 32 point codes and subsystems, a primary point code and subsystem, and up to 31 mated point codes and subsystems. When a new dominant mated application is added to the database, the first two entries, the primary point code and subsystem and a mate point code and subsystem are added using the ent-map command. All other mated point code and subsystem entries that are being assigned to the primary point code and subsystem are added to the dominant mated application using the chg-map command.

All the point codes and subsystems in a dominant mated application have different relative cost values, with the primary point code and subsystem having the lowest relative cost value. All traffic is routed to the primary point code and subsystem, if it is available. If the primary point code and subsystem becomes unavailable, the traffic is routed to highest priority backup point code and subsystem that is available. When the primary point code and subsystem becomes available again, the traffic is then routed back to the primary point code and subsystem.
If the Flexible GTT Load Sharing feature is not enabled, the primary point code and subsystem number or the mate point code and mate subsystem number combination can be in the database only once. If the Flexible GTT Load Sharing feature is enabled, the primary point code and subsystem number or mate point code and mate subsystem number combination can be in multiple MAP sets, but can be in the default MAP set only once. Refer to the Provisioning a MAP Set section for information on provisioning MAP sets.

The point codes specified in the ent-map or chg-map commands (pc/pca, pci, pcn, or pcn24, and mpc/mpca, mpci, mpcn, or mpcn24) must be either a full point code in the routing point code table or the EAGLE 5 ISS’s true point code. Cluster point codes or network routing point codes cannot be specified with this command. The rtrv-rte command can be used to verify the point codes in the routing table. The point codes in the routing table are shown in the DPCA, DPCI, DPCN, or DPCN24 fields of the rtrv-rte command output. The EAGLE 5 ISS’s true point code is shown in the PCA, PCI, PCN, or PCN24 fields of the rtrv-sid command output.

A dominant mated application can be provisioned with a point code that is assigned to other mated applications as long as the SSN is not assigned to other mated applications. A point code can be assigned to maximum of 12 different SSNs.

If the EAGLE 5 ISS’s true point code is specified in the mated application, it must be the primary point code. The relative cost value assigned to this point code must be the lowest value in the mated application. If the Flexible GTT Load Sharing feature is enabled, the mated application containing the EAGLE 5 ISS’s true point code can be assigned only to the default MAP set.

A mated application containing the LNP subsystem can contain only ANSI point codes. The primary point code (pc or pca) must be the EAGLE 5 ISS’s true ANSI point code. The LNP feature must be enabled for a quantity greater than zero.

A mated application containing the INP subsystem can contain only 14-bit ITU-N point codes, 14-bit ITU-N spare point codes, or 24-bit ITU-N point codes. The primary point code (pcn or pcn24) must be the EAGLE 5 ISS’s true 14-bit ITU-N point code, 14-bit ITU-N spare point code, or 24-bit ITU-N point code. The INP or ANSI-41 INP Query feature must be enabled and turned on. The EAGLE 5 ISS can contain either 14-bit ITU-N point codes (spare or non-spare point codes) or 24-bit ITU-N point codes. Both types of point codes cannot be present on the EAGLE 5 ISS at the same time.

A mated application containing the EIR subsystem can contain only ITU-I point codes, ITU-I spare point codes, 14-bit ITU-N point codes, 14-bit ITU-N spare point codes, or 24-bit ITU-N point codes. The primary point code (pci, pcn, or pcn24) must be the EAGLE 5 ISS’s true ITU-I point code, ITU-I spare point code, 14-bit ITU-N point code, 14-bit ITU-N spare point code, or 24-bit ITU-N point code. The EIR feature must be enabled and turned on. The EAGLE 5 ISS can contain either 14-bit ITU-N point codes (spare or non-spare point codes) or 24-bit ITU-N point codes. Both types of point codes cannot be present on the EAGLE 5 ISS at the same time.

A mated application containing the VFLEX subsystem can contain any type of point code. The primary point code (pc, pca, pci, pcn, or pcn24) must be the EAGLE 5 ISS’s true point code. The V-Flex feature must be enabled and turned on. The EAGLE 5 ISS can contain either 14-bit ITU-N point codes (spare or non-spare point codes) or 24-bit ITU-N point codes. Both types of point codes cannot be present on the EAGLE 5 ISS at the same time.

A mated application containing the ATINPQ subsystem can contain only ANSI point codes, ITU-I point codes, ITU-I spare point codes, 14-bit ITU-N point codes, or 14-bit ITU-N spare point codes. The primary point code (pc, pca, pci, or pcn) must be the EAGLE 5 ISS’s true ANSI point code, ITU-I point code, ITU-I spare point code, 14-bit ITU-N point code, or 14-bit ITU-N spare point code. The ATINP feature must be enabled.
A mated application containing the AIQ subsystem can contain any of the EAGLE 5 ISS’s true point codes. The ANSI41 AIQ feature must be enabled. The EAGLE 5 ISS can contain either 14-bit ITU-N point codes (spare or non-spare point codes) or 24-bit ITU-N point codes. Both types of point codes cannot be present on the EAGLE 5 ISS at the same time.

The EAGLE 5 ISS can contain multiple entries that contain the EAGLE 5 ISS’s true point code, shown in the `rtrv-sid` output. Table 41: Maximum Number of True Point Code Entries shows the numbers of entries that can be provisioned based on the type of point code.

**Table 41: Maximum Number of True Point Code Entries**

<table>
<thead>
<tr>
<th>True Point Code Type</th>
<th>Maximum Number of Entries</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANSI</td>
<td>1 - for the LNP subsystem&lt;br&gt;2 - one entry for the LNP subsystem and one entry for the AIQ subsystem&lt;br&gt;3 - one entry for the ATINPQ subsystem, one entry for the V-FLEX subsystem, and one entry for the AIQ subsystem&lt;br&gt;The LNP subsystem cannot be used if the ATINPQ, EIR, INP, and V-FLEX subsystems are used.</td>
</tr>
<tr>
<td>ITU-I</td>
<td>4 - one entry for the ATINPQ subsystem, one entry for the EIR subsystem, one entry for the V-FLEX subsystem, and one entry for the AIQ subsystem</td>
</tr>
<tr>
<td>ITU-N</td>
<td>5 - one entry for the ATINPQ subsystem, one entry for the EIR subsystem, one entry for the INP subsystem, one entry for the V-FLEX subsystem, and one entry for the AIQ subsystem</td>
</tr>
</tbody>
</table>

For mated applications containing ANSI or 24-bit ITU-N point codes, or the EAGLE 5 ISS’s true point code, the format of the point codes specified in the `ent-map` command must be the same. For example, if the primary point code is a 24-bit ITU-N point code (`pcn24`), the mate point code must be a 24-bit ITU-N point code (`mpcn24`). The mate point codes of mated applications containing either ITU-I, ITU-I spare, 14-bit ITU-N, or 14-bit ITU-N spare primary point codes do not have to be the same format as the primary point code. The mate point codes of these mated applications can be a mixture of ITU-I, ITU-I spare, 14-bit ITU-N, or 14-bit ITU-N spare point codes.

The format of the point codes in the CSPC group specified with the `grp` parameter must be the same as the primary point code specified with the `ent-map` command only if the ANSI/ITU SCCP Conversion feature is not enabled. If the ANSI/ITU SCCP Conversion feature is enabled, the CSPC group may contain a mixture of point code types (refer to the Adding a Concerned Signaling Point Code procedure), and the network type of the CSPC group can be different from the network type of the primary point code of the mated application. The status of the ANSI/ITU SCCP Conversion feature can be verified with the `rtrv-ctrl-feat` command.
The values for the primary point code and subsystem combination (pc/ssn) cannot be the same as the mated point code and subsystem combination (mpc/mssn). However, the primary and mated point codes can be the same as long as the subsystem numbers are different.

If a mate point code (mpc/mpca/mpci/mpcn/mpcn24) is specified, the mssn parameter must be specified.

If the mssn parameter is specified, the mate point code (mpc/mpca/mpci/mpcn/mpcn24) must be specified.

If the grp, srm, mrc, and sso parameter values are specified, and the specified point code and SSN is assigned to multiple mated applications, the grp, srm, mrc, and sso values for all mated applications containing the specified point code and SSN will be changed to the values specified in this procedure.

The EAGLE 5 ISS can contain 1024, 2000, or 3000 mated applications. The EAGLE 5 ISS default is 1024 mated applications. This quantity can be increased to 2000 by enabling the feature access key for part number 893-0077-01, or to 3000 by enabling the feature access key for part number 893-0077-10. For more information on enabling these feature access keys, refer to the Enabling the XMAP Table Expansion Feature procedure.

Provisioning a MAP Set

The Flexible GTT Load Sharing feature provides the ability to define multiple load sharing sets in the MAP table where the same point code and subsystem can be assigned to different load sharing sets.

The MAP table contains specific load sharing sets, designated by numbers, and a default MAP set.

Flexible Final GTT Load Sharing provides flexible load sharing for global title translations defined in the GTT table and not for the MPS-based features. The MPS-based features do not support the MAP set ID parameter. The MPS-based features perform lookups for load sharing in the default MAP set and the GTT table. The entries in the GTT table can be linked to a MAP set ID, allowing lookups in a specific MAP set other than the default MAP set.

Any MAP entries that were provisioned in the database before the Flexible GTT Load Sharing feature is enabled are placed in the default MAP set when the Flexible GTT Load Sharing feature is enabled.

To provision entries in the default MAP set, the mapset=dflt parameter must be specified with the ent-map or chg-map commands.

To provision entries in an existing MAP set other than the default MAP set, the mapset=<MAP set ID> parameter must be specified with the chg-map command. Provisioning entries in an existing MAP set can be performed only with the chg-map command.

To provision entries in a new MAP set, the mapset=new parameter must be specified with the ent-map command. When the ent-map command is executed with the mapset=new parameter, the new MAP set ID is automatically generated and displayed in the output of the ent-map command as follows.

```
New MAPSET Created : MAPSETID = <new MAP set ID>
```

A MAP set, other than the default MAP set, is a MAP group provisioned with the MAP set ID and can contain a maximum of 32 point codes.

The default MAP set can contain multiple MAP groups. The point code and subsystem number combination can appear only once in the default MAP set. The point code can appear in multiple MAP groups in the default MAP set with different subsystem numbers.
The point code and subsystem number combination provisioned in a MAP set can be provisioned in multiple MAP sets. All the point code and subsystem number combinations in a MAP set must be different.

**Canceling the RTRV-MAP Command**

Because the *rtrv-map* command used in this procedure can output information for a long period of time, the *rtrv-map* command can be canceled and the output to the terminal stopped. There are three ways that the *rtrv-map* command can be canceled.

- Press the F9 function key on the keyboard at the terminal where the *rtrv-map* command was entered.
- Enter the *canc-cmd* without the *trm* parameter at the terminal where the *rtrv-map* command was entered.
- Enter the *canc-cmd:trm=<xx>* where *<xx>* is the terminal where the *rtrv-map* command was entered, from another terminal other than the terminal where the *rtrv-map* command was entered.

To enter the *canc-cmd:trm=<xx>* command, the terminal must allow Security Administration commands to be entered from it and the user must be allowed to enter Security Administration commands. The terminal’s permissions can be verified with the *rtrv-secu-trm* command. The user’s permissions can be verified with the *rtrv-user* or *rtrv-secu-user* commands.

For more information about the *canc-cmd* command, refer to the *Commands Manual*.

1. Display the mated applications in the database using the *rtrv-map* command.

   This is an example of the possible output.

   ```
 rlghncxa03w 09-07-07 00:34:31 GMT EAGLE5 41.1.0
 MAPSET ID=DFLT
 PCA Mate PCA SSN RC MULT SRM MRC GRP NAME SSO
 255-001-000 250 10 SOL *Y *Y grp01 ON
 MAPSET ID=1
 PCA Mate PCA SSN RC MULT SRM MRC GRP NAME SSO
 255-001-000 251 10 SHR *Y *Y grp01 OFF
 253-001-002 254 10 SHR *Y *Y grp01 OFF
 MAPSET ID=2
 PCA Mate PCA SSN RC MULT SRM MRC GRP NAME SSO
 255-001-000 252 10 SOL *Y *Y grp01 ON
 MAPSET ID=DFLT
 PCA Mate PCA SSN RC MULT SRM MRC GRP NAME SSO
 255-001-000 253 10 SHR *Y *Y grp01 OFF
 253-001-004 254 10 SHR *Y *Y grp01 OFF
 MAPSET ID=3
 PCA Mate PCA SSN RC MULT SRM MRC GRP NAME SSO
 255-001-001 255 10 DOM YES YES grp01 ON
 253-001-005 254 20 DOM YES YES grp01 ON
 MAPSET ID=4
 PCA Mate PCA SSN RC MULT SRM MRC GRP NAME SSO
 255-001-001 250 10 DOM YES YES grp01 OFF
 253-001-001 254 20 DOM YES YES grp01 OFF
 MAPSET ID=DFLT
 PCA Mate PCA SSN RC MULT SRM MRC GRP NAME SSO
 255-001-002 251 10 SHR *Y *Y grp01 OFF
   ```
If any of the following items are not shown in the `rtrv-map` output, then the feature corresponding to these items is not enabled, or turned on if required.

- The MAPSET field - the Flexible GTT Load Sharing feature is not enabled.
- The MRNSET and MRNPC fields - the GTT Load Sharing with Alternate Routing Indicator feature is not enabled.
- The WT, %WT, THR columns - the Weighted GTT Load Sharing feature is not enabled and turned on.

If the maximum number of mated applications shown in the `rtrv-map` output in Step 1 is 1024, 2000, or 3000, continue the procedure with Step 3.

2. If the maximum number of mated applications shown in the `rtrv-map` output in Step 1 is 36000, the Flexible GTT Load Sharing feature is enabled.

Although the `rtrv-map` output shows there can be 36000 entries, a maximum of 1024, 2000, or 3000 different point codes (depending on whether the XMAP Table Expansion feature is enabled for 2000 or 3000 mated applications) can be provisioned for mated applications. To verify the number of different point codes that can be provisioned for mated applications, enter the `rtrv-tbl-capacity` command. The following is an example of the possible output.

```
rlghncxa03w 07-05-28 21:15:37 GMT EAGLE5 37.0.0
MAP table is (3000 of 3000) 100% full
```

Note: The `rtrv-tbl-capacity` command output contains other fields that are not used by this procedure. If you wish to see all the fields displayed by the `rtrv-tbl-capacity` command, see the `rtrv-tbl-capacity` command description in the `Commands Manual`.

---

<table>
<thead>
<tr>
<th>MAPSET ID=5</th>
<th>PCA</th>
<th>Mate PCA</th>
<th>SSN RC MULT SRM MRC GRP NAME SSO</th>
</tr>
</thead>
<tbody>
<tr>
<td>255-001-002</td>
<td></td>
<td>252 10</td>
<td>DOM YES YES grp01 ON</td>
</tr>
<tr>
<td>255-001-003</td>
<td></td>
<td>254 20</td>
<td>DOM YES YES grp01 ON</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MAPSET ID=6</th>
<th>PCA</th>
<th>Mate PCA</th>
<th>SSN RC MULT SRM MRC GRP NAME SSO</th>
</tr>
</thead>
<tbody>
<tr>
<td>255-001-002</td>
<td></td>
<td>253 10</td>
<td>SHR *Y *Y grp01 ON</td>
</tr>
<tr>
<td>255-001-004</td>
<td></td>
<td>254 10</td>
<td>SHR *Y *Y grp01 ON</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MAPSET ID=7</th>
<th>PCA</th>
<th>Mate PCA</th>
<th>SSN RC MULT SRM MRC GRP NAME SSO</th>
</tr>
</thead>
<tbody>
<tr>
<td>002-002-007</td>
<td></td>
<td>50 10</td>
<td>COM YES *Y grp01 OFF</td>
</tr>
<tr>
<td>002-002-008</td>
<td></td>
<td>30 10</td>
<td>COM YES *Y grp01 OFF</td>
</tr>
<tr>
<td>002-002-009</td>
<td></td>
<td>30 10</td>
<td>COM YES *Y grp01 OFF</td>
</tr>
<tr>
<td>002-002-010</td>
<td></td>
<td>30 20</td>
<td>COM YES *Y grp01 OFF</td>
</tr>
<tr>
<td>002-002-011</td>
<td></td>
<td>30 20</td>
<td>COM YES *Y grp01 OFF</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MAPSET ID=8</th>
<th>PCI</th>
<th>Mate PCI</th>
<th>SSN RC MULT SRM MRC GRP NAME SSO</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-001-2</td>
<td></td>
<td>255 10</td>
<td>DOM NO YES grp03 OFF</td>
</tr>
<tr>
<td>2-001-1</td>
<td></td>
<td>254 20</td>
<td>DOM NO YES grp03 OFF</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MAPSET ID=9</th>
<th>PCN</th>
<th>Mate PCN</th>
<th>SSN RC MULT SRM MRC GRP NAME SSO</th>
</tr>
</thead>
<tbody>
<tr>
<td>00347</td>
<td></td>
<td>253 10</td>
<td>SHR *N *N grp05 OFF</td>
</tr>
<tr>
<td>01387</td>
<td></td>
<td>254 10</td>
<td>SHR *N *N grp05 OFF</td>
</tr>
</tbody>
</table>

MAP TABLE IS (25 of 36000) 1 % FULL
3. Continue the procedure by performing one of these steps.

- If the `rtrv-map` output in Step 1 or the `rtrv-tbl-capacity` output in Step 2 shows that the maximum number of mated applications is 3000, and the current number of provisioned mated applications is 3000, no new point codes can be used to provision mated applications. Continue the procedure with Step 4.
- If the `rtrv-map` output in Step 1 or the `rtrv-tbl-capacity` output in Step 2 shows that the maximum number of mated applications is either 1024 or 2000, and the mated application being added increases the number beyond 1024 or 2000, perform Enabling the XMAP Table Expansion Feature to enable a greater quantity of mated applications. After the quantity of mated applications has been increased, continue the procedure with Step 4. If the maximum number of mated applications is not increased, no new point codes can be used to provision mated applications.
- If the `rtrv-map` output in Step 1 or the `rtrv-tbl-capacity` output in Step 2 shows that the maximum number of mated applications is either 1024, 2000, or 3000 and the mated application being added will not increase the number beyond the quantity shown in the `rtrv-map` output in Step 1 or the `rtrv-tbl-capacity` output in Step 2, continue the procedure with Step 4.

4. A MAP group, without the Flexible GTT Load Sharing feature enabled, a MAP set, other than the default MAP set, and a MAP group contained in the default MAP set can contain a maximum of 32 entries.

Verify the number of entries that the MAP group or MAP set contains by entering the `rtrv-map` command with the primary point code and SSN assigned to the MAP group or MAP set. If the Flexible GTT Load Sharing feature is enabled, the `mapset` parameter and MAP set ID of the MAP set that the new mated application will be added to.

If the specified MAP set is not the default MAP set, only the `mapset` parameter needs to be specified with the `rtrv-map` command. The point code and SSN does not need to be specified. For this example, enter one of these commands:

```
rtrv-map:pca=002-002-007:ssn=50
```

The following is an example of the possible output.

```
righncxa03w 09-07-07 00:34:31 GMT EAGLE5 41.1.0

<table>
<thead>
<tr>
<th>PCA</th>
<th>Mate PCA</th>
<th>SSN</th>
<th>RC</th>
<th>MULT</th>
<th>SRM</th>
<th>MRC</th>
<th>GRP NAME</th>
<th>SSO</th>
</tr>
</thead>
<tbody>
<tr>
<td>002-002-007</td>
<td></td>
<td>50</td>
<td>10</td>
<td>COM</td>
<td>YES</td>
<td>*Y</td>
<td>grp01</td>
<td>OFF</td>
</tr>
<tr>
<td>002-002-008</td>
<td></td>
<td>30</td>
<td>10</td>
<td>COM</td>
<td>YES</td>
<td>*Y</td>
<td>grp01</td>
<td>OFF</td>
</tr>
<tr>
<td>002-002-009</td>
<td></td>
<td>30</td>
<td>10</td>
<td>COM</td>
<td>YES</td>
<td>*Y</td>
<td>grp01</td>
<td>OFF</td>
</tr>
<tr>
<td>002-002-010</td>
<td></td>
<td>30</td>
<td>20</td>
<td>COM</td>
<td>YES</td>
<td>*Y</td>
<td>grp01</td>
<td>OFF</td>
</tr>
<tr>
<td>002-002-011</td>
<td></td>
<td>30</td>
<td>20</td>
<td>COM</td>
<td>YES</td>
<td>*Y</td>
<td>grp01</td>
<td>OFF</td>
</tr>
</tbody>
</table>

MAP TABLE IS (25 of 1024) 2 % FULL
```

```
rtrv-map:pca=002-002-007:ssn=50:mapset=dflt
```

The following is an example of the possible output.

```
righncxa03w 09-07-07 00:34:31 GMT EAGLE5 41.1.0

<table>
<thead>
<tr>
<th>MAPSET ID=DFLT</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCA</td>
</tr>
<tr>
<td>-------</td>
</tr>
<tr>
<td>002-002-007</td>
</tr>
<tr>
<td>002-002-008</td>
</tr>
<tr>
<td>002-002-009</td>
</tr>
<tr>
<td>002-002-010</td>
</tr>
<tr>
<td>002-002-011</td>
</tr>
</tbody>
</table>
```
The following is an example of the possible output.

If the MAP group or MAP set contains 32 entries, no more entries can be added to the specified MAP group or MAP set. One of these actions can be performed.

- Entries can be added another MAP group or MAP set. Repeat this step for the other MAP group or MAP set.
- Entries can be removed from the specified MAP group or MAP set. To remove entries from the specified MAP group or MAP set, perform Removing a Mated Application.
- Entries can be added to a new MAP group or MAP set.

**Note:** If none of these actions will be performed, then this procedure cannot be performed.

If the MAP group or MAP set contains less than 32 entries, entries can be added to the MAP group or MAP set.

After it has been determined which MAP group or MAP set that the new entries will be added to (a new MAP group or MAP set or an existing MAP group or MAP set), continue the procedure by performing one of these steps.

- If an existing point code is being added to this MAP group or MAP set, continue the procedure with Step 5.
- If a new point code is being added to this MAP group or MAP set, continue the procedure by performing one of these steps.
  - If a concerned signaling point code (CSPC) group is not being assigned to the mated application, continue the procedure with Step 8. If the mated point code is not assigned to a CSPC group, that point code will not be notified of the subsystem’s status.
  - If a concerned signaling point code (CSPC) group will be assigned to the mated application, continue the procedure with Step 6.

5. A mated application can be provisioned with a point code that is assigned to other mated applications as long as the SSN is not assigned to other mated applications.

A point code can be assigned to maximum of 12 different SSNs. Verify the number of SSNs assigned to the point code that will be specified for the mated application in this procedure by entering the `rtrv-map` command with the point code of the new mated application. For this example, enter this command.

```
rtrv-map:pca=255-001-000
```
This is an example of the possible output.

```
rlghncxa03w 09-07-07 00:34:31 GMT EAGLE5 41.1.0

PCA Mate PCA SSN RC MULT SRM MRC GRP NAME SSO
255-001-000 250 10 SOL *Y *Y grp01 ON
255-001-000 251 10 SHR *Y *Y grp01 OFF
253-001-002 254 10 SHR *Y *Y grp01 OFF
255-001-000 252 10 SOL *Y *Y grp01 ON
255-001-000 253 10 SHR *Y *Y grp01 OFF
253-001-004 254 10 SHR *Y *Y grp01 OFF

MAP TABLE IS (25 of 1024) 2 % FULL
```

If the Flexible GTT Load Sharing feature is enabled, the MAPSET IDs for the mated applications are shown in the `rtrv-map` output.

If the Weighted GTT Load Sharing feature is enabled and turned on, the WT, %WT, and THR columns are shown in the `rtrv-map` output.

If the point code is assigned to 12 different SSNs, and neither an existing point code in the `rtrv-map` output nor a new point code will be used to provision the mated application, then this procedure cannot be performed.

If the point code is assigned to less than 12 different SSNs, then the existing point code in the `rtrv-map` output can be used to provision the mated application.

If the point code is assigned to 12 different SSNs, another existing point code in the `rtrv-map` output or a new point code must be used to provision the mated application. If an existing point code in the `rtrv-map` output will be used to provision the mated application, repeat this step for that point code.

After it has been determined which point code will be used to provision the mated application (a new point code or an existing point code), continue the procedure by performing one of these steps:

- If a concerned signaling point code (CSPC) group is not being assigned to the mated application, continue the procedure with Step 8. If the mated point code is not assigned to a CSPC group, that point code will not be notified of the subsystem’s status.
- If a concerned signaling point code (CSPC) group will be assigned to the mated application, continue the procedure with Step 6.

6. Display the point codes in the CSPC group that you wish to assign to the mated application by first entering the `rtrv-cspc` command with no parameters.

This is an example of the possible output.

```
rlghncxa03w 07-05-25 09:48:31 GMT EAGLE5 37.0.0

CSPC GRP NETWORK PERCENT FULL
grp01 ANSI 6%
grp02 ITU-I 9%
grp03 ITU-N 12%
grp04 ANSI 15%
grp05 ANSI 15%
```
If the desired CSPC group is shown in the \texttt{rtrv-cspc} output, re-enter the \texttt{rtrv-cspc} command with the CSPC group name. For this example, enter these commands.

\texttt{rtrv-cspc:grp=grp05}

This is an example of the possible output.

<table>
<thead>
<tr>
<th>Time</th>
<th>Group</th>
<th>Point Code 1</th>
<th>Point Code 2</th>
<th>Point Code 3</th>
<th>Point Code 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>07-05-25 09:48:31 GMT</td>
<td>grp05</td>
<td>005-005-005</td>
<td>007-007-007</td>
<td>008-008-008</td>
<td>009-009-009</td>
</tr>
</tbody>
</table>

\texttt{rtrv-cspc:grp=grp10}

This is an example of the possible output.

<table>
<thead>
<tr>
<th>Time</th>
<th>Group</th>
<th>Point Code 1</th>
<th>Point Code 2</th>
<th>Point Code 3</th>
<th>Point Code 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>07-05-25 09:59:31 GMT</td>
<td>grp10</td>
<td>003-003-003</td>
<td>004-004-004</td>
<td>008-008-008</td>
<td>009-009-009</td>
</tr>
</tbody>
</table>

\texttt{rtrv-cspc:grp=grp15}

This is an example of the possible output.

<table>
<thead>
<tr>
<th>Time</th>
<th>Group</th>
<th>Point Code 1</th>
<th>Point Code 2</th>
<th>Point Code 3</th>
<th>Point Code 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>07-05-25 09:48:31 GMT</td>
<td>grp15</td>
<td>005-005-005</td>
<td>006-006-006</td>
<td>008-008-008</td>
<td>009-009-009</td>
</tr>
</tbody>
</table>

\textbf{Note}: If the ANSI/ITU SCCP Conversion feature is enabled, then point codes of multiple network types can be displayed in the \texttt{rtrv-cspc} output, if point codes of multiple network types are assigned to the CSPC group.

If the CSPC group is not in the database, or if the required point code is not assigned to the CSPC group, perform the \textit{Adding a Concerned Signaling Point Code} procedure to add the required CSPC group or point code to the database.

\textbf{Note}: If the output of the \texttt{rtrv-cspc} command performed in \textit{Step 6} shows CSPC groups containing a mixture of point code types, or if the new CSPC group that was added in \textit{Step 6} contains a mixture of point code types, continue the procedure with \textit{Step 8}.

\textbf{7.} The format of the point codes in the CSPC group specified with the \texttt{grp} parameter must be the same as the primary point code specified with the \texttt{ent-map} command only if the ANSI/ITU SCCP Conversion feature is not enabled.

If the ANSI/ITU SCCP Conversion feature is enabled, the CSPC group may contain a mixture of point code types (refer to the \textit{Adding a Concerned Signaling Point Code} procedure), and the network type of the CSPC group can be different from the network type of the primary point code of the mated application.

Verify the status of the ANSI/ITU SCCP Conversion feature by entering this command.
The following is an example of the possible output.

```plaintext
rlghncxa03w 07-05-28 21:15:37 GMT EAGLE5 37.0.0
The following features have been permanently enabled:

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Partnum</th>
<th>Status</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCCP Conversion</td>
<td>893012001</td>
<td>on</td>
<td>----</td>
</tr>
</tbody>
</table>

The following features have been temporarily enabled:

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Partnum</th>
<th>Status</th>
<th>Quantity</th>
<th>Trial Period Left</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Zero entries found.

The following features have expired temporary keys:

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Partnum</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Zero entries found.

If the ANSI/ITU SCCP Conversion feature is not enabled, perform the *Activating the ANSI/ITU SCCP Conversion Feature* procedure to enable the ANSI/ITU SCCP Conversion feature.

8. If the MAPSET column is shown in the `rtrv-map` output in *Step 1*, the Flexible GTT Load Sharing feature is enabled. Continue the procedure with *Step 9*.

If the MAPSET column is not shown in *Step 1* and you do not wish to provision MAP sets in this procedure, continue the procedure with *Step 9*.

If the MAPSET column is not shown in *Step 1* and you wish to provision MAP sets in this procedure, perform the *Activating the Flexible GTT Load Sharing Feature* procedure to enable the Flexible GTT Load Sharing feature. After the Flexible GTT Load Sharing feature is enabled, continue the procedure with *Step 9*.

Note: If the `sso` parameter will be specified for the mated application, continue the procedure with *Step 10*. The EAGLE 5 ISS’s point code and LNP, EIR, V-Flex, ATINPQ, or INP subsystem cannot be assigned to a mated application using the `sso` parameter.

9. Display the EAGLE 5 ISS self-identification, using the `rtrv-sid` command.

```plaintext
rlghncxa03w 07-05-10 11:43:04 GMT EAGLE5 37.0.0
PCA             PCI          PCN                CLLI              PCTYPE
010-020-030     1-023-1      12-0-14-1          rlghncxa03w       OTHER
               s-1-023-1    s-12-0-14-1
CPCA
001-001-001     002-002-003 | 002-002-004 | 002-002-005
002-002-006     002-002-007 | 002-002-008 | 002-002-009
004-002-001     004-003-003 | 050-060-070
CPCI
1-001-1         1-001-2     1-001-3     1-001-4
1-002-1         1-002-2     1-002-3     1-002-4
2-001-1         7-222-7
CPCN
2-0-10-3        2-0-11-0 | 2-0-11-2 | 2-0-12-1
2-2-3-3        2-2-4-0 | 10-14-10-1
```

The EAGLE 5 ISS’s true point code is shown in either the PCA, PCI, PCN, or PCN24 fields. This is an example of the possible output.
If the both point codes that will be specified for the mated application are point codes assigned to other mated applications, continue the procedure by performing one of these steps.

- If the mrnset and mrnpc parameters will be specified for the mated application, continue the procedure with Step 15.
- If the mrnset and mrnpc parameters will not be specified for the mated application, continue the procedure by performing one of these steps.
 - If a new mated application is being added, continue the procedure with Step 16.
 - If an entry is being added to an existing mated application, continue the procedure with Step 17.

If the EAGLE 5 ISS's point code will be specified for the mated application, and its mated point code is assigned to other mated applications, continue the procedure with Step 13.

If only one of the point codes that will be specified for the mated application is assigned to other mated applications, perform Step 10 for the new point code that is not assigned to other mated applications.

10. Display the destination point codes in the database by entering the rtrv-dstn command. This is an example of the possible output.

```
rlghncxa03w 10-12-10 11:43:04 GMT EAGLE5 43.0.0
Extended Processing Time may be Required

<table>
<thead>
<tr>
<th>DPCA</th>
<th>CLLI</th>
<th>BEI</th>
<th>ELEI</th>
<th>ALIASI</th>
<th>ALIASN/N24</th>
<th>DMN</th>
</tr>
</thead>
<tbody>
<tr>
<td>001-207-000</td>
<td>-------</td>
<td>no</td>
<td>---</td>
<td>-------</td>
<td>----------</td>
<td>SS7</td>
</tr>
<tr>
<td>001-001-001</td>
<td>-------</td>
<td>no</td>
<td>---</td>
<td>-------</td>
<td>----------</td>
<td>SS7</td>
</tr>
<tr>
<td>001-001-002</td>
<td>-------</td>
<td>no</td>
<td>---</td>
<td>-------</td>
<td>----------</td>
<td>SS7</td>
</tr>
<tr>
<td>001-005-000</td>
<td>-------</td>
<td>no</td>
<td>---</td>
<td>-------</td>
<td>----------</td>
<td>SS7</td>
</tr>
<tr>
<td>001-007-000</td>
<td>-------</td>
<td>no</td>
<td>---</td>
<td>-------</td>
<td>----------</td>
<td>SS7</td>
</tr>
<tr>
<td>008-012-003</td>
<td>-------</td>
<td>no</td>
<td>---</td>
<td>-------</td>
<td>----------</td>
<td>SS7</td>
</tr>
<tr>
<td>003-002-004</td>
<td>-------</td>
<td>no</td>
<td>---</td>
<td>-------</td>
<td>----------</td>
<td>SS7</td>
</tr>
<tr>
<td>008-020-005</td>
<td>-------</td>
<td>no</td>
<td>---</td>
<td>-------</td>
<td>----------</td>
<td>SS7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DPCI</th>
<th>CLLI</th>
<th>BEI</th>
<th>ELEI</th>
<th>ALIASA</th>
<th>ALIASN/N24</th>
<th>DMN</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-207-0</td>
<td>-------</td>
<td>no</td>
<td>---</td>
<td>-------</td>
<td>----------</td>
<td>SS7</td>
</tr>
<tr>
<td>0-015-0</td>
<td>-------</td>
<td>no</td>
<td>---</td>
<td>-------</td>
<td>----------</td>
<td>SS7</td>
</tr>
<tr>
<td>0-017-0</td>
<td>-------</td>
<td>no</td>
<td>---</td>
<td>-------</td>
<td>----------</td>
<td>SS7</td>
</tr>
<tr>
<td>1-011-1</td>
<td>-------</td>
<td>no</td>
<td>---</td>
<td>-------</td>
<td>----------</td>
<td>SS7</td>
</tr>
<tr>
<td>1-011-2</td>
<td>-------</td>
<td>no</td>
<td>---</td>
<td>-------</td>
<td>----------</td>
<td>SS7</td>
</tr>
</tbody>
</table>

Destination table is (14 of 2000) 1% full
Alias table is (0 of 12000) 0% full
PPC table is (1 of 20) 5% full
```

If the required point code is not shown in the rtrv-dstn output, perform the "Adding a Destination Point Code" procedure in the Database Administration Manual - SS7 to add the required point code. A proxy point code cannot be assigned to the point code.

After the new point code has been added, skip Step 11 through Step 14 and perform one of the Adding a Route procedures in the Database Administration Manual - SS7 and add the required route to the database. After the route has been added, continue the procedure by performing one of these steps.

- If the mrnset and mrnpc parameters will be specified for the mated application, continue the procedure with Step 15.
• If the \texttt{mrnset} and \texttt{mrnpc} parameters will not be specified for the mated application, continue the procedure by performing one of these steps.

 • If a new mated application is being added, continue the procedure with \textit{Step 16}.
 • If an entry is being added to an existing mated application, continue the procedure with \textit{Step 17}.

11. Display the point code that will be assigned to the mated application by using the \texttt{rtrv-dstn} command and specifying the point code. For this example, enter this command.

\texttt{rtrv-dstn:dpca=010-020-005}

This is an example of the possible output.

\begin{verbatim}
rlghncxa03w 10-12-10 11:43:04 GMT EAGLE5 43.0.0
DPCA CLLI BEI ELEI ALIASI ALIASN/N24 DMN
010-020-005 ----------- no --- -------------- -------------- SS7
PPCA NCAI PRX RCAUSE NPRST SPLITIAM HMSMSC HMSCP SCCPMSGCNV
009-002-003 ---- no 50 on 20 no no none
Destination table is (14 of 2000) 1% full
Alias table is (0 of 12000) 0% full
PPC table is (1 of 20) 5% full
\end{verbatim}

If the point code is not shown in the \texttt{rtrv-dstn} command output, the following output is displayed.

\begin{verbatim}
rlghncxa03w 09-05-10 11:43:04 GMT EAGLE5 41.0.0
No destinations meeting the requested criteria were found
Destination table is (14 of 2000) 1% full
Alias table is (0 of 12000) 0% full
PPC table is (1 of 20) 5% full
\end{verbatim}

A proxy point code (a point code value is shown in the PPC column) cannot be assigned to the point code. If a proxy point code is shown in this step, choose another point code from the \texttt{rtrv-dstn} output in the previous step and repeat this step.

If the point code is not shown in the \texttt{rtrv-dstn} output, perform the “Adding a Destination Point Code” procedure in the \textit{Database Administration Manual - SS7} and add the point code to the destination point code table.

After the new point code has been added, skip \textit{Step 12} through \textit{Step 14} and perform one of the Adding a Route procedures in the \textit{Database Administration Manual - SS7} and add the required route to the database. After the route has been added, continue the procedure by performing one of these steps.

• If the \texttt{mrnset} and \texttt{mrnpc} parameters will be specified for the mated application, continue the procedure with \textit{Step 15}.

 • If the \texttt{mrnset} and \texttt{mrnpc} parameters will not be specified for the mated application, continue the procedure by performing one of these steps.

 • If a new mated application is being added, continue the procedure with \textit{Step 16}.
 • If an entry is being added to an existing mated application, continue the procedure with \textit{Step 17}.
12. Enter the `rtrv-rte` command with the `dpc` parameter specifying the point codes to be used with the `ent-map` or `chg-map` commands to verify whether or not the point code is the DPC of a route.

For this example, enter these commands.

```
rtrv-rte:dpca=003-003-003
```

This is an example of the possible output.

```
rlghncxa03w 07-05-07 11:43:04 GMT  EAGLE5 37.0.0
DPCA           ALIASI     ALIASN/N24    LSN        RC    APCA
003-003-003 ---------- --------------   ls03       10    003-003-003
          RTX:No  CLLI=ls07c11i
```

```
rtrv-rte:dpca=005-005-005
```

This is an example of the possible output.

```
rlghncxa03w 07-05-07 11:43:04 GMT  EAGLE5 37.0.0
DPCA           ALIASI     ALIASN/N24    LSN        RC    APCA
005-005-005 ---------- --------------   ls05       10    005-005-005
          1s15       30    089-047-123
          1sa8       50    077-056-000
          RTX:No  CLLI=ls05c11i
```

```
rtrv-rte:dpca=008-008-008
```

This is an example of the possible output.

```
rlghncxa03w 07-05-07 11:43:04 GMT  EAGLE5 37.0.0
DPCA           ALIASI     ALIASN/N24    LSN        RC    APCA
008-008-008 ---------- --------------   ls20       10    008-008-008
          RTX:No  CLLI=ls20c11i
```

```
rtrv-rte:dpca=031-049-100
```

This is an example of the possible output.

```
rlghncxa03w 07-05-07 11:43:04 GMT  EAGLE5 37.0.0
DPCA           ALIASI     ALIASN/N24    LSN        RC    APCA
031-049-100 ---------- --------------   ls10       10    031-049-100
          RTX:No  CLLI=ls10c11i
```

```
rtrv-rte:dpca=040-040-040
```

This is an example of the possible output.

```
rlghncxa03w 07-05-07 11:43:04 GMT  EAGLE5 37.0.0
DPCA           ALIASI     ALIASN/N24    LSN        RC    APCA
040-040-040 ---------- --------------   ls11       10    040-040-040
          RTX:No  CLLI=ls11c11i
```

```
rtrv-rte:dpca=056-113-200
```

This is an example of the possible output.

```
rlghncxa03w 07-05-07 11:43:04 GMT  EAGLE5 37.0.0
DPCA           ALIASI     ALIASN/N24    LSN        RC    APCA
056-113-200 ---------- --------------   ls12       10    056-113-200
          RTX:No  CLLI=ls12c11i
```

```
rtrv-rte:dpca=060-060-060
```
If the point code is not shown in the `rtrv-rte` output, perform one of the Adding a Route procedures in the Database Administration Manual - SS7 and add the required route to the database.

If the EAGLE 5 ISS’s point code will not be specified for the mated application, continue the procedure by performing one of these steps.

- If the `mrnset` and `mrnpc` parameters will be specified for the mated application, continue the procedure with Step 15.
- If the `mrnset` and `mrnpc` parameters will not be specified for the mated application, continue the procedure by performing one of these steps.
 - If a new mated application is being added, continue the procedure with Step 16.
 - If an entry is being added to an existing mated application, continue the procedure with Step 17.

If the EAGLE 5 ISS’s point code will be specified for the mated application, continue the procedure with Step 13.

13. Verify whether or not either the LNP, ATINPQ, or ANSI41 AIQ feature is enabled, or the EIR, INP, V-Flex, or ANSI-41 INP Query feature is enabled and turned on by entering the `rtrv-ctrl-feat` command.

This list shows the entries that are displayed in the `rtrv-ctrl-feat` output for the features that are enabled, and turned on if required.

- LNP TNs with a quantity greater than zero - the LNP feature is enabled.
- EIR with the status on - the EIR feature is enabled and turned on.
- VFLEX with the status on - the V-Flex feature is enabled and turned on.
- ATINP - the ATINP feature is enabled
- INP with the status on - the INP feature is enabled and turned on
- ANSI-41 INP Query with the status on - the ANSI-41 INP Query feature is enabled and turned on.
• ANSI41 AIQ - the ANSI41 AIQ feature is enabled.

Continue the procedure by performing one of these steps.

• If the LNP, ATINPQ, or ANSI41 AIQ feature is enabled, or if the EIR, INP, V-Flex, or ANSI-41 INP Query feature is enabled and turned on, continue the procedure with Step 16.

• If the LNP, ATINPQ, or ANSI41 AIQ feature is not enabled, or if the EIR, INP, V-Flex, or ANSI-41 INP Query feature is not enabled or turned on, continue the procedure with Step 14.

14. Enable either the INP, ANSI-41 INP Query, EIR, V-Flex, ATINPQ, ANSI41 AIQ, or LNP features, depending on which subsystem you wish to use.

To use the INP subsystem, enable and turn on either the INP or ANSI-41 INP Query feature by performing the procedures in the Feature Manual - INP/AINPQ.

To use the LNP subsystem, enable the LNP feature by performing the procedures in the ELAP Administration and LNP Feature Activation manual.

To use the EIR subsystem, enable and turn on the EIR feature by performing the procedures in the Feature Manual - EIR.

To use the V-Flex subsystem, enable and turn on the V-Flex feature by performing the procedures in the Feature Manual - V-Flex.

To use the ATINPQ subsystem, enable the ATINP feature by performing the procedures in the Feature Manual - ATINP.

To use the AIQ subsystem, enable the ANSI AIQ feature, perform the procedures in the Feature Manual - Analyzed Information Features.

Note: If the LNP feature is enabled, the INP, ANSI-41 INP Query, V-Flex, ATINPQ, or EIR features cannot be enabled.

15. The MRN point code value must be assigned to an MRN set. The MRN set must be shown in the rtrv-mrn output. Display the MRN sets by entering the rtrv-mrn command. This is an example of the possible output.

```
rlghncxa03w 09-02-07 00:34:31 GMT EAGLE5 40.1.0

<table>
<thead>
<tr>
<th>MRNSET</th>
<th>MAPSET</th>
<th>MAPPC</th>
<th>MAPSSN</th>
<th>PC</th>
<th>RC</th>
<th>WT</th>
<th>%WT</th>
<th>THR</th>
</tr>
</thead>
<tbody>
<tr>
<td>DFLT</td>
<td>7</td>
<td>002-002-007</td>
<td>50</td>
<td>005-005-005</td>
<td>10</td>
<td>10</td>
<td>14</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>006-001-001</td>
<td>10</td>
<td>10</td>
<td>14</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>006-001-002</td>
<td>10</td>
<td>20</td>
<td>28</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>006-001-003</td>
<td>10</td>
<td>30</td>
<td>42</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>006-001-004</td>
<td>20</td>
<td>40</td>
<td>23</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>006-001-005</td>
<td>20</td>
<td>40</td>
<td>23</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>006-001-006</td>
<td>20</td>
<td>40</td>
<td>23</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>006-001-007</td>
<td>20</td>
<td>50</td>
<td>29</td>
<td>1</td>
</tr>
</tbody>
</table>
```

```
rlghncxa03w 09-02-07 00:34:31 GMT EAGLE5 40.1.0

<table>
<thead>
<tr>
<th>MRNSET</th>
<th>MAPSET</th>
<th>MAPPC</th>
<th>MAPSSN</th>
<th>PC</th>
<th>RC</th>
<th>WT</th>
<th>%WT</th>
<th>THR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>007-007-007</td>
<td>10</td>
<td>10</td>
<td>14</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>008-001-001</td>
<td>10</td>
<td>10</td>
<td>14</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>008-001-002</td>
<td>10</td>
<td>20</td>
<td>28</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>008-001-003</td>
<td>10</td>
<td>30</td>
<td>42</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>008-001-004</td>
<td>20</td>
<td>40</td>
<td>23</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>008-001-005</td>
<td>20</td>
<td>40</td>
<td>23</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>008-001-006</td>
<td>20</td>
<td>40</td>
<td>23</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>008-001-007</td>
<td>20</td>
<td>50</td>
<td>29</td>
<td>1</td>
</tr>
</tbody>
</table>
```
If any of the following items are not shown in the rtrv-mrn output, then the feature corresponding to these items is not enabled, or turned on if required.

- The MRNSET field - the Flexible GTT Load Sharing feature is not enabled.
- The MAPSET, MAPPC and MAPSSN fields - the GTT Load Sharing with Alternate Routing Indicator feature is not enabled.
- The WT, %WT, THR columns - the Weighted GTT Load Sharing feature is not enabled and turned on.

Note: The network type of the pc/pca/pci/pcn/pcn24 and mrnpca/mrnpci/mrnpcn/mrnpcn24 parameter values must be compatible, as shown in Table 40: MAP and MRN Point Code Parameter Combinations

If the MRN set that you wish to use, containing the desired point code, is not shown in the rtrv-mrn output, add the required MRN set by performing the Provisioning MRN Entries procedure.

If the MRN set that you wish to use is shown in the rtrv-mrn output, or Provisioning MRN Entries was performed in this step, continue the procedure by performing one of these steps.

- If a new mated application is being added, continue the procedure with Step 16.
- If an entry is being added to an existing mated application, continue the procedure with Step 17.

10. Add the mated application to the database using the ent-map command. Use Table 42: Dominant Mated Application Parameter Combinations for the ENT-MAP Command as a guide for the parameters and values that can be specified with the ent-map command.

Table 42: Dominant Mated Application Parameter Combinations for the ENT-MAP Command

<table>
<thead>
<tr>
<th>Other Subsystems</th>
<th>LNP Subsystem</th>
<th>INP Subsystem</th>
<th>EIR Subsystem</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mandatory Parameters</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>:pc/pca/pci/pcn/pcn24 (See Notes 1, 11, and 14)</td>
<td>:pc/pca (See Note 2)</td>
<td>:pcn/pcn24 (See Note 3)</td>
<td>:pci/pcn/pcn24 (See Note 4)</td>
</tr>
<tr>
<td>:ssn= <subsystem number, 2 - 255></td>
<td>:ssn= <LNP subsystem number, 2 - 255></td>
<td>:ssn= <INP subsystem number, 2 - 255></td>
<td>:ssn= <EIR subsystem number, 2 - 255></td>
</tr>
<tr>
<td>:rc= <0 - 99> (See Note 7)</td>
</tr>
<tr>
<td>:mpc/mpca/mpc/mmcn/mpcn24 (See Notes 1, 9, 11, and 14)</td>
<td>:mpc/mpca (See Note 2)</td>
<td>:mpcn/mpcn24 (See Notes 3 and 11)</td>
<td>:mpc/mpcn/mpcn24 (See Notes 4 and 11)</td>
</tr>
<tr>
<td>:mssn= <subsystem number of the mate, 2 - 255></td>
<td>:mssn= <subsystem number of the mate, 2 - 255></td>
<td>:mssn= <subsystem number of the mate, 2 - 255></td>
<td>:mssn= <subsystem number of the mate, 2 - 255></td>
</tr>
<tr>
<td>Other Subsystems</td>
<td>LNP Subsystem</td>
<td>INP Subsystem</td>
<td>EIR Subsystem</td>
</tr>
<tr>
<td>------------------</td>
<td>---------------</td>
<td>---------------</td>
<td>---------------</td>
</tr>
<tr>
<td>:materc=<0 - 99> (See Note 7)</td>
</tr>
</tbody>
</table>

Optional Parameters

<table>
<thead>
<tr>
<th></th>
<th>Optional Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>:grp=<CSPC group name> (See Note 8)</td>
<td>:grp=<CSPC group name> (See Note 8)</td>
</tr>
<tr>
<td>:mrc=<yes, no> (See Note 12)</td>
<td>:mrc=<yes, no> (See Note 12)</td>
</tr>
<tr>
<td>:mapset=<new, dflt> (See Note 10)</td>
<td>:mapset=dflt (See Note 10)</td>
</tr>
<tr>
<td>:srm=<yes, no> (See Note 12)</td>
<td>:srm=<yes, no> (See Note 12)</td>
</tr>
<tr>
<td>:sso=<on, off></td>
<td></td>
</tr>
<tr>
<td>:mrnset = <MRN set ID from the rtrv-mrn output> (See Note 13)</td>
<td></td>
</tr>
<tr>
<td>:mrnpc/mrnpca/ mrnpci/mrnpcn/ mrnpcn24=<the point code value in the MRN set> (See Notes 13 and 14)</td>
<td></td>
</tr>
</tbody>
</table>

V-FLEX Subsystem

<table>
<thead>
<tr>
<th>ATINPQ Subsystem</th>
<th>AIQ Subsystem</th>
</tr>
</thead>
</table>

V-FLEX Subsystem

Mandatory Parameters

<table>
<thead>
<tr>
<th></th>
<th>Mandatory Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>:pc/pca/pci/pcn/pcn24 (See Note 5)</td>
<td>:pc/pca/pci/pcn (See Note 6)</td>
</tr>
<tr>
<td>:ssn=<V-Flex subsystem number, 2 - 255></td>
<td>:ssn=<V-Flex subsystem number, 2 - 255></td>
</tr>
<tr>
<td>:rc=<0 - 99> (See Note 7)</td>
<td>:rc=<0 - 99> (See Note 7)</td>
</tr>
<tr>
<td>:mpc/mpca/mpc/mmpcn24 (See Notes 5 and 11)</td>
<td>:mpc/mpca/mpc/mpcn (See Notes 6 and 11)</td>
</tr>
<tr>
<td>:mssn=<subsystem number of the mate, 2 - 255></td>
<td>:mssn=<subsystem number of the mate, 2 - 255></td>
</tr>
</tbody>
</table>
Other Subsystems

<table>
<thead>
<tr>
<th>Other Subsystems</th>
<th>LNP Subsystem</th>
<th>INP Subsystem</th>
<th>EIR Subsystem</th>
</tr>
</thead>
<tbody>
<tr>
<td>:materc=<0 - 99> (See Note 7)</td>
</tr>
</tbody>
</table>

Optional Parameters

<table>
<thead>
<tr>
<th>Optional Parameters</th>
<th>LNP Subsystem</th>
<th>INP Subsystem</th>
<th>EIR Subsystem</th>
</tr>
</thead>
<tbody>
<tr>
<td>:grp=<CSPC group name> (See Note 8)</td>
</tr>
<tr>
<td>:mrc=<yes, no> (See Note 12)</td>
</tr>
<tr>
<td>:mapset=dflt (See Note 10)</td>
<td>:mapset=dflt (See Note 10)</td>
<td>:mapset=dflt (See Note 10)</td>
<td>:mapset=dflt (See Note 10)</td>
</tr>
<tr>
<td>:srm=<yes, no> (See Note 12)</td>
</tr>
</tbody>
</table>

Notes

1. The primary point code is an ANSI, ITU-I, ITU-I spare, ITU-N, ITU-N spare, or ITU-N24 from the `rtrv-rte` or `rtrv-map` outputs. The mate point code is an ANSI, ITU-I, ITU-I spare, ITU-N, ITU-N spare, or ITU-N24 point code from the `rtrv-rte` or `rtrv-map` outputs.

2. The primary point code for the LNP subsystem is the ANSI point code from the `rtrv-sid` output. The mate point code is an ANSI point code from the `rtrv-rte` or `rtrv-map` outputs.

3. The primary point code for the INP subsystem is the ITU-N, ITU-N spare, or ITU-N24 point code from the `rtrv-sid` output. The mate point code is an ITU-N, ITU-N spare, or ITU-N24 point code from the `rtrv-rte` or `rtrv-map` outputs.

4. The primary point code for the EIR subsystem is the ITU-I, ITU-I spare, ITU-N, ITU-N spare, or ITU-N24 point code from the `rtrv-sid` output. The mate point code is an ITU-I, ITU-I spare, ITU-N, ITU-N spare, or ITU-N24 point code from the `rtrv-rte` or `rtrv-map` outputs.

5. The primary point code for the V-Flex subsystem is the ANSI, ITU-I, ITU-I spare, ITU-N, ITU-N spare, or ITU-N24 point code from the `rtrv-sid` output. The mate point code is an ANSI, ITU-I, ITU-I spare, ITU-N, ITU-N spare, or ITU-N24 point code from the `rtrv-rte` or `rtrv-map` outputs.

6. The primary point code for the ATINPQ subsystem is the ANSI, ITU-I, ITU-I spare, ITU-N, ITU-N spare point code from the `rtrv-sid` output. The mate point code is an ANSI, ITU-I, ITU-I spare, ITU-N, ITU-N spare point code from the `rtrv-rte` or `rtrv-map` outputs.

7. The `materc` parameter value must be greater than the `rc` parameter value.

8. The format of the point codes in the CSPC group specified with the `grp` parameter must be the same as the primary point code specified with the `ent-map` command only if the ANSI/ITU SCCP Conversion feature is not enabled. If the ANSI/ITU SCCP Conversion feature is enabled, the CSPC group may contain a mixture of point code types (refer to the Adding a Concerned Signaling Point Code procedure), and the network type of the CSPC group can be different from the network type of the primary point code of the mated application.

9. For mated applications containing ANSI or 24-bit ITU-N point codes, or the EAGLE 5 ISS’s true point code, the format of the point codes specified in the `ent-map` command must be the same. For example, if the primary point code is a 24-bit ITU-N point code (pcn24), the mate point code must be a 24-bit ITU-N point code (mpcn24). The mate point codes of mated applications containing either ITU-I, ITU-I spare, 14-bit ITU-N, or 14-bit ITU-N spare primary point codes do not have to be the same format as the primary point code. The mate point codes
of these mated applications can be a mixture of ITU-I, ITU-I spare, 14-bit ITU-N, or 14-bit ITU-N spare point codes.

10. If the Flexible GTT Load Sharing is enabled, the `mapset` parameter must be specified with the `ent-map` command.

 If the Flexible GTT Load Sharing is not enabled, the `mapset` parameter cannot be specified with the `ent-map` command.

To provision entries in the default MAP set, the `mapset=dflt` parameter must be specified with the `ent-map` command.

To provision entries in a new MAP set, the `mapset=new` parameter must be specified with the `ent-map` command. The `mapset=new` parameter can be specified only with the `ent-map` command. When the `ent-map` command is executed with the `mapset=new` parameter, the new MAP set ID is automatically generated and displayed in the output of the `ent-map` command as follows.

```
New MAPSET Created : MAPSETID = <new MAP set ID>
```

A MAP set, other than the default MAP set, is a MAP group provisioned with the MAP set ID and can contain a maximum of 32 point code and subsystem entries.

The default MAP set can contain multiple MAP groups. Each group in the default MAP set can contain a maximum of 32 point code and subsystem entries.

The point code and subsystem entry can appear only once in the default MAP set, so the point code and subsystem entry can appear in only one MAP group in the default MAP set.

The point code and subsystem entry provisioned in a MAP set can be provisioned in multiple MAP sets. If a point code and subsystem entry is provisioned in different MAP sets, the relative cost value of the entry in each MAP set can be different. All the point code and subsystem entries in a MAP set, including the default MAP set, must be different.

11. If the point code selected from either the `rtrv-rte` or `rtrv-map` outputs is a 14-bit ITU-N point code, then the `pcn/mpcn` parameters must be specified. If the point code selected from either the `rtrv-rte` or `rtrv-map` outputs is a 24-bit ITU-N point code, then the `pcn24/mpcn24` parameters must be specified.

12. The `srm=yes` parameter can be specified only for mated applications containing ANSI point codes. These are the default values for the `srm` and `mrc` parameters.

 - ANSI mated applications - `srm=yes, mrc=yes`
 - ITU mated applications - `srm=no, mrc=no`

13. The `mrnset` and `mrnpc/mrnpca/mrnpci/mrnpcn/mrnpcn24` parameters can be specified only if the GTT Load Sharing with Alternate Routing Indicator feature is enabled. Refer to the `Activating the GTT Load Sharing with Alternate Routing Indicator Feature` procedure for information about enabling the GTT Load Sharing with Alternate Routing Indicator feature. The `mrnset` and `mrnpc/mrnpca/mrnpci/mrnpcn/mrnpcn24` values must be shown in the `rtrv-mrn` output.

14. The network type of the `pc/pca/pci/pcn/pcn24` and `mrnpc/mrnpca/mrnpci/mrnpcn/mrnpcn24` parameter values must be compatible, as shown in `Table 40: MAP and MRN Point Code Parameter Combinations`.

15. The primary point code for the AIQ subsystem is the ANSI, ITU-I, ITU-I spare, ITU-N, ITU-N spare, or ITU-N24 point code from the `rtrv-sid` output. The mate point code is an ANSI,
If the Flexible GTT Load Sharing feature is not enabled for this example, enter these commands.

```
```

When each of these commands have successfully completed, this message should appear.

```
rlghncxa03w 07-05-07 11:44:13 GMT EAGLE5 37.0.0
ENT-MAP:  MASP A - COMPLTD
```

If the Flexible GTT Load Sharing feature is enabled for this example, enter these commands.

```
```

If the GTT Load Sharing with Alternate Routing Indicator feature is enabled for this example, enter these commands.

```
```

If the Flexible GTT Load Sharing feature is enabled when each of these commands have successfully completed, and a new MAP set was created, a message similar to the following should appear.

```
rlghncxa03w 07-05-07 11:44:13 GMT EAGLE5 37.0.0
```
If the Flexible GTT Load Sharing feature is enabled when each of these commands have successfully completed, and the mated application was added to the default MAP set, this message should appear.

If no other entries are being added to the mated application, or if the EAGLE 5 ISS’s true point code was specified for the mated application, continue the procedure with Step 18.

If other entries are being added to the mated application, continue the procedure with Step 17.

17. Add the mated point code and subsystem to the mated application using the `chg-map` command. Use Table 43: Dominant Mated Application Parameter Combinations for the CHG-MAP Command as a guide for the parameters and values that can be specified with the `chg-map` command.

Table 43: Dominant Mated Application Parameter Combinations for the CHG-MAP Command

<table>
<thead>
<tr>
<th>Mandatory Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td><code><pc/pca/pci/pcn/pcn24=<ANSI, ITU-I, ITU-I spare, ITU-N, ITU-N spare, or ITU-N24 primary point code that the mate point code will be assigned to></code> (See Notes 4 and 8)</td>
</tr>
<tr>
<td><code><ssn=<subsystem number assigned to the primary point code></code></td>
</tr>
<tr>
<td><code><mpc/mpca/mpci/mpcn/pcn24=<ANSI, ITU-I, ITU-I spare, ITU-N, ITU-N spare, or ITU-N24 point code of the mate from the rtrv-rte or rtrv-map outputs></code> (See Notes 2, 4, and 8)</td>
</tr>
<tr>
<td><code><mssn=<subsystem number of the mate, 2 - 255></code></td>
</tr>
<tr>
<td><code><materc=<0 - 99> The </code>materc<code>parameter value must be greater than the</code>rc<code> parameter value.</code></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Optional Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td><code><grp=<CSPC group name></code> (See Notes 1 and 6)</td>
</tr>
<tr>
<td><code><sso=<on, off></code> (See Note 6)</td>
</tr>
<tr>
<td><code><srn=<yes, no></code> (See Notes 5 and 6)</td>
</tr>
<tr>
<td><code><mrc=<yes, no></code> (See Note 6)</td>
</tr>
<tr>
<td><code><mapset=<dflt or the number of an existing MAP set></code> (See Note 3)</td>
</tr>
<tr>
<td><code><mrnset = <MRN set ID from the </code>rtrv-mrn<code> output></code> (See Note 7)</td>
</tr>
<tr>
<td><code><mrnpc/mrnpca/mrnpci/mrnpcn/mrnpcn24=<the point code value in the MRN set></code> (See Notes 7 and 8)</td>
</tr>
</tbody>
</table>

Notes

1. The format of the point codes in the CSPC group specified with the `grp` parameter must be the same as the primary point code specified with the `chg-map` command only if the ANSI/ITU SCCP Conversion feature is not enabled. If the ANSI/ITU SCCP Conversion feature is enabled, the CSPC group may contain a mixture of point code types (refer to the *Adding a Concerned*
Signaling Point Code procedure), and the network type of the CSPC group can be different from the network type of the primary point code of the mated application.

2. For mated applications containing ANSI or 24-bit ITU-N point codes, or the EAGLE 5 ISS's true point code, the format of the point codes specified in the chg-map command must be the same. For example, if the primary point code is a 24-bit ITU-N point code (pcn24), the mate point code must be a 24-bit ITU-N point code (mpcn24). The mate point codes of mated applications containing either ITU-I, ITU-I spare, 14-bit ITU-N, or 14-bit ITU-N spare primary point codes do not have to be the same format as the primary point code. The mate point codes of these mated applications can be a mixture of ITU-I, ITU-I spare, 14-bit ITU-N, or 14-bit ITU-N spare point codes.

3. If the Flexible GTT Load Sharing is enabled, the mapset parameter must be specified with the chg-map command.

If the Flexible GTT Load Sharing is not enabled, the mapset parameter cannot be specified with the chg-map command.

To provision entries in the default MAP set, the mapset=dflt parameter must be specified with the chg-map command.

To provision entries in an existing MAP set, the mapset parameter must be specified with the MAP set ID value of that MAP set.

A MAP set, other than the default MAP set, is a MAP group provisioned with the MAP set ID and can contain a maximum of 32 point code and subsystem entries.

The default MAP set can contain multiple MAP groups. Each group in the default MAP set can contain a maximum of 32 point code and subsystem entries.

The point code and subsystem entry can appear only once in the default MAP set, so the point code and subsystem entry can appear in only one MAP group in the default MAP set.

The point code and subsystem entry provisioned in a MAP set can be provisioned in multiple MAP sets. If a point code and subsystem entry is provisioned in different MAP sets, the relative cost value of the entry in each MAP set can be different. All the point code and subsystem entries in a MAP set, including the default MAP set, must be different.

4. If the point code selected from either the rtrv-rte or rtrv-map outputs is a 14-bit ITU-N point code, then the pcn/mpcn parameters must be specified. If the point code selected from either the rtrv-rte or rtrv-map outputs is a 24-bit ITU-N point code, then the pcn24/mpcn24 parameters must be specified.

5. The srm=yes parameter can be specified only for mated applications containing ANSI point codes.

6. When the CSPC group name (grp), mrc, srm, or sso values for a specific point code and SSN in a mated application are changed, these parameter values for this specific point code and SSN in all applicable mated applications will be changed to the new values.

7. The mrnset and mrnpc/mrnpca/mrnpci/mrnpcn/mrnpcn24 parameters can be specified only if the GTT Load Sharing with Alternate Routing Indicator feature is enabled. Refer to the Activating the GTT Load Sharing with Alternate Routing Indicator Feature procedure for information about enabling the GTT Load Sharing with Alternate Routing Indicator feature. The mrnset and mrnpc/mrnpca/mrnpci/mrnpcn/mrnpcn24 values must be shown in the rtrv-mrn output.

8. The network type of the pc/pca/pci/mpcn/mpcn24 and mrnpc/mrnpca/mrnpci/mrnpcn/mpcn24 parameter values must be compatible, as shown in Table 40: MAP and MRN Point Code Parameter Combinations.
If the Flexible GTT Load Sharing feature is not enabled for this example, enter these commands.

```
chg-map:pca=005-005-005:ssn=250:rc=10:mpca=070-070-070
:msnn=251:materc=30:grp=grp05:mrc=yes:srm=yes:sso=on
chg-map:pca=008-008-008:ssn=254:rc=10:mpca=031-049-100
:msnn=250:materc=40:grp=grp15:mrc=yes:srm=yes:sso=on
chg-map:pca=008-008-008:ssn=254:rc=10:mpca=056-113-200
:msnn=251:materc=50:grp=grp05:mrc=yes:srm=yes:sso=on
```

When each of these commands have successfully completed, this message should appear.

```
rlghncxa03w 07-05-07 11:44:13 GMT EAGLE5 37.0.0
CHG-MAP: MASP A - COMPLTD
```

If the Flexible GTT Load Sharing feature is enabled for this example, enter these commands.

```
chg-map:pca=005-005-005:ssn=250:rc=10:mpca=070-070-070
:materc=11:grp=grp15:sso=off:mapset=12
chg-map:pca=008-008-008:ssn=254:rc=10:mpca=056-113-200
:grp=grp20:mrc=yes:sso=off:mapset=14
chg-map:pci=5-005-5:ssn=50:rc=10:mpci=5-005-1:msnn=50:materc=22
:grp=grp20:mrc=yes:sso=off:mapset=14
```

If the GTT Load Sharing with Alternate Routing Indicator feature is enabled for this example, and the mrnset and mrnpc parameters were not specified in Step 16, enter these commands.

```
chg-map:pca=005-005-005:ssn=250:rc=10:mpca=070-070-070
:grp=grp20:mrc=yes:sso=off:mapset=14
chg-map:pci=5-005-5:ssn=50:rc=10:mpci=5-005-1:msnn=50:materc=22
:grp=grp20:mrc=yes:sso=off:mapset=14
```

When each of these commands have successfully completed, this message should appear.

```
rlghncxa03w 07-05-07 11:44:13 GMT EAGLE5 37.0.0
CHG-MAP: MASP A - COMPLTD
```

Repeat this step for all new entries being added to the existing mated application.

If the Flexible GTT Load Sharing feature is not enabled, the mated application can contain a maximum of 32 entries.
If the Flexible GTT Load Sharing feature is enabled, and the MAP set is not the default MAP set, the MAP set can contain a maximum of 32 entries.

If the Flexible GTT Load Sharing feature is enabled, and the MAP set is the default MAP set, the default MAP set can contain multiple MAP groups. Each group in the default MAP set can contain a maximum of 32 point code and subsystem entries.

18. Verify the changes using the `rtrv-map` command with the primary point code and subsystem specified in Step 16 and Step 17.

If a new MAP set was created in Step 16, the `mapset` parameter should be specified with the `rtrv-map` command. The value for the mapset parameter should be the MAP set ID generated in Step 16.

If the mated application was added to an existing MAP in Step 17, the `mapset` parameter and value specified in Step 17 should be specified with the `rtrv-map` command.

If the Flexible GTT Load Sharing feature is not enabled for this example, enter these commands.

```
rtrv-map:pca=003-003-003:ssn=254
```

This is an example of the possible output.

```
rlghncxa03w 09-02-07 00:34:31 GMT EAGLE5 40.1.0
PCA            Mate PCA     SSN RC MULT SRM MRC GRP NAME SSO
003-003-003                 254 10  DOM YES YES grp10    ON
               254 20  DOM YES YES grp10    ON
MAP TABLE IS  (38 of 1024) 4 % FULL
```

```
rtrv-map:pca=005-005-005:ssn=250
```

This is an example of the possible output.

```
rlghncxa03w 09-02-07 00:34:31 GMT EAGLE5 40.1.0
PCA            Mate PCA     SSN RC MULT SRM MRC GRP NAME SSO
005-005-005                 250 10  DOM YES YES grp15    OFF
               250 20  DOM YES YES grp15    OFF
               251 30  DOM YES YES grp05    ON
MAP TABLE IS  (38 of 1024) 4 % FULL
```

```
rtrv-map:pca=008-008-008:ssn=254
```

This is an example of the possible output.

```
rlghncxa03w 09-02-07 00:34:31 GMT EAGLE5 40.1.0
PCA            Mate PCA     SSN RC MULT SRM MRC GRP NAME SSO
008-008-008                 254 10  DOM YES YES grp10    ON
               250 40  DOM YES YES grp15    ON
               251 50  DOM YES YES grp05    OFF
MAP TABLE IS  (38 of 1024) 4 % FULL
```

```
rtrv-map:pci=5-005-5:ssn=50
```

This is an example of the possible output.

```
rlghncxa03w 09-02-07 00:34:31 GMT EAGLE5 40.1.0
```
<table>
<thead>
<tr>
<th>PCI</th>
<th>NET</th>
<th>Mate PC</th>
<th>SSN</th>
<th>RC</th>
<th>MULT</th>
<th>SRM</th>
<th>MRC</th>
<th>GRP</th>
<th>NAME</th>
<th>SSO</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-005-5</td>
<td></td>
<td></td>
<td>50</td>
<td>10</td>
<td>DOM</td>
<td>NO</td>
<td>YES</td>
<td>grp20</td>
<td>ON</td>
<td>OFF</td>
</tr>
<tr>
<td>N</td>
<td>0257</td>
<td></td>
<td>50</td>
<td>20</td>
<td>DOM</td>
<td>NO</td>
<td>YES</td>
<td>grp20</td>
<td>OFF</td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>s-5-005-6</td>
<td></td>
<td>50</td>
<td>21</td>
<td>DOM</td>
<td>NO</td>
<td>YES</td>
<td>grp20</td>
<td>OFF</td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>5-005-1</td>
<td></td>
<td>50</td>
<td>22</td>
<td>DOM</td>
<td>NO</td>
<td>YES</td>
<td>grp20</td>
<td>OFF</td>
<td></td>
</tr>
</tbody>
</table>

Note: If the Weighted GTT Load Sharing feature is enabled, the WT, %WT, and THR columns are shown in the `rtrv-map` output.

If the Flexible GTT Load Sharing feature is enabled for this example, enter these commands.

```
rtrv-map:pca=003-003-003:ssn=254:mapset=11
```

This is an example of the possible output.

```
rlghncxa03w 09-02-07 00:34:31 GMT EAGLE5 40.1.0
MAPSET ID=11  MRNSET=DFLT     MRNPC=005-005-005
PCA            Mate PCA     SSN RC MULT SRM MRC GRP NAME SSO
003-003-003                 254 10   DOM YES YES grp10    ON
040-040-040  254 20   DOM YES YES grp10    ON
MAP TABLE IS  (38 of 36000)  1 % FULL
rtrv-map:pca=005-005-005:ssn=250:mapset=dlft
```

This is an example of the possible output.

```
rlghncxa03w 09-02-07 00:34:31 GMT EAGLE5 40.1.0
MAPSET ID=DFLT    MRNSET=1        MRNPC=007-007-007
PCA            Mate PCA     SSN RC MULT SRM MRC GRP NAME SSO
005-005-005                 250 10   DOM YES YES grp15    ON
060-060-060  250 20   DOM YES YES grp15    ON
070-070-070  251 30   DOM YES YES grp05    ON
MAP TABLE IS  (38 of 36000)  1 % FULL
rtrv-map:pca=008-008-008:ssn=254:mapset=13
```

This is an example of the possible output.

```
rlghncxa03w 09-02-07 00:34:31 GMT EAGLE5 40.1.0
MAPSET ID=13    MRNSET ID=----  MRNPC=-----------
PCI       NET  Mate PC       SSN  RC  MULT | SRM  MRC  GRP  NAME  SSO
5-005-5     50   10   DOM  NO  YES  grp20  OFF
```

```
``
If the Weighted GTT Load Sharing feature is enabled, the **WT**, **%WT**, and **THR** columns are shown in the **rtrv-map** output.

If the GTT Load Sharing with Alternate Routing Indicator feature is not enabled, the **MRNSET** and **MRNPC** fields are not shown in the **rtrv-map** output.


|  |  |  |  | | |
|---|---|---|---|---|---|
| N | 0257 | 50 20 | DOM NO | YES grp20 | OFF |
| I | s-5-005-6 | 50 21 | DOM NO | YES grp20 | OFF |
| I | 5-005-1 | 50 22 | DOM NO | YES grp20 | OFF |

**Provisioning a Load Shared Mated Application**

This procedure is used to provision a load shared mated application in the database using the **ent-map** and **chg-map** commands. A load shared mated application is a mated application containing entries whose RC (relative cost) values are equal. The **ent-map** and **chg-map** commands use these parameters to provision a load shared mated application.

- **:pc/pca/pci/pcn/pcn24** – The point code of the primary signaling point that is to receive the message.
- **:mpc/mpca/mpci/mpcn/mpcn24** – The point code of the backup signaling point that is to receive the message.

**Note:** The point codes can be either an ANSI point code (**pc/pca, mpc/mpca**), ITU-I or ITU-I spare point code (**pci, mpci**), a 14-bit ITU-N or 14-bit ITU-N spare point code (**pcn, mpcn**), or a 24-bit ITU-N (**pcn24, mpcn24**) point code.

**Note:** Refer to Chapter 2, Configuring Destination Tables in the *Database Administration Manual - SS7* for a definition of the point code types that are used on the EAGLE 5 ISS and for a definition of the different formats that can be used for ITU national point codes.

- **:ssn** – Subsystem number – the subsystem address of the primary point code that is to receive the message. The value for this parameter is 2 to 255.
- **:mssn** – Mate subsystem number – the subsystem address of the backup point code that is to receive the message. The value for this parameter is 2 to 255.
- **:rc** – The relative cost value of the primary point code and subsystem, defined by the **pc/pca/pci/pcn/pcn24** and **ssn** parameters. The **rc** parameter has a range of values from 0 to 99, with the default value being 10.
- **:materc** – The relative cost value of the backup point code and subsystem, defined by the **mpc/mpca/mpci/mpcn/mpcn24** and **mssn** parameters. The **materc** parameter has a range of values from 0 to 99, with the default value being 50.
- **:grp** – The name of the concerned signaling point code group that contains the point codes that should be notified of the subsystem status. This parameter applies to both RPCs/SSNs. The value for this
parameter is shown in the rtrv-cspc output. If the desired value is not shown in the rtrv-cspc output, perform the Adding a Concerned Signaling Point Code procedure to add the desired group. If this parameter is not specified, then a CSPC group name is not specified for the mated application.

:sso – Subsystem Status Option – defines whether the subsystem status option is on or off. This parameter allows the user the option to have the specified subsystem marked as prohibited even though an MTP-RESUME message has been received by the indicating that the specified point code is allowed. The value for this parameter is on or off. The default value is off.

:mapset – The MAP set ID that the mated applications are assigned to. This parameter can be specified only if the Flexible GTT Load Sharing feature is enabled. This parameter must be specified if the Flexible GTT Load Sharing feature is enabled. If the Flexible GTT Load Sharing feature is enabled, the point code and subsystem specified for the global title translation must be assigned to the MAP set specified by this parameter. The status of the Flexible GTT Load Sharing feature is shown in the rtrv-ctrl-feat output. To enable the Flexible GTT Load Sharing feature, perform the Activating the Flexible GTT Load Sharing Feature procedure.

The mapset parameter has three values.

• dflt – to assign the MAP to the default MAP set. This value can be specified with both the ent-map and chg-map commands.
• new – to assign the mated application to a new MAP set. This value can be specified only with the ent-map command.
• The specific number of an existing MAP set if you are assigning the mated application to an existing MAP set. This value can be specified only with the chg-map command.

Refer to the Provisioning a MAP Set section for information on provisioning MAP sets.

:wt – The weight value assigned to the pc/pca/pci/pcn/pcn24 parameter value. The value of this parameter is from 1 - 99.

:mwt – The weight value assigned to the mpc/mpca/mpci/mpcn/mpcn24 parameter value. The value of this parameter is from 1 - 99.

:thr – The in-service threshold assigned to the MAP group or MAP set. The in-service threshold is the minimum percentage (from 1 - 100) of weight that must be available for an RC group (a group of entries in the MAP group or MAP set that have the same RC value assigned) to be considered available to carry traffic. If the percentage of the available weight is less than the in-service threshold, then the entire RC group is considered unavailable for traffic. If the percentage of the available weight is equal to or greater than the in-service threshold, then the RC group is considered available, and traffic can be sent to any available entity in the RC group. The value of the thr parameter is assigned to all entries that have the same RC (relative cost) value in the MAP group or MAP set that contain the point code specified in the ent-map or chg-map command.

Refer to the Provisioning Weights and In-Service Thresholds for Mated Applications section for information on provisioning MAP groups or MAP sets with weight and in-service threshold values.

:mrnset – The MRN set ID that is being assigned to the mated application. This is the MRN set from which alternate routing indicator searches are performed.

:mrnpc/mrnpca/mrnpci/mrnpcn/mrnpcn24 – The point code assigned to the mrnset that is being assigned to the MAP set.

The current values of the mrnset and :mrnpc/mrnpca/mrnpci/mrnpcn/mrnpcn24 parameters are shown in the rtrv-map output only if the Flexible GTT Load Sharing and the GTT Load Sharing with Alternate Routing Indicator features are enabled.
The new values for the mrnset and mrnp/mrnpca/mrnp/mrnpn/mrnpn24 parameters must be shown in the rtrv-mrn output.

The network type of the pc/pcai/pcn/pcn24 and mrnp/mrnpca/mrnp/mrnpn/mrnpn24 parameter values must be compatible, as shown in Table 44: MAP and MRN Point Code Parameter Combinations.

Table 44: MAP and MRN Point Code Parameter Combinations

<table>
<thead>
<tr>
<th>MAP Point Code Parameter</th>
<th>MRN Point Code Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>pc/pca</td>
<td>mrnp/mrnpca</td>
</tr>
<tr>
<td>pci or pcn (See Notes 1 and 2)</td>
<td>mrnpn/mrnpn (See Notes 1 and 2)</td>
</tr>
<tr>
<td>pcn24</td>
<td>mrnpn24</td>
</tr>
</tbody>
</table>

Notes:
1. If the network type of the MAP point code parameter is ITU-I (pci), the network type of the MRN point code parameter can be either ITU-I (mappci) or ITU-N (mappcn).
2. If the network type of the MAP point code parameter is ITU-N (pcn), the network type of the MRN point code parameter can be either ITU-I (mappci) or ITU-N (mappcn).

:mrc – Message routing under congestion – specifies whether Class 0 messages are routed during congestion conditions. The values for this parameter are yes and no. This parameter can be specified for any type of mated application, but this parameter affects only the traffic for a dominant mated application. The default value for ANSI load shared mated applications is yes. The default value for ITU load shared mated applications is no.

:srm – Subsystem routing messages – defines whether subsystem routing messages (SBR, SNR) are transmitted between the mated applications. The values for this parameter are yes and no. The srm=yes parameter can be specified only for ANSI mated applications. This parameter affects traffic only on dominant and combined dominant/load shared mated applications. The default value for ANSI load shared mated applications is yes. The default value for ITU load shared mated applications is no.

A load shared mated application can contain up to 32 point codes and subsystems, a primary point code and subsystem, and up to 31 mated point codes and subsystems. When a new load shared mated application is added to the database, the first two entries, the primary point code and subsystem and a mate point code and subsystem are added using the ent-map command. All other mated point code and subsystem entries that are being assigned to the primary point code and subsystem are added to the load shared mated application using the chg-map command.

All the point codes and subsystems in a load shared mated application have the same relative cost value. Traffic is shared equally between the point codes and subsystems in this mated application.

If the Flexible GTT Load Sharing feature is not enabled, the primary point code and subsystem number or the mate point code and mate subsystem number combination can be in the database only once. If the Flexible GTT Load Sharing feature is enabled, the primary point code and subsystem number or mate point code and mate subsystem number combination can be in multiple MAP sets, but can be in the default MAP set only once. Refer to the Provisioning a MAP Set section for information on provisioning MAP sets.
The point codes specified in the `ent-map` or `chg-map` commands (`pc/pca, pci, pcn, or pcn24, and mpc/mpca, mpci, mpcn, or mpcn24`) must be either a full point code in the routing point code table. Cluster point codes or network routing point codes cannot be specified with this command. The `rtrv-rte` command can be used to verify the point codes in the routing table. The point codes in the routing table are shown in the `DPCA`, `DPCI`, `DPCN`, or `DPCN24` fields of the `rtrv-rte` command output. The EAGLE 5 ISS's true point code, shown in the `PCA`, `PCI`, `PCN`, or `PCN24` fields of the `rtrv-sid` command output, cannot be specified for a load shared mated application. A load shared mated application can be provisioned with a point code that is assigned to other mated applications as long as the SSN is not assigned to other mated applications. A point code can be assigned to maximum of 12 different SSNs.

For mated applications containing ANSI or 24-bit ITU-N point codes, or the EAGLE 5 ISS's true point code, the format of the point codes specified in the `ent-map` command must be the same. For example, if the primary point code is a 24-bit ITU-N point code (`pcn24`), the mate point code must be a 24-bit ITU-N point code (`mpcn24`). The mate point codes of mated applications containing either ITU-I, ITU-I spare, 14-bit ITU-N, or 14-bit ITU-N spare primary point codes do not have to be the same format as the primary point code. The mate point codes of these mated applications can be a mixture of ITU-I, ITU-I spare, 14-bit ITU-N, or 14-bit ITU-N spare point codes.

The format of the point codes in the CSPC group specified with the `grp` parameter must be the same as the primary point code specified with the `ent-map` command only if the ANSI/ITU SCCP Conversion feature is not enabled. If the ANSI/ITU SCCP Conversion feature is enabled, the CSPC group may contain a mixture of point code types (refer to the Adding a Concerned Signaling Point Code procedure), and the network type of the CSPC group can be different from the network type of the primary point code of the mated application. The status of the ANSI/ITU SCCP Conversion feature can be verified with the `rtrv-ctrl-feat` command.

The values for the primary point code and subsystem combination (`pc/ssn`) cannot be the same as the mated point code and subsystem combination (`mpc/mssn`). However, the primary and mated point codes can be the same as long as the subsystem numbers are different.

If a mate point code (`mpc/mpca/mpci/mpcn/mpcn24`) is specified, the `mssn` parameter must be specified.

If the `mssn` parameter is specified, the mate point code (`mpc/mpca/mpci/mpcn/mpcn24`) must be specified.

If the `grp`, `srm`, `mrc`, and `sso` parameter values are specified, and the specified point code and SSN is assigned to multiple mated applications, the `grp`, `srm`, `mrc`, and `sso` values for all mated applications containing the specified point code and SSN will be changed to the values specified in this procedure. The EAGLE 5 ISS can contain 1024, 2000, or 3000 mated applications. The EAGLE 5 ISS default is 1024 mated applications. This quantity can be increased to 2000 by enabling the feature access key for part number 893-0077-01, or to 3000 by enabling the feature access key for part number 893-0077-10. For more information on enabling these feature access keys, refer to the Enabling the XMAP Table Expansion Feature procedure.

**Provisioning a MAP Set**

The Flexible GTT Load Sharing feature provides the ability to define multiple load sharing sets in the MAP table where the same point code and subsystem can be assigned to different load sharing sets. The MAP table contains specific load sharing sets, designated by numbers, and a default MAP set. Flexible Final GTT Load Sharing provides flexible load sharing for global title translations defined in the GTT table and not for the MPS-based features. The MPS-based features do not support the MAP
set ID parameter. The MPS-based features perform lookups for load sharing in the default MAP set and the GTT table. The entries in the GTT table can be linked to a MAP set ID, allowing lookups in a specific MAP set other than the default MAP set.

Any MAP entries that were provisioned in the database before the Flexible GTT Load Sharing feature is enabled are placed in the default MAP set when the Flexible GTT Load Sharing feature is enabled.

To provision entries in the default MAP set, the mapset=dflt parameter must be specified with the ent-map or chg-map commands.

To provision entries in an existing MAP set other than the default MAP set, the mapset=<MAP set ID> parameter must be specified with the chg-map command. Provisioning entries in an existing MAP set can be performed only with the chg-map command.

To provision entries in a new MAP set, the mapset=new parameter must be specified with the ent-map command. The mapset=new parameter can be specified only with the ent-map command. When the ent-map command is executed with the mapset=new parameter, the new MAP set ID is automatically generated and displayed in the output of the ent-map command as follows.

New MAPSET Created : MAPSETID = <new MAP set ID>

A MAP set, other than the default MAP set, is a MAP group provisioned with the MAP set ID and can contain a maximum of 32 point codes.

The default MAP set can contain multiple MAP groups. The point code and subsystem number combination can appear only once in the default MAP set. The point code can appear in multiple MAP groups in the default MAP set with different subsystem numbers.

The point code and subsystem number combination provisioned in a MAP set can be provisioned in multiple MAP sets. All the point codes in a MAP set must be different.

Provisioning Weights and In-Service Thresholds for Mated Applications

Weighted GTT Load Sharing allows unequal traffic loads to be provisioned in MAP load sharing groups or MAP load sharing sets. This feature also allows provisioning control over load sharing groups or sets so that if insufficient capacity within the load sharing group or set is available, the load sharing group or set is not used.

To provision the weight values and in-service threshold values for MAP groups or MAP sets in this procedure, the wt, mwt, and thr parameters are used.

The wt, mwt, and thr parameters can be used only:

- If the MAP group or MAP set is either a load shared or combined dominant/load shared MAP group or MAP set.
- If the Weighted GTT Load Sharing feature is enabled and turned on.

The status of the Weighted GTT Load Sharing feature can be verified by entering the rtrv-ctrl-feat command. If the Weighted GTT Load Sharing feature is not enabled or not turned on, perform the Activating the Weighted GTT Load Sharing Feature procedure to enable and turn on the Weighted GTT Load Sharing feature.

If either the wt or mwt parameters are specified with the ent-map command, both parameters must be specified with the ent-map command.

To assign an in-service threshold value to the entries of a MAP group or MAP set that contains the point code value specified in the ent-map command, use the thr parameter with the wt and mwt parameters. When the thr parameter is specified with the ent-map command, the in-service threshold
value is assigned to both entries specified in the `ent-map` command. The `thr` parameter cannot be specified with the `chg-map` command when adding additional entries to the MAP group or MAP set. When additional entries are added to the MAP group or MAP set with the `chg-map` command, the `thr` value that was specified in the `ent-map` command is assigned to the additional entries. For information on using the `thr` parameter with the `chg-map` command, refer to the *Changing the Weight and In-Service Threshold Values of a Mated Application* procedure.

The `thr` parameter does not have to be specified with the `ent-map` command. If the `thr` parameter is not specified with the `ent-map` command, the THR parameter value for the MAP group or MAP set is set to 1.

Specifying the `wt` and `mwt` parameters assigns a weight value to the point codes specified in the `ent-map` command. The `wt` parameter value is assigned to the `mpc/mpca/mpci/mpcn/mpcn24` parameter value and the `mwt` parameter value is assigned to the `mpc/mpca/mpci/mpcn/mpcn24` parameter value.

When additional entries are added to the MAP group or MAP set with the `chg-map` command, and the MAP group or MAP set entries have weight and in-service threshold values assigned, a weight value must be assigned to the `mpc/mpca/mpci/mpcn/mpcn24` parameter value using the `mwt` parameter.

The `wt` parameter does not have to be specified with the `chg-map` command. If the `wt` parameter is specified with the `chg-map` command, the weight value for the `pc/pca/pci/pcn/pcn24` parameter is not changed.

If the `wt` parameter is specified with the `chg-map` command and the `wt` value is the same as the value currently assigned to the `pc/pca/pci/pcn/pcn24` parameter, the weight value for the `pc/pca/pci/pcn/pcn24` parameter is not changed.

If the `wt` parameter is specified with the `chg-map` command and the `wt` value is different from the value currently assigned to the `pc/pca/pci/pcn/pcn24` parameter, the weight value for the `pc/pca/pci/pcn/pcn24` parameter is changed to the new `wt` value.

The weight values assigned to the entries in the MAP group or MAP set are shown in the WT column in the `rtrv-map` output.

The in-service threshold values assigned to the entries in the MAP group or MAP set are shown in the THR column in the `rtrv-map` output.

The %WT column in the `rtrv-map` output shows the percentage of the traffic the particular entry in the MAP group or MAP set will handle.

The WT, %WT, and THR columns are shown in the `rtrv-map` output only if the Weighted GTT Load Sharing feature is enabled and turned on.

For more information on the Weighted GTT Load Sharing feature, refer to the *Weighted GTT Load Sharing* section.

**Canceling the RTRV-MAP Command**

Because the `rtrv-map` command used in this procedure can output information for a long period of time, the `rtrv-map` command can be canceled and the output to the terminal stopped. There are three ways that the `rtrv-map` command can be canceled.

- Press the F9 function key on the keyboard at the terminal where the `rtrv-map` command was entered.
- Enter the `canc-cmd` without the `trm` parameter at the terminal where the `rtrv-map` command was entered.
• Enter the `canc-cmd:trm=<xx>` command, where `<xx>` is the terminal where the `rtrv-map` command was entered, from another terminal other than the terminal where the `rtrv-map` command was entered. To enter the `canc-cmd:trm=<xx>` command, the terminal must allow Security Administration commands to be entered from it and the user must be allowed to enter Security Administration commands. The terminal’s permissions can be verified with the `rtrv-secu-trm` command. The user’s permissions can be verified with the `rtrv-user` or `rtrv-secu-user` commands. For more information about the `canc-cmd` command, refer to the `Commands Manual`.

1. Display the mated applications in the database using the `rtrv-map` command.

   This is an example of the possible output.

<table>
<thead>
<tr>
<th>MAPSET ID</th>
<th>PCA</th>
<th>SSN</th>
<th>RC</th>
<th>MULT</th>
<th>SRM</th>
<th>MRC</th>
<th>GRP</th>
<th>NAME</th>
<th>SSO</th>
</tr>
</thead>
<tbody>
<tr>
<td>DFLT</td>
<td>000-301-000</td>
<td>250</td>
<td>10</td>
<td>SOL</td>
<td>*Y</td>
<td>*Y</td>
<td>grp01</td>
<td>ON</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>001-301-000</td>
<td>251</td>
<td>10</td>
<td>SHR</td>
<td>*Y</td>
<td>*Y</td>
<td>grp01</td>
<td>OFF</td>
<td></td>
</tr>
<tr>
<td></td>
<td>002-301-000</td>
<td>252</td>
<td>10</td>
<td>SOL</td>
<td>*Y</td>
<td>*Y</td>
<td>grp01</td>
<td>ON</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>003-301-000</td>
<td>253</td>
<td>10</td>
<td>SHR</td>
<td>*Y</td>
<td>*Y</td>
<td>grp01</td>
<td>OFF</td>
<td></td>
</tr>
<tr>
<td>DFLT</td>
<td>004-301-000</td>
<td>254</td>
<td>10</td>
<td>SHR</td>
<td>*Y</td>
<td>*Y</td>
<td>grp01</td>
<td>OFF</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>005-301-000</td>
<td>255</td>
<td>10</td>
<td>DOM</td>
<td>YES</td>
<td>YES</td>
<td>grp01</td>
<td>ON</td>
<td></td>
</tr>
<tr>
<td>DFLT</td>
<td>006-301-000</td>
<td>256</td>
<td>10</td>
<td>DOM</td>
<td>YES</td>
<td>YES</td>
<td>grp01</td>
<td>ON</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>007-301-000</td>
<td>257</td>
<td>10</td>
<td>DOM</td>
<td>YES</td>
<td>YES</td>
<td>grp01</td>
<td>ON</td>
<td></td>
</tr>
<tr>
<td>DFLT</td>
<td>008-301-000</td>
<td>258</td>
<td>10</td>
<td>DOM</td>
<td>YES</td>
<td>YES</td>
<td>grp01</td>
<td>ON</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>009-301-000</td>
<td>259</td>
<td>10</td>
<td>DOM</td>
<td>YES</td>
<td>YES</td>
<td>grp01</td>
<td>ON</td>
<td></td>
</tr>
<tr>
<td>DFLT</td>
<td>010-301-000</td>
<td>260</td>
<td>10</td>
<td>DOM</td>
<td>YES</td>
<td>YES</td>
<td>grp01</td>
<td>ON</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>011-301-000</td>
<td>261</td>
<td>10</td>
<td>DOM</td>
<td>YES</td>
<td>YES</td>
<td>grp01</td>
<td>ON</td>
<td></td>
</tr>
<tr>
<td>DFLT</td>
<td>012-301-000</td>
<td>262</td>
<td>10</td>
<td>DOM</td>
<td>YES</td>
<td>YES</td>
<td>grp01</td>
<td>ON</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>013-301-000</td>
<td>263</td>
<td>10</td>
<td>DOM</td>
<td>YES</td>
<td>YES</td>
<td>grp01</td>
<td>ON</td>
<td></td>
</tr>
</tbody>
</table>
If any of the following items are not shown in the rtrv-map output, then the feature corresponding to these items is not enabled, or turned on if required.

- The MAPSET field - the Flexible GTT Load Sharing feature is not enabled.
- The MRNSET and MRNPC fields - the GTT Load Sharing with Alternate Routing Indicator feature is not enabled.
- The WT, %WT, THR columns - the Weighted GTT Load Sharing feature is not enabled and turned on.

If the maximum number of mated applications shown in the rtrv-map output in Step 1 is 1024, 2000, or 3000, continue the procedure with Step 3.

2. If the maximum number of mated applications shown in the rtrv-map output in Step 1 is 36000, the Flexible GTT Load Sharing feature is enabled.

Although the rtrv-map output shows there can be 36000 entries, a maximum of 1024, 2000, or 3000 different point codes (depending on whether the XMAP Table Expansion feature is enabled for 2000 or 3000 mated applications) can be provisioned for mated applications. To verify the number of different point codes that can be provisioned for mated applications, enter the rtrv-tbl-capacity command. The following is an example of the possible output.

```
rlghncxa03w 06-10-28 21:15:37 GMT EAGLE5 36.0.0
MAP table is (3000 of 3000) 100% full
```

Note: The rtrv-tbl-capacity command output contains other fields that are not used by this procedure. If you wish to see all the fields displayed by the rtrv-tbl-capacity command, see the rtrv-tbl-capacity command description in the Commands Manual.

3. Continue the procedure by performing one of these steps.

- If the rtrv-map output in Step 1 or the rtrv-tbl-capacity output in Step 2 shows that the maximum number of mated applications is 3000, and the current number of provisioned mated applications is 3000, no new point codes can be used to provision mated applications. Continue the procedure with Step 4.
- If the If the rtrv-map output in Step 1 or the rtrv-tbl-capacity output in Step 2 shows that the maximum number of mated applications is either 1024 or 2000, and the mated application being added increases the number beyond 1024 or 2000, perform Enabling the XMAP Table Expansion Feature to enable a greater quantity of mated applications. After the quantity of mated applications has been increased, continue the procedure with Step 4. If the maximum number of mated applications is not increased, no new point codes can be used to provision mated applications.
• If the rtrv-map output in Step 1 or the rtrv-tbl-capacity output in Step 2 shows that the maximum number of mated applications is either 1024, 2000, or 3000 and the mated application being added will not increase the number beyond the quantity shown in the rtrv-map output in Step 1 or the rtrv-tbl-capacity output in Step 2, continue the procedure with Step 4.

4. A MAP group, without the Flexible GTT Load Sharing feature enabled, a MAP set, other than the default MAP set, and a MAP group contained in the default MAP set can contain a maximum of 32 entries.

Verify the number of entries that the MAP group or MAP set contains by entering the rtrv-map command with the primary point code and SSN assigned to the MAP group or MAP set. If the Flexible GTT Load Sharing feature is enabled, the mapset parameter and MAP set ID of the MAP set that the new mated application will be added to.

If the specified MAP set is not the default MAP set, only the mapset parameter needs to be specified with the rtrv-map command. The point code and SSN does not need to be specified. For this example, enter one of these commands.

rtrv-map:pca=002-002-007:ssn=50

The following is an example of the possible output.

```
rlghncxa03w 09-07-07 00:34:31 GMT EAGLE5 41.1.0

PCA Mate PCA SSN RC MULT SRM MRC GRP NAME SSO
002-002-007 002-002-008 50 10 COM YES *Y grp01 OFF
002-002-007 002-002-009 30 10 COM YES *Y grp01 OFF
002-002-007 002-002-010 30 20 COM YES *Y grp01 OFF
002-002-007 002-002-011 30 20 COM YES *Y grp01 OFF

MAP TABLE IS (25 of 1024) 2 % FULL
```

rtrv-map:pca=002-002-007:ssn=50:mapset=dflt

The following is an example of the possible output.

```
rlghncxa03w 09-07-07 00:34:31 GMT EAGLE5 41.1.0

MAPSET ID=DFLT
PCA Mate PCA SSN RC MULT SRM MRC GRP NAME SSO
002-002-007 002-002-008 50 10 COM YES *Y grp01 OFF
002-002-007 002-002-009 30 10 COM YES *Y grp01 OFF
002-002-007 002-002-010 30 20 COM YES *Y grp01 OFF
002-002-007 002-002-011 30 20 COM YES *Y grp01 OFF

MAP TABLE IS (25 of 36000) 1 % FULL
```

rtrv-map:mapset=7

The following is an example of the possible output.

```
rlghncxa03w 09-07-07 00:34:31 GMT EAGLE5 41.1.0

MAPSET ID=7
PCA Mate PCA SSN RC MULT SRM MRC GRP NAME SSO
002-002-007 002-002-008 50 10 COM YES *Y grp01 OFF
002-002-007 002-002-009 30 10 COM YES *Y grp01 OFF
002-002-007 002-002-010 30 20 COM YES *Y grp01 OFF
002-002-007 002-002-011 30 20 COM YES *Y grp01 OFF
```
If the MAP group or MAP set contains 32 entries, no more entries can be added to the specified MAP group or MAP set. One of these actions can be performed.

- Entries can be added another MAP group or MAP set. Repeat this step for the other MAP group or MAP set.
- Entries can be removed from the specified MAP group or MAP set. To remove entries from the specified MAP group or MAP set, perform Removing a Mated Application.
- Entries can be added to a new MAP group or MAP set.

**Note:** If none of these actions will be performed, then this procedure cannot be performed.

If the MAP group or MAP set contains less than 32 entries, entries can be added to the MAP group or MAP set.

After it has been determined which MAP group or MAP set that the new entries will be added to (a new MAP group or MAP set or an existing MAP group or MAP set), continue the procedure by performing one of these steps.

- If an existing point code is being added to this MAP group or MAP set, continue the procedure with Step 5.
- If a new point code is being added to this MAP group or MAP set, continue the procedure by performing one of these steps.
  - If a concerned signaling point code (CSPC) group is not being assigned to the mated application, continue the procedure with Step 8. If the mated point code is not assigned to a CSPC group, that point code will not be notified of the subsystem’s status.
  - If a concerned signaling point code (CSPC) group will be assigned to the mated application, continue the procedure with Step 6.

5. A mated application can be provisioned with a point code that is assigned to other mated applications as long as the SSN is not assigned to other mated applications.

A point code can be assigned to maximum of 12 different SSNs.

Verify the number of SSNs assigned to the point code that will be specified for the mated application in this procedure by entering the `rtrv-map` command with the point code of the new mated application. For this example, enter this command.

```
rtrv-map:pca=255-001-000
```

This is an example of the possible output.

```
002-002-011 30 20 COM YES *Y grp01 OFF
MAP TABLE IS (25 of 36000) 1 % FULL

If the MAP group or MAP set contains 32 entries, no more entries can be added to the specified MAP group or MAP set. One of these actions can be performed.

- Entries can be added another MAP group or MAP set. Repeat this step for the other MAP group or MAP set.
- Entries can be removed from the specified MAP group or MAP set. To remove entries from the specified MAP group or MAP set, perform Removing a Mated Application.
- Entries can be added to a new MAP group or MAP set.

Note: If none of these actions will be performed, then this procedure cannot be performed.

If the MAP group or MAP set contains less than 32 entries, entries can be added to the MAP group or MAP set.

After it has been determined which MAP group or MAP set that the new entries will be added to (a new MAP group or MAP set or an existing MAP group or MAP set), continue the procedure by performing one of these steps.

- If an existing point code is being added to this MAP group or MAP set, continue the procedure with Step 5.
- If a new point code is being added to this MAP group or MAP set, continue the procedure by performing one of these steps.
 - If a concerned signaling point code (CSPC) group is not being assigned to the mated application, continue the procedure with Step 8. If the mated point code is not assigned to a CSPC group, that point code will not be notified of the subsystem’s status.
 - If a concerned signaling point code (CSPC) group will be assigned to the mated application, continue the procedure with Step 6.

5. A mated application can be provisioned with a point code that is assigned to other mated applications as long as the SSN is not assigned to other mated applications.

A point code can be assigned to maximum of 12 different SSNs.

Verify the number of SSNs assigned to the point code that will be specified for the mated application in this procedure by entering the `rtrv-map` command with the point code of the new mated application. For this example, enter this command.

```
rtrv-map:pca=255-001-000
```

This is an example of the possible output.

```
002-002-011 30 20 COM YES *Y  grp01 OFF
MAP TABLE IS (25 of 36000) 1 % FULL

If the MAP group or MAP set contains 32 entries, no more entries can be added to the specified MAP group or MAP set. One of these actions can be performed.

- Entries can be added another MAP group or MAP set. Repeat this step for the other MAP group or MAP set.
- Entries can be removed from the specified MAP group or MAP set. To remove entries from the specified MAP group or MAP set, perform Removing a Mated Application.
- Entries can be added to a new MAP group or MAP set.

**Note:** If none of these actions will be performed, then this procedure cannot be performed.

If the MAP group or MAP set contains less than 32 entries, entries can be added to the MAP group or MAP set.

After it has been determined which MAP group or MAP set that the new entries will be added to (a new MAP group or MAP set or an existing MAP group or MAP set), continue the procedure by performing one of these steps.

- If an existing point code is being added to this MAP group or MAP set, continue the procedure with Step 5.
- If a new point code is being added to this MAP group or MAP set, continue the procedure by performing one of these steps.
  - If a concerned signaling point code (CSPC) group is not being assigned to the mated application, continue the procedure with Step 8. If the mated point code is not assigned to a CSPC group, that point code will not be notified of the subsystem’s status.
  - If a concerned signaling point code (CSPC) group will be assigned to the mated application, continue the procedure with Step 6.

5. A mated application can be provisioned with a point code that is assigned to other mated applications as long as the SSN is not assigned to other mated applications.

A point code can be assigned to maximum of 12 different SSNs.

Verify the number of SSNs assigned to the point code that will be specified for the mated application in this procedure by entering the `rtrv-map` command with the point code of the new mated application. For this example, enter this command.

```
rtrv-map:pca=255-001-000
```

This is an example of the possible output.

```
002-002-011 30 20 COM YES *Y grp01 OFF
MAP TABLE IS (25 of 36000) 1 % FULL

If the MAP group or MAP set contains 32 entries, no more entries can be added to the specified MAP group or MAP set. One of these actions can be performed.

- Entries can be added another MAP group or MAP set. Repeat this step for the other MAP group or MAP set.
- Entries can be removed from the specified MAP group or MAP set. To remove entries from the specified MAP group or MAP set, perform Removing a Mated Application.
- Entries can be added to a new MAP group or MAP set.

Note: If none of these actions will be performed, then this procedure cannot be performed.

If the MAP group or MAP set contains less than 32 entries, entries can be added to the MAP group or MAP set.

After it has been determined which MAP group or MAP set that the new entries will be added to (a new MAP group or MAP set or an existing MAP group or MAP set), continue the procedure by performing one of these steps.

- If an existing point code is being added to this MAP group or MAP set, continue the procedure with Step 5.
- If a new point code is being added to this MAP group or MAP set, continue the procedure by performing one of these steps.
 - If a concerned signaling point code (CSPC) group is not being assigned to the mated application, continue the procedure with Step 8. If the mated point code is not assigned to a CSPC group, that point code will not be notified of the subsystem’s status.
 - If a concerned signaling point code (CSPC) group will be assigned to the mated application, continue the procedure with Step 6.

5. A mated application can be provisioned with a point code that is assigned to other mated applications as long as the SSN is not assigned to other mated applications.

A point code can be assigned to maximum of 12 different SSNs.

Verify the number of SSNs assigned to the point code that will be specified for the mated application in this procedure by entering the `rtrv-map` command with the point code of the new mated application. For this example, enter this command.

```
rtrv-map:pca=255-001-000
```

This is an example of the possible output.
If the Flexible GTT Load Sharing feature is enabled, the MAPSET IDs for the mated applications are shown in the `rtrv-map` output.

If the Weighted GTT Load Sharing feature is enabled and turned on, the WT, %WT, and THR columns are shown in the `rtrv-map` output.

If the point code is assigned to 12 different SSNs, and neither an existing point code in the `rtrv-map` output nor a new point code will be used to provision the mated application, then this procedure cannot be performed.

If the point code is assigned to less than 12 different SSNs, then the existing point code in the `rtrv-map` output can be used to provision the mated application.

If the point code is assigned to 12 different SSNs, another existing point code in the `rtrv-map` output or a new point code must be used to provision the mated application. If an existing point code in the `rtrv-map` output will be used to provision the mated application, repeat this step for that point code.

After it has been determined which point code will be used to provision the mated application (a new point code or an existing point code), continue the procedure by performing one of these steps.

- If a concerned signaling point code (CSPC) group is not being assigned to the mated application, continue the procedure with Step 8. If the mated point code is not assigned to a CSPC group, that point code will not be notified of the subsystem’s status.

- If a concerned signaling point code (CSPC) group will be assigned to the mated application, continue the procedure with Step 6.

6. Display the point codes in the CSPC group that you wish to assign to the mated application by first entering the `rtrv-cspc` command with no parameters.

 This is an example of the possible output.

 | righncxa03w 06-10-25 09:48:31 GMT | EAGLE5 36.0.0 | | |
 | CSPC_GRP | NETWORK | PERCENT | FULL |
 | grp01 | ANSI | 6% |
 | grp02 | ITU-I | 9% |
 | grp03 | ITU-N | 12% |
 | grp04 | ANSI | 15% |
 | grp05 | ANSI | 15% |
 | grp10 | ANSI | 15% |
 | grp15 | ANSI | 15% |

 If the desired CSPC group is shown in the `rtrv-cspc` output, re-enter the `rtrv-cspc` command with the CSPC group name. For this example, enter these commands. `rtrv-cspc:grp=grp05`. This is an example of the possible output.

 | righncxa03w 06-10-25 09:48:31 GMT | EAGLE5 36.0.0 |
 | CSPC_GRP | PCA |
 | grp05 | 005-005-005 |
 | | 007-007-007 |
 | | 008-008-008 |
 | | 009-009-009 |

 `rtrv-cspc:grp=grp10`
This is an example of the possible output.

```
rlghncxa03w 06-10-25 09:59:31  GMT  EAGLE5 36.0.0
 C  S  P  C  G  R  P      P  C  A
 grp10         003-003-003
                004-004-004
                008-008-008
                009-009-009
rtrv-cspc:grp=grp15
```

This is an example of the possible output.

```
rlghncxa03w 06-10-25 09:48:31  GMT  EAGLE5 36.0.0
 C  S  P  C  G  R  P      P  C  A
 grp15         005-005-005
                006-006-006
                008-008-008
                009-009-009
```

Note: If the ANSI/ITU SCCP Conversion feature is enabled, then point codes of multiple network types can be displayed in the `rtrv-cspc` output, if point codes of multiple network types are assigned to the CSPC group.

If the CSPC group is not in the database, or if the required point code is not assigned to the CSPC group, perform the *Adding a Concerned Signaling Point Code* procedure to add the required CSPC group or point code to the database.

Note: If the output of the `rtrv-cspc` command performed in Step 6 shows CSPC groups containing a mixture of point code types, or if the new CSPC group that was added in Step 6 contains a mixture of point code types, continue the procedure with Step 8.

7. The format of the point codes in the CSPC group specified with the `grp` parameter must be the same as the primary point code specified with the `ent-map` command only if the ANSI/ITU SCCP Conversion feature is not enabled.

If the ANSI/ITU SCCP Conversion feature is enabled, the CSPC group may contain a mixture of point code types (refer to the *Adding a Concerned Signaling Point Code* procedure), and the network type of the CSPC group can be different from the network type of the primary point code of the mated application.

Verify the status of the ANSI/ITU SCCP Conversion feature by entering this command.

```
rtrv-ctrl-feat:partnum=893012001
```

The following is an example of the possible output.

```
rlghncxa03w 06-10-28 21:15:37 GMT EAGLE5 36.0.0
 The following features have been permanently enabled:
<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Partnum</th>
<th>Status</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCCP Conversion</td>
<td>893012001</td>
<td>on</td>
<td>----</td>
</tr>
</tbody>
</table>

The following features have been temporarily enabled:
<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Partnum</th>
<th>Status</th>
<th>Quantity</th>
<th>Trial Period Left</th>
</tr>
</thead>
</table>

Zero entries found.

The following features have expired temporary keys:

```
910-6277-001 Revision A, January 2012 222
If the ANSI/ITU SCCP Conversion feature is not enabled, perform the **Activating the ANSI/ITU SCCP Conversion Feature** procedure to enable the ANSI/ITU SCCP Conversion feature.

8. If the **MAPSET** column is shown in the *rtrv-map* output in **Step 1**, the Flexible GTT Load Sharing feature is enabled. Continue the procedure with **Step 9**.

If the **MAPSET** column is not shown in **Step 1** and you do not wish to provision MAP sets in this procedure, continue the procedure with **Step 9**.

If the **MAPSET** column is not shown in **Step 1** and you wish to provision MAP sets in this procedure, perform the **Activating the Flexible GTT Load Sharing Feature** procedure to enable the Flexible GTT Load Sharing feature. After the Flexible GTT Load Sharing feature is enabled, continue the procedure with **Step 9**.

Note: If you do not wish to assign weight and in-service threshold values to the MAP entries in the MAP group or MAP set, continue the procedure with **Step 10**.

9. If you wish to assign weight and in-service threshold values to the entries in the MAP group or MAP set, and the **WT**, **%WT**, and **THR** columns are shown in the *rtrv-map* output in **Step 1**, then the Weighted GTT Load Sharing feature is enabled and turned on.

If the **WT**, **%WT**, and **THR** columns are not shown in the *rtrv-map* output in **Step 1**, perform the **Activating the Weighted GTT Load Sharing Feature** procedure to enable and turn on the Weighted GTT Load Sharing feature.

If the Weighted GTT Load Sharing feature is enabled and turned on, or the **Activating the Weighted GTT Load Sharing Feature** procedure was performed in this step, continue this procedure by performing one of these steps:

- If only one of the point codes that will be specified for the mated application is assigned to other mated applications, perform **Step 10** for the new point code that is not assigned to other mated applications.

- If the both point codes that will be specified for the mated application are point codes assigned to other mated applications, continue the procedure by performing one of these steps.

 - If the **mrnset** and **mrnpcc** parameters will be specified for the mated application, continue the procedure with **Step 13**.
 - If the **mrnset** and **mrnpcc** parameters will not be specified for the mated application, continue the procedure by performing one of these steps.
 - If a new mated application is being added, continue the procedure with **Step 14**.
 - If an entry is being added to an existing mated application, continue the procedure with **Step 15**.

10. Display the destination point codes in the database by entering the *rtrv-dstn* command. This is an example of the possible output.

```plaintext
rlghncxa03w 10-12-10 11:43:04 GMT EAGLE5 43.0.0
Extended Processing Time may be Required

<table>
<thead>
<tr>
<th>DPCA</th>
<th>CLLI</th>
<th>BEI</th>
<th>ELEI</th>
<th>ALIASI</th>
<th>ALIASN/N24</th>
<th>DMN</th>
</tr>
</thead>
<tbody>
<tr>
<td>001-207-000</td>
<td>-------</td>
<td>no</td>
<td></td>
<td></td>
<td></td>
<td>SS7</td>
</tr>
<tr>
<td>001-001-001</td>
<td>-------</td>
<td>no</td>
<td></td>
<td></td>
<td></td>
<td>SS7</td>
</tr>
<tr>
<td>001-001-002</td>
<td>-------</td>
<td>no</td>
<td></td>
<td></td>
<td></td>
<td>SS7</td>
</tr>
</tbody>
</table>
```
If the required point code is not shown in the rtrv-dstn output, perform the "Adding a Destination Point Code" procedure in the Database Administration Manual - SS7 to add the required point code. A proxy point code cannot be assigned to the point code.

After the new point code has been added, skip Step 11 and Step 12, and perform one of the Adding a Route procedures in the Database Administration Manual - SS7 and add the required route to the database. After the route has been added, continue the procedure by performing one of these steps.

- If the mrnset and mrnpc parameters will be specified for the mated application, continue the procedure with Step 13.
- If the mrnset and mrnpc parameters will not be specified for the mated application, continue the procedure by performing one of these steps.
 - If a new mated application is being added, continue the procedure with Step 14.
 - If an entry is being added to an existing mated application, continue the procedure with Step 15.

11. Display the point code that will be assigned to the mated application by using the rtrv-dstn command and specifying the point code. For this example, enter this command.

 rtrv-dstn:dpca=010-020-005

This is an example of the possible output.

```
rlghncxa03w 10-12-10 11:43:04 GMT EAGLE5 43.0.0

<table>
<thead>
<tr>
<th>DPCI</th>
<th>CLLI</th>
<th>BEI</th>
<th>ELEI</th>
<th>ALIASA</th>
<th>ALIASN/N24</th>
<th>DMN</th>
</tr>
</thead>
<tbody>
<tr>
<td>010-020-005</td>
<td>------</td>
<td>no</td>
<td>---</td>
<td>--------</td>
<td>---</td>
<td>SS7</td>
</tr>
</tbody>
</table>

PPC table is (1 of 20) 5% full
```

If the point code is not shown in the rtrv-dstn command output, the following output is displayed.

```
rlghncxa03w 09-05-10 11:43:04 GMT EAGLE5 41.0.0

No destinations meeting the requested criteria were found
```
A proxy point code (a point code value is shown in the PPC column) cannot be assigned to the point code. If a proxy point code is shown in this step, choose another point code from the rtrv-dstn output in the previous step and repeat this step.

After the new point code has been added, skip Step 12 and perform one of the Adding a Route procedures in the Database Administration Manual - SS7 and add the required route to the database. After the route has been added, continue the procedure by performing one of these steps:

• If the mrnset and mrnpc parameters will be specified for the mated application, continue the procedure with Step 13.
• If the mrnset and mrnpc parameters will not be specified for the mated application, continue the procedure by performing one of these steps.
 • If a new mated application is being added, continue the procedure with Step 14.
 • If an entry is being added to an existing mated application, continue the procedure with Step 15.

12. Enter the rtrv-rte command with the dpc parameter specifying the point codes to be used with the ent-map or chg-map commands to verify whether or not the point code is the DPC of a route.

For this example, enter these commands.

rtrv-rte:dpc=008-008-008

This is an example of the possible output.

rtrv-rte:dpc=031-049-100

This is an example of the possible output.

rtrv-rte:dpc=056-113-200

This is an example of the possible output.

rtrv-rte:dpc=179-183-050

This is an example of the possible output.
If the point code is not shown in the `rtrv-rte` output, perform one of the Adding a Route procedures in the Database Administration Manual - SS7 and add the required route to the database.

Continue the procedure by performing one of these steps.
• If the mrnset and mrnpc parameters will be specified for the mated application, continue the procedure with Step 13.
• If the mrnset and mrnpc parameters will not be specified for the mated application, continue the procedure by performing one of these steps.
 • If a new mated application is being added, continue the procedure with Step 14.
 • If an entry is being added to an existing mated application, continue the procedure with Step 15.

13. The MRN point code value must be assigned to an MRN set. The MRN set must be shown in the rtrv-mrn output. Display the MRN sets by entering the rtrv-mrn command. This is an example of the possible output.

```
rlghncxa03w 09-02-07 00:34:31 GMT EAGLE5 40.1.0

<table>
<thead>
<tr>
<th>MRNSET</th>
<th>MAPSET</th>
<th>MAPPC</th>
<th>MAPSSN</th>
<th>PC</th>
<th>RC</th>
<th>WT</th>
<th>%WT</th>
<th>THR</th>
</tr>
</thead>
<tbody>
<tr>
<td>DFLT</td>
<td>7</td>
<td>002-002-007</td>
<td>50</td>
<td>005-005-005</td>
<td>10</td>
<td>10</td>
<td>14</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>006-001-001</td>
<td>10</td>
<td>10</td>
<td>14</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>006-001-002</td>
<td>10</td>
<td>20</td>
<td>28</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>006-001-003</td>
<td>10</td>
<td>30</td>
<td>42</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>006-001-004</td>
<td>20</td>
<td>40</td>
<td>23</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>006-001-005</td>
<td>20</td>
<td>40</td>
<td>23</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>006-001-006</td>
<td>20</td>
<td>50</td>
<td>29</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>006-001-007</td>
<td>20</td>
<td>50</td>
<td>29</td>
<td>1</td>
</tr>
</tbody>
</table>

MRN table is (16 of 5990) 1% full

If any of the following items are not shown in the rtrv-mrn output, then the feature corresponding to these items is not enabled, or turned on if required.

• The MRNSET field - the Flexible GTT Load Sharing feature is not enabled.
• The MAPSET, MAPPC and MAPSSN fields - the GTT Load Sharing with Alternate Routing Indicator feature is not enabled.
• The WT, %WT, THR columns - the Weighted GTT Load Sharing feature is not enabled and turned on.

Note: The network type of the pc/pca/pic/pci/pcn/pcn24 and mrnpc/mrnpca/mrnpci/mrnpncn/mrnpnc24 parameter values must be compatible, as shown in Note 7 in Table 45: Load Shared Mated Application Parameter Combinations for the ENT-MAP Command or in Note 8 in Table 46: Load Shared Mated Application Parameter Combinations for the CHG-MAP Command.

If the MRN set that you wish to use, containing the desired point code, is not shown in the rtrv-mrn output, add the required MRN set by performing the Provisioning MRN Entries procedure.

If the MRN set that you wish to use is shown in the rtrv-mrn output, or the Provisioning MRN Entries procedure was performed in this step, continue the procedure by performing one of these steps.
If a new mated application is being added, continue the procedure with Step 14.

If an entry is being added to an existing mated application, continue the procedure with Step 15.

14. Add the mated application to the database using the ent-map command. Use Table 45: Load Shared Mated Application Parameter Combinations for the ENT-MAP Command as a guide for the parameters and values that can be specified with the ent-map command.

Table 45: Load Shared Mated Application Parameter Combinations for the ENT-MAP Command

<table>
<thead>
<tr>
<th>Mandatory Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>:pc/pca/pci/pcn/pcn24=&lt;ANSI, ITU-I, ITU-I spare, ITU-N, ITU-N spare, or ITU-N24 point code from the rtrv-rte or rtrv-map outputs&gt; (See Notes 5 and 7)</td>
</tr>
<tr>
<td>:ssn=&lt;subsystem number, 2 - 255&gt;</td>
</tr>
<tr>
<td>:rc=&lt;0 - 99&gt; The rc and materc parameter values must be equal.</td>
</tr>
<tr>
<td>:mpc/mpca/mpci/mpcn/mpcn24=&lt;ANSI, ITU-I, ITU-I spare, ITU-N, ITU-N spare, or ITU-N24 point code of the mate from the rtrv-rte or rtrv-map outputs&gt; (See Notes 2, 5, and 7)</td>
</tr>
<tr>
<td>:mssn=&lt;subsystem number of the mate, 2 - 255&gt;</td>
</tr>
<tr>
<td>:materc=&lt;0 - 99&gt; The rc and materc parameter values must be equal.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Optional Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>:wt=&lt;1 - 99&gt; (See Note 4)</td>
</tr>
<tr>
<td>:mwt=&lt;1 - 99&gt; (See Note 4)</td>
</tr>
<tr>
<td>:thr=&lt;1 - 100&gt; (See Note 4)</td>
</tr>
<tr>
<td>:grp=&lt;CSPC group name&gt; (See Note 1)</td>
</tr>
<tr>
<td>:sso=&lt;on, off&gt;</td>
</tr>
<tr>
<td>:mapset=&lt;new, dflt&gt; (See Note 3)</td>
</tr>
<tr>
<td>:mrnset = &lt;MRN set ID from the rtrv-mrn output&gt; (See Note 6)</td>
</tr>
<tr>
<td>:mrnnc/mrnpca/mrnpci/mrnpcn/mrnpcn24=&lt;the point code value in the MRN set&gt; (See Notes 6 and 7)</td>
</tr>
<tr>
<td>:srm=&lt;yes, no&gt; (See Note 8)</td>
</tr>
<tr>
<td>:mrc=&lt;yes, no&gt; (See Note 8)</td>
</tr>
</tbody>
</table>

Notes

1. The format of the point codes in the CSPC group specified with the grp parameter must be the same as the primary point code specified with the ent-map command only if the ANSI/ITU SCCP Conversion feature is not enabled. If the ANSI/ITU SCCP Conversion feature is enabled, the CSPC group may contain a mixture of point code types (refer to the Adding a Concerned Signaling Point Code procedure), and the network type of the CSPC group can be different from the network type of the primary point code of the mated application.
2. For mated applications containing ANSI or 24-bit ITU-N point codes, the format of the point codes specified in the `ent-map` command must be the same. For example, if the primary point code is a 24-bit ITU-N point code (`pcn24`), the mate point code must be a 24-bit ITU-N point code (`mpcn24`). The mate point codes of mated applications containing either ITU-I, ITU-I spare, 14-bit ITU-N, or 14-bit ITU-N spare primary point codes do not have to be the same format as the primary point code. The mate point codes of these mated applications can be a mixture of ITU-I, ITU-I spare, 14-bit ITU-N, or 14-bit ITU-N spare point codes.

3. If the Flexible GTT Load Sharing is enabled, the `mapset` parameter must be specified with the `ent-map` command.
   
   If the Flexible GTT Load Sharing is not enabled, the `mapset` parameter cannot be specified with the `ent-map` command.
   
   To provision entries in the default MAP set, the `mapset=dflt` parameter must be specified with the `ent-map` command.
   
   To provision entries in a new MAP set, the `mapset=new` parameter must be specified with the `ent-map` command. The `mapset=new` parameter can be specified only with the `ent-map` command. When the `ent-map` command is executed with the `mapset=new` parameter, the new MAP set ID is automatically generated and displayed in the output of the `ent-map` command as follows.
   
<table>
<thead>
<tr>
<th>New MAPSET Created : MAPSETID = &lt;new MAP set ID&gt;</th>
</tr>
</thead>
</table>

A MAP set, other than the default MAP set, is a MAP group provisioned with the MAP set ID and can contain a maximum of 32 point code and subsystem entries.

The default MAP set can contain multiple MAP groups. Each group in the default MAP set can contain a maximum of 32 point code and subsystem entries.

The point code and subsystem entry can appear only once in the default MAP set, so the point code and subsystem entry can appear in only one MAP group in the default MAP set.

The point code and subsystem entry provisioned in a MAP set can be provisioned in multiple MAP sets. If a point code and subsystem entry is provisioned in different MAP sets, the relative cost value of the entry in each MAP set can be different. All the point code and subsystem entries in a MAP set, including the default MAP set, must be different.

4. Refer to the Provisioning Weights and In-Service Thresholds for Mated Applications section for information about using the weight (`wt` and `mwt`) and in-service threshold (`thr`) parameters.

5. If the point code selected from either the `rtrv-rte` or `rtrv-map` outputs is a 14-bit ITU-N point code, then the `pcn/mpcn` parameters must be specified. If the point code selected from either the `rtrv-rte` or `rtrv-map` outputs is a 24-bit ITU-N point code, then the `pcn24/mpcn24` parameters must be specified.

6. The `mrnset` and `mrnpc/mrnpca/mrnpci/mrnpcn/mrnpcn24` parameters can be specified only if the GTT Load Sharing with Alternate Routing Indicator feature is enabled. Refer to the Activating the GTT Load Sharing with Alternate Routing Indicator Feature procedure for information about enabling the GTT Load Sharing with Alternate Routing Indicator feature. The `mrnset` and `mrnpc/mrnpca/mrnpci/mrnpcn/mrnpcn24` values must be shown in the `rtrv-mrn` output.

7. The network type of the `pc/pca/pci/pcn/pcn24` and `mrnpc/mrnpca/mrnpci/mrnpcn/mrnpcn24` parameter values must be compatible, as shown in Table 44: MAP and MRN Point Code Parameter Combinations.

8. The `srm=yes` parameter can be specified only for load shared mated applications containing ANSI point codes, but this parameter affects traffic only on dominant and combined
dominant/load shared mated applications. The mrc parameter can be specified for a load shared mated application, but this parameter affects traffic only for a dominant mated application. These are the default values for the srm and mrc parameters.

- ANSI mated applications: srm=yes, mrc=yes
- ITU mated applications: srm=no, mrc=no

If the Flexible GTT Load Sharing feature is not enabled for this example, enter these commands.

```
ent-map:pca=004-004-004:ssn=254:rc=10:mpc=100-100-100:mssn=254:
materc=10:grp=grp10:sso=off
ent-map:pca=002-002-002:ssn=250:rc=10:mpc=100-130-079:mssn=250:
materc=10:grp=grp15:sso=on:wt=10:mwt=10:thr=40
ent-map:pca=008-008-008:ssn=254:rc=10:mpc=200-147-100:mssn=254:
materc=10:grp=grp10:sso=on:wt=10:mwt=20
ent-map:pci=5-005-5:ssn=50:rc=10:mpcn=0257:mssn=50:materc=10:
:grp=grp20:mrc=yes:sso=off
```

When each of these commands have successfully completed, this message should appear.

```
rlghncxa03w 06-10-07 11:44:13 GMT EAGLE5 36.0.0
ENT-MAP: MASP A - COMPLTD
```

If the Flexible GTT Load Sharing feature is enabled for this example, enter these commands.

```
ent-map:pca=004-004-004:ssn=254:rc=10:mpc=100-100-100:mssn=254:
materc=10:grp=grp10:sso=off:mapset=new
ent-map:pca=002-002-002:ssn=250:rc=10:mpc=100-130-079:mssn=250:
ent-map:pca=008-008-008:ssn=254:rc=10:mpc=200-147-100:mssn=254:
ent-map:pci=5-005-5:ssn=50:rc=10:mpcn=0257:mssn=50:materc=10:
:grp=grp20:mrc=yes:sso=off:mapset=new
```

If the GTT Load Sharing with Alternate Routing Indicator feature is enabled for this example, enter these commands.

```
ent-map:pca=004-004-004:ssn=254:rc=10:mpc=100-100-100:mssn=254:
materc=10:grp=grp10:sso=off:mapset=new:mrnset=dflt:mrnpc=005-005-005
ent-map:pca=002-002-002:ssn=250:rc=10:mpc=100-130-079:mssn=250:
:mrnpc= 007-007-007
```

If the Flexible GTT Load Sharing feature is enabled when each of these commands have successfully completed, and a new MAP set was created, a message similar to the following should appear.

```
rlghncxa03w 06-10-07 11:44:13 GMT EAGLE5 36.0.0
```
If the Flexible GTT Load Sharing feature is enabled when each of these commands have successfully completed, and the mated application was added to the default MAP set, this message should appear.

If no other entries are being added to the mated application, continue the procedure with Step 16. If other entries are being added to the mated application, continue the procedure with Step 15.

15. Add the mated point code and subsystem to the mated application using the chg-map command. Use Table 46: Load Shared Mated Application Parameter Combinations for the CHG-MAP Command as a guide for the parameters and values that can be specified with the chg-map command.

Table 46: Load Shared Mated Application Parameter Combinations for the CHG-MAP Command

<table>
<thead>
<tr>
<th>Mandatory Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>:pc/pca/pci/pcn/pcn24=&lt;ANSI, ITU-I, ITU-I spare, ITU-N, ITU-N spare, or ITU-N24 point code from the rtrv-rte or rtrv-map outputs&gt; (See Notes 5 and 8)</td>
</tr>
<tr>
<td>:ssn=&lt;subsystem number&gt;</td>
</tr>
<tr>
<td>:mpc/mpca/mpci/mpcn/mpcn24=&lt;ANSI, ITU-I, ITU-I spare, ITU-N, ITU-N spare, or ITU-N24 point code of the mate from the rtrv-rte or rtrv-map outputs&gt; (See Notes 2, 5, and 8)</td>
</tr>
<tr>
<td>:mssn=&lt;subsystem number of the mate, 2 - 255&gt;</td>
</tr>
<tr>
<td>:materc=&lt;0 - 99&gt; The rc and materc parameter values must be equal.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Optional Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>:wt=&lt;1 - 99&gt; (See Note 4)</td>
</tr>
<tr>
<td>:mwt=&lt;1 - 99&gt; (See Note 4)</td>
</tr>
<tr>
<td>:grp=&lt;CSPC group name&gt; (See Notes 1 and 6)</td>
</tr>
<tr>
<td>:sso=&lt;on, off&gt; (See Note 6)</td>
</tr>
<tr>
<td>:mapset=&lt;dflt or the number of an existing MAP set&gt; (See Note 3)</td>
</tr>
<tr>
<td>:mrnset = &lt;MRN set ID from the rtrv-mrn output&gt; (See Note 7)</td>
</tr>
<tr>
<td>:mrnpc/mrnpca/mrnpci/mrnpcn/mrnpcn24=&lt;the point code value in the MRN set&gt; (See Notes 7 and 8)</td>
</tr>
<tr>
<td>:srm=&lt;yes, no&gt; (See Notes 6 and 9)</td>
</tr>
<tr>
<td>:mrc=&lt;yes, no&gt; (See Notes 6 and 9)</td>
</tr>
</tbody>
</table>

Notes

1. The format of the point codes in the CSPC group specified with the grp parameter must be the same as the primary point code specified with the chg-map command only if the ANSI/ITU SCCP Conversion feature is not enabled. If the ANSI/ITU SCCP Conversion feature is enabled,
the CSPC group may contain a mixture of point code types (refer to the Adding a Concerned Signaling Point Code procedure), and the network type of the CSPC group can be different from the network type of the primary point code of the mated application.

2. For mated applications containing ANSI or 24-bit ITU-N point codes, the format of the point codes specified in the chg-map command must be the same. For example, if the primary point code is a 24-bit ITU-N point code (pcn24), the mate point code must be a 24-bit ITU-N point code (mpcn24). The mate point codes of mated applications containing either ITU-I, ITU-I spare, 14-bit ITU-N, or 14-bit ITU-N spare primary point codes do not have to be the same format as the primary point code. The mate point codes of these mated applications can be a mixture of ITU-I, ITU-I spare, 14-bit ITU-N, or 14-bit ITU-N spare point codes.

3. If the Flexible GTT Load Sharing is enabled, the mapset parameter must be specified with the chg-map command.

If the Flexible GTT Load Sharing is not enabled, the mapset parameter cannot be specified with the chg-map command.

To provision entries in the default MAP set, the mapset=dflt parameter must be specified with the chg-map command.

To provision entries in an existing MAP set, the mapset parameter must be specified with the MAP set ID value of that MAP set.

A MAP set, other than the default MAP set, is a MAP group provisioned with the MAP set ID and can contain a maximum of 32 point code and subsystem entries.

The default MAP set can contain multiple MAP groups. Each group in the default MAP set can contain a maximum of 32 point code and subsystem entries.

The point code and subsystem entry can appear only once in the default MAP set, so the point code and subsystem entry can appear in only one MAP group in the default MAP set.

The point code and subsystem entry provisioned in a MAP set can be provisioned in multiple MAP sets. If a point code and subsystem entry is provisioned in different MAP sets, the relative cost value of the entry in each MAP set can be different. All the point code and subsystem entries in a MAP set, including the default MAP set, must be different.

4. Refer to the Provisioning Weights and In-Service Thresholds for Mated Applications section for information about using the weight (wt and mwt) parameters.

5. If the point code selected from either the rtrv-rte or rtrv-map outputs is a 14-bit ITU-N point code, then the pcn/mpcn parameters must be specified. If the point code selected from either the rtrv-rte or rtrv-map outputs is a 24-bit ITU-N point code, then the pcn24/mpcn24 parameters must be specified.

6. The CSPC group name (grp) srn, mrc, or sso values for a specific point code and SSN in a mated application are changed, these parameter values for this specific point code and SSN in all applicable mated applications will be changed to the new values.

7. The mrnset and mrnpc/mrnpci/mrnpnc/mrnpnc24 parameters can be specified only if the GTT Load Sharing with Alternate Routing Indicator feature is enabled. Refer to the Activating the GTT Load Sharing with Alternate Routing Indicator Feature procedure for information about enabling the GTT Load Sharing with Alternate Routing Indicator feature. The mrnset and mrnpc/mrnpci/mrnpnc/mrnpnc24 values must be shown in the rtrv-mrn output.

8. The network type of the pc/pca/pci/pcn/pcn24 and mrnpc/mrnpc/mrnpci/mrnpnc/mrnpnc24 parameter values must be compatible, as shown in Table 44: MAP and MRN Point Code Parameter Combinations.
9. The `srm=yes` parameter can be specified only for load shared mated applications containing ANSI point codes, but this parameter affects traffic only on dominant and combined dominant/load shared mated applications. The `mrc` parameter can be specified for a load shared mated application, but this parameter affects traffic only for a dominant mated application. These are the default values for the `srm` and `mrc` parameters.

- ANSI mated applications - `srm=yes, mrc=yes`
- ITU mated applications - `srm=no, mrc=no`

If the Flexible GTT Load Sharing feature is not enabled for this example, enter these commands.

```plaintext
```

When each of these commands have successfully completed, this message should appear.

```
rlghncxa03w 06-10-07 11:44:13 GMT EAGLE5 36.0.0
CHG-MAP: MASP A - COMPLTD
```

If the Flexible GTT Load Sharing feature is enabled for this example, enter these commands.

```plaintext
```
If the GTT Load Sharing with Alternate Routing Indicator feature is enabled for this example, and the mrnset and mrnpc parameters were not specified in Step 14, enter these commands.

```
chg-map:pca=008-008-008:ssn=254:mpca=056-113-200:mssn=251
chg-map:pca=255-001-000:ssn=251:mpca=255-001-001
```

When each of these commands have successfully completed, this message should appear.

```
rlghncxa03w 06-10-07 11:44:13 GMT EAGLE5 36.0.0
CHG-MAP: MASP A - COMPLTD
```

Repeat this step for all new entries being added to the existing mated application.

If the Flexible GTT Load Sharing feature is not enabled, the mated application can contain a maximum of 32 entries.

If the Flexible GTT Load Sharing feature is enabled, and the MAP set is not the default MAP set, the MAP set can contain a maximum of 32 entries.

If the Flexible GTT Load Sharing feature is enabled, and the MAP set is the default MAP set, the default MAP set can contain multiple MAP groups. Each group in the default MAP set can contain a maximum of 32 point code and subsystem entries.

16. Verify the changes using the `rtrv-map` command with the primary point code and subsystem specified in Step 14 and Step 15.

If a new MAP set was created in Step 14, the mapset parameter should be specified with the `rtrv-map` command. The value for the mapset parameter should be the MAP set ID generated in Step 14.

If the mated application was added to an existing MAP set in Step 15, the mapset parameter and value specified in Step 15 should be specified with the `rtrv-map` command.

If the Flexible GTT Load Sharing feature is not enabled for this example, enter these commands.

```
rtrv-map:pca=004-004-004:ssn=254
```

This is an example of the possible output.

```
rlghncxa03w 09-07-07 00:34:31 GMT EAGLE5 41.1.0
PCA Mate PCA SSN RC MULT SRM MRC GRP NAME SSO WT %WT THR
004-004-004 254 10 SHR *Y *Y grp10 OFF -- --- --
100-100-100 254 10 SHR *Y *Y grp10 OFF -- --- --
MAP TABLE IS (37 of 1024) 4 % FULL
```

```
rtrv-map:pca=002-002-002:ssn=250
```

This is an example of the possible output.
Global Title Translation (GTT) Overview

MAP TABLE IS   (37 of 1024)  4 % FULL
rtrv-map:pca=008-008-008:ssn=254
This is an example of the possible output.

rghncxa03w 09-07-07 00:34:31 GMT EAGLE5 41.1.0
PCN       NET  Mate PC      SSN RC MULT SRM MRC GRP NAME SSO WT %WT THR
5-005-5                      50 10  SHR *N  *N  grp20    OFF -- ---  --
        N  0257          50 10  SHR *N  *N  grp20    OFF -- ---  --
        I  s-5-005-6       50 10  SHR *N  *N  grp20    OFF -- ---  --
        I  5-005-1       50 10  SHR *N  *N  grp20    OFF -- ---  --
MAP TABLE IS   (37 of 1024)  4 % FULL
This is an example of the possible output.

Note: If the Weighted GTT Load Sharing feature is not enabled or turned on, the WT, %WT, and THR columns are not shown in the rtrv-map output.

If the Flexible GTT Load Sharing feature is enabled for this example, enter these commands.
rtrv-map:pca=004-004-004:ssn=254:mapset=10
This is an example of the possible output.
This is an example of the possible output.

<table>
<thead>
<tr>
<th>PCA</th>
<th>Mate PCA</th>
<th>SSN</th>
<th>RC</th>
<th>MULT</th>
<th>SRM</th>
<th>MRC</th>
<th>GRP</th>
<th>NAME</th>
<th>SSO</th>
<th>WT</th>
<th>%WT</th>
<th>THR</th>
</tr>
</thead>
<tbody>
<tr>
<td>002-002-002</td>
<td></td>
<td>250</td>
<td>10</td>
<td></td>
<td>SHR</td>
<td>*Y</td>
<td>*Y</td>
<td>grp15</td>
<td>ON</td>
<td>10</td>
<td>50</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100-130-079</td>
<td>250</td>
<td>10</td>
<td>SHR</td>
<td>*Y</td>
<td>*Y</td>
<td>grp15</td>
<td>ON</td>
<td>10</td>
<td>50</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td></td>
<td>068-135-094</td>
<td>251</td>
<td>10</td>
<td>SHR</td>
<td>*Y</td>
<td>*Y</td>
<td>grp05</td>
<td>OFF</td>
<td>20</td>
<td>100</td>
<td>40</td>
</tr>
</tbody>
</table>

This is an example of the possible output.

<table>
<thead>
<tr>
<th>PCA</th>
<th>Mate PCA</th>
<th>SSN</th>
<th>RC</th>
<th>MULT</th>
<th>SRM</th>
<th>MRC</th>
<th>GRP</th>
<th>NAME</th>
<th>SSO</th>
<th>WT</th>
<th>%WT</th>
<th>THR</th>
</tr>
</thead>
<tbody>
<tr>
<td>008-008-008</td>
<td></td>
<td>254</td>
<td>10</td>
<td></td>
<td>SHR</td>
<td>*Y</td>
<td>*Y</td>
<td>grp10</td>
<td>ON</td>
<td>10</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>200-147-100</td>
<td></td>
<td>254</td>
<td>10</td>
<td></td>
<td>SHR</td>
<td>*Y</td>
<td>*Y</td>
<td>grp10</td>
<td>ON</td>
<td>20</td>
<td>13</td>
<td>1</td>
</tr>
<tr>
<td>179-183-050</td>
<td></td>
<td>250</td>
<td>10</td>
<td></td>
<td>SHR</td>
<td>*Y</td>
<td>*Y</td>
<td>grp15</td>
<td>OFF</td>
<td>30</td>
<td>20</td>
<td>1</td>
</tr>
<tr>
<td>031-049-100</td>
<td></td>
<td>250</td>
<td>10</td>
<td></td>
<td>SHR</td>
<td>*Y</td>
<td>*Y</td>
<td>grp15</td>
<td>ON</td>
<td>40</td>
<td>20</td>
<td>1</td>
</tr>
<tr>
<td>056-113-200</td>
<td></td>
<td>251</td>
<td>10</td>
<td></td>
<td>SHR</td>
<td>*Y</td>
<td>*Y</td>
<td>grp05</td>
<td>OFF</td>
<td>50</td>
<td>33</td>
<td>1</td>
</tr>
</tbody>
</table>

This is an example of the possible output.

<table>
<thead>
<tr>
<th>PCA</th>
<th>Mate PCA</th>
<th>SSN</th>
<th>RC</th>
<th>MULT</th>
<th>SRM</th>
<th>MRC</th>
<th>GRP</th>
<th>NAME</th>
<th>SSO</th>
<th>WT</th>
<th>%WT</th>
<th>THR</th>
</tr>
</thead>
<tbody>
<tr>
<td>255-001-000</td>
<td></td>
<td>251</td>
<td>10</td>
<td></td>
<td>SHR</td>
<td>*Y</td>
<td>*Y</td>
<td>grp01</td>
<td>OFF</td>
<td>50</td>
<td>55</td>
<td>20</td>
</tr>
<tr>
<td>253-001-002</td>
<td></td>
<td>254</td>
<td>10</td>
<td></td>
<td>SHR</td>
<td>*Y</td>
<td>*Y</td>
<td>grp01</td>
<td>OFF</td>
<td>10</td>
<td>11</td>
<td>20</td>
</tr>
<tr>
<td>255-001-001</td>
<td></td>
<td>56</td>
<td>10</td>
<td></td>
<td>SHR</td>
<td>*Y</td>
<td>*Y</td>
<td>grp05</td>
<td>OFF</td>
<td>30</td>
<td>33</td>
<td>20</td>
</tr>
</tbody>
</table>

This is an example of the possible output.

<table>
<thead>
<tr>
<th>PCI NET</th>
<th>Mate PC</th>
<th>SSN</th>
<th>RC</th>
<th>MULT</th>
<th>SRM</th>
<th>MRC</th>
<th>GRP</th>
<th>NAME</th>
<th>SSO</th>
<th>WT</th>
<th>%WT</th>
<th>THR</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-005-5</td>
<td></td>
<td>50</td>
<td>10</td>
<td>SHR</td>
<td>*N</td>
<td>*N</td>
<td>grp20</td>
<td>OFF</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>0257</td>
<td>50</td>
<td>10</td>
<td>SHR</td>
<td>*N</td>
<td>*N</td>
<td>grp20</td>
<td>OFF</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>s-5-005-6</td>
<td>50</td>
<td>10</td>
<td>SHR</td>
<td>*N</td>
<td>*N</td>
<td>grp20</td>
<td>OFF</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>5-005-1</td>
<td>50</td>
<td>10</td>
<td>SHR</td>
<td>*N</td>
<td>*N</td>
<td>grp20</td>
<td>OFF</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
If the Weighted GTT Load Sharing feature is not enabled, the WT, %WT, and THR columns are not shown in the `rtrv-map` output.

If the GTT Load Sharing with Alternate Routing Indicator feature is not enabled, the MRNSET and MRNPC fields are not shown in the `rtrv-map` output.

17. Backup the new changes using the `chg-db:action=backup:dest=fixed` command.

These messages should appear, the active Maintenance and Administration Subsystem Processor (MASP) appears first.

```
BACKUP (FIXED) : MASP A - Backup starts on active MASP.
BACKUP (FIXED) : MASP A - Backup on active MASP to fixed disk complete.
BACKUP (FIXED) : MASP A - Backup starts on standby MASP.
BACKUP (FIXED) : MASP A - Backup on standby MASP to fixed disk complete.
```

Provisioning a Combined Dominant/Load Shared Mated Application

This procedure is used to provision a combined dominant/load shared mated application in the database using the `ent-map` and `chg-map` commands. A combined dominant/load shared mated application is a mated application that contains a minimum of two RC (relative cost) values that are equal and a minimum of one RC value that is different. The `ent-map` and `chg-map` commands use these parameters to provision a combined dominant/load shared mated application.

`:pc/pca/pci/pcn/pcn24` – The point code of the primary signaling point that is to receive the message.

`:mpc/mpca/mpci/mpcn/mpcn24` – The point code of the backup signaling point that is to receive the message.

**Note:** The point codes can be either an ANSI point code (`pc/pca/mpc/mpca`), ITU-I or ITU-I spare point code (`pci`, `mpci`), a 14-bit ITU-N or 14-bit ITU-N spare point code (`pcn`, `mpcn`), or a 24-bit ITU-N (`pcn24`, `mpcn24`) point code.

**Note:** Refer to Chapter 2, Configuring Destination Tables in the *Database Administration Manual - SS7* for a definition of the point code types that are used on the EAGLE 5 ISS and for a definition of the different formats that can be used for ITU national point codes.

`:ssn` – Subsystem number – the subsystem address of the primary point code that is to receive the message. The value for this parameter is 2 to 255.

`:mssn` – Mate subsystem number – the subsystem address of the backup point code that is to receive the message. The value for this parameter is 2 to 255.

`:rc` – The relative cost value of the primary point code and subsystem, defined by the `pc/pca/pci/pcn/pcn24` and `ssn` parameters. The `rc` parameter has a range of values from 0 to 99, with the default value being 10.

`:materc` – The relative cost value of the backup point code and subsystem, defined by the `mpc/mpca/mpci/mpcn/mpcn24` and `mssn` parameters. The `materc` parameter has a range of values from 0 to 99, with the default value being 50.
The name of the concerned signaling point code group that contains the point codes that should be notified of the subsystem status. This parameter applies to both RPCs/SSNs. The value for this parameter is shown in the `rtrv-cspc` output. If the desired value is not shown in the `rtrv-cspc` output, perform `Adding a Concerned Signaling Point Code` to add the desired group. If this parameter is not specified, then a CSPC group name is not specified for the mated application.

Message routing under congestion – defines the handling of Class 0 messages during congestion conditions. The value for this parameter is `yes` or `no`. This parameter can be specified for any type of mated application, but this parameter affects only the traffic for a dominant mated application. The default value for ANSI combined dominant/load shared mated applications is `yes`. The default value for ITU combined dominant/load shared mated applications is `no`.

Subsystem routing messages – defines whether subsystem routing messages (SBR, SNR) are transmitted between the mated applications. The value for this parameter is `yes` or `no`. The `srm=yes` parameter can be specified only for ANSI mated applications. The default value for ANSI combined dominant/load shared mated applications is `yes`. The default value for ITU combined dominant/load shared mated applications is `no`.

Subsystem Status Option – defines whether the subsystem status option is on or off. This parameter allows the user the option to have the specified subsystem marked as prohibited even though an MTP-RESUME message has been received by the indicating that the specified point code is allowed. The value for this parameter is `on` or `off`. The default value is `off`.

The MAP set ID that the mated applications are assigned to. This parameter can be specified only if the Flexible GTT Load Sharing feature is enabled. This parameter must be specified if the Flexible GTT Load Sharing feature is enabled, the point code and subsystem specified for the global title translation must be assigned to the MAP set specified by this parameter. The status of the Flexible GTT Load Sharing feature is shown in the `rtrv-ctrl-feat` output. To enable the Flexible GTT Load Sharing feature, perform the `Activating the Flexible GTT Load Sharing Feature` procedure.

The `mapset` parameter has three values:

- `dflt` – to assign the MAP to the default MAP set. This value can be specified with both the `ent-map` and `chg-map` commands.
- `new` – to assign the mated application to a new MAP set. This value can be specified only with the `ent-map` command.
- the specific number of an existing MAP set if you are assigning the mated application to an existing MAP set. This value can be specified only with the `chg-map` command.

Refer to the `Provisioning a MAP Set` section for information on provisioning MAP sets.

The weight value assigned to the `pc/pca/pcl/pcn/pcn24` parameter value. The value of this parameter is from 1 - 99.

The weight value assigned to the `mpc/mpca/mpci/mpcn/mpcn24` parameter value. The value of this parameter is from 1 - 99.

The in-service threshold assigned to the MAP group or MAP set. The in-service threshold is the minimum percentage (from 1 - 100) of weight that must be available for an RC group (a group of entries in the MAP group or MAP set that have the same RC value assigned) to be considered available to carry traffic. If the percentage of the available weight is less than the in-service threshold, then the entire RC group is considered unavailable for traffic. If the percentage of the available weight is equal to or greater than the in-service threshold, then the RC group is considered available, and traffic can be sent to any available entity in the RC group. The value of the `thr` parameter is assigned to all entries.
that have the same RC (relative cost) value in the MAP group or MAP set that contain the point code specified in the ent-map or chg-map command.

Refer to the Provisioning Weights and In-Service Thresholds for Mated Applications section for information on provisioning MAP groups or MAP sets with weight and in-service threshold values.

:mrnset – The MRN set ID that is being assigned to the mated application. This is the MRN set from which alternate routing indicator searches are performed.

:mrnpc/mrnpca/mrnpci/mrnpcn/mrnpcn24 – The point code assigned to the mrnset that is being assigned to the MAP set.

The current values of the mrnset and :mrnpc/mrnpca/mrnpci/mrnpcn/mrnpcn24 parameters are shown in the rtrv-map output only if the Flexible GTT Load Sharing and the GTT Load Sharing with Alternate Routing Indicator features are enabled.

The new values for the mrnset and mrnpc/mrnpca/mrnpci/mrnpcn/mrnpcn24 parameters must be shown in the rtrv-mrn output.

The network type of the pc/pca/pci/pcn/pcn24 and mrnpc/mrnpca/mrnpci/mrnpcn/mrnpcn24 parameter values must be compatible, as shown in Table 47: MAP and MRN Point Code Parameter Combinations.

Table 47: MAP and MRN Point Code Parameter Combinations

<table>
<thead>
<tr>
<th>MAP Point Code Parameter</th>
<th>MRN Point Code Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>pc/pca</td>
<td>mrnpca/mrnpca</td>
</tr>
<tr>
<td>pci or pcn (See Notes 1 and 2)</td>
<td>mrnpci or mrnpcn (See Notes 1 and 2)</td>
</tr>
<tr>
<td>pcn24</td>
<td>mrnpnc24</td>
</tr>
</tbody>
</table>

Notes:
1. If the network type of the MAP point code parameter is ITU-I (pci), the network type of the MRN point code parameter can be either ITU-I (mappci) or ITU-N (mappcn).
2. If the network type of the MAP point code parameter is ITU-N (pcn), the network type of the MRN point code parameter can be either ITU-I (mappci) or ITU-N (mappcn).

A combined dominant/load shared mated application can contain up to 32 point codes and subsystems, a primary point code and subsystem, and up to 31 mated point codes and subsystems. When a new combined dominant/load shared mated application is added to the database, the first two entries, the primary point code and subsystem and a mate point code and subsystem are added using the ent-map command. All other mated point code and subsystem entries that are being assigned to the primary point code and subsystem are added to the combined dominant/load shared mated application using the chg-map command.

A combined dominant/load shared mated application is a combination of the dominant and load sharing mated applications. This mated application must contain a minimum of two RC values that are equal and a minimum of one RC value that is different. The traffic is shared between the point codes with the lowest relative cost values. If these point codes and subsystems become unavailable, the traffic is routed to the other point codes and subsystems in the mated application and shared between these point codes and subsystems.
If the Flexible GTT Load Sharing feature is not enabled, the primary point code and subsystem number or the mate point code and subsystem number combination can be in the database only once. If the Flexible GTT Load Sharing feature is enabled, the primary point code and subsystem number or mate point code and mate subsystem number combination can be in multiple MAP sets, but can be in the default MAP set only once. Refer to the Provisioning a MAP Set section for information on provisioning MAP sets.

The point codes specified in the ent-map or chg-map commands (pc/pca, pci, pcn, or pcn24, and mpc/mpca, mpci, mpcn, or mpcn24) must be either a full point code in the routing point code table or the EAGLE 5 ISS's true point code. Cluster point codes or network routing point codes cannot be specified with this command. The rtrv-rte command can be used to verify the point codes in the routing table. The point codes in the routing table are shown in the DPCA, DPCI, DPCN, or DPCN24 fields of the rtrv-rte command output. The EAGLE 5 ISS's true point code is shown in the PCA, PCI, PCN, or PCN24 fields of the rtrv-sid command output.

A combined dominant/load shared mated application can be provisioned with a point code that is assigned to other mated applications as long as the SSN is not assigned to other mated applications. A point code can be assigned to maximum of 12 different SSNs.

For mated applications containing ANSI or 24-bit ITU-N point codes, or the EAGLE 5 ISS's true point code, the format of the point codes specified in the ent-map command must be the same. For example, if the primary point code is a 24-bit ITU-N point code (pcn24), the mate point code must be a 24-bit ITU-N point code (mpcn24). The mate point codes of mated applications containing either ITU-I, ITU-I spare, 14-bit ITU-N, or 14-bit ITU-N spare primary point codes do not have to be the same format as the primary point code. The mate point codes of these mated applications can be a mixture of ITU-I, ITU-I spare, 14-bit ITU-N, or 14-bit ITU-N spare point codes.

The format of the point codes in the CSPC group specified with the grp parameter must be the same as the primary point code specified with the ent-map command only if the ANSI/ITU SCCP Conversion feature is not enabled. If the ANSI/ITU SCCP Conversion feature is enabled, the CSPC group may contain a mixture of point code types (refer to the Adding a Concerned Signaling Point Code procedure), and the network type of the CSPC group can be different from the network type of the primary point code of the mated application. The status of the ANSI/ITU SCCP Conversion feature can be verified with the rtrv-ctrl-feat command.

The values for the primary point code and subsystem combination (pc/ssn) cannot be the same as the mated point code and subsystem combination (mpc/mssn). However, the primary and mated point codes can be the same as long as the subsystem numbers are different.

If a mate point code (mpc/mpca/mpci/mpcn/mpcn24) is specified, the mssn parameter must be specified. Also, the point code type of the mate point code must be the same as the point code type of the primary point code. For example, if the primary point code is a 24-bit ITU-N point code (pcn24), the mate point code must be a 24-bit ITU-N point code (mpcn24). If spare point codes are being used, both the primary and mate point codes must be spare point codes. For example, if the primary point code is an ITU-I spare point code, the mate point code must be an ITU-I spare point code.

If the mssn parameter is specified, the mate point code (mpc/mpca/mpci/mpcn/mpcn24) must be specified.

If the grp, srm, mrc, and sso parameter values are specified, and the specified point code and SSN is assigned to multiple mated applications, the grp, srm, mrc, and sso values for all mated applications containing the specified point code and SSN will be changed to the values specified in this procedure. The EAGLE 5 ISS can contain 1024, 2000, or 3000 mated applications. The EAGLE 5 ISS default is 1024 mated applications. This quantity can be increased to 2000 by enabling the feature access key for part number 893-0077-01, or to 3000 by enabling the feature access key for part number 893-0077-10. For
more information on enabling these feature access keys, refer to the Enabling the XMAP Table Expansion Feature procedure.

Provisioning a MAP Set

The Flexible GTT Load Sharing feature provides the ability to define multiple load sharing sets in the MAP table where the same point code and subsystem can be assigned to different load sharing sets.

The MAP table contains specific load sharing sets, designated by numbers, and a default MAP set.

Flexible Final GTT Load Sharing provides flexible load sharing for global title translations defined in the GTT table and not for the MPS-based features. The MPS-based features do not support the MAP set ID parameter. The MPS-based features perform lookups for load sharing in the default MAP set and the GTT table. The entries in the GTT table can be linked to a MAP set ID, allowing lookups in a specific MAP set other than the default MAP set.

Any MAP entries that were provisioned in the database before the Flexible GTT Load Sharing feature is enabled are placed in the default MAP set when the Flexible GTT Load Sharing feature is enabled.

To provision entries in the default MAP set, the mapset=dflt parameter must be specified with the ent-map or chg-map commands.

To provision entries in an existing MAP set other than the default MAP set, the mapset=<MAP set ID> parameter must be specified with the chg-map command. Provisioning entries in an existing MAP set can be performed only with the chg-map command.

To provision entries in a new MAP set, the mapset=new parameter must be specified with the ent-map command. The mapset=new parameter can be specified only with the ent-map command. When the ent-map command is executed with the mapset=new parameter, the new MAP set ID is automatically generated and displayed in the output of the ent-map command as follows.

New MAPSET Created : MAPSETID = <new MAP set ID>

A MAP set, other than the default MAP set, is a MAP group provisioned with the MAP set ID and can contain a maximum of 32 point codes.

The default MAP set can contain multiple MAP groups. The point code and subsystem number combination can appear only once in the default MAP set. The point code can appear in multiple MAP groups in the default MAP set with different subsystem numbers.

The point code and subsystem number combination provisioned in a MAP set can be provisioned in multiple MAP sets. All the point codes in a MAP set must be different.

Provisioning Weights and In-Service Thresholds for Mated Applications

Weighted GTT Load Sharing allows unequal traffic loads to be provisioned in MAP load sharing groups or MAP load sharing sets. This feature also allows provisioning control over load sharing groups or sets so that if insufficient capacity within the load sharing group or set is available, the load sharing group or set is not used.

To provision the weight values and in-service threshold values for MAP groups or MAP sets in this procedure, the wt, mwt, and thr parameters are used.

The wt, mwt, and thr parameters can be used only:

- If the MAP group or MAP set is either a load shared or combined dominant/load shared MAP group or MAP set.
- If the Weighted GTT Load Sharing feature is enabled and turned on.
The status of the Weighted GTT Load Sharing feature can be verified by entering the rtrv-ctrl-feat command. If the Weighted GTT Load Sharing feature is not enabled or not turned on, perform the Activating the Weighted GTT Load Sharing Feature procedure to enable and turn on the Weighted GTT Load Sharing feature.

If either the wt or mwt parameters are specified with the ent-map command, both parameters must be specified with the ent-map command.

To assign an in-service threshold value to the entries of a MAP group or MAP set that contains the point code value specified in the ent-map command, use the thr parameter with the wt and mwt parameters. When the thr parameter is specified with the ent-map command, the in-service threshold value is assigned to both entries specified in the ent-map command. The thr parameter cannot be specified with the chg-map command when adding additional entries to the MAP group or MAP set. When additional entries are added to the MAP group or MAP set with the chg-map command, the thr value that was specified in the ent-map command is assigned to the additional entries. For information on using the thr parameter with the chg-map command, refer to the Changing the Weight and In-Service Threshold Values of a Mated Application procedure.

The thr parameter does not have to be specified with the ent-map command. If the thr parameter is not specified with the ent-map command, the THR parameter value for the MAP group or MAP set is set to 1.

Specifying the wt and mwt parameters assigns a weight value to the point codes specified in the ent-map command. The wt parameter value is assigned to the mpc/mpca/mpci/mpcn/mpcn24 parameter value and the mwt parameter value is assigned to the mpc/mpca/mpci/mpcn/mpcn24 parameter value.

When additional entries are added to the MAP group or MAP set with the chg-map command, and the MAP group or MAP set entries have weight and in-service threshold values assigned, a weight value must be assigned to the mpc/mpca/mpci/mpcn/mpcn24 parameter value using the mwt parameter.

The wt parameter does not have to be specified with the chg-map command. If the wt parameter is specified with the chg-map command, the weight value for the pc/pca/pci/pcn/pcn24 parameter is not changed.

If the wt parameter is specified with the chg-map command and the wt value is the same as the value currently assigned to the pc/pca/pci/pcn/pcn24 parameter, the weight value for the pc/pca/pci/pcn/pcn24 parameter is not changed.

If the wt parameter is specified with the chg-map command and the wt value is different from the value currently assigned to the pc/pca/pci/pcn/pcn24 parameter, the weight value for the pc/pca/pci/pcn/pcn24 parameter is changed to the new wt value.

The weight values assigned to the entries in the MAP group or MAP set are shown in the WT column in the rtrv-map output.

The in-service threshold values assigned to the entries in the MAP group or MAP set are shown in the THR column in the rtrv-map output.

The %WT column in the rtrv-map output shows the percentage of the traffic the particular entry in the MAP group or MAP set will handle.

The WT, %WT, and THR columns are shown in the rtrv-map output only if the Weighted GTT Load Sharing feature is enabled and turned on.

For more information on the Weighted GTT Load Sharing feature, refer to the Weighted GTT Load Sharing section.
Canceling the RTRV–MAP Command

Because the rtrv-map command used in this procedure can output information for a long period of time, the rtrv-map command can be canceled and the output to the terminal stopped. There are three ways that the rtrv-map command can be canceled.

- Press the F9 function key on the keyboard at the terminal where the rtrv-map command was entered.
- Enter the canc-cmd without the trm parameter at the terminal where the rtrv-map command was entered.
- Enter the canc-cmd:trm=<xx>, where <xx> is the terminal where the rtrv-map command was entered, from another terminal other that the terminal where the rtrv-map command was entered. To enter the canc-cmd:trm=<xx> command, the terminal must allow Security Administration commands to be entered from it and the user must be allowed to enter Security Administration commands. The terminal’s permissions can be verified with the rtrv-secu-trm command. The user’s permissions can be verified with the rtrv-user or rtrv-secu-user commands.

For more information about the canc-cmd command, refer to the Commands Manual.

1. Display the mated applications in the database using the rtrv-map command.

This is an example of the possible output.

```
righncxa03w 09-07-07 00:34:31 GMT EAGLE5 41.1.0
MAPSET ID=DFLT
PCA Mate PCA SSN RC MULT SRM MRC GRP NAME SSO
255-001-000 250 10 SOL *Y *Y grp01 ON
MAPSET ID=1
PCA Mate PCA SSN RC MULT SRM MRC GRP NAME SSO
255-001-000 251 10 SHR *Y *Y grp01 OFF
253-001-002 254 10 SHR *Y *Y grp01 OFF
MAPSET ID=2
PCA Mate PCA SSN RC MULT SRM MRC GRP NAME SSO
255-001-000 252 10 SOL *Y *Y grp01 ON
MAPSET ID=DFLT
PCA Mate PCA SSN RC MULT SRM MRC GRP NAME SSO
255-001-000 253 10 SHR *Y *Y grp01 OFF
253-001-004 254 10 SHR *Y *Y grp01 OFF
MAPSET ID=3
PCA Mate PCA SSN RC MULT SRM MRC GRP NAME SSO
255-001-001 255 10 DOM YES YES grp01 ON
253-001-005 254 20 DOM YES YES grp01 ON
MAPSET ID=4
PCA Mate PCA SSN RC MULT SRM MRC GRP NAME SSO
255-001-001 250 10 DOM YES YES grp01 OFF
253-001-001 254 20 DOM YES YES grp01 OFF
MAPSET ID=DFLT
PCA Mate PCA SSN RC MULT SRM MRC GRP NAME SSO
255-001-002 251 10 SHR *Y *Y grp01 OFF
255-001-002 254 10 SHR *Y *Y grp01 OFF
MAPSET ID=5
PCA Mate PCA SSN RC MULT SRM MRC GRP NAME SSO
255-001-002 252 10 DOM YES YES grp01 ON
```
If any of the following items are not shown in the rtrv-map output, then the feature corresponding to these items is not enabled, or turned on if required.

- The MAPSET field - the Flexible GTT Load Sharing feature is not enabled.
- The MRNSET and MRNPC fields - the GTT Load Sharing with Alternate Routing Indicator feature is not enabled.
- The WT, %WT, THR columns - the Weighted GTT Load Sharing feature is not enabled and turned on.

If the maximum number of mated applications shown in the rtrv-map output in Step 1 is 1024, 2000, or 3000, continue the procedure with Step 3.

2. If the maximum number of mated applications shown in the rtrv-map output in Step 1 is 36000, the Flexible GTT Load Sharing feature is enabled.

Although the rtrv-map output shows there can be 36000 entries, a maximum of 1024, 2000, or 3000 different point codes (depending on whether the XMAP Table Expansion feature is enabled for 2000 or 3000 mated applications) can be provisioned for mated applications. To verify the number of different point codes that can be provisioned for mated applications, enter the rtrv-tbl-capacity command. The following is an example of the possible output.

```
rlghncxa03w 07-05-28 21:15:37 GMT EAGLE5 37.0.0
MAP table is (3000 of 3000) 100% full
```

Note: The rtrv-tbl-capacity command output contains other fields that are not used by this procedure. If you wish to see all the fields displayed by the rtrv-tbl-capacity command, see the rtrv-tbl-capacity command description in the Commands Manual.

3. Continue the procedure by performing one of these steps.

- If the rtrv-map output in Step 1 or the rtrv-tbl-capacity output in Step 2 shows that the maximum number of mated applications is 3000, and the current number of provisioned mated
applications is 3000, no new point codes can be used to provision mated applications. Continue
the procedure with Step 4.

- If the If the rtrv-map output in Step 1 or the rtrv-tbl-capacity output in Step 2 shows
  that the maximum number of mated applications is either 1024 or 2000, and the mated application
  being added increases the number beyond 1024 or 2000, perform the Enabling the XMAP Table
  Expansion Feature procedure to enable a greater quantity of mated applications. After the quantity
  of mated applications has been increased, continue the procedure with Step 4. If the maximum
  number of mated applications is not increased, no new point codes can be used to provision
  mated applications.

- If the rtrv-map output in Step 1 or the rtrv-tbl-capacity output in Step 2 shows that the
  maximum number of mated applications is either 1024, 2000, or 3000 and the mated application
  being added will not increase the number beyond the quantity shown in the rtrv-map output
  in Step 1 or the rtrv-tbl-capacity output in Step 2, continue the procedure with Step 4.

4. A MAP group, without the Flexible GTT Load Sharing feature enabled, a MAP set, other than the
default MAP set, and a MAP group contained in the default MAP set can contain a maximum of
32 entries.

Verify the number of entries that the MAP group or MAP set contains by entering the rtrv-map
command with the primary point code and SSN assigned to the MAP group or MAP set. If the
Flexible GTT Load Sharing feature is enabled, the mapset parameter and MAP set ID of the MAP
set that the new mated application will be added to.

If the specified MAP set is not the default MAP set, only the mapset parameter needs to be specified
with the rtrv-map command. The point code and SSN does not need to be specified.

For this example, enter one of these commands.

rtrv-map:pca=002-002-007:ssn=50

The following is an example of the possible output.

```
rlghncxa03w 09-07-07 00:34:31 GMT EAGLE5 41.1.0

PCA Mate PCA SSN RC MULT SRM MRC GRP NAME SSO
002-002-007 50 10 COM YES *Y grp01 OFF
 002-002-008 30 10 COM YES *Y grp01 OFF
 002-002-009 30 10 COM YES *Y grp01 OFF
 002-002-010 30 20 COM YES *Y grp01 OFF
 002-002-011 30 20 COM YES *Y grp01 OFF

MAP TABLE IS (25 of 1024) 2 % FULL
```

rtrv-map:pca=002-002-007:ssn=50:mapset=dflt

The following is an example of the possible output.

```
rlghncxa03w 09-07-07 00:34:31 GMT EAGLE5 41.1.0

PCA Mate PCA SSN RC MULT SRM MRC GRP NAME SSO
MAPSET ID=DFLT
002-002-007 50 10 COM YES *Y grp01 OFF
 002-002-008 30 10 COM YES *Y grp01 OFF
 002-002-009 30 10 COM YES *Y grp01 OFF
 002-002-010 30 20 COM YES *Y grp01 OFF
 002-002-011 30 20 COM YES *Y grp01 OFF
```

910-6277-001 Revision A, January 2012
The following is an example of the possible output.

If the MAP group or MAP set contains 32 entries, no more entries can be added to the specified MAP group or MAP set. One of these actions can be performed.

- Entries can be added another MAP group or MAP set. Repeat this step for the other MAP group or MAP set.
- Entries can be removed from the specified MAP group or MAP set. To remove entries from the specified MAP group or MAP set, perform the Removing a Mated Application procedure.
- Entries can be added to a new MAP group or MAP set.

Note: If none of these actions will be performed, then this procedure cannot be performed.

If the MAP group or MAP set contains less than 32 entries, entries can be added to the MAP group or MAP set.

After it has been determined which MAP group or MAP set that the new entries will be added to (a new MAP group or MAP set or an existing MAP group or MAP set), continue the procedure by performing one of these steps.

- If an existing point code is being added to this MAP group or MAP set, continue the procedure with Step 5.
- If a new point code is being added to this MAP group or MAP set, continue the procedure by performing one of these steps.
  - If a concerned signaling point code (CSPC) group is not being assigned to the mated application, continue the procedure with Step 8. If the mated point code is not assigned to a CSPC group, that point code will not be notified of the subsystem’s status.
  - If a concerned signaling point code (CSPC) group will be assigned to the mated application, continue the procedure with Step 6.

5. A mated application can be provisioned with a point code that is assigned to other mated applications as long as the SSN is not assigned to other mated applications.

A point code can be assigned to maximum of 12 different SSNs.

Verify the number of SSNs assigned to the point code that will be specified for the mated application in this procedure by entering the `rtrv-map` command with the point code of the new mated application. For this example, enter this command.

```
rtrv-map:pc=255-001-000
```
If the Flexible GTT Load Sharing feature is enabled, the MAPSET IDs for the mated applications are shown in the \texttt{rtrv-map} output.

If the Weighted GTT Load Sharing feature is enabled and turned, the \texttt{WT}, \texttt{\%WT}, and \texttt{THR} columns are shown in the \texttt{rtrv-map} output.

If the point code is assigned to 12 different SSNs, and neither an existing point code in the \texttt{rtrv-map} output nor a new point code will be used to provision the mated application, then this procedure cannot be performed.

If the point code is assigned to less than 12 different SSNs, then the existing point code in the \texttt{rtrv-map} output can be used to provision the mated application.

If the point code is assigned to 12 different SSNs, another existing point code in the \texttt{rtrv-map} output or a new point code must be used to provision the mated application. If an existing point code in the \texttt{rtrv-map} output will be used to provision the mated application, repeat this step for that point code.

After it has been determined which point code will be used to provision the mated application (a new point code or an existing point code), continue the procedure by performing one of these steps.

- If a concerned signaling point code (CSPC) group is not being assigned to the mated application, continue the procedure with \texttt{Step 8}. If the mated point code is not assigned to a CSPC group, that point code will not be notified of the subsystem’s status.

- If a concerned signaling point code (CSPC) group will be assigned to the mated application, continue the procedure with \texttt{Step 6}.

6. Display the point codes in the CSPC group that you wish to assign to the mated application by first entering the \texttt{rtrv-cspc} command with no parameters.

This is an example of the possible output.
If the desired CSPC group is shown in the `rtrv-cspc` output, re-enter the `rtrv-cspc` command with the CSPC group name. For this example, enter these commands.

```
rtrv-cspc:grp=grp05
```

This is an example of the possible output.

```
rlghncxa03w 06-10-25 09:48:31 GMT EAGLE5 36.0.0
CSPC GRP PCA
grp05 005-005-005
 007-007-007
 008-008-008
 009-009-009
```

```
rtrv-cspc:grp=grp10
```

This is an example of the possible output.

```
rlghncxa03w 06-10-25 09:59:31 GMT EAGLE5 36.0.0
CSPC GRP PCA
grp10 003-003-003
 004-004-004
 008-008-008
 009-009-009
```

```
rtrv-cspc:grp=grp15
```

This is an example of the possible output.

```
rlghncxa03w 06-10-25 09:48:31 GMT EAGLE5 36.0.0
CSPC GRP PCA
grp15 005-005-005
 006-006-006
 008-008-008
 009-009-009
```

**Note:** If the ANSI/ITU SCCP Conversion feature is enabled, then point codes of multiple network types can be displayed in the `rtrv-cspc` output, if point codes of multiple network types are assigned to the CSPC group.

If the CSPC group is not in the database, or if the required point code is not assigned to the CSPC group, perform the *Adding a Concerned Signaling Point Code* procedure and add the required CSPC group or point code to the database.

**Note:** If the output of the `rtrv-cspc` command performed in *Step 6* shows CSPC groups containing a mixture of point code types, or if the new CSPC group that was added in *Step 6* contains a mixture of point code types, continue the procedure with *Step 8*.

7. The format of the point codes in the CSPC group specified with the `grp` parameter must be the same as the primary point code specified with the `ent-map` command only if the ANSI/ITU SCCP Conversion feature is not enabled.

If the ANSI/ITU SCCP Conversion feature is enabled, the CSPC group may contain a mixture of point code types (refer to the *Adding a Concerned Signaling Point Code* procedure), and the network type of the CSPC group can be different from the network type of the primary point code of the mated application.

Verify the status of the ANSI/ITU SCCP Conversion feature by entering this command.
The following is an example of the possible output.

```
rlghncxa03w 06-10-28 21:15:37 GMT EAGLE5 36.0.0
The following features have been permanently enabled:

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Partnum</th>
<th>Status</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCCP Conversion</td>
<td>893012001</td>
<td>on</td>
<td>----</td>
</tr>
</tbody>
</table>

The following features have been temporarily enabled:

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Partnum</th>
<th>Status</th>
<th>Quantity</th>
<th>Trial Period Left</th>
</tr>
</thead>
</table>
| Zero entries found.

The following features have expired temporary keys:

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Partnum</th>
</tr>
</thead>
</table>
| Zero entries found.
```

If the ANSI/ITU SCCP Conversion feature is not enabled, perform the `Activating the ANSI/ITU SCCP Conversion Feature` procedure to enable the ANSI/ITU SCCP Conversion feature.

8. If the MAPSET column is shown in the `rtrv-map` output in *Step 1*, the Flexible GTT Load Sharing feature is enabled. Continue the procedure with *Step 9*.

8. If the MAPSET column is not shown in *Step 1* and you do not wish to provision MAP sets in this procedure, continue the procedure with *Step 9*.

8. If the MAPSET column is not shown in *Step 1* and you wish to provision MAP sets in this procedure, perform the `Activating the Flexible GTT Load Sharing Feature` procedure to enable the Flexible GTT Load Sharing feature. After the Flexible GTT Load Sharing feature is enabled, continue the procedure with *Step 9*.

**Note:** If you do not wish to assign weight and in-service threshold values to the MAP entries in the MAP group or MAP set, continue the procedure with *Step 10*.

9. If you wish to assign weight and in-service threshold values to the entries in the MAP group or MAP set, and the WT, %WT, and THR columns are shown in the `rtrv-map` output in *Step 1*, then the Weighted GTT Load Sharing feature is enabled and turned on.

9. If the WT, %WT, and THR columns are not shown in the `rtrv-map` output in *Step 1*, perform the `Activating the Weighted GTT Load Sharing Feature` procedure to enable and turn on the Weighted GTT Load Sharing feature.

9. If the Weighted GTT Load Sharing feature is enabled and turned on, or the `Activating the Weighted GTT Load Sharing Feature` procedure was performed in this step, continue this procedure by performing one of these steps.

- If only one of the point codes that will be specified for the mated application is assigned to other mated applications, perform *Step 10* for the new point code that is not assigned to other mated applications.
- If the both point codes that will be specified for the mated application are point codes assigned to other mated applications, continue the procedure by performing one of these steps.
  - If the `mrnset` and `mrnpc` parameters will be specified for the mated application, continue the procedure with *Step 13*.
  - If the `mrnset` and `mrnpc` parameters will not be specified for the mated application, continue the procedure by performing one of these steps.
10. Display the destination point codes in the database by entering the `rtrv-dstn` command. This is an example of the possible output.

```
rtrv-dstn:dpca=001-001-000
001-001-000 001-001-001 001-005-000 001-007-000 008-012-003 009-002-003 010-020-005
```

If the required point code is not shown in the `rtrv-dstn` output, perform the "Adding a Destination Point Code" procedure in the `Database Administration Manual - SS7` to add the required point code. A proxy point code cannot be assigned to the point code.

After the new point code has been added, skip **Step 11** and **Step 12**, and perform one of the Adding a Route procedures in the `Database Administration Manual - SS7` and add the required route to the database. After the route has been added, continue the procedure by performing one of these steps.

- If the `mrnset` and `mrnpce` parameters will be specified for the mated application, continue the procedure with **Step 13**.
- If the `mrnset` and `mrnpce` parameters will not be specified for the mated application, continue the procedure by performing one of these steps.
  - If a new mated application is being added, continue the procedure with **Step 14**.
  - If an entry is being added to an existing mated application, continue the procedure with **Step 15**.

11. Display the point code that will be assigned to the mated application by using the `rtrv-dstn` command and specifying the point code. For this example, enter this command.

```
rtrv-dstn:dpca=010-020-005
```
This is an example of the possible output.

This is an example of the possible output.

rlnxncxa03w 10-12-10 11:43:04 GMT EAGLE5 43.0.0

<table>
<thead>
<tr>
<th>DPCA</th>
<th>CLLI</th>
<th>BEI</th>
<th>ELEI</th>
<th>ALIASI</th>
<th>ALIAS/N24</th>
<th>DMN</th>
</tr>
</thead>
<tbody>
<tr>
<td>010-020-005</td>
<td>no</td>
<td>---</td>
<td>no</td>
<td>---</td>
<td>---</td>
<td>SS7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PPCA</th>
<th>NCAI</th>
<th>PRX</th>
<th>RCAUSE</th>
<th>NPRST</th>
<th>SPLITIAM</th>
<th>HMSMSC</th>
<th>HMSCP</th>
<th>SCCPMSGCNV</th>
</tr>
</thead>
<tbody>
<tr>
<td>009-002-003</td>
<td>---</td>
<td>no</td>
<td>50</td>
<td>on</td>
<td>20</td>
<td>no</td>
<td>no</td>
<td>none</td>
</tr>
</tbody>
</table>

Destination table is (14 of 2000) 1% full
Alias table is (0 of 12000) 0% full
PPC table is (1 of 20) 5% full

If the point code is not shown in the rtrv-dstn command output, the following output is displayed.

This is an example of the possible output.

rlnxncxa03w 09-05-10 11:43:04 GMT EAGLE5 41.0.0

No destinations meeting the requested criteria were found

Destination table is (14 of 2000) 1% full
Alias table is (0 of 12000) 0% full
PPC table is (1 of 20) 5% full

A proxy point code (a point code value is shown in the PPC column) cannot be assigned to the point code. If a proxy point code is shown in this step, choose another point code from the rtrv-dstn output in the previous step and repeat this step.

After the new point code has been added, skip Step 12 and perform one of the Adding a Route procedures in the Database Administration Manual - SS7 and add the required route to the database. After the route has been added, continue the procedure by performing one of these steps.

• If the mrnset and mrnpc parameters will be specified for the mated application, continue the procedure with Step 13.
• If the mrnset and mrnpc parameters will not be specified for the mated application, continue the procedure by performing one of these steps.
  • If a new mated application is being added, continue the procedure with Step 14.
  • If an entry is being added to an existing mated application, continue the procedure with Step 15.

12. Enter the rtrv-rte command with the dpc parameter specifying the point codes to be used with the ent-map or chg-map commands to verify whether or not the point code is the DPC of a route.

For this example, enter these commands.

rtrv-rte:dpc=008-008-008

This is an example of the possible output.

rlnxncxa03w 06-10-07 11:43:04 GMT EAGLE5 36.0.0

<table>
<thead>
<tr>
<th>DPCA</th>
<th>ALIASI</th>
<th>ALIAS/N24</th>
<th>LSN</th>
<th>RC</th>
<th>APCA</th>
</tr>
</thead>
<tbody>
<tr>
<td>008-008-008</td>
<td>---</td>
<td>---</td>
<td>ls20</td>
<td>10</td>
<td>008-008-008</td>
</tr>
</tbody>
</table>

rtx:No

rtrv-rte:dpc=031-049-100
If the point code is not shown in the `rtrv-rte` output, perform one of the Adding a Route procedures in the Database Administration Manual - SS7 and add the required route to the database.

Continue the procedure by performing one of these steps.

- If the `mrnset` and `mrnpc` parameters will be specified for the mated application, continue the procedure with Step 13.
- If the `mrnset` and `mrnpc` parameters will not be specified for the mated application, continue the procedure by performing one of these steps.
  - If a new mated application is being added, continue the procedure with Step 14.
  - If an entry is being added to an existing mated application, continue the procedure with Step 15.

13. The MRN point code value must be assigned to an MRN set. The MRN set must be shown in the `rtrv-mrn` output. Display the MRN sets by entering the `rtrv-mrn` command. This is an example of the possible output.
If any of the following items are not shown in the `rtrv-mrn` output, then the feature corresponding to these items is not enabled, or turned on if required.

- **The MRNSET field** - the Flexible GTT Load Sharing feature is not enabled.
- **The MAPSET, MAPPC and MAPSSN fields** - the GTT Load Sharing with Alternate Routing Indicator feature is not enabled.
- **The WT, %WT, THR columns** - the Weighted GTT Load Sharing feature is not enabled and turned on.

**Note:** The network type of the `pc/pca/pci/pcn/pcn24` and `mrnpc/mrnpca/mrnpci/mrnpcn/mrnpcn24` parameter values must be compatible, as shown in Note 9 in Table 48: Combined Dominant/Load Shared Mated Application Parameter Combinations for the ENT-MAP Command or in Note 10 in Table 49: Combined Dominant/Load Shared Mated Application Parameter Combinations for the CHG-MAP Command.

If the MRN set that you wish to use, containing the desired point code, is not shown in the `rtrv-mrn` output, add the required MRN set by performing the Provisioning MRN Entries procedure.

If the MRN set that you wish to use is shown in the `rtrv-mrn` output, or the Provisioning MRN Entries procedure was performed in this step, continue the procedure by performing one of these steps.

- If a new mated application is being added, continue the procedure with **Step 14**.
- If an entry is being added to an existing mated application, continue the procedure with **Step 15**.

14. Add the mated application to the database using the `ent-map` command. Use Table 48: Combined Dominant/Load Shared Mated Application Parameter Combinations for the ENT-MAP Command as a guide for the parameters and values that can be specified with the `ent-map` command.

Table 48: Combined Dominant/Load Shared Mated Application Parameter Combinations for the ENT-MAP Command

<table>
<thead>
<tr>
<th>Mandatory Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>:pc/pca/pci/pcn/pcn24=&lt;ANSI, ITU-I, ITU-I spare, ITU-N, ITU-N spare, or ITU-N24 point code from the rtrv-rte or rtrv-map outputs&gt; (See Notes 6 and 9))</td>
</tr>
<tr>
<td>:ssn=&lt;subsystem number, 2 - 255&gt;</td>
</tr>
<tr>
<td>:rc=&lt;0 - 99&gt; (See Note 1)</td>
</tr>
<tr>
<td>Parameter</td>
</tr>
<tr>
<td>-----------</td>
</tr>
<tr>
<td>:mpc/pc/mpci/mpcn/mpcn24=</td>
</tr>
<tr>
<td>:mssn=</td>
</tr>
<tr>
<td>:materc=</td>
</tr>
<tr>
<td>:wt=</td>
</tr>
<tr>
<td>:mwt=</td>
</tr>
<tr>
<td>:thr=</td>
</tr>
<tr>
<td>:grp=</td>
</tr>
<tr>
<td>:sso=</td>
</tr>
<tr>
<td>:srn=</td>
</tr>
<tr>
<td>:mrc=</td>
</tr>
<tr>
<td>:mapset=</td>
</tr>
<tr>
<td>:mrnset =</td>
</tr>
<tr>
<td>:mrnp/mrnpca/mrnpci/mrnpn/mrnpn24=</td>
</tr>
</tbody>
</table>

Notes

1. The combined dominant/load shared mated application must contain a minimum of two entries with RC values that are equal and a minimum of one entry with an RC value that is different.

2. The format of the point codes in the CSPC group specified with the `grp` parameter must be the same as the primary point code specified with the `ent-map` command only if the ANSI/ITU SCCP Conversion feature is not enabled. If the ANSI/ITU SCCP Conversion feature is enabled, the CSPC group may contain a mixture of point code types (refer to the Adding a Concerned Signaling Point Code procedure), and the network type of the CSPC group can be different from the network type of the primary point code of the mated application.

3. For mated applications containing ANSI or 24-bit ITU-N point codes, the format of the point codes specified in the `ent-map` command must be the same. For example, if the primary point code is a 24-bit ITU-N point code (`pcn24`), the mate point code must be a 24-bit ITU-N point code (`mpcn24`). The mate point codes of mated applications containing either ITU-I, ITU-I spare, 14-bit ITU-N, or 14-bit ITU-N spare primary point codes do not have to be the same format as the primary point code. The mate point codes of these mated applications can be a mixture of ITU-I, ITU-I spare, 14-bit ITU-N, or 14-bit ITU-N spare point codes.

4. If the Flexible GTT Load Sharing is enabled, the `mapset` parameter must be specified with the `ent-map` command.

   If the Flexible GTT Load Sharing is not enabled, the `mapset` parameter cannot be specified with the `ent-map` command.

   To provision entries in the default MAP set, the `mapset=dflt` parameter must be specified with the `ent-map` command.
To provision entries in a new MAP set, the mapset=new parameter must be specified with the ent-map command. The mapset=new parameter can be specified only with the ent-map command. When the ent-map command is executed with the mapset=new parameter, the new MAP set ID is automatically generated and displayed in the output of the ent-map command as follows.

New MAPSET Created : MAPSETID = <new MAP set ID>

A MAP set, other than the default MAP set, is a MAP group provisioned with the MAP set ID and can contain a maximum of 32 point code and subsystem entries.

The default MAP set can contain multiple MAP groups. Each group in the default MAP set can contain a maximum of 32 point code and subsystem entries.

The point code and subsystem entry can appear only once in the default MAP set, so the point code and subsystem entry can appear in only one MAP group in the default MAP set.

The point code and subsystem entry provisioned in a MAP set can be provisioned in multiple MAP sets. If a point code and subsystem entry is provisioned in different MAP sets, the relative cost value of the entry in each MAP set can be different. All the point code and subsystem entries in a MAP set, including the default MAP set, must be different.

5. Refer to the Provisioning Weights and In-Service Thresholds for Mated Applications section for information about using the weight (wt and mwt) and in-service threshold (thr) parameters.

6. If the point code selected from either the rtrv-rte or rtrv-map outputs is a 14-bit ITU-N point code, then the pcn/mpcn parameters must be specified. If the point code selected from either the rtrv-rte or rtrv-map outputs is a 24-bit ITU-N point code, then the pcn24/mpcn24 parameters must be specified.

7. The srm=yes parameter can be specified only for combined dominant/load shared mated applications containing ANSI point codes. The mrc parameter can be specified for a combined dominant/load shared mated application, but this parameter affects traffic only for a dominant mated application. These are the default values for the srm and mrc parameters.

- ANSI mated applications - srm=yes, mrc=yes
- ITU mated applications - srm=no, mrc=no

8. The mrnset and mrnpc/mrnpca/mrnpci/mrnpcn/mrnpcn24 parameters can be specified only if the GTT Load Sharing with Alternate Routing Indicator feature is enabled. Refer to the Activating the GTT Load Sharing with Alternate Routing Indicator Feature procedure for information about enabling the GTT Load Sharing with Alternate Routing Indicator feature. The mrnset and mrnpc/mrnpca/mrnpci/mrnpcn/mrnpcn24 values must be shown in the rtrv-mrn output.

9. The network type of the pc/pca/pci/pcn/pcn24 and mrnpc/mrnpca/mrnpci/mrnpcn/mrnpcn24 parameter values must be compatible, as shown in Table 47: MAP and MRN Point Code Parameter Combinations.

If the Flexible GTT Load Sharing feature is not enabled for this example, enter these commands.

```
```
When each of these commands have successfully completed, this message should appear.

```
rlghncxa03w 06-10-07 11:44:13 GMT EAGLE5 36.0.0
ENT-MAP: MASP A - COMPLTD
```

If the Flexible GTT Load Sharing feature is enabled for this example, enter these commands.

```
```

```
:grp=grp20:mrc=yes:sso=off:mapset=new
```

If the GTT Load Sharing with Alternate Routing Indicator feature is enabled for this example, enter this command.

```
:mrnset=1:mrnpc=007-007-007
```

If the Flexible GTT Load Sharing feature is enabled when each of these commands have successfully completed, and a new MAP set was created, a message similar to the following should appear.

```
rlghncxa03w 06-10-07 11:44:13 GMT EAGLE5 36.0.0
New MAPSET Created : MAPSETID = 10
ENT-MAP: MASP A - COMPLTD
```

If the Flexible GTT Load Sharing feature is enabled when each of these commands have successfully completed, and the mated application was added to the default MAP set, this message should appear.

```
rlghncxa03w 06-10-07 11:44:13 GMT EAGLE5 36.0.0
ENT-MAP: MASP A - COMPLTD
```

If no other entries are being added to the mated application, continue the procedure with **Step 16**.

If other entries are being added to the mated application, continue the procedure with **Step 15**.

**15.** Add the mated point code and subsystem to the mated application using the `chg-map` command. Use **Table 49: Combined Dominant/Load Shared Mated Application Parameter Combinations for the CHG-MAP Command** as a guide for the parameters and values that can be specified with the `chg-map` command.

**Table 49: Combined Dominant/Load Shared Mated Application Parameter Combinations for the CHG-MAP Command**

<table>
<thead>
<tr>
<th>Mandatory Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>:pc/pca/pci/pcn/pcn24=&lt;ANSI, ITU-I, ITU-I spare, ITU-N, ITU-N spare, or ITU-N24 point code from the rtrv-rte or rtrv-map outputs&gt; (See Notes 6 and 10)</td>
</tr>
<tr>
<td>:ssn=&lt;subsystem number&gt;</td>
</tr>
<tr>
<td>:mpc/mpca/mpci/mpcn/mpcn24=&lt;ANSI, ITU-I, ITU-I spare, ITU-N, ITU-N spare, or ITU-N24 point code of the mate from the rtrv-rte or rtrv-map outputs&gt; (See Notes 3, 6, and 10)</td>
</tr>
<tr>
<td>:mssn=&lt;subsystem number of the mate, 2 - 255&gt;</td>
</tr>
<tr>
<td>:materc=&lt;0 - 99&gt; (See Note 1)</td>
</tr>
</tbody>
</table>
Optional Parameters

<table>
<thead>
<tr>
<th>Optional Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>:wt=&lt;1 - 99&gt;</td>
<td>(See Note 5)</td>
</tr>
<tr>
<td>:mwt=&lt;1 - 99&gt;</td>
<td>(See Note 5)</td>
</tr>
<tr>
<td>:grp=&lt;CSPC group name&gt;</td>
<td>(See Notes 2 and 8)</td>
</tr>
<tr>
<td>:sso=&lt;on, off&gt;</td>
<td>(See Note 8)</td>
</tr>
<tr>
<td>:srm=&lt;yes, no&gt;</td>
<td>(See Notes 7 and 8)</td>
</tr>
<tr>
<td>:mrc=&lt;yes, no&gt;</td>
<td>(See Notes 7 and 8)</td>
</tr>
<tr>
<td>:mapset=&lt;dflt or the number of an existing MAP set&gt;</td>
<td>(See Note 4)</td>
</tr>
<tr>
<td>:mrnset = &lt;MRN set ID from the rtrv-mrn output&gt;</td>
<td>(See Note 9)</td>
</tr>
<tr>
<td>:mrnpc/mrnpc24=&lt;the point code value in the MRN set&gt;</td>
<td>(See Notes 9 and 10)</td>
</tr>
</tbody>
</table>

Notes

1. The combined dominant/load shared mated application must contain a minimum of two entries with RC values that are equal and a minimum of one entry with an RC value that is different.

2. The format of the point codes in the CSPC group specified with the grp parameter must be the same as the primary point code specified with the chg-map command only if the ANSI/ITU SCCP Conversion feature is not enabled. If the ANSI/ITU SCCP Conversion feature is enabled, the CSPC group may contain a mixture of point code types (refer to the Adding a Concerned Signaling Point Code procedure), and the network type of the CSPC group can be different from the network type of the primary point code of the mated application.

3. For mated applications containing ANSI or 24-bit ITU-N point codes, the format of the point codes specified in the chg-map command must be the same. For example, if the primary point code is a 24-bit ITU-N point code (pcn24), the mate point code must be a 24-bit ITU-N point code (mpcn24). The mate point codes of mated applications containing either ITU-I, ITU-I spare, 14-bit ITU-N, or 14-bit ITU-N spare primary point codes do not have to be the same format as the primary point code. The mate point codes of these mated applications can be a mixture of ITU-I, ITU-I spare, 14-bit ITU-N, or 14-bit ITU-N spare point codes.

4. If the Flexible GTT Load Sharing is enabled, the mapset parameter must be specified with the chg-map command.

   If the Flexible GTT Load Sharing is not enabled, the mapset parameter cannot be specified with the chg-map command.

   To provision entries in the default MAP set, the mapset=dflt parameter must be specified with the chg-map command.

   To provision entries in an existing MAP set, the mapset parameter must be specified with the MAP set ID value of that MAP set.

   A MAP set, other than the default MAP set, is a MAP group provisioned with the MAP set ID and can contain a maximum of 32 point code and subsystem entries.

   The default MAP set can contain multiple MAP groups. Each group in the default MAP set can contain a maximum of 32 point code and subsystem entries.
The point code and subsystem entry can appear only once in the default MAP set, so the point code and subsystem entry can appear in only one MAP group in the default MAP set.

The point code and subsystem entry provisioned in a MAP set can be provisioned in multiple MAP sets. If a point code and subsystem entry is provisioned in different MAP sets, the relative cost value of the entry in each MAP set can be different. All the point code and subsystem entries in a MAP set, including the default MAP set, must be different.

5. Refer to the Provisioning Weights and In-Service Thresholds for Mated Applications section for information about using the weight ($wt$ and $mwt$) and in-service threshold ($thr$) parameters.

6. If the point code selected from either the rtrv-rte or rtrv-map outputs is a 14-bit ITU-N point code, then the $pcn$/$mpcn$ parameters must be specified. If the point code selected from either the rtrv-rte or rtrv-map outputs is a 24-bit ITU-N point code, then the $pcn24$/$mpcn24$ parameters must be specified.

7. The $srm=yes$ parameter can be specified only for combined dominant/load shared mated applications containing ANSI point codes. The $mrc$ parameter can be specified for a combined dominant/load shared mated application, but this parameter affects traffic only for a dominant mated application. These are the default values for the $srm$ and $mrc$ parameters.

   - ANSI mated applications - $srm=yes$, $mrc=yes$
   - ITU mated applications - $srm=no$, $mrc=no$

8. The CSPC group name ($grp$), $srm$, $mrc$, or $sso$ values for a specific point code and SSN in a mated application are changed, these parameter values for this specific point code and SSN in all applicable mated applications will be changed to the new values.

9. The $mrnset$ and $mrnpc/mrnpci/mrnpcn/mrnpcn24$ parameters can be specified only if the GTT Load Sharing with Alternate Routing Indicator feature is enabled. Refer to the Activating the GTT Load Sharing with Alternate Routing Indicator Feature procedure for information about enabling the GTT Load Sharing with Alternate Routing Indicator feature. The $mrnset$ and $mrnpc/mrnpci/mrnpcn/mrnpcn24$ values must be shown in the rtrv-mrn output.

10. The network type of the $pc/pca/pci/pcn/pcn24$ and $mrnpc/mrnpci/mrnpcn/mrnpcn24$ parameter values must be compatible, as shown in Table 47: MAP and MRN Point Code Parameter Combinations.

If the Flexible GTT Load Sharing feature is not enabled for this example, enter these commands.

```
:materc=10:grp=grp15:sso=off:mwt=40
chg-map:pca=008-008-008:ssn=254:rc=10:mpca=031-049-100
chg-map:pca=008-008-008:ssn=254:rc=10:mpca=056-113-200
:mssn=251:materc=20:grp=grp05:mrc=yes:srm=yes:sso=off:mwt=70
:grp=grp20:mrc=yes:sso=off
chg-map:pci=5-005-5:ssn=50:rc=10:mpci=5-005-1:mssn=50:materc=20
:grp=grp20:mrc=yes:sso=off
```
When each of these commands have successfully completed, this message should appear.

```
righncxa03w 06-10-07 11:44:13 GMT EAGLE5 36.0.0
CHG-MAP: MASP A - COMPLTD
```

If the Flexible GTT Load Sharing feature is enabled for this example, enter these commands.

```
```

If the Flexible GTT Load Sharing feature is enabled for this example, enter this command.

```
```

When each of these commands have successfully completed, this message should appear.

```
righncxa03w 06-10-07 11:44:13 GMT EAGLE5 36.0.0
CHG-MAP: MASP A - COMPLTD
```

Repeat this step for all new entries being added to the existing mated application.

If the Flexible GTT Load Sharing feature is not enabled, the mated application can contain a maximum of 32 entries.

If the Flexible GTT Load Sharing feature is enabled, and the MAP set is not the default MAP set, the MAP set can contain a maximum of 32 entries.

If the Flexible GTT Load Sharing feature is enabled, and the MAP set is the default MAP set, the default MAP set can contain multiple MAP groups. Each group in the default MAP set can contain a maximum of 32 point code and subsystem entries.

16. Verify the changes using the rtrv-map command with the primary point code and subsystem specified in Step 14 and Step 15.

If the mapset=dflt parameter was specified in Step 14 and Step 15, the mapset=dflt parameter should be specified with the rtrv-map command.

If a new MAP set was created in Step 14, the mapset parameter should be specified with the rtrv-map command. The value for the mapset parameter should be the MAP set ID generated in Step 14.

If the mated application was added to an existing MAP set in Step 15, the mapset parameter and value specified in Step 15 should be specified with the rtrv-map command.

If the Flexible GTT Load Sharing feature is not enabled for this example, enter these commands.

```
rtrv-map:pca=008-008-008:ssn=254
```
This is an example of the possible output.

```
rlghncxa03w 09-07-07 00:34:31 GMT EAGLE5 41.1.0

PCA Mate PCA SSN RC MULT SRM MRC GRP NAME SSO WT %WT THR
008-008-008 254 10 COM YES *Y grp10 ON 10 4 50
 200-147-100 254 10 COM YES *Y grp10 ON 30 14 50
 179-183-050 250 10 COM YES *Y grp15 OFF 40 9 50
 031-049-100 250 20 COM YES *Y grp15 ON 60 28 50
 056-113-200 251 20 COM YES *Y grp05 OFF 70 3 50

MAP TABLE IS (37 of 1024) 4 % FULL

rtrv-map:pci=5-005-5:ssn=50

This is an example of the possible output.

```

```
rlghncxa03w 09-07-07 00:34:31 GMT EAGLE5 41.1.0

PCI NET Mate PC SSN RC MULT SRM MRC GRP NAME SSO WT %WT THR
5-005-5 50 10 COM NO *Y grp20 OFF -- --- --
 N 0257 50 10 COM NO *Y grp20 OFF -- --- --
 I s-5-005-6 50 20 COM NO *Y grp20 OFF -- --- --
 I 5-005-1 50 20 COM NO *Y grp20 OFF -- --- --

MAP TABLE IS (37 of 1024) 4 % FULL

Note: If the Weighted GTT Load Sharing feature is not enabled or turned on, the WT, %WT, and THR columns are not shown in the rtrv-map output.

If the Flexible GTT Load Sharing feature is enabled for this example, enter these commands.

```
rtrv-map:pca=008-008-008:ssn=254:mapset=10

This is an example of the possible output.

```
rlghncxa03w 09-07-07 00:34:31 GMT EAGLE5 41.1.0

MAPSET ID=10 MRNSET ID=---- MRNPC=-----------

PCA Mate PCA SSN RC MULT SRM MRC GRP NAME SSO WT %WT THR
008-008-008 254 10 COM YES *Y grp10 ON 10 4 50
 200-147-100 254 10 COM YES *Y grp10 ON 30 14 50
 179-183-050 250 10 COM YES *Y grp15 OFF 40 9 50
 031-049-100 250 20 COM YES *Y grp15 ON 60 28 50
 056-113-200 251 20 COM YES *Y grp05 OFF 70 3 50

MAP TABLE IS (37 of 36000) 4 % FULL

rtrv-map:pci=5-005-5:ssn=50:mapset=11

This is an example of the possible output.

```
rlghncxa03w 09-07-07 00:34:31 GMT EAGLE5 41.1.0

MAPSET ID=11    MRNSET ID=----  MRNPC=-----------

PCI       NET  Mate PC      SSN RC MULT SRM MRC GRP NAME SSO WT %WT THR
5-005-5                     50 10  COM NO  *Y  grp20  OFF -- ---  --
        N    0257           50 10  COM NO  *Y  grp20  OFF -- ---  --
        I  s-5-005-6       50 20  COM NO  *Y  grp20  OFF -- ---  --
        I    5-005-1       50 20  COM NO  *Y  grp20  OFF -- ---  --
If the Weighted GTT Load Sharing feature is not enabled, the WT, %WT, and THR columns are not shown in the \texttt{rtrv-map} output.

If the GTT Load Sharing with Alternate Routing Indicator feature is not enabled, the MRNSET and MRNPC fields are not shown in the \texttt{rtrv-map} output.

17. Backup the new changes using the \texttt{chg-db:action=backup:dest=fixed} command.

These messages should appear, the active Maintenance and Administration Subsystem Processor (MASP) appears first.

\begin{verbatim}
BACKUP (FIXED) : MASP A - Backup starts on active MASP.
BACKUP (FIXED) : MASP A - Backup on active MASP to fixed disk complete.
BACKUP (FIXED) : MASP A - Backup starts on standby MASP.
BACKUP (FIXED) : MASP A - Backup on standby MASP to fixed disk complete.
\end{verbatim}

\section*{Removing a Mated Application}

This procedure is used to remove a mated application from the database using the \texttt{dlt-map} command.

The \texttt{dlt-map} command uses these parameters.

:pc/pca/pci/pcn/pcn24 – The point code (primary or mate point code) in the mated application group.

\textbf{Note}: Refer to Chapter 2, Configuring Destination Tables, in the \textit{Database Administration Manual - SS7} for a definition of the point code types that are used on the EAGLE 5 ISS and for a definition of the different formats that can be used for ITU national point codes.

:ssn – Subsystem number – the subsystem number of the point code being removed.

:all – Removes all subsystems assigned to the point code being removed. If this parameter is not specified, only the specified subsystem number is removed.

:mapset – The MAP set ID that the mated application is assigned to, shown in the \texttt{rtrv-map} output. MAP set IDs are shown only if the Flexible GTT Load Sharing feature is enabled. If the Flexible GTT Load Sharing feature is enabled, the \texttt{mapset} parameter must be specified with the \texttt{dlt-map} command.

:mrnset - The MRN set ID assigned to the MAP set. This is the MRN set from which alternate routing indicator searches are performed. The \texttt{mrnset} parameter is shown in the \texttt{rtrv-map} output only if the GTT Load Sharing with Alternate Routing Indicator feature is enabled.

If an entire MAP set is being removed in this procedure (with the \texttt{all=yes} parameter), the reference to the MAP set specified in this procedure must be removed from any GTT, GTA, GSM OPCODE, GSM MAP screening, or MRN entries before an entire MAP set can be removed.

Perform one of these procedures to remove the reference to the MAP set.

- If the EGTT feature is not on – Enter the \texttt{rtrv-gtt} command to verify the MAP set ID references in the GTT entries. Perform \textit{Changing a Global Title Translation} to remove the references to the MAP set.
If the EGTT feature is on – Enter the `rtrv-gta` command to verify the MAP set ID references in the GTA entries. Perform Changing Global Title Address Information to remove the references to the MAP set.

Enter the `rtrv-gsms-opcode` command to verify the MAP set ID references in the GSM OPCODE entries. Perform the “Changing a GSM MAP Screening Operation Code” procedure in the Database Administration Manual - Features to remove the references to the MAP set.

Enter the `rtrv-gsmmap-scrn` command to verify the MAP set ID references in the GSM MAP screening entries. Perform the “Changing a GSM MAP Screening Entry” procedure in the Database Administration Manual - Features to remove the references to the MAP set.

Enter the `rtrv-ppsopts` command to verify that the mated application’s point code (if the Flexible GTT Load Sharing feature is not enabled) or the point code and MAP set ID (if the Flexible GTT Load Sharing feature is enabled) is not shown in the `rtrv-ppsopts` output. Any references to the mated application’s point code or the point code and MAP set ID in the `rtrv-ppsopts` output are removed in Step 15.

An entire MAP set cannot be removed if the MAP set is assigned to an MRN set. A specific point code/SSN in a MAP set cannot be removed if the MRN set that is assigned to the MAP set contains the point code that is being removed from the MAP set. Verify that the MAP set is not assigned to any MRN sets by entering the `rtrv-mrn` command.

The last entry of a MAP set, other than the default MAP set, whose MAP set ID is referenced by a GTA entry in the GTT table cannot be removed if the xlat and ri parameter values for that GTA entry are `dpcssn` and `ssn`. Perform Changing Global Title Address Information to remove the references to the MAP set.

Note: If weight and threshold values are assigned to a load shared or combined dominant/load shared mated application, and if by removing entries from this mated application the mated application becomes either a solitary or dominant mated application, all weight and threshold values are removed from the remaining entries in the mated application.

If the `mapset=dflt` and `all=yes` parameters are specified with the `dlt-map` command, only the MAP group containing the point code value specified in the `dlt-map` command is removed from the default MAP set.

The mated application must be in the database.

Either the `ssn` or `all` parameters can be specified with the `dlt-map` command, but not both.

If the `ssn` parameter is specified, the point code and subsystem pair must exist in the mate application entity set. The point code and subsystem entry is then removed.

The value of the `ssn` parameter must be from 2 to 255.

Removing all point codes but one from a dominant, load shared, or combined dominant/load shared mated application group creates a solitary mated application.

If the primary point code is removed from a dominant mated application group containing more than one mate point code, the mate point code with the lowest relative cost value becomes the new primary point code.

If the primary point code is removed from a load shared mated application group containing more than one mate point code, the next mate point code in the group becomes the new primary point code.

If the primary point code is removed from a combined dominant/load shared mated application group containing more than one mate point code, which mate point code, and the resulting mated application group depends on the resulting relative cost values remaining in the group.
If the mated application group contains mate point codes with the same relative cost value as the primary point code being removed, the next point code in the group with the same relative cost value as the primary point code becomes the new primary point code, and the mated application group remains a combined dominant/load shared mated application group.

If the relative cost values of the mate point codes in the group are different from the relative cost value as the primary point code being removed, the next point code in the group with the lowest relative cost value becomes the new primary point code, and the mated application group becomes a load shared mated application group.

If all the mate point codes in the resulting mated application group have the same relative cost values, the first point code in the resulting group becomes the new primary point code, and the mated application group becomes a load shared mated application group.

If the primary point code is removed, and the resulting mated application group contains one point code with one relative cost value and a point code with another relative cost value, a dominant mated application group is created. The mate point code with the lowest relative cost value becomes the new primary point code.

Mated applications that contain the EAGLE 5 ISS’s true point code and the subsystem number of one of the subsystems shown in Table 50: Subsystem Features cannot be removed from the database unless the subsystem has been removed from the database. The EAGLE 5 ISS’s true point code is shown in the PCA, PCI, FCN, or PCN24 fields of the rtrv-sid output. The subsystem number is shown in the SSN field of the rtrv-ss-appl output.

### Table 50: Subsystem Features

<table>
<thead>
<tr>
<th>Feature</th>
<th>Subsystem</th>
<th>Feature Status</th>
<th>Manual that Contains the Procedures to Remove the Subsystem</th>
</tr>
</thead>
<tbody>
<tr>
<td>LNP</td>
<td>LNP</td>
<td>Enabled</td>
<td>ELAP Administration and LNP Feature Activation manual</td>
</tr>
<tr>
<td>INP</td>
<td>INP</td>
<td>Enabled and Turned On</td>
<td>Feature Manual - INP/AINPQ</td>
</tr>
<tr>
<td>ANSI-41 INP Query</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EIR</td>
<td>EIR</td>
<td>Enabled and Turned On</td>
<td>Feature Manual - EIR</td>
</tr>
<tr>
<td>V-Flex</td>
<td>V-Flex</td>
<td>Enabled and Turned On</td>
<td>Feature Manual - V-Flex</td>
</tr>
<tr>
<td>ATINP</td>
<td>ATINPQ</td>
<td>Enabled</td>
<td>Feature Manual - ATINP</td>
</tr>
<tr>
<td>ANSI41 AIQ</td>
<td>AIQ</td>
<td>Enabled</td>
<td>Feature Manual - Analyzed Information Features</td>
</tr>
</tbody>
</table>

### Canceling the RTRV-MAP Command

Because the rtrv-map command used in this procedure can output information for a long period of time, the rtrv-map command can be canceled and the output to the terminal stopped. There are three ways that the rtrv-map command can be canceled.

- Press the F9 function key on the keyboard at the terminal where the rtrv-map command was entered.
- Enter the `canc-cmd` without the `trm` parameter at the terminal where the rtrv-map command was entered.
Enter the `canc-cmd:trm=<xx>` command, where `<xx>` is the terminal where the `rtrv-map` command was entered, from another terminal other than the terminal where the `rtrv-map` command was entered. To enter the `canc-cmd:trm=<xx>` command, the terminal must allow Security Administration commands to be entered from it and the user must be allowed to enter Security Administration commands. The terminal’s permissions can be verified with the `rtrv-secu-trm` command. The user’s permissions can be verified with the `rtrv-user` or `rtrv-secu-user` commands.

For more information about the `canc-cmd` command, refer to the Commands Manual.

1. Display the mated applications in the database using the `rtrv-map` command.

<table>
<thead>
<tr>
<th>MAPSET ID=DFLT</th>
<th>MRNSET ID=1</th>
<th>MRNPC = 001-001-003</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCA Mate PCA</td>
<td>SSN RC MULT SRM MRC GRP NAME SSO WT %WT THR</td>
<td></td>
</tr>
<tr>
<td>002-002-002</td>
<td>250 10 SHR *Y *Y grp15 ON 10 16 20</td>
<td></td>
</tr>
<tr>
<td>100-130-079</td>
<td>250 10 SHR *Y *Y grp15 ON 20 33 20</td>
<td></td>
</tr>
<tr>
<td>068-135-094</td>
<td>250 10 SHR *Y *Y grp05 OFF 30 50 20</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MAPSET ID=DFLT</th>
<th>MRNSET ID=----</th>
<th>MRNPC=-----------</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCA Mate PCA</td>
<td>SSN RC MULT SRM MRC GRP NAME SSO WT %WT THR</td>
<td></td>
</tr>
<tr>
<td>005-005-005</td>
<td>250 10 DOM YES grp15 OFF -- --</td>
<td></td>
</tr>
<tr>
<td>060-060-060</td>
<td>250 20 DOM YES grp15 OFF -- --</td>
<td></td>
</tr>
<tr>
<td>070-070-070</td>
<td>250 30 DOM YES grp05 ON -- --</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MAPSET ID=DFLT</th>
<th>MRNSET ID=----</th>
<th>MRNPC=-----------</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCA Mate PCA</td>
<td>SSN RC MULT SRM MRC GRP NAME SSO WT %WT THR</td>
<td></td>
</tr>
<tr>
<td>007-007-007</td>
<td>251 10 SOL *Y *Y grp05 ON -- --</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MAPSET ID=DFLT</th>
<th>MRNSET ID=----</th>
<th>MRNPC=-----------</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCA Mate PCA</td>
<td>SSN RC MULT SRM MRC GRP NAME SSO WT %WT THR</td>
<td></td>
</tr>
<tr>
<td>255-001-000</td>
<td>250 10 SOL *Y *Y grp01 ON -- --</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MAPSET ID=DFLT</th>
<th>MRNSET ID=----</th>
<th>MRNPC=-----------</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCA Mate PCA</td>
<td>SSN RC MULT SRM MRC GRP NAME SSO WT %WT THR</td>
<td></td>
</tr>
<tr>
<td>255-001-002</td>
<td>251 10 SHR *Y *Y grp01 ON 20 50 20</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MAPSET ID=10</th>
<th>MRNSET ID=----</th>
<th>MRNPC=-----------</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCA Mate PCA</td>
<td>SSN RC MULT SRM MRC GRP NAME SSO WT %WT THR</td>
<td></td>
</tr>
<tr>
<td>003-003-003</td>
<td>254 10 DOM YES grp10 ON -- --</td>
<td></td>
</tr>
<tr>
<td>040-040-040</td>
<td>254 20 DOM YES grp10 ON -- --</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MAPSET ID=11</th>
<th>MRNSET ID=----</th>
<th>MRNPC=-----------</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCA Mate PCA</td>
<td>SSN RC MULT SRM MRC GRP NAME SSO WT %WT THR</td>
<td></td>
</tr>
<tr>
<td>004-004-004</td>
<td>254 10 SHR *Y *Y grp10 OFF 10 50 20</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MAPSET ID=9</th>
<th>MRNSET ID=----</th>
<th>MRNPC=-----------</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCA Mate PCA</td>
<td>SSN RC MULT SRM MRC GRP NAME SSO WT %WT THR</td>
<td></td>
</tr>
<tr>
<td>006-006-006</td>
<td>250 10 SOL *Y *Y grp15 OFF -- --</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MAPSET ID=12</th>
<th>MRNSET ID=----</th>
<th>MRNPC=-----------</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCA Mate PCA</td>
<td>SSN RC MULT SRM MRC GRP NAME SSO WT %WT THR</td>
<td></td>
</tr>
<tr>
<td>008-008-008</td>
<td>254 10 COM YES *Y grp10 ON 50 41 20</td>
<td></td>
</tr>
</tbody>
</table>

For more information about the `canc-cmd` command, refer to the Commands Manual.

1. Display the mated applications in the database using the `rtrv-map` command.
Note: If the Weighted GTT Load Sharing feature is not enabled and turned on, the WT, %WT, THR columns and values are not shown in the rtrv-map output.

2. Display the EAGLE 5 ISS's true point code by entering the rtrv-sid command. This is an example of the possible output.

rlghncxa03w 07-02-10 11:43:04 GMT EAGLE5 37.0.0

PCA               PCI          PCN           CLLI         PCTYPE
010-020-030     1-023-1      12-0-14-1     rlghncxa03w    OTHER
 s-1-023-1    s-12-0-14-1
CPCA
002-002-002     002-002-003     002-002-004     002-002-005
002-002-006     002-002-007     002-002-008     002-002-009
004-002-001     004-003-003     050-060-070
CPCI
1-001-1     1-001-2     1-001-3     1-001-4
1-002-1     1-002-2     1-002-3     1-002-4
2-001-1     7-222-7
Continue the procedure by performing one of these steps.

- If the mated application that is being removed contains a point code that is shown in the PCA, PCI, PCN, or PCN24 columns of the rtrv-sid output, continue the procedure with Step 3.
- If the mated application that is being removed does not contain a point code that is shown in the PCA, PCI, PCN, or PCN24 columns of the rtrv-sid output, continue the procedure by performing one of these steps.
  - If the MAPSET column is not shown in the rtrv-map output, then the Flexible GTT Load Sharing feature is not enabled. Continue the procedure with Step 16.
  - If only the MAPSET column is shown in the rtrv-map output, and a point code/SSN entry is being removed from the default MAP set, continue the procedure with Step 16.
  - If the MAPSET and MRNSET columns are shown in the rtrv-map output, continue the procedure by performing one of these steps.
    - If an entire MAP set is being removed, continue the procedure with Step 6.
    - If a point code/SSN entry is being removed from the MAP set, continue the procedure with Step 7.
    - If the MRN set entry is being removed from the MAP set, continue the procedure with Step 5.

Note: If the MRNSET column contains dashes, then an MRN set is not assigned to the MAP set.

3. Verify whether or not any of the features shown in Table 50: Subsystem Features are enabled, and turned on if required, by entering the rtrv-ctrl-feat command. This list shows the entries that are displayed in the rtrv-ctrl-feat output for the features that are enabled, and turned on if required.

- LNP TNs with a quantity greater than zero - the LNP feature is enabled.
- EIR with the status on - the EIR feature is enabled and turned on.
- VFLEX with the status on - the V-Flex feature is enabled and turned on.
- ATINP - the ATINP feature is enabled.
- INP with the status on - the INP feature is enabled and turned on.
- ANSI-41 INP Query with the status on - the ANSI-41 INP Query feature is enabled and turned on.
- ANSI41 AIQ - the ANSI41 AIQ feature is enabled.

Note: The rtrv-ctrl-feat command output contains other fields that are not used by this procedure. If you wish to see all the fields displayed by the rtrv-ctrl-feat command, refer to the rtrv-ctrl-feat command description in the Commands Manual.

Continue the procedure by performing one of these steps.
• If none of the features shown in Table 50: Subsystem Features are enabled, and turned on if required, continue the procedure with Step 7.

• If any of the features shown in Table 50: Subsystem Features are enabled, and turned on if required, continue the procedure with Step 4.

4. Verify that the subsystem number of the mated application is in the subsystem application table by entering the rtrv-ss-appl command.

This is an example of the possible output.

<table>
<thead>
<tr>
<th>righncxa03w 08-09-28 14:42:38 GMT EAGLE5 39.2.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>APPL SSN STAT</td>
</tr>
<tr>
<td>LNP 254 ONLINE</td>
</tr>
<tr>
<td>SS-APPL table is 20% FULL (1 of 5)</td>
</tr>
</tbody>
</table>

If a subsystem number is not shown in the rtrv-ss-appl output, continue the process with Step 7.

If the LNP feature is enabled and the LNP subsystem number is shown in the rtrv-ss-appl output, perform the procedures in the ELAP Administration and LNP Feature Activation manual and remove the LNP subsystem number from the subsystem application table.

If the INP or ANSI-41 INP Query feature is enabled and turned on, and the INP subsystem number is shown in the rtrv-ss-appl output, perform the procedures in the Feature Manual - INP/AINPQ and remove the INP subsystem number from the subsystem application table.

If the EIR feature is enabled and turned on and the EIR subsystem number is shown in the rtrv-ss-appl output, perform the procedures in the Feature Manual - EIR and remove the EIR subsystem number from the subsystem application table.

If the V-Flex feature is enabled and turned on and the V-Flex subsystem number is shown in the rtrv-ss-appl output, perform the procedures in the Feature Manual - V-Flex and remove the V-Flex subsystem number from the subsystem application table.

If the ATINP feature is enabled and the ATINPQ subsystem number is shown in the rtrv-ss-appl output, perform the procedures in the Feature Manual - ATINP and remove the ATINP subsystem number from the subsystem application table.

If the ANSI41 AIQ feature is enabled and the AIQ subsystem number is shown in the rtrv-ss-appl output, perform the procedures in the Feature Manual - Analyzed Information Features.

After the subsystem number has been removed from the subsystem application table, continue the procedure with Step 7.

5. Remove the MRN set from the MAP set using the dlt-map command with the mapset, mrnset, pc/pca/pci/pcn/pcn24, and ssn parameters and values shown in Step 1. For this example, enter this command.

```
dlt-map:mapset=6:mrnset=1:pca=255-001-002:ssn=252
```

This message should appear.

<table>
<thead>
<tr>
<th>righncxa03w 09-02-07 11:48:16 GMT EAGLE5 40.1.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>DLT-MAP: MASP A - COMPLTD</td>
</tr>
</tbody>
</table>

If you wish to remove any point code/SSN entries from the MAP set, continue the procedure with Step 7.
If you do not wish to remove any point code/SSN entries from the MRN set, continue the procedure with Step 17.

6. Display the MRNs by entering the `rtrv-mrn` command. This is an example of the possible output.

```
rlghncxa03w 09-02-07 00:34:31 GMT EAGLE5 40.1.0

<table>
<thead>
<tr>
<th>MRNSET</th>
<th>MAPSET</th>
<th>MAPPC</th>
<th>MAPSSN</th>
<th>PC</th>
<th>RC</th>
<th>WT</th>
<th>%WT</th>
<th>THR</th>
</tr>
</thead>
<tbody>
<tr>
<td>DFLT</td>
<td>7</td>
<td>002-002-007</td>
<td>50</td>
<td>005-005-005</td>
<td>10</td>
<td>10</td>
<td>50</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>006-001-001</td>
<td>10</td>
<td>10</td>
<td>50</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>006-001-002</td>
<td>30</td>
<td>20</td>
<td>100</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>006-001-003</td>
<td>40</td>
<td>20</td>
<td>100</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>006-001-004</td>
<td>50</td>
<td>20</td>
<td>100</td>
<td>30</td>
</tr>
</tbody>
</table>

MRN table is (16 of 5990) 1% full

Note: If the Weighted GTT Load Sharing feature is not enabled and turned on, the WT, %WT, THR columns and values are not shown in the `rtrv-mrn` output.

If the MAP set is not assigned to any MRN sets, continue the procedure with Step 7.

If the MAP set is assigned to any MRN sets, perform Removing MRN Entries to remove the MAP set from any MRN sets. After the MAP set has been removed from the MAP sets, continue the procedure with Step 7.

7. Verify whether or not the EGTT feature is on by entering the `rtrv-feat` command.

The entry `EGTT = on` is shown if the EGTT feature is on. If the EGTT feature is on, continue the procedure with Step 10. If the EGTT feature is not on, continue the procedure with Step 8.

Note: The `rtrv-feat` command output contains other fields that are not used by this procedure. If you wish to see all the fields displayed by the `rtrv-feat` command, refer to the `rtrv-feat` command description in the Commands Manual.

8. Display the translation types in the database using the `rtrv-tt` command.

This is an example of the possible output.

```
rlghncxa03w 07-05-25 09:42:31 GMT EAGLE5 37.0.0

<table>
<thead>
<tr>
<th>TYPEA</th>
<th>TTN</th>
<th>NDGT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>lidb</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>c800</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>d700</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>scp1</td>
<td>6</td>
</tr>
<tr>
<td>10</td>
<td>scp2</td>
<td>6</td>
</tr>
<tr>
<td>15</td>
<td>scp3</td>
<td>3</td>
</tr>
</tbody>
</table>

ALIAS | TYPEA
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>5</td>
</tr>
</tbody>
</table>
9. Display the global title translations in the database using the `rtrv-gtt` command specifying a translation type from the `rtrv-tt` command output shown in Step 8, and the MAP set ID that will be removed in Step 16.

For this example, enter this command.

```
rtrv-gtt:typea=10:mapset=6
```

This is an example of the possible output.

```
rlghncxa03w 08-10-25 09:43:31 GMT EAGLE5 39.2.0
TYPEA TTN NDGT
10 scp2 6
GTT TABLE IS 10 % FULL (27000 of 269999)
START GTA END GTA XLAT RI PC
615370 615380 DPCSSN SSN 003-003-003
MAPSET=6 SSN=254 NGT=---
Command Retrieved 1 Entries
```

If the `rtrv-gtt` output shows any entries, perform *Changing a Global Title Translation* to change the MAP set assignment for the global title translations displayed in this step.

Repeat Step 8 and Step 9 for the other translation types shown in Step 8.

When Step 8 and Step 9 have been performed for all the translation types shown in Step 8, continue the procedure with Step 12.

10. Display the GTT sets in the database using the `rtrv-gttset` command.

This is an example of the possible output.

```
rlghncxa03w 09-07-07 00:27:31 GMT EAGLE5 41.1.0
GTTSN NETDOM NDGT
lidl ansi 10
800 ansi 10
si000 itu 15
imsi itu 15
abcd1234 itu 12
GTT-SET table is (5 of 2000) 1% full.
```

11. Display the global title address (GTA) information for a GTT set from Step 10.
Use the `rtrv-gta` command with the `gttsn` parameter value shown in the output of Step 10, and the MAP set ID that will be removed in Step 16. For this example, enter this command.

```
rtrv-gta:gttsn=t800:mapset=6
```

This is an example of the possible output.

```
rlghncxa03w 10-07-07 00:27:31 GMT EAGLE5 42.0.0

GTTSN NETDOM SETTYPE NDGT
t800 ansi CDGTA 10
GTA TABLE IS 1 % FULL (17 of 269999)

START GTA END GTA XLAT RI PC
3365840000 3365849999 dpc ssn 001-255-001
MAPSET=6 SSN=0 CCGT=no CGGTMOD=NO
GTMODID=--------- TESTMODE=off
OPTSN=--------- CGSELID=----- OPCSN=---------
ACTSN=act10 PPMEASREQD= NO

Command Retrieved 1 Entries
```

If the `rtrv-gta` output shows any entries, perform Changing Global Title Address Information to change the MAP set assignment for the global title translations displayed in this step.

Repeat Step 10 and Step 11 for the other GTT set names shown in Step 10.

When Step 10 and Step 11 have been performed for all the GTT set names shown in Step 10, continue the procedure with Step 12.

12. Display the GSM MAP screening operation codes assigned to the MAP set that will be removed in this procedure using the `rtrv-gsms-opcode` command with the MAP set ID that will be removed in Step 16.

For this example, enter this command.

```
rtrv-gsms-opcode:mapset=6
```

This is an example of the possible output.

```
rlghncxa03w 08-10-10 11:43:04 GMT EAGLE5 39.2.0

OPCODE OPNAME DFLTACT PCA SSN MAPSET RI TT
36 for1 fwd 002-002-002 10 6 ssn -

OPCODE OPNAME DFLTACT PCI SSN MAPSET RI TT

OPCODE OPNAME DFLTACT PCN SSN MAPSET RI TT

OPCODE OPNAME DFLTACT PCN24 SSN MAPSET RI TT

OPCODE OPNAME DFLTACT

GSMM OPCODE Table (10 of 257) is 4% full
```

If the `rtrv-gsms-opcode` output shows any entries, perform the “Changing a GSMMAP Screening Operation Code” procedure in the Database Administration Manual - Features and change the MAP set assignment for the operation code entries displayed in this step.

13. GSM MAP screening entries cannot reference the MAP set being removed in this procedure.

The `opname` parameter value from the `rtrv-gsms-opcode` output must be used to display the GSM MAP screening entries. Display the GSM MAP screening operation codes in the database
using the \texttt{rtrv-gsms-opcode} command without the \texttt{mapset} parameter. This is an example of the possible output.

```
rlghncxa03w 08-10-10 11:43:04 GMT EAGLE5 39.2.0

<table>
<thead>
<tr>
<th>OPCODE</th>
<th>OPNAME</th>
<th>DFLTACT</th>
<th>PCA</th>
<th>SSN</th>
<th>MAPSET</th>
<th>RI</th>
<th>TT</th>
</tr>
</thead>
<tbody>
<tr>
<td>36</td>
<td>for1</td>
<td>fwd</td>
<td>002-002-002</td>
<td>10</td>
<td>6</td>
<td>ssn-</td>
<td></td>
</tr>
<tr>
<td>93</td>
<td>dd93</td>
<td>dupdc</td>
<td>5-25-3</td>
<td>200</td>
<td>DFLT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>139</td>
<td>fwd139</td>
<td>fwd</td>
<td>3-159-7</td>
<td>128</td>
<td>3</td>
<td>gt 10</td>
<td></td>
</tr>
<tr>
<td>187</td>
<td>dup187</td>
<td>dupl</td>
<td>11519</td>
<td>79</td>
<td>DFLT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>sri</td>
<td>disc</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>route25</td>
<td>route</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>pass50</td>
<td>pass</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>71</td>
<td>ati</td>
<td>atierr</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>150</td>
<td>discard</td>
<td>disc</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

GSMMS OPCODE Table (10 of 257) is 4% full

14. Display the GSM MAP screening entries assigned to the MAP set being removed in this procedure. Enter the \texttt{rtrv-gsmmap-scrn} command with an \texttt{opname} value shown in the \texttt{rtrv-gsms-opcode} command output in \textit{Step 13} and with the MAP set ID that will be removed in \textit{Step 16}.

For this example, enter this command.

```
\texttt{rtrv-gsmmap-scrn:opname=dd93:mapset=6}
```

This is an example of the possible output.

```
rlghncxa03w 08-10-20 09:07:58 GMT EAGLE5 39.2.0

Single CgPA Entries for OPNAME=dd93
-----------------------------------
SADDR           NP NAI FORBD ACT      PCA        SSN  CGSR    MAPSET | RI
TT=-- 92546       *  *   all   fwd      001-001-001   5   cg07    6     ssn

SADDR           NP NAI FORBD ACT      PCI        SSN  CGSR    MAPSET
SADDR           NP NAI FORBD ACT      PCN        SSN  CGSR    MAPSET
SADDR           NP NAI FORBD ACT      PCN24      SSN  CGSR    MAPSET

Range CgPA Entries for OPNAME=dd93
----------------------------------
SADDR           EADDR           NP NAI FORBD ACT      PCA        SSN  CGSR
TT=-- 3234567 3345678           *  *   all   dupl     001-001-001   30  cg15
MAPSET=6 RI=ssn TT=--
```

910-6277-001 Revision A, January 2012 271
If the `rtrv-gsmmap-scrn` output shows any entries, perform the “Changing a GSMMAP Screening Entry” procedure in the *Database Administration Manual - Features* and change the MAP set assignment for the GSMMAP screening entries displayed in this step.

Repeat *Step 13* and *Step 14* for the other GSM operation code entries shown in *Step 13*.

When *Step 13* and *Step 14* have been performed for all the GSM operation code entries shown in *Step 13*, continue the procedure with *Step 15*.

15. The mated application cannot be removed if the point code of the mated application (if the Flexible GTT Load Sharing feature is not enabled) or the point code and MAP set ID of the mated application (if the Flexible GTT Load Sharing feature is enabled) is shown in the `rtrv-ppsopts` command output. Enter the `rtrv-ppsopts` command to verify that the mated application’s point code or point code and MAP set ID is not shown in the `rtrv-ppsopts` output. This is an example of the possible output.

```
rlghncxa03w 09-03-20 09:07:58 GMT  EAGLE5 40.1.0
Prepaid SMS Options
-------------------
BPARTYCHK     = OFF
PPT       PCA/PCI/PCN                   SSN       RI        Set ID
---       --------------------          ----      ---       ------
1         PCI:    1-001-1               25        SSN       DFLT
2         --------------------          NONE      GT        DFLT
3         --------------------          NONE      GT        DFLT
4         PCI:    1-001-1               30        GT        1
5         --------------------          NONE      GT        DFLT
6         --------------------          NONE      GT        DFLT
7         --------------------          NONE      GT        DFLT
8         PCI:    1-001-1               75        SSN       1
9         --------------------          NONE      GT        DFLT
10        --------------------          NONE      GT        DFLT
11        --------------------          NONE      GT        DFLT
12        --------------------          NONE      GT        DFLT
13        --------------------          NONE      GT        DFLT
14        --------------------          NONE      GT        DFLT
15        --------------------          NONE      GT        DFLT
16        --------------------          NONE      GT        DFLT
17        --------------------          NONE      GT        DFLT
18        --------------------          NONE      GT        DFLT
19        --------------------          NONE      GT        DFLT
20        --------------------          NONE      GT        DFLT
21        --------------------          NONE      GT        DFLT
22        --------------------          NONE      GT        DFLT
23        --------------------          NONE      GT        DFLT
24        --------------------          NONE      GT        DFLT
25        --------------------          NONE      GT        DFLT
26        --------------------          NONE      GT        DFLT
27        --------------------          NONE      GT        DFLT
28        --------------------          NONE      GT        DFLT
29        --------------------          NONE      GT        DFLT
30        --------------------          NONE      GT        DFLT
31        --------------------          NONE      GT        DFLT
32        --------------------          NONE      GT        DFLT
```
| GTA | NONE |

Note: If the Flexible GTT Load Sharing feature is not enabled, the Set ID column is not displayed in the `rtrv-ppsopts` output.

If the `rtrv-ppsopts` output shows any entries that reference the mated application’s point code (if the Flexible GTT Load Sharing feature is not enabled) or the mated application’s point code and MAP set ID (if the Flexible GTT Load Sharing feature is enabled), remove the reference using the `chg-ppsopts` command with the prepaid portability type (the PPT value) that contains the reference and either the `pci=none` or `pcn=none` parameters (depending on the type of point code the prepaid portability type contains).

```
chg-ppsopts:ppt=4:pci=none
```

This is an example of the possible output.

```
rlghncxa03w 07-05-20 09:07:58 GMT  EAGLE5 37.0.0
CHG-PPSOPTS: MASP A - COMPLTD
```

Repeat this step for other entries shown in the `rtrv-ppsopts` output that contain the mated application’s point code or point code and MAP set ID.

16. Remove the mated application from the database using the `dlt-map` command with a point code and subsystem number from the `rtrv-map` command output shown in *Step 1*.

If the `MAPSET` field is shown in the `rtrv-map` output in *Step 1*, showing that the Flexible GTT Load Sharing feature is enabled, the `mapset` parameter must be specified with the `dlt-map` command.

If the Flexible GTT Load Sharing feature is not enabled, for this example, enter this command.
dlt-map:pca=255-001-002:ssn=253

This message should appear.

If the Flexible GTT Load Sharing feature is enabled, for this example, enter this command.
dlt-map:pca=255-001-002:ssn=253:mapset=6

This message should appear.

Note: If all the subsystems for a specified point code (pc, pca, pci, or pcn) are being removed from the mated application table, enter the dlt-map command with the point code and the all=yes parameter. This results in removing the point code from the mated application table. For this example, enter the dlt-map:pca=255-001-002:all=yes command. If the Flexible GTT Load Sharing feature is enabled, enter the dlt-map:pca=255-001-002:all=yes:mapset=6 command.

Note: Removing the last subsystem assigned to a point code removes the point code from the mated application table.

17. Verify the changes using the rtrv-map command with the point code and subsystem specified in Step 5 or Step 16.

If the mapset parameter was specified in Step 16, the mapset parameter should be specified with the rtrv-map command.

If the mapset parameter was not specified in Step 16, for this example, enter this command.
rtrv-map:pca=255-001-002:ssn=253

If the mapset parameter was specified in Step 16, for this example, enter this command.
rtrv-map:pca=255-001-002:ssn=253:mapset=6

The EAGLE 5 ISS responds with this message showing that the subsystem assigned to the point code is no longer in the database.

E2456 Cmd Rej: SSN does not exist for given remote point code

Note: If all the subsystems for a specified point code (pc, pca, pci, or pcn) were removed from the mated application table in Step 16 (either by specifying the all=yes parameter, or by removing the last subsystem assigned to the point code from the mated application table), resulting in removing the point code from the mated application table, enter the rtrv-map command with the point code specified in Step 16. For this example, enter the rtrv-map:pca=255-001-002 command. If the mapset parameter was specified in Step 16, for this example, enter the rtrv-map:pca=255-001-002:mapset=6 command.

The EAGLE 5 ISS responds with this message showing that the point code is no longer in the database.

E2452 Cmd Rej: Remote point code does not exist
If the MRN set was removed from the MAP set in Step 5, enter the `rtrv-map` command with the `mapset`, point code and `ssn` parameters and values specified in Step 5. For this example, enter this command.

```
rtrv-map:mapset=6
```

Note: If the `mapset=dflt` parameter was specified in Step 5, the `mapset=dflt`, point code, and `ssn` parameters specified in Step 5 must be specified with the `rtrv-map` command.

This is an example of the possible output.

```
rlghncxa03w 09-07-07 00:34:31 GMT EAGLE5 41.1.0
MAPSET ID=6      MRNSET ID=----  MRNPC=-----------
PCA Mate PCA     SSN RC MULT SRM MRC GRP NAME SSO WT %WT THR
255-001-002                  253 10  SHR *Y  *Y  grp01    ON  10  50  20
255-001-004   254 10  SHR *Y  *Y  grp01    ON  10  50  20

MAP TABLE IS  (37 of 36000)  1 % FULL
```

18. Backup the new changes using the `chg-db:action=backup:dest=fixed` command.

These messages should appear, the active Maintenance and Administration Subsystem Processor (MASP) appears first.

```
BACKUP (FIXED) : MASP A - Backup starts on active MASP.
BACKUP (FIXED) : MASP A - Backup on active MASP to fixed disk complete.
BACKUP (FIXED) : MASP A - Backup starts on standby MASP.
BACKUP (FIXED) : MASP A - Backup on standby MASP to fixed disk complete.
```

Changing the Attributes of a Mated Application

This procedure is used to change the values of the parameters of the existing mated application (MAP) group or MAP set, shown in Table 51: Mated Application Parameters, using the `chg-map` command.

Table 51: Mated Application Parameters

<table>
<thead>
<tr>
<th>CSPC group name</th>
<th>sso</th>
<th>srm</th>
<th>mrc</th>
<th>rc</th>
</tr>
</thead>
</table>

Changing the `rc` value of the mated application in this procedure is not performed to change the mated application type. If you wish to change the mated application type, perform the Changing the Mated Application Type procedure.

The `chg-map` command contains other parameters that are not used in this procedure. Perform these procedures as applicable to change the other parameter values.

- To change the weights or in-service thresholds of the mated application, perform the Changing the Weight and In-Service Threshold Values of a Mated Application procedure.
- To change the MRNSET and MRN point code values assigned to the mated application, perform the Changing the MRNSET and MRN Point Code Values of MAP Entries procedure.

The `chg-map` command can also be used to add point code/SSN entries to an existing MAP group or MAP set. This action is not covered in this procedure. If you wish to add point code/SSN entries to an existing MAP group or MAP set, perform one of these procedures.
Provisioning a Solitary Mated Application
Provisioning a Dominant Mated Application
Provisioning a Load Shared Mated Application
Provisioning a Combined Dominant/Load Shared Mated Application

The `chg-map` command in this procedure uses these parameters.

- **:pc/pca/pci/pcn/pcn24**: The point code of the primary signaling point that is to receive the message.

 Note: The point codes can be either an ANSI point code (pc/pca), ITU-I or ITU-I spare point code (pci), a 14-bit ITU-N or 14-bit ITU-N spare point code (pcn), or a 24-bit ITU-N (pcn24) point code.

- **:ssn**: Subsystem number – the subsystem address of the primary point code that is to receive the message.

- **:rc**: The relative cost value of the primary point code and subsystem, defined by the pc/pca/pci/pcn/pcn24 and ssn parameters. The `rc` parameter has a range of values from 0 to 99.

- **:grp**: The name of the concerned signaling point code group that contains the point codes that should be notified of the subsystem status. This parameter applies to both RPCs/SSNs.

- **:mrc**: Message routing under congestion – specifies whether Class 0 messages are routed during congestion conditions. The values for this parameter are `yes` and `no`. This parameter can be specified for any type of mated application, but this parameter affects only the traffic for a dominant mated application.

- **:srm**: Subsystem routing messages – defines whether subsystem routing messages (SBR, SNR) are transmitted between the mated applications. The values for this parameter are `yes` and `no`. The `srm=yes` parameter can be specified only for ANSI mated applications. This parameter affects traffic only on dominant and combined dominant/load shared mated applications.

- **:sso**: Subsystem Status Option – defines whether the subsystem status option is on or off. This parameter allows the user the option to have the specified subsystem marked as prohibited even though an MTP-RESUME message has been received by the indicating that the specified point code is allowed. The `sso` parameter cannot be specified if the pc/pca/pci/pcn/pcn24 value is the EAGLE 5 ISS’s true point code, shown in the `rtrv-sid` output.

- **:mapset**: The MAP set ID that the mated applications are assigned to, shown in the `rtrv-map` output. MAP set IDs are shown only if the Flexible GTT Load Sharing feature is enabled. The `mapset` parameter value cannot be changed in this procedure. If the `rtrv-map` output shows the MAPSET field, the `mapset` parameter must be specified with the `chg-map` command. If the `rtrv-map` output does not show the MAPSET field, the Flexible GTT Load Sharing feature is not enabled. The `mapset` parameter cannot be specified with the `chg-map` command. The `mapset` parameter has two values.

 - **dflt**: to change the mated application in the default MAP set. The EAGLE 5 ISS’s true point code (shown in the `rtrv-sid` output) and subsystem can be assigned only to the default MAP set.

 - the specific number of an existing MAP set if you are changing the mated application in an existing MAP set.

- **:force=yes**: This parameter must be specified if the `rc` parameter is specified with either the `srm` or `mrc` parameters.
At least one optional parameter must be specified.
The mated application to be changed must be in the database.
If the primary point code and subsystem are being changed, the current mated application must be removed from the database and a new mated application with the new primary point code and subsystem, containing the mated point codes and subsystems from the mated application that was removed, should be added to the database.
If the point code is entered with the `pc` or `pca` parameters, the specified point codes in the concerned point code broadcast group must have been entered with the `pc` or `pca` parameters of the `ent-cspc` command. If the point code is entered with the `pci`, `pcn`, or `pcn24` parameters, the specified point codes in the concerned point code broadcast group must have been entered with the `pci`, `pcn`, or `pcn24` parameters of the `ent-cspc` command, respectively.
If the mated application contains the EAGLE 5 ISS’s true point code, the relative cost value assigned to this point code must be the lowest value in the mated application.
The format of the point codes in the CSPC group specified with the `grp` parameter must be the same as the primary point code specified with the `chg-map` command only if the ANSI/ITU SCCP Conversion feature is not enabled. If the ANSI/ITU SCCP Conversion feature is enabled, the CSPC group may contain a mixture of point code types (refer to the Adding a Concerned Signaling Point Code procedure), and the network type of the CSPC group can be different from the network type of the primary point code of the mated application. The status of the ANSI/ITU SCCP Conversion feature can be verified with the `rtrv-ctrl-feat` command.

Canceling the `RTRV-MAP` Command

Because the `rtrv-map` command used in this procedure can output information for a long period of time, the `rtrv-map` command can be canceled and the output to the terminal stopped. There are three ways that the `rtrv-map` command can be canceled.

- Press the `F9` function key on the keyboard at the terminal where the `rtrv-map` command was entered.
- Enter the `canc-cmd` without the `trm` parameter at the terminal where the `rtrv-map` command was entered.
- Enter the `canc-cmd:trm=<xx>`, where `<xx>` is the terminal where the `rtrv-map` command was entered, from another terminal other that the terminal where the `rtrv-map` command was entered. To enter the `canc-cmd:trm=<xx>` command, the terminal must allow Security Administration commands to be entered from it and the user must be allowed to enter Security Administration commands. The terminal’s permissions can be verified with the `rtrv-secu-trm` command. The user’s permissions can be verified with the `rtrv-user` or `rtrv-secu-user` commands.

For more information about the `canc-cmd` command, refer to the Commands Manual.

1. Display the mated applications in the database using the `rtrv-map` command.

This is an example of the possible output.

```
rlghnca03w 09-07-07 00:34:31 GMT EAGLE5 41.1.0

MAPSET ID=DFLT
PCA Mate PCA SSN RC MULT SRM MRC GRP NAME SSO WT %WT THR
002-002-002  250 10 SHR *Y  *Y  grp15   ON 10 33  20
100-130-079  250 10 SHR *Y  *Y  grp15   ON 10 33  20
068-135-094  251 10 SHR *Y  *Y  grp05   OFF 10 33  20

MAPSET ID=10
```
<table>
<thead>
<tr>
<th>PCA</th>
<th>Mate PCA</th>
<th>SSN</th>
<th>RC</th>
<th>MULT</th>
<th>SRM</th>
<th>MRC</th>
<th>GRP</th>
<th>NAME</th>
<th>SSO</th>
<th>WT</th>
<th>%WT</th>
<th>THR</th>
</tr>
</thead>
<tbody>
<tr>
<td>003-003-003</td>
<td></td>
<td>254</td>
<td>10</td>
<td>DOM</td>
<td>YES</td>
<td>YES</td>
<td>grp10</td>
<td>ON</td>
<td>---</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>040-040-040</td>
<td></td>
<td>254</td>
<td>20</td>
<td>DOM</td>
<td>YES</td>
<td>YES</td>
<td>grp10</td>
<td>ON</td>
<td>---</td>
<td>10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MAPSET ID=11
<table>
<thead>
<tr>
<th>PCA</th>
<th>Mate PCA</th>
<th>SSN</th>
<th>RC</th>
<th>MULT</th>
<th>SRM</th>
<th>MRC</th>
<th>GRP</th>
<th>NAME</th>
<th>SSO</th>
<th>WT</th>
<th>%WT</th>
<th>THR</th>
</tr>
</thead>
<tbody>
<tr>
<td>004-004-004</td>
<td></td>
<td>254</td>
<td>10</td>
<td>SHR</td>
<td>*Y</td>
<td>Y</td>
<td>grp10</td>
<td>OFF</td>
<td>---</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100-100-100</td>
<td></td>
<td>254</td>
<td>10</td>
<td>SHR</td>
<td>*Y</td>
<td>Y</td>
<td>grp10</td>
<td>OFF</td>
<td>---</td>
<td>10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MAPSET ID=DFLT
<table>
<thead>
<tr>
<th>PCA</th>
<th>Mate PCA</th>
<th>SSN</th>
<th>RC</th>
<th>MULT</th>
<th>SRM</th>
<th>MRC</th>
<th>GRP</th>
<th>NAME</th>
<th>SSO</th>
<th>WT</th>
<th>%WT</th>
<th>THR</th>
</tr>
</thead>
<tbody>
<tr>
<td>005-005-005</td>
<td></td>
<td>250</td>
<td>10</td>
<td>DOM</td>
<td>YES</td>
<td>YES</td>
<td>grp15</td>
<td>OFF</td>
<td>---</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>060-060-060</td>
<td></td>
<td>250</td>
<td>20</td>
<td>DOM</td>
<td>YES</td>
<td>YES</td>
<td>grp15</td>
<td>OFF</td>
<td>---</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>070-070-070</td>
<td></td>
<td>251</td>
<td>30</td>
<td>DOM</td>
<td>YES</td>
<td>YES</td>
<td>grp05</td>
<td>ON</td>
<td>---</td>
<td>10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MAPSET ID=9
<table>
<thead>
<tr>
<th>PCA</th>
<th>Mate PCA</th>
<th>SSN</th>
<th>RC</th>
<th>MULT</th>
<th>SRM</th>
<th>MRC</th>
<th>GRP</th>
<th>NAME</th>
<th>SSO</th>
<th>WT</th>
<th>%WT</th>
<th>THR</th>
</tr>
</thead>
<tbody>
<tr>
<td>006-006-006</td>
<td></td>
<td>250</td>
<td>10</td>
<td>SOL</td>
<td>*Y</td>
<td>Y</td>
<td>grp15</td>
<td>OFF</td>
<td>---</td>
<td>10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MAPSET ID=DFLT
<table>
<thead>
<tr>
<th>PCA</th>
<th>Mate PCA</th>
<th>SSN</th>
<th>RC</th>
<th>MULT</th>
<th>SRM</th>
<th>MRC</th>
<th>GRP</th>
<th>NAME</th>
<th>SSO</th>
<th>WT</th>
<th>%WT</th>
<th>THR</th>
</tr>
</thead>
<tbody>
<tr>
<td>007-007-007</td>
<td></td>
<td>250</td>
<td>10</td>
<td>SOL</td>
<td>*Y</td>
<td>Y</td>
<td>grp15</td>
<td>OFF</td>
<td>---</td>
<td>10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MAPSET ID=12
<table>
<thead>
<tr>
<th>PCA</th>
<th>Mate PCA</th>
<th>SSN</th>
<th>RC</th>
<th>MULT</th>
<th>SRM</th>
<th>MRC</th>
<th>GRP</th>
<th>NAME</th>
<th>SSO</th>
<th>WT</th>
<th>%WT</th>
<th>THR</th>
</tr>
</thead>
<tbody>
<tr>
<td>008-008-008</td>
<td></td>
<td>254</td>
<td>10</td>
<td>COM</td>
<td>YES</td>
<td>Y</td>
<td>grp10</td>
<td>ON</td>
<td>10</td>
<td>33</td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>200-147-100</td>
<td></td>
<td>254</td>
<td>10</td>
<td>COM</td>
<td>YES</td>
<td>Y</td>
<td>grp10</td>
<td>ON</td>
<td>10</td>
<td>33</td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>179-183-050</td>
<td></td>
<td>250</td>
<td>10</td>
<td>COM</td>
<td>YES</td>
<td>Y</td>
<td>grp15</td>
<td>OFF</td>
<td>10</td>
<td>33</td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>031-049-100</td>
<td></td>
<td>250</td>
<td>20</td>
<td>COM</td>
<td>YES</td>
<td>Y</td>
<td>grp15</td>
<td>ON</td>
<td>10</td>
<td>50</td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>056-113-200</td>
<td></td>
<td>251</td>
<td>20</td>
<td>COM</td>
<td>YES</td>
<td>Y</td>
<td>grp15</td>
<td>OFF</td>
<td>10</td>
<td>50</td>
<td></td>
<td>20</td>
</tr>
</tbody>
</table>

MAPSET ID=DFLT
<table>
<thead>
<tr>
<th>PCA</th>
<th>Mate PCA</th>
<th>SSN</th>
<th>RC</th>
<th>MULT</th>
<th>SRM</th>
<th>MRC</th>
<th>GRP</th>
<th>NAME</th>
<th>SSO</th>
<th>WT</th>
<th>%WT</th>
<th>THR</th>
</tr>
</thead>
<tbody>
<tr>
<td>255-001-000</td>
<td></td>
<td>250</td>
<td>10</td>
<td>SOL</td>
<td>*Y</td>
<td>Y</td>
<td>grp01</td>
<td>ON</td>
<td>---</td>
<td>10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MAPSET ID=1
<table>
<thead>
<tr>
<th>PCA</th>
<th>Mate PCA</th>
<th>SSN</th>
<th>RC</th>
<th>MULT</th>
<th>SRM</th>
<th>MRC</th>
<th>GRP</th>
<th>NAME</th>
<th>SSO</th>
<th>WT</th>
<th>%WT</th>
<th>THR</th>
</tr>
</thead>
<tbody>
<tr>
<td>255-001-000</td>
<td></td>
<td>250</td>
<td>10</td>
<td>SOL</td>
<td>*Y</td>
<td>Y</td>
<td>grp01</td>
<td>OFF</td>
<td>---</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>253-001-002</td>
<td></td>
<td>254</td>
<td>10</td>
<td>SHR</td>
<td>*Y</td>
<td>Y</td>
<td>grp01</td>
<td>OFF</td>
<td>---</td>
<td>10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MAPSET ID=2
<table>
<thead>
<tr>
<th>PCA</th>
<th>Mate PCA</th>
<th>SSN</th>
<th>RC</th>
<th>MULT</th>
<th>SRM</th>
<th>MRC</th>
<th>GRP</th>
<th>NAME</th>
<th>SSO</th>
<th>WT</th>
<th>%WT</th>
<th>THR</th>
</tr>
</thead>
<tbody>
<tr>
<td>255-001-000</td>
<td></td>
<td>250</td>
<td>10</td>
<td>SOL</td>
<td>*Y</td>
<td>Y</td>
<td>grp01</td>
<td>ON</td>
<td>---</td>
<td>10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MAPSET ID=DFLT
<table>
<thead>
<tr>
<th>PCA</th>
<th>Mate PCA</th>
<th>SSN</th>
<th>RC</th>
<th>MULT</th>
<th>SRM</th>
<th>MRC</th>
<th>GRP</th>
<th>NAME</th>
<th>SSO</th>
<th>WT</th>
<th>%WT</th>
<th>THR</th>
</tr>
</thead>
<tbody>
<tr>
<td>255-001-000</td>
<td></td>
<td>253</td>
<td>10</td>
<td>SHR</td>
<td>*Y</td>
<td>Y</td>
<td>grp01</td>
<td>OFF</td>
<td>---</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>253-001-004</td>
<td></td>
<td>254</td>
<td>10</td>
<td>SHR</td>
<td>*Y</td>
<td>Y</td>
<td>grp01</td>
<td>OFF</td>
<td>---</td>
<td>10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MAPSET ID=3
<table>
<thead>
<tr>
<th>PCA</th>
<th>Mate PCA</th>
<th>SSN</th>
<th>RC</th>
<th>MULT</th>
<th>SRM</th>
<th>MRC</th>
<th>GRP</th>
<th>NAME</th>
<th>SSO</th>
<th>WT</th>
<th>%WT</th>
<th>THR</th>
</tr>
</thead>
<tbody>
<tr>
<td>255-001-001</td>
<td></td>
<td>255</td>
<td>10</td>
<td>DOM</td>
<td>YES</td>
<td>YES</td>
<td>grp01</td>
<td>ON</td>
<td>---</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>253-001-005</td>
<td></td>
<td>254</td>
<td>20</td>
<td>DOM</td>
<td>YES</td>
<td>YES</td>
<td>grp01</td>
<td>ON</td>
<td>---</td>
<td>10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MAPSET ID=4
<table>
<thead>
<tr>
<th>PCA</th>
<th>Mate PCA</th>
<th>SSN</th>
<th>RC</th>
<th>MULT</th>
<th>SRM</th>
<th>MRC</th>
<th>GRP</th>
<th>NAME</th>
<th>SSO</th>
<th>WT</th>
<th>%WT</th>
<th>THR</th>
</tr>
</thead>
<tbody>
<tr>
<td>255-001-001</td>
<td></td>
<td>250</td>
<td>10</td>
<td>DOM</td>
<td>NO</td>
<td>NO</td>
<td>grp01</td>
<td>OFF</td>
<td>---</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>253-001-001</td>
<td></td>
<td>254</td>
<td>20</td>
<td>DOM</td>
<td>NO</td>
<td>NO</td>
<td>grp01</td>
<td>OFF</td>
<td>---</td>
<td>10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MAPSET ID=DFLT
<table>
<thead>
<tr>
<th>PCA</th>
<th>Mate PCA</th>
<th>SSN</th>
<th>RC</th>
<th>MULT</th>
<th>SRM</th>
<th>MRC</th>
<th>GRP</th>
<th>NAME</th>
<th>SSO</th>
<th>WT</th>
<th>%WT</th>
<th>THR</th>
</tr>
</thead>
<tbody>
<tr>
<td>255-001-002</td>
<td></td>
<td>251</td>
<td>10</td>
<td>SHR</td>
<td>*Y</td>
<td>Y</td>
<td>grp01</td>
<td>OFF</td>
<td>---</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>255-001-002</td>
<td></td>
<td>254</td>
<td>10</td>
<td>SHR</td>
<td>*Y</td>
<td>Y</td>
<td>grp01</td>
<td>OFF</td>
<td>---</td>
<td>10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MAPSET ID=5
<table>
<thead>
<tr>
<th>PCA</th>
<th>Mate PCA</th>
<th>SSN</th>
<th>RC</th>
<th>MULT</th>
<th>SRM</th>
<th>MRC</th>
<th>GRP</th>
<th>NAME</th>
<th>SSO</th>
<th>WT</th>
<th>%WT</th>
<th>THR</th>
</tr>
</thead>
<tbody>
<tr>
<td>255-001-002</td>
<td></td>
<td>250</td>
<td>10</td>
<td>DOM</td>
<td>YES</td>
<td>YES</td>
<td>grp01</td>
<td>ON</td>
<td>---</td>
<td>10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
If any of the following items are not shown in the `rtrv-map` output, then the feature corresponding to these items is not enabled, or turned on if required.

- The MAPSET field - the Flexible GTT Load Sharing feature is not enabled.
- The MRNSET and MRNPC fields - the GTT Load Sharing with Alternate Routing Indicator feature is not enabled.
- The WT, %WT, THR columns - the Weighted GTT Load Sharing feature is not enabled and turned on.

If you wish to change the point code and SSN of a mated application, record the data for the mated application. Remove the mated application by performing the `Removing a Mated Application` procedure. Add the mated application with the new point code and SSN by performing one of these procedures.

- **Provisioning a Solitary Mated Application**
- **Provisioning a Dominant Mated Application**
- **Provisioning a Load Shared Mated Application**
- **Provisioning a Combined Dominant/Load Shared Mated Application**

If the CSPC group name assigned to the mated application is not being changed, continue the procedure by performing one of these steps.

- If the `sso` parameter value will not be changed, continue the procedure with **Step 5**.
- If the `sso` parameter value will not be changed, continue the procedure with **Step 4**.

If the CSPC group name assigned to the mated application is being changed, continue the procedure with **Step 2**.

2. Display the point codes in the CSPC group that you wish to assign to the mated application by first entering the `rtrv-cspc` command with no parameters.

This is an example of the possible output.

```
righncxa03w 09-07-25 09:48:31 GMT EAGLE5 41.1.0
CSPC GRP    NETWORK    PERCENT    FULL
grp01       ANSI       6%         
grp02       ITU-I       9%         
grp03       ITU-N       12%        
grp04       ANSI       15%        
grp05       ANSI       15%         
```
If the desired CSPC group is shown in the `rtrv-cspc` output, re-enter the `rtrv-cspc` command with the CSPC group name. For this example, enter this command.

```
rtrv-cspc:grp=grp05
```

This is an example of the possible output.

```
rlghncxa03w 09-07-25 09:48:31  GMT  EAGLE5 41.1.0
CSPC GRP      PCA
grp05         005-005-005
              007-007-007
              008-008-008
              009-009-009
```

If the CSPC group is not in the database, or if the required point code is not assigned to the CSPC group, perform the Adding a Concerned Signaling Point Code procedure to add the required CSPC group or point code to the database. If the format of the point codes that will be assigned to the CSPC group created by performing the Adding a Concerned Signaling Point Code procedure will be different from the primary point code of the mated application, the ANSI/ITU SCCP conversion feature must be enabled when the Adding a Concerned Signaling Point Code procedure is performed. Continue the procedure by performing one of these steps.

- If the `sso` parameter value will not be changed, continue the procedure with Step 5.
- If the `sso` parameter value will not be changed, continue the procedure with Step 4.

If the CSPC group contains the required point codes, continue the procedure by performing one of these steps.

- If the CSPC group displayed in this step contains point codes with different formats (the ANSI/ITU SCCP Conversion feature is enabled), or if the format of all the point codes in the CSPC group are the same as the primary point code of the mated application, continue the procedure by performing one of these steps.
 - If the `sso` parameter value will not be changed, continue the procedure with Step 5.
 - If the `sso` parameter value will not be changed, continue the procedure with Step 4.
 - If the CSPC group displayed in this step contains point codes with the same format and the format of the primary point of the mated application is different, continue the procedure with Step 3.

3. The format of the point codes in the CSPC group specified with the `grp` parameter must be the same as the primary point code specified with the `ent-map` command only if the ANSI/ITU SCCP Conversion feature is not enabled.

If the ANSI/ITU SCCP Conversion feature is enabled, the CSPC group may contain a mixture of point code formats (refer to the Adding a Concerned Signaling Point Code procedure), and the network type of the CSPC group can be different from the network type of the primary point code of the mated application.

Verify the status of the ANSI/ITU SCCP Conversion feature by entering this command:

```
rtrv-ctrl-feat:partnum=893012001
```

The following is an example of the possible output.

```
rlghncxa03w 09-07-28 21:15:37 GMT EAGLE5 41.1.0
```
The following features have been permanently enabled:

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Partnum</th>
<th>Status</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCCP Conversion</td>
<td>893012001</td>
<td>on</td>
<td>----</td>
</tr>
</tbody>
</table>

The following features have been temporarily enabled:

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Partnum</th>
<th>Status</th>
<th>Quantity</th>
<th>Trial Period Left</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Zero entries found.

The following features have expired temporary keys:

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Partnum</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Zero entries found.

If the ANSI/ITU SCCP Conversion feature is not enabled, perform the **Activating the ANSI/ITU SCCP Conversion Feature** procedure to enable the ANSI/ITU SCCP Conversion feature.

Continue the procedure by performing one of these steps.

- If the `sso` parameter value will not be changed, continue the procedure with **Step 5**.
- If the `sso` parameter value will not be changed, continue the procedure with **Step 4**.

4. The `sso` parameter cannot be specified for a mated application if the `pc/pca/pci/pcn/pcn24` value is the EAGLE 5 ISS’s point code. A load shared or combined dominant/load shared mated application cannot contain the EAGLE 5 ISS’s point code. A dominant mated application containing the EAGLE 5 ISS’s point code can contain only one mate point code and SSN. The EAGLE 5 ISS’s point code in the dominant mated application must have the lowest RC value.

Verify the EAGLE 5 ISS’s point code by entering the `rtrv-sid` command. The EAGLE 5 ISS’s point code is shown in the `PCA`, `PCI`, `PCN`, and `PCN24` fields. This is an example of the possible output.

```
rlghncxa03w 09-07-10 11:43:04 GMT EAGLE5 41.1.0
PCA 010-020-030 0-123-1 12-0-14-1 rlghncxa03w OTHER
    s-1-023-1 s-12-0-14-1
PCI 001-001-001 002-002-003 002-002-004 002-002-005
    002-002-006 002-002-007 002-002-008 002-002-009
    004-002-001 004-003-003 050-060-070
    s-002-01-1 s-002-01-3 s-002-01-4
PCN 1-001-1 1-002-1 2-001-1 2-222-2
    2-0-10-3 2-0-11-0 2-0-11-2 2-0-12-1
    2-2-3-3 2-2-4-3 10-14-10-1
```

5. Change the `rc`, `grp`, `sso`, `srm`, or `mrc` parameter values, as applicable, in the mated application using the `chg-map` command with the point code and subsystem number from the `rtrv-map` command output shown in **Step 1**.

If the `MAPSET` field is shown in the `rtrv-map` output in **Step 1**, the `mapset` parameter must be specified with the `chg-map` command. If the `MAPSET` field is not shown in the `rtrv-map` output in **Step 1** the `mapset` parameter cannot be specified with the `chg-map` command.

For this example, enter this command.
6. Verify the changes using the `rtrv-map` command with the primary point code and subsystem specified in *Step 5*.

 If the `mapset` parameter was specified in *Step 5*, the `mapset` parameter and value specified in *Step 5* must be specified with the `rtrv-map` command in this step.

 If the `mapset` parameter was not specified in *Step 5*, the `mapset` parameter cannot be specified with the `rtrv-map` command in this step.

 For this example, enter this command.

   ```
   rtrv-map:pca=255-001-001:ssn=250:mapset=4
   ```

 This is an example of the possible output.

   ```
   rghncxa03w 09-07-07 00:34:31 GMT EAGLE5 41.1.0
   MAPSET ID=4
   PCA         Mate PCA     SSN RC MULT SRM MRC GRP NAME SSO WT %WT THR
   255-001-001               250 10  DOM YES YES grp05    ON  --  ---  --
   253-001-001  254 20  DOM NO  NO  grp01    OFF --  ---  --
   MAP TABLE IS (37 of 36000) 1 % FULL
   ```

7. Backup the new changes using the `chg-db:action=backup:dest=fixed` command. These messages should appear, the active Maintenance and Administration Subsystem Processor (MASP) appears first.

   ```
   BACKUP (FIXED) : MASP A - Backup starts on active MASP.
   BACKUP (FIXED) : MASP A - Backup on active MASP to fixed disk complete.
   BACKUP (FIXED) : MASP A - Backup starts on standby MASP.
   BACKUP (FIXED) : MASP A - Backup on standby MASP to fixed disk complete.
   ```

 If you do not wish to change the mated application type, the weights or in-service thresholds of the mated application, or the MRNSET and MRN point code of the mated application, this procedure is finished.

 If you wish to change the mated application type, the weights or in-service thresholds of the mated application, or the MRNSET and MRN point code of the mated application, perform these procedures as applicable.

 - To change the mated application type of the mated application, perform the Changing the Mated Application Type procedure.
 - To change the weights or in-service thresholds of the mated application, perform the Changing the Weight and In-Service Threshold Values of a Mated Application procedure.
 - To change the MRNSET and MRN point code of the mated application, perform the Changing the MRNSET and MRN Point Code Values of MAP Entries procedure.
Changing the Mated Application Type

This procedure is used to change the mated application type of an existing mated application (MAP) group or MAP set using the `chg-map` command with the `rc` parameter.

There are four types of mated applications.

- **Solitary** - A solitary mated application contains only one entry.
- **Dominant** - A dominant mated application contains more than one entry and the RC (relative cost) values of these entries are unique.
- **Load Shared** - A load shared mated application contains more than one entry and the RC values of these entries are equal.
- **Combined Dominant/Load Shared** - A combined dominant/load shared mated application contains more than one entry and must contain a minimum of two entries whose RC values are equal and one entry whose RC value is different.

The `chg-map` command contains other parameters that are not used in this procedure. Perform these procedures as applicable to change the other parameter values.

- To change the weights or in-service thresholds of the mated application, perform the Changing the Weight and In-Service Threshold Values of a Mated Application procedure.
- To change the MRNSET and MRN point code values assigned to the mated application, perform the Changing the MRNSET and MRN Point Code Values of MAP Entries procedure.
- To change other attributes of the mated application, perform the Changing the Attributes of a Mated Application procedure.

The `chg-map` command can also be used to add point code/SSN entries to an existing MAP group or MAP set. This action is not covered in this procedure. If you wish to add point code/SSN entries to an existing MAP group or MAP set, perform one of these procedures.

- **Provisioning a Solitary Mated Application**
- **Provisioning a Dominant Mated Application**
- **Provisioning a Load Shared Mated Application**
- **Provisioning a Combined Dominant/Load Shared Mated Application**

The `chg-map` command in this procedure uses these parameters.

`:pc/pca/pci/pcn/pcn24` – The point code of the primary signaling point that is to receive the message.

Note: The point codes can be either an ANSI point code (pc/pca), ITU-I or ITU-I spare point code (pci), a 14-bit ITU-N or 14-bit ITU-N spare point code (pcn), or a 24-bit ITU-N (pcn24) point code.

Note: Refer to Chapter 2, Configuring Destination Tables, in the Database Administration Manual - SS7 for a definition of the point code types that are used on the EAGLE 5 ISS and for a definition of the different formats that can be used for ITU national point codes.

`:ssn` – Subsystem number – the subsystem address of the primary point code that is to receive the message.

`:rc` – The relative cost value of the primary point code and subsystem, defined by the `pc/pca/pci/pcn/pcn24` and `ssn` parameters. The `rc` parameter has a range of values from 0 to 99.
mapset – The MAP set ID that the mated applications are assigned to, shown in the rtrv-map output. MAP set IDs are shown only if the Flexible GTT Load Sharing feature is enabled. The mapset parameter value cannot be changed in this procedure. If the rtrv-map output shows the MAPSET field, the mapset parameter must be specified with the chg-map command. If the rtrv-map output does not show the MAPSET field, the Flexible GTT Load Sharing feature is not enabled. The mapset parameter cannot be specified with the chg-map command. The mapset parameter has two values.

- dflt – to change the mated application in the default MAP set. The EAGLE 5 ISS’s true point code (shown in the rtrv-sid output) and subsystem can be assigned only to the default MAP set.
- the specific number of an existing MAP set if you are changing the mated application in an existing MAP set.

The mated application to be changed must be in the database.

If an existing dominant, load shared, or combined dominant/load shared mated application is being changed to a solitary mated application, the existing mated application must be removed from the database, and the new solitary mated application, containing the primary point code and subsystem from the mated application that was removed, must be added to the database.

If the mated application contains the EAGLE 5 ISS’s true point code, the relative cost value assigned to this point code must be the lowest value in the mated application.

Canceling the RTRV-MAP Command

Because the rtrv-map command used in this procedure can output information for a long period of time, the rtrv-map command can be canceled and the output to the terminal stopped. There are three ways that the rtrv-map command can be canceled.

- Press the F9 function key on the keyboard at the terminal where the rtrv-map command was entered.
- Enter the canc-cmd without the trm parameter at the terminal where the rtrv-map command was entered.
- Enter the canc-cmd:trm=<xx>, where <xx> is the terminal where the rtrv-map command was entered, from another terminal other that the terminal where the rtrv-map command was entered. To enter the canc-cmd:trm=<xx> command, the terminal must allow Security Administration commands to be entered from it and the user must be allowed to enter Security Administration commands. The terminal’s permissions can be verified with the rtrv-secu-trm command. The user’s permissions can be verified with the rtrv-user or rtrv-secu-user commands.

For more information about the canc-cmd command, refer to the Commands Manual.

1. Display the mated applications in the database using the rtrv-map command.

This is an example of the possible output.

```
rlghncxa03w 09-07-07 00:34:31 GMT EAGLE5 41.1.0
MAPSET ID=DFLT
  PCA          Mate PCA     SSN RC MULT SRM MRC GRP NAME SSO WT %WT THR
  002-002-002               250 10  SHR *Y  *Y  grp15    ON  10  33  20
  100-130-079  250 10  SHR *Y  *Y  grp15    ON  10  33  20
  068-135-094  251 10  SHR *Y  *Y  grp05    OFF 10  33  20
MAPSET ID=10
  PCA          Mate PCA     SSN RC MULT SRM MRC GRP NAME SSO WT %WT THR
  003-003-003               254 10  DOM YES YES grp10 ON  --  --  --
  040-040-040  254 20  DOM YES YES grp10 ON  --  --  --
```
<table>
<thead>
<tr>
<th>MAPSET ID = 11</th>
<th>PCA</th>
<th>Mate PCA</th>
<th>SSN RC MULT SRM MRC GRP NAME SSO WT %WT THR</th>
</tr>
</thead>
<tbody>
<tr>
<td>004-004-004</td>
<td>254</td>
<td>SHR *Y *Y</td>
<td>grp10 OFF -- -- --</td>
</tr>
<tr>
<td>100-100-100</td>
<td>254</td>
<td>SHR *Y *Y</td>
<td>grp10 OFF -- -- --</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MAPSET ID = DFLT</th>
<th>PCA</th>
<th>Mate PCA</th>
<th>SSN RC MULT SRM MRC GRP NAME SSO WT %WT THR</th>
</tr>
</thead>
<tbody>
<tr>
<td>005-005-005</td>
<td>250</td>
<td>DOM YES YES</td>
<td>grp15 OFF -- -- --</td>
</tr>
<tr>
<td>060-060-060</td>
<td>250</td>
<td>DOM YES YES</td>
<td>grp15 OFF -- -- --</td>
</tr>
<tr>
<td>070-070-070</td>
<td>251</td>
<td>DOM YES YES</td>
<td>grp05 ON -- -- --</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MAPSET ID = 9</th>
<th>PCA</th>
<th>Mate PCA</th>
<th>SSN RC MULT SRM MRC GRP NAME SSO WT %WT THR</th>
</tr>
</thead>
<tbody>
<tr>
<td>006-006-006</td>
<td>250</td>
<td>SOL *Y *Y</td>
<td>grp15 OFF -- -- --</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MAPSET ID = DFLT</th>
<th>PCA</th>
<th>Mate PCA</th>
<th>SSN RC MULT SRM MRC GRP NAME SSO WT %WT THR</th>
</tr>
</thead>
<tbody>
<tr>
<td>007-007-007</td>
<td>251</td>
<td>SOL *Y *Y</td>
<td>grp05 ON -- -- --</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MAPSET ID = 12</th>
<th>PCA</th>
<th>Mate PCA</th>
<th>SSN RC MULT SRM MRC GRP NAME SSO WT %WT THR</th>
</tr>
</thead>
<tbody>
<tr>
<td>008-008-008</td>
<td>254</td>
<td>COM YES *Y</td>
<td>grp10 ON 10 33 20</td>
</tr>
<tr>
<td>200-147-100</td>
<td>254</td>
<td>COM YES *Y</td>
<td>grp10 ON 10 33 20</td>
</tr>
<tr>
<td>179-183-050</td>
<td>254</td>
<td>COM YES *Y</td>
<td>grp15 OFF 10 33 20</td>
</tr>
<tr>
<td>031-049-100</td>
<td>251</td>
<td>COM YES *Y</td>
<td>grp10 ON 10 50 20</td>
</tr>
<tr>
<td>056-113-200</td>
<td>252</td>
<td>COM YES *Y</td>
<td>grp05 OFF 10 50 20</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MAPSET ID = DFLT</th>
<th>PCA</th>
<th>Mate PCA</th>
<th>SSN RC MULT SRM MRC GRP NAME SSO WT %WT THR</th>
</tr>
</thead>
<tbody>
<tr>
<td>255-001-000</td>
<td>250</td>
<td>SOL *Y *Y</td>
<td>grp01 ON -- -- --</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MAPSET ID = 1</th>
<th>PCA</th>
<th>Mate PCA</th>
<th>SSN RC MULT SRM MRC GRP NAME SSO WT %WT THR</th>
</tr>
</thead>
<tbody>
<tr>
<td>255-001-000</td>
<td>251</td>
<td>SHR *Y *Y</td>
<td>grp01 OFF -- -- --</td>
</tr>
<tr>
<td>253-001-002</td>
<td>254</td>
<td>SHR *Y *Y</td>
<td>grp01 OFF -- -- --</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MAPSET ID = 2</th>
<th>PCA</th>
<th>Mate PCA</th>
<th>SSN RC MULT SRM MRC GRP NAME SSO WT %WT THR</th>
</tr>
</thead>
<tbody>
<tr>
<td>255-001-000</td>
<td>252</td>
<td>SOL *Y *Y</td>
<td>grp01 ON -- -- --</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MAPSET ID = DFLT</th>
<th>PCA</th>
<th>Mate PCA</th>
<th>SSN RC MULT SRM MRC GRP NAME SSO WT %WT THR</th>
</tr>
</thead>
<tbody>
<tr>
<td>255-001-000</td>
<td>253</td>
<td>SHR *Y *Y</td>
<td>grp01 OFF -- -- --</td>
</tr>
<tr>
<td>253-001-004</td>
<td>254</td>
<td>SHR *Y *Y</td>
<td>grp01 OFF -- -- --</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MAPSET ID = 3</th>
<th>PCA</th>
<th>Mate PCA</th>
<th>SSN RC MULT SRM MRC GRP NAME SSO WT %WT THR</th>
</tr>
</thead>
<tbody>
<tr>
<td>255-001-001</td>
<td>255</td>
<td>DOM YES YES</td>
<td>grp01 ON -- -- --</td>
</tr>
<tr>
<td>253-001-005</td>
<td>254</td>
<td>DOM YES YES</td>
<td>grp01 ON -- -- --</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MAPSET ID = 4</th>
<th>PCA</th>
<th>Mate PCA</th>
<th>SSN RC MULT SRM MRC GRP NAME SSO WT %WT THR</th>
</tr>
</thead>
<tbody>
<tr>
<td>255-001-001</td>
<td>250</td>
<td>DOM NO NO</td>
<td>grp01 OFF -- -- --</td>
</tr>
<tr>
<td>253-001-001</td>
<td>254</td>
<td>DOM NO NO</td>
<td>grp01 OFF -- -- --</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MAPSET ID = DFLT</th>
<th>PCA</th>
<th>Mate PCA</th>
<th>SSN RC MULT SRM MRC GRP NAME SSO WT %WT THR</th>
</tr>
</thead>
<tbody>
<tr>
<td>255-001-002</td>
<td>251</td>
<td>SHR *Y *Y</td>
<td>grp01 OFF -- -- --</td>
</tr>
<tr>
<td>255-001-002</td>
<td>254</td>
<td>SHR *Y *Y</td>
<td>grp01 OFF -- -- --</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MAPSET ID = 5</th>
<th>PCA</th>
<th>Mate PCA</th>
<th>SSN RC MULT SRM MRC GRP NAME SSO WT %WT THR</th>
</tr>
</thead>
<tbody>
<tr>
<td>255-001-002</td>
<td>252</td>
<td>DOM YES YES</td>
<td>grp01 ON -- -- --</td>
</tr>
<tr>
<td>255-001-003</td>
<td>254</td>
<td>DOM YES YES</td>
<td>grp01 ON -- -- --</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MAPSET ID = 6</th>
<th>PCA</th>
<th>Mate PCA</th>
<th>SSN RC MULT SRM MRC GRP NAME SSO WT %WT THR</th>
</tr>
</thead>
</table>
If any of the following items are not shown in the rtrv-map output, then the feature corresponding to these items is not enabled, or turned on if required.

- The MAPSET field - the Flexible GTT Load Sharing feature is not enabled.
- The MRNSET and MRNPC fields - the GTT Load Sharing with Alternate Routing Indicator feature is not enabled.
- The WT, %WT, THR columns - the Weighted GTT Load Sharing feature is not enabled and turned on.

If a solitary mated application is being changed to a dominant, load shared, or combined dominant/load shared mated application, perform one of these procedures.

- Provisioning a Dominant Mated Application
- Provisioning a Load Shared Mated Application
- Provisioning a Combined Dominant/Load Shared Mated Application

If you wish to change a dominant, load shared, or combined dominant/load shared mated application to a solitary mated application, record the data for the mated application. Remove the mated application by performing the Removing a Mated Application procedure. Add the solitary mated application with the point code and SSN from the previous mated application by performing the Provisioning a Solitary Mated Application procedure.

If the mated application being changed is not a solitary mated application, continue the procedure by performing one of these steps.

- If the mated application is being changed to a solitary mated application, continue the procedure with Step 3.

 Note: If the mated application contains weight and in-service threshold values, when this mated application is changed to a dominant mated application, the weight and in-service threshold values will be removed from the mated application.

- If the mated application is being changed to a load shared mated application or a combined dominant/load shared mated application, continue the procedure with Step 2.

2. Display the EAGLE 5 ISS’s point code by entering the rtrv-sid command. A load shared or combined dominant/load shared mated application cannot contain the EAGLE 5 ISS’s point code.

The EAGLE 5 ISS’s point code is shown in the PCA, PCI, PCN, and PCN24 fields. This is an example of the possible output.
If the EAGLE 5 ISS's point code is shown in the mated application that is being changed, record the mated application data. Remove the mated application by performing the Removing a Mated Application procedure. Add the new mated application by performing the Provisioning a Load Shared Mated Application or Provisioning a Combined Dominant/Load Shared Mated Application procedures.

If the EAGLE 5 ISS's point code is not shown in the mated application that is being changed, continue the procedure with Step 3.

3. Change the rc parameter values in the mated application to produce the desired mated application type.

If the MAPSET field is shown in the rtrv-map output in Step 1, the mapset parameter must be specified with the chg-map command. If the MAPSET field is not shown in the rtrv-map output in Step 1, the mapset parameter cannot be specified with the chg-map command.

If a dominant mated application is being created, the rc parameter values for this mated application must be unique. If the mated application has weight and in-service threshold values assigned to it, when this mated application is changed to a dominant mated application, the WT, %WT, and THR values are removed from the mated application and are not displayed in the rtrv-map output.

If a load shared mated application is being created, the rc parameter values for this mated application must be equal.

If a combined dominant/load shared mated application is being created, a minimum of 2 entries must contain rc parameter values that are equal and a minimum of one entry must contain an rc parameter value that is different.

For these examples, these types of changes are being made:

- A dominant mated application is changed to a load shared mated application.
- A load shared mated application is changed to a dominant mated application.
- A combined dominant/load shared mated application is changed to a load shared mated application.

To change a dominant mated application to a load shared mated application, for this example enter these commands.

```
chg-map:pca=060-060-060:ssn=250:mapset=dflt:rc=10
chg-map:pca=070-070-070:ssn=251:mapset=dflt:rc=10
```

To change a load shared mated application to a dominant mated application, for this example enter these commands.

```
chg-map:pca=100-130-079:ssn=250:mapset=dflt:rc=20
```

To change a combined dominant/load shared mated application to a load shared mated application, for this example enter these commands.

chg-map:pca=031-049-100:ssn=250:mapset=12:rc=10
chg-map:pca=056-113-200:ssn=251:mapset=12:rc=10

4. Verify the changes using the rtrv-map command with the one of the primary point codes and subsystems specified in Step 3 for the MAP set or MAP group that was changed. If the mapset parameter was specified in Step 3, the mapset parameter and value specified in Step 3 must be specified with the rtrv-map command in this step.

For these examples, enter these commands.

rtrv-map:pca=060-060-060:ssn=250:mapset=dflt

This is an example of the possible output.

```
rlghncxa03w 09-07-07 00:34:31 GMT EAGLE5 41.1.0
MAPSET ID=DFLT
PCA          Mate PCA     SSN RC MULT SRM MRC GRP NAME SSO WT %WT THR
005-005-005               250 10  SHR *Y  *Y  grp15    OFF -- --- ---
060-060-060  250 10  SHR *Y  *Y  grp15    OFF -- --- ---
070-070-070  251 10  SHR *Y  *Y  grp05    ON  -- --- ---
MAP TABLE IS  (37 of 36000)  1 % FULL
```

rtrv-map:pca=100-130-079:ssn=250:mapset=dflt

This is an example of the possible output.

```
rlghncxa03w 09-07-07 00:34:31 GMT EAGLE5 41.1.0
MAPSET ID=DFLT
PCA          Mate PCA     SSN RC MULT SRM MRC GRP NAME SSO WT %WT THR
002-002-002               254 10  DOM YES YES grp15  ON  10  20  20
100-130-079  254 10  DOM YES YES grp15  ON  10  20  20
068-135-094  251 30  DOM YES YES grp05  OFF -- --- ---
MAP TABLE IS  (37 of 36000)  1 % FULL
```

rtrv-map:pca=031-049-100:ssn=250:mapset=12

This is an example of the possible output.

```
rlghncxa03w 09-07-07 00:34:31 GMT EAGLE5 41.1.0
MAPSET ID=12
PCA          Mate PCA     SSN RC MULT SRM MRC GRP NAME SSO WT %WT THR
008-008-008               254 10  SHR *Y  *Y  grp10  ON 10 20 20
200-147-100  254 10  SHR *Y  *Y  grp10  ON 10 20 20
179-183-050  250 10  SHR *Y  *Y  grp15  OFF 10 20 20
031-049-100  250 10  SHR *Y  *Y  grp15  ON 10 20 20
056-113-200  251 10  SHR *Y  *Y  grp05  OFF 10 20 20
MAP TABLE IS  (37 of 36000)  1 % FULL
```
5. Backup the new changes using the `chg-db:action=backup:dest=fixed` command. These messages should appear, the active Maintenance and Administration Subsystem Processor (MASP) appears first.

```
BACKUP (FIXED) : MASP A - Backup starts on active MASP.
BACKUP (FIXED) : MASP A - Backup on active MASP to fixed disk complete.
BACKUP (FIXED) : MASP A - Backup starts on standby MASP.
BACKUP (FIXED) : MASP A - Backup on standby MASP to fixed disk complete.
```

If you do not wish to change the weights or in-service thresholds of the mated application, the MRNSET and MRN point code of the mated application, or other attributes of the mated application, this procedure is finished.

If you wish to change the the weights or in-service thresholds of the mated application, the MRNSET and MRN point code of the mated application, or other attributes of the mated application, perform these procedures as applicable.

- To change the weights or in-service thresholds of the mated application, perform the Changing the Weight and In-Service Threshold Values of a Mated Application procedure.
- To change the MRNSET and MRN point code of the mated application, perform the Changing the MRNSET and MRN Point Code Values of MAP Entries procedure.
- To change other attributes of the mated application, perform the Changing the Attributes of a Mated Application procedure.

Changing the Weight and In-Service Threshold Values of a Mated Application

This procedure is used to change the weight and in-service threshold values, for the Weighted GTT Load Sharing feature, that are assigned to the entries in an existing mated application (MAP) group or MAP set using the `chg-map` command with the parameters shown in Table 52: Mated Application Weight and In-Service Threshold Parameters.

<table>
<thead>
<tr>
<th>wt</th>
<th>eswt</th>
<th>grpwt</th>
<th>thr</th>
</tr>
</thead>
</table>

The `eswt`, `grpwt`, `wt`, and `thr` parameters can be used only if the MAP group or MAP set is either a load shared or combined dominant/load shared MAP group or MAP set, and the Weighted GTT Load Sharing feature is enabled and turned on.

A load shared mated application contains more than one entry and the RC values of these entries are equal. A combined dominant/load shared mated application contains more than one entry and must contain a minimum of two entries whose RC values are equal and one entry whose RC value is different.

The status of the Weighted GTT Load Sharing feature can be verified by entering the `rtrv-ctrl-feat` command. If the Weighted GTT Load Sharing feature is not enabled or not turned on, perform the Activating the Weighted GTT Load Sharing Feature procedure to enable and turn on the Weighted GTT Load Sharing feature.
The rc parameter can also be specified in this procedure. Changing the rc value of the mated application in this procedure is not performed to change the mated application type. If you wish to change the mated application type, perform the Changing the Mated Application Type procedure.

The chg-map command contains other parameters that are not used in this procedure. Perform these procedures as applicable to change the other parameter values.

- To change the MRNSET and MRN point code values assigned to the mated application, perform the Changing the MRNSET and MRN Point Code Values of MAP Entries procedure.
- To change other attributes of the mated application, perform the Changing the Attributes of a Mated Application procedure.

The chg-map command can also be used to add point code/SSN entries to an existing MAP group or MAP set. This action is not covered in this procedure. If you wish to add point code/SSN entries to an existing MAP group or MAP set, perform one of these procedures.

- Provisioning a Solitary Mated Application
- Provisioning a Dominant Mated Application
- Provisioning a Load Shared Mated Application
- Provisioning a Combined Dominant/Load Shared Mated Application

The chg-map command uses these parameters.

:pc/pca/pci/pcn/pcn24 – The point code of the primary signaling point that is to receive the message.

Note: The point codes can be either an ANSI point code (pc/pca, mpc/mpca), ITU-I or ITU-I spare point code (pci, mpci), a 14-bit ITU-N or 14-bit ITU-N spare point code (pcn, mpcn), or a 24-bit ITU-N (pcn24, mpcn24) point code.

Note: Refer to Chapter 2, Configuring Destination Tables, in the Database Administration Manual - SS7 for a definition of the point code types that are used on the EAGLE 5 ISS and for a definition of the different formats that can be used for ITU national point codes.

:ssn – Subsystem number – the subsystem address of the primary point code that is to receive the message.

:rc – The relative cost value of the primary point code and subsystem, defined by the pc/pca/pci/pcn/pcn24 and ssn parameters. The rc parameter has a range of values from 0 to 99.

:mapset – The MAP set ID that the mated applications are assigned to, shown in the rtrv-map output. MAP set IDs are shown only if the Flexible GTT Load Sharing feature is enabled. The mapset parameter value cannot be changed in this procedure. If the rtrv-map output shows the MAPSET field, the mapset parameter must be specified with the chg-map command. If the rtrv-map output does not show the MAPSET field, the Flexible GTT Load Sharing feature is not enabled. The mapset parameter cannot be specified with the chg-map command. The mapset parameter has two values.

- dflt – to change the mated application in the default MAP set. The EAGLE 5 ISS’s true point code (shown in the rtrv-sid output) and subsystem can be assigned only to the default MAP set.
- the specific number of an existing MAP set if you are changing the mated application in an existing MAP set.

:eswt – The entity set weight value. When this parameter is specified, the same weight value is assigned to all entries in the MAP group or MAP set that contain the point code value specified in the chg-map command. A MAP group or MAP set can also be referred to as an entity set. The value of this parameter is from 1 - 99.
:grpwt – The group weight value. When this parameter is specified, the same weight value is assigned to all entries that have the same RC (relative cost) value in the MAP group or MAP set that contain the point code specified in the chg-map command. The value of this parameter is from 1 - 99.

Note: Specifying the grpwt parameter for a load shared mated application has the same effect as specifying the eswt parameter for a load shared mated application as all the entries in a load shared mated application have the same RC value.

:wt – The weight value assigned to a specific point code and SSN entry in the mated application. The value of this parameter is from 1 - 99. This parameter allows for each entry in the mated application to have a different weight value.

:thr – The in-service threshold assigned to the MAP group or MAP set. The in-service threshold is the minimum percentage (from 1 - 100) of weight that must be available for an RC group (a group of entries in the MAP group or MAP set that have the same RC value assigned) to be considered available to carry traffic. If the percentage of the available weight is less than the in-service threshold, then the entire RC group is considered unavailable for traffic. If the percentage of the available weight is equal to or greater than the in-service threshold, then the RC group is considered available, and traffic can be sent to any available entity in the RC group. When the thr parameter is specified with the eswt parameter, the in-service threshold value is assigned to all the entries of the MAP group or MAP set. When the thr parameter is specified with the grpwt parameter, or without either the eswt or grpwt parameters, the in-service threshold value is assigned to all the entries of the MAP group or MAP set that have the same RC value as the point code specified with the chg-map command.

:force=yes – This parameter must be specified if the rc parameter is specified with the wt parameter.

Weighted GTT Load Sharing allows unequal traffic loads to be provisioned in MAP load sharing groups or MAP load sharing sets. This feature also allows provisioning control over load sharing groups or sets so that if insufficient capacity within the load sharing group or set is available, the load sharing group or set is not used.

The weight and in-service threshold values for a mated application are shown in the rtrv-map output. The weight values assigned to the entries in the MAP group or MAP set are shown in the WT column in the rtrv-map output.

The %WT column in the rtrv-map output shows the percentage of the traffic the particular entry in the entity set will handle.

The in-service threshold values assigned to the entries in the MAP group or MAP set are shown in the THR column in the rtrv-map output.

The WT, %WT, and THR columns are shown in the rtrv-map output only if the Weighted GTT Load Sharing feature is enabled and turned on.

For more information on the Weighted GTT Load Sharing feature, refer to the Weighted GTT Load Sharing section.

The mated application to be changed must be in the database.

Canceling the RTRV-MAP Command

Because the rtrv-map command used in this procedure can output information for a long period of time, the rtrv-map command can be canceled and the output to the terminal stopped. There are three ways that the rtrv-map command can be canceled.

• Press the F9 function key on the keyboard at the terminal where the rtrv-map command was entered.
• Enter the `canc-cmd` without the `trm` parameter at the terminal where the `rtrv-map` command was entered.

• Enter the `canc-cmd:trm=<xx>` where `<xx>` is the terminal where the `rtrv-map` command was entered, from another terminal other that the terminal where the `rtrv-map` command was entered. To enter the `canc-cmd:trm=<xx>` command, the terminal must allow Security Administration commands to be entered from it and the user must be allowed to enter Security Administration commands. The terminal’s permissions can be verified with the `rtrv-secu-trm` command. The user’s permissions can be verified with the `rtrv-user` or `rtrv-secu-user` commands.

For more information about the `canc-cmd` command, refer to the `Commands Manual`.

1. Display the mated applications in the database using the `rtrv-map` command.

This is an example of the possible output.

```
rlghncxa03w 09-07-07 00:34:31 GMT EAGLE5 41.1.0

MAPSET ID=DFLT
PCA          Mate PCA     SSN RC MULT SRM MRC GRP NAME SSO WT %WT THR
002-002-002  250 10  SHR *Y  *Y  grp15    ON 10  33  20
     100-130-079  250 10  SHR *Y  *Y  grp15    ON 10  33  20
     068-135-094  251 10  SHR *Y  *Y  grp05    OFF 10  33  20

MAPSET ID=10
PCA          Mate PCA     SSN RC MULT SRM MRC GRP NAME SSO WT %WT THR
003-003-003  254 10  DOM YES YES grp10    ON  --  --  --
     040-040-040  254 20  DOM YES YES grp10    ON  --  --  --

MAPSET ID=11
PCA          Mate PCA     SSN RC MULT SRM MRC GRP NAME SSO WT %WT THR
004-004-004  254 10  SHR *Y  *Y  grp10    OFF  --  --  --
     100-100-100  254 10  SHR *Y  *Y  grp10    OFF  --  --  --

MAPSET ID=DFLT
PCA          Mate PCA     SSN RC MULT SRM MRC GRP NAME SSO WT %WT THR
005-005-005  250 10  SHR *Y  *Y  grp15    OFF  --  --  --
     060-060-060  250 10  SHR *Y  *Y  grp15    OFF  --  --  --
     070-070-070  251 10  SHR *Y  *Y  grp05    ON  --  --  --

MAPSET ID=9
PCA          Mate PCA     SSN RC MULT SRM MRC GRP NAME SSO WT %WT THR
006-006-006  250 10  SOL *Y  *Y  grp15    OFF  --  --  --

MAPSET ID=DFLT
PCA          Mate PCA     SSN RC MULT SRM MRC GRP NAME SSO WT %WT THR
007-007-007  251 10  SOL *Y  *Y  grp05    ON  --  --  --

MAPSET ID=12
PCA          Mate PCA     SSN RC MULT SRM MRC GRP NAME SSO WT %WT THR
008-008-008  254 10  COM YES *Y  grp10    ON 10  33  20
     200-147-100  254 10  COM YES *Y  grp10    ON 10  33  20
     179-183-050  250 10  COM YES *Y  grp15    OFF 10  33  20
     031-049-100  250 20  COM YES *Y  grp15    ON 10  50  20
     056-113-200  251 20  COM YES *Y  grp05    ON 10  50  20

MAPSET ID=DFLT
PCA          Mate PCA     SSN RC MULT SRM MRC GRP NAME SSO WT %WT THR
255-001-000  250 10  SOL *Y  *Y  grp01    ON  --  --  --

MAPSET ID=1
PCA          Mate PCA     SSN RC MULT SRM MRC GRP NAME SSO WT %WT THR
255-001-000  251 10  SHR *Y  *Y  grp01    OFF  --  --  --
```
If any of the following items are not shown in the rtrv-map output, then the feature corresponding to these items is not enabled, or turned on if required.

- The MAPSET field - the Flexible GTT Load Sharing feature is not enabled.
- The MRNSET and MRNPC fields - the GTT Load Sharing with Alternate Routing Indicator feature is not enabled.
- The WT, %WT, THR columns - the Weighted GTT Load Sharing feature is not enabled and turned on.

If the WT, %WT, THR columns are not shown in the rtrv-map output, perform the Activating the Weighted GTT Load Sharing Feature procedure to enable and turn on the Weighted GTT Load Sharing feature.
After the Weighted GTT Load Sharing feature has been enabled and turned on, or if the rtrv-map output shows that the Weighted GTT Load Sharing feature is enabled and turned on, continue the procedure by performing one of these actions.

- If the mated application that will be changed is a solitary or dominant mated application, perform the Changing the Mated Application Type procedure to change the mated application to either a load shared mated application or a combined dominant/load shared mated application. After the mated application has been changed, continue the procedure with Step 2.
- If the mated application that will be changed is a load shared or combined dominant/load shared mated application, continue the procedure with Step 2.

2. There are several ways to change the weight and in-service threshold values in a MAP group or MAP set.

Perform one or more of these substeps to change the weight and in-service threshold values in a MAP group or MAP set.

Note: If the MAPSET field is shown in the rtrv-map output in Step 1, the mapset parameter and the MAP set ID of the mated application that is being changed must be specified with the chg-map command. If the MAPSET field is not shown in the rtrv-map output in Step 1, the mapset parameter cannot be specified with the chg-map command.

a) To assign the same weight value to each entry in the MAP group or MAP set, or to remove the weight and in-service threshold values for a MAP group or MAP set, specify these parameters with the chg-map command.

- :pc/pca/pci/pcn/pcn24
- ssn
- eswt

To assign the same weight value to each entry in the MAP group or MAP set, for this example enter this command.

```
chg-map:pca=005-005-005:ssn=250:eswt=30:mapset=dflt
```

If the MAP group or MAP set did not have weight and in-service threshold values assigned before this substep was performed, the in-service threshold value 1 (1%) is assigned to the entries.

To remove the weight and in-service threshold values for each entry in the MAP group or MAP set, for this example enter this command.

```
chg-map:pca=008-008-008:ssn=254:eswt=none:mapset=dflt
```

b) To assign the same weight value and the in-service threshold value to all the entries in the MAP group or MAP set, specify these parameters with the chg-map command.

- :pc/pca/pci/pcn/pcn24
- ssn
- eswt
- thr

For this example, enter this command.

```
chg-map:pca=005-005-005:ssn=250:eswt=20:thr=30:mapset=dflt
```

c) To change only the weight value for an individual entry in the MAP group or MAP set, specify these parameters with the chg-map command
For this example, enter this command.

cchg-map: pca=008-008-008:ssn=254:wt=30:mapset=12

This substep can be repeated for other entries in the MAP group or MAP set.

d) To change the weight value for an individual entry in the MAP group or MAP set, and to change
the RC value for that entry, specify these parameters with the chg-map command

For this example, enter this command.

The force=yes parameter must be specified with the chg-map command if the wt and rc
parameters are specified with the chg-map command

Changing the RC value of the mated application in this substep is not performed to change the
mated application type. If you wish to change the mated application type, perform the Changing
the Mated Application Type procedure.

This substep can be repeated for other entries in the MAP group or MAP set.

e) To change only the in-service threshold of the MAP group or MAP set, specify these parameters
with the chg-map command.

For this example, enter this command.

cchg-map: pca=008-008-008:ssn=254:thr=30:mapset=12

Changing only the in-service threshold for a MAP group or MAP set can be performed only if
the MAP group or MAP set contains weight and in-service threshold values.

If the mated application is a combined dominant/load shared mated application, the in-service
threshold value was changed only for all the entries that are in the RC group that contains the
entry specified in this command. This substep can be repeated for other RC groups in the MAP
group or MAP set.

If the mated application is a load shared mated application, the in-service threshold value was
changed for all entries in the MAP group or MAP set.

f) To change the weight values for all entries in an RC group in the MAP group or MAP set, specify
these parameters with the chg-map command.

For this example, enter this command.

cchg-map: pca=008-008-008:ssn=254
• **grpwt**

For this example, enter this command.

```
chg-map:pca=008-008-008:ssn=254:grpwt=30:mapset=12
```

Changing the weight values for all entries in an RC group in the MAP group or MAP set can be performed only if the MAP group or MAP set contains weight and in-service threshold values.

Specifying the **grpwt** parameter for a load shared mated application has the same effect as specifying the **eswt** parameter for a load shared mated application as all the entries in a load shared mated application have the same RC value.

If the MAP group or MAP set did not have weight and in-service threshold values assigned before this substep was performed, the in-service threshold value 1 (1%) is assigned to the entries.

This substep can be repeated for other RC groups in the MAP group or MAP set.

g) To change the weight and the in-service threshold values for all entries in an RC group in the MAP group or MAP set, specify these parameters with the **chg-map** command.

- **:pc/pca/pci/pcn/pcn24**
- **ssn**
- **grpwt**
- **thr**

For this example, enter this command.

```
chg-map:pca=008-008-008:ssn=254:grpwt=20:thr=30:mapset=12
```

Changing the weight and in-service threshold values for all entries in an RC group in the MAP group or MAP set can be performed only if the MAP group or MAP set contains weight and in-service threshold values.

Specifying the **grpwt** parameter for a load shared mated application has the same effect as specifying the **eswt** parameter for a load shared mated application as all the entries in a load shared mated application have the same RC value.

This substep can be repeated for other RC groups in the MAP group or MAP set.

When the **chg-map** command has successfully completed, this message should appear.

```
rlgncxa03w 09-07-07  11:44:13  GMT  EAGLE5 41.1.0
CRG-MAP:  MASP A - COMPLTD
```

3. Verify the changes using the **rtrv-map** command with the primary point code and subsystem specified in **Step 2**.

If the **mapset** parameter was specified in **Step 2**, the **mapset** parameter and value specified in **Step 2** must be specified with the **rtrv-map** command in this step.

If the **mapset** parameter was not specified in **Step 2**, the **mapset** parameter cannot be specified with the **rtrv-map** command in this step.

a) If the same weight value was assigned to each entry in the MAP group or MAP set in substep 2a, for this example enter this command.

```
rtrv-map:pca=005-005-005:ssn=250:mapset=dflt
```
This is an example of the possible output.

<table>
<thead>
<tr>
<th>MAPSET ID=DFLT</th>
<th>PCA</th>
<th>Mate PCA</th>
<th>SSN</th>
<th>RC</th>
<th>MULT</th>
<th>SRM</th>
<th>MRC</th>
<th>GRP</th>
<th>NAME</th>
<th>SSO</th>
<th>WT</th>
<th>%WT</th>
<th>THR</th>
</tr>
</thead>
<tbody>
<tr>
<td>005-005-005</td>
<td></td>
</tr>
<tr>
<td>060-060-060</td>
<td></td>
</tr>
<tr>
<td>070-070-070</td>
<td></td>
</tr>
</tbody>
</table>

MAP TABLE IS (37 of 36000) 1 % FULL

b) If the weight and in-service threshold values were removed from the MAP group or MAP set in substep 2a, for this example enter this command.

```
rtrv-map:pca=008-008-008:ssn=254:mapset=dflt
```

This is an example of the possible output.

<table>
<thead>
<tr>
<th>MAPSET ID=DFLT</th>
<th>PCA</th>
<th>Mate PCA</th>
<th>SSN</th>
<th>RC</th>
<th>MULT</th>
<th>SRM</th>
<th>MRC</th>
<th>GRP</th>
<th>NAME</th>
<th>SSO</th>
<th>WT</th>
<th>%WT</th>
<th>THR</th>
</tr>
</thead>
<tbody>
<tr>
<td>008-008-008</td>
<td></td>
</tr>
<tr>
<td>200-147-100</td>
<td></td>
</tr>
<tr>
<td>179-183-050</td>
<td></td>
</tr>
<tr>
<td>031-049-100</td>
<td></td>
</tr>
<tr>
<td>056-113-200</td>
<td></td>
</tr>
</tbody>
</table>

MAP TABLE IS (37 of 36000) 1 % FULL

c) If the same weight value and the in-service threshold value was assigned to each entry in the MAP group or MAP set in substep 2b, for this example enter this command.

```
rtrv-map:pca=005-005-005:ssn=250:mapset=dflt
```

This is an example of the possible output.

<table>
<thead>
<tr>
<th>MAPSET ID=DFLT</th>
<th>PCA</th>
<th>Mate PCA</th>
<th>SSN</th>
<th>RC</th>
<th>MULT</th>
<th>SRM</th>
<th>MRC</th>
<th>GRP</th>
<th>NAME</th>
<th>SSO</th>
<th>WT</th>
<th>%WT</th>
<th>THR</th>
</tr>
</thead>
<tbody>
<tr>
<td>008-008-008</td>
<td></td>
</tr>
</tbody>
</table>

MAP TABLE IS (37 of 36000) 1 % FULL

d) If the weight value for an individual entry in the MAP group or MAP set was changed in substep 2c, for this example enter this command.

```
rtrv-map:pca=008-008-008:ssn=254:mapset=dflt
```

This is an example of the possible output.
e) If the weight value for an individual entry in the MAP group or MAP set and its RC value was changed in substep 2d, for this example enter this command.

```
  rtrv-map:pca=008-008-008:ssn=254:mapset=dflt
```

This is an example of the possible output.

```
rlghncxa03w 09-07-07 00:34:31 GMT EAGLE5 41.1.0

MAPSET ID=12

PCA          Mate PCA     SSN RC MULT SRM MRC GRP NAME SSO WT %WT THR
200-147-100  254 10 COM YES *Y  grp10   ON 10 50 20
179-183-050  250 10 COM YES *Y  grp10   ON 10 50 20
 031-049-100  250 20 COM YES *Y  grp15   OFF 10 50 20
 056-113-200  251 20 COM YES *Y  grp05   OFF 10 50 20

MAP TABLE IS  (37 of 36000)  1 % FULL
```

g) If the weight values for all entries in an RC group in the MAP group or MAP set in substep 2f, for this example enter this command.

```
  rtrv-map:pca=008-008-008:ssn=254:mapset=dflt
```

This is an example of the possible output.

```
rlghncxa03w 09-07-07 00:34:31 GMT EAGLE5 41.1.0

MAPSET ID=12

PCA          Mate PCA     SSN RC MULT SRM MRC GRP NAME SSO WT %WT THR
200-147-100  254 10 COM YES *Y  grp10   ON 10 33 20
179-183-050  250 10 COM YES *Y  grp10   ON 10 33 20
 031-049-100  250 20 COM YES *Y  grp15   OFF 10 33 20
 056-113-200  251 20 COM YES *Y  grp05   OFF 10 33 20

MAP TABLE IS  (37 of 36000)  4 % FULL
```
h) If the weight and in-service threshold values for all entries in an RC group in the MAP group or MAP set in substep 2g, for this example enter this command.

\[
\text{rtrv-map:pca=008-008-008:ssn=254:mapset=dflt}
\]

This is an example of the possible output.

\[
\begin{array}{cccccccccc}
\text{rlghncxa03w} & 09-07-07 & 00:34:31 & \text{GMT EAGLE5 41.1.0} \\
\text{MAPSET ID=12} \\
\text{PCA} & \text{Mate PCA} & \text{SSN} & \text{RC} & \text{MULT} & \text{SRM} & \text{MRC} & \text{GRP NAME} & \text{SSO} & \text{WT} & \%WT & \text{THR} \\
008-008-008 & & 254 & 10 & \text{COM YES *Y} & \text{grp10} & \text{ON} & 20 & 33 & 30 \\
200-147-100 & 254 & 10 & \text{COM YES *Y} & \text{grp10} & \text{ON} & 20 & 33 & 30 \\
179-183-050 & 250 & 10 & \text{COM YES *Y} & \text{grp15} & \text{OFF} & 20 & 33 & 30 \\
031-049-100 & 250 & 20 & \text{COM YES *Y} & \text{grp15} & \text{ON} & 10 & 50 & 20 \\
056-113-200 & 251 & 20 & \text{COM YES *Y} & \text{grp05} & \text{OFF} & 10 & 50 & 20 \\
\end{array}
\]

\text{MAP TABLE IS (37 of 36000) 1 % FULL}

4. Backup the new changes using the \text{chg-db:action=backup:dest=fixed} command. These messages should appear, the active Maintenance and Administration Subsystem Processor (MASP) appears first.

\[
\text{BACKUP (FIXED) : MASP A - Backup starts on active MASP.} \\
\text{BACKUP (FIXED) : MASP A - Backup on active MASP to fixed disk complete.} \\
\text{BACKUP (FIXED) : MASP A - Backup starts on standby MASP.} \\
\text{BACKUP (FIXED) : MASP A - Backup on standby MASP to fixed disk complete.}
\]

If you do not wish to change the MRNSET and MRN point code of the mated application or other attributes of the mated application, this procedure is finished.

If you wish to change the MRNSET and MRN point code of the mated application or other attributes of the mated application, perform these procedures as applicable.

- To change the MRNSET and MRN point code of the mated application, perform the \text{Changing the MRNSET and MRN Point Code Values of MAP Entries} procedure.
- To change other attributes of the mated application, perform the \text{Changing the Attributes of a Mated Application} procedure.

Changing the MRNSET and MRN Point Code Values of MAP Entries

This procedure is used to change the MRNSET and MRN point code values in an existing mated application (MAP) set using the \text{mrnset} and \text{mrnpc/mrnpca/mrnpcl/mrnpcn/mrnpcn24} parameters of the \text{chg-map} command.

The \text{chg-map} command can also be used to add point code/SSN entries to an existing MAP set. This action is not covered in this procedure. If you wish to add point code/SSN entries to an existing MAP set, perform one of these procedures.

- \text{Provisioning a Solitary Mated Application}
- \text{Provisioning a Dominant Mated Application}
- \text{Provisioning a Load Shared Mated Application}
- \text{Provisioning a Combined Dominant/Load Shared Mated Application}
Parameter values other than the mrnset and MRN point code parameter values can be changed with the chg-map command. This action is not covered in this procedure. Perform these procedures as applicable to change the other parameter values.

- To change the mated application type of the mated application, perform the **Changing the Mated Application Type** procedure.
- To change the weights or in-service thresholds of the mated application, perform the **Changing the Weight and In-Service Threshold Values of a Mated Application** procedure.
- To change other attributes of the mated application, perform the **Changing the Attributes of a Mated Application** procedure.

These parameters are used with the chg-map command in this procedure.

- :mapset – The MAP set ID that is being changed.
- :ssn – The subsystem number assigned to the point code in the MAP set.
- :mrnset – The MRN set ID that is being assigned to the mated application. This is the MRN set from which alternate routing indicator searches are performed.
- :mrnpc/mrnpca/mrnpci/mrnpcn/mrnpcn24 – The point code assigned to the mrnset that is being assigned to the MAP set.

Note: Refer to Chapter 2, Configuring Destination Tables in the *Database Administration Manual - SS7* for a definition of the point code types that are used on the EAGLE 5 ISS and for a definition of the different formats that can be used for ITU national point codes.

The current values of the mrnset and :mrnpc/mrnpca/mrnpci/mrnpcn/mrnpcn24 parameters are shown in the rtrv-map output only if the Flexible GTT Load Sharing and the GTT Load Sharing with Alternate Routing Indicator features are enabled.

The new values for the mrnset and :mrnpc/mrnpca/mrnpci/mrnpcn/mrnpcn24 parameters must be shown in the rtrv-mrn output.

The network type of the pc/pca/pci/pcn/pcn24 and mrnpc/mrnpca/mrnpci/mrnpcn/mrnpcn24 parameter values must be compatible, as shown in **Table 53: MAP and MRN Point Code Parameter Combinations**.

<table>
<thead>
<tr>
<th>MAP Point Code Parameter</th>
<th>MRN Point Code Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>pc/pca</td>
<td>mrnpc/mrnpca</td>
</tr>
<tr>
<td>pci or pcn (See Notes 1 and 2)</td>
<td>mrnpcri or mrnpncn (See Notes 1 and 2)</td>
</tr>
<tr>
<td>pcn24</td>
<td>mrnpncn24</td>
</tr>
</tbody>
</table>

Notes:

1. If the network type of the MAP point code parameter is ITU-I (pci), the network type of the MRN point code parameter can be either ITU-I (mappci) or ITU-N (mappcn).
2. If the network type of the MAP point code parameter is ITU-N (pcn), the network type of the MRN point code parameter can be either ITU-I (mappci) or ITU-N (mappcn).
Canceling the **RTRV-MAP** Command

Because the `rtrv-map` command used in this procedure can output information for a long period of time, the `rtrv-map` command can be canceled and the output to the terminal stopped. There are three ways that the `rtrv-map` command can be canceled.

- Press the F9 function key on the keyboard at the terminal where the `rtrv-map` command was entered.
- Enter the `canc-cmd` without the `trm` parameter at the terminal where the `rtrv-map` command was entered.
- Enter the `canc-cmd:trm=<xx>`, where `<xx>` is the terminal where the `rtrv-map` command was entered, from another terminal other that the terminal where the `rtrv-map` command was entered. To enter the `canc-cmd:trm=<xx>` command, the terminal must allow Security Administration commands to be entered from it and the user must be allowed to enter Security Administration commands. The terminal’s permissions can be verified with the `rtrv-secu-trm` command. The user’s permissions can be verified with the `rtrv-user` or `rtrv-secu-user` commands.

For more information about the `canc-cmd` command, refer to the *Commands Manual*.

1. Display the mated applications in the database using the `rtrv-map` command. This is an example of the possible output.

```
rlghncxa03w 09-07-07 00:34:31 GMT EAGLE5 41.1.0

MAPSET ID=DFLT
  PCA  Mate PCA  SSN  RC  MULT  SRM  MRC  GRP  NAME  SSO
  255-001-000  Mate 250 10  SOL  *Y  *Y  grp01  ON

MAPSET ID=1
  PCA  Mate PCA  SSN  RC  MULT  SRM  MRC  GRP  NAME  SSO
  255-001-000  Mate 251 10  SHR  *Y  *Y  grp01  OFF
  253-001-002  Mate 254 10  SHR  *Y  *Y  grp01  OFF

MAPSET ID=2
  PCA  Mate PCA  SSN  RC  MULT  SRM  MRC  GRP  NAME  SSO
  255-001-000  Mate 252 10  SOL  *Y  *Y  grp01  ON

MAPSET ID=DFLT
  PCA  Mate PCA  SSN  RC  MULT  SRM  MRC  GRP  NAME  SSO
  255-001-000  Mate 253 10  SHR  *Y  *Y  grp01  OFF
  253-001-004  Mate 254 10  SHR  *Y  *Y  grp01  OFF

MAPSET ID=3
  PCA  Mate PCA  SSN  RC  MULT  SRM  MRC  GRP  NAME  SSO
  255-001-001  Mate 255 10  DOM  YES  YES  grp01  ON
  253-001-005  Mate 254 20  DOM  YES  YES  grp01  ON

MAPSET ID=4
  PCA  Mate PCA  SSN  RC  MULT  SRM  MRC  GRP  NAME  SSO
  255-001-001  Mate 250 10  DOM  YES  YES  grp01  OFF
  253-001-001  Mate 254 20  DOM  YES  YES  grp01  OFF

MAPSET ID=DFLT
  PCA  Mate PCA  SSN  RC  MULT  SRM  MRC  GRP  NAME  SSO
  255-001-002  Mate 251 10  SHR  *Y  *Y  grp01  OFF
  255-001-002  Mate 254 10  SHR  *Y  *Y  grp01  OFF

MAPSET ID=5
  PCA  Mate PCA  SSN  RC  MULT  SRM  MRC  GRP  NAME  SSO
  255-001-002  Mate 252 10  DOM  YES  YES  grp01  ON
  255-001-003  Mate 254 20  DOM  YES  YES  grp01  ON
```
MAPSET ID=6

<table>
<thead>
<tr>
<th>PCA</th>
<th>Mate PCA</th>
<th>SSN</th>
<th>RC</th>
<th>MULT</th>
<th>SRM</th>
<th>MRC</th>
<th>GRP</th>
<th>NAME</th>
<th>SSO</th>
</tr>
</thead>
<tbody>
<tr>
<td>255-001-002</td>
<td></td>
<td>253</td>
<td>10</td>
<td>SHR</td>
<td>*Y</td>
<td>*Y</td>
<td>grp01</td>
<td>ON</td>
<td></td>
</tr>
<tr>
<td>255-001-004</td>
<td></td>
<td>254</td>
<td>10</td>
<td>SHR</td>
<td>*Y</td>
<td>*Y</td>
<td>grp01</td>
<td>ON</td>
<td></td>
</tr>
</tbody>
</table>

MAPSET ID=7

<table>
<thead>
<tr>
<th>PCA</th>
<th>Mate PCA</th>
<th>SSN</th>
<th>RC</th>
<th>MULT</th>
<th>SRM</th>
<th>MRC</th>
<th>GRP</th>
<th>NAME</th>
<th>SSO</th>
</tr>
</thead>
<tbody>
<tr>
<td>002-002-007</td>
<td></td>
<td>50</td>
<td>10</td>
<td>COM</td>
<td>YES</td>
<td>*Y</td>
<td>grp01</td>
<td>OFF</td>
<td></td>
</tr>
<tr>
<td>002-002-008</td>
<td></td>
<td>30</td>
<td>10</td>
<td>COM</td>
<td>YES</td>
<td>*Y</td>
<td>grp01</td>
<td>OFF</td>
<td></td>
</tr>
<tr>
<td>002-002-009</td>
<td></td>
<td>30</td>
<td>10</td>
<td>COM</td>
<td>YES</td>
<td>*Y</td>
<td>grp01</td>
<td>OFF</td>
<td></td>
</tr>
<tr>
<td>002-002-010</td>
<td></td>
<td>30</td>
<td>20</td>
<td>COM</td>
<td>YES</td>
<td>*Y</td>
<td>grp01</td>
<td>OFF</td>
<td></td>
</tr>
<tr>
<td>002-002-011</td>
<td></td>
<td>30</td>
<td>20</td>
<td>COM</td>
<td>YES</td>
<td>*Y</td>
<td>grp01</td>
<td>OFF</td>
<td></td>
</tr>
</tbody>
</table>

MAPSET ID=8

<table>
<thead>
<tr>
<th>PCI</th>
<th>Mate PCI</th>
<th>SSN</th>
<th>RC</th>
<th>MULT</th>
<th>SRM</th>
<th>MRC</th>
<th>GRP</th>
<th>NAME</th>
<th>SSO</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-001-2</td>
<td></td>
<td>255</td>
<td>10</td>
<td>DOM</td>
<td>NO</td>
<td>YES</td>
<td>grp03</td>
<td>OFF</td>
<td></td>
</tr>
<tr>
<td>2-001-1</td>
<td></td>
<td>254</td>
<td>20</td>
<td>DOM</td>
<td>NO</td>
<td>YES</td>
<td>grp03</td>
<td>OFF</td>
<td></td>
</tr>
</tbody>
</table>

MAPSET ID=9

<table>
<thead>
<tr>
<th>PCN</th>
<th>Mate PCN</th>
<th>SSN</th>
<th>RC</th>
<th>MULT</th>
<th>SRM</th>
<th>MRC</th>
<th>GRP</th>
<th>NAME</th>
<th>SSO</th>
</tr>
</thead>
<tbody>
<tr>
<td>00347</td>
<td></td>
<td>253</td>
<td>10</td>
<td>SHR</td>
<td>*N</td>
<td>*N</td>
<td>grp05</td>
<td>OFF</td>
<td></td>
</tr>
<tr>
<td>01387</td>
<td></td>
<td>254</td>
<td>10</td>
<td>SHR</td>
<td>*N</td>
<td>*N</td>
<td>grp05</td>
<td>OFF</td>
<td></td>
</tr>
</tbody>
</table>

Note: If the Weighted GTT Load Sharing feature is enabled and turned on, the WT, %WT, and THR columns are shown in the `rtrv-map` output.

If the MRNSET and MRNPC columns are not shown in the `rtrv-map` output, the GTT Load Sharing with Alternate Routing Indicator feature is not enabled. Perform **Activating the GTT Load Sharing with Alternate Routing Indicator Feature** to enable the GTT Load Sharing with Alternate Routing Indicator feature. After **Activating the GTT Load Sharing with Alternate Routing Indicator Feature** has been performed, continue the procedure with **Step 2**.

If the MRNSET and MRNPC columns are shown in the `rtrv-map` output, the GTT Load Sharing with Alternate Routing Indicator feature is enabled. Continue the procedure with **Step 2**.

2. The MRN point code value must be assigned to an MRN set. The MRN set must be shown in the `rtrv-mrn` output. Display the MRN sets by entering the `rtrv-mrn` command. This is an example of the possible output.

```
rlghncxa03w 09-02-07 00:34:31 GMT EAGLE5 40.1.0

<table>
<thead>
<tr>
<th>MRNSET</th>
<th>PC</th>
<th>RC</th>
</tr>
</thead>
<tbody>
<tr>
<td>DFLT</td>
<td>005-005-005</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>006-001-001</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>006-001-002</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>006-001-003</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>006-001-004</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>006-001-005</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>006-001-006</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td>006-001-007</td>
<td>80</td>
</tr>
<tr>
<td>1</td>
<td>007-007-007</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>008-001-001</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>008-001-002</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>008-001-003</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>008-001-004</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>008-001-005</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>008-001-006</td>
<td>70</td>
</tr>
</tbody>
</table>
```
MRN table is (15 of 5990) 1% full

Note: If the Weighted GTT Load Sharing feature is enabled and turned on, the WT, %WT, and THR columns are shown in the rtrv-mrn output.

If the MRN set that you wish to use, containing the desired point code and subsystem number, is shown in the rtrv-mrn output, continue the procedure with Step 3.

Note: The network type of the pc/pca/pci/pcn/pcn24 and mrnpc/mrnpca/mrnpci/mrnpcn/mrnpcn24 parameter values must be the same, as shown in Table 53: MAP and MRN Point Code Parameter Combinations.

If the MRN set that you wish to use is not shown in the rtrv-mrn output, add the required MRN set by performing Provisioning MRN Entries.

After the MRN set has been added, continue the procedure with Step 3.

3. Change the MRNSET and MRN point code values in the MAP set by entering the chg-map command with the mrnset and mrnpc/mrnpca/mrnpci/mrnpcn/mrnpcn24 parameters.

For this example, enter this command.

```
chg-map:mapset=7:pca=002-002-007:ssn=50:mrnset=1:mrnpca=007-007-007
```

When the chg-map command has successfully completed, this message should appear.

```
rlghncxa03w 09-02-07 11:44:13 GMT EAGLE5 40.1.0
CHG-MAP: MASP A - COMPLTD
```

4. Verify the changes using the rtrv-map command with the point code (pca/pci/pcn/pcn24), ssn, and mapset values specified in Step 3.

For this example, enter this command.

```
rtrv-map:mapset=7:pca=002-002-007:ssn=50
```

This is an example of the possible output.

```
rlghncxa03w 09-07-07 00:34:31 GMT EAGLE5 41.1.0
MAPSET ID=7      MRNSET ID=1     MRNPC   =   007-007-007
PCA            Mate PCA      SSN RC MULT SRM MRC GRP NAME SSO
002-002-007                   50 10  COM YES *Y  grp01    OFF
002-002-008    30 10  COM YES *Y  grp01    OFF
002-002-009    30 10  COM YES *Y  grp01    OFF
002-002-010    30 20  COM YES *Y  grp01    OFF
002-002-011    30 20  COM YES *Y  grp01    OFF
MAP TABLE IS  (20 of 36000)  1 % FULL
```

Note: If the Weighted GTT Load Sharing feature is enabled and turned on, the WT, %WT, and THR columns are shown in the rtrv-map output.

5. Backup the new changes using the chg-db:action=backup:dest=fixed command. These messages should appear, the active Maintenance and Administration Subsystem Processor (MASP) appears first.

```
BACKUP (FIXED) : MASP A - Backup starts on active MASP.
BACKUP (FIXED) : MASP A - Backup on active MASP to fixed disk complete.
```
If you do not wish to change the mated application type, the weights or in-service thresholds of the mated application, or other attributes of the mated application, this procedure is finished.

If you wish to change the mated application type, the weights or in-service thresholds of the mated application, or other attributes of the mated application, perform these procedures as applicable.

- To change the mated application type of the mated application, perform the Changing the Mated Application Type procedure.
- To change the weights or in-service thresholds of the mated application, perform the Changing the Weight and In-Service Threshold Values of a Mated Application procedure.
- To change other attributes of the mated application, perform the Changing the Attributes of a Mated Application procedure.

Provisioning MRN Entries

This procedure is used to provision an Mated Relay Node (MRN) group or MRN set in the database or to add a point code to an existing MRN group or MRN set for the Intermediate Global Title Load Sharing feature using the ent-mrn and chg-mrn commands.

An MRN group or MRN set contains alternate point codes, up to 32, that are used for load sharing between multiple nodes when the EAGLE 5 ISS is performing intermediate global title translation. This load sharing is performed after intermediate global title translation is performed on the message. The point code in the message is changed to the selected point code in the MRN table. If the translated point code is not found in the MRN table, the translated point code in the message is not changed, the message is routed using route for the translated point code.

The ent-mrn and chg-mrn command uses these parameters.

:pcn – The point code in the message after intermediate global title translation has been performed.
:rc – The relative cost value of point code in the message
:pc1/pca1/pci1/pcn1/pcn241 – The first alternate point code value
:rc1 – The relative cost value of the first alternate point code
:pc2/pca2/pci2/pcn2pcn242 – The second alternate point code value
:rc2 – The relative cost value of the second alternate point code
:rc3 – The relative cost value of the third alternate point code
:pc4/pca4/pci4/pcn4/pcn244 – The fourth alternate point code value
:rc4 – The relative cost value of the fourth alternate point code

Note: Refer to Chapter 2, Configuring Destination Tables in the Database Administration Manual - SS7 for a definition of the point code types that are used on the EAGLE 5 ISS and for a definition of the different formats that can be used for ITU national point codes.
:mrnset – The MRN set ID that the point codes are assigned to. This parameter can be specified only, and must be specified, if the Flexible GTT Load Sharing feature is enabled. If the Flexible GTT Load Sharing feature is enabled, the point code specified for the global title translation must be assigned to the MRN set specified by this parameter. The status of the Flexible GTT Load Sharing feature is shown in the rtrv-ctrl-feat output. To enable the Flexible GTT Load Sharing feature, perform Activating the Flexible GTT Load Sharing Feature.

The MRN set ID has one of three values:

- **dflt** – to assign the MRN to the default MRN set.
- **new** – to assign the MRN to a new MRN set. This value can be specified only with the ent-mrn command.
- the specific number of an existing MRN set if you are assigning the point codes to an existing MRN set.

Refer to Provisioning an MRN Set for information on provisioning MRN sets.

:dfltwt – The default weight value. When this parameter is specified, the same weight value is assigned to all entries specified in the ent-mrn command. The value of this parameter is from 1 - 99. This parameter can be specified only with the ent-mrn command.

:wt – The weight value assigned to the pc/pca/pci/pcn/pcn24 parameter value. The value of this parameter is from 1 - 99.

:wt1 – The weight value assigned to the pc1/pca1/pci1/pcn1/pcn241 parameter value. The value of this parameter is from 1 - 99.

:wt2 – The weight value assigned to the pc2/pca2/pci2/pcn2/pcn242 parameter value. The value of this parameter is from 1 - 99.

:wt4 – The weight value assigned to the pc4/pca4/pci4/pcn4/pcn244 parameter value.

:thr – The in-service threshold assigned to the MRN group or MRN set. The in-service threshold is the minimum percentage (from 1 - 100) of weight that must be available for an RC group (a group of entries in the MRN group or MRN set that have the same RC value assigned) to be considered available to carry traffic. If the percentage of the available weight is less than the in-service threshold, then the entire RC group is considered unavailable for traffic. If the percentage of the available weight is equal to or greater than the in-service threshold, then the RC group is considered available, and traffic can be sent to any available entity in the RC group. The value of the thr parameter is assigned to all entries in the MRN group or MRN set that have the same RC value that is specified in the ent-mrn command. The thr parameter can be used in this procedure only with the ent-mrn command.

Refer to Provisioning Weights and In-Service Thresholds for MRNs for information on provisioning MRN groups or MRN sets with weight and in-service threshold values.

The following parameters of the chg-mrn command cannot be used in this procedure: thr, grpwt, eswt, and force=yes. These parameters can be used with the chg-mrn command only when changing the attributes of specific entries in an existing MRN group or MRN set, and not when adding entries to an existing MRN group or MRN set. If you wish to change specific entries in an existing MRN group or MRN set, perform either Changing MRN Entries with the ESWT Parameter or Changing the Weight and Threshold Values of MRN Entries.

:mapset – The MAP set ID that is being assigned to the MRN. This is the MAP set from which alternate routing indicator searches are performed.
The point code assigned to the mapset that is being assigned to the MRN set.

The subsystem number assigned to the point code in the MAP set that is being assigned to the MRN.

The current values of the mapset, mappc/mappca/mappci/mappcn/mappcn24, and mapssn parameters are shown in the rtrv-mrn output only if the Flexible GTT Load Sharing and the GTT Load Sharing with Alternate Routing Indicator features are enabled.

The new values for the mapset, mappc/mappca/mappci/mappcn/mappcn24, and mapssn parameters must be shown in the rtrv-map output. If no values are specified for the mapset, mappc/mappca/mappci/mappcn24, and mapssn parameters when the ent-mrn command is entered, then no values for these parameters are assigned to the MRN set. If no values are specified for the mapset, mappc/mappca/mappci/mappcn/mappcn24, and mapssn parameters when the chg-mrn command is entered, then the values for these parameters in the MRN set are not changed.

To add a new MRN group, the group must be provisioned in the database with the ent-mrn command, specifying up to four alternate point codes. If more point codes are to be added to the MRN group, either the ent-mrn or chg-mrn command to add the additional point codes to the MRN group. A maximum of 32 point codes can be assigned to an MRN group. If the Flexible GTT Load Sharing feature is enabled, refer to Provisioning an MRN Set for information on provisioning MRN sets.

A point code and rc value must be entered as a pair. For example, the pc3 and rc3 parameters must be specified together in the ent-mrn or chg-mrn commands if the alternate point code value is being specified.

The point codes specified with the ent-mrn or chg-mrn commands can be in only one MRN group. If the Flexible GTT Load Sharing feature is enabled, refer to Provisioning an MRN Set for information on provisioning point codes in MRN sets.

The relative cost parameters (rc/rc1/rc2/rc3/rc4) determine how the global title translation load is to be shared among the alternate point codes. There are three types of load sharing that can be performed: dominant, load shared, or combined dominant/load shared.

All the point codes in a dominant MRN group or MRN set have different relative cost values. The translated point code in the message is the preferred point code that the message is routed on. The relative cost value assigned to the preferred point code does not have to be the lowest value in the MRN group or MRN set. All traffic is routed to the preferred point code, if it is available. If the preferred point code becomes unavailable, the traffic is routed to highest priority alternate point code that is available. When the preferred point code becomes available again, the traffic is then routed back to the preferred point code. For example, the MRN table contains the following entries.

<table>
<thead>
<tr>
<th>PC</th>
<th>RC</th>
</tr>
</thead>
<tbody>
<tr>
<td>005-005-005</td>
<td>10</td>
</tr>
<tr>
<td>006-001-001</td>
<td>20</td>
</tr>
<tr>
<td>006-001-002</td>
<td>30</td>
</tr>
<tr>
<td>006-001-003</td>
<td>40</td>
</tr>
<tr>
<td>006-001-004</td>
<td>50</td>
</tr>
<tr>
<td>006-001-005</td>
<td>60</td>
</tr>
<tr>
<td>006-001-006</td>
<td>70</td>
</tr>
<tr>
<td>006-001-007</td>
<td>80</td>
</tr>
</tbody>
</table>

If the preferred point code is 006-001-001 and it becomes unavailable, the traffic will be routed to point code 006-001-002.

All the point codes in a load shared MRN group or MRN set have the same relative cost value. Traffic is shared equally between the point codes in this MRN group or MRN set.
A combined dominant/load shared MRN group or MRN set is a combination of the dominant and load sharing MRN groups or MRN sets. A combined dominant/load shared MRN group or MRN set must contain a minimum of two entries with the same relative cost value and a minimum of one entry with a different relative cost value. Traffic is routed to the point code or point codes with the lowest relative cost value, where the relative cost value is considered the relative cost associated with the point code of the global title translation and not the actual lowest relative cost in the MRN set. If more than one point code has the lowest relative cost value, the traffic is shared between these point codes. If the point code or point codes with the lowest relative cost value become unavailable, traffic is routed to the point code or point codes with the next higher relative cost value. If more than one point code has this relative cost value, the traffic is shared between these point codes. For example, the MRN table contains the following entries.

<table>
<thead>
<tr>
<th>PC</th>
<th>RC</th>
</tr>
</thead>
<tbody>
<tr>
<td>005-005-005</td>
<td>10</td>
</tr>
<tr>
<td>006-001-001</td>
<td>10</td>
</tr>
<tr>
<td>006-001-002</td>
<td>10</td>
</tr>
<tr>
<td>006-001-003</td>
<td>20</td>
</tr>
<tr>
<td>006-001-004</td>
<td>20</td>
</tr>
<tr>
<td>006-001-005</td>
<td>20</td>
</tr>
<tr>
<td>006-001-006</td>
<td>20</td>
</tr>
<tr>
<td>006-001-007</td>
<td>20</td>
</tr>
</tbody>
</table>

If the preferred point code is 006-001-001, the traffic is shared equally between point codes 005-005-005, 006-001-001, and 006-001-002. If point codes 005-005-005, 006-001-001, and 006-001-002 become unavailable, the traffic will be shared equally between point codes, 006-001-003, 006-001-004, 006-001-005, 006-001-006, and 006-001-007.

The point codes in the MRN group or MRN set must be a full point code with a route assigned to it. Cluster point codes, network routing point codes, or the EAGLE 5 ISS's true point code cannot be specified in an MRN group or MRN set. The rtrv-rte command can be used to verify the point codes in the routing table. The point codes in the routing table are shown in the DPCA, DPCI, DPCN, or DPCN24 fields of the rtrv-rte command output. The EAGLE 5 ISS's true point code is shown in the PCA, PCI, PCN, or PCN24 fields of the rtrv-sid command output.

The Intermediate GTT Load Sharing controlled feature must be enabled and activated before an MRN group can be provisioned in the database. This can be verified with the rtrv-ctrl-feat command. If this controlled feature is enabled and activated, the Intermediate GTT Load Sharing feature is shown as either temporarily or permanently enabled in the rtrv-ctrl-feat output, and the entry on is shown in the Status column for this feature. If this controlled feature is off, perform Activating the IGTLFS feature to enable and turn on this feature.

For MRNs containing ANSI or 24-bit ITU-N point codes, the format of the point codes specified in the ent-mrn command must be the same. For example, if the primary point code is a 24-bit ITU-N point code (pcn24), the alternate point code must be a 24-bit ITU-N point code (mpcn24). The alternate point codes of MRNs containing either ITU-I, ITU-I spare, 14-bit ITU-N, or 14-bit ITU-N spare primary point codes do not have to be the same format as the primary point code. The alternate point codes of these MRNs can be a mixture of ITU-I, ITU-I spare, 14-bit ITU-N, or 14-bit ITU-N spare point codes.

If the Intermediate GTT Load Sharing feature is enabled and turned on, the MRN table can contain a maximum of 3000 entries. If the Flexible GTT Load Sharing feature is enabled, the MRN table can contain a maximum of 6000 entries. If entries are provisioned in the SCCP-SERV table, shown by the rtrv-sccp-serv command output, the maximum number of entries that the MRN table can contain is reduced by the number of entries shown in the rtrv-sccp-serv command output.

If adding the new MRN entries will exceed the maximum capacity of the MRN table, shown in the rtrv-mrn command output, entries in the MRN or SCCP-SERV tables must be removed so that the
new MRN entries can be added. Perform Removing MRN Entries to remove the required number of
MRN entries to allow the addition of the new MRN entries or enter the dlt-sccp-serv command
to remove the required number of entries in the SCCP-SERV table to allow the addition of the new
MRN entries.

Provisioning an MRN Set

The Flexible GTT Load Sharing feature provides the ability to define multiple load sharing sets in the
MRN table where the same point code can be assigned to different load sharing sets.

The MRN table contains specific load sharing sets, designated by numbers, and a default MRN set.
The MRN table without the Flexible GTT Load Sharing feature enabled, is used by MPS based features
and all global title translation features.

The Flexible GTT Load Sharing feature provides flexible load sharing for global title translations
defined in the GTT table and not for the MPS based features. The MPS based features perform lookups for load sharing in the default
MRN set and the GTT table. The entries in the GTT table can be linked to an MRN set ID, allowing
lookups in a specific MRN set other than the default MRN set.

Any MRN entries that were provisioned in the database before the Flexible GTT Load Sharing feature
is enabled are placed in the default MRN set when the Flexible GTT Load Sharing feature is enabled.

Any GTT entries that were provisioned in the database before the Flexible GTT Load Sharing feature
is enabled are assigned to the default MRN set when the Flexible GTT Load Sharing feature is enabled.

If the Flexible GTT Load Sharing is enabled, the mrnset parameter must be specified with the ent-mrn
or chg-mrn commands.

To provision entries in the default MRN set, the mrnset=dflt parameter must be specified with the
ent-mrn or chg-mrn commands.

To provision entries in an existing MRN set other than the default MRN set, the mrnset=<MRN set
ID> parameter must be specified with the ent-mrn or chg-mrn commands. The rc parameter value
for this point code should not be specified. If the rc parameter is specified, an attempt will be made
to provision another MRN group in this MRN set. Multiple MRN groups in one MRN set is supported
only in the default MRN set. The new entries to this MRN set must be specified with the alternate
point code parameters and their corresponding rc parameters.

To provision entries in a new MRN set, the mrnset=new parameter must be specified with the ent-mrn
command. The mrnset=new parameter can be specified only with the ent-mrn command. When
the ent-mrn command is executed with the mrnset=new parameter, the new MRN set ID is
automatically generated and displayed in the output of the ent-mrn command as follows.

| New MRNSET Created : MRNSETID = <new MRN set ID> |

An MRN set, other than the default MRN set, is an MRN group provisioned with the MRN set ID and
can contain a maximum of 32 point codes.

The default MRN set can contain multiple MRN groups. Each group in the default MRN set can contain
a maximum of 32 point codes. The point code value can appear only once in the default MRN set, so
the point code value can appear in only one MRN group in the default MRN set.

The point code provisioned in an MRN set can be provisioned in multiple MRN sets. All the point
codes in an MRN set must be different.

Provisioning Weights and In-Service Thresholds for MRN Entries
Weighted GTT Load Sharing allows unequal traffic loads to be provisioned in load sharing groups. This feature also allows provisioning control over load sharing groups so that if insufficient capacity within the load sharing group is available, the load sharing group is not used.

To provision the weight values and in-service threshold values for new MRN groups or MRN sets or new entries in existing MRN groups or MRN sets, the dfltwt, wt, wt1, wt2, wt3, wt4, and thr parameters are used.

The dfltwt, wt, wt1, wt2, wt3, wt4, and thr parameters can be used only:

- If the MRN group or MRN set is either a load shared or combined dominant/load shared MRN group or MRN set.
- If the Weighted GTT Load Sharing feature is enabled and turned on.

The status of the Weighted GTT Load Sharing feature can be verified by entering the rtrv-ctrl-feat command. If the Weighted GTT Load Sharing feature is not enabled or not turned on, perform Activating the Weighted GTT Load Sharing Feature to enable and turn on the Weighted GTT Load Sharing feature.

To assign the same weight value to all the entries specified in the ent-mrn command, use the dfltwt parameter.

To assign an in-service threshold value to all the entries specified in the ent-mrn command, use the thr parameter.

To assign different weight values to the entries specified in either the ent-mrn or chg-mrn commands, use the wt, wt1, wt2, wt3, and wt4 parameters with the corresponding point code parameters.

The dfltwt parameter and the individual weight parameters (wt, wt1, wt2, wt3, wt4 parameters) cannot be specified together in the ent-mrn command.

The thr parameter cannot be specified in this procedure with the chg-mrn command. Specifying the thr parameter with the chg-mrn command can be done when specifying only the pc/pcn parameter and without the alternate point code parameters. To specify the thr parameter with the chg-mrn command, perform either Changing MRN Entries with the ESWT Parameter or Changing the Weight and Threshold Values of MRN Entries.

The weight values assigned to the entries in the MRN group or MRN set are shown in the WT column in the rtrv-mrn output.

The in-service threshold values assigned to the entries in the MRN group or MRN set are shown in the THR column in the rtrv-mrn output.

The %WT column in the rtrv-mrn output shows the percentage of the traffic the particular entry in the entity set will handle.

The WT, %WT, and THR columns are shown in the rtrv-mrn output only if the Weighted GTT Load Sharing feature is enabled and turned on.

For more information on the Weighted GTT Load Sharing feature, refer to the Weighted GTT Load Sharing section.

Canceling the RTRV–MRN Command

Because the rtrv-mrn command used in this procedure can output information for a long period of time, the rtrv-mrn command can be canceled and the output to the terminal stopped. There are three ways that the rtrv-mrn command can be canceled.

- Press the F9 function key on the keyboard at the terminal where the rtrv-mrn command was entered.
• Enter the `canc-cmd` without the `trm` parameter at the terminal where the `rtrv-mrn` command was entered.

• Enter the `canc-cmd:trm=<xx>`, where `<xx>` is the terminal where the `rtrv-mrn` command was entered, from another terminal other that the terminal where the `rtrv-mrn` command was entered. To enter the `canc-cmd:trm=<xx>` command, the terminal must allow Security Administration commands to be entered from it and the user must be allowed to enter Security Administration commands. The terminal’s permissions can be verified with the `rtrv-secu-trm` command. The user’s permissions can be verified with the `rtrv-user` or `rtrv-secu-user` commands.

For more information about the `canc-cmd` command, refer to the *Commands Manual*.

1. Display the mated relay node groups in the database using the `rtrv-mrn` command.

 This is an example of the possible output if the Flexible GTT Load Sharing feature is not enabled.

   ```
   rlghncxa03w 09-02-07 00:34:31 GMT EAGLE5 40.1.0
   MRNSET MAPSET MAPPC MAPSSN PC RC WT %WT THR
   DFLT ----- ----------- --- 007-007-007 10 10 14 1
   008-001-001 10 10 14 1
   008-001-002 10 20 28 1
   008-001-003 10 30 42 1
   008-001-004 20 40 23 1
   008-001-005 20 40 23 1
   008-001-006 20 40 23 1
   008-001-007 20 50 29 1
   MRN table is (8 of 2990) 1% full
   ```

 If any of the following items are not shown in the `rtrv-mrn` output, then the feature corresponding to these items is not enabled, or turned on if required.

 • The `MRNSET` field - the Flexible GTT Load Sharing feature is not enabled.
 • The `MAPSET`, `MAPPC`, and `MAPSSN` fields - the GTT Load Sharing with Alternate Routing Indicator feature is not enabled.
 • The `WT`, `%WT`, `THR` columns - the Weighted GTT Load Sharing feature is not enabled and turned on.

 Continue the procedure by performing one of these steps.

 • If MRN entries are not shown in the `rtrv-mrn` output in this step, continue the procedure with *Step 5*.
 • If the addition of the new MRN entries in this procedure will not exceed the maximum capacity of the MRN table shown in this step, continue the procedure with *Step 6*.
 • If the addition of the new MRN entries in this procedure will exceed the maximum capacity of the MRN table shown in this step, continue the procedure with *Step 2*.

2. If only the Intermediate GTT Load Sharing feature is enabled and turned on, the MRN table can contain a maximum of 3000 entries.

 If the Flexible GTT Load Sharing feature is enabled, the MRN table can contain a maximum of 6000 entries. If entries are provisioned in the SCCP-SERV table, shown by the `rtrv-sccp-serv` command output, the maximum number of entries that the MRN table can contain is reduced by the number of entries shown in the `rtrv-sccp-serv` command output.
If adding the new MRN entries will exceed the maximum capacity of the MRN table, shown in the `rtrv-mrn` command output, entries in the MRN or SCCP-SERV tables must be removed so that the new MRN entries can be added.

If you wish to remove MRN entries from the MRN table, perform Removing MRN Entries to remove the required number of MRN entries to allow the addition of the new MRN entries. After the MRN entries have been removed, continue the procedure with Step 6.

If you wish to remove entries from the SCCP-SERV table, continue the procedure with Step 3.

If no MRN or SCCP-SERV table entries are removed, the new MRNs cannot be added and this procedure cannot be performed.

3. Display the entries in the SCCP-SERV table by entering the `rtrv-sccp-serv` command.

This is an example of the possible output.

```
rlghncxa03w 06-10-07 00:34:31 GMT EAGLE5 36.0.0
--------------------------------------
Service     : GFLEX
State       : Online
GTT Option  : Yes
--------------------------------------
ITUI PC       RC
1-002-5       10
1-002-6       20
--------------------------------------
Service     : GPORT
State       : Online
GTT Option  : Yes
--------------------------------------
ITUI PC       RC
1-002-4       10
2-003-4       10
1-002-5       20
2-003-5       20
2-003-6       30
2-003-7       40
SCCPSRV  table is (10 of 96) 10% full.
```

4. Remove enough entries from the SCCP-SERV table to allow the addition of the new MRN entries by entering the `dlt-sccp-serv` command.

For this example, enter this command.

```
dlt-sccp-serv:serv=gport:pci1=1-002-5:pci2=2-003-6
```

This example removes only the specified point codes. If you wish to remove all the entries for the G-Port or G-Flex service, specify one of the point codes for the service and the `all=yes` parameter.

When this command has successfully completed, this message should appear.

```
rlghncxa03w 06-10-07 00:34:31 GMT EAGLE5 36.0.0
DLT-SCCP-SRV: MASP A - COMPLTD
```

Continue the procedure with Step 6.

5. Display the status of the Intermediate GTT Load Sharing (IGTTLS) feature by entering the `rtrv-ctrl-feat` command with the IGTTLS feature part number.

Enter this command.
The following is an example of the possible output.

```
rlghncxa03w 06-10-28 21:15:37 GMT EAGLE5 36.0.0
The following features have been permanently enabled:

Feature Name              Partnum    Status  Quantity
Intermed GTT Load Sharing 893006901  on      ----

The following features have been temporarily enabled:

Feature Name              Partnum    Status  Quantity     Trial Period Left
Zero entries found.

The following features have expired temporary keys:

Feature Name              Partnum
Zero entries found.
```

If the IGTTLS controlled feature has not been enabled or turned on, perform Activating the IGTTLS feature to enable and turn on the IGTTLS feature.

6. If the WT, %WT, and THR columns are shown in the `rtrv-mrn` output in Step 1, the Weighted GTT Load Sharing feature is enabled and turned on. Continue the procedure with Step 7.

If the WT, %WT, and THR columns are not shown in Step 1 and you do not wish to assign weights and in-service thresholds to the entries in the MRN group or MRN set in this procedure, continue the procedure with Step 7.

If the WT, %WT, and THR columns are not shown in Step 1 and you wish to assign weights and in-service thresholds to the entries in the MRN group or MRN set in this procedure, perform Activating the Weighted GTT Load Sharing Feature to enable and turn on the Weighted GTT Load Sharing feature.

7. If the MRNSET column is shown in the `rtrv-mrn` output in Step 1, the Flexible GTT Load Sharing feature is enabled. Continue the procedure with Step 8.

If the MRNSET column is not shown in Step 1 and you do not wish to provision MRN sets in this procedure, continue the procedure with Step 8.

If the MRNSET column is not shown in Step 1 and you wish to provision MRN sets in this procedure, perform Activating the Flexible GTT Load Sharing Feature to enable the Flexible GTT Load Sharing feature.

Notes:

1. If the Flexible GTT Load Sharing feature is not enabled, the point code can appear only once in the `rtrv-mrn` output, cannot be shown in the `rtrv-sid` output, but must be the DPC of a route. A proxy point code cannot be assigned to the point code. Perform Step 8 to verify that the point code assigned to the MRN group is not shown in the `rtrv-sid` output. Perform Step 9 and Step 10 to verify that a proxy point code is not assigned to the point code. Perform Step 11 to verify that the point code is the DPC of a route.

2. If the Flexible GTT Load Sharing feature is enabled, a specific point code can be assigned to multiple MRN sets, but cannot be shown in the `rtrv-sid` output, and must be the DPC of a route. A proxy point code cannot be assigned to the point code. Because the point code can be assigned to multiple MRN sets, the point code you wish to assign to the MRN set could be assigned to other MRN sets.
If the point code is shown in the rtrv-mrn output in Step 1, Step 8, Step 9, Step 10, and Step 11 do not need to be performed. For the point code to be shown in Step 1 it has already been determined that the point code is not shown in the rtrv-sid output, is the DPC of a route, and a proxy point code is not assigned to the point code. Continue the procedure with Step 13.

If the point code is not shown in the rtrv-mrn output in Step 1, Step 8, Step 9, Step 10, and Step 11 need to be performed. Perform Step 8 to verify that the point code assigned to the MRN group is not shown in the rtrv-sid output. Perform Step 9 and Step 10 to verify that a proxy point code is not assigned to the point code. Perform Step 11 to verify that the point code is the DPC of a route.

8. Display the EAGLE 5 ISS self-identification, using the rtrv-sid command.

```
rlghncxa03w 06-10-10 11:43:04 GMT EAGLE5 36.0.0
PCD PCI PCN CLLI PCTYPE
010-020-030 1-023-1 12-0-14-1 rlghncxa03w OTHER
    s-1-023-1     s-12-0-14-1
CPCA
002-002-002 002-002-003 002-002-004 002-002-005
002-002-006 002-002-007 002-002-008 002-002-009
004-002-001 004-003-003 050-060-070
CPCI
1-001-1 1-001-2 1-001-3 1-001-4
1-002-1 1-002-2 1-002-3 1-002-4
2-001-1 7-222-7
CPCN
2-0-10-3 2-0-11-0 2-0-11-2 2-0-12-1
2-2-3-3 2-2-4-0 10-14-10-1
```

9. Display the destination point codes in the database by entering the rtrv-dstn command. This is an example of the possible output.

```
rlghncxa03w 10-12-10 11:43:04 GMT EAGLE5 43.0.0
Extended Processing Time may be Required
DPCA CLLI BEI ELEI ALIASI ALIASN/N24 DMN
001-207-000 ----------- no --- -------------- -------------- SS7
001-001-001 ----------- no --- -------------- -------------- SS7
001-005-000 ----------- no --- -------------- -------------- SS7
001-007-000 ----------- no --- -------------- -------------- SS7
008-012-003 ----------- no --- -------------- -------------- SS7
003-002-004 ----------- no --- -------------- -------------- SS7
009-002-003 ----------- no --- -------------- -------------- SS7
010-020-005 ----------- no --- -------------- -------------- SS7
DPCI CLLI BEI ELEI ALIASA ALIASN/N24 DMN
1-207-0 ----------- no --- -------------- -------------- SS7
0-015-0 ----------- no --- -------------- -------------- SS7
0-017-0 ----------- no --- -------------- -------------- SS7
1-011-1 ----------- no --- -------------- -------------- SS7
1-011-2 ----------- no --- -------------- -------------- SS7
Destination table is (14 of 2000) 1% full
```
If the required point code is not shown in the `rtrv-dstn` output, perform the "Adding a Destination Point Code" procedure in the *Database Administration Manual - SS7* to add the required point code. A proxy point code cannot be assigned to the point code.

After the new point code has been added, skip Step 10 and Step 11 and perform one of the Adding a Route procedures in the *Database Administration Manual - SS7* and add the required route to the database. After the route has been added, continue the procedure with Step 13.

10. Display the point code that will be assigned to the MRN by using the `rtrv-dstn` command and specifying the point code. For this example, enter this command.

```
rtrv-dstn:dpca=010-020-005
```

This is an example of the possible output.

```
rlghncxa03w 10-12-10 11:43:04 GMT EAGLE5 43.0.0

<table>
<thead>
<tr>
<th>DPCA</th>
<th>CLLI</th>
<th>BEI</th>
<th>ELEI</th>
<th>ALIASI</th>
<th>ALIASN/N24</th>
<th>DMN</th>
</tr>
</thead>
<tbody>
<tr>
<td>010-020-005</td>
<td></td>
<td>no</td>
<td>---</td>
<td></td>
<td></td>
<td>SS7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PPCA</th>
<th>NCAI</th>
<th>PRX</th>
<th>RCAUSE</th>
<th>NPRST</th>
<th>SPLITIAM</th>
<th>HMSMSC</th>
<th>HMSCP</th>
<th>SCCPMSGCNV</th>
</tr>
</thead>
<tbody>
<tr>
<td>009-002-003</td>
<td>no</td>
<td>50</td>
<td>on</td>
<td>20</td>
<td>no</td>
<td>no</td>
<td>none</td>
<td></td>
</tr>
</tbody>
</table>
```

If the adjacent point code is not shown in the `rtrv-dstn` command output, the following output is displayed.

```
rlghncxa03w 09-05-10 11:43:04 GMT EAGLE5 41.0.0

No destinations meeting the requested criteria were found
```

A proxy point code (a point code value is shown in the PPC column) cannot be assigned to the point code. If a proxy point code is shown in this step, choose another point code from the `rtrv-dstn` output in Step 9 and repeat this step.

After the new point code has been added, skip Step 11 and perform one of the Adding a Route procedures in the *Database Administration Manual - SS7* and add the required route to the database. After the route has been added, continue the procedure with Step 13.

11. Enter the `rtrv-rte` command with the `dpc` parameter specifying the point code to be used with the `ent-mrn` command to verify whether or not the point code is the DPC of a route.

For this example, enter these commands.

```
rtrv-rte:dpca=005-005-005
```

This is an example of the possible output.

```
rlghncxa03w 06-10-07 11:43:04 GMT EAGLE5 36.0.0

<table>
<thead>
<tr>
<th>DPCA</th>
<th>ALIASI</th>
<th>ALIASN/N24</th>
<th>LSN</th>
<th>RC</th>
<th>APCA</th>
</tr>
</thead>
<tbody>
<tr>
<td>005-005-005</td>
<td></td>
<td></td>
<td>1s05</td>
<td>10</td>
<td>005-005-005</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1s15</td>
<td>30</td>
<td>089-047-123</td>
</tr>
</tbody>
</table>
```
<table>
<thead>
<tr>
<th>DPCA</th>
<th>ALIASI</th>
<th>ALIASN/N24</th>
<th>LSN</th>
<th>RC</th>
<th>APCA</th>
</tr>
</thead>
<tbody>
<tr>
<td>006-001-001</td>
<td>-----------</td>
<td>--------------</td>
<td>------------</td>
<td>-------</td>
<td>-------------------</td>
</tr>
<tr>
<td>006-001-002</td>
<td>-----------</td>
<td>--------------</td>
<td>------------</td>
<td>-------</td>
<td>-------------------</td>
</tr>
<tr>
<td>006-001-003</td>
<td>-----------</td>
<td>--------------</td>
<td>------------</td>
<td>-------</td>
<td>-------------------</td>
</tr>
<tr>
<td>006-001-004</td>
<td>-----------</td>
<td>--------------</td>
<td>------------</td>
<td>-------</td>
<td>-------------------</td>
</tr>
<tr>
<td>006-001-005</td>
<td>-----------</td>
<td>--------------</td>
<td>------------</td>
<td>-------</td>
<td>-------------------</td>
</tr>
<tr>
<td>006-001-006</td>
<td>-----------</td>
<td>--------------</td>
<td>------------</td>
<td>-------</td>
<td>-------------------</td>
</tr>
<tr>
<td>006-001-007</td>
<td>-----------</td>
<td>--------------</td>
<td>------------</td>
<td>-------</td>
<td>-------------------</td>
</tr>
</tbody>
</table>
If the point code is not shown in the `rtrv-rte` output, perform one of the Adding a Route procedures in the *Database Administration Manual - SS7* and add the required route to the database.

Continue the procedure by performing one of these steps.

- If the `mapset`, MAP point code, and `mapssn` parameters will not be specified for the MRN entry, continue the procedure with Step 13.
- If the `mapset`, MAP point code, and `mapssn` parameters will be specified for the MRN entry, continue the procedure by performing one of these steps.
 - If the `MAPSET`, `MAPPC`, and `MAPSSN` columns are not shown in the `rtrv-mrn` output, the GTT Load Sharing with Alternate Routing Indicator feature is not enabled. Perform *Activating the GTT Load Sharing with Alternate Routing Indicator Feature* to enable the GTT Load Sharing with Alternate Routing Indicator feature. After *Activating the GTT Load Sharing with Alternate Routing Indicator Feature* has been performed, continue the procedure with Step 12.
 - If the `MAPSET`, `MAPPC`, and `MAPSSN` columns are shown in the `rtrv-mrn` output, the GTT Load Sharing with Alternate Routing Indicator feature is enabled. Continue the procedure with Step 12.

12. The MAP point code and MAP SSN values must be assigned to a MAP set. The MAP set must be shown in the `rtrv-map` output. Display the MAP sets by entering the `rtrv-map` command. This is an example of the possible output.

```
rlghncxa03w 09-07-07 00:34:31 GMT EAGLE5 41.1.0
MAPSET ID=DFLT MRNSET ID==== MRNPC=---------
PCA   Mate PCA    SSN RC MUL SRM MRC GRP NAME SSO
255-001-000                  250 10 SOL *Y *Y grp01 ON

MAPSET ID=1 MRNSET ID==== MRNPC=---------
PCA   Mate PCA    SSN RC MUL SRM MRC GRP NAME SSO
255-001-000                  251 10 SHR *Y *Y grp01 OFF
253-001-002 254 10 SHR *Y *Y grp01 OFF

MAPSET ID=2 MRNSET ID==== MRNPC=---------
PCA   Mate PCA    SSN RC MUL SRM MRC GRP NAME SSO
255-001-000                  252 10 SOL *Y *Y grp01 ON

MAPSET ID=DFLT MRNSET ID==== MRNPC=---------
PCA   Mate PCA    SSN RC MUL SRM MRC GRP NAME SSO
255-001-000                  253 10 SHR *Y *Y grp01 OFF
253-001-004 254 10 SHR *Y *Y grp01 OFF

MAPSET ID=3 MRNSET ID==== MRNPC=---------
PCA   Mate PCA    SSN RC MUL SRM MRC GRP NAME SSO
255-001-001                  255 10 DOM YES YES grp01 ON
253-001-005 254 20 DOM YES YES grp01 ON

MAPSET ID=4 MRNSET ID==== MRNPC=---------
PCA   Mate PCA    SSN RC MUL SRM MRC GRP NAME SSO
255-001-001                  250 10 DOM YES YES grp01 OFF
253-001-001 254 20 DOM YES YES grp01 OFF

MAPSET ID=DFLT MRNSET ID==== MRNPC=---------
PCA   Mate PCA    SSN RC MUL SRM MRC GRP NAME SSO
255-001-002                  251 10 SHR *Y *Y grp01 OFF
255-001-002 254 10 SHR *Y *Y grp01 OFF
```
MAPSET ID=5

<table>
<thead>
<tr>
<th>MRNSET ID=----</th>
<th>MRNPC=-----------</th>
<th>PCA</th>
<th>Mate PCA</th>
<th>SSN</th>
<th>RC</th>
<th>MULT</th>
<th>SRM</th>
<th>MRC</th>
<th>GRP</th>
<th>NAME</th>
<th>SSO</th>
</tr>
</thead>
<tbody>
<tr>
<td>255-001-002</td>
<td></td>
<td>252</td>
<td>10</td>
<td>DOM</td>
<td>YES</td>
<td>YES</td>
<td>grp01</td>
<td>ON</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>255-001-003</td>
<td></td>
<td>254</td>
<td>20</td>
<td>DOM</td>
<td>YES</td>
<td>YES</td>
<td>grp01</td>
<td>ON</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MAPSET ID=6

<table>
<thead>
<tr>
<th>MRNSET ID=----</th>
<th>MRNPC=-----------</th>
<th>PCA</th>
<th>Mate PCA</th>
<th>SSN</th>
<th>RC</th>
<th>MULT</th>
<th>SRM</th>
<th>MRC</th>
<th>GRP</th>
<th>NAME</th>
<th>SSO</th>
</tr>
</thead>
<tbody>
<tr>
<td>255-001-002</td>
<td></td>
<td>253</td>
<td>10</td>
<td>SHR</td>
<td>*Y</td>
<td>*Y</td>
<td>grp01</td>
<td>ON</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>255-001-004</td>
<td></td>
<td>254</td>
<td>10</td>
<td>SHR</td>
<td>*Y</td>
<td>*Y</td>
<td>grp01</td>
<td>ON</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MAPSET ID=7

<table>
<thead>
<tr>
<th>MRNSET ID=----</th>
<th>MRNPC=-----------</th>
<th>PCA</th>
<th>Mate PCA</th>
<th>SSN</th>
<th>RC</th>
<th>MULT</th>
<th>SRM</th>
<th>MRC</th>
<th>GRP</th>
<th>NAME</th>
<th>SSO</th>
</tr>
</thead>
<tbody>
<tr>
<td>002-002-007</td>
<td></td>
<td>50</td>
<td>10</td>
<td>COM</td>
<td>YES</td>
<td>*Y</td>
<td>grp01</td>
<td>ON</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>002-002-008</td>
<td></td>
<td>30</td>
<td>10</td>
<td>COM</td>
<td>YES</td>
<td>*Y</td>
<td>grp01</td>
<td>OFF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>002-002-009</td>
<td></td>
<td>30</td>
<td>10</td>
<td>COM</td>
<td>YES</td>
<td>*Y</td>
<td>grp01</td>
<td>OFF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>002-002-010</td>
<td></td>
<td>30</td>
<td>20</td>
<td>COM</td>
<td>YES</td>
<td>*Y</td>
<td>grp01</td>
<td>OFF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>002-002-011</td>
<td></td>
<td>30</td>
<td>20</td>
<td>COM</td>
<td>YES</td>
<td>*Y</td>
<td>grp01</td>
<td>OFF</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MAPSET ID=8

<table>
<thead>
<tr>
<th>MRNSET ID=----</th>
<th>MRNPC=-----------</th>
<th>PCI</th>
<th>Mate PCI</th>
<th>SSN</th>
<th>RC</th>
<th>MULT</th>
<th>SRM</th>
<th>MRC</th>
<th>GRP</th>
<th>NAME</th>
<th>SSO</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-001-2</td>
<td></td>
<td>255</td>
<td>10</td>
<td>DOM</td>
<td>NO</td>
<td>YES</td>
<td>grp03</td>
<td>OFF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-001-1</td>
<td></td>
<td>254</td>
<td>20</td>
<td>DOM</td>
<td>NO</td>
<td>YES</td>
<td>grp03</td>
<td>OFF</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MAPSET ID=9

<table>
<thead>
<tr>
<th>MRNSET ID=----</th>
<th>MRNPC=-----------</th>
<th>PCN</th>
<th>Mate PCN</th>
<th>SSN</th>
<th>RC</th>
<th>MULT</th>
<th>SRM</th>
<th>MRC</th>
<th>GRP</th>
<th>NAME</th>
<th>SSO</th>
</tr>
</thead>
<tbody>
<tr>
<td>00347</td>
<td></td>
<td>253</td>
<td>10</td>
<td>SHR</td>
<td>*N</td>
<td>*N</td>
<td>grp05</td>
<td>OFF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01387</td>
<td></td>
<td>254</td>
<td>10</td>
<td>SHR</td>
<td>*M</td>
<td>*N</td>
<td>grp05</td>
<td>OFF</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: If the Weighted GTT Load Sharing feature is enabled and turned on, the WT, %WT, and THR columns are shown in the `rtrv-map` output.

If the MAP set that you wish to use, containing the desired point code and subsystem number, is shown in the `rtrv-map` output, continue the procedure with **Step 13**.

Note: The network type of the `pc/pca/pci/pcn/pcn24` and `mappc/mappca/mappci/mappcn/mappcn24` parameter values must be compatible, as shown in Note 12 of Table 54: Parameter Combinations for the ENT-MRN Command or Note 11 of Table 55: Parameter Combinations for the CHG-MRN Command.

If the MAP set that you wish to use is not shown in the `rtrv-map` output, add the required MAP set by performing one of these procedures.

- **Provisioning a Solitary Mated Application**
- **Provisioning a Dominant Mated Application**
- **Provisioning a Load Shared Mated Application**
- **Provisioning a Combined Dominant/Load Shared Mated Application**

After the MAP set has been added, continue the procedure with **Step 13**.

13. Add the MRN group or MRN set to the database using the `ent-mrn` command. Use Table 54: Parameter Combinations for the ENT-MRN Command as a guide for the parameters and values that can be specified with the `ent-mrn` command.
Table 54: Parameter Combinations for the ENT-MRN Command

<table>
<thead>
<tr>
<th>No Weights and In-Service Thresholds Assigned to the MRN Group or MRN Set</th>
<th>Same Weight Value Assigned to all Entries in the MRN Group or MRN Set</th>
<th>Individual Weight Values Assigned to the Entries in the MRN Group or MRN Set</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mandatory Parameters</td>
<td></td>
<td></td>
</tr>
<tr>
<td>:pc/pca/pci/pcn/pcn24 (See Notes 5, 6, 7, and 12)</td>
<td>:pc/pca/pci/pcn/pcn24 (See Notes 5, 6, 7, and 12)</td>
<td>:pc/pca/pci/pcn/pcn24 (See Notes 5, 6, 7, and 12)</td>
</tr>
<tr>
<td>:rc=<0 - 99> (See Notes 1, 2, 3, and 10)</td>
<td>:rc=<0 - 99> (See Notes 1, 2, 3, and 10)</td>
<td>:rc=<0 - 99> (See Notes 1, 2, 3, and 10)</td>
</tr>
<tr>
<td>:dfltwt=<1 - 99> (See Note 8)</td>
<td>:wt=<1 - 99> (See Notes 8 and 10)</td>
<td></td>
</tr>
<tr>
<td>Optional Parameters</td>
<td></td>
<td></td>
</tr>
<tr>
<td>:pc1/pca1/pci1/pcn1/pcn241 (See Notes 4, 5, 6, 7, and 12)</td>
<td>:pc1/pca1/pci1/pcn1/pcn241 (See Notes 4, 5, 6, 7, and 12)</td>
<td>:pc1/pca1/pci1/pcn1/pcn241 (See Notes 4, 5, 6, 7, and 12)</td>
</tr>
<tr>
<td>:rc1=<0 - 99> (See Notes 1, 2, 3, and 4)</td>
<td>:rc1=<0 - 99> (See Notes 1, 2, 3, and 4)</td>
<td>:rc1=<0 - 99> (See Notes 1, 2, 3, and 4)</td>
</tr>
<tr>
<td>:pc2/pca2/pci2/pcn2/pcn242 (See Notes 4, 5, 6, 7, and 12)</td>
<td>:pc2/pca2/pci2/pcn2/pcn242 (See Notes 4, 5, 6, 7, and 12)</td>
<td>:wt1=<1 - 99> (See Note 8)</td>
</tr>
<tr>
<td>:rc2=<0 - 99> (See Notes 1, 2, 3, and 4)</td>
<td>:rc2=<0 - 99> (See Notes 1, 2, 3, and 4)</td>
<td>:pc2/pca2/pci2/pcn2/pcn242 (See Notes 4, 5, 6, 7, and 12)</td>
</tr>
<tr>
<td>:pc3/pca3/pci3/pcn3/pcn243 (See Notes 4, 5, 6, 7, and 12)</td>
<td>:pc3/pca3/pci3/pcn3/pcn243 (See Notes 4, 5, 6, 7, and 12)</td>
<td>:rc2=<0 - 99> (See Notes 1, 2, 3, and 4)</td>
</tr>
<tr>
<td>:rc3=<0 - 99> (See Notes 1, 2, 3, and 4)</td>
<td>:rc3=<0 - 99> (See Notes 1, 2, 3, and 4)</td>
<td>:wt2=<1 - 99> (See Note 8)</td>
</tr>
<tr>
<td>:pc4/pca4/pci4/pcn4/pcn244 (See Notes 4, 5, 6, 7, and 12)</td>
<td>:pc4/pca4/pci4/pcn4/pcn244 (See Notes 4, 5, 6, 7, and 12)</td>
<td>:pc3/pca3/pci3/pcn3/pcn243 (See Notes 4, 5, 6, 7, and 12)</td>
</tr>
<tr>
<td>:rc4=<0 - 99> (See Notes 1, 2, 3, and 4)</td>
<td>:rc4=<0 - 99> (See Notes 1, 2, 3, and 4)</td>
<td>:rc4=<0 - 99> (See Notes 1, 2, 3, and 4)</td>
</tr>
<tr>
<td>:mrnset=<new, dflt, or the number of an existing MRN set> (See Note 9)</td>
<td>:mrnset=<new, dflt, or the number of an existing MRN set> (See Note 9)</td>
<td>:wt3=<1 - 99> (See Note 8)</td>
</tr>
<tr>
<td>:mapset = <MAP set ID from the rtrv-map output> (See Note 11)</td>
<td>:thr=<1 - 100> (See Note 8)</td>
<td>:pc4/pca4/pci4/pcn4/pcn244 (See Notes 4, 5, 6, 7, and 12)</td>
</tr>
<tr>
<td>:mappc/mappca/ mappci/mappcn/ mappcn24=<the point code value in the MAP set> (See Notes 11 and 12)</td>
<td>:mapset = <MAP set ID from the rtrv-map output> (See Note 11)</td>
<td>:rc4=<0 - 99> (See Notes 1, 2, 3, and 4)</td>
</tr>
<tr>
<td>No Weights and In-Service Thresholds Assigned to the MRN Group or MRN Set</td>
<td>Same Weight Value Assigned to all Entries in the MRN Group or MRN Set</td>
<td>Individual Weight Values Assigned to the Entries in the MRN Group or MRN Set</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>:mapssn=<the SSN value assigned to the point code in the MAP set> (See Note 11)</td>
<td>:mappc/mappca/ mappci/mappcn/ mappcn24=<the point code value in the MAP set> (See Notes 11 and 12)</td>
<td>:wt4=<1 - 99 > (See Note 8)</td>
</tr>
<tr>
<td>:mrnset=<new, dflt, or the number of an existing MRN set> (See Note 9)</td>
<td>:thr=<1 - 100> (See Note 8)</td>
<td>:mrnset=<new, dflt, or the number of an existing MRN set> (See Note 9)</td>
</tr>
<tr>
<td>:mapset = <MAP set ID from the rtrv-map output> (See Note 11)</td>
<td></td>
<td>:mapset = <MAP set ID from the rtrv-map output> (See Note 11)</td>
</tr>
<tr>
<td>:mappc/mappca/ mappci/mappcn/ mappcn24=<the point code value in the MAP set> (See Notes 11 and 12)</td>
<td></td>
<td>:mapssn=<the SSN value assigned to the point code in the MAP set> (See Note 11)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes

1. To provision a dominant MRN group or MRN set, the RC values for each entry must be unique.
2. To provision a load shared MRN group or MRN set, the RC values for each entry must be equal.
3. To provision a combined dominant/load shared MRN group or MRN set, the MRN group or MRN set must contain a minimum of two entries with equal RC values, and a minimum of one entry with a different RC value.
4. The MRN group can contain a maximum of 32 alternate point code entries. The alternate point code and its corresponding rc parameter must be specified together. For example, if the pcn3 parameter is specified, the rc3 parameter must be specified.
5. The point codes specified must have a route assigned to it, or must be a part of a cluster that has a route assigned to it (shown in Step 11), cannot be in the Self ID table (shown in Step 8), and proxy point codes cannot be assigned to the point codes (shown in Step 10).
6. For MRNs containing ANSI or 24-bit ITU-N point codes, the format of the point codes specified in the ent-mrn command must be the same. For example, if the primary point code is a 24-bit ITU-N point code (pcn24), the alternate point code must be a 24-bit ITU-N point code (pcn241/pcn242/pcn243/pcn244). The alternate point codes of MRNs containing either ITU-I, ITU-I spare, 14-bit ITU-N, or 14-bit ITU-N spare primary point codes do not have to be
the same format as the primary point code. The alternate point codes of these MRNs can be a mixture of ITU-I, ITU-I spare, 14-bit ITU-N, or 14-bit ITU-N spare point codes.

7. If the rtrv-rte and rtrv-sid outputs show 14-bit ITU-N point codes (dpcn and pcn), then the pcn/pcn1/pcn2/pcn3/pcn4 parameters must be used. If the rtrv-rte and rtrv-sid outputs show 24-bit ITU-N point codes (dpcn24 and pcn24), then the pcn24/pcn241/pcn242/pcn243/pcn244 parameters must be used.

8. Refer to Provisioning Weights and In-Service Thresholds for MRNs for information about using the weight (wt and mwt) and in-service threshold (thr) parameters.

9. Refer to Provisioning an MRN Set for information about how to provision an MRN set.

10. If the entry is being added to an existing MRN group or MRN set, the rc and wt parameters cannot be specified with the ent-mrn command.

11. The mapset, mappc/mappca/mappci/mappcn/mappcn24, and mapssn parameters can be specified only if the GTT Load Sharing with Alternate Routing Indicator feature is enabled. If either the mapset, mappc/mappca/mappci/mappcn/mappcn24, or mapssn parameters are specified, then all three parameters must be specified. The values of the mapset, mappc/mappca/mappci/mappcn/mappcn24, and mapssn parameters are shown in the rtrv-map output.

12. The network type of the pc/pca/pci/pcn/pcn24 and mappc/mappca/mappci/mappcn/mappcn24 parameter values must be compatible, as shown in this list.

 • pc/pca - mappc/mappca
 • pcn24 - mappc24
 • pci or pcn - mappci or mappcn

If the network type of the MRN point code parameter is ITU-I (pci), the network type of the MAP point code parameter can be either ITU-I (mappci) or ITU-N (mappcn).

If the network type of the MRN point code parameter is ITU-N (pcn), the network type of the MAP point code parameter can be either ITU-I (mappci) or ITU-N (mappcn).

For this example, enter these commands.

If the Flexible GTT Load Sharing is not enabled, enter these commands.

```
ent-mrn: pca=005-005-005:rc=10:pca1=006-001-001:rc1=20
ent-mrn: pci=5-005-5:rc=10:pci1=6-001-1:rc1=20
```

When these commands have successfully completed, this message should appear.

```
rlghncxa03w 09-02-07 11:44:13 GMT   EAGLE5 40.1.0
ENT-MRN: MASP A - COMPLTD
```

If the Flexible GTT Load Sharing is enabled and a new MRN set, other than the default MRN set, is being provisioned, enter these commands.
When these commands have successfully completed, a message similar to the following message should appear.

```
rlghncxa03w 09-02-07 11:44:13 GMT  EAGLE5 40.1.0
New MRNSET Created : MRNSETID = 2
ENT-MRN : MASP A - COMPLTD
```

If the Flexible GTT Load Sharing is enabled and a new MRN group is being added to the default MRN set, enter these commands.

```
ent-mrn:pca=005-005-005:rc=10:pca1=006-001-001:rc1=20
:pca2=006-001-002:rc2=30:pca3=006-001-003:rc3=40
:pca4=006-001-004:rc4=50:mrnset=dflt
ent-mrn:pci=5-005-5:rc=10:pci1=6-001-1:rc1=20
```

When these commands have successfully completed, this message should appear.

```
rlghncxa03w 09-02-07 11:44:13 GMT  EAGLE5 40.1.0
ENT-MRN : MASP A - COMPLTD
```

If the Flexible GTT Load Sharing is enabled and entries are being added to an existing MRN set, enter these commands.

```
ent-mrn:pca=005-005-005:pca1=006-001-001:rc1=20
:pca2=006-001-002:rc2=30:pca3=006-001-003:rc3=40
:pca4=006-001-004:rc4=50:mrnset=1
ent-mrn:pci=5-005-5:rc=10:pci1=6-001-1:rc1=20
```

When these commands have successfully completed, this message should appear.

```
rlghncxa03w 09-02-07 11:44:13 GMT  EAGLE5 40.1.0
ENT-MRN : MASP A - COMPLTD
```

If the Flexible GTT Load Sharing is not enabled and the Weighted GTT Load Sharing feature is enabled and turned on, enter these commands. This example creates a combined dominant/load shared MRN group with the same weight value for each entry in the group, and an in-service threshold value assigned to each entry in the set.

```
ent-mrn:pca=005-005-005:rc=10:dfltwt=20:pca1=006-001-001
:pca4=006-001-004:rc4=30:thr=40
```
When these commands have successfully completed, this message should appear.

```
rightncxa03w 09-02-07 11:44:13 GMT  EAGLE5 40.1.0
ENT-MRN:  MASP A - COMPLTD
```

If the Flexible GTT Load Sharing is enabled, the Weighted GTT Load Sharing feature is enabled and turned on, and a new MRN set, other than the default MRN set, is being provisioned, enter these commands. This example creates a new load shared MRN set with different weight values for each entry in the set.

```
ent-mrn:pca=005-005-005:rc=10:wt=10:pca1=006-001-001:rc1=10
```

When these commands have successfully completed, a message similar to the following message should appear.

```
rightncxa03w 09-02-07 11:44:13 GMT  EAGLE5 40.1.0
New MRNSET Created : MRNSETID = 2
ENT-MRN : MASP A - COMPLTD
```

If the Flexible GTT Load Sharing is enabled, the Weighted GTT Load Sharing feature is enabled and turned on, and entries are being added to an existing MRN set, enter these commands. This example adds entries to an existing MRN set to create a combined dominant/load shared MRN set. Each entry specified in the `ent-mrn` command has different weight values assigned. Entry specified in the `ent-mrn` command has an in-service threshold value assigned.

```
ent-mrn:pca=005-005-005:pca1=006-001-001:rc1=20:wt1=20
:wt4=50:mrnset=1:thr=30
```

When these commands have successfully completed, this message should appear.

```
rightncxa03w 09-02-07 11:44:13 GMT  EAGLE5 40.1.0
ENT-MRN : MASP A - COMPLTD
```

If the Flexible GTT Load Sharing is enabled, the Weighted GTT Load Sharing feature is enabled and turned on, and entries are being added to an existing MRN set, enter these commands. This example adds entries to an existing MRN set to create a combined dominant/load shared MRN set. Each entry specified in the `ent-mrn` command has different weight values assigned. Entry specified in the `ent-mrn` command has an in-service threshold value assigned.

```
ent-mrn:pca=005-005-005:pcal=006-001-001:rc1=20:wt1=20
```

When these commands have successfully completed, this message should appear.

```
rightncxa03w 09-02-07 11:44:13 GMT  EAGLE5 40.1.0
ENT-MRN : MASP A - COMPLTD
```

If the Flexible GTT Load Sharing is enabled, the Weighted GTT Load Sharing feature is enabled and turned on, and entries are being added to an existing MRN set, enter these commands. This example adds entries to an existing MRN set to create a combined dominant/load shared MRN set. Each entry specified in the `ent-mrn` command has different weight values assigned. Entry specified in the `ent-mrn` command has an in-service threshold value assigned.

```
ent-mrn:pca=005-005-005:pcal=006-001-001:rc1=20:wt1=20
```

When these commands have successfully completed, this message should appear.

```
rightncxa03w 09-02-07 11:44:13 GMT  EAGLE5 40.1.0
ENT-MRN : MASP A - COMPLTD
```
When these commands have successfully completed, this message should appear.

```
rlghncxa03w 09-02-07  11:44:13 GMT  EAGLE5 40.1.0
ENT-MRN : MASP A - COMPLTD
```

If the GTT Load Sharing with Alternate Routing Indicator feature is enabled and a new MRN set, other than the default MRN set, is being provisioned, enter these commands.

```
ent-mrn:pca=005-005-005:rc=10:pca1=006-001-001:rc1=20
:pca2=006-001-002:rc2=30:pca3=006-001-003:rc3=40
ent-mrn:pci=5-005-5:rc=10:pci1=6-001-1:rc1=20
:pcn2=1062:rc2=30:pci3=6-001-3 :rc3=40
```

When these commands have successfully completed, a message similar to the following message should appear.

```
rlghncxa03w 09-02-07  11:44:13 GMT  EAGLE5 40.1.0
New MRNSET Created : MRNSETID = 2
ENT-MRN : MASP A - COMPLTD
```

If no more entries will be added to the MRN group or MRN set specified in this step, continue the procedure with **Step 15**.

If more entries will be added to the MRN group or MRN set specified in this step, continue the procedure with **Step 14**.

14. Enter the `ent-mrn` or `chg-mrn` command without the `rc` parameter to add more entries to the MRN group or MRN set specified in **Step 13**. If the `ent-mrn` command will be specified in this step, use *Table 54: Parameter Combinations for the ENT-MRN Command* as a guide for the parameters and values that can be specified with the `ent-mrn` command. If the `chg-mrn` command will be used in this step, use *Table 55: Parameter Combinations for the CHG-MRN Command* as a guide for the parameters and values that can be specified with the `chg-mrn` command.

Table 55: Parameter Combinations for the CHG-MRN Command

<table>
<thead>
<tr>
<th>No Weight Values Assigned to the Entries in the MRN Group or MRN Set</th>
<th>Weight Values Assigned to the Entries in the MRN Group or MRN Set</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mandatory Parameter</td>
<td>Mandatory Parameter</td>
</tr>
<tr>
<td>:pc/pca/pci/pcn24 (See Notes 5, 6, 7, and 11)</td>
<td>:pc/pca/pci/pcn24 (See Notes 5, 6, 7, and 11)</td>
</tr>
<tr>
<td>Optional Parameters</td>
<td>Optional Parameters</td>
</tr>
<tr>
<td>:pc1/pca1/pci1/pcn1241 (See Notes 4, 5, 6, 7, and 11)</td>
<td>:pc1/pca1/pci1/pcn1241 (See Notes 4, 5, 6, 7, and 11)</td>
</tr>
<tr>
<td>:rc1=<0 - 99> (See Notes 1, 2, 3, and 4)</td>
<td>:rc1=<0 - 99> (See Notes 1, 2, 3, and 4)</td>
</tr>
<tr>
<td>:pc2/pca2/pci2/pcn242 (See Notes 4, 5, 6, 7, and 11)</td>
<td>:pc2/pca2/pci2/pcn242 (See Notes 4, 5, 6, 7, and 11)</td>
</tr>
<tr>
<td>:rc2=<0 - 99> (See Notes 1, 2, 3, and 4)</td>
<td>:rc2=<0 - 99> (See Notes 1, 2, 3, and 4)</td>
</tr>
</tbody>
</table>

Notes:

1. Notes applicable to this table are found in Table 54: Parameter Combinations for the ENT-MRN Command.
No Weight Values Assigned to the Entries in the MRN Group or MRN Set | Weight Values Assigned to the Entries in the MRN Group or MRN Set
---|---
`.pc3/pc3a/pci3/pcn3/pcn243` (See Notes 4, 5, 6, 7, and 11) | `.rc2=<0 - 99>` (See Notes 1, 2, 3, and 4)
`.rc3=<0 - 99>` (See Notes 1, 2, 3, and 4) | `.wt2=<1 - 99>` (See Note 8)
`.pc4/pca4/pci4/pcn4/pcn244` (See Notes 4, 5, 6, 7, and 11) | `.pc3/pca3/pci3/pcn3/pcn243` (See Notes 4, 5, 6, 7, and 11)
`.rc4=<0 - 99>` (See Notes 1, 2, 3, and 4) | `.rc3=<0 - 99>` (See Notes 1, 2, 3, and 4)
`.mrnset=<the mrnset parameter value shown in the ent-mrn output in Step 13>` (See Note 9) | `.wt3=<1 - 99>` (See Note 8)
`.mapset = <MAP set ID from the rtrv-map output>` (See Note 10) | `.pc4/pca4/pci4/pcn4/pcn244` (See Notes 4, 5, 6, 7, and 11)
`.mappc/mappca/mappci/mappcn/mappcn24=<the point code value in the MAP set>` (See Notes 10 and 11) | `.rc4=<0 - 99>` (See Notes 1, 2, 3, and 4)
`.mapssn=<the SSN value assigned to the point code in the MAP set>` (See Note 10) | `.wt4=<1 - 99>` (See Note 8)

Notes
1. To provision a dominant MRN group or MRN set, the RC values for each entry must be unique.
2. To provision a load shared MRN group or MRN set, the RC values for each entry must be equal.
3. To provision a combined dominant/load shared MRN group or MRN set, the MRN group or MRN set must contain a minimum of two entries with equal RC values, and a minimum of one entry with a different RC value.
4. The MRN group can contain a maximum of 32 alternate point code entries. The alternate point code and its corresponding `rc` parameter must be specified together. For example, if the `pcn3` parameter is specified, the `rc3` parameter must be specified.
5. The point codes specified must have a route assigned to it, or must be a part of a cluster that has a route assigned to it (shown in Step 11), cannot be in the Self ID table (shown in Step 8), and proxy point codes cannot be assigned to the point codes (shown in Step 10).
6. For MRNs containing ANSI or 24-bit ITU-N point codes, the format of the point codes specified in the chg-mrn command must be the same. For example, if the primary point code is a 24-bit ITU-N point code (pcn24), the alternate point code must be a 24-bit ITU-N point code (mpcn24). The alternate point codes of MRNs containing either ITU-I, ITU-I spare, 14-bit ITU-N, or 14-bit ITU-N spare primary point codes do not have to be the same format as the primary point code. The alternate point codes of these MRNs can be a mixture of ITU-I, ITU-I spare, 14-bit ITU-N, or 14-bit ITU-N spare point codes.

7. If the rtrv-rte and rtrv-sid outputs show 14-bit ITU-N point codes (dpcn & pcn), then the pcn/pcn1/pcn2/pcn3/pcn4 parameters must be used. If the rtrv-rte and rtrv-sid outputs show 24-bit ITU-N point codes (dpcn24 & pcn24), then the pcn24/pcn241/pcn242/pcn243/pcn244 parameters must be used.

8. Refer to Provisioning Weights and In-Service Thresholds for MRNs for information about using the weight (wt) parameter.

9. Refer to Provisioning an MRN Set for information about how to provision an MRN set.

10. The mapset, mappc/mappca/mappci/mappcn/mappcn24, and mapssn parameters can be specified only if the GTT Load Sharing with Alternate Routing Indicator feature is enabled. If either the mapset, mappc/mappca/mappci/mappcn/mappcn24, or mapssn parameters are specified, then all three parameters must be specified. The values of the mapset, mappc/mappca/mappci/mappcn/mappcn24, and mapssn parameters are shown in the rtrv-map output.

11. The network type of the pc/pca/pci/pcn/pcn24 and mappc/mappca/mappci/mappcn/mappcn24 parameter values must be compatible, as shown in this list.

 • pc/pca - mappc/mappca
 • pcn24 - mappcn
 • pci or pcn - mappci or mappcn

 If the network type of the MRN point code parameter is ITU-I (pci), the network type of the MAP point code parameter can be either ITU-I (mappci) or ITU-N (mappcn).

 If the network type of the MRN point code parameter is ITU-N (pcn), the network type of the MAP point code parameter can be either ITU-I (mappci) or ITU-N (mappcn).

For this example, enter these commands.

```
ent-mrn:pca=005-005-005:pca1=006-001-005:rc1=60
:pca2=006-001-006:rc2=70:pcn=006-001-007:rc3=80:mrnset=1

ent-mrn:pci=5-005-5:pci1=6-001-5:rc1=60:pcn2=1070:rc2=70:pci3=6-001-7
:rc3=80:mrnset=2
```

When these commands have successfully completed, this message should appear.

```
rlghncca03w 06-10-07 11:44:13 GMT EAGLE5 36.0.0
ENT-MRN: MASP A - COMPLTD
```

```
chg-mrn:pca=005-005-005:pca1=006-001-005:rc1=60
:pca2=006-001-006:rc2=70:pcn=006-001-007:rc3=80:mrnset=1
```
When these commands have successfully completed, this message should appear.

```
rlghncxa03w 06-10-07 11:44:13 GMT EAGLE5 36.0.0
CHG-MRN: MASP A - COMPLTD
```

If the Weighted GTT Load Sharing feature is enabled and turned on, enter these commands.

```
```

When these commands have successfully completed, this message should appear.

```
rlghncxa03w 06-10-07 11:44:13 GMT EAGLE5 36.0.0
ENT-MRN: MASP A - COMPLTD
```

If the GTT Load Sharing with Alternate Routing Indicator feature is enabled, and you wish to add the mapset, MAP point code, and mapssn values to the MRN entry, and these values were not specified in Step 13, for this example, enter these commands.

```
```

When these commands have successfully completed, this message should appear.

```
rlghncxa03w 09-02-07 11:44:13 GMT EAGLE5 40.1.0
CHG-MRN: MASP A - COMPLTD
```

```
```

When these commands have successfully completed, this message should appear.
15. Verify the changes using the `rtrv-mrn` command with the point code (`pca/pci/pcn/pcn24` parameters) specified in Step 13 and Step 14.

If the `mrnset` parameter was specified in Step 13 and Step 14, the `mrnset` parameter and value specified in Step 13 and Step 14 must be specified with the `rtrv-mrn` command in this step.

For this example, enter one of these commands. If the Flexible GTT Load Sharing is not enabled, enter this command.

```
rtrv-mrn:pca=005-005-005
```

This is an example of the possible output.

```
rlghncxa03w 09-02-07 00:34:31 GMT EAGLE5 40.1.0
  PC       RC
005-005-005  10
006-001-001  20
006-001-002  30
006-001-003  40
006-001-004  50
006-001-005  60
006-001-006  70
006-001-007  80
MRN table is (24 of 2990) 1% full
```

```
rtrv-mrn:pci=5-005-5
```

This is an example of the possible output.

```
rlghncxa03w 09-02-07 00:34:31 GMT EAGLE5 40.1.0
  NET  PC       RC
 I    5-005-5  10
 I    6-001-1  20
 N   1062     30
 I    6-001-3  40
 N   1065     50
MRN table is (24 of 2990) 1% full
```

If the Flexible GTT Load Sharing is enabled and a new MRN set, other than the default MRN set, was provisioned in Step 13 and Step 14, enter this command.

```
rtrv-mrn:pca=005-005-005:mrnset=1
```

This is an example of the possible output.

```
rlghncxa03w 09-02-07 00:34:31 GMT EAGLE5 40.1.0
  MRNSET  PC       RC
  1      005-005-005  10
         006-001-001  20
         006-001-002  30
         006-001-003  40
         006-001-004  50
         006-001-005  60
         006-001-006  70
         006-001-007  80
```
If the Flexible GTT Load Sharing is enabled and a new MRN group was added to the default MRN set in Step 13 and Step 14, enter this command.

\texttt{rtrv-mrn:pca=005-005-005:mrnset=dflt}

This is an example of the possible output.

\texttt{rlghncxa03w 09-02-07 00:34:31 GMT EAGLE5 40.1.0}

<table>
<thead>
<tr>
<th>MRNSET</th>
<th>PC</th>
<th>RC</th>
</tr>
</thead>
<tbody>
<tr>
<td>DFLT</td>
<td>I 005-005-005</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>006-001-001</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>006-001-002</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>006-001-003</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>006-001-004</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>006-001-005</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>006-001-006</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td>006-001-007</td>
<td>80</td>
</tr>
</tbody>
</table>

If the Flexible GTT Load Sharing is enabled and entries were added to an existing MRN set in Step 13, enter this command.

\texttt{rtrv-mrn:pca=005-005-005:mrnset=1}

This is an example of the possible output.

\texttt{rlghncxa03w 09-02-07 00:34:31 GMT EAGLE5 40.1.0}

<table>
<thead>
<tr>
<th>MRNSET NET</th>
<th>PC</th>
<th>RC</th>
</tr>
</thead>
<tbody>
<tr>
<td>DFLT</td>
<td>I 005-005</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>6-001-1</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>1062</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>6-001-3</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>1065</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>6-001-5</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>1070</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td>6-001-7</td>
<td>80</td>
</tr>
</tbody>
</table>

If the Flexible GTT Load Sharing is enabled and entries were added to an existing MRN set in Step 13, enter this command.

\texttt{rtrv-mrn:pca=005-005-005:mrnset=1}

This is an example of the possible output.

\texttt{rlghncxa03w 09-02-07 00:34:31 GMT EAGLE5 40.1.0}

<table>
<thead>
<tr>
<th>MRNSET NET</th>
<th>PC</th>
<th>RC</th>
</tr>
</thead>
<tbody>
<tr>
<td>DFLT</td>
<td>I 005-005</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>6-001-1</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>1062</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>6-001-3</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>1065</td>
<td>50</td>
</tr>
</tbody>
</table>

MRN table is (24 of 2990) 1% full
If the Weighted GTT Load Sharing feature is enabled and turned on, for this example, enter one of these commands. If the Flexible GTT Load Sharing is not enabled, enter this command.

```
rtrv-mrn:pca=005-005-005
```

This is an example of the possible output.

```
rlgncca03w 09-02-07 00:34:31 GMT EAGLE5 40.1.0

<table>
<thead>
<tr>
<th>MRNSET</th>
<th>NET</th>
<th>PC</th>
<th>RC</th>
<th>WT</th>
<th>%WT</th>
<th>THR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>I</td>
<td>5-005-5</td>
<td>10</td>
<td>20</td>
<td>33</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>I</td>
<td>6-001-1</td>
<td>20</td>
<td>20</td>
<td>33</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>1062</td>
<td>30</td>
<td>20</td>
<td>50</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>I</td>
<td>6-001-3</td>
<td>40</td>
<td>20</td>
<td>50</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>1065</td>
<td>50</td>
<td>20</td>
<td>50</td>
<td>40</td>
</tr>
</tbody>
</table>

MRN table is (24 of 2990) 1% full
```

```
rtrv-mrn:pci=5-005-5
```

This is an example of the possible output.

```
rlgncca03w 09-02-07 00:34:31 GMT EAGLE5 40.1.0

<table>
<thead>
<tr>
<th>PC</th>
<th>RC</th>
<th>WT</th>
<th>%WT</th>
<th>THR</th>
</tr>
</thead>
<tbody>
<tr>
<td>005-005-005</td>
<td>10</td>
<td>20</td>
<td>33</td>
<td>40</td>
</tr>
<tr>
<td>006-001-001</td>
<td>10</td>
<td>20</td>
<td>33</td>
<td>40</td>
</tr>
<tr>
<td>006-001-003</td>
<td>10</td>
<td>20</td>
<td>33</td>
<td>40</td>
</tr>
<tr>
<td>006-001-002</td>
<td>30</td>
<td>20</td>
<td>50</td>
<td>40</td>
</tr>
<tr>
<td>006-001-004</td>
<td>30</td>
<td>20</td>
<td>50</td>
<td>40</td>
</tr>
</tbody>
</table>

MRN table is (24 of 2990) 1% full
```

```
rtrv-mrn:pci=5-005-5
```

This is an example of the possible output.
If the Flexible GTT Load Sharing feature is enabled and a new MRN set, other than the default MRN set, was provisioned in *Step 13* and *Step 14*, enter this command.

```
rtrv-mrn:pca=005-005-005:mrnset=1
```

This is an example of the possible output.

```
rlghncxa03w 09-02-07 00:34:31 GMT EAGLE5 40.1.0

<table>
<thead>
<tr>
<th>MRNSET</th>
<th>PC</th>
<th>RC</th>
<th>WT</th>
<th>%WT</th>
<th>THR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>005-005-005</td>
<td>10</td>
<td>10</td>
<td>50</td>
<td>30</td>
</tr>
<tr>
<td>006-001-001</td>
<td>10 10  8</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>006-001-002</td>
<td>10 30  23</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>006-001-003</td>
<td>10 40  23</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>006-001-005</td>
<td>10 40  23</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>006-001-006</td>
<td>10 40  23</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>006-001-007</td>
<td>10 40  23</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>006-001-008</td>
<td>10 40  23</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>006-001-009</td>
<td>10 40  23</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>006-001-010</td>
<td>10 40  23</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

If the Flexible GTT Load Sharing is enabled and a new MRN group was added to the default MRN set in *Step 13* and *Step 14*, enter this command.

```
rtrv-mrn:pca=005-005-005:mrnset=dflt
```

This is an example of the possible output.

```
rlghncxa03w 09-02-07 00:34:31 GMT EAGLE5 40.1.0

<table>
<thead>
<tr>
<th>MRNSET</th>
<th>PC</th>
<th>RC</th>
<th>WT</th>
<th>%WT</th>
<th>THR</th>
</tr>
</thead>
<tbody>
<tr>
<td>DFLT</td>
<td>005-005-005</td>
<td>10</td>
<td>10</td>
<td>50</td>
<td>30</td>
</tr>
<tr>
<td>006-001-001</td>
<td>10 10  8</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>006-001-002</td>
<td>10 30  23</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>006-001-003</td>
<td>10 40  23</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>006-001-004</td>
<td>10 40  23</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>006-001-005</td>
<td>10 40  23</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>006-001-006</td>
<td>10 40  23</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>006-001-007</td>
<td>10 40  23</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>006-001-008</td>
<td>10 40  23</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>006-001-009</td>
<td>10 40  23</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>006-001-010</td>
<td>10 40  23</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```
This is an example of the possible output.

```
righncxa03w 09-02-07 00:34:31 GMT EAGLE5 40.1.0

<table>
<thead>
<tr>
<th>MRNSET</th>
<th>NET</th>
<th>PC</th>
<th>RC</th>
<th>WT</th>
<th>%WT</th>
<th>THR</th>
</tr>
</thead>
<tbody>
<tr>
<td>DFLT</td>
<td>I</td>
<td>5-005-5</td>
<td>10</td>
<td>10</td>
<td>50</td>
<td>30</td>
</tr>
<tr>
<td>I</td>
<td>6-001-1</td>
<td>10</td>
<td>10</td>
<td>50</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>1062</td>
<td>30</td>
<td>20</td>
<td>100</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>6-001-3</td>
<td>40</td>
<td>20</td>
<td>100</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>1065</td>
<td>50</td>
<td>20</td>
<td>100</td>
<td>30</td>
<td></td>
</tr>
</tbody>
</table>

MRN table is (24 of 2990) 1% full
```

If the GTT Load Sharing with Alternate Routing Indicator feature is enabled, and you wish to add the mapset, MAP point code, and mapssn values to the MRN entry, and these values were not specified in Step 13, for this example, enter these commands.

```
rtrv-mrn:mrnset=1:pca=005-005-005
```

This is an example of the possible output.

```
righncxa03w 09-02-07 00:34:31 GMT EAGLE5 40.1.0

<table>
<thead>
<tr>
<th>MRNSET</th>
<th>MAPSET</th>
<th>MAPPC</th>
<th>MAPSSN</th>
<th>PC</th>
<th>RC</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7</td>
<td>002-002-007</td>
<td>50</td>
<td>005-005-005</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>006-001-001</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>006-001-002</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>006-001-003</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>006-001-004</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>006-001-005</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>006-001-006</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>006-001-007</td>
<td>80</td>
</tr>
</tbody>
</table>

MRN table is (24 of 5990) 1% full
```

```
rtrv-mrn:mrnset=2:pci=5-005-5
```

This is an example of the possible output.

```
righncxa03w 09-02-07 00:34:31 GMT EAGLE5 40.1.0

<table>
<thead>
<tr>
<th>MRNSET</th>
<th>MAPSET</th>
<th>MAPPCN</th>
<th>MAPSSN</th>
<th>NET</th>
<th>PC</th>
<th>RC</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>9</td>
<td>00347</td>
<td>253</td>
<td>I</td>
<td>5-005-5</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>I</td>
<td>6-001-1</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>N</td>
<td>1062</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>I</td>
<td>6-001-3</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>N</td>
<td>1065</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>I</td>
<td>6-001-5</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>N</td>
<td>1070</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>I</td>
<td>6-001-7</td>
<td>80</td>
</tr>
</tbody>
</table>

MRN table is (24 of 2990) 1% full
```

16. Backup the new changes using the `chg-db:action=backup:dest=fixed` command.

These messages should appear, the active Maintenance and Administration Subsystem Processor (MASP) appears first.

```
BACKUP (FIXED) : MASP A - Backup starts on active MASP.
BACKUP (FIXED) : MASP A - Backup on active MASP to fixed disk complete.
BACKUP (FIXED) : MASP A - Backup starts on standby MASP.
BACKUP (FIXED) : MASP A - Backup on standby MASP to fixed disk complete.
```
Removing MRN Entries

This procedure is used to remove an entry from an mated relay node (MRN) group or an entire MRN group from the database using the dlt-mrn command.

The dlt-mrn command uses these parameters:

- :pc/pca/pci/pcn/pcn24 – The point code in the message after intermediate global title translation has been performed.
- :pcl/pca1/pci1/pcn1/pcn241 – The first alternate point code value
- :pc2/pca2/pci2/pcn2/pcn242 – The second alternate point code value
- :pc4/pca4/pci4/pcn4/pcn244 – The fourth alternate point code value

Note: Refer to Chapter 2, "Configuring Destination Tables," in the Database Administration Manual - SS7 for a definition of the point code types that are used on the EAGLE 5 ISS and for a definition of the different formats that can be used for ITU national point codes.

- :all – Removes the entire MRN group or MRN set containing the point code specified by the pc/pca/pci/pcn/pcn24 parameter.
- :mrnset – The MRN set ID that the MRN is assigned to, shown in the rtrv-mrn output. MRN set IDs are shown only if the Flexible GTT Load Sharing feature is enabled. If the Flexible GTT Load Sharing feature is enabled, the mrnset parameter must be specified with the dlt-mrn command.
- :mapset – The MAP set ID assigned to the MRN set. This is the MAP set from which alternate routing indicator searches are performed. The mapset parameter is shown in the rtrv-mrn output only if the GTT Load Sharing with Alternate Routing Indicator feature is enabled. An MRN set or a point code in an MRN set cannot be removed if a MAP set is assigned to the MRN set.

If an entire MRN set is being removed in this procedure (with the all=yes parameter), or if a point code entry in an MRN set is being removed in this procedure, the reference to the MRN set specified in this procedure must be removed from any GTT or GTA entries before the point code can be removed from an MRN set, or before an entire MRN set can be removed.

Perform one of these procedures to remove the reference to the MRN set, depending on whether or not the EGTT feature is on. The status of the EGTT feature is shown in the rtrv-feat command output.

- If the EGTT feature is not on – Enter the rtrv-gtt command to verify the MRN set ID references. Perform the Changing a Global Title Translation procedure to remove the references to the MRN set.
- If the EGTT feature is on – Enter the rtrv-gta command to verify the MRN set ID references. Perform Changing Global Title Address Information to remove the references to the MRN set. The MRN set ID is not shown in the rtrv-ppsoutput output.
- Any references to the MRN’s point code and non-default MRN set ID in the rtrv-ppsoutput output are removed in Step 9 of this procedure.
- Any references to the MRN’s point code and non-default MRN set ID in the rtrv-gttact output are removed in Step 10 of this procedure.

Note: If weight and in-service threshold values are assigned to a load shared or combined dominant/load shared MRN group or MRN set, and if by removing entries from this MRN group or
MRN set, the MRN group or MRN set becomes a dominant MRN group or MRN set, all weight and threshold values are removed from the remaining entries in the MRN group or MRN set.

The mated relay node group being removed, or the point code value being removed from a MRN group must be in the database.

When removing point codes from an MRN group, the MRN group must contain the pc parameter value and at least one alternate point code value.

If the mrnset=dflt and all=yes parameters are specified with the dlt-mrn command, only the MRN group containing the point code value specified in the dlt-mrn command is removed from the default MRN set.

Canceling the RTRV–MRN Command

Because the rtrv-mrn command used in this procedure can output information for a long period of time, the rtrv-mrn command can be canceled and the output to the terminal stopped. There are three ways that the rtrv-mrn command can be canceled.

- Press the F9 function key on the keyboard at the terminal where the rtrv-mrn command was entered.
- Enter the canc-cmd without the trm parameter at the terminal where the rtrv-mrn command was entered.
- Enter the canc-cmd:trm=<xx>, where <xx> is the terminal where the rtrv-mrn command was entered, from another terminal other that the terminal where the rtrv-mrn command was entered. To enter the canc-cmd:trm=<xx> command, the terminal must allow Security Administration commands to be entered from it and the user must be allowed to enter Security Administration commands. The terminal’s permissions can be verified with the rtrv-secu-trm command. The user’s permissions can be verified with the rtrv-user or rtrv-secu-user commands.

For more information about the canc-cmd command, refer to the Commands Manual.

1. Display the mated relay nodes in the database using the rtrv-mrn command.

This is an example of the possible output.

```
rlghncxa03w 09-02-07 00:34:31 GMT EAGLE5 40.1.0

<table>
<thead>
<tr>
<th>MRNSET</th>
<th>MAPSET</th>
<th>MAPPC</th>
<th>MAPSSN</th>
<th>PC</th>
<th>RC</th>
<th>WT</th>
<th>%WT</th>
<th>THR</th>
</tr>
</thead>
<tbody>
<tr>
<td>DFLT</td>
<td>7</td>
<td>002-002-007</td>
<td>50</td>
<td>005-005-005</td>
<td>10</td>
<td>10</td>
<td>50</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>006-001-001</td>
<td>10</td>
<td>10</td>
<td>50</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>006-001-002</td>
<td>30</td>
<td>20</td>
<td>100</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>006-001-003</td>
<td>40</td>
<td>20</td>
<td>100</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>006-001-004</td>
<td>50</td>
<td>20</td>
<td>100</td>
<td>30</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MRNSET</th>
<th>MAPSET</th>
<th>MAPPC</th>
<th>MAPSSN</th>
<th>PC</th>
<th>RC</th>
<th>WT</th>
<th>%WT</th>
<th>THR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td>255-001-002</td>
<td>252</td>
<td>005-005-005</td>
<td>10</td>
<td>10</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>006-001-001</td>
<td>10</td>
<td>10</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>006-001-002</td>
<td>10</td>
<td>12</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>006-001-003</td>
<td>10</td>
<td>15</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>006-001-005</td>
<td>10</td>
<td>15</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>006-001-006</td>
<td>10</td>
<td>15</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>006-001-007</td>
<td>10</td>
<td>15</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>006-001-004</td>
<td>10</td>
<td>19</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>006-001-008</td>
<td>20</td>
<td>25</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>006-001-009</td>
<td>20</td>
<td>37</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>006-001-010</td>
<td>20</td>
<td>37</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
```
Note: If the Weighted GTT Load Sharing feature is not enabled and turned on, the WT, %WT, THR columns and values are not shown in the `rtrv-mrn` output.

Continue the procedure by performing one of these steps:

- If the MRNSET column is not shown in the `rtrv-mrn` output, then the Flexible GTT Load Sharing feature is not enabled. Continue the procedure with Step 11.
- If only the MRNSET column is shown in the `rtrv-mrn` output, continue the procedure with Step 4.
- If the MRNSET and MAPSET columns are shown in the `rtrv-mrn` output, continue the procedure by performing one of these steps.
 - If an entire MRN set is being removed, continue the procedure with Step 3.
 - If a point code entry is being removed from the MRN set, continue the procedure with Step 4.
 - If the MAP set entry is being removed from the MRN set, continue the procedure with Step 2.

Note: If the MAPSET column contains dashes, then a MAP set is not assigned to the MRN set.

2. Remove the MAP set from the MRN set using the `dlt-mrn` command with the `mrnset`, `mapset`, and `pc/pca/pcl/pcn/pcn24` parameters and values shown in Step 1. For this example, enter this command.

   ```bash
dlt-mrn:mrnset=1:mapset=5:pca=005-005-005
   ```

 This message should appear.

   ```plaintext
dltnrn: marnset=1:mapset=5: pca=005-005-005
   ```

 If you wish to remove any point code entries from the MRN set, continue the procedure with Step 4.

 If you do not wish to remove any point code entries from the MRN set, continue the procedure with Step 12.

3. Display the mated applications by entering the `rtrv-map` command. This is an example of the possible output.

   ```plaintext)righnxc03w 09-07-07 00:34:31 GMT EAGLE5 41.1.0
   MAPSET ID=DFLT  MRNSET ID=----  MRNPC   =   005-005-005
   PCA            Mate PCA     SSN RC MULT SRM MRC GRP NAME SSO
   255-001-000                 250 10  SOL *Y  *Y  grp01    ON
   MAPSET ID=1      MRNSET ID=1  MRNPC   =   005-005-005
   PCA            Mate PCA     SSN RC MULT SRM MRC GRP NAME SSO
   255-001-000                 251 10  SHR *Y  *Y  grp01    OFF
   253-001-002  254 10  SHR *Y  *Y  grp01    OFF
   ```
If the MRN set is not assigned to any MAP sets, continue the procedure with Step 4.

If the MRN set is assigned to any MAP sets, perform Removing a Mated Application to remove the MRN set from the MAP sets. After the MRN set has been removed from the MAP sets, continue the procedure with Step 4.

4. Verify whether or not the Enhanced GTT feature is on by entering the rtrv-feat command.

If the EGTT feature is on, the EGTT field should be set to on.

Note: The rtrv-feat command output contains other fields that are not used by this procedure. If you wish to see all the fields displayed by the rtrv-feat command, refer to the rtrv-feat command description in the Commands Manual.
If the EGTT feature is on, continue the procedure with Step 7.
If the EGTT feature is off, continue the procedure with Step 5.

5. Display the translation types in the database by entering the `rtrv-tt` command.
This is an example of the possible output.

```
rlghncxa03w 07-05-25 09:42:31 GMT  EAGLE5 37.0.0
TYPEA      TTN        NDGT
1          lidb       5
2          c800       10
3          d700       6
5          scp1       6
10         scp2       6
15         scp3       3

ALIAS      TYPEA
30         5
40         10
50         3
65         3

TYPEI      TTN        NDGT
105        itudb      8

ALIAS      TYPEI
7          105

TYPEN      TTN        NDGT
120        dbitu      7

ALIAS      TYPEN
8          120
```

6. Before an MRN set can be removed from the database, or a point code entry can be removed from an MRN set, all references to the specific MRN set must be removed from the global title translations.

Select a translation type from Step 5. Display the global title translations assigned to the translation type from Step 5 that contain either the point code being removed from the MRN set, or a point code in the MRN set that is being removed in this procedure.

For this example, enter this command.

```
rtrv-gtt:typea=15:pca=006-001-002
```
This is an example of the possible output.

```
rlghncxa03w 08-10-25 09:48:31 GMT  EAGLE5 39.2.0
TYPEA      TTN        NDGT
15         scp3       3

GTT TABLE IS 10 % FULL  (27000 of 269999)
START GTA     END GTA     XLAT  RI  PC
800           900         DPC  GT  006-001-002
MRNSET=1      SSN=---    NGT=---

Command Retrieved 1 Entries
```
If entries are displayed, perform the Changing a Global Title Translation procedure and change the MRN reference to NONE, or remove the global title translation by performing the Removing a Global Title Translation procedure.
If no entries are displayed, repeat this step with the other translation types displayed in Step 5.

When all the translation types have been displayed and all applicable global title translation entries have been changed or removed in this step, continue the procedure with Step 9.

7. Display the existing GTT sets in the database using the `rtrv-gttset` command.
 This is an example of the possible output.

 | rlghncxa03w 09-07-07 00:27:31 GMT EAGLE5 41.1.0 |
 | GTTSN NETDOM NDGT |
 | lidb ansi 10 |
 | t800 ansi 10 |
 | si000 itu 15 |
 | imsi itu 15 |
 | abcd1234 itu 12 |

 GTT-SET table is (5 of 2000) 1% full.

8. Before an MRN set can be removed from the database, all references to the specific MRN set must be removed from the global title translations displayed in the `rtrv-gta` output. Before a point code entry can be removed from an MRN set, all references to the specific MRN set must be removed from the global title translations displayed in the `rtrv-gta` output.

 Select a GTT set name from Step 7. Display the global title translations assigned to the GTT set name from Step 7 that contain either the point code being removed from the MRN set, or a point code in the MRN set that is being removed in this procedure.

 For this example, enter this command.

 `rtrv-gta:gttsn=t800:pca=006-001-002`

 This is an example of the possible output.

 | rlghncxa03w 10-07-07 00:27:31 GMT EAGLE5 42.0.0 |
 | GTTSN NETDOM SETTYPE NDGT |
 | t800 ansi CDGTA 10 |
 | GTA TABLE IS 1% FULL (17 of 269999) |

 START GTA END GTA XLAT RI PC
 80055500000 8005551999 dpcssn gt 006-001-002
 MRNSET=1 SSN=50 CCGT=no CCGTMOD=NO
 GTMODID=------- TESTMODE=off
 OPTSN=------- CGSELID=----- OPCSN=--------
 ACTSN=act10 PPMEASREQD= NO

 Command Retrieved 1 Entries

 If entries are displayed, perform Changing Global Title Address Information and change the MRN reference to NONE, or remove the entry by performing the Removing Global Title Address Information procedure.

 If no entries are displayed, repeat this step with the other GTT set names displayed in Step 7.

 When all the GTT set names have been displayed and all applicable global title translation entries have been changed or removed in this step, continue the procedure with Step 9.

 Note: If the MRN being removed is in the default MRN set, continue the procedure with Step 11.

9. The MRN cannot be removed if the point code and non-default MRN set ID of the MRN is shown in the `rtrv-ppsopts` command output. Enter the `rtrv-ppsopts` command to verify that the
MRN’s point code and non-default MRN set ID is not shown in the `rtrv-ppsopts` output. This is an example of the possible output.

```
rlghncxa03w 09-03-20 09:07:58 GMT EAGLE5 40.1.0
Prepaid SMS Options

<table>
<thead>
<tr>
<th>BARTYCHK</th>
<th>PCA/PCI/PCN</th>
<th>SSN</th>
<th>RI</th>
<th>Set ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>OFF</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>PCI:</td>
<td>25</td>
<td>SSN</td>
<td>DFLT</td>
</tr>
<tr>
<td>2</td>
<td>NONE</td>
<td></td>
<td>GT</td>
<td>DFLT</td>
</tr>
<tr>
<td>3</td>
<td>NONE</td>
<td></td>
<td>GT</td>
<td>DFLT</td>
</tr>
<tr>
<td>4</td>
<td>PCI:</td>
<td>30</td>
<td>GT</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>NONE</td>
<td></td>
<td>GT</td>
<td>DFLT</td>
</tr>
<tr>
<td>6</td>
<td>NONE</td>
<td></td>
<td>GT</td>
<td>DFLT</td>
</tr>
<tr>
<td>7</td>
<td>NONE</td>
<td></td>
<td>GT</td>
<td>DFLT</td>
</tr>
<tr>
<td>8</td>
<td>PCI:</td>
<td>75</td>
<td>SSN</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>NONE</td>
<td></td>
<td>GT</td>
<td>DFLT</td>
</tr>
<tr>
<td>10</td>
<td>NONE</td>
<td></td>
<td>GT</td>
<td>DFLT</td>
</tr>
<tr>
<td>11</td>
<td>NONE</td>
<td></td>
<td>GT</td>
<td>DFLT</td>
</tr>
<tr>
<td>12</td>
<td>NONE</td>
<td></td>
<td>GT</td>
<td>DFLT</td>
</tr>
<tr>
<td>13</td>
<td>NONE</td>
<td></td>
<td>GT</td>
<td>DFLT</td>
</tr>
<tr>
<td>14</td>
<td>NONE</td>
<td></td>
<td>GT</td>
<td>DFLT</td>
</tr>
<tr>
<td>15</td>
<td>NONE</td>
<td></td>
<td>GT</td>
<td>DFLT</td>
</tr>
<tr>
<td>16</td>
<td>NONE</td>
<td></td>
<td>GT</td>
<td>DFLT</td>
</tr>
<tr>
<td>17</td>
<td>NONE</td>
<td></td>
<td>GT</td>
<td>DFLT</td>
</tr>
<tr>
<td>18</td>
<td>NONE</td>
<td></td>
<td>GT</td>
<td>DFLT</td>
</tr>
<tr>
<td>19</td>
<td>NONE</td>
<td></td>
<td>GT</td>
<td>DFLT</td>
</tr>
<tr>
<td>20</td>
<td>NONE</td>
<td></td>
<td>GT</td>
<td>DFLT</td>
</tr>
<tr>
<td>21</td>
<td>NONE</td>
<td></td>
<td>GT</td>
<td>DFLT</td>
</tr>
<tr>
<td>22</td>
<td>NONE</td>
<td></td>
<td>GT</td>
<td>DFLT</td>
</tr>
<tr>
<td>23</td>
<td>NONE</td>
<td></td>
<td>GT</td>
<td>DFLT</td>
</tr>
<tr>
<td>24</td>
<td>NONE</td>
<td></td>
<td>GT</td>
<td>DFLT</td>
</tr>
<tr>
<td>25</td>
<td>NONE</td>
<td></td>
<td>GT</td>
<td>DFLT</td>
</tr>
<tr>
<td>26</td>
<td>NONE</td>
<td></td>
<td>GT</td>
<td>DFLT</td>
</tr>
<tr>
<td>27</td>
<td>NONE</td>
<td></td>
<td>GT</td>
<td>DFLT</td>
</tr>
<tr>
<td>28</td>
<td>NONE</td>
<td></td>
<td>GT</td>
<td>DFLT</td>
</tr>
<tr>
<td>29</td>
<td>NONE</td>
<td></td>
<td>GT</td>
<td>DFLT</td>
</tr>
<tr>
<td>30</td>
<td>NONE</td>
<td></td>
<td>GT</td>
<td>DFLT</td>
</tr>
<tr>
<td>31</td>
<td>NONE</td>
<td></td>
<td>GT</td>
<td>DFLT</td>
</tr>
<tr>
<td>32</td>
<td>NONE</td>
<td></td>
<td>GT</td>
<td>DFLT</td>
</tr>
<tr>
<td>GTA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

GTA

NONE

If the `rtrv-ppsopts` output shows any entries that reference the MRN’s point code and non-default MRN set ID, remove the reference using the `chg-ppsopts` command with the prepaid portability type (the `PPT` value) that contains the reference and either the `pci=none` or `pcn=none` parameters (depending on the type of point code the prepaid portability type contains).

`chg-ppsopts:ppt=8:pci=none`

This is an example of the possible output.

```
rlghncxa03w 07-05-20 09:07:58 GMT EAGLE5 37.0.0
CHG-PPSOPTS: MASP A - COMPLTD
```

Repeat this step for other entries shown in the `rtrv-ppsopts` output that contain the MRN’s point code and non-default MRN set ID.

10. The MRN cannot be removed if the point code and non-default MRN set ID of the MRN is shown in the `rtrv-gttact` command output. Enter the `rtrv-gttact` command to verify that the MRN’s point code and non-default MRN set ID is not shown in the `rtrv-gttact` output. For this example, enter this command.

`rtrv-gttact: pca=006-001-002:mrnset=1`

This is an example of the possible output.

```
rlghncxa03w 10-07-20 09:07:58 GMT  EAGLE5 42.0.0
ACTID      ACTION   PCA           RI  SSN  MRNSET  MAPSET
-----------------------------------------------------------------------
action3    dup      006-001-002   gt  ---  1       -----  
CDGTMODID = ---------  CGGTMODID = ---------  
USEICMSG = off     CGPCOGMSG = dflt       CGPCA = ---

GTT-ACT  table is (3 of 2000) 1% full.
```

If the `rtrv-gttact` output shows any entries that reference the MRN’s point code and non-default MRN set ID, performing the *Changing a GTT Action* procedure to change the MRN set that is referenced in the GTT action to reference another MRN set or to reference no MRN set.

Repeat this step for other entries shown in the `rtrv-gttact` output that contain the MRN’s point code and non-default MRN set ID.

11. Remove the mated relay node from the MRN group or MRN set using the `dlt-mrn` command with a point code from the `rtrv-mrn` command output shown in *Step 1*. For this example, enter this command.

```
Note: If the MRNSET column is shown in the `rtrv-mrn` output in *Step 1*, then the `mrnset` parameter must be specified with the `dlt-mrn` command. The `mrnset` parameter value must be
```
the MRN set ID containing the point code specified in this step. If the MRNSET column is not shown in the rtrv-mrn output in Step 1, the mrnset parameter cannot be specified with the dlt-mrn command.

For this example, enter this command.

dlt-mrn:pca=006-001-002:mrnset=1

Note: If the entire MRN group or MRN set is not being removed in this step, the MRN group or MRN set must contain at least two entries after this step is performed.

This message should appear.

```
rlghncxa03w 07-05-07 11:48:16 GMT  EAGLE5 37.0.0
DLT-MRN:  MASP A - COMPLTD
```

Note: If the MRNSET column is not shown in Step 1 and an entire MRN group is being removed from the database, enter the dlt-mrn command with the point code and the all=yes parameter. For this example, enter the dlt-mrn:pca=006-001-002:all=yes command.

Note: If the MRNSET column is shown in Step 1 and an entire MRN set is being removed from the database, enter the dlt-mrn command with the point code, the mrnset parameter value containing a point code in the MRN set, and the all=yes parameter. For this example, enter the dlt-mrn:pca=006-001-002:mrnset=1:all=yes command. If the mrnset=dflt and all=yes parameters are specified with the dlt-mrn command, only the MRN group containing the point code value specified in the dlt-mrn command is removed from the default MRN set.

Note: If weight and in-service threshold values are assigned to a load shared or combined dominant/load shared MRN group or MRN set, and if by removing entries from this MRN group or MRN set, the MRN group or MRN set becomes a dominant MRN group or MRN set, all weight and threshold values are removed from the remaining entries in the MRN group or MRN set.

12. Verify the changes using the rtrv-mrn command with the point code specified in Step 2 or Step 11.

If the mrnset parameter was specified in Step 11, the mrnset parameter and the mrnset parameter value specified in Step 11 must be specified in this step. For this example, enter this command.

```
rtrv-mrn:pca=006-001-002:mrnset=1
```

This message should appear.

```
E4483 Cmd Rej: PC does not exist in specified MRNSET
```

Note: When an entire MRN group is removed from the default MRN set, this message, E4483, will appear when the rtrv-mrn command is specified with the mrnset=dflt and the point code value specified in Step 11.
If an entire MRN set was removed in *Step 11*, the following message appears when this step is performed.

E4480 Cmd Rej: Specified MRNSET does not exist

If the Flexible GTT Load Sharing feature is not enabled, the `mrnset` parameter cannot be specified with the `rtrv-mrn` command. When this step is performed (without the Flexible GTT Load Sharing feature enabled and without the `mrnset` parameter), the following message appears.

E2849 Cmd Rej: PC must already exist in the MRN table

If the MAP set was removed from the MRN set in *Step 2*, enter the `rtrv-mrn` command with the `mrnset` and point code parameters and values specified in *Step 2*. For this example, enter this command.

```
rtrv-mrn:mrnset=1:pca=005-005-005
```

This is an example of the possible output.

```
rlghncxa03w 09-02-07 00:34:31 GMT EAGLE5 40.1.0

<table>
<thead>
<tr>
<th>MRNSET</th>
<th>MAPSET</th>
<th>MAPPC</th>
<th>MAPSSN</th>
<th>PC</th>
<th>RC</th>
<th>WT</th>
<th>%WT</th>
<th>THR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-----</td>
<td>------</td>
<td>------</td>
<td>005-005-005</td>
<td>10</td>
<td>10</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>
| 006-001-001 | 10 | 10 | 4 | 1
| 006-001-002 | 10 | 30 | 12 | 1
| 006-001-003 | 10 | 40 | 15 | 1
| 006-001-005 | 10 | 40 | 15 | 1
| 006-001-006 | 10 | 40 | 15 | 1
| 006-001-007 | 10 | 40 | 15 | 1
| 006-001-004 | 10 | 50 | 19 | 1
| 006-001-008 | 20 | 20 | 25 | 1
| 006-001-009 | 20 | 30 | 37 | 1
| 006-001-010 | 20 | 30 | 37 | 1
```

MRN table is (16 of 5990) 1% full

13. Backup the new changes using the `chg-db:action=backup:dest=fixed` command.

These messages should appear, the active Maintenance and Administration Subsystem Processor (MASP) appears first.

```
BACKUP (FIXED) : MASP A - Backup starts on active MASP.
BACKUP (FIXED) : MASP A - Backup on active MASP to fixed disk complete.
BACKUP (FIXED) : MASP A - Backup starts on standby MASP.
BACKUP (FIXED) : MASP A - Backup on standby MASP to fixed disk complete.
```

Changing the Relative Cost Values of MRN Entries

This procedure is used to change the relative cost attributes of entries in an existing Mated Relay Node (MRN) group or MRN set using `rc/rc1/rc2/rc3/rc4` parameters of the `chg-mrn` command.

The `chg-mrn` command can also be used to add point code entries to an existing MRN group or MRN set. This action is not covered in this procedure. If you wish to add point code entries to an existing MRN group or MRN set, perform *Provisioning MRN Entries*.
If you wish to assign the same weight and threshold value to all the MRN entries in the MRN group or MRN set with the eswt and thr parameters, or to remove the weight and threshold values from all the MRN entries in the MRN group or MRN set with the eswt=none parameter, perform *Changing MRN Entries with the ESWT Parameter*. The eswt and thr parameters cannot be used in this procedure.

If you wish to change individual weight values for MRN entries with the wt/wt1/wt2/wt3/wt4 parameters, the weight values for an RC group with the grpwt parameter, the threshold values for an MRN group or MRN set with the thr parameter, or the relative cost and weight values for an MRN group or MRN set with the force=yes parameter, perform *Changing the Weight and Threshold Values of MRN Entries*. The wt/wt1/wt2/wt3/wt4, grpwt, thr, and force=yes parameters cannot be used in this procedure.

If you wish to change the MAP set, MAP point code, and MAP SSN values assigned to an MRN set, using the mapset,mappc/mappca/mappci/mappcn/mappcn24, and mapssn parameters, perform *Changing the MAPSET, MAP Point Code, and MAP SSN Values of MRN Entries*. The mapset, mappc/mappca/mappci/mappcn/mappcn24, and mapssn parameters cannot be used in this procedure.

An MRN group or MRN set contains alternate point codes, up to 32, that are used for load sharing between multiple nodes when the EAGLE 5 ISS is performing intermediate global title translation. This load sharing is performed after intermediate global title translation is performed on the message. The point code in the message is changed to the selected point code in the MRN table. If the translated point code is not found in the MRN table, the translated point code in the message is not changed, the message is routed using route for the translated point code.

These parameters are used with the chg-mrn command in this procedure.

:pc/pca/pci/pcn/pcn24 – The point code in the message after intermediate global title translation has been performed.
:rc – The relative cost value of point code in the message
:pc1/pca1/pci1/pcn1/pcn241 – The first alternate point code value
:rc1 – The relative cost value of the first alternate point code
:pc2/pca2/pci2/pcn2/pcn242 – The second alternate point code value
:rc2 – The relative cost value of the second alternate point code
:rc3 – The relative cost value of the third alternate point code
:pc4/pca4/pci4/pcn4/pcn244 – The fourth alternate point code value
:rc4 – The relative cost value of the fourth alternate point code

Note: Refer to Chapter 2, Configuring Destination Tables in the *Database Administration Manual - Global Title Translation* for a definition of the point code types that are used on the EAGLE 5 ISS and for a definition of the different formats that can be used for ITU national point codes.

:mrnset – The MRN set ID that the MRN is assigned to, shown in the rtrv-mrn output. MRN set IDs are shown only if the Flexible GTT Load Sharing feature is enabled. The mrnset parameter value cannot be changed in this procedure. For more information on the Flexible GTT Load Sharing feature, refer to *Flexible GTT Load Sharing*.

The relative cost parameter values (rc/rc1/rc2/rc3/rc4) determine how the global title translation load is to be shared among the alternate point codes. There are three types of load sharing that can be performed: dominant, load shared, or combined dominant/load shared.
All the point codes in a dominant MRN group or MRN set have different relative cost values. The translated point code in the message is the preferred point code that the message is routed on. The relative cost value assigned to the preferred point code does not have to be the lowest value in the MRN group or MRN set. All traffic is routed to the preferred point code, if it is available. If the preferred point code becomes unavailable, the traffic is routed to highest priority alternate point code that is available. When the preferred point code becomes available again, the traffic is then routed back to the preferred point code. For example, the MRN table contains the following entries.

<table>
<thead>
<tr>
<th>PC</th>
<th>RC</th>
</tr>
</thead>
<tbody>
<tr>
<td>005-005-005</td>
<td>10</td>
</tr>
<tr>
<td>006-001-001</td>
<td>20</td>
</tr>
<tr>
<td>006-001-002</td>
<td>30</td>
</tr>
<tr>
<td>006-001-003</td>
<td>40</td>
</tr>
<tr>
<td>006-001-004</td>
<td>50</td>
</tr>
<tr>
<td>006-001-005</td>
<td>60</td>
</tr>
<tr>
<td>006-001-006</td>
<td>70</td>
</tr>
<tr>
<td>006-001-007</td>
<td>80</td>
</tr>
</tbody>
</table>

If the preferred point code is 006-001-001 and it becomes unavailable, the traffic will be routed to point code 006-001-002.

All the point codes in a load shared MRN group have the same relative cost value. Traffic is shared equally between the point codes in this MRN group.

A combined dominant/load shared MRN group or MRN set is a combination of the dominant and load sharing MRN groups or MRN sets. A combined dominant/load shared MRN group or MRN set must contain a minimum of two entries with the same relative cost value and a minimum of one entry with a different relative cost value. Traffic is routed to the point code or point codes with the lowest relative cost value. If more than one point code has the lowest relative cost value, the traffic is shared between these point codes. If the point code or point codes with the lowest relative cost value become unavailable, traffic is routed to the the point code or point codes with the next higher relative cost value. If more than one point code has this relative cost value, the traffic is shared between these point codes. For example, the MRN table contains the following entries.

<table>
<thead>
<tr>
<th>PC</th>
<th>RC</th>
</tr>
</thead>
<tbody>
<tr>
<td>005-005-005</td>
<td>10</td>
</tr>
<tr>
<td>006-001-001</td>
<td>10</td>
</tr>
<tr>
<td>006-001-002</td>
<td>10</td>
</tr>
<tr>
<td>006-001-003</td>
<td>20</td>
</tr>
<tr>
<td>006-001-004</td>
<td>20</td>
</tr>
<tr>
<td>006-001-005</td>
<td>20</td>
</tr>
<tr>
<td>006-001-006</td>
<td>20</td>
</tr>
<tr>
<td>006-001-007</td>
<td>20</td>
</tr>
</tbody>
</table>

If the preferred point code is 006-001-001, the traffic is shared equally between point codes 005-005-005, 006-001-001, and 006-001-002. If point codes 005-005-005, 006-001-001, and 006-001-002 become unavailable, the traffic will be shared equally between point codes, 006-001-003, 006-001-004, 006-001-005, 006-001-006, and 006-001-007.

Canceling the RTRV-MRN Command

Because the *rtrv-mrn* command used in this procedure can output information for a long period of time, the *rtrv-mrn* command can be canceled and the output to the terminal stopped. There are three ways that the *rtrv-mrn* command can be canceled.

- Press the F9 function key on the keyboard at the terminal where the *rtrv-mrn* command was entered.
Enter the `canc-cmd` without the `trm` parameter at the terminal where the `rtrv-mrn` command was entered.

Enter the `canc-cmd:trm=<xx>` where `<xx>` is the terminal where the `rtrv-mrn` command was entered, from another terminal other than the terminal where the `rtrv-mrn` command was entered. To enter the `canc-cmd:trm=<xx>` command, the terminal must allow Security Administration commands to be entered from it and the user must be allowed to enter Security Administration commands. The terminal’s permissions can be verified with the `rtrv-secu-trm` command. The user’s permissions can be verified with the `rtrv-user` or `rtrv-secu-user` commands.

For more information about the `canc-cmd` command, refer to the _Commands Manual_.

1. Display the mated relay node groups in the database using the `rtrv-mrn` command. This is an example of the possible output.

```
rlghncxa03w 07-05-07 00:34:31 GMT EAGLE5 37.0.0

PC     RC
005-005-005 10
006-001-001 20
006-001-002 30
006-001-003 40
006-001-004 50
006-001-005 60
006-001-006 70
006-001-007 80

PC     RC
007-007-007 10
008-001-001 20
008-001-002 30
008-001-003 40
008-001-004 50
008-001-005 60
008-001-006 70
008-001-007 80

MRN table is (15 of 5990) 1% full
```

If the Flexible GTT Load Sharing feature is enabled, this is an example of the possible output.

```
MRNSET    PC     RC
DFLT      005-005-005 10
          006-001-001 20
          006-001-002 30
          006-001-003 40
          006-001-004 50
          006-001-005 60
          006-001-006 70
          006-001-007 80

MRNSET    PC     RC
1         007-007-007 10
          008-001-001 20
          008-001-002 30
          008-001-003 40
          008-001-004 50
          008-001-005 60
          008-001-006 70
```
If the Weighted GTT Load Sharing feature is enabled and turned on, and the Flexible GTT Load Sharing feature is not enabled, this is an example of the possible output.

rlghncxa03w 07-05-07 00:34:31 GMT EAGLE5 37.0.0

<table>
<thead>
<tr>
<th>PC</th>
<th>RC</th>
<th>WT</th>
<th>%WT</th>
<th>THR</th>
</tr>
</thead>
<tbody>
<tr>
<td>005-005-005</td>
<td>10</td>
<td>10</td>
<td>50</td>
<td>30</td>
</tr>
<tr>
<td>006-001-001</td>
<td>10</td>
<td>10</td>
<td>50</td>
<td>30</td>
</tr>
<tr>
<td>006-001-002</td>
<td>30</td>
<td>20</td>
<td>100</td>
<td>30</td>
</tr>
<tr>
<td>006-001-003</td>
<td>40</td>
<td>20</td>
<td>100</td>
<td>30</td>
</tr>
<tr>
<td>006-001-004</td>
<td>50</td>
<td>20</td>
<td>100</td>
<td>30</td>
</tr>
</tbody>
</table>

If the Weighted GTT Load Sharing feature is enabled and turned on, and the Flexible GTT Load Sharing feature is enabled, this is an example of the possible output.

rlghncxa03w 07-05-07 00:34:31 GMT EAGLE5 37.0.0

<table>
<thead>
<tr>
<th>MRNSET</th>
<th>PC</th>
<th>RC</th>
<th>WT</th>
<th>%WT</th>
<th>THR</th>
</tr>
</thead>
<tbody>
<tr>
<td>DFLT</td>
<td>005-005-005</td>
<td>10</td>
<td>10</td>
<td>50</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>006-001-001</td>
<td>10</td>
<td>10</td>
<td>50</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>006-001-002</td>
<td>30</td>
<td>20</td>
<td>100</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>006-001-003</td>
<td>40</td>
<td>20</td>
<td>100</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>006-001-004</td>
<td>50</td>
<td>20</td>
<td>100</td>
<td>30</td>
</tr>
</tbody>
</table>

2. Change the RC values in the MRN group or MRN set by entering the chg-mrn command with the point code parameters and their corresponding RC parameters rc, rc1, rc2, rc3, and rc4 parameters.

If only one RC value is being changed, specify the point code value with the pc/pca/pci/pcn/pcn24 parameter and specify the new RC value with the rc parameter. For example, enter this command to change the RC value of the point code 005-005-005 from 10 to 45.

chg-mrn:pc=005-005-005:rc=45

More than one RC value in the MRN group or MRN set can be changed with the chg-mrn command.

To change more than one RC value, specify the first point code value with the pc/pca/pci/pcn/pcn24 parameter and the other point code values with the appropriate alternate
point code parameters. The new RC values are specified with the \texttt{rc} parameters that correspond to the point code parameters. For example, enter this command to change some of the RC values in the MRN group containing these point codes: 005-005-005, 006-001-001, 006-001-003, 006-001-004, and 006-001-007.

If the MRNSET column is shown in the \texttt{rtrv-mrn} output in step 1, the \texttt{mrnset=<MRN Set ID>} parameter, specifying the MRN set containing the point code specified in this step, must be specified with the \texttt{chg-mrn} command. To change the RC values in an MRN set, for this example enter these commands.

\texttt{chg-mrn:pca=005-005-005:rc=45:mrnset=dflt}

\textbf{Note:} If the RC values are changed so that the resulting MRN group of MRN set becomes a dominant MRN group or MRN set (the RC values are unique), and the MRN group of MRN set had weight and in-service thresholds assigned, the weight and in-service threshold values will be removed from the MRN group of MRN set.

When the \texttt{chg-mrn} command has successfully completed, this message should appear.

\begin{verbatim}
rlghncxa03w 07-05-07 11:44:13 GMT EAGLE5 37.0.0
CHG-MRN: MASP A - COMPLTD
\end{verbatim}

Repeat this step to change other entries in the MRN group or MRN set.

3. Verify the changes using the \texttt{rtrv-mrn} command with the point code (\texttt{pca/pci/pcn/pcn24} parameters) specified in step 2. If the \texttt{mrnset} parameter was specified in step 2, the \texttt{mrnset} parameter and value specified in step 2 must be specified with the \texttt{rtrv-mrn} command in this step.

For this example, enter these commands.

\texttt{rtrv-mrn:pca=005-005-005}

This is an example of the possible output.

\begin{verbatim}
rlghncxa03w 07-05-07 00:34:31 GMT EAGLE5 37.0.0
PC RC
006-001-001 20
006-001-002 30
006-001-003 40
005-005-005 45
006-001-004 50
006-001-005 60
006-001-006 70
006-001-007 80
MRN table is (15 of 2990) 1% full
\end{verbatim}

\texttt{rtrv-mrn:pca=007-007-007}

This is an example of the possible output.

\begin{verbatim}
rlghncxa03w 07-05-07 00:34:31 GMT EAGLE5 37.0.0
\end{verbatim}
If the Flexible GTT Load Sharing feature is enabled for this example, enter these commands:

```
rtrv-mrn:pca=005-005-005:mrnset=dflt
```

This is an example of the possible output.

```
rlghncxa03w 07-05-07 00:34:31 GMT EAGLE5 37.0.0
MRNSET PC RC
DFLT 006-001-001 20
      006-001-002 30
      006-001-003 40
      005-005-005 45
      006-001-004 50
      006-001-005 60
      006-001-006 70
      006-001-007 80
MRN table is (15 of 5990) 1% full
```

If the Weighted GTT Load Sharing feature is enabled and turned on, and the Flexible GTT Load Sharing feature is not enabled for this example, enter these commands:

```
rtrv-mrn:pca=005-005-005
```

This is an example of the possible output.

```
rlghncxa03w 07-05-07 00:34:31 GMT EAGLE5 37.0.0
MRNSET PC RC WT %WT THR
  1 007-007-007 5 10 -- -- --
      008-001-003 10 15 -- -- --
      008-001-004 15 30 -- -- --
      008-001-002 30 45 -- -- --
      008-001-006 45 60 -- -- --
      008-001-005 60 80 -- -- --
MRN table is (15 of 5990) 1% full
```

If the Weighted GTT Load Sharing feature is enabled and turned on, and the Flexible GTT Load Sharing feature is not enabled for this example, enter these commands:

```
rtrv-mrn:pca=005-005-005
```

This is an example of the possible output.

```
rlghncxa03w 07-05-07 00:34:31 GMT EAGLE5 37.0.0
PC RC WT %WT THR
  006-001-001 10 -- -- --
  006-001-002 30 -- -- --
  006-001-003 40 -- -- --
```
If the Weighted GTT Load Sharing feature is enabled and turned on, and the Flexible GTT Load Sharing feature is enabled for this example, enter these commands.

This is an example of the possible output.

```
4. Backup the new changes using the `chg-db:action=backup:dest=fixed` command. These messages should appear, the active Maintenance and Administration Subsystem Processor (MASP) appears first.

```

```
Changing MRN Entries with the ESWT Parameter

This procedure is used to change the weight values of all the entries in an existing Mated Relay Node (MRN) group or MRN set using the `eswt` parameter of the `chg-mrn` command.

```

```
The chg-mrn command can also be used to add point code entries to an existing MRN group or MRN set. This action is not covered in this procedure. If you wish to add point code entries to an existing MRN group or MRN set, perform Provisioning MRN Entries.

If the MRN entries being changed do not have weight and threshold values assigned to them, perform Changing the Relative Cost Values of MRN Entries.

If you wish to change individual weight values for MRN entries with the wt/wt1/wt2/wt3/wt4 parameters, the weight values for an RC group with the grpwt parameter, the threshold values for an MRN group or MRN set with the thr parameter, or the relative cost and weight values for an MRN group or MRN set with the force=yes parameter, perform Changing the Weight and Threshold Values of MRN Entries. The wt/wt1/wt2/wt3/wt4, grpwt, thr, and force=yes parameters cannot be used in this procedure.

If you wish to change the MAP set, MAP point code, and MAP SSN values assigned to an MRN set, using the mapset, mappc/mappca/mappci/mappcn/mappcn24, and mapssn parameters, perform Changing the MAPSET, MAP Point Code, and MAP SSN Values of MRN Entries. The mapset, mappc/mappca/mappci/mappcn/mappcn24, and mapssn parameters cannot be used in this procedure.

An MRN group or MRN set contains alternate point codes, up to 32, that are used for load sharing between multiple nodes when the EAGLE 5 ISS is performing intermediate global title translation. This load sharing is performed after intermediate global title translation is performed on the message. The point code in the message is changed to the selected point code in the MRN table. If the translated point code is not found in the MRN table, the translated point code in the message is not changed, the message is routed using route for the translated point code.

These parameters are used with the chg-mrn command in this procedure.

:pc/pca/pci/pcn/pcn24 – The point code in the message after intermediate global title translation has been performed.
:rc – The relative cost value of point code in the message
:pc1/pca1/pci1/pcn1/pcn241 – The first alternate point code value
:rc1 – The relative cost value of the first alternate point code
:pc2/pca2/pci2/pcn2/pcn242 – The second alternate point code value
:rc2 – The relative cost value of the second alternate point code
:rc3 – The relative cost value of the third alternate point code
:pc4/pca4/pci4/pcn4/pcn244 – The fourth alternate point code value
:rc4 – The relative cost value of the fourth alternate point code

Note: Refer to Chapter 2, Configuring Destination Tables in the Database Administration Manual - SS7 for a definition of the point code types that are used on the EAGLE 5 ISS and for a definition of the different formats that can be used for ITU national point codes.

:mrnset – The MRN set ID that the MRN is assigned to, shown in the rtrv-mrn output. MRN set IDs are shown only if the Flexible GTT Load Sharing feature is enabled. The mrnset parameter value cannot be changed in this procedure. For more information on the Flexible GTT Load Sharing feature, refer to Flexible GTT Load Sharing.
:eswt – The entity set weight value. When this parameter is specified, the same weight value is assigned to all entries in the MRN group or MRN set that contain the point code value specified in the chg-mrn command. A MRN group or MRN set can also be referred to as an entity set. The value of this parameter is from 1 - 99.

:thr – The in-service threshold assigned to the MRN group or MRN set. The in-service threshold is the minimum percentage (from 1 - 100) of weight that must be available for an RC group (a group of entries in the MRN group or MRN set that have the same RC value assigned) to be considered available to carry traffic. If the percentage of the available weight is less than the in-service threshold, then the entire RC group is considered unavailable for traffic. If the percentage of the available weight is equal to or greater than the in-service threshold, then the RC group is considered available, and traffic can be sent to any available entity in the RC group. When the thr parameter is specified with the eswt parameter in this procedure, the in-service threshold value is assigned to all the entries of the MRN group or MRN set.

The relative cost parameter values (rc/rc1/rc2/rc3/rc4) determine how the global title translation load is to be shared among the alternate point codes. There are three types of load sharing that can be performed: dominant, load shared, or combined dominant/load shared.

All the point codes in a dominant MRN group or MRN set have different relative cost values. The translated point code in the message is the preferred point code that the message is routed on. The relative cost value assigned to the preferred point code does not have to be the lowest value in the MRN group or MRN set. All traffic is routed to the preferred point code, if it is available. If the preferred point code becomes unavailable, the traffic is routed to highest priority alternate point code that is available. When the preferred point code becomes available again, the traffic is then routed back to the preferred point code. For example, the MRN table contains the following entries.

<table>
<thead>
<tr>
<th>PC</th>
<th>RC</th>
</tr>
</thead>
<tbody>
<tr>
<td>005-005-005</td>
<td>10</td>
</tr>
<tr>
<td>006-001-001</td>
<td>20</td>
</tr>
<tr>
<td>006-001-002</td>
<td>30</td>
</tr>
<tr>
<td>006-001-003</td>
<td>40</td>
</tr>
<tr>
<td>006-001-004</td>
<td>50</td>
</tr>
<tr>
<td>006-001-005</td>
<td>60</td>
</tr>
<tr>
<td>006-001-006</td>
<td>70</td>
</tr>
<tr>
<td>006-001-007</td>
<td>80</td>
</tr>
</tbody>
</table>

If the preferred point code is 006-001-001 and it becomes unavailable, the traffic will be routed to point code 006-001-002.

All the point codes in a load shared MRN group have the same relative cost value. Traffic is shared equally between the point codes in this MRN group.

A combined dominant/load shared MRN group or MRN set is a combination of the dominant and load sharing MRN groups or MRN sets. A combined dominant/load shared MRN group or MRN set must contain a minimum of two entries with the same relative cost value and a minimum of one entry with a different relative cost value. Traffic is routed to the point code or point codes with the lowest relative cost value. If more than one point code has the lowest relative cost value, the traffic is shared between these point codes. If the point code or point codes with the lowest relative cost value become unavailable, traffic is routed to the the point code or point codes with the next higher relative cost value. If more than one point code has this relative cost value, the traffic is shared between these point codes. For example, the MRN table contains the following entries.

<table>
<thead>
<tr>
<th>PC</th>
<th>RC</th>
</tr>
</thead>
<tbody>
<tr>
<td>005-005-005</td>
<td>10</td>
</tr>
<tr>
<td>006-001-001</td>
<td>10</td>
</tr>
<tr>
<td>006-001-002</td>
<td>10</td>
</tr>
</tbody>
</table>
If the preferred point code is 006-001-001, the traffic is shared equally between point codes 005-005-005, 006-001-001, and 006-001-002. If point codes 005-005-005, 006-001-001, and 006-001-002 become unavailable, the traffic will be shared equally between point codes, 006-001-003, 006-001-004, 006-001-005, 006-001-006, and 006-001-007.

The eswt and thr parameters can be used only:

- If the MRN group or MRN set is either a load shared or combined dominant/load shared MRN group or MRN set.
- If the Weighted GTT Load Sharing feature is enabled and turned on.

The status of the Weighted GTT Load Sharing feature can be verified by entering the rtrv-ctrl-feat command. If the Weighted GTT Load Sharing feature is not enabled or not turned on, perform Activating the Weighted GTT Load Sharing Feature to enable and turn on the Weighted GTT Load Sharing feature.

The eswt parameter assigns same weight value to all the entries in the MRN group or MRN set that contains the point code value specified in the chg-mrn command.

The eswt and thr parameters can be specified with the chg-mrn command only with the pc/pca/pci/pcn/pcn24 parameter and without the alternate point code, relative cost (rc, rcl, rc2, rc3, rc4), group weight (grpwt), and individual weight (wt, wt1, wt2, wt3, wt4) parameters.

The weight values assigned to the entries in the MRN group or MRN set are shown in the WT column in the rtrv-mrn output.

The in-service threshold values assigned to the entries in the MRN group or MRN set are shown in the THR column in the rtrv-mrn output.

The %WT column in the rtrv-mrn output shows the percentage of the traffic the particular entry in the entity set will handle.

The WT, %WT, and THR columns are shown in the rtrv-mrn output only if the Weighted GTT Load Sharing feature is enabled and turned on.

For more information on the Weighted GTT Load Sharing feature, refer to Weighted GTT Load Sharing.

**Canceling the RTRV-MRN Command**

Because the rtrv-mrn command used in this procedure can output information for a long period of time, the rtrv-mrn command can be canceled and the output to the terminal stopped. There are three ways that the rtrv-mrn command can be canceled.

- Press the F9 function key on the keyboard at the terminal where the rtrv-mrn command was entered.
- Enter the canc-cmd without the trm parameter at the terminal where the rtrv-mrn command was entered.
- Enter the canc-cmd:trm=<xx>, where <xx> is the terminal where the rtrv-mrn command was entered, from another terminal other that the terminal where the rtrv-mrn command was entered. To enter the canc-cmd:trm=<xx> command, the terminal must allow Security Administration commands to be entered from it and the user must be allowed to enter Security Administration commands. The terminal’s permissions can be verified with the rtrv-secu-trm command. The user’s permissions can be verified with the rtrv-user or rtrv-secu-user commands.
For more information about the `canc-cmd` command, refer to the *Commands Manual*.

1. Display the mated relay node groups in the database using the `rtrv-mrn` command. This is an example of the possible output.

```
rlghncxa03w 06-10-07 00:34:31 GMT EAGLE5 36.0.0

PC RC
005-005-005 10
006-001-001 20
006-001-002 30
006-001-003 40
006-001-004 50
006-001-005 60
006-001-006 70
006-001-007 80

PC RC
007-007-007 10
008-001-001 20
008-001-002 30
008-001-003 40
008-001-004 50
008-001-005 60
008-001-006 70

MRN table is (15 of 5990) 1% full
```

If the Flexible GTT Load Sharing feature is enabled, this is an example of the possible output.

```
MRNSET PC RC
DFLT 007-007-007 10
 008-001-001 20
 008-001-002 30
 008-001-003 40
 008-001-004 50
 008-001-005 60
 008-001-006 70

MRNSET PC RC
1 005-005-005 10
 006-001-001 20
 006-001-002 30
 006-001-003 40
 006-001-004 50
 006-001-005 60
 006-001-006 70
 006-001-007 80

MRN table is (15 of 5990) 1% full
```

If the Weighted GTT Load Sharing feature is enabled and turned on, and the Flexible GTT Load Sharing feature is not enabled, this is an example of the possible output.

```
rlghncxa03w 06-10-07 00:34:31 GMT EAGLE5 36.0.0

PC RC WT %WT THR
008-005-005 10 10 50 30
008-001-001 10 10 50 30
008-001-002 30 20 100 30
008-001-003 40 20 100 30
008-001-004 50 20 100 30
```
If the Weighted GTT Load Sharing feature is enabled and turned on, and the Flexible GTT Load Sharing feature is enabled, this is an example of the possible output.

If you wish to assign weight and in-service threshold values to the MRN entries in the MRN group or MRN set, and the WT, %WT, and THR columns are shown in the `rtrv-mrn` output in step 1, then the Weighted GTT Load Sharing feature is enabled and turned on. Go to step 3.

**Note:** If weight and threshold values are assigned to the MRN group or MRN set, skip this step and go to step 3.

**Note:** If weight and threshold values are assigned to the MRN group or MRN set, and the weight and threshold values are being removed from the MRN group or MRN set, skip steps 2 and 3 and go to step 4.

If the WT, %WT, and THR columns are not shown in the `rtrv-mrn` output in step 1, perform Activating the Weighted GTT Load Sharing Feature to enable and turn on the Weighted GTT Load Sharing feature. After the Weighted GTT Load Sharing feature is enabled and turned on, go to step 3.

To assign weight and in-service threshold values to a dominant MRN group or MRN set, the dominant MRN group or MRN set must be changed to either a load shared or combined dominant/load shared MRN group or MRN set.
Note: If existing MRN group or MRN set that the weight and in-service threshold values are being assigned to is a load shared or combined dominant/load shared MRN group or MRN set, skip step 3 and go to step 4.

If you wish to change the dominant MRN group or MRN set to a load shared or combined dominant/load shared MRN group or MRN set by adding additional entries to the MRN group or MRN set, perform Provisioning MRN Entries.

To change the dominant MRN group or MRN set to a load shared or combined dominant/load shared MRN group or MRN set without adding any additional entries to the MRN group or MRN set, enter the chg-mrn command specifying the point codes in the MRN group or MRN set with the point codes corresponding RC parameters with the new RC values.

To create a load shared MRN group or MRN set, the new RC values for all the entries in the MRN group or MRN set must be equal.

To create a combined dominant/load shared MRN group or MRN set, a minimum of two the new RC values must be equal and a minimum of one other RC value must be different.

If the MRNSET column is not shown in the rtrv-mrn output in step 1, the mrnset parameter cannot be specified with the chg-mrn command.

For this example, enter this command.

```
```

If the MRNSET column is shown in the rtrv-mrn output in step 1, the mrnset=<MRN Set ID> parameter, specifying the MRN set containing the point code specified in this step, must be specified with the chg-mrn command. To change the RC values in an MRN set, for this example enter this command.

```
```

This step must be repeated until the RC values for all the entries in the MRN group or MRN set have been changed.

After this step is performed, skip steps 4, 5, and 6, and go to step 7.

4. Change the weight and in-service threshold values of the load shared or combined dominant/load shared MRN group or MRN set.

Enter the chg-mrn command with the eswt and thr parameters to make these changes:

- Assign weight and threshold values to a non-weighted MRN group or MRN set.
- Change the existing weight values of a weighted MRN group or MRN set to the same weight value. The threshold can also be changed.

The eswt parameter assigns the same weight value to all the entries in the MRN group or MRN set. The thr parameter assigns the same threshold value to all the entries in the MRN group or MRN set.

If you wish to remove all the weight and threshold values from the MRN group or MRN set, enter the chg-mrn command with the eswt=none parameter. The thr parameter cannot be specified with the eswt=none parameter.

For this example, enter one of these commands.
To assign only weight values to all entries in the MRN group without the Flexible GTT Load Sharing feature enabled, enter this command.

\texttt{chg-mrn:pca=007-007-007:eswt=30}

To change the weight and in-service threshold values of all the entries in the MRN group without the Flexible GTT Load Sharing feature enabled, enter this command.

\texttt{chg-mrn:pca=007-007-007:eswt=20:thr=30}

To change only weight values of all the entries in the MRN set with the Flexible GTT Load Sharing feature enabled, enter this command.

\texttt{chg-mrn:pca=007-007-007:eswt=30:mrnset=dflt}

To change the weight and in-service threshold values of all the entries in the MRN set with the Flexible GTT Load Sharing feature enabled, enter this command.

\texttt{chg-mrn:pca=007-007-007:eswt=20:thr=30:mrnset=dflt}

To remove the weight and in-service threshold values from all the entries in the MRN set without the Flexible GTT Load Sharing feature enabled, enter this command.

\texttt{chg-mrn:pca=007-007-007:eswt=none}

To remove the weight and in-service threshold values from all the entries in the MRN set with the Flexible GTT Load Sharing feature enabled, enter this command.

\texttt{chg-mrn:pca=007-007-007:eswt=none:mrnset=dflt}

If the MRN group or MRN set did not have weight and in-service threshold values assigned before this step was performed, and the \texttt{thr} parameter is not specified in this step, the in-service threshold value 1 (1%) is assigned to the entries.

When the \texttt{chg-mrn} command has successfully completed, this message should appear.

\begin{verbatim}
rlghncxa03w 06-10-07 11:44:13 GMT EAGLE5 36.0.0
CHG-MRN: MASP A - COMPLTD
\end{verbatim}

5. Verify the changes using the \texttt{rtrv-mrn} command with the point code (\texttt{pca/pci/pcn/pcn24} parameters) specified in step 4. If the \texttt{mrnset} parameter was specified in step 4, the \texttt{mrnset} parameter and value specified in step 4 must be specified with the \texttt{rtrv-mrn} command in this step.

For this example, enter these commands.

\texttt{rtrv-mrn:pca=007-007-007}

If only the weight values were changed in step 4, this is an example of the possible output.

\begin{verbatim}
rlghncxa03w 06-10-07 00:34:31 GMT EAGLE5 36.0.0
PC RC WT %WT THR
007-007-007 10 30 14 1
008-001-001 10 30 14 1
008-001-002 10 30 14 1
008-001-003 10 30 14 1
008-001-004 10 30 14 1
008-001-005 10 30 14 1
008-001-006 10 30 14 1
\end{verbatim}
If the weight and in-service threshold values were changed in step 4, this is an example of the possible output.

```
Mrn table is (15 of 5990) 1% full

righncxa03w 06-10-07 00:34:31 GMT EAGLE5 36.0.0

<table>
<thead>
<tr>
<th>PC</th>
<th>RC</th>
<th>WT</th>
<th>%WT</th>
<th>THR</th>
</tr>
</thead>
<tbody>
<tr>
<td>007-007-007</td>
<td>10</td>
<td>20</td>
<td>14</td>
<td>30</td>
</tr>
<tr>
<td>008-001-001</td>
<td>10</td>
<td>20</td>
<td>14</td>
<td>30</td>
</tr>
<tr>
<td>008-001-002</td>
<td>10</td>
<td>20</td>
<td>14</td>
<td>30</td>
</tr>
<tr>
<td>008-001-003</td>
<td>10</td>
<td>20</td>
<td>14</td>
<td>30</td>
</tr>
<tr>
<td>008-001-004</td>
<td>10</td>
<td>20</td>
<td>14</td>
<td>30</td>
</tr>
<tr>
<td>008-001-005</td>
<td>10</td>
<td>20</td>
<td>14</td>
<td>30</td>
</tr>
<tr>
<td>008-001-006</td>
<td>10</td>
<td>20</td>
<td>14</td>
<td>30</td>
</tr>
</tbody>
</table>

Mrn table is (15 of 5990) 1% full

rtrv-mrn:pca=007-007-007:mrnset=dflt

If an MRN set was changed in step 4, this is an example of the possible output.

```
Mrn set is (15 of 5990) 1% full

righncxa03w 06-10-07 00:34:31 GMT EAGLE5 36.0.0

<table>
<thead>
<tr>
<th>MRNSET</th>
<th>PC</th>
<th>RC</th>
<th>WT</th>
<th>%WT</th>
<th>THR</th>
</tr>
</thead>
<tbody>
<tr>
<td>DFLT</td>
<td>007-007-007</td>
<td>10</td>
<td>30</td>
<td>14</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>008-001-001</td>
<td>10</td>
<td>30</td>
<td>14</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>008-001-002</td>
<td>10</td>
<td>30</td>
<td>14</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>008-001-003</td>
<td>10</td>
<td>30</td>
<td>14</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>008-001-004</td>
<td>10</td>
<td>30</td>
<td>14</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>008-001-005</td>
<td>10</td>
<td>30</td>
<td>14</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>008-001-006</td>
<td>10</td>
<td>30</td>
<td>14</td>
<td>1</td>
</tr>
</tbody>
</table>

Mrn table is (15 of 5990) 1% full

If the weight and in-service threshold values were changed in an MRN set in step 4, this is an example of the possible output.

```
Mrn set is (15 of 5990) 1% full

righncxa03w 06-10-07 00:34:31 GMT EAGLE5 36.0.0

<table>
<thead>
<tr>
<th>MRNSET</th>
<th>PC</th>
<th>RC</th>
<th>WT</th>
<th>%WT</th>
<th>THR</th>
</tr>
</thead>
<tbody>
<tr>
<td>DFLT</td>
<td>007-007-007</td>
<td>10</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>008-001-001</td>
<td>10</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>008-001-002</td>
<td>10</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>008-001-003</td>
<td>10</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>008-001-004</td>
<td>10</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>

Mrn table is (15 of 5990) 1% full

If the weight and in-service threshold values were removed in step 4, and the Flexible GTT Load Sharing feature is not enabled, this is an example of the possible output.

```
Mrn set is (15 of 5990) 1% full

righncxa03w 06-10-07 00:34:31 GMT EAGLE5 36.0.0

<table>
<thead>
<tr>
<th>PC</th>
<th>RC</th>
<th>WT</th>
<th>%WT</th>
<th>THR</th>
</tr>
</thead>
<tbody>
<tr>
<td>007-007-007</td>
<td>10</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>008-001-001</td>
<td>10</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>008-001-002</td>
<td>10</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>008-001-003</td>
<td>10</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>008-001-004</td>
<td>10</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>
Changing the Weight and Threshold Values of MRN Entries

This procedure is used to change the weight and threshold values of entries in an existing Mated Relay Node (MRN) group or MRN set to new weight and threshold values. The weight and threshold values are changed using the `chg-mrn` command. This procedure can be performed only on MRN entries that have weight and thresholds assigned.

The following changes can be made in this procedure:

- The individual weight values of the entries in the MRN group or MRN set with the `wt/wt1/wt2/wt3/wt4` parameters.
- The individual weight and relative cost values of the entries in the MRN group or MRN set with the `wt/wt1/wt2/wt3/wt4/rc/rc1/rc2/rc3/rc4`, and `force=yes` parameters.
- The threshold values of the entities in the MRN group or MRN set that have the same relative cost value with the `thr` parameter. The new threshold value is assigned to the entities in the MRN group or MRN set that have the same relative cost value.
- The weight values of the entities in the MRN group or MRN set that have the same relative cost value with the `grpwt` parameter. The new weight value is assigned to the entities in the MRN group or MRN set that have the same relative cost value.

Backup the new changes using the `chg-db:action=backup:dest=fixed` command. These messages should appear, the active Maintenance and Administration Subsystem Processor (MASP) appears first.

```
BACKUP (FIXED) : MASP A - Backup starts on active MASP.
BACKUP (FIXED) : MASP A - Backup on active MASP to fixed disk complete.
BACKUP (FIXED) : MASP A - Backup starts on standby MASP.
BACKUP (FIXED) : MASP A - Backup on standby MASP to fixed disk complete.
```
The threshold and weight values of the entities in the MRN group or MRN set that have the same relative cost value with the \texttt{thr} and \texttt{grpwt} parameters. The new threshold and weight value is assigned to the entities in the MRN group or MRN set that have the same relative cost value.

The \texttt{chg-mrn} command can also be used to add point code entries to an existing MRN group or MRN set. This action is not covered in this procedure. If you wish to add point code entries to an existing MRN group or MRN set, perform \textit{Provisioning MRN Entries}.

If the MRN entries being changed do not have weight and threshold values assigned to them, perform \textit{Changing the Relative Cost Values of MRN Entries}.

If you wish to assign the same weight and threshold value to all the MRN entries in the MRN group or MRN set with the \texttt{eswt} and \texttt{thr} parameters, or to remove the weight and threshold values from all the MRN entries in the MRN group or MRN set with the \texttt{eswt=none} parameter, perform \textit{Changing MRN Entries with the ESWT Parameter}. The \texttt{eswt} parameter cannot be used in this procedure.

If you wish to change the MAP set, MAP point code, and MAP SSN values assigned to an MRN set, using the \texttt{mapset}, \texttt{mappc/mappca/mappci/mappcn/mappcn24}, and \texttt{mapssn} parameters, perform \textit{Changing the MAPSET, MAP Point Code, and MAP SSN Values of MRN Entries}. The \texttt{mapset}, \texttt{mappc/mappca/mappci/mappcn/mappcn24}, and \texttt{mapssn} parameters cannot be used in this procedure.

An MRN group or MRN set contains alternate point codes, up to 32, that are used for load sharing between multiple nodes when the EAGLE 5 ISS is performing intermediate global title translation. This load sharing is performed after intermediate global title translation is performed on the message. The point code in the message is changed to the selected point code in the MRN table. If the translated point code is not found in the MRN table, the translated point code in the message is not changed, the message is routed using route for the translated point code.

The \texttt{chg-mrn} command uses these parameters.

\begin{itemize}
\item \texttt{:pc/pcapci/pcn24} – The point code in the message after intermediate global title translation has been performed.
\item \texttt{:rc} – The relative cost value of point code in the message
\item \texttt{:pc1/pca1/pci1/pcn1/pcn241} – The first alternate point code value
\item \texttt{:rc1} – The relative cost value of the first alternate point code
\item \texttt{:pc2/pca2/pci2/pcn2/pcn242} – The second alternate point code value
\item \texttt{:rc2} – The relative cost value of the second alternate point code
\item \texttt{:pc3/pca3/pci3/pcn3/pcn243} – The third alternate point code value
\item \texttt{:rc3} – The relative cost value of the third alternate point code
\item \texttt{:pc4/pca4/pci4/pcn4/pcn244} – The fourth alternate point code value
\item \texttt{:rc4} – The relative cost value of the fourth alternate point code
\end{itemize}

\textbf{Note:} Refer to Chapter 2, Configuring Destination Tables in the \textit{Database Administration Manual - SS7} for a definition of the point code types that are used on the EAGLE 5 ISS and for a definition of the different formats that can be used for ITU national point codes.

\texttt{:mrnset} – The MRN set ID that the MRN is assigned to, shown in the \texttt{rtrv-mrn} output. MRN set IDs are shown only if the Flexible GTT Load Sharing feature is enabled. The \texttt{mrnset} parameter value cannot be changed in this procedure. For more information on the Flexible GTT Load Sharing feature, refer to \textit{Flexible GTT Load Sharing}.
The group weight value. When this parameter is specified, the same weight value is assigned to all entries that have the same RC (relative cost) value in the MRN group or MRN set that contain the point code specified in the chg-mrn command. The value of this parameter is from 1 - 99.

The weight value assigned to the pc/pca/pci/pcn/pcn24 parameter value. The value of this parameter is from 1 - 99.

The weight value assigned to the pc1/pca1/pci1/pcn1/pcn241 parameter value. The value of this parameter is from 1 - 99.

The weight value assigned to the pc2/pca2/pci2/pcn2/pcn242 parameter value. The value of this parameter is from 1 - 99.


The weight value assigned to the pc4/pca4/pci4/pcn4/pcn244 parameter value.

The in-service threshold assigned to the MRN group or MRN set. The in-service threshold is the minimum percentage (from 1 - 100) of weight that must be available for an RC group (a group of entries in the MRN group or MRN set that have the same RC value assigned) to be considered available to carry traffic. If the percentage of the available weight is less than the in-service threshold, then the entire RC group is considered unavailable for traffic. If the percentage of the available weight is equal to or greater than the in-service threshold, then the RC group is considered available, and traffic can be sent to any available entity in the RC group. The value of the thr parameter is assigned to all entries that have the same RC (relative cost) value in the MRN group or MRN set that contain the point code specified in the chg-mrn command.

This parameter must be specified if the rc/rc1/rc2/rc3/rc4 parameter is specified with the wt/wt1/wt2/wt3/wt4 parameter.

The relative cost parameter values (rc/rc1/rc2/rc3/rc4) determine how the global title translation load is to be shared among the alternate point codes. There are three types of load sharing that can be performed: dominant, load shared, or combined dominant/load shared.

All the point codes in a dominant MRN group or MRN set have different relative cost values. The translated point code in the message is the preferred point code that the message is routed on. The relative cost value assigned to the preferred point code does not have to be the lowest value in the MRN group or MRN set. All traffic is routed to the preferred point code, if it is available. If the preferred point code becomes unavailable, the traffic is routed to highest priority alternate point code that is available. When the preferred point code becomes available again, the traffic is then routed back to the preferred point code. For example, the MRN table contains the following entries.

<table>
<thead>
<tr>
<th>PC</th>
<th>RC</th>
</tr>
</thead>
<tbody>
<tr>
<td>005-005-005</td>
<td>10</td>
</tr>
<tr>
<td>006-001-001</td>
<td>20</td>
</tr>
<tr>
<td>006-001-002</td>
<td>30</td>
</tr>
<tr>
<td>006-001-003</td>
<td>40</td>
</tr>
<tr>
<td>006-001-004</td>
<td>50</td>
</tr>
<tr>
<td>006-001-005</td>
<td>60</td>
</tr>
<tr>
<td>006-001-006</td>
<td>70</td>
</tr>
<tr>
<td>006-001-007</td>
<td>80</td>
</tr>
</tbody>
</table>

If the preferred point code is 006-001-001 and it becomes unavailable, the traffic will be routed to point code 006-001-002.

All the point codes in a load shared MRN group have the same relative cost value. Traffic is shared equally between the point codes in this MRN group.
A combined dominant/load shared MRN group or MRN set is a combination of the dominant and load sharing MRN groups or MRN sets. A combined dominant/load shared MRN group or MRN set must contain a minimum of two entries with the same relative cost value and a minimum of one entry with a different relative cost value. Traffic is routed to the point code or point codes with the lowest relative cost value. If more than one point code has the lowest relative cost value, the traffic is shared between these point codes. If the point code or point codes with the lowest relative cost value become unavailable, traffic is routed to the the point code or point codes with the next higher relative cost value. If more than one point code has this relative cost value, the traffic is shared between these point codes. For example, the MRN table contains the following entries.

<table>
<thead>
<tr>
<th>PC</th>
<th>RC</th>
</tr>
</thead>
<tbody>
<tr>
<td>005-005-005</td>
<td>10</td>
</tr>
<tr>
<td>006-001-001</td>
<td>10</td>
</tr>
<tr>
<td>006-001-002</td>
<td>10</td>
</tr>
<tr>
<td>006-001-003</td>
<td>20</td>
</tr>
<tr>
<td>006-001-004</td>
<td>20</td>
</tr>
<tr>
<td>006-001-005</td>
<td>20</td>
</tr>
<tr>
<td>006-001-006</td>
<td>20</td>
</tr>
<tr>
<td>006-001-007</td>
<td>20</td>
</tr>
</tbody>
</table>

If the preferred point code is 006-001-001, the traffic is shared equally between point codes 005-005-005, 006-001-001, and 006-001-002. If point codes 005-005-005, 006-001-001, and 006-001-002 become unavailable, the traffic will be shared equally between point codes, 006-001-003, 006-001-004, 006-001-005, 006-001-006, and 006-001-007.

Specifying the `grpwt` or `thr` parameter with the `chg-mrn` command can be done when specifying only the `pc`, `pca`, `pci`, `pcn`, or `pcn24` parameter and without the alternate point code, relative cost (`rc`, `rc1`, `rc2`, `rc3`, `rc4`), and individual weight (`wt`, `wt1`, `wt2`, `wt3`, `wt4`) parameters.

The weight values assigned to the entries in the MRN group or MRN set are shown in the WT column in the `rtrv-mrn` output.

The in-service threshold values assigned to the entries in the MRN group or MRN set are shown in the THR column in the `rtrv-mrn` output.

The %WT column in the `rtrv-mrn` output shows the percentage of the traffic the particular entry in the entity set will handle.

The WT, %WT, and THR columns are shown in the `rtrv-mrn` output only if the Weighted GTT Load Sharing feature is enabled and turned on.

For more information on the Weighted GTT Load Sharing feature, refer to Weighted GTT Load Sharing.

### Canceling the `RTRV-MRN` Command

Because the `rtrv-mrn` command used in this procedure can output information for a long period of time, the `rtrv-mrn` command can be canceled and the output to the terminal stopped. There are three ways that the `rtrv-mrn` command can be canceled.

- Press the F9 function key on the keyboard at the terminal where the `rtrv-mrn` command was entered.
- Enter the `canc-cmd` without the `trm` parameter at the terminal where the `rtrv-mrn` command was entered.
- Enter the `canc-cmd:trm=<xx>`, where `<xx>` is the terminal where the `rtrv-mrn` command was entered, from another terminal other that the terminal where the `rtrv-mrn` command was entered.

To enter the `canc-cmd:trm=<xx>` command, the terminal must allow Security Administration commands to be entered from it and the user must be allowed to enter Security Administration commands.
commands. The terminal’s permissions can be verified with the `rtrv-secu-trm` command. The user’s permissions can be verified with the `rtrv-user` or `rtrv-secu-user` commands.

For more information about the `canc-cmd` command, refer to the *Commands Manual*.

1. Display the mated relay node groups in the database using the `rtrv-mrn` command. This is an example of the possible output.

   ```
 rlghncxa03w 06-10-07 00:34:31 GMT EAGLE5 36.0.0
 PC RC WT %WT THR
 008-005-005 10 10 50 30
 008-001-001 10 10 50 30
 008-001-002 30 20 100 30
 008-001-003 40 20 100 30
 008-001-004 50 20 100 30
 PC RC WT %WT THR
 009-005-005 10 10 4 1
 009-001-001 10 10 4 1
 009-001-002 10 30 12 1
 009-001-003 10 40 15 1
 009-001-005 10 40 15 1
 009-001-006 10 40 15 1
 009-001-007 10 40 15 1
 009-001-004 10 50 19 1
 009-001-008 20 20 25 1
 009-001-009 20 30 37 1
 009-001-010 20 30 37 1

 MRN table is (16 of 5990) 1% full

 If the Flexible GTT Load Sharing feature is enabled, this is an example of the possible output.
   ```

   ```
 rlghncxa03w 06-10-07 00:34:31 GMT EAGLE5 36.0.0
 MRNSET PC RC WT %WT THR
 DFLT 005-005-005 10 10 50 30
 006-001-001 10 10 50 30
 006-001-002 30 20 100 30
 006-001-003 40 20 100 30
 006-001-004 50 20 100 30
 MRNSET PC RC WT %WT THR
 1 005-005-005 10 10 4 1
 006-001-001 10 10 4 1
 006-001-002 10 30 12 1
 006-001-003 10 40 15 1
 006-001-005 10 40 15 1
 006-001-006 10 40 15 1
 006-001-007 10 40 15 1
 006-001-004 10 50 19 1
 006-001-008 20 20 25 1
 006-001-009 20 30 37 1
 006-001-010 20 30 37 1

 MRN table is (16 of 5990) 1% full
   ```

2. Change the attributes of the MRN group or MRN set using the `chg-mrn` command in one or more of the following steps.

   To change only the in-service threshold value of the entries in the RC group - perform step 3.
To change the weight values of all entries in an RC group or to change the weight and in-service threshold values of the entries in the RC group - perform step 5.

To change the individual weight values of entries in an MRN group or MRN set - perform step 7.

To change the individual weight values and RC values of entries in an MRN group or MRN set - perform step 9.

3. The in-service threshold value is changed by specifying the **thr** parameter. The **thr** parameter can be specified by itself only if the MRN set or MRN group currently has weight values assigned.

The new **thr** value is assigned to all entries in the MRN group or MRN set that have the same RC value as the specified point code.

For this example, enter one of these commands.

To change the in-service threshold value of all entries in the MRN group that have the same RC value as the point code specified in this step without the Flexible GTT Load Sharing feature enabled, enter this command.

```
chg-mrn:pca=008-001-001:thr=50
```

To change the in-service threshold value of all entries in the MRN set that have the same RC value as the point code specified in this step with the Flexible GTT Load Sharing feature enabled, enter this command.

```
chg-mrn:pca=006-001-001:thr=30:mrnset=1
```

When the **chg-mrn** command has successfully completed, this message should appear.

```
 rlghncxa03w 06-10-07 11:44:13 GMT EAGLE5 36.0.0
 CHG-MRN: MASP A - COMPLTD
```

4. Verify the changes using the **rtrv-mrn** command with the point code (**pca/pci/pcn/pcn24** parameters) specified in step 3. If the **mrnset** parameter was specified in step 3, the **mrnset** parameter and value specified in step 3 must be specified with the **rtrv-mrn** command in this step.

For this example, enter these commands.

```
rtrv-mrn:pca=008-001-001
```

The following example is the configuration of the MRN group before step 3 was performed.

```
 rlghncxa03w 06-10-07 00:34:31 GMT EAGLE5 36.0.0
 PC RC WT %WT THR
 008-005-005 10 10 50 30
 008-001-001 10 10 30 30
 008-001-002 30 20 100 30
 008-001-003 40 20 100 30
 008-001-004 50 20 100 30
 MRN table is (16 of 5990) 1% full
```

This is an example of the possible output after step 3 was performed.

```
 rlghncxa03w 06-10-07 00:34:31 GMT EAGLE5 36.0.0
 PC RC WT %WT THR
 008-005-005 10 10 50 50
 008-001-001 10 10 50 50
```

An RC group is a group of point code entries that have the same RC value. This step is used to change the weight values of all the point codes in an MRN group or MRN set that have the same RC value to the same weight value using the `chg-mrn` command with the `grpwt` parameter.

A load shared MRN group or MRN set can be considered an RC group as all the entries in the group or set have the same RC value, but changing all the weight values in a load shared group or set to the same weight value can be accomplished by using the `eswt` parameter as described in Changing MRN Entries with the ESWT Parameter.

The in-service threshold value of the MRN group or MRN set can be changed by specifying the `thr` parameter with the `chg-mrn` command.
For this example, enter one of these commands.

To change only weight values of all entries in an RC group of the MRN group without the Flexible GTT Load Sharing feature enabled, enter this command.

```
chg-mrn:pca=009-005-005:grpwt=30
```

To change the weight and in-service threshold values of all entries in an RC group of the MRN group without the Flexible GTT Load Sharing feature enabled, enter this command.

```
chg-mrn:pca=009-005-005:grpwt=20:thr=30
```

To change only weight values of all entries in an RC group of the MRN set with the Flexible GTT Load Sharing feature enabled, enter this command.

```
chg-mrn:pca=005-005-005:grpwt=30:mrnset=1
```

To change the weight and in-service threshold values of all entries in an RC group of the MRN set with the Flexible GTT Load Sharing feature enabled, enter this command.

```
chg-mrn:pca=005-005-005:grpwt=20:thr=30:mrnset=1
```

If the MRN group or MRN set did not have weight and in-service threshold values assigned before this step was performed, and the `thr` parameter is not specified in this step, the in-service threshold value 1 (1%) is assigned to the entries.

When the `chg-mrn` command has successfully completed, this message should appear.

```
rlghncxa03w 06-10-07 11:44:13 GMT EAGLE5 36.0.0
CHG-MRN: MASP A - COMPLTD
```

6. Verify the changes using the `rtrv-mrn` command with the point code (`pca/pci/pcn/pcn24` parameters) specified in step 5. If the `mrnset` parameter was specified in step 5, the `mrnset` parameter and value specified in step 5 must be specified with the `rtrv-mrn` command in this step.

For this example, enter these commands.

```
rtrv-mrn:pca=009-005-005
```

The following example is the configuration of the MRN group before step 5 was performed.

```
rlghncxa03w 06-10-07 00:34:31 GMT EAGLE5 36.0.0
PC RC WT %WT THR
009-005-005 10 10 4 1
009-001-001 10 10 4 1
009-001-002 10 30 12 1
009-001-003 10 40 15 1
009-001-005 10 40 15 1
009-001-006 10 40 15 1
009-001-007 10 40 15 1
009-001-004 10 50 19 1
009-001-008 20 20 25 1
009-001-009 20 30 37 1
009-001-010 20 30 37 1
MRN table is (16 of 5990) 1% full
```

This is an example of the possible output after step 5 was performed to change only the weight values.

```
rlghncxa03w 06-10-07 00:34:31 GMT EAGLE5 36.0.0
```
<table>
<thead>
<tr>
<th>PC</th>
<th>RC</th>
<th>WT</th>
<th>%WT</th>
<th>THR</th>
</tr>
</thead>
<tbody>
<tr>
<td>009-005-005</td>
<td>10</td>
<td>30</td>
<td>13</td>
<td>1</td>
</tr>
<tr>
<td>009-001-001</td>
<td>10</td>
<td>30</td>
<td>13</td>
<td>1</td>
</tr>
<tr>
<td>009-001-002</td>
<td>10</td>
<td>30</td>
<td>13</td>
<td>1</td>
</tr>
<tr>
<td>009-001-003</td>
<td>10</td>
<td>30</td>
<td>13</td>
<td>1</td>
</tr>
<tr>
<td>009-001-004</td>
<td>10</td>
<td>30</td>
<td>13</td>
<td>1</td>
</tr>
<tr>
<td>009-001-005</td>
<td>10</td>
<td>30</td>
<td>13</td>
<td>1</td>
</tr>
<tr>
<td>009-001-006</td>
<td>10</td>
<td>30</td>
<td>13</td>
<td>1</td>
</tr>
<tr>
<td>009-001-007</td>
<td>10</td>
<td>30</td>
<td>13</td>
<td>1</td>
</tr>
<tr>
<td>009-001-008</td>
<td>20</td>
<td>20</td>
<td>25</td>
<td>1</td>
</tr>
<tr>
<td>009-001-009</td>
<td>20</td>
<td>30</td>
<td>37</td>
<td>1</td>
</tr>
<tr>
<td>009-001-010</td>
<td>20</td>
<td>30</td>
<td>37</td>
<td>1</td>
</tr>
</tbody>
</table>

MRN table is (16 of 5990) 1% full

This is an example of the possible output after step 5 was performed to change the weight and in-service threshold values.

rlnhncxa03w 06-10-07 00:34:31 GMT EAGLE5 36.0.0

<table>
<thead>
<tr>
<th>PC</th>
<th>RC</th>
<th>WT</th>
<th>%WT</th>
<th>THR</th>
</tr>
</thead>
<tbody>
<tr>
<td>009-005-005</td>
<td>10</td>
<td>20</td>
<td>13</td>
<td>30</td>
</tr>
<tr>
<td>009-001-001</td>
<td>10</td>
<td>20</td>
<td>13</td>
<td>30</td>
</tr>
<tr>
<td>009-001-002</td>
<td>10</td>
<td>20</td>
<td>13</td>
<td>30</td>
</tr>
<tr>
<td>009-001-003</td>
<td>10</td>
<td>20</td>
<td>13</td>
<td>30</td>
</tr>
<tr>
<td>009-001-004</td>
<td>10</td>
<td>20</td>
<td>13</td>
<td>30</td>
</tr>
<tr>
<td>009-001-005</td>
<td>10</td>
<td>20</td>
<td>13</td>
<td>30</td>
</tr>
<tr>
<td>009-001-006</td>
<td>10</td>
<td>20</td>
<td>13</td>
<td>30</td>
</tr>
<tr>
<td>009-001-007</td>
<td>10</td>
<td>20</td>
<td>13</td>
<td>30</td>
</tr>
<tr>
<td>009-001-008</td>
<td>20</td>
<td>20</td>
<td>25</td>
<td>1</td>
</tr>
<tr>
<td>009-001-009</td>
<td>20</td>
<td>30</td>
<td>37</td>
<td>1</td>
</tr>
<tr>
<td>009-001-010</td>
<td>20</td>
<td>30</td>
<td>37</td>
<td>1</td>
</tr>
</tbody>
</table>

MRN table is (16 of 5990) 1% full

If the weight values were changed in an MRN set in step 5, this is an example of the possible output.
rtrv-mrn: pca=005-005-005: mrnset=1

The following example is the configuration of the MRN set before step 5 was performed.

rlnhncxa03w 06-10-07 00:34:31 GMT EAGLE5 36.0.0

<table>
<thead>
<tr>
<th>MRNSET</th>
<th>PC</th>
<th>RC</th>
<th>WT</th>
<th>%WT</th>
<th>THR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>005-005-005</td>
<td>10</td>
<td>10</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>006-001-001</td>
<td>10</td>
<td>10</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>006-001-002</td>
<td>10</td>
<td>30</td>
<td>12</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>006-001-003</td>
<td>10</td>
<td>40</td>
<td>15</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>006-001-005</td>
<td>10</td>
<td>40</td>
<td>15</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>006-001-006</td>
<td>10</td>
<td>40</td>
<td>15</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>006-001-007</td>
<td>10</td>
<td>40</td>
<td>15</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>006-001-008</td>
<td>10</td>
<td>50</td>
<td>19</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>006-001-009</td>
<td>20</td>
<td>20</td>
<td>25</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>006-001-010</td>
<td>20</td>
<td>30</td>
<td>37</td>
<td>1</td>
</tr>
</tbody>
</table>

MRN table is (16 of 5990) 1% full

This is an example of the possible output after step 5 was performed to change only the weight values.
rlnhncxa03w 06-10-07 00:34:31 GMT EAGLE5 36.0.0
This is an example of the possible output after step 5 was performed to change the weight and in-service threshold values.

After this step has been performed, go to step 11.

7. Change the individual weight values of the MRN group or MRN set by entering the `chg-mrn` command with the point code parameters and their corresponding weight parameters `wt`, `wt1`, `wt2`, `wt3`, and `wt4` parameters.

The `thr` parameter cannot be specified with the `wt`, `wt1`, `wt2`, `wt3`, and `wt4` parameters.

For this example, enter one of these commands.

To change the individual weight values of the entries in the MRN group without the Flexible GTT Load Sharing feature enabled, enter this command.

```plaintext
cchg-mrn:pca=008-005-005:wt=30:pca1=008-001-001:wt1=50
```

To change the individual weight values of the entries in the MRN set with the Flexible GTT Load Sharing feature enabled, enter this command.

```plaintext
```

When the `chg-mrn` command has successfully completed, this message should appear.

```plaintext
rlghncxa03w 06-10-07 11:44:13 GMT EAGLE5 36.0.0
CHG-MRN: MASP A - COMPLTD
```

8. Verify the changes using the `rtrv-mrn` command with the point code (`pca/pci/pcn/pcn24` parameters) specified in step 13.
If the `mrnset` parameter was specified in step 13, the `mrnset` parameter and value specified in step 13 must be specified with the `rtrv-mrn` command in this step.

For this example, enter these commands.

```
rtrv-mrn:pca=008-005-005
```

The following example is the configuration of the MRN group before step 7 was performed.

```
rlghncxa03w 06-10-07 00:34:31 GMT EAGLE5 36.0.0

PC RC WT %WT THR
008-005-005 10 10 50 30
008-001-001 10 10 50 30
008-001-002 30 20 100 30
008-001-003 40 20 100 30
008-001-004 50 20 100 30

MRN table is (16 of 5990) 1% full
```

This is an example of the possible output after step 7 was performed.

```
rlghncxa03w 06-10-07 00:34:31 GMT EAGLE5 36.0.0

PC RC WT %WT THR
008-005-005 10 30 37 30
008-001-001 10 50 62 30
008-001-002 30 20 100 30
008-001-003 40 20 100 30
008-001-004 50 20 100 30

MRN table is (16 of 5990) 1% full
```

If individual weight values were changed in an MRN set in step 7, this is an example of the possible output.

```
rtrv-mrn:pca=005-005-005:mrnset=1
```

The following example is the configuration of the MRN set before step 7 was performed.

```
rlghncxa03w 06-10-07 00:34:31 GMT EAGLE5 36.0.0

MRNSET PC RC WT %WT THR
1 005-005-005 10 10 4 1
006-001-001 10 10 4 1
006-001-002 10 30 12 1
006-001-003 10 40 15 1
006-001-005 10 40 15 1
006-001-006 10 40 15 1
006-001-007 10 40 15 1
006-001-004 10 50 19 1
006-001-008 20 20 25 1
006-001-009 20 30 37 1
006-001-010 20 30 37 1

MRN table is (16 of 5990) 1% full
```

This is an example of the possible output after step 7 was performed.

```
rlghncxa03w 06-10-07 00:34:31 GMT EAGLE5 36.0.0

MRNSET PC RC WT %WT THR
1 006-001-003 10 10 3 1
```
MRN table is (16 of 5990) 1% full

After this step has been performed, go to step 11.

9. Change the individual weight values and RC values of the MRN group or MRN set by entering the chg-mrn command with the point code parameters and their corresponding RC parameters (rc, rc1, rc2, rc3, and rc4) and weight parameters (wt, wt1, wt2, wt3, and wt4) parameters.

The thr parameter cannot be specified with the wt, wt1, wt2, wt3, and wt4 parameters.

Note: If the RC values are changed so that the resulting MRN group of MRN set becomes a dominant MRN group or MRN set (the RC values are unique), the weight parameters can be specified with the chg-mrn command, but the the WT, %WT, and THR values are removed from the MRN group or MRN set and are not displayed in the rtrv-mrn output.

The following types of changes can be performed in this step:

- Weight and RC values for individual entries
- Weight values for some entries and the RC values for other entries
- Combinations of weight and RC values for individual entries and weight values for some entries and RC values for other entries.

The following examples show these types of changes.

The following MRN group is being changed.

<table>
<thead>
<tr>
<th>PC</th>
<th>RC</th>
<th>WT</th>
<th>%WT</th>
<th>THR</th>
</tr>
</thead>
<tbody>
<tr>
<td>002-002-002</td>
<td>1</td>
<td>5</td>
<td>20</td>
<td>1</td>
</tr>
<tr>
<td>002-002-003</td>
<td>1</td>
<td>5</td>
<td>20</td>
<td>1</td>
</tr>
<tr>
<td>002-002-004</td>
<td>1</td>
<td>5</td>
<td>20</td>
<td>1</td>
</tr>
<tr>
<td>002-002-005</td>
<td>1</td>
<td>5</td>
<td>20</td>
<td>1</td>
</tr>
<tr>
<td>002-002-006</td>
<td>1</td>
<td>5</td>
<td>20</td>
<td>1</td>
</tr>
</tbody>
</table>

To change the weight and RC values for individual entries in this example MRN group, enter this command.


The following shows the changes that were made in the example command.

<table>
<thead>
<tr>
<th>PC</th>
<th>RC</th>
<th>WT</th>
<th>%WT</th>
<th>THR</th>
</tr>
</thead>
<tbody>
<tr>
<td>002-002-005</td>
<td>1</td>
<td>5</td>
<td>50</td>
<td>1</td>
</tr>
<tr>
<td>002-002-006</td>
<td>1</td>
<td>5</td>
<td>50</td>
<td>1</td>
</tr>
<tr>
<td>002-002-004</td>
<td>10</td>
<td>40</td>
<td>80</td>
<td>1</td>
</tr>
<tr>
<td>002-002-002</td>
<td>10</td>
<td>10</td>
<td>20</td>
<td>1</td>
</tr>
<tr>
<td>002-002-003</td>
<td>20</td>
<td>30</td>
<td>100</td>
<td>1</td>
</tr>
</tbody>
</table>

To change the weight values for some entries and the RC values for other entries in this example MRN group, enter this command.
The following shows the changes that were made in the example command.

<table>
<thead>
<tr>
<th>PC</th>
<th>RC</th>
<th>WT</th>
<th>%WT</th>
<th>THR</th>
</tr>
</thead>
<tbody>
<tr>
<td>002-002-004</td>
<td>1</td>
<td>40</td>
<td>67</td>
<td>1</td>
</tr>
<tr>
<td>002-002-002</td>
<td>1</td>
<td>10</td>
<td>17</td>
<td>1</td>
</tr>
<tr>
<td>002-002-005</td>
<td>1</td>
<td>5</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>002-002-006</td>
<td>1</td>
<td>5</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>002-002-003</td>
<td>10</td>
<td>5</td>
<td>100</td>
<td>1</td>
</tr>
</tbody>
</table>

To make both types of changes in this example MRN group, enter this command.

```
: wt4=60: force=yes
```

The following shows the changes that were made in the example command.

<table>
<thead>
<tr>
<th>PC</th>
<th>RC</th>
<th>WT</th>
<th>%WT</th>
<th>THR</th>
</tr>
</thead>
<tbody>
<tr>
<td>002-002-004</td>
<td>1</td>
<td>40</td>
<td>40</td>
<td>1</td>
</tr>
<tr>
<td>002-002-006</td>
<td>1</td>
<td>60</td>
<td>60</td>
<td>1</td>
</tr>
<tr>
<td>002-002-002</td>
<td>10</td>
<td>5</td>
<td>100</td>
<td>1</td>
</tr>
<tr>
<td>002-002-005</td>
<td>20</td>
<td>40</td>
<td>57</td>
<td>1</td>
</tr>
<tr>
<td>002-002-003</td>
<td>20</td>
<td>30</td>
<td>43</td>
<td>1</td>
</tr>
</tbody>
</table>

The `force=yes` parameter must be specified with the `chg-mrn` command when the following parameter combinations are specified with the `chg-mrn` command:

- If the `rc` parameter and the `wt/wt1/wt2/wt3/wt4` parameters are specified with the `chg-mrn` command.
- If the `wt` parameter and the `rc/rc1/rc2/rc3/rc4` parameters are specified with the `chg-mrn` command.

For this example, enter one of these commands.

To change the individual weight and RC values of the entries in the MRN group without the Flexible GTT Load Sharing feature enabled, enter this command.

```
chg-mrn: pca=008-005-005: wt=30: rc=20: pca1=008-001-001: wt1=50
: rc1=40: force=yes
```

To change the individual weight and RC values of the entries in the MRN set with the Flexible GTT Load Sharing feature enabled, enter this command.

```
chg-mrn: pca=005-005-005: rc=30: pca1=006-001-001: wt1=20: pca2=006-001-002
: wt4=80: rc4=40: mrnset=1: force=yes
```

When the `chg-mrn` command has successfully completed, this message should appear.

```
rlghncxa03w 06-10-07 11:44:13 GMT EAGLE5 36.0.0
CHG-MRN: MASP A - COMPLTD
```

**10.** Verify the changes using the `rtrv-mrn` command with the point code (pca/pci/pcn/pcn24 parameters) specified in step 9. If the `mrnset` parameter was specified in step 9, the `mrnset` parameter and value specified in step 9 must be specified with the `rtrv-mrn` command in this step.
For this example, enter these commands.

rtrv-mrn:pca=008-005-005

The following example is the configuration of the MRN group before step 9 was performed.

```
rlghncxa03w 06-10-07 00:34:31 GMT EAGLE5 36.0.0
PC RC WT %WT THR
008-005-005 10 10 50 30
008-001-001 10 10 50 30
008-001-002 30 20 100 30
008-001-003 40 20 100 30
008-001-004 50 20 100 30

MRN table is (16 of 5990) 1% full
```

This is an example of the possible output after step 9 was performed.

```
rlghncxa03w 06-10-07 00:34:31 GMT EAGLE5 36.0.0
PC RC WT %WT THR
008-005-005 20 30 100 30
008-001-002 30 20 100 30
008-001-001 40 50 71 30
008-001-003 40 20 28 30
008-001-004 50 20 100 30

MRN table is (16 of 5990) 1% full
```

If individual weight and relative cost values were changed in an MRN set in step 9, this is an example of the possible output.

```
rtrv-mrn:pca=005-005-005:mrnset=1
```

The following example is the configuration of the MRN set before step 9 was performed.

```
rlghncxa03w 06-10-07 00:34:31 GMT EAGLE5 36.0.0
MRNSET PC RC WT %WT THR
1 005-005-005 10 10 4 1
 006-001-001 10 10 4 1
 006-001-002 10 30 12 1
 006-001-003 10 40 15 1
 006-001-005 10 40 15 1
 006-001-006 10 40 15 1
 006-001-007 10 40 15 1
 006-001-004 10 50 19 1
 006-001-008 20 20 25 1
 006-001-009 20 30 37 1
 006-001-010 20 30 37 1

MRN table is (16 of 5990) 1% full
```

This is an example of the possible output after step 9 was performed.

```
rlghncxa03w 06-10-07 00:34:31 GMT EAGLE5 36.0.0
MRNSET PC RC WT %WT THR
1 006-001-004 10 50 25 1
 006-001-002 10 50 25 1
 006-001-005 10 40 20 1
 006-001-007 10 40 20 1
```
11. Backup the new changes using the chg-db:action=backup:dest=fixed command. These messages should appear, the active Maintenance and Administration Subsystem Processor (MASP) appears first.

<table>
<thead>
<tr>
<th>MRN set ID</th>
<th>Active MASP</th>
<th>Backup MASP</th>
<th>Dest Disk</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>006-001-001</td>
<td>A</td>
<td>A</td>
<td>Fixed</td>
<td>Starts on active MASP.</td>
</tr>
<tr>
<td>006-001-009</td>
<td>A</td>
<td>A</td>
<td>Fixed</td>
<td>On active MASP to Fixed disk complete.</td>
</tr>
<tr>
<td>006-001-010</td>
<td>A</td>
<td>A</td>
<td>Fixed</td>
<td>Starts on standby MASP.</td>
</tr>
<tr>
<td>006-001-008</td>
<td>A</td>
<td>A</td>
<td>Fixed</td>
<td>On standby MASP to Fixed disk complete.</td>
</tr>
<tr>
<td>005-005-005</td>
<td>A</td>
<td>A</td>
<td>Fixed</td>
<td>Starts on active MASP.</td>
</tr>
<tr>
<td>006-001-006</td>
<td>A</td>
<td>A</td>
<td>Fixed</td>
<td>On active MASP to Fixed disk complete.</td>
</tr>
<tr>
<td>006-001-003</td>
<td>A</td>
<td>A</td>
<td>Fixed</td>
<td>Starts on standby MASP.</td>
</tr>
<tr>
<td>006-001-004</td>
<td>A</td>
<td>A</td>
<td>Fixed</td>
<td>On standby MASP to Fixed disk complete.</td>
</tr>
</tbody>
</table>

### Changing the MAPSET, MAP Point Code, and MAP SSN Values of MRN Entries

This procedure is used to change the MAPSET, MAP point code, and MAP SSN values in an existing Mated Relay Node (MRN) set using the mapset, mappc/mappca/mappci/mappcn/mappcn24, and mapssn parameters of the chg-mrn command.

The chg-mrn command can also be used to add point code entries to an existing MRN set. This action is not covered in this procedure. If you wish to add point code entries to an existing MRN set, perform **Provisioning MRN Entries**.

If you wish to assign the same weight and threshold value to all the entries in the MRN set with the eswt and thr parameters, or to remove the weight and threshold values from all the entries in the MRN set with the eswt=none parameter, perform **Changing MRN Entries with the ESWT Parameter**. The eswt and thr parameters cannot be used in this procedure.

If you wish to change individual weight values for entries with the wt/wt1/wt2/wt3/wt4 parameters, the weight values for an RC group with the grpwt parameter, the threshold values for an MRN set with the thr parameter, or the relative cost and weight values for an MRN set with the force=yes parameter, perform **Changing the Weight and Threshold Values of MRN Entries**. The wt/wt1/wt2/wt3/wt4, grpwt, thr, and force=yes parameters cannot be used in this procedure.

These parameters are used with the chg-mrn command in this procedure.

- **:pc/pca/pcn/pcn24** – The point code in the message after intermediate global title translation has been performed.
- **:mrnset** – The MRN set ID that is being changed.
- **:mapset** – The MAP set ID that is being assigned to the MRN. This is the MAP set from which alternate routing indicator searches are performed.
- **:mappc/mappca/mappci/mappcn/mappcn24** – The point code assigned to the mapset that is being assigned to the MRN set.
:mapssn – The subsystem number assigned to the point code in the MAP set that is being assigned to the MRN.

**Note:** Refer to Chapter 2, Configuring Destination Tables in the *Database Administration Manual - SS7* for a definition of the point code types that are used on the EAGLE 5 ISS and for a definition of the different formats that can be used for ITU national point codes.

The current values of the mapset, :mappc/mappca/mappci/mappcn/mappcn24, and mapssn parameters are shown in the rtrv-mrn output only if the Flexible GTT Load Sharing and the GTT Load Sharing with Alternate Routing Indicator features are enabled.

The new values for the mapset, mappc/mappca/mappci/mappcn/mappcn24, and mapssn parameters must be shown in the rtrv-map output.

The network type of the pc/pca/pci/pcn/pcn24 and mappc/mappca/mappci/mappcn/mappcn24 parameter values must be compatible, as shown in *Table 56: MRN and MAP Point Code Parameter Combinations*.

**Table 56: MRN and MAP Point Code Parameter Combinations**

<table>
<thead>
<tr>
<th>MRN Point Code Parameter</th>
<th>MAP Point Code Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>pc/pca</td>
<td>mappc/mappca</td>
</tr>
<tr>
<td>pci or pcn (See Notes 1 and 2)</td>
<td>mappci or mappcn (See Notes 1 and 2)</td>
</tr>
<tr>
<td>pcn24</td>
<td>mappcn24</td>
</tr>
</tbody>
</table>

**Notes:**

1. If the network type of the MRN point code parameter is ITU-I (pci), the network type of the MAP point code parameter can be either ITU-I (mappci) or ITU-N (mappcn).

2. If the network type of the MRN point code parameter is ITU-N (pcn), the network type of the MAP point code parameter can be either ITU-I (mappci) or ITU-N (mappcn).

**Canceling the RTRV–MRN Command**

Because the rtrv-mrn command used in this procedure can output information for a long period of time, the rtrv-mrn command can be canceled and the output to the terminal stopped. There are three ways that the rtrv-mrn command can be canceled.

- Press the F9 function key on the keyboard at the terminal where the rtrv-mrn command was entered.
- Enter the canc-cmd without the trm parameter at the terminal where the rtrv-mrn command was entered.
- Enter the canc-cmd:trm=<xx>, where <xx> is the terminal where the rtrv-mrn command was entered, from another terminal other that the terminal where the rtrv-mrn command was entered. To enter the canc-cmd:trm=<xx> command, the terminal must allow Security Administration commands to be entered from it and the user must be allowed to enter Security Administration commands. The terminal’s permissions can be verified with the rtrv-secu-trm command. The user’s permissions can be verified with the rtrv-user or rtrv-secu-user commands.

For more information about the canc-cmd command, refer to the *Commands Manual*. 
1. Display the mated relay node sets in the database using the `rtrv-mrn` command. This is an example of the possible output.

```
rlghncxa03w 09-02-07 00:34:31 GMT EAGLE5 40.1.0

<table>
<thead>
<tr>
<th>MRNSET</th>
<th>PC</th>
<th>RC</th>
</tr>
</thead>
<tbody>
<tr>
<td>DFLT</td>
<td>005-005-005</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>006-001-001</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>006-001-002</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>006-001-003</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>006-001-004</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>006-001-005</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>006-001-006</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td>006-001-007</td>
<td>80</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MRNSET</th>
<th>PC</th>
<th>RC</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>007-007-007</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>008-001-001</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>008-001-002</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>008-001-003</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>008-001-004</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>008-001-005</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>008-001-006</td>
<td>70</td>
</tr>
</tbody>
</table>
```

MRN table is (15 of 5990) 1% full

**Note:** If the Weighted GTT Load Sharing feature is enabled and turned on, the WT, %WT, and THR columns are shown in the `rtrv-mrn` output.

If the MAPSET, MAPPC, and MAPSSN columns are not shown in the `rtrv-mrn` output, the GTT Load Sharing with Alternate Routing Indicator feature is not enabled. Perform **Activating the GTT Load Sharing with Alternate Routing Indicator Feature** to enable the GTT Load Sharing with Alternate Routing Indicator feature. After **Activating the GTT Load Sharing with Alternate Routing Indicator Feature** has been performed, continue the procedure with **Step 2**.

If the MAPSET, MAPPC, and MAPSSN columns are shown in the `rtrv-mrn` output, the GTT Load Sharing with Alternate Routing Indicator feature is enabled. Continue the procedure with **Step 2**.

2. The MAP point code and MAP SSN values must be assigned to a MAP set. The MAP set must be shown in the `rtrv-map` output. Display the MAP sets by entering the `rtrv-map` command. This is an example of the possible output.

```
rlghncxa03w 09-07-07 00:34:31 GMT EAGLE5 41.1.0

<table>
<thead>
<tr>
<th>MAPSET ID=DFLT</th>
<th>MRNSET ID=----</th>
<th>MRNPC=--------</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCA</td>
<td>Mate PCA</td>
<td>SSN RC MULT SRM MRC GRP NAME SSO</td>
</tr>
<tr>
<td>255-001-000</td>
<td></td>
<td>250 10 SOL *Y *Y grp01 ON</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MAPSET ID=1</th>
<th>MRNSET ID=----</th>
<th>MRNPC=--------</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCA</td>
<td>Mate PCA</td>
<td>SSN RC MULT SRM MRC GRP NAME SSO</td>
</tr>
<tr>
<td>255-001-000</td>
<td></td>
<td>253-001-002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>254 10 SHR *Y *Y grp01 OFF</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MAPSET ID=2</th>
<th>MRNSET ID=----</th>
<th>MRNPC=--------</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCA</td>
<td>Mate PCA</td>
<td>SSN RC MULT SRM MRC GRP NAME SSO</td>
</tr>
<tr>
<td>255-001-000</td>
<td></td>
<td>252 10 SOL *Y *Y grp01 ON</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MAPSET ID=DFLT</th>
<th>MRNSET ID=----</th>
<th>MRNPC=--------</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCA</td>
<td>Mate PCA</td>
<td>SSN RC MULT SRM MRC GRP NAME SSO</td>
</tr>
<tr>
<td>255-001-000</td>
<td></td>
<td>253-001-004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>254 10 SHR *Y *Y grp01 OFF</td>
</tr>
</tbody>
</table>
```
### MAP Table IS (25 of 36000) 1 % FULL

**Note:** If the Weighted GTT Load Sharing feature is enabled and turned on, the WT, %WT, and THR columns are shown in the `rtrv-map` output.

If the MAP set that you wish to use, containing the desired point code and subsystem number, is shown in the `rtrv-map` output, continue the procedure with **Step 3**.

**Note:** The network type of the `pc/pca/pci/pcn/pcn24` and `mappc/mappca/mappci/mappcn/mappcn24` parameter values must be the same, as shown in **Table 56: MRN and MAP Point Code Parameter Combinations**.

If the MAP set that you wish to use is not shown in the `rtrv-map` output, add the required MAP set by performing one of these procedures.

- **Provisioning a Solitary Mated Application**
- **Provisioning a Dominant Mated Application**
- **Provisioning a Load Shared Mated Application**
- **Provisioning a Combined Dominant/Load Shared Mated Application**
After the MAP set has been added, continue the procedure with Step 3.

3. Change the MAPSET, MAP point code, and MAP SSN values in the MRN set by entering the chg-mrn command with the mapset, mappc/mappca/mappci/mappcn/mappcn24, and mapssn parameters.

   For this example, enter this command.

   chg-mrn:mrnset=1:pca=007-007-007:mapset=7:mappca=002-002-007:mapssn=50

   When the chg-mrn command has successfully completed, this message should appear.

   rlnhncxa03w 09-02-07 11:44:13 GMT EAGLE5 40.1.0
   CHG-MRN: MASP A - COMPLTD

4. Verify the changes using the rtrv-mrn command with the point code (pca/pci/pcn/pcn24 parameters) and mrnset values specified in Step 3.

   For this example, enter this command.

   rtrv-mrn:mrnset=1:pca=007-007-007

   This is an example of the possible output.

   rlnhncxa03w 09-02-07 00:34:31 GMT EAGLE5 40.1.0
   MRNSET MAPSET MAPPC MAPSSN PC RC
   1 7 002-002-007 50 007-007-007 10
   008-001-001 20
   008-001-002 30
   008-001-003 40
   008-001-004 50
   008-001-005 60
   008-001-006 70

   MRN table is (15 of 5990) 1% full

   Note: If the Weighted GTT Load Sharing feature is enabled and turned on, the WT, %WT, and THR columns are shown in the rtrv-mrn output.

5. Backup the new changes using the chg-db:action=backup:dest=fixed command. These messages should appear, the active Maintenance and Administration Subsystem Processor (MASP) appears first.

   BACKUP (FIXED) : MASP A - Backup starts on active MASP.
   BACKUP (FIXED) : MASP A - Backup on active MASP to fixed disk complete.
   BACKUP (FIXED) : MASP A - Backup starts on standby MASP.
   BACKUP (FIXED) : MASP A - Backup on standby MASP to fixed disk complete.

Adding a GT Conversion Table Entry

This procedure is used to provision an entry in the GT Conversion table for the ANSI/ITU SCCP Conversion feature using the ent-gtcnv command.

The ent-gtcnv command uses these parameters.

:dir – The direction that the conversion takes place
atoa – The conversion takes place in the ANSI to ITU direction

itoa – The conversion takes place in the ITU to ANSI direction

both – The conversion takes place in the ANSI to ITU and ITU to ANSI directions

gtixlat – The global title indicator types being converted.

22 – ANSI GTI type 2 to ITU GTI type 2

24 – ANSI GTI type 2 to ITU GTI type 4

tta – The ANSI translation type

tti – The ITU translation type

np – The numbering plan

nai – The nature of address indicator

npdd – The number of digits to be deleted or substituted from the beginning of the Global Title Address digits (the prefix digits)

npds – The digits that are being substituted for the prefix digits

nsdd – The number of digits to be deleted or substituted from the end of the Global Title Address digits (the suffix digits)

nsds – The digits that are being substituted for the suffix digits

To perform this procedure, the ANSI/ITU SCCP Conversion feature must be enabled. Enter the rtrv-ctrl-feat command to verify whether or not the ANSI/ITU SCCP Conversion is enabled. If the ANSI/ITU SCCP Conversion feature is not enabled, perform the Activating the ANSI/ITU SCCP Conversion Feature procedure to enabled the ANSI/ITU SCCP Conversion feature.

Note: The ANSI/ITU SCCP Conversion feature can only be permanently enabled.

The gtixlat parameter determines how the tta, tti, np, and nai parameters are used with the ent-gtcnv command.

If the gtixlat parameter value is 22, only the tta, tti, npdd, npds, nsdd, and nsds parameters can be specified. The tta and tti parameters must be specified along with the dir and gtixlat=22 parameters.

If the gtixlat parameter value is 24, the tta, tti, np, nai, npdd, npds, nsdd, and nsds parameters can be specified. The tta, tti, np, and nai parameters must be specified along with the dir and gtixlat=24 parameters.

Asterisks (*) can be specified for the tta, tti, np, and nai parameters indicating all possible values for that parameter. The dir and gtixlat parameters determine when the asterisk can be used.

If the dir parameter is atoi, the asterisk can be specified only for the tta parameter.

If the dir parameter is itoa and the gtixlat parameter is 24, the asterisk can be specified for the tti, np, and nai parameters. If the asterisk is specified for either the tti, np, or nai parameters, the asterisk must be specified for the tti, np, and nai parameters.

The asterisk cannot be specified for any parameter when the dir parameter value is both.

The optional prefix (npdd, npds) and suffix parameters (nsdd, nsds) can be specified, but both sets of parameters, or a mixture of the prefix and suffix parameters cannot be specified. For example, if the either the npdd or npds parameters are specified, the nsdd and nsds cannot be specified. If either the nsdd or nsds parameters are specified, the npdd and npds parameters cannot be specified.
1. Verify the status of the ANSI/ITU SCCP Conversion feature by entering the `rtrv-ctrl-feat` command with the ANSI/ITU SCCP Conversion feature part number. Enter this command.

   `rtrv-ctrl-feat:partnum=893012001`

   The following is an example of the possible output.

   ```
 rlghncxa03w 06-10-28 21:15:37 GMT EAGLE5 36.0.0
 The following features have been permanently enabled:
 Feature Name Partnum Status Quantity
 SCCP Conversion 893012010 on ----
 The following features have been temporarily enabled:
 Feature Name Partnum Status Quantity Trial Period Left
 Zero entries found.
 The following features have expired temporary keys:
 Feature Name Partnum
 Zero entries found.
   ```

   If the ANSI/ITU SCCP Conversion feature has not been enabled, perform the Activating the ANSI/ITU SCCP Conversion Feature procedure to enable this feature.

2. Display the GT Conversion Table entries by entering the `rtrv-gtcnv` command. The following is an example of the possible output.

   ```
 rlghncxa03w 06-10-28 21:15:37 GMT EAGLE5 36.0.0
 DIR GTIXLAT TTA TTI NP NAI DEL POS ADD
 atoi 22 24 12 --- --- --- --- ---
 itoa 22 2 5 --- --- --- --- ---
 itoa 24 3 6 4 8 --- --- ---
 itoa 24 4 7 4 8 3 sfx 123
 atoi 24 5 7 4 8 3 sfx 123
 atoi 22 7 8 --- --- --- --- ---
 both 24 8 9 4 8 4 pfx 4567
 both 24 9 11 --- --- --- --- ---
 GTCNV table is (8 of 1000) 1% full
   ```

3. Add the new GT Conversion Table entry by entering the `ent-gtcnv` command with the appropriate parameter combinations shown in Table 57: GT Conversion Parameter Combinations.

   **Table 57: GT Conversion Parameter Combinations**

<table>
<thead>
<tr>
<th>DIR = ATOI</th>
<th>DIR = ITOA</th>
<th>DIR = BOTH</th>
</tr>
</thead>
<tbody>
<tr>
<td>GTIXLAT = 22</td>
<td>GTIXLAT = 24</td>
<td>GTIXLAT = 22</td>
</tr>
<tr>
<td>TTA = 0-255</td>
<td>TTA = 0-255</td>
<td>TTA = 0-255</td>
</tr>
<tr>
<td>or</td>
<td>or</td>
<td>TTI = 0-255 &amp;</td>
</tr>
<tr>
<td>TTA = *</td>
<td>TTA = *</td>
<td>NP = 0-15 &amp;</td>
</tr>
<tr>
<td>TTI = 0-255</td>
<td>TTI = 0-255</td>
<td>NAI = 0-63</td>
</tr>
<tr>
<td>TTI = 0-255</td>
<td>NAI = 0-63</td>
<td>NAI = 0-63</td>
</tr>
</tbody>
</table>
**DIR** = ATOI

<table>
<thead>
<tr>
<th>NP = 0-15</th>
<th>NAI = 0-63</th>
</tr>
</thead>
</table>

**DIR** = ITOA

or

| TTI = * & NP = * & NAI = *  |

**DIR** = BOTH

| NPDD = 0-21 & NPDS = 1 - 21 digits  
| or  
| NSDD = 0-21 & NSDS = 1 - 21 digits |

**Optional Parameters**

| NPDD = 0-21 & NPDS = 1 - 21 digits  
| or  
| NSDD = 0-21 & NSDS = 1 - 21 digits |

For this example, enter these commands.

```
ent-gtcnv:dir=itoi:gtixlat=24:tta=44:tti=*:np=*:nai=*
ent-gtcnv:dir=both:gtixlat=22:tta=26:tti=13
```

When each of these commands have successfully completed, the following message should appear.

```
rlghncxa03w 06-10-28 21:15:37 GMT EAGLE5 36.0.0
ENT-GTCNV: MASP A - COMPLTD
```

4. Verify the changes using the `rtrv-gtcnv` command and specifying the following parameters based on the `gtixlat` parameter values used in step 3.

a) `gtixlat=22`

- `dir` = value specified in step 3
- `tta` = value specified in step 3
- `tti` = value specified in step 3

b) `gtixlat=24`

- `dir` = value specified in step 3
- `tta` = value specified in step 3
- `tti` = value specified in step 3
- `np` = value specified in step 3
- `nai` = value specified in step 3
For this example, enter these commands.

\texttt{rtrv-gtcnv:dir=atoi:gtixlat=22:tta=10:tti=43}

This is an example of the possible output.

\begin{verbatim}
rlghncxa03w 06-10-28 21:15:37 GMT EAGLE5 36.0.0
DIR   GTIXLAT  TTA  TTI  NP  NAI  DEL  POS  ADD
atoi    22     10   43   --- ---  3    pfx  919
GTCNV table is (15 of 1000) 1% full
\end{verbatim}

\texttt{rtrv-gtcnv:dir=atoi:gtixlat=24:tta=:tti=29:np=4:nai=87}

This is an example of the possible output.

\begin{verbatim}
rlghncxa03w 06-10-28 21:15:37 GMT EAGLE5 36.0.0
DIR   GTIXLAT  TTA  TTI  NP  NAI  DEL  POS  ADD
atoi    24     *    29   4   87   ---  ---  ---
GTCNV table is (15 of 1000) 1% full
\end{verbatim}


This is an example of the possible output.

\begin{verbatim}
rlghncxa03w 06-10-28 21:15:37 GMT EAGLE5 36.0.0
DIR   GTIXLAT  TTA  TTI  NP  NAI  DEL  POS  ADD
itoi    22     23   57   --- ---  3    sfx  800
GTCNV table is (15 of 1000) 1% full
\end{verbatim}


This is an example of the possible output.

\begin{verbatim}
rlghncxa03w 06-10-28 21:15:37 GMT EAGLE5 36.0.0
DIR   GTIXLAT  TTA  TTI  NP  NAI  DEL  POS  ADD
itoi    24     33   66   3   33   ---  ---  ---
GTCNV table is (15 of 1000) 1% full
\end{verbatim}

\texttt{rtrv-gtcnv:dir=itoi:gtixlat=24:tta=44:tti=:np=:nai=*}

This is an example of the possible output.

\begin{verbatim}
rlghncxa03w 06-10-28 21:15:37 GMT EAGLE5 36.0.0
DIR   GTIXLAT  TTA  TTI  NP  NAI  DEL  POS  ADD
itoi    24     44   *    *   *    ---  ---  ---
GTCNV table is (15 of 1000) 1% full
\end{verbatim}

\texttt{rtrv-gtcnv:dir=both:gtixlat=22:tta=26:tti=13}

This is an example of the possible output.

\begin{verbatim}
rlghncxa03w 06-10-28 21:15:37 GMT EAGLE5 36.0.0
DIR   GTIXLAT  TTA  TTI  NP  NAI  DEL  POS  ADD
both    22     26   13   --- ---  ---  ---
GTCNV table is (15 of 1000) 1% full
\end{verbatim}

Removing a GT Conversion Table Entry

This procedure is used to remove an entry from the GT Conversion table using the `dlt-gtcnv` command.

The `dlt-gtcnv` command uses these parameters:

- `:dir` – The direction that the conversion takes place
- `:atoa` – The conversion takes place in the ANSI to ITU direction
- `:itoa` – The conversion takes place in the ITU to ANSI direction
- `:both` – The conversion takes place in the ANSI to ITU and ITU to ANSI directions
- `:tta` – The ANSI translation type
- `:tti` – The ITU translation type
- `:np` – The numbering plan
- `:nai` – The nature of address indicator

To perform this procedure, the ANSI/ITU SCCP Conversion feature must be enabled. Enter the `rtrv-ctrl-feat` command to verify whether or not the ANSI/ITU SCCP Conversion is enabled.

**Note:** The ANSI/ITU SCCP Conversion feature can only be permanently enabled.

The `gtixlat` and `dir` parameter values in the GT Conversion Table entry determine how the `tta`, `tti`, `np`, and `nai` parameters are used with the `dlt-gtcnv` command.

- If the `dir` parameter is `atoa`, only the `dir=atoa` and `tta` parameters can be and must be specified with the `dlt-gtcnv` command.
- If the `dir` parameter is `itoa` and the `gtixlat` parameter is 22, only the `dir=itoa` and `tti` parameter can be and must be specified with the `dlt-gtcnv` command.
- If the `dir` parameter is `itoa` and the `gtixlat` parameter is 24, only the `dir=itoa`, `tti`, `np`, and `nai` parameters can be and must be specified for the `dlt-gtcnv` command.
- If the `dir` parameter is `both` and the `gtixlat` parameter is 22, only the `dir=both`, `tta`, and `tti` parameters can be and must be specified with the `dlt-gtcnv` command.
If the `dir` parameter is both and the `gtixlat` parameter is 24, the `dir=both`, `tta`, `tti`, `np`, and `nai` parameters can be and must be specified for the `dlt-gtcnv` command.

The values for the parameters of the GT Conversion Table entry being removed must be entered as shown in the `rtrv-gtcnv` output.

The GT Conversion Table entry specified in the `dlt-gtcnv` command must be shown in the `rtrv-gtcnv` output.

1. Display the GT Conversion Table entries by entering the `rtrv-gtcnv` command.

   The following is an example of the possible output.

   ```
 rlghncxa03w 07-05-28 21:15:37 GMT EAGLE5 37.0.0
 DIR GTIXLAT TTA TTI NP NAI DEL POS ADD
 atoi 24 * 29 4 87 --- --- ---
 atoi 22 10 43 --- --- 3 pfx 919
 atoi 22 23 57 --- --- 3 sfx 800
 atoi 22 24 12 --- --- --- ---
 both 22 26 13 --- --- --- ---
 itoa 22 2 5 --- --- --- ---
 itoi 24 33 66 3 33 --- --- ---
 itoa 24 3 6 4 8 --- --- ---
 itoi 24 44 * * * --- --- ---
 itoa 24 4 7 4 8 3 sfx 123
 atoi 24 5 7 4 8 3 sfx 123
 atoi 22 7 8 --- --- 3 sfx 123
 both 24 8 9 4 8 4 sfx 4567
 both 22 9 11 --- --- --- ---
 GTCNV table is (8 of 1000) 1% full
   ```

   If no entries are shown in the `rtrv-gtcnv` output, this procedure cannot be performed.

   If error message E4171 (E4171 Cmd Rej: SCCP Conversion feature must be enabled) is displayed after the `rtrv-gtcnv` command is entered, the ANSI/ITU SCCP Conversion feature is not enabled. If the ANSI/ITU SCCP Conversion feature has not been enabled, this procedure cannot be performed. If error message E4171 (E4171 Cmd Rej: SCCP Conversion feature must be enabled) is not displayed after the `rtrv-gtcnv` command is entered and entries are shown in the `rtrv-gtcnv` output, continue the procedure with Step 2.

2. Remove the desired GT Conversion Table entry by entering the `dlt-gtcnv` command with the appropriate parameter combinations shown in the following list and with the values for these parameters shown in the `rtrv-gtcnv` output in Step 1.

   a) `dir=atoi`, `tta`
   b) `dir=itoa`, `gtixlat=22`, `tti`
   c) `dir=itoa`, `gtixlat=24`, `tti`, `np`, `nai`
   d) `dir=both`, `gtixlat=22`, `tta`, `tti`
   e) `dir=both`, `gtixlat=24`, `tta`, `tti`, `np`, `nai`

   **Note:** The `gtixlat` parameter cannot be specified with the `dlt-gtcnv` command, but is used to determine the parameter combinations that must be specified with the `dlt-gtcnv` command.

   For this example, enter these commands.

   ```
dlt-gtcnv:dir=atoi:tta=10
 dlt-gtcnv:dir=itoi:tta=44:tti=*/np=*/nai=*```
When each of these commands have successfully completed, the following message should appear.

```
rlghncxa03w 07-05-28 21:15:37 GMT EAGLE5 37.0.0
DLT-GTCNV: MASP A - COMPLTD
```

3. Verify the changes using the `rtrv-gtcnv` command and specifying the parameter values used in Step 2, along with the `gtixlat` parameter value shown in the `rtrv-gtcnv` output in Step 1 that was assigned to the GT Conversion Table entry removed in Step 2.

For this example, enter these commands.

```
rtrv-gtcnv:dir=atoi:gtixlat=22:tta=10:tti=43
```

This is an example of the possible output.

```
rlghncxa03w 07-05-28 21:15:37 GMT EAGLE5 37.0.0
DIR GTIXLAT TTA TTI NP NAI DEL POS ADD
atoi 22 10 43 --- --- 3 pfx 919
GTCNV table is (11 of 1000) 1% full
```

```
```

This is an example of the possible output.

```
rlghncxa03w 07-05-28 21:15:37 GMT EAGLE5 37.0.0
DIR GTIXLAT TTA TTI NP NAI DEL POS ADD
itoi 24 33 66 3 33 --- --- ---
GTCNV table is (11 of 1000) 1% full
```

```
```

This is an example of the possible output.

```
rlghncxa03w 07-05-28 21:15:37 GMT EAGLE5 37.0.0
DIR GTIXLAT TTA TTI NP NAI DEL POS ADD
itoi 24 44 * * * --- --- ---
GTCNV table is (11 of 1000) 1% full
```

```
rtrv-gtcnv:dir=both:gtixlat=22:tta=26:tti=13
```

This is an example of the possible output.

```
rlghncxa03w 07-05-28 21:15:37 GMT EAGLE5 37.0.0
DIR GTIXLAT TTA TTI NP NAI DEL POS ADD
both 22 26 13 --- --- --- ---
GTCNV table is (11 of 1000) 1% full
```

4. Backup the new changes using the `chg-db:action=backup:dest=fixed` command.

These messages should appear, the active Maintenance and Administration Subsystem Processor (MASP) appears first.

```
BACKUP (FIXED) : MASP A - Backup starts on active MASP.
BACKUP (FIXED) : MASP A - Backup on active MASP to fixed disk complete.
BACKUP (FIXED) : MASP A - Backup starts on standby MASP.
BACKUP (FIXED) : MASP A - Backup on standby MASP to fixed disk complete.
```
Changing a GT Conversion Table Entry

This procedure is used to provision an entry in the GT Conversion table for the ANSI/ITU SCCP Conversion feature using the chg-gtcnv command.

The chg-gtcnv command uses these parameters.

:dir – The direction that the conversion takes place
atoa – The conversion takes place in the ANSI to ITU direction
itoa – The conversion takes place in the ITU to ANSI direction
both – The conversion takes place in the ANSI to ITU and ITU to ANSI directions
:tta – The ANSI translation type
:tti – The ITU translation type
:np – The numbering plan
:nai – The nature of address indicator
:npdd – The number of digits to be deleted or substituted from the beginning of the Global Title Address digits (the prefix digits)
:npds – The digits that are being substituted for the prefix digits
:nsdd – The number of digits to be deleted or substituted from the end of the Global Title Address digits (the suffix digits)
:nsds – The digits that are being substituted for the suffix digits
:rdmod – This parameter specifies whether or not the existing npdd, npds, nsdd, nsds parameter values are removed from the GT Conversion Table entry. If the value of this parameter is yes, the existing npdd, npds, nsdd, nsds parameter values are removed from the GT Conversion Table entry. If the value of this parameter is no, the default value, the existing npdd, npds, nsdd, nsds parameter values are not removed from the GT Conversion Table entry.

To perform this procedure, the ANSI/ITU SCCP Conversion feature must be enabled. Enter the rtrv-ctrl-feat command to verify whether or not the ANSI/ITU SCCP Conversion is enabled.

Note: The ANSI/ITU SCCP Conversion feature can only be permanently enabled.

The gtixlat and dir parameter values in the GT Conversion Table entry determines how the tta, tti, np, nai, npdd, npds, nsdd, nsds, and rdmod parameters are used with the chg-gtcnv command.

- If the dir parameter is atoi, the dir=atoi and tta parameters must be specified with the chg-gtcnv command. If the gtixlat parameter is 22, the optional parameters tti, npdd, npds, nsdd, nsds, and rdmod can be specified with the chg-gtcnv command. If the gtixlat parameter is 24, the optional parameters tti, np, nai, npdd, npds, nsdd, nsds, and rdmod can be specified with the chg-gtcnv command.
- If the dir parameter is itoa and the gtixlat parameter is 22, the dir=itoa and tti parameters must be specified with the chg-gtcnv command. The optional parameters tta, npdd, npds, nsdd, nsds, and rdmod can be specified with the chg-gtcnv command.
• If the dir parameter is itoa and the gtixlat parameter is 24, the dir=itoa and tti, np, and nai parameters must be specified with the chg-gtcnv command. The optional parameters tta, npdd, npds, nsdd, nsds, and rdmod can be specified with the chg-gtcnv command.

• If the dir parameter is both and the gtixlat parameter is 22, the dir=both, tta, and tti parameters must be specified with the chg-gtcnv command. The optional parameters npdd, npds, nsdd, nsds, and rdmod can be specified with the chg-gtcnv command.

• If the dir parameter is both and the gtixlat parameter is 24, the dir=both, tta, tti, np, and nai parameters must be specified with the chg-gtcnv command. The optional parameters npdd, npds, nsdd, nsds, and rdmod can be specified with the chg-gtcnv command.

If the rdmod=yes parameter is specified with the chg-gtcnv command, the npdd, npds, nsdd, and nsds parameters cannot be specified.

If the npdd, npds, nsdd, or nsds parameters are specified with the chg-gtcnv command, the rdmod=yes parameter cannot be specified.

The optional prefix (npdd, npds) and suffix parameters (nsdd, nsds) can be specified, but both sets of parameters, or a mixture of the prefix and suffix parameters cannot be specified. For example, if either the npdd or npds parameters are specified, the nsdd and nsds cannot be specified. If either the nsdd or nsds parameters are specified, the npdd and npds parameters cannot be specified.

The prefix or suffix parameter values assigned to a GT Conversion Table entry can be changed from one type to another type, (prefix parameter values to suffix parameter values or suffix parameter values to prefix parameter values). To change the prefix values to suffix values or suffix values to prefix values, the existing prefix or suffix values must be removed from the GT Conversion Table entry by specifying the rdmod=yes with the chg-gtcnv command. After the existing prefix or suffix values have been removed, the new prefix or suffix values can be assigned to the GT Conversion Table entry with the npdd and npds, or nsdd and nsds parameters.

The values for the mandatory parameters of the GT Conversion Table entry being changed must be entered as shown in the rtrv-gtcnv output.

The GT Conversion Table entry specified in the chg-gtcnv command must be shown in the rtrv-gtcnv output.

1. Verify the status of the ANSI/ITU SCCP Conversion feature by entering the rtrv-ctrl-feat command with the ANSI/ITU SCCP Conversion feature part number.

Enter this command.

```
rtrv-ctrl-feat:partnum=893012001
```

The following is an example of the possible output.

```
rlghncxa03w 06-10-28 21:15:37 GMT EAGLE5 36.0.0
The following features have been permanently enabled:

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Partnum</th>
<th>Status</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCCP Conversion</td>
<td>893012010</td>
<td>on</td>
<td>----</td>
</tr>
</tbody>
</table>

The following features have been temporarily enabled:

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Partnum</th>
<th>Status</th>
<th>Quantity</th>
<th>Trial Period Left</th>
</tr>
</thead>
</table>

Zero entries found.
The following features have expired temporary keys:
```
If the ANSI/ITU SCCP Conversion feature has not been enabled or is not on, this procedure cannot be performed.

2. Display the GT Conversion Table entries by entering the `rtrv-gtcnv` command.

 The following is an example of the possible output.

   ```
   rlghncxa03w 06-10-28 21:15:37 GMT EAGLE5 36.0.0
   DIR  GTIXLAT  TTA  TTI  NP  NAI  DEL  POS  ADD
   atoi  24    *  29  4  87   ---  ---  ---
   atoi  22    10 43   ---   3  pfx  919
   itoi  22    23 57   ---   3  sfx  800
   atoi  22    24 12   ---  ---  ---  ---  ---
   both  22    26 13   ---  ---  ---  ---  ---
   itoa  22    2  5   ---  ---  ---  ---  ---
   itoi  24    33 66   3  33   ---  ---
   both  24    37 59  3  33   3   pfx  423
   itoa  24    3  6  4  8   ---  ---  ---
   itoi  24    44  *  *  *   ---  ---  ---
   itoa  24    4  7  4  8  3   sfx  123
   atoi  24    5  7  4  8  3   sfx  123
   atoi  22    7  8   ---  ---  ---  ---  ---
   both  24    8  9  4  8  4   pfx  4567
   both  22    9 11   ---  ---  ---  ---  ---
   GTCNV table is (15 of 1000) 1% full
   ```

 If no entries are shown in the `rtrv-gtcnv` output, this procedure cannot be performed.

 Note: If prefix or suffix digits are not assigned to the GT Conversion Table entry being changed, not being removed, or not being changed from one type to another (prefix digits changed to suffix digits or suffix digits changed to prefix digits), continue the procedure with Step 5.

3. Change the desired GT Conversion Table entry by entering the `chg-gtcnv` command with the `rdmod=yes` parameter, and with appropriate parameter combinations shown in the following list and with the values for these parameters shown in the `rtrv-gtcnv` output in Step 2.

 • dir=atoi, tta.

 If the `gtixlat` parameter value is 22, the optional parameter `tti=<0-255>` can be specified with the `chg-gtcnv` command. If the `gtixlat` parameter value is 24, the optional parameters `tti=<0-255>, np=<0-15>, nai=<0-63>`, can be specified with the `chg-gtcnv` command.

 • dir=itoa, `gtixlat=22`, `tti`.

 The optional parameter `tti=<0-255>` can be specified with the `chg-gtcnv` command.

 • dir=itoa, `gtixlat=24`, `tti`, `np`, `nai`.

 The optional parameter `tti=<0-255>` can be specified with the `chg-gtcnv` command.

 • dir=both, `gtixlat=22`, `tti`, `tti`

 • dir=both, `gtixlat=24`, `tti`, `tti`, `np`, `nai`.

 Note: The `gtixlat` parameter cannot be specified with the `chg-gtcnv` command, but is used to determine the parameter combinations that must be specified with the `chg-gtcnv` command.

 For this example, enter these commands.

   ```
   chg-gtcnv:dir=atoi:tti=10:rdmod=yes
   ```
When each of these commands have successfully completed, the following message should appear.

```
rlghncxa03w 06-10-28 21:15:37 GMT EAGLE5 36.0.0
CHG-GTCNV: MASP A - COMPLTD
```

4. Verify the changes using the `rtrv-gtcnv` command and specifying the parameter values used in Step 3, along with the `gtixlat` parameter value shown in the `rtrv-gtcnv` output in Step 2 that was assigned to the GT Conversion Table entry changed in Step 3.

For this example, enter these commands.

```
rtrv-gtcnv:dir=atoi:gtixlat=22:tta=10
```

This is an example of the possible output.

```
rlghncxa03w 06-10-28 21:15:37 GMT EAGLE5 36.0.0
DIR GTIXLAT TTA TTI NP NAI DEL POS ADD
atoi 22 10 43 --- --- --- --- ---
GTCNV table is (11 of 1000) 1% full
```

```
rtrv-gtcnv:dir=itoi:gtixlat=24:tti=7
```

This is an example of the possible output.

```
rlghncxa03w 06-10-28 21:15:37 GMT EAGLE5 36.0.0
DIR GTIXLAT TTA TTI NP NAI DEL POS ADD
itoa 24 4 7 4 8 --- --- ---
GTCNV table is (11 of 1000) 1% full
```

```
rtrv-gtcnv:dir=both:gtixlat=24:tta=37:tti=59
```

This is an example of the possible output.

```
rlghncxa03w 06-10-28 21:15:37 GMT EAGLE5 36.0.0
DIR GTIXLAT TTA TTI NP NAI DEL POS ADD
both 24 37 59 3 33 --- --- ---
GTCNV table is (11 of 1000) 1% full
```

5. Change the desired GT Conversion Table entry by entering the `chg-gtcnv` command with appropriate parameter combinations shown in Table 58: GT Conversion Parameter Combinations and with the values for these parameters shown in the `rtrv-gtcnv` output in Step 2.

Note: If Step 3 and Step 4 were performed, and no other changes are being made to the GT Conversion entry, do not perform this step. Continue the procedure with Step 7.
Table 58: GT Conversion Parameter Combinations

<table>
<thead>
<tr>
<th>GTIXLAT=22</th>
<th>GTIXLAT=22</th>
<th>GTIXLAT=22</th>
<th>GTIXLAT=24</th>
<th>GTIXLAT=24</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIR = ATOI</td>
<td>DIR = ITOA</td>
<td>DIR = BOTH</td>
<td>DIR = ATOI</td>
<td>DIR = ITOA</td>
</tr>
<tr>
<td>TTA = <current TTA value></td>
<td>TTI = <current TTI value></td>
<td>TTA = <current TTA value></td>
<td>TTI = <current TTI value></td>
<td>TTA = <current TTA value></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TTI = <current TTI value></td>
<td>NP = <current NP value></td>
<td>NAI = <current NAI value></td>
</tr>
<tr>
<td>NP = <current NP value></td>
<td>NAI = <current NAI value></td>
<td>NP = <current NP value></td>
<td>NAI = <current NAI value></td>
<td></td>
</tr>
</tbody>
</table>

Optional Parameters

| TTI = 0-255 | TTA = 0-255 | TTA = 0-255 | TTA = 0-255 | TTA = 0-255 |
| NPDD = 0-21 | NPDS = 0-21 | NPDS = 0-21 | NPDS = 0-21 | NPDS = 0-21 |
| NPDS = 1 - 21 digits |
| NSDD = 0-21 |
| NSDS = 1 - 21 digits |

Notes:

1. The `gtixlat` parameter cannot be specified with the `chg-gtcnv` command, but is used to determine the parameter combinations that can be specified with the `chg-gtcnv` command.

2. If the GT Conversion Table entry contains no prefix (npdd, npds) or suffix (nsdd, nsds) parameter values, the prefix or suffix parameters can be specified with the `chg-gtcnv` command, but both sets of parameters, or a mixture of the prefix or suffix parameters cannot be specified.

3. If the GT Conversion Table entry contains prefix parameter values, the suffix parameters cannot be specified with the `chg-gtcnv` command.

4. If the GT Conversion Table entry contains suffix parameter values, the prefix parameters cannot be specified with the `chg-gtcnv` command.

For this example, enter these commands.

```
```
chg-gtcnv:dir=both:tta=8:tti=9:np=4:nai=8:npds=6151

When each of these commands have successfully completed, the following message should appear.

```
rlghncxa03w 06-10-28 21:15:37 GMT EAGLE5 36.0.0
CHG-GTCNV: MASP A - COMPLTD
```

6. Verify the changes using the \texttt{rtrv-gtcnv} command and specifying the parameter values used in Step 5, along with the \texttt{gtixlat} parameter value shown in the \texttt{rtrv-gtcnv} output in Step 2 that was assigned to the GT Conversion Table entry changed in Step 5.

For this example, enter these commands.

\texttt{rtrv-gtcnv:dir=atoi:gtixlat=22:tta=10}

This is an example of the possible output.

```
rlghncxa03w 06-10-28 21:15:37 GMT EAGLE5 36.0.0
DIR   GTIXLAT  TTA  TTI  NP  NAI  DEL  POS  ADD
atoi   22    10    25   --- ---  3    sfx  818
GTCNV table is (11 of 1000) 1% full
```

\texttt{rtrv-gtcnv:dir=itoi:gtixlat=24:tti=7}

This is an example of the possible output.

```
rlghncxa03w 06-10-28 21:15:37 GMT EAGLE5 36.0.0
DIR   GTIXLAT  TTA  TTI  NP  NAI  DEL  POS  ADD
itoa   24    40    7    4   8    3    pfx  202
GTCNV table is (11 of 1000) 1% full
```

\texttt{rtrv-gtcnv:dir=both:gtixlat=24:tti=9}

This is an example of the possible output.

```
rlghncxa03w 06-10-28 21:15:37 GMT EAGLE5 36.0.0
DIR   GTIXLAT  TTA  TTI  NP  NAI  DEL  POS  ADD
both   24     8    9    4   8    4    pfx  6151
GTCNV table is (11 of 1000) 1% full
```

7. Backup the new changes using the \texttt{chg-db:action=backup:dest=fixed} command.
These messages should appear, the active Maintenance and Administration Subsystem Processor (MASP) appears first.

```
BACKUP (FIXED) : MASP A - Backup starts on active MASP.
BACKUP (FIXED) : MASP A - Backup on active MASP to fixed disk complete.
BACKUP (FIXED) : MASP A - Backup starts on standby MASP.
BACKUP (FIXED) : MASP A - Backup on standby MASP to fixed disk complete.
```
Changing the ANSI/ITU SCCP Conversion Options

This procedure is used to change the options used for the ANSI/ITU SCCP Conversion feature using the `chg-stpopts` command. The options are:

- `cnvcgda` – The CGPA point code in ANSI SCCP messages are discarded if the point code or alias point code of the destination network type is not defined.
- `cnvcgdi` – The CGPA point code in ITU-I SCCP messages are discarded if the point code or alias point code of the destination network type is not defined.
- `cnvcgdn` – The CGPA point code in ITU-N SCCP messages are discarded if the point code or alias point code of the destination network type is not defined.
- `cnvcgdn24` – The CGPA point code in ITU-N24 SCCP messages are discarded if the point code or alias point code of the destination network type is not defined.
- `gtcnvdflt` – SCCP messages are routed using system defaults when an appropriate entry is not found in the Default GT Conversion Table.

The values for each of these parameters, shown in the `rtrv-stpopts` output, is either yes or no. The system default values for these parameters is no.

These parameters of the `chg-stpopts` command are optional. For any parameters not specified with the `chg-stpopts` command, the values for these parameters are not changed.

The current values for these parameters are shown in the `CNVCDA`, `CNVCADI`, `CNVCADN`, `CNVCADN24`, and `GTCNVDFLT` fields in the output of the `rtrv-stpopts` command.

The ANSI/ITU SCCP Conversion Feature must be enabled to change these parameter values with the `chg-stpopts` command. The `CNVCDA`, `CNVCADI`, `CNVCADN`, `CNVCADN24`, and `GTCNVDFLT` fields in the output of the `rtrv-stpopts` command are shown when the ANSI/ITU SCCP Conversion feature is enabled. If the `CNVCDA`, `CNVCADI`, `CNVCADN`, `CNVCADN24`, and `GTCNVDFLT` fields are not shown in the output of the `rtrv-stpopts` command, perform the `Activating the ANSI/ITU SCCP Conversion Feature` procedure to enabled the ANSI/ITU SCCP Conversion feature.

Note: The ANSI/ITU SCCP Conversion feature can only be permanently enabled.

Note: If the value of the `CNVCDA`, `CNVCADI`, or `CNVCADN` value in the `rtrv-stpopts` output is no when this procedure is completed, and the calling party address of the MSU cannot be converted when the MSU is processed, then the MSU is discarded.

1. Display the existing values for the ANSI/ITU SCCP Conversion feature options by entering the `rtrv-stpopts` command.

 This is an example of the possible output.

   ```
   rlgnncxa03w 07-05-17 16:02:05 GMT EAGLE5 37.0.0
   STP OPTIONS
   -----------------------
   CNVCDA     no
   CNVCADI    no
   CNVCADN    no
   ```
Note: The rtrv-stpopts command output contains other fields that are not used by this procedure. If you wish to see all the fields displayed by the rtrv-stpopts command, refer to the rtrv-stpopts command description in the Commands Manual.

If the CNVCGDA, CNVCGDI, CNVCGDN, CNVCGDN24, and GTCNVDFLT fields are not shown in the output of the rtrv-stpopts command, perform the Activating the ANSI/ITU SCCP Conversion Feature procedure to enable the ANSI/ITU SCCP Conversion feature. After the ANSI/ITU SCCP Conversion feature has been enabled, the values for these options will be no.

Note: The ANSI/ITU SCCP Conversion feature can only be permanently enabled.

2. Change the ANSI/ITU SCCP Conversion feature options by entering the chg-stpopts command with at least one of these parameters.

- :on=cnvcgda - if the current value is no
- :on=cnvcgdi - if the current value is no
- :on=cnvcgdn - if the current value is no
- :on=cnvcgdn24 - if the current value is no
- :on=gtcnvdflt - if the current value is no
- :off=cnvcgda - if the current value is yes
- :off=cnvcgdi - if the current value is yes
- :off=cnvcgdn - if the current value is yes
- :off=cnvcgdn24 - if the current value is yes
- :off=gtcnvdflt - if the current value is yes

For this example, enter this command.

```
chg-stpopts:on=cnvcgdi:on=gtcnvdflt
```

When this command has successfully completed, this message should appear.

```
rlghncxa03w 07-05-07 00:22:57 GMT  EAGLE5 37.0.0
CHG-STPOPTS: MASP A - COMPLTD
```

3. Verify the changes using the rtrv-stpopts command.

This is an example of the possible output.

```
rlghncxa03w 07-05-17 16:02:05 GMT  EAGLE5 37.0.0
STP OPTIONS
-----------------------
CNVCGDA             no
CNVCGDI            yes
CNVCGDN             no
CNVCGDN24           no
GTCNVDFLT          yes
```

Note: The rtrv-stpopts command output contains other fields that are not used by this procedure. If you wish to see all the fields displayed by the rtrv-stpopts command, refer to the rtrv-stpopts command description in the Commands Manual.

4. Back up the new changes using the chg-db:action=backup:dest=fixed command.
These messages should appear, the active Maintenance and Administration Subsystem Processor (MASP) appears first.

<table>
<thead>
<tr>
<th>Backup (Fixed)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MASP A - Backup starts on active MASP.</td>
</tr>
<tr>
<td>MASP A - Backup on active MASP to fixed disk complete.</td>
</tr>
<tr>
<td>MASP A - Backup starts on standby MASP.</td>
</tr>
<tr>
<td>MASP A - Backup on standby MASP to fixed disk complete.</td>
</tr>
</tbody>
</table>

Changing SCCP Class 1 Sequencing Option

This procedure is used to change the option for sequencing UDT/XUDT Class 1 messages using the chg-sccpopts command and the class1seq parameter. The class1seq parameter has two values on and off.

When the class1seq parameter value is on, UDT/XUDT Class 1 messages are delivered to the remote node in the order in which they were received (in sequence). Load sharing of these messages is performed in the dominant mode, overriding the load sharing configuration in the MAP and MRN tables.

Delivering the UDT/XUDT Class 1 ITU messages in sequence is guaranteed only if the randsls parameter value of the chg-stpopts command is either off or class0. If you wish to guarantee delivering these messages in sequence, the class1seq=on and the randsls=all parameters should not be used together in the EAGLE 5 ISS. The value of the randsls parameter is shown in the rtrv-stpopts command.

When the class1seq parameter value is off, load sharing of the UDT/XUDT Class 1 messages is performed using the load sharing configuration in the MAP and MRN tables. The delivery of the UDT/XUDT Class 1 messages in sequence is not guaranteed.

1. Display the existing value for the class1seq parameter by entering the rtrv-sccpopts command. This is an example of the possible output.
   ```
   rlghncxa03w 07-05-17 16:02:05 GMT  EAGLE5 37.0.0
   SCCP OPTIONS
   -----------------------------------------------
   CLASS1SEQ                  off
   DFLGTMODE                  CdPA
   ```

2. Verify the value of the randsls parameter of the chg-stpopts command by entering the rtrv-stpopts command.

 Note: If the class1seq parameter value in step 1 is on, skip step 2 and 3, and go to step 4.

 This is an example of the possible output.
   ```
   rlghncxa03w 07-05-17 16:02:05 GMT  EAGLE5 37.0.0
   STP OPTIONS
   -----------------------------------------------
   RANDSLS                     class0
   ```

 Note: The rtrv-stpopts command output contains other fields that are not used by this procedure. If you wish to see all the fields displayed by the rtrv-stpopts command, refer to the rtrv-stpopts command description in the *Commands Manual*.
Delivering the UDT/XUDT Class 1 ITU messages in sequence is guaranteed only if the `randsls` parameter value of the `chg-stpopts` command is either `off` or `class0` and if the `class1seq` parameter value is `on`. If you wish to guarantee delivering these messages in sequence, the `class1seq=on` and the `randsls=all` parameters should not be used together in the EAGLE 5 ISS.

3. Change the `randsls` parameter value to either `off` or `class0`. Refer to the “Configuring the EAGLE 5 ISS for Random SLS Generation” procedure in the Database Administration Manual - SS7 for more information on using the `off` and `class0` options. For this example, enter this command.

   ```
   chg-stpopts: randsls=class0
   ```

 When this command has successfully completed, this message should appear.

   ```
   righncxa03w 07-05-07 00:22:57 GMT EAGLE5 37.0.0
   CHG-STPOPTS: MASP A - COMPLTD
   ```

4. Change the `class1seq` parameter value.

 If you wish to enable the sequencing of UDT/XUDT Class 1 messages, enter this command.

   ```
   chg-sccpopts: class1seq=on
   ```

 If you wish to disable the sequencing of UDT/XUDT Class 1 messages, enter this command.

   ```
   chg-sccpopts: class1seq=off
   ```

 When the `chg-sccpopts` command has successfully completed, this message should appear.

   ```
   righncxa03w 07-05-07 00:22:57 GMT EAGLE5 37.0.0
   CHG-SCCPOPTS: MASP A - COMPLTD
   ```

5. Verify the changes using the `rtrv-sccpopts` command. This is an example of the possible output.

   ```
   righncxa03w 07-05-17 16:02:05 GMT EAGLE5 37.0.0
   SCCP OPTIONS
   -----------------------------
   CLASS1SEQ                    on
   DFLTGTTMODE                CdPA
   ```

6. Back up the new changes using the `chg-db: action=backup: dest=fixed` command. These messages should appear, the active Maintenance and Administration Subsystem Processor (MASP) appears first.

   ```
   BACKUP (FIXED) : MASP A - Backup starts on active MASP.
   BACKUP (FIXED) : MASP A - Backup on active MASP to fixed disk complete.
   BACKUP (FIXED) : MASP A - Backup starts on standby MASP.
   BACKUP (FIXED) : MASP A - Backup on standby MASP to fixed disk complete.
   ```
Changing the SCCP Alarm Thresholds

This procedure is used to change the SCCP alarm thresholds using the chg-th-alm command and these parameters.

:sccptpscap – The percentage for the SCCP load capacity (TPS) threshold alarm, from 0 to 100 and is shown in the SCCP TPS Threshold field of the rtrv-th-alm output and in the System TPS Alarm Threshold field in the rept-stat-sccp output. The system default value is 80. When this threshold is exceeded, UAM 330 is generated.

:sccpcalcmthd – The calculation method used for determining if the SCCP load capacity (TPS) threshold alarm level has been exceeded. This parameter contains these values:

- **N** – All in-service normal cards are used in the SCCP load capacity (TPS) threshold alarm level calculation.
- **NPLUS1** – All in-service normal cards minus one of the in-service normal card with the highest TPS capacity are used in the SCCP load capacity (TPS) threshold alarm level calculation.

The system default value is **N**.

The value of this parameter is shown in the SCCP Calculation Method field of the rtrv-th-alm output and in the System SCCP Capacity Calc. Method field in the rept-stat-sccp output.

The service modules that can be used are DSMs and E5-SM4Gs. Each type of service module supports a certain number of transactions per second (TPS), DSMs - 1700, and E5-SM4G - 1700 or 5000 if the E5-SM4G Throughput Capacity feature is enabled. If the sccpcalcmthd=n parameter is specified, the value in the System SCCP Capacity Calc. Method field in the rept-stat-sccp output is the sum of the TPS ratings of all the in-service normal service modules, shown with the entry IS-NR in the PST column in the rept-stat-sccp output.

If the sccpcalcmthd=nplus1 parameter is specified, the value in the System SCCP Capacity Calc. Method field in the rept-stat-sccp output is the sum of the TPS ratings of all the in-service normal service modules, shown with the entry IS-NR in the PST column in the rept-stat-sccp output, minus the TPS rating of the highest rated in-service normal card. If the EAGLE 5 ISS contains only only DSMs, or only E5-SM4Gs as service modules, then the TPS rating of one of the DSM, or E5-SM4G, as applicable, is subtracted from the sum of the TPS ratings of all the in-service normal service modules. If the EAGLE 5 ISS contains DSMs, and E5-SM4Gs then the TPS rating of one of the E5-SM4Gs is subtracted from the sum of the TPS ratings of all the in-service normal service modules.

:gttservl1 – The percentage of the SCCP GTT service errors, shown in the FAIL RATIO column for the GTT row of the TOTAL SERVICE STATISTICS: section of the rept-stat-sccp output, from 1 to 100, that when exceeded, generates major alarm UAM 0452. The system default value is 10.

:gttservl2 – The percentage of the SCCP GTT service errors, shown in the FAIL RATIO column for the GTT row of the TOTAL SERVICE STATISTICS: section of the rept-stat-sccp output, from 1 to 100, that when exceeded, generates critical alarm UAM 0453. The system default value is 20.

Note: After the chg-th-alm command is performed, the gttservl2 parameter value must be greater than the gttservl1 parameter value.

:nongttservl1 – The percentage of the SCCP non-GTT service errors (for example, GPORT, GFLEX, EIR, etc.), shown in the FAIL RATIO column for the rows other than GTT in the TOTAL SERVICE STATISTICS: section of the rept-stat-sccp output, from 1 to 100, that when exceeded, generates major alarm UAM 0452. The system default value is 10.
nongttservl2 – The percentage of the SCCP non-GTT service errors (for example, GPORT, GFLEX, EIR, etc.), shown in the FAIL RATIO column for the rows other than GTT in the TOTAL SERVICE STATISTICS: section of the rept-stat-sccp output, from 1 to 100, that when exceeded, generates critical alarm UAM 0453. The system default value is 20.

Note: After the chg-th-alm command is performed, the nongttservl2 parameter value must be greater than the nongttservl1 parameter value.

sccpthlv1intvl – The number of minutes, from 0 to 1440, during which the SCCP threshold level 1 alarm (UAM 0452) cannot be raised more than once. The system default value is 0.

sccpthlv2intvl – The number of minutes, from 0 to 1440, during which the SCCP threshold level 2 alarm (UAM 0453) cannot be raised more than once. The system default value is 0.

Note: After the chg-th-alm command is performed, the sccpthlv2intvl parameter value must be greater than the sccpthlv1intvl parameter value.

For more information on these alarms, refer to the Unsolicited Alarm and Information Messages Manual.

The chg-th-alm command contains other optional parameters. These parameters are not shown here because they are not necessary to provision the SCCP alarm thresholds. These parameters are explained in more detail in the Commands Manual.

1. Display the current SCCP alarm thresholds in the database by entering the rtrv-th-alm command. This is an example of the possible output.

```
rlghncxa03w 08-03-28 09:12:36 GMT EAGLE5 38.0.0
SCCP TPS Threshold: 80%
SCCP Calculation Method: N
GTT SCCP Service Alarm Level 1: 10%
GTT SCCP Service Alarm Level 2: 20%
Non-GTT SCCP Service Alarm Level 1: 10%
Non-GTT SCCP Service Alarm Level 2: 20%
SCCP Service Alarm Level 1 Interval: 0
SCCP Service Alarm Level 2 Interval: 0
Command Executed
```

Note: The rtrv-th-alm command output contains other fields that are not used in this procedure. If you wish to see all the fields displayed by the rtrv-th-alm command, refer to the rtrv-th-alm command description in the Commands Manual.

2. Change the SCCP alarm thresholds by entering the chg-th-alm command with at least one of the SCCP alarm threshold parameters.

If a SCCP alarm threshold parameter is not specified with the chg-th-alm command, that parameter value will not be changed. The system default values for the SCCP alarm threshold parameters are:

- `sccptpscap - 80`
- `sccppcalcmtlh - n`
- `gttservl1 - 10`
- `gttservl2 - 20`
- `nongttservl1 - 10`
- `nongttservl2 - 20`
- `sccpthlv1intvl - 10`
- `sccpthlv2intvl - 20`
Note: After the chg-th-alm command is performed, the gttservl2 parameter value must be greater than the gttservl1 parameter value, the nongttservl2 parameter value must be greater than the nongttservl1 parameter value, and the sccpthlv2intvl parameter value must be greater than the sccpthlv1intvl parameter value.

For this example, enter this command.

chg-th-alm: sccptpscap=70: gttservl1=70: gttservl2=80: nongttservl1=30: nongttservl2=40: sccpthlv1intvl=120: sccpthlv2intvl=240

When this command has successfully completed, this message should appear.

3. Verify the changes using the rtrv-th-alm command. This is an example of the possible output.

Note: The rtrv-th-alm command output contains other fields that are not used in this procedure. If you wish to see all the fields displayed by the rtrv-th-alm command, refer to the rtrv-th-alm command description in the Commands Manual.

4. Backup the new changes using the chg-db: action=backup: dest=fixed command. These messages should appear, the active Maintenance and Administration Subsystem Processor (MASP) appears first.

Changing the Transaction-Based GTT Load Sharing Options

This procedure is used to change the options for performing Transaction-Based GTT Load Sharing using the chg-sccpopts command and with these parameters:

:tgtt0 – enable or disable Transaction-Based GTT Load Sharing for SCCP Class 0 UDT, UDTS, XUDT, or XUDTS messages. The values for this parameter are:

- udt – Transaction-Based GTT Load Sharing is performed for Class 0 UDT or UDTS messages.
- xudt – Transaction-Based GTT Load Sharing is performed for Class 0 XUDT or XUDTS messages.
- both – Transaction-Based GTT Load Sharing is performed for Class 0 UDT, UDTS, XUDT and XUDTS messages.
- none – Transaction-Based GTT Load Sharing is not performed for SCCP Class 0 messages.
tggt1 – enable or disable Transaction-Based GTT Load Sharing for SCCP Class 1 UDT, UDTS, XUDT, or XUDTS messages. The values for this parameter are:

- **udt** – Transaction-Based GTT Load Sharing is performed for Class 1 UDT or UDTS messages.
- **xudt** – Transaction-Based GTT Load Sharing is performed for Class 1 XUDT or XUDTS messages.
- **both** – Transaction-Based GTT Load Sharing is performed for Class 1 UDT, UDTS, XUDT and XUDTS messages.
- **none** – Transaction-Based GTT Load Sharing is not performed for SCCP Class 1 messages.

tgttudtkey – the Transaction Parameter for the incoming UDT or UDTS messages. The values for this parameter are:

- **mtp** – Transaction-Based GTT Load Sharing is performed on the MTP parameter for UDT and UDTS messages.
- **sccp** – Transaction-Based GTT Load Sharing is performed on the SCCP parameter for UDT and UDTS messages.
- **tcap** – Transaction-Based GTT Load Sharing is performed on the TCAP parameter for UDT and UDTS messages.
- **enhmtp** – Transaction-Based GTT Load Sharing is performed using the enhanced MTP algorithm for UDT and UDTS messages.

tgttxudtkey – the Transaction Parameter for the incoming XUDT or XUDTS messages. The values for this parameter are:

- **mtp** – Transaction-Based GTT Load Sharing is performed on the MTP parameter for XUDT and UDTS messages.
- **sccp** – Transaction-Based GTT Load Sharing is performed on the SCCP parameter for XUDT and UDTS messages.
- **enhmtp** – Transaction-Based GTT Load Sharing is performed using the enhanced MTP algorithm for XUDT and UDTS messages.

The Transaction-Based GTT Load Sharing feature must be enabled to change these parameter values with the chg-sccpopts command. The **tggt0**, **tggt1**, **tgttudtkey**, and **tgttxudtkey** fields in the output of the rtrv-sccpopts command are shown when the Transaction-Based GTT Load Sharing feature is enabled. If the **tggt0**, **tggt1**, **tgttudtkey**, and **tgttxudtkey** fields are not shown in the output of the rtrv-sccpopts command, perform the **Activating the Transaction-Based GTT Load Sharing Feature** procedure to enable the Transaction-Based GTT Load Sharing feature.

When the Transaction-Based GTT Load Sharing feature is enabled, these values for the **tggt0**, **tggt1**, **tgttudtkey**, and **tgttxudtkey** fields are shown in the **rtrv-sccpopts output**:

- **tggt0** – none
- **tggt1** – none
- **tgttudtkey** – mtp
- **tgttxudtkey** – mtp.

If any parameter is not specified with the chg-sccpopts command, that parameter value will not be changed.

If the value **both** is specified for the **tggt0** or **tggt1** parameters, the entry **UDT, XUDT** is shown in the **tggt0** or **tggt1** fields of the rtrv-sccpopts output.

For more information on the Transaction-Based GTT Load Sharing feature, refer to the **Transaction-Based GTT Load Sharing** section.
1. Display the existing values for the Transaction-Based GTT Load Sharing feature options by entering the `rtrv-sccpopts` command. This is an example of the possible output.

```
rlghncxa03w 08-09-17 16:02:05 GMT   EAGLE5 39.2.0
SCCP OPTIONS
---------------------
tgtt0        NONE
tgtt1        NONE
tgttudtkey   MTP
tgttxudtkey  MTP
```

Note: The `rtrv-sccpopts` command output contains other fields that are not used by this procedure. If you wish to see all the fields displayed by the `rtrv-sccpopts` command, refer to the `rtrv-sccpopts` command description in the *Commands Manual*.

If the `tggt0`, `tggt1`, `tgttudtkey` and `tgttxudtkey` fields are not shown in the output of the `rtrv-sccpopts` command, the Transaction-Based GTT Load Sharing feature is not enabled. For these fields to be shown in the `rtrv-sccpopts` output, and to change these values, the Transaction-Based GTT Load Sharing feature must be enabled. Perform the *Activating the Transaction-Based GTT Load Sharing Feature* procedure to enable the Transaction-Based GTT Load Sharing feature.

2. Change the Transaction-Based GTT Load Sharing feature options by entering the `chg-sccpopts` command with at least one of the Transaction-Based GTT Load Sharing parameters. For this example, enter this command.

```
chg-sccpopts:tggt0=udt:tgtt1=both:tgttudtkey=tcap:tgttxudtkey=enhmtp
```

If any parameter is not specified with the `chg-sccpopts` command, that parameter value will not be changed.

When the `chg-sccpopts` command has successfully completed, this message should appear.

```
rlghncxa03w 08-09-07 00:22:57 GMT   EAGLE5 39.2.0
CHG-SCCPOPTS: MASP A - COMPLTD
```

3. Verify the changes using the `rtrv-sccpopts` command. This is an example of the possible output.

```
rlghncxa03w 08-09-17 16:02:05 GMT   EAGLE5 39.2.0
SCCP OPTIONS
---------------------
tgtt0        UDT
tgtt1        UDT,XUDT
tgttudtkey   TCAP
tgttxudtkey  ENHMTP
```

Note: The `rtrv-sccpopts` command output contains other fields that are not used by this procedure. If you wish to see all the fields displayed by the `rtrv-sccpopts` command, refer to the `rtrv-sccpopts` command description in the *Commands Manual*.

4. Back up the new changes using the `chg-db:action=backup:dest=fixed` command. These messages should appear, the active Maintenance and Administration Subsystem Processor (MASP) appears first.

```
BACKUP (FIXED) : MASP A - Backup starts on active MASP.
BACKUP (FIXED) : MASP A - Backup on active MASP to fixed disk complete.
BACKUP (FIXED) : MASP A - Backup starts on standby MASP.
BACKUP (FIXED) : MASP A - Backup on standby MASP to fixed disk complete.
```
Adding a Loopset

This procedure is used to add a loopset to the database using the `ent-loopset` command.

The `ent-loopset` command uses these parameters.

: **name** - The name of the loopset. The loopset name can contain up to 8 characters, with the first character being a letter.

: **pc1/pc1a/pc1i/pc1n/pc1n24** - The point codes assigned to the specified loopset, either an ANSI point (pc1/pc1a), ITU-1 or ITU-1 spare point (pc1i), a 14-bit ITU-N or 14-bit ITU-N spare point code (pc1n), or a 24-bit ITU-N (pc1n24) point code.

Note: See Chapter 2, *Configuring Destination Tables* in the *Database Administration Manual - SS7* for a definition of the point code types that are used on the EAGLE 5 ISS and for the definition of the different formats that can be used for ITU national point codes.

: **mode** - Mode of operation. Can be notify or discard. This is an optional parameter that specifies whether the message is discarded when an SCCP loop is detected. The "Notify only" mode of operation generates UIMs but not actually discard the message, which allows a user to capture and verify messages. However, the "Discard" mode of operation generates the UIMs and also discard the MSUs.

To add a loopset to the database, the SCCP Loop Detection feature must be enabled. The `rtrv-ctrl-feat` command output shows whether or not the SCCP Loop Detection feature is enabled. If the SCCP Loop Detection feature is not enabled, perform the *Activating the SCCP Loop Detection Feature* procedure to enable this feature.

All the point codes specified with the `pc1/pc1a/pc1i/pc1n/pc1n24` parameter must be the same type of point code. The point code values are separated by commas with no spaces between the commas and the point code values as shown in the example `pc1=002-002-002,003-003-003,004-004-004`. This example specified three ANSI point codes for the loopset.

A maximum of twelve point codes can be assigned to a single loopset. However, this procedure can be used to assign a maximum of six point codes to a single loopset. If you wish to add more point codes to the loopset entries, perform the *Changing the Attributes of a Loopset* procedure.

A maximum of 1000 loopsets can be assigned to a loopset database. If adding the new loopset entries exceed the maximum capacity of the loopset table displayed in the `rtrv-loopset` command output, entries in the loopset table must be removed to ensure that the new loopset entries can be added. Perform the *Removing a Loopset* procedure to remove the required number of loopset entries.

1. Display the loopsets in the database by entering this command.

 `rtrv-loopset:num=1000:force=yes`

 This is an example of the possible output.

 rlghncxa03w 06-10-18 08:52:38 GMT EAGLE Rel 35.6.0

<table>
<thead>
<tr>
<th>LoopSet</th>
<th>Mode</th>
<th>Point Codes</th>
</tr>
</thead>
<tbody>
<tr>
<td>rtp1</td>
<td>notify</td>
<td>005-005-005, 007-007-007 (ANSI)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>003-004-003, 003-007-003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>005-007-005, 007-004-007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>003-003-009</td>
</tr>
</tbody>
</table>
Note: If the rtrv-loopset command is entered with no other parameters specified, a maximum of 50 entries are displayed. To display more than 50 entries, the force=yes parameter must be specified with the rtrv-loopset command and the num parameter value must be greater than 50. Since there can be a maximum of 1000 loopsets in the database, to display all the loopsets in the database, the force=yes and num=1000 parameters must be specified with the rtrv-loopset command.

2. If error message E4565 is displayed after the rtrv-loopset command is executed, the SCCP Loop Detection feature is not enabled.
 If the SCCP Loop Detection feature is not enabled, perform the Activating the SCCP Loop Detection Feature procedure to enable the SCCP Loop Detection feature. If error message E2584 is displayed after the rtrv-loopset command is executed, the GTT feature is not on. Perform the Activating the SCCP Loop Detection Feature procedure to turn the GTT feature on and enable the SCCP Loop Detection feature.

3. The EAGLE 5 ISS can contain a maximum of 1000 loopset. If the rtrv-loopset output in step 1 show 1000 loopsets, enough loopsets must be removed from the database to allow the new loopsets to be added.
 Perform the Removing a Loopset procedure and remove the required number of loopsets to allow the addition of the new loopsets. If no loopsets are removed, the new loopsets cannot be added and this procedure cannot be performed.

4. Add the loopset to the database using the ent-loopset command.
 For this example, enter this command
 ent-loopset:name=rtp2:pc1=2-2-2,3-3-3,4-4-4,5-5-5
 When this command has successfully completed, this message should appear.
 rlghncxa03w 06-10-18 08:31:28 GMT EAGLE Rel 35.6.0
 LOOPSET table is (12 of 1000) 1% full
 ENT-LOOPSET: MASP A - COMPLTD

5. Verify the changes using the rtrv-loopset command with the loopset name specified in step 4.
 For this example, enter this command.
 rtrv-loopset:name=rtp2
 This is an example of the possible output.
 rlghncxa03w 06-10-18 08:31:28 GMT EAGLE Rel 35.6.0
 LoopSet Mode Point Codes
 ┌───────────────┬───────┬───┐
 │ rtp2 │ notify │ 002-002-002 003-003-003 (ANSI) 004-004-004 005-005-005 │
 └───────────────┴───────┴───┘
 LOOPSET table is (2 of 1000) 1% full

6. Backup the new changes using the chg-db:action=backup:dest=fixed command.
These messages should appear, the active Maintenance and Administration Subsystem Processor (MASP) appears first.

BACKUP (FIXED) : MASP A-Backup starts on active MASP.
BACKUP (FIXED) : MASP A-Backup on active MASP to fixed disk complete.
BACKUP (FIXED) : MASP A-Backup starts on standby MASP.
BACKUP (FIXED) : MASP A-Backup on standby MASP to fixed disk complete.

7. A loopset can contain a maximum of 12 point codes. If you wish to add more point codes to this loopset, perform the Changing the Attributes of a Loopset procedure and add the additional point codes with the apcl/apcla/apcli/apcln/apcln24 parameter.

If you do not wish to add more point codes to the loopset, this procedure is finished.

Removing a Loopset

This procedure is used to remove an entire loopset from the database or a specific point code in a loopset using the dlt-loopset command.

The dlt-loopset command uses these parameter.

:name - The name of the loopset being removed, shown in the rtrv-loopset output.

:force – This parameter has two values, yes or no. The value yes allows the point code in the loopset to be removed if the loopset is assigned to entries in either the rtrv-gtt or rtrv-gta outputs. The value no requires that any references to the loopset must be removed from the GTT or GTA entries before the loopset or the point code in the loopset can be removed. Perform one of these procedures to remove the reference to the loopset, depending on whether or not the EGTT feature is on. The status of the EGTT feature is shown in the rtrv-feat command output.

• If the EGTT feature is not on – Enter the rtrv-gtt command to verify the loopset references.
 Perform the Changing a Global Title Translation procedure and change the loopset reference to NONE or to another loopset name, or remove the global title translation by performing the Removing a Global Title Translation procedure.

• If the EGTT feature is on – Enter the rtrv-gta command to verify the loopset references. Perform Changing Global Title Address Information and change the loopset reference to NONE or to another loopset name, or remove the entry by performing the Removing Global Title Address Information procedure.

:pcl/pcla/pcli/pcln/pcln24 – The point code, either an ANSI point code (pcl/pcla), ITU-I or ITU-I spare point code (pcli), a 14-bit ITU-N or 14-bit ITU-N spare point code (pcln), or a 24-bit ITU-N (pcln24) point code, that is assigned to the loopset and shown in the rtrv-loopset output.

If the dlt-loopset command is specified with the name and pcl/pcla/pcli/ pcln/pcln24 parameter, the specified point code is removed from the loopset.

If the dlt-loopset command is specified with the name parameter and without the pcl/pcla/pcli/pcln/pcln24 parameter, the entire loopset is removed from the database.

1. Display the loopsets in the database by entering this command. This is an example of the possible output

 rtrv-loopset:num=1000:force=yes
Note: If the `rtrv-loopset` command is entered with no other parameters specified, a maximum of 50 entries are displayed. To display more than 50 entries, the `force=yes` parameter must be specified with the `rtrv-loopset` command and the `num` parameter value must be greater than 50. Since there can be a maximum of 1000 loopsets in the database, to display all the loopsets in the database, the `force=yes` and `num=1000` parameters must be specified with the `rtrv-loopset` command.

This is an example of the possible output.

```
rlghncxa03w 06-10-18 08:52:38 GMT  EAGLE Rel 35.6.0
LoopSet   Mode     Point Codes
==========================================================================
  rtp1      notify   005-005-005       007-007-007      (ANSI)
            003-004-003       003-007-003
            005-007-005       007-004-007
            005-004-005
  rtp2      notify   002-002-002       003-003-003      (ANSI)
            004-004-004       005-005-005
LOOPSET table is (2 of 1000) 1% full
```

If error message E4565 is displayed or if no loopsets are displayed, this procedure cannot be performed.

Note: If the `force=yes` parameter will be specified with the `dlt-loopset` command, only a specific point code can be removed from the loopset. Skip steps 2 through 6 and go to step 7.

2. Verify whether or not the EGTT feature is turned on by entering the `rtrv-feat` command. If the EGTT featured is turned on, the EGTT field should be set to on.

Note: The `rtrv-feat` command output contains other fields that are not used by this procedure. If you wish to know about all the fields displayed by the `rtrv-feat` command, refer to the `rtrv-feat` command description in the `Commands Manual`.

Note: If the EGTT feature is not turned on, skip steps 3 and step 4, and go to step 5.

3. Display the GTT sets in the database using the `rtrv-gttset` command. This is an example of the possible output.

```
rlghncxa03w 09-07-07 00:27:31 GMT EAGLE5 41.1.0
GTTSN      NETDOM  SETTYPE  NDGT
setans015  ansi    CDGTA    6
set1       ansi    CDGTA    6
GTTSN      NETDOM  SETTYPE  NDGT
set1       ansi    CDGTA    6
GTT-SET table is (2 of 2000) 1% full.
```

4. Display the global title address (GTA) information for a GTT set from step 3. Execute the `rtrv-gta` command with the `gttsn` parameter value shown in the output of step 3 and with the name of the loopset being removed, specified with the `loopset` parameter. For this example, enter this command.

```
rtrv-gta:gttsn=set1:loopset=rtp1
```

This is an example of the possible output.

```
rlghncxa03w 09-05-07 00:27:31 GMT EAGLE5 41.0.0
GTTSN      NETDOM  SETTYPE  NDGT
set1       ansi    CDGTA    6
```

401
If any of the displayed entries reference the loopset being removed, for those entries, perform Changing Global Title Address Information and change the loopset reference to NONE or to another loopset name, or remove the entry by performing the Removing Global Title Address Information procedure.

If the displayed entries do not reference the loopset being removed, repeat this step with the other GTT set names displayed in step 3.

When all the GTT set names have been displayed and all applicable global title translation entries have been changed or removed in this step, go to step 7.

5. Display the translation types in the database using the `rtrv-tt` command. This is an example of the possible output.

```
righncxa03w 07-03-25 09:42:31 GMT  EAGLE5 35.6.0
TYPEA      TTN        NDGT
 1          lidb       5
 2          c800       10
 3          d700       6
 5          scp1       6
10          scp2       6
15          scp3       3
ALIAS      TYPEA
 30         5
 40         10
 50         3
 65         3

TYPEI      TTN        NDGT
105        itudb      8
ALIAS      TYPEI
 7          105
```

6. Display the global title translations in the database using the `rtrv-gtt` command specifying a translation type from the `rtrv-tt` command output shown in step 5 and with the name of the loopset being removed, specified with the `loopset` parameter. For this example, enter this command.

```
rtrv-gtt:typea=10:loopset=rtp1
```

This is an example of the possible output.

```
righncxa03w 08-10-25 09:43:31 GMT  EAGLE5 39.2.0
```
If any of the displayed entries reference the loopset being removed, for those entries, perform the Changing a Global Title Translation procedure and change the loopset reference to NONE or to another loopset name, or remove the global title translation by performing the Removing a Global Title Translation procedure.

If the displayed entries do not reference the loopset being removed, repeat this step with the other translation types displayed in step 5.

When all the translation types have been displayed and all applicable global title translation entries have been changed or removed in this step, go to step 7.

7. If an entire loopset is being removed from the database, specify the `dlt-loopset` command with the name of the loopset you wish to remove.

If a point code value is being removed from the loopset, specify the `dlt-loopset` command with the name of the loopset and the point code value you wish to remove.

For this example, enter this command to remove the entire loopset.

```
dlt-loopset:name=rtp1
```

This message should appear.

```
rlghncxa03w 06-10-18 08:48:25 GMT  EAGLE Rel 35.6.0
LOOPSET table is (11 of 1000) 1% full
DLT-LOOPSET: MASP A - COMPLTD
```

Note: If the loopset containing the point code being removed in this step is referenced by an entry shown in either the `rtrv-gtt` or `rtrv-gta` outputs, and those entries have not been removed or the loopset assignment for these entries has not been changed, the `force=yes` parameter must be specified with the `dlt-loopset` command.

If you wish to remove other point codes from the loopset, repeat this step. When you have finished removing the point codes from the loopset, go to step 8.

8. Verify the changes using the `rtrv-loopset` command with the name of the loopset specified in step 7. For this example, enter this command.

```
rtrv-loopset:name=rtp1
```

The following message should appear if you have deleted specific point codes in the loopset.

```
rlghncxa03w 06-10-18 08:52:38 GMT  EAGLE Rel 35.6.0
LoopSet   Mode     Point Codes
==========================================================================
rtp1      notify   005-005-005       003-004-003      (ANSI)
            003-007-003       005-007-005
            007-004-007
```

The following message should appear if you have deleted an entire loopset.

```
E4568 : Loopset Entry does not exist
```
9. Backup the new changes using the chg-db:action=backup:dest=fixed command. These messages should appear, the active Maintenance and Administration Subsystem Processor (MASP) appears first.

```
BACKUP (FIXED) : MASP A - Backup starts on active MASP.
BACKUP (FIXED) : MASP A - Backup on active MASP to fixed disk complete.
BACKUP (FIXED) : MASP A - Backup starts on standby MASP.
BACKUP (FIXED) : MASP A - Backup on standby MASP to fixed disk complete.
```

If a point code value was removed from a loopset in step 7 and the `force=yes` parameter was not used in step 7, and you wish to assign this loopset to the GTT or GTA entries that were removed or changed in steps 4 or 6, go to step 10.

If any of the following actions were performed in step 7, this procedure is finished. Do not perform step 10.

- An entire loopset was removed in step 7.
- A point code value was removed from a loopset with the `force=yes` parameter in step 7.
- A point code value was removed from a loopset in step 7, the `force=yes` parameter was not used in step 7, and you do not wish to assign this loopset to the GTT or GTA entries that were removed or changed in steps 4 or 6.

10. Assign the loopset specified in step 7 to the GTT or GTA entries that were removed or changed in steps 4 or 6.

If the EGTT feature is not on, perform one of these procedures:

- **Adding a Global Title Translation** procedure if the GTT entry was removed from the database in step 6.
- **Changing a Global Title Translation** procedure if the GTT entry was changed in step 6.

If the EGTT is on, perform one of these procedures:

- **Adding Global Title Address Information** procedure if the GTA entry was removed from the database in step 4.
- **Changing a GTT Selector** procedure if the GTA entry was changed in step 4.

Changing the Attributes of a Loopset

This procedure is used to modify a loopset in the following ways using the `chg-loopset` command.

- Change the mode of operation
- Replace all the point codes
- Replace a specific point code
- Replace two specific point codes
- Append additional point codes

The `chg-loopset` command uses these parameters.

: `name` – The name of the loopset to be modified, shown in the `rtrv-loopset` output.

: `force` – This parameter has two values, yes or no. The value yes allows the attributes of a loopset to be changed if the loopset is assigned to entries in either the `rtrv-gtt` or `rtrv-gta` outputs. The value no requires that references to the loopset must be removed from the GTT or GTA entries before
the attributes of the loopset are changed. Perform one of these procedures to remove a reference to the loopset, depending on whether or not the EGTT feature is on. The status of the EGTT feature is shown in the rtrv-feat command output.

- If the EGTT feature is not on – Enter the rtrv-gtt command to verify the loopset references. Perform the Changing a Global Title Translation procedure and change the loopset reference to NONE or to another loopset name, or remove the global title translation by performing the Removing a Global Title Translation procedure.

- If the EGTT feature is on – Enter the rtrv-gta command to verify the loopset references. Perform Changing Global Title Address Information and change the loopset reference to NONE or to another loopset name, or remove the entry by performing the Removing Global Title Address Information procedure.

:pcl/pcla/pcli/pcln/pcln24 – The point code, either an ANSI point code (pcl/pcla), ITU-I or ITU-I spare point code (pcli), a 14-bit ITU-N or 14-bit ITU-N spare point code (pcln), or a 24-bit ITU-N (pcln24) point code, assigned to the loopset shown in the rtrv-loopset output that is to be replaced by a new point code. This point code is the first or the only point code that can be replaced when the chg-loopset command is used to replace two specific point codes or a single point code.

:pc2/pc2a/pc2i/pc2n/pc2n24 – The point code, either an ANSI point code (pc2/pc2a), ITU-I or ITU-I spare point code (pc2i), a 14-bit ITU-N or 14-bit ITU-N spare point code (pc2n), or a 24-bit ITU-N (pc2n24) point code, assigned to the loopset shown in the rtrv-loopset output that is to be replaced by a new point code. This point code is the second point code that can be replaced when the chg-loopset command is used to replace two specific point codes.

:rpcl/rpcla/rpcli/rpcln/rpcln24 – The point code, either an ANSI point code (rpcl/rpcla), ITU-I or ITU-I spare point code (rpcli), a 14-bit ITU-N or 14-bit ITU-N spare point code (rpcln), or a 24-bit ITU-N (rpcln24) point code, that is used to simultaneously replace all the point code(s) assigned to the loopset shown in the rtrv-loopset output.

:npcl/npcla/npcli/npcln/npcln24 – The point code, either an ANSI point code (npcl/npcla), ITU-I or ITU-I spare point code (npcli), a 14-bit ITU-N or 14-bit ITU-N spare point code (npcln), or a 24-bit ITU-N (npcln24) point code that replaces the first or the only specified point code when the chg-loopset command is used to replace two specific point codes or a single point code.

:npc2/npc2a/npc2i/npc2n/npc2n24 – The point code, either an ANSI point code (npc2/npc2a), ITU-I or ITU-I spare point code (npc2i), a 14-bit ITU-N or 14-bit ITU-N spare point code (npc2n), or a 24-bit ITU-N (npc2n24) point code that replaces the second specified point code when the chg-loopset command is used to replace two specific point codes.

:apcl/apcla/apcli/apcln/apcln24 – The point code, either an ANSI point code (apcl/apcla), ITU-I or ITU-I spare point code (apcli), a 14-bit ITU-N or 14-bit ITU-N spare point code (apcln), or a 24-bit ITU-N (apcln24) point code that can be appended to the set of point codes assigned to the loopset shown in the rtrv-loopset output.

:mode – The mode of operation of the SCCP Loop Detection feature. This parameter can have either of the two values Notify and Discard.

1. Display the loopsets in the database by entering this command. This is an example of the possible output.

 rtrv-loopset:num=1000:force=yes

 Note: If the rtrv-loopset command is entered with no other parameters specified, a maximum of 50 entries are displayed. To display more than 50 entries, the force=yes parameter must be specified with the rtrv-loopset command and the num parameter value must be greater than
50. Since there can be a maximum of 1000 loopsets in the database, to display all the loopsets in the database, the force=yes and num=1000 parameters must be specified with the rtrv-loopset command.

This is an example of the possible output.

```
rlghncxa03w 06-10-18 08:52:38 GMT  EAGLE Rel 35.6.0  
LoopSet   Mode     Point Codes  
==========================================================================
rtp1      notify   005-005-005       007-007-007      (ANSI)       
          003-004-003       003-007-003       
          005-007-005       007-004-007       
          005-004-005       

rtp2      notify   002-002-002       003-003-003      (ANSI)       
          004-004-004       005-005-005       

LOOPSET table is (2 of 1000) 1% full
```

If error message E4565 is displayed or if no loopsets are displayed, this procedure cannot be performed.

Note: If the force=yes parameter will be specified with the chg-loopset command, a loopset can be changed without changing or deleting the association, if any, of the loopset with a GTT or a GTA. Skip steps 2 through 6 and go to step 7.

2. Verify whether or not the EGTT feature is turned on by entering the rtrv-feat command. If the EGTT feature is turned on, the EGTT field should be set to on.

Note: The rtrv-feat command output contains other fields that are not used by this procedure. If you wish to know about all the fields displayed by the rtrv-feat command, refer to the rtrv-feat command description in the Commands Manual.

Note: If the EGTT feature is not turned on, skip step 3 and step 4 and go to step 5.

3. Display the GTT sets in the database using the rtrv-gttset command. This is an example of the possible output.

```
rlghncxa03w 09-07-07 00:27:31 GMT EAGLE5 41.1.0  
GTTSN      NETDOM  SETTYPE  NDGT  
setans015  ansi    CDGTA    6     
set1       ansi    CDGTA    6     

GTT-SET table is (2 of 2000) 1% full.
```

4. Display the global title address (GTA) information for a GTT set from step 3. Execute the rtrv-gta command with the gttsn parameter value shown in the output of step 3 and with the name of the loopset being changed, specified with the loopset parameter. For this example, enter this command.

```
rtrv-gta:gttsn=set1:loopset=rtp1  
```

This is an example of the possible output.

```
rlghncxa03w 09-05-07 00:27:31 GMT EAGLE5 41.0.0  
GTTSN      NETDOM  SETTYPE  NDGT  
set1       ansi    CDGTA    6     

GTT TABLE IS 1 % FULL (2 of 269999)  
```
If any of the displayed entries reference the loopset being modified, for those entries, perform Changing Global Title Address Information and change the loopset reference to NONE or to another loopset name, or remove the entry by performing the Removing Global Title Address Information procedure.

If the displayed entries do not reference the loopset being removed, repeat this step with the other GTT set names displayed in step 3.

When all the GTT set names have been displayed and all applicable global title translation entries have been changed or removed in this step, go to step 7.

5. Display the translation types in the database using the rtrv-tt command.

This is an example of the possible output.

```
910-6277-001 Revision A, January 2012
GLOBAL TITLE TRANSLATION
```

6. Display the global title translations in the database using the rtrv-gtt command specifying a translation type from the rtrv-tt command output shown in step 5 and with the name of the loopset being removed, specified with the loopset parameter. For this example, enter this command.

```
rtrv-gtt:typea=10:loopset=rtp1
```

This is an example of the possible output.
If any of the displayed entries reference the loopset being modified, for those entries, perform the Changing a Global Title Translation procedure and change the loopset reference to NONE or to another loopset name, or remove the global title translation by performing the Removing a Global Title Translation procedure.

If the displayed entries do not reference the loopset being removed, repeat this step with the other translation types displayed in step 5.

When all the translation types have been displayed and all applicable global title translation entries have been changed or removed in this step, go to step 7.

7. If all the point codes of the loopset are being replaced simultaneously, specify the chg-loopset command with the name of the loopset with the rpc1 parameter.

For this example, enter this command to replace all the point codes of the loopset simultaneously.

```
chg-loopset:name=rtp1:rpc1a=003-003-003,001-001-001,002-002-002
```

This message should appear.

```
rlghnca03w 07-02-19 10:37:19 GMT 35.6.0
LOOPSET table is (1 of 1000) 1% full
CHG-LOOPSET: MASP A - COMPLTD
```

If a single specified point code value is to be modified in the loopset, specify the chg-loopset command with the name of the loopset, the point code you wish to change and the new point code.

For this example, enter this command to modify a single point code in the loopset.

```
chg-loopset:name=rtp1:pc1=003-003-003:npc1=003-004-005
```

This message should appear.

```
rlghnca03w 07-02-19 10:50:36 GMT 35.6.0
LOOPSET table is (1 of 1000) 1% full
CHG-LOOPSET: MASP A - COMPLTD
```

If two specified point code values are to be modified in the loopset, specify the chg-loopset command with the name of the loopset, the two point codes you wish to change and the new point codes.

For this example, enter this command to modify two specific point codes in the loopset.

```
chg-loopset:name=rtp1:pc1=003-004-005:npc1=003-004-007:pc2=001-001-001:npc2=001-003-004
```

This message should appear.

```
rlghnca03w 07-02-19 10:59:08 GMT 35.6.0
LOOPSET table is (1 of 1000) 1% full
CHG-LOOPSET: MASP A - COMPLTD
```

If only the mode parameter is to be modified in the loopset, specify the chg-loopset command with the name of the loopset, the new value of the mode parameter.

```
chg-loopset:name=rtp1:mode=001-001-001
```

This message should appear.

```
rlghnca03w 07-02-19 10:59:28 GMT 35.6.0
LOOPSET table is (1 of 1000) 1% full
CHG-LOOPSET: MASP A - COMPLTD
```
For this example, enter this command to modify two specific point codes in the loopset.

```
chg-loopset:name=rtp1:mode=discard
```

This message should appear.

```
rlghncxa03w 07-02-19 11:04:52 GMT  35.6.0
LOOPSET table is (1 of 1000) 1% full
CHG-LOOPSET: MASP A - COMPLTD
```

If point codes are to be appended in the loopset, specify the `chg-loopset` command with the name of the loopset, the point codes to be appended.

For this example, enter this command to append the point codes to the loopset.

```
chg-loopset:name=rtp1:apcla=7-7-7,3-3-3,5-5-5
```

This message should appear.

```
rlghncxa03w 07-02-19 11:19:26 GMT  35.6.0
LOOPSET table is (1 of 1000) 1% full
CHG-LOOPSET: MASP A - COMPLTD
```

Refer to the following table for the `chg-loopset` parameter combinations.

Table 59: Changing a Loopset Parameter Combinations

<table>
<thead>
<tr>
<th>Changing Mode only</th>
<th>Replacing All Point Codes</th>
<th>Replacing One Specific Point Code</th>
<th>Replacing two Specific Point Codes</th>
<th>Appending Point Codes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mandatory Parameters</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name (See Note 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mode</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RPCL/RPCLA/</td>
<td>PC1/PC1A/</td>
<td>PC1/PC1A/</td>
<td>PC1/PC1A/</td>
<td>APCL/APCLA/</td>
</tr>
<tr>
<td>RPCLI/RPCLN/</td>
<td>PC1I/PC1N/</td>
<td>PC1I/PC1N/</td>
<td>PC1I/PC1N/</td>
<td>APCLI/APCLN/</td>
</tr>
<tr>
<td>RPCLN24</td>
<td>PC1N/PC1N24</td>
<td>PC1N/PC1N24</td>
<td>PC1N/PC1N24</td>
<td>APCLN24</td>
</tr>
<tr>
<td></td>
<td>NPC1/NPC1A/</td>
<td>NPC1/NPC1A/</td>
<td>NPC1/NPC1A/</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NPC1I/NPC1N/</td>
<td>NPC1I/NPC1N/</td>
<td>NPC1I/NPC1N/</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NPC1N/PC1N24</td>
<td>NPC1N/PC1N24</td>
<td>NPC1N/PC1N24</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Optional Parameters

<table>
<thead>
<tr>
<th>Force=yes</th>
<th>Mode</th>
<th>Mode</th>
<th>Mode</th>
<th>Mode</th>
</tr>
</thead>
</table>
Parameter Values:

Name – Loopset name

Mode – Mode of operation

- **APCL/APCLA/APCLI/APCLN/APCLN24** – Appending point code list
- **RPCL/RPCLA/RPCLI/RPCLN/RPCLN24** – Replacing point code List
- **PC1/PC1A/PC1I/PC1N/PC1N24** – Point code to be replaced first
- **PC2/PC2A/PC2I/PC2N/PC2N24** – Point code to be replaced after the replacement of the first point code when two specific point codes are replaced
- **NPC1/NPC1A/NPC1I/NPC1N/NPC1N24** – Point code that replaces the first specified point code or the only point code when two specific point codes or a single specified point code is replaced
- **NPC2/NPC2a/NPC2I/NPC2N/NPC2N24** – Point code that replaces the second specified point code when two specific point codes are replaced

FORCE – yes, no. Default = no

Notes:

1. The **name** parameter can take up to 8 alphanumeric characters. The first character must be an alphabetic character.
2. The **rpcl** parameter allows the replacement of a maximum of six point code in a loopset.
3. The **apcl** parameter allows a maximum of six point codes to be appended to a loopset per execution of the `chg-loopset` command. A maximum of 12 point codes can be appended to any loopset using the **apcl** parameter.

Note: If the loopset being modified in this step is referenced by an entry shown in either the `rtrv-gtt` or `rtrv-gta` outputs, and those entries have not been removed or the loopset assignment for these entries has not been changed, the **force=yes** parameter must be specified with the `chg-loopset` command.

8. Verify the changes using the `rtrv-loopset` command with the name of the loopset specified in step 7.

 In this example enter this command.

   ```
rtrv-loopset:name=rtp1
   ```

 The following message should appear if you have replaced all the point codes in step 7.

   ```
   rlghncxa03w 07-02-19 19:42:34 GMT  35.6.0
   LoopSet Mode Point Codes
   ============================================================================
   rtp1 discard 003-003-003 002-002-002 (ANSI) 001-001-001
   ```
The following message should appear if you have modified a single specific point code in step 7.

```
rlghncxa03w 07-02-19 19:49:47 GMT  35.6.0
LoopSet  Mode     Point Codes
==========================================================================
rtpl     discard    003-004-005       002-002-002      (ANSI)
          001-001-001
```

The following message should appear if you have modified two specific point codes in step 7.

```
rlghncxa03w 07-02-19 19:56:57 GMT  35.6.0
LoopSet  Mode     Point Codes
==========================================================================
rtpl     discard    003-004-007       002-002-002      (ANSI)
          001-003-004
```

The following message should appear if you have appended point codes in step 7.

```
rlghncxa03w 07-02-19 20:03:21 GMT  35.6.0
LoopSet  Mode     Point Codes
==========================================================================
rtpl     discard    003-004-007       002-002-002      (ANSI)
          001-003-004       007-007-007
          003-003-003       005-005-005
```

The following message should appear if you have only changed the mode in step 7.

```
rlghncxa03w 07-02-19 20:09:00 GMT  35.6.0
LoopSet  Mode     Point Codes
==========================================================================
rtpl     notify     003-003-003       002-002-002      (ANSI)
          001-001-001
```

9. Backup the new changes using the `chg-db:action=backup:dest=fixed` command. These messages should appear, the active Maintenance and Administration Subsystem Processor (MASP) appears first.

```
BACKUP (FIXED) : MASP A - Backup starts on active MASP.
BACKUP (FIXED) : MASP A - Backup starts on standby MASP.
BACKUP (FIXED) : MASP A - Backup on active MASP to fixed disk complete.
BACKUP (FIXED) : MASP A - Backup on standby MASP to fixed disk complete.
```

If a loopset was changed in step 7 and the `force=yes` was not used in step 7, and you wish to assign this loopset to the GTT or GTA entries that were removed or changed in steps 4 or 6, go to step 10.

If any of the following actions were performed in step 7, this procedure is finished. Do not perform step 10.

- A loopset was modified with the `force=yes` parameter in step 7.
- A loopset was modified in step 7, the `force=yes` was not used in step 7, and you do not wish to assign this loopset to the GTT or GTA entries that were removed or changed in steps 4 or 6.

10. Assign the loopset specified in step 7 to the GTT or GTA entries that were removed or changed in steps 4 or 6.

If the EGTT feature is not on, perform one of these procedures:

- **Adding a Global Title Translation** procedure if the GTT entry was removed from the database in step 6.
- **Changing a Global Title Translation** procedure if the GTT entry was changed in step 6.

If the EGTT is on, perform one of these procedures:
• *Adding Global Title Address Information* procedure if the GTA entry was removed from the database in step 4.
• *Changing Global Title Address Information* procedure if the GTA entry was changed in step 4.

Configuring the ANSI to ITU-N SCCP Conversion Option

This procedure is used to set the value of the called party/calling party address Reserved for National Use bit that is used during SCCP conversion when global title translation routes the message to the ITU national network. The called/calling party address Reserved for National Use bit is set using the `chg-sccpopts` command and with this parameter.

:cnvainat – the value of the called party/calling party address Reserved for National Use bit used during SCCP conversion when the MSU is routed to the ITU national network. The values for this parameter are:

- 0 – the Reserved for National Use bit is not reserved for national use.
- 1 – the Reserved for National Use bit is reserved for national use.

The system default value for this parameter is 1.

The ANSI/ITU SCCP Conversion feature must be enabled and turned on to change this parameter value with the `chg-sccpopts` command. The CNVAINAT field in the output of the `rtrv-sccpopts` command output is shown when the ANSI/ITU SCCP Conversion feature is enabled and turned on. If the CNVAINAT field is not shown in the output of the `rtrv-sccpopts` command output, perform the *Activating the ANSI/ITU SCCP Conversion Feature* procedure to enable the ANSI/ITU SCCP Conversion feature.

If any parameter is not specified with the `chg-sccpopts` command, that parameter value will not be changed.

For more information on the ANSI/ITU SCCP Conversion feature, refer to the *ANSI/ITU SCCP Conversion Feature* section.

1. Display the existing value for the cnvainat parameter value by entering `rtrv-sccpopts` command. This is an example of the possible output.

```plaintext
rlnhnzxa03w 08-05-17 16:02:05 GMT EAGLE5 38.0.0
SCCP OPTIONS
----------------------------------
CNVAINAT                     1
```

Note: The `rtrv-sccpopts` command output contains other fields that are not used by this procedure. If you wish to see all the fields displayed by the `rtrv-sccpopts` command, refer to the `rtrv-sccpopts` command description in the *Commands Manual*.

If the CNVAINAT field is not shown in the output of the `rtrv-sccpopts` command, the ANSI/ITU SCCP Conversion feature is not enabled and turned on. For this field to be shown in the `rtrv-sccpopts` output, and to change these values, the ANSI/ITU SCCP Conversion feature must be enabled and turned on. Perform the *Activating the ANSI/ITU SCCP Conversion Feature* procedure to enable and turn on the ANSI/ITU SCCP Conversion feature. After the ANSI/ITU SCCP Conversion has been enabled and turned on, continue the procedure with *Step 2*.
If the CNVAINAT field is shown in the rtrv-sccpopts output, continue the procedure with Step 2.

2. Change the cnvainat parameter value by entering the chg-sccpopts command with the cnvainat parameters. For this example, enter this command.

 chg-sccpopts:cnvainat=0

 If any parameter is not specified with the chg-sccpopts command, that parameter value will not be changed.

 When the chg-sccpopts command has successfully completed, this message should appear.

 rlghncxa03w 08-05-07 00:22:57 GMT EAGLE5 38.0.0
 CHG-SCCPOPTS: MASP A - COMPLTD

3. Verify the changes using the rtrv-sccpopts command. This is an example of the possible output.

 rlghncxa03w 08-05-17 16:02:05 GMT EAGLE5 38.0.0
 SCCP OPTIONS

 CNVAINAT 0

 Note: The rtrv-sccpopts command output contains other fields that are not used by this procedure. If you wish to see all the fields displayed by the rtrv-sccpopts command, refer to the rtrv-sccpopts command description in the Commands Manual.

4. Back up the new changes using the chg-db:action=backup:dest=fixed command. These messages should appear, the active Maintenance and Administration Subsystem Processor (MASP) appears first.

 BACKUP (FIXED) : MASP A - Backup starts on active MASP.
 BACKUP (FIXED) : MASP A - Backup on active MASP to fixed disk complete.
 BACKUP (FIXED) : MASP A - Backup starts on standby MASP.
 BACKUP (FIXED) : MASP A - Backup on standby MASP to fixed disk complete.

Configuring an SCCP Test Message

An SCCP test message is used to supply the data needed by the tst-msg command to debug the global title translation rules for these features.

• Origin-Based SCCP Routing
• Flexible Linkset Optional Based Routing
• TCAP Opcode Based Routing

The data for an SCCP test message is configured using the chg-sccp-msg command. Table 60: SCCP Test Message Parameter Combinations shows the parameters and their combinations that are used with the chg-sccp-msg command.

To perform this procedure, the GTT feature must be turned on. This can be verified by entering the rtrv-feat command. If the gtt value is on, the GTT feature is on. If the GTT feature is not on, perform the Adding a Service Module procedure to turn the GTT feature on and make sure the correct hardware is installed and provisioned.
If any parameter is not specified with the `chg-sccp-msg` command, that parameter value will not be changed.

Table 60: SCCP Test Message Parameter Combinations

<table>
<thead>
<tr>
<th>Flexible Linkset Optional Based Routing Enable and Turned On and TCAP Opcode Based Routing feature Enable and Turned On</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mandatory Parameter</td>
</tr>
<tr>
<td>:msgn - 1 to 10</td>
</tr>
<tr>
<td>Optional Parameters (See Note 1)</td>
</tr>
<tr>
<td>:active - specifies whether the SCCP message should be sent to the network card for processing - yes, no. Default value - yes</td>
</tr>
<tr>
<td>:cdgta - the called party address for the SCCP message - 1 - 21 digits or 1 - 21 hexadecimal digits. Default value - 1234567890</td>
</tr>
<tr>
<td>:cdgti - the called party global title indicator for the SCCP message - 2 or 4. Default value - 2 (See Note 2)</td>
</tr>
<tr>
<td>:cdnai - the called party nature of address indicator for the SCCP message - See Note 3. Default value - sub</td>
</tr>
<tr>
<td>:cdnai - the called party nature of address indicator value for the SCCP message - See Note 3. Default value - 1</td>
</tr>
<tr>
<td>:cdnp - the called party numbering plan for the SCCP message - See Note 4. Default value - e164</td>
</tr>
<tr>
<td>:cdnpv - the called party numbering plan value for the SCCP message - See Note 4. Default value - 1</td>
</tr>
<tr>
<td>:cdp/cdpci/cdpcn/cdpcn24 - the called party address point code. Default value - ANSI point code 010-010-010 (See Note 5)</td>
</tr>
<tr>
<td>:cdssn - the called party subsystem number for the SCCP message - 0 - 255, none. Default value - 6</td>
</tr>
<tr>
<td>:cdtt - the called party translation type for the SCCP message - 0 - 255. Default value - 0</td>
</tr>
<tr>
<td>:cggta - the calling party address for the SCCP message - 1 - 21 digits or 1 - 21 hexadecimal digits. Default value - 1234567890</td>
</tr>
<tr>
<td>:cggti - the calling party global title indicator for the SCCP message - 2 or 4. Default value - 2 (See Note 2)</td>
</tr>
<tr>
<td>:cgna - the calling party nature of address indicator for the SCCP message - See Note 6. Default value - sub</td>
</tr>
<tr>
<td>:cgna - the calling party nature of address indicator value for the SCCP message - See Note 6. Default value - 1</td>
</tr>
<tr>
<td>:cgnp - the calling party numbering plan for the SCCP message - See Note 7. Default value - e164</td>
</tr>
<tr>
<td>:cgnpv - the calling party numbering plan value for the SCCP message - See Note 7. Default value - 1</td>
</tr>
</tbody>
</table>
Flexible Linkset Optional Based Routing Enable and Turned On and TCAP Opcode Based Routing feature Enable and Turned On

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Default Value</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>cgpc/cgpci/cgpcn/cgpcn24</td>
<td>the calling party address point code. Default value - ANSI point code 020-020-020 (See Note 5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>cgssn</td>
<td>the calling party subsystem number for the SCCP message -0 - 255, none. Default value - 8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>cgtt</td>
<td>the calling party translation type for the SCCP message -0 - 255. Default value - 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>eaglegen</td>
<td>specifies whether the message is an EAGLE 5 ISS generated message - no, yes. Default value - no</td>
<td></td>
<td></td>
</tr>
<tr>
<td>lsn</td>
<td>the name of the incoming linkset for the SCCP message. The linkset must be shown in the rtrv-ls output. Default value - No lsn value specified</td>
<td></td>
<td></td>
</tr>
<tr>
<td>opc/opci/opcn/opcn24</td>
<td>the originating point code. Default value - ANSI point code 010-010-010 (See Note 5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>tcapacn</td>
<td>a maximum of 7 subfields containing the numbers 0 to 255 separated by dash (for example, 1-202-33-104-54-26-007), none. The value none means there is no ITU TCAP ACN field in the incoming message. Default value - none</td>
<td></td>
<td></td>
</tr>
<tr>
<td>tcapfamily</td>
<td>0 - 255, none. The value none means there is no ANSI TCAP FAMILY field in the incoming message. Default value - none</td>
<td></td>
<td></td>
</tr>
<tr>
<td>tcapopcode</td>
<td>0 - 255, none. The value none means there is no TCAP OPCODE field in the incoming message. Default value - none</td>
<td></td>
<td></td>
</tr>
<tr>
<td>tcappkg</td>
<td>See Notes 8 and 9. Default value - invalid</td>
<td></td>
<td></td>
</tr>
<tr>
<td>tcappkgv</td>
<td>0 - 255. Default value - 0 (See Note 8)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>dpc/dpca/dpci/dpcn/dpcn24</td>
<td>the destination point code. Default value - ANSI point code 020-020-020 (See Note 5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>selid</td>
<td>0 - 65534 - Default value - no value specified</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:

1. At least one optional parameter must be specified.
2. The cdgti and cggti parameter value must be 2 for an ANSI SCCP test message.
3. The values for the cdnai and cdnaiv parameters and the mapping between these parameters are shown in the Table 61: NAIV/NAI Mapping. Either the cdnai and cdnaiv parameters can be specified, but both parameters cannot be specified at the same time.
4. The values for the cdnp and cdnpv parameters and the mapping between these parameters are shown in the Table 62: NPV/NP Mapping. Either the cdnp and cdnpv parameters can be specified, but both parameters cannot be specified at the same time.
5. The point code values for the cdpc/cdpci/cdpcn/cdpcn24, cgpc/cgpci/cgpcn/cgpcn24, opc/opci/opcn/opcn24, dpc/dpca/dpci/dpca/dpcn/dpcn24 parameters are:
 - cdpc, cgpc, opc, dpc/dpca = ANSI point code
 - cdpci, cgpci, opc, dpci = ITU-I or ITU-I spare point code
 - cdpcn, cgpcn, opc, dpcn = 14-bit ITU-N or 14-bit ITU-N spare point code
 - cdpcn24, cgpcn24, opc24, dpcn24 = 24-bit ITU-N point code.
6. The values for the cgnai and cgnaiv parameters and the mapping between these parameters are shown in the *Table 61: NAIV/NAI Mapping*. Either the cgnai and cgnaiv parameters can be specified, but both parameters cannot be specified at the same time.

7. The values for the cgnp and cgnpv parameters and the mapping between these parameters are shown in the *Table 62: NPV/NP Mapping*. Either the cgnp and cgnpv parameters can be specified, but both parameters cannot be specified at the same time.

8. Either the tcappkg and tcappkgv parameters can be specified, but both parameters cannot be specified at the same time.

9. The tcappkg values are:
 - The values for an ANSI TCAP Package type are:
 - ansiabort - ANSI abort
 - ansiuni - ANSI unidirectional
 - any - any ANSI TCAP package type
 - cwp - conversation with permission
 - cwop - conversation without permission
 - qwp - query with permission
 - qwop - query without permission
 - resp - response
 - none - no TCAP Package type
 - The values for an ITU TCAP Package type are:
 - any - any ITU TCAP package type
 - bgn - begin
 - cnt - continue
 - end - end
 - ituabort - ITU abort
 - ituuni - ITU unidirectional
 - none - no TCAP Package type

Table 61: NAIV/NAI Mapping

<table>
<thead>
<tr>
<th>NAIV</th>
<th>NAI</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>--</td>
<td>Unknown</td>
</tr>
<tr>
<td>1</td>
<td>Sub</td>
<td>Subscriber Number</td>
</tr>
<tr>
<td>2</td>
<td>Rsvd</td>
<td>Reserved for national use</td>
</tr>
<tr>
<td>3</td>
<td>Natl</td>
<td>National significant number</td>
</tr>
</tbody>
</table>
1. Verify that the GTT feature is on, by entering the rtrv-feat command. If the GTT feature is on, the GTT field should be set to on. For this example, the GTT feature is off.

Note: The rtrv-feat command output contains other fields that are not used by this procedure. If you wish to see all the fields displayed by the rtrv-feat command, refer to the rtrv-feat command description in the Commands Manual.

If the GTT feature is off, perform the Adding a Service Module procedure to turn the GTT feature on and make sure the correct hardware is installed and provisioned.

Continue the procedure by performing one of these steps.

- If the lsn parameter will not be specified with the chg-sccp-msg command, continue the procedure with Step 3.
- If the lsn parameter will be specified with the chg-sccp-msg command, continue the procedure with Step 2.
Note: It is recommended that the lsn parameter is specified with the chg-sccp-msg command. When the tst-msg command is performed, the linkset name is used to determine the GTT mode hierarchy.

2. Display the linksets in the database by entering the rtrv-ls command. This is an example of the possible output.

```
rlghncxa03w 09-05-11 13:24:48 GMT  EAGLE5 41.0.0

<table>
<thead>
<tr>
<th>Linkset</th>
<th>LSN</th>
<th>SELID</th>
<th>ACT</th>
<th>DIS</th>
<th>SLSCI</th>
<th>NIS</th>
</tr>
</thead>
<tbody>
<tr>
<td>lsn1</td>
<td>001-001-002</td>
<td>none</td>
<td>1</td>
<td>1</td>
<td>no</td>
<td>A</td>
</tr>
<tr>
<td>lsn1</td>
<td>001-002-2</td>
<td>none</td>
<td>1</td>
<td>1</td>
<td>no</td>
<td>A</td>
</tr>
<tr>
<td>lsn1</td>
<td>001-002-3</td>
<td>none</td>
<td>1</td>
<td>1</td>
<td>no</td>
<td>A</td>
</tr>
</tbody>
</table>

Link set table is (5 of 1024) 1% full.
```

3. Display the SCCP test message that will be changed by entering the rtrv-sccp-msg command with the number of the SCCP test message that will be changed.

For this example, enter this command.

```
rtrv-sccp-msg:msgn=3
```

This is an example of the possible output.

```
rlghncxa03w 10-07-11 12:49:38 GMT  EAGLE5 42.0.0
MSG = 3
ACTIVE = YES
OPC  = 010-010-010
DPC  = 020-020-020
SELID = none
CDPA_GTI = 2
CDPA_TT = 0
CDPA_SSN = 6
CDPC = 010-010-010
CDPA_NP = 1 (e164)
CDPN_NAI = 1 (sub)
CDPA_GTA = 1234567890
CGPA_GTI = 2
CGPA_TT = 0
CGPA_SSN = 8
CGPC = 020-020-020
CGPA_NP = 1 (e164)
CGPN_NAI = 1 (sub)
CGPA_GTA = 1234567890
LSN = LINK_SET_NOT_FOUND
EAGLEGEN = NO
```
4. Configure the SCCP test message by entering the `chg-sccp-msg` command. *Table 60: SCCP Test Message Parameter Combinations* shows the parameter combinations and values that can be used with the `chg-sccp-msg` command. For this example, configure the SCCP test message 3 with these values.

- opc=003-003-003
- dpc=006-006-006
- selid=100
- cdpc=004-004-004
- cgpc=005-005-005
- cdtt=5
- lsn=lsn1
- tcapopcode=50
- tcapfamily=60
- tcappkg=cwp
- cdgta=919460
- cggta=919461

The command line on the terminal can contain up to 150 characters. If the parameters and values specified with the `chg-sccp-msg` command are too long to fit on the `chg-sccp-msg` command line, perform the `chg-sccp-msg` command as many times as necessary to complete adding the SCCP test message.

For this example, enter these commands.

```
```

If any parameter is not specified with the `chg-sccp-msgs` command, that parameter value will not be changed.

When the `chg-sccp-msg` command has successfully completed, this message should appear.

```
rlghncxa03w 09-05-11 13:12:07 GMT  EAGLE5 41.0.0
CHG-SCCP-MSG: MASP A - COMPLTD
```

5. Verify the changes using the `rtrv-sccp-msg` command with the message number specified with the `chg-sccp-msg` command.

For this example, enter this command.

```
rtrv-sccp-msg:msgn=3
```
Adding Global Title Modification Information

This procedure is used to add global title (GT) modification information to the database. The GT modification information is used to modify information in an MSU during the global title translation process when the MSU requires further global title translation. The GT modification information is added to the database using the `ent-gtmod` command with these parameters.

```plaintext
:gtmodid – The name of the GT modification identifier
:cgpassn – The subsystem number in the calling party address
```
The new translation type
:nnp – The new numbering plan
:nnai – The new nature of address indicator
:npdd – The number of digits to be deleted from the beginning of the Global Title Address digits (the prefix digits)
:npds – The digits that are being substituted for the prefix digits
:nsdd – The number of digits to be deleted from the end of the Global Title Address digits (the suffix digits)
:nsds – The digits that are being substituted for the suffix digits
:ngti – The new GT indicator value
on=gt0fill - if the last value of the global title address is zero (0), it is treated as a filler during the GT modification process.
off=gt0fill - if the last value of the global title address is zero (0), it is treated as a valid digit during the GT modification process.
precdd – specifies whether the prefix (npds/npdd parameter values) or suffix (nsds/nsdd parameter values) takes precedence while modifying the received Global Title Address.

The values for these parameters and the rules for using these parameters are shown in Table 63: Add GT Modification Parameter Values.

One of the Advanced GT Modification features must be enabled to add GT modification information to the database. The status of the Advanced GT Modification features is shown the rtrv-ctrl-feat command output. The part numbers of the Advanced GT Modification features are shown in Step 2.

1. Display the GT modification information in the database using the rtrv-gtmod command.

This is an example of the possible output.

```
rlghncxa03w 10-07-07 00:29:31 GMT EAGLE5 42.0.0
GTMODID    NTT     NGTI     GT0FILL  NNP     NNAI    NPDD    NSDD   PRECD   CGPASSN
modid2     --     2       ON       --     --      --      --     PFX      --
           NPDS=                NSDS=                
modid5     --     2       OFF      --     --      --      --     PFX      --
           NPDS=                NSDS=                
modid10    --    --      OFF       5      5       --      --     PFX      --
           NPDS=                NSDS=                
modid11    --    --      OFF       5      5       --      --     PFX      --
           NPDS=                NSDS=                

GTMOD table is (4 of 100000) 1% full.
```

The GT modification table can contain a maximum of 100,000 entries. If the rtrv-gtmod output shows 100,000 entries, a new entry cannot be added and the remainder of this procedure cannot be performed.

If the number of entries shown in the rtrv-gtmod output is less than 100,000 and the new GT modification entry will contain only the gtmodid and ntt parameter values, continue the procedure with Step 6.
If the new GT modification entry will contain other parameter values besides the \textit{gtmodid} and \textit{ntt} parameter values, and the number of entries shown in the \texttt{rtrv-gtmod} output is less than 100,000, continue the procedure by performing one of these steps.

\textbf{Note:} The GT modification entry does not have to contain an \textit{ntt} parameter value, but must contain at least one optional parameter value. These parameter values are shown in Table 63: Add GT Modification Parameter Values.

- If any of the entries shown in the \texttt{rtrv-gtmod} output contains values for parameters other than the \textit{gtmodid} and \textit{ntt} parameters, continue the procedure with Step 3.
- If all of the entries shown in the \texttt{rtrv-gtmod} output contains only values for the \textit{gtmodid} and \textit{ntt} parameters, continue the procedure with Step 2.

2. One of the Advanced GT Modification features must be enabled to add GT modification information to the database. Enter the \texttt{rtrv-ctrl-feat} command to verify if any of the Advanced GT Modification features are enabled.

If any of the Advanced GT Modification features are enabled, one of these entries is shown in the \texttt{rtrv-ctrl-feat} output.

\begin{center}
\begin{tabular}{|l|l|}
\hline
\textbf{Feature Name} & \textbf{Part Number} \\
\hline
AMGTT & 893021801 \\
AMGTT CdPA Only & 893021802 \\
AMGTT CgPA Upgrade & 893021803 \\
\hline
\end{tabular}
\end{center}

The following is an example of the possible output.

```
rlghncxa03w 10-07-28 21:15:37 GMT EAGLE5 42.0.0
The following features have been permanently enabled:

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Partnum</th>
<th>Status</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>XGTT Table Expansion</td>
<td>893006101</td>
<td>on</td>
<td>400000</td>
</tr>
<tr>
<td>Command Class Management</td>
<td>893005801</td>
<td>on</td>
<td>----</td>
</tr>
<tr>
<td>LNP Short Message Service</td>
<td>893006601</td>
<td>on</td>
<td>----</td>
</tr>
<tr>
<td>Intermed GTT Load Sharing</td>
<td>893006901</td>
<td>on</td>
<td>----</td>
</tr>
<tr>
<td>HC-MIM SLK Capacity</td>
<td>893012707</td>
<td>on</td>
<td>64</td>
</tr>
</tbody>
</table>

The following features have been temporarily enabled:

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Partnum</th>
<th>Status</th>
<th>Quantity</th>
<th>Trial Period Left</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zero entries found.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The following features have expired temporary keys:

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Partnum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zero entries found.</td>
<td></td>
</tr>
</tbody>
</table>
```

If none of the Advanced GT Modification features are enabled, perform the \texttt{Activating the Advanced GT Modification Feature} to procedure to enable any of the Advanced GT Modification features.

3. Some parameters and values of the \texttt{ent-gtmod} command can be specified only when certain features are enabled, and turned on if necessary.

To specify hexadecimal digits for the \textit{npds} and \textit{nsds} parameters, the Hex Digit Support for GTT feature must be enabled. If hexadecimal digits are shown in the \texttt{rtrv-gtmod} output, the Hex Digit Support for GTT feature is enabled.
To specify the \texttt{ngti} or \texttt{on=gt0fill} parameters, the ANSI/ITU SCCP Conversion feature must be enabled. If values for the \texttt{ngti} parameter are shown in the \texttt{rtrv-gtmod} output, or the \texttt{GT0FILL} value \texttt{ON} is shown in the \texttt{rtrv-gtmod} output, the ANSI/ITU SCCP Conversion feature is enabled.

Continue the procedure with \textit{Step 6} if any of these conditions are present.

- The Hex Digit Support for GTT and ANSI/ITU SCCP Conversion features are enabled.
- If hexadecimal digits will not be specified for the \texttt{npds} or \texttt{nsds} parameters, and the \texttt{ngti} or the \texttt{on=gt0fill} parameters will not be specified with the \texttt{ent-gtmod} command.

If hexadecimal digits will be specified for the \texttt{npds} or \texttt{nsds} parameters and hexadecimal digits are not shown in the \texttt{rtrv-gtmod} output, continue the procedure with \textit{Step 4}.

If the \texttt{ngti} or \texttt{on=gt0fill} parameters will be specified with the \texttt{ent-gtmod} command, and values for the \texttt{ngti} parameter are not shown in the \texttt{rtrv-gtmod} output and the \texttt{GT0FILL} value \texttt{ON} is not shown in the \texttt{rtrv-gtmod} output, continue the procedure with \textit{Step 5}.

After these steps have been performed, as needed, continue the procedure with \textit{Step 6}.

4. Verify the status of the Hex Digit Support for GTT feature by entering this command.
 \begin{verbatim}
 rtrv-ctrl-feat:partnum=893018501
 \end{verbatim}

 The following is an example of the possible output.

 \begin{verbatim}
 rlghncxa03w 10-07-28 21:15:37 GMT EAGLE5 42.0.0
 The following features have been permanently enabled:
 Feature Name Partnum Status Quantity
 Hex Digit Support for GTT 893018501 on ----
 The following features have been temporarily enabled:
 Feature Name Partnum Status Quantity Trial Period Left
 Zero entries found.
 The following features have expired temporary keys:
 Feature Name Partnum
 Zero entries found.
 \end{verbatim}

 If the Hex Digit Support for GTT feature has not been enabled, perform the \textit{Activating the Hex Digit Support for GTT Feature} procedure to enable the Hex Digit Support for GTT feature.

5. Verify the status of the ANSI/ITU SCCP Conversion feature by entering this command.
 \begin{verbatim}
 rtrv-ctrl-feat:partnum=893012001
 \end{verbatim}

 The following is an example of the possible output.

 \begin{verbatim}
 rlghncxa03w 10-07-28 21:15:37 GMT EAGLE5 42.0.0
 The following features have been permanently enabled:
 Feature Name Partnum Status Quantity
 SCCP Conversion 893012001 on ----
 The following features have been temporarily enabled:
 Feature Name Partnum Status Quantity Trial Period Left
 Zero entries found.
 \end{verbatim}
The following features have expired temporary keys:

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Partnum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zero entries found.</td>
<td></td>
</tr>
</tbody>
</table>

If the ANSI/ITU SCCP Conversion feature is not enabled, perform *Activating the ANSI/ITU SCCP Conversion Feature* to enable the ANSI/ITU SCCP Conversion feature.

6. Add the GT modification information using the `ent-gtmod` command with the parameters and values shown in Table 63: *Add GT Modification Parameter Values*.

Table 63: Add GT Modification Parameter Values

<table>
<thead>
<tr>
<th>Mandatory Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>:gtmodid=<the GTMOD ID consisting of 1 alphabetic character with up to 8 alphanumeric characters></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Optional Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>:gpassn=<2 – 255></td>
</tr>
<tr>
<td>:ngti=<2, 4></td>
</tr>
<tr>
<td>:nnai=<0 – 127></td>
</tr>
<tr>
<td>:on=gt0fill – this parameter cannot be specified if the off=gt0fill parameter is specified.</td>
</tr>
<tr>
<td>:npdd=<1 – 21></td>
</tr>
<tr>
<td>:npds=<1 – 21 decimal digits or 1 – 21 hexadecimal digits></td>
</tr>
<tr>
<td>:precd=<pfx or sfx> pfx - the prefix digits (npds/npdd parameter values) of the received Global Title Address. sfx - the suffix digits (nsds/nsdd parameter values) of the received Global Title Address.</td>
</tr>
<tr>
<td>:nsdd=<1 – 21></td>
</tr>
<tr>
<td>:nsds=<1 – 21 decimal digits or 1 – 21 hexadecimal digits></td>
</tr>
<tr>
<td>:ntt=<0 – 255></td>
</tr>
<tr>
<td>:off=gt0fill – this parameter cannot be specified if the on=gt0fill parameter is specified.</td>
</tr>
</tbody>
</table>

Notes:

1. At least one optional parameter must be specified.
2. The `on=gt0fill` parameter can be specified only if the `ngti` parameter is specified.
3. If the `ngti=2` parameter is specified, the `nnai` and `nnp` parameters cannot be specified.
4. If the `ngti=4` parameter is specified, the `nnai` and `nnp` parameters must be specified.
5. If either the `npdd/npds` or `nsdd/nsds` parameter combinations are specified, the `precd` parameter cannot be specified.
6. If the `npdd/npds` and `nsdd/nsds` parameter combinations are specified, the `precd` parameter must be specified.
7. If the `precd` parameter is specified, the `npdd/npds` and `nsdd/nsds` parameter combinations must be specified.
8. The combined length of `npds` and `nsds` parameter values cannot exceed 21 digits.
For this example, enter this command.

\[
\]

When this command has successfully completed, this message appears.

```
rlghncxa03w 09-05-07 11:43:04 GMT  EAGLE5 42.0.0
GTMOD table is (5 of 100000) 1% full.
ENT-GTMOD: MASP A - COMPLTD
```

7. Verify the changes by entering the \texttt{rtrv-gtmod} command with the \texttt{gtmodid} parameter value specified in \textit{Step 6}.

For this example, enter this command.

\[
\text{rtrv-gtmod:gtmodid=modid6}
\]

This is an example of the possible output.

```
rlghncxa03w 10-07-07 00:27:31 GMT EAGLE5 42.0.0
GTMODID   NTT  NGTI  GT0FILL  NNP  NNAI  NPDD  NSDD  PRECD  CGPASSN
modid6     --     4       ON    4     5     3     3    SFX       --
NPDS=123                    NSDS=456
GTMOD table is (5 of 100000) 1% full.
```

8. Backup the new changes using the \texttt{chg-db:action=backup:dest=fixed} command. These messages should appear, the active Maintenance and Administration Subsystem Processor (MASP) appears first.

```
BACKUP (FIXED): MASP A - Backup starts on active MASP.
BACKUP (FIXED): MASP A - Backup on active MASP to fixed disk complete.
BACKUP (FIXED): MASP A - Backup starts on standby MASP.
BACKUP (FIXED): MASP A - Backup on standby MASP to fixed disk complete.
```

Removing Global Title Modification Information

This procedure is used to remove existing global title (GT) modification information from the database using the \texttt{dlt-gtmod} command and with this parameter.

\[
:gtmodid=\text{The name of the GT modification identifier that contains the GT modification that is being removed.}
\]

Other entities in the database reference the GT modification identifier. The number of entries that reference the GT modification identifier is shown in the \texttt{REFCNT} field of the \texttt{rtrv-gtmod} output. The \texttt{REFCNT} field is displayed only when the \texttt{on=refcnt} parameter is specified with the \texttt{rtrv-gtmod} command.

- GTT entities shown in the \texttt{rtrv-gtt} output.
- GTA entities shown in the \texttt{rtrv-gta} output.
• GTT action entities shown in the rtrv-gttact output.

1. Display the GT modification identifiers in the database by entering this command.

 rtrv-gtmod: on=refcnt

 This is an example of the possible output.

 ![Database output](image)

 If the reference count value shown in the REFCNT column for the GT modification identifier that is being removed from the database is zero (0), continue the procedure with Step 11.

 If the reference count value shown in the REFCNT column for the GT modification identifier that is being removed from the database is greater than zero (0), continue the procedure with Step 2.

2. Display the GTT sets that are assigned to the GTA entries that reference the GT modification identifier that is being removed by entering the rtrv-gttset command with the GTT modification identifier shown in Step 1.

 rtrv-gttset: gtmodid=modid2

 This is an example of the possible output.

 ![Database output](image)

 If no entries are displayed, or if this message is displayed, E3557 Cmd Rej: EGTT must be ON, continue the procedure with Step 5.

 If entries are displayed, continue the procedure with Step 3.

3. Display the global title address (GTA) information associated with for the GTT sets displayed in Step 2 by entering the rtrv-gta command with these parameters.

 • :gttset - the GTTSN value shown in Step 2.
 • :gtmodid - the gtmodid parameter value specified in Step 2.

 rtrv-gta: gttset=setans010: gtmodid=modid2
Perform one of these procedures.

- **Removing Global Title Address Information** - to remove the GTA entries that are displayed in this step from the database.
- **Changing Global Title Address Information** - to change the reference to the GT modification identifier in the GTA entries displayed in this step.

If all the GTA entries in all the GTT sets that are displayed in Step 2 have not been displayed, repeat this step for the other GTT sets displayed in Step 2.

If all the GTA entries in all the GTT sets that are displayed in Step 2 have been displayed, continue the procedure with Step 4.

4. Display the GT modification identifier that is being removed from the database by entering the `rtrv-gtmod` command with these parameters.
 - `:on=refcnt`
 - `:gtmodid` - the `gtmodid` parameter value specified in Step 3.

This is an example of the possible output.

```
righncxa03w 10-07-07 00:27:31 GMT EAGLE5 42.0.0

Command Retrieved 1 Entries
```

4. Display the GT modification identifier that is being removed from the database by entering the `rtrv-gtmod` command with these parameters.

 - `:on=refcnt`
 - `:gtmodid` - the `gtmodid` parameter value specified in Step 3.

This is an example of the possible output.

```
righncxa03w 10-07-07 00:27:31 GMT EAGLE5 42.0.0

Command Retrieved 1 Entries
```

If the reference count value shown in the `REFCNT` column for the GT modification identifier that is being removed from the database is zero (0), continue the procedure with Step 11.

If the reference count value shown in the `REFCNT` column for the GT modification identifier that is being removed from the database is greater than zero (0), continue the procedure with Step 5.

5. Display the translation type in the database by entering the `rtrv-tt`.

This is an example of the possible output.

```
righncxa03w 10-07-07 00:27:31 GMT EAGLE5 42.0.0
```

5. Display the translation type in the database by entering the `rtrv-tt`.

This is an example of the possible output.

```
righncxa03w 10-07-07 00:27:31 GMT EAGLE5 42.0.0
```
6. Display the global title translation (GTT) entry associated with one of the translation types shown in Step 5 by entering the `rtrv-gtt` command with these parameters.

- `:type/typea/typei/typeis/typen/typens/typen24` - the translation type value shown in Step 5.
- `:gtmodid` - the GT modification identifier that is being removed.

For this example, enter this command:

```bash
rtrv-gtt:typei=75:gtmodid=modid2
```

This is an example of the possible output.

```
rlghncca03w 10-07-07 00:28:31 GMT EAGLE5 42.0.0

GTA table is (6 of 269999) 1% full.

START GTA             END GTA               XLAT  RI     PC
910460                910460                DPC    SSN    2-002-2
MAPSET=DFLT  SSN=---  GTMODID=modid2     CGGTMOD = NO
Command Retrieved 1 Entries
If no entries are displayed and all the GTT entries for all the translation types have been displayed, continue the procedure with Step 7.
If no entries are displayed and all the GTT entries for all the translation types have not been displayed, repeat this step for one of the other translation type shown in Step 5.
If entries are displayed, perform one of these procedures.
```
Removing a Global Title Translation - to remove the GTT entries that are displayed in this step from the database.

Changing a Global Title Translation - to change the reference to the GT modification identifier in the GTT entries displayed in this step.

If all the GTT entries in all the translation types that are displayed in Step 5 have not been displayed, repeat this step for the other translation types displayed in Step 5.

If all the GTT entries in all the translation types that are displayed in Step 5 have been displayed, continue the procedure with Step 7.

7. Display the GT modification identifier that is being removed from the database by entering the rtrv-gtmod command with these parameters.

- :on=refcnt
- :gtmodid - the gtmodid parameter value specified in Step 6.

This is an example of the possible output.

```
rlghnctx03w 10-07-07 00:27:31 GMT EAGLE5 42.0.0
GTMODID   NTT  NGTI  GTOFILL  NNP  NNAI  NPDD  NSDD  PRECD  CGPASSN  REFCNT
modid2     --     2       ON   --    --    --    --    PFX       --       2
NPDS=                       NSDS=
GTMOD table is (6 of 100000) 1% full.
```

If the reference count value shown in the REFCNT column for the GT modification identifier that is being removed from the database is zero (0), continue the procedure with Step 11.

If the reference count value shown in the REFCNT column for the GT modification identifier that is being removed from the database is greater than zero (0), continue the procedure with Step 8.

8. Display the GTT actions that may reference the GT modification identifier that is being removed by entering the rtrv-gttact with the cdgtmodid parameter.

For this example, enter this command.

```
rtrv-gttact:cdgtmodid=modid2
```

This is an example of the possible output.

```
rlghnctx03w 10-07-07 00:27:31 GMT EAGLE5 42.0.0
ACTID      ACTION   ATCAPERR ITCAPERR UDTSERR UIMREQD
---------------------------------------------------------
ACTID      ACTION   PCA           RI  SSN  MRNSET  MAPSET
---------------------------------------------------------
action1    dup      002-002-002   gt ---  DFLT    -----  
            CDGTMODID = modid2     CGGTMODID = ---------
            USEICMSG = off   CGPCOGMSG = dflt     CGPCA = ---
ACTID      ACTION   PCI           RI  SSN  MRNSET  MAPSET
-----------------------------------------------------------------------
ACTID      ACTION   PCN           RI  SSN  MRNSET  MAPSET
-----------------------------------------------------------------------
```
GTT-ACT table is (3 of 2000) 1% full.

If no entries are displayed, continue the procedure with Step 10.

If entries are displayed, perform one of these procedures.

- **Removing a GTT Action Entry** - to remove the GTT action entries that are displayed in this step from the database.
- **Changing a GTT Action** - to change the reference to the GT modification identifier in the GTT action entries displayed in this step.

After the entries displayed in this step have either been removed or changed, continue the procedure with Step 9.

9. Display the GT modification identifier that is being removed from the database by entering the `rtrv-gtmod` command with these parameters.

- :on=refcnt
- :gtmodid - the `gtmodid` parameter value specified in Step 8.

This is an example of the possible output.

```
rlghncxa03w 10-07-07 00:27:31 GMT EAGLE5 42.0.0
GTMOD table is (6 of 100000) 1% full.

GTMODID  NTT  NGTI  GT0FILL  NNP  NNAI  NPDD  NSDD  PRECD  CGPASSN  REFCNT
modid2     --     2       ON   --    --    --    --    PFX       --       1

NPDS=  NSDS=
```

If the reference count value shown in the REFCNT column for the GT modification identifier that is being removed from the database is zero (0), continue the procedure with Step 11.

If the reference count value shown in the REFCNT column for the GT modification identifier that is being removed from the database is greater than zero (0), continue the procedure with Step 10.

10. Display the GTT actions that may reference the GT modification identifier that is being removed by entering the `rtrv-gttact` with the cggtmodid parameter.

For this example, enter this command.

```
rtrv-gttact:cggtmodid=modid2
```

This is an example of the possible output.

```
rlghncxa03w 10-07-07 00:27:31 GMT EAGLE5 42.0.0
ACTID      ACTION   ATCAPERR ITCAPERR UDTSERR UIMREQD
---------------------------------------------------------
```

```
ACTID      ACTION   PCN24         RI  SSN  MRNSET  MAPSET
-----------------------------------------------------------------------
GTT-ACT table is (3 of 2000) 1% full.
```

```
action3    dup      003-003-003   gt  ---  1       ----
CDGTMODID = ---------  CGGTMODID = modid2
USEICMSG = off     CGPCOGMSG = dflt     CGPCA = ---
```
Perform one of these procedures.

- **Removing a GTT Action Entry** - to remove the GTT action entries that are displayed in this step from the database.
- **Changing a GTT Action** - to change the reference to the GT modification identifier in the GTT action entries displayed in this step.

After the entries displayed in this step have either been removed or changed, continue the procedure with **Step 11**.

11. Remove the GT modification information using the `dlt-gtmod` command with the GT modification identifier.

For this example, enter this command.

```
dlt-gtmod:gtmodid=modid2
```

When this command has successfully completed, this message appears.

```
rlghncxa03w 10-07-07 00:29:31 GMT EAGLE5 42.0.0
GTMOD table is (5 of 100000) 1% full.
DLT-GTMOD: MASP A - COMPLTD
```

12. Verify the changes by entering the `rtrv-gtmod` command with the `gtmodid` parameter value specified in **Step 11**.

```
rtrv-gtmod:gtmodid=modid2
```

This message should be displayed.

```
rlghncxa03w 10-07-07 00:28:31 GMT EAGLE5 42.0.0
E5285 Cmd Rej: GTMODID does not exist
```

13. Backup the new changes using the `chg-db:action=backup:dest=fixed` command.

These messages should appear, the active Maintenance and Administration Subsystem Processor (MASP) appears first.

```
BACKUP (FIXED) : MASP A - Backup starts on active MASP.
BACKUP (FIXED) : MASP A - Backup on active MASP to fixed disk complete.
BACKUP (FIXED) : MASP A - Backup starts on standby MASP.
BACKUP (FIXED) : MASP A - Backup on standby MASP to fixed disk complete.
```
Changing Global Title Modification Information

This procedure is used to change the attributes of global title (GT) modification information in the database. The GT modification information is changed using the `chg-gtmod` command with these parameters.

- `:gtmodid` – The current name of the GT modification identifier
- `:ngtmodid` – The new name of the GT modification identifier
- `:cgpassn` – The subsystem number in the calling party address
- `:ntt` – The new translation type
- `:nnp` – The new numbering plan
- `:nnai` – The new nature of address indicator
- `:npdd` – The number of digits to be deleted from the beginning of the Global Title Address digits (the prefix digits)
- `:npds` – The digits that are being substituted for the prefix digits
- `:nsdd` – The number of digits to be deleted from the end of the Global Title Address digits (the suffix digits)
- `:nsds` – The digits that are being substituted for the suffix digits
- `:ngti` – The new GT indicator value

- `on=gt0fill` - If the last value of the global title address is zero (0), it is treated or as a filler during the GT modification process.
- `off=gt0fill` - If the last value of the global title address is zero (0), it is treated as a valid digit during the GT modification process.
- `precd` - Specifies whether the prefix (npds/npdd parameter values) or suffix (nsds/nsdd parameter values) takes precedence while modifying the received Global Title Address.

The values for these parameters and the rules for using these parameters are shown in Table 64: Change GT Modification Parameter Values.

The `nnp`, `nnai`, `npdd`, `npds`, `nsdd`, and `nsds` parameters are used by the Advanced GT Modification feature to modify the numbering plan, nature of address indicator, and the prefix digits, the suffix digits, or both the prefix and suffix digits in the called party address portion of outbound MSUs in addition to the translation type when the MSU requires further global title translation and the translation type is to be replaced. Refer to the Advanced GT Modification Feature section for more information about the Advanced GT Modification feature.

Being able to change the numbering plan, nature of address indicator, and either the prefix or suffix digits in the called party address portion of outbound MSUs makes the MSU more compatible with the network that the MSU is being sent to and to ensure that the MSU is routed correctly. These changes are made after the global title translation process, but before the MSU is routed to its destination.

To specify a value of 2 or 4 for the `ngti` parameter, the ANSI/ITU SCCP Conversion feature must be enabled. Verify the status of the ANSI/ITU SCCP Conversion feature with the `rtrv-ctrl-feat` command. Refer to the ANSI/ITU SCCP Conversion Feature section for more information about the ANSI/ITU SCCP Conversion feature. If the ANSI/ITU SCCP Conversion feature is not enabled,
perform the *Activating the ANSI/ITU SCCP Conversion Feature* procedure to enable the ANSI/ITU SCCP Conversion feature.

The values specified for the `npds` and `nsds` parameters can be decimal digits (0-9) or hexadecimal digits (0-9, a-f, A-F). Hexadecimal digits can be specified only if the Hex Digit Support for GTT feature is enabled. Verify the status of the Hex Digit Support for GTT feature with the `rtrv-ctrl-feat` command. Refer to the *Hex Digit Support for GTT* section for more information about the Hex Digit Support for GTT feature. If the Hex Digit Support for GTT feature is not enabled, perform the *Activating the Hex Digit Support for GTT Feature* procedure to enable the Hex Digit Support for GTT feature.

1. Display the GT modification information in the database using the `rtrv-gtmod` command.

 This is an example of the possible output.

   ```
   rlghncxa03w 10-07-07 00:29:31 GMT EAGLE5 42.0.0
   GTMOD table is (5 of 100000) 1% full.
   GTMODID   NTT  NGTI  GT0FILL  NNP  NNAI  NPDD  NSDD  PRECD  CGPASSN
   modid2     --     2       ON   --    --    --    --    PFX       --
   NPDS=                       NSDS=
   modid5     --     2      OFF   --    --    --    --    PFX       --
   NPDS=                       NSDS=
   modid6     --     4       ON    4     5     3     3    SFX       --
   NPDS=123 NSDS=456
   modid10    --    --      OFF    5     5    --    --    PFX       --
   NPDS=                       NSDS=
   modid11    --    --      OFF    5     5    --    --    PFX       --
   NPDS=                       NSDS=
   ```

 If entries are not displayed, this procedure cannot be performed.

 If entries are displayed, continue the procedure by performing one of these steps.

 - If only the `gtmodid` or `ntt` parameter values will be changed, continue the procedure with *Step 6*.
 - If the values for other parameters besides the `gtmodid` and `ntt` parameter values will be changed, continue the procedure by performing one of these steps.
 - If any of the entries shown in the `rtrv-gtmod` output contains values for parameters other than the `gtmodid` and `ntt` parameters, continue the procedure with *Step 3*.
 - If all of the entries shown in the `rtrv-gtmod` output contains only values for the `gtmodid` and `ntt` parameters, continue the procedure with *Step 2*.

2. One of the Advanced GT Modification features must be enabled to change the values of the parameters other than the `gtmodid` and `ntt` parameters. Enter the `rtrv-ctrl-feat` command to verify if any of the Advanced GT Modification features are enabled.

 If any of the Advanced GT Modification features are enabled, one of these entries is shown in the `rtrv-ctrl-feat` output.

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMGTT</td>
<td>893021801</td>
</tr>
<tr>
<td>AMGTT CdPA Only</td>
<td>893021802</td>
</tr>
</tbody>
</table>
The following is an example of the possible output.

```
rlghncxa03w 10-07-28 21:15:37 GMT EAGLE5 42.0.0
The following features have been permanently enabled:

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Partnum</th>
<th>Status</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>XGTT Table Expansion</td>
<td>893006101</td>
<td>on</td>
<td>400000</td>
</tr>
<tr>
<td>Command Class Management</td>
<td>893005801</td>
<td>on</td>
<td>----</td>
</tr>
<tr>
<td>LNP Short Message Service</td>
<td>893006601</td>
<td>on</td>
<td>----</td>
</tr>
<tr>
<td>Intermed GTT Load Sharing</td>
<td>893006901</td>
<td>on</td>
<td>----</td>
</tr>
<tr>
<td>HC-MIM SLK Capacity</td>
<td>893012707</td>
<td>on</td>
<td>64</td>
</tr>
</tbody>
</table>

The following features have been temporarily enabled:

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Partnum</th>
<th>Status</th>
<th>Quantity</th>
<th>Trial Period Left</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zero entries found.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The following features have expired temporary keys:

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Partnum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zero entries found.</td>
<td></td>
</tr>
</tbody>
</table>

If none of the Advanced GT Modification features are enabled, perform the Activating the Advanced GT Modification Feature procedure to enable any of the Advanced GT Modification features.

3. For some parameters and values of the `chg-gtmod` command to be specified, these conditions must be present.

To specify hexadecimal digits for the `npds` and `nsds` parameters, the Hex Digit Support for GTT feature must be enabled. If hexadecimal digits are shown in the `rtrv-gtmod` output, the Hex Digit Support for GTT feature is enabled.

To specify the `ngti` parameter value 2 or 4, or the `on=gt0fill` parameter, the ANSI/ITU SCCP Conversion feature must be enabled. If values 2 or 4 for the `ngti` parameter are shown in the `rtrv-gtmod` output, or the GT0FILL value is shown in the `rtrv-gtmod` output, the ANSI/ITU SCCP Conversion feature is enabled.

To specify the value `none` for the `ngti` parameter, the GT0FILL value must be OFF.

If the `gt0fill` value will be changed to on, the `ngti` value must be 2 or 4.

If the `ngti` value will be changed to 4, the `nnp` and `nnai` parameters must be specified and their values cannot be none. The network type of the point code in the entity that references the GT modification identifier that is being changed must be ITU.

If the `ngti` value will be changed from 4 to 2, the `nnp` and `nnai` parameter values will be removed from the GT modification identifier.

If the `ngti` value is 2 when this procedure is finished, the `nnp` and `nnai` parameters cannot be specified.

If the `ngti` parameter will have no value when this procedure is finished (ngti=none), the `nnp` and `nnai` parameters can be specified.

Continue the procedure with Step 6 if any of these conditions are present.

- The Hex Digit Support for GTT and ANSI/ITU SCCP Conversion features are enabled.
If hexadecimal digits will not be specified for the npds or nsds parameters, and the ngti or the on=gt0fill parameters will not be specified with the chg-gtmod command.

If hexadecimal digits will be specified for the npds or nsds parameters and hexadecimal digits are not shown in the rtrv-gtmod output, continue the procedure with Step 4.

If the ngti parameter values 2 or 4, or the on=gt0fill parameter will be specified with the chg-gtmod command, and values 2 or 4 for the ngti parameter are not shown in the rtrv-gtmod output or the GT0FILL value ON is not shown in the rtrv-gtmod output, continue the procedure with Step 5.

After these steps have been performed, as needed, continue the procedure with Step 6.

4. Verify the status of the Hex Digit Support for GTT feature by entering this command.

rtrv-ctrl-feat:partnum=893018501

The following is an example of the possible output.

```
rlgncxa03w 10-07-28 21:15:37 GMT EAGLE5 42.0.0
The following features have been permanently enabled:
Feature Name Partnum Status Quantity
Hex Digit Support for GTT 893018501 on ----
The following features have been temporarily enabled:
Feature Name Partnum Status Quantity Trial Period Left
Zero entries found.
The following features have expired temporary keys:
Feature Name Partnum
Zero entries found.
```

If the Hex Digit Support for GTT feature has not been enabled, perform the Activating the Hex Digit Support for GTT Feature procedure to enable the Hex Digit Support for GTT feature.

5. Verify the status of the ANSI/ITU SCCP Conversion feature by entering this command.

rtrv-ctrl-feat:partnum=893012001

The following is an example of the possible output.

```
rlgncxa03w 10-07-28 21:15:37 GMT EAGLE5 42.0.0
The following features have been permanently enabled:
Feature Name Partnum Status Quantity
SCCP Conversion 893012001 on ----
The following features have been temporarily enabled:
Feature Name Partnum Status Quantity Trial Period Left
Zero entries found.
The following features have expired temporary keys:
Feature Name Partnum
Zero entries found.
```

If the ANSI/ITU SCCP Conversion feature is not enabled, perform Activating the ANSI/ITU SCCP Conversion Feature procedure to enable the ANSI/ITU SCCP Conversion feature.
6. Change the GT modification identifier using the `chg-gtmod` command with the parameters and values shown in Table 64: Change GT Modification Parameter Values.

<table>
<thead>
<tr>
<th>Mandatory Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>gtmodid=&lt;the current GTMOD ID shown in the rtrv-gtmod output&gt;</code></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Optional Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>cgpasstn=&lt;2–255, or none&gt;</code></td>
</tr>
<tr>
<td><code>ngti=&lt;2, 4, or none&gt;</code></td>
</tr>
<tr>
<td><code>nnai=&lt;0–127, or none&gt;</code></td>
</tr>
<tr>
<td><code>nnp=&lt;0–15, or none&gt;</code></td>
</tr>
<tr>
<td><code>npdd=&lt;1–21, or none&gt;</code></td>
</tr>
<tr>
<td><code>npds=&lt;1–21 decimal digits, 1–21 hexadecimal digits, or none&gt;</code></td>
</tr>
<tr>
<td><code>precd=&lt;pfx or sfx&gt;</code></td>
</tr>
</tbody>
</table>

**Notes:**

1. At least one optional parameter must be specified.
2. If either the `npdd/npds` or `nsdd/nsds` parameter combinations are specified, the `precd` parameter cannot be specified.
3. If the `npdd/npds` and `nsdd/nsds` parameter combinations are specified, the `precd` parameter must be specified.
4. If the `precd` parameter is specified, the `npdd/npds` and `nsdd/nsds` parameter combinations must be specified.
5. The combined length of `npds` and `nsds` parameter values cannot exceed 21 digits.
6. The `ngtmodid` parameter changes the references from the current `gtmodid` value to the new `gtmodid` value in the entities that reference the current `gtmodid` value.
7. See Step 3 for other requirements for using these parameters.

For this example, enter this command.

```
```
When the command has successfully completed, this message appears.

```
rlghncxa03w 10-07-07 00:27:31 GMT EAGLE5 42.0.0
GTMOD table is (5 of 100000) 1% full.
CHG-GTMOD: MASP A - COMPLTD
```

7. Verify the changes by entering the `rtrv-gtmod` command with the `gtmodid` parameter. The `gtmodid` parameter value is the `gtmodid` parameter value, if the GT modification identifier was not changed, or the `ngtmodid` parameter value, if the GT modification identifier was changed, that was specified in Step 6. For this example, enter this command.

`rtrv-gtmod:gtmodid=modid7`

This is an example of the possible output.

```
rlghncxa03w 10-07-07 00:28:31 GMT EAGLE5 42.0.0
GTMODID NTT NGTI GT0FILL NNP NNAI NPDD NSDD PRECD CGPASSN
modid7 -- 2 OFF -- -- 4 4 PFX --
 NPDS=2345 NSDS=12ae
GTMOD table is (5 of 100000) 1% full.
```

8. Backup the new changes using the `chg-db:action=backup:dest=fixed` command. These messages should appear, the active Maintenance and Administration Subsystem Processor (MASP) appears first.

```
BACKUP (FIXED) : MASP A - Backup starts on active MASP.
BACKUP (FIXED) : MASP A - Backup on active MASP to fixed disk complete.
BACKUP (FIXED) : MASP A - Backup starts on standby MASP.
BACKUP (FIXED) : MASP A - Backup on standby MASP to fixed disk complete.
```

### Changing the MTP-Routed GTT Options

This procedure is used to change the MTP-routed GTT options using the `chg-sccpopts` command with these parameters.

`:mtprgtt` – This parameter specifies whether global title translation is performed on an MTP-routed message and how the message is routed after global title translation is performed on the message. This parameter has three values.

- **off** - global title translation is not performed on the MTP-routed message.
- **usemtppc** - global title translation is performed on the MTP-routed message and is then routed to the original DPC.
- **fullgtt** - global title translation is performed on the MTP-routed message and is then routed to the translated DPC.

`:mtprgttfallbk` – this parameter specifies whether an MTP-routed message is MTP-routed after global title translation on the message has failed. This parameter has two values.

- **mtproute** - perform MTP-routing on the message if global title translation on the message fails.
• **gttfail** - discard the message if global title translation on the message fails. Send a UDTS if required.

This procedure can be performed only if the MTP Routed GWS Stop Action feature or the MTP Msgs for SCCP Apps feature is enabled. The status of these features is shown in the `rtrv-ctrl-feat` output.

1. Display the existing default GTT mode values by entering the `rtrv-sccpopts` command. This is an example of the possible output.

   ```
 rlghncxa03w 10-07-17 16:02:05 GMT EAGLE5 42.0.0
 SCCP OPTIONS

 MTPRGTT off
 MTPRGTTFALLBK mtproute
   ```

   The `rtrv-sccpopts` output contains other fields that are not used in this procedure. If you wish to see these fields, refer to the `rtrv-sccpopts` command description in the *Commands Manual*.

   If the `MTPRGTT` value is either `usemtppc` or `fullgtt`, or the `MTPRGTTFALLBK` value is `gttfail`, then either the MTP Routed GWS Stop Action feature or the MTP Msgs for SCCP Apps feature is enabled. The `MTPRGTT` or `MTPRGTTFALLBK` values can be changed. Continue the procedure with **Step 3**.

   If the `MTPRGTT` value is `off` and the `MTPRGTTFALLBK` value is `mtproute`, continue the procedure with **Step 2**.

2. Display the status of the MTP Routed GWS Stop Action feature or the MTP Msgs for SCCP Apps features by entering the `rtrv-ctrl-feat` command.

   This is an example of the possible output.

   ```
 rlghncxa03w 10-07-07 00:29:31 GMT EAGLE5 42.0.0
 The following features have been permanently enabled:

 Feature Name Partnum Status Quantity
 -------------------- ------- ---- ----
 Intermed GTT Load Sharing 893006901 on ----
 SCCP Loop Detection 893016501 on ----
 SCCP Conversion 893012001 off ----
 HC-MIM SLK Capacity 893012707 on 64
 Flexible GTT Load Sharing 893015401 on ----
 Origin Based SCCP Routing 893014501 on ----
 Hex digit support for GTT 893018501 on ----
 AMGTT 893021801 on ----
 MO SMS B-Party Routing 893024601 on ----
 GTT Action - DISCARD 893027501 off ----
 GTT Action - DUPLICATE 893027601 off ----
 GTT Action - FORWARD 893037501 on ----
 ANSI41 AIQ 893034901 off ----

 The following features have been temporarily enabled:

 Feature Name Partnum Status Quantity Trial Period Left
 -------------------- ------- ---- ----
 Zero entries found.

 The following features have expired temporary keys:
   ```
If either the MTP Routed GWS Stop Action feature or the MTP Msgs for SCCP Apps features are enabled, continue the procedure with Step 3.

If neither the MTP Routed GWS Stop Action feature or the MTP Msgs for SCCP Apps features are enabled, enable the desired feature by performing one of these procedures.

- To enable the MTP Routed GWS Stop Action feature, perform the “Activating the MTP Routed GWS Stop Action Feature” procedure in the Database Administration Manual – Gateway Screening.
- To enable the MTP Msgs for SCCP Apps feature, perform the “MTP Msgs for SCCP Apps Activation Procedure” in one of these manuals to enable the feature.
  
  - Feature Manual - A-Port
  - Feature Manual - IS41 GSM Migration
  - Feature Manual - MO SMS

After the desired feature has been enabled, continue the procedure with Step 3.

3. Change the MTP-routed GTT option values using the \texttt{chg-sccpopts} command and with either the \texttt{mtprgtt} or the \texttt{mtprgttfallbk} parameters, or both parameters.

For this example, enter this command.

\texttt{chg-sccpopts:mtprgtt=fullgtt:mtprgttfallbk=gttfail}

When the \texttt{chg-sccpopts} command has successfully completed, this message should appear.

\texttt{rlghncxa03w 10-07-07 00:22:57 GMT EAGLE5 42.0.0 CHG-STPOPTS: MASP A - COMPLTD}

4. Verify the changes using the \texttt{rtrv-sccpopts} command. This is an example of the possible output.

\texttt{rlghncxa03w 10-07-17 16:02:05 GMT EAGLE5 42.0.0}

\texttt{SCCP OPTIONS}

\texttt{-----------------------------}

\texttt{MTPRGTT fullgtt}

\texttt{MTPRGTTFAILBK gttfail}

5. Back up the new changes using the \texttt{chg-db:action=backup:dest=fixed} command. These messages should appear, the active Maintenance and Administration Subsystem Processor (MASP) appears first.

\texttt{BACKUP (FIXED) : MASP A - Backup starts on active MASP.}

\texttt{BACKUP (FIXED) : MASP A - Backup on active MASP to fixed disk complete.}

\texttt{BACKUP (FIXED) : MASP A - Backup starts on standby MASP.}

\texttt{BACKUP (FIXED) : MASP A - Backup on standby MASP to fixed disk complete.}
Chapter 3

Global Title Translation (GTT) Configuration

Topics:

- **Introduction**.....441
- **Adding a Translation Type**.....441
- **Removing a Translation Type**.....452
- **Adding a Global Title Translation**.....458
- **Removing a Global Title Translation**.....484
- **Changing a Global Title Translation**.....491

Chapter 3, Global Title Translation (GTT) Configuration, contains the procedures specific to configure the global title translation feature.
Introduction

This chapter describes the procedures needed to add, remove, or change global title translation (GTT) data in the database.

The items configured in this section are:

- Translation types
- Global title translations.

The following items must also be configured for the Global Title Translation feature. The procedures to configure these items are located in the Global Title Translation (GTT) Overview section.

- Service modules
- Translation type mapping
- Concerned signaling point codes
- Mate applications
- Mated relay node groups
- GT Conversion Table Entries for the ANSI/ITU SCCP Conversion feature.
- Loopsets for the SCCP Loop Detection feature.
- GT modification identifiers for the Advanced GT Modification feature.

The procedures shown in this chapter use a variety of commands. For more information on these commands, refer to the Commands Manual.

Notes:

1. Before turning the Global Title Translation (GTT) feature on with the chg-feat:gtt=on command, make sure you have purchased this feature. If you are not sure whether you have purchased the GTT feature, contact your Tekelec Sales Representative or Account Representative.

2. To perform the procedures in this chapter, the GTT feature must be on. The translation type (ent-/dlt-/rtrv-tt) and the GTT (ent-/dlt-/chg-/rtrv-gtt) commands can be executed when the EGTT feature is turned on, but will only produce CDGTA GTT sets and CDGTA GTT selectors. For more details on the EGTT feature, refer to the Enhanced Global Title Translation (EGTT) Configuration section.

3. To find out about the differences between the Global Title Translation (GTT) feature and the Enhanced Global Title Translation (EGTT) feature, refer to the Upgrading from Global Title Translation (GTT) to Enhanced Global Title Translation (EGTT) section.

Adding a Translation Type

This procedure is used to add a translation type to the database using the ent-tt command.

The ent-tt command uses these parameters.

:type/typea/typei/typeis/typen/typens/typen24 – The translation type and network type of that translation type. The translation type indicates which global title translation table is to be used to determine the routing to a particular service database. The value of this parameter is from 0 to 255.

:type or ::typea – an ANSI network
:typei – an ITU international network
:typeis – an ITU international spare network
:typen - a 14-bit ITU national network.
:typens - a 14-bit ITU national spare network.

:tttn – The name of the global title translation type, containing one alphabetic character and up to eight alphanumeric characters.
:ndgt – The number of digits, 1 to 21 digits, contained in the global title translation.
:alias – The alias of the global title translation type. The value of this parameter is from 0 to 255.

The translation type value, for example 10, can be specified as a value for each translation type parameter (typea=10,typei=10,typeis=10,typen=10,typens=10,typen24=10). The translation type value can appear in the rtrv-tt output only once for each network type of translation types.

An alias translation type value cannot be specified if the value is shown in the TYPE column of the rtrv-tt output for the network type defined by the specified translation type parameter. For example, the alias translation type value 10 cannot be specified as an alias of an ITU-I translation type if a TYPEI value in the rtrv-tt output is 10. However, if the TYPEIS column does not contain the value 10, the value 10 can be specified as an alias translation type of an ITU-I spare translation type. The alias translation type value can appear in the rtrv-tt output only once for each network type of translation types.

When adding an alias translation type, the translation type must be specified with the ent-tt command. The translation type must be shown in the rtrv-tt output.

Either the ndgt parameter or the alias parameter can be specified with the ent-tt command, but not both at the same time.

The translation type name value specified with the ent-tt command cannot be shown in the rtrv-tt output.

This procedure can be performed if the EGTT feature is turned on. Only the CDGTA GTT sets and selectors (with the default values for the advanced parameters) are created. Adding a translation type when the EGTT feature is turned on creates a CDGTA GTT set. If the type/typea parameter is specified with the ent-tt command, the NETDOM value of the GTT set is ANSI. If the typei,typeis, typen,typens, or typen24 parameter is specified with the ent-tt command, the NETDOM value of the GTT set is ITU. The ttn parameter value of the ent-tt command defines the name of the GTT set. If the ttn parameter is not specified with the ent-tt command, a default name for the GTT set is created. These are examples of the default GTT set names.

• If the ANSI translation type 10 is added, the GTT set name is setans010.
• If the ITU-I translation type 20 is added, the GTT set name is setint020.
• If the ITU-I spare translation type 5 is added, the GTT set name is setins005.
• If the ITU-N translation type 100 is added, the GTT set name is setnat100.
• If the ITU-N spare translation type 30 is added, the GTT set name is setnas030.
• If the ITU-N24 translation type 40 is added, the GTT set name is set24n040.

If the translation type is an ANSI translation type, one GTT selector associated with the CDGTA GTT set that contains the global title indicator value 2 and the translation type value is created. If the If the translation type is an ITU-I, ITU-I spare, ITU-N, ITU-N spare, or ITU-N24 translation type, two GTT selectors associated with the CDGTA GTT set are created. One GTT selector contains the global title indicator value 2 and the translation type value. The other GTT selector contains the global title.
indicator value 4 and the translation type value. The advanced GTT parameter values for these GTT selectors are set to these default values.

- NP - dflt - for ITU GTT selectors only. ANSI GTT selectors can only contain dashes in this column.
- NAI - dflt - for ITU GTT selectors only. ANSI GTT selectors can only contain dashes in this column.
- CGSSN - dashes
- SELID - none
- LSN - any

If a GTT set is in the database with the same name as the ttn parameter value or the default GTT set name, the translation type will not be added to the database.

The global title translation feature must be turned on. Verify this by entering the `rtrv-feat` command. If the global title translation feature is off, it can be turned on by entering the `chg-feat:gtt=on` command.

**Note:** Once the Global Title Translation (GTT) feature is turned on with the `chg-feat` command, it cannot be turned off.

The GTT feature must be purchased before turning it on. If you are not sure whether you have purchased the GTT feature, contact your Tekelec Sales Representative or Account Representative.

If the Variable-length Global Title Translation Feature (VGTT) is on, shown by the entry `VGTT = on` in the `rtrv-feat` command output, or the Support for 16 GTT Lengths in VGTT feature is enabled and turned on, shown by the entry `VGTT with 16 Lengths` in the `rtrv-ctrl-feat` output, the `nGtT` parameter cannot be specified with the `ent-tt` command. The length of the global title address is determined when the global title address is entered with the `ent-gtt` command. If only the VGTT feature is on, the translation type can contain a maximum of ten different lengths of global title addresses. If the Support for 16 GTT Lengths in VGTT feature is enabled and turned on, the translation type can contain a maximum of 16 different lengths of global title addresses. For more information on the VGTT feature, the Support for 16 GTT Lengths in VGTT feature, and the length of global title addresses, refer to Variable-length Global Title Translation Feature and Adding a Global Title Translation.

If the Variable-length Global Title Translation Feature (VGTT) is on, the `nGtT` field of the `rtrv-tt` command shows the different lengths of global title addresses assigned to a translation type, as shown in the following example.

<table>
<thead>
<tr>
<th>Type</th>
<th>TTN</th>
<th>NDGT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>lidb</td>
<td>6, 12, 15</td>
</tr>
<tr>
<td>2</td>
<td>c800</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>d700</td>
<td>6</td>
</tr>
<tr>
<td>ALIAS</td>
<td>TYPEA</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>65</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>TYPEI</td>
<td>TTN</td>
<td>NDGT</td>
</tr>
<tr>
<td>105</td>
<td>itudb</td>
<td>8</td>
</tr>
<tr>
<td>ALIAS</td>
<td>TYPEI</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>105</td>
<td></td>
</tr>
<tr>
<td>TYPEN</td>
<td>TTN</td>
<td>NDGT</td>
</tr>
<tr>
<td>120</td>
<td>dbitu</td>
<td>7</td>
</tr>
<tr>
<td>ALIAS</td>
<td>TYPEN</td>
<td></td>
</tr>
</tbody>
</table>
In this example of the rtrv-tt command output, the ANSI translation type 1 contains three different length global title addresses; global title addresses containing six digits, 12 digits, and 15 digits.

If the Variable-length Global Title Translation Feature (VGTT) feature is off and you wish to turn it on, enter the chg-feat:vgtt=on command. The GTT feature must be on before the vgtt=on parameter can be specified with the chg-feat command.

Note: Once the Variable-length Global Title Translation (VGTT) feature is turned on with the chg-feat command, it cannot be disabled.

The VGTT feature must be purchased before turning it on. If you are not sure whether you have purchased the VGTT feature, contact your Tekelec Sales Representative or Account Representative.

1. Verify that the GTT feature is on, by entering the rtrv-feat command. If the GTT feature is on, the GTT field should be set to on.

   Note: The rtrv-feat command output contains other fields that are not used by this procedure. If you wish to see all the fields displayed by the rtrv-feat command, refer to the rtrv-feat command description in the Commands Manual.

   If the GTT feature is off, perform the Adding a Service Module procedure to turn the GTT feature on and to make sure that the correct hardware is installed. After the Adding a Service Module procedure has been performed, continue the procedure with Step 11.

   If the GTT feature is on, continue the procedure by performing one of these steps.

   • If the EGTT feature is on, continue the procedure with Step 3.
   • If the EGTT feature is off, continue the procedure with Step 2.

2. Display the translation types in the database using the rtrv-tt command. This is an example of the possible output.

   righthncxa03w 10-07-25 09:57:31 GMT EAGLE5 42.0.0

<table>
<thead>
<tr>
<th>TYPEA</th>
<th>TTN</th>
<th>NDGT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>l1db</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>c800</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>d700</td>
<td>6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ALIAS</th>
<th>TYPEA</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>3</td>
</tr>
<tr>
<td>65</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TYPEI</th>
<th>TTN</th>
<th>NDGT</th>
</tr>
</thead>
<tbody>
<tr>
<td>105</td>
<td>itudb</td>
<td>8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ALIAS</th>
<th>TYPEI</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>105</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TYPEN</th>
<th>TTN</th>
<th>NDGT</th>
</tr>
</thead>
<tbody>
<tr>
<td>120</td>
<td>dbitu</td>
<td>7</td>
</tr>
</tbody>
</table>
Continue the procedure with *Step 6*.

3. Display the GTT set by entering the `rtrv-gttset` command with the TTN value that will be assigned to the translation type for the `gttsn` parameter value.

For this example, enter these commands:

```
rtrv-gttset:gttsn=scp1
```

This is an example of the possible output.

```
rlghncxa03w 10-07-25 09:57:31 GMT EAGLE5 42.0.0

GTTSN NETDOM NDGT
scpl ansi 6
GTT-SET table is (7 of 2000) 1% full.
```

```
rtrv-gttset:gttsn=scp2
```

This is an example of the possible output.

```
rlghncxa03w 10-07-25 09:57:31 GMT EAGLE5 42.0.0

GTTSN NETDOM NDGT
scp2 ansi 6
GTT-SET table is (7 of 2000) 1% full.
```

```
rtrv-gttset:gttsn=scp3
```

This is an example of the possible output.

```
rlghncxa03w 10-07-25 09:57:31 GMT EAGLE5 42.0.0

GTTSN NETDOM NDGT
scp3 ansi 6
GTT-SET table is (7 of 2000) 1% full.
```

This message is displayed if the specified GTT set is not in the database.

```
E3561 Cmd Rej: GTT Set specified by GTT Set Name/index does not exist
```

If the TTN value is not the name of a GTT set, only a CDGTA GTT set whose `NETDOM` value is either ANSI or ITU can be provisioned in this procedure. The advanced GTT parameters for the GTT selector that is created in this procedure will be set to these default values.
If you wish to provision a GTT set that has a set type other than CDGTA or whose NETDOM value is CROSS, do not perform the remainder of this procedure. Perform the Adding a GTT Set procedure to add the GTT set.

If the GTT set will be a CDGTA GTT set whose NETDOM value is either ANSI or ITU, but the GTT selector that will be created will contain values for the advanced GTT parameters other than the default values, do not perform the remainder of this procedure. Perform the Adding a GTT Selector procedure to add the GTT selector.

If the GTT set will be a CDGTA GTT set whose NETDOM value is either ANSI or ITU, and the GTT selector that will be created will contain the default values for the advanced GTT parameters, continue the procedure with Step 6.

If the TTN value is the name of a GTT set, and the SETTYPE column is not shown in the rtrv-gttset output, the Origin-Based SCCP Routing or the Flexible Linkset Optional Based Routing features are not enabled. The GTT set shown in the rtrv-gttset output is a CDGTA GTT set. If the NETDOM value of the GTT set is either ANSI or ITU, continue the procedure with Step 4.

If the TTN value is the name of a GTT set, and the SETTYPE column is shown in the rtrv-gttset output, the Origin-Based SCCP Routing or the Flexible Linkset Optional Based Routing features are enabled. If the SETTYPE value of the GTT set is CDGTA and the NETDOM value of the GTT set is either ANSI or ITU, continue the procedure with Step 4.

If the SETTYPE value of the GTT set is a value other than CDGTA, or if the NETDOM value of the GTT set is CROSS, the TTN value cannot be used in this procedure. If you wish to use this procedure to add a GTT set, repeat this step with a different TTN value. If you wish to use the TTN value to add a GTT selector, perform the Adding a GTT Selector procedure.

4. Display the features that are enabled by entering the rtrv-ctrl-feat command.

The following is an example of the possible output.

```
rightncxa03w 10-07-28 21:15:37 GMT EAGLE5 42.0.0
The following features have been permanently enabled:

Feature Name Partnum Status Quantity
Command Class Management 893005801 on ----
LNP Short Message Service 893006601 on ----
Intermed GTT Load Sharing 893006901 on ----
HC-MIM SLK Capacity 893012707 on 64

The following features have been temporarily enabled:

Feature Name Partnum Status Quantity Trial Period Left
Zero entries found.

The following features have expired temporary keys:
```

910-6277-001 Revision A, January 2012 446
5. Display the GTT selectors in the database by entering the \texttt{rtrv-gttsel} command with the TTN value associated with the translation type that will be assigned to the global title translation. The TTN value is shown in the \texttt{rtrv-tt} output in \textit{Step 2}.

To specify the TTN value, the parameters shown in \textit{Table 65: RTRV-GTTSSEL Parameters} must be specified with the \texttt{rtrv-gttsel} command. The parameters that can be specified are dependent on the features that are enabled, shown in \textit{Step 4}.

\textbf{Table 65: RTRV-GTTSSEL Parameters}

<table>
<thead>
<tr>
<th>Feature that is Enabled</th>
<th>Parameter that must be Specified for the TTN Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neither the Origin Based SCCP Routing nor the Flexible Linkset Optional Based Routing, shown as Flex Lset Optnl Based Rtg in the \texttt{rtrv-ctrl-feat} output, is enabled.</td>
<td>\texttt{gttsn}</td>
</tr>
<tr>
<td>Origin Based SCCP Routing</td>
<td>\texttt{cdgtasn}, \texttt{cggtasn}</td>
</tr>
<tr>
<td>Flexible Linkset Optional Based Routing</td>
<td>\texttt{cdgttsn}, \texttt{cggttsn}</td>
</tr>
</tbody>
</table>

For this example, enter these commands.

\texttt{rtrv-gttsel:gttsn=scp1}

\begin{verbatim}
rlgnxcxa03w 10-07-28 21:15:37 GMT EAGLE5 42.0.0

GTIA    TT     NP      NAI  SELID GTTSN
2      5     --      ---  none  scp1
GTII    TT     NP      NAI  SELID GTTSN
GTIN    TT     NP      NAI  SELID GTTSN
GTIN24  TT     NP      NAI  SELID GTTSN
GTIIS   TT     NP      NAI  SELID GTTSN
GTINS   TT     NP      NAI  SELID GTTSN

rtrv-gttsel:gttsn=scp2

rlgnxcxa03w 10-07-28 21:15:37 GMT EAGLE5 42.0.0

GTIA    TT     NP      NAI  SELID GTTSN
2      10    --      ---  none  scp2
GTII    TT     NP      NAI  SELID GTTSN
GTIN    TT     NP      NAI  SELID GTTSN
GTIN24  TT     NP      NAI  SELID GTTSN
GTIIS   TT     NP      NAI  SELID GTTSN
GTINS   TT     NP      NAI  SELID GTTSN
\end{verbatim}
If no entries are displayed for the TTN value, continue the procedure with Step 6.

If any of the entries shown in the rtrv-gttsel output do not have the default values for the advanced GTT parameters, or if a GTT selector entry with the TTN value was removed with the dlt-gttsel command, the remainder of this procedure cannot be performed. Choose another translation type and TTN combination and repeat this procedure from Step 5.

If all of the entries shown in the rtrv-gttsel output have the default values for the advanced GTT parameters; none of the GTT selector entries with the TTN value were removed with the dlt-gttsel command; and none of the entries contain the translation type value that will be specified in Step 11, continue the procedure with Step 6.

If any of the entries contain the translation type value that will be specified in Step 11, and you wish to specify an alias translation type to the translation type entry using this procedure, continue the procedure with Step 11. If you do not wish to specify an alias translation type to the translation type entry using this procedure, do not perform the remainder of this procedure. Perform the Adding a GTT Selector procedure to add the GTT selector.

6. Continue the procedure by performing one of these steps.

- If multiple values are shown in the NDGT column for any translation type entry, the Variable-Length Global Title Translation feature is turned on. If a translation type entry contains 11 - 16 values in the NDGT column, the Support for 16 GTT Lengths in VGTT feature is enabled and turned on.

  - If no more than 10 values are shown in the NDGT column for any translation type, continue the procedure by performing one of these steps.

    - If the new translation type that is being added will contain no more than 10 different length global title addresses, continue the procedure with Step 11.
    - If the new translation type that is being added will contain more than 10 different length global title addresses, continue the procedure with Step 10.

    - If more than 10 values are shown in the NDGT column for any translation type, continue the procedure with Step 11.

- If only single values are shown in the NDGT column for all the translation type entries, continue the procedure by performing one of these steps.
If the new translation type that is being added will contain global title addresses of only one length, continue the procedure with Step 11.

If the new translation type that is being added will contain multiple lengths of global title addresses, continue the procedure with Step 7.

7. Verify that the VGTT feature is on, by entering the `rtrv-feat` command. If the VGTT feature is on, the VGTT field should be set to on.

   **Note:** The `rtrv-feat` command output contains other fields that are not used by this procedure. If you wish to see all the fields displayed by the `rtrv-feat` command, see the `rtrv-feat` command description in the **Commands Manual**.

Continue the procedure by performing one of these steps.

   • If the VGTT feature is on, continue the procedure by performing one of these steps.
    
    • If the new translation type that is being added will contain no more than 10 different length global title addresses, continue the procedure with Step 11.
    
    • If the new translation type that is being added will contain more than 10 different length global title addresses, continue the procedure with Step 10.
    
    • If the VGTT feature is off, continue the procedure with Step 8.

8. Display the cards in the EAGLE 5 ISS using the `rtrv-card` command. This is an example of the possible output.

   ```
 rlghncxa03w 07-05-25 09:58:31 GMT EAGLE5 41.0 .0
 CARD TYPE APPL LSET NAME LINK SLC LSET NAME LINK SLC
 1102 TSM GLS
 1113 GPSM EOAM
 1114 TDM-A EOAM
 1115 GPSM EOAM
 1116 TDM-B EOAM
 1117 MDAL
 1201 LIMDS0 SS7ANSI sp2 A 0 sp1 B 0
 1203 LIMDS0 SS7ANSI sp3 A 0
 1204 LIMDS0 SS7ANSI sp3 A 1
 1206 LIMDS0 SS7ANSI nsp3 A 1 nsp4 B 1
 1216 DCM STPLAN
 1303 LIMDS0 SS7ANSI sp6 A 1 sp7 B 0
 1314 LIMDS0 SS7ANSI sp7 A 1 sp5 B 1
 1317 DCM STPLAN
 The correct service modules must be in the EAGLE 5 ISS before the VGTT feature can be turned on, or the Support for 16 GTT Lengths in VGTT feature can be enabled and turned on. See **Adding a Service Module** to determine the service modules that are required. If any service modules must be replaced, contact the Customer Care Center before replacing any service modules. Refer to **Customer Care Center** for the contact information.

9. Turn the Variable-length Global Title Translation (VGTT) feature on by entering this command.

 `chg-feat:vgtt=on`

 Note: Once the Variable-length Global Title Translation (VGTT) feature is enabled with the `chg-feat` command, it cannot be disabled.

 The VGTT feature must be purchased before turning it on. If you are not sure whether you have purchased the VGTT feature, contact your Tekelec Sales Representative or Account Representative.
When the `chg-feat` has successfully completed, this message should appear.

```
rlghncxa03w 09-05-25 09:57:41 GMT EAGLE5 41.0.0
CHG-FEAT: MASP A - COMPLTD
```

Continue the procedure by performing one of these steps.

- If the new translation type that is being added will contain no more than 10 different length global title addresses, continue the procedure with **Step 11**.
- If the new translation type that is being added will contain more than 10 different length global title addresses, perform [Activating the Support for 16 GTT Lengths in VGTT Feature](#) to enable and turn on the Support for 16 GTT Lengths in VGTT feature. After the Support for 16 GTT Lengths in VGTT feature has been enabled and turned on, continue the procedure with **Step 11**.

10. Display the status of the Support for 16 GTT Lengths in VGTT feature by entering this command.

```
trv-ctrl-feat:partnum=893024801
```

```
rlghncxa03w 09-05-25 09:57:41 GMT EAGLE5 41.0.0
The following features have been permanently enabled:

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Partnum</th>
<th>Status</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>VGTT with 16 GTT lengths</td>
<td>893024801</td>
<td>on</td>
<td>----</td>
</tr>
</tbody>
</table>

The following features have been temporarily enabled:

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Partnum</th>
<th>Status</th>
<th>Quantity</th>
<th>Trial Period Left</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zero entries found.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The following features have expired temporary keys:

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Partnum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zero entries found.</td>
<td></td>
</tr>
</tbody>
</table>

If the Support for 16 GTT Lengths in VGTT feature is enabled and turned on, continue the procedure with **Step 11**.

If the Support for 16 GTT Lengths in VGTT feature is not enabled or turned on, perform [Activating the Support for 16 GTT Lengths in VGTT Feature](#) to enable and turn on the Support for 16 GTT Lengths in VGTT feature. After the Support for 16 GTT Lengths in VGTT feature has been enabled and turned on, continue the procedure with **Step 11**.

**11.** Add the translation type to the database using the `ent-tt` command. For this example, enter these commands.

**Note:** If the VGTT feature is on, or the Support for 16 GTT Lengths in VGTT feature is enabled and turned on, the `ndgt` parameter cannot be specified with the `ent-tt` command.

```
ent-tt:typea=5:ttn=scp1
ent-tt:typea=10:ttn=scp2
ent-tt:typea=15:ttn=scp3
ent-tt:typea=5:ttn=scp1:alias=30
ent-tt:typea=10:ttn=scp2:alias=40
```
1. If the VGTT feature is on, the `ndgt` parameter cannot be specified with the `ent-tt` command.
2. The translation type value, for example 10, can be specified as a value for each translation type parameter (typea=10, typei=10, typeis=10, typen=10, typens=10, typen24=10). The translation type value can appear in the `rtrv-tt` output only once for each network type of translation types.
3. An alias translation type value cannot be specified if the value is shown in the `TYPE` column of the `rtrv-tt` output for the network type defined by the specified translation type parameter. For example, the alias translation type value 10 cannot be specified as an alias of an ITU-I translation type if a `TYPEI` value in the `rtrv-tt` output is 10. However, if the `TYPEIS` column does not contain the value 10, the value 10 can be specified as an alias translation type of an ITU-I spare translation type. The alias translation type value can appear in the `rtrv-tt` output only once for each network type of translation types.
4. When adding an alias translation type, the translation type must be specified with the `ent-tt` command. The translation type must be shown in the `rtrv-tt` output.
5. If the `ttn` parameter is not specified, the `ttn` value will be added in the formats shown in this list.
   - If an ANSI translation type 10 is specified, the `ttn` value will be `setans010`.
   - If an ITU-I translation type 10 is specified, the `ttn` value will be `setint010`.
   - If an ITU-I spare translation type 10 is specified, the `ttn` value will be `setins010`.
   - If an ITU-N translation type 10 is specified, the `ttn` value will be `setnat010`.
   - If an ITU-N spare translation type 10 is specified, the `ttn` value will be `setnas010`.
   - If an ITU-N24 translation type 10 is specified, the `ttn` value will be `set24n010`.

When each of these commands have successfully completed, this message should appear.

```
rlghncxa03w 09-05-25 09:57:41 GMT EAGLE5 41.0.0
ENT-TT: MASP A - COMPLTD
```

12. Verify the changes using the `rtrv-tt` command with the translation type value specified in **Step 11**. For this example, enter these commands.

```
rtrv-tt:typea=5
```

This is an example of the possible output.

```
rlghncxa03w 10-07-25 09:57:51 GMT EAGLE5 42.0.0
TYPEA TTN NDGT
 5 scp1 6
ALIAS TYPEA
 30 5
```

```
rtrv-tt:typea=10
```

This is an example of the possible output.

```
rlghncxa03w 10-07-25 09:57:51 GMT EAGLE5 42.0.0
TYPEA TTN NDGT
 10 scp2 6
```
This is an example of the possible output.

13. Backup the new changes using the `chg-db:action=backup:dest=fixed` command. These messages should appear, the active Maintenance and Administration Subsystem Processor (MASP) appears first.

Removing a Translation Type

This procedure is used to remove a translation type from the database using the `dlt-tt` command. The `dlt-tt` command uses these parameters.

- `:type/typea/typei/typeis/typen/typens/typen24` – The translation type and network type of that translation type. The translation type indicates which global title translation table is to be used to determine the routing to a particular service database.
  - `:type` or `:typea` – an ANSI network
  - `:typei` – an ITU international network
  - `:typeis` – an ITU international spare network
- `:ttn` – The name of the global title translation type
- `:alias` – The alias of the global title translation type

The examples in this procedure are used to remove the translation type 3 from the database.

The translation type, translation type name, or alias specified with the `dlt-tt` command must be shown in the `rtrv-tt` output, and must be assigned to the specified translation type.

The translation type cannot be removed if the global title translation tables reference the translation type. Verify that the global title translation tables do not reference the translation type using the `rtrv-gtt` command.
If the `rtrv-gtt` command shows references to the translation type to be removed, go to the *Removing a Global Title Translation* procedure and remove the global title translation data associated with the translation type.

If the translation type is referenced by an alias, all aliases to the translation type must be removed first. To remove the alias, the alias and translation type must be specified in the `dlt-tt` command.

This procedure can be performed if the EGTT feature is turned on. If the EGTT feature is turned on, these rules apply.

1. The `dlt-tt` command removes the GTT selectors defined by the translation type that is specified with the `dlt-tt` command. If the `ttn` and `tt` parameters are specified with the `dlt-tt` command, the GTT selectors that are associated with the GTT set name that is defined by the `ttn` parameter value are removed. When the last GTT selector that is associated with a GTT set is removed with the `dlt-tt` command, the GTT set is removed. The GTT selectors are shown in the `rtrv-gttse` output and the GTT sets are shown in the `rtrv-gttset` output.

2. The GTT set that is associated with GTT selectors that are being removed can not be referenced by any GTA entry, shown in the `rtrv-gta` output, and cannot be referenced in any other GTT selector.

3. The GTT selectors that can be removed using the `dlt-tt` command can be associated only with CDGTA GTT sets.

4. To remove an ITU GTT selector is removed using the `dlt-tt` command, there must be entries in the database that contain the global title indicator values 2 and 4, along with the specified translation type value, and the translation type name value (this is the GTT set name) if the `ttn` parameter is specified. To remove a GTT selector using the `dlt-tt` command, these columns of the GTT selector entries must contain these values:
   - NP - `dflt` - for ITU GTT selectors only. ANSI GTT selectors can only contain dashes in this column.
   - NAI - `dflt` - for ITU GTT selectors only. ANSI GTT selectors can only contain dashes in this column.
   - CGSSN - dashes
   - SELID - none
   - LSN - any

**Canceling the RTRV-GTT Command**

Because the `rtrv-gtt` command used in this procedure can output information for a long period of time, the `rtrv-gtt` command can be canceled and the output to the terminal stopped. There are three ways that the `rtrv-gtt` command can be canceled.

- Press the F9 function key on the keyboard at the terminal where the `rtrv-gtt` command was entered.
- Enter the `canc-cmd` without the `trm` parameter at the terminal where the `rtrv-gtt` command was entered.
- Enter the `canc-cmd:trm=<xx>`, where `<xx>` is the terminal where the `rtrv-gtt` command was entered, from another terminal other that the terminal where the `rtrv-gtt` command was entered. To enter the `canc-cmd:trm=<xx>` command, the terminal must allow Security Administration commands to be entered from it and the user must be allowed to enter Security Administration commands. The terminal’s permissions can be verified with the `rtrv-secu-trm` command. The user’s permissions can be verified with the `rtrv-user` or `rtrv-secu-user` commands.

For more information about the `canc-cmd` command, go to the *Commands Manual*.
1. Verify that the GTT feature is on, by entering the `rtrv-feat` command. If the GTT feature is on, the GTT field should be set to `on`.

   Note: The `rtrv-feat` command output contains other fields that are not used by this procedure. If you wish to see all the fields displayed by the `rtrv-feat` command, refer to the `rtrv-feat` command description in the Commands Manual.

   If the GTT feature is off, this procedure cannot be performed.

   If the GTT feature is on, continue the procedure with Step 2.

2. Display the translation types in the database using the `rtrv-tt` command.

   This is an example of the possible output.

<table>
<thead>
<tr>
<th>TYPEA</th>
<th>TTN</th>
<th>NDGT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>lidb</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>c800</td>
<td>10</td>
</tr>
<tr>
<td>5</td>
<td>scp1</td>
<td>6</td>
</tr>
<tr>
<td>10</td>
<td>scp2</td>
<td>6</td>
</tr>
<tr>
<td>15</td>
<td>scp3</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ALIAS</th>
<th>TYPEA</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>5</td>
</tr>
<tr>
<td>40</td>
<td>10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TYPEI</th>
<th>TTN</th>
<th>NDGT</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>d700</td>
<td>6</td>
</tr>
<tr>
<td>105</td>
<td>itudb</td>
<td>8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ALIAS</th>
<th>TYPEI</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>105</td>
</tr>
<tr>
<td>50</td>
<td>3</td>
</tr>
<tr>
<td>65</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TYPEN</th>
<th>TTN</th>
<th>NDGT</th>
</tr>
</thead>
<tbody>
<tr>
<td>120</td>
<td>dbitu</td>
<td>7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ALIAS</th>
<th>TYPEN</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>120</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TYPEN24</th>
<th>TTN</th>
<th>NDGT</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>ALIAS</th>
<th>TYPEN24</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>TYPEIS</th>
<th>TTN</th>
<th>NDGT</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>ALIAS</th>
<th>TYPEIS</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>TYPENS</th>
<th>TTN</th>
<th>NDGT</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>ALIAS</th>
<th>TYPENS</th>
</tr>
</thead>
</table>

   If the translation type that is being removed contains an alias translation type and the alias translation type is being removed, continue the procedure with Step 8.

   If the translation type does not contain an alias translation type or if an alias translation type is not being removed, continue the procedure by performing one of these steps.

   - If the EGTT feature is not on, continue the procedure with Step 7.
If the EGTT feature is on, continue the procedure with Step 3.

3. Display the GTT set by entering the `rtrv-gttset` command with the TTN value that is assigned to the translation type for the `gttsn` parameter value.

For this example, enter this command.

```
rtrv-gttset:gttsn=d700
```

This is an example of the possible output.

```
rlghncxa03w 10-07-11 18:54:54 GMT EAGLE5 42.0.0
GTTSN NETDOM SETTYPE NDGT
d700 itu CDGTA 6
GTT-SET table is (8 of 2000) 1% full.
```

If the `NETDOM` value of the GTT set is CROSS, the translation type cannot be removed with this procedure. Perform the Removing a GTT Selector procedure to remove the translation type.

If the `NETDOM` value is ANSI or ITU, continue the procedure by performing one of these steps.

- If the `SETTYPE` column is not shown in the `rtrv-gttset` output, continue the procedure with Step 5.
- If the `SETTYPE` column is shown in the `rtrv-gttset` output, continue the procedure with Step 4.

4. Display the features that are enabled by entering the `rtrv-ctrl-feat` command.

The following is an example of the possible output.

```
rlghncxa03w 10-07-28 21:15:37 GMT EAGLE5 42.0.0
The following features have been permanently enabled:
Feature Name Partnum Status Quantity
Command Class Management 893005801 on ----
LNP Short Message Service 893006601 on ----
Intermed GTT Load Sharing 893006901 on ----
HC-MIM SLK Capacity 893012707 on 64
The following features have been temporarily enabled:
Feature Name Partnum Status Quantity Trial Period Left
Zero entries found.
The following features have expired temporary keys:
Feature Name Partnum
Zero entries found.
```

5. Display the GTT selectors in the database by entering the `rtrv-gttsel` command with the `tt` parameter and with one of these parameters.

- `gttsn`
- `cdgtasn`
- `cggtasn`
- `cdgttsn`
- `cggttsn`
The value that must be specified for the parameter in the previous list that will be specified with the rtrv-gttsel command is the GTTSN value specified in Step 3. The parameter that must be specified for the TTN value is dependent on the feature that is enabled as shown in Table 66: RTRV-GTTSEL GTT Set Name Parameters. The features that are enabled are shown in Step 4.

### Table 66: RTRV-GTTSEL GTT Set Name Parameters

<table>
<thead>
<tr>
<th>Feature that is Enabled</th>
<th>Parameter that must be Specified for the TTN Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>No feature is enabled, the SETTYPE column is not shown in the rtrv-gttset output</td>
<td>gttsn</td>
</tr>
<tr>
<td>Origin Based SCCP Routing</td>
<td>cdgtasn, cggtasn</td>
</tr>
<tr>
<td>Flexible Linkset Optional Based Routing, shown as Flex Lset Optnl Based Rtg in the rtrv-ctrl-feat output</td>
<td>cdgttsn, cggttsn</td>
</tr>
</tbody>
</table>

If the Origin Based SCCP Routing or Flexible Linkset Optional Based Routing features are enabled, enter the rtrv-gttsel command with each parameter shown in Table 66: RTRV-GTTSEL GTT Set Name Parameters.

For this example, enter this command.

```
rtrv-gttsel:gttsn=d700:tt=3
```

This is an example of the possible output.

```
tekelecstp 10-07-11 20:08:02 EST 42.0.0
GTIA TT NP NAI SELID GTTSN
GTII TT NP NAI SELID GTTSN
 2 3 -- --- none d700
 4 3 dflt dflt none d700
GTIN TT NP NAI SELID GTTSN
GTIN24 TT NP NAI SELID GTTSN
GTIIS TT NP NAI SELID GTTSN
GTINS TT NP NAI SELID GTTSN
```

If no entries are displayed, continue the procedure with Step 6.

If entries are displayed, continue the procedure by performing one of these steps.

- If any of the entries shown in the rtrv-gttsel output do not have the default values for the advanced GTT parameters, or if a GTT selector entry with the TTN value was removed with the dlt-gttsel command, the remainder of this procedure cannot be performed. Perform the Removing a GTT Selector procedure to remove the entry.
- If all of the entries shown in the rtrv-gttsel output have the default values for the advanced GTT parameters, and none of the GTT selector entries with the TTN value were removed with the dlt-gttsel command, continue the procedure with Step 6.

The default values for the advanced GTT parameters are shown in this list.
• NP - dflt - for ITU GTT selectors only. ANSI GTT selectors can only contain dashes in this column.
• NAI - dflt - for ITU GTT selectors only. ANSI GTT selectors can only contain dashes in this column.
• CGSSN - dashes
• SELID - none
• LSN - any

6. Display the GTA entries that reference the TTN value of the translation type by entering the `rtrv-gta` command with the TTN value for the `gttsn` parameter value.

For this example, enter this command.

```
rtrv-gta:gttsn=d700
```

This is an example of the possible output.

```
GTTSN NETDOM SETTYPE NDGT
d700 itu CDGTA 6
```

If entries are not displayed in this step, continue the procedure with Step 8.

If entries are displayed in this step, perform the Removing Global Title Address Information procedure to remove the displayed entries. When all the entries have been removed, continue the procedure with Step 8.

7. Display the global title translations assigned to the translation type being removed from the database using the `rtrv-gtt` command specifying the translation type being removed from the `rtrv-tt` command output shown in Step 2. For this example, enter this command.

```
rtrv-gtt:typei=3
```

This is an example of the possible output.

```
TYPEI TTN NDGT
3 d700 6
GTT TABLE IS 10 % FULL (27000 of 269999)
```

If entries are not displayed in this step, continue the procedure with Step 8.
Command Retrieved 1 Entries

If global title translations are shown in the output of the `rtrv-gtt` command output, go to the Removing a Global Title Translation procedure and remove these global title translations.

8. Remove the translation type from the database using the `dlt-tt` command.
   For this example, enter these commands.
   ```
 dlt-tt:typei=3:alias=50
 dlt-tt:typei=3:alias=65
 dlt-tt:typei=3
   ```
   When each of these commands have successfully completed, this message should appear.
   ```
 rlghncxa03w 07-05-25 09:57:41 GMT EAGLE5 37.0.0
 DLT-TT: MASP A - COMPLTD
   ```

9. Verify the changes using the `rtrv-tt` command and specify the translation type used in Step 8.
   For this example, enter the `rtrv-tt:typea=3` command.
   This message should appear.
   ```
 E2466 Cmd Rej: Translation TYPE specified does not exist
   ```

10. Backup the new changes using the `chg-db:action=backup:dest=fixed` command.
    These messages should appear, the active Maintenance and Administration Subsystem Processor (MASP) appears first.
    ```
 BACKUP (FIXED) : MASP A - Backup starts on active MASP.
 BACKUP (FIXED) : MASP A - Backup on active MASP to fixed disk complete.
 BACKUP (FIXED) : MASP A - Backup starts on standby MASP.
 BACKUP (FIXED) : MASP A - Backup on standby MASP to fixed disk complete.
    ```

Adding a Global Title Translation

This procedure is used to add a global title translation to the database using the `ent-gtt` command.

The `ent-gtt` command uses these parameters.

`:gta` – Global title start address – along with the `egta` parameter, identifies all valid global titles for the given translation type to translate to the given `pc` or `ssn` parameters. These are the non-SS7 addresses transmitted to the STP for translation.

`:type/typea/typei/typeis/typen/typens/typen24` – The translation type and network type of the translation type that is being assigned to the global title translation. The value of this parameter is shown in the `rtrv-tt` output and provisioned in the Adding a Translation Type procedure.

`:ttn` - the translation type name associated with the
`:type/typea/typei/typeis/typen/typens/typen24` parameter value. The value of this parameter is shown in the `rtrv-tt` output and provisioned in the Adding a Translation Type procedure.
:egta – Global title end address – along with the gta parameter, identifies all valid global titles for the given translation type to translate to the given pc or ssn parameters. These are the non-SS7 addresses transmitted to the STP for translation.

:force – the mated application override. Is the global title translation to be entered without a mated application in the database?

:xlat – Translate indicator – defines the type of global title translation that is to be performed.

:ri – Route indicator – indicates whether a subsequent global title translation is required.

:pc/pca/pci/pcn/pcn24 – The point code of the signaling point that is to receive the message.

Note: See Chapter 2, “Configuring Destination Tables,” in the Database Administration Manual - SS7 for a definition of the point code types that are used on the EAGLE 5 ISS and for a definition of the different formats that can be used for ITU national point codes.

:ssn – Subsystem number – identifies the subsystem address that is to receive the message.

:gtmodid - the name of the GT modification identifier shown in the rtrv-gtmod output and provisioned in the Adding Global Title Modification Information procedure. The GT modification identifier contains the information to modify the numbering plan, nature of address indicator, and the prefix or suffix digits in the called party address or calling party address portion of outbound MSUs.

:mrnset – The MRN set ID, shown in the rtrv-mrn command. This parameter can be specified only, and must be specified, if the Flexible GTT Load Sharing feature is enabled and if the ri=gt parameter is specified for the global title translation. If the Flexible GTT Load Sharing feature is enabled, the point code specified for the global title translation must be assigned to the MRN set specified by this parameter. The status of the Flexible GTT Load Sharing feature is shown in the rtrv-ctrl-feat output. To enable the Flexible GTT Load Sharing feature, perform the Activating the Flexible GTT Load Sharing Feature procedure.

:mapset – The MAP set ID, shown in the rtrv-map command. This parameter can be specified only, and must be specified, if the Flexible GTT Load Sharing feature is enabled and if the ri=ssn parameter is specified for the global title translation. If the Flexible GTT Load Sharing feature is enabled, the point code and SSN specified for the global title translation must be assigned to the MAP set specified by this parameter. The status of the Flexible GTT Load Sharing feature is shown in the rtrv-ctrl-feat output. To enable the Flexible GTT Load Sharing feature, perform the Activating the Flexible GTT Load Sharing Feature procedure.

:loopset - The value of this parameter is the name of the loopset that is assigned to the GTT. This parameter can be specified only if the SCCP Loop Detection feature is enabled. Enter the rtrv-loopset command to verify that the SCCP Loop Detection feature is enabled. Perform the Activating the SCCP Loop Detection Feature procedure, if necessary. By default, the value of the loopset parameter is “none” because no loopset is assigned to the GTT.

:cggtmod - The calling party GT modification indicator. This parameter specifies whether or not calling party global title modification is required. The values for this parameter are yes (calling party global title modification is required) or no (calling party global title modification is not required). This parameter can be specified only if the AMGTT or AMGTT CgPA Upgrade feature is enabled. Enter the rtrv-ctrl-feat command to verify that the AMGTT or AMGTT CgPA Upgrade feature is enabled. Perform the Activating the Advanced GT Modification Feature procedure to enable the required feature.

Note: The command line on the terminal can contain up to 150 characters. If the parameters and values specified with the ent-gtt command are too long to fit on the ent-gtt command line, perform the Changing a Global Title Translation section to complete adding the GTT entry.
The XLAT parameter does not have a SEAS equivalent. When global title translations are configured at the SEAS interface, the values for the SEAS parameters RI, DPC, and SSN, all mandatory parameters for the SEAS ADD–GTT and CHG–GTT commands, are converted to the EAGLE 5 ISS parameters and values shown in the Table 67: SEAS and Global Title Translation Parameter Conversion procedure.

### Table 67: SEAS and Global Title Translation Parameter Conversion

<table>
<thead>
<tr>
<th>SEAS GTT Parameters</th>
<th>GTT Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>RI</td>
<td>DPC</td>
</tr>
<tr>
<td>G</td>
<td>xxx-xxx-xxx</td>
</tr>
<tr>
<td>D</td>
<td>xxx-xxx-xxx</td>
</tr>
<tr>
<td>G</td>
<td>xxx-xxx-xxx</td>
</tr>
<tr>
<td>D</td>
<td>xxx-xxx-xxx</td>
</tr>
</tbody>
</table>

**Notes:**
- The SEAS RI=G parameter denotes global title routing, further global title translation is required.
- The SEAS RI=D parameter denotes DPC routing, no further global title translation is required.
- The RI=GT parameter denotes further global title translation is required and uses MTP routing.
- The RI=SSN parameter denotes final global title translation and uses MAP routing.
- The XLAT=DPC parameter indicates that the DPC & RI values in the MSU are to be replaced.
- The XLAT=DPCSSN parameter indicates that the DPC, RI, & SSN values in the MSU are to be replaced.
- The XLAT=DPCNGT parameter indicates that the DPC, RI, & TT values in the MSU are to be replaced.

The global title translation data cannot be added to the database if the translation type is defined as an alias and if the global title translation data is already assigned to that translation type.

If the translate indicator is equal to dpc (xlat=dpc) and the routing indicator is equal to ssn (ri=ssn), and the force=yes parameter is not specified, the point code specified in the ent–gtt command must be defined in the database as a mated application. Verify this by entering the rtrv-map command. If this point code is not defined as a mated application, perform one of these procedures to add the point code and subsystem number to the database as a mated application:

- **Provisioning a Solitary Mated Application**
- **Provisioning a Dominant Mated Application**
- **Provisioning a Load Shared Mated Application**
- **Provisioning a Combined Dominant/Load Shared Mated Application**

The point code and subsystem number do not have to be in the mated application table when the ent–gtt command is executed if these parameters are specified with the ent–gtt command.

- ri=gt
- xlat=dpcssn and ri=ssn
If the point code and subsystem, if applicable, are not in the mated application table when either of these parameters are specified with the `ent-gtt` command, the EAGLE 5 ISS creates a solitary mated application in the mated application table using the point code and subsystem values specified in the `ent-gtt` command.

If the `xlat=dpcssn` parameter is specified, the `ssn` parameter must be specified. Otherwise, the `ssn` parameter cannot be specified.

If a point code is the STP’s True PC, then the value of the `XLAT` parameter must be set to `DPCSSN` and the value of the `RI` parameter must be set to `SSN`. If the `SSN` parameter is specified and a point code is the STP’s True PC, then the subsystem number specified must exist in the SS-APPL table. This can be verified with the `rtrv-ss-appl` command. To execute the `rtrv-ss-appl` command, one or more features shown in Table 68: Feature Status must be enabled, and turned on if necessary. The `rtrv-ctrl-feat` output shows the required status of the features.

### Table 68: Feature Status

<table>
<thead>
<tr>
<th>Feature</th>
<th>Feature's Status</th>
<th>Entry Displayed in the <code>rtrv-ctrl-feat</code> Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>LNP</td>
<td>Enabled</td>
<td>The entry LNP TNs with a quantity greater than zero (0)</td>
</tr>
<tr>
<td>EIR</td>
<td>Enabled and Turned On</td>
<td>EIR</td>
</tr>
<tr>
<td>INP</td>
<td>Enabled and Turned On</td>
<td>INP</td>
</tr>
<tr>
<td>ANSI-41 INP Query</td>
<td>Enabled and Turned On</td>
<td>ANSI-41 INP Query</td>
</tr>
<tr>
<td>V-Flex</td>
<td>Enabled and Turned On</td>
<td>VFLEX</td>
</tr>
<tr>
<td>ATINP</td>
<td>Enabled</td>
<td>ATINP</td>
</tr>
<tr>
<td>ANSI41 AIQ</td>
<td>Enabled</td>
<td>ANSI41 AIQ</td>
</tr>
</tbody>
</table>

The point code specified in the `ent-gtt` command must be defined in the routing table or be the EAGLE 5 ISS’s point code. For ANSI point codes (pc/pca), the point code specified in the `ent-gtt` command, must be a full point code. That point code can be defined as a full point code in the destination point code table, or can be a member of a cluster point code defined in the destination point code table. Cluster point codes or a network routing point codes cannot be specified with this command. Enter the `rtrv-rte` command to verify that the point code is in the routing table. If the point code is not defined as a route, perform one of the Adding a Route procedures in the *Database Administration Manual – SS7* to define the point code as a route.

If the EAGLE 5 ISS’s point code is specified with the `ent-gtt` command, then the `xlat=dpcssn` and `ri=ssn` parameters must be specified. The EAGLE 5 ISS’s point code is shown in the `PCA`, `PCI`, `PCN`, or `PCN24` fields of the `rtrv-sid` command output.

If the `xlat=dpcngt` parameter is specified, the `ngt` parameter and the `ri=gt` parameters must be specified.

An ANSI point code or ITU international point code containing all zeros is not a valid point code and cannot be entered into the database. An ITU national point code containing all zeros is a valid point code and can be entered into the database.

Either the `type` parameter or the `ttn` parameter must be specified.
If the `type` parameter is specified, the translation type must be in the database. This can be verified with the `rtrv-tt` command.

If the `type` parameter is not specified, the translation type name must be assigned to a translation type in the database. This can be verified with the `rtrv-tt` command.

If the `type` and `ttn` parameters are specified, the specified translation type must be in the database and the specified translation type name must be assigned to the translation type.

If the translation type is ANSI (`type` or `typea`), the `pc` type must be ANSI (`pc` or `pca`). If the translation type is one of the ITU types (`typei`, `typen`, `typeis`, `typens`, or `typen24`) the `pc` type may be either of the ITU types (`pci`, `pcn`, or `pcn24`). If the ANSI/ITU SCCP Conversion feature is enabled, the domain (ANSI or ITU) of the translation type and point code do not have to be the same.

The end global title address (`egta`) must be greater than or equal to the start global title address (`gta`) and its length must be equal to the start global title address.

If the Variable-Length Global Title Translation (VGTT) feature is off, shown the entry `VGTT = off`, the global title address length must be equal to the number of digits specified by the given translation type. The length of the global title address can be verified with the `rtrv-tt` command.

If the Variable-Length Global Title Translation (VGTT) feature is on, shown the entry `VGTT = on`, up to 10 different length global title addresses can be assigned to a translation type. If the Activating the Support for 16 GTT Lengths in VGTT feature is enabled and on, shown the entry `VGTT with 16 GTT lengths in the rtrv-ctrl-feat output`, up to 16 different length global title addresses can be assigned to a translation type. The length of the global title address is only limited by the range of values for the `gta` and `egta` parameters, one to 21 digits, and by the global title addresses already assigned to the translation type. The `ndgt` parameter of the `ent-tt` command has no effect on the length of the global title address. As global title addresses of different lengths are assigned to a specific translation type, these lengths are displayed in the `NDGT` field of the `rtrv-tt` command output.

If the translation type has maximum number of different length global title addresses assigned to it, and another global title address is specified for the translation type, the length of the global title address being added to the translation type must be the same as one of the lengths already assigned to the translation type. If the length of the global title address does not match one of the lengths already assigned to the translation type, the `ent-gtt` command is rejected with this message.

**E4007 Cmd Rej: Exceeding max GTA Lengths supported per TT**

If the translation type has less than the maximum number of different length global title addresses assigned to it, and another global title address is specified for the translation type, the length of the global title address can be from one to 21 digits and does not have to match the length of the other global title addresses assigned to the translation type.

Refer to `Variable-length Global Title Translation Feature` for more information about this feature.

The range, as specified by the start and end global title addresses, cannot already exist in the global title translation data for the specified translation type. If the ranges overlap, the range of global title addresses cannot be split and the `ent-gtt` command is rejected with this message.

**E2401 Cmd Rej:GTA range overlaps a current range. GTA range overlaps a current range**

Along with error message 2401, a list of the overlapped global title addresses is displayed as shown in the following example.
Table 69: Valid Parameter Combinations for the ent-gtt Routing Parameters shows the valid combinations for the parameters. All other combinations are rejected.

<table>
<thead>
<tr>
<th>XLAT Value</th>
<th>RI Value</th>
<th>Routing Action</th>
<th>SSN Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>DPC</td>
<td>GT</td>
<td>Translate DPC only and route on GT</td>
<td>Cannot specify</td>
</tr>
<tr>
<td>DPC</td>
<td>SSN</td>
<td>Translate DPC only and route on SSN</td>
<td>Cannot specify</td>
</tr>
<tr>
<td>DPCSSN</td>
<td>GT</td>
<td>Translate DPC and SSN and route on GT</td>
<td>Must specify</td>
</tr>
<tr>
<td>DPCSSN</td>
<td>SSN</td>
<td>Translate DPC and SSN and route on SSN</td>
<td>Must specify</td>
</tr>
<tr>
<td>DPCNGT</td>
<td>GT</td>
<td>Translate New GT and route on GT</td>
<td>Cannot specify</td>
</tr>
</tbody>
</table>

The EAGLE 5 ISS can contain 269,999, 400,000, or 1,000,000 global title translations. The system default is 269,999 global title translations. This quantity can be increased to 400,000 by enabling the feature access key for part number 893-0061-01, or to 1,000,000 by enabling the feature access key for part number 893-0061-10. For more information on enabling these feature access keys, perform the Enabling the XGTT Table Expansion Feature procedure.

Canceling the RTRV-GTT Command

Because the rtrv-gtt command used in this procedure can output information for a long period of time, the rtrv-gtt command can be canceled and the output to the terminal stopped. There are three ways that the rtrv-gtt command can be canceled.

- Press the F9 function key on the keyboard at the terminal where the rtrv-gtt command was entered.
- Enter the canc-cmd without the trm parameter at the terminal where the rtrv-gtt command was entered.
- Enter the canc-cmd:trm=<xx>, where <xx> is the terminal where the rtrv-gtt command was entered, from another terminal other that the terminal where the rtrv-gtt command was entered. To enter the canc-cmd:trm=<xx> command, the terminal must allow Security Administration commands to be entered from it and the user must be allowed to enter Security Administration commands. The terminal’s permissions can be verified with the rtrv-secu-trm command. The user’s permissions can be verified with the rtrv-user or rtrv-secu-user commands.

For more information about the canc-cmd command, go to the Commands Manual.
1. Display the translation types in the database using the `rtrv-tt` command. This is an example of the possible output.

```
rlghncxa03w 10-07-25 09:42:31 GMT EAGLE5 42.0.0
TYPEA TTN NDGT
 1 lidb 5
 2 c800 10
 3 d700 6
 5 scp1 6
10 scp2 6
15 scp3 3

ALIAS TYPEA
 30 5
 40 10
 50 3
 65 3

TYPEI TTN NDGT
 105 itudb 8

ALIAS TYPEI
 7 105

TYPEN TTN NDGT
 120 dbitu 7

ALIAS TYPEN
 8 120

TYPEIS TTN NDGT

ALIAS TYPEIS

TYPENS TTN NDGT

ALIAS TYPENS
```

If the required translation type is shown in the `rtrv-tt` output, continue the procedure with Step 2.

If the required translation type is not shown in the `rtrv-tt` output, perform the Adding a Translation Type procedure to add the translation type to the database. After the translation type has been added, continue the procedure with Step 10.

2. Verify that the EGTT feature is on, by entering the `rtrv-feat` command. If the GTT feature is on, the EGTT field should be set to on.

   **Note:** The `rtrv-feat` command output contains other fields that are not used by this procedure. If you wish to see all the fields displayed by the `rtrv-feat` command, refer to the `rtrv-feat` command description in the Commands Manual.

   If the EGTT feature is off, continue the procedure with Step 5.
   If the EGTT feature is on, continue the procedure with Step 3.

3. Display the features that are enabled by entering the `rtrv-ctrl-feat` command.

   The following is an example of the possible output.

```
rlghncxa03w 10-07-28 21:15:37 GMT EAGLE5 42.0.0
The following features have been permanently enabled:
```

464
The following features have been temporarily enabled:

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Partnum</th>
<th>Status</th>
<th>Quantity</th>
<th>Trial Period Left</th>
</tr>
</thead>
<tbody>
<tr>
<td>Command Class Management</td>
<td>893005801</td>
<td>on</td>
<td>----</td>
<td></td>
</tr>
<tr>
<td>LNP Short Message Service</td>
<td>893006601</td>
<td>on</td>
<td>----</td>
<td></td>
</tr>
<tr>
<td>Intermed GTT Load Sharing</td>
<td>893006901</td>
<td>on</td>
<td>----</td>
<td></td>
</tr>
<tr>
<td>HC-MIM SLK Capacity</td>
<td>893012707</td>
<td>on</td>
<td>64</td>
<td></td>
</tr>
</tbody>
</table>

The following features have expired temporary keys:

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Partnum</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Zero entries found.

4. Display the GTT selectors in the database by entering the `rtrv-gttsel` command with the TTN value associated with the translation type that will be assigned to the global title translation. The TTN value is shown in the `rtrv-tt` output in Step 1.

To specify the TTN value, the parameters shown in Table 70: RTRV-GTTSEL Parameters must be specified with the `rtrv-gttsel` command. The parameters that can be specified are dependent on the features that are enabled, shown in Step 3.

**Table 70: RTRV-GTTSEL Parameters**

<table>
<thead>
<tr>
<th>Feature that is Enabled</th>
<th>Parameter that must be Specified for the TTN Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neither the Origin Based SCCP Routing nor the Flexible Linkset Optional Based Routing, shown as <code>Flex Lset Optnl Based Rtg</code> in the <code>rtrv-ctrl-feat</code> output, is enabled.</td>
<td><code>gttsn</code></td>
</tr>
<tr>
<td>Origin Based SCCP Routing</td>
<td><code>cdgtasn</code>, <code>cggtasn</code></td>
</tr>
<tr>
<td>Flexible Linkset Optional Based Routing</td>
<td><code>cdgttsn</code>, <code>cggttsn</code></td>
</tr>
</tbody>
</table>

For this example, enter these commands.

1. `rtrv-gttsel:gttsn=scp1`

```plaintext```
rlghncxa03w 10-07-28 21:15:37 GMT EAGLE5 42.0.0

GTIA TT NP NAI SELID GTTSN
2 5 -- --- none scp1

GTIN TT NP NAI SELID GTTSN

GTIN24 TT NP NAI SELID GTTSN

GTIIS TT NP NAI SELID GTTSN

GTINS TT NP NAI SELID GTTSN
```

2. `rtrv-gttsel:gttsn=scp2`

```plaintext```
rlghncxa03w 10-07-28 21:15:37 GMT EAGLE5 42.0.0

GTIA TT NP NAI SELID GTTSN
2 5 -- --- none scp2

GTIN TT NP NAI SELID GTTSN

GTIN24 TT NP NAI SELID GTTSN

GTIIS TT NP NAI SELID GTTSN

GTINS TT NP NAI SELID GTTSN
```
If any of the entries shown in the `rtrv-gttsel` output do not have the default values for the advanced GTT parameters, or if a GTT selector entry with the `TTN` value was removed with the `dlt-gttsel` command, the remainder of this procedure cannot be performed. Choose another translation type to assign to the global title translation and repeat this procedure from **Step 1**.

If all of the entries shown in the `rtrv-gttsel` output have the default values for the advanced GTT parameters, and none of the GTT selector entries with the `TTN` value were removed with the `dlt-gttsel` command, continue the procedure with **Step 5**.

5. Continue the procedure by performing one of these steps to verify if the VGTT or the Support for 16 GTT Lengths in VGTT features can be used to provision the global title translation.

If multiple values are shown in the `NDGT` column for any translation type entry, the Variable-Length Global Title Translation feature is turned on. If a translation type entry contains 11 - 16 values in the `NDGT` column, the Support for 16 GTT Lengths in VGTT feature is enabled and turned on.

- If no more than 10 values are shown in the `NDGT` column for any translation type, continue the procedure by performing one of these steps.
  - If the translation type will contain no more than 10 different length global title addresses, continue the procedure with **Step 10**.
  - If the translation type will contain more than 10 different length global title addresses, continue the procedure with **Step 9**.

- If more than 10 values are shown in the `NDGT` column for any translation type, continue the procedure with **Step 10**.

If only single values are shown in the `NDGT` column for all the translation type entries, continue the procedure by performing one of these steps.

- If the translation type will contain global title addresses of only one length, continue the procedure with **Step 10**.
• If the translation type will contain multiple lengths of global title addresses, continue the procedure with Step 6.

6. Verify that the VGTT feature is on, by entering the `rtrv-feat` command. If the VGTT feature is on, the VGTT field should be set to on. For this example, the VGTT feature is off.

   **Note:** The `rtrv-feat` command output contains other fields that are not used by this procedure. If you wish to see all the fields displayed by the `rtrv-feat` command, see the `rtrv-feat` command description in the Commands Manual.

   Continue the procedure by performing one of these steps.

   • If the VGTT feature is on, continue the procedure by performing one of these steps.

   • If the translation type will contain no more than 10 different length global title addresses, continue the procedure with Step 10.

   • If the translation type will contain more than 10 different length global title addresses, continue the procedure with Step 9.

   • If the VGTT feature is off, continue the procedure with Step 7.

7. Display the cards in the EAGLE 5 ISS using the `rtrv-card` command. This is an example of the possible output.

<table>
<thead>
<tr>
<th>CARD</th>
<th>TYPE</th>
<th>APPL</th>
<th>LSET NAME</th>
<th>LINK SLC</th>
<th>LSET NAME</th>
<th>LINK SLC</th>
</tr>
</thead>
<tbody>
<tr>
<td>1102</td>
<td>TSM</td>
<td>GLS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1113</td>
<td>GPSM</td>
<td>EOAM</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1114</td>
<td>TDM-A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1115</td>
<td>GPSM</td>
<td>EOAM</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1116</td>
<td>TDM-B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1117</td>
<td>MDAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1118</td>
<td>RESERVED</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1201</td>
<td>LIMDS0</td>
<td>SS7ANSI</td>
<td>sp2</td>
<td>A 0</td>
<td>sp1</td>
<td>B 0</td>
</tr>
<tr>
<td>1203</td>
<td>LIMDS0</td>
<td>SS7ANSI</td>
<td>sp3</td>
<td>A 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1204</td>
<td>LIMDS0</td>
<td>SS7ANSI</td>
<td>sp3</td>
<td>A 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1206</td>
<td>LIMDS0</td>
<td>SS7ANSI</td>
<td>sp3</td>
<td>A 1</td>
<td>nsp4</td>
<td>B 1</td>
</tr>
<tr>
<td>1216</td>
<td>DCM</td>
<td>STPLAN</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1308</td>
<td>LIMDS0</td>
<td>SS7ANSI</td>
<td>sp6</td>
<td>A 1</td>
<td>sp7</td>
<td>B 0</td>
</tr>
<tr>
<td>1314</td>
<td>LIMDS0</td>
<td>SS7ANSI</td>
<td>sp7</td>
<td>A 1</td>
<td>sp5</td>
<td>B 1</td>
</tr>
<tr>
<td>1317</td>
<td>DCM</td>
<td>STPLAN</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The correct service modules must be in the EAGLE 5 ISS before the VGTT feature can be turned on, or the Support for 16 GTT Lengths in VGTT feature can be enabled and turned on. See the Adding a Service Module procedure to determine the service modules that are required. If any service modules must be replaced, contact the Customer Care Center before replacing any service modules. Refer to Customer Care Center for the contact information.

8. Turn the Variable-length Global Title Translation (VGTT) feature on by entering this command.

   `chg-feat:vgtt=on`

   **Note:** Once the Variable-length Global Title Translation (VGTT) feature is enabled with the `chg-feat` command, it cannot be disabled.

   The VGTT feature must be purchased before turning it on. If you are not sure whether you have purchased the VGTT feature, contact your Tekelec Sales Representative or Account Representative.
When the `chg-feat` has successfully completed, this message should appear.

```
rlghncxa03w 09-05-25 09:57:41 GMT EAGLE5 41.0.0
CHG-FEAT: MASP A - COMPLTD
```

Continue the procedure by performing one of these steps.

- If the translation type will contain no more than 10 different length global title addresses, continue the procedure with **Step 10**.
- If the translation type will contain more than 10 different length global title addresses, perform the *Activating the Support for 16 GTT Lengths in VGTT Feature* procedure to enable and turn on the Support for 16 GTT Lengths in VGTT feature. After the Support for 16 GTT Lengths in VGTT feature has been enabled and turned on, continue the procedure with **Step 10**.

9. Display the status of the Support for 16 GTT Lengths in VGTT feature by entering this command.

```
rtrv-ctrl-feat:partnum=893024801
```

```
rlghncxa03w 09-05-25 09:57:41 GMT EAGLE5 41.0.0
The following features have been permanently enabled:

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Partnum</th>
<th>Status</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>VGTT with 16 GTT lengths</td>
<td>893024801</td>
<td>on</td>
<td>----</td>
</tr>
</tbody>
</table>

The following features have been temporarily enabled:

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Partnum</th>
<th>Status</th>
<th>Quantity</th>
<th>Trial Period Left</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zero entries found.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The following features have expired temporary keys:

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Partnum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zero entries found.</td>
<td></td>
</tr>
</tbody>
</table>

If the Support for 16 GTT Lengths in VGTT feature is enabled and turned on, continue the procedure with **Step 10**.

If the Support for 16 GTT Lengths in VGTT feature is not enabled or turned on, perform the *Activating the Support for 16 GTT Lengths in VGTT Feature* procedure to enable and turn on the Support for 16 GTT Lengths in VGTT feature. After the Support for 16 GTT Lengths in VGTT feature has been enabled and turned on, continue the procedure with **Step 10**.

10. Display the global title translations in the database using the `rtrv-gtt` command specifying a translation type (`type`), translation type name (`ttn`), or both from the `rtrv-tt` command output shown in Step 1 along with the desired global title address (`gta`). If a range of global title addresses will be specified for the global title translation, the `egta` parameter can be specified with the `rtrv-gtt` command. For this example, enter these commands.

```
rtrv-gtt:typea=5:gta=910460
rtrv-gtt:typea=10:gta=615370:egta=615380
rtrv-gtt:typea=15:gta=800:egta=900
```
To add a global title translation, the desired global title addresses cannot be in the database. If the global title addresses are not in the database, the `rtrv-gtt` command is rejected with the following message.

E2405 Cmd Rej: GTA does not exist in any range

11. The global title translation cannot be added to the database if the database contains the maximum number of global title translations the EAGLE 5 ISS is allowed to have. The maximum number of global title translations is shown in the `rtrv-gtt` output in Step 10 or the `rtrv-ctrl-feat` output.

If error message E2405 was displayed in the output in Step 10, enter the `rtrv-ctrl-feat` command to verify the maximum number of global title translations that are allowed in the database.

If the Step 3 was performed, this step does not need to be performed.

The following is an example of the possible output.

```
rlghncxa03w 09-05-28 21:15:37 GMT EAGLE5 41.0.0
The following features have been permanently enabled:
  Feature Name              Partnum    Status  Quantity
  Command Class Management  893005801  on      ----
  LNP Short Message Service 893006601  on      ----
  Intermed GTT Load Sharing 893006901  on      ----
  HC-MIM SLK Capacity       893012707  on      64
The following features have been temporarily enabled:
  Feature Name              Partnum    Status  Quantity     Trial Period Left
  Zero entries found.
The following features have expired temporary keys:
  Feature Name              Partnum
  Zero entries found.
```

12. Continue the procedure by performing these steps based the XGTT Table Expansion entry that is shown in the `rtrv-ctrl-feat` output in either Step 3 or Step 11.

Note: If the entry XGTT Table Expansion is not shown in the `rtrv-ctrl-feat` output, the maximum number of global title addresses that the database can contain is 269,999.

If the maximum number of global title translations is 1,000,000, and adding the global title translation will exceed 1,000,000 global title translations, the new global title translation cannot be added and the remainder of this procedure cannot be performed.

If the maximum number of global title translations is either 269,999 or 400,000 and adding the global title translation will exceed the maximum number of global title translations, perform the Enabling the XGTT Table Expansion Feature procedure to enable XGTT Table Expansion feature for either 400,000 or 1,000,000 global title translations as needed.

If adding the global title translation will not exceed the maximum number of global title translations, or if the Enabling the XGTT Table Expansion Feature procedure was performed in this step, continue the procedure by performing one of these steps.

- If the `gtmodid` parameter will be specified for the global title translation, continue the procedure with Step 13.
13. Display the GT modification information in the database using the \texttt{rtrv-gtmod} command.

 This is an example of the possible output.

 \begin{verbatim}
 rlghncxa03w 10-07-07 00:29:31 GMT EAGLE5 42.0.0
 GTMODID NTT NGTI GTOFILL NNP NNAI NPDD NSDD PRECD CGPASSN
 modid2 -- 2 ON -- -- -- -- PFX --
 NPDS= NSDS=
 modid5 -- 2 OFF -- -- -- -- PFX --
 NPDS= NSDS=
 modid6 -- 4 ON 4 5 3 3 SFX --
 NPDS=123 NSDS=456
 modid10 -- -- OFF 5 5 -- -- PFX --
 NPDS= NSDS=
 modid11 -- -- OFF 5 5 -- -- PFX --
 NPDS= NSDS=
 \end{verbatim}

 GTMOD table is (5 of 100000) 1% full.

 If the desired GT modification entry is not displayed, perform the \textit{Adding Global Title Modification Information} procedure to add the desired GT modification entry to the database.

 If the desired GT modification entry is displayed or the \textit{Adding Global Title Modification Information} procedure was performed, continue the procedure by performing one of these steps.

 \begin{itemize}
 \item If the \texttt{cggtmod=yes} parameter will be specified for the global title translation and the \texttt{gtmodid} parameter will not be specified for the global title translation, continue the procedure with \textit{Step 14}.
 \item If the \texttt{cggtmod=yes} parameter will not be specified for the global title translation, continue the procedure with \textit{Step 15}.
 \end{itemize}

14. To specify the \texttt{cggtmod=yes} parameters in this procedure, one of these the Advanced GT Modification features must be enabled.

 \begin{itemize}
 \item AMGTT - 893021801
 \item AMGTT CgPA Upgrade - 893021803
 \end{itemize}

 If the \texttt{rtrv-ctrl-feat} command was performed in \textit{Step 3} or \textit{Step 11}, and the appropriate AMGTT entry is shown in the \texttt{rtrv-ctrl-feat} output, continue the procedure with \textit{Step 15}.

 If the \texttt{rtrv-ctrl-feat} command was not performed in \textit{Step 3} and \textit{Step 11}, enter the \texttt{rtrv-ctrl-feat} command to verify the status of the Advanced GT Modification feature.

 The following is an example of the possible output.

 \begin{verbatim}
 rlghncxa03w 10-07-28 21:15:37 GMT EAGLE5 42.0.0
 The following features have been permanently enabled:
 Feature Name Partnum Status Quantity
 IPGWx Signaling TPS 893012814 on 20000
 ISUP Normalization 893000201 on ----
 \end{verbatim}
The following features have been temporarily enabled:

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Partnum</th>
<th>Status</th>
<th>Quantity</th>
<th>Trial Period Left</th>
</tr>
</thead>
<tbody>
<tr>
<td>Command Class Management</td>
<td>893005801</td>
<td>on</td>
<td>----</td>
<td></td>
</tr>
<tr>
<td>LNP Short Message Service</td>
<td>893006601</td>
<td>on</td>
<td>----</td>
<td></td>
</tr>
<tr>
<td>Intermed GTT Load Sharing</td>
<td>893006901</td>
<td>on</td>
<td>----</td>
<td></td>
</tr>
<tr>
<td>HC-MIM SLK Capacity</td>
<td>893012707</td>
<td>on</td>
<td>64</td>
<td></td>
</tr>
</tbody>
</table>

The following features have expired temporary keys:

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Partnum</th>
</tr>
</thead>
</table>

The following is an example of the possible output.

```
rlghncxa03w 09-05-28 21:15:37 GMT EAGLE5 41.0.0
The following features have been permanently enabled:

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Partnum</th>
<th>Status</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCCP Loop Detection</td>
<td>8930165101</td>
<td>on</td>
<td>----</td>
</tr>
</tbody>
</table>

The following features have been temporarily enabled:

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Partnum</th>
<th>Status</th>
<th>Quantity</th>
<th>Trial Period Left</th>
</tr>
</thead>
<tbody>
<tr>
<td>Command Class Management</td>
<td>893005801</td>
<td>on</td>
<td>----</td>
<td></td>
</tr>
<tr>
<td>LNP Short Message Service</td>
<td>893006601</td>
<td>on</td>
<td>----</td>
<td></td>
</tr>
<tr>
<td>Intermed GTT Load Sharing</td>
<td>893006901</td>
<td>on</td>
<td>----</td>
<td></td>
</tr>
<tr>
<td>HC-MIM SLK Capacity</td>
<td>893012707</td>
<td>on</td>
<td>64</td>
<td></td>
</tr>
</tbody>
</table>

If the SCCP Loop Detection feature is enabled, continue the procedure with Step 16.

If the LOOPSET field does not appear in the rtrv-gtt output in Step 10, or the rtrv-ctrl-feat output shows that the SCCP Loop Detection feature is not enabled, perform the Activating the SCCP Loop Detection Feature procedure to enable the SCCP Loop Detection feature.
Detection feature has been enabled, perform the Adding a Loopset procedure to add the required loopset. After the loopset has been added, continue the procedure with Step 17.

16. Display all the loopsets in the database by entering this command

```
 rtrv-loopset:num=1000:force=yes
```

This is an example of the possible output.

<table>
<thead>
<tr>
<th>LoopSet</th>
<th>Mode</th>
<th>Point Codes</th>
</tr>
</thead>
<tbody>
<tr>
<td>cary2</td>
<td>notify</td>
<td>005-015-005 007-007-007 (ANSI)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>033-004-003 033-007-003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>005-027-005 007-004-007</td>
</tr>
<tr>
<td>cary4</td>
<td>notify</td>
<td>005-012-005 007-026-007 (ANSI)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>003-049-003 033-002-003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>005-008-055 007-014-007</td>
</tr>
<tr>
<td>apex3</td>
<td>discard</td>
<td>005-017-008 007-017-009 (ANSI)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>033-005-043 005-014-005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>005-017-005 007-014-007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>033-002-043 005-038-005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>007-009-027 033-003-043</td>
</tr>
<tr>
<td></td>
<td></td>
<td>005-012-005 007-002-027</td>
</tr>
<tr>
<td>apex4</td>
<td>discard</td>
<td>005-007-008 027-007-009 (ANSI)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>033-005-003 005-004-055</td>
</tr>
<tr>
<td></td>
<td></td>
<td>027-001-007 033-008-003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>033-007-003 005-003-055</td>
</tr>
<tr>
<td></td>
<td></td>
<td>027-008-007</td>
</tr>
<tr>
<td>ral5</td>
<td>notify</td>
<td>005-005-005 007-007-007 (ANSI)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>003-004-003 003-001-003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>005-007-005 007-004-007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>003-002-003 005-008-005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>007-009-007 003-003-003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>005-002-005 007-002-007</td>
</tr>
<tr>
<td>ral6</td>
<td>notify</td>
<td>005-007-008 007-007-009 (ANSI)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>003-005-003 003-007-003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>005-007-005</td>
</tr>
<tr>
<td>dunn1</td>
<td>discard</td>
<td>005-002-055 007-051-007 (ANSI)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>003-008-033</td>
</tr>
<tr>
<td>rtp9</td>
<td>discard</td>
<td>005-002-005 007-001-007 (ANSI)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>003-008-003 003-007-003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>005-003-005 007-008-007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>005-004-005</td>
</tr>
<tr>
<td>rtp5</td>
<td>discard</td>
<td>005-007-008 007-007-009 (ANSI)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>003-005-003</td>
</tr>
<tr>
<td>rtp1</td>
<td>discard</td>
<td>005-005-005 007-007-007 (ANSI)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>003-004-003 003-007-003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>005-007-005 007-004-007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>005-004-005</td>
</tr>
<tr>
<td>rtp2</td>
<td>notify</td>
<td>005-007-008 007-007-009 (ANSI)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>003-005-003</td>
</tr>
</tbody>
</table>

Note: If the `rtrv-loopset` command is entered with no other parameters specified, a maximum of 50 entries are displayed. To display more than 50 entries, the `force=yes` parameter must be specified with the `rtrv-loopset` command and the `num` parameter value must be greater than 50. Since there can be a maximum of 1000 loopsets in the database, to display all the loopsets in the database, the `force=yes` and `num = 1000` parameters must be specified with the `rtrv-loopset` command.
If the required loopset is shown in the `rtrv-loopset` output, continue the procedure with Step 17.

If the required loopset is not shown in the `rtrv-loopset` output, perform the *Adding a Loopset* procedure to add the required loopset. After the loopset has been added, continue the procedure with Step 17.

17. Hexadecimal digits (0-9, a-f, A-F) can be specified as values for the `gta` or `egta` parameters only if the Hex Digit Support for GTT feature is enabled. Verify the status of the Hex Digit Support for GTT feature by entering the `rtrv-ctrl-feat` command with the Hex Digit Support for GTT feature part number.

**Note:** If hexadecimal digits are shown in the `rtrv-gtt` output in Step 10, or if hexadecimal digits will not be specified for the `gta` or `egta` parameters in this procedure, continue the procedure with Step 18.

Enter this command.

```
rtrv-ctrl-feat:partnum=893018501
```

The following is an example of the possible output.

```
rlghncxa03w 09-05-28 21:15:37 GMT EAGLE5 41.0.0
The following features have been permanently enabled:

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Partnum</th>
<th>Status</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hex Digit Support for GTT</td>
<td>893018501</td>
<td>on</td>
<td>----</td>
</tr>
</tbody>
</table>

The following features have been temporarily enabled:

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Partnum</th>
<th>Status</th>
<th>Quantity</th>
<th>Trial Period Left</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zero entries found.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The following features have expired temporary keys:

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Partnum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zero entries found.</td>
<td></td>
</tr>
</tbody>
</table>

If the Hex Digit Support for GTT feature has not been enabled, perform the *Activating the Hex Digit Support for GTT Feature* procedure to enable this feature. After the Hex Digit Support for GTT feature is enabled, continue the procedure with Step 18.

18. Verify that the ANSI/ITU SCCP Conversion feature is enabled by entering the `rtrv-ctrl-feat:partnum=893012001` command. The following is an example of the possible output.

```
rtrv-ctrl-feat:partnum=893012001
```

The following is an example of the possible output.

```
rlghncxa03w 09-05-28 21:15:37 GMT EAGLE5 41.0.0
The following features have been permanently enabled:

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Partnum</th>
<th>Status</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCCP Conversion</td>
<td>893012001</td>
<td>on</td>
<td>----</td>
</tr>
</tbody>
</table>

The following features have been temporarily enabled:

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Partnum</th>
<th>Status</th>
<th>Quantity</th>
<th>Trial Period Left</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zero entries found.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The following features have expired temporary keys:
If the ANSI/ITU SCCP Conversion feature is not enabled, perform the Activating the ANSI/ITU SCCP Conversion Feature procedure to enable the ANSI/ITU SCCP Conversion feature.

**Note:** If the domain (ANSI or ITU) of the point code and the translation type assigned to the global title translation will be different, and the `gti` parameter will be specified with the global title translation, the ANSI/ITU SCCP Conversion feature (SCCP Conversion) must be enabled. If the ANSI/ITU SCCP Conversion feature is not being used, or if the `rtrv-ctrl-feat` output in this step shows that the ANSI/ITU SCCP Conversion feature is enabled, continue the procedure with Step 19.

19. To use either the `mrnset` parameter (if the routing indicator value for the global title translation is GT) or `mapset` parameter (if the routing indicator value for the global title translation is SSN), the Flexible GTT Load Sharing feature must be enabled.

If the Flexible GTT Load Sharing feature is enabled, either the `mrnset` or `mapset` parameters, depending on the routing indicator value for the global title translation being added in this procedure, must be specified with the `ent-gtt` command.

Verify that the Flexible GTT Load Sharing feature is enabled by entering this command.

```
rtrv-ctrl-feat:partnum=893015401
```

The following is an example of the possible output.

```
rlghncxa03w 09-05-28 21:15:37 GMT EAGLE5 41.0.0
The following features have been permanently enabled:

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Partnum</th>
<th>Status</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flexible GTT Load Sharing</td>
<td>893015401</td>
<td>on</td>
<td>----</td>
</tr>
</tbody>
</table>

The following features have been temporarily enabled:

Zero entries found.

The following features have expired temporary keys:

Zero entries found.

If the routing indicator for the global title translation being added is GT, there are three actions that can be taken.

- If the Flexible GTT Load Sharing feature is not enabled, and you do not wish to specify the `mrnset` parameter for the global title translation, continue the procedure with Step 20.
- If the Flexible GTT Load Sharing feature is not enabled, and you do wish to specify the `mrnset` parameter for the global title translation, perform the Activating the Flexible GTT Load Sharing Feature procedure to enable the Flexible GTT Load Sharing feature. After enabling the Flexible GTT Load Sharing feature, continue the procedure with Step 23.
- If the Flexible GTT Load Sharing feature is enabled, continue the procedure with Step 23.

If the routing indicator for the global title translation being added is SSN, there are three actions that can be taken:
• If the Flexible GTT Load Sharing feature is not enabled, and you do not wish to specify the mapset parameter for the global title translation, continue the procedure with one of these steps.
 • If the point code value is the EAGLE 5 ISS’s point code, continue the procedure with Step 24.
 • If the point code value is a value other than the EAGLE 5 ISS’s point code, the ri parameter value will be ssn, and the xlat parameter value will be dpc, continue the procedure with Step 26.
 • If the point code value is a value other than the EAGLE 5 ISS’s point code, the ri parameter value will be ssn, and the xlat parameter value will be dpcssn when this procedure is completed, continue the procedure with Step 26.

• If the Flexible GTT Load Sharing feature is not enabled, and you do wish to specify the mapset parameter for the global title translation, perform the Activating the Flexible GTT Load Sharing Feature procedure to enable the Flexible GTT Load Sharing feature. After enabling the Flexible GTT Load Sharing feature, continue the procedure with one of these steps.
 • If the point code value is the EAGLE 5 ISS’s point code, continue the procedure with Step 24.
 • If the point code value is a value other than the EAGLE 5 ISS’s point code, or the xlat parameter value will be dpc, continue the procedure with Step 26.

• If the Flexible GTT Load Sharing feature is enabled, perform one of these steps.
 • If the point code value is the EAGLE 5 ISS’s point code continue the procedure with Step 24.
 • If the point code value is a value other than the EAGLE 5 ISS’s point code, or the xlat parameter value will be dpc, continue the procedure with Step 26.

20. Display the destination point codes in the database by entering the rtrv-dstn command. This is an example of the possible output.

<table>
<thead>
<tr>
<th>DPCA</th>
<th>CLLI</th>
<th>BEI</th>
<th>ELEI</th>
<th>ALIASI</th>
<th>ALIASN/N24</th>
<th>DMN</th>
</tr>
</thead>
<tbody>
<tr>
<td>001-207-000</td>
<td>------</td>
<td>no</td>
<td>---</td>
<td>--------</td>
<td>---------</td>
<td>SS7</td>
</tr>
<tr>
<td>001-001-001</td>
<td>------</td>
<td>no</td>
<td>---</td>
<td>--------</td>
<td>---------</td>
<td>SS7</td>
</tr>
<tr>
<td>001-001-002</td>
<td>------</td>
<td>no</td>
<td>---</td>
<td>--------</td>
<td>---------</td>
<td>SS7</td>
</tr>
<tr>
<td>001-005-000</td>
<td>------</td>
<td>no</td>
<td>---</td>
<td>--------</td>
<td>---------</td>
<td>SS7</td>
</tr>
<tr>
<td>001-007-000</td>
<td>------</td>
<td>no</td>
<td>---</td>
<td>--------</td>
<td>---------</td>
<td>SS7</td>
</tr>
<tr>
<td>008-012-003</td>
<td>------</td>
<td>no</td>
<td>---</td>
<td>--------</td>
<td>---------</td>
<td>SS7</td>
</tr>
<tr>
<td>003-002-004</td>
<td>------</td>
<td>no</td>
<td>---</td>
<td>--------</td>
<td>---------</td>
<td>SS7</td>
</tr>
<tr>
<td>009-002-003</td>
<td>------</td>
<td>no</td>
<td>---</td>
<td>--------</td>
<td>---------</td>
<td>SS7</td>
</tr>
<tr>
<td>010-020-005</td>
<td>------</td>
<td>no</td>
<td>---</td>
<td>--------</td>
<td>---------</td>
<td>SS7</td>
</tr>
<tr>
<td>DPCI</td>
<td>CLLI</td>
<td>BEI</td>
<td>ELEI</td>
<td>ALIASA</td>
<td>ALIASN/N24</td>
<td>DMN</td>
</tr>
<tr>
<td>1-207-0</td>
<td>------</td>
<td>no</td>
<td>---</td>
<td>--------</td>
<td>---------</td>
<td>SS7</td>
</tr>
<tr>
<td>0-015-0</td>
<td>------</td>
<td>no</td>
<td>---</td>
<td>--------</td>
<td>---------</td>
<td>SS7</td>
</tr>
<tr>
<td>0-017-0</td>
<td>------</td>
<td>no</td>
<td>---</td>
<td>--------</td>
<td>---------</td>
<td>SS7</td>
</tr>
<tr>
<td>1-011-1</td>
<td>------</td>
<td>no</td>
<td>---</td>
<td>--------</td>
<td>---------</td>
<td>SS7</td>
</tr>
<tr>
<td>1-011-2</td>
<td>------</td>
<td>no</td>
<td>---</td>
<td>--------</td>
<td>---------</td>
<td>SS7</td>
</tr>
</tbody>
</table>

Destination table is (14 of 2000) 1% full
21. Display the point code that will be assigned to the global title translation by using the `rtrv-dstn` command and specifying the point code. For this example, enter this command.

```
rtrv-dstn:dpca=010-020-005
```

This is an example of the possible output.

```
righncxa03w 10-12-10 11:43:04 GMT EAGLE5 43.0.0

<table>
<thead>
<tr>
<th>DPCA</th>
<th>CLLI</th>
<th>BEI</th>
<th>ELEI</th>
<th>ALIASI</th>
<th>ALIASN/N24</th>
<th>DMN</th>
</tr>
</thead>
<tbody>
<tr>
<td>010-020-005</td>
<td>-----</td>
<td>no</td>
<td>---</td>
<td>--------</td>
<td>------------</td>
<td>----</td>
</tr>
</tbody>
</table>

PPCA         NCAI PRX     RCAUSE NPRST SPLITIAM HMSMSC HMSCP SCCPMSCGDNV
-- no      50     on    20       no     no    none
```

If the point code is not shown in the `rtrv-dstn` command output, the following output is displayed.

```
righncxa03w 09-05-10 11:43:04 GMT EAGLE5 41.0.0
No destinations meeting the requested criteria were found
```

A proxy point code (a point code value is shown in the PPC column) cannot be assigned to the point code. If a proxy point code is shown in this step, choose another point code from the `rtrv-dstn` output in **Step 20** and repeat this step.

If the point code is not shown in the `rtrv-dstn` output, perform the “Adding a Destination Point Code” procedure in the *Database Administration Manual - SS7* and add the point code to the destination point code table.

22. The point code specified with the `ent-gtt` command must be the DPC of a route, unless the point code is the EAGLE 5 ISS’s point code. Enter the `rtrv-rte` command with the `dpc` parameter specifying the point code to be used with the `ent-gtt` command to verify whether or not the point code is the DPC of a route.

For this example, enter these commands.

```
rtrv-rte:dpca=007-007-007
```

This is an example of the possible output.

```
righncxa03w 09-05-07 11:43:04 GMT EAGLE5 41.0.0

<table>
<thead>
<tr>
<th>DPCA</th>
<th>ALIASI</th>
<th>ALIASN/N24</th>
<th>LSN</th>
<th>RC</th>
<th>APCA</th>
</tr>
</thead>
<tbody>
<tr>
<td>007-007-007</td>
<td>----</td>
<td>-----------</td>
<td>1s03</td>
<td>10</td>
<td>007-007-007</td>
</tr>
</tbody>
</table>
```

If the required point code is not shown in the `rtrv-dstn` output, perform the "Adding a Destination Point Code" procedure in the *Database Administration Manual - SS7* to add the required point code. A proxy point code cannot be assigned to the point code.

After the new point code has been added, perform one of the Adding a Route procedures in the *Database Administration Manual - SS7* to add the required route to the database. After the route has been added, continue the procedure with **Step 27**.
23. The point code and MRN set ID specified for the global title translation must be shown in the `rtrv-mrn` command output. The point code must be assigned to the MRN set that will be assigned to the global title translation.

Enter the `rtrv-mrn` command to verify that the required MRN set is configured in the database, and that the required point code is assigned to the MRN set. The following is an example of the possible output.

```
rlghncxa03w 09-05-28 21:15:37 GMT EAGLE5 41.0.0

MRNSET  PC             RC
DFLT     001-001-001    10
          001-001-002    20
          001-001-003    30

MRNSET  PC             RC
110      001-001-001    10
          001-001-005    20
          001-001-006    30
          001-001-003    40
          001-001-008    50

MRNSET  PC             RC
111      001-001-001    30
          001-001-005    30
          001-001-006    30
          001-001-003    30
          001-001-008    30

MRNSET  PC             RC
112      001-003-001    10
          001-003-002    10
          001-003-003    30
          001-003-004    30
```
Note: If the Weighted GTT Load Sharing feature is enabled, the WT, %WT, and THR columns are shown in the rtrv-mrn output.

If the required MRN set is not shown in the rtrv-mrn output, or if the required point code is not assigned to the required MRN set, provision the required MRN set by performing the Provisioning MRN Entries procedure. After provisioning the required MRN set, continue the procedure with Step 27.

If the required MRN set is shown in the rtrv-mrn output, or if the required point code is assigned to the required MRN set, continue the procedure with Step 27.

Note: If the EAGLE 5 ISS’s point code is not going to be used for the pc parameter of the ent-gtt command, continue the procedure with Step 26.

24. If the ri=ssn and xlat=dpcssn parameters are specified with the ent-gtt command, and you wish to use the EAGLE 5 ISS’s point code for the value of the pc parameter of the ent-gtt command, the point code value must be in the EAGLE 5 ISS’s self ID table. Display the EAGLE 5 ISS self-identification, using the rtrv-sid command. This is an example of the possible output.

rlnhncxa03w 09-05-10 11:43:04 GMT EAGLE5 41.0.0

<table>
<thead>
<tr>
<th>PCA</th>
<th>PCI</th>
<th>PCN</th>
<th>CLLI</th>
<th>PCTYPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>010-020-030</td>
<td>1-023-1</td>
<td>12-0-14-1</td>
<td>rlnhncxa03w</td>
<td>OTHER</td>
</tr>
<tr>
<td>s-1-023-1</td>
<td>s-12-0-14-1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CPCA

<table>
<thead>
<tr>
<th>002-002-002</th>
<th>002-002-003</th>
<th>002-002-004</th>
<th>002-002-005</th>
</tr>
</thead>
<tbody>
<tr>
<td>002-002-006</td>
<td>002-002-007</td>
<td>002-002-008</td>
<td>002-002-009</td>
</tr>
<tr>
<td>004-004-001</td>
<td>004-004-003</td>
<td>050-060-070</td>
<td></td>
</tr>
</tbody>
</table>

CPCI

<table>
<thead>
<tr>
<th>1-001-1</th>
<th>1-001-2</th>
<th>1-001-3</th>
<th>1-001-4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-002-1</td>
<td>1-002-2</td>
<td>1-002-3</td>
<td>1-002-4</td>
</tr>
<tr>
<td>2-001-1</td>
<td>7-222-7</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CPCN

<table>
<thead>
<tr>
<th>2-0-10-3</th>
<th>2-0-11-0</th>
<th>2-0-11-2</th>
<th>2-0-12-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-2-3-3</td>
<td>2-2-4-0</td>
<td>10-14-10-1</td>
<td></td>
</tr>
</tbody>
</table>

25. Enter the rtrv-ss-appl command to verify that either the LNP, EIR, V-Flex, ATINPQ, INP, or AIQ subsystem number (depending on which feature is on) is in the subsystem application table. This is an example of the possible output.

rlnhncxa03w 09-05-28 14:42:38 GMT EAGLE5 41.0.0

<table>
<thead>
<tr>
<th>APPL</th>
<th>SSN</th>
<th>STAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>LNP</td>
<td>254</td>
<td>ONLINE</td>
</tr>
</tbody>
</table>
If the subsystem number is shown in the `rtrv-ss-appl` output, go to **Step 26**. If no subsystem number is shown in the `rtrv-ss-appl` output, or if the `rtrv-ss-appl` command is rejected, go to one of these manuals, depending on the type of subsystem you wish to use, to enable and turn on the feature as necessary, and add the subsystem to the subsystem application table.

- **EIR subsystem** – go to the *Feature Manual - EIR*.
- **INP subsystem** – go to the *Feature Manual - INP/AINPQ*.
- **LNP subsystem** – go to the *ELAP Administration and LNP Feature Activation manual*.
- **V-Flex subsystem** – go to the *Feature Manual - V-Flex*.
- **ATINPQ subsystem** – go to the *Feature Manual - ATINP*.
- **AIQ subsystem** – go to the *Feature Manual - Analyzed Information Features*.

Note: If the Flexible GTT Load Sharing feature is enabled, shown in **Step 19**, a MAP set ID must be specified for the final global title translation. The point code and SSN specified for the final global title translation being added in this procedure must be assigned to the MAP set ID that will be assigned to the final global title translation. Perform **Step 26** to verify that the required MAP set is configured in the database.

Note: If the Flexible GTT Load Sharing feature is not enabled, and the `ri=ssn` and `xlat=dpc` parameters are not being specified with the `ent-gtt` command, or if the EAGLE 5 ISS’s true point code and the EAGLE 5 ISS’s subsystem number, along with the `ri=ssn` and `xlat=dpcssn` parameters, are not being specified with the `ent-gtt` command, continue the procedure with **Step 27**.

26. Enter the `rtrv-map` command with the `pc` parameter specifying the required point code to verify that the required data is in the mated application table.

For this example enter this command.

```
rtrv-map: pca=005-005-005
```

If the Flexible GTT Load Sharing feature is not enabled, this is an example of the possible output.

```
rlghncxa03w 09-07-25 09:42:31 GMT EAGLE5 41.1.0

PCA    Mate PCA    SSN RC MULT SRM MRC GRP NAME SSO
005-005-005                  250 10 SOL *Y  *Y  GRP01     ON

MAP table is (37 of 1024) 4% full.
```

If the Flexible GTT Load Sharing feature is enabled, this is an example of the possible output.

```
rlghncxa03w 09-07-25 09:42:31 GMT EAGLE5 41.1.0

MAPSET ID=DFLT
PCA    Mate PCA    SSN RC MULT SRM MRC GRP NAME SSO
005-005-005                  55 5  DOM YES YES -------- OFF
     001-001-002    15 15  DOM YES YES -------- ON
     001-001-003    25 20  DOM YES YES -------- ON
     001-001-002    40 35  DOM YES YES -------- OFF

MAPSET ID=1
PCA    Mate PCA    SSN RC MULT SRM MRC GRP NAME SSO
005-005-005                  50 5  DOM YES YES -------- OFF
     001-001-002    10 15  DOM YES YES -------- ON
```
If the ri=ssn and xlat=dpc parameters are being specified with the ent-gtt command, the
point code must be in the mated application table. If the point code is not in the mated application

table when the ent-gtt command is executed, the force=yes parameter must be specified with
the ent-gtt command.

If the EAGLE 5 ISS’s true point code and the EAGLE 5 ISS’s subsystem number, along with the
ri=ssn and xlat=dpcssn parameters are being specified with the ent-gtt command, the
EAGLE 5 ISS’s true point code and the EAGLE 5 ISS’s subsystem number must be in the mated
application table.

If the required point code, subsystem number, or MAP set ID is not shown in the rtrv-map output,
perform one of these procedures to add the required information to the mated application table.

• Provisioning a Solitary Mated Application
• Provisioning a Dominant Mated Application
• Provisioning a Load Shared Mated Application
• Provisioning a Combined Dominant/Load Shared Mated Application

27. Add the global title translation to the database using the ent-gtt command using the parameter
combinations shown in Table 71: Add GTT Parameter Combinations.

For this example, enter these commands.

ent-gtt:typea=5:gta=910460:egta=919460:xlat=dpcngt:ri=gt
:pca=007-007-007:ttn=scp1:mrnset=114:cggtmod=yes:gtmodid=modid2

ent-gtt:typea=10:gta=615370:egta=615380:xlat=dpcssn:ri=ssn
:pca=003-003-003:ssn=254:ttn=scp2:mapset=3

ent-gtt:typea=15:gta=800:egta=900:xlat=dpc:ri=ssn:pca=005-005-005
:ttn=scp3:mapset=1:loopset=rtp:cggtmod=yes

When each of these commands have successfully completed, this message should appear.

rlghncxa03w 09-05-07 11:44:13 GMT EAGLE5 41.0.0
ENT-GTT: MASP A - COMPLTD

Note: The command line on the terminal can contain up to 150 characters. If the parameters and
values specified with the ent-gtt command are too long to fit on the ent-gtt command line,
perform the Changing a Global Title Translation procedure to complete adding the GTT entry.

Table 71: Add GTT Parameter Combinations

<table>
<thead>
<tr>
<th>RI = GT</th>
<th>RI = GT</th>
<th>RI = GT</th>
<th>RI = SSN</th>
<th>RI = SSN</th>
</tr>
</thead>
<tbody>
<tr>
<td>XLAT= DPCNGT</td>
<td>XLAT= DPCSSN</td>
<td>XLAT= DPC</td>
<td>XLAT= DPCSSN</td>
<td>XLAT= DPC</td>
</tr>
</tbody>
</table>

Mandatory Parameters
<table>
<thead>
<tr>
<th>RI = GT</th>
<th>RI = GT</th>
<th>RI = GT</th>
<th>RI = SSN</th>
<th>RI = SSN</th>
</tr>
</thead>
<tbody>
<tr>
<td>XLAT= DPCNGT</td>
<td>XLAT= DPCSSN</td>
<td>XLAT= DPC</td>
<td>XLAT= DPCSSN</td>
<td>XLAT= DPC</td>
</tr>
<tr>
<td>PC/PCA/PCN24 (See Notes 1, 3, and 8)</td>
</tr>
<tr>
<td>GTA (See Notes 4, 5, 6, 12, 14, and 16)</td>
<td>GTA (See Notes 4, 5, 6, 12, 14, and 16)</td>
<td>GTA (See Notes 4, 5, 6, 12, 14, and 16)</td>
<td>GTA (See Notes 4, 5, 6, 12, 14, and 16)</td>
<td>GTA (See Notes 4, 5, 6, 12, 14, and 16)</td>
</tr>
</tbody>
</table>

Optional Parameters

| TTN (See Notes 14, 15, and 16) |
| EGTA (See Note 17) |
| GTMODID (See Note 18) |
| MRNSET (See Note 9) | MRNSET (See Note 9) | MRNSET (See Note 9) | MAPSET (See Note 11) | MAPSET (See Note 11) |
| LOOPSET (See Note 13) |
| CGGTMOD (See Note 7) |
| NTT (See Note 19) |

Parameter Values:

- **TYPE/TYPEA/TYPEI/TYPEN/TYPEIS/TYPENS/TYPEN24** – The translation type from the TYPE/TYPEA/TYPEI/TYPEN/TYPEIS/TYPENS/TYPEN24 column of the `rtrv-tt` output. See Note 2.
- **TTN** – The translation type name from the TTN column of the `rtrv-tt` output.
- **GTA** – 1 - 21 digits or 1 - 21 hexadecimal digits
RI = SSN
XLAT = DPC

RI = GT
XLAT = DPCNGT

PC / PCA / PCI / PCN / PCN24 – See Note 1

SSN – 0 - 255

EGTA – 1 - 21 digits or 1 - 21 hexadecimal digits. Default = same as the GTA value

FORCE – yes, no. Default = no

LOOPSET – Loopset name from the rtrv-loopset output

GTMODID – GT modification identifier from the rtrv-gtmod output

MRNSET – MRN set ID from the rtrv-mrn output

MAPSET – MAP set ID from the rtrv-map output

CGGTMOD – yes, no. Default = no

Notes:

1. The pc / pca / pci / pcn / pcn24 parameters are used to assign either ANSI, ITU-I, ITU-I spare, 14-bit ITU-N, 14-bit ITU-N spare, or 24-bit ITU-N point codes to the global title translation (GTT).
 - pc / pca = ANSI point code
 - pci = ITU-I or ITU-I spare point code
 - pcn = 14-bit ITU-N or 14-bit ITU-N spare point code
 - pcn24 = 24-bit ITU-N point code.

2. The type / typea / typei / typen / typeis / typens / typen24 parameters specify the translation type and the network type of the translation type.
 - type / typea = ANSI translation type
 - typei = ITU-I translation type
 - typen = ITU-N translation type
 - typeis = ITU-I spare translation type
 - typens = ITU-N spare translation type
 - typen24 = ITU-N24 translation type

3. The domain (ANSI or ITU) of the point code and translation type must be the same, unless the ANSI / ITU SCCP Conversion feature is enabled. If the ANSI / ITU SCCP Conversion feature is enabled, a GTT may contain an ANSI point code and an ITU translation type, or an ITU point code and an ANSI translation type. Whether the ANSI / ITU SCCP Conversion feature is enabled or not, the translation type parameters typei, typen, or typen24 can be specified with either the pci, pcn, or pcn24 parameters.

4. If the VGTT feature is on, shown by the VGTT = on entry in the rtrv-feat output, the translation type can contain a maximum of 10 different length GTAs. If the Support for 16 GTT Lengths in VGTT feature is enabled and turned on, shown by the VGTT with 16 GTT lengths entry in the rtrv-ctrl-feat output, the translation type can contain maximum of 16 different length GTAs. If the maximum number of different GTA lengths is shown in
<table>
<thead>
<tr>
<th>RI = GT</th>
<th>RI = GT</th>
<th>RI = GT</th>
<th>RI = SSN</th>
<th>RI = SSN</th>
</tr>
</thead>
<tbody>
<tr>
<td>XLAT= DPCNGT</td>
<td>XLAT= DPCSSN</td>
<td>XLAT= DPC</td>
<td>XLAT= DPCSSN</td>
<td>XLAT= DPC</td>
</tr>
</tbody>
</table>

the NDGT column of the rtrv-tt output, the length of the GTA must match any existing GTA assigned to the translation type.

5. If the translation type contains less than the maximum number of different length GTAs, the length of the GTA can be from 1 to 21 digits.

6. If the VGTT feature is off, the length of the GTA must contain the number of digits defined by the NDGT field of the rtrv-tt output.

7. The cggtmod parameter can be specified only if the AMGTT or AMGTT CgPA Upgrade feature is enabled.

8. If the point code is the EAGLE 5 ISS’s point code, then the xlat parameter value must be dpcssn and the ri parameter value must be ssn.

9. The mrnset parameter can be specified only, and must be specified, if the Flexible GTT Load Sharing feature is enabled.

10. If the pc/pca pci pcn24 parameter value is not shown in the rtrv-map output, the force=yes parameter must be specified with the ent-gtt command.

11. The mapset parameter can be specified only, and must be specified, if the Flexible GTT Load Sharing feature is enabled.

12. Hexadecimal digits (0-9, a-f, A-F) can be specified for the gta or egta parameters only if the Hex Digit support for GTT feature is enabled.

13. The loopset parameter can be specified only if the SCCP Loop Detection feature is enabled.

14. Either the type parameter or the ttn parameter must be specified.

15. If the type parameter is not specified, the translation type name must be assigned to a translation type in the database. This can be verified with the rtrv-tt command.

16. If the type and ttn parameters are specified, the specified translation type must be in the database and the specified translation type name must be assigned to the translation type.

17. The end global title address (egta) must be greater than or equal to the start global title address (gta) and its length must be equal to the start global title address.

18. A GT modification identifier entry can contain the ngti=4 parameter value only if the point code value in the GTT entry is an ITU point code.

19. Since NTT is no longer dependent on XLAT=DPCNGT, the functionality of XLAT=DPCNGT and XLAT=DPC shall be the same.

28. Verify the changes using the rtrv-gtt command with the translation type parameter and value, and the gta parameter value specified in Step 27. If the num parameter is specified with the rtrv-gtt command, and the value of the num parameter is greater than 1000, the force=yes parameter must be specified with the rtrv-gtt command.

For this command, enter these commands.

```
rtrv-gtt:typea=5:gta=910460
```

This is an example of the possible output.

```
rlghncxa03w 10-07-25 09:46:31 GMT  EAGLE5 42.0.0
TYPEA  TTN        NDGT
5     scp1       6
GTT TABLE IS (27000 of 269999)  10 % FULL
```
Removing a Global Title Translation

This procedure is used to remove a global title translation from the database using the `dlt-gtt` command.

The `dlt-gtt` command uses these parameters.

Backup the new changes using the `chg-db:action=backup:dest=fixed` command. These messages should appear, the active Maintenance and Administration Subsystem Processor (MASP) appears first.

BACKUP (FIXED) : MASP A-Backup starts on active MASP.
BACKUP (FIXED) : MASP A-Backup on active MASP to fixed disk complete.
BACKUP (FIXED) : MASP A-Backup starts on standby MASP.
BACKUP (FIXED) : MASP A-Backup on standby MASP to fixed disk complete.
:gta – Global title start address – along with the egta parameter, identifies all valid global titles for the given translation type to translate to the given pc or ssn parameters. These are the non-SS7 addresses transmitted to the EAGLE 5 ISS for translation.

:egta – Global title end address – along with the gta parameter, identifies all valid global titles for the given translation type to translate to the given pc or ssn parameters. These are the non-SS7 addresses transmitted to the EAGLE 5 ISS for translation.

- :type or :typea – an ANSI network
- :typei – an ITU international network
- :typeis – an ITU international spare network

:ttn – The name of the global title translation type

If the translation type is defined as an alias, it cannot be used in the dlt-gtt command.

If the end of the global title address (egta) parameter is specified, the GTA and EGTA must have the same number of digits, but the EGTA must be larger than the GTA. The range, as specified by the start and end global title addresses, must be in the database for the specified translation type. Each range may be contained completely within a previously defined range, in which case splitting is performed. However, if the ranges overlap, splitting cannot occur, and the dlt-gtt command is rejected with this message.

The range of global title addresses, as specified by the start and end global title addresses, must be in the database for the specified translation type. The gta and egta parameter values must have the same number of digits, but the egta parameter value must be larger than the gta parameter value. Each range may be contained completely within a previously defined range, in which case splitting is performed. However, if the ranges overlap, splitting cannot occur, and the dlt-gtt command is rejected with this message.

E2401 Cmd Rej: GTA range overlaps a current range

Along with error message 2401, a list of the overlapped global title addresses is displayed as shown in the following example.

```
rlghncxa03w 07-05-24 08:29:15 GMT EAGLE5 37.0.0
The following GTA ranges overlap the input GTA range

START GTA          END GTA
8005550000          8005551999
8005552000          8005553999
8005554000          8005555999

DLT-GTT: MASP A - Command Aborted
```

For a range of global title addresses to be split, the new entry created by the split cannot increase the number of entries in the GTT table beyond the quantity shown in the rtrv-gtt output.

The length of the global title addresses specified by the gta or egta parameters must match the length of any existing global title addresses assigned to the specific translation type. The lengths are shown in the START GTA and END GTA fields of the rtrv-gtt command output, or in the NDGT field of the GTT database.
rtrv-tt command output. If the length of the global title address does not match one of the lengths already assigned to the translation type, the dlt-gtt command is rejected with this message.

E2960 Cmd Rej: The GTA length is not defined for the specified TT

When the VGTT feature is on, up to 10 different length global title addresses can be assigned to a translation type. If the Support for 16 GTT Lengths in VGTT feature is enabled and turned on, up to 16 different length global title addresses can be assigned to a translation type. The length of the global title address is only limited by the range of values for the gta and egta parameters of the ent-gtt and chg-gtt commands, one to 21 digits, and by the global title addresses already assigned to the translation type. The ndgt parameter of the ent-tt command has no effect on the length of the global title address and cannot be used. If the ndgt parameter is specified with the ent-tt command and the VGTT feature is on, the ent-tt command is rejected with this message.

E4011 Cmd Rej: NDGT parameter is invalid for VGTT

If the Variable-length Global Title Translation Feature (VGTT) is on, or the Support for 16 GTT Lengths in VGTT feature is enabled and turned on, the NDGT field of the rtrv-tt command shows the different lengths of global title addresses assigned to a translation type, as shown in the following example.

| rlghncxa03w 10-07-25 09:57:31 GMT EAGLE5 42.0.0 |
|---|---|---|
| TYPEA | TTN | NDGT |
| 1 | lidb | 6, 12, 15 |
| 2 | c800 | 10 |
| 3 | d700 | 6 |
| ALIAS | TYPEA |
| 50 | 3 |
| 65 | 3 |
| TYPEI | TTN | NDGT |
| 105 | itudb | 8 |
| ALIAS | TYPEI |
| 7 | 105 |
| TYPEN | TTN | NDGT |
| 120 | dbitu | 7 |
| ALIAS | TYPEN |
| 8 | 120 |
| TYPEN24 | TTN | NDGT |
| ALIAS | TYPEN24 |
| TYPEIS | TTN | NDGT |
| ALIAS | TYPEIS |
| TYPENS | TTN | NDGT |
| ALIAS | TYPENS |

In this example of the rtrv-tt command output, the ANSI translation type 1 contains three different length global title addresses; global title addresses containing six digits, 12 digits, and 15 digits.

When the VGTT feature is on, or the Support for 16 GTT Lengths in VGTT feature is enabled and turned on, and the last global title address of a particular length is deleted for the specified translation type, then that length is no longer supported. That length is not displayed in the NDGT field of the rtrv-tt command output. For example, if the last 6-digit global title address is deleted from ANSI
translation type 1 (from the previous example), the NDGT field of the rtrv-tt command shows only the numbers 12 and 15 in the NDGT field indicating that ANSI translation type 1 contains only 12- and 15-digit global title addresses.

Canceling the **RTRV-GTT** Command

Because the rtrv-gtt command used in this procedure can output information for a long period of time, the rtrv-gtt command can be canceled and the output to the terminal stopped. There are three ways that the rtrv-gtt command can be canceled.

- Press the F9 function key on the keyboard at the terminal where the rtrv-gtt command was entered.
- Enter the canc-cmd without the trm parameter at the terminal where the rtrv-gtt command was entered.
- Enter the canc-cmd:trm=<xx>, where <xx> is the terminal where the rtrv-gtt command was entered, from another terminal other that the terminal where the rtrv-gtt command was entered. To enter the canc-cmd:trm=<xx> command, the terminal must allow Security Administration commands to be entered from it and the user must be allowed to enter Security Administration commands. The terminal’s permissions can be verified with the rtrv-secu-trm command. The user’s permissions can be verified with the rtrv-user or rtrv-secu-user commands.

For more information about the canc-cmd command, go to the Commands Manual.

1. Verify that the GTT feature is on, by entering the rtrv-feat command. If the GTT feature is on, the GTT field should be set to on.

Note: The rtrv-feat command output contains other fields that are not used by this procedure. If you wish to see all the fields displayed by the rtrv-feat command, refer to the rtrv-feat command description in the Commands Manual.

If the GTT feature is off, this procedure cannot be performed.

If the GTT feature is on, continue the procedure with Step 2.

2. Display the translation types in the database using the rtrv-tt command.

This is an example of the possible output.

```
rlghncxa03w 10-07-25 09:42:31 GMT  EAGLE5 42.0.0
TYPEA   TTN   NDGT
  1      l1db   5
  2      c800   10
  3      d700   6
  5      scp1   6
 10      scp2   6
 15      scp3   3

ALIAS  TYPEA
  30     5
  40     10
  50     3
  65     3

TYPEI   TTN   NDGT
 105     itudb  8

ALIAS   TYPEI
     7   105
```
If the EGTT feature is off, shown in Step 1, continue the procedure with Step 5.

If the EGTT feature is on, continue the procedure with Step 3.

3. Display the GTT set that contains the TTN value that is assigned to the GTT entry that is being removed. Enter the `rtrv-gttset` command with the `gttsn` parameter. The value of the `gttsn` parameter is the TTN value associated with the translation type, shown in Step 2, that is assigned to the GTT entry that is being removed.

For this example, enter this command.

```
rtrv-gttset:gttsn=scp2
```

This is an example of the possible output.

```
rlghncxa03w 10-07-11 18:54:54 GMT  EAGLE5 42.0.0

GTTSN  NETDOM  SETTYPE  NDGT
scp2    ansi    CDGTA    6

GTT-SET table is (8 of 2000) 1% full.
```

If the NETDOM value of the GTT set is CROSS, the GTT entry cannot be removed with this procedure. Perform the Removing Global Title Address Information procedure to remove the GTT entry.

If the NETDOM value is ANSI or ITU, continue the procedure with Step 4.

4. Display the GTA entries that reference the TTN value that is assigned to the GTT entry that is being removed. Enter the `rtrv-gta` command with the `gttsn` parameter. The value of the `gttsn` parameter is the `gttsn` value that was specified in Step 3.

For this example, enter this command.

```
rtrv-gta:gttsn=scp2
```

This is an example of the possible output.

```
tekelcstp 10-07-12 07:48:31 EST  42.0.0

GTTSN  NETDOM  NDGT
d700    itu     6

GTA table is (27000 of 269999) 10% full.
```
If the \texttt{XLAT} value of the entry that you wish to remove is \texttt{NONE}, the GTT entry cannot be removed with this procedure. Perform the \textit{Removing Global Title Address Information} procedure to remove the GTT entry.

If the \texttt{XLAT} value of the entry that you wish to remove is either \texttt{DPC}, \texttt{DPCNGT}, or \texttt{DPCSSN}, continue the procedure by performing one of these steps.

\begin{itemize}
 \item If the range of global title addresses will not be split in this procedure, continue the procedure with \textit{Step 7}.
 \item If the range of global title addresses will be split in this procedure, continue the procedure with \textit{Step 6}.
\end{itemize}

5. Display the global title translations in the database using the \texttt{rtrv-gtt} command specifying a translation type, translation type name, or both from the \texttt{rtrv-tt} command output shown in \textit{Step 2}.

For this example, enter this command.

\begin{verbatim}
rtrv-gtt:typea=10
\end{verbatim}

This is an example of the possible output.

```
rlghncxa03w 10-07-25 09:43:31 GMT  EAGLE5 42.0.0
TYPEA TTN  NDGT
 10 scp2   6
GTT TABLE IS 10 % FULL  (27000 of 269999)
```

Continue the procedure by performing one of these steps.

\begin{itemize}
 \item If the range of global title addresses will not be split in this procedure, continue the procedure with \textit{Step 7}.
 \item If the range of global title addresses will be split in this procedure, continue the procedure with \textit{Step 6}.
\end{itemize}
6. If the `rtrv-gtt` output in Step 5 shows that the maximum number of global title addresses is 1,000,000, do not perform this step. The range of global title addresses cannot be split. Continue the procedure with Step 7.

If the `rtrv-gtt` output in Step 5 shows that the maximum number of global title addresses is either 269,999 or 400,000, and the number of global title addresses will not increase the number beyond the quantity shown in the `rtrv-gtt` output in Step 5 when the range of global title addresses is split, do not perform this step. Continue the procedure with Step 7.

If the `rtrv-gtt` output in Step 5 shows that the maximum number of global title addresses is either 269,999 or 400,000, and the number of global title addresses will be more than the maximum number of global title addresses when the range of global title addresses is split, perform Enabling the XGTT Table Expansion Feature to enable the XGTT Table Expansion feature for either 400,000 or 1,000,000 global title addresses as required. Then continue the procedure with Step 7.

7. Display the GTT paths that reference the GTA and TTN values contained in the GTT entry that is being removed. Enter the `rtrv-gttapath` with these parameters.

 - `cdgttsn` - the TTN value shown in the `rtrv-gtt` output in Step 5, or GTTSN value shown in the `rtrv-gta` output in Step 4.
 - `cdgta` - the START GTA value shown in the `rtrv-gtt` output in Step 5 or in the `rtrv-gta` output in Step 4.

For this example, enter this command.

```bash
rtrv-gttapath:cdgttsn=scp2:cdgta=615370
```

This is an example of the possible output.

```
rlghncxa03w 10-07-25 09:43:31 GMT  EAGLE5 42.0.0
GTTPN  OPGTTSN  CGGTTSN  CDGTTSN
----------------------------------------
path1  ---------  ---------  scp2
CDGTA = 615370                       ECDGTA = 615380
GTT-PATH table is (10 of 10000) 1% full.
```

If entries are displayed, continue the procedure by performing one of these procedures.

- Perform the Removing a GTT Action Path Entry to remove all the entries shown in this step.
- Perform the Changing a GTT Action Path Entry to change the `CDGTTSN` value to `none` or to another GTT set for all the entries shown in this step.

If no entries are displayed in this step, or if the GTT action paths have been removed or changed, continue the procedure with Step 8.

8. Remove the global title translation from the database using the `dlt-gtt` command.

For this example, enter this command.

```bash
dlt-gtt:typea=10:ttn=scp2:gta=615370:egta=615380
```

This message should appear.

```
rlghncxa03w 10-07-25 09:44:31 GMT  EAGLE5 42.0.0
DLT-GTT:  MASP A - COMPLTD
```
Changing a Global Title Translation

This procedure is used to change the routing objects for messages requiring global title translation in the database using the `chg-gtt` command.

The `chg-gtt` command uses these parameters.

: `gta` – Global title start address – along with the `egta` parameter, identifies all valid global titles for the given translation type to translate to the given `pc` or `ssn` parameters. These are the non-SS7 addresses transmitted to the STP for translation.

: `type/typea/typei/typeis/typen/typens/typen24` – The translation type and network type of the translation type that is being assigned to the global title translation. The value of this parameter is shown in the `rtrv-tt` output and provisioned in the Adding a Translation Type procedure.

: `ttn` – The name of the global title translation type.
Global Title Translation (GTT) Configuration
Translation

egta – Global title end address. This parameter, along with the gta parameter, identifies all valid
global titles for the given translation type to translate to the given pc or ssn parameters. These are
the non-SS7 addresses transmitted to the STP for translation.

xlat – Translate indicator – defines the type of global title translation that is to be performed.

ri – Route indicator – indicates whether a subsequent global title translation is required.

pc/pca/pci/pcn/pcn24 – The point code of the signaling point that is to receive the message.

Note: See Chapter 2, Configuring Destination Tables, in the Database Administration Manual - SS7 for
a definition of the point code types that are used on the EAGLE 5 ISS and for a definition of the different
formats that can be used for ITU national point codes.

ssn – Subsystem number – identifies the subsystem address that is to receive the message.

gtmodid - the name of the GT modification identifier shown in the rtrv-gtmod output and
provisioned in the Adding Global Title Modification Information procedure. The GT modification identifier
contains the information to modify the numbering plan, nature of address indicator, and the prefix
or suffix digits in the called party address or calling party address portion of outbound MSUs.

mrnset – The MRN set ID, shown in the rtrv-mrn command. The mrnset parameter can be
specified only if the Flexible GTT Load Sharing feature is enabled. If the Flexible GTT Load Sharing
feature is enabled and the ri parameter value will be ri=gt when this procedure is completed, and
the original global title translation being changed in this procedure did not have an MRN set ID
assigned to it, the mrnset parameter must be specified with the chg-gtt command. The MRN set
ID assigned to the global title translation in this step must contain the point code value that will be
assigned to the global title translation being changed in this step.

mapset – The MAP set ID, shown in the rtrv-mrn command. The mapset parameter can be
specified only if the Flexible GTT Load Sharing feature is enabled. If the Flexible GTT Load Sharing
feature is enabled and the ri parameter value will be ri=ssn when this procedure is completed, and
the original global title translation being changed in this procedure did not have an MAP set ID
assigned to it, the mapset parameter must be specified with the chg-gtt command. The MAP set
ID assigned to the global title translation in this step must contain the point code and SSN values that
will be assigned to the global title translation being changed in this step.

The status of the Flexible GTT Load Sharing feature is shown in the rtrv-ctrl-feat output. To
enable the Flexible GTT Load Sharing feature, perform the Activating the Flexible GTT Load Sharing
Feature procedure.

loopset - The value of this parameter is the name of the loopset that is assigned to the GTT. This
parameter can be specified only if the SCCP Loop Detection feature is enabled. Enter the rtrv-loopset
command to verify that the SCCP Loop Detection feature is enabled. Perform the Activating the SCCP
Loop Detection Feature procedure, if necessary.

cggtmod – The calling party GT modification indicator. This parameter specifies whether or not
calling party global title modification is required. The values for this parameter are yes (calling party
global title modification is required) or no (calling party global title modification is not required). This
parameter can be specified only if the AMGTT or AMGTT CpPA Upgrade feature is enabled. Enter the rtrv-ctrl-feat command to verify that either the AMGTT or AMGTT CpPA Upgrade feature
is enabled. If the AMGTT or AMGTT CpPA Upgrade feature is not enabled, perform the Activating
the Advanced GT Modification Feature procedure to enable the required feature.

split – Split or change the range of global title addresses. If the split=yes parameter is specified,
the existing range of global title addresses is split based on the values of the gta and egta parameters.
New entries are created in the global title translation table for each new range created by the split
parameter. The attributes of each new entry, other than the range of global title addresses, are the same as the original global title translation entry, if these values are not changed when the chg-gtt command is executed. If other attributes are changed when the chg-gtt command is executed, the changed values are in each new entry created by the split parameter.

If the split=no parameter is specified, the range of global title addresses is replaced with the new range of global title addresses specified by the gta and egta parameters.

The default value for the split parameter is yes.

CAUTION: Changes to the range of global title addresses occur only if the both the gta and egta parameters are specified and the values for either of these parameters, or both parameters are different from the original values in the global title translation. If the gta and egta parameters are specified for the global title translation being changed, and you do not wish to change either of these values, make sure the gta and egta values shown in the rtrv-gtt output for the global title translation being changed are specified in the chg-gtt command.

The following examples illustrate how the split parameter works and ranges of global title addresses can be changed.

A global title translation entry in the database contains this range of global title addresses, 5556000 - 5558000.

```
rlghncxa03w 10-07-25 09:45:31 GMT  EAGLE5 42.0.0
TYPEA  TTN        NDGT
15     tst1       7
GTT TABLE IS     (27000 of 269999)     10 % FULL
START GTA KEV GTA X LAT RI PC
5556000   5558000   DPCSSN GT    003-003-003
MRNSET=114 SSN=254 GTMID=---------  CGGTMOD = NO
Command Retrieved 1 Entries
```

The global title translation is changed with a new range of global title addresses, 5556800 - 5559000, and with the split=no parameter.

```
chg-gtt:ttn=tst1:gta=5556800:egta=5559000:split=no
```

The range of global title addresses is changed to 5556800 - 5559000.

```
rlghncxa03w 10-07-25 09:45:31 GMT  EAGLE5 42.0.0
TYPEA  TTN        NDGT
15     tst1       7
GTT TABLE IS     (27000 of 269999)     10 % FULL
START GTA KEV GTA X LAT RI PC
5556800   5559000   DPCSSN GT    003-003-003
MRNSET=114 SSN=254 GTMID=---------  CGGTMOD = NO
Command Retrieved 1 Entries
```

In this example, the range of global title addresses is made smaller by specifying the range of global title addresses 5556500 - 5557500, and with the split=no parameter.
In this next example, the range of global title addresses is split with the `gta=5556900` and `egta=5557000` defining where the splits occur.

Since the default value for the `split` parameter is `yes`, the `split=yes` parameter does not have to be specified to split the range of global title addresses. When the `chg-gtt` command is entered, three new global title translation entries with the new global title address ranges are created, and the original global title translation entry is removed from the database. Since the `gta` and `egta` parameter values specified in this example are within the original range of global title addresses, the original range of global title addresses is split into three new ranges. The `START GTA` value of the first new range is the original `START GTA` value and the `END GTA` value is the `gta` parameter value minus one. The `START GTA` value of the second new range is the `gta` parameter value and the `END GTA` value is the `egta` parameter value. The `START GTA` value of the third new range is the `egta` parameter value plus one and the `END GTA` value is the original `END GTA` value.

```
chg-gtt:ttn=tst1:gta=5556500:egta=5557500:split=no
```

```
rlghnXA03W 10-07-25 09:45:31 GMT  EAGLE5 42.0.0
TYPEA  TTN        NDGT
15     tst1       7
GTT TABLE IS     (27000 of 269999)        10 % FULL
START GTA             END GTA               XLAT   RI     PC
5556500               5557500               DPCSSN GT     003-003-003
MRNSET=114   SSN=254  GTMODID=--------  CGGTMOD = NO
Command Retrieved 1 Entries
```

```
chg-gtt:ttn=tst1:gta=5556900:egta=5557000
```

```
rlghnXA03W 10-07-25 09:45:31 GMT  EAGLE5 42.0.0
TYPEA  TTN        NDGT
15     tst1       7
GTT TABLE IS     (27000 of 269999)        10 % FULL
START GTA             END GTA               XLAT   RI     PC
5556900               5557000               DPCSSN GT     003-003-003
MRNSET=114   SSN=254  GTMODID=--------  CGGTMOD = NO
Command Retrieved 1 Entries
```

```
Command Retrieved 1 Entries
```

```
chg-gtt:ttn=tst1:gta=5556900:egta=5557000
```

```
rlghnXA03W 10-07-25 09:45:31 GMT  EAGLE5 42.0.0
TYPEA  TTN        NDGT
15     tst1       7
GTT TABLE IS     (27000 of 269999)        10 % FULL
START GTA             END GTA               XLAT   RI     PC
5556900               5557000               DPCSSN GT     003-003-003
MRNSET=114   SSN=254  GTMODID=--------  CGGTMOD = NO
Command Retrieved 1 Entries
```

```
Command Retrieved 1 Entries
```

```
chg-gtt:ttn=tst1:gta=5556900:egta=5557000
```
In this next example, the global title translation containing the range of global title addresses 5557001 - 5558000 is split into two new ranges with the gta=5557501 and egta=5558000 defining where the split occurs.

chg-gtt:ttn=tst1:gta=5557501:egta=5558000:split=yes

When the chg-gtt command is entered, two new global title translation entries with the new global title address ranges are created, and the original global title translation entry is removed from the database. The START GTA value of the first new range is the original START GTA value and the END GTA value is the gta parameter value minus one. The START GTA value of the second new range is the gta parameter value and the END GTA value is the egta parameter value. In this example, the egta parameter is also the original END GTA value.

The range of global title addresses can be changed so long as the new range of global title addresses does not overlap an existing range of global title addresses.

For example, using the range of global title addresses from the previous examples, 5556000 - 5558000, you wish to extend the range of global title addresses to 5556000 - 5559000. The range of global title addresses can be extended to 5559000 by specifying the egta=5559000 and split=no parameters with the chg-gtt command. However, if another range of global title addresses begins with the value 5558500, the egta=5559000 parameter cannot be specified with the chg-gtt command as the new range created with the egta=5559000 parameter would overlap the range of global title addresses beginning with the value 5558500. In this situation, the maximum value for the egta parameter would be 5558499.

Note: The command line on the terminal can contain up to 150 characters. If the parameters and values specified with the chg-gtt command are too long to fit on the chg-gtt command line, perform the chg-gtt command as many times as necessary to complete the GTT entry.
The XLAT parameter does not have a SEAS equivalent. When global title translations are configured at the SEAS interface, the values for the SEAS parameters RI, DPC, and SSN, all mandatory parameters for the SEAS ADD-GTT and CHG-GTT commands, are converted to the EAGLE 5 ISS parameters and values shown in Table 72: SEAS and Global Title Translation Parameter Conversion.

Table 72: SEAS and Global Title Translation Parameter Conversion

<table>
<thead>
<tr>
<th>SEAS GTT Parameters</th>
<th>GTT Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>RI</td>
<td>DPC</td>
</tr>
<tr>
<td>G</td>
<td>xxx-xxx-xxx</td>
</tr>
<tr>
<td>D</td>
<td>xxx-xxx-xxx</td>
</tr>
<tr>
<td>G</td>
<td>xxx-xxx-xxx</td>
</tr>
<tr>
<td>D</td>
<td>xxx-xxx-xxx</td>
</tr>
</tbody>
</table>

Notes:
- The SEAS RI=G parameter denotes global title routing, further global title translation is required.
- The SEAS RI=D parameter denotes DPC routing, no further global title translation is required.
- The RI=GT parameter denotes further global title translation is required and uses MTP routing.
- The RI=SSN parameter denotes final global title translation and uses MAP routing.
- The XLAT=DPC parameter indicates that the DPC & RI values in the MSU are to be replaced.
- The XLAT=DPCSSN parameter indicates that the DPC, RI, & SSN values in the MSU are to be replaced.
- The XLAT=DPCNGT parameter indicates that the DPC, RI, & TT values in the MSU are to be replaced.

The examples in this procedure are used to change the global title translation data for translation type 15 in the database.

If the translation type is defined as an alias, it cannot be used in the chg-gtt command.

If the translate indicator is equal to dpc (xlat=dpc) and the routing indicator is equal to ssn (ri=ssn), the point code and subsystem number specified in the chg-gtt command must be defined in the database as a mated application. Verify this by entering the rtrv-map command. If this point code and subsystem number is not defined as a mated application, perform one of these procedures to add the point code and subsystem number to the database as a mated application:

- Provisioning a Solitary Mated Application
- Provisioning a Dominant Mated Application
- Provisioning a Load Shared Mated Application
- Provisioning a Combined Dominant/Load Shared Mated Application
The point code and subsystem number do not have to be in the mated application table when the chg-gtt command is executed when these parameters are specified with the chg-gtt command.

- **ri=gt**
- **xlat=dpcssn and ri=ssn**

If the point code and subsystem are not in the mated application table when either of these parameters are specified with the chg-gtt command, the EAGLE 5 ISS creates a solitary mated application in the mated application table using the point code and subsystem values specified in the chg-gtt command.

If the xlat=dpcssn parameter is specified, the ssn parameter must be specified. Otherwise, the ssn parameter cannot be specified.

If a point code is the STP’s True PC, then the value of the XLAT parameter must be set to DPCSSN and the value of the RI parameter must be set to SSN. If the SSN parameter is specified and a point code is the STP’s True PC, then the subsystem number specified must exist in the SS-APPL table. This can be verified with the rtrv-ss-appl command. To execute the rtrv-ss-appl command, one or more features shown in Table 73: Feature Status must be enabled, and turned on if necessary. The rtrv-ctrl-feat output shows the required status of the features.

Table 73: Feature Status

<table>
<thead>
<tr>
<th>Feature</th>
<th>Feature's Status</th>
<th>Entry Displayed in the rtrv-ctrl-feat Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>LNP</td>
<td>Enabled</td>
<td>The entry LNP TNs with a quantity greater than zero (0)</td>
</tr>
<tr>
<td>EIR</td>
<td>Enabled and Turned On</td>
<td>EIR</td>
</tr>
<tr>
<td>INP</td>
<td>Enabled and Turned On</td>
<td>INP</td>
</tr>
<tr>
<td>ANSI-41 INP Query</td>
<td>Enabled and Turned On</td>
<td>ANSI-41 INP Query</td>
</tr>
<tr>
<td>V-Flex</td>
<td>Enabled and Turned On</td>
<td>VFLEX</td>
</tr>
<tr>
<td>ATINP</td>
<td>Enabled</td>
<td>ATINP</td>
</tr>
<tr>
<td>ANSI41 AIQ</td>
<td>Enabled</td>
<td>ANSI41 AIQ</td>
</tr>
</tbody>
</table>

The point code specified in the chg-gtt command (pc/pca, pci, pcn or pcn24) must be defined in the routing table. For ANSI point codes (pc/pca), the point code specified in the chg-gtt command, must be a full point code. That point code can be defined as a full point code in the destination point code table, or can be a member of a cluster point code defined in the destination point code table. Cluster point codes or a network routing point codes cannot be specified with this command. The rtrv-rte command can be used to verify the point codes in the routing table. The point codes are shown in the DPCA, DPCI, DPCN, or DPCN24 fields of the rtrv-rte command output. If the point code is not defined as a route, perform one of the Adding a Route procedures in the Database Administration Manual – SS7 to define the point code as a route.

If the EAGLE 5 ISS’s point code is specified with the chg-gtt command, then the xlat=dpcssn and ri=ssn parameters must be specified. The EAGLE 5 ISS’s point code is shown in the PCA, PCI, PCN, or PCN24 fields of the rtrv-sid command output.

If the xlat=dpcngt parameter is specified, the ri=gt parameters must be specified.
A point code containing all zeros is not a valid point code.

An ANSI point code or ITU international point code containing all zeros is not a valid point code and cannot be entered into the database. An ITU national point code containing all zeros is a valid point code and can be entered into the database.

Either the `type` parameter or the `tttn` parameter must be specified.

If the `type` parameter is specified, the translation type must be in the database. This can be verified with the `rtrv-tt` command.

If the `type` parameter is not specified, the translation type name must be assigned to a translation type in the database. This can be verified with the `rtrv-tt` command.

The end global title address (`egta`) must be greater than or equal to the start global title address (`gta`) and its length must be equal to the start global title address.

If the range as specified by the `gta` and `egta` parameters does not exactly match the existing range, the existing range is split. All addresses in the existing range that are outside the range specified by `gta` and `egta`, retain the original `xlat`, `ri`, `pc`, and `ssn` parameters. A new range is created and bounded by the `gta` and `egta` containing new values of `xlat`, `ri`, `pc`, and `ssn` as present in the command, and retaining parameter values from the previous range that do not have corresponding new values in the command.

However, if the ranges overlap, splitting cannot occur and the command is rejected. However, if the ranges overlap, splitting cannot occur, and the `chg-gtt` command is rejected with this message.

E2401 Cmd Rej: GTA range overlaps a current range

Along with error message 2401, a list of the overlapped global title addresses is displayed as shown in the following example.

```
rlghnxa03w 07-02-24 08:29:15 GMT EAGLE5 37.0.0

The following GTA ranges overlap the input GTA range

<table>
<thead>
<tr>
<th>START GTA</th>
<th>END GTA</th>
</tr>
</thead>
<tbody>
<tr>
<td>8005550000</td>
<td>8005551999</td>
</tr>
<tr>
<td>8005552000</td>
<td>8005553999</td>
</tr>
<tr>
<td>8005554000</td>
<td>8005555999</td>
</tr>
</tbody>
</table>

CHG-GTT: MASP A - Command Aborted
```

If the translation type is ANSI (`type` or `typea`), the `pc` type must be ANSI (`pc` or `pca`). If the translation type is one of the ITU types (`typei`, `typen`, or `typen24`) the `pc` type may be either of the ITU types (`pci`, `pcn`, or `pcn24`). If the ANSI/ITU SCCP Conversion feature is enabled, the domain (ANSI or ITU) of the translation type and point code do not have to be the same.

The values specified for the `gta` and `egta` parameters can be decimal digits (0-9) or hexadecimal digits (0-9, a-f, A-F). Hexadecimal digits can be specified only if the Hex Digit Support for GTT feature is enabled. Verify the status of the Hex Digit Support for GTT feature with the `rtrv-ctrl-feat` command. Refer to the `Hex Digit Support for GTT` section for more information on this feature. If the Hex Digit Support for GTT feature is not enabled, perform the `Activating the Hex Digit Support for GTT Feature` procedure to enable the Hex Digit Support for GTT feature.

Table 74: Valid Parameter Combinations for the chg-gtt Routing Parameters shows the valid combinations for the `xlat`, `ri`, and `ssn` parameters. All other combinations are rejected.
Table 74: Valid Parameter Combinations for the chg-gtt Routing Parameters

<table>
<thead>
<tr>
<th>New or Existing XLAT Value</th>
<th>New or Existing RI Value</th>
<th>Routing Action</th>
<th>SSN Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>DPC</td>
<td>GT</td>
<td>Translate DPC only and route on GT</td>
<td>Cannot be specified. The current database entry is removed.</td>
</tr>
<tr>
<td>DPC</td>
<td>SSN</td>
<td>Translate DPC only and route on SSN</td>
<td>Cannot be specified. The current database entry is removed.</td>
</tr>
<tr>
<td>DPCSSN</td>
<td>GT</td>
<td>Translate DPC and SSN and route on GT</td>
<td>Must be specified.</td>
</tr>
<tr>
<td>DPCSSN</td>
<td>SSN</td>
<td>Translate DPC and SSN and route on SSN</td>
<td>Must be specified.</td>
</tr>
<tr>
<td>DPCNGT</td>
<td>GT</td>
<td>Translate DPC, new translation type (TT), and route on GT</td>
<td>Cannot be specified. The current database entry is removed.</td>
</tr>
</tbody>
</table>

Canceling the RTRV-GTT Command

Because the rtrv-gtt command used in this procedure can output information for a long period of time, the rtrv-gtt command can be canceled and the output to the terminal stopped. There are three ways that the rtrv-gtt command can be canceled.

- Press the F9 function key on the keyboard at the terminal where the rtrv-gtt command was entered.
- Enter the canc-cmd without the trm parameter at the terminal where the rtrv-gtt command was entered.
- Enter the canc-cmd:trm=<xx>, where <xx> is the terminal where the rtrv-gtt command was entered, from another terminal other that the terminal where the rtrv-gtt command was entered. To enter the canc-cmd:trm=<xx> command, the terminal must allow Security Administration commands to be entered from it and the user must be allowed to enter Security Administration commands. The terminal’s permissions can be verified with the rtrv-secu-trm command. The user’s permissions can be verified with the rtrv-user or rtrv-secu-user commands.

For more information about the canc-cmd command, go to the Commands Manual.

1. Display the translation types in the database using the rtrv-tt command. This is an example of the possible output.

```
rlghncxa03w 10-07-25 09:42:31 GMT    EAGLE5 42.0.0
TYPEA TTN NDGT
1  lidb  5
2  c800  10
3  d700  6
5  scp1  6
```
2. Verify that the EGTT feature is on, by entering the `rtrv-feat` command. If the GTT feature is on, the EGTT field should be set to on.

 Note: The `rtrv-feat` command output contains other fields that are not used by this procedure. If you wish to see all the fields displayed by the `rtrv-feat` command, refer to the `rtrv-feat` command description in the `Commands Manual`.

 If the EGTT feature is off, continue the procedure with **Step 5**.

 If the EGTT feature is on, continue the procedure with **Step 3**.

3. Display the features that are enabled by entering the `rtrv-ctrl-feat` command.

 The following is an example of the possible output.

   ```plaintext
   rgnhncxa03w 10-07-28 21:15:37 GMT EAGLE5 42.0.0
   The following features have been permanently enabled:

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Partnum</th>
<th>Status</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Command Class Management</td>
<td>893005801</td>
<td>on</td>
<td>----</td>
</tr>
<tr>
<td>LNP Short Message Service</td>
<td>893006601</td>
<td>on</td>
<td>----</td>
</tr>
<tr>
<td>Intermed GTT Load Sharing</td>
<td>893006901</td>
<td>on</td>
<td>----</td>
</tr>
<tr>
<td>HC-MIM SLK Capacity</td>
<td>893012707</td>
<td>on</td>
<td>64</td>
</tr>
</tbody>
</table>

   The following features have been temporarily enabled:

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Partnum</th>
<th>Status</th>
<th>Quantity</th>
<th>Trial Period Left</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zero entries found.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

   The following features have expired temporary keys:

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Partnum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zero entries found.</td>
<td></td>
</tr>
</tbody>
</table>
```
4. Display the GTT selectors in the database by entering the `rtrv-gttsel` command with the TTN value associated with the translation type that will be assigned to the global title translation. The TTN value is shown in the `rtrv-tt` output in Step 1.

To specify the TTN value, the parameters shown in Table 75: RTRV-GTTSEL Parameters must be specified with the `rtrv-gttsel` command. The parameters that can be specified are dependent on the features that are enabled, shown in Step 3.

Table 75: RTRV-GTTSEL Parameters

<table>
<thead>
<tr>
<th>Feature that is Enabled</th>
<th>Parameter that must be Specified for the TTN Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neither the Origin Based SCCP Routing nor the Flexible Linkset Optional Based Routing, shown as <code>Flex Lset Optnl Based Rtg</code> in the <code>rtrv-ctrl-feat</code> output, is enabled.</td>
<td><code>gttsn</code></td>
</tr>
<tr>
<td>Origin Based SCCP Routing</td>
<td><code>cdgtasn, cggtasn</code></td>
</tr>
<tr>
<td>Flexible Linkset Optional Based Routing</td>
<td><code>cdgttsn, cggttsn</code></td>
</tr>
</tbody>
</table>

For this example, enter this command.

`rtrv-gttsel:gttsn=scp3`

```
rlghncxa03w 10-07-28 21:15:37 GMT EAGLE5 42.0.0
GTIA    TT     NP      NAI  SELID GTTSN
  2      15  --      ---  none  scp3
GTII    TT     NP      NAI  SELID GTTSN
GTIN    TT     NP      NAI  SELID GTTSN
GTIN24  TT     NP      NAI  SELID GTTSN
GTIIS   TT     NP      NAI  SELID GTTSN
GTINS   TT     NP      NAI  SELID GTTSN
```

If any of the entries shown in the `rtrv-gttsel` output do not have the default values for the advanced GTT parameters, or if a GTT selector entry with the TTN value was removed with the `dlt-gttsel` command, the remainder of this procedure cannot be performed. Choose another GTT entry to change and repeat this step. The GTT entry should contain another translation type and TTN value.

If all of the entries shown in the `rtrv-gttsel` output have the default values for the advanced GTT parameters, and none of the GTT selector entries with the TTN value were removed with the `dlt-gttsel` command, continue the procedure with Step 5.

5. Display the global title translations in the database using the `rtrv-gtt` command specifying a translation type, translation type name, or both from the `rtrv-tt` command output shown in Step 1.

For this example, enter this command.

`rtrv-gtt:typea=15`
This is an example of the possible output.

```
rlghncxa03w 10-07-25 09:43:31 GMT  EAGLE5 42.0.0
TIPEA    TTN       NDGT
  15     scp3       3
GTT TABLE IS       (27000 of 269999)       10 % FULL
START GTA             END GTA               XLAT   RI     PC
 800                   900                   DPC    SSN    001-001-001
    SSN=---   GTMODID=---------
 919                   919                   DPCSSN SSN    002-002-002
    SSN=50    GTMODID=---------
Command Retrieved 2 Entries
```

Continue the procedure with *Step 7* if either of these conditions are present.

- The GTT entry does not contain a range of global title addresses.
- The GTT entry does contain a range of global title addresses and the range of global title addresses is not being split.

The GTT entry does contain a range of global title addresses and the range of global title addresses is being split, continue the procedure with *Step 6* if these conditions are present.

- The number of global title addresses when the range of global title translations is split will not exceed the maximum number of global title translations.
- The number of global title addresses when the range of global title translations is split will exceed the maximum number of global title translations and the maximum number of global title translations is less than 1,000,000. Perform the *Enabling the XGTT Table Expansion Feature* procedure to increase the maximum number of global title translations. After the *Enabling the XGTT Table Expansion Feature* procedure has been performed, continue the procedure with *Step 6*.

The number of global title addresses when the range of global title translations is split will exceed the maximum number of global title translations and the maximum number of global title translations is 1,000,000; the range of global title addresses cannot be split. Continue the procedure with *Step 7*.

6. Display the GTT path entries by entering the `rtrv-gttapath` command with these parameters.

 - `cdgttsn` - the TTN value shown in the `rtrv-gtt` output in *Step 5*.
 - `cdgta` - the START GTA value shown in the `rtrv-gtt` output in *Step 5*.

For this example, enter this command.

```
rtrv-gttapath:cdgttsn=scp3:cdgta=800
```

This is an example of the possible output.

```
rlghncxa03w 10-07-25 09:43:31 GMT  EAGLE5 42.0.0
GTTPN   OPGTTSN       CCGTTSN       CDGTTSN
-----------------------------------------------
path1     ---------       ---------       scp3
           CDGTA = 800                     ECDGTA = 900
```
The range of global title addresses cannot be split if entries containing the TTN and the GTA values shown in the rtrv-gttapath output. If entries are displayed in the rtrv-gttapath output, perform the Removing a GTT Action Path Entry procedure to remove the entries shown in the rtrv-gttapath output.

Continue the procedure with Step 7 if no entries are shown in this step; if the entries in the rtrv-gttapath output will not be removed; or the Removing a GTT Action Path Entry procedure has been performed.

7. Continue the procedure by performing one of these steps.

Continue the procedure with Step 10 if any of these actions will occur.

- The gtmodid and cggtmod=yes parameters will not be specified in this procedure.
- The gtmodid=none parameter will be specified in this procedure and the cggtmod=yes parameter will not be specified in this procedure.
- If only the cggtmod=yes parameter will be specified in this procedure and entries are shown in the rtrv-gtt output (in Step 5) that contain the cggtmod=yes parameter value.

If only the cggtmod=yes parameter will be specified in this procedure and no entries are shown in the rtrv-gtt output (in Step 5) that contain the cggtmod=yes parameter value, continue the procedure with Step 9.

If the gtmodid parameter with a value other than none will be specified in this procedure, continue the procedure with Step 8.

8. Display the GT modification entries by entering the rtrv-gtmod command. This is an example of the possible output.

```
rlghnxc403w 10-07-25 09:43:31 GMT  EAGLE5 42.0.0
GTMODID   NTT  NGTI  GT0FILL  NNP  NNAI  NPDD  NSDD  PRECD  CGPASSN
modid2     --     2       ON   --    --    --    --    PFX       --
           NPDS=                       NSDS=
modid5     --     2      OFF   --    --    --    --    PFX       --
           NPDS=                       NSDS=
modid10    --    --      OFF    5     5    --    --    PFX       --
           NPDS=2345                   NSDS=12ae
modid11    --    --      OFF    5     5    --    --    PFX       --
           NPDS=                       NSDS=
modid20    --     2       ON   --    --    --    --    PFX       --
           NPDS=                       NSDS=
modid7     --     2      OFF   --    --    --    --    PFX       --
           NPDS=2345                   NSDS=12ae
```

If the NGTI value of the GT modification entry that will be assigned to the GTT entry is 4, the GTT entry must contain an ITU point code.

If the GT modification entry that you wish to assign to the GTT entry is not shown in the rtrv-gtmod output, perform the Adding Global Title Modification Information procedure to add the desired GT modification entry.

Note: Either the AMGTT or AMGTT CgPA Upgrade features must be enabled to specify the cggtmod=yes parameter for the GTT entry.
If the GT modification entry that you wish to assign to the GTT entry is shown in the \texttt{rtrv-gtmod} output or the \textit{Adding Global Title Modification Information} procedure was performed, continue the procedure by performing one of these steps.

- Continue the procedure with \textit{Step 10} if any of these actions will occur.
 - The \texttt{cggtmod=yes} parameter will not be specified in this procedure.
 - The \texttt{cggtmod=yes} parameter will be specified in this procedure and entries are shown in the \texttt{rtrv-gtt} output (in \textit{Step 5}) that contain the \texttt{cggtmod=yes} parameter value.
 - The \texttt{cggtmod=yes} parameter will be specified in this procedure and no entries are shown in the \texttt{rtrv-gtt} output (in \textit{Step 5}) that contain the \texttt{cggtmod=yes} parameter value. Continue the procedure with \textit{Step 9}.

\section*{9.} To specify only \texttt{cggtmod=yes} parameter in this procedure, one of these the Advanced GT Modification features must be enabled.

- AMGTT - 893021801
- AMGTT CgPA Upgrade - 893021803

Enter the \texttt{rtrv-ctrl-feat} command to verify the status of the AMGTT or AMGTT CgPA Upgrade feature.

The following is an example of the possible output.

```
righncxa03w 10-07-28 21:15:37 GMT EAGLE5 42.0.0
The following features have been permanently enabled:

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Partnum</th>
<th>Status</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPGWx Signaling TPS</td>
<td>893012814</td>
<td>on</td>
<td>20000</td>
</tr>
<tr>
<td>ISUP Normalization</td>
<td>893000201</td>
<td>on</td>
<td>----</td>
</tr>
<tr>
<td>Command Class Management</td>
<td>893005801</td>
<td>on</td>
<td>----</td>
</tr>
<tr>
<td>LNP Short Message Service</td>
<td>893006601</td>
<td>on</td>
<td>----</td>
</tr>
<tr>
<td>Intermed GTT Load Sharing</td>
<td>893006901</td>
<td>on</td>
<td>----</td>
</tr>
<tr>
<td>HC-MIM SLK Capacity</td>
<td>893012707</td>
<td>on</td>
<td>64</td>
</tr>
</tbody>
</table>

The following features have been temporarily enabled:

```

Zero entries found.

The following features have expired temporary keys:

```

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Partnum</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Zero entries found.

If none of the required Advanced GT Modification features are shown in the \texttt{rtrv-ctrl-feat} output in this step (AMGTT, AMGTT CgPA Upgrade), perform the \textit{Activating the Advanced GT Modification Feature} procedure to enable the AMGTT feature. After the AMGTT feature has been enabled, continue the procedure with \textit{Step 10}.

If either the AMGTT or AMGTT CgPA Upgrade features are shown in the \texttt{rtrv-ctrl-feat} output in this step, continue the procedure with \textit{Step 10}.

\section*{10.} If the domain (ANSI or ITU) of the point code and the translation type assigned to the global title translation type will be different, and the \texttt{ngti} parameter will be specified with the global title translation, the ANSI/ITU SCCP Conversion feature (SCCP Conversion) must be enabled. If the ANSI/ITU SCCP Conversion feature is not being used, continue the procedure with \textit{Step 11}.
Verify that the ANSI/ITU SCCP Conversion feature is enabled by entering the
`rtrv-ctrl-feat:partnum=893012001` command.

The following is an example of the possible output.

```
rlghncxa03w 07-02-28 21:15:37 GMT EAGLE5 37.0.0
The following features have been permanently enabled:
<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Partnum</th>
<th>Status</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCCP Conversion</td>
<td>893012001</td>
<td>on</td>
<td>----</td>
</tr>
</tbody>
</table>
```

The following features have been temporarily enabled:

```
The following features have expired temporary keys:
```

If the ANSI/ITU SCCP Conversion feature is not enabled, perform the `Activating the ANSI/ITU SCCP Conversion Feature` procedure to enable the ANSI/ITU SCCP Conversion feature.

11. Hexadecimal digits (0-9, a-f, A-F) can be specified as values for the `gta` or `egta` parameters only if the Hex Digit Support for GTT feature is enabled. Verify the status of the Hex Digit Support for GTT feature by entering the `rtrv-ctrl-feat` command with the Hex Digit Support for GTT feature part number.

Enter this command.

`rtrv-ctrl-feat:partnum=893018501`

The following is an example of the possible output.

```
rlghncxa03w 07-05-28 21:15:37 GMT EAGLE5 37.0.0
The following features have been permanently enabled:
<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Partnum</th>
<th>Status</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hex Digit Support for GTT</td>
<td>893018501</td>
<td>on</td>
<td>----</td>
</tr>
</tbody>
</table>
```

The following features have been temporarily enabled:

```
The following features have expired temporary keys:
```

If the Hex Digit Support for GTT feature has not been enabled, perform the `Activating the Hex Digit Support for GTT Feature` procedure to enable this feature. After the Hex Digit Support for GTT feature is enabled, continue the procedure by performing one of these steps.

If the `LOOPSET` value will be changed, continue the procedure with *Step 12*.

If the `LOOPSET` value will not be changed, continue the procedure with *Step 14*.

12. If the `LOOPSET` field appears in the output shown in *Step 5*, the SCCP Loop Detection feature is enabled, continue the procedure with *Step 13*.

If the `LOOPSET` field appears in the output shown in *Step 5*, the SCCP Loop Detection feature is not enabled. Perform the `Activating the SCCP Loop Detection Feature` procedure to enable the SCCP...
Loop Detection feature. After the SCCP Loop Detection Feature has been enabled, perform the Adding a Loopset procedure to add the required loopset. After the loopset has been added, continue the procedure with Step 14.

13. Display all the loopsets in the database by entering this command.

```plaintext
rtrv-loopset:num=1000:force=yes
```

This is an example of the possible output.

<table>
<thead>
<tr>
<th>LoopSet</th>
<th>Mode</th>
<th>Point Codes</th>
</tr>
</thead>
<tbody>
<tr>
<td>cary2</td>
<td>notify</td>
<td>005-015-005 007-007-007   (ANSI)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>033-004-003 033-007-003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>005-027-005 007-004-007</td>
</tr>
<tr>
<td>cary4</td>
<td>notify</td>
<td>005-012-005 007-026-007   (ANSI)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>003-049-003 033-002-003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>005-008-055 007-014-007</td>
</tr>
<tr>
<td>apex3</td>
<td>discard</td>
<td>005-017-008 007-017-009   (ANSI)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>033-005-043 005-014-005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>005-017-005 007-014-007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>033-002-043 005-038-005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>007-009-027 033-003-043</td>
</tr>
<tr>
<td></td>
<td></td>
<td>005-012-005 007-002-027</td>
</tr>
<tr>
<td>apex4</td>
<td>discard</td>
<td>005-007-008 027-007-009   (ANSI)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>033-005-003 005-004-055</td>
</tr>
<tr>
<td></td>
<td></td>
<td>027-001-007 033-008-003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>033-007-003 005-003-055</td>
</tr>
<tr>
<td></td>
<td></td>
<td>027-008-007</td>
</tr>
<tr>
<td>ral5</td>
<td>notify</td>
<td>005-005-005 007-007-007   (ANSI)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>003-004-003 003-001-003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>005-007-005 007-004-007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>003-002-003 005-008-005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>007-009-007 003-003-003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>005-002-005 007-002-007</td>
</tr>
<tr>
<td>ral6</td>
<td>notify</td>
<td>005-007-008 007-007-009   (ANSI)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>003-005-003 003-007-003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>005-007-005</td>
</tr>
<tr>
<td>dunn1</td>
<td>discard</td>
<td>005-002-055 007-051-007   (ANSI)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>003-008-033</td>
</tr>
<tr>
<td>rtp9</td>
<td>discard</td>
<td>005-002-005 007-001-007   (ANSI)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>003-008-003 003-007-003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>005-003-005 007-008-007</td>
</tr>
<tr>
<td>rtp5</td>
<td>discard</td>
<td>005-007-008 007-007-009   (ANSI)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>003-005-003</td>
</tr>
<tr>
<td>rtp1</td>
<td>discard</td>
<td>005-005-005 007-007-007   (ANSI)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>003-004-003 003-007-003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>005-007-005 007-004-007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>005-004-005</td>
</tr>
<tr>
<td>rtp2</td>
<td>notify</td>
<td>005-007-008 007-007-009   (ANSI)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>003-005-003</td>
</tr>
</tbody>
</table>
If the required loopset is shown in the `rtrv-loopset` output, continue the procedure with **Step 14**.

If the required loopset is not shown in the `rtrv-loopset` output, perform the Adding a Loopset procedure to add the required loopset. After the loopset has been added, continue the procedure with **Step 14**.

14. Continue the procedure by performing one of these steps.

- If the routing indicator value will be is SSN when this procedure is finished, continue the procedure by performing one of these steps.
  - If the `xlat` parameter value will be `dpc` when this procedure is completed, continue the procedure by performing one of these steps.
    - If the point code value will not be changed and the Flexible GTT Load Sharing feature is not enabled (the MAPSET field is not shown in `rtrv-gtt`), continue the procedure with **Step 22**.
    - If the point code value will not be changed; the Flexible GTT Load Sharing feature is enabled and the MAPSET value will not be changed, continue the procedure with **Step 22**.
    - If the point code value will not be changed; the Flexible GTT Load Sharing feature is enabled and the MAPSET value will be changed, continue the procedure with **Step 20**.
    - If the point code value will be changed, continue the procedure with **Step 20**.
  - If the `xlat` parameter value will be `dpcssn` when this procedure is completed, continue the procedure by performing one of these steps.
    - If the point code, SSN, and MAPSET value (if the Flexible GTT Load Sharing feature is enabled, the MAPSET field is shown in `rtrv-gtt`) will not be changed, continue the procedure with **Step 22**.
    - If the point code will be changed, continue the procedure by performing one of these steps.
      - If the new point code value will not be the EAGLE 5 ISS’s point code, continue the procedure with **Step 20**.
      - If the new point code value will be the EAGLE 5 ISS’s point code, continue the procedure with **Step 19**.
      - If only the SSN value will be changed, continue the procedure with **Step 19**.
      - If the Flexible GTT Load Sharing feature is enabled and only the MAPSET value will be changed, continue the procedure with **Step 19**.
  - If the routing indicator value will be GT when this procedure is finished, continue the procedure by performing one of these steps.
If the Flexible GTT Load Sharing feature is not enabled; the MRNSET value will not be specified and the point code value will not be changed, continue the procedure with Step 22.

If the Flexible GTT Load Sharing feature is not enabled but the point code value will be changed, continue the procedure with Step 16.

If the Flexible GTT Load Sharing feature is enabled and the point code will be changed, whether or not the MRNSET value will be changed, continue the procedure with Step 15.

If the Flexible GTT Load Sharing feature is not enabled; the point code will not be changed, but the mrnset parameter will be specified, perform the Activating the Flexible GTT Load Sharing Feature procedure followed by the Provisioning MRN Entries procedure. When this is completed, continue the procedure with Step 22.

15. The point code and MRN set ID specified for the global title translation must be shown in the rtrv-mrn command output. The point code must be assigned to the MRN set that will be assigned to the global title translation.

Enter the rtrv-mrn command to verify that the required MRN set is configured in the database, and that the required point code is assigned to the MRN set. The following is an example of the possible output.

```
rlghncxa03w 07-02-28 21:15:37 GMT EAGLE5 37.0.0

MRNSET PC RC
DFLT 001-001-001 10
 001-001-002 20
 001-001-003 30

MRNSET PC RC
110 001-001-001 10
 001-001-005 20
 001-001-006 30
 001-001-003 40
 001-001-008 50

MRNSET PC RC
111 001-001-001 30
 001-001-005 30
 001-001-006 30
 001-001-003 30
 001-001-008 30

MRNSET PC RC
112 001-003-001 10
 001-003-002 10
 001-003-003 30
 001-003-004 30
 001-003-006 60
 001-003-007 60
 001-003-008 80
 001-003-009 80

MRNSET PCN RC
113 s-1-1-0123-aa 1
```
Note: If the Weighted GTT Load Sharing feature is enabled, the WT, %WT, and THR columns are shown in the `rtrv-mrn` output.

If the required MRN set is not shown in the `rtrv-mrn` output, or if the required point code is not assigned to the required MRN set, provision the required MRN set by performing the Provisioning MRN Entries procedure. After provisioning the required MRN set, continue the procedure with Step 22. If the required MRN set is shown in the `rtrv-mrn` output, or if the required point code is assigned to the required MRN set, continue the procedure with Step 22.

16. Display the destination point codes in the database by entering the `rtrv-dstn` command. This is an example of the possible output.

```
rlgnccaxa03w 10-12-10 11:43:04 GMT EAGLE5 43.0.0
Extended Processing Time may be Required
DPCA CLLI BEI ELEI ALIASI ALIASN/N24 DMN
001-207-000 ----------- no --- -------------- -------------- SS7
001-001-001 ----------- no --- -------------- -------------- SS7
001-001-002 ----------- no --- -------------- -------------- SS7
001-005-000 ----------- no --- -------------- -------------- SS7
001-007-000 ----------- no --- -------------- -------------- SS7
008-012-003 ----------- no --- -------------- -------------- SS7
003-002-004 ----------- no --- -------------- -------------- SS7
009-002-003 ----------- no --- -------------- -------------- SS7
010-020-005 ----------- no --- -------------- -------------- SS7
DPCI CLLI BEI ELEI ALIASA ALIASN/N24 DMN
1-207-0 ----------- no --- -------------- -------------- SS7
0-015-0 ----------- no --- -------------- -------------- SS7
0-017-0 ----------- no --- -------------- -------------- SS7
1-011-1 ----------- no --- -------------- -------------- SS7
1-011-2 ----------- no --- -------------- -------------- SS7
```

Destination table is (14 of 2000) 1% full
Alias table is (0 of 12000) 0% full
PPC table is (1 of 20) 5% full

If the required point code is not shown in the `rtrv-dstn` output, perform the "Adding a Destination Point Code" procedure in the Database Administration Manual - SS7 to add the required point code. A proxy point code cannot be assigned to the point code.

After the new point code has been added, and perform one of the Adding a Route procedures in the Database Administration Manual - SS7 and add the required route to the database. After the route has been added, continue the procedure with Step 22.

If the required point code is shown in the `rtrv-dstn` output, continue the procedure with Step 17

17. Display the point code that will be assigned to the global title translation by using the `rtrv-dstn` command and specifying the point code. For this example, enter this command.

```
rtrv-dstn:dpca=010-020-005
```

This is an example of the possible output.

```
rlgnccaxa03w 10-12-10 11:43:04 GMT EAGLE5 43.0.0
```
A proxy point code (a point code value is shown in the PPC column) cannot be assigned to the point code. If a proxy point code is shown in this step, choose another point code from the rtrv-dstn output in the previous step and repeat this step.

If a proxy point code is not shown in this step, continue the procedure with Step 18.

18. The point code specified with the chg-gtt command must be the DPC of a route, unless the point code is the EAGLE 5 ISS’s point code.

Enter the rtrv-rte command with the dpc parameter specifying the point code to be used with the chg-gtt command to verify whether or not the point code is the DPC of a route. For this example, enter these commands.

rtrv-rte:dpca=003-003-003

This is an example of the possible output.

This is an example of the possible output.

If the point code is not shown in the rtrv-rte output, perform one of the procedures in the Database Administration Manual - SS7 and add the required route to the database.

If the point code is shown in the rtrv-rte output or if the required route was added, continue the procedure with Step 22.

19. If the ri=ssn and xlat=dpcssn parameters are specified with the chg-gtt command, and you wish to use the EAGLE 5 ISS’s point code for the value of the pc parameter of the chg-gtt command, the point code value must be in the EAGLE 5 ISS’s self ID table.

Display the EAGLE 5 ISS self-identification, using the rtrv-sid command. This is an example of the possible output.

This is an example of the possible output.
Continue the procedure with **Step 22** if either of these actions will be performed.

- The current point code of the GTT entry is shown in this step and the point code and SSN values of the GTT entry are not being changed, and the GTT entry contains a MAPSET value, the point code and SSN values of the GTT entry must be in the default MAP set. The MAPSET value in the GTT entry cannot be changed.
- The current point code of the GTT entry is not shown in this step; the point code of the GTT entry is not being changed, but the SSN value of the GTT entry is being change and the GTT entry does not contain a MAPSET value.
- The current point code of the GTT entry is not shown in this step and the GTT entry contains a MAPSET value and the MAPSET value of the GTT entry will not be changed.

Continue the procedure with **Step 20** if either of these actions will be performed.

- The new point code value of the GTT entry is shown in this step.
- The current point code value of the GTT entry is shown in this step and is not being changed, but the SSN value of the GTT entry is being changed.
- The point code value of the GTT entry is not shown in this step; the SSN value of the GTT entry will be changed, and the GTT entry contains a MAPSET value.
- The point code value of the GTT entry is not shown in this step; the point code and SSN values of the GTT entry are not being changed; the GTT entry contains a MAPSET value and the MAPSET value will be changed.

**20.** Enter the `rtrv-map` command with the `pc` parameter specifying the required point code to verify that the required data is in the mated application table.

The `ssn` parameter with the new SSN value must be specified with the `rtrv-map` command if these conditions are present.

- The point code value of the GTT entry is not shown in **Step 19**; the point code and SSN values of the GTT entry are not being changed; the GTT entry contains a MAPSET value and the MAPSET value will be changed.
- The current point code value of the GTT entry is shown in **Step 19** and is not being changed, but the SSN value of the GTT entry is being changed whether of not the GTT entry contains a MAPSET value.

For this example enter this command.

```
rtrv-map: pca=002-002-003
```

If the Flexible GTT Load Sharing feature is not enabled, this is an example of the possible output.

```
righncxa03w 09-07-25 09:42:31 GMT EAGLE5 41.1.0
PCA Mate PCA SSN RC MULT SRM MRC GRP NAME SSO
```
If the Flexible GTT Load Sharing feature is enabled, this is an example of the possible output.

If the parameter values for the \texttt{ri} and \texttt{xlat} parameters will be \texttt{ri=ssn} and \texttt{xlat=dpc} when this procedure is completed, the point code value must be in the mated application table. If the point code value is not in the mated application table when the \texttt{chg-gtt} command is executed, the \texttt{force=yes} parameter must be specified with the \texttt{chg-gtt} command. However, the point code value of the GTT entry must be the DPC of a route. If the GTT entry has a MAPSET value and the MAPSET value is being changed, but the point code value of the GTT entry is not being changed, the new MAP set must contain the current point code value of the GTT entry.

- Continue the procedure with \textit{Step 16} if either of these actions will be performed.
  - The point code value of the GTT entry is being changed and the new point code value is not shown in the \texttt{rtrv-map} output.
  - The \texttt{rtrv-map} output does not contain another MAP set with the current point code value.

- Continue the procedure with \textit{Step 22} if either of these actions will be performed.
  - The point code value of the GTT entry is being changed and the new point code value is shown in the \texttt{rtrv-map} output.
  - The \texttt{rtrv-map} output does contain another MAP set with the current point code value.

If the required point code, subsystem number, or MAPSET values are not shown in the \texttt{rtrv-map} output, perform one of these procedures to add the required information to the mated application table.
Provisioning a Solitary Mated Application
Provisioning a Dominant Mated Application
Provisioning a Load Shared Mated Application
Provisioning a Combined Dominant/Load Shared Mated Application

If the point code value of the GTT entry when this procedure is finished will not be the EAGLE 5 ISS's point code, continue the procedure with Step 22.

If the point code value of the GTT entry when this procedure is finished will be the EAGLE 5 ISS's point code, continue the procedure with Step 21.

21. Enter the `rtrv-ss-appl` command to verify that either the LNP, EIR, INP, V-Flex, ATINPQ, or AIQ subsystem number (depending on which feature is on) is the subsystem application table.

This is an example of the possible output.

```
rlgnccxao3w 08-09-28 14:42:38 GMT EAGLE5 39.2.0
APPL SSN STAT
LNP 254 ONLINE
SS-APPL table is 20% FULL (1 of 5)
```

If the subsystem number is shown in the `rtrv-ss-appl` output, continue the procedure with Step 22.

If no subsystem number is shown in the `rtrv-ss-appl` output, or if the `rtrv-ss-appl` command is rejected, go to one of these manuals, depending on the type of subsystem you wish to use, and enable the feature if necessary, and add the subsystem to the subsystem application table.

- EIR subsystem – go to the Feature Manual - EIR.
- INP subsystem – go to the Feature Manual - INP/AINPQ.
- LNP subsystem – go to the ELAP Administration and LNP Feature Activation manual.
- V-Flex subsystem – go to the Feature Manual - V-Flex.
- ATINPQ subsystem – go to the Feature Manual - ATINP.
- AIQ subsystem – go to the Feature Manual - Analyzed Information Features.

Note: If the Flexible GTT Load Sharing feature is enabled, a MAP set ID must be specified for the final global title translation. The point code and SSN specified for the final global title translation being changed in this procedure must be assigned to the MAP set ID that will be assigned to the final global title translation. Perform Step 20 to verify that the required MAP set is configured in the database.

Note: If the Flexible GTT Load Sharing feature is not enabled, and the `ri` parameter value will be `ssn`, the `xlat` parameter value will be `dpcssn`, the point code value will not be the EAGLE 5 ISS's point code, and the SSN parameter value will not be the EAGLE 5 ISS's subsystem number when this procedure is completed, continue the procedure with Step 22.

22. Change the global title translation using the `chg-gtt` command using the parameter combinations shown in Table 76: Change GTT Parameter Combinations.

For this example, enter this command.

```
```
Table 76: Change GTT Parameter Combinations

<table>
<thead>
<tr>
<th>RI = GT</th>
<th>RI = GT</th>
<th>RI = GT</th>
<th>RI = SSN</th>
<th>RI = SSN</th>
</tr>
</thead>
<tbody>
<tr>
<td>XLAT= DPCNGT</td>
<td>XLAT= DPCSSN</td>
<td>XLAT= DPC</td>
<td>XLAT= DPCSSN</td>
<td>XLAT= DPC</td>
</tr>
</tbody>
</table>

**Mandatory Parameters**

<table>
<thead>
<tr>
<th>TYPE/TYPEA/TYPEI/TYPEI</th>
<th>TYPE/TYPEA/TYPEI/TYPEI</th>
<th>TYPE/TYPEA/TYPEI/TYPEI</th>
<th>TYPE/TYPEA/TYPEI/TYPEI</th>
</tr>
</thead>
<tbody>
<tr>
<td>TYPEI/TYPEPEN</td>
<td>TYPEI/TYPEPEN</td>
<td>TYPEI/TYPEPEN</td>
<td>TYPEI/TYPEPEN</td>
</tr>
<tr>
<td>TYPEI/TYPEPENS</td>
<td>TYPEI/TYPEPENS</td>
<td>TYPEI/TYPEPENS</td>
<td>TYPEI/TYPEPENS</td>
</tr>
<tr>
<td>TYPEN24 (See Notes 2 and 3)</td>
</tr>
<tr>
<td>GTA (See Notes 10, 12, and 14)</td>
</tr>
</tbody>
</table>

**Optional Parameters** (See Notes 19 and 20)

<table>
<thead>
<tr>
<th>PC/PCA/PC/PCN/PCN24 (See Notes 1, 3, and 6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TTN (See Notes 12, 13, and 14)</td>
</tr>
<tr>
<td>EGTA (See Notes 10, 15, and 18)</td>
</tr>
<tr>
<td>GTMODID (See Note 5)</td>
<td>GTMODID (See Note 5)</td>
<td>GTMODID (See Note 5)</td>
<td>GTMODID (See Note 5)</td>
</tr>
<tr>
<td>MRNSET (See Notes 7 and 16)</td>
<td>MRNSET (See Notes 7 and 16)</td>
<td>MRNSET (See Notes 7 and 16)</td>
<td>MAPSET (See Notes 7 and 16)</td>
</tr>
<tr>
<td>SPLIT (See Note 18)</td>
<td>SPLIT (See Note 18)</td>
<td>SPLIT (See Note 18)</td>
<td>SPLIT (See Note 18)</td>
</tr>
<tr>
<td>LOOPSET (See Note 11)</td>
<td>LOOPSET (See Note 11)</td>
<td>LOOPSET (See Note 11)</td>
<td>LOOPSET (See Note 11)</td>
</tr>
<tr>
<td>CGGTMOD (See Note 4)</td>
<td>CGGTMOD (See Note 4)</td>
<td>CGGTMOD (See Note 4)</td>
<td>CGGTMOD (See Note 4)</td>
</tr>
</tbody>
</table>

**Parameter Values:**

- SSN
- FORCE (See Note 8)
RI = GT
XLAT= DPCNGT

RI = GT
XLAT= DPCSSN

RI = GT
XLAT= DPC

RI = SSN
XLAT= DPCSSN

RI = SSN
XLAT= DPC

TYPE/TYPEA/TYPEI/TYPES/TYPEN/TYPENS/TYPEN24 – The translation type from the
TYPE/TYPEA/TYPEI/TYPES/TYPEN/TYPENS/TYPEN24 column of the rtrv-tt output –
See Note 2

TTN – The translation type name from the TTN column of the rtrv-tt output.

GTA – 1 - 21 digits or 1 - 21 hexadecimal digits

PC/PCA/PCI/PCN/PCN24 – See Note 1

SSN – 0 - 255

EGTA – 1 - 21 digits or 1 - 21 hexadecimal digits. Default = same as the GTA value

FORCE – yes, no. Default = no

LOOPSET – Loopset name from the rtrv-loopset output

SPLIT - yes, no. Default = yes

MRNSET – MRN set ID from the rtrv-mrn output

MAPSET – MAP set ID from the rtrv-map output

CGGTMOD – yes, no. Default = no

GTMODID – GT modification identifier from the rtrv-gtmod output

Notes:

1. The pc/pca/pci/pcn/pcn24 parameters are used to assign either ANSI, ITU-I, ITU-I spare,
   14-bit ITU-N, 14-bit ITU-N spare, or 24-bit ITU-N point codes to the global title translation
   (GTT).
   - pc/pca = ANSI point code
   - pci = ITU-I or ITU-I spare point code
   - pcn = 14-bit ITU-N or 14-bit ITU-N spare point code
   - pcn24 = 24-bit ITU-N point code.

2. The type/typea/typei/typen/typens/typen24 parameters specify the
   translation type and the network type of the translation type.
   - type/typea = ANSI translation type
   - typei = ITU-I translation type
   - typen = ITU-N translation type
   - typeis = ITU-I spare translation type
   - typens = ITU-N spare translation type
   - typen24 = ITU-N24 translation type

3. The domain (ANSI or ITU) of the point code and translation type must be the same, unless
   the ANSI/ITU SCCP Conversion feature is enabled. If the ANSI/ITU SCCP Conversion feature
   is enabled, a GTT may contain an ANSI point code and an ITU translation type, or an ITU
   point code and an ANSI translation type. Whether the ANSI/ITU SCCP Conversion feature
is enabled or not, the translation type parameters typei, typeis, typen, typens, or typen24 can be specified with either the pci, pcn, or pcn24 parameters.

4. The cggtmod=yes parameter can be specified only if the AMGTT or AMGTT CgPA Upgrade feature is enabled.

5. A GT modification identifier entry can contain the ngti=4 parameter value only if the point code value in the GTT entry is an ITU point code.

6. If the point code is the EAGLE 5 ISS’s point code, then the xlat parameter value must be dpcssn and the ri parameter value must be ssn.

7. The mrnset parameter can be specified only, and must be specified, if the Flexible GTT Load Sharing feature is enabled.

8. If the pc/pca/pci/pcn/pcn24 parameter value is not shown in the rtrv-map output, the force=yes parameter must be specified with the ent-gtt command.

9. The mapset parameter can be specified only, and must be specified, if the Flexible GTT Load Sharing feature is enabled.

10. Hexadecimal digits (0-9, a-f, A-F) can be specified for the gta or egta parameters only if the Hex Digit support for GTT feature is enabled.

11. The loopset parameter can be specified only if the SCCP Loop Detection feature is enabled.

12. Either the type parameter or the ttn parameter must be specified.

13. If the type parameter is not specified, the translation type name must be assigned to a translation type in the database. This can be verified with the rtrv-tt command.

14. If the type and ttn parameters are specified, the specified translation type must be in the database and the specified translation type name must be assigned to the translation type.

15. The end global title address (egta) must be greater than or equal to the start global title address (gta) and its length must be equal to the start global title address.

16. Specifying the mrnset=none parameter removes the MRN set ID assignment from the global title translation.

17. Specifying the mapset=none parameter removes the MAP set ID assignment from the global title translation.

18. The range of global title addresses assigned to a global title translation can be extended, reduced, or split to create a new range of global title addresses. Refer to the split parameter description section in this procedure for information on changing the range of global title addresses.

19. Unless a default value is shown in this table, the value of any optional parameter that is not specified in this procedure is not changed.

20. At least one optional parameter must be specified.

23. Verify the changes using the rtrv-gtt command specifying the translation type, translation type name, or both used in Step 22. If the num parameter is specified with the rtrv-gtt command, and the value of the num parameter is greater than 1000, the force=yes parameter must be specified with the rtrv-gtt command.

For this example, enter this command.

rtrv-gtt:typea=15:gta=800
Backup the new changes using the `chg-db:action=backup:dest=fixed` command. These messages should appear, the active Maintenance and Administration Subsystem Processor (MASP) appears first.

```
BACKUP (FIXED) : MASP A - Backup starts on active MASP.
BACKUP (FIXED) : MASP A - Backup on active MASP to fixed disk complete.
BACKUP (FIXED) : MASP A - Backup starts on standby MASP.
BACKUP (FIXED) : MASP A - Backup on standby MASP to fixed disk complete.
```
Chapter 4

Enhanced Global Title Translation (EGTT) Configuration

Topics:

• Introduction.....519
• Adding a GTT Set.....520
• Removing a GTT Set.....528
• Changing a GTT Set.....534
• Adding a GTT Selector.....539
• Removing a GTT Selector.....558
• Changing a GTT Selector.....563
• Adding Global Title Address Information.....573
• Removing Global Title Address Information.....613
• Changing Global Title Address Information.....622
• Changing the Default GTT Mode Options.....663
• Adding a GTT Action.....667
• Removing a GTT Action Entry.....682
• Changing a GTT Action.....686
• Adding a GTT Action Set.....699
• Removing a GTT Action Set.....702
• Changing a GTT Action Set.....705
• Adding a GTT Action Path Entry.....708
• Removing a GTT Action Path Entry.....714
• Changing a GTT Action Path Entry.....715
• Changing the Unique GTT Selector Option.....720

Chapter 4, Enhanced Global Title Translation (EGTT) Configuration, contains the procedures specific to configure the enhanced global title translation feature.
Introduction

This chapter describes the procedures needed to add, remove, or change enhanced global title translation (EGTT) data in the database.

The items configured in this section are:

- GTT selectors
- GTT sets
- Global title addresses.
- GTT action sets
- GTT action per-path measurements

The following items must also be configured for the Enhanced Global Title Translation feature. The procedures to configure these items are located in the Global Title Translation (GTT) Overview section.

- Service modules
- Translation type mapping
- Concerned signaling point codes
- Mate applications
- Mated relay node groups
- GT Conversion Table Entries for the ANSI/ITU SCCP Conversion feature.
- Loopsets for the SCCP Loop Detection feature.
- GT modification identifiers for the Advanced GT Modification feature.

The procedures shown in this chapter use a variety of commands. For more information on these commands, refer to the Commands Manual.

Notes:

1. Before turning the Enhanced Global Title Translation (EGTT) feature on with the `chg-feat:egtt=on` command, make sure you have purchased this feature. If you are not sure whether you have purchased the EGTT feature, contact your Tekelec Sales Representative or Account Representative.

2. The GTT feature has to be turned on (`chg-feat:gtt=on` command) but not configured before the Enhanced Global Title Translation (EGTT) feature is enabled. If the GTT feature has been configured previously, enabling the EGTT feature will upgrade the GTT database. For more information on the upgrade process, refer to the Upgrading from Global Title Translation (GTT) to Enhanced Global Title Translation (EGTT) section.

3. The translation type (`ent-/dlt-/rtrv-tt`) and the GTT (`ent-/dlt-/chg-/rtrv-gtt`) commands can be executed when the EGTT feature is turned on, but will only produce CDGTA GTT sets and CDGTA GTT selectors. For more details on using these commands while the EGTT feature is turned on, refer to the Global Title Translation (GTT) Configuration section.
Adding a GTT Set

Use this procedure to add a global title translation (GTT) set to the database using the ent-gttset command. Subsequent global title selector (gttsel) or global title address (gta) commands may then be entered.

The ent-gttset command uses these parameters.

:gttsn – The GTT set name consisting of one alphabetic character and up to eight alphanumeric characters.

:netdom – The network domain of the global title translation set, either ANSI, ITU, or CROSS. The network domain CROSS can be specified only if the ANSI/ITU SCCP Conversion feature, part number 893012001, is enabled. The CROSS GTT set can be assigned to either an ANSI or ITU GTT selector.

Note: The ITU domain does not distinguish between ITU-N (either ITU-N or ITU-N24) and ITU-I since the Enhanced Global Title Translation (EGTT) database does not yet distinguish ITU-National and ITU-International translations.

:ndgt – The number of digits contained in the global title translation.

:settype – The type of GTT set being added in this procedure shown in Table 77: GTT Set Types.

Table 77: GTT Set Types

<table>
<thead>
<tr>
<th>SETTYPE Value</th>
<th>Feature Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>CDGTA, CGGTA, CGPC, CGSSN, or OPC</td>
<td>The Origin-Based SCCP Routing feature must be enabled.</td>
</tr>
<tr>
<td>CDSSN or DPC</td>
<td>The Flexible Linkset Optional Based Routing feature must be enabled and turned on.</td>
</tr>
<tr>
<td>OPCODE</td>
<td>The TCAP Opcode Based Routing feature must be enabled and turned on.</td>
</tr>
</tbody>
</table>

The Global Title Translation (GTT) and the Enhanced Global Title Translation (EGTT) features must be on before using this command. Use the rtrv-feat command to verify the settings. If the features are off, perform the Adding a Service Module procedure to turn these features on and to make sure that the correct hardware is installed to support these features.

Note: Once the Global Title Translation (GTT) feature and the Enhanced Global Title Translation (EGTT) feature are turned on with the chg-feat command, they cannot be turned off.

The GTT feature and the EGTT feature must be purchased before you turn these features on. If you are not sure whether you have purchased the GTT feature and/or the EGTT feature, contact your Tekelec Sales Representative or Account Representative.

The GTT set name (gttsn) may not already exist and must be specified with the domain. The GTT set table may not have more than 2000 entries.

If the Variable-length Global Title Translation Feature (VGTT) is on, shown by the entry VGTT = on in the rtrv-feat command output, or the Support for 16 GTT Lengths in VGTT feature is enabled and turned on, the ndgt parameter cannot be specified with the ent-gttset command. If the VGTT feature is on, a GTT set can contain a maximum of 10 different length global title addresses. If the
Support for 16 GTT Lengths in VGTT feature is enabled and turned on, a GTT set can contain a maximum of 16 different length global title addresses. The length of the global title address is determined when the global title address is entered with the `ent-gta` command. For more information on the VGTT feature and the length of global title addresses, refer to the Variable-length Global Title Translation Feature section and the Adding Global Title Address Information procedure.

The VGTT functionality is supported only for CDPA GTT sets (`settype=cdgta`) and CGPA GTT sets (`settype=cggta`).

**Table 78: GTT Set Parameter Combinations - Only the EGTT feature is on**

<table>
<thead>
<tr>
<th>SCCP Conversion Not Enabled</th>
<th>SCCP Conversion Not Enabled</th>
<th>SCCP Conversion Enabled</th>
<th>SCCP Conversion Enabled</th>
</tr>
</thead>
<tbody>
<tr>
<td>VGTT=off</td>
<td>VGTT=on or Support for 16 GTT Lengths for VGTT is Enabled and Turned On</td>
<td>VGTT=off</td>
<td>VGTT=on or Support for 16 GTT Lengths for VGTT is Enabled and Turned On</td>
</tr>
</tbody>
</table>

**Mandatory Parameters**

<table>
<thead>
<tr>
<th>GTTSN</th>
<th>GTTSN</th>
<th>GTTSN</th>
<th>GTTSN</th>
</tr>
</thead>
<tbody>
<tr>
<td>NETDOM = ANSI, ITU</td>
<td>NETDOM = ANSI, ITU</td>
<td>NETDOM = CROSS, ANSI, ITU</td>
<td>NETDOM = CROSS, ANSI, ITU</td>
</tr>
</tbody>
</table>

**Optional Parameter**

<table>
<thead>
<tr>
<th>NDGT</th>
<th>NDGT</th>
</tr>
</thead>
</table>

**Notes:**

SCCP Conversion refers to the ANSI/ITU SCCP Conversion feature - part number 893012001
VGTT refers to the Variable Global Title Translation feature

**Parameter Values:**

GTTSN = the GTT Set Name consisting of 1 to 9 alpha-numeric characters - the first character must be a letter, the remaining characters must be letters or numbers. The `gttsn` value cannot be the word `none`.

NDGT = the number of digits in the global title address - 1 to 21. The default value is 6.
Table 79: GTT Set Parameter Combinations - The OBSR Feature is Enabled, the FLOBR or the TOBR Features are Enabled or Turned On

<table>
<thead>
<tr>
<th>SCCP Conversion Not Enabled</th>
<th>SCCP Conversion Not Enabled</th>
<th>SCCP Conversion Enabled</th>
<th>SCCP Conversion Enabled</th>
</tr>
</thead>
<tbody>
<tr>
<td>VGTT=on or Support for 16 GTT Lengths for VGTT is Enabled and Turned On (See Note 3)</td>
<td>VGTT=off</td>
<td>VGTT=off</td>
<td>16 GTT Lengths for VGTT is Enabled and Turned On (See Note 3)</td>
</tr>
</tbody>
</table>

### Mandatory Parameters

<table>
<thead>
<tr>
<th>GTTSN</th>
<th>GTTSN</th>
<th>GTTSN</th>
<th>GTTSN</th>
</tr>
</thead>
<tbody>
<tr>
<td>NETDOM = ANSI, ITU</td>
<td>NETDOM = ANSI, ITU</td>
<td>NETDOM = CROSS, ANSI, ITU (See Note 2)</td>
<td>NETDOM = CROSS, ANSI, ITU (See Note 2)</td>
</tr>
<tr>
<td>SETTYPE - the GTT set type shown in Table 77: GTT Set Types (See Note 4)</td>
<td>SETTYPE - the GTT set type shown in Table 77: GTT Set Types (See Note 4)</td>
<td>SETTYPE - the GTT set type shown in Table 77: GTT Set Types (See Note 4)</td>
<td>SETTYPE - the GTT set type shown in Table 77: GTT Set Types (See Note 4)</td>
</tr>
</tbody>
</table>

### Optional Parameter

<table>
<thead>
<tr>
<th>NDGT (See Note 1)</th>
<th>NDGT (See Note 1)</th>
</tr>
</thead>
</table>

Notes:

OBSR refers to the Origin-Based SCCP Routing feature
FLOBR refers to the Flexible Linkset Optional Based Routing feature
TOBR refers to the TCAP Opcode Based Routing feature
SCCP Conversion refers to the ANSI/ITU SCCP Conversion feature - part number 893012001
VGTT refers to the Variable ANSI/ITU SCCP Conversion feature

Parameter Values:

GTTSN = the GTT Set Name consisting of 1 to 9 alpha-numeric characters - the first character must be a letter, the remaining characters must be letters or numbers. The value cannot be the word none.

NDGT = the number of digits in the global title address - 1 to 21.

1. The NDGT parameter can be specified only if the SETTYPE parameter value is either CDGTA or CGGTA. The default value is 6.

2. The NETDOM=CROSS parameter can be specified only if the SETTYPE parameter is CDGTA, and only if the ANSI/ITU SCCP Conversion feature is enabled.
SCCP Conversion Not Enabled
VGTT=off

SCCP Conversion Not Enabled
VGTT=on or Support for 16 GTT Lengths for VGTT is Enabled and Turned On (See Note 3)

SCCP Conversion Enabled
VGTT=off

SCCP Conversion Enabled
VGTT=on or Support for 16 GTT Lengths for VGTT is Enabled and Turned On (See Note 3)

3. VGTT functionality is supported only if the SETTYPE parameter value is either CDGTA or CGGTA.

4. If the GTT set name will be specified as the value for the BPARTYGTTSN parameter of either the chg-gsmsmsopts or chg-is41smsopts commands, the settype parameter value for this GTT set name must be cdgta.

1. Display the GTT sets in the database by entering the rtrv-gttset command. This is an example of the possible output.

```
rlghncxa03w 09-07-07 00:29:31 GMT EAGLE5 41.1.0

GTTSN NETDOM SETTYPE NDGT
cdgtt1 ansi CDGTA 6
opcde1 ansi OPCODE -
opcode2 ansi OPCODE -
opcode3 ansi OPCODE -
cdssn1 ansi CDSSN -
cggt1 ansi CGGTA 0
cdgtt2 itu CDGTA 0
cgpc1 ansi CGPC -
cgpc2 ansi CGSSN -
cgssn2 ansi CGSSN -
opc2 ansi OPC -
opcode6 itu OPCODE -
opcode7 itu OPCODE -
cdssn6 itu CDSSN -
cdssn7 itu CDSSN -

GTT-SET table is (15 of 2000) 1% full.
```

If GTT sets are shown in this step, or error message “E3557 Cmd Rej: EGTT must be ON before this command can be entered” is not displayed, continue the procedure with Step 2.

If error message is displayed, “E3557 Cmd Rej: EGTT must be ON before this command can be entered,” the EGTT feature is not on. Perform the Adding a Service Module procedure to turn the EGTT feature on and to make sure that the correct hardware is installed and provisioned. After the Adding a Service Module procedure has been performed, continue the procedure with Step 2.

2. To specify any of these parameters or values for the GTT set, the feature that corresponds to the parameter or value must be shown as enabled, and turned on if required, in the rtrv-ctrl-feat output.

Perform the procedure, shown in this list, that corresponds to the parameters and values that you wish to specify for the GTT set.

* settype - one of these features shown in Table 80: SETTYPE Feature Requirements must be enabled, and turned on if necessary. If the SETTYPE column is not shown in the rtrv-gttset output and you wish to use the settype parameter, one of the features shown in Table 80: SETTYPE Feature Requirements must be enabled and turned on, if necessary. If the settype
Table 80: SETTYPE Feature Requirements

<table>
<thead>
<tr>
<th>SETTYPE Value</th>
<th>Feature Requirements</th>
<th>Procedure to Verify the Feature’s Status and to Enable, and Turn On the Feature</th>
</tr>
</thead>
<tbody>
<tr>
<td>CDGTA, CGGTA, CDSSN, CGPC, or OPC</td>
<td>Origin-Based SCCP Routing feature must be enabled.</td>
<td>Activating the Origin-Based SCCP Routing Feature – See the Note.</td>
</tr>
<tr>
<td>CDSSN or DPC</td>
<td>The Flexible Linkset Optional Based Routing feature must be enabled and turned on.</td>
<td>Activating the Flexible Linkset Optional Based Routing Feature – See the Note.</td>
</tr>
<tr>
<td>OPCODE</td>
<td>TCAP Opcode Based Routing feature must be enabled and turned on.</td>
<td>Activating the TCAP Opcode Based Routing Feature – See the Note.</td>
</tr>
</tbody>
</table>

Note: If the desired SETTYPE value is shown in the `rtrv-gttset` output for any GTT set, the required feature is enabled, and turned on if required. The procedure for activating the feature does not need to be performed.

- `netdom=cross` - the ANSI/ITU ANSI/ITU SCCP Conversion feature must be enabled. Perform the Activating the ANSI/ITU SCCP Conversion Feature procedure to verify the status of the ANSI/ITU SCCP Conversion feature and to enable the ANSI/ITU SCCP Conversion feature if necessary. If the `CROSS` value is shown in the `NETDOM` column of the `rtrv-gttset` output for any GTT set, the Activating the ANSI/ITU SCCP Conversion Feature procedure does not need to be performed.
- The Support for 16 GTT Lengths in VGTT feature must be enabled and turned on, if the GTT set will contain 11 to 16 different GTA lengths. Perform the Activating the Support for 16 GTT Lengths in VGTT Feature procedure to verify the status of the Support for 16 GTT Lengths in VGTT feature and to enable and turn on the Support for 16 GTT Lengths in VGTT feature if necessary. If GTT sets containing 11 to 16 different GTA lengths are shown in the `rtrv-gttset`, the Activating the Support for 16 GTT Lengths in VGTT Feature procedure does not need to be performed.

Continue the procedure by performing one of these steps.

- If the Support for 16 GTT Lengths in VGTT feature is enabled and turned on or the Activating the Support for 16 GTT Lengths in VGTT Feature procedure was performed in this step, continue the procedure with Step 5.
- If the Support for 16 GTT Lengths in VGTT feature is not enabled or turned on and the Activating the Support for 16 GTT Lengths in VGTT Feature procedure was not performed in this step, continue the procedure by performing one of these steps.
- If the GTT set will contain two to 10 different GTA lengths, the VGTT feature must be turned on. If GTA sets containing two to 10 different GTA lengths are shown in the `rtrv-gttset` output, the VGTT feature is turned on. Continue the procedure with Step 5.
• If the GTT set will contain two to 10 different GTA lengths, and no GTT sets are shown in the `rtrv-gttset` output that contain two to 10 different GTA lengths, continue the procedure with Step 3.
• If the GTT set will contain GTAs that have only one length, continue the procedure with Step 5.

3. Verify that the VGTT feature is on by entering the `rtrv-feat` command. If the VGTT feature is on, the `VGTT` field should be set to `on`.

   **Note:** The `rtrv-feat` command output contains other fields that are not used by this procedure. If you wish to see all the fields displayed by the `rtrv-feat` command, see the `rtrv-feat` command description in the *Commands Manual*.

   Continue the procedure by performing one of these steps.
   • If the VGTT feature is on, continue the procedure with Step 5.
   • If the VGTT feature is off, continue the procedure with Step 4.

4. Turn the VGTT feature on by entering this command.

   `chg-feat:vgtt=on`

   **Note:** Once the Variable-length Global Title Translation (VGTT) feature is turned on with the `chg-feat` command, it cannot be turned off.

   The VGTT feature must be purchased before you turn this feature on. If you are not sure whether you have purchased the VGTT feature, contact your Tekelec Sales Representative or Account Representative.

   When the `chg-feat` command has successfully completed, this message should appear.

   ```
 rlghncxa03w 09-05-07 00:28:31 GMT EAGLE5 41.0.0
 CHG-FEAT: MASP A - COMPLTD
   ```

5. Add the GTT sets to the database using the `ent-gttset` command.

   *Table 78: GTT Set Parameter Combinations - Only the EGTT feature is on* and *Table 79: GTT Set Parameter Combinations - The OBSR Feature is Enabled, the FLOBR or the TOBR Features are Enabled or Turned On* shows the parameter combinations that can be used with the `ent-gttset` command.

   If only the EGTT feature is on for this example, enter these commands.

   ```
 ent-gttset:gttsn=lidb:ndgt=10:netdom=ansi
 ent-gttset:gttsn=t800:netdom=ansi:ndgt=6
 ent-gttset:gttsn=si000:netdom=itu:ndgt=15
   ```

   If the Origin-Based SCCP routing feature is enabled for this example, enter these commands.

   ```
 ent-gttset:gttsn=cdgta1:ndgt=10:netdom=ansi:settype=cdgta
 ent-gttset:gttsn=cggta1:netdom=ansi:ndgt=6:settype=cggta
 ent-gttset:gttsn=cgpc1:netdom=itu:settype=cgpc
   ```

   If the Flexible Linkset Optional Based Routing Feature feature is enabled and turned on for this example, enter these commands.

   ```
 ent-gttset:gttsn=cdssn1:netdom=ansi:settype=cdssn
   ```
ent-gttset:gttsn=dpc1:netdom=itu:settype=dpc

If the TCAP Opcode Based Routing feature is enabled and turned on for this example, enter these commands.
ent-gttset:gttsn=opcode1:netdom=ansi:settype=opcode
ent-gttset:gttsn=opcode2:netdom=itu:settype=opcode

When each of these commands have successfully completed, this message should appear.

rlghncxa03w 09-07-07 00:29:31 GMT EAGLE5 41.1.0
GTT-SET table is (24 of 2000) 1% full.
ENT-GTTSET: MASP A - COMPLTD

6. Verify the changes using the rtrv-gttset command with the gttsn parameter and value specified in Step 5.

For this example, enter these commands.

1. rtrv-gttset:gttsn=lidb

rlghncxa03w 09-07-07 00:30:31 GMT EAGLE5 41.1.0
GTTSN NETDOM NDGT
lidb ansi 10
GTT-SET table is (25 of 2000) 1% full.

2. rtrv-gttset:gttsn=t800

rlghncxa03w 09-07-07 00:30:31 GMT EAGLE5 41.1.0
GTTSN NETDOM NDGT
t800 ansi 6
GTT-SET table is (25 of 2000) 1% full.

3. rtrv-gttset:gttsn=si000

rlghncxa03w 09-07-07 00:30:31 GMT EAGLE5 41.1.0
GTTSN NETDOM NDGT
si000 itu 15
GTT-SET table is (25 of 2000) 1% full.

4. rtrv-gttset:gttsn=cdgta1

rlghncxa03w 09-07-07 00:30:31 GMT EAGLE5 41.1.0
GTTSN NETDOM SETTYPE NDGT
cdgta1 ansi CDGTA 10
GTT-SET table is (25 of 2000) 1% full.

5. rtrv-gttset:gttsn=cggta1

rlghncxa03w 09-07-07 00:30:31 GMT EAGLE5 41.1.0
Examples 1 through 3 are GTT sets that are provisioned when only the EGTT feature is on.
Examples 4 through 6 are GTT sets that are provisioned when the Origin-Based SCCP Routing feature is enabled.
Examples 7 and 8 are GTT sets that are provisioned when the Flexible Linkset Optional Based Routing feature is enabled and turned on.
Examples 9 and 10 are GTT sets that are provisioned when the TCAP Opcode Based Routing feature is enabled and turned on.
7. Backup the new changes using the chg-db:action=backup:dest=fixed command. These messages should appear, the active Maintenance and Administration Subsystem Processor (MASP) appears first.

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BACKUP (FIXED)</td>
<td>MASP A - Backup starts on active MASP.</td>
</tr>
<tr>
<td>BACKUP (FIXED)</td>
<td>MASP A - Backup on active MASP to fixed disk complete.</td>
</tr>
<tr>
<td>BACKUP (FIXED)</td>
<td>MASP A - Backup starts on standby MASP.</td>
</tr>
<tr>
<td>BACKUP (FIXED)</td>
<td>MASP A - Backup on standby MASP to fixed disk complete.</td>
</tr>
</tbody>
</table>

Removing a GTT Set

Use this procedure to remove a GTT Set from the database using the dlt-gttset command.

The dlt-gttset command uses this parameter.

:gttsn – The GTT set name.

The GTT set name (gttsn) must be specified and match an existing GTT set. Use the rtrv-gttset command to view the GTT set names.

The GTT set name cannot be removed from the database if the name is referenced by any of these entities.

- GTT Selectors - Use the rtrv-gttsel:gttsn=<GTT set name> command to view the GTT selectors using the specified GTT set name. If any GTT selectors are assigned to this GTT set name, perform the procedure Removing a GTT Selector to remove the selector from the database.
- GTA entries - Use the rtrv-gta:gttsn=<GTT set name> command to view the global title address information using the specified GTT set name. If any GTAs are assigned to this GTT set name, perform the procedure Removing Global Title Address Information to remove the global title address information from the database.
- The GTT set name cannot be shown in the rtrv-gsmsmsopts or rtrv-is41smssopts output as the BPARTYGTTSN value. Perform the procedure Configuring the GSM MO SMS B-Party Routing Options or the procedure Configuring the IS-41 MO SMS B-Party Routing Options to remove the GTT set name as the BPARTYGTTSN value.
- The GTT set name cannot be shown in the rtrv-gsmsmsopt output as the IS41SMSCGTTSN value. Perform the procedures in the Feature Manual - IS41 GSM Migration to remove the GTT set name as the IS41SMSCGTTSN value.

The examples in this procedure are used to remove the GTT set name t800 from the database.

1. Display the existing GTT sets in the database by entering this command.

```
rtrv-gttset:refcnt=yes
```

This is an example of the possible output.

<table>
<thead>
<tr>
<th>GTTSN</th>
<th>NETDOM</th>
<th>SETTYPE</th>
<th>REFCNT</th>
<th>NDGT</th>
</tr>
</thead>
<tbody>
<tr>
<td>abcd1234</td>
<td>itu</td>
<td>CDGTA</td>
<td>3</td>
<td>12</td>
</tr>
<tr>
<td>dpc1</td>
<td>itu</td>
<td>DPC</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>gttset1</td>
<td>ansi</td>
<td>CDGTA</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>gttset2</td>
<td>ansi</td>
<td>CGGTA</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>gttset3</td>
<td>ansi</td>
<td>OPC</td>
<td>0</td>
<td>-</td>
</tr>
</tbody>
</table>
The SETTYPE column is not shown in the *rtrv-gttset* output if the Origin-Based SCCP Routing feature is not enabled or the Flexible Linkset Optional Based Routing or TCAP Opcode Based Routing features are not enabled or turned on.

If the Origin-Based SCCP Routing feature is not enabled, the values *CGGTA*, *CGPC*, *CGSSN*, and *OPC* are not shown in the *rtrv-gttset* output.

If the Flexible Linkset Optional Based Routing feature is not enabled and turned on, the values *CDSSN* or *DPC* are not shown in the *rtrv-gttset* output.

If the TCAP Opcode Based Routing feature is not enabled, the value *OPCODE* is not shown in the *rtrv-gttset* output.

If the reference count of the GTT set that is being removed is 0 (zero), continue the procedure with Step 7. The reference count of the GTT set shows the number of database entities that reference the GTT set. The reference count value is shown in the *REFCNT* column of the *rtrv-gttset* output.

If the reference count of the GTT set that is being removed is greater than 0 (zero), continue the procedure with Step 2.

2. Verify that no global title address information references the GTT set name being removed from the database. Use the *rtrv-gta* command with the *gttsn* parameter specifying the GTT set name being removed from the database. If the *num* parameter is specified with the *rtrv-gta* command, and the value of the *num* parameter is greater than 1000, the *force=yes* parameter must be specified with the *rtrv-gta* command. For this example, enter this command.

```
rtrv-gta:gttsn=t800
```

This is an example of the possible output.

```
righncxa03w 10-07-07 00:28:31 GMT EAGLE5 42.0.0
GTTSN NETDOM SETTYPE NDGT
t800 ansi CDGTA 10
GTA TABLE IS 1 % FULL (17 of 269999)
START GTA END GTA XLAT RI PC
8005552000 8005553999 dpc gt 001-254-255
SSN=0 CCGT=no CGGTMOD=NO
GTMODID=-------- TESTMODE=off
OFTSN=-------- CGSELID=---- OPCSN=--------
ACTSN=-------- PPMMEASREQD= NO
8005554000 8005555999 dpcngt gt 001-254-255
SSN=--- CCGT=no CGGTMOD=NO
GTMODID=-------- TESTMODE=off
OFTSN=-------- CGSELID=---- OPCSN=gttset3
```

Enhanced Global Title Translation (EGTT) Configuration

Database Administration Manual - Global Title Translation

910-6277-001 Revision A, January 2012 529
If no global title address entries are shown in the `rtrv-gta` output, continue the procedure with *Step 3*.

If global title address entries are shown in the `rtrv-gta` output, perform *Removing Global Title Address Information* to remove any global title address entries that are shown in the `rtrv-gta` command output. Continue the procedure by performing one of these steps.

- If all the references to the GTT set have been removed, continue the procedure with *Step 7*.
- If all the references to the GTT set have not been removed, continue the procedure with *Step 3*.

3. Display the features that are enabled by entering the `rtrv-ctrl-feat` command.

The following is an example of the possible output.

```
rlghncxa03w 10-07-28 21:15:37 GMT EAGLE5 42.0.0
The following features have been permanently enabled:

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Partnum</th>
<th>Status</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Command Class Management</td>
<td>893005801</td>
<td>on</td>
<td>----</td>
</tr>
</tbody>
</table>
```

910-6277-001 Revision A, January 2012 530
4. Display the GTT selectors in the database by entering the `rtrv-gttsel` command with the GTTSN value of the GTT set that is being removed.

To specify of the GTTSN value of the GTT set, the parameters shown in Table 81: RTRV-GTTSSEL Parameters must be specified with the `rtrv-gttsel` command. The parameters that can be specified are dependent on the features that are enabled, shown in Step 3.

**Table 81: RTRV-GTTSSEL Parameters**

<table>
<thead>
<tr>
<th>Feature that is Enabled</th>
<th>Parameter that must be Specified for the TTN Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neither the Origin Based SCCP Routing nor the Flexible Linkset Optional Based Routing, shown as Flex Lset Optnl Based Rtg in the rtrv-ctrl-feat output, is enabled.</td>
<td><code>gttsn</code></td>
</tr>
<tr>
<td>Origin Based SCCP Routing</td>
<td><code>cdgtasn, cggtasn</code></td>
</tr>
<tr>
<td>Flexible Linkset Optional Based Routing</td>
<td><code>cdgttsn, cggttsn</code></td>
</tr>
</tbody>
</table>

For this example, enter this command if the Origin-Based SCCP Routing feature is not enabled and the Flexible Linkset Optional Based Routing feature is not enabled or turned on.

```
rtrv-gttsel: gttsn=t800
```

This is an example of the possible output.

```
rlgnxcoa03w 07-05-07 00:29:31 GMT EAGLE5 37.0.0
GTIA TT NP NAI GTTSN
 2 10 -- --- t800
```

If the Origin-Based SCCP Routing feature is enabled for this example, enter this command.

```
rtrv-gttsel: cdgtasn=t800
```

This is an example of the possible output.

```
rlgnxcoa03w 09-05-07 00:29:31 GMT EAGLE5 41.0.0
GTI ANSI TT NP NAI SSN SELID LSN GTITSET GTITSET
 2 10 -- --- none any t800 (cdgta) ------ (---)
```

If the Flexible Linkset Optional Based Routing feature is enabled and turned on for this example, enter these commands.
Continue the procedure by performing one of these steps.

- If no GTT selectors are shown in this step, continue the procedure with Step 5.
- If GTT selectors are shown in this step, perform Removing a GTT Selector to remove the GTT selectors that are shown in this step. After the GTT selectors have been removed, continue the procedure by performing one of these steps.
  - If all the references to the GTT set have been removed, continue the procedure with Step 7.
  - If all the references to the GTT set have not been removed, continue the procedure with Step 5.

5. Enter the rtrv-gsmsmsopts command.

The following is an example of the possible output.

```
rlnhcxa03w 10-04-28 21:15:37 GMT EAGLE5 42.0.0
GSM SMS OPTIONS

BPARTYGTTSN = NONE MOSMSGTTDIG = SCCPCDPA
MTSMSRLYGTTSN= NONE
IS41SMSCGTTSN= NONE
```

Note: The rtrv-gsmsmsopts command output contains other fields that are not used by this procedure. If you wish to see all the fields displayed by the rtrv-gsmsmsopts command, refer to the rtrv-gsmsmsopts command description in the Commands Manual.

If the BPARTYGTTSN value contains a GTT set name, perform Configuring the GSM MO SMS B-Party Routing Options to change the BPARTYGTTSN value to NONE.

If the IS41SMSCGTTSN value contains a GTT set name, perform the procedures in the Feature Manual - IS41 GSM Migration to change the IS41SMSCGTTSN value to NONE.

After the BPARTYGTTSN or IS41SMSCGTTSN values have been changed, or if the BPARTYGTTSN or IS41SMSCGTTSN values shown in the rtrv-gsmsmsopts output are NONE, continue the procedure by performing one of these steps.
• If all the references to the GTT set have been removed, continue the procedure with Step 7.
• If all the references to the GTT set have not been removed, continue the procedure with Step 6.

6. Enter the `rtrv-is41smsopts` command.

The following is an example of the possible output.

```
rlghncxa03w 09-09-28 21:15:37 GMT EAGLE5 41.1.0
IS41 SMS OPTIONS

BPARTYGTTSN = NONE
MOSMSGTTDIG = SCCPCDPA
```

**Note:** The `rtrv-is41smsopts` command output contains other fields that are not used by this procedure. If you wish to see all the fields displayed by the `rtrv-is41smsopts` command, refer to the `rtrv-is41smsopts` command description in the Commands Manual.

If the `BPARTYGTTSN` value contains a GTT set name, perform Configuring the IS-41 MO SMS B-Party Routing Options to change the `BPARTYGTTSN` value to `NONE`.

After the `BPARTYGTTSN` value has been changed, or if the `BPARTYGTTSN` value shown in the `rtrv-is41smsopts` output is `NONE`, continue the procedure with Step 7.

7. Remove the GTT set from the database using the `dlt-gttset` command with the `gttsn` parameter specifying the GTT set name being removed from the database.

For this example, enter this command.

```
dlt-gttset:gttsn=t800
```

When the command has successfully completed, this message should appear:

```
rlghncxa03w 09-07-07 00:29:31 GMT EAGLE5 41.1.0
GTT-SET table is (11 of 2000) 1% full.
DLT-GTTSET: MASP A - COMPLTD
```

8. Verify the changes using the `rtrv-gttset` command with the `gttsn` parameter and GTT set name specified in Step 7.

The following message is displayed.

```
E3561 Cmd Rej: GTT Set specified by GTT Set Name/index does not exist
```

9. Backup the new changes using the `chg-db:action=backup:dest=fixed` command.

These messages should appear, the active Maintenance and Administration Subsystem Processor (MASP) appears first.

```
BACKUP (FIXED) : MASP A - Backup starts on active MASP.
BACKUP (FIXED) : MASP A - Backup on active MASP to fixed disk complete.
BACKUP (FIXED) : MASP A - Backup starts on standby MASP.
BACKUP (FIXED) : MASP A - Backup on standby MASP to fixed disk complete.
```
Changing a GTT Set

Use this procedure to change the number of digits assigned to a global title translation (GTT) set, change the network domain of the GTT set to CROSS, or change the GTT set name using the chg-gttset command.

The chg-gttset command uses these parameters.

:gttsn – The GTT set name. The GTT set name (gttsn) specifies the GTT set being changed and must be shown in the rtrv-gttset output.

:ngttsn – The new GTT set name consisting of one alphabetic character and up to eight alphanumeric characters.

:netdom=cross – The CROSS network domain of the global title translation set. The network domain CROSS can be specified only if the ANSI/ITU SCCP Conversion feature, part number 893012001, is enabled, and if the GTT set is a CDGTA GTT set. If the SETTYPE column is not shown in the rtrv-gttset output, all the GTT sets are CDGTA GTT sets. The CROSS GTT set can be assigned to either an ANSI or ITU GTT selector. For more information, refer to the ANSI/ITU SCCP Conversion Feature section.

:ndgt – The number of digits contained in the global title translation. The ndgt parameter cannot be specified:

- If the Origin-Based SCCP Routing feature is enabled, the SETTYPE value of the GTT set is CGSSN, CGPC, or OPC.
- If the Flexible Linkset Optional Based Routing feature is enabled and turned on, the SETTYPE value of the GTT set is CDSSN or DPC.
- If the TCAP Opcode Based Routing feature is enabled and turned on, the SETTYPE value of the GTT set is OPCODE.
- If GTAs are assigned to the GTT set. This can be verified with the rtrv-gta command and the GTT set name being changed in this procedure.
- If the VGTT feature is on, shown by the entry VGTT = on in the rtrv-feat command output. The length of the global title address is determined when the global title address is entered with the ent-gta command. For more information on the VGTT feature and the length of global title addresses, see the Variable-length Global Title Translation Feature section and the Adding Global Title Address Information procedure.

If the Variable-length Global Title Translation Feature (VGTT) is on, the NDGT field of the rtrv-gttset command shows the different lengths of global title addresses assigned to a GTT set name, as shown in the following example.

```
rlghncxa03w 09-07-07 00:30:31 GMT EAGLE5 41.1.0
GTTSN NETDOM NDGT
lidb ansi 3, 7, 10
t800 ansi 6
si000 itu 15
imsi itu 15
abcd1234 itu 12
```
In this example of the `rtrv-gttset` command output, the GTT set `lidb` contains three different length global title addresses; global title addresses containing three digits, seven digits, and 10 digits.

**CAUTION:** If the VGTT feature is on and the ANSI/ITU SCCP Conversion feature is not enabled, this procedure cannot be performed.

1. Display the existing GTT sets in the database by entering the `rtrv-gttset` command.

   This is an example of the possible output.

   ```
 rlghncxa03w 10-07-07 00:27:31 GMT EAGLE5 42.0.0
 GTTSET table is (5 of 2000) 1% full.

 GTTSN NETDOM SETTYPE NDGT
 abcd1234 itu CDGTA 12
 dpc1 itu DPC -
 gttset1 ansi CDGTA 6
 gttset2 ansi CCGTA 10
 gttset3 ansi OPC -
 gttset4 ansi CGPC -
 gttset5 itu CGPC -
 imsi ansi CDGTA 15
 lidb ansi CDGTA 10
 si000 itu CDGTA 15
 t800 ansi CDGTA 10
 gttset6 ansi CDSSN -
 gttset7 itu OPCODE -

 GTT-SET table is (13 of 2000) 1% full.
   ```

   If the `SETTYPE` column is not shown in the `rtrv-gttset` output, all the GTT sets are CDGTA GTT sets.

   If the `SETTYPE` column is shown in the `rtrv-gttset` output, and the `SETTYPE` value for the GTT set is CGPC, CGSSN, OPC, CDSSN, OPCODE, DPC, only the name of the GTT set can be changed.

   If any GTT sets contain multiple entries in the `NDGT` column, the VGTT feature is on. The `ndgt` parameter cannot be specified with the `chg-gttset` command. The `NETDOM` value can be changed to CROSS only for a CDGTA GTT set. The name of the GTT set can be changed for any type of GTT set. Continue the procedure by performing one of these steps.

   - If you do not wish to change the `NETDOM` value to CROSS for a CDGTA GTT set, or if you wish to only change the name of any type of GTT set, continue the procedure with Step 5.
   - If you wish to change the `NETDOM` value to CROSS for a CDGTA GTT set, continue this procedure by performing one of these steps.
     - If any CDGTA GTT sets contain the value CROSS in the `NETDOM` column, continue the procedure with Step 5.
     - If the value CROSS does not appear in the `NETDOM` column for all the CDGTA GTT sets, continue the procedure with Step 3.

   If all the GTT sets contain only one entry in the `NDGT` column, continue the procedure with Step 2.

2. Verify whether or not either the VGTT feature is on by entering the `rtrv-feat` command.
The entry VGTT = on is shown if the VGTT feature is on.

Note: The rtrv-feat command output contains other fields that are not used by this procedure. If you wish to see all the fields displayed by the rtrv-feat command, see the rtrv-feat command description in the Commands Manual.

If the VGTT feature is on, the ndgt parameter cannot be specified with the chg-gttset command.

If the VGTT feature is off, the ndgt parameter value can be changed under these conditions.

- If the SETTYPE column is not shown in the rtrv-gttset output in Step 1.
- If the SETTYPE column is shown in the rtrv-gttset output and the SETTYPE value for the GTT set is CDGTA or CGGTA.

If the NDGT value cannot be changed or you do not wish to change the NDGT value, the only action that can be performed on a GTT set is to change the NETDOM value to CROSS for a CDGTA GTT set. If you do not wish to change the NETDOM value to CROSS for a CDGTA GTT set, the procedure cannot be performed. If you wish to change the NETDOM value to CROSS for a CDGTA GTT set, continue the procedure by performing one of these steps.

- If any CDGTA GTT sets contain the value CROSS in the NETDOM column, continue the procedure by performing one of these steps.
  - If the ndgt parameter value will be changed, continue the procedure with Step 4.
  - If the ndgt parameter value will not be changed, continue the procedure with Step 5.
- If the value CROSS does not appear in the NETDOM column for all CDGTA GTT sets, continue the procedure with Step 3.

If you wish to change the ndgt parameter value and do not wish to change the NETDOM value to CROSS, continue the procedure with Step 4.

3. Display the status of the ANSI/ITU SCCP Conversion feature by entering this command.

rtrv-ctrl-feat:partnum=893012001

The following is an example of the possible output.

rlghnx03b 07-05-28 21:15:37 GMT EAGLE5 37.0.0
The following features have been permanently enabled:

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Partnum</th>
<th>Status</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCCP Conversion</td>
<td>893012001</td>
<td>on</td>
<td>----</td>
</tr>
</tbody>
</table>

The following features have been temporarily enabled:

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Partnum</th>
<th>Status</th>
<th>Quantity</th>
<th>Trial Period Left</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zero entries found.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The following features have expired temporary keys:

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Partnum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zero entries found.</td>
<td></td>
</tr>
</tbody>
</table>

If the ANSI/ITU SCCP Conversion feature is enabled, continue the procedure by performing one of these steps.

- If the ndgt parameter value will be changed, continue the procedure with Step 4.
- If the ndgt parameter value will not be changed, continue the procedure with Step 5.
If the ANSI/ITU SCCP Conversion feature is not enabled, the `netdom=cross` parameter cannot be specified with the `chg-gttset` command. If the ANSI/ITU SCCP Conversion feature is not enabled and the VGTT feature is on, this procedure cannot be performed.

If the ANSI/ITU SCCP Conversion feature is not enabled, perform the `Activating the ANSI/ITU SCCP Conversion Feature` procedure to enable the ANSI/ITU SCCP Conversion feature. After the ANSI/ITU SCCP Conversion is enabled, continue the procedure with `Step 4`.

4. Verify that no global title address information references the GTT set name being changed in this procedure.

Use the `rtrv-gta` command with the `gttsn` parameter specifying the GTT set name being removed from the database. If the `num` parameter is specified with the `rtrv-gta` command, and the value of the `num` parameter is greater than 1000, the `force=yes` parameter must be specified with the `rtrv-gta` command. For this example, enter this command.

```
rtrv-gta:gttsn=imsi
```

This is an example of the possible output.

```
rlghncxa03w 10-07-07 00:28:31 GMT EAGLE5 42.0.0
GTTSN NETDOM SETTYPE NDGT
imsi ansi CDGTA 10
GTA TABLE IS 1 % FULL (17 of 269999)
START GTA END GTA XLAT RI PC
8005550000 8005551999 dpcssn ssn 001-254-255
 SSN=255 CGGT=no CGGTMOD=NO
 GTMODID=-------- TESTMODE=off
 OPTSN=-------- CGSELID=----- OPCSN=--------
 ACTSN=-------- PMEASREQD= NO
8005552000 8005553999 dpc gt 001-254-255
 SSN=0 CGGT=no CGGTMOD=NO
 GTMODID=-------- TESTMODE=off
 OPTSN=-------- CGSELID=----- OPCSN=--------
 ACTSN=-------- PMEASREQD= NO
8005554000 8005555999 dpcngt gt 001-254-255
 SSN=--- CGGT=no CGGTMOD=NO
 GTMODID=-------- TESTMODE=off
 OPTSN=-------- CGSELID=----- OPCSN=gttset3
 ACTSN=-------- PMEASREQD= NO
8005556000 8005557999 dpcssn ssn 001-254-255
 SSN=255 CGGT=NO CGGTMOD=NO
 GTMODID=-------- TESTMODE=off
 OPTSN=-------- CGSELID=----- OPCSN=--------
 ACTSN=-------- PMEASREQD= NO
8005558000 8005559999 dpcssn ssn 001-254-255
 SSN=255 CGGT=NO CGGTMOD=NO
 GTMODID=-------- TESTMODE=off
 OPTSN=-------- CGSELID=----- OPCSN=--------
 ACTSN=-------- PMEASREQD= NO
9195551212 9195551212 dpcssn ssn 008-001-001
 SSN=222 CGGT=NO CGGTMOD=NO
 GTMODID=-------- TESTMODE=off
 OPTSN=-------- CGSELID=----- OPCSN=--------
 ACTSN=-------- PMEASREQD= NO
91946000000 9194600000 dpc gt 001-255-252
 SSN=0 CGGT=NO CGGTMOD=NO
 GTMODID=-------- TESTMODE=off
 OPTSN=-------- CGSELID=----- OPCSN=--------
 ACTSN=-------- PMEASREQD= NO
9194610000 9194680000 dpcssn ssn 001-255-252
```

537
If no global title address entries are shown in the `rtrv-gta` output, continue the procedure with Step 5.

If global title address entries are shown in the `rtrv-gta` output, perform `Removing Global Title Address Information` to remove any global title address entries that are shown in the `rtrv-gta` command output. After the global title address entries have been removed, continue the procedure with Step 5.

5. Change the GTT set using the `chg-gttset` command.

For this example, enter this command.

```
chg-gttset:gttsn=imsi:ndgt=10:netdom=cross
```

The `netdom=cross` parameter can be specified only if the ANSI/ITU SCCP Conversion feature is enabled. If the `SETTYPE` column is shown in the `rtrv-gttset` output, the `netdom=cross` parameter can be specified only for a CDGTA GTT set.

The `ndgt` parameter can be specified only if the VGTT feature is off. If the `SETTYPE` column is shown in the `rtrv-gttset` output, the `ndgt` parameter can be specified only for a CDGTA or CGGTA GTT set.

The `ngttsn` value cannot be `none`.

When this command has successfully completed, this message should appear.

```
rlghncxa03w 09-07-07 00:29:31 GMT EAGLE5 41.1.0
GTT-SET table is (12 of 2000) 1% full.
CHG-GTTSET: MASP A - COMPLTD
```

6. Verify the changes using the `rtrv-gttset` command with the `gttsn` parameter and value specified in Step 5.

For this example, enter this command.

```
rtrv-gttset:gttsn=imsi
```
Adding a GTT Selector

Use the following procedure to specify the applicable GTT selectors for a global title entry using the `ent-gttsel` command.

The `ent-gttsel` command uses these parameters:

- `gti/gtia/gtii/gtiiis/gtin/gtin/gtin24` - The global title indicator. The GTI defines the domain as shown in this list.
  - `gti` and `gtia` - ANSI global title indicator with the values 0 or 2
  - `gtii` - ITU international (ITU-I) global title indicator with the values, 0, 2, or 4
  - `gtiis` - ITU international (ITU-I) spare global title indicator with the values, 0, 2, or 4
  - `gtin` - ITU national (ITU-N) global title indicator with the values 0, 2, or 4.
  - `gtins` - ITU national (ITU-N) spare global title indicator with the values 0, 2, or 4.
  - `gtin24` - ITU-N24 spare global title indicator with the values 0, 2, or 4.

- `tt` - The global title translation type, (0-255). The same translation type value can be specified for multiple GTI values. For example, the translation type value 10 can be assigned to an ANSI GTI, an ITU-I GTI, an ITU-I spare GTI, an ITU-N GTI, an ITU-N spare GTI, and an ITU-N24 GTI.

- `nai` - The nature of address indicator.

- `naiv` - The nature of address indicator value. (0-127) (Refer to `Table 82: NAIV/NAI Mapping` for NAI/NAIV mapping)

**Note:** The nature of address indicator parameters (`naiv` or `nai`) can be specified by supplying either a mnemonic or an explicit value. At no time may both the mnemonic and the explicit value be specified at the same time for the same parameter. You can specify either the `naiv` or `nai` parameter. `Table 82: NAIV/NAI Mapping` shows the mapping between the `naiv` and the `nai` parameters.
Table 82: NAIV/NAI Mapping

<table>
<thead>
<tr>
<th>NAIV</th>
<th>NAI</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>--</td>
<td>Unknown</td>
</tr>
<tr>
<td>1</td>
<td>Sub</td>
<td>Subscriber Number</td>
</tr>
<tr>
<td>2</td>
<td>Rsvd</td>
<td>Reserved for national use</td>
</tr>
<tr>
<td>3</td>
<td>Natl</td>
<td>National significant number</td>
</tr>
<tr>
<td>4</td>
<td>Intl</td>
<td>International number</td>
</tr>
<tr>
<td>5-127</td>
<td>---</td>
<td>Spare</td>
</tr>
</tbody>
</table>

:np – The numbering plan.

:npv – The numbering plan value. (0-15) (Refer to Table 83: NPV/NP Mapping for NP/NPV mapping)

Note: The numbering plan parameters (npv or np) can be specified by supplying either a mnemonic or an explicit value. At no time may both the mnemonic and the explicit value be specified at the same time for the same parameter. You can specify either the npv or np parameter. Table 83: NPV/NP Mapping shows the mapping between the npv and the np parameters.

Table 83: NPV/NP Mapping

<table>
<thead>
<tr>
<th>NPV</th>
<th>NP</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>--</td>
<td>Unknown</td>
</tr>
<tr>
<td>1</td>
<td>E164</td>
<td>ISDN/telephony numbering plan</td>
</tr>
<tr>
<td>2</td>
<td>Generic</td>
<td>Generic numbering plan</td>
</tr>
<tr>
<td>3</td>
<td>X121</td>
<td>Data numbering plan</td>
</tr>
<tr>
<td>4</td>
<td>F69</td>
<td>Telex numbering plan</td>
</tr>
<tr>
<td>5</td>
<td>E210</td>
<td>Maritime mobile numbering plan</td>
</tr>
<tr>
<td>6</td>
<td>E212</td>
<td>Land mobile numbering plan</td>
</tr>
<tr>
<td>7</td>
<td>E214</td>
<td>ISDN/mobile numbering plan</td>
</tr>
<tr>
<td>8</td>
<td>Private</td>
<td>Private network or network-specific numbering plan</td>
</tr>
</tbody>
</table>
The Global Title Translation (GTT) feature and the Enhanced Global Title Translation (EGTT) features must be on before using this command. Use the rtrv-feat command to verify the settings. If the features are off, turn them on using the chg-feat:gtt=on:egtt=on command.

**Note:** Once the Global Title Translation (GTT) feature and the Enhanced Global Title Translation (EGTT) feature are turned on with the chg-feat command, they cannot be turned off.

The GTT feature and the EGTT feature must be purchased before you turn these features on. If you are not sure whether you have purchased the GTT feature and/or the EGTT feature, contact your Tekelec Sales Representative or Account Representative.

The GTT selector table may not have more than 100,000 GTT selectors.

For the gtii=4, gtin=4, or gtin24=4 parameter, the entry dflt may appear in the rtrv-gttsel output. The value dflt cannot be specified as value for the np or nai parameters when you specify the ent-gttsel command. If you enter a new GTT selector that matches an existing GTT selector’s gti and tt and the existing selector has dflt as value for the np or nai parameters, a new entry is created with the new np or nai parameter values. The existing GTT selector entry with the dflt value is also retained. Use the chg-gttsel or dlt-gttsel commands to change or delete the dflt value. The parameter combination npv/naiv cannot be specified if gtin=2 (or gtin24=2) or gtii=2. The gtia=4 parameter is not supported.

These tables shows the parameter combinations and the rules for the parameters of the ent-gttsel command.

- **Table 84: Add GTT Selector Parameter Combinations - EGTT Only**
- **Table 85: Add GTT Selector Parameter Combinations - Origin-Based SCCP Routing Enabled Only**
- **Table 86: Add GTT Selector Parameter Combinations - Flexible Linkset Optional Based Routing Enabled and Turned On Only**
- **Table 87: Add GTT Selector Parameter Combinations - OBSR Enabled and FLOBR Enabled and Turned On**
1. Display the GTT selectors in the database by entering the `rtrv-gttsel` command.

This is an example of the possible output.

```plaintext
rlghncxa03w 09-05-07 00:28:31 GMT EAGLE5 41.0.0

<table>
<thead>
<tr>
<th>GTI</th>
<th>CG</th>
<th>CDPA</th>
<th>CGPA</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANSI TT NP NAI SSN SELID LSN GTTSET GTTSET</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>75</td>
<td>---</td>
<td>55</td>
</tr>
<tr>
<td>2</td>
<td>100</td>
<td>--</td>
<td>56</td>
</tr>
<tr>
<td>2</td>
<td>150</td>
<td>--</td>
<td>57</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>GTI</th>
<th>CG</th>
<th>CDPA</th>
<th>CGPA</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTL TT NP NAI SSN SELID LSN GTTSET GTTSET</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>--</td>
<td>none</td>
</tr>
<tr>
<td>2</td>
<td>87</td>
<td>--</td>
<td>none</td>
</tr>
<tr>
<td>2</td>
<td>100</td>
<td>--</td>
<td>none</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>dfit</td>
<td>dfit</td>
</tr>
<tr>
<td>4</td>
<td>97</td>
<td>e210</td>
<td>100</td>
</tr>
<tr>
<td>4</td>
<td>101</td>
<td>e210</td>
<td>101</td>
</tr>
<tr>
<td>4</td>
<td>150</td>
<td>e210</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>219</td>
<td>e210</td>
<td>11</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>GTI</th>
<th>CG</th>
<th>CDPA</th>
<th>CGPA</th>
</tr>
</thead>
<tbody>
<tr>
<td>NATL TT NP NAI SSN SELID LSN GTTSET GTTSET</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>GTI</th>
<th>CG</th>
<th>CDPA</th>
<th>CGPA</th>
</tr>
</thead>
<tbody>
<tr>
<td>N24 TT NP NAI SSN SELID LSN GTTSET GTTSET</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

If the desired GTT set for the new GTT selector is shown in the `rtrv-gttsel` output, continue the procedure by performing one of these steps.

- If the GTTSN column is shown in the `rtrv-gttsel` output, only the EGTT feature is turned on. Continue the procedure by performing one of these steps.

- If the new GTT selector will be provisioned for these features, perform these procedures to verify the status of these features and to enable, and turn on these features.
  - Origin-Based SCCP Routing - [Activating the Origin-Based SCCP Routing Feature](#)
  - Flexible Linkset Optional Based Routing - [Activating the Flexible Linkset Optional Based Routing Feature](#)
  - TCAP Opcode Based Routing - [Activating the TCAP Opcode Based Routing Feature](#)

After the applicable features have been verified, and enabled and turned on if required, continue the procedure by performing one of these steps.

- If the lsn parameter will not be specified for the GTT selector, continue the procedure with Step 5.
• If the lsn parameter will be specified for the GTT selector, continue the procedure by performing one of these steps.

• If the name of the linkset that you wish to assign to the GTT selector is shown in the rtrv-gttsel output in Step 1, continue the procedure with Step 5.

• If the name of the linkset that you wish to assign to the GTT selector is not shown in the rtrv-gttsel output in Step 1, continue the procedure with Step 4.

• If the new GTT selector will be provisioned for only the EGTT feature, continue the procedure with Step 5.

• If the CDPA GTTSET and CGPA GTTSET columns are shown in the rtrv-gttsel output, continue the with Step 3.

If the desired GTT set for the new GTT selector is not shown in the rtrv-gttsel output, continue the procedure with Step 2.

2. Display the GTT sets in the database using the rtrv-gttsel command. This is an example of the possible output.

```
rlghncxa03w 09-07-07 00:29:31 GMT EAGLE5 41.1.0
GTTSN NETDOM SETTYPE NDGT
abcd1234 itu CGGTA 12
imsi itu CDGTA 15
lidb ansi CDGTA 10
t800 ansi CGGTA 6
s1000 itu CDGTA 15
s2000 itu CGPC -
GTT-SET table is (6 of 2000) 1% full.
```

If the desired GTT set name is not shown in the rtrv-gttsel output, perform Adding a GTT Set to add the required GTT set.

After the GTT set has been added, or if the desired GTT set name is shown in the rtrv-gttsel output, continue the procedure by performing one of these steps.

• If the GTTSN column is shown in the rtrv-gttsel output in Step 1, only the EGTT feature is turned on. Continue the procedure by performing one of these steps.

• If the new GTT selector will be provisioned for these features, perform these procedures to verify the status of these features and to enable, and turn on these features.

- Origin-Based SCCP Routing - Activating the Origin-Based SCCP Routing Feature
- Flexible Linkset Optional Based Routing - Activating the Flexible Linkset Optional Based Routing Feature
- TCAP Opcode Based Routing - Activating the TCAP Opcode Based Routing Feature

After the applicable features have been verified, and enabled and turned on if required, continue the procedure by performing one of these steps.

• If the lsn parameter will not be specified for the GTT selector, continue the procedure with Step 5.

• If the lsn parameter will be specified for the GTT selector, continue the procedure by performing one of these steps.
• If the name of the linkset that you wish to assign to the GTT selector is shown in the `rtrv-gttsel` output in Step 1, continue the procedure with Step 5.
• If the name of the linkset that you wish to assign to the GTT selector is not shown in the `rtrv-gttsel` output in Step 1, continue the procedure with Step 4.

• If the new GTT selector will be provisioned for only the EGTT feature, continue the procedure with Step 5.
• If the CDPA GTTSET and CGPA GTTSET columns are shown in the `rtrv-gttsel` output, continue the with Step 3.

3. Display the features that are enabled, and turned on if necessary, by entering the `rtrv-ctrl-feat` command. This is an example of the possible output.

```
rlghncxa03w 09-05-07 00:29:31 GMT EAGLE5 41.0.0
The following features have been permanently enabled:

Feature Name Partnum Status Quantity
SCCP Loop Detection 893016501 on ----
SCCP Conversion 893012001 off ----
HC-MIM SLK Capacity 893012707 on 64
Origin Based SCCP Routing 893014301 on ----
TCAP Opcode Based Routing 893027801 on ----
Flex Lset Optnl Based Rtg 893027701 on ----
VGTT with 16 GTT lengths 893024801 on ----
TOBR Opcode Quantity 893027907 on 1000000

The following features have been temporarily enabled:

Feature Name Partnum Status Quantity Trial Period Left

Zero entries found.

The following features have expired temporary keys:

Feature Name Partnum

Zero entries found.
```

If you wish to provision the GTT selector according for these features and any of these features are not enabled, or turned on if required, perform these procedures as needed to enable, and turn on these features.

• Origin-Based SCCP Routing - Activating the Origin-Based SCCP Routing Feature
• Flexible Linkset Optional Based Routing - Activating the Flexible Linkset Optional Based Routing Feature
• TCAP Opcode Based Routing - Activating the TCAP Opcode Based Routing Feature

After the features have been enabled, and turned on if necessary, or if you wish to provision the GTT selector according to the features that are enabled, and turned on, continue the procedure by performing one of these steps.

• If the `lsn` parameter will not be specified for the GTT selector, continue the procedure with Step 5.
• If the `lsn` parameter will be specified for the GTT selector, continue the procedure by performing one of these steps.
If the name of the linkset that you wish to assign to the GTT selector is shown in the **rtrv-gttsel** output in **Step 1**, continue the procedure with **Step 5**.

If the name of the linkset that you wish to assign to the GTT selector is not shown in the **rtrv-gttsel** output in **Step 1**, continue the procedure with **Step 4**.

4. Display the linksets in the database by entering the **rtrv-ls** command. This is an example of the possible output.

```
rlighncxa03w 09-05-07 00:29:31 GMT EAGLE5 41.0.0

<table>
<thead>
<tr>
<th>LSN</th>
<th>L3T SLT</th>
<th>GWS</th>
<th>GWS</th>
<th>GWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>lsn1</td>
<td>APCA</td>
<td>(SS7)</td>
<td>SCRN</td>
<td>SET</td>
</tr>
<tr>
<td></td>
<td>001-001-002</td>
<td>none</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>lsn1l</td>
<td>APCI</td>
<td>(SS7)</td>
<td>SCRN</td>
<td>SET</td>
</tr>
<tr>
<td></td>
<td>2-002-2</td>
<td>none</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>lsn1l2</td>
<td>2-002-3</td>
<td>none</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

Link set table is (5 of 1024) 1% full.
```

If the linkset that you wish to assign to the GTT selector is not shown in the **rtrv-ls** output, perform the "Adding an SS7 Linkset" procedure in the Database Administration Manual - SS7 to add the linkset.

After the linkset has been added, or if the linkset that you wish to assign to the GTT selector is shown in the **rtrv-ls** output, continue the procedure with **Step 5**.

5. Add the GTT selector to the database with the **ent-gttsel** command.

These tables show the parameter combinations and the rules for the parameters of the **ent-gttsel** command.

- **Table 84: Add GTT Selector Parameter Combinations - EGTT Only**
- **Table 85: Add GTT Selector Parameter Combinations - Origin-Based SCCP Routing Enabled Only**
- **Table 86: Add GTT Selector Parameter Combinations - Flexible Linkset Optional Based Routing Enabled and Turned On Only**
- **Table 87: Add GTT Selector Parameter Combinations - OBSR Enabled and FLOBR Enabled and Turned On**
- **Table 88: Add GTT Selector Parameter Combinations - FLOBR and TOBR Enabled and Turned On Only**
- **Table 89: Add GTT Selector Parameter Combinations - OBSR Enabled, and FLOBR and TOBR Enabled and Turned On**

**Table 84: Add GTT Selector Parameter Combinations - EGTT Only**

<table>
<thead>
<tr>
<th>Mandatory Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>GTI/GTIA/GTII/</td>
</tr>
<tr>
<td>GTIIS/GTIN/GTINS/</td>
</tr>
<tr>
<td>----------------</td>
</tr>
<tr>
<td>GTIN24 = 0 (See Note 3)</td>
</tr>
<tr>
<td>GTTSN = &lt;the GTT set name, from other GTT selectors or the rtrv-gttset output&gt; (See Note 3)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Optional Parameter</td>
</tr>
<tr>
<td>SELID = &lt;SELID value - 0 to 65534&gt;</td>
</tr>
</tbody>
</table>

Notes:
1. Refer to Table 94: NAIV/NAI Mapping for the nai and naiv parameter values. Refer to Table 95: NPV/NP Mapping for the np and npv parameter values.
   - The value dflt cannot be specified for the np/npv or nai/naiv parameters.
   - Each translation type (TT) and NP (NPV) combination can have a maximum of five different NAI (NAIV) assigned to it.
2. These combinations of the np, npv, nai, and naiv parameters can be specified together in the ent-gttset command.
   - np - nai
   - np - naiv
   - npv - nai
   - npv - naiv
3. If the gti/gtia parameter is specified, the domain of the new GTT set must be ANSI. If the gtiis/gtin/gtins /gtin24 parameter is specified, the domain of the new GTT set must be ITU. The domain of the GTT set can be CROSS, regardless of the value of the gti parameter.
<table>
<thead>
<tr>
<th>Mandatory Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>GTI/GTIA/GTII/</td>
</tr>
<tr>
<td>GTIIS/GTIN/GTINS/</td>
</tr>
<tr>
<td>GTIN24 = 0 (See Note 3)</td>
</tr>
<tr>
<td>GTI/GTIA/GTII/</td>
</tr>
<tr>
<td>GTIIS/GTIN/GTINS/</td>
</tr>
<tr>
<td>GTIN24 = 2 (See Note 3)</td>
</tr>
<tr>
<td>CDGTASN = &lt;the CDGTA GTT set name&gt;, from other GTT selectors or the rtrv-gttset output&gt; (See Notes 1, 3, 4, 5, 6, and 8)</td>
</tr>
<tr>
<td>TT = &lt;the translation type - 0 to 255&gt;</td>
</tr>
<tr>
<td>CDGTASN = &lt;the CDGTA GTT set name&gt;, from other GTT selectors or the rtrv-gttset output&gt; (See Notes 1, 3, 4, 5, 6, and 8)</td>
</tr>
<tr>
<td>CDGTASN = &lt;the CDGTA GTT set name&gt;, from other GTT selectors or the rtrv-gttset output&gt; (See Notes 1, 3, 4, 5, 6, and 8)</td>
</tr>
<tr>
<td>CGGTASN = &lt;the CGGTA GTT set name&gt;, from other GTT selectors or the rtrv-gttset output&gt; (See Notes 1, 3, 4, 5, 6, and 8)</td>
</tr>
<tr>
<td>CGGTASN = &lt;the CGGTA GTT set name&gt;, from other GTT selectors or the rtrv-gttset output&gt; (See Notes 1, 3, 4, 5, 6, and 8)</td>
</tr>
<tr>
<td>CGPCSN = &lt;the CGPC GTT set name&gt;, from other GTT selectors or the rtrv-gttset output&gt; (See Notes 1, 3, 4, 5, 6, 7, and 8)</td>
</tr>
<tr>
<td>CGPCSN = &lt;the CGPC GTT set name&gt;, from other GTT selectors or the rtrv-gttset output&gt; (See Notes 1, 3, 4, 5, 6, 7, and 8)</td>
</tr>
<tr>
<td>CGPCSN = &lt;the CGPC GTT set name&gt;, from other GTT selectors or the rtrv-gttset output&gt; (See Notes 1, 3, 4, 5, 6, 7, and 8)</td>
</tr>
<tr>
<td>NP = &lt;numbering plan&gt; (See Notes 2 and 9) or NPV = &lt;numbering plan value&gt; (See Notes 2 and 9)</td>
</tr>
<tr>
<td>NAI = &lt;nature of address indicator&gt; (See Notes 2 and 9) or NAI = &lt;nature of address indicator value&gt; (See Notes 2 and 9)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Optional Parameters</th>
</tr>
</thead>
</table>

Enhanced Global Title Translation (EGTT) Configuration

Database Administration Manual - Global Title Translation
Notes:
1. CDGTA GTT sets are shown in the CDPA GTTSET column of the rtrv-gttsel output. CGGTA and CGPC GTT sets are shown in the CGPA GTTSET column of the rtrv-gttsel output.
2. Refer to Table 94: NAIV/NAI Mapping for the nai and naiv parameter values. Refer to Table 95: NPV/NP Mapping for the np and npv parameter values.
   - The value dflt cannot be specified for the np/npv or nai/naiv parameters.
   - Each translation type (TT) and NP (NPV) combination can have a maximum of five different NAI (NAIV) assigned to it. The TT, NP (NPV), and NAI, (NAIV) combination can have more than five entries as long as different CGSSN and SELID values are assigned to each entry.
3. If the gti/gtia parameter is specified, the domain of the new GTT set must be ANSI. If the gtii/gtin/gtin24 parameter is specified, the domain of the new GTT set must be ITU. The domain of the GTT set can be CROSS, regardless of the value of the gti parameter.
4. A GTT selector can contain the following combinations of GTT set name parameters.
   - CDGTASN only
   - CGGTASN only
   - CGPCSN only
   - CDGTASN and CGGTASN
   - CDGTASN and CGPCSN
5. If either the cgssn or selid parameters, or both parameters, are specified with the ent-gttsel command, either the cggtasn or cgpcsn parameters must be specified with the ent-gttsel command. The cgssn parameter cannot be specified with the cdgtasn parameter.
6. If a CGGTA or CGPC GTT set is specified for a selector that has a CDGTA GTT set assigned to it, the selector will have the CGGTA or CGPC GTT set and the CDGTA GTT set assigned to it.
7. Multiple entries can be assigned to a selector only if the cggtasn or cgpcsn parameters are specified for the selector. The cgssn and selid parameter values must be different for each entry that has the same cggtasn or cgpcsn parameter value. The first time a selector is added, the cdgtasn and either the cggtasn or cgpcsn parameters can be specified. If additional entries are added to the selector, only the cggtasn or cgpcsn parameters can be specified. All of these entries will contain the cdgtasn parameter value and either the cggtasn or cgpcsn parameter values.
8. If the selector contains multiple entries containing only the cggtasn or cgpcsn parameter values, and the cdgtasn parameter is specified for one of the entries of the selector, the cdgtasn parameter value is added to all the entries of the selector.
9. These combinations of the np, npv, nai, and naiv parameters can be specified together in the ent-gttsel command.
Table 86: Add GTT Selector Parameter Combinations - Flexible Linkset Optional Based Routing Enabled and Turned On Only

<table>
<thead>
<tr>
<th>Mandatory Parameters</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>GTI/GTIA/GTIIV/</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GTII/GTIIV/GTIIS/</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GTIN24 = 0 (See Note 3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CDGTTSN = &lt;the CDGTA GTT set name&gt;, from other GTT selectors or the rtrv-gttset output&gt; (See Notes 1, 3, 4, and 5)</td>
<td>TT = &lt;the translation type - 0 to 255&gt;</td>
<td>TT = &lt;translation type - 0 to 255&gt;</td>
<td></td>
</tr>
<tr>
<td>CGGTTSN = &lt;the CDGTA GTT set name&gt;, from other GTT selectors or the rtrv-gttset output&gt; (See Notes 1, 3, 4, 5, and 7)</td>
<td>CGGTTSN = &lt;the CDGTA GTT set name&gt;, from other GTT selectors or the rtrv-gttset output&gt; (See Notes 1, 3, 4, and 5)</td>
<td>CGGTTSN = &lt;the CDGTA GTT set name&gt;, from other GTT selectors or the rtrv-gttset output&gt; (See Notes 1, 3, 4, 5, and 7)</td>
<td></td>
</tr>
<tr>
<td>NP = &lt;numbering plan&gt; (See Notes 2 and 8) or</td>
<td>NPV = &lt;numbering plan value&gt; (See Notes 2 and 8)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NAI = &lt;nature of address indicator&gt; (See Notes 2 and 8) or</td>
<td>NAIIV = &lt;nature of address indicator value&gt; (See Notes 2 and 8)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Optional Parameters</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>np - nai</td>
<td></td>
</tr>
<tr>
<td>np - naiv</td>
<td></td>
</tr>
<tr>
<td>npv - nai</td>
<td></td>
</tr>
<tr>
<td>npv - naiv</td>
<td></td>
</tr>
</tbody>
</table>
SELID = <SELID value - 0 to 65534> (See Notes 4 and 7)

LSN = The name of the linkset from other GTT selectors or the rtrv-ls output> (See Notes 4, 6, and 7)

EAGLEGEN=YES (See Note 7)

Notes:
1. The SETTYPE column is not shown in the rtrv-gttset output, so all the GTT sets are CDGTA GTT sets.
2. Refer to Table 94: NAIV/NAI Mapping for the nai and naiv parameter values. Refer to Table 95: NPV/NP Mapping for the np and npv parameter values.
   - The value dflt cannot be specified for the np/npv or nai/naiv parameters.
   - Each translation type (TT) and NP (NPV) combination can have a maximum of five different NAI (NAIV) assigned to it. The TT, NP (NPV), and NAI, (NAIV) combination can have more than five entries as long as different CGSSN and SELID values are assigned to each entry.
3. If the gti/gtia parameter is specified, the domain of the new GTT set must be ANSI. If the gtii/gtin/gtiis/gtins/gtin24 parameter is specified, the domain of the new GTT set must be ITU. The domain of the GTT set can be CROSS, regardless of the value of the gti parameter.
4. Multiple entries can be assigned to a selector only if the selid or lsn parameter values are different for each entry.
5. If the GTT selector contains one GTT set, another GTT set can be added to the GTT selector. If the GTT selector contains an entry in the CDPA GTTSET column, the other GTT set is added by specifying the cggttsn parameter. If the GTT selector contains an entry in the CGPA GTTSET column, the other GTT set is added by specifying the cdgttsn parameter.
6. The domain of the linkset, ANSI, ITU-I, ITU-N, or ITU-N24, must be the same as the domain of the gtii/gtin/gtiis/gtins/gtin24 parameter.
7. If the eaglegen=yes parameter is specified for the GTT selector, the cggttsn, selid, and lsn parameters cannot be specified for the GTT selector.
8. These combinations of the np, npv, nai, and naiv parameters can be specified together in the ent-gttset command.
   - np - nai
   - np - naiv
   - npv - nai
   - npv - naiv
**Table 87: Add GTT Selector Parameter Combinations - OBSR Enabled and FLOBR Enabled and Turned On**

<table>
<thead>
<tr>
<th><strong>Mandatory Parameters</strong></th>
<th><strong>Mandatory Parameters</strong></th>
<th><strong>Mandatory Parameters</strong></th>
</tr>
</thead>
<tbody>
<tr>
<td>GTI/GTIA/GTII/</td>
<td>GTI/GTIA/GTII/</td>
<td>GTII/GTII/GTIN/GTINS/</td>
</tr>
<tr>
<td>GTIIS/GTIN/GTINS/</td>
<td>GTIIS/GTIN/GTINS/</td>
<td>GTIN24 = 4 (See Note 3)</td>
</tr>
<tr>
<td>GTIN24 = 0 (See Note 3)</td>
<td>GTIN24 = 2 (See Note 3)</td>
<td></td>
</tr>
<tr>
<td>CDGTTSN = &lt;the CDGTA GTT set name&gt;, from other GTT selectors or the <code>rtrv-gttset</code> output&gt; (See Notes 1, 3, 4, 5, and 8)</td>
<td>TT = &lt;the translation type - 0 to 255&gt;</td>
<td>TT = &lt;translation type - 0 to 255&gt;</td>
</tr>
<tr>
<td>CDGTTSN = &lt;the CDGTA GTT set name&gt;, from other GTT selectors or the <code>rtrv-gttset</code> output&gt; (See Notes 1, 3, 4, 5, and 8)</td>
<td>CDGTTSN = &lt;the CDGTA GTT set name&gt;, from other GTT selectors or the <code>rtrv-gttset</code> output&gt; (See Notes 1, 3, 4, 5, and 8)</td>
<td>CDGTTSN = &lt;the CDGTA GTT set name&gt;, from other GTT selectors or the <code>rtrv-gttset</code> output&gt; (See Notes 1, 3, 4, 5, and 8)</td>
</tr>
<tr>
<td>CGGTSN = &lt;the CDGTA GTT set name&gt;, from other GTT selectors or the <code>rtrv-gttset</code> output&gt; (See Notes 1, 3, 4, 5, 7, and 8)</td>
<td>CGGTSN = &lt;the CDGTA GTT set name&gt;, from other GTT selectors or the <code>rtrv-gttset</code> output&gt; (See Notes 1, 3, 4, 5, 7, and 8)</td>
<td>CGGTSN = &lt;the CDGTA GTT set name&gt;, from other GTT selectors or the <code>rtrv-gttset</code> output&gt; (See Notes 1, 3, 4, 5, 7, and 8)</td>
</tr>
<tr>
<td>NP=&lt;numbering plan&gt; (See Notes 2 and 9) or NPV = &lt;numbering plan value&gt; (See Notes 2 and 9)</td>
<td>NAI = &lt;nature of address indicator&gt; (See Notes 2 and 9) or NAIV = &lt;nature of address indicator value&gt; (See Notes 2 and 9)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th><strong>Optional Parameters</strong></th>
<th><strong>Optional Parameters</strong></th>
<th><strong>Optional Parameters</strong></th>
</tr>
</thead>
<tbody>
<tr>
<td>SELID = &lt;SELID value - 0 to 65534&gt; (See Notes 4 and 7)</td>
<td>SELID = &lt;SELID value - 0 to 65534&gt; (See Notes 4 and 7)</td>
<td>SELID = &lt;SELID value - 0 to 65534&gt; (See Notes 4 and 7)</td>
</tr>
<tr>
<td>CGSSN = &lt;CGSSN value - 0 to 255&gt; (See Notes 7 and 8)</td>
<td>CGSSN = &lt;CGSSN value - 0 to 255&gt; (See Notes 7 and 8)</td>
<td>CGSSN = &lt;CGSSN value - 0 to 255&gt; (See Notes 7 and 8)</td>
</tr>
</tbody>
</table>
LSN = The name of the linkset from other GTT selectors or the `rtrv-ls` output. (See Notes 4, 6, and 7)

| EAGLEGEN=YES (See Note 7) | EAGLEGEN=YES (See Note 7) |

OBSR - the Origin-Based SCCP Routing feature
FLOBR - the Flexible Linkset Optional Based Routing feature

Notes:
1. The `SETTYPE` column is shown in the `rtrv-gttset` output. These GTT sets can provisioned in the database and assigned to a GTT selector with either the `cdgttsn` or `cggttsn` parameters.
   - CDGTA GTT sets
   - CCGTA GTT sets
   - CGPC GTT sets
   - CGSSN GTT sets
   - OPC GTT sets
   - CDSSN GTT sets
   - DPC GTT sets

2. Refer to Table 94: NAIV/NAI Mapping for the `nai` and `naiv` parameter values. Refer to Table 95: NPV/NP Mapping for the `np` and `npv` parameter values.
   - The value `dflt` cannot be specified for the `np`/`npv` or `nai`/`naiv` parameters.
   - Each translation type (TT) and NP (NPV) combination can have a maximum of five different NAI (NAIV) assigned to it. The TT, NP (NPV), and NAI (NAIV) combination can have more than five entries as long as different CGSSN and SELID values are assigned to each entry.

3. If the `gti/gtia` parameter is specified, the domain of the new GTT set must be ANSI. If the `gtii/gtin/gtiis/gtins/gtin24` parameter is specified, the domain of the new GTT set must be ITU. The domain of the GTT set can be CROSS, regardless of the value of the `gti` parameter.

4. Multiple entries can be assigned to a selector only if the `selid` or `lsn` parameter values are different for each entry.

5. If the GTT selector contains one GTT set, another GTT set can be added to the GTT selector. If the GTT selector contains an entry in the `CDPA GTTSET` column, the other GTT set is added by specifying the `cggttsn` parameter. If the GTT selector contains an entry in the `CGPA GTTSET` column, the other GTT set is added by specifying the `cdgttsn` parameter. If the GTT selector contains an entry in the `CGPA GTTSET` column and the GTT selector contains a `cgssn` value, the `cdgttsn` parameter cannot be specified.

6. The domain of the linkset, ANSI, ITU-I, ITU-N, or ITU-N24, must be the same as the domain of the `gti/gtii/gtis/gtins` parameter.

7. If the `eaglegen=yes` parameter is specified for the GTT selector, the `cggttsn`, `cgssn`, `selid`, and `lsn` parameters cannot be specified for the GTT selector.
8. The `cgssn` parameter can be specified only if the `cggttsn` parameter is specified and without the `cdgttsn` parameter.

9. These combinations of the `np`, `npv`, `nai`, and `naiv` parameters can be specified together in the `ent-gttsel` command.
   - `np - nai`
   - `np - naiv`
   - `npv - nai`
   - `npv - naiv`

Table 88: Add GTT Selector Parameter Combinations - FLOBR and TOBR Enabled and Turned On Only

<table>
<thead>
<tr>
<th>Mandatory Parameters</th>
<th>GTI/GTIA/GTII/ GTIIS/GTIN/GTINS/ GTIN24 = 0 (See Note 3)</th>
<th>GTI/GTIA/GTII/ GTIIS/GTIN/GTINS/ GTIN24 = 2 (See Note 3)</th>
<th>GTI/GTII/GTIN/GTINS/ GTIN24 = 4 (See Note 3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CDGTTSN = <code>&lt;the GTT set name&gt;</code>, from other GTT selectors or the <code>rtrv-gttset</code> output&gt; (See Notes 1, 3, 4, and 5)</td>
<td>TT = <code>&lt;the translation type - 0 to 255&gt;</code></td>
<td>TT = <code>&lt;the translation type - 0 to 255&gt;</code></td>
<td>TT = <code>&lt;the translation type - 0 to 255&gt;</code></td>
</tr>
<tr>
<td>CGGTTSN = <code>&lt;the GTT set name&gt;</code>, from other GTT selectors or the <code>rtrv-gttset</code> output&gt; (See Notes 1, 3, 4, 5, and 7)</td>
<td>CDGTTSN = <code>&lt;the GTT set name&gt;</code>, from other GTT selectors or the <code>rtrv-gttset</code> output&gt; (See Notes 1, 3, 4, and 5)</td>
<td>CDGTTSN = <code>&lt;the GTT set name&gt;</code>, from other GTT selectors or the <code>rtrv-gttset</code> output&gt; (See Notes 1, 3, 4, and 5)</td>
<td>CDGTTSN = <code>&lt;the GTT set name&gt;</code>, from other GTT selectors or the <code>rtrv-gttset</code> output&gt; (See Notes 1, 3, 4, 5, and 7)</td>
</tr>
<tr>
<td>CGGTTSN = <code>&lt;the GTT set name&gt;</code>, from other GTT selectors or the <code>rtrv-gttset</code> output&gt; (See Notes 1, 3, 4, 5, and 7)</td>
<td>CGGTTSN = <code>&lt;the GTT set name&gt;</code>, from other GTT selectors or the <code>rtrv-gttset</code> output&gt; (See Notes 1, 3, 4, 5, and 7)</td>
<td>CGGTTSN = <code>&lt;the GTT set name&gt;</code>, from other GTT selectors or the <code>rtrv-gttset</code> output&gt; (See Notes 1, 3, 4, 5, and 7)</td>
<td>CGGTTSN = <code>&lt;the GTT set name&gt;</code>, from other GTT selectors or the <code>rtrv-gttset</code> output&gt; (See Notes 1, 3, 4, 5, and 7)</td>
</tr>
<tr>
<td>NP=<code>&lt;numbering plan&gt;</code> (See Notes 2 and 8) or NPV = <code>&lt;numbering plan value&gt;</code> (See Notes 2 and 8)</td>
<td>NP=<code>&lt;numbering plan&gt;</code> (See Notes 2 and 8) or NPV = <code>&lt;numbering plan value&gt;</code> (See Notes 2 and 8)</td>
<td>NP=<code>&lt;numbering plan&gt;</code> (See Notes 2 and 8) or NPV = <code>&lt;numbering plan value&gt;</code> (See Notes 2 and 8)</td>
<td>NP=<code>&lt;numbering plan&gt;</code> (See Notes 2 and 8) or NPV = <code>&lt;numbering plan value&gt;</code> (See Notes 2 and 8)</td>
</tr>
<tr>
<td>NAI = <code>&lt;nature of address indicator&gt;</code> (See Notes 2 and 8) or</td>
<td>NAI = <code>&lt;nature of address indicator&gt;</code> (See Notes 2 and 8) or</td>
<td>NAI = <code>&lt;nature of address indicator&gt;</code> (See Notes 2 and 8) or</td>
<td>NAI = <code>&lt;nature of address indicator&gt;</code> (See Notes 2 and 8) or</td>
</tr>
<tr>
<td>Optional Parameters</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SELID = &lt;SELID value - 0 to 65534&gt; (See Notes 4 and 7)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SELID = &lt;SELID value - 0 to 65534&gt; (See Notes 4 and 7)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SELID = &lt;SELID value - 0 to 65534&gt; (See Notes 4 and 7)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LSN = The name of the linkset from other GTT selectors or the rtrv-ls output&gt; (See Notes 4, 6, and 7)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LSN = The name of the linkset from other GTT selectors or the rtrv-ls output&gt; (See Notes 4, 6, and 7)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LSN = The name of the linkset from other GTT selectors or the rtrv-ls output&gt; (See Notes 4, 6, and 7)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EAGLEGEN=YES (See Note 7)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EAGLEGEN=YES (See Note 7)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- FLOBR - the Flexible Linkset Optional Based Routing feature
- TOBR - the TCAP Opcode Based Routing feature

Notes:
1. The SETTYPE column is shown in the rtrv-gttset output. These GTT sets can provisioned in the database and assigned to a GTT selector with either the cdgttsn or cggttsn parameters.
   - CDGTA GTT sets
   - CDSSN GTT sets
   - DPC GTT sets
   - OPCODE GTT sets
2. Refer to Table 94: NAIV/NAI Mapping for the nai and naiv parameter values. Refer to Table 95: NPV/NP Mapping for the np and npv parameter values.
   - The value dflt cannot be specified for the np/npv or nai/naiv parameters.
   - Each translation type (TT) and NP (NPV) combination can have a maximum of five different NAI (NAIV) assigned to it. The TT, NP (NPV), and NAI (NAIV) combination can have more than five entries as long as different CGSSN and SELID values are assigned to each entry.
3. If the gti/gti2 parameter is specified, the domain of the new GTT set must be ANSI. If the gti/gtin/gtiis/gtins/gtin24 parameter is specified, the domain of the new GTT set must be ITU. The domain of the GTT set can be CROSS, regardless of the value of the gti parameter.
4. Multiple entries can be assigned to a selector only if the selid or lsn parameter values are different for each entry.
5. If the GTT selector contains one GTT set, another GTT set can be added to the GTT selector. If the GTT selector contains an entry in the CDPA GTTSET column, the other GTT set is added by specifying the cggttsn parameter. If the GTT selector contains an entry in the CGPA GTTSET column, the other GTT set is added by specifying the cdgttsn parameter.
6. The domain of the linkset, ANSI, ITU-I, ITU-N, or ITU-N24, must be the same as the domain of the gti/gtin/gtiis/gtins/gtin24 parameter.
7. If the eaglegen=yes parameter is specified for the GTT selector, the cggttsn, selid, and lsn parameters cannot be specified for the GTT selector.

8. These combinations of the np, npv, nai, and naiiv parameters can be specified together in the ent-gttsel command.
   - np - nai
   - np - naiv
   - npv - nai
   - npv - naiv

Table 89: Add GTT Selector Parameter Combinations - OBSR Enabled, and FLOBR and TOBR Enabled and Turned On

<table>
<thead>
<tr>
<th>Mandatory Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>GTI/GTIA/GTII/GTIIIS/GTIN/GTIN24 = 4 (See Note 3)</td>
</tr>
<tr>
<td>GTIIS/GTIN/GTINS/GTIN24 = 2 (See Note 3)</td>
</tr>
<tr>
<td>GTIIS/GTIN/GTINS/GTIN24 = 0 (See Note 3)</td>
</tr>
<tr>
<td>CDGTTSN = &lt;the GTT set name&gt;, from other GTT selectors or the rtrv-gttset output&gt; (See Notes 1, 3, 4, 5, and 8)</td>
</tr>
<tr>
<td>TT = &lt;the translation type - 0 to 255&gt;</td>
</tr>
<tr>
<td>TT = &lt;translation type - 0 to 255&gt;</td>
</tr>
<tr>
<td>CCGTTSN = &lt;the GTT set name&gt;, from other GTT selectors or the rtrv-gttset output&gt; (See Notes 1, 3, 4, 5, and 8)</td>
</tr>
<tr>
<td>CCGTTSN = &lt;the GTT set name&gt;, from other GTT selectors or the rtrv-gttset output&gt; (See Notes 1, 3, 4, 5, and 8)</td>
</tr>
<tr>
<td>CCGTTSN = &lt;the GTT set name&gt;, from other GTT selectors or the rtrv-gttset output&gt; (See Notes 1, 3, 4, 5, and 8)</td>
</tr>
<tr>
<td>NP=&lt;numbering plan&gt; (See Notes 2 and 9) or</td>
</tr>
<tr>
<td>NPV = &lt;numbering plan value&gt; (See Notes 2 and 9)</td>
</tr>
<tr>
<td>NAI = &lt;nature of address indicator&gt; (See Notes 2 and 9) or</td>
</tr>
</tbody>
</table>
### Optional Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SELID</td>
<td>&lt;SELID value - 0 to 65534&gt; (See Notes 4 and 7)</td>
</tr>
<tr>
<td>CGSSN</td>
<td>&lt;CGSSN value - 0 to 255&gt; (See Notes 7 and 8)</td>
</tr>
<tr>
<td>LSN</td>
<td>The name of the linkset from other GTT selectors or the \texttt{rtrv-ls output} (See Notes 4, 6, and 7)</td>
</tr>
</tbody>
</table>

**Notes:**

1. The \texttt{SETTYPE} column is shown in the \texttt{rtrv-gttset} output. These GTT sets can be provisioned in the database and assigned to a GTT selector with either the \texttt{cdgttsn} or \texttt{cggttsn} parameters.
   - CDGTA GTT sets
   - CGGTA GTT sets
   - CGPC GTT sets
   - CGSSN GTT sets
   - OPC GTT sets
   - CDSSN GTT sets
   - DPC GTT sets
   - OPCODE GTT sets

2. Refer to \textit{Table 94: NAIV/NAI Mapping} for the \texttt{nai} and \texttt{naiv} parameter values. Refer to \textit{Table 95: NPV/NP Mapping} for the \texttt{np} and \texttt{npv} parameter values.
   - The value \texttt{dflt} cannot be specified for the \texttt{np/npv} or \texttt{nai/naiv} parameters.
   - Each translation type (TT) and NP (NPV) combination can have a maximum of five different NAI (NAIV) assigned to it. The TT, NP (NPV), and NAI, (NAIV) combination can have more than five entries as long as different CGSSN and SELID values are assigned to each entry.

3. If the \texttt{gti/gtia} parameter is specified, the domain of the new GTT set must be ANSI. If the \texttt{gtii/gtin/gtiis/gtins/gtin24} parameter is specified, the domain of the new GTT set must be ITU. The domain of the GTT set can be CROSS, regardless of the value of the \texttt{gti} parameter.
4. Multiple entries can be assigned to a selector only if the \texttt{selid}, \texttt{lsn}, or \texttt{cgssn} parameter values are different for each entry.

5. If the GTT selector contains one GTT set, another GTT set can be added to the GTT selector. If the GTT selector contains an entry in the CDPA GTTSET column, the other GTT set is added by specifying the \texttt{cggttsn} parameter. If the GTT selector contains an entry in the CGPA GTTSET column, the other GTT set is added by specifying the \texttt{cdgttsn} parameter. If the GTT selector contains an entry in the CGPA GTTSET column and the GTT selector contains a \texttt{cgssn} value, the \texttt{cdgttsn} parameter cannot be specified.

6. The domain of the linkset, ANSI, ITU-I, ITU-N, or ITU-N24, must be the same as the domain of the \texttt{gtii/gtin/gtiis/gtin24} parameter.

7. If the \texttt{eaglegen=yes} parameter is specified for the GTT selector, the \texttt{cggttsn}, \texttt{selid}, \texttt{cgssn}, and \texttt{lsn} parameters cannot be specified for the GTT selector.

8. The \texttt{cgssn} parameter can be specified only if the \texttt{cggttsn} parameter is specified and without the \texttt{cdgttsn} parameter.

9. These combinations of the \texttt{np}, \texttt{npv}, \texttt{nai}, and \texttt{naiv} parameters can be specified together in the \texttt{ent-gttsel} command.
   - \texttt{np - nai}
   - \texttt{np - naiv}
   - \texttt{npv - nai}
   - \texttt{npv - naiv}

For this example, enter these commands.

\begin{verbatim}
ent-gttsel:gtii=4:tt=0:cdgttsn=cdgtt2:selid=50:lsn=lsni1:cggttsn=opcode6
 :np=e164:nai=intl
ent-gttsel:gtii=4:tt=0:selid=50:lsn=lsni1:cggttsn=cggta10:np=e164
 :nai=intl:cgssn=25
\end{verbatim}

When these commands have successfully completed, this message appears.

\begin{verbatim}
rlghncxa03w 09-05-07 00:29:31 GMT EAGLE5 41.0.0
ENT-GTTSEL: MASP A COMPLTD
\end{verbatim}

6. Verify the changes using the \texttt{rtrv-gttsel} command with the \texttt{gti}, \texttt{tt}, and either the \texttt{gttsn}, \texttt{cdgtasn}, \texttt{cggtasn}, \texttt{cgpcsn}, \texttt{cdgttsn}, or \texttt{cggttsn} parameters and values specified in \textit{Step 5}.

For this example, enter these commands.

\begin{verbatim}
rtrv-gttsel:gtii=4:tt=0:cdgttsn=cdgtt2:cggttsn=opcode6
\end{verbatim}

This is an example of the possible output.

\begin{verbatim}
rlghncxa03w 09-05-07 00:30:31 GMT EAGLE5 41.0.0
GTI    CG    CDPA    CGPA
INTL TT NP NAI SSN SELID LSN GTTSET GTTSET
4   0   e164   intl   any 50   lsni1  cdgtt2   (cdgta)  opcode6   (opcde)
\end{verbatim}

\begin{verbatim}
rtrv-gttsel:gtii=4:tt=0:cggttsn=cggta10
\end{verbatim}
7. Backup the new changes using the chg-db:action=backup:dest=fixed command. These messages should appear, the active Maintenance and Administration Subsystem Processor (MASP) appears first.

```
 BACKUP (FIXED) : MASP A - Backup starts on active MASP.
 BACKUP (FIXED) : MASP A - Backup on active MASP to fixed disk complete.
 BACKUP (FIXED) : MASP A - Backup starts on standby MASP.
 BACKUP (FIXED) : MASP A - Backup on standby MASP to fixed disk complete.
```

Removing a GTT Selector

Use the following procedure to delete the global title selector using the dlt-gttsel command. The `dlt-gttsel` command uses these parameters.

:gti/gtia/gtii/gtiis/gtin/gtins/gtin24 – The global title indicator. The GTI defines the domain as shown in this list.

- `gti` and `gtia` - ANSI global title indicator with the values 0 or 2
- `gtii` - ITU international (ITU-I) global title indicator with the values, 0, 2, or 4
- `gtiis` - ITU international (ITU-I) spare global title indicator with the values, 0, 2, or 4
- `gtin` - ITU national (ITU-N) global title indicator with the values 0, 2, or 4.
- `gtins` - ITU national (ITU-N) spare global title indicator with the values 0, 2, or 4.
- `gtin24` - ITU-N24 spare global title indicator with the values 0, 2, or 4.

:cgsn – The CgPA subsystem number that is assigned to the GTT selector.

:eagle-gen – Indicates whether the GTT selector is used by messages generated by the EAGLE 5 ISS. If the GTT selector is used by messages generated by the EAGLE 5 ISS, the entry `Eagle-Gen` is shown in the LSN column of the `rtrv-gttsel` output.

:lsn – The name of the linkset that is assigned to the GTT selector.

:selid – The selector ID that is assigned to the GTT selector.

:tt – The global title translation type. (0-255)

:nai – The nature of address indicator.

:naiv – The nature of address indicator value. (0-127) (See Table 90: NAIV/NAI Mapping for NAI/NAIV mapping)

**Note:** The nature of address indicator parameters (naiv or nai) can be specified by supplying either a mnemonic or an explicit value. At no time may both the mnemonic and the explicit value be specified at the same time for the same parameter. You can specify either the naiv or nai parameter. Table 90: NAIV/NAI Mapping shows the mapping between the naiv and the nai parameters.
Table 90: NAIV/NAI Mapping

<table>
<thead>
<tr>
<th>NAIV</th>
<th>NAI</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>--</td>
<td>Unknown</td>
</tr>
<tr>
<td>1</td>
<td>Sub</td>
<td>Subscriber Number</td>
</tr>
<tr>
<td>2</td>
<td>Rsvd</td>
<td>Reserved for national use</td>
</tr>
<tr>
<td>3</td>
<td>Natl</td>
<td>National significant number</td>
</tr>
<tr>
<td>4</td>
<td>Intl</td>
<td>International number</td>
</tr>
<tr>
<td>5-127</td>
<td>---</td>
<td>Spare</td>
</tr>
</tbody>
</table>

:np – The numbering plan.

:npv – The numbering plan value. (0-15) (See Table 91: NPV/NP Mapping for NP/NPV mapping)

Note: The numbering plan parameters (npv or np) can be specified by supplying either a mnemonic or an explicit value. At no time may both the mnemonic and the explicit value be specified at the same time for the same parameter. You can specify either the npv or np parameter. Table 91: NPV/NP Mapping shows the mapping between the npv and the np parameters.

Table 91: NPV/NP Mapping

<table>
<thead>
<tr>
<th>NPV</th>
<th>NP</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>--</td>
<td>Unknown</td>
</tr>
<tr>
<td>1</td>
<td>E164</td>
<td>ISDN/telephony numbering plan</td>
</tr>
<tr>
<td>2</td>
<td>Generic</td>
<td>Generic numbering plan</td>
</tr>
<tr>
<td>3</td>
<td>X121</td>
<td>Data numbering plan</td>
</tr>
<tr>
<td>4</td>
<td>F69</td>
<td>Telex numbering plan</td>
</tr>
<tr>
<td>5</td>
<td>E210</td>
<td>Maritime mobile numbering plan</td>
</tr>
<tr>
<td>6</td>
<td>E212</td>
<td>Land mobile numbering plan</td>
</tr>
<tr>
<td>7</td>
<td>E214</td>
<td>ISDN/mobile numbering plan</td>
</tr>
<tr>
<td>8</td>
<td>Private</td>
<td>Private network or network-specific numbering plan</td>
</tr>
</tbody>
</table>
1. Display the GTT selectors assigned to a specified domain using the `rtrv-gttsel` command. This is an example of the possible output.

   rlghncxa03w 10-07-07 00:28:31 GMT EAGLE5 42.0.0

<table>
<thead>
<tr>
<th>GTI</th>
<th>CG</th>
<th>CDPA</th>
<th>CGPA</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANSI</td>
<td>TT</td>
<td>NP</td>
<td>NAI</td>
</tr>
<tr>
<td>2</td>
<td>75</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>2</td>
<td>100</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>2</td>
<td>150</td>
<td>--</td>
<td>---</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>GTI</th>
<th>CG</th>
<th>CDPA</th>
<th>CGPA</th>
</tr>
</thead>
<tbody>
<tr>
<td>INT</td>
<td>TT</td>
<td>NP</td>
<td>NAI</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>--</td>
<td>none</td>
</tr>
<tr>
<td>2</td>
<td>87</td>
<td>--</td>
<td>none</td>
</tr>
<tr>
<td>2</td>
<td>100</td>
<td>--</td>
<td>none</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>dflt</td>
<td>---</td>
</tr>
<tr>
<td>4</td>
<td>97</td>
<td>e210</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>101</td>
<td>e210</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>150</td>
<td>e210</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>219</td>
<td>e210</td>
<td>11</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>GTI</th>
<th>CG</th>
<th>CDPA</th>
<th>CGPA</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAT</td>
<td>TT</td>
<td>NP</td>
<td>NAI</td>
</tr>
<tr>
<td>2</td>
<td>20</td>
<td>--</td>
<td>none</td>
</tr>
</tbody>
</table>

If the Origin-based SCCP Routing feature is not enabled and the Flexible Linkset Optional Based Routing feature is not enabled and turned on, the CGSSN, LSN, CDPA GTTSET and CGPA GTTSET columns are not shown. The GTTSET column is shown in place of the CDPA GTTSET and CGPA GTTSET columns. The GTI ANSI, GTI INT, GTI INTS, GTI NAT, GTI NATS and GTI N24 are replaced by the GTIA, GTII, GTIIS, GTIN, GTINS, GTIN24 columns.

2. Delete the GTT selector from the database using the `dlt-gttsel` command.
Table 92: Remove GTT Selector Parameter Combinations - GTI=2 or GTI=4 and Table 93: Remove GTT Selector Parameter Combinations - GTI=0 shows the parameter combinations that can be used with the dlt-gttsel command.

Table 92: Remove GTT Selector Parameter Combinations - GTI=2 or GTI=4

<table>
<thead>
<tr>
<th>GTT Set Name Column Header in the RTRV-GTTSSEL Output - GTTSN</th>
<th>GTT Set Column Header in the RTRV-GTTSSEL Output - CDPA GTTSET and CGPA GTTSET</th>
</tr>
</thead>
<tbody>
<tr>
<td>:gti/gtia/ gtiin/ gtiis/gtin/gtin24=2</td>
<td>:gti/gtia/ gtiin/ gtiis/gtin/gtin24=2</td>
</tr>
<tr>
<td>:gtiis/gtin/gtin24=4</td>
<td>:gti/gtia/ gtiin/ gtiis/gtin/gtin24=2</td>
</tr>
<tr>
<td>:gti/gtia/ gtiin/ gtiis/gtin/gtin24=2</td>
<td>:gti/gtia/ gtiin/ gtiis/gtin/gtin24=2</td>
</tr>
<tr>
<td>:gtn24=2</td>
<td>:gtn24=2</td>
</tr>
<tr>
<td>:tt=&lt;the translation type assigned to the GTT selector&gt; (See Note 1)</td>
<td>:tt=&lt;the translation type assigned to the GTT selector&gt; (See Note 1)</td>
</tr>
<tr>
<td>:selid&lt;the SELID value assigned to the GTT selector&gt; (See Notes 1 and 2)</td>
<td>:selid&lt;the SELID value assigned to the GTT selector&gt; (See Notes 1 and 2)</td>
</tr>
<tr>
<td>:nai/naiv=&lt;the NAI value assigned to the GTT selector&gt; (See Notes 1, 2, and 5)</td>
<td>:nai/naiv=&lt;the NAI value assigned to the GTT selector&gt; (See Notes 1, 2, and 5)</td>
</tr>
<tr>
<td>:np/npv=&lt;the NP value assigned to the GTT selector&gt; (See Notes 1, 2, and 5)</td>
<td>:np/npv=&lt;the NP value assigned to the GTT selector&gt; (See Notes 1, 2, and 5)</td>
</tr>
<tr>
<td>:selid&lt;the SELID value assigned to the GTT selector&gt; (See Notes 1, 2, and 4)</td>
<td>:selid&lt;the SELID value assigned to the GTT selector&gt; (See Notes 1, 2, and 4)</td>
</tr>
<tr>
<td>:lsn&lt;the LSN value assigned to the GTT selector&gt; (See Notes 1, 2, and 3)</td>
<td>:lsn&lt;the LSN value assigned to the GTT selector&gt; (See Notes 1, 2, and 3)</td>
</tr>
<tr>
<td>:cgssn&lt;the CGSSN value assigned to the GTT selector&gt; (See Notes 1, 2, and 4)</td>
<td>:cgssn&lt;the CGSSN value assigned to the GTT selector&gt; (See Notes 1, 2, and 4)</td>
</tr>
<tr>
<td>:eaglegen=yes (See Notes 3 and 4)</td>
<td>:eaglegen=yes (See Notes 3 and 4)</td>
</tr>
</tbody>
</table>

Notes 1, 2, and 3
<table>
<thead>
<tr>
<th>GTT Set Name Column Header in the RTRV-GTTSSEL Output - GTTSN</th>
<th>GTT Set Column Header in the RTRV-GTTSSEL Output - CDPA GTTSET and CGPA GTTSET</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>:lsn&lt;the LSN value assigned to the GTT selector&gt; (See Notes 1, 2, 3, and 4)</td>
</tr>
</tbody>
</table>

Notes:

1. The values for these parameters must be entered as shown in the rtrv-gttsel output for the GTT selector that is being removed, except for the nai/naiv and np/npv parameters. Refer to Table 90: NAIV/NAI Mapping and Table 91: NPV/NP Mapping for the values that can be used.

2. If dashes, the value *any*, or the value *none* are shown for this value in the GTT selector, this parameter cannot be specified with the dlt-gttsel command.

3. A GTT selector is used by messages generated by the EAGLE 5 ISS if the value Eagle-Gen is shown in the LSN column for the GTT selector. For this GTT selector, the eaglegen=yes parameter must be specified with the dlt-gttsel command.

4. If the GTT selector contains the value DFLT in the NP and NAI columns of the rtrv-gttsel output, the cgssn, selid, lsn, and eaglegen=yes parameters cannot be specified with the dlt-gttsel command.

5. The nai/naiv and np/npv parameters can be specified in these combinations.

- np - nai
- np - naiv
- npv - nai
- npv - naiv

Table 93: Remove GTT Selector Parameter Combinations - GTI=0

<table>
<thead>
<tr>
<th>GTT Set Name Column Header in the RTRV-GTTSSEL Output - GTTSN</th>
<th>GTT Set Column Header in the RTRV-GTTSSEL Output - CDPA GTTSET and CGPA GTTSET</th>
</tr>
</thead>
<tbody>
<tr>
<td>:gti/gtia/gtiii/gtin/gtins/gtin24=0</td>
<td>:gti/gtia/gtiii/gtin/gtins/gtin24=0</td>
</tr>
<tr>
<td>:selid&lt;the SELID value assigned to the GTT selector&gt; (See Notes 1 and 2)</td>
<td>:selid&lt;the SELID value assigned to the GTT selector&gt; (See Notes 1 and 2)</td>
</tr>
<tr>
<td>:cgssn=&lt;the CGSSN value assigned to the GTT selector&gt; (See Notes 1 and 2)</td>
<td>:lsn&lt;the LSN value assigned to the GTT selector&gt; (See Notes 1 and 2)</td>
</tr>
</tbody>
</table>

Notes:
Changing a GTT Selector

Use the following procedure to change the GTT set assigned to a selector using the `chg-gttsel` command.

The `chg-gttsel` command uses these parameters.

`gti/gtia/gtii/gtiis/gtin/gtins/gtin24` – The global title indicator. The GTI defines the domain as shown in this list.
• gti and gtia - ANSI global title indicator with the values 0 or 2
• gtii - ITU international (ITU-I) global title indicator with the values, 0, 2, or 4
• gtiiis - ITU international (ITU-I) spare global title indicator with the values, 0, 2, or 4
• gtin - ITU national (ITU-N) global title indicator with the values 0, 2, or 4.
• gtins - ITU national (ITU-N) spare global title indicator with the values 0, 2, or 4.
• gtin24 - ITU-N24 spare global title indicator with the values 0, 2, or 4.

:tt – The global title translation type, (0-255). The same translation type value can be specified for multiple GTI values. For example, the translation type value 10 can be assigned to an ANSI GTI, an ITU-I GTI, an ITU-I spare GTI, an ITU-N GTI, an ITU-N spare GTI, and an ITU-N24 GTI.

:nai – The nature of address indicator.

:naiv – The nature of address indicator value. (0-127) (See Table 94: NAIV/NAI Mapping for NAI/NAIV mapping)

Note: The nature of address indicator parameters (naiv or nai) can be specified by supplying either a mnemonic or an explicit value. At no time may both the mnemonic and the explicit value be specified at the same time for the same parameter. You can specify either the naiv or nai parameter. Table 94: NAIV/NAI Mapping shows the mapping between the naiv and the nai parameters.

:np – The numbering plan.

:npv – The numbering plan value. (0-15) (See Table 95: NPV/NP Mapping for NP/NPV mapping)

Note: The numbering plan parameters (npv or np) can be specified by supplying either a mnemonic or an explicit value. At no time may both the mnemonic and the explicit value be specified at the same time for the same parameter. You can specify either the npv or np parameter. Table 95: NPV/NP Mapping shows the mapping between the npv and the np parameters.

:gttsn – the GTT set name.

:cdgtasn – The CDGTA GTT set name or the value none.

:cggtasn – The CGGTA GTT set name or the value none.

:cgpcsn – The CGPC GTT set name or the value none.

:cgssn – The CGPA SSN.

:selid – The selector ID.

:cdgttsn – The CDGTA GTT set name or the value none.

:cggttsn – The CGGTA GTT set name or the value none.

:eaglegen – Indicates whether the GTT selector is used by messages generated by the EAGLE 5 ISS. If the GTT selector is used by messages generated by the EAGLE 5 ISS, the entry Eagle-Gen is shown in the LSN column of the rtrv-gttsel output.

:lsn – The name of the linkset that is assigned to the GTT selector.

These tables show the parameter combinations that can be used in this procedure.

- Table 96: Change GTT Selector Parameter Combinations - EGTT Only
- Table 97: Change GTT Selector Parameter Combinations - Origin-Based SCCP Routing Enabled Only
- Table 98: Change GTT Selector Parameter Combinations - CDGTTSN and CGGTTSN Columns Shown in the RTRV-GTTSEL Output
Table 94: NAIV/NAI Mapping

<table>
<thead>
<tr>
<th>NAIV</th>
<th>NAI</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>--</td>
<td>Unknown</td>
</tr>
<tr>
<td>1</td>
<td>Sub</td>
<td>Subscriber Number</td>
</tr>
<tr>
<td>2</td>
<td>Rsvd</td>
<td>Reserved for national use</td>
</tr>
<tr>
<td>3</td>
<td>Natl</td>
<td>National significant number</td>
</tr>
<tr>
<td>4</td>
<td>Intl</td>
<td>International number</td>
</tr>
<tr>
<td>5-127</td>
<td>---</td>
<td>Spare</td>
</tr>
</tbody>
</table>

Table 95: NPV/NP Mapping

<table>
<thead>
<tr>
<th>NPV</th>
<th>NP</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>--</td>
<td>Unknown</td>
</tr>
<tr>
<td>1</td>
<td>E164</td>
<td>ISDN/telephony numbering plan</td>
</tr>
<tr>
<td>2</td>
<td>Generic</td>
<td>Generic numbering plan</td>
</tr>
<tr>
<td>3</td>
<td>X121</td>
<td>Data numbering plan</td>
</tr>
<tr>
<td>4</td>
<td>F69</td>
<td>Telex numbering plan</td>
</tr>
<tr>
<td>5</td>
<td>E210</td>
<td>Maritime mobile numbering plan</td>
</tr>
<tr>
<td>6</td>
<td>E212</td>
<td>Land mobile numbering plan</td>
</tr>
<tr>
<td>7</td>
<td>E214</td>
<td>ISDN/mobile numbering plan</td>
</tr>
<tr>
<td>8</td>
<td>Private</td>
<td>Private network or network-specific numbering plan</td>
</tr>
<tr>
<td>9-15</td>
<td>---</td>
<td>Spare</td>
</tr>
</tbody>
</table>

1. Display the GTT selectors in the database by entering the `rtrv-gttsel` command.

   This is an example of the possible output.

   rlghncxa03w 09-05-07 00:28:31 GMT EAGLE5 41.0.0
If the GTTSN column is shown in the `rtrv-gttsel` output, only the EGTT feature is turned on. Continue the procedure by performing one of these steps.

- If the new GTT set that will be assigned to the GTT selector is shown in the `rtrv-gttsel` output, continue the procedure with Step 4.
- If the new GTT set that will be assigned to the GTT selector is not shown in the `rtrv-gttsel` output, continue the procedure with Step 3.

If the CDPA GTTSET and CGPA GTTSET columns are shown in the `rtrv-gttsel` output, continue the procedure with Step 2.

2. Display the features that are enabled by entering the `rtrv-ctrl-feat` command.

This is an example of the possible output.

```
rlghncxa03w 09-05-07 00:28:31 GMT EAGLE5 41.0.0
The following features have been permanently enabled:

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Partnum</th>
<th>Status</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCCP Loop Detection</td>
<td>893016501</td>
<td>on</td>
<td>--------</td>
</tr>
<tr>
<td>SCCP Conversion</td>
<td>893012001</td>
<td>off</td>
<td>--------</td>
</tr>
<tr>
<td>HC-MIM SLK Capacity</td>
<td>893012707</td>
<td>on</td>
<td>64</td>
</tr>
<tr>
<td>Origin Based SCCP Routing</td>
<td>893014301</td>
<td>on</td>
<td>--------</td>
</tr>
<tr>
<td>TCAP Opcode Based Routing</td>
<td>893027801</td>
<td>on</td>
<td>--------</td>
</tr>
<tr>
<td>Flex Lset Optnl Based Rtg</td>
<td>893027701</td>
<td>on</td>
<td>--------</td>
</tr>
<tr>
<td>VGTT with 16 GTT lengths</td>
<td>893024801</td>
<td>on</td>
<td>--------</td>
</tr>
<tr>
<td>TOBR Opcode Quantity</td>
<td>893027907</td>
<td>on</td>
<td>1000000</td>
</tr>
</tbody>
</table>
```

The following features have been temporarily enabled:
Continue the procedure by performing one of these steps.

- If the new GTT set that will be assigned to the GTT selector is shown in the `rtrv-gttsel` output, continue the procedure with Step 4.
- If the new GTT set that will be assigned to the GTT selector is not shown in the `rtrv-gttsel` output, continue the procedure with Step 3.

3. Display the GTT set names in the database using the `rtrv-gttset` command. This is an example of the possible output.

```
rghncxa03w 09-07-07 00:27:31 GMT EAGLE5 41.1.0

GTTSN NETDOM SETTYPE NDGT
abcd1234 itu CGGTA 12
imsi itu CDGTA 15
lidb ansi CDGTA 10
t800 ansi CGGTA 6
si000 itu CDGTA 15
s1000 itu CGPC -

GTT-SET table is (6 of 2000) 1% full.
```

If the Origin-Based SCCP Routing feature is enabled, or if the TCAP Opcode Based Routing feature is enabled and turned on, the SETTYPE column is shown in the `rtrv-gttset` output as shown in the following example.

```
rghncxa03w 09-07-07 00:29:31 GMT EAGLE5 41.1.0

GTTSN NETDOM SETTYPE NDGT
abcd1234 itu CGGTA 12
imsi itu CDGTA 15
lidb ansi CDGTA 10
t800 ansi CGGTA 6
si000 itu CDGTA 15
s1000 itu CGPC -

GTT-SET table is (6 of 2000) 1% full.
```

If the desired GTT set name is shown in the `rtrv-gttset` output, continue the procedure with Step 4.

If the desired GTT set name is not shown in the `rtrv-gttset` output, perform `Adding a GTT Set` to add the desired GTT set. After the GTT set has been added, continue the procedure with Step 4.

4. Change the selector using the `chg-gttsel` command.

These tables show the parameter combinations that can be used in this procedure, based on the features that are turned on, enabled, or enabled and turned on, shown in Step 1 and Step 2.

- Table 96: Change GTT Selector Parameter Combinations - EGTT Only
- Table 97: Change GTT Selector Parameter Combinations - Origin-Based SCCP Routing Enabled Only
Table 96: Change GTT Selector Parameter Combinations - EGTT Only

<table>
<thead>
<tr>
<th>GTI/GTIA/GTII/ GTIIS/GTIN/GTINS/ GTIN24 = 0 (See Note 2)</th>
<th>GTI/GTIA/GTII/ GTIIS/GTIN/GTINS/ GTIN24 = 2 (See Note 2)</th>
<th>GTI/GTII/GTIN/GTINS/ GTIN24 = 4 (See Note 2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SELID = &lt;the current SELID value&gt; (See Note 3)</td>
<td>TT = &lt; current translation type&gt;</td>
<td>TT = &lt; current translation type&gt;</td>
</tr>
<tr>
<td>GTTSN = &lt;the new GTT set name&gt; (See Note 2)</td>
<td>GTTSN = &lt;the new GTT set name&gt; (See Note 2)</td>
<td>GTTSN = &lt;the new GTT set name&gt; (See Note 2)</td>
</tr>
<tr>
<td>SELID = &lt;the current SELID value&gt; (See Note 3)</td>
<td>NP = &lt;current numbering plan&gt; (See Note 1) or NPV = &lt;current numbering plan value&gt; (See Note 1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NAI = &lt;current nature of address indicator&gt; (See Note 1) or NAIV = &lt;current nature of address indicator value&gt; (See Note 1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SELID = &lt;the current SELID value&gt; (See Note 3)</td>
<td></td>
</tr>
</tbody>
</table>

Notes:

1. Refer to Table 94: NAI/NBV Mapping for the nai and naiv parameter values. Refer to Table 95: NPV/NPV Mapping for the np and npv parameter values. These combinations of the np, npv, nai, and naiv parameters can be specified together in the chg-gttsel command.
   - np - nai
   - np - naiv
   - npv - nai
   - npv - naiv

2. If the gti/gtia parameter is specified, the domain of the new GTT set must be ANSI. If the gtiis/gtin/gtiis/gtins/gtin24 parameter is specified, the domain of the new GTT set must be ITU. The domain of the GTT set can be CROSS, regardless of the value of the gti parameter.

3. If the value none is shown in the SELID column of the rtrv-gttsel output, the selid parameter cannot be specified.
Table 97: Change GTT Selector Parameter Combinations - Origin-Based SCCP Routing Enabled Only

<table>
<thead>
<tr>
<th>GTI/GTIA/GTII/GTII/GTIN/GTINS/GTIN24 = 0 (See Note 6)</th>
<th>GTI/GTIA/GTII/GTII/GTIN/GTINS/GTIN24 = 2 (See Note 6)</th>
<th>GTI/GTII/GTIN/GTINS/GTIN24 = 4 (See Note 6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CGSSN = &lt;current CGSSN value&gt; (See Note 4)</td>
<td>TT = &lt;current translation type&gt;</td>
<td>TT = &lt;current translation type&gt;</td>
</tr>
<tr>
<td>SELID = &lt;current SELID value&gt; (See Note 4)</td>
<td>CGSSN = &lt;current CGSSN value&gt; (See Note 4)</td>
<td>CGSSN = &lt;current CGSSN value&gt; (See Note 4)</td>
</tr>
<tr>
<td>CDGTASN = &lt;the new CDGTA GTT set name&gt; or the value none (See Notes 1, 2, 3, 6, and 7)</td>
<td>SELID = &lt;current SELID value&gt; (See Note 4)</td>
<td>SELID = &lt;current SELID value&gt; (See Note 4)</td>
</tr>
<tr>
<td>CGGTASN = &lt;the new CGGTA GTT set name&gt; or the value none (See Notes 1, 2, 3, 6, and 7)</td>
<td>CDGTASN = &lt;the new CDGTA GTT set name&gt; or the value none (See Notes 1, 2, 3, 6, and 7)</td>
<td>NP= &lt;current numbering plan&gt; (See Note 5) or NPV = &lt;current numbering plan value&gt; (See Note 5)</td>
</tr>
<tr>
<td>CGPCSN = &lt;the new CGPC GTT set name&gt; or the value none (See Notes 1, 2, 3, 6, and 7)</td>
<td>CGGTASN = &lt;the new CGGTA GTT set name&gt; or the value none (See Notes 1, 2, 3, 6, and 7)</td>
<td>NAI = &lt;current nature of address indicator&gt; (See Note 5) or NAIV = &lt;current nature of address indicator value&gt; (See Note 5)</td>
</tr>
<tr>
<td></td>
<td>CGPCSN = &lt;the new CGPC GTT set name&gt; or the value none (See Notes 1, 2, 3, 6, and 7)</td>
<td>CDGTASN = &lt;the new CDGTA GTT set name&gt; or the value none (See Notes 1, 2, 3, 6, and 7)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CGGTASN = &lt;the new CGGTA GTT set name&gt; or the value none (See Notes 1, 2, 3, 6, and 7)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CGPCSN = &lt;the new CGPC GTT set name&gt; or the value none (See Notes 1, 2, 3, 6, and 7)</td>
</tr>
</tbody>
</table>

Notes:
1. If there are two GTT sets assigned to the GTT selector, the value none can be specified for the cdgtasn, cggtasn, or cgpcsn parameters. This will remove the GTT set from the GTT selector. The GTT selector must contain one GTT set.

2. If only a single entry exists for the selector, only the GTT set name can be changed. The value none cannot be specified for the cdgtasn, cggtasn, or cgpcsn parameters.

3. CDGTA GTT sets are shown in the CDPA GTTSET column of the rtrv-gttsel output. CGGTA and CGPC GTT sets are shown in the CGPA GTTSET column of the rtrv-gttsel output.

4. If dashes or the values any or none are shown in the NP, NAI, CGSSN, SELID, or LSN columns of the rtrv-gttsel output, the parameter corresponding to that column cannot be specified.

5. Refer to Table 94: NAIV/NAI Mapping for the nai and naiv parameter values. Refer to Table 95: NPV/NP Mapping for the np and npv parameter values. These combinations of the np, npv, nai, and naiv parameters can be specified together in the chg-gttsel command.

   • np - nai
   • np - naiv
   • npv - nai
   • npv - naiv

6. If the gti/gtia parameter is specified, the domain of the new GTT set must be ANSI. If the gtii/gtin/gtiis/gtins/gtin24 parameter is specified, the domain of the new GTT set must be ITU. The domain of the GTT set can be CROSS, regardless of the value of the gti parameter.

7. A GTT selector can contain the following combinations of GTT set name parameters.

   • CDGTASN only
   • CGGTASN only
   • CGPCSN only
   • CDGTASN and CGGTASN
   • CDGTASN and CGPCSN

---

Table 98: Change GTT Selector Parameter Combinations - CDGTTSN and CGGTTSN Columns Shown in the RTRV-GTTSSEL Output

<table>
<thead>
<tr>
<th>GTI/GTIA/GTII/</th>
<th>GTI/GTIA/GTII/</th>
<th>GTI/GTIA/GTII/</th>
</tr>
</thead>
<tbody>
<tr>
<td>GTIIS/GTIN/GTINS/</td>
<td>GTIIS/GTIN/GTINS/</td>
<td>GTIIS/GTIN/GTINS/</td>
</tr>
<tr>
<td>GTIN24 = 0 (See Note 6)</td>
<td>GTIN24 = 2 (See Note 6)</td>
<td>GTIN24 = 4 (See Note 6)</td>
</tr>
<tr>
<td>CGSSN = &lt;current CGSSN value&gt; (See Notes 3, 4, and 7)</td>
<td>TT = &lt; current translation type&gt;</td>
<td>TT = &lt; current translation type&gt;</td>
</tr>
<tr>
<td>SELID = &lt;current SELID value&gt; (See Notes 3 and 4)</td>
<td>CGSSN = &lt;current CGSSN value&gt; (See Notes 3, 4, and 7)</td>
<td>CGSSN = &lt;current CGSSN value&gt; (See Notes 3, 4, and 7)</td>
</tr>
<tr>
<td>LSN = &lt;current LSN value&gt; (see Notes 3 and 4)</td>
<td>SELID = &lt;current SELID value&gt; (See Notes 3 and 4)</td>
<td>SELID = &lt;current SELID value&gt; (See Notes 3 and 4)</td>
</tr>
</tbody>
</table>
### Enhanced Global Title Translation (EGTT) Configuration

<table>
<thead>
<tr>
<th>CDGTTSN = &lt;the new CDGTA GTT set name&gt; or the value none (See Notes 1, 2, 3, 6, 7, 8, 9, and 10)</th>
<th>LSN = &lt;current LSN value&gt; (see Notes 3 and 4)</th>
<th>LSN = &lt;current LSN value&gt; (see Notes 3 and 4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CGGTTSN = &lt;the new CGGTA GTT set name&gt; or the value none (See Notes 1, 2, 3, 6, 8, 9, and 10)</td>
<td>EAGLEGEN = YES (see Note 3)</td>
<td>EAGLEGEN = YES (see Note 3)</td>
</tr>
<tr>
<td>CDGTTSN = &lt;the new CDGTA GTT set name&gt; or the value none (See Notes 1, 2, 3, 6, 7, 8, 9, and 10)</td>
<td>NP = &lt;current numbering plan&gt; (See Note 5) or NPV = &lt;current numbering plan value&gt; (See Note 5)</td>
<td></td>
</tr>
<tr>
<td>CGGTTSN = &lt;the new CGGTA GTT set name&gt; or the value none (See Notes 1, 2, 3, 6, 8, 9, and 10)</td>
<td>NAI = &lt;current nature of address indicator&gt; (See Note 5) or NAIV = &lt;current nature of address indicator value&gt; (See Note 5)</td>
<td></td>
</tr>
<tr>
<td>CDGTTSN = &lt;the new CDGTA GTT set name&gt; or the value none (See Notes 1, 2, 3, 6, 7, 8, 9, and 10)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CGGTTSN = &lt;the new CGGTA GTT set name&gt; or the value none (See Notes 1, 2, 3, 6, 8, 9, and 10)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Notes:**

1. If there are two GTT sets assigned to the GTT selector, the value *none* can be specified for the cdgttsn or cggttsn parameters. This will remove the GTT set from the GTT selector. The GTT selector must contain one GTT set.

2. If only a single entry exists for the selector, only the GTT set name can be changed. The value *none* cannot be specified for the cdgttsn or cggttsn parameters.

3. If the LSN column contains the value *Eagle-Gen*, the eaglegen=yes parameter must be specified with the chg-gttsel command. The cdgttsn, cgssn, selid, and lsn parameters cannot be specified with the chg-gttsel command. The new GTT set for this GTT selector must be a CDGTA GTT set and can be specified only with the cdgttsn parameter.

4. If dashes or the values *any* or *none* are shown in the NP, NAI, CGSSN, SELID, or LSN columns of the rtrv-gttsel output, the parameter corresponding to that column cannot be specified.
5. Refer to Table 94: NAIV/NAI Mapping for the nai and naiv parameter values. Refer to Table 95: NPV/NP Mapping for the np and npv parameter values. These combinations of the np, npv, nai, and naiv parameters can be specified together in the chg-gttsel command.

- np - nai
- np - naiv
- npv - nai
- npv - naiv

6. If the gti/gtia parameter is specified, the domain of the new GTT set must be ANSI. If the gtii/gtiis/gtins/gtin24 parameter is specified, the domain of the new GTT set must be ITU. The domain of the GTT set can be CROSS, regardless of the value of the gti parameter.

7. If the GTT selector contains a CGSSN value, the CDGTTSN parameter cannot be specified for the GTT selector. The CGSSN parameter cannot be specified with the CDGTTSN parameter. The CGSSN parameter can be specified only if the Origin-Based SCCP Routing feature is enabled.

8. If the TCAP Opcode Based Routing feature is enabled and turned on, CDGTA, CDSSN, DPC, and OPCODE GTT sets, shown with the entries CDGTA, CDSSN, DPC, and OPCODE in the SETTYPE column in the rtrv-gttset output, can be assigned to the GTT selector.

9. If the Origin-Based SCCP Routing feature is enabled, CDGTA, CGGTA, CGPC, CGSSN, and OPC GTT sets, shown with the entries CDGTA, CGGTA, CGPC, CGSSN, and OPC in the rtrv-gttset output, can be assigned to the GTT selector.

10. If only the Flexible Linkset Optional Based Routing feature is enabled and turned on, CDGTA, CDSSN, and DPC GTT sets, shown with the entries CDGTA, CDSSN, and DPC in the SETTYPE column in the rtrv-gttset output, can be assigned to the GTT selector.

For this example, enter this command.

```plaintext
chg-gttsel:gtii=4:tt=0:np=e210:naiv=4:cdgttsn=s1000:cggttsn=abcd1234
```

After the successful completion of this command, this message appears:

```
rlghncxa03w 06-10-07 00:28:31 GMT EAGLE5 36.0.0
CHG-GTTSEL: MASP A – COMPLTD
```

5. Verify the changes by entering the rtrv-gttset command with these parameters and values that were specified in Step 4.

```plaintext
gti/gtia/gtii/gtiis/gtin/gtins/gtin24
 tt
 np/npv
 nai/naiv
 selid
 cgssn
 lsn
 eaglegen=yes
```

For this example, enter this command.

```plaintext
rtrv-gttset:gtii=4:tt=0:np=e210:naiv=4
```
Adding Global Title Address Information

This procedure is used to add global title address (GTA) information for applicable global title selectors required to specify a global title entry. This command adds the routing object (a destination address and a subsystem number) for messages requiring global title translation. The translation is performed on the basis of the GTA, global title indicator (GTI), numbering plan (NP), nature of address indicator (NAI), and translation type (TT) of each SS7 SCCP message directed to the STP with a routing indicator of 0, indicating that global title translation is required.

The `ent-gta` command uses these parameters:

- `gttsn` – The GTT set name
- `gta` – The global title address or the beginning value of a range of global title addresses
- `egta` – The end of global title address
- `pc/pca/pci/pcn/pcn24` – The translated point code
- `ssn` – The translated subsystem number
- `ri` – The routing indicator
- `xlat` – The translate indicator
- `ccgt` – The cancel called global title indicator
- `force` – The check mated application override
- `actsn` – The name of the GTT action set that will be assigned to the GTA entry as shown in the `rtrv-gttaset` output.
- `gtmodid` – The name of the GT modification identifier that will be assigned to the GTA entry as shown in the `rtrv-gtmod` output and provisioned in the `Adding Global Title Modification Information` procedure. The GT modification identifier contains the information to modify the numbering plan, nature of address indicator, and the prefix or suffix digits in the called party address or calling party address portion of outbound MSUs.
This parameter specifies whether per-path measurements are required for the GTA entry.

This parameter can be specified only, and must be specified, if the Flexible GTT Load Sharing feature is enabled and if the ri=gt parameter is specified with the ent-gta command. If the Flexible GTT Load Sharing feature is enabled, the point code specified with the ent-gta command must be assigned to the MRN set specified by this parameter. The status of the Flexible GTT Load Sharing feature is shown in the rtrv-ctrl-feat output. To enable the Flexible GTT Load Sharing feature, perform Activating the Flexible GTT Load Sharing Feature.

This parameter can be specified only, and must be specified, if the Flexible GTT Load Sharing feature is enabled and if the ri=ssn parameter is specified with the ent-gta command. If the Flexible GTT Load Sharing feature is enabled, the point code and SSN specified with the ent-gta command must be assigned to the MAP set specified by this parameter. The status of the Flexible GTT Load Sharing feature is shown in the rtrv-ctrl-feat output. To enable the Flexible GTT Load Sharing feature, perform Activating the Flexible GTT Load Sharing Feature.

This parameter cannot be specified. Table 99: GTTSN and OPTSN Combinations shows the types of GTT sets that can be specified for the optsn parameter based on the type of GTT set that is specified for the gttsn parameter and the features that are enabled and turned on.

Table 99: GTTSN and OPTSN Combinations

<table>
<thead>
<tr>
<th>GTTSN Set Type</th>
<th>OPTSN Set Type</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Origin-Based SCCP Routing Feature Enabled Only</strong></td>
<td></td>
</tr>
<tr>
<td>CDGTA</td>
<td>CGGTA, CGPC</td>
</tr>
<tr>
<td></td>
<td>The OPC GTT set type can be specified with a CDGTA GTT set, but the OPC GTT set is specified with the opcsn parameter.</td>
</tr>
<tr>
<td>CGGTA</td>
<td>CGSSN</td>
</tr>
<tr>
<td>CGPC</td>
<td>CGSSN</td>
</tr>
<tr>
<td>CGSSN</td>
<td>The optsn parameter cannot be specified.</td>
</tr>
<tr>
<td>OPC</td>
<td>CGSSN</td>
</tr>
<tr>
<td><strong>Flexible Linkset Optional Based Routing Enabled and Turned On Only</strong></td>
<td></td>
</tr>
<tr>
<td>CDGTA</td>
<td>CDGTA, DPC, CDSSN</td>
</tr>
<tr>
<td>CDSSN</td>
<td>CDSSN, DPC, CDGTA</td>
</tr>
<tr>
<td>DPC</td>
<td>DPC, CDSSN, CDGTA</td>
</tr>
<tr>
<td><strong>Origin-Based SCCP Routing Enabled and Flexible Linkset Optional Based Routing Enabled and Turned On Only</strong></td>
<td></td>
</tr>
<tr>
<td>CDGTA</td>
<td>CDGTA, CGGTA, CGPC, CGSSN, CDSSN, DPC, OPC</td>
</tr>
</tbody>
</table>
The OPC GTT set type can be specified with a CDGTA GTT set, but the OPC GTT set is specified with the `opcsn` parameter.

<table>
<thead>
<tr>
<th>GTTSN Set Type</th>
<th>OPTSN Set Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>CDGTA</td>
<td>CDGTA, CGGTA, CGPC, CGSSN, OPC, CDSSN, DPC</td>
</tr>
<tr>
<td>CGPC</td>
<td>CDGTA, CGGTA, CGSSN, CGPC, OPC, CDSSN, DPC</td>
</tr>
<tr>
<td>CGSSN</td>
<td>CDGTA, CGGTA, CGSSN, CGPC, OPC, CDSSN, DPC</td>
</tr>
<tr>
<td>OPC</td>
<td>CDGTA, CGGTA, CGPC, CGSSN, OPC, CDSSN, DPC</td>
</tr>
<tr>
<td>CDSSN</td>
<td>CDGTA, CGGTA, CGPC, CGSSN, OPC, DPC, CDSSN</td>
</tr>
<tr>
<td>DPC</td>
<td>CDGTA, CGGTA, CGPC, CGSSN, OPC, CDSSN, DPC</td>
</tr>
</tbody>
</table>

**Flexible Linkset Optional Based Routing and TCAP Opcode Based Routing Feature Enabled and Turned On Only**

<table>
<thead>
<tr>
<th>Set Type</th>
<th>OPTSN Set Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>CDGTA</td>
<td>CDGTA, OPCODE, DPC, CDSSN</td>
</tr>
<tr>
<td>CDSSN</td>
<td>CDSSN, OPCODE, DPC, CDGTA</td>
</tr>
<tr>
<td>OPCODE</td>
<td>OPCODE, CDSSN, DPC, CDGTA</td>
</tr>
<tr>
<td>DPC</td>
<td>DPC, OPCODE, CDSSN, CDGTA</td>
</tr>
</tbody>
</table>

**Origin-Based SCCP Routing Enabled, Flexible Linkset Optional Based Routing and TCAP Opcode Based Routing Feature Enabled and Turned On**

<table>
<thead>
<tr>
<th>Set Type</th>
<th>OPTSN Set Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>CDGTA</td>
<td>CDGTA, CGGTA, CGPC, CGSSN, CDSSN, OPCODE, DPC, OPC</td>
</tr>
<tr>
<td></td>
<td>The OPC GTT set type can be specified with a CDGTA GTT set, but the OPC GTT set is specified with the <code>opcsn</code> parameter.</td>
</tr>
<tr>
<td>CGGTA</td>
<td>CDGTA, CGGTA, CGPC, CGSSN, CDSSN, OPCODE, OPC, DPC</td>
</tr>
<tr>
<td></td>
<td>The <code>opcsn</code> parameter cannot be specified.</td>
</tr>
<tr>
<td>CGPC</td>
<td>CDGTA, CGGTA, CGPC, CGSSN, CDSSN, OPCODE, OPC, DPC</td>
</tr>
<tr>
<td></td>
<td>The <code>opcsn</code> parameter cannot be specified.</td>
</tr>
<tr>
<td>GTTSN Set Type</td>
<td>OPTSN Set Type</td>
</tr>
<tr>
<td>----------------</td>
<td>----------------</td>
</tr>
<tr>
<td>CGSSN</td>
<td>CDGTA, CGGTA, CGPC, CGSSN, CDSSN, OPCODE, OPC, DPC</td>
</tr>
<tr>
<td></td>
<td>The <code>opcnsn</code> parameter cannot be specified.</td>
</tr>
<tr>
<td>OPC</td>
<td>CDGTA, CGGTA, CGPC, CGSSN, OPC, CDSSN, OPCODE, DPC</td>
</tr>
<tr>
<td>CDSSN</td>
<td>CDGTA, CGGTA, CGPC, CGSSN, CDSSN, OPCODE, DPC, OPC</td>
</tr>
<tr>
<td></td>
<td>The OPC GTT set type can be specified with a CDSSN GTT set, but the OPC GTT set is specified with the <code>opcnsn</code> parameter.</td>
</tr>
<tr>
<td>OPCODE</td>
<td>CDGTA, CGGTA, CGPC, CGSSN, CDSSN, OPCODE, DPC, OPC</td>
</tr>
<tr>
<td></td>
<td>The OPC GTT set type can be specified with an OPCODE GTT set, but the OPC GTT set is specified with the <code>opcnsn</code> parameter.</td>
</tr>
<tr>
<td>DPC</td>
<td>CDGTA, CGGTA, CGPC, CGSSN, CDSSN, OPCODE, DPC, OPC</td>
</tr>
<tr>
<td></td>
<td>The OPC GTT set type can be specified with a DPC GTT set, but the OPC GTT set is specified with the <code>opcnsn</code> parameter.</td>
</tr>
</tbody>
</table>

:opcnsn – The OPC GTT set name shown in the `rtrv-gttset` output.
:cgssn – The CgPA subsystem number or the beginning value of a range of CgPA subsystem numbers
:ecgssn – The end value of a range of CgPA subsystem numbers
:cgpc/cgpc24 – The CgPA point code
:opc/opci/opcn– The originating point code
:dpc/dpca/dpcn– The destination point code
:cdssn – The CdPA subsystem number or the beginning value of a range of CdPA subsystem numbers
:ecdssn – The end value of a range of CdPA subsystem numbers
:cgseid – The CgPA selector ID
:cdselid – The CdPA selector ID
:fallback – The action to be taken when the final translation does not match while performing global title translation using a FLOBR-specific GTT mode.
:testmode – This parameter invokes a field-safe test tool to debug the rules used for the Flexible Linkset Optional Based Routing or TCAP Opcode Based Routing features.
:cgcnvsn – The CgPA conversion set name
Table 107: GTTSN = OPCODE GTT Set Parameter Combinations shows the ANSI and ITU TCAP package types.

Note: The command line on the terminal can contain up to 150 characters. If the parameters and values specified with the ent-gta command are too long to fit on the ent-gta command line, perform Changing Global Title Address Information to complete adding the GTA entry.

The Global Title Translation (GTT) feature and the Enhanced Global Title Translation (EGTT) feature must be on before using this command. Use the rtrv-feat command to verify the settings. If the features are off, turn them on using the chg-feat:gtt=on:egtt=on command.

Note: Once the Global Title Translation (GTT) feature and the Enhanced Global Title Translation (EGTT) feature are turned on with the chg-feat command, they cannot be turned off.

If the Variable-Length Global Title Translation (VGTT) feature is off, shown the entry VGTT = off, the global title address length must be equal to the number of digits specified by the given GTT set name. The length of the global title address can be verified with the rtrv-gttsset command.

If the Variable-Length Global Title Translation (VGTT) feature is on, shown the entry VGTT = on, up to 10 different length global title addresses can be assigned to a GTT set. If the Support for 16 GTT Lengths in VGTT feature is enabled and turned on, up to 16 different length global title addresses can be assigned to a GTT set. The length of the global title address is only limited by the range of values for the gta and egta parameters, one to 21 digits, and by the global title addresses already assigned to the GTT set name. The ndgt parameter of the ent-gttsset command has no effect on the length of the global title address. As global title addresses of different lengths are assigned to a specific translation type, these lengths are displayed in the NDGT field of the rtrv-gttsset command output, as shown in the following example.

```
rlghncca03w 09-07-07 00:30:31 GMT EAGLE5 41.1.0
GTTSN NETDOM NDGT
lidb ansi 3, 7, 10
t800 ansi 6
si000 itu 15
imsi itu 15
abcd1234 itu 12
```
GTT-SET table is (5 of 2000) 1% full.

In this example of the `rtrv-gttset` command output, the GTT set `lidb` contains three different length global title addresses; global title addresses containing three digits, seven digits, and 10 digits.

If the GTT set contains the maximum number of different length global title addresses, and another global title address is specified for the GTT set name, the length of the global title address being added to the GTT set name must be the same as one of the lengths already assigned to the GTT set name. If the length of the global title address does not match one of the lengths already assigned to the GTT set name, the `ent-gta` command is rejected with this message:

E4008 Cmd Rej: Exceeding max GTA Lengths supported per GTTSET

If the GTT set name has less than the maximum number of different length global title addresses assigned to it, and another global title address is specified for the GTT set name, the length of the global title address can be from one to 21 digits and does not have to match the length of the other global title addresses assigned to the GTT set name.

Refer to *Variable-length Global Title Translation Feature* for more information about this feature.

The range, as specified by the start and end global title addresses, cannot already exist in the global title translation data for the specified translation type. If the ranges overlap, the range of global title addresses cannot be split and the `ent-gta` command is rejected with this message:

E2401 Cmd Rej: GTA range overlaps a current range

Along with error message 2401, a list of the overlapped global title addresses is displayed as shown in the following example.

```
rlghnxcxa03w 06-10-24 08:29:15 GMT EAGLE5 36.0.0
The following GTA ranges overlap the input GTA range

<table>
<thead>
<tr>
<th>START GTA</th>
<th>END GTA</th>
</tr>
</thead>
<tbody>
<tr>
<td>8005552000</td>
<td>8005553999</td>
</tr>
<tr>
<td>8005554000</td>
<td>8005555999</td>
</tr>
</tbody>
</table>

ENT-GTA: MASP A - Command Aborted
```

The translate indicator (xlat) must be `DPCSSN` if the `SSN` parameter is specified. If the translate indicator is set to `DPCNGT`, the value of the RI parameter must be GT.

If a point code is the STP’s True PC, then the value of the XLAT parameter must be set to `DPCSSN` and the value of the RI parameter must be set to `SSN`. If the `SSN` parameter is specified and a point code is the STP’s True PC, then the subsystem number specified must exist in the SS-APPL table. This can be verified with the `rtrv-ss-appl` command. To execute the `rtrv-ss-appl` command, these features must be enabled, and turned on if necessary.

- **LNP** - shown by the entry LNP TNs with a quantity greater than zero in the `rtrv-ctrl-feat` command output
- **ATINP** - shown by the entry ATINP in the `rtrv-ctrl-feat` command output with the status set to on
- **EIR** - shown by the entry EIR in the `rtrv-ctrl-feat` command output as being permanently or temporarily enabled and with the status set to on
- **INP** - shown by the entry INP in the `rtrv-ctrl-feat` command output with the status set to on.
• V-FLEX - shown by the entry VFLEX in the rtrv-ctrl-feat command output with the status set to on.
• ANSI-41 INP Query - shown by the entry ANSI-41 INP Query in the rtrv-ctrl-feat command output with the status set to on.
• ANSI41 AIQ - shown by the entry ANSI41 AIQ in the rtrv-ctrl-feat command output.

Note: The Local Number Portability (LNP), Equipment Identity Register (EIR), INAP Number Portability (INP), V-Flex, ATINP, ANSI41 AIQ, or ANSI-41 INP Query features must be purchased before you can enable the LNP, ATINP, or ANSI41 AIQ features, or enable and turn on the EIR, INP, V-Flex, or ANSI-41 INP Query features. If you are not sure whether you have purchased the LNP, EIR, or INP, V-Flex, ATINP, or ANSI-41 INP Query feature, contact your Tekelec Sales Representative or Account Representative.

Once the LNP, ATINP, or ANSI41 AIQ feature is enabled with the enable-ctrl-feat command, or the EIR, INP, V-Flex, and ANSI-41 INP Query features are turned on with the chg-ctrl-feat command, they cannot be turned off or disabled.

A point code must exist as a destination in the route table or reside in a cluster that exists as a destination in the route table (for global title routing) unless the point code is the STP’s true point code.

If a final GTT is specified (ri=ssn) with the xlat=dpc parameter, and the value of the force parameter is no, the point code must be in the Remote Point Code/Mated Application table. Verify this by entering the rtrv-map command. If this point code and subsystem number is not defined as a mated application, perform one of these procedures to add the point code and subsystem number to the database as a mated application:

• Provisioning a Solitary Mated Application
• Provisioning a Dominant Mated Application
• Provisioning a Load Shared Mated Application
• Provisioning a Combined Dominant/Load Shared Mated Application.

The point code and subsystem number do not have to be in the mated application table when the ent-gta command is executed when these parameters are specified with the ent-gta command.

• ri=gt
• xlat=dpc ssn and ri=ssn (provided the point code value is not the STP’s true point code)

If the point code and subsystem are not in the mated application table when either of these parameters are specified with the ent-gta command, the EAGLE 5 ISS creates a solitary mated application in the mated application table using the point code and subsystem values specified in the ent-gta command.

If the xlat=none parameter is specified for a global title translation, the global title translation entry can contain any data except for the routing data defined by these parameters.

• pc/pca/pci/pcn/pcn24
• ssn
• ri
• force=yes

The GTA Entries with the XLAT=NONE Parameter part of the GTT Actions section described the behavior of the xlat=none parameter.

These tables show the valid parameter combinations that can be used with the ent-gta command.

• Table 100: GTA Parameter Combinations - No SETTYPE Column in RTRV-GTTSET Output
Table 101: GTTSN = CDGTA GTT Set Parameter Combinations

Table 102: GTTSN = CGGTA GTT Set Parameter Combinations

Table 103: GTTSN = CGPC GTT Set Parameter Combinations

Table 104: GTTSN = CGSSN GTT Set Parameter Combinations

Table 105: GTTSN = OPC GTT Set Parameter Combinations

Table 106: GTTSN = CDSSN GTT Set Parameter Combinations

Table 107: GTTSN = OPCODE GTT Set Parameter Combinations

Table 108: GTTSN = DPC GTT Set Parameter Combinations

The EAGLE 5 ISS can contain 269,999, 400,000, or 1,000,000 global title addresses. The system default is 269,999 global title addresses. This quantity can be increased to 400,000 by enabling the feature access key for part number 893-0061-01, or to 1,000,000 by enabling the feature access key for part number 893-0061-10. For more information on enabling these feature access keys, refer to Enabling the XGTT Table Expansion Feature.

Canceling the rtrv-gta Command

Because the rtrv-gta command used in this procedure can output information for a long period of time, the rtrv-gta command can be canceled and the output to the terminal stopped. There are three ways that the rtrv-gta command can be canceled.

- Press the F9 function key on the keyboard at the terminal where the rtrv-gta command was entered.
- Enter the canc-cmd without the trm parameter at the terminal where the rtrv-gta command was entered.
- Enter the canc-cmd:trm=<xx>, where <xx> is the terminal where the rtrv-gta command was entered, from another terminal other that the terminal where the rtrv-gta command was entered. To enter the canc-cmd:trm=<xx> command, the terminal must allow Security Administration commands to be entered from it and the user must be allowed to enter Security Administration commands. The terminal’s permissions can be verified with the rtrv-secu-trm command. The user’s permissions can be verified with the rtrv-user or rtrv-secu-user commands.

For more information about the canc-cmd command, go to the Commands Manual.

Table 100: GTA Parameter Combinations - No SETTYPE Column in RTRV-GTTSET Output

<table>
<thead>
<tr>
<th>RI = GT XLAT=DPCNGT</th>
<th>RI = GT XLAT=DPCSSN</th>
<th>RI = GT XLAT=DPC</th>
<th>RI = SSN XLAT=DPCSSN</th>
<th>RI = SSN XLAT=DPC</th>
</tr>
</thead>
<tbody>
<tr>
<td>GTTSN</td>
<td>GTTSN</td>
<td>GTTSN</td>
<td>GTTSN</td>
<td>GTTSN</td>
</tr>
<tr>
<td>PC/PCA/PCI/PCN/PCN24 (See Notes 1, 2, and 6)</td>
</tr>
<tr>
<td>GTA (See Notes 3, 4, 5, and 7)</td>
</tr>
</tbody>
</table>
If only the EGTT feature is on, the SETTYPE column is not shown in the rtrv-gttset output.

There are other optional parameters that can be used with this entry. Refer to Table 109: Optional GTA Parameters for these parameters.

Parameter Values:

<table>
<thead>
<tr>
<th>GTTSN</th>
<th>The GTT set name from the GTTSN column of the rtrv-gttset output.</th>
</tr>
</thead>
<tbody>
<tr>
<td>GTA</td>
<td>1 - 21 digits or 1 - 21 hexadecimal digits</td>
</tr>
<tr>
<td>PC/PCA/PCI/PCN/PCN24</td>
<td>See Note 1</td>
</tr>
<tr>
<td>SSN</td>
<td>0 - 255</td>
</tr>
</tbody>
</table>

Notes:

1. The pc/pca/pci/pcn/pcn24 parameters are used to assign either ANSI, ITU-I, ITU-I spare, 14-bit ITU-N, 14-bit ITU-N spare, or 24-bit ITU-N point codes to the global title address (GTA).
   - pc/pca = ANSI point code
   - pci = ITU-I or ITU-I spare point code
   - pcn = 14-bit ITU-N or 14-bit ITU-N spare point code
   - pcn24 = 24-bit ITU-N point code.
2. The domain (ANSI or ITU) of the point code and GTT set must be the same, unless the ANSI/ITU SCCP Conversion feature is enabled. If the ANSI/ITU SCCP Conversion feature is enabled, a GTA may contain an ANSI point code and an ITU GTT set, or an ITU point code and an ANSI GTT set. The CROSS GTT set, a GTT set containing the NETDOM value CROSS, can be specified with either ANSI or ITU point codes.
3. If the VGTT feature is on, shown by the VGTT = on entry in the rtrv-feat output, and the GTT set name contains 10 different length GTAs, the length of the GTA must match any existing GTA assigned to the GTT set name.
   - If the Support for 16 GTT Lengths for VGTT feature is enabled and turned on, shown by the VGTT with 16 GTT lengths entry in the rtrv-ctrl-feat output, and the GTT set name contains 16 different length GTAs, the length of the GTA must match any existing GTA assigned to the GTT set name.
4. If the GTT set name contains less than the maximum number of different length GTAs, the length of the GTA can be from 1 to 21 digits.
5. If the VGTT feature is off, the length of the GTA must contain the number of digits defined by the NDGT field of the rtrv-gttset output.
6. If the point code is the EAGLE 5 ISS’s point code, then the xlat parameter value must be dpcsnn and the ri parameter value must be ssn.
7. Hexadecimal digits (0-9, a-f, A-F) can be specified for the gta or egta parameters only if the Hex Digit support for GTT feature is enabled.
Table 101: GTTSN = CDGTA GTT Set Parameter Combinations

<table>
<thead>
<tr>
<th>XLAT=DPCNGT, DPCSSN, or DPC</th>
<th>XLAT=NONE</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Mandatory Parameters</strong></td>
<td></td>
</tr>
<tr>
<td>GTTSN – The GTT set name from the GTTSN column of the rtrv-gttset output containing the value CDGTA in the SETTYPE column.</td>
<td>GTTSN – The GTT set name from the GTTSN column of the rtrv-gttset output containing the value CDGTA in the SETTYPE column.</td>
</tr>
<tr>
<td>RI – GT, SSN (See Notes 6, 7, 8, and 9)</td>
<td>GTA – 1 - 21 digits or 1 - 21 hexadecimal digits (See Notes 3, 4, 5, and 10)</td>
</tr>
<tr>
<td>PC/PCA/PCI/PCN/PCN24 (See Notes 1, 2, and 6)</td>
<td></td>
</tr>
<tr>
<td>GTA – 1 - 21 digits or 1 - 21 hexadecimal digits (See Notes 3, 4, 5, and 10)</td>
<td></td>
</tr>
<tr>
<td><strong>Optional Parameters</strong></td>
<td></td>
</tr>
<tr>
<td>SSN – 0 - 255. Default value – no SSN value is specified. (See Note 9)</td>
<td>EGTA – 1 - 21 digits or 1 - 21 hexadecimal digits. (See Note 10)</td>
</tr>
<tr>
<td>Default = same as the GTA value. The length of the EGTA value must be the same as the GTA value. These parameters cannot be specified with the xlat=none parameter.</td>
<td></td>
</tr>
<tr>
<td>• pc/pca/pci/pcn/pcn24</td>
<td></td>
</tr>
<tr>
<td>• ssn</td>
<td></td>
</tr>
<tr>
<td>• ri</td>
<td></td>
</tr>
<tr>
<td>• force=yes</td>
<td></td>
</tr>
<tr>
<td>OPTSN – The GTT set name from the GTTSN column of the rtrv-gttset output. Refer to Table 99: GTTSN and OPTSN Combinations for the valid GTT set types that can be specified. Default value – no GTT set is specified.</td>
<td></td>
</tr>
<tr>
<td>OPCSN – The GTT set name from the GTTSN column of the rtrv-gttset output containing the value OPC in the SETTYPE column. Default value – no OPC GTT set is specified.</td>
<td></td>
</tr>
<tr>
<td>There are other optional parameters that can be used with this entry. Refer to Table 109: Optional GTA Parameters for these parameters.</td>
<td></td>
</tr>
</tbody>
</table>
Notes:

1. The `pc`/`pca`/`pci`/`pcn`/`pcn24` parameters are used to assign either ANSI, ITU-I, ITU-I spare, 14-bit ITU-N, 14-bit ITU-N spare, or 24-bit ITU-N point codes to the global title address (GTA).
   - `pc`/`pca` = ANSI point code
   - `pci` = ITU-I or ITU-I spare point code
   - `pcn` = 14-bit ITU-N or 14-bit ITU-N spare point code
   - `pcn24` = 24-bit ITU-N point code.

2. The domain (ANSI or ITU) of the point code and GTT set must be the same, unless the ANSI/ITU SCCP Conversion feature is enabled. If the ANSI/ITU SCCP Conversion feature is enabled, a GTA may contain an ANSI point code and an ITU GTT set, or an ITU point code and an ANSI GTT set. The GTT sets can be specified with the `gttsn`, `optsn`, `oropcsn` parameters. The CROSS GTT set, a GTT set containing the `NETDOM` value `CROSS`, can be specified with either ANSI or ITU point codes, but can be specified only with the `gttsn` parameter.

3. If the VGTT feature is on, shown by the `VGTT = on` entry in the `rtrv-feat` output, and the GTT set name contains 10 different length GTAs, the length of the GTA must match any existing GTA assigned to the GTT set name.
   
   If the Support for 16 GTT Lengths for VGTT feature is enabled and turned on, shown by the `VGTT with 16 GTT lengths` entry in the `rtrv-ctrl-feat` output, and the GTT set name contains 16 different length GTAs, the length of the GTA must match any existing GTA assigned to the GTT set name.

4. If the GTT set name contains less than the maximum number of different length GTAs, the length of the GTA can be from 1 to 21 digits.

5. If the VGTT feature is off, the length of the GTA must contain the number of digits defined by the `NDGT` field of the `rtrv-gttset` output.

6. If the point code is the EAGLE 5 ISS’s point code, then the `xlat` parameter value must be `dpcssn` and the `ri` parameter value must be `ssn`.

7. The `force` parameter can be specified only if the `ri` parameter is `ssn` and the `xlat` parameter value is `dpc`. If the `pc`/`pca`/`pci`/`pcn`/`pcn24` parameter value is not shown in the `rtrv-map` output, the `force=yes` parameter must be specified with the `ent-gta` command.

8. If the `ri` parameter value is `gt`, the `xlat` parameter value can be `dpcngt`, `dpcssn`, or `dpc`. If the `ri` parameter value is `ssn`, the `xlat` parameter value can be `dpcssn` or `dpc`.

9. The `ssn` parameter can be specified, and must be specified, only if the `xlat` parameter is `dpcssn`.

10. Hexadecimal digits (0-9, a-f, A-F) can be specified for the `gta` or `gta-oregta` parameters only if the Hex Digit support for GTT feature is enabled.

<table>
<thead>
<tr>
<th>XLAT=DPCNGT, DPCSSN, or DPC</th>
<th>XLAT=None</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Table 102: GTTSN = CGGTA GTT Set Parameter Combinations</strong></td>
<td></td>
</tr>
<tr>
<td>XLAT=DPCNGT, DPCSSN, or DPC</td>
<td>XLAT=None</td>
</tr>
</tbody>
</table>

**Mandatory Parameters**
<table>
<thead>
<tr>
<th><strong>XLAT=DPCNGT, DPCSSN, or DPC</strong></th>
<th><strong>XLAT=NONE</strong></th>
</tr>
</thead>
<tbody>
<tr>
<td>GTTSN – The GTT set name from the GTTSN column of the <code>rtrv-gttset</code> output containing the value CGGTA in the SETTYPE column.</td>
<td>GTTSN – The GTT set name from the GTTSN column of the <code>rtrv-gttset</code> output containing the value CGGTA in the SETTYPE column.</td>
</tr>
<tr>
<td>RI – GT, SSN (See Notes 6, 7, 8, and 9)</td>
<td>GTA – 1 - 21 digits or 1 - 21 hexadecimal digits (See Notes 3, 4, 5, and 10)</td>
</tr>
<tr>
<td>PC/PCA/PCI/PCN/PCN24 (See Notes 1, 2, and 6)</td>
<td></td>
</tr>
<tr>
<td>GTA – 1 - 21 digits or 1 - 21 hexadecimal digits (See Notes 3, 4, 5, and 10)</td>
<td></td>
</tr>
</tbody>
</table>

**Optional Parameters**

<table>
<thead>
<tr>
<th>SSN – 0 - 255. Default value – no SSN value is specified. (See Note 9)</th>
<th>EGTA – 1 - 21 digits or 1 - 21 hexadecimal digits. (See Note 10)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default = same as the GTA value.</td>
<td>The length of the EGTA value must be the same as the GTA value. These parameters cannot be specified with the <code>xlat=none</code> parameter.</td>
</tr>
<tr>
<td></td>
<td>• pc/pca/pci/pcn/pcn24</td>
</tr>
<tr>
<td></td>
<td>• ssn</td>
</tr>
<tr>
<td></td>
<td>• ri</td>
</tr>
<tr>
<td></td>
<td>• force=yes</td>
</tr>
</tbody>
</table>

OPTSN – The GTT set name from the GTTSN column of the `rtrv-gttset` output. Refer to Table 99: GTTSN and OPTSN Combinations for the valid GTT set types that can be specified. Default value – no GTT set is specified.

There are other optional parameters that can be used with this entry. Refer to Table 109: Optional GTA Parameters for these parameters.

**Notes:**

1. The `pc/pca/pci/pcn/pcn24` parameters are used to assign either ANSI, ITU-I, ITU-I spare, 14-bit ITU-N, 14-bit ITU-N spare, or 24-bit ITU-N point codes to the global title address (GTA).
   - pc/pca = ANSI point code
   - pci = ITU-I or ITU-I spare point code
   - pcn = 14-bit ITU-N or 14-bit ITU-N spare point code
   - pcn24 = 24-bit ITU-N point code.
2. The domain (ANSI or ITU) of the point code and GTT set must be the same, unless the ANSI/ITU SCCP Conversion feature is enabled. If the ANSI/ITU SCCP Conversion feature is enabled, a GTA may contain an ANSI point code and an ITU GTT set, or an ITU point code and an ANSI GTT set. The GTT sets can be specified with the `gttsn`, `optsn`, or `opcsn` parameters. The CROSS GTT set, a GTT set containing the `NETDOM` value `CROSS`, can be specified with either ANSI or ITU point codes, but can be specified only with the `gttsn` parameter.

3. If the VGTT feature is on, shown by the `VGTT = on` entry in the `rtrv-feat` output, and the GTT set name contains 10 different length GTAs, the length of the GTA must match any existing GTA assigned to the GTT set name.

   If the Support for 16 GTT Lengths for VGTT feature is enabled and turned on, shown by the `VGTT with 16 GTT lengths` entry in the `rtrv-ctrl-feat` output, and the GTT set name contains 16 different length GTAs, the length of the GTA must match any existing GTA assigned to the GTT set name.

4. If the GTT set name contains less than the maximum number of different length GTAs, the length of the GTA can be from 1 to 21 digits.

5. If the VGTT feature is off, the length of the GTA must contain the number of digits defined by the `NDGT` field of the `rtrv-gttset` output.

6. If the point code is the EAGLE 5 ISS’s point code, then the `xlat` parameter value must be `dpcssn` and the `ri` parameter value must be `ssn`.

7. The `force` parameter can be specified only if the `ri` parameter is `ssn` and the `xlat` parameter value is `dpcssn`. If the `pc`/`pca`/`pci`/`pcn`/`pcn24` parameter value is not shown in the `rtrv-map` output, the `force=yes` parameter must be specified with the `ent-gta` command.

8. If the `ri` parameter value is `gt`, the `xlat` parameter value can be `dpcngt`, `dpcssn`, or `dpc`. If the `ri` parameter value is `ssn`, the `xlat` parameter value can be `dpcssn` or `dpc`.

9. The `ssn` parameter can be specified, and must be specified, only if the `xlat` parameter is `dpcssn`.

10. Hexadecimal digits (0-9, a-f, A-F) can be specified for the `gta` or `egta` parameters only if the Hex Digit support for GTT feature is enabled.

---

**Table 103: GTTSN = CGPC GTT Set Parameter Combinations**

<table>
<thead>
<tr>
<th>XLAT=DPCNGT, DPCSSN, or DPC</th>
<th>XLAT=None</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Mandatory Parameters</strong></td>
<td></td>
</tr>
<tr>
<td>GTTSN – The GTT set name from the <code>gttset</code> column of the <code>rtrv-gttset</code> output containing the value <code>CGPC</code> in the SETTYPE column.</td>
<td>GTTSN – The GTT set name from the <code>gttset</code> column of the <code>rtrv-gttset</code> output containing the value <code>CGPC</code> in the SETTYPE column.</td>
</tr>
<tr>
<td>RI – GT, SSN (See Notes 3, 4, 5, and 6)</td>
<td>CGPC/CGPCA/CGPCI/CGPCN/CGPCN24 (See Notes 1, 2, and 3)</td>
</tr>
<tr>
<td>PC/PCA/PCI/PCN/PCN24 (See Notes 1, 2, and 3)</td>
<td></td>
</tr>
</tbody>
</table>
XLAT=DPCN GT, DPCSSN, or DPC

<table>
<thead>
<tr>
<th>XLAT=None</th>
</tr>
</thead>
<tbody>
<tr>
<td>CGPC/CGPCA/CGPCI/CGPCN/CGPCN24 (See Notes 1, 2, and 3)</td>
</tr>
</tbody>
</table>

Optional Parameters

| SSN – 0 - 255. Default value – no SSN value is specified. (See Note 3) |
| These parameters cannot be specified with the xlat=none parameter. |
| • pc/pca/pci/pcn/pcn24 |
| • ssn |
| • ri |
| • force=yes |

OPTSN – The GTT set name from the GTTSN column of the rtrv-gttsn output. Refer to Table 99: GTTSN and OPTSN Combinations for the valid GTT set types that can be specified. Default value – no GTT set is specified.

There are other optional parameters that can be used with this entry. Refer to Table 109: Optional GTA Parameters for these parameters. The EGTA parameter cannot be specified with this entry.

Notes:

1. The pc/pca/pci/pcn/pcn24 parameters are used to assign either ANSI, ITU-I, ITU-I spare, 14-bit ITU-N, 14-bit ITU-N spare, or 24-bit ITU-N point codes as the translated point code. The cgpc/cgpca/cgpci/cgpcn/cgpcn24 parameters are used to assign either ANSI, ITU-I, ITU-I spare, 14-bit ITU-N, 14-bit ITU-N spare, or 24-bit ITU-N point codes as the CGPC parameter values.
   - pc/pca and cgpc/cgpcn = ANSI point code
   - pci and cgpci = ITU-I or ITU-I spare point code
   - pcn and cgpcn = 14-bit ITU-N or 14-bit ITU-N spare point code
   - pcn24 and cgpcn24 = 24-bit ITU-N point code.

2. The domain (ANSI or ITU) of the point code and GTT set must be the same, unless the ANSI/ITU SCCP Conversion feature is enabled. If the ANSI/ITU SCCP Conversion feature is enabled, a GTA may contain an ANSI point code and an ITU GTT set, or an ITU point code and an ANSI GTT set. The GTT sets can be specified with the gttset, optsn, oropcsn parameters. The CROSS GTT set, a GTT set containing the NETDOM value CROSS, can be specified with either ANSI or ITU point codes, but can be specified only with the gttset parameter.

3. If the point code is the EAGLE 5 ISS’s point code, then the xlat parameter value must be dpcssn and theri parameter value must be ssn.

4. The force parameter can be specified only if theri parameter isssn and the xlat parameter value is dpc. If the pc/pca/pci/pcn/pcn24 parameter value is not shown in the rtrv-map output, the force=yes parameter must be specified with the ent-gta command.
5. If the ri parameter value is gt, the xlat parameter value can be pcn, dpcsn, or dpc. If the ri parameter value is ssn, the xlat parameter value can be pcsn or dpc.
6. The ssn parameter can be specified, and must be specified, only if the xlat parameter is pcsn.

<table>
<thead>
<tr>
<th>Table 104: GTTSN = CGSSN GTT Set Parameter Combinations</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>XLAT=DPCNGT, DPCSSN, or DPC</strong></td>
</tr>
<tr>
<td><strong>Mandatory Parameters</strong></td>
</tr>
<tr>
<td>GTTSN – The GTT set name from the GTTSN column of the rtrv-gttset output containing the value CGSSN in the SETTYPE column.</td>
</tr>
<tr>
<td>RI = GT, SSN (See Notes 3, 4, 5, and 6)</td>
</tr>
<tr>
<td>PC/PCA/PCI/PCN/PCN24 (See Notes 1, 2, and 3)</td>
</tr>
<tr>
<td>CGSSN – 0 - 255</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th><strong>Optional Parameters</strong></th>
<th><strong>Optional Parameters</strong></th>
</tr>
</thead>
<tbody>
<tr>
<td>SSN – 0 - 255. Default value – no SSN value is specified. (See Note 3)</td>
<td>ECGSSN – 0 - 255. Default value – no ECGSSN value is specified. The ECGSSN value must be greater than the CGSSN value. These parameters cannot be specified with the xlat=none parameter.</td>
</tr>
<tr>
<td></td>
<td>• pc/pca/pci/pcn/pcn24</td>
</tr>
<tr>
<td></td>
<td>• ssn</td>
</tr>
<tr>
<td></td>
<td>• ri</td>
</tr>
<tr>
<td></td>
<td>• force=yes</td>
</tr>
<tr>
<td>ECGSSN – 0 - 255. Default value – no ECGSSN value is specified. The ECGSSN value must be greater than the CGSSN value.</td>
<td></td>
</tr>
</tbody>
</table>

OPTSN – The GTT set name from the GTTSN column of the rtrv-gttset output. Refer to Table 99: GTTSN and OPTSN Combinations for the valid GTT set types that can be specified. Default value – no GTT set is specified.
There are other optional parameters that can be used with this entry. Refer to Table 109: Optional GTA Parameters for these parameters. The EGTA parameter cannot be specified with this entry.

Notes:
1. The pc/pca/pcri/pcn/pcn24 parameters are used to assign either ANSI, ITU-I, ITU-I spare, 14-bit ITU-N, 14-bit ITU-N spare, or 24-bit ITU-N point codes as the translated point code.
   - pc/pca = ANSI point code
   - pci = ITU-I or ITU-I spare point code
   - pcn = 14-bit ITU-N or 14-bit ITU-N spare point code
   - pcn24 = 24-bit ITU-N point code.
2. The domain (ANSI or ITU) of the point code and GTT set must be the same, unless the ANSI/ITU SCCP Conversion feature is enabled. If the ANSI/ITU SCCP Conversion feature is enabled, a GTA may contain an ANSI point code and an ITU GTT set, or an ITU point code and an ANSI GTT set. The GTT sets can be specified with the gttsn, optsn, or opc parameter. The CROSS GTT set, a GTT set containing the NETDOM value CROSS, can be specified with either ANSI or ITU point codes, but can be specified only with the gttsn parameter.
3. If the point code is the EAGLE 5 ISS's point code, then the xlat parameter value must be dpcssn and the ri parameter value must be ssn.
4. The force parameter can be specified only if the ri parameter is ssn and the xlat parameter value is dpc. If the pc/pca/pcri/pcn/pcn24 parameter value is not shown in the rtrv-map output, the force=yes parameter must be specified with the ent-gta command.
5. If the ri parameter value is gt, the xlat parameter value can be dpcngt, dpcssn, or opc. If the ri parameter value is ssn, the xlat parameter value can be dpcssn or opc.
6. The ssn parameter can be specified, and must be specified, only if the xlat parameter is dpcssn.

Table 105: GTTSN = OPC GTT Set Parameter Combinations

<table>
<thead>
<tr>
<th>XLAT=DPCNGT, DPCSSN, or DPC</th>
<th>XLAT=NONE</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Mandatory Parameters</strong></td>
<td></td>
</tr>
<tr>
<td>GTTSN – The GTT set name from the GTTSN column of the rtrv-gttset output containing the value OPC in the SETTYPE column.</td>
<td>GTTSN – The GTT set name from the GTTSN column of the rtrv-gttset output containing the value OPC in the SETTYPE column.</td>
</tr>
<tr>
<td>RI – GT, SSN (See Notes 3, 4, 5, and 6)</td>
<td>OPC/OPCA/OPCI/OPCN/OPCN24 (See Notes 1, 2, and 3)</td>
</tr>
<tr>
<td>PC/PCA/PCI/PCN/PCN24 (See Notes 1, 2, and 3)</td>
<td></td>
</tr>
</tbody>
</table>
### Optional Parameters

<table>
<thead>
<tr>
<th>XLAT=DPCNGT, DPCSSN, or DPC</th>
<th>XLAT=None</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPC/OPCA/OPCI/OPCN/OPCN24 (See Notes 1, 2, and 3)</td>
<td>These parameters cannot be specified with the xlat=none parameter.</td>
</tr>
</tbody>
</table>
| SSN – 0 - 255. Default value – no SSN value is specified. (See Note 3) | • pc/pca/pci/pcn/pcn24  
• ssn  
• ri  
• force=yes |
| OPTSN – The GTT set name from the GTTSN column of the rtrv-gttset output. Refer to Table 99: GTTSN and OPTSN Combinations for the valid GTT set types that can be specified. Default value – no GTT set is specified. |  
There are other optional parameters that can be used with this entry. Refer to Table 109: Optional GTA Parameters for these parameters. The EGTA parameter cannot be specified with this entry. |

### Notes:

1. The pc/pca/pci/pcn/pcn24 parameters are used to assign either ANSI, ITU-I, ITU-I spare, 14-bit ITU-N, 14-bit ITU-N spare, or 24-bit ITU-N point codes as the translated point code. The opc/opca/opci/opcn/opcn24 parameters are used to assign either ANSI, ITU-I, ITU-I spare, 14-bit ITU-N, 14-bit ITU-N spare, or 24-bit ITU-N point codes as the OPC parameter values.
   - pc/pca and opc/opca = ANSI point code  
   - pci and opci = ITU-I or ITU-I spare point code  
   - pcn and opcn = 14-bit ITU-N or 14-bit ITU-N spare point code  
   - pcn24 and opcn24 = 24-bit ITU-N point code.

2. The domain (ANSI or ITU) of the point code and GTT set must be the same, unless the ANSI/ITU SCCP Conversion feature is enabled. If the ANSI/ITU SCCP Conversion feature is enabled, a GTA may contain an ANSI point code and an ITU GTT set, or an ITU point code and an ANSI GTT set. The GTT sets can be specified with the gttsn, optsn, ropcsn parameters. The CROSS GTT set, a GTT set containing the NETDOM value CROSS, can be specified with either ANSI or ITU point codes, but can be specified only with the gttsn parameter.

3. If the point code is the EAGLE 5 ISS’s point code, then the xlat parameter value must be dpcssn and the ri parameter value must be ssn.

4. The force parameter can be specified only if the ri parameter is ssn and the xlat parameter value is dpc. If the pc/pca/pci/pcn/pcn24 parameter value is not shown in the rtrv-map output, the force=yes parameter must be specified with the ent-gta command.
5. If the ri parameter value is gt, the xlat parameter value can be dpcngt, dpcssn, or dpc. If the ri parameter value is ssn, the xlat parameter value can be dpcssn or dpc.

6. The ssn parameter can be specified, and must be specified, only if the xlat parameter is dpcssn.

Table 106: GTTSN = CDSSN GTT Set Parameter Combinations

<table>
<thead>
<tr>
<th>XLAT=DPCNGT, DPCSSN, or DPC</th>
<th>XLAT=None</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Mandatory Parameters</strong></td>
<td></td>
</tr>
<tr>
<td>GTTSN – The GTT set name from the GTTSN column of the rtrv-gttset output containing the value CDSSN in the SETTYPE column.</td>
<td>GTTSN – The GTT set name from the GTTSN column of the rtrv-gttset output containing the value CDSSN in the SETTYPE column.</td>
</tr>
<tr>
<td>RI = GT, SSN (See Notes 3, 4, 5, and 6)</td>
<td>CDSSN – 0 - 255</td>
</tr>
<tr>
<td>PC/PCA/PCI/PCN/PCN24 (See Notes 1, 2, and 3)</td>
<td></td>
</tr>
<tr>
<td>CDSSN – 0 - 255</td>
<td></td>
</tr>
<tr>
<td><strong>Optional Parameters</strong></td>
<td></td>
</tr>
</tbody>
</table>
| SSN – 0 - 255. Default value – no SSN value is specified. (See Note 3) | ECDSSN – 0 - 255. Default value – no ECDSSN value is specified. The ECDSSN value must be greater than the CDSSN value. These parameters cannot be specified with the xlat=None parameter.  
  - pc/pca/pci/pcn/pcn24  
  - ssn  
  - ri  
  - force=yes |
| ECDSSN – 0 - 255. Default value – no ECDSSN value is specified. The ECDSSN value must be greater than the CDSSN value. |           |
| OPTSN – The GTT set name from the GTTSN column of the rtrv-gttset output. Refer to Table 99: GTTSN and OPTSN Combinations for the valid GTT set types that can be specified. Default value – no GTT set is specified. |           |
**Table 107: GTTSN = OPCODE GTT Set Parameter Combinations**

<table>
<thead>
<tr>
<th>XLAT=DPCNGT, DPCSSN, or DPC</th>
<th>XLAT=None</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Mandatory Parameters</strong></td>
<td></td>
</tr>
<tr>
<td>GTTSN – The GTT set name from the GTTSN column of the rtrv-gttset output containing the value OPCODE in the SETTYPE column.</td>
<td>GTTSN – The GTT set name from the GTTSN column of the rtrv-gttset output containing the value OPCODE in the SETTYPE column.</td>
</tr>
<tr>
<td>RI = GT, SSN (See Notes 3, 4, 5, and 6)</td>
<td>OPCODE = 0 - 255, *, none</td>
</tr>
</tbody>
</table>

Notes:

1. The `pc/pca/pci/pcn/pcn24` parameters are used to assign either ANSI, ITU-I, ITU-I spare, 14-bit ITU-N, 14-bit ITU-N spare, or 24-bit ITU-N point codes as the translated point code.
   - `pc/pca` = ANSI point code
   - `pci` = ITU-I or ITU-I spare point code
   - `pcn` = 14-bit ITU-N or 14-bit ITU-N spare point code
   - `pcn24` = 24-bit ITU-N point code.
2. The domain (ANSI or ITU) of the point code and GTT set must be the same, unless the ANSI/ITU SCCP Conversion feature is enabled. If the ANSI/ITU SCCP Conversion feature is enabled, a GTA may contain an ANSI point code and an ITU GTT set, or an ITU point code and an ANSI GTT set. The GTT sets can be specified with `the-gttset, optsn, or-opcsn` parameters. The CROSS GTT set, a GTT set containing the `NETDOM` value CROSS, can be specified with either ANSI or ITU point codes, but can be specified only with the `gttset` parameter.
3. If the point code is the EAGLE 5 ISS’s point code, then the `xlat` parameter value must be `dpcssn` and the `ri` parameter value must be `ssn`.
4. The `force` parameter can be specified only if the `ri` parameter is `ssn` and the `xlat` parameter value is `dpc`. If the `pc/pca/pci/pcn/pcn24` parameter value is not shown in the `rtrv-map` output, the `force=yes` parameter must be specified with the `ent-gta` command.
5. If the `ri` parameter value is `gt`, the `xlat` parameter value can be `dpcngt, dpcssn, ordpc`. If the `ri` parameter value is `issn`, the `xlat` parameter value can be `dpcssn ordpc`.
6. The `ssn` parameter can be specified, and must be specified, only if the `xlat` parameter is `dpcssn`.

---

XLAT=DPCNGT, DPCSSN, or DPC

OPCNSN – The GTT set name from the GTTSN column of the rtrv-gttset output containing the value OPC in the SETTYPE column. Default value – no OPC GTT set is specified.

There are other optional parameters that can be used with this entry. Refer to Table 109: Optional GTA Parameters for these parameters. The EGTA parameter cannot be specified with this entry.
### Optional Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
</table>
| SSN | 0 - 255. Default value – no SSN value is specified. (See Note 3) These parameters cannot be specified with the xlat=none parameter.  
- pc/pca pci/pcn/pcn24  
- ssn  
- ri  
- force=yes |
| OPTSN | The GTT set name from the GTTSN column of the rtrv-gttset output. Refer to Table 99: GTTSN and OPTSN Combinations for the valid GTT set types that can be specified. Default value – no GTT set is specified. |
| OPCSN | The GTT set name from the GTTSN column of the rtrv-gttset output containing the value OPC in the SETTYPE column. Default value – no OPC GTT set is specified. |

There are other optional parameters that can be used with this entry. Refer to Table 109: Optional GTA Parameters for these parameters. The EGTA parameter cannot be specified with this entry.

### Notes:

1. The pc/pca/pci/pcn/pcn24 parameters are used to assign either ANSI, ITU-I, ITU-I spare, 14-bit ITU-N, 14-bit ITU-N spare, or 24-bit ITU-N point codes as the translated point code.
2. The domain (ANSI or ITU) of the point code and GTT set must be the same, unless the ANSI/ITU SCCP Conversion feature is enabled. If the ANSI/ITU SCCP Conversion feature is enabled, a GTA may contain an ANSI point code and an ITU GTT set, or an ITU point code and an ANSI GTT set. The GTT sets can be specified with the `gttsn`, `optsn`, or `opcsn` parameters. The CROSS GTT set, a GTT set containing the `NETDOM` value `CROSS`, can be specified with either ANSI or ITU point codes, but can be specified only with the `gttsn` parameter.

3. If the point code is the EAGLE 5 ISS’s point code, then the `xlat` parameter value must be `dpcssn` and the `ri` parameter value must be `ssn`.

4. The `force` parameter can be specified only if the `ri` parameter is `ssn` and the `xlat` parameter value is `dpc`. If the `pc/pca/pci/pcn/pcn24` parameter value is not shown in the `rtrv-map` output, the `force=yes` parameter must be specified with the `theent-gta` command.

5. If the `ri` parameter value is `gt`, the `xlat` parameter value can be `dpcngt, dpcssn, or dpc`. If the `ri` parameter value is `ssn`, the `xlat` parameter value can be `dpcssn` or `dpc`.

6. The `ssn` parameter can be specified, and must be specified, only if the `xlat` parameter is `dpcssn`.

7. The `opcode` parameter value is one of these values.
   - the number 0 to 255
   - * - any valid value in the TCAP OPCODE field in the incoming MSU
   - none - there is no value in the TCAP OPCODE field in the incoming MSU

8. The `family` parameter value is one of these values.
   - the number 0 to 255
   - * - any valid value in the ANSI TCAP FAMILY field in the incoming MSU
   - none - there is no value in the ANSI TCAP FAMILY field in the incoming MSU

9. The `acn` parameter value is one of these values.
   - a maximum of 7 subfields containing the numbers 0 to 255 separated by dash (for example, 1-202-33-104-54-26-007)
   - * - any valid value in the ITU TCAP ACN field in the incoming MSU
   - none - there is no value in the ITU TCAP ACN field in the incoming MSU

10. If the `pkgtype=ituabort` parameter is specified, the value `none` must be specified for the `acn` and `opcode` parameters. If the `pkgtype=ansiabort` parameter is specified, the value `none` must be specified for the `family` and `opcode` parameters.

11. If the value `none` is specified for either the `family` or `opcode` parameters, the value `none` must be specified for both parameters.
Table 108: GTTSN = DPC GTT Set Parameter Combinations

<table>
<thead>
<tr>
<th>XLAT=DPCNGT, DPCSSN, or DPC</th>
<th>XLAT=NONE</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Mandatory Parameters</strong></td>
<td></td>
</tr>
<tr>
<td>GTTSN – The GTT set name from</td>
<td>GTTSN – The GTT set name from</td>
</tr>
<tr>
<td>the GTTSN column of the</td>
<td>the GTTSN</td>
</tr>
<tr>
<td>rtrv-gttset output containing</td>
<td>column of the rtrv-gttset output containing</td>
</tr>
<tr>
<td>the value DPC in the SETTYPE</td>
<td>the value DPC in the SETTYPE</td>
</tr>
<tr>
<td>column.</td>
<td>column.</td>
</tr>
<tr>
<td>RI – GT, SSN (See Notes 3, 4,</td>
<td>DPC/DPCA/DPCI/DPCN/DPCN24 (See Notes</td>
</tr>
<tr>
<td>5, and 6)</td>
<td>1, 2, and 3)</td>
</tr>
<tr>
<td>PC/PCA/PCI/PCN/PCN24 (See</td>
<td></td>
</tr>
<tr>
<td>Notes 1, 2, and 3)</td>
<td></td>
</tr>
<tr>
<td>DPC/DPCA/DPCI/DPCN/DPCN24</td>
<td></td>
</tr>
<tr>
<td>(See Notes 1, 2, and 3)</td>
<td></td>
</tr>
<tr>
<td><strong>Optional Parameters</strong></td>
<td></td>
</tr>
<tr>
<td>SSN – 0 - 255. Default value</td>
<td>These parameters cannot be specified with the</td>
</tr>
<tr>
<td>– no SSN value is specified.</td>
<td>xlat=none parameter.</td>
</tr>
<tr>
<td>(See Note 3)</td>
<td>• pc/pca/pci/pcn/pcn24</td>
</tr>
<tr>
<td></td>
<td>• ssn</td>
</tr>
<tr>
<td></td>
<td>• ri</td>
</tr>
<tr>
<td></td>
<td>• force=yes</td>
</tr>
<tr>
<td>OPTSN – The GTT set name from</td>
<td></td>
</tr>
<tr>
<td>the GTTSN column of the</td>
<td></td>
</tr>
<tr>
<td>rtrv-gttset output. Refer to</td>
<td></td>
</tr>
<tr>
<td>Table 99: GTTSN and OPTSN</td>
<td></td>
</tr>
<tr>
<td>Combinations for the</td>
<td></td>
</tr>
<tr>
<td>valid GTT set types that can</td>
<td></td>
</tr>
<tr>
<td>be specified. Default value</td>
<td></td>
</tr>
<tr>
<td>– no GTT set is specified.</td>
<td></td>
</tr>
</tbody>
</table>

There are other optional parameters that can be used with this entry. Refer to Table 109: Optional GTA Parameters for these parameters. The EGTA parameter cannot be specified with this entry.

**Notes:**

1. The pc/pca/pci/pcn/pcn24 parameters are used to assign either ANSI, ITU-I, ITU-I spare, 14-bit ITU-N, 14-bit ITU-N spare, or 24-bit ITU-N point codes as the translated point code. The dpc/dpc/dpc/dpcn24 parameters are used to assign either ANSI, ITU-I, ITU-I spare, 14-bit ITU-N, 14-bit ITU-N spare, or 24-bit ITU-N point codes as the DPC parameter values.

   - pc/pca and dpc/dpc = ANSI point code
   - pci and dpci = ITU-I or ITU-I spare point code
   - pcn and dpcn = 14-bit ITU-N or 14-bit ITU-N spare point code
XLAT=DPCNGT, DPCSSN, or DPC

- pcn24 and dpcn24 = 24-bit ITU-N point code.

2. The domain (ANSI or ITU) of the point code and GTT set must be the same, unless the ANSI/ITU SCCP Conversion feature is enabled. If the ANSI/ITU SCCP Conversion feature is enabled, a GTA may contain an ANSI point code and an ITU GTT set, or an ITU point code and an ANSI GTT set. The GTT sets can be specified with the gttset, optset, or opcsn parameters. The CROSS GTT set, a GTT set containing the NETDOM value CROSS, can be specified with either ANSI or ITU point codes, but can be specified only with the gttset parameter.

3. If the point code is the EAGLE 5 ISS's point code, then the xlat parameter value must be dpcssn and the ri parameter value must be ssn.

4. The force parameter can be specified only if the ri parameter is ssn and the xlat parameter value is dpc. If the pc/pca/pci/pcn/pcn24 parameter value is not shown in the rtrv-map output, the force=yes parameter must be specified with the ent-gta command.

5. If the ri parameter value is gt, the xlat parameter value can be dpcngt, dpcssn, or dpc. If the ri parameter value is ssn, the xlat parameter value can be dpcssn or dpc.

6. The ssn parameter can be specified, and must be specified, only if the xlat parameter is dpcssn.

Table 109: Optional GTA Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EGTA</td>
<td>1 - 21 digits or 1 - 21 hexadecimal digits. Default = same as the GTA value. Hexadecimal digits (0-9, a-f, A-F) can be specified for the egta parameter only if the Hex Digit support for GTT feature is enabled.</td>
</tr>
<tr>
<td>MRNSET</td>
<td>MRN set ID from the rtrv-mrn output. The mrnset parameter can be specified only, and must be specified, if the Flexible GTT Load Sharing feature is enabled.</td>
</tr>
<tr>
<td>LOOPSET</td>
<td>Loopset name from the rtrv-loopset output. The loopset parameter can be specified only if the SCCP Loop Detection feature is enabled.</td>
</tr>
<tr>
<td>CGGTMOD</td>
<td>yes, no. Default = no. The cggtmod parameter can be specified only if the AMGTT or AMGTT CgPA Upgrade feature is enabled.</td>
</tr>
<tr>
<td>CCGT</td>
<td>yes, no. Default = no. If the point code is the EAGLE 5 ISS's point code, then the value of the cct parameter must be set to no.</td>
</tr>
<tr>
<td>MAPSET</td>
<td>MAP set ID from the rtrv-map output. The mapset parameter can be specified only, and must be specified, if the Flexible GTT Load Sharing feature is enabled.</td>
</tr>
<tr>
<td>FORCE</td>
<td>yes, no. Default = no. If the pc/pca/pci/pcn/pcn24 parameter value is not shown in the rtrv-map output, the force=yes parameter must be specified with the ent-gta command.</td>
</tr>
<tr>
<td>TESTMODE</td>
<td>on, off. Default = off.</td>
</tr>
<tr>
<td>FALLBACK</td>
<td>sysdflt, yes, no. Default = sysdflt. The Flexible Linkset Optional Based Routing feature must be enabled and turned on to use this parameter.</td>
</tr>
</tbody>
</table>
CGSELID – 0 - 65534. Default = no CGSELID value is specified. The Origin-Based SCCP Routing feature must be enabled or the Flexible Linkset Optional Based Routing feature must be enabled and turned on to use this parameter.

CDSELID – 0 - 65534. Default = no CDSELID value is specified. The Flexible Linkset Optional Based Routing feature must be enabled and turned on to use this parameter.

CGCNVSN – GTT set name shown in the rtrv-gttset output. Default = no CGCNVSN value is specified. The ANSI/ITU SCCP Conversion feature must be enabled, and the Flexible Linkset Optional Based Routing feature must be enabled and turned on to use this parameter.

ACTSN – The name of the GTT action set name shown in the rtrv-gttaset output. Default = no ACTSN value is specified. The actsn parameter can be specified only if the GTT Action - DISCARD, GTT Action - DUPLICATE, GTT Action - FORWARD feature is enabled.

GTMODID – The name of the GT modification identifier shown in the rtrv-gtmod output. Default = no GTMODID value is specified. If the NGTI value in the global title modification entry is 4, the point code that will be assigned to the GTA entry must be an ITU point code.

PPMEASREQD – This parameter specifies whether per-path measurements are required for the GTA entry. This parameter has two values.

- yes - per-path measurements are required for the GTA entry.
- no - per-path measurements are not required for the GTA entry.

1. Display the existing GTT sets in the database using the rtrv-gttset command.

   This is an example of the possible output.

   rlghncxa03w 09-07-07 00:29:31 GMT EAGLE5 41.1.0
   GTTSEN NETDOM SETTYPE NDGT
   abcd1234 itu CGGTA 12
   imsi itu CDGTA 15
   lidb ansi CDGTA 10
   t800 ansi CGGTA 6
   s1000 itu CDGTA 15
   s2000 itu CGPC -

   GTT-SET table is (6 of 2000) 1% full.

   If the desired GTT set name is shown in the rtrv-gttset output, continue the procedure with Step 2.

   If the desired GTT set name is not shown in the rtrv-gttset output, perform Adding a GTT Set to add the required GTT set. After the GTT set has been added, continue the procedure with Step 3. If the SETTYPE column is not shown in the rtrv-gttset output and you wish to provision the GTA entry for any of these features, Origin-Based SCCP Routing, Flexible Linkset Optional Based Routing, or TCAP Opcode Based Routing, make sure the appropriate feature is enabled, and turned on if necessary, when adding the GTT set. After the GTT set has been added, continue the procedure with Step 3.
2. Display the global title address information for the GTT set that the global title address information will be added to using the `rtrv-gta` command with the `gttsn` parameter value shown in the output of Step 1.

If the `num` parameter is specified with the `rtrv-gta` command, and the value of the `num` parameter is greater than 1000, the `force=yes` parameter must be specified with the `rtrv-gta` command. For this example, enter this command.

```
rtrv-gta:gttsn=t800
```

This is an example of the possible output.

```
rlghncxa03w 10-07-07 00:27:31 GMT EAGLE5 42.0.0
GTTSN NETDOM SETTYPE NDGT
t800 ansi CDGTA 10
GTA TABLE IS 1 % FULL (17 of 269999)

START GTA END GTA XLAT RI PC
8005550000 8005551999 DPCSSN SSN 001-254-255
SSN=255 CGGT=no CGGTMOD=NO
GTMODID=-------- TESTMODE=off
OPTSN=gttset7 CGSELID=---- OPSON=----------
ACTSN=-------- PPMEASREQD= NO

8005552000 8005553999 DPC GT 001-254-255
SSN=255 CGGT=no CGGTMOD=NO
GTMODID=-------- TESTMODE=off
OPTSN=gttset7 CGSELID=---- OPSON=----------
ACTSN=-------- PPMEASREQD= NO

8005554000 8005555999 DPCNGT GT 001-254-255
SSN=255 CGGT=no CGGTMOD=NO
GTMODID=modid2 TESTMODE=off
OPTSN=-------- CGSELID=---- OPSON=gttset12
ACTSN=-------- PPMEASREQD= NO

8005556000 8005557999 DPCSSN SSN 001-254-255
SSN=255 CGGT=no CGGTMOD=NO
GTMODID=-------- TESTMODE=off
OPTSN=-------- CGSELID=---- OPSON=gttset6
ACTSN=-------- PPMEASREQD= NO

8005558000 8005559999 DPCSSN SSN 001-254-255
SSN=255 CGGT=yes CGGTMOD=NO
GTMODID=-------- TESTMODE=off
OPTSN=-------- CGSELID=---- OPSON=gttset12
ACTSN=-------- PPMEASREQD= NO

9195551212 9195551212 DPCSSN SSN 008-001-001
SSN=222 CGGT=no CGGTMOD=NO
GTMODID=-------- TESTMODE=off
OPTSN=-------- CGSELID=---- OPSON=gttset12
ACTSN=-------- PPMEASREQD= NO

9762428487 9762428487 DPCSSN SSN 001-254-255
SSN=222 CGGT=no CGGTMOD=NO
GTMODID=-------- TESTMODE=off
OPTSN=-------- CGSELID=---- OPSON=----------
ACTSN=-------- PPMEASREQD= NO

9766423277 9766423277 DPCSSN SSN 001-254-255
SSN=222 CGGT=no CGGTMOD=NO
GTMODID=-------- TESTMODE=off
OPTSN=-------- CGSELID=---- OPSON=----------
ACTSN=-------- PPMEASREQD= NO

9769388928 9769388928 DPCSSN SSN 001-254-255
SSN=222 CGGT=no CGGTMOD=NO
GTMODID=-------- TESTMODE=off
OPTSN=gttset9 CGSELID=---- OPSON=----------
```
3. The global title address entry cannot be added to the database if the database contains the maximum number of global title addresses the EAGLE 5 ISS is allowed to have. The maximum number of global title addresses is shown in the \texttt{rtrv-ctrl-feat} output.

The following is an example of the possible output.

```
rlghncxa03w 09-05-28 21:15:37 GMT EAGLE5 41.0.0
The following features have been permanently enabled:

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Partnum</th>
<th>Status</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>XGTT Table Expansion</td>
<td>893006101</td>
<td>on</td>
<td>400000</td>
</tr>
<tr>
<td>IPGWx Signaling TPS</td>
<td>893012814</td>
<td>on</td>
<td>20000</td>
</tr>
<tr>
<td>ISUP Normalization</td>
<td>893000201</td>
<td>on</td>
<td>----</td>
</tr>
<tr>
<td>Command Class Management</td>
<td>893005801</td>
<td>on</td>
<td>----</td>
</tr>
<tr>
<td>LNP Short Message Service</td>
<td>893006601</td>
<td>on</td>
<td>----</td>
</tr>
<tr>
<td>Intermed GTT Load Sharing</td>
<td>893006901</td>
<td>on</td>
<td>----</td>
</tr>
<tr>
<td>HC-MIM SLK Capacity</td>
<td>893012707</td>
<td>on</td>
<td>64</td>
</tr>
</tbody>
</table>

The following features have been temporarily enabled:

```

```
Feature Name | Partnum |
-------------------------------|---------|
```

Zero entries found.

The following features have expired temporary keys:

```
Feature Name | Partnum |
-------------------------------|---------|
```

Zero entries found.

Note: If the entry XGTT Table Expansion is not shown in the \texttt{rtrv-ctrl-feat} output, the maximum number of global title addresses that the database can contain is 269,999.

If the current number of global title translations that can be provisioned is 400,000, and the global title translation being added increases the number beyond 400,000 (the current number of global title translations that are provisioned is shown in the \texttt{rtrv-gta} output in Step 2), perform \textit{Enabling the XGTT Table Expansion Feature} to enable XGTT Table Expansion feature for 1,000,000 global title translations.

If the current number of global title translations that can be provisioned is 269,999, and the global title translations being added increases the number beyond 269,999 (the current number of global title translations that are provisioned is shown in the \texttt{rtrv-gta} output in Step 2), perform \textit{Enabling the XGTT Table Expansion Feature} to enable XGTT Table Expansion feature for 400,000 global title translations.

If the maximum number of global title is either 269,999 or 400,000, and the global title translation being added will not increase the number beyond the maximum number of global title translations (shown in the \texttt{rtrv-gta} output in Step 2), the maximum number of global title translations does not need to be increased. If the maximum number of global title translations is 1,000,000, the maximum number of global title translations cannot be increased.

4. Some parameters of the \texttt{ent-gta} command can be specified only when certain features are enabled, and turned on if necessary. \textit{Table 110: Feature Requirements for ENT-GTA Parameters} shows the feature requirements for these parameters.
Table 110: Feature Requirements for ENT-GTA Parameters

<table>
<thead>
<tr>
<th>Required Feature</th>
<th>Parameters or Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Origin-Based SCCP Routing Enabled</td>
<td>GTTSN - specifying CGGTA, CGPC, CGSSN, or OPC GTT sets</td>
</tr>
<tr>
<td></td>
<td>OPTSN - specifying CGGTA, CGPC, or CGSSN GTT sets</td>
</tr>
<tr>
<td></td>
<td>OPCSN</td>
</tr>
<tr>
<td></td>
<td>CGPC</td>
</tr>
<tr>
<td></td>
<td>CGSSN</td>
</tr>
<tr>
<td></td>
<td>ECGSSN</td>
</tr>
<tr>
<td></td>
<td>OPC</td>
</tr>
<tr>
<td></td>
<td>CGSELID</td>
</tr>
<tr>
<td>Flexible GTT Load Sharing Enabled</td>
<td>MAPSET</td>
</tr>
<tr>
<td></td>
<td>MRNSET</td>
</tr>
<tr>
<td>Flexible Linkset Optional Based Routing Enabled and</td>
<td>GTTSN - specifying CDSSN or DPC GTT sets</td>
</tr>
<tr>
<td>Turned On</td>
<td>OPTSN - specifying CDSSN or DPC GTT sets</td>
</tr>
<tr>
<td></td>
<td>FALLBACK</td>
</tr>
<tr>
<td></td>
<td>CDSSN</td>
</tr>
<tr>
<td></td>
<td>ECDSSN</td>
</tr>
<tr>
<td></td>
<td>CDSELID</td>
</tr>
<tr>
<td></td>
<td>DPC</td>
</tr>
<tr>
<td>ANSI/ITU SCCP Conversion Enabled and Flexible Linkset</td>
<td>CGCNVSN</td>
</tr>
<tr>
<td>Optional Based Routing Enabled and Turned On</td>
<td></td>
</tr>
<tr>
<td>TCAP Opcode Based Routing Enabled and Turned On</td>
<td>GTTSN - specifying OPCODE GTT sets</td>
</tr>
<tr>
<td></td>
<td>OPTSN - specifying OPCODE GTT sets</td>
</tr>
<tr>
<td>TOBR Quantity Enabled</td>
<td>ACN</td>
</tr>
<tr>
<td></td>
<td>FAMILY</td>
</tr>
<tr>
<td></td>
<td>OPCODE</td>
</tr>
<tr>
<td></td>
<td>PKGTYPE</td>
</tr>
<tr>
<td>SCCP Loop Detection Enabled</td>
<td>LOOPSET</td>
</tr>
<tr>
<td>Advanced GT Modification (AMGTT) or AMGTT CgPA Upgrade</td>
<td>CGGTMOD</td>
</tr>
<tr>
<td>Required Feature</td>
<td>Parameters or Values</td>
</tr>
<tr>
<td>------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>ANSI/ITU SCCP Conversion Enabled</td>
<td>The domain (ANSI or ITU) of the point code and the GTT set that will be assigned to the GTA entry will be different.</td>
</tr>
<tr>
<td>Hex Digit Support for GTT Enabled</td>
<td>Hexadecimal digits will be specified for the <code>gta</code> or <code>egta</code> parameter values.</td>
</tr>
<tr>
<td>GTT Action - DISCARD, GTT Action - DUPLICATE, GTT Action - FORWARD Enabled</td>
<td>ACTSN</td>
</tr>
</tbody>
</table>

To enable, and turn on if necessary, any of these features, perform these procedures.

- **Origin-Based SCCP Routing** - *Activating the Origin-Based SCCP Routing Feature*
- **Flexible GTT Load Sharing** - *Activating the Flexible GTT Load Sharing Feature*. After the Flexible GTT Load Sharing feature has been enabled, perform one of these procedures.
  - If the `mrnset` and `ri=gt` parameters will be specified for the GTA entry, perform *Provisioning MRN Entries* to add the required MRNSET.
  - If the `mapset` and `ri=ssn` parameters will be specified for the GTA entry, perform one of these procedures to add the required MAPSET.
    - *Provisioning a Solitary Mated Application*
    - *Provisioning a Dominant Mated Application*
    - *Provisioning a Load Shared Mated Application*
    - *Provisioning a Combined Dominant/Load Shared Mated Application*
- **Flexible Linkset Optional Based Routing** - *Activating the Flexible Linkset Optional Based Routing Feature*
- **TCAP Opcode Based Routing** - *Activating the TCAP Opcode Based Routing Feature*
- **TOBR Opcode Quantity** - *Enabling a TOBR Opcode Quantity*
- **SCCP Loop Detection** - *Activating the SCCP Loop Detection Feature*. After the SCCP Loop Detection feature is enabled, perform the *Adding a Loopset* procedure to add the required loopset.
- **Advanced GT Modification or AMGTT CgPA Upgrade** - *Activating the Advanced GT Modification Feature*
- **ANSI/ITU SCCP Conversion** - *Activating the ANSI/ITU SCCP Conversion Feature*
- **Hex Digit Support for GTT Enabled** - *Activating the Hex Digit Support for GTT Feature*
- **GTT Action** - DISCARD, GTT Action - DUPLICATE, GTT Action - FORWARD - *Activating the GTT Actions Features*. After the required GTT Actions feature is enabled, perform the *Adding a GTT Action Set* procedure to add the required GTT action set.

If the required feature is enabled, and turned on if required, shown in the `rtrv-ctrl-feat` output in *Step 3*, the procedure for that feature does not need to be performed.

5. To use either the `mrnset` parameter (if the routing indicator value for the global title translation is GT) or `mapset` parameter (if the routing indicator value for the global title translation is SSN), the Flexible GTT Load Sharing feature must be enabled. See *Step 4*. The `mrnset` and `mapset` parameters can be specified if the `xlat=none` parameter is specified for the GTA entry.
If the Flexible GTT Load Sharing feature is enabled, either the mrnset or mapset parameters, depending on the routing indicator value for the global title translation being added in this procedure, must be specified with the ent-gta command.

If the routing indicator for the global title translation being added is GT, there are two actions that can be taken:

- If the Flexible GTT Load Sharing feature is not enabled, continue the procedure with Step 7.
- If the Flexible GTT Load Sharing feature is enabled, continue the procedure with Step 6.

If the routing indicator for the global title translation being added is SSN, there are two actions that can be taken:

- If the Flexible GTT Load Sharing feature is not enabled, continue the procedure with one of these steps.
  - If the point code value is a value other than the EAGLE 5 ISS’s point code, the ri parameter value will be ssn, and the xlat parameter value will be dpc, continue the procedure with Step 11.
  - If the point code value is a value other than the EAGLE 5 ISS’s point code, the ri parameter value will be ssn, and the xlat parameter value will be dpcssn when this procedure is completed, continue the procedure with Step 12.

- If the Flexible GTT Load Sharing feature is enabled, perform one of these steps.
  - If the point code value is the EAGLE 5 ISS’s point code continue the procedure with Step 10.
  - If the point code value is a value other than the EAGLE 5 ISS’s point code, or the xlat parameter value will be dpc, continue the procedure with Step 11.

If the xlat=none parameter will be specified and the Flexible GTT Load Sharing feature is not enabled, continue the procedure with Step 16.

If the xlat=none parameter will be specified and the Flexible GTT Load Sharing feature is enabled, continue the procedure by performing one of these steps. Both the mrnset and mapset parameters can be specified for the GTA entry.

- If the mrnset parameter will be specified, continue the procedure with Step 6.
- If the mapset parameter will be specified, continue the procedure with Step 11.

6. The point code and MRN set ID specified for the global title translation must be shown in the rtrv-mrn command output. The point code must be assigned to the MRN set that will be specified with the ent-gta command.

Enter the rtrv-mrn command to verify that the required MRN set is configured in the database, and that the required point code is assigned to the MRN set. The following is an example of the possible output.

```
rlghncxa03w 09-05-28 21:15:37 GMT EAGLE5 41.0.0
MRNSET PC RC
DFLT 001-001-001 10
001-001-002 20
001-001-003 30
001-254-255 40
```
Note: If the Weighted GTT Load Sharing feature is enabled, the WT, %WT, and THR columns are shown in the rtrv-mrn output.

If the required MRN set is not shown in the rtrv-mrn output, provision the required MRN set by performing the Provisioning MRN Entries procedure.

If the required MRN set is shown in the rtrv-mrn output, or the Provisioning MRN Entries procedure has been performed, continue the procedure by performing one of these steps:

- If the ri=gt parameter will be specified, continue the procedure with Step 16.
- If the xlat=none parameter will be specified, continue the procedure by performing one of these steps.
  - If the mapset parameter will be specified, continue the procedure with Step 11.
  - If the mapset parameter will not be specified, continue the procedure with Step 16.

7. Display the destination point codes in the database by entering the rtrv-dstn command. This is an example of the possible output.
If the required point code is not shown in the rtrv-dstn output, perform the "Adding a Destination Point Code" procedure in the Database Administration Manual - SS7 to add the required point code. A proxy point code cannot be assigned to the point code. After the new point code has been added, perform one of the Adding a Route procedures in the Database Administration Manual - SS7 and add the required route to the database. After the route has been added, continue the procedure with Step 5.

If the required point code is shown in the rtrv-dstn output, continue the procedure with Step 8.

8. Display the point code that will be assigned to the GTA entry by using the rtrv-dstn command and specifying the point code. For this example, enter this command.

```
rtrv-dstn:dpca=010-020-005
```

This is an example of the possible output.

```
rlghncxa03w 10-12-10 11:43:04 GMT EAGLE5 43.0.0

DPCA CLLI BEI ELEI ALIASI ALIASN/N24 DMN
010-020-005 ----------- no --- -------------- -------------- SS7
PPCA NCAI PRX RCAUSE NPRST SPLITIAM HMSMSC HMSCP SCCPMSGCNV
009-002-003 ---- no none off none no no none
```

A proxy point code (a point code value is shown in the PPC column) cannot be assigned to the point code. If a proxy point code is shown in this step, choose another point code from the rtrv-dstn output in the previous step and repeat this step.

If a proxy point code is not assigned to the point code, continue the procedure with Step 9.

9. The point code specified with the ent-gta command must be the DPC of a route, unless the point code is the EAGLE 5 ISS's point code. Enter the rtrv-rte command with the dpc parameter specifying the point code to be used with the ent-gta command to verify whether or not the point code is the DPC of a route. For this example, enter these commands.

```
rtrv-rte:dpca=001-255-100
```

This is an example of the possible output.

```
rlghncxa03w 09-05-07 11:43:04 GMT EAGLE5 41.0.0

DPCA ALIASI ALIASN/N24 LSN RC APCA
010-020-005 ----------- no --- ------------------- ---- SS7
```
If the point code is not shown in the `rtrv-rte` output, the point code is not the DPC of a route. Perform one of the Adding a Route procedures in the *Database Administration Manual - SS7* to add the required route to the database.

If the point code is shown in the `rtrv-rte` output, or if a new route was added, continue the procedure with Step 16.

10. If the `ri:ssn` and `xlat:dpc:ssn` parameters are specified with the `ent-gta` command, and you wish to use the EAGLE 5 ISS’s point code for the value of the `pc` parameter of the `ent-gta` command, the point code value must be in the EAGLE 5 ISS’s self ID table. Display the EAGLE 5 ISS self-identification, using the `rtrv-sid` command.

This is an example of the possible output.

```
rlghncxa03w 09-05-10 11:43:04 GMT EAGLE5 41.0.0
PCA PCI PCN CLLI PCTYPE
010-020-030 1-023-1 12-0-14-1 rlghncxa03w OTHER
 s-1-023-1 s-12-0-14-1
CPCA
002-002-002 002-002-003 002-002-004 002-002-005
002-002-006 002-002-007 002-002-008 002-002-009
004-002-001 004-003-003 050-060-070
CPCI
1-001-1 1-001-2 1-001-3 1-001-4
1-002-1 1-002-2 1-002-3 1-002-4
2-001-1 7-222-7
CPCN
2-0-10-3 2-0-11-0 2-0-11-2 2-0-12-1
2-2-3-3 2-2-4-0 10-14-10-1
```
For this example enter this command.

```
rttrv-map:pca=001-255-001
```

```
rlghncxa03w 09-07-25 09:42:31 GMT EAGLE5 41.1.0

PCA Mate PCA SSN RC MULT SRM MRC GRP NAME SSO
MAPSET ID=DFLT
001-255-001 55 5 DOM YES YES -------- OFF
001-001-002 15 15 DOM YES YES -------- ON
001-001-003 25 20 DOM YES YES -------- ON
001-001-002 40 35 DOM YES YES -------- OFF

MAPSET ID=1
001-255-001 50 5 DOM YES YES -------- OFF
001-001-002 10 15 DOM YES YES -------- ON
001-001-003 20 20 DOM YES YES -------- ON
001-001-002 40 35 DOM YES YES -------- OFF

MAPSET ID=2
001-255-001 5 10 SOL *Y *Y -------- OFF

MAP TABLE IS (12 of 36000) 1 % FULL
```

**Note:** If the Weighted GTT Load Sharing feature is enabled, the `WT`, `%WT`, and `THR` columns are shown in the `rttrv-map` output.

If the `ri=ssn` and `xlat=dpc` parameters are being specified with the `ent-gta` command, the point code must be in the mated application table. If the point code is not in the mated application table when the `ent-gta` command is executed, the `force=yes` parameter must be specified with the `ent-gta` command. If the `force=yes` parameters will be specified with the `ent-gta` command, continue the procedure with Step 12.

If the EAGLE 5 ISS’s true point code and the EAGLE 5 ISS’s subsystem number, along with the `ri=ssn` and `xlat=dpcssn` parameters are being specified with the `ent-gta` command, the EAGLE 5 ISS’s true point code and the EAGLE 5 ISS’s subsystem number must be in the mated application table.

If the required point code, subsystem number, or MAP set ID is not shown in the `rttrv-map` output, perform one of these procedures to add the required information to the mated application table.

- **Provisioning a Solitary Mated Application**
- **Provisioning a Dominant Mated Application**
- **Provisioning a Load Shared Mated Application**
- **Provisioning a Combined Dominant/Load Shared Mated Application**

Continue the procedure by performing one of these steps.

- If the `ri=ssn` parameter will be specified, continue the procedure by performing one of these steps.
  - if the EAGLE 5 ISS’s point code and subsystem number will be specified with the `ent-gta` command, continue the procedure with Step 15.
  - if the EAGLE 5 ISS’s point code and subsystem number will not be specified with the `ent-gta` command, and the `xlat=dpcssn` and `ri=ssn` parameters will be specified with the `ent-gta` command, continue the procedure with Step 16.
  - if the `xlat=dpc` and `ri=ssn` parameters will be specified with the `ent-gta` command, without the `force=yes` parameter, continue the procedure with Step 16.
- If the `xlat=none` parameter will be specified, continue the procedure with Step 16.
12. Display the destination point codes in the database by entering the `rtrv-dstn` command. This is an example of the possible output.

<table>
<thead>
<tr>
<th>Destination table is (14 of 2000) 1% full</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alias table is (0 of 12000) 0% full</td>
</tr>
<tr>
<td>PPC table is (1 of 20) 5% full</td>
</tr>
</tbody>
</table>

If the required point code is not shown in the `rtrv-dstn` output, perform the "Adding a Destination Point Code" procedure in the Database Administration Manual - SS7 to add the required point code. A proxy point code cannot be assigned to the point code. After the new point code has been added, perform one of the Adding a Route procedures in the Database Administration Manual - SS7 and add the required route to the database. After the route has been added, continue the procedure with Step 16.

If the required point code is shown in the `rtrv-dstn` output, continue the procedure with Step 13.

13. Display the point code that will be assigned to the mated application by using the `rtrv-dstn` command and specifying the point code. For this example, enter this command.

`rtrv-dstn:dpca=010-020-005`

This is an example of the possible output.

<table>
<thead>
<tr>
<th>Destination table is (14 of 2000) 1% full</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alias table is (0 of 12000) 0% full</td>
</tr>
<tr>
<td>PPC table is (1 of 20) 5% full</td>
</tr>
</tbody>
</table>
A proxy point code (a point code value is shown in the PPC column) cannot be assigned to the point code. If a proxy point code is shown in this step, choose another point code from the rtrv-dstn output in the previous step and repeat this step.

If a proxy point code is not assigned to the point code, continue the procedure with Step 14.

14. The point code specified with the ent-gta command must be the DPC of a route, unless the point code is the EAGLE 5 ISS’s point code. Enter the rtrv-rte command with the dpc parameter specifying the point code to be used with the ent-gta command to verify whether or not the point code is the DPC of a route. For this example, enter these commands.

rtrv-rte:dpca=001-255-100

This is an example of the possible output.

```
rlghncxa03w 09-05-07 11:43:04 GMT EAGLE5 41.0.0
DPCA ALIASI ALIASN/N24 LSN RC APCA
001-255-100 ---------- -------------- ls03 10 001-255-100
 ls02 30 150-150-150
 lsa2 50 200-200-200
RTX:No CLLI=ls03clli
```

rtrv-rte:dpca=001-255-252

This is an example of the possible output.

```
rlghncxa03w 09-05-07 11:43:04 GMT EAGLE5 41.0.0
DPCA ALIASI ALIASN/N24 LSN RC APCA
001-255-252 ---------- -------------- ls07 10 001-255-252
 ls08 30 025-025-150
 lsa5 50 066-030-100
RTX:No CLLI=ls07clli
```

rtrv-rte:dpca=001-255-001

This is an example of the possible output.

```
rlghncxa03w 09-05-07 11:43:04 GMT EAGLE5 41.0.0
DPCA ALIASI ALIASN/N24 LSN RC APCA
001-255-001 ---------- -------------- ls05 10 001-255-001
 ls15 30 089-047-123
 lsa8 50 077-056-000
RTX:No CLLI=ls05clli
```

If the point code is not shown in the rtrv-rte output, the point code is not the DPC of a route. Perform one of the Adding a Route procedures in the Database Administration Manual - SS7 to add the required route to the database.

If the point code is shown in the rtrv-rte output, or if a new route was added, continue the procedure with Step 16.

15. Enter the rtrv-ss-appl command to verify that either the LNP, EIR, V-Flex, ATINPQ, AIQ, or INP subsystem number (depending on which feature is on) is in the subsystem application table.

This is an example of the possible output.

```
rlghncxa03w 09-05-28 14:42:38 GMT EAGLE5 41.0.0
APPL SSN STAT
LNP 254 ONLINE
```
If the subsystem number is shown in the rtrv-ss-appl output, continue the procedure with Step 11. If no subsystem number is shown in the rtrv-ss-appl output, or if the rtrv-ss-appl command is rejected, go to one of these manuals, depending on the type of subsystem you wish to use, to enable and turn on the feature as necessary, and add the subsystem to the subsystem application table.

- EIR subsystem – go to the Feature Manual - EIR.
- INP subsystem – go to the Feature Manual - INP/AINPQ.
- LNP subsystem – go to the ELAP Administration and LNP Feature Activation manual.
- V-Flex subsystem – go to the Feature Manual - V-Flex.
- ATINPQ subsystem – go to the Feature Manual - ATINP.
- AIQ subsystem – go to the Feature Manual - Analyzed Information Features.

If the Flexible GTT Load Sharing feature is enabled, shown in Step 3, a MAP set ID must be specified for the final global title translation. The point code and SSN specified for the final global title translation being added in this procedure must be assigned to the MAP set ID that will be assigned to the final global title translation. Perform Step 11 to verify that the required MAP set is configured in the database.

If the Flexible GTT Load Sharing feature is not enabled, and the ri=ssn and xlat=dpc parameters are not being specified with the ent-gta command, or if the EAGLE 5 ISS’s true point code and the EAGLE 5 ISS’s subsystem number, along with the ri=ssn and xlat=dpcssn parameters, are not being specified with the ent-gta command, continue the procedure with Step 16.

16. Continue the procedure by performing one or more of these steps depending on the parameters that will be specified with the ent-gta command.

If the loopset parameter will be specified for the GTA entry, and the desired LOOPSET value is not shown in the rtrv-gta output, continue the procedure with Step 17.

If the gtmodid parameter will be specified for the GTA entry, and the desired GTMODID value is not shown in the rtrv-gta output, continue the procedure with Step 18.

If the actsn parameter will be specified for the GTA entry, and the desired ACTSN value is not shown in the rtrv-gta output, continue the procedure with Step 19.

If the loopset, gtmodid, and actsn parameters will not be specified for the GTA entry, continue the procedure with Step 20.

17. Display all the loopsets in the database by entering this command.

```
rtrv-loopset:num=1000:force=yes
```

This is an example of the possible output.

<table>
<thead>
<tr>
<th>LoopSet</th>
<th>Mode</th>
<th>Point Codes</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>cary2</td>
<td>notify</td>
<td>005-015-005</td>
<td>007-007-007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>033-004-003</td>
<td>033-007-003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>005-027-005</td>
<td>007-004-007</td>
</tr>
<tr>
<td>cary4</td>
<td>notify</td>
<td>005-012-005</td>
<td>007-026-007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>003-049-003</td>
<td>033-002-003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>005-008-055</td>
<td>007-014-007</td>
</tr>
<tr>
<td>apex3</td>
<td>discard</td>
<td>005-017-008</td>
<td>007-017-009</td>
</tr>
</tbody>
</table>
Note: If the rtrv-loopset command is entered with no other parameters specified, a maximum of 50 entries are displayed. To display more than 50 entries, the force=yes parameter must be specified with the rtrv-loopset command and thenum parameter value must be greater than 50. Since there can be a maximum of 1000 loopsets in the database, to display all the loopsets in the database, the force=yes and num=1000 parameters must be specified with the rtrv-loopset command.

If the required loopset is not shown in the rtrv-loopset output, perform Adding a Loopset to add the required loopset.

if the required loopset is shown in the rtrv-loopset output, or if a new loopset was added, continue the procedure by performing one of these steps.

- If the gtmodid parameter will be specified for the GTA entry, and the desired GTMODID value is not shown in the rtrv-gta output, continue the procedure with Step 18.
If the `actsn` parameter will be specified for the GTA entry, and the desired ACTSN value is not shown in the `rtrv-gta` output, continue the procedure with **Step 19**.

If the `gtmodid` and `actsn` parameters will not be specified for the GTA entry, continue the procedure with **Step 20**.

### 18. Display the GT modification information in the database using the `rtrv-gtmod` command.

This is an example of the possible output.

```
rlghncxa03w 10-07-07 00:29:31 GMT EAGLE5 42.0.0

+-------------+-------+----------+-------------------+----------+----------+----------+----------+----------+----------+----------+----------+
| GTMODID | NTT | NGTI | GTOFILL | NNP | NNAI | NPDD | NSDD | PRECD | CGPASSN |
|-------------+-------+----------+-------------------+----------+----------+----------+----------+----------+----------+----------+----------+
| modid2 | -- | 2 | ON | -- | -- | -- | -- | PFX | -- |
| NPDS= | | | | | | | | | |
| modid5 | -- | 2 | OFF | -- | -- | -- | -- | PFX | -- |
| NPDS= | | | | | | | | | |
| modid6 | -- | 4 | ON | 4 | 5 | 3 | 3 | SFX | -- |
| NPDS=123 | | | | | | | | | |
| modid10 | -- | -- | OFF | 5 | 5 | -- | -- | PFX | -- |
| NPDS= | | | | | | | | | |
| modid11 | -- | -- | OFF | 5 | 5 | -- | -- | PFX | -- |
| NPDS= | | | | | | | | | |

GTMOD table is (5 of 100000) 1% full.
```

If the desired GT modification entry is not displayed, perform the **Adding Global Title Modification Information** procedure to add the desired GT modification entry to the database.

If the desired GT modification entry is displayed or the **Adding Global Title Modification Information** procedure was performed, continue the procedure by performing one of these steps.

- If the `actsn` parameter will be specified for the GTA entry, and the desired ACTSN value is not shown in the `rtrv-gta` output, continue the procedure with **Step 19**.
- If the `actsn` parameter will not be specified for the GTA entry, continue the procedure with **Step 20**.

### 19. Display the GTT action sets in the database using the `rtrv-gttaset` command.

This is an example of the possible output.

```
rlghncxa03w 10-07-07 00:29:31 GMT EAGLE5 42.0.0

+----------+---------+-------------------+----------+----------+----------+----------+----------+----------+----------+----------+----------+
| ACTSN | TEST | ActIds | MODE |
|----------+---------+-------------------+----------+----------+----------+----------+----------+----------+----------+----------+----------+
| act1 | off | action1 (DUP), | -------- |
| | | action4 (DUP), | -------- |
| | | action25 (FWD), | -------- |
| | | ------,------------|
| act10 | on | action20 (DUP), | -------- |
| | | action4 (DUP), | -------- |
| | | action21 (DUP), | -------- |
| | | action25 (FWD), | -------- |
| | | ------,------------|
| act3 | off | action2 (DISC), | -------- |
| | | ------,------------|
| act5 | on | action1 (DUP), | -------- |
| | | action3 (DUP), | -------- |
| | | action4 (DUP), | -------- |
| | | action20 (DUP), | -------- |
| | | action21 (DUP), | -------- |
| | | action17 (TCAPERR)| -------- |
| act11 | off | action10 (UDTS), | -------- |
| | | ------,------------|
```

610

910-6277-001 Revision A, January 2012
If the desired GTT action set is not displayed, perform the Adding a GTT Action Set procedure to add the desired GT modification entry to the database.

If the desired GT modification entry is displayed or the Adding a GTT Action Set procedure was performed, continue the procedure with Step 20.

20. Add the global title address to a GTT set using the ent-gta command. Use these tables as a guide for the parameters that can be used with the ent-gta command.

- Table 100: GTA Parameter Combinations - No SETTYPE Column in RTRV-GTTSET Output
- Table 101: GTTSN = CDGTA GTT Set Parameter Combinations
- Table 102: GTTSN = CGGTA GTT Set Parameter Combinations
- Table 103: GTTSN = CGPC GTT Set Parameter Combinations
- Table 104: GTTSN = CGSSN GTT Set Parameter Combinations
- Table 105: GTTSN = OPC GTT Set Parameter Combinations
- Table 106: GTTSN = CDSSN GTT Set Parameter Combinations
- Table 107: GTTSN = OPCODE GTT Set Parameter Combinations
- Table 108: GTTSN = DPC GTT Set Parameter Combinations

Note: The command line on the terminal can contain up to 150 characters. If the parameters and values specified with the ent-gta command are too long to fit on the ent-gta command line, perform Changing Global Title Address Information to complete adding the GTA entry.

For this example, enter these commands.

```
```

When each of these commands has successfully completed, this message appears.

```
rlghncxa03w 09-05-07 11:43:04 GMT EAGLE5 41.0.0
ENT-GTA: MASP A - COMPLTD
```

21. Verify the changes to the GTT set using the rtrv-gta command with the gttsn parameter value specified in Step 20 and one of the following parameters and values specified in Step 20, depending on what type of GTT set was specified in Step 20.

- The gta parameter and value – if the GTT set was a CDGTA or CGGTA GTT set, or if the GTT set had no SETTYPE value.
- The cgssn parameter and value – if the GTT set was a CGSSN GTT set.
- The cgpc/cgpa/cgpci/cgpcn/cgpcn24 parameter and value – if the GTT set was a CGPC GTT set.
- The opc/opca/opci/opcn/opcn24 parameter and value – if the GTT set was an OPC GTT set.
- The cdssn parameter and value – if the GTT set was a CDSSN GTT set.
- The opcode parameter and value – if the GTT set was an OPCODE GTT set.
• The `dpc/dpca/dpci/dpcn/dpcn24` parameter and value – if the GTT set was an DPC GTT set.

If the `num` parameter is specified with the `rtrv-gta` command, and the value of the `num` parameter is greater than 1000, the `force=yes` parameter must be specified with the `rtrv-gta` command. For this example, enter these commands.

```
rtrv-gta:gttsn=t800:gta=9194605555
```

This is an example of the possible output.

```
rlghncxa03w 10-07-07 00:27:31 GMT EAGLE5 42.0.0
GTTSN NETDOM SETTYPE NDGT
t800 ansi CDGTA 10
GTA TABLE IS 1 % FULL (17 of 269999)
START GTA END GTA XLAT RI PC
9194605555 9194605555 dpcngt gt 001-255-100
MRNSET=114 SSN=--- CCGT=no CGGTMOD=YES
GTMODID=modid2 TESTMODE=off
OPTSN=-------- CGSELID=----- OPCSN=gttset12
ACTSN=-------- PPMEASREQD= NO

Command Retrieved 1 Entries
```

```
rtrv-gta:gttsn=t800:gta=9194610000
```

This is an example of the possible output.

```
rlghncxa03w 10-07-07 00:27:31 GMT EAGLE5 42.0.0
GTTSN NETDOM SETTYPE NDGT
t800 ansi CDGTA 10
GTA TABLE IS 1 % FULL (17 of 269999)
START GTA END GTA XLAT RI PC
9194610000 9194689999 dpcssn ssn 001-255-252
MAPSET=3 SSN=254 CCGT=no CGGTMOD=NO
GTMODID=--------- TESTMODE=off
OPTSN=-------- CGSELID=----- OPCSN=gttset12
ACTSN=act5 PPMEASREQD= NO

Command Retrieved 1 Entries
```

```
rtrv-gta:gttsn=t800:gta=3365840000
```

This is an example of the possible output.

```
rlghncxa03w 10-07-07 00:27:31 GMT EAGLE5 42.0.0
GTTSN NETDOM SETTYPE NDGT
t800 ansi CDGTA 10
GTA TABLE IS 1 % FULL (17 of 269999)
START GTA END GTA XLAT RI PC
3365840000 3365849999 dpc ssn 001-255-001
MAPSET=1 SSN=--- CCGT=no CGGTMOD=NO
GTMODID=-------- TESTMODE=off
OPTSN=gttset3 CGSELID=----- OPCSN=---------
ACTSN=-------- PPMEASREQD= NO

Command Retrieved 1 Entries
```
Backup the new changes using the `chg-db:action=backup:dest=fixed` command. These messages should appear, the active Maintenance and Administration Subsystem Processor (MASP) appears first.

```markdown
Backup (FIXED): MASP A - Backup starts on active MASP.
Backup (FIXED): MASP A - Backup on active MASP to fixed disk complete.
Backup (FIXED): MASP A - Backup starts on standby MASP.
Backup (FIXED): MASP A - Backup on standby MASP to fixed disk complete.
```

## Removing Global Title Address Information

This procedure is used to remove an existing global title address information in the database using the `dlt-gta` command.

The `dlt-gta` command uses these parameters:

- `gttsn` – The GTT set name
- `gta` – The global title address or the beginning value of a range of global title addresses
- `egta` – The end value of a range of global title address.
- `cgssn` – The CGPA subsystem number or the beginning value of a range of CGPA subsystem numbers
- `ecgssn` – The end value of a range of CGPA subsystem numbers
- `cgpc/cgpc/a/cgpcn/cgpcn24` – The CGPA point code value
- `opc/opca/opci/opcn/opcn24` – The originating point code value
- `dpc/dpca/dpci/dpcn/dpcn24` – The destination point code value
- `cdssn` – The CDPA subsystem number or the beginning value of a range of CDPA subsystem numbers
- `ecdssn` – The end value of a range of CDPA subsystem numbers
- `opcode` - The TCAP opcode field value in the incoming MSU.
- `acn` - The application context name value in the ITU TCAP ACN field in the incoming MSU.
- `family` - The ANSI TCAP family field value in the incoming MSU
- `pkgtype` - The ANSI TCAP and ITU TCAP package types.

The parameter combinations that can be used with the `dlt-gta` command are shown in these tables.

- **Table 111: DLT-GTA Parameter Combinations - EGTT Only**
- **Table 112: DLT-GTA Parameter Combinations - GTT Sets CDGTA, CGGTA, CGSSN, CGPC, OPC**
- **Table 113: DLT-GTA Parameter Combinations - GTT Sets CDSSN, DPC, and OPCODE**

The GTT set name (`gttsn`) must be specified and match that of an existing GTT set name. Use the `rtrv-gttset` command to view the GTT set names. The destination point code (DPC) must be a full point code and cannot be out of range.

If the end of the global title address (`egta`) parameter is specified, the GTA and EGTA must have the same number of digits, but the EGTA must be larger than the GTA. The range, as specified by the start and end global title addresses, must be in the database for the specified translation type. Each range
may be contained completely within a previously defined range, in which case splitting is performed. However, if the ranges overlap, splitting cannot occur, and the \texttt{dlt-gta} command is rejected with this message.

\textbf{E2401 Cmd Rej:GTA range overlaps a current range}

Along with error message 2401, a list of the overlapped global title addresses is displayed as shown in the following example.

```
rlghncxa03w 06-10-24 08:29:15 GMT EAGLE5 36.0.0
The following GTA ranges overlap the input GTA range

<table>
<thead>
<tr>
<th>START GTA</th>
<th>END GTA</th>
</tr>
</thead>
<tbody>
<tr>
<td>8005550000</td>
<td>8005551999</td>
</tr>
<tr>
<td>8005552000</td>
<td>8005553999</td>
</tr>
<tr>
<td>8005554000</td>
<td>8005555999</td>
</tr>
</tbody>
</table>

DLT-GTA: MASP A - Command Aborted
```

For a range of global title addresses, CGPA SSNs, or CDPA SSNs to be split, the new entry created by the split cannot increase the number of entries in the GTT table beyond the quantity shown in the \texttt{rtrv-gta} output.

When the VGTT feature is on, and the last global title address of a particular length is deleted for the specified GTT set name, then that length is no longer supported. That length is not displayed in the \texttt{NDGT} field of the \texttt{rtrv-gttset} command output. For example, if the last 7-digit global title address is deleted from GTT set \texttt{lidb} (from the previous example), the \texttt{NDGT} field of the \texttt{rtrv-gttset} command shows only the numbers three and 10 in the \texttt{NDGT} field indicating that GTT set \texttt{lidb} contains only 3- and 10-digit global title addresses.

\textbf{Canceling the RTRV-GTA Command}

Because the \texttt{rtrv-gta} command used in this procedure can output information for a long period of time, the \texttt{rtrv-gta} command can be canceled and the output to the terminal stopped. There are three ways that the \texttt{rtrv-gta} command can be canceled.

- Press the \texttt{F9} function key on the keyboard at the terminal where the \texttt{rtrv-gta} command was entered.
- Enter the \texttt{canc-cmd} without the \texttt{trm} parameter at the terminal where the \texttt{rtrv-gta} command was entered.
- Enter the \texttt{canc-cmd:trm=<xx>}, where \texttt{<xx>} is the terminal where the \texttt{rtrv-gta} command was entered, from another terminal other that the terminal where the \texttt{rtrv-gta} command was entered. To enter the \texttt{canc-cmd:trm=<xx>} command, the terminal must allow Security Administration commands to be entered from it and the user must be allowed to enter Security Administration commands. The terminal’s permissions can be verified with the \texttt{rtrv-secu-trm} command. The user’s permissions can be verified with the \texttt{rtrv-user} or \texttt{rtrv-secu-user} commands.

For more information about the \texttt{canc-cmd} command, go to the \textit{Commands Manual}.

\textbf{Table 111: DLT-GTA Parameter Combinations - EGTT Only}

<table>
<thead>
<tr>
<th>Mandatory Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>GTTSN – The GTT set name from the GTTSN column of the \texttt{rtrv-gta} output.</td>
</tr>
</tbody>
</table>
GTA – The GTA value from the \texttt{START} GTA column of the \texttt{rtrv-gta} output. (See Notes 1, 3, and 4)

### Optional Parameters

EGTA – The EGTA value from the \texttt{END} GTA column of the \texttt{rtrv-gta} output. (See Notes 1 and 2)

### Notes:

1. To remove an entry containing a range of GTAs, the \texttt{gta} and \texttt{egta} parameters must be specified with the values for each parameter that are shown in the \texttt{rtrv-gta} output.

2. The \texttt{egta} parameter does not need to be specified if the GTA entry contains an \texttt{egta} parameter value that is equal to the \texttt{gta} parameter value.

3. If a range of GTAs is assigned to the GTA entry, and only the \texttt{gta} parameter is specified, for example, 336337 - 3400000, and only the \texttt{gta=336337} parameter is specified, the entry is still in the database. The range of GTAs becomes 336338 - 3400000.

4. The range of GTAs can be split by specifying a \texttt{gta} parameter value in between the existing \texttt{gta} and \texttt{egta} parameter values. For example, the GTA range is 336337 - 3400000 and only the \texttt{gta=370000} parameter is specified. Two entries are created, one with the range of 336338 - 336999, and the other with the range of 337001 - 3400000.

### Table 112: DLT-GTA Parameter Combinations - GTT Sets CDGTA, CGGTA, CGSSN, CGPC, OPC

<table>
<thead>
<tr>
<th>GTT Set Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>CDGTA</td>
<td>CGGTA</td>
<td>CGSSN</td>
<td>CGPC</td>
<td>OPC</td>
</tr>
</tbody>
</table>

#### Mandatory Parameters

- **GTTSN** – The GTT set name from the GTTSN column of the \texttt{rtrv-gttset} output containing the value CDGTA in the SETTYPE column.
- **GTTSN** – The GTT set name from the GTTSN column of the \texttt{rtrv-gttset} output containing the value CGGTA in the SETTYPE column.
- **GTTSN** – The GTT set name from the GTTSN column of the \texttt{rtrv-gttset} output containing the value CGSSN in the SETTYPE column.
- **GTTSN** – The GTT set name from the GTTSN column of the \texttt{rtrv-gttset} output containing the value CGPC in the SETTYPE column.
- **GTTSN** – The GTT set name from the GTTSN column of the \texttt{rtrv-gttset} output containing the value OPC in the SETTYPE column.

- **GTA** – The GTA value from the \texttt{START} GTA column of the \texttt{rtrv-gta} output. (See Notes 1, 3, and 4)
- **GTA** – The GTA value from the \texttt{START} GTA column of the \texttt{rtrv-gta} output. (See Notes 1, 3, and 4)
- **CGSSN** – The CGSSN value from the \texttt{START} SSN column of the \texttt{rtrv-gta} output. (See Notes 5, 7, and 8)
- **CGPC/CGPCA/CGPCI/CGPCN/CGPCN24** – The CGPC value from the CGPCA or CGPC(ITU) column of the \texttt{rtrv-gta} output.
- **OPC/OPCA/OPC1/OPCN/OPCN24** – The OPC value from the OPC(ITU) column of the \texttt{rtrv-gta} output.
Optional Parameters

EGTA – The EGTA value from the END GTA column of the rtrv-gta output. (See Notes 1 and 2)

ECGSSN – The ECGSSN value from the END SSN column of the rtrv-gta output. (See Notes 5, 6, and 8)

<table>
<thead>
<tr>
<th>GTT Set Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>CDGTA</td>
<td>CGGTA</td>
<td>CGSSN</td>
<td>CGPC</td>
<td>OPC</td>
</tr>
</tbody>
</table>

Notes:

1. To remove an entry containing a range of GTAs, the gta and egta parameters must be specified with the values for each parameter that are shown in the rtrv-gta output.

2. The egta parameter does not need to be specified if the GTA entry contains an egta parameter value that is equal to the gta parameter value.

3. If a range of GTAs is assigned to the GTA entry, and only the gta parameter is specified, for example, 336337 - 3400000, and only the gta=336337 parameter is specified, the entry is still in the database. The range of GTAs becomes 336338 - 3400000.

4. The range of GTAs can be split by specifying a gta parameter value in between the existing gta and egta parameter values. For example, the GTA range is 336337 - 3400000 and only the gta=370000 parameter is specified. Two entries are created, one with the range of 336338 - 336999, and the other with the range of 337001 - 3400000.

5. To remove an entry containing a range of CGSSNs, the cgssn and ecgssn parameters must be specified with the values for each parameter that are shown in the rtrv-gta output.

6. The ecgssn parameter does not need to be specified if the GTA entry contains an ecgssn parameter value that is equal to the cgssn parameter value.

7. If a range of CGSSNs is assigned to the GTA entry, and only the cgssn parameter is specified, for example, 25 - 75, and only the cgssn=25 parameter is specified, the entry is still in the database. The range of CGSSNs becomes 26 - 75.

8. The range of CGSSNs can be split by specifying a cgssn parameter value in between the existing cgssn and ecgssn parameter values. For example, the CGSSN range is 25 - 75 and only the cgssn=50 parameter is specified. Two entries are created, one with the range of 25 - 49, and the other with the range of 51 - 75.

Table 113: DLT-GTA Parameter Combinations - GTT Sets CDSSN, DPC, and OPCODE

<table>
<thead>
<tr>
<th>GTT Set Type CDSSN</th>
<th>GTT Set Type DPC</th>
<th>GTT Set Type OPCODE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Mandatory Parameters
<table>
<thead>
<tr>
<th>GTT Set Type CDSSN</th>
<th>GTT Set Type DPC</th>
<th>GTT Set Type OPCODE</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>GTTSN</strong> – The GTT set name from the GTTSN column of the <code>rtrv-gttset</code> output containing the value CDSSN in the SETTYPE column.</td>
<td><strong>GTTSN</strong> – The GTT set name from the GTTSN column of the <code>rtrv-gttset</code> output containing the value DPC in the SETTYPE column.</td>
<td><strong>GTTSN</strong> – The GTT set name from the GTTSN column of the <code>rtrv-gttset</code> output containing the value OPCODE in the SETTYPE column.</td>
</tr>
<tr>
<td><strong>CDSSN</strong> – The CDSSN value from the START SSN column of the <code>rtrv-gta</code> output. (See Notes 1, 3, and 4)</td>
<td><strong>DPC/DPCA/DPCI/DPCN/ DPCN24</strong> – The DPC value from the DPCA or DPC (ITU) column of the <code>rtrv-gta</code> output</td>
<td><strong>OPCODE</strong> – The OPCODE value from the OPCODE column of the <code>rtrv-gta</code> output.</td>
</tr>
<tr>
<td></td>
<td><strong>FAMILY</strong> – The FAMILY value from the FAMILY column of the <code>rtrv-gta</code> output.</td>
<td><strong>OPCODE</strong> – The OPCODE value from the OPCODE column of the <code>rtrv-gta</code> output.</td>
</tr>
<tr>
<td></td>
<td></td>
<td><strong>PKGTYPE</strong> – The PKGTYPE value from the PKGTYPE column of the <code>rtrv-gta</code> output.</td>
</tr>
</tbody>
</table>

**Optional Parameters**

| **ECDSSN** – The ECDSSN value from the END SSN column of the `rtrv-gta` output. output. (See Notes 1 and 2) | No optional parameters. | No optional parameters. | No optional parameters. |

**Notes:**

1. To remove an entry containing a range of CDSSNs, the `cdssn` and `ecdssn` parameters must be specified with the values for each parameter that are shown in the `rtrv-gta` output.
2. The `ecdssn` parameter does not need to be specified if the GTA entry contains an `ecdssn` parameter value that is equal to the `cdssn` parameter value.
3. If a range of CDSSNs is assigned to the GTA entry, and only the `cdssn` parameter is specified, for example, 100 - 200, and only the `cdssn=100` parameter is specified, the entry is still in the database. The range of CDSSNs becomes 101 - 200.
The range of CDSSNs can be split by specifying a cdssn parameter value in between the existing cdssn and ecdssn parameter values. For example, the CDSSN range is 100 - 200 and only the cdssn=150 parameter is specified. Two entries are created, one with the range of 100 - 149, and the other with the range of 151 - 200.

1. Display the existing GTT sets in the database using the `rtrv-gttset` command.

   This is an example of the possible output.

   ```
 rlghncxa03w 10-07-07 00:27:31 GMT EAGLE5 42.0.0
 GTTSN NETDOM SETTYPE NDGT
 abcd1234 itu CGGTA 12
dpcl ansi DPC 6
gttset1 ansi CGGTA 6
gttset2 ansi CGGTA 10
gttset3 ansi OPC -
gttset4 ansi CGPC -
gttset5 ansi CGPC -
imsi itu CGGTA 15
lidb ansi CGGTA 10
si000 itu CGGTA 15
t800 ansi CGGTA 10
gttset6 ansi CDSSN -
gttset7 itu OPC -
```

   GTT-SET table is (13 of 2000) 1% full.

   If the Origin-Based SCCP Routing feature is not enabled and the Flexible Linkset Optional Based Routing feature is not enabled and turned on, the SETTYPE column is not shown in the `rtrv-gttset` output.

   If the Origin-Based SCCP Routing feature is not enabled, the values CGGTA, CGPC, CGSSN, and OPC are not shown in the `rtrv-gttset` output.

   If the Flexible Linkset Optional Based Routing feature is not enabled and turned on, the values CDSSN, and DPC are not shown in the `rtrv-gttset` output.

   If the TCAP Opcode Based Routing feature is not enabled, the value OPCODE is not shown in the `rtrv-gttset` output.

2. Display the global title address (GTA) information for the GTT set that contains the GTA information to be removed.

   Use the `rtrv-gta` command with the `gttsn` parameter value shown in the output of Step 1. If the `num` parameter is specified with the `rtrv-gta` command, and the value of the `num` parameter is greater than 1000, the `force=yes` parameter must be specified with the `rtrv-gta` command. For this example, enter this command.

   ```
 rtrv-gta:gttsn=t800
   ```

   This is an example of the possible output.

   ```
 rlghncxa03w 10-07-07 00:28:31 GMT EAGLE5 42.0.0
 GTTSN NETDOM SETTYPE NDGT
t800 ansi CGGTA 10
   ```
### GTA Table IS 1% FULL (17 of 269999)

<table>
<thead>
<tr>
<th>START GTA</th>
<th>END GTA</th>
<th>XLAT</th>
<th>RI</th>
<th>PC</th>
</tr>
</thead>
<tbody>
<tr>
<td>3365840000</td>
<td>3365849999</td>
<td>DPC</td>
<td>SSN</td>
<td>001-255-001</td>
</tr>
<tr>
<td>SSN=0</td>
<td>CGGT=no</td>
<td>CGGTMOD=NO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GTMODID=------</td>
<td>TESTMODE=off</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOPSNN=--------</td>
<td>CSEIDID=-----</td>
<td>OPCSN=---------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACTSN=--------</td>
<td>PPMEASREQD= NO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8005550000</td>
<td>8005551999</td>
<td>dpcssn</td>
<td>ssn</td>
<td>001-255-255</td>
</tr>
<tr>
<td>SSN=255</td>
<td>CGGT=no</td>
<td>CGGTMOD=NO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GTMODID=------</td>
<td>TESTMODE=off</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOPSNN=--------</td>
<td>CSEIDID=-----</td>
<td>OPCSN=---------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACTSN=--------</td>
<td>PPMEASREQD= NO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8005552000</td>
<td>8005553999</td>
<td>dpc</td>
<td>gt</td>
<td>001-255-255</td>
</tr>
<tr>
<td>SSN=0</td>
<td>CGGT=no</td>
<td>CGGTMOD=NO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GTMODID=------</td>
<td>TESTMODE=off</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOPSNN=--------</td>
<td>CSEIDID=-----</td>
<td>OPCSN=---------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACTSN=--------</td>
<td>PPMEASREQD= NO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8005554000</td>
<td>8005555999</td>
<td>dpcngt</td>
<td>gt</td>
<td>001-255-255</td>
</tr>
<tr>
<td>SSN=---</td>
<td>CGGT=no</td>
<td>CGGTMOD=NO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GTMODID=------</td>
<td>TESTMODE=off</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOPSNN=--------</td>
<td>CSEIDID=-----</td>
<td>OPCSN=gttset3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACTSN=--------</td>
<td>PPMEASREQD= NO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8005556000</td>
<td>8005557999</td>
<td>dpcssn</td>
<td>ssn</td>
<td>001-255-255</td>
</tr>
<tr>
<td>SSN=255</td>
<td>CGGT=no</td>
<td>CGGTMOD=NO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GTMODID=------</td>
<td>TESTMODE=off</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOPSNN=--------</td>
<td>CSEIDID=-----</td>
<td>OPCSN=---------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACTSN=--------</td>
<td>PPMEASREQD= NO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9195551212</td>
<td>9195551212</td>
<td>dpcssn</td>
<td>ssn</td>
<td>008-001-001</td>
</tr>
<tr>
<td>SSN=222</td>
<td>CGGT=no</td>
<td>CGGTMOD=NO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GTMODID=------</td>
<td>TESTMODE=off</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOPSNN=--------</td>
<td>CSEIDID=-----</td>
<td>OPCSN=---------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACTSN=--------</td>
<td>PPMEASREQD= NO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9194600000</td>
<td>9194600000</td>
<td>dpc</td>
<td>gt</td>
<td>001-255-252</td>
</tr>
<tr>
<td>SSN=0</td>
<td>CGGT=no</td>
<td>CGGTMOD=NO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GTMODID=------</td>
<td>TESTMODE=off</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOPSNN=--------</td>
<td>CSEIDID=-----</td>
<td>OPCSN=---------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACTSN=--------</td>
<td>PPMEASREQD= NO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9194610000</td>
<td>9194610000</td>
<td>dpcssn</td>
<td>ssn</td>
<td>001-255-252</td>
</tr>
<tr>
<td>SSN=222</td>
<td>CGGT=no</td>
<td>CGGTMOD=NO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GTMODID=------</td>
<td>TESTMODE=off</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOPSNN=--------</td>
<td>CSEIDID=-----</td>
<td>OPCSN=---------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACTSN=--------</td>
<td>PPMEASREQD= NO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9762428487</td>
<td>9762428487</td>
<td>dpcssn</td>
<td>ssn</td>
<td>001-255-255</td>
</tr>
<tr>
<td>SSN=222</td>
<td>CGGT=no</td>
<td>CGGTMOD=NO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GTMODID=------</td>
<td>TESTMODE=off</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOPSNN=--------</td>
<td>CSEIDID=-----</td>
<td>OPCSN=---------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACTSN=--------</td>
<td>PPMEASREQD= NO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9764623777</td>
<td>9764623777</td>
<td>dpcssn</td>
<td>ssn</td>
<td>001-255-254</td>
</tr>
<tr>
<td>SSN=222</td>
<td>CGGT=no</td>
<td>CGGTMOD=NO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GTMODID=------</td>
<td>TESTMODE=off</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOPSNN=--------</td>
<td>CSEIDID=-----</td>
<td>OPCSN=---------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACTSN=--------</td>
<td>PPMEASREQD= NO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9769388928</td>
<td>9769388928</td>
<td>dpcssn</td>
<td>ssn</td>
<td>001-255-254</td>
</tr>
<tr>
<td>SSN=222</td>
<td>CGGT=no</td>
<td>CGGTMOD=NO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GTMODID=------</td>
<td>TESTMODE=off</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOPSNN=--------</td>
<td>CSEIDID=-----</td>
<td>OPCSN=---------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACTSN=--------</td>
<td>PPMEASREQD= NO</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Continue the procedure by performing one of these steps.

- If the range of GTAs, CGPA SSN, or CDPA SSNs will not be split in this procedure, continue the procedure by performing one of these steps.
  - If the GTT set type that contains the GTA entry that is being removed is not CDGTA, CGGTA, or Opcode, continue the procedure with Step 5.
  - If the GTT set type that contains the GTA entry that is being removed is CDGTA, CGGTA, or OPCODE, continue the procedure with Step 4.
- If the range of GTAs, CGPA SSN, or CDPA SSNs will be split in this procedure, continue the procedure with Step 3.

3. If the `rtrv-gta` output in Step 2 shows that the maximum number of global title addresses is 1,000,000, do not perform this step

   If the `rtrv-gta` output in Step 2 shows that the maximum number of global title addresses is either 269,999 or 400,000, and the number of global title addresses will not increase the number beyond the quantity shown in the `rtrv-gta` output in Step 2 when the range of GTAs, CGPA SSNs, or CDPA SSNs is split, do not perform this step.

   If the `rtrv-gta` output in Step 2 shows that the maximum number of global title addresses is either 269,999 or 400,000, and the number of global title addresses will be more than the maximum number of global title addresses when the range of GTAs, CGPA SSNs, or CDPA SSNs is split, perform the Enhancing the XGTT Table Expansion Feature procedure to enable the XGTT Table Expansion controlled feature for either 400,000 or 1,000,000 global title addresses as required.

   Continue the procedure by performing one of these steps.
   - If the GTT set type that contains the GTA entry that is being removed is not CDGTA, CGGTA, or OPCODE, continue the procedure with Step 5.
   - If the GTT set type that contains the GTA entry that is being removed is CDGTA, CGGTA, or OPCODE, continue the procedure with Step 4.

4. Display the GTT action paths in the database by entering the `rtrv-gttapath` command with these parameters.
   - If the GTT set type is CDGTA, specify the `cdgttsn` parameter with the GTT set name shown in the `rtrv-gta` output in Step 2.
   - If the GTT set type is CGGTA, specify the `cggttsn` parameter with the GTT set name shown in the `rtrv-gta` output in Step 2.
   - If the GTT set type is OPCODE, specify the `cdgttsn` parameter with the GTT set name shown in the `rtrv-gta` output in Step 2.

   For this example, enter this command.
   ```
rtrv-gttapath:cdgttsn=t800
   ```

   This is an example of the possible output.
   ```
rlghncca03w 10-07-25 09:43:31 GMT EAGLE5 42.0.0
GTTPN OPGTTSN CGGTTSN CDGTTSN
--
620
```
If entries are displayed, continue the procedure by performing one of these procedures:

- Perform the Removing a GTT Action Path Entry to remove all the entries shown in this step.
- Perform the Changing a GTT Action Path Entry to change the CDGTTSN, CGGTTSN, or OPCODE value to none or to another GTT set for all the entries shown in this step.

If no entries are displayed in this step, or if the GTT action paths have been removed or changed, continue the procedure with Step 5.

5. Remove the GTA information using the dlt-gta command.

The parameter combinations that can be used with the dlt-gta command are shown in these tables.

- Table 111: DLT-GTA Parameter Combinations - EGTT Only
- Table 112: DLT-GTA Parameter Combinations - GTT Sets CDGTA, CGGTA, CGSSN, CGPC, OPC
- Table 113: DLT-GTA Parameter Combinations - GTT Sets CDSSN, DPC, and OPCODE

dlt-gta:gttsn=t800:gta=3365840000:egta=3365849999

When this command has successfully completed, this message appears.

```
rlgncca03w 06-10-07 00:29:31 GMT EAGLE5 36.0.0
DLT-GTA: MASP A - COMPLTD
```

6. Verify the changes to the GTT set using the rtrv-gta command with the gttsn parameter value specified in Step 5.

If the num parameter is specified with the rtrv-gta command, and the value of the num parameter is greater than 1000, the force=yes parameter must be specified with the rtrv-gta command. For this example, enter this command.

```
rtrv-gta:gttsn=t800
```

This is an example of the possible output.

```
rlgncca03w 10-07-07 00:28:31 GMT EAGLE5 42.0.0
GTTSN NETDOM SETTYPE NDGT
t800 ansi CDGTA 10
GTA TABLE IS 1 % FULL (17 of 269999)
START GTA END GTA XLAT RI PC
8005550000 8005551999 dpccsn ssn 001-254-255
 SSN=255 CGGT=no CGGTMOD=NO
 GTMODID=-------- TESTMODE=off
 OPTSN=-------- CGSELID=----- OPCSN=--------
 ACTSN=-------- PPMEASREQD= NO
8005552000 8005553999 dpc gt 001-254-255
 SSN=0 CGGT=no CGGTMOD=NO
 GTMODID=-------- TESTMODE=off
 OPTSN=-------- CGSELID=----- OPCSN=--------
 ACTSN=-------- PPMEASREQD= NO
8005554000 8005555999 dpnga gt 001-254-255
 SSN=-- CGGT=no CGGTMOD=NO
 GTMODID=-------- TESTMODE=off
```
7. Backup the new changes using the `chg-db:action=backup:dest=fixed` command.

These messages should appear, the active Maintenance and Administration Subsystem Processor (MASP) appears first.

```
BACKUP (FIXED) : MASP A - Backup starts on active MASP.
BACKUP (FIXED) : MASP A - Backup on active MASP to fixed disk complete.
BACKUP (FIXED) : MASP A - Backup starts on standby MASP.
BACKUP (FIXED) : MASP A - Backup on standby MASP to fixed disk complete.
```

### Changing Global Title Address Information

This procedure is used to change existing global title address (GTA) information in the database using the `chg-gta` command.
The `chg-gta` command uses these parameters.

:gttsn – The GTT set name.
:gt – The start of global title address.
:egta – The end of global title address.
:ssn – The translated subsystem number.
:ri – The routing indicator.
:xlat – The translate indicator.
:ccgt – The cancel called global title indicator.
:force – The check mated application override.
:actsn – The name of the GTT action set that will be assigned to the GTA entry as shown in the `rtrv-gttset` output.
:gtmodid – The name of the GT modification identifier that will be assigned to the GTA entry as shown in the `rtrv-gtmod` output and provisioned in the `Adding Global Title Modification Information` procedure. The GT modification identifier contains the information to modify the numbering plan, nature of address indicator, and the prefix or suffix digits in the called party address or calling party address portion of outbound MSUs.
:ppmeasreqd – This parameter specifies whether per-path measurements are required for the GTA entry.
:mrnset – The MRN set ID, shown in the `rtrv-mrn` command. The `mrnset` parameter can be specified only if the Flexible GTT Load Sharing feature is enabled. If the Flexible GTT Load Sharing feature is enabled and the `ri` parameter value will be `ri=gt` when this procedure is completed, and the original global title translation being changed in this procedure did not have an MRN set ID assigned to it, the `mrnset` parameter must be specified with the `chg-gta` command. The MRN set ID assigned to the global title translation in this step must contain the point code value that will be assigned to the global title translation being changed in this step.
:mapset – The MAP set ID, shown in the `rtrv-mrn` command. The `mapset` parameter can be specified only if the Flexible GTT Load Sharing feature is enabled. If the Flexible GTT Load Sharing feature is enabled and the `ri` parameter value will be `ri=ssn` when this procedure is completed, and the original global title translation being changed in this procedure did not have a MAP set ID assigned to it, the `mapset` parameter must be specified with the `chg-gta` command. The MAP set ID assigned to the global title translation in this step must contain the point code and SSN values that will be assigned to the global title translation being changed in this step.

The status of the Flexible GTT Load Sharing feature is shown in the `rtrv-ctrl-feat` output. To enable the Flexible GTT Load Sharing feature, perform `Activating the Flexible GTT Load Sharing Feature`. The `optsn` – The optional GTT set name shown in the `rtrv-gttset` output. `Table 114: GTTSN and OPTSN Combinations` shows the types of GTT sets that can be specified for the `optsn` parameter based on the type of GTT set that is specified for the `gttsn` parameter and the features that are enabled and turned on.
Table 114: GTTSN and OPTSN Combinations

<table>
<thead>
<tr>
<th>GTTSN Set Type</th>
<th>OPTSN Set Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Origin-Based SCCP Routing Feature Enabled Only</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CDGTA</td>
<td>CGGTA, CGPC</td>
<td>The OPC GTT set type can be specified with a CDGTA GTT set, but the OPC GTT set is specified with the opcsn parameter.</td>
</tr>
<tr>
<td>CGGTA</td>
<td>CGSSN</td>
<td></td>
</tr>
<tr>
<td>CGPC</td>
<td>CGSSN</td>
<td></td>
</tr>
<tr>
<td>CGSSN</td>
<td>The opsn parameter cannot be specified.</td>
<td></td>
</tr>
<tr>
<td>OPC</td>
<td>CGSSN</td>
<td></td>
</tr>
<tr>
<td><strong>Flexible Linkset Optional Based Routing Enabled and Turned On Only</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CDGTA</td>
<td>CDGTA, DPC, CDSSN</td>
<td></td>
</tr>
<tr>
<td>CDSSN</td>
<td>CDSSN, DPC, CDGTA</td>
<td></td>
</tr>
<tr>
<td>DPC</td>
<td>DPC, CDSSN, CDGTA</td>
<td></td>
</tr>
<tr>
<td><strong>Origin-Based SCCP Routing Enabled and Flexible Linkset Optional Based Routing Enabled and Turned On Only</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CDGTA</td>
<td>CDGTA, CGGTA, CGPC, CGSSN, CDSSN, DPC, OPC</td>
<td>The OPC GTT set type can be specified with a CDGTA GTT set, but the OPC GTT set is specified with the opcsn parameter.</td>
</tr>
<tr>
<td>CGGTA</td>
<td>CDGTA, CGGTA, CGPC, CGSSN, OPC, CDSSN, DPC</td>
<td></td>
</tr>
<tr>
<td>CGPC</td>
<td>CDGTA, CGGTA, CGPC, CGSSN, OPC, CDSSN, DPC</td>
<td></td>
</tr>
<tr>
<td>CGSSN</td>
<td>CDGTA, CGGTA, CGPC, CGSSN, OPC, CDSSN, DPC</td>
<td></td>
</tr>
<tr>
<td>OPC</td>
<td>CDGTA, CGGTA, CGPC, CGSSN, CDSSN, DPC, OPC</td>
<td></td>
</tr>
<tr>
<td>CDSSN</td>
<td>CDGTA, CGGTA, CGPC, CGSSN, OPC, DPC, CDSSN</td>
<td></td>
</tr>
<tr>
<td>DPC</td>
<td>CDGTA, CGGTA, CGPC, CGSSN, OPC, CDSSN, DPC</td>
<td></td>
</tr>
<tr>
<td><strong>Flexible Linkset Optional Based Routing and TCAP Opcode Based Routing Feature Enabled and Turned On Only</strong></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
### Origin-Based SCCP Routing Enabled, Flexible Linkset Optional Based Routing and TCAP Opcode Based Routing Feature Enabled and Turned On

<table>
<thead>
<tr>
<th>GTTSN Set Type</th>
<th>OPTSN Set Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>CDGTA</td>
<td>CDGTA, OPCDE, DPC, CDSSN</td>
</tr>
<tr>
<td>CDSSN</td>
<td>CDSSN, OPCDE, DPC, CDGTA</td>
</tr>
<tr>
<td>OPCODE</td>
<td>OPCODE, CDSSN, DPC, CDGTA</td>
</tr>
<tr>
<td>DPC</td>
<td>DPC, OPCDE, CDSSN, CDGTA</td>
</tr>
</tbody>
</table>

The OPC GTT set type can be specified with a CDGTA GTT set, but the OPC GTT set is specified with the `opcsn` parameter.

The `opcsn` parameter cannot be specified.

The `opcsn` parameter cannot be specified.

The `opcsn` parameter cannot be specified.

The OPC GTT set type can be specified with an OPCODE GTT set, but the OPC GTT set is specified with the `opcsn` parameter.
The OPC GTT set type can be specified with a DPC GTT set, but the OPC GTT set is specified with the \texttt{opcsn} parameter.

<table>
<thead>
<tr>
<th>GTTSN Set Type</th>
<th>OPTSN Set Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>\texttt{opcsn} – The OPC GTT set name shown in the \texttt{rtrv-gttset} output.</td>
<td>The OPC GTT set type can be specified with a DPC GTT set, but the OPC GTT set is specified with the \texttt{opcsn} parameter.</td>
</tr>
</tbody>
</table>

- \texttt{cgssn} – The CGPA subsystem number or the beginning value of a range of CGPA subsystem numbers
- \texttt{ecgssn} – The end value of a range of CGPA subsystem numbers
- \texttt{cgpc/cgpc24} – The CGPA point code
- \texttt{opc/opcn} – The originating point code
- \texttt{dpc/dpc24} – The destination point code
- \texttt{cdssn} – The CdPA subsystem number or the beginning value of a range of CdPA subsystem numbers
- \texttt{ecdssn} – The end value of a range of CdPA subsystem numbers
- \texttt{cgselid} – The CgPA selector ID
- \texttt{cdselid} – The CdPA selector ID
- \texttt{fallback} – The action to be taken when the final translation does not match while performing global title translation using a FLOBR-specific GTT mode.
- \texttt{testmode} – This parameter invokes a field-safe test tool to debug the rules used for the Flexible Linkset Optional Based Routing or TCAP Opcode Based Routing features.
- \texttt{cgcnvsn} – The CgPA conversion set name
- \texttt{family} – The ANSI TCAP family field in the incoming message
- \texttt{opcode} – The TCAP opcode field in the incoming message
- \texttt{pkgtype} – The TCAP package type. Table 122: \texttt{GTTSN = OPCODE GTT Set Parameter Combinations} shows the ANSI and ITU TCAP package types.
- \texttt{acn} – The application context name (ACN) field in the ITU TCAP message
- \texttt{loopset} - The value of this parameter is the name of the \texttt{loopset} that is assigned to the GTA. This parameter can be specified only if the SCCP Loop Detection feature is enabled. Enter the \texttt{rtrv-loopset} command to verify that the SCCP Loop Detection feature is enabled. Perform the \texttt{Activating the SCCP Loop Detection Feature} procedure, if necessary.
- \texttt{cggtmod} - The calling party GT modification indicator. This parameter specifies whether or not calling party global title modification is required. The values for this parameter are \texttt{yes} (calling party global title modification is required) or \texttt{no} (calling party global title modification is not required). This parameter can be specified only if the AMGTT or AMGTT CgPA Upgrade feature is enabled. Enter the \texttt{rtrv-ctrl-feat} command to verify that either the AMGTT or AMGTT CgPA Upgrade feature is enabled. If the AMGTT or AMGTT CgPA Upgrade feature is not enabled, perform the \texttt{Activating the Advanced GT Modification Feature} procedure to enable the required feature.
- \texttt{split} – Split or change the range of global title addresses. If the \texttt{split=\texttt{yes}} parameter is specified, the existing range of global title addresses is split based on the values of the \texttt{gta} and \texttt{egta} parameters. New entries are created in the global title translation table for each new range created by the \texttt{split} parameter. The attributes of each new entry, other than the range of global title addresses, are the
same as the original global title translation entry, if these values are not changed when the chg-gta command is executed. If other attributes are changed when the chg-gta command is executed, the changed values are in each new entry created by the split parameter.

If the split=no parameter is specified, the range of global title addresses is replaced with the new range of global title addresses specified by the gta and egta parameters.

The default value for the split parameter is yes.

**CAUTION:** Changes to the range of global title addresses occur only if the both the gta and egta parameters are specified and the values for either of these parameters, or both parameters are different from the original values in the global title translation. If the gta and egta parameters are specified for the global title translation being changed, and you do not wish to change either of these values, make sure the gta and egta values shown in the rtrv-gta output for the global title translation being changed are specified in the chg-gta command.

The following examples illustrate how the split parameter works and ranges of global title addresses can be changed.

A global title translation entry in the database contains this range of global title addresses, 5556000 - 5558000.

```
rlghncxa03w 10-07-07 00:28:31 GMT EAGLE5 42.0.0
GTTSN NETDOM NDGT
tst1 ansi 7
GTA TABLE IS (17 of 269999) 1 % FULL
START GTA END GTA XLAT RI PC
5556000 5558000 dpcssn ssn 001-255-252
MAPSET=1 SSN=254 CGGT=NO CGGTMOD=NO
GTMODID=modid2 TESTMODE=off
LOOPSET = rtp2 FALLBACK=sysdeflt
OPTSN=--------- CGSELID=----- OPCSN=gttset12
ACTSN=--------- PPMEASREQD= NO
```

The global title translation is changed with a new range of global title addresses, 5556800 - 5559000, and with the split=no parameter.

```
chg-gta:ttn=tst1:gta=5556800:egta=5559000:split=no
```

The range of global title addresses is changed to 5556800 - 5559000.

```
rlghncxa03w 10-07-07 00:28:31 GMT EAGLE5 42.0.0
GTTSN NETDOM NDGT
tst1 ansi 7
GTA TABLE IS (17 of 269999) 1 % FULL
START GTA END GTA XLAT RI PC
5556800 5559000 dpcssn ssn 001-255-252
MAPSET=1 SSN=254 CGGT=NO CGGTMOD=NO
GTMODID=modid2 TESTMODE=off
LOOPSET = rtp2 FALLBACK=sysdeflt
OPTSN=--------- CGSELID=----- OPCSN=gttset12
ACTSN=--------- PPMEASREQD= NO
```

In this example, the range of global title addresses is made smaller by specifying the range of global title addresses 5556500 - 5557500, and with the split=no parameter.

```
chg-gta:ttn=tst1:gta=5556500:egta=5557500:split=no
```

```
rlghncxa03w 10-07-07 00:28:31 GMT EAGLE5 42.0.0
```
In this next example, the range of global title addresses is split with the gta=5556900 and egta=5557000 defining where the splits occur.

chg-gta:ttt=tst1:gta=5556900:egta=5557000

Since the default value for the split parameter is yes, the split=yes parameter does not have to be specified to split the range of global title addresses. When the chg-gta command is entered, three new global title translation entries with the new global title address ranges are created, and the original global title translation entry is removed from the database. Since the gta and egta parameter values specified in this example are within the original range of global title addresses, the original range of global title addresses is split into three new ranges. The START GTA value of the first new range is the original START GTA value and the END GTA value is the gta parameter value minus one. The START GTA value of the second new range is the gta parameter value and the END GTA value is the egta parameter value. The START GTA value of the third new range is the egta parameter value plus 1 and the END GTA value is the original END GTA value.
In this next example, the global title translation containing the range of global title addresses 5557001-5558000 is split into two new ranges with the gta=5557501 and egta=5558000 defining where the split occurs.

chg-gta:ttn=tst1:gta=5557501:egta=5558000:split=yes

When the chg-gta command is entered, two new global title translation entries with the new global title address ranges are created, and the original global title translation entry is removed from the database. The START GTA value of the new first range is the original START GTA value and the END GTA value is the gta parameter value minus one. The START GTA value of the second new range is the gta parameter value and the END GTA value is the egta parameter value. In this example, the egta parameter is also the original END GTA value.

The range of global title addresses can be changed so long as the new range of global title addresses does not overlap an existing range of global title addresses.

For example, using the range of global title addresses from the previous examples, 5556000 - 5558000, you wish to extend the range of global title addresses to 5556000 - 5559000. The range of global title addresses can be extended to 5559000 by specifying the egta=5559000 and split=no parameters with the chg-gta command. However, if another range of global title addresses begins with the value 5558500, the egta=5559000 parameter cannot be specified with the chg-gta command as the new range created with the egta=5559000 parameter would overlap the range of global title addresses beginning with the value 5558500. In this situation, the maximum value for the egta parameter would be 5558499.

Note: The command line on the terminal can contain up to 150 characters. If the parameters and values specified with the chg-gta command are too long to fit on the chg-gta command line, perform the chg-gta command as many times as necessary to complete the GTA entry.
The GTT set name (gttsn) must be specified and match that of an existing GTT set name. Use the rtrv-gttset command to view the GTT set names. If the specified GTT set is an ANSI set, the pc or pca value must be a valid ANSI point code. If the specified GTT set is an ITU set, the pci, pcn, or pcn24 value must be a valid ITU point code. The point code (PC) must be a full point code and cannot be out of range. If the ANSI/ITU SCCP Conversion feature is enabled, the domain (ANSI or ITU) of the GTT set name and point code do not have to be the same.

Note: See Chapter 2, Configuring Destination Tables in the Database Administration Manual - SS7 for a definition of the point code types that are used on the EAGLE 5 ISS and for a definition of the different formats that can be used for ITU national point codes.

If the end of the global title address (EGTA) parameter is specified, GTA and EGTA must have the same number of digits, but EGTA must be larger than GTA. The range, as specified by the start and end global title addresses, must be in the database for the specified translation type. Each range may be contained completely within a previously defined range, in which case splitting is performed. However, if the ranges overlap, splitting cannot occur, and the chg-gta command is rejected with this message.

E2401 Cmd Rej:GTA range overlaps a current range

Along with error message 2401, a list of the overlapped global title addresses is displayed as shown in the following example.

```
r1ghcnxa03w 09-05-07 00:28:31 GMT EAGLE5 41.0.0
The following GTA ranges overlap the input GTA range

<table>
<thead>
<tr>
<th>START GTA</th>
<th>END GTA</th>
</tr>
</thead>
<tbody>
<tr>
<td>8005550000</td>
<td>8005551999</td>
</tr>
<tr>
<td>8005552000</td>
<td>8005553999</td>
</tr>
<tr>
<td>8005554000</td>
<td>8005555999</td>
</tr>
</tbody>
</table>

CHG-GTA: MASP A - Command Aborted
```

If a point code is the STP’s True PC, then the value of the XLAT parameter must be set to DPCSSN and the value of the RI parameter must be set to SSN. If the SSN parameter is specified and a point code is the STP’s True PC, then the subsystem number specified must exist in the SS-APPL table. This can be verified with the rtrv-ss-appl command. To execute the rtrv-ss-appl command, these features must be enabled, and turned on if necessary.

- LNP - shown by the entry LNP TNs with a quantity greater than zero in the rtrv-ctrl-feat command output
- ATINP - shown by the entry ATINP in the rtrv-ctrl-feat command output with the status set to on
- EIR - shown by the entry EIR in the rtrv-ctrl-feat command output as being permanently or temporarily enabled and with the status set to on.
- INP - shown by the entry INP in the rtrv-ctrl-feat command output with the status set to on.
- V-FLEX - shown by the entry VFLEX in the rtrv-ctrl-feat command output with the status set to on.
- ANSI-41 INP Query - shown by the entry ANSI-41 INP Query in the rtrv-ctrl-feat command output with the status set to on.
- ANSI41 AIQ - shown by the entry ANSI41 AIQ in the rtrv-ctrl-feat command output.

Note: The Local Number Portability (LNP), Equipment Identity Register (EIR), INAP Number Portability (INP), V-Flex, ATINP, ANSI41 AIQ, or ANSI-41 INP Query features must be purchased
before you can enable the LNP, ATINP, or ANSI41 AIQ features, or enable and turn on the EIR, INP, V-Flex, or ANSI-41 INP Query features. If you are not sure whether you have purchased the LNP, EIR, or INP, V-Flex, ATINP, or ANSI-41 INP Query feature, contact your Tekelec Sales Representative or Account Representative.

Once the LNP, ATINP, or ANSI41 AIQ feature is enabled with the `enable-ctrl-feat` command, or the EIR, INP, V-Flex, and ANSI-41 INP Query features are turned on with the `chg-ctrl-feat` command, they cannot be turned off or disabled.

A point code must exist as a destination in the route table or reside in a cluster that exists as a destination in the route table (for global title routing) unless the point code is the STP’s True PC.

If a final GTT is specified (`ri=ssn`) with the `xlat=dpc` parameter, and the value of the `force` parameter is `no`, the point code must be in the Remote Point Code/Mated Application table. Verify this by entering the `rtrv-map` command. If this point code and subsystem number is not defined as a mated application, perform one of these procedures to add the point code and subsystem number to the database as a mated application:

- Provisioning a Solitary Mated Application
- Provisioning a Dominant Mated Application
- Provisioning a Load Shared Mated Application
- Provisioning a Combined Dominant/Load Shared Mated Application

The point code and subsystem number do not have to be in the mated application table when the `chg-gta` command is executed when these parameters are specified with the `chg-gta` command.

- `ri=gt`
- `xlat=dpcssn` and `ri=ssn` (provided the point code value is not the STP’s true point code)

If the point code and subsystem are not in the mated application table when either of these parameters are specified with the `chg-gta` command, the EAGLE 5 ISS creates a solitary mated application in the mated application table using the point code and subsystem values specified in the `chg-gta` command.

If the `xlat=none` parameter is specified for a global title translation, the global title translation entry can contain any data except for the routing data defined by these parameters.

- `pc/pca/pci/pcn/pcn24`
- `ssn`
- `ri`
- `force=yes`

The GTA Entries with the XLAT=NONE Parameter part of the GTT Actions section described the behavior of the `xlat=none` parameter.

The following tables show the valid parameter combinations that can be used with the `chg-gta` command.

- Table 115: GTA Parameter Combinations - No SETTYPE Column in RTRV-GTTSET Output
- Table 116: GTTSET = CDGTA GTT Set Parameter Combinations
- Table 117: GTTSET = CGGTA GTT Set Parameter Combinations
- Table 118: GTTSET = CGPC GTT Set Parameter Combinations
- Table 119: GTTSET = CGSSN GTT Set Parameter Combinations
- Table 120: GTTSET = OPC GTT Set Parameter Combinations
- Table 121: GTTSET = CDSSN GTT Set Parameter Combinations
The GTT table may not be full.

The values specified for the gta and egta parameters can be decimal digits (0-9) or hexadecimal digits (0-9, a-f, A-F). Hexadecimal digits can be specified only if the Hex Digit Support for GTT feature is enabled. Verify the status of the Hex Digit Support for GTT feature with the rtrv-ctrl-feat command. Refer to the Hex Digit Support for GTT section for more information on this feature. If the Hex Digit Support for GTT feature is not enabled, perform the Activating the Hex Digit Support for GTT Feature procedure to enable the Hex Digit Support for GTT feature.

Canceling the RTRV-GTA Command

Because the rtrv-gta command used in this procedure can output information for a long period of time, the rtrv-gta command can be canceled and the output to the terminal stopped. There are three ways that the rtrv-gta command can be canceled.

- Press the F9 function key on the keyboard at the terminal where the rtrv-gta command was entered.
- Enter the canc-cmd without the trm parameter at the terminal where the rtrv-gta command was entered.
- Enter the canc-cmd:trm=<xx>, where <xx> is the terminal where the rtrv-gta command was entered, from another terminal other that the terminal where the rtrv-gta command was entered. To enter the canc-cmd:trm=<xx> command, the terminal must allow Security Administration commands to be entered from it and the user must be allowed to enter Security Administration commands. The terminal’s permissions can be verified with the rtrv-secu-trm command. The user’s permissions can be verified with the rtrv-user or rtrv-secu-user commands.

For more information about the canc-cmd command, go to the Commands Manual.

Table 115: GTA Parameter Combinations - No SETTYPE Column in RTRV-GTTSET Output

<table>
<thead>
<tr>
<th>Mandatory Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>GTTSN – The GTT set name from the GTTSN column of the rtrv-gttset output and from the GTTSN column of the rtrv-gta output.</td>
</tr>
<tr>
<td>GTA – The GTA value assigned to the GTTSN value in the rtrv-gta output.</td>
</tr>
<tr>
<td>If only the EGTT feature is on, the SETTYPE column is not shown in the rtrv-gttset output.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Optional Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>EGTA – 1 - 21 digits or 1 - 21 hexadecimal digits.</td>
</tr>
<tr>
<td>Default = same as the GTA value.</td>
</tr>
<tr>
<td>Hexadecimal digits (0-9, a-f, A-F) can be specified for the egta parameters only if the Hex Digit support for GTT feature is enabled.</td>
</tr>
<tr>
<td>The length of the EGTA value must be the same as the GTA value.</td>
</tr>
</tbody>
</table>
There are other optional parameters that can be used with this entry. Refer to Table 124: Optional GTA Parameters for these parameters. At least one optional parameter must be specified with the chg-gta command. Unless a default value is shown for a parameter in Table 124: Optional GTA Parameters, the value of any optional parameter that is not specified with the chg-gta command is not changed.

Table 116: GTTSET = CDGTA GTT Set Parameter Combinations

<table>
<thead>
<tr>
<th>XLAT=DPCNGT, DPCSSN, or DPC</th>
<th>XLAT=NONE</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Mandatory Parameters</strong></td>
<td></td>
</tr>
<tr>
<td>GTTSET – The GTT set name from the GTTSET column of the rtrv-gttset output containing the value CDGTA in the SETTYPE column and from the GTTSET column of the rtrv-gta output.</td>
<td>GTTSET – The GTT set name from the GTTSET column of the rtrv-gttset output containing the value CDGTA in the SETTYPE column and from the GTTSET column of the rtrv-gta output.</td>
</tr>
<tr>
<td>GTA – The GTA value assigned to the GTTSET value in the rtrv-gta output.</td>
<td>GTA – The GTA value assigned to the GTTSET value in the rtrv-gta output.</td>
</tr>
<tr>
<td><strong>Optional Parameters</strong></td>
<td></td>
</tr>
<tr>
<td>EGTA – 1 - 21 digits or 1 - 21 hexadecimal digits. Default = same as the GTA value. Hexadecimal digits (0-9, a-f, A-F) can be specified for the egta parameters only if the Hex Digit support for GTT feature is enabled. The length of the EGTA value must be the same as the GTA value.</td>
<td>EGTA – 1 - 21 digits or 1 - 21 hexadecimal digits. Default = same as the GTA value. Hexadecimal digits (0-9, a-f, A-F) can be specified for the egta parameters only if the Hex Digit support for GTT feature is enabled. The length of the EGTA value must be the same as the GTA value. These parameters cannot be specified with the xlat=none parameter.</td>
</tr>
</tbody>
</table>
| OPTSN – The GTT set name from the GTTSET column of the rtrv-gttset output, or the value none. The value none removes the OPTSN value from the GTA entry. Refer to Table 114: GTTSET and OPTSN Combinations for the valid GTT set types that can be specified. The current value of this parameter must be changed to the value none before the parameter value can be changed to another value that is not | . pc/pca/pci/pcn/pcn24
. ssn
. ri
. force=yes |

OPTSN – The GTT set name from the GTTSET column of the rtrv-gttset output, or the value none. The value none removes the OPTSN value from the GTA entry. Refer to Table 114: GTTSET and OPTSN Combinations for the valid GTT set types that can be specified. The current value of this parameter must be changed to the value none before the parameter value can be changed to another value that is not.
The new value for this parameter cannot be the `gttsn` value specified with the `chg-gta` command.

OPCSN – The GTT set name from the `GTTSN` column of the `rtrv-gttset` output containing the value `OPC` in the `SETTYPE` column, or the value `none`. The value `none` removes the `OPCSN` value from the GTA entry.

There are other optional parameters that can be used with this entry. Refer to Table 124: Optional GTA Parameters for these parameters. At least one optional parameter must be specified with the `chg-gta` command. Unless a default value is shown for a parameter in Table 124: Optional GTA Parameters, the value of any optional parameter that is not specified with the `chg-gta` command is not changed.

Note: When the `xlat` parameter value is changed from `dpcngt`, `dpcssn`, or `dpc`, to `none`, all the optional parameter values that are not specified with the `chg-gta` command are not changed. However, these changes are made.

- The `PC` and `SSN` values are removed from the GTA entry.
- The `CCGT` value is removed from the GTA entry and the `CCGT` field is not shown in the `rtrv-gta` output.
- If the original `RI` value for the GTA entry was `SSN` and a MAP set was assigned to the GTA entry, the `MAPSET` value is not changed and the `MRNSET=DFLT` entry is assigned to the GTA entry. The `MRNSET=DFLT` entry is shown in the `rtrv-gta` output.
- If the original `RI` value for the GTA entry was `GT` and an MRN set was assigned to the GTA entry, the `MRNSET` value is not changed and the `MAPSET=DFLT` entry is assigned to the GTA entry. The `MAPSET=DFLT` entry is shown in the `rtrv-gta` output.

Table 117: GTTSN = CGGTA GTT Set Parameter Combinations

<table>
<thead>
<tr>
<th>XLAT=DPCNGT, DPCSSN, or DPC</th>
<th>XLAT=None</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Mandatory Parameters</strong></td>
<td></td>
</tr>
<tr>
<td>GTTSN – The GTT set name from the <code>GTTSN</code> column of the <code>rtrv-gttset</code> output containing the value <code>CGGTA</code> in the <code>SETTYPE</code> column and from the <code>GTTSN</code> column of the <code>rtrv-gta</code> output.</td>
<td>GTTSN – The GTT set name from the <code>GTTSN</code> column of the <code>rtrv-gttset</code> output containing the value <code>CGGTA</code> in the <code>SETTYPE</code> column and from the <code>GTTSN</code> column of the <code>rtrv-gta</code> output.</td>
</tr>
<tr>
<td>GTA – The <code>GTA</code> value assigned to the <code>GTTSN</code> value in the <code>rtrv-gta</code> output.</td>
<td>GTA – The <code>GTA</code> value assigned to the <code>GTTSN</code> value in the <code>rtrv-gta</code> output.</td>
</tr>
</tbody>
</table>

**Optional Parameters**

<table>
<thead>
<tr>
<th>XLAT=DPCNGT, DPCSSN, or DPC</th>
<th>XLAT=None</th>
</tr>
</thead>
<tbody>
<tr>
<td>EGTA – 1 - 21 digits or 1 - 21 hexadecimal digits. Default = same as the GTA value. Hexadecimal digits (0-9, a-f, A-F) can be specified for the egta parameters only if the Hex Digit support for GTT feature is enabled. The length of the EGTA value must be the same as the GTA value.</td>
<td>EGTA – 1 - 21 digits or 1 - 21 hexadecimal digits. Default = same as the GTA value. Hexadecimal digits (0-9, a-f, A-F) can be specified for the egta parameters only if the Hex Digit support for GTT feature is enabled. The length of the EGTA value must be the same as the GTA value. These parameters cannot be specified with the xlat=none parameter.</td>
</tr>
<tr>
<td>OPTSN – The GTT set name from the GTTSN column of the rtrv-gttsn output, or the value none. The value none removes the OPTSN value from the GTA entry. Refer to Table 114: GTTSN and OPTSN Combinations for the valid GTT set types that can be specified. The current value of this parameter must be changed to the value none before the parameter value can be changed to another value that is not none. The new value for this parameter cannot be the gttsn value specified with the chg-gta command.</td>
<td></td>
</tr>
</tbody>
</table>

There are other optional parameters that can be used with this entry. Refer to Table 124: Optional GTA Parameters for these parameters. At least one optional parameter must be specified with the chg-gta command. Unless a default value is shown for a parameter in Table 124: Optional GTA Parameters, the value of any optional parameter that is not specified with the chg-gta command is not changed.

**Note:** When the xlat parameter value is changed from dpcngt, dpcssn, or dpc, to none, all the optional parameter values that are not specified with the chg-gta command are not changed. However, these changes are made.

- The PC and SSN values are removed from the GTA entry.
- The CCGT value is removed from the GTA entry and the CCGT field is not shown in the rtrv-gta output.
- If the original RI value for the GTA entry was SSN and a MAP set was assigned to the GTA entry, the MAPSET value is not changed and the MRNSET=DFLT entry is assigned to the GTA entry. The MRNSET=DFLT entry is shown in the rtrv-gta output.
If the original RI value for the GTA entry was GT and an MRN set was assigned to the GTA entry, the MRNSET value is not changed and the MAPSET=DFLT entry is assigned to the GTA entry. The MAPSET=DFLT entry is shown in the rtrv-gta output.

Table 118: GTTSN = CGPC GTT Set Parameter Combinations

<table>
<thead>
<tr>
<th>XLAT=DPCNGT, DPCSSN, or DPC</th>
<th>XLAT=NONE</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Mandatory Parameters</strong></td>
<td></td>
</tr>
<tr>
<td>GTTSN – The GTT set name from the GTTSN column of the rtrv-gttset output containing the value CGPC in the SETTYPE column and from the GTTSN column of the rtrv-gta output.</td>
<td>GTTSN – The GTT set name from the GTTSN column of the rtrv-gttset output containing the value CGPC in the SETTYPE column and from the GTTSN column of the rtrv-gta output.</td>
</tr>
<tr>
<td>CGPC/CGPCA/CGPCI/CGPCN/CGPCN24 – The CGPC value assigned to the GTTSN value in the rtrv-gta output. (See Note 1)</td>
<td>CGPC/CGPCA/CGPCI/CGPCN/CGPCN24 – The CGPC value assigned to the GTTSN value in the rtrv-gta output. (See Note 1)</td>
</tr>
<tr>
<td><strong>Optional Parameters</strong></td>
<td></td>
</tr>
<tr>
<td>OPTSN – The GTT set name from the GTTSN column of the rtrv-gttset output, or the value none. The value none removes the OPTSN value from the GTA entry. Refer to Table 114: GTTSN and OPTSN Combinations for the valid GTT set types that can be specified. The current value of this parameter must be changed to the value none before the parameter value can be changed to another value that is not none. The new value for this parameter cannot be the gttsn value specified with the chg-gta command.</td>
<td>These parameters cannot be specified with the xlat=none parameter.</td>
</tr>
<tr>
<td>ssn</td>
<td>ri</td>
</tr>
<tr>
<td>force=yes</td>
<td></td>
</tr>
</tbody>
</table>

There are other optional parameters that can be used with this entry. Refer to Table 124: Optional GTA Parameters for these parameters. At least one optional parameter must be specified with the chg-gta command. Unless a default value is shown for a parameter in Table 124: Optional GTA Parameters, the value of any optional parameter that is not specified with the chg-gta command is not changed.

The egta and split parameters cannot be specified with this entry.

Note:
The cgpc/cgpca/cgpci/cgpcn/cgpcn24 parameters are used to assign either ANSI, ITU-I, ITU-I spare, 14-bit ITU-N, 14-bit ITU-N spare, or 24-bit ITU-N point codes as the CGPC parameter values.

- cgpc/cgpca = ANSI point code
- cgpci = ITU-I or ITU-I spare point code
- cgpcn = 14-bit ITU-N or 14-bit ITU-N spare point code
- cgpcn24 = 24-bit ITU-N point code.

When the xlat parameter value is changed from dpcngt, dpcssn, or dpc, to none, all the optional parameter values that are not specified with the chg-gta command are not changed. However, these changes are made.

- The PC and SSN values are removed from the GTA entry.
- The CCGT value is removed from the GTA entry and the CCGT field is not shown in the rtrv-gta output.
- If the original RI value for the GTA entry was SSN and a MAP set was assigned to the GTA entry, the MAPSET value is not changed and the MRNSET=DFLT entry is assigned to the GTA entry. The MRNSET=DFLT entry is shown in the rtrv-gta output.
- If the original RI value for the GTA entry was GT and an MRN set was assigned to the GTA entry, the MRNSET value is not changed and the MAPSET=DFLT entry is assigned to the GTA entry. The MAPSET=DFLT entry is shown in the rtrv-gta output.

### Table 119: GTTSN = CGSSN GTT Set Parameter Combinations

<table>
<thead>
<tr>
<th>XLAT=DPCNGT, DPCSSN, or DPC</th>
<th>XLAT=NONE</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Mandatory Parameters</strong></td>
<td></td>
</tr>
<tr>
<td>GTTSN – The GTT set name from the GTTSN column of the rtrv-gttset output containing the value CGSSN in the SETTYPE column and from the GTTSN column of the rtrv-gta output.</td>
<td>GTTSN – The GTT set name from the GTTSN column of the rtrv-gttset output containing the value CGSSN in the SETTYPE column and from the GTTSN column of the rtrv-gta output.</td>
</tr>
<tr>
<td>CGSSN – The CGSSN value assigned to the GTTSN value in the rtrv-gta output.</td>
<td>CGSSN – The CGSSN value assigned to the GTTSN value in the rtrv-gta output.</td>
</tr>
<tr>
<td><strong>Optional Parameters</strong></td>
<td></td>
</tr>
<tr>
<td>ECGSSN – 0 - 255. The ECGSSN value must be greater than the CGSSN value.</td>
<td>ECGSSN – 0 - 255. Default value – no ECGSSN value is specified. The ECGSSN value must be greater than the CGSSN value. These parameters cannot be specified with the xlat=none parameter.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>pc/pca/pci/pcn/pcn24</td>
</tr>
</tbody>
</table>
OPTSN – The GTT set name from the GTTSN column of the rtrv-gttset output, or the value none. The value none removes the OPTSN value from the GTA entry. Refer to Table 114: GTTSN and OPTSN Combinations for the valid GTT set types that can be specified.

The current value of this parameter must be changed to the value none before the parameter value can be changed to another value that is not none. The new value for this parameter cannot be the gttsn value specified with the chg-gta command.

There are other optional parameters that can be used with this entry. Refer to Table 124: Optional GTA Parameters for these parameters. At least one optional parameter must be specified with the chg-gta command. Unless a default value is shown for a parameter in Table 124: Optional GTA Parameters, the value of any optional parameter that is not specified with the chg-gta command is not changed.

The egta and split parameters cannot be specified with this entry.

**Note:** When the xlat parameter value is changed from dpcngt, dpcssn, or dpc, to none, all the optional parameter values that are not specified with the chg-gta command are not changed. However, these changes are made.

- The PC and SSN values are removed from the GTA entry.
- The CCGT value is removed from the GTA entry and the CCGT field is not shown in the rtrv-gta output.
- If the original RI value for the GTA entry was SSN and a MAP set was assigned to the GTA entry, the MAPSET value is not changed and the MRNSET=DFLT entry is assigned to the GTA entry. The MRNSET=DFLT entry is shown in the rtrv-gta output.
- If the original RI value for the GTA entry was GT and an MRN set was assigned to the GTA entry, the MAPSET value is not changed and the MAPSET=DFLT entry is assigned to the GTA entry. The MAPSET=DFLT entry is shown in the rtrv-gta output.
### Enhanced Global Title Translation (EGTT) Configuration

#### Database Administration Manual - Global Title Translation

<table>
<thead>
<tr>
<th><strong>XLAT=DPCNGT, DPCSSN, or DPC</strong></th>
<th><strong>XLAT=NONE</strong></th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>GTTSN</strong> – The GTT set name from the GTTSN column of the rtrv-gttset output containing the value OPC in the SETTYPE column and from the GTTSN column of the rtrv-gta output.</td>
<td><strong>GTTSN</strong> – The GTT set name from the GTTSN column of the rtrv-gttset output containing the value OPC in the SETTYPE column and from the GTTSN column of the rtrv-gta output.</td>
</tr>
<tr>
<td><strong>OPC/OPCA/OPCI/OPCN/OPCN24</strong> – The OPC value assigned to the GTTSN value in the rtrv-gta output. (See Note 1)</td>
<td><strong>OPC/OPCA/OPCI/OPCN/OPCN24</strong> – The OPC value assigned to the GTTSN value in the rtrv-gta output. (See Note 1)</td>
</tr>
</tbody>
</table>

### Optional Parameters

<table>
<thead>
<tr>
<th><strong>OPTSN</strong> – The GTT set name from the GTTSN column of the rtrv-gttset output, or the value none. The value none removes the OPTSN value from the GTA entry. Refer to Table 114: GTTSN and OPTSN Combinations for the valid GTT set types that can be specified. The current value of this parameter must be changed to the value none before the parameter value can be changed to another value that is not none. The new value for this parameter cannot be the gttsn value specified with the chg-gta command.</th>
<th>These parameters cannot be specified with the xlat=none parameter.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• pc/pca pci/pcn/pcn24</td>
</tr>
<tr>
<td></td>
<td>• ssn</td>
</tr>
<tr>
<td></td>
<td>• ri</td>
</tr>
<tr>
<td></td>
<td>• force=yes</td>
</tr>
</tbody>
</table>

There are other optional parameters that can be used with this entry. Refer to Table 124: Optional GTA Parameters for these parameters. At least one optional parameter must be specified with the chg-gta command. Unless a default value is shown for a parameter in Table 124: Optional GTA Parameters, the value of any optional parameter that is not specified with the chg-gta command is not changed.

The egta and split parameters cannot be specified with this entry.

### Note:

1. The opc/opca/opci/opcn/opcn24 parameters are used to assign either ANSI, ITU-I, ITU-I spare, 14-bit ITU-N, 14-bit ITU-N spare, or 24-bit ITU-N point codes as the OPC parameter values.
   - opc/opca = ANSI point code
   - opci = ITU-I or ITU-I spare point code
   - opc = 14-bit ITU-N or 14-bit ITU-N spare point code
   - opcn24 = 24-bit ITU-N point code.

2. When the xlat parameter value is changed from dpcngt, dpcssn, or dpc, to none, all the optional parameter values that are not specified with the chg-gta command are not changed. However, these changes are made.
   - The PC and SSN values are removed from the GTA entry.
The CCGT value is removed from the GTA entry and the CCGT field is not shown in the rtrv-gta output.

If the original RI value for the GTA entry was SSN and a MAP set was assigned to the GTA entry, the MAPSET value is not changed and the MRNSET=DFLT entry is assigned to the GTA entry. The MRNSET=DFLT entry is shown in the rtrv-gta output.

If the original RI value for the GTA entry was GT and an MRN set was assigned to the GTA entry, the MRNSET value is not changed and the MAPSET=DFLT entry is assigned to the GTA entry. The MAPSET=DFLT entry is shown in the rtrv-gta output.

### Table 121: GTTSN = CDSSN GTT Set Parameter Combinations

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>GTTSN</strong></td>
<td>The GT set name from the GTTSN column of the rtrv-gttset output containing the value CDSSN in the SETTYPE column and from the GTTSN column of the rtrv-gta output.</td>
</tr>
<tr>
<td><strong>CDSSN</strong></td>
<td>The CDSSN value assigned to the GTTSN value in the rtrv-gta output.</td>
</tr>
<tr>
<td><strong>ECDSSN</strong></td>
<td>0 - 255. The ECDSSN value must be greater than the CDSSN value.</td>
</tr>
<tr>
<td><strong>OPTSN</strong></td>
<td>The GT set name from the GTTSN column of the rtrv-gttset output, or the value none. The value none removes the OPTSN value from the GTA entry. Refer to Table 114: GTTSN and OPTSN Combinations for the valid GTT set types that can be specified.</td>
</tr>
</tbody>
</table>

#### Mandatory Parameters

- **GTTSN** - The GT set name from the GTTSN column of the rtrv-gttset output containing the value CDSSN in the SETTYPE column and from the GTTSN column of the rtrv-gta output.

- **CDSSN** - The CDSSN value assigned to the GTTSN value in the rtrv-gta output.

#### Optional Parameters

- **ECDSSN** - 0 - 255. Default value – no ECDSSN value is specified. The ECDSSN value must be greater than the CDSSN value.

These parameters cannot be specified with the xlat=none parameter.

- **pc/pca/pci/pcn/pcn24**
- **ssn**
- **ri**
- **force=yes**
The current value of this parameter must be changed to the value none before the parameter value can be changed to another value that is not none. The new value for this parameter cannot be the gttsn value specified with the chg-gta command.

OPCSN – The GTT set name from the GTTSN column of the rtrv-gttset output containing the value OPC in the SETTYPE column, or the value none. The value none removes the OPCSN value from the GTA entry.

There are other optional parameters that can be used with this entry. Refer to Table 124: Optional GTA Parameters for these parameters. At least one optional parameter must be specified with the chg-gta command. Unless a default value is shown for a parameter in Table 124: Optional GTA Parameters, the value of any optional parameter that is not specified with the chg-gta command is not changed.

The egta and split parameters cannot be specified with this entry.

**Note:** When the xlat parameter value is changed from dpcngt, dpcssn, or dpc, to none, all the optional parameter values that are not specified with the chg-gta command are not changed. However, these changes are made.

- The PC and SSN values are removed from the GTA entry.
- The CCGT value is removed from the GTA entry and the CCGT field is not shown in the rtrv-gta output.
- If the original RI value for the GTA entry was SSN and a MAP set was assigned to the GTA entry, the MAPSET value is not changed and the MRNSET=DFLT entry is assigned to the GTA entry. The MRNSET=DFLT entry is shown in the rtrv-gta output.
- If the original RI value for the GTA entry was GT and an MRN set was assigned to the GTA entry, the MAPSET value is not changed and the MAPSET=DFLT entry is assigned to the GTA entry. The MAPSET=DFLT entry is shown in the rtrv-gta output.

**Table 122: GTTSN = OPCODE GTT Set Parameter Combinations**

<table>
<thead>
<tr>
<th>XLAT=DPCNGT, DPCSSN, or DPC</th>
<th>XLAT=NONE</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Mandatory Parameters</strong></td>
<td></td>
</tr>
<tr>
<td>GTTSN – The GTT set name from the GTTSN column of the rtrv-gttset output containing the value OPCODE in the SETTYPE column and from the GTTSN column of the rtrv-gta output.</td>
<td>GTTSN – The GTT set name from the GTTSN column of the rtrv-gttset output containing the value OPCODE in the SETTYPE column and from the GTTSN column of the rtrv-gta output.</td>
</tr>
<tr>
<td><strong>XLAT=DPCNGT, DPCSSN, or DPC</strong></td>
<td><strong>XLAT=None</strong></td>
</tr>
<tr>
<td>---------------------------------</td>
<td>--------------</td>
</tr>
<tr>
<td><strong>OPCODE</strong> – The OPCODE value assigned to the GTTSN value in the rtrv-gta output. (See Note 4)**</td>
<td><strong>OPCODE</strong> – The OPCODE value assigned to the GTTSN value in the rtrv-gta output.**</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th><strong>ANSI TCAP Translation</strong></th>
<th><strong>ITU TCAP Translation</strong></th>
<th><strong>ANSI TCAP Translation</strong></th>
<th><strong>ITU TCAP Translation</strong></th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>FAMILY</strong> – The FAMILY value assigned to the GTTSN and OPCODE values in the rtrv-gta output.**</td>
<td><strong>ACN</strong> – The application context name assigned to the GTTSN and OPCODE values in the rtrv-gta output.**</td>
<td><strong>FAMILY</strong> – The FAMILY value assigned to the GTTSN and OPCODE values in the rtrv-gta output.**</td>
<td><strong>ACN</strong> – The application context name assigned to the GTTSN and OPCODE values in the rtrv-gta output.**</td>
</tr>
<tr>
<td><strong>PKGTYPE</strong> – The PKGTYPE context name assigned to the GTTSN, FAMILY, and OPCODE values in the rtrv-gta output.**</td>
<td><strong>PKGTYPE</strong> – PKGTYPE – The PKGTYPE context name assigned to the GTTSN, ACN, and OPCODE values in the rtrv-gta output.**</td>
<td><strong>PKGTYPE</strong> – The PKGTYPE context name assigned to the GTTSN, FAMILY, and OPCODE values in the rtrv-gta output.**</td>
<td><strong>PKGTYPE</strong> – PKGTYPE – The PKGTYPE context name assigned to the GTTSN, ACN, and OPCODE values in the rtrv-gta output.**</td>
</tr>
</tbody>
</table>

**Optional Parameters**

**OPTSN** – The GTT set name from the GTTSN column of the rtrv-gttset output, or the value none. The value none removes the OPTSN value from the GTA entry. Refer to Table 114: GTTSN and OPTSN Combinations for the valid GTT set types that can be specified.

The current value of this parameter must be changed to the value none before the parameter value can be changed to another value that is not none. The new value for this parameter cannot be the gttsn value specified with the chg-gta command.

These parameters cannot be specified with the xlat=none parameter.

- pc/pca/pci/pcn/pcn24
- ssn
- ri
- force=yes

**OPCSN** – The GTT set name from the GTTSN column of the rtrv-gttset output containing the value OPC in the SETTYPE column. Default value – no OPC GTT set is specified.

There are other optional parameters that can be used with this entry. Refer to Table 124: Optional GTA Parameters for these parameters. At least one optional parameter must be specified with the chg-gta command. Unless a default value is shown for a parameter in Table 124: Optional GTA Parameters, the value of any optional parameter that is not specified with the chg-gta command is not changed.

The egta and split parameters cannot be specified with this entry.
Note: When the xlat parameter value is changed from dpcngt, dpcssn, or dpc, to none, all the optional parameter values that are not specified with the chg-gta command are not changed. However, these changes are made.

- The PC and SSN values are removed from the GTA entry.
- The CCGT value is removed from the GTA entry and the CCGT field is not shown in the rtrv-gta output.
- If the original RI value for the GTA entry was SSN and a MAP set was assigned to the GTA entry, the MAPSET value is not changed and the MRNSET=DFLT entry is assigned to the GTA entry. The MRNSET=DFLT entry is shown in the rtrv-gta output.
- If the original RI value for the GTA entry was GT and an MRN set was assigned to the GTA entry, the MAPSET value is not changed and the MRNSET=DFLT entry is assigned to the GTA entry. The MAPSET=DFLT entry is shown in the rtrv-gta output.

### Table 123: GTTSN = DPC GTT Set Parameter Combinations

<table>
<thead>
<tr>
<th>XLAT=DPCNGT, DPSSSN, or DPC</th>
<th>XLAT=NONE</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Mandatory Parameters</strong></td>
<td></td>
</tr>
<tr>
<td>GTTSN – The GTT set name from the GTTSN column of the rtrv-gttset output containing the value DPC in the SETTYPE column.</td>
<td>GTTSN – The GTT set name from the GTTSN column of the rtrv-gttset output containing the value DPC in the SETTYPE column.</td>
</tr>
<tr>
<td>DPC/DPCA/DPC1/DPCN/DPCN24 (See Notes 1, 2, and 3)</td>
<td>DPC/DPCA/DPC1/DPCN/DPCN24 (See Notes 1, 2, and 3)</td>
</tr>
<tr>
<td><strong>Optional Parameters</strong></td>
<td></td>
</tr>
</tbody>
</table>
| OPTSN – The GTT set name from the GTTSN column of the rtrv-gttset output, or the value none. The value none removes the OPTSN value from the GTA entry. Refer to [Table 114: GTTSN and OPTSN Combinations](#) for the valid GTT set types that can be specified. The current value of this parameter must be changed to the value none before the parameter value can be changed to another value that is not none. The new value for this parameter cannot be the gttsn value specified with the chg-gta command. | These parameters cannot be specified with the xlat=none parameter.  
- pc/pca/pci/pcn/pcn24  
- ssn  
- ri  
- force=yes  
| OPCSNN – The GTT set name from the GTTSN column of the rtrv-gttset output containing the value OPCSNN in the SETTYPE column, or the |

---
There are other optional parameters that can be used with this entry. Refer to Table 124: Optional GTA Parameters for these parameters. The egta and split parameters cannot be specified with this entry.

Note: When the xlat parameter value is changed from dpcngt, dpcssn, or dpc, to none, all the optional parameter values that are not specified with the chg-gta command are not changed. However, these changes are made.

- The PC and SSN values are removed from the GTA entry.
- The CCGT value is removed from the GTA entry and the CCGT field is not shown in the rtrv-gta output.
- If the original RI value for the GTA entry was SSN and a MAP set was assigned to the GTA entry, the MAPSET value is not changed and the MRNSET=DFLT entry is assigned to the GTA entry. The MRNSET=DFLT entry is shown in the rtrv-gta output.
- If the original RI value for the GTA entry was GT and an MRN set was assigned to the GTA entry, the MRNSET value is not changed and the MAPSET=DFLT entry is assigned to the GTA entry. The MAPSET=DFLT entry is shown in the rtrv-gta output.

### Table 124: Optional GTA Parameters

<table>
<thead>
<tr>
<th>XLAT=DPCNGT, DPCSSN, or DPC</th>
<th>XLAT=NONE</th>
</tr>
</thead>
<tbody>
<tr>
<td>value none. The value none removes the OPCSN value from the GTA entry.</td>
<td>MRNSET – MRN set ID from the rtrv-mrn output or none (See Note 4)</td>
</tr>
<tr>
<td></td>
<td>LOOPSET – Loopset name from the rtrv-loopset output (See Note 8)</td>
</tr>
<tr>
<td></td>
<td>RI – GT, SSN (See Notes 3, 4, 7)</td>
</tr>
<tr>
<td></td>
<td>CCGTMOD – yes, no. Default = no (See Note 9)</td>
</tr>
<tr>
<td>PC/PCA/PCI/PCN/PCN24 (See Notes 1, 2, and 3)</td>
<td>MRNSET – MRN set ID from the rtrv-mrn output or none (See Note 4)</td>
</tr>
<tr>
<td>SSN – 0 - 255 (See Note 3)</td>
<td>LOOPSET – Loopset name from the rtrv-loopset output (See Note 8)</td>
</tr>
<tr>
<td>RI – GT, SSN (See Notes 3, 4, 7)</td>
<td>CCGTMOD – yes, no. Default = no (See Note 9)</td>
</tr>
<tr>
<td>MRNSET – MRN set ID from the rtrv-mrn output or none (See Note 4)</td>
<td>MAPSET – MAP set ID from the rtrv-map output or none (See Note 7)</td>
</tr>
<tr>
<td>LOOPSET – Loopset name from the rtrv-loopset output (See Note 8)</td>
<td>SPLIT – yes, no. Default = yes (See Note 10)</td>
</tr>
<tr>
<td>CCGTMOD – yes, no. Default = no (See Note 9)</td>
<td>TESTMODE – on, off. Default = off.</td>
</tr>
<tr>
<td>CCGT – yes, no. (See Note 5)</td>
<td>FALLBACK – sysdflt, yes, no. The Flexible Linkset Optional Based Routing feature must be enabled and turned on to use this parameter.</td>
</tr>
<tr>
<td><strong>XLAT=DPCNGT, DPCSSN, or DPC</strong></td>
<td><strong>XLAT=None</strong></td>
</tr>
<tr>
<td>--------------------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>MAPSET – MAP set ID from the <code>rtrv-map</code> output or none (See Note 8)</td>
<td>CGSELID – 0 - 65534 or none. The Origin-Based SCCP Routing feature must be enabled to use this parameter. (See Note 12)</td>
</tr>
<tr>
<td>FORCE – yes, no. Default = no (See Note 6)</td>
<td>CDSELID – 0 - 65534 or none. The Flexible Linkset Optional Based Routing feature must be enabled and turned on to use this parameter. (See Note 12)</td>
</tr>
<tr>
<td>SPLIT – yes, no. Default = yes (See Note 10)</td>
<td>CGCNVSN – GTT set name shown in the <code>rtrv-gttset</code> output or none. (See Note 13)</td>
</tr>
<tr>
<td>TESTMODE – on, off. Default = off.</td>
<td>ACTSN – The name of the GTT action set name shown in the <code>rtrv-gttaset</code> output or none. (See Note 11)</td>
</tr>
<tr>
<td>Fallback – sysdflt, yes, no. The Flexible Linkset Optional Based Routing feature must be enabled and turned on to use this parameter.</td>
<td>GTMODID – The name of the GT modification identifier shown in the <code>rtrv-gtmod</code> output or none. The value none removes the GT modification identifier assignment from the GTA entry. If the NGTI value in the global title modification entry is 4, the point code that is assigned to the GTA entry must be an ITU point code.</td>
</tr>
<tr>
<td>CGSELID – 0 - 65534 or none. The Origin-Based SCCP Routing feature must be enabled to use this parameter. (See Note 12)</td>
<td>PPMEASREQD – This parameter specifies whether per-path measurements are required for the GTA entry. This parameter has two values.</td>
</tr>
<tr>
<td></td>
<td>• yes - per-path measurements are required for the GTA entry.</td>
</tr>
<tr>
<td></td>
<td>• no - per-path measurements are not required for the GTA entry.</td>
</tr>
<tr>
<td>CDSELID – 0 - 65534 or none. The Flexible Linkset Optional Based Routing feature must be enabled and turned on to use this parameter. (See Note 12)</td>
<td></td>
</tr>
<tr>
<td>CGCNVSN – GTT set name shown in the <code>rtrv-gttset</code> output or none. (See Note 13)</td>
<td></td>
</tr>
<tr>
<td>ACTSN – The name of the GTT action set name shown in the <code>rtrv-gttaset</code> output or none. (See Note 11)</td>
<td></td>
</tr>
<tr>
<td>XLAT=DPCNGT, DPCSSN, or DPC</td>
<td>XLAT=NONE</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>GTMODID – The name of the GT modification identifier shown in the rtrv-gtmod output or none. The value none removes the GT modification identifier assignment from the GTA entry. If the NGTI value in the global title modification entry is 4, the point code that is assigned to the GTA entry must be an ITU point code.</td>
<td></td>
</tr>
<tr>
<td>PPMASREQD – This parameter specifies whether per-path measurements are required for the GTA entry. This parameter has two values.</td>
<td></td>
</tr>
<tr>
<td>• yes - per-path measurements are required for the GTA entry.</td>
<td></td>
</tr>
<tr>
<td>• no - per-path measurements are not required for the GTA entry.</td>
<td></td>
</tr>
</tbody>
</table>

**Notes:**

1. The pc/pca/pci/pcn/pcn24 parameters are used to assign either ANSI, ITU-I, ITU-I spare, 14-bit ITU-N, 14-bit ITU-N spare, or 24-bit ITU-N point codes to the global title address (GTA).
   - pc/pca = ANSI point code
   - pci = ITU-I or ITU-I spare point code
   - pcn = 14-bit ITU-N or 14-bit ITU-N spare point code
   - pcn24 = 24-bit ITU-N point code.
2. The domain (ANSI or ITU) of the point code and GTT set must be the same, unless the ANSI/ITU SCCP Conversion feature is enabled. If the ANSI/ITU SCCP Conversion feature is enabled, a GTA may contain an ANSI point code and an ITU GTT set, or an ITU point code and an ANSI GTT set. The CROSS GTT set, a GTT set containing the NETDOM value CROSS, can be specified with either ANSI or ITU point codes.
3. If the point code is the EAGLE 5 ISS’s point code, then the xlat parameter value must be dpcsn and the ri parameter value must be bessn. The ssn parameter can be specified only if the xlat parameter value is dpcsn. If the xlat parameter value is being changed to dpcsn, the ssn parameter must be specified.
4. The mrnset parameter can be specified only, and must be specified, if the Flexible GTT Load Sharing feature is enabled. The mrnset parameter can be specified only if the ri parameter value is gtt. Specifying the mrnset=none parameter removes the MRN set ID assignment from the GTA entry.
5. If the point code is the EAGLE 5 ISS’s point code, then the value of the ccgt parameter must be set to no.
6. If the pc/pca/pci/pcn/pcn24 parameter value is not shown in the rtrv-map output, and the resulting xlat parameter value is dpc, and the resulting ri parameter value is ssn, the force=yes parameter must be specified with the chg-gta command.
### Enhanced Global Title Translation (EGTT) Configuration

<table>
<thead>
<tr>
<th>XLAT=DPCNGT, DPCSSN, or DPC</th>
<th>XLAT=NONE</th>
</tr>
</thead>
<tbody>
<tr>
<td>7. The <code>mapset</code> parameter can be specified only, and must be specified, if the Flexible GTT Load Sharing feature is enabled. The <code>mapset</code> parameter can be specified only if the <code>ri</code> parameter value is <code>ssn</code>. Specifying <code>mapset=none</code> parameter removes the MAP set ID assignment from the GTA entry.</td>
<td></td>
</tr>
<tr>
<td>8. The <code>loopset</code> parameter can be specified only if the SCCP Loop Detection feature is enabled.</td>
<td></td>
</tr>
<tr>
<td>9. The <code>cggtmod</code> parameter can be specified only if the AMGTT or AMGTT CgPA Upgrade feature is enabled.</td>
<td></td>
</tr>
<tr>
<td>10. The range of global title addresses assigned to a global title translation can be extended, reduced, or split to create a new range of global title addresses. See the <code>split</code> parameter description section in this procedure for information on changing the range of global title addresses.</td>
<td></td>
</tr>
<tr>
<td>11. The <code>actsn</code> parameter can be specified only if the GTT Action - DISCARD, GTT Action - DUPLICATE, GTT Action - FORWARD feature is enabled. The value <code>none</code> removes the GTT action set name assignment from the GTA entry.</td>
<td></td>
</tr>
<tr>
<td>12. The current value of this parameter must be changed to the value <code>none</code> before the parameter value can be changed to another value that is not <code>none</code>.</td>
<td></td>
</tr>
<tr>
<td>13. The ANSI/ITU SCCP Conversion feature must be enabled, and the Flexible Linkset Optional Based Routing feature must be enabled and turned on to use this parameter. Specifying <code>cgcnvsn=none</code> parameter removes the CGCNVSN value from the GTA entry. The current value of this parameter must be changed to the value <code>none</code> before the parameter value can be changed to another value that is not <code>none</code>. The new value for this parameter cannot be the <code>gttsn</code> value specified with the <code>chg-gta</code> command, but must be a GTT set whose set type is either CDGTA or CGGTA.</td>
<td></td>
</tr>
</tbody>
</table>

1. Display the GTT sets in the database using the `rtrv-gttset` command.

   This is an example of the possible output.

   ```
 rtrv-gttset
 GOTTN NETDOM SETTYPE NDGT
 abcd1234 itu CGGTA 12
 gttset3 ansi CGGTA 10
 gttset6 ansi OPC -
 gttset7 ansi CGPC -
 gttset12 ansi OPC -
 imsi itu CDGTA 15
 lidb ansi CDGTA 10
 t800 ansi CDGTA 10
 s1000 itu CDGTA 15
 s2000 itu CGPC -
 GTT-SET table is (10 of 2000) 1% full.
   ```

2. Display the global title address (GTA) information for the GTT set that contains the global title address entry that is being changed. Use the `rtrv-gta` command with the `gttsn` parameter value shown in the output of Step 1. If the `num` parameter is specified with the `rtrv-gta` command, and the value of the `num` parameter is greater than 1000, the `force=yes` parameter must be specified with the `rtrv-gta` command. For this example, enter this command.

   ```
rtrv-gta:gttsn=lidb
   ```
This is an example of the possible output.

```
rlghncxa03w 10-07-07 00:27:31 GMT EAGLE5 42.0.0

GTTSN NETDOM SETTYPE NDGT
lidb ansi CDGTA 10
GTA TABLE IS 1 % FULL (17 of 269999)
START GTA END GTA XLAT RI PC
9195554321 9195554321 DPCNGT GT 001-255-253
SSN=--- CCGT=no CGGTMOD=NO
GTMODID=modid2 TESTMODE=off
LOOPSET = none FALLBACK=sysdflt
OPTSN=--------- CGSELID=----- OPCSN=---------
ACTSN=--------- PPMEASREQD= NO

Command Retrieved 1 Entries
```

If any of these conditions are present, this step has been completed.

- The OPTSN, OPCSN, or CGCNVSN fields are not shown in the rtrv-gta output.
- The OPTSN, OPCSN, or CGCNVSN fields are shown in the rtrv-gta output and the OPTSN, OPCSN, or CGCNVSN values are not being changed.
- The OPTSN, OPCSN, or CGCNVSN fields are shown in the rtrv-gta output, the OPTSN, OPCSN, or CGCNVSN values are being changed, and the desired GTT set is shown in the rtrv-gttset output in Step 1.

If the OPTSN, OPCSN, or CGCNVSN fields are shown in the rtrv-gta output, the OPTSN, OPCSN, or CGCNVSN values are being changed, and the desired GTT set is not shown in the rtrv-gttset output in Step 1, perform Adding a GTT Set to add the new GTT set.

After this step has been completed, continue the procedure by performing one of these steps.

- If the GTA entry does contain a range of global title addresses, CgPA subsystem numbers, or CdPA subsystem numbers, and this range will be split, continue the procedure with Step 3.
- If the GTA entry does contain a range of global title addresses, CgPA subsystem numbers, or CdPA subsystem numbers, and this range will not be split, or if the GTA entry does not contain a range of global title addresses, CgPA subsystem numbers, or CdPA subsystem numbers, continue the procedure with Step 5.

3. Splitting a range of global title addresses, CgPA subsystem numbers, or CdPA subsystem numbers creates a new GTA entry.

If splitting the global title addresses, CgPA subsystem numbers, or CdPA subsystem numbers will increase the number of global title translations in the database beyond the maximum number of global title translations shown in the rtrv-gta output in Step 2, and the maximum number of global title translations is either 269,999 or 400,000, the maximum number of global title translations must be increased. Perform the Enabling the XGTT Table Expansion Feature procedure to increase the maximum number of global title translations. If the maximum number of global title translations is 1,000,000, the maximum number of global title translations cannot be increased. The range of global title addresses, CgPA subsystem numbers, or CdPA subsystem numbers cannot be split. This new entry cannot be created if the database contains the maximum number of GTA entries.

Continue the procedure by performing one of these steps.

- If the GTA entry does not contain a range of global title addresses, or the number of global title translations in the database will not be increased beyond the maximum number of global title translations shown in the rtrv-gta output in Step 2, continue the procedure with Step 5.
• If the GTA entry contains a range of global title addresses that will be split and the number of global title translations in the database will not be increased beyond the maximum number of global title translations shown in the rtrv-gta output in Step 2, continue the procedure with Step 4.

4. Display the GTT path entries by entering the rtrv-gttapath command with these parameters.

   cdgttsn - the GTTSN value shown in the rtrv-gta output in Step 2.
   cdgta - the START GTA value shown in the rtrv-gta output in Step 2.

For this example, enter this command.

   rtrv-gttapath:cdgttsn=lidb:cdgta=9195554321

This is an example of the possible output.

   rlghncxa03w 10-07-25 09:43:31 GMT  EAGLE5 42.0.0
   GTTPN   OPGTTSN         CGGTTSN         CDGTTSN
   path1   ---------       ---------       lidb
   CDGTA = 9195554321                   ECDGTA = 9195554321

GTT-PATH table is (5 of 10000) 1% full.

The range of global title addresses cannot be split if entries containing the GTTSN and the GTA values shown in the rtrv-gttapath output. If entries are displayed in the rtrv-gttapath output, perform the Removing a GTT Action Path Entry procedure to remove the entries shown in the rtrv-gttapath output.

Continue the procedure with Step 5 if no entries are shown in this step; error message E3451 is displayed; if the entries in the rtrv-gttapath output will not be removed; or the Removing a GTT Action Path Entry procedure has been performed.

5. Display the features that are enabled by entering the rtrv-ctrl-feat command.

The following is an example of the possible output.

   rlghncxa03w 09-05-28 21:15:37 GMT EAGLE5 41.0.0
   The following features have been permanently enabled:

   Feature Name              Partnum   Status Quantity
   XGTT Table Expansion      893006101 on     400000
   SCCP Loop Detection       893016501 on     ----
   SCCP Conversion           893012001 off    ----
   HC-MIM SLK Capacity       893012707 on     64
   Origin Based SCCP Routing 893014301 on     ----
   TCAP Opcode Based Routing 893027801 on     ----
   Flex Lset Optnl Based Rtg 893027701 on     ----
   VGTT with 16 GTT lengths  893024801 on     ----
   TOBR Opcode Quantity      893027907 on     1000000

   The following features have been temporarily enabled:

   Feature Name              Partnum   Status Quantity   Trial Period Left
   Zero entries found.
The following features have expired temporary keys:

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Partnum</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Zero entries found</td>
<td></td>
</tr>
</tbody>
</table>

6. Some parameters of the `chg-gta` command can be specified only when certain features are enabled, and turned on if necessary. Table 125: Feature Requirements for CHG-GTA Parameters shows the feature requirements for these parameters. Some

Table 125: Feature Requirements for CHG-GTA Parameters

<table>
<thead>
<tr>
<th>Required Feature</th>
<th>Parameters or Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Origin-Based SCCP Routing Enabled</td>
<td>GTTSN - specifying CGGTA, CGPC, CGSSN, or OPC GTT sets</td>
</tr>
<tr>
<td></td>
<td>OPTSN - specifying CGGTA, CGPC, or CGSSN GTT sets</td>
</tr>
<tr>
<td></td>
<td>OPSCSN</td>
</tr>
<tr>
<td></td>
<td>CGPC</td>
</tr>
<tr>
<td></td>
<td>CGSSN</td>
</tr>
<tr>
<td></td>
<td>ECGSSN</td>
</tr>
<tr>
<td></td>
<td>OPC</td>
</tr>
<tr>
<td></td>
<td>CGSELID</td>
</tr>
<tr>
<td>Flexible GTT Load Sharing Enabled</td>
<td>MAPSET</td>
</tr>
<tr>
<td></td>
<td>MRNSET</td>
</tr>
<tr>
<td>Flexible Linkset Optional Based Routing Enabled and Turned On</td>
<td>GTTSN - specifying CDSSN or DPC GTT sets</td>
</tr>
<tr>
<td></td>
<td>OPTSN - specifying CDSSN or DPC GTT sets</td>
</tr>
<tr>
<td></td>
<td>FALLBACK</td>
</tr>
<tr>
<td></td>
<td>CDSSN</td>
</tr>
<tr>
<td></td>
<td>ECDSSN</td>
</tr>
<tr>
<td></td>
<td>CDSELID</td>
</tr>
<tr>
<td></td>
<td>DPC</td>
</tr>
<tr>
<td>ANSI/ITU SCCP Conversion Enabled and Flexible Linkset Optional</td>
<td>CGCNVSN</td>
</tr>
<tr>
<td>Based Routing Enabled and Turned On</td>
<td></td>
</tr>
<tr>
<td>TCAP Opcode Based Routing Enabled and Turned On</td>
<td>GTTSN - specifying OPCODE GTT sets</td>
</tr>
<tr>
<td></td>
<td>OPTSN - specifying OPCODE GTT sets</td>
</tr>
<tr>
<td>TOBR Quantity Enabled</td>
<td>ACN</td>
</tr>
<tr>
<td></td>
<td>FAMILY</td>
</tr>
<tr>
<td></td>
<td>OPCODE</td>
</tr>
<tr>
<td>Required Feature</td>
<td>Parameters or Values</td>
</tr>
<tr>
<td>------------------------------------------------------</td>
<td>--------------------------------------------</td>
</tr>
<tr>
<td>PKGTYPE</td>
<td></td>
</tr>
<tr>
<td>SCCP Loop Detection Enabled</td>
<td>LOOPSET</td>
</tr>
<tr>
<td>Advanced GT Modification or AMGTT CgPA Upgrade Enabled</td>
<td>CGGTMOD</td>
</tr>
<tr>
<td>ANSI/ITU SCCP Conversion Enabled</td>
<td>The domain (ANSI or ITU) of the point code and the GTT set that will be assigned to the GTA entry will be different.</td>
</tr>
<tr>
<td>Hex Digit Support for GTT Enabled</td>
<td>Hexadecimal digits will be specified for the \texttt{gta} or \texttt{egta} parameter values.</td>
</tr>
<tr>
<td>GTT Action - DISCARD, GTT Action - DUPLICATE, GTT Action - FORWARD Enabled</td>
<td>ACTSN</td>
</tr>
</tbody>
</table>

To enable, and turn on if necessary, any of these features, perform these procedures.

- Origin-Based SCCP Routing - \textit{Activating the Origin-Based SCCP Routing Feature}
- Flexible GTT Load Sharing - \textit{Activating the Flexible GTT Load Sharing Feature}. After the Flexible GTT Load Sharing feature has been enabled, perform one of these procedures.
  - If the \texttt{mrnset} and \texttt{ri=gt} parameters will be specified for the GTA entry, perform \textit{Provisioning MRN Entries} to add the required MRNSET.
  - If the \texttt{mapset} and \texttt{ri=ssn} parameters will be specified for the GTA entry, perform one of these procedures to add the required MAPSET.
    - \textit{Provisioning a Solitary Mated Application}
    - \textit{Provisioning a Dominant Mated Application}
    - \textit{Provisioning a Load Shared Mated Application}
    - \textit{Provisioning a Combined Dominant/Load Shared Mated Application}
- Flexible Linkset Optional Based Routing - \textit{Activating the Flexible Linkset Optional Based Routing Feature}
- TCAP Opcode Based Routing - \textit{Activating the TCAP Opcode Based Routing Feature}
- TOBR Opcode Quantity - \textit{Enabling a TOBR Opcode Quantity}
- SCCP Loop Detection - \textit{Activating the SCCP Loop Detection Feature}. After the SCCP Loop Detection feature is enabled, perform the \textit{Adding a Loopset} procedure to add the required loopset.
- Advanced GT Modification or AMGTT CgPA Upgrade - \textit{Activating the Advanced GT Modification Feature}
- ANSI/ITU SCCP Conversion - \textit{Activating the ANSI/ITU SCCP Conversion Feature}
- Hex Digit Support for GTT Enabled - \textit{Activating the Hex Digit Support for GTT Feature}
- GTT Action - DISCARD, GTT Action - DUPLICATE, GTT Action - FORWARD - \textit{Activating the GTT Actions Features}. After the required GTT Actions feature is enabled, perform the \textit{Adding a GTT Action Set} procedure to add the required GTT action set.

If the required feature is enabled, and turned on if required, shown in the \texttt{rtrv-ctrl-feat} output in \textit{Step 5}, the procedure for that feature does not need to be performed.
7. To use either the `mrnset` parameter (if the routing indicator value for the global title translation is GT) or `mapset` parameter (if the routing indicator value for the global title translation is SSN), the Flexible GTT Load Sharing feature must be enabled. See Step 6. The `mrnset` and `mapset` parameters can be specified if the `xlat=none` parameter is specified for the GTA entry.

If the Flexible GTT Load Sharing feature is enabled, the GTA entry must contain either an MRNSET or MAPSET value, depending on the routing indicator value for the global title translation being changed.

If the routing indicator for the GTA entry that is being changed will be GT when this procedure is completed, continue the procedure by performing one of these steps.

- If the Flexible GTT Load Sharing feature is not enabled and the point code value will not be changed, continue the procedure with Step 19.
- If the Flexible GTT Load Sharing feature is not enabled, and the point code value will be changed, continue the procedure with Step 9.
- If the Flexible GTT Load Sharing feature is enabled and the point code value will be changed, whether or not the MRNSET value will be changed, continue the procedure with Step 11.
- If the Flexible GTT Load Sharing feature is enabled and the point code and MRNSET values will not be changed, continue the procedure with Step 19.

If the routing indicator for the GTA entry that is being changed will be SSN when this procedure is completed, continue the procedure by performing one of these steps.

- If the `xlat` parameter value will be DPC when this procedure is completed, continue the procedure by performing one of these steps.
  - If the point code value will not be changed and the Flexible GTT Load Sharing feature is not enabled, continue the procedure with Step 19.
  - If the point code value will not be changed; the Flexible GTT Load Sharing feature is enabled and the MAPSET value will not be changed, continue the procedure with Step 19.
  - If the point code value will not be changed; the Flexible GTT Load Sharing feature is enabled and the MAPSET value will be changed, continue the procedure with Step 13.
  - If the point code value will be changed, continue the procedure with Step 13.

- If the `xlat` parameter value will be DPCSSN when this procedure is completed, continue the procedure by performing one of these steps.
  - If the point code, SSN, and MAPSET value (if the Flexible GTT Load Sharing feature is enabled) will not be changed, continue the procedure with Step 19.
  - If the point code will be changed, continue the procedure by performing one of these steps.
    - If the new point code value will not be the EAGLE 5 ISS’s point code, continue the procedure with Step 13.
    - If the new point code value will be the EAGLE 5 ISS’s point code, continue the procedure with Step 12.
  - If only the SSN value will be changed, continue the procedure with Step 12.
  - If the Flexible GTT Load Sharing feature is enabled and only the MAPSET value will be changed, continue the procedure with Step 12.

If the `xlat=none` parameter will be specified and the Flexible GTT Load Sharing feature is not enabled, continue the procedure with Step 18.
If the `xlat=none` parameter will be specified and the Flexible GTT Load Sharing feature is enabled, continue the procedure by performing one of these steps. Both the `mrnset` and `mapset` parameters can be specified for the GTA entry.

- If the `mrnset` parameter will be specified, continue the procedure with Step 8.
- If the `mapset` parameter will be specified, continue the procedure with Step 13.

8. The point code and MRN set ID specified with the `chg-gta` command must be shown in the `rtrv-mrn` command output. The point code must be assigned to the MRN set that will be specified with the `chg-gta` command.

Enter the `rtrv-mrn` command to verify that the required MRN set is configured in the database, and that the required point code is assigned to the MRN set. The following is an example of the possible output.

```
rlghncxa03w 09-05-28 21:15:37 GMT EAGLE5 41.0.0

MRNSET PC RC
DFLT 001-001-001 10
 001-001-002 20
 001-001-003 30
 001-254-255 40

MRNSET PC RC
110 001-001-001 10
 001-001-005 20
 001-001-006 30
 001-001-003 40
 001-001-008 50

MRNSET PC RC
111 001-001-001 10
 001-001-005 30
 001-001-006 30
 001-001-003 30
 001-001-008 30

MRNSET PC RC
112 001-003-001 10
 001-003-002 10
 001-003-003 30
 001-003-004 30
 001-003-006 60
 001-003-007 60
 001-003-008 80
 001-003-009 80

MRNSET PCN RC
113 s-1-1-1-0123-aa 1
 s-1-1-1-0235-aa 2
 s-1-1-1-0235-aa 3
```

Note: If the Weighted GTT Load Sharing feature is enabled, the `WT`, `%WT`, and `THR` columns are shown in the `rtrv-mrn` output.

If the required MRN set is not shown in the `rtrv-mrn` output, or if the required point code is not assigned to the required MRN set, provision the required MRN set by performing the `Provisioning MRN Entries` procedure. After provisioning the required MRN set, continue the procedure with Step 18.
If the required MRN set is shown in the rtrv-mrn output, or if the required point code is assigned to the required MRN set, continue the procedure with Step 18.

9. Display the destination point codes in the database by entering the rtrv-dstn command. This is an example of the possible output.

```plaintext
rlghncxa03w 10-12-10 11:43:04 GMT EAGLE5 43.0.0
Extended Processing Time may be Required

<table>
<thead>
<tr>
<th>DPCA</th>
<th>CLLI</th>
<th>BEI</th>
<th>ELEI</th>
<th>ALIASI</th>
<th>ALIAS/N24</th>
<th>DMN</th>
</tr>
</thead>
<tbody>
<tr>
<td>001-207-000</td>
<td></td>
<td>no</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>001-001-001</td>
<td></td>
<td>no</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>001-001-002</td>
<td></td>
<td>no</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>001-005-000</td>
<td></td>
<td>no</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>001-007-000</td>
<td></td>
<td>no</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>008-012-003</td>
<td></td>
<td>no</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>009-002-004</td>
<td></td>
<td>no</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>009-002-003</td>
<td></td>
<td>no</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>010-020-005</td>
<td></td>
<td>no</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PPCA</th>
<th>NCAI</th>
<th>PRX</th>
<th>RCAUSE</th>
<th>NPRST</th>
<th>SPLITIAM</th>
<th>HMSMSC</th>
<th>HMSCP</th>
<th>SCCPMSGCNV</th>
</tr>
</thead>
<tbody>
<tr>
<td>009-002-003</td>
<td></td>
<td>no</td>
<td>none</td>
<td>off</td>
<td>none</td>
<td>none</td>
<td>no</td>
<td>none</td>
</tr>
</tbody>
</table>

Destination table is (14 of 2000) 1% full
Alias table is (0 of 12000) 0% full
PPC table is (1 of 20) 5% full

If the required point code is not shown in the rtrv-dstn output, perform the "Adding a Destination Point Code" procedure in the Database Administration Manual - SS7 to add the required point code. A proxy point code cannot be assigned to the point code.

After the new point code has been added, perform one of the Adding a Route procedures in the Database Administration Manual - SS7 and add the required route to the database. After the route has been added, continue the procedure with Step 18.

If the required point code is shown in the rtrv-dstn output, continue the procedure with Step 10.

10. Display the point code that will be assigned to the mated application by using the rtrv-dstn command and specifying the point code. For this example, enter this command.

```
$ rtrv-dstn:dpca=010-020-005
```

This is an example of the possible output.

```plaintext
rlghncxa03w 10-12-10 11:43:04 GMT EAGLE5 43.0.0

<table>
<thead>
<tr>
<th>DPCA</th>
<th>CLLI</th>
<th>BEI</th>
<th>ELEI</th>
<th>ALIASI</th>
<th>ALIAS/N24</th>
<th>DMN</th>
</tr>
</thead>
<tbody>
<tr>
<td>010-020-005</td>
<td></td>
<td>no</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PPCA</th>
<th>NCAI</th>
<th>PRX</th>
<th>RCAUSE</th>
<th>NPRST</th>
<th>SPLITIAM</th>
<th>HMSMSC</th>
<th>HMSCP</th>
<th>SCCPMSGCNV</th>
</tr>
</thead>
<tbody>
<tr>
<td>009-002-003</td>
<td></td>
<td>no</td>
<td>none</td>
<td>off</td>
<td>none</td>
<td>none</td>
<td>no</td>
<td>none</td>
</tr>
</tbody>
</table>

Destination table is (14 of 2000) 1% full
A proxy point code (a point code value is shown in the PPC column) cannot be assigned to the point code. If a proxy point code is shown in this step, choose another point code from the rtrv-dstn output in the previous step and repeat this step.

After the new point code has been added, perform one of the Adding a Route procedures in the Database Administration Manual - SS7 and add the required route to the database. After the route has been added, continue the procedure with Step 18.

If the point code displayed in this step does not contain a proxy point code, continue the procedure with Step 11.

11. The point code specified with the chg-gta command must be the DPC of a route, unless the point code is the EAGLE 5 ISS’s point code.

Enter the rtrv-rte command with the dpc parameter specifying the point code to be used with the chg-gta command to verify whether or not the point code is the DPC of a route. For this example, enter this command.

`rtrv-rte:dpc=001-255-252`

This is an example of the possible output.

<table>
<thead>
<tr>
<th>DPCA</th>
<th>ALIASI</th>
<th>ALIASN/N24</th>
<th>LSN</th>
<th>RC</th>
<th>APCA</th>
</tr>
</thead>
<tbody>
<tr>
<td>001-255-252</td>
<td>--------</td>
<td>-----------</td>
<td>ls07</td>
<td>10</td>
<td>001-255-252</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ls08</td>
<td>30</td>
<td>025-025-150</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>lsa5</td>
<td>50</td>
<td>066-030-100</td>
</tr>
</tbody>
</table>

RTX:No CLLI=ls07clli

If the point code is not shown in the rtrv-rte output, perform one of the Adding a Route procedures in the Database Administration Manual - SS7 and add the required route to the database.

If the point code is shown in the rtrv-rte output, and a new route was added, continue the procedure with Step 18.

12. If the ri=ssn and xlat=dpcssn parameters are specified with the chg-gta command, and you wish to use the EAGLE 5 ISS’s point code for the value of the pc parameter of the chg-gta command, the point code value must be in the EAGLE 5 ISS’s self ID table. Display the EAGLE 5 ISS self-identification, using the rtrv-sid command. This is an example of the possible output.

<table>
<thead>
<tr>
<th>DPCA</th>
<th>PCI</th>
<th>PCN</th>
<th>CLLI</th>
<th>PCTYPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>010-020-030</td>
<td>1-023-1</td>
<td>12-0-14-1</td>
<td>rtrvncxa03w</td>
<td>OTHER</td>
</tr>
</tbody>
</table>

CPCA

<table>
<thead>
<tr>
<th>002-002-002</th>
<th>002-002-003</th>
<th>002-002-004</th>
<th>002-002-005</th>
</tr>
</thead>
<tbody>
<tr>
<td>002-002-006</td>
<td>002-002-007</td>
<td>002-002-008</td>
<td>002-002-009</td>
</tr>
<tr>
<td>004-002-001</td>
<td>004-003-003</td>
<td>050-060-070</td>
<td></td>
</tr>
</tbody>
</table>

CPCT

<table>
<thead>
<tr>
<th>1-001-1</th>
<th>1-001-2</th>
<th>1-001-3</th>
<th>1-001-4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-002-1</td>
<td>1-002-2</td>
<td>1-002-3</td>
<td>1-002-4</td>
</tr>
<tr>
<td>2-001-1</td>
<td>7-222-7</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CPCN
Continue the procedure by performing one of these steps.

• If the point code value will be changed to the EAGLE 5 ISS’s point code, continue the procedure with **Step 13**.
• If the SSN value will be changed and the current point code value is the EAGLE 5 ISS’s point code, continue the procedure with **Step 13**.
• If the MAPSET value will be changed, continue the procedure with **Step 13**.

13. Enter the `rtrv-map` command with the `pc` parameter specifying the required point code to verify that the required data is in the mated application table.

**Note:** If the Flexible GTT Load Sharing feature is enabled, a MAP set ID must be specified for the final global title translation. The point code and SSN specified for the final global title translation being changed in this procedure must be assigned to the MAP set ID that will be assigned to the final global title translation. Perform this step to verify that the required MAP set is configured in the database.

If the point code value of the GTA entry is being changed, specify the new point code value of the GTA entry.

If the point code value of the GTA entry is not being changed, specify the current point code value of the GTA entry.

If the point code value of the GTA entry will be the EAGLE 5 ISS’s point code, specify the EAGLE 5 ISS’s point code, shown in **Step 12**. The MAP entry that contains the EAGLE 5 ISS’s point code must be in the default MAP set.

If the XLAT value of the GTA entry will be DPCSSN when this procedure is completed, and the SSN or MAPSET value will be changed, specify the new SSN value, if the SSN value will be changed, or the current SSN value, if the SSN value will not be changed, in this step.

For this example enter this command.

```
rtrv-map: pca=001-255-252
```

```
rlghncea03w 09-07-25 09:42:31 GMT EAGLE5 41.1.0

<table>
<thead>
<tr>
<th>PCA</th>
<th>Mate PCA</th>
<th>SSN</th>
<th>RC</th>
<th>MULT</th>
<th>SRM</th>
<th>MRC</th>
<th>GRP</th>
<th>NAME</th>
<th>SSO</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAPSET ID=DFLT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>001-255-252</td>
<td>001-001-002</td>
<td>55</td>
<td>5</td>
<td>DOM</td>
<td>YES</td>
<td>YES</td>
<td>--------</td>
<td>OFF</td>
<td></td>
</tr>
<tr>
<td>001-001-003</td>
<td>25 20</td>
<td>DOM</td>
<td>YES</td>
<td>YES</td>
<td>--------</td>
<td>ON</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>001-001-002</td>
<td>40 35</td>
<td>DOM</td>
<td>YES</td>
<td>YES</td>
<td>--------</td>
<td>OFF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAPSET ID=1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>001-255-252</td>
<td>001-001-002</td>
<td>254</td>
<td>5</td>
<td>DOM</td>
<td>YES</td>
<td>YES</td>
<td>--------</td>
<td>OFF</td>
<td></td>
</tr>
<tr>
<td>001-001-003</td>
<td>20 20</td>
<td>DOM</td>
<td>YES</td>
<td>YES</td>
<td>--------</td>
<td>ON</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>001-001-002</td>
<td>40 35</td>
<td>DOM</td>
<td>YES</td>
<td>YES</td>
<td>--------</td>
<td>OFF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAPSET ID=2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>001-255-252</td>
<td>5 10</td>
<td>SOL</td>
<td>*Y</td>
<td>*Y</td>
<td>--------</td>
<td>OFF</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: If the Weighted GTT Load Sharing feature is enabled, the WT, %WT, and THR columns are shown in the `rtrv-map` output.
If the parameter values for the ri and xlat parameters will be ri=ssn and xlat=dpc when this procedure is completed, the point code value must be in the mated application table. If the point code is not in the mated application table when the chg-gta command is executed, the force=yes parameter must be specified with the chg-gta command. If the force=yes parameter will be used with the chg-gta command, continue the procedure with Step 15.

If the parameter values for the ri and xlat parameters will be ri=ssn and xlat=dpcssn, and the point code and subsystem number values will be the EAGLE 5 ISS’s true point code and the EAGLE 5 ISS’s subsystem number when this procedure is completed, the EAGLE 5 ISS’s true point code and the EAGLE 5 ISS’s subsystem number must be in the mated application table.

If the required point code, subsystem number, or MAP set ID is not shown in the rtrv-map output, perform one of these procedures to add the required information to the mated application table.

- Provisioning a Solitary Mated Application
- Provisioning a Dominant Mated Application
- Provisioning a Load Shared Mated Application
- Provisioning a Combined Dominant/Load Shared Mated Application

If the required MAP entry is shown in this step, or a new MAP entry was added in this step, continue the procedure with Step 18.

If the point code value is being changed in this procedure to the EAGLE 5 ISS’s point code, continue the procedure with Step 12.

14. Enter the rtrv-ss-appl command to verify that either the LNP, EIR, V-Flex, ATINPQ, AIQ, or INP subsystem number (depending on which feature is on) is in the subsystem application table.

This is an example of the possible output.

<table>
<thead>
<tr>
<th>rlghncxa03w 08-09-28 14:42:38 GMT EAGLE5 41.0.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>APPL SSN STAT</td>
</tr>
<tr>
<td>LNP 254 ONLINE</td>
</tr>
</tbody>
</table>

SS-APPL table is 20% FULL (1 of 5)

If no subsystem number is shown in the rtrv-ss-appl output, or if the rtrv-ss-appl command is rejected, go to one of these manuals, depending on the type of subsystem you wish to use, to enable and turn on the feature as necessary, and add the subsystem to the subsystem application table.

- EIR subsystem – go to the Feature Manual - EIR.
- INP subsystem – go to the Feature Manual - INP/AINPQ.
- LNP subsystem – go to the ELAP Administration and LNP Feature Activation manual.
- V-Flex subsystem – go to the Feature Manual - V-Flex.
- ATINPQ subsystem – go to the Feature Manual - ATINP.
- AIQ subsystem – go to the Feature Manual - Analyzed Information Features.

If the subsystem number is shown in the rtrv-ss-appl output, or the subsystem number has been added in this step, continue the procedure with Step 18.

15. Display the destination point codes in the database by entering the rtrv-dstn command. This is an example of the possible output.

<table>
<thead>
<tr>
<th>rlghncxa03w 10-12-10 11:43:04 GMT EAGLE5 43.0.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extended Processing Time may be Required</td>
</tr>
</tbody>
</table>

910-6277-001 Revision A, January 2012
If the required point code is not shown in the rtrv-dstn output, perform the "Adding a Destination Point Code" procedure in the Database Administration Manual - SS7 to add the required point code. A proxy point code cannot be assigned to the point code.

After the new point code has been added, perform one of the Adding a Route procedures in the Database Administration Manual - SS7 to add the required route to the database. After the route has been added, continue the procedure with Step 18.

If the required point code is shown in the rtrv-dstn output, continue the procedure with Step 16.

16. Display the point code that will be assigned to the mated application by using the rtrv-dstn command and specifying the point code. For this example, enter this command.

rtrv-dstn:dpca=010-020-005

This is an example of the possible output.

rlghncxa03w 10-12-10 11:43:04 GMT EAGLE5 43.0.0

If a proxy point code (a point code value is shown in the PPC column) cannot be assigned to the point code. If a proxy point code is shown in this step, choose another point code from the rtrv-dstn output in the previous step and repeat this step.

After the new point code has been added, perform one of the Adding a Route procedures in the Database Administration Manual - SS7 and add the required route to the database. After the route has been added, continue the procedure with Step 18.
If the point code displayed in this step does not contain a proxy point code, continue the procedure with Step 17.

17. The point code specified with the \texttt{chg-gta} command must be the DPC of a route, unless the point code is the EAGLE 5 ISS’s point code.

Enter the \texttt{rtrv-rte} command with the \texttt{dpc} parameter specifying the point code to be used with the \texttt{chg-gta} command to verify whether or not the point code is the DPC of a route. For this example, enter this command.

\texttt{rtrv-rte:dpc=001-255-252}

This is an example of the possible output.

\begin{verbatim}
rlghncxa03w 09-05-07 11:43:04 GMT EAGLE5 41.0.0
DPCA ALIASI ALIASN/N24 LSN RC APCA
001-255-252 ---------- --------------- ls07 10 001-255-252
 ls08 025-025-150
 lsa5 066-030-100
RTX:No CLLI=ls07clli
\end{verbatim}

If the point code is not shown in the \texttt{rtrv-rte} output, perform one of the Adding a Route procedures in the Database Administration Manual - SS7 and add the required route to the database.

If the point code is shown in the \texttt{rtrv-rte} output, and a new route was added, continue the procedure with Step 18.

18. Continue the procedure by performing one or more of these steps depending on the parameters that will be specified with the \texttt{ent-gta} command.

If the \texttt{loopset} parameter will be specified for the GTA entry, and the desired \texttt{LOOPSET} value is not shown in the \texttt{rtrv-gta} output, continue the procedure with Step 19.

If the \texttt{gtmodid} parameter will be specified for the GTA entry, and the desired \texttt{GTMODID} value is not shown in the \texttt{rtrv-gta} output, continue the procedure with Step 20.

If the \texttt{actsn} parameter will be specified for the GTA entry, and the desired \texttt{ACTSN} value is not shown in the \texttt{rtrv-gta} output, continue the procedure with Step 21.

If the \texttt{loopset}, \texttt{gtmodid}, and \texttt{actsn} parameters will not be specified for the GTA entry, continue the procedure with Step 22.

19. Display all the loopsets in the database by entering this command: \texttt{rtrv-loopset:num=1000:force=yes}

This is an example of the possible output.

\begin{verbatim}
LoopSet Mode Point Codes
==
cary2 notify 005-015-005 007-007-007 (ANSI)
 033-004-003 033-007-003
 005-027-005 007-004-007

cary4 notify 005-012-005 007-026-007 (ANSI)
 003-049-003 033-002-003
 005-008-055 007-014-007

apex3 discard 005-017-008 007-017-009 (ANSI)
 033-005-043 005-014-005
 005-017-005 007-014-007
 033-002-043 005-038-005
 007-009-027 033-003-043
\end{verbatim}
Note: If the `rtrv-loopset` command is entered with no other parameters specified, a maximum of 50 entries are displayed. To display more than 50 entries, the `force=yes` parameter must be specified with the `rtrv-loopset` command and the `num` parameter value must be greater than 50. Since there can be a maximum of 1000 loopsets in the database, to display all the loopsets in the database, the `force=yes` and `num=1000` parameters must be specified with the `rtrv-loopset` command.

If the required loopset is not shown in the `rtrv-loopset` output, perform Adding a Loopset to add the required loopset.

If the required loopset is shown in the `rtrv-loopset` output, or if a new loopset was added, continue the procedure by performing one of these steps.

- If the `gtmodid` parameter will be specified for the GTA entry, and the desired GTMODID value is not shown in the `rtrv-gta` output, continue the procedure with Step 20.
- If the `actsn` parameter will be specified for the GTA entry, and the desired ACTSN value is not shown in the `rtrv-gta` output, continue the procedure with Step 21.
- If the `gtmodid` and `actsn` parameters will not be specified for the GTA entry, continue the procedure with Step 22.
20. Display the GT modification information in the database using the `rtrv-gtmod` command.

This is an example of the possible output.

```plaintext
GTMODID   NTT  NGTI  GT0FILL  NNP  NNAI  NPDD  NSDD  PRECD  CGPASSN
modid2     --     2       ON   --    --    --    --    PFX       --
NPDS=                      NSDS=                      
modid5     --     2      OFF   --    --    --    --    PFX       --
NPDS=                      NSDS=                      
modid6     --     4       ON    4     5     3     3    SFX       --
NPDS=123                    NSDS=456                    
modid10    --    --      OFF    5     5    --    --    PFX       --
NPDS=                      NSDS=                      
modid11    --    --      OFF    5     5    --    --    PFX       --
NPDS=                      NSDS=                      
```

GTMOD table is (5 of 100000) 1% full.

If the desired GT modification entry is not displayed, perform the `Adding Global Title Modification Information` procedure to add the desired GT modification entry to the database.

If the desired GT modification entry is displayed or the `Adding Global Title Modification Information` procedure was performed, continue the procedure by performing one of these steps.

- If the `actsn` parameter will be specified for the GTA entry, and the desired `ACTSN` value is not shown in the `rtrv-gt a` output, continue the procedure with Step 21.
- If the `actsn` parameter will not be specified for the GTA entry, continue the procedure with Step 22.

21. Display the GTT action sets in the database using the `rtrv-gttaset` command.

This is an example of the possible output.

```plaintext
ACTSN      TEST  ActIds
MODE
---------------------------
act1       off   action1 (DUP),action4 (DUP),action25 (FWD),------,------,------
act10      on    action20 (DUP),action4 (DUP),action21 (DUP),action25 (FWD),------,------
act3       off   action2 (DISC),------,------
act5       on    action1 (DUP),action3 (DUP),action4 (DUP),action20 (DUP),action21 (DUP),action17 (TCAPERR)
act11      off   action10 (UDTS),------,------,------,------,------
```

GTT-ASET table is (5 of 20000) 1% full.

If the desired GTT action set is not displayed, perform the `Adding a GTT Action Set` procedure to add the desired GT modification entry to the database.

If the desired GT modification entry is displayed or the `Adding a GTT Action Set` procedure was performed, continue the procedure with Step 22.
22. Change the global title address for GTT set LIDB using the chg-gta command. Use these tables as a guide for the parameters that can be used with the chg-gta command.

- Table 115: GTA Parameter Combinations - No SETTYPE Column in RTRV-GTTSET Output
- Table 116: GTTSN = CDGTA GTT Set Parameter Combinations
- Table 117: GTTSN = CGGTA GTT Set Parameter Combinations
- Table 118: GTTSN = CGPC GTT Set Parameter Combinations
- Table 119: GTTSN = CGSSN GTT Set Parameter Combinations
- Table 120: GTTSN = OPC GTT Set Parameter Combinations
- Table 121: GTTSN = CDSSN GTT Set Parameter Combinations
- Table 122: GTTSN = OPCODE GTT Set Parameter Combinations
- Table 123: GTTSN = DPC GTT Set Parameter Combinations

For this example, enter this command:

```
```

When the command has successfully completed, this message appears.

```
rlghncxa03w 09-05-07 00:27:31 GMT EAGLE5 41.0.0
CHG-GTA: MASP A - COMPLTD
```

The command line on the terminal can contain up to 150 characters. If the parameters and values specified with the chg-gta command are too long to fit on the chg-gta command line, perform the chg-gta command as many times as required to complete changing the GTA entry.

23. Verify the changes to the GTT set using the rtrv-gta command with the gttsn parameter value and one of the following parameters and values specified in Step 22, depending on what type of GTT set was specified in Step 22.

- The gta parameter and value – if the GTT set was a CDGTA or CGGTA GTT set, or if the GTT set had no SETTYPE value.
- The cgssn parameter and value – if the GTT set was a CGSSN GTT set.
- The cgpc/cg PCA/cgpci/cgp cn/cgp cn24 parameter and value – if the GTT set was a CGPC GTT set.
- The opc/opca/opci/opcn/opcn24 parameter and value – if the GTT set was an OPC GTT set.
- The cdssn parameter and value – if the GTT set was a CDSSN GTT set.
- The opcode parameter and value – if the GTT set was an OPCODE GTT set.
- The dpc/dpca/dpci/dpcn/dpcn24 parameter and value – if the GTT set was a DPC GTT set.

If the num parameter is specified with the rtrv-gta command, and the value of the num parameter is greater than 1000, the force=yes parameter must be specified with the rtrv-gta command. For this example, enter this command.

```
rtrv-gta:gttsn=lidb:gta=9195554321
```

This is an example of the possible output.

```
righncxa03w 10-07-07 00:27:31 GMT EAGLE5 42.0.0
GTTSN NETDOM SETTYPE NDGT
lidb ansi CDGTA 10
```
24. Backup the new changes using the `chg-db:action=backup:dest=fixed` command. These messages should appear, the active Maintenance and Administration Subsystem Processor (MASP) appears first.

```
BACKUP (FIXED) : MASP A - Backup starts on active MASP.
BACKUP (FIXED) : MASP A - Backup on active MASP to fixed disk complete.
BACKUP (FIXED) : MASP A - Backup starts on standby MASP.
BACKUP (FIXED) : MASP A - Backup on standby MASP to fixed disk complete.
```

Changing the Default GTT Mode Options

This procedure is used to change the default GTT mode options using the `chg-sccpopts` command with these parameters.

- `dfltgttmode` – the system default of the GTT mode hierarchy for the EAGLE 5 ISS to follow when performing global title translation. The values for this parameter are shown in Table 126: Default GTT Mode Option Parameter Combinations.

- `dfltfallback` – the default fallback option - the action that is taken if the last translation does not match when performing global title translation using a Flexible Linkset Optional Based Routing specific GTT mode. This parameter has two values.
 - **no** - Global title translation fails and the message is discarded.
 - **yes** - Global title translation is performed in the message based on the last matched entry.

This procedure can be performed only if the Origin-Based SCCP Routing feature is enabled or if the Flexible Linkset Optional Based Routing feature is enabled and turned on.

For more information about the default GTT mode options, refer to the Origin-Based SCCP Routing or Flexible Linkset Optional Based Routing sections.

1. Display the existing default GTT mode values by entering the `rtrv-sccpopts` command.

 This is an example of the possible output.

   ```
   rlghncca03w 10-07-17 16:02:05 GMT EAGLE5 42.0.0
   SCCP OPTIONS
   ----------------------------------
   DFLITGTTMODE          CdPA
   DFLITFALLBACK         yes
   
   The `rtrv-sccpopts` output contains other fields that are not used in this procedure. If you wish to see these fields, refer to the `rtrv-sccpopts` command description in the Commands Manual.
   ```
To change the DFLTFALLBACK value to yes, the Flexible Linkset Optional Based Routing feature must be enabled and turned on. If the current DFLTFALLBACK value is yes, the Flexible Linkset Optional Based Routing feature is enabled and turned on.

To change the DFLTGTMODE value to one of these values (a Flexible Linkset Optional Based Routing GTT mode hierarchy), the Flexible Linkset Optional Based Routing feature must be enabled and turned on. If any of these values are shown in the rtrv-sccpopts output for the DFLTGTMODE option, the Flexible Linkset Optional Based Routing feature is enabled and turned on.

- FLOBRCdPA
- FLOBRCgPA
- FLOBRCgPA,FLOBRCdPA
- FLOBRCdPA,FLOBRCgPA

To change the DFLTGTMODE value to one of these values (an Origin-Based SCCP Routing GTT mode hierarchy), the Origin-Based SCCP Routing feature must be enabled and turned on. If any of these values are shown in the rtrv-sccpopts output for the DFLTGTMODE option, the Origin-Based SCCP Routing feature is enabled and turned on.

- CgPA
- AdvCdPA,CdPA
- AdvCdPA,CgPA,CdPA
- AdvCdPA,CdPA,CgPA
- CgPA,AdvCdPA,CdPA
- CgPA,CdPA
- CgPA,CdPA

The DFLTGTMODE or the DFLTFALLBACK values must be changed in this procedure.

Continue the procedure with Step 4 if:

- The DFLTGTMODE value will be changed to an Origin-Based SCCP Routing GTT mode hierarchy value; a value for one of the Origin-Based SCCP Routing GTT mode hierarchies (other than CdPA) is shown in the rtrv-sccpopts output; and the DFLTFALLBACK value will not be changed.
- The DFLTGTMODE value will be changed to a Flexible Linkset Optional Based Routing GTT mode hierarchy value and a value for one of the Flexible Linkset Optional Based Routing GTT mode hierarchies (other than CdPA) is shown in the rtrv-sccpopts output. The DFLTFALLBACK value can also be changed to yes.
- The DFLTGTMODE and the DFLTFALLBACK value will be changed to these values.
 - DFLTGTMODE - CdPA
 - DFLTFALLBACK - no
- Only the DFLTFALLBACK value is changed to no.

If the DFLTGTMODE value is being changed to an Origin-Based SCCP Routing GTT mode hierarchy, and a value for one of the Origin-Based SCCP Routing GTT mode hierarchies (other than CdPA) is not shown in the rtrv-sccpopts output, continue the procedure with Step 2.

If the DFLTGTMODE value is being changed to a Flexible Linkset Optional Based Routing GTT mode hierarchy, and a value for one of the Flexible Linkset Optional Based Routing GTT mode hierarchies (other than CdPA) is not shown in the rtrv-sccpopts output, continue the procedure with Step 3.
If the DFLTFALLBACK value is being changed to yes, and a value for one of the Flexible Linkset Optional Based Routing GTT mode hierarchies (other than CdPA) is not shown in the rtrv-sccpopts output, continue the procedure with Step 3.

2. Display the status of the Origin-Based SCCP Routing feature by entering this command.

```
 rtrv-ctrl-feat:partnum=893014301
```

This is an example of the possible output.

```
rlghncxa03w 10-07-07 00:29:31 GMT EAGLE5 42.0.0
The following features have been permanently enabled:
Feature Name              Partnum   Status Quantity
Origin Based SCCP Routing 893014301 on     ----

The following features have been temporarily enabled:
Feature Name              Partnum   Status Quantity   Trial Period Left
Zero entries found.

The following features have expired temporary keys:
Feature Name              Partnum
Zero entries found.
```

If the Origin-Based SCCP Routing feature is not enabled or turned on, perform Activating the Origin-Based SCCP Routing Feature to enable and turn on the Origin-Based SCCP Routing feature.

After Activating the Origin-Based SCCP Routing Feature has been performed, or if the rtrv-ctrl-feat output shows that the Origin-Based SCCP Routing feature is enabled and turned on, continue the procedure by performing one of these steps.

- If only the DFLTGTTMODE value is being changed to an Origin-Based SCCP Routing GTT mode hierarchy (other than CdPA), continue the procedure with Step 4.
- If the DFLTFALLBACK value will be changed to yes, and a value for one of the Flexible Linkset Optional Based Routing GTT mode hierarchies (other than CdPA) is not shown in the rtrv-sccpopts output, continue the procedure with Step 3.

3. Display the status of the Flexible Linkset Optional Based Routing feature by entering this command.

```
 rtrv-ctrl-feat:partnum=893027701
```

This is an example of the possible output.

```
rlghncxa03w 10-07-07 00:29:31 GMT EAGLE5 42.0.0
The following features have been permanently enabled:
Feature Name              Partnum   Status Quantity
Flex Lset Optnl Based Rtg 893027701 on     ----

The following features have been temporarily enabled:
Feature Name              Partnum   Status Quantity   Trial Period Left
Zero entries found.

The following features have expired temporary keys:
```
If the Flexible Linkset Optional Based Routing feature is not enabled or turned on, perform Activating the Flexible Linkset Optional Based Routing Feature to enable and turn on the Flexible Linkset Optional Based Routing.

After Activating the Flexible Linkset Optional Based Routing Feature has been performed as needed, or if the rtrv-ctrl-feat output shows that the Flexible Linkset Optional Based Routing feature is enabled and turned on, continue the procedure with Step 4.

4. Change the default GTT mode values using the chg-sccpopts command and with at least one of the parameters and values shown in Table 126: Default GTT Mode Option Parameter Combinations.

<table>
<thead>
<tr>
<th>Origin-Based SCCP Routing Feature Enabled and Turned On Only</th>
<th>Flexible Linkset Optional Based Routing Feature (FLOBR) Enabled and Turned On Only</th>
<th>Origin-Based SCCP Routing Feature and Flexible Linkset Optional Based Routing Feature (FLOBR) Enabled and Turned On</th>
</tr>
</thead>
<tbody>
<tr>
<td>:dfltgttmode= one of these values</td>
<td>:dfltgttmode= one of these values</td>
<td>:dfltgttmode= one of these values</td>
</tr>
<tr>
<td>cd - CdPA GTT only</td>
<td>cd - CdPA GTT only</td>
<td>cd - CdPA GTT only</td>
</tr>
<tr>
<td>cg - CgPA GTT only</td>
<td>fcd - FLOBR CdPA</td>
<td>cg - CgPA GTT only</td>
</tr>
<tr>
<td>acdc - Advanced CdPA GTT</td>
<td>fcd - FLOBR CgPA</td>
<td>acdc - Advanced CdPA GTT</td>
</tr>
<tr>
<td>acdcg - Advanced CdPA GTT</td>
<td>fcdfcg - FLOBR CdPA, FLOBR CgPA</td>
<td>fcdfcg - FLOBR CdPA, FLOBR CgPA</td>
</tr>
<tr>
<td>acdcgcd - Advanced CdPA GTT</td>
<td>fcgfcd - FLOBR CgPA, FLOBR CdPA</td>
<td>fcgfcd - FLOBR CgPA, FLOBR CdPA</td>
</tr>
<tr>
<td>cgacdcd - CgPA GTT, Advanced CdPA GTT</td>
<td>:dfltfallback=<yes, no></td>
<td>:dfltfallback=<yes, no></td>
</tr>
<tr>
<td>cgacdcd - CgPA GTT, Advanced CdPA GTT</td>
<td>fcd - FLOBR CgPA</td>
<td>fcd - FLOBR CgPA</td>
</tr>
<tr>
<td>cgcd - CgPA GTT, CdPA GTT</td>
<td>fcdfcg - FLOBR CdPA, FLOBR CgPA</td>
<td>fcdfcg - FLOBR CdPA, FLOBR CgPA</td>
</tr>
<tr>
<td>cdcg - CdPA GTT, CgPA GTT</td>
<td>fcgfcd - FLOBR CgPA, FLOBR CdPA</td>
<td>fcgfcd - FLOBR CgPA, FLOBR CdPA</td>
</tr>
</tbody>
</table>
For this example, enter this command.

```plaintext
chg-sccpopts:dfltgttmode=accdcd:dfltfallback=no
```

When the `chg-sccpopts` command has successfully completed, this message should appear.

```plaintext
righncxa03w 10-07-07 00:22:57 GMT  EAGLE5 42.0.0
CHG-SCCPOPTS: MASP A - COMPLTD
```

5. Verify the changes using the `rtrv-sccpopts` command. This is an example of the possible output.

```plaintext
righncxa03w 10-07-17 16:02:05 GMT  EAGLE5 42.0.0
SCCP OPTIONS
--------------------------
DFLTGTTMODE        AdvCdPA,CdPA
DFLTFALLBACK                 no
```

The `rtrv-sccpopts` output contains other fields that are not used in this procedure. If you wish to see these fields, refer to the `rtrv-sccpopts` command description in the Commands Manual.

6. Back up the new changes using the `chg-db:action=backup:dest=fixed` command. These messages should appear, the active Maintenance and Administration Subsystem Processor (MASP) appears first.

```plaintext
BACKUP (FIXED) : MASP A - Backup starts on active MASP.
BACKUP (FIXED) : MASP A - Backup on active MASP to fixed disk complete.
BACKUP (FIXED) : MASP A - Backup starts on standby MASP.
BACKUP (FIXED) : MASP A - Backup on standby MASP to fixed disk complete.
```

Adding a GTT Action

This procedure is used to add a GTT action to the database using the `ent-gttact` command.

The `ent-gttact` command uses these parameters.

- `:act` - the action that is applied to the message. This parameter has these values.
 - `disc` — discard the message with no return error.
 - `dup` — route a copy of the message to the specified duplicate node.
 - `tcaperr` — discard the message that has the specified TCAP error.
 - `udts` — discard the message and send an UDTS/XUDTS.
 - `fwd` — route the original message to the specified forward node instead of the destination indicated by the global title translation data.

- `:actid` - the name of the GTT action entry.

- `:atcaperr` - the ANSI TCAP error cause - the reason for discarding the message containing the ANSI TCAP portion that is associated with the TCAP error GTT action.

- `:cdgtmodid` - the name of the GT modification identifier that is associated with the called party of a GTT action entry.

- `:cggtmodid` - the name of the GT modification identifier that is associated with the calling party of a GTT action entry.
:cgpc/cgpcn24 - the calling party point code.

Note: See Chapter 2, "Configuring Destination Tables," in the Database Administration Manual - SS7 for a definition of the point code types that are used on the EAGLE 5 ISS and for a definition of the different formats that can be used for ITU national point codes.

:cgpcogmsg - the data that is used as the calling party point code in the outgoing message.

:defactid - the default GTT action ID that is associated with the forward GTT action.

:itcaperr - the ITU TCAP error cause - the reason for discarding the message containing the ITU TCAP portion that is associated with the TCAP error GTT action.

:loopset - the name of the SCCP loopset name that is associated with the GTT action.

:mapset - the MAP set ID.

:mrnset - the MRN set ID.

:off - turns off the specified feature options.

- :off=uimreqd - a UIM is not generated.
- :off=useicmsg - apply the GTT action data to the message as the message was received.

:on - turns on the specified feature options.

- :on=uimreqd - a UIM is generated.
- :on=useicmsg - apply the GTT action data to the message after any EPAP or GTT translation/modification data has been applied.

:pcn24 - the point code that the message will be routed to as a result of the duplicate or forward GTT action.

Note: See Chapter 2, "Configuring Destination Tables," in the Database Administration Manual - SS7 for a definition of the point code types that are used on the EAGLE 5 ISS and for a definition of the different formats that can be used for ITU national point codes.

:ri - the routing indicator in the SCCP called party address of the duplicated copy of MSU.

:ssn - the subsystem number (SSN) in the SCCP called party address of the MSU.

:udtserr - the reason associated with the UDTS GTT action for discarding the message.

The values for the actid, atcaperr, itcaperr, udtserr, pcn24, ri, mrnset, mapset, ssn, loopset, cggtmodid, cdgtmodid, defactid, and cgpcn24 parameters are shown in Table 127: GTT Actions Parameter Combinations.

To add a GTT action to the database, one of these features must be enabled, depending on the act parameter value that will be specified with the GTT action.

- act=disc - GTT Action - DISCARD feature - part number 893027501.
- act=dup - GTT Action - DUPLICATE feature - part number 893027601.
- act=fwd - GTT Action - FORWARD feature - part number 893037501.

The status of these features is shown in the rtrv-ctrl-feat output. Perform the Activating the GTT Actions Features procedure to enable one or more of these features.

The EAGLE 5 ISS database can contain a maximum of 2000 GTT action entries.
1. Display the GTT action entries in the database by entering the `rtrv-gttact` command. This is an example of the possible output.

![Output example](image)

If no entries are displayed, continue the procedure with Step 2.

If the number of entries that are displayed is 2000, this procedure cannot be performed. This is the maximum number of GTT action entries that can be in the database.

If there are less 2000 entries shown in the `rtrv-gttact` output, continue the procedure by performing one of these steps.

- If entries are shown in the `rtrv-gttact` output that contain the `act` parameter value of the new entry, continue the procedure by performing one of these steps.
 - If the `act` parameter value for the new entry will be `disc`, `udts`, or `tcaperr`, continue the procedure with Step 14.
 - If the `act` parameter value for the new entry will be `dup` or `fwd`, continue the procedure with Step 3.

- If the `act` parameter value of the new entry is not shown in the `rtrv-gttact` output, continue the procedure with Step 2.

2. Display the features that are enabled by entering the `rtrv-ctrl-feat` command.

The following is an example of the possible output.

![Output example](image)
The following features have been temporarily enabled:

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Partnum</th>
<th>Status</th>
<th>Quantity</th>
<th>Trial Period Left</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>893006901</td>
<td>on</td>
<td>----</td>
<td></td>
</tr>
<tr>
<td></td>
<td>893012707</td>
<td>on</td>
<td>64</td>
<td></td>
</tr>
</tbody>
</table>

The following features have expired temporary keys:

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Partnum</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Zero entries found.

To add a GTT action to the database, one of these features must be enabled, depending on the `act` parameter value that will be specified with the GTT action.

- `act=dup` - GTT Action - DUPLICATE feature - part number 893027601.
- `act=fwd` - GTT Action - FORWARD feature - part number 893037501.

If the required feature is not enabled, perform the Activating the GTT Actions Features procedure to enabled the required feature.

After the Activating the GTT Actions Features procedure has been performed, or if the required is enabled as shown in this step, continue the procedure by performing one of these steps.

- If the `act` parameter value for the new entry will be disc, udts, or tcaperr, continue the procedure with Step 14.
- If the `act` parameter value for the new entry will be dup or fwd, continue the procedure with Step 3.

3. For GTT action entries whose `act` value will be either dup or fwd, the `ri` parameter must be specified for the GTT action entry.

If the `ri` parameter value for the GTT action entry will be gt, the pc/pca/pci/pcn/pcn24 parameter must be specified for the GTT action entry. The point code must be the DPC of a route and cannot contain a proxy point code.

If the `MRNSET` column is shown in the `rtrv-gttact` output, the Flexible GTT Load Sharing feature is enabled. If the Flexible GTT Load Sharing feature is enabled, the `mrnset` parameter must be specified for the GTT action entry. The point code that will be assigned to the GTT action entry must be in an MRN set. MRN sets are shown in the `rtrv-mrn` output.

If the `ri` parameter value for the GTT action entry will be ssn, the pc/pca/pci/pcn/pcn24 and ssn parameters must be specified for the GTT action entry. The point code and ssn values must be in the `rtrv-map` output.

If the `MAPSET` column is shown in the `rtrv-gttact` output, the Flexible GTT Load Sharing feature is enabled. If the Flexible GTT Load Sharing feature is enabled, the `mapset` parameter must be specified for the GTT action entry. The point code and ssn values that will be assigned to the GTT action entry must be in a MAP set. MAP sets are shown in the `rtrv-map` output.

If the `ri` value for the GTT action entry will be gt, the `MRNSET` column is not shown in the `rtrv-gttact` output, the `mrnset` parameter will not be specified for the GTT action entry, and the point code value for the GTT action entry is not shown in the `rtrv-gttact` output, continue the procedure with Step 5.
If you wish to specify the mrnset parameter for the GTT action entry, perform these procedures to configure the MRNSET with the required MRNSET with the point code value: *Activating the Flexible GTT Load Sharing Feature* and *Provisioning MRN Entries*. After these procedures have been performed, continue the procedure with Step 11.

If the ri value for the GTT action entry will be *gt*, the MRNSET column is shown in the `rtrv-gttact` output, and the point code and MRNSET values for the GTT action entry are not shown in the `rtrv-gttact` output, continue the procedure with Step 4.

If the ri value for the GTT action entry will be *ssn*, the MAPSET column is not shown in the `rtrv-gttact` output, the mapset parameter will not be specified for the GTT action entry, and the point code and SSN values for the GTT action entry is not shown in the `rtrv-gttact` output, continue the procedure with Step 8.

If you wish to specify the mapset parameter for the GTT action entry, perform the *Activating the Flexible GTT Load Sharing Feature* procedure to enable the Flexible GTT Load Sharing Feature. After this procedure has been performed, continue the procedure with Step 8.

If the ri value for the GTT action entry will be *ssn*, the MAPSET column is shown in the `rtrv-gttact` output, and the point code, SSN, and MAPSET values for the GTT action entry are not shown in the `rtrv-gttact` output, continue the procedure with Step 8.

4. Display the MRN entries entering the `rtrv-mrn` command.

This is an example of the possible output.

```
rlghncxa03w 10-07-28 21:15:37 GMT EAGLE5 42.0.0
MRNSET PC RC
DFLT 002-002-002 1
     003-003-003 2
MRNSET PC RC
 1 003-003-003 2
     004-004-004 3
     005-005-005 4
MRN table is (5 of 6000) 1% full.
```

If the required MRN set is shown in the `rtrv-mrn` output, continue the procedure with Step 11.

If the required MRN set is not shown in the `rtrv-mrn` output, perform the *Provisioning MRN Entries* procedure to provision the required MRN set. After the *Provisioning MRN Entries* procedure has been performed, continue the procedure with Step 11.

5. Display the destination point codes in the database by entering the `rtrv-dstn` command. This is an example of the possible output.

```
rlghncxa03w 10-12-10 11:43:04 GMT EAGLE5 43.0.0
Extended Processing Time may be Required
DPCA CLLI BEI ELEI ALIASI ALIASN/N24 DMN
  001-207-000  ----------- no ---  ---  ---  --- SS7
  001-001-001  ----------- no ---  ---  ---  --- SS7
  001-001-002  ----------- no ---  ---  ---  --- SS7
  001-005-000  ----------- no ---  ---  ---  --- SS7
  001-007-000  ----------- no ---  ---  ---  --- SS7
  008-012-003  ----------- no ---  ---  ---  --- SS7
  003-002-004  ----------- no ---  ---  ---  --- SS7
  009-002-003  ----------- no ---  ---  ---  --- SS7
```
Database Administration Manual - Global Title Translation
Enhanced Global Title Translation (EGTT) Configuration

010-020-005 --------- no --- ----------- ---- SS7

<table>
<thead>
<tr>
<th>DPCI</th>
<th>CLLI</th>
<th>BEI</th>
<th>ELEI</th>
<th>ALIASA</th>
<th>ALIASN/N24</th>
<th>DMN</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-207-0</td>
<td>------</td>
<td>no</td>
<td>---</td>
<td>-------</td>
<td>----------</td>
<td>SS7</td>
</tr>
<tr>
<td>0-015-0</td>
<td>------</td>
<td>no</td>
<td>---</td>
<td>-------</td>
<td>----------</td>
<td>SS7</td>
</tr>
<tr>
<td>0-017-0</td>
<td>------</td>
<td>no</td>
<td>---</td>
<td>-------</td>
<td>----------</td>
<td>SS7</td>
</tr>
<tr>
<td>1-011-1</td>
<td>------</td>
<td>no</td>
<td>---</td>
<td>-------</td>
<td>----------</td>
<td>SS7</td>
</tr>
<tr>
<td>1-011-2</td>
<td>------</td>
<td>no</td>
<td>---</td>
<td>-------</td>
<td>----------</td>
<td>SS7</td>
</tr>
</tbody>
</table>

Destination table is (14 of 2000) 1% full
Alias table is (0 of 12000) 0% full
PPC table is (1 of 20) 5% full

If the required point code is not shown in the rtrv-dstn output, perform the "Adding a Destination Point Code" procedure in the Database Administration Manual - SS7 to add the required point code. A proxy point code cannot be assigned to the point code.

After the new point code has been added, perform one of the Adding a Route procedures in the Database Administration Manual - SS7 and add the required route to the database. After the route has been added, continue the procedure with Step 6.

6. Display the point code that will be assigned to the global title translation by using the rtrv-dstn command and specifying the point code. For this example, enter this command.

rtrv-dstn:dpca=010-020-005

This is an example of the possible output.

rghaneca03w 10-12-10 11:43:04 GMT EAGLE5 43.0.0

<table>
<thead>
<tr>
<th>DPCA</th>
<th>CLLI</th>
<th>BEI</th>
<th>ELEI</th>
<th>ALIASI</th>
<th>ALIASN/N24</th>
<th>DMN</th>
</tr>
</thead>
<tbody>
<tr>
<td>010-020-005</td>
<td>------</td>
<td>no</td>
<td>---</td>
<td>-------</td>
<td>----------</td>
<td>SS7</td>
</tr>
</tbody>
</table>

PPCA

<table>
<thead>
<tr>
<th>NCAI</th>
<th>PRX</th>
<th>RCAUSE</th>
<th>NPRST</th>
<th>SPLITIAM</th>
<th>HMSMSC</th>
<th>HMSCP</th>
<th>SCCPMSGCNV</th>
</tr>
</thead>
<tbody>
<tr>
<td>009-002-003</td>
<td>----</td>
<td>no</td>
<td>50</td>
<td>on</td>
<td>20</td>
<td>no</td>
<td>no</td>
</tr>
</tbody>
</table>

Destination table is (14 of 2000) 1% full
Alias table is (0 of 12000) 0% full
PPC table is (1 of 20) 5% full

If the point code is not shown in the rtrv-dstn command output, the following output is displayed.

rghaneca03w 10-07-10 11:43:04 GMT EAGLE5 42.0.0

No destinations meeting the requested criteria were found

Destination table is (14 of 2000) 1% full
Alias table is (0 of 12000) 0% full
PPC table is (1 of 20) 5% full

A proxy point code (a point code value is shown in the PPC column) cannot be assigned to the point code. If a proxy point code is shown in this step, choose another point code from the rtrv-dstn output in Step 5 and repeat this step.

If the point code is not shown in the rtrv-dstn output, perform the “Adding a Destination Point Code” procedure in the Database Administration Manual - SS7 and add the point code to the destination point code table.

7. The point code specified with the ent-gtt command must be the DPC of a route, unless the point code is the EAGLE 5 ISS’s point code. Enter the rtrv-rte command with the dpc parameter.
specifying the point code to be used with the ent-gtt command to verify whether or not the point code is the DPC of a route.

For this example, enter these commands.

```
rtrv-rte:dpca=007-007-007
```

This is an example of the possible output.

```
rlghncxa03w 10-07-07 11:43:04 GMT  EAGLE5 42.0.0
DPCA       ALIASI     ALIASN/N24     LSN        RC      APCA
007-007-007  --------   -----------     ls03       10    007-007-007
ls02       30    150-150-150
lsa2       50    200-200-200
RTX:No  CLLI=ls03clli
```

```
rtrv-rte:dpca=003-003-003
```

This is an example of the possible output.

```
rlghncxa03w 10-07-07 11:43:04 GMT  EAGLE5 42.0.0
DPCA       ALIASI     ALIASN/N24     LSN        RC      APCA
003-003-003   --------    ----------    ls02       10    002-002-002
ls08       30    025-025-150
lsa5       50    066-030-100
RTX:No  CLLI=ls03clli
```

If the point code is not shown in the rtrv-rte output, perform one of the Adding a Route procedures in the Database Administration Manual - SS7 and add the required route to the database. After the route has been added, continue the procedure with Step 11.

8. Enter the rtrv-map command with the point code and SSN value that will be specified for the GTT action entry.

For this example enter this command.

```
rtrv-map:pca=005-005-005:ssn=75
```

If the Flexible GTT Load Sharing feature is not enabled, this is an example of the possible output.

```
rlghncxa03w 09-07-25 09:42:31 GMT  EAGLE5 41.1.0
PCA            Mate PCA      SSN RC MULT SRM MRC GRP NAME SSO
005-005-005                  250 10  SOL *Y  *Y  GRP01     ON
```

If the Flexible GTT Load Sharing feature is enabled, this is an example of the possible output.

```
rlghncxa03w 09-07-25 09:42:31 GMT  EAGLE5 41.1.0
PCA            Mate PCA      SSN RC MULT SRM MRC GRP NAME SSO
005-005-005                  50  5  DOM YES YES -------- OFF
001-001-002    15 15  DOM YES YES -------- ON
001-001-003    25 20  DOM YES YES -------- ON
001-001-002    40 35  DOM YES YES -------- OFF
```

If the Flexible GTT Load Sharing feature is enabled, this is an example of the possible output.
001-001-003 20 20 DOM YES YES -------- ON
001-001-002 40 35 DOM YES YES -------- OFF

MAPSET ID= 2
005-005-005 5 10 SOL *Y *Y -------- OFF

MAP table is (12 of 36000) 1% full.

If the required MAP entry is shown in the rtrv-map output, continue the procedure with **Step 11**.

If the required MAP entry is not shown in the rtrv-map output, continue the procedure with **Step 9**.

9. Display the EAGLE 5 ISS self-identification, using the rtrv-sid command.

This is an example of the possible output.

```
rlghncxa03w 10-07-10 11:43:04 GMT EAGLE5 42.0.0
```

<table>
<thead>
<tr>
<th>PCA</th>
<th>PCI</th>
<th>PCN</th>
<th>CLLI</th>
<th>PCTYPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>010-020-030</td>
<td>1-023-1</td>
<td>12-0-14-1</td>
<td>rlghncxa03w</td>
<td>OTHER</td>
</tr>
<tr>
<td>s-1-023-1</td>
<td>s-12-0-14-1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CPCA

002-002-002	002-002-003	002-002-004	002-002-005
002-002-006	002-002-007	002-002-008	002-002-009
004-002-001	004-003-003	050-060-070	

CPCI

1-001-1	1-001-2	1-001-3	1-001-4
1-002-1	1-002-2	1-002-3	1-002-4
2-001-1	7-222-7		

CPCN

| 2-0-10-3 | 2-0-11-0 | 2-0-11-2 | 2-0-12-1 |
| 2-2-3-3 | 2-2-4-0 | 10-14-10-1 |

If the point code that will be specified for the GTT action entry is not shown in this step as the EAGLE 5 ISS’s point code, perform one of these procedures to provision the required MAP entry. After the required MAP entry has been provisioned, continue the procedure with **Step 11**.

- **Provisioning a Solitary Mated Application**
- **Provisioning a Dominant Mated Application**
- **Provisioning a Load Shared Mated Application**
- **Provisioning a Combined Dominant/Load Shared Mated Application**

If the point code that will be specified for the GTT action entry is shown in this step as the EAGLE 5 ISS’s point code, perform one of these procedures to provision the required MAP entry. After the required MAP entry has been provisioned, continue the procedure with **Step 10**.

- **Provisioning a Solitary Mated Application**
- **Provisioning a Dominant Mated Application**

10. Enter the rtrv-ss-appl command to verify that either the LNP, EIR, V-Flex, ATINPQ, INP, or AIQ subsystem number (depending on which feature is on) is in the subsystem application table.

This is an example of the possible output.

```
rlghncxa03w 10-07-28 14:42:38 GMT EAGLE5 42.0.0
```

<table>
<thead>
<tr>
<th>APPL</th>
<th>SSN</th>
<th>STAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>LNP</td>
<td>254</td>
<td>ONLINE</td>
</tr>
</tbody>
</table>
If the subsystem number is shown in the rtrv-ss-appl output, continue the procedure with Step 11.

If no subsystem number is shown in the rtrv-ss-appl output, or if the rtrv-ss-appl command is rejected, perform the procedures in one of these manuals, depending on the type of subsystem you wish to use, to enable and turn on the feature as necessary, and add the subsystem to the subsystem application table.

- EIR subsystem – go to the Feature Manual - EIR.
- INP subsystem – go to the Feature Manual - INP/AINPQ.
- LNP subsystem – go to the ELAP Administration and LNP Feature Activation manual.
- V-Flex subsystem – go to the Feature Manual - V-Flex.
- ATINPQ subsystem – go to the Feature Manual - ATINP.
- AIQ subsystem – go to the Feature Manual - Analyzed Information Features.

11. Continue the procedure by performing one of these steps.

If the loopset parameter will be specified for the GTT action entry, continue the procedure with Step 12. If LOOPSET values are shown in the rtrv-gttact output and you wish to use one of these values for the GTT action entry, Step 12 does not need to be performed.

If the loopset parameter will not be specified for the GTT action entry, but the cdgtmodid or cggtmodid parameters will be specified for the GTT action entry, continue the procedure with Step 13. If CDGTMODID or CGGTMODID values are shown in the rtrv-gttact output and you wish to use one of these values for the GTT action entry, Step 13 does not need to be performed.

Continue the procedure with Step 14 if the GTT action entry will not contain these parameter values.

- If the loopset, cdgtmodid, and cggtmodid parameters will not be specified for the GTT action entry and the act value of the GTT action entry will be dup.
- If the loopset, cdgtmodid, cggtmodid, and the defactid parameters will not be specified for the GTT action entry and the act value of the GTT action entry will be fwd.

12. Display all the loopsets in the database by entering this command:

```
rtrv-loopset:num=1000:force=yes
```

This is an example of the possible output.

<table>
<thead>
<tr>
<th>LoopSet</th>
<th>Mode</th>
<th>Point Codes</th>
</tr>
</thead>
<tbody>
<tr>
<td>cary2</td>
<td>notify</td>
<td>005-015-005 007-007-007 (ANSI)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>033-004-003 033-007-003</td>
</tr>
<tr>
<td>cary4</td>
<td>notify</td>
<td>005-012-005 007-026-007 (ANSI)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>003-049-003 033-002-003</td>
</tr>
<tr>
<td>apex3</td>
<td>discard</td>
<td>005-017-008 007-017-009 (ANSI)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>033-005-043 005-014-005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>005-017-005 007-014-007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>033-002-043 005-038-005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>007-009-027 033-003-043</td>
</tr>
<tr>
<td>apex4</td>
<td>discard</td>
<td>005-012-005 007-002-027</td>
</tr>
<tr>
<td></td>
<td></td>
<td>005-007-008 027-007-009 (ANSI)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>033-005-003 005-004-055</td>
</tr>
<tr>
<td></td>
<td></td>
<td>027-001-007 033-008-003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>033-007-003 005-003-055</td>
</tr>
</tbody>
</table>
Note: If the `rtrv-loopset` command is entered with no other parameters specified, a maximum of 50 entries are displayed. To display more than 50 entries, the `force=yes` parameter must be specified with the `rtrv-loopset` command and the `num` parameter value must be greater than 50. Since there can be a maximum of 1000 loopsets in the database, to display all the loopsets in the database, the `force=yes` and `num = 1000` parameters must be specified with the `rtrv-loopset` command.

If the required loopset is not shown in the `rtrv-loopset` output, perform the Adding a Loopset procedure to add the required loopset.

If the required loopset is shown in the `rtrv-loopset` output, or if the Adding a Loopset procedure was performed and the `cdgtmodid` or `cggtmodid` parameters will be specified for the GTT action entry, continue the procedure with Step 13.

If `CDGTMODID` or `CGGTMODID` values are shown in the `rtrv-gttact` output and you wish to use one of these values for the GTT action entry, Step 13 does not need to be performed. Continue the procedure with Step 14.

Note: If an ANSI point code will be assigned to the GTT action entry, the `NGTI` value in the GTT modification entry must be 2.

13. Display the GT modification information in the database using the `rtrv-gtmod` command.

This is an example of the possible output.

```
ral5         notify   027-008-007
            003-004-003  005-007-003  007-004-007
            005-002-005  003-003-003
ral6         notify   005-007-008
            005-003-005  007-007-009
            005-007-005
            003-005-003
```

```
ral6         notify   005-007-008
            003-005-003  007-007-009
            005-007-005
            003-005-003
```

```
dunn1        discard  005-002-055
            003-008-033
rtp9         discard  005-002-005
            003-008-033
rtp5         discard  005-007-008
            005-004-005
rtp1         discard  005-005-005
            005-007-005
rtp2         notify   005-007-008
            003-005-003
```

```
righncxa03w  09-05-28  21:15:37 GMT EAGLE5 41.0.0
LOOPSET table is (11 of 1000) 1% full
RTRV-LOOPSET: MASP A - COMPLTD
```

```
Note: If the `rtrv-loopset` command is entered with no other parameters specified, a maximum of 50 entries are displayed. To display more than 50 entries, the `force=yes` parameter must be specified with the `rtrv-loopset` command and the `num` parameter value must be greater than 50. Since there can be a maximum of 1000 loopsets in the database, to display all the loopsets in the database, the `force=yes` and `num = 1000` parameters must be specified with the `rtrv-loopset` command.

If the required loopset is not shown in the `rtrv-loopset` output, perform the Adding a Loopset procedure to add the required loopset.

If the required loopset is shown in the `rtrv-loopset` output, or if the Adding a Loopset procedure was performed and the `cdgtmodid` or `cggtmodid` parameters will be specified for the GTT action entry, continue the procedure with Step 13.

If `CDGTMODID` or `CGGTMODID` values are shown in the `rtrv-gttact` output and you wish to use one of these values for the GTT action entry, Step 13 does not need to be performed. Continue the procedure with Step 14.

Note: If an ANSI point code will be assigned to the GTT action entry, the `NGTI` value in the GTT modification entry must be 2.

13. Display the GT modification information in the database using the `rtrv-gtmod` command.

This is an example of the possible output.

```
righncxa03w 10-07-07 00:29:31 GMT EAGLE5 42.0.0
GTMODID NTT NGTI GT0FILL NNP NNAI NPDD NSDD PRECD CGPASSN
modid2 -- 2 ON -- -- -- -- PFX --
 NPDS= NSDS=
modid5 -- 2 OFF -- -- -- -- PFX --
 NPDS= NSDS=
```
If the desired GT modification entry is not displayed, perform the *Adding Global Title Modification Information* procedure to add the desired GT modification entry to the database.

If the desired GT modification entry is displayed or the *Adding Global Title Modification Information* procedure was performed, continue the procedure with Step 14.

**Note:** If an ANSI point code will be assigned to the GTT action entry, the **NGTI** value in the GT modification entry must be 2.

14. Add the GTT action entry to the database using the `ent-gttact` command.

*Table 127: GTT Actions Parameter Combinations* shows the parameter combinations that can be used with the `ent-gttact` command.

**Table 127: GTT Actions Parameter Combinations**

<table>
<thead>
<tr>
<th>ACT Value DISC</th>
<th>ACT Value UDTS</th>
<th>ACT Value TCAPERR</th>
<th>ACT Value DUP</th>
<th>ACT Value FWD</th>
</tr>
</thead>
<tbody>
<tr>
<td>actid</td>
<td>actid</td>
<td>actid</td>
<td>actid</td>
<td>actid</td>
</tr>
<tr>
<td>mrnset</td>
<td></td>
<td>mapset</td>
<td></td>
<td></td>
</tr>
<tr>
<td>on=uimreqd (See Note 1)</td>
<td>off=uimreqd (See Note 1)</td>
<td>ssn=2 - 255 (See Note 3)</td>
<td>ssn=2 - 255 (See Note 3)</td>
<td></td>
</tr>
<tr>
<td>udtser</td>
<td></td>
<td>atcaperr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>iacmerr</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>on=useicmsg (See Note 2)</td>
<td></td>
<td>on=useicmsg (See Note 2)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Parameter Values:

- **actid** = the name of the GTT action entry consisting of one alphabetic character and up to eight alphanumeric characters. The `actid` value cannot be the words none or fallback.
- udtserr = 0 to 255. The default value is 7.
- atcaperr = 0 to 255. The default value is 0.
- itcaperr = 0 to 255. The default value is 0.
- pc/pca/pci/pcn/pcn24 - one of these types of point codes.
  - pc/pca = ANSI point code
  - pci = ITU-I or ITU-I spare point code
  - pcn = 14-bit ITU-N or 14-bit ITU-N spare point code
  - pcn24 = 24-bit ITU-N point code.
- mrnset - the MRN set ID from the `rtrv-mrn` output, or the value none. This parameter must be specified if the Flexible GTT Load Sharing feature is enabled and the `ri` value is `gt`. This parameter cannot be specified if the Flexible GTT Load Sharing feature is not enabled.
- mapset - the MAP set ID from the `rtrv-map` output. This parameter must be specified if the Flexible GTT Load Sharing feature is enabled and the `ri` value is `ssn`. This parameter cannot be specified if the Flexible GTT Load Sharing feature is not enabled.
- cgpc/cgpcia/cgpcni/cgpcn/cgpcn24 - the calling party point code. The network type of this parameter and the `pc/pca/pci/pcn/pcn24` parameter must be the same.
  - cgpc/cgpcia = ANSI point code
  - cgpci = ITU-I or ITU-I spare point code
  - cgpcn = 14-bit ITU-N or 14-bit ITU-N spare point code
  - cgpcn24 = 24-bit ITU-N point code.
- loopset - the loopset name from the `rtrv-loopset` output.
- cgopgmsg - one of these values.
  - dflt - Default. The standard global title translation process supplies the calling party point code. This is the default value for the `cgopgmsg` parameter.
  - cgpcicmsg - the calling party point code from the incoming MSU is used as the calling party point code.
  - opcicmsg - The OPC from the incoming MSU is used as the calling party point code.
• provcgpc - the value of the cgpc/cgpcal/cgpci/cgpcn/cgpcn24 parameter specified in this procedure is used as the calling party point code. If this value is specified, the cgpc/cgpcal/cgpci/cgpcn/cgpcn24 parameter must be specified.

cdggtmodid - The called party global title modification identifier from the rtrv-gtmod output.

cggtmodid - The calling party global title modification identifier from the rtrv-gtmod output.

defactid - one of these values.

• The GTT action ID whose act value is disc, udts, or tcaperr. If the required GTT action entry is not shown in the rtrv-gttact output, perform this procedure to add the required GTT action entry before this value is specified.

• fallback - The message is routed using the routing data in the incoming MSU. This is the default value for the defactid parameter.

Notes:

1. If the on=uimreqd is specified, the off=uimreqd parameter cannot be specified. If the off=uimreqd is specified, the on=uimreqd parameter cannot be specified.

2. If the on=useicmsg is specified, the off=useicmsg parameter cannot be specified. If the off=useicmsg is specified, the on=useicmsg parameter cannot be specified.

3. If the ri parameter value is ssn, the ssn parameter must be specified.

For this example, enter these commands.

```
ent-gttact:actid=action11:act=disc:on=uimreqd
ent-gttact:actid=action15:act=udts
```

When each of these commands have successfully completed, this message should appear.

```
rlghncxa03w 10-07-21 00:29:31 GMT EAGLE5 42.0.0
GTT-ACT table is (14 of 2000) 1% full.
ENT-GTTACT: MASP A - COMPLTD
```

15. Verify the changes using the rtrv-gttact command with the actid parameter and value specified in Step 14.

For this example, enter these commands.
<table>
<thead>
<tr>
<th>ACTID</th>
<th>ACTION</th>
<th>ATCAPERR</th>
<th>ITCAPERR</th>
<th>UDTSERR</th>
<th>UIMREQD</th>
</tr>
</thead>
<tbody>
<tr>
<td>action11</td>
<td>disc</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>on</td>
</tr>
</tbody>
</table>

GTT-ACT table is (14 of 2000) 1% full.

<table>
<thead>
<tr>
<th>ACTID</th>
<th>ACTION</th>
<th>ATCAPERR</th>
<th>ITCAPERR</th>
<th>UDTSERR</th>
<th>UIMREQD</th>
</tr>
</thead>
<tbody>
<tr>
<td>action15</td>
<td>udts</td>
<td>---</td>
<td>---</td>
<td>7</td>
<td>off</td>
</tr>
</tbody>
</table>

GTT-ACT table is (14 of 2000) 1% full.

<table>
<thead>
<tr>
<th>ACTID</th>
<th>ACTION</th>
<th>ATCAPERR</th>
<th>ITCAPERR</th>
<th>UDTSERR</th>
<th>UIMREQD</th>
</tr>
</thead>
<tbody>
<tr>
<td>action17</td>
<td>tcaperr</td>
<td>10</td>
<td>20</td>
<td>---</td>
<td>off</td>
</tr>
</tbody>
</table>

GTT-ACT table is (14 of 2000) 1% full.

<table>
<thead>
<tr>
<th>ACTID</th>
<th>ACTION</th>
<th>PCA</th>
<th>RI</th>
<th>SSN</th>
<th>MRNSET</th>
<th>MAPSET</th>
</tr>
</thead>
<tbody>
<tr>
<td>action20</td>
<td>dup</td>
<td>002-002-002</td>
<td>gt</td>
<td>---</td>
<td>DFLT</td>
<td>-----</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>LOOPSET= None</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>USEICMSG = off</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CGPCOGMSG = dflt</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CGPCA = ---</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ACTID</th>
<th>ACTION</th>
<th>PCI</th>
<th>RI</th>
<th>SSN</th>
<th>MRNSET</th>
<th>MAPSET</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ACTID</th>
<th>ACTION</th>
<th>PCN24</th>
<th>RI</th>
<th>SSN</th>
<th>MRNSET</th>
<th>MAPSET</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
GTT-ACT table is (14 of 2000) 1% full.

rtrv-gttact:actid=action21

rlghncxa03w 10-07-07 00:30:31 GMT EAGLE5 42.0.0

<table>
<thead>
<tr>
<th>ACTID</th>
<th>ACTION</th>
<th>ATCAPERR</th>
<th>ITCAPERR</th>
<th>UDTSERR</th>
<th>UIMREQD</th>
</tr>
</thead>
<tbody>
<tr>
<td>------</td>
<td>--------</td>
<td>----------</td>
<td>----------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>action21</td>
<td>dup</td>
<td>PCA 002-002-002</td>
<td>RI ssn 50</td>
<td>----</td>
<td>DFLT</td>
</tr>
<tr>
<td>LOOPSET = None</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>USEICMSG = off</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CDGTMODID = ---------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CGGTMODID = ---------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LOOPSET = None</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DEFACTID = Fallback</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>USEICMSG = off</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CGPCOGMSG = dflt</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CGPCA = ---</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

GTT-ACT table is (15 of 2000) 1% full.

rtrv-gttact:actid=action22

rlghncxa03w 10-07-07 00:30:31 GMT EAGLE5 42.0.0

<table>
<thead>
<tr>
<th>ACTID</th>
<th>ACTION</th>
<th>ATCAPERR</th>
<th>ITCAPERR</th>
<th>UDTSERR</th>
<th>UIMREQD</th>
</tr>
</thead>
<tbody>
<tr>
<td>------</td>
<td>--------</td>
<td>----------</td>
<td>----------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>action22</td>
<td>fwd</td>
<td>PCA 002-002-002</td>
<td>RI ssn 50</td>
<td>----</td>
<td>DFLT</td>
</tr>
<tr>
<td>LOOPSET = None</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>USEICMSG = off</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CDGTMODID = ---------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CGGTMODID = ---------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LOOPSET = None</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DEFACTID = Fallback</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>USEICMSG = off</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CGPCOGMSG = dflt</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CGPCA = ---</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Backup the new changes using the `chg-db:action=backup:dest=fixed` command. These messages should appear, the active Maintenance and Administration Subsystem Processor (MASP) appears first.

```
BACKUP (FIXED) : MASP A - Backup starts on active MASP.
BACKUP (FIXED) : MASP A - Backup on active MASP to fixed disk complete.
BACKUP (FIXED) : MASP A - Backup starts on standby MASP.
BACKUP (FIXED) : MASP A - Backup on standby MASP to fixed disk complete.
```

### Removing a GTT Action Entry

Use this procedure to remove a GTT action entry from the database using the `dlt-gttact` command. The `dlt-gttset` command uses this parameter.

`:actid` – The GTT action identifier shown in the `rtrv-gttact` output.

The GTT action entry cannot be removed if it is referenced by one or more of these database entities.

- A forward GTT action that references a discard, UDTS, or TCAPERR GTT action. The GTT action that is being removed is shown in the `DEFACTID` column in the `rtrv-gttact` output.
- A GTT action set. The GTT action sets are shown in the `rtrv-gttset` output.
- An LNP service. LNP services are shown in the `rtrv-lnp-serv` output.
1. Display the existing GTT action entries in the database by entering this command.

```
rtrv-gttact:on=refcnt
```

This is an example of the possible output.

```
rlghncxa03w 10-07-07 00:27:31 GMT EAGLE5 42.0.0

<table>
<thead>
<tr>
<th>ACTID</th>
<th>ACTION</th>
<th>ATCAPERR</th>
<th>ITCAPERR</th>
<th>UDTSERR</th>
<th>UIMREQD</th>
<th>REFCNT</th>
</tr>
</thead>
<tbody>
<tr>
<td>action2</td>
<td>disc</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>off</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ACTID</th>
<th>ACTION</th>
<th>PCA</th>
<th>RI</th>
<th>SSN</th>
<th>MRNSET</th>
<th>MAPSET</th>
<th>REFCNT</th>
</tr>
</thead>
<tbody>
<tr>
<td>action1</td>
<td>dup</td>
<td>002-002-002</td>
<td>gt</td>
<td>---</td>
<td>DFLT</td>
<td>-----</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CDGTMODID =</td>
<td>---</td>
<td></td>
<td>CCGTMODID =</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>LOOPSET = None</td>
<td></td>
<td></td>
<td>USEICMSG = off</td>
<td>CGPCOGMSG = dflt</td>
<td>CGPCA = ---</td>
</tr>
<tr>
<td>action3</td>
<td>dup</td>
<td>003-003-003</td>
<td>gt</td>
<td>---</td>
<td>1</td>
<td>-----</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CDGTMODID =</td>
<td>---</td>
<td></td>
<td>CCGTMODID =</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>LOOPSET = None</td>
<td></td>
<td></td>
<td>USEICMSG = off</td>
<td>CGPCOGMSG = dflt</td>
<td>CGPCA = ---</td>
</tr>
</tbody>
</table>

GTT-ACT table is (3 of 2000) 1% full.

If the number of entities that reference the GTT action entry, the reference count, that is being removed is 0 (zero), continue the procedure with Step 6. The reference count is shown in the REFCNT column in the rtrv-gttact output.

If the number of entities that reference the GTT action entry that is being removed is greater than 0 (zero), continue the procedure by performing one of these steps.

- If the ACTION value of the GTT action entry is DUP or FWD, continue the procedure with Step 5.
- If the ACTION value of the GTT action entry is DISC, UDTS, or TCAPERR, continue the procedure with Step 2.

2. If the rtrv-gttact output contains entries whose ACTION value is FWD and whose DEFACTID value is the ACTION value of the GTT action entry that is being removed, perform the Changing a GTT Action procedure to change the DEFACTID value to another GTT action entry.

Perform the Changing a GTT Action procedure for each entry whose ACTION value is FWD and whose DEFACTID value is the ACTION value of the GTT action entry that is being removed. If all references to the GTT action entry have been removed, continue the procedure with Step 6.

Continue the procedure with Step 3:

- If all the references to the GTT action have not been removed.
• If no entries are shown in the `rtrv-gttact` output whose `ACTION` value is `FWD`.
• If entries are shown in the `rtrv-gttact` output whose `ACTION` value is `FWD`, but none of these entries reference the GTT action that is being removed.

3. Verify whether or not the LNP feature is enabled by entering the `rtrv-ctrl-feat` command.

This is an example of the possible output.

```
rlghncxa03w 10-12-28 21:15:37 GMT EAGLE5 43.0.0
The following features have been permanently enabled:

Feature Name          Partnum    Status  Quantity
Command Class Management  893005801  on      ----
Intermed GTT Load Sharing 893006901  on      ----
HC-MIM SLK Capacity     893012707  on      64

The following features have been temporarily enabled:
Feature Name          Partnum    Status  Quantity     Trial Period Left
Zero entries found.

The following features have expired temporary keys:
Feature Name          Partnum
Zero entries found.

If the LNP feature is enabled, the entry **LNP ported TNs** is shown in the `rtrv-ctrl-feat` output with a number shown in the `Quantity` column.

Continue the procedure with **Step 5** if the LNP feature is not enabled.

Continue the procedure with **Step 4** if the LNP feature is enabled.

4. Display the LNP services by entering the `rtrv-lnp-serv` command.

This is an example of the possible output.

```
rlghncxa03w 10-12-11 13:45:15 GMT EAGLE5 43.0.0
SERV TT TTN DV ALIAS GTTRQD SELID DFLTACT
CNAM 1 cnam1 SCCP --- On 10 fallback
 8 On 20 action2
LIDB 2 lidb1 SCCP --- Off None action2
 19 On None falltogtt
AIN 3 ain TCAP --- Off None fallback
UDF1 22 udf1 TCAP --- --- --- ---

LNP-SERV TABLE IS 2% FULL (6 of 256)
```

If entries are shown in the `rtrv-lnp-serv` output that reference the GTT action that is being removed, shown in the `DFLTACT` column, perform the "Changing an LNP Service" procedure in the `ELAP Administration and LNP Feature Activation` manual to change the `DFLTACT` value to another value. If all references to the GTT action entry have been removed after the "Changing an LNP Service" procedure has been performed, continue the procedure with **Step 6**.

Continue the procedure with **Step 5**:

• If all the references to the GTT action have not been removed after the "Changing an LNP Service" procedure has been performed.
• If no entries are shown in the `rtrv-lnp-serv` output that reference the GTT action that is being removed.

5. Display the GTT action sets that reference the GTT action entry that is being removed by entering the `rtrv-gttaset` command with the GTT action identifier the GTT action entry that is being removed.

For this example, enter this command.

`rtrv-gttaset:actid1=action2`

**Note:** There are six `actid` parameters that can be used with the `rtrv-gttaset` command: `actid1, actid2, actid3, actid4, actid5, actid6`. Any of these parameters can be used in this step.

This is an example of the possible output.

```
rightncxa03w 10-07-07 00:28:31 GMT EAGLE5 42.0.0

ACTSN TEST ActIds
------- ------- -----------------------
act2 off action2 (DISC),------,------,
act3 off action2 (DISC),------,------,

GTT-ASET table is (3 of 20000) 1% full.
```

Perform one of these procedures.

- **Removing a GTT Action Set** to remove the GTT action set that references the GTT action entry specified in this step.
- **Changing a GTT Action Set** to remove the GTT action entry specified in this step from the GTT action set.

Perform these procedures for each entry shown in this step.

6. Remove the GTT action entry from the database using the `dlt-gttact` command with the `ACTID` value of the GTT action entry that is being removed.

For this example, enter this command.

`dlt-gttact:actid=action2`

When the command has successfully completed, this message should appear:

```
rightncxa03w 10-07-07 00:29:31 GMT EAGLE5 42.0.0
GTT-ACT table is (2 of 2000) 1% full
DLT-GTTACT: MASP A - COMPLTD
```

7. Verify the changes using the `rtrv-gttact` command with the `actid` parameter value specified in Step 6.

The following message is displayed.

```
E5071 Cmd Rej: GTT Action Id does not exist
```
8. Backup the new changes using the `chg-db:action=backup:dest=fixed` command.

These messages should appear, the active Maintenance and Administration Subsystem Processor (MASP) appears first.

<table>
<thead>
<tr>
<th>Backup message</th>
</tr>
</thead>
<tbody>
<tr>
<td>BACKUP (FIXED) : MASP A - Backup starts on active MASP.</td>
</tr>
<tr>
<td>BACKUP (FIXED) : MASP A - Backup on active MASP to fixed disk complete.</td>
</tr>
<tr>
<td>BACKUP (FIXED) : MASP A - Backup starts on standby MASP.</td>
</tr>
<tr>
<td>BACKUP (FIXED) : MASP A - Backup on standby MASP to fixed disk complete.</td>
</tr>
</tbody>
</table>

### Changing a GTT Action

This procedure is used to change the attributes of a GTT action entry using the `chg-gttact` command.

The `chg-gttact` command uses these parameters.

- **act** - the action that is applied to the message. This parameter has these values.
  - `disc` — discard the message with no return error.
  - `dup` — route a copy of the message to the specified duplicate node.
  - `tcaperr` — discard the message that has the specified TCAP error.
  - `udts` — discard the message and send an UDTS/XUDTS.
  - `fwd` — route the original message to the specified forward node instead of the destination indicated by the global title translation data.

- **actid** - the current name of the GTT action entry.

- **nactid** - the new name of the GTT action entry.

- **atcaperr** - the ANSI TCAP error cause - the reason for discarding the message containing the ANSI TCAP portion that is associated with the TCAP error GTT action.

- **cdgtmodid** - the name of the GT modification identifier that is associated with the called party of a GTT action entry.

- **cggtmodid** - the name of the GT modification identifier that is associated with the calling party of a GTT action entry.

- **cgpc/cgpcn/cgpci/cgpcn24** - the calling party point code.

**Note:** See Chapter 2, “Configuring Destination Tables,” in the Database Administration Manual - SS7 for a definition of the point code types that are used on the EAGLE 5 ISS and for a definition of the different formats that can be used for ITU national point codes.

- **cgpcogmsg** - the data that is used as the calling party point code in the outgoing message.

- **defactid** - the default GTT action ID that is associated with the forward GTT action.

- **itcaperr** - the ITU TCAP error cause - the reason for discarding the message containing the ITU TCAP portion that is associated with the TCAP error GTT action.

- **loopset** - the name of the SCCP loopset name that is associated with the GTT action.

- **mapset** - the MAP set ID.

- **mrnset** - the MRN set ID.
:off - turns off the specified feature options.
- :off=uimreqd - a UIM is not generated.
- :off=useicmsg - apply the GTT action data to the message as the message was received.

:on - turns on the specified feature options.
- :on=uimreqd - a UIM is generated.
- :on=useicmsg - apply the GTT action data to the message after any EPAP or GTT translation/modification data has been applied.

:pc/pca/pcl/pcn24 - the point code that the message will be routed to as a result of the duplicate or forward GTT action.

Note: See Chapter 2, "Configuring Destination Tables," in the Database Administration Manual - SS7 for a definition of the point code types that are used on the EAGLE 5 ISS and for a definition of the different formats that can be used for ITU national point codes.

:ri - the routing indicator in the SCCP called party address of the duplicated copy of MSU.
:ssn - the subsystem number (SSN) in the SCCP called party address of the MSU.
:udtserr - the reason associated with the UDTS GTT action for discarding the message.

The values for the actid, nactid, atcaperr, itcaperr, udtserr, pc/pca/pcl/pcn24, ri, mrmset, mapset, ssn, loopset, cggtmodid, cdgtmodid, defactid, and cgpc/cgpca/cgpcl/cgpcn24 parameters are shown in Table 127: GTT Actions Parameter Combinations.

One of these features must be enabled depending on the act parameter value that will be specified with the GTT action.
- act=dup - GTT Action - DUPLICATE feature - part number 893027601.
- act=fwd - GTT Action - FORWARD feature - part number 893037501.

The status of these features is shown in the rtrv-ctrl-feat output. Perform the Activating the GTT Actions Features procedure to enable one or more of these features.

1. Display the existing GTT action entries in the database by entering this command.

    rtrv-gttact:on=refcnt

This is an example of the possible output.

<table>
<thead>
<tr>
<th>ACTID</th>
<th>ACTION</th>
<th>ATCAPERR</th>
<th>ITCAPERR</th>
<th>UDTSERR</th>
<th>UIMREQD</th>
<th>REFCNT</th>
</tr>
</thead>
<tbody>
<tr>
<td>action2</td>
<td>disc</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>off</td>
<td>2</td>
</tr>
<tr>
<td>action10</td>
<td>disc</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>off</td>
<td>3</td>
</tr>
<tr>
<td>action11</td>
<td>disc</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>on</td>
<td>1</td>
</tr>
<tr>
<td>action15</td>
<td>udts</td>
<td>---</td>
<td>---</td>
<td>7</td>
<td>off</td>
<td>0</td>
</tr>
<tr>
<td>action16</td>
<td>tcaperr</td>
<td>0</td>
<td>0</td>
<td>---</td>
<td>off</td>
<td>5</td>
</tr>
<tr>
<td>action17</td>
<td>tcaperr</td>
<td>10</td>
<td>20</td>
<td>---</td>
<td>off</td>
<td>7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ACTID</th>
<th>ACTION</th>
<th>PCA</th>
<th>RI</th>
<th>SSN</th>
<th>MRNSET</th>
<th>MAPSET</th>
<th>REFCNT</th>
</tr>
</thead>
<tbody>
<tr>
<td>action1</td>
<td>dup</td>
<td>002-002-002</td>
<td>gt</td>
<td>---</td>
<td>DFLT</td>
<td>------</td>
<td>1</td>
</tr>
</tbody>
</table>
If the number of entities that reference the GTT action entry, the reference count, that is being changed is 0 (zero), continue the procedure with **Step 4**. The reference count is shown in the **REFCNT** column in the **rtrv-gttact** output.

If the number of entities that reference the GTT action entry that is being removed is greater than 0 (zero), these actions cannot be performed in this procedure continue the procedure by performing one these steps.

- The current **actid** value cannot be changed. If you wish to change the current **actid** value,
• The current act value cannot be changed unless the current act value is either disc, udts, or tcaperr, and the new act value will be either disc, udts, or tcaperr.

If you wish to change the current actid value or the current act value, continue the procedure by performing one of these steps.

• If the current act value is dup or fwd, continue the procedure with Step 3.
• If the current act value is disc, udts, or tcaperr, continue the procedure by performing one of these steps.
  • If the actid value of the GTT action entry that is being changed is not shown as the defactid value of another GTT action entry, an entry whose act value is fwd, continue the procedure with Step 3.
  • If the actid value of the GTT action entry that is being changed is shown as the defactid value of another GTT action entry, an entry whose act value is fwd, continue the procedure with Step 2.

2. Enter the chg-gttact command with the actid and defactid parameters to change the defactid value of the GTT action entry to a value that is not the current defactid value.

For this example, enter this command.

chg-gttact:actid=action25:defactid=fallback

When this command has successfully completed, this message should appear.

rlghncxa03w 10-07-07 00:27:31 GMT EAGLE5 42.0.0

GTT-ACT table is (15 of 2000) 1% full.

CHG-GTTACT: MASP A - COMPLTD

Perform this step for each entry shown in the rtrv-gttact output whose act value is fwd and whose defactid value is the actid value of the GTT action entry that is being changed.

If all the references to the GTT action entry that is being changed have been removed, continue the procedure with Step 4.

If all the references to the GTT action entry that is being changed have not been removed, continue the procedure with Step 3.

3. Display the GTT action sets that contain the GTT action entry that is being changed by entering the rtrv-gttact command with the name of the GTT action entry.

For this example, enter these commands.

rtrv-gttact:actid1=action10

The following is an example of the possible output.

rlghncxa03w 10-07-28 21:15:37 GMT EAGLE5 42.0.0

ACTSN    TEST    ActIds
MODE
-----------------------------
act11    off    action10  (UDTS),------,------,
          ------,------,------
GTT-ASET table is (5 of 20000) 1% full.

rtrv-gttact:actid1=action1

The following is an example of the possible output.

rlghncxa03w 10-07-28 21:15:37 GMT EAGLE5 42.0.0

<table>
<thead>
<tr>
<th>ACTSN</th>
<th>TEST</th>
<th>ActIds</th>
</tr>
</thead>
<tbody>
<tr>
<td>------</td>
<td>------</td>
<td>--------</td>
</tr>
<tr>
<td>act1</td>
<td>off</td>
<td>action1 (DUP), action4 (DUP), action25 (FWD),</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-------, -------, -------</td>
</tr>
<tr>
<td>act5</td>
<td>on</td>
<td>action1 (DUP), action3 (DUP), action4 (DUP),</td>
</tr>
<tr>
<td></td>
<td></td>
<td>action20 (DUP), action21 (DUP), action17 (TCAPERR)</td>
</tr>
</tbody>
</table>

GTT-ASET table is (5 of 20000) 1% full.

Perform one of these procedures.

- **Removing a GTT Action Set** - to remove the GTT action set that references the GTT action entry that is being changed.
- **Changing a GTT Action Set** - to change the GTT action set to remove the references to the GTT action entry that is being changed.

Perform these procedures for each entry that is shown in the `rtrv-gttaset` output.

4. Continue the procedure by performing one of these steps.

   If the `act` value of the GTT action entry will be `disc`, `udts`, or `tcaperr` when this procedure is finished, continue the procedure by performing one of these steps.

   - If the current `act` value is `disc`, `udts`, or `tcaperr`, continue the procedure with **Step 16**.
   - If the current `act` value is `dup` or `fwd`, continue the procedure by performing one of these steps.
   
   - If entries are shown in the `rtrv-gttact` output whose `act` values are `disc`, `udts`, or `tcaperr`, continue the procedure with **Step 16**.
   - If no entries are shown in the `rtrv-gttact` output whose `act` values are `disc`, `udts`, or `tcaperr`, perform the **Activating the GTT Actions Features** procedure to enable and turn on the GTT Action - DISCARD feature. After the **Activating the GTT Actions Features** procedure has been performed, continue the procedure with **Step 16**.

   If the `act` value of the GTT action entry will be `dup` when this procedure is finished, continue the procedure by performing one of these steps.

   - If the `rtrv-gttact` output contains no entries whose `act` value is `dup`, perform the **Activating the GTT Actions Features** procedure to enable and turn on the GTT Action - DUPLICATE feature.
   - If the `rtrv-gttact` output contains entries whose `act` value is `dup`, or the **Activating the GTT Actions Features** procedure has been performed, continue the procedure **Step 5**.

   If the `act` value of the GTT action entry will be `fwd` when this procedure is finished, continue the procedure by performing one of these steps.

   - If the `rtrv-gttact` output contains no entries whose `act` value is `fwd`, perform the **Activating the GTT Actions Features** procedure to enable and turn on the GTT Action - FORWARD feature.
• If the rtrv-gttact output contains entries whose act value is dup, or the Activating the GTT Actions Features procedure has been performed, continue the procedure Step 5.

5. For GTT action entries whose act value will be either dup or fwd, the GTT action entry must contain a value for the ri parameter must be specified for the GTT action entry.

If the ri parameter value for the GTT action entry will be gt, the pc/pca/pci/pcn/pcn24 parameter must be specified for the GTT action entry. The point code must be the DPC of a route and cannot contain a proxy point code.

If the MRNSET column is shown in the rtrv-gttact output, the Flexible GTT Load Sharing feature is enabled. If the Flexible GTT Load Sharing feature is enabled, the mrnset parameter must be specified for the GTT action entry. The point code that will be assigned to the GTT action entry must be in an MRN set. MRN sets are shown in the rtrv-mrn output.

If the ri parameter value for the GTT action entry will be ssn, the pc/pca/pci/pcn/pcn24 and ssn parameters must be specified for the GTT action entry. The point code and ssn values must be in the rtrv-map output.

If the MAPSET column is shown in the rtrv-gttact output, the Flexible GTT Load Sharing feature is enabled. If the Flexible GTT Load Sharing feature is enabled, the mapset parameter must be specified for the GTT action entry. The point code and ssn values that will be assigned to the GTT action entry must be in a MAP set. MAP sets are shown in the rtrv-map output.

If the ri value for the GTT action entry will be gt, the MRNSET column is not shown in the rtrv-gttact output, the mrnset parameter will not be specified for the GTT action entry, and the point code value for the GTT action entry is not shown in the rtrv-gttact output, continue the procedure with Step 7.

If you wish to specify the mrnset parameter for the GTT action entry, perform these procedures to configure the MRNSET with the required MRNSET with the point code value: Activating the Flexible GTT Load Sharing Feature and Provisioning MRN Entries. After these procedures have been performed, continue the procedure with Step 13.

If the ri value for the GTT action entry will be gt, the MRNSET column is shown in the rtrv-gttact output, and the point code and MRNSET values for the GTT action entry are not shown in the rtrv-gttact output, continue the procedure with Step 6.

If the ri value for the GTT action entry will be ssn, the MAPSET column is not shown in the rtrv-gttact output, the mapset parameter will not be specified for the GTT action entry, and the point code and SSN values for the GTT action entry is not shown in the rtrv-gttact output, continue the procedure with Step 10.

If you wish to specify the mapset parameter for the GTT action entry, perform the Activating the Flexible GTT Load Sharing Feature procedure to enable the Flexible GTT Load Sharing Feature. After this procedure has been performed, continue the procedure with Step 10.

If the ri value for the GTT action entry will be ssn, the MAPSET column is shown in the rtrv-gttact output, and the point code, SSN, and MAPSET values for the GTT action entry are not shown in the rtrv-gttact output, continue the procedure with Step 10.

Note: If the entry that is being changed will have a calling party point code value when this procedure is finished, the network type of the point code and the calling party point code values must be the same. The calling party point code is provisioned with the cgpc/cgpca/cgpci/cgpcn/cgpcn24 parameter and is shown in the CGPCA/CGPCI/CGPCN/CGPCN24 fields in the rtrv-gttact output.
6. Display the MRN entries entering the `rtrv-mrn` command.

This is an example of the possible output.

```
rlghncxa03w 10-07-28 21:15:37 GMT EAGLE5 42.0.0
MRNSET PC RC
DFLT 002-002-002 1
 003-003-003 2
MRNSET PC RC
1 003-003-003 2
 004-004-004 3
 005-005-005 4
MRN table is (5 of 6000) 1% full.
```

If the required MRN set is shown in the `rtrv-mrn` output, continue the procedure with Step 13.

If the required MRN set is not shown in the `rtrv-mrn` output, perform the `Provisioning MRN Entries` procedure to provision the required MRN set. After the `Provisioning MRN Entries` procedure has been performed, continue the procedure with Step 13.

7. Display the destination point codes in the database by entering the `rtrv-dstn` command. This is an example of the possible output.

```
rlghncxa03w 10-12-10 11:43:04 GMT EAGLE5 43.0.0
Extended Processing Time may be Required
DPCA CLLI BEI ELEI ALIASI ALIASN/N24 DMN
 001-207-000 ----------- no --- -------------- -------------- SS7
 001-001-001 ----------- no --- -------------- -------------- SS7
 001-001-002 ----------- no --- -------------- -------------- SS7
 001-005-000 ----------- no --- -------------- -------------- SS7
 001-007-000 ----------- no --- -------------- -------------- SS7
 008-012-003 ----------- no --- -------------- -------------- SS7
 003-002-004 ----------- no --- -------------- -------------- SS7
 009-002-003 ----------- no --- -------------- -------------- SS7
 010-020-005 ----------- no --- -------------- -------------- SS7
DPCI CLLI BEI ELEI ALIASA ALIASN/N24 DMN
 1-207-0 ----------- no --- -------------- -------------- SS7
 0-015-0 ----------- no --- -------------- -------------- SS7
 0-017-0 ----------- no --- -------------- -------------- SS7
 1-011-1 ----------- no --- -------------- -------------- SS7
 1-011-2 ----------- no --- -------------- -------------- SS7
Destination table is (14 of 2000) 1% full
Alias table is (0 of 12000) 0% full
PPC table is (1 of 20) 5% full
```

If the required point code is not shown in the `rtrv-dstn` output, perform the "Adding a Destination Point Code" procedure in the `Database Administration Manual - SS7` to add the required point code. A proxy point code cannot be assigned to the point code.

After the new point code has been added, perform one of the Adding a Route procedures in the `Database Administration Manual - SS7` and add the required route to the database. After the route has been added, continue the procedure with Step 8.

8. Display the point code that will be assigned to the global title translation by using the `rtrv-dstn` command and specifying the point code. For this example, enter this command.
rtrv-dstn:dpca=010-020-005

This is an example of the possible output.

<table>
<thead>
<tr>
<th>DPCA</th>
<th>CLLI</th>
<th>BEI</th>
<th>ELEI</th>
<th>ALIASI</th>
<th>ALIASN/N24</th>
<th>DMN</th>
</tr>
</thead>
<tbody>
<tr>
<td>010-020-005</td>
<td>-------</td>
<td>no</td>
<td>---</td>
<td>--------</td>
<td>-----------</td>
<td>SS7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PPCA</th>
<th>NCAI</th>
<th>PRX</th>
<th>RCAUSE</th>
<th>NPRST</th>
<th>SPLITIAM</th>
<th>HMSMSC</th>
<th>HMSCP</th>
<th>SCCPMSGCNV</th>
</tr>
</thead>
<tbody>
<tr>
<td>009-002-003</td>
<td>----</td>
<td>no</td>
<td>50</td>
<td>on</td>
<td>20</td>
<td>no</td>
<td>no</td>
<td>none</td>
</tr>
</tbody>
</table>

Destination table is (14 of 2000) 1% full
Alias table is (0 of 12000) 0% full
PPC table is (1 of 20) 5% full

If the point code is not shown in the rtrv-dstn command output, the following output is displayed.

<table>
<thead>
<tr>
<th>DPCA</th>
<th>ALIASI</th>
<th>ALIASN/N24</th>
<th>LSN</th>
<th>RC</th>
<th>APCA</th>
</tr>
</thead>
<tbody>
<tr>
<td>007-007-007</td>
<td>-------</td>
<td>----------</td>
<td>ls03</td>
<td>10</td>
<td>007-007-007</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ls02</td>
<td>30</td>
<td>150-150-150</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ls02</td>
<td>50</td>
<td>200-200-200</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>RTX:No</td>
<td></td>
<td>CLLI=ls03clli</td>
</tr>
</tbody>
</table>

If the point code is not shown in the rtrv-dstn output, perform the “Adding a Destination Point Code” procedure in the Database Administration Manual - SS7 and add the point code to the destination point code table.

9. The point code specified with the ent-gtt command must be the DPC of a route, unless the point code is the EAGLE 5 ISS’s point code. Enter the rtrv-rte command with the dpc parameter specifying the point code to be used with the ent-gtt command to verify whether or not the point code is the DPC of a route.

For this example, enter these commands.

rtrv-rte:dpca=007-007-007

This is an example of the possible output.

<table>
<thead>
<tr>
<th>DPCA</th>
<th>ALIASI</th>
<th>ALIASN/N24</th>
<th>LSN</th>
<th>RC</th>
<th>APCA</th>
</tr>
</thead>
<tbody>
<tr>
<td>003-003-003</td>
<td>-------</td>
<td>----------</td>
<td>ls02</td>
<td>10</td>
<td>002-002-002</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ls08</td>
<td>30</td>
<td>025-025-150</td>
</tr>
</tbody>
</table>
If the point code is not shown in the `rtrv-rte` output, perform one of the Adding a Route procedures in the *Database Administration Manual - SS7* and add the required route to the database. After the route has been added, continue the procedure with *Step 13*.

10. Enter the `rtrv-map` command with the point code and SSN value that will be specified for the GTT action entry.

For this example enter this command.

```
rtrv-map:pca=005-005-005:ssn=75
```

If the Flexible GTT Load Sharing feature is not enabled, this is an example of the possible output.

```
rlghncxa03w 09-07-25 09:42:31 GMT EAGLE5 41.1.0

PCA Mate PCA SSN RC MULT SRM MRC GRP NAME SSO
005-005-005 250 10 SOL *Y *Y GRP01 ON

MAP table is (37 of 1024) 4% full.
```

If the Flexible GTT Load Sharing feature is enabled, this is an example of the possible output.

```
rlghncxa03w 09-07-25 09:42:31 GMT EAGLE5 41.1.0

MAPSET ID=DFLT
PCA Mate PCA SSN RC MULT SRM MRC GRP NAME SSO
005-005-005 55 5 DOM YES YES -------- OFF
001-001-002 15 15 DOM YES YES -------- ON
001-001-003 25 20 DOM YES YES -------- ON
001-001-002 40 35 DOM YES YES -------- OFF

MAPSET ID=1
PCA Mate PCA SSN RC MULT SRM MRC GRP NAME SSO
005-005-005 50 5 DOM YES YES -------- OFF
001-001-002 10 15 DOM YES YES -------- ON
001-001-003 20 20 DOM YES YES -------- ON
001-001-002 40 35 DOM YES YES -------- OFF

MAPSET ID= 2
005-005-005 5 10 SOL *Y *Y -------- OFF

MAP table is (12 of 36000) 1% full.
```

If the required MAP entry is shown in the `rtrv-map` output, continue the procedure with *Step 13*.

If the required MAP entry is not shown in the `rtrv-map` output, continue the procedure with *Step 11*.

11. Display the EAGLE 5 ISS self-identification, using the `rtrv-sid` command.

This is an example of the possible output.

```
rlghncxa03w 10-07-10 11:43:04 GMT EAGLE5 42.0.0

PCA PCI PCN CLLI PCTYPE
010-020-030 1-023-1 12-0-14-1 rlghncxa03w OTHER
s-1-023-1 s-12-0-14-1
CPCA
```
If the point code that will be specified for the GTT action entry is not shown in this step as the EAGLE 5 ISS’s point code, perform one of these procedures to provision the required MAP entry. After the required MAP entry has been provisioned, continue the procedure with **Step 13**.

- **Provisioning a Solitary Mated Application**
- **Provisioning a Dominant Mated Application**
- **Provisioning a Load Shared Mated Application**
- **Provisioning a Combined Dominant/Load Shared Mated Application**

If the point code that will be specified for the GTT action entry is shown in this step as the EAGLE 5 ISS’s point code, perform one of these procedures to provision the required MAP entry. After the required MAP entry has been provisioned, continue the procedure with **Step 12**.

- **Provisioning a Solitary Mated Application**
- **Provisioning a Dominant Mated Application**

**12.** Enter the `rtrv-ss-appl` command to verify that either the LNP, EIR, V-Flex, ATINPQ, INP, or AIQ subsystem number (depending on which feature is on) is in the subsystem application table. This is an example of the possible output.

```
 rlghncxa03w 10-07-28 14:42:38 GMT EAGLE5 42.0.0
 APPL SSN STAT
 LNP 254 ONLINE

 SS-APPL table is 20% FULL (1 of 5)
```

If the subsystem number is shown in the `rtrv-ss-appl` output, continue the procedure with **Step 13**.

If no subsystem number is shown in the `rtrv-ss-appl` output, or if the `rtrv-ss-appl` command is rejected, perform the procedures in one of these manuals, depending on the type of subsystem you wish to use, to enable and turn on the feature as necessary, and add the subsystem to the subsystem application table.

- EIR subsystem – go to the *Feature Manual - EIR*.
- INP subsystem – go to the *Feature Manual - INP/AINPQ*.
- LNP subsystem – go to the *ELAP Administration and LNP Feature Activation* manual.
- V-Flex subsystem – go to the *Feature Manual - V-Flex*.
- ATINPQ subsystem – go to the *Feature Manual - ATINP*.
- AIQ subsystem – go to the *Feature Manual - Analyzed Information Features*.

**13.** Continue the procedure by performing one of these steps.
If the loopset parameter will be specified for the GTT action entry, continue the procedure with Step 14. If LOOPSET values are shown in the rtrv-gttact output and you wish to use one of these values for the GTT action entry, Step 14 does not need to be performed.

If the loopset parameter will not be specified for the GTT action entry, but the cdgtmodid or cggtmodid parameters will be specified for the GTT action entry, continue the procedure with Step 15. If CDGTMODID or CGGTMODID values are shown in the rtrv-gttact output and you wish to use one of these values for the GTT action entry, Step 15 does not need to be performed.

Continue the procedure with Step 16 if the GTT action entry will not contain these parameter values.

- If the loopset, cdgtmodid, and cggtmodid parameters will not be specified for the GTT action entry and the act value of the GTT action entry will be dup.
- If the loopset, cdgtmodid, cggtmodid, and the defactid parameters will not be specified for the GTT action entry and the act value of the GTT action entry will be fwd.

14. Display all the loopsets in the database by entering this command

\[\text{rtrv-loopset:num=1000:force=yes}\]

This is an example of the possible output.

<table>
<thead>
<tr>
<th>LoopSet</th>
<th>Mode</th>
<th>Point Codes</th>
</tr>
</thead>
<tbody>
<tr>
<td>cary2</td>
<td>notify</td>
<td>005-015-005 007-007-007 (ANSI)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>033-004-003 033-007-003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>005-027-005 007-004-007</td>
</tr>
<tr>
<td>cary4</td>
<td>notify</td>
<td>005-012-005 007-026-007 (ANSI)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>003-049-003 033-002-003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>005-008-055 007-014-007</td>
</tr>
<tr>
<td>apex3</td>
<td>discard</td>
<td>005-017-008 007-017-009 (ANSI)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>033-005-043 005-014-005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>005-017-005 007-014-007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>033-002-043 005-038-005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>007-009-027 033-003-043</td>
</tr>
<tr>
<td></td>
<td></td>
<td>005-012-005 007-002-027</td>
</tr>
<tr>
<td>apex4</td>
<td>discard</td>
<td>005-007-008 027-007-009 (ANSI)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>033-005-003 005-004-055</td>
</tr>
<tr>
<td></td>
<td></td>
<td>027-001-007 033-008-003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>033-007-003 005-003-055</td>
</tr>
<tr>
<td>ral5</td>
<td>notify</td>
<td>027-008-007 007-007-007 (ANSI)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>005-005-005 007-007-007 (ANSI)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>005-007-005 007-004-007</td>
</tr>
<tr>
<td>ral6</td>
<td>notify</td>
<td>005-007-008 007-007-009 (ANSI)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>003-005-003 003-007-003</td>
</tr>
<tr>
<td>dunn1</td>
<td>discard</td>
<td>005-007-005 007-051-007 (ANSI)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>005-002-055 003-008-033</td>
</tr>
<tr>
<td>rtp9</td>
<td>discard</td>
<td>005-002-005 007-001-007 (ANSI)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>003-008-003 003-007-003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>005-003-005 007-008-007</td>
</tr>
<tr>
<td>rtp5</td>
<td>discard</td>
<td>005-007-008 007-007-009 (ANSI)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>003-005-003 003-007-003</td>
</tr>
<tr>
<td>rtp1</td>
<td>discard</td>
<td>005-005-005 007-007-007 (ANSI)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>003-004-003 003-007-003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>005-007-005 007-004-007</td>
</tr>
<tr>
<td>rtp2</td>
<td>notify</td>
<td>005-007-008 007-007-009 (ANSI)</td>
</tr>
</tbody>
</table>
**Note:** If the `rtrv-loopset` command is entered with no other parameters specified, a maximum of 50 entries are displayed. To display more than 50 entries, the `force=yes` parameter must be specified with the `rtrv-loopset` command and the `num` parameter value must be greater than 50. Since there can be a maximum of 1000 loopsets in the database, to display all the loopsets in the database, the `force=yes` and `num = 1000` parameters must be specified with the `rtrv-loopset` command.

If the required loopset is not shown in the `rtrv-loopset` output, perform the Adding a Loopset procedure to add the required loopset.

If the required loopset is shown in the `rtrv-loopset` output, or if the Adding a Loopset procedure was performed and the `cdgtmodid` or `cggtmodid` parameters will be specified for the GTT action entry, continue the procedure with Step 15.

If CDGTMODID or CGGTMODID values are shown in the `rtrv-gttact` output and you wish to use one of these values for the GTT action entry, Step 15 does not need to be performed. Continue the procedure with Step 16.

**Note:** If an ANSI point code will be assigned to the GTT action entry when this procedure is completed, the `NGTI` value in the GT modification entry must be 2.

15. Display the GT modification information in the database using the `rtrv-gtmod` command.

This is an example of the possible output.

```plaintext
rlghncxa03w 10-07-07 00:29:31 GMT EAGLE5 42.0.0
GTMODID NTT NGTI GT0FILL NNP NNAI NPDD NSDD PRECD CGPASSN
modid2 -- 2 ON -- -- -- -- PFX --
 NPDS= NSDS=
modid5 -- 2 OFF -- -- -- -- PFX --
 NPDS= NSDS=
modid6 -- 4 ON 4 5 3 3 SFX --
 NPDS=123 NSDS=456
modid10 -- -- OFF 5 5 -- -- PFX --
 NPDS= NSDS=
modid11 -- -- OFF 5 5 -- -- PFX --
 NPDS= NSDS=
GTMOD table is (5 of 100000) 1% full.
```

If the desired GT modification entry is not displayed, perform the Adding Global Title Modification Information procedure to add the desired GT modification entry to the database.

If the desired GT modification entry is displayed or the Adding Global Title Modification Information procedure was performed, continue the procedure with Step 16.

**Note:** If an ANSI point code will be assigned to the GTT action entry when this procedure is completed, the `NGTI` value in the GT modification entry must be 2.

16. Change the GTT action entry using the `chg-gttact` command.
Table 127: GTT Actions Parameter Combinations shows the parameter combinations that can be used with the chg-gttact command.

For this example, enter these commands.

```plaintext
```

When this command has successfully completed, this message should appear.

```plaintext
rlnhcxa03w 10-07-07 00:29:31 GMT EAGLE5 42.0.0
GTT-ACT table is (15 of 2000) 1% full.
CHG-GTTACT: MASP A - COMPLTD
```

17. Verify the changes using the rtrv-gttact command with the current name of the GTT action entry that was changed, if the name the GTT action entry was not changed in Step 16, or the new name of the GTT action entry if the name of the GTT action entry was changed in Step 16.

For this example, enter these commands.

```plaintext
rtrv-gttact:actid=action50
```

The following is an example of the possible output.

```plaintext
rlnhcxa03w 10-07-07 00:27:31 GMT EAGLE5 42.0.0

ACTID ACTION ATCAPERR ITCAPERR UDTSERR UIMREQD

ACTID ACTION PCA RI SSN MRNSET MAPSET

action50 dup 002-002-002 gt --- 2 ----- CDGTMODID = modid2 CGGTMODID = modid5 LOOPSET = loop1 USEICMSG = on CGPCOGMSG = dflt CGPCA = ---

ACTID ACTION PCI RI SSN MRNSET MAPSET

ACTID ACTION PCN RI SSN MRNSET MAPSET

ACTID ACTION PCN24 RI SSN MRNSET MAPSET

GTT-ACT table is (15 of 2000) 1% full.
rtrv-gttact:actid=action60
The following is an example of the possible output.
```

```plaintext
rlnhcxa03w 10-07-07 00:27:31 GMT EAGLE5 42.0.0
```
18. Backup the new changes using the `chg-db:action=backup:dest=fixed` command. These messages should appear, the active Maintenance and Administration Subsystem Processor (MASP) appears first.

```
BACKUP (FIXED) : MASP A - Backup starts on active MASP.
BACKUP (FIXED) : MASP A - Backup on active MASP to fixed disk complete.
BACKUP (FIXED) : MASP A - Backup starts on standby MASP.
BACKUP (FIXED) : MASP A - Backup on standby MASP to fixed disk complete.
```

## Adding a GTT Action Set

This procedure to add a GTT action set to the database using the `ent-gttaset` command. A GTT action set is a group of GTT actions, provisioned by the `Adding a GTT Action` procedure. The GTT action set is assigned to a GTA entry using either the `ent-gta` or `chg-gta` commands.

The `ent-gttaset` command uses these parameters.

- `:actsn` – The name of the GTT action set consisting of one alphabetic character and up to eight alphanumeric characters.
- `:actid1` – The identifier of the GTT action that is being added to the GTT action set.
- `:actid2` – The identifier of the GTT action that is being added to the GTT action set.
- `:actid3` – The identifier of the GTT action that is being added to the GTT action set.
- `:actid4` – The identifier of the GTT action that is being added to the GTT action set.
- `:actid5` – The identifier of the GTT action that is being added to the GTT action set.
- `:actid6` – The identifier of the GTT action that is being added to the GTT action set.
- `:on=testmode` – The GTT action set is used only by the test message tool.
- `:off=testmode` – The GTT action set is used for real-time message processing.

The values of the `actid` parameters are shown in either the `rtrv-gttact` output or assigned to an existing GTT action set and shown in the `rtrv-gttaset` output.

1. Display the GTT action sets in the database by entering the `rtrv-gttaset` command. This is an example of the possible output.

```
rlghncxa03w 10-07-07 00:29:31 GMT EAGLE5 42.0.0

<table>
<thead>
<tr>
<th>ACTSN</th>
<th>TEST</th>
<th>ActIds</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>act2</td>
<td>off</td>
<td>action2 (DISC),------,------,------,------,------</td>
</tr>
</tbody>
</table>
```
If the `rtrv-gttaset` output contains 20,000 entries, this procedure cannot be performed. The database can contain a maximum of 20,000 GTT action sets.

If the `rtrv-gttaset` output contains less than 20,000 entries, continue the procedure by performing one of these steps.

- If all the GTT actions that will be assigned to the new GTT action set are shown in the `rtrv-gttaset` output, continue the procedure with Step 3.
- If any of the GTT actions that will be assigned to the new GTT action set are not shown in the `rtrv-gttaset` output, continue the procedure with Step 2.

If error message “E3557 Cmd Rej: EGTT must be ON before this command can be entered,” is displayed, the EGTT feature is not on. Perform Adding a Service Module to turn the EGTT feature on and to make sure that the correct hardware is installed and provisioned. After Adding a Service Module has been performed, continue the procedure with Step 2.

2. Display the GTT actions that are in the database by entering the `rtrv-gttact` command. This is an example of the possible output.
If the required GTT actions are shown in the `rtrv-gttact` output, continue the procedure with **Step 3**.

If the required GTT actions are not shown in the `rtrv-gttact` output, perform the *Adding a GTT Action* procedure to add the required GTT actions to the database. After the *Adding a GTT Action* procedure has been performed, continue the procedure with **Step 3**.

3. **Add the GTT action set to the database using the `ent-gttaset` command.**

A GTT action set can contain these combinations of GTT actions.

- A GTT action set can contain a maximum of six GTT actions.
- The GTT action set can contain one GTT action whose `ACT` value is either `disc`, `udts`, `tcaperr`, or `fwd`.
- If the `ACT` value one of the GTT actions in the GTT action set is `fwd`, the `ACT` values of the other GTT actions in the GTT action set can only be `dup`.
- The GTT action set can contain a maximum of five GTT actions whose `ACT` value is `dup`.
- GTT actions whose `ACT` value is `disc`, `udts`, `tcaperr`, or `fwd` must be the last entry in the GTT action set.
- All the `ACTID` values in the GTT action set must be unique.

For this example, enter these commands.

```plaintext
ent-gttaset:actsn=act1:actid1=action1:actid2=action4:actid3=action25
ent-gttaset:actsn=act5:actid1=action1:actid2=action3:actid3=action4:actid4=action20
:actid5=action21:actid6=action17:on=testmode
```

When each of these commands have successfully completed, this message should appear.

```
rlghnca03w 10-07-07 00:29:31 GMT EAGLE5 42.0.0
```
GTT-ASET table is (4 of 20000) 1% full.

ENT-GTTASET: MASP A - COMPLTD

If the on=testmode parameter is specified, this message appears in the output of the ent-gttaset command in addition to the other information that is displayed.

WARNING: Processing of traffic shall be affected when testmode is ON

4. Verify the changes using the rtrv-gttaset command with the actsn parameter and value specified in Step 3.

For this example, enter these commands.

rtrv-gttaset:actsn=act1

rlghncca03w 10-07-07 00:30:31 GMT EAGLE5 42.0.0

ACTSN TEST ActIds

MODE

-----------------------------
act1 off action1 (DUP),action4 (DUP),action25 (FWD),
------,------,------

GTT-ASET table is (4 of 20000) 1% full.

rtrv-gttaset:actsn=act5

rlghncca03w 10-07-07 00:30:31 GMT EAGLE5 42.0.0

ACTSN TEST ActIds

MODE

-----------------------------
act5 on action1 (DUP),action3 (DUP),action4 (DUP),
action20 (DUP),action21 (DUP),action17 (TCAPERR)

GTT-ASET table is (4 of 20000) 1% full.

5. Backup the new changes using the chg-db:action=backup:dest=fixed command. These messages should appear, the active Maintenance and Administration Subsystem Processor (MASP) appears first.

BACKUP (FIXED) : MASP A - Backup starts on active MASP.
BACKUP (FIXED) : MASP A - Backup on active MASP to fixed disk complete.
BACKUP (FIXED) : MASP A - Backup starts on standby MASP.
BACKUP (FIXED) : MASP A - Backup on standby MASP to fixed disk complete.

Removing a GTT Action Set

This procedure to remove a GTT action set from the database using the dlt-gttaset command.

The dlt-gttaset command uses this parameter.

:actsn – The name of the GTT action set shown in the rtrv-gttaset output.
The GTT set action cannot be removed if it is referenced by a GTA entry, configured with the ent-gta or chg-gta commands. The rtrv-gta command output shows the GTA entries.

1. Display the existing GTT action sets from the database by entering this command.
   
   rtrv-gttaset:on=refcnt
   
   This is an example of the possible output.

   rlghncxa03w 10-07-07 00:27:31 GMT EAGLE5 42.0.0

<table>
<thead>
<tr>
<th>ACTSN</th>
<th>REFCNT</th>
<th>TEST</th>
<th>ActIds</th>
</tr>
</thead>
<tbody>
<tr>
<td>action1</td>
<td>0</td>
<td>off</td>
<td>action1 (DUP),-------,--------,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>------,------,------,------,------</td>
</tr>
<tr>
<td>act2</td>
<td>0</td>
<td>off</td>
<td>action2 (DISC),-------,--------,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>------,------,------,------,------</td>
</tr>
<tr>
<td>act3</td>
<td>0</td>
<td>off</td>
<td>action2 (DISC),-------,--------,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>------,------,------,------,------</td>
</tr>
</tbody>
</table>

   GTT-ASET table is (3 of 20000) 1% full.

   If the number of entities that reference the GTT action set, the reference count, that is being removed is 0 (zero), continue the procedure with Step 4. The reference count is shown in the REFCNT column in the rtrv-gttaset output.

   If the number of entities that reference the GTT action set that is being removed is greater than 0 (zero), continue the procedure with Step 2.

2. Display the GTT sets that contain the GTA entries that reference the GTT action set that is being removed. Enter the rtrv-gttset command with the name GTT action set shown in Step 1.

   For this example, enter this command.
   
   rtrv-gttset:actsn=act2
   
   This is an example of the possible output.

   rlghncxa03w 10-07-07 00:28:31 GMT EAGLE5 42.0.0

<table>
<thead>
<tr>
<th>GTTSN</th>
<th>NETDOM</th>
<th>SETTYPE</th>
<th>NDGT</th>
</tr>
</thead>
<tbody>
<tr>
<td>setans010</td>
<td>ansi</td>
<td>CDGTA</td>
<td>6</td>
</tr>
</tbody>
</table>

   GTT-SET table is (8 of 2000) 1% full.

3. Display the GTA entries that are assigned to the GTT set shown in Step 2 by entering the rtrv-gta command with these parameters.

   • :gttsn - The GTTSN value shown in Step 2.
   • :actsn - The actsn parameter value specified in Step 2.

   For this example, enter this command.
   
   rtrv-gta:gttsn=setans010:actsn=act2
   
   This is an example of the possible output.

   rlghncxa03w 10-07-07 00:29:31 GMT EAGLE5 42.0.0
Continue the procedure by performing one of these procedures.

- **Removing Global Title Address Information** to remove the GTA entry that references the GTT action set specified in this step.

- **Changing Global Title Address Information** to remove the GTA entry reference another GTT action set or to reference no GTT action set.

Perform these procedures for each entry shown in this step.

4. Remove the GTT action set from the database using the `dlt-gttaset` command with the `ACTSN` parameter value of the GTT action set that is being removed.

   For this example, enter this command.

   ```
 dlt-gttaset:actsn=act2
   ```

   When the command has successfully completed, this message should appear:

   ```
 rlghncxa03w 10-07-07 00:29:31 GMT EAGLE5 42.1.0
 GTT-ASET table is (2 of 20000) 1% full.
 DLT-GTTASET: MASP A - COMPLTD
   ```

5. Verify the changes using the `rtrv-gttaset` command with the `actsn` parameter value specified in **Step 4**.

   The following message is displayed.

   ```
 E5196 Cmd Rej: GTT Action Set does not exist
   ```

6. Backup the new changes using the `chg-db:action=backup:dest=fixed` command.

   These messages should appear, the active Maintenance and Administration Subsystem Processor (MASP) appears first.

   ```
 BACKUP (FIXED) : MASP A - Backup starts on active MASP.
 BACKUP (FIXED) : MASP A - Backup on active MASP to fixed disk complete.
 BACKUP (FIXED) : MASP A - Backup starts on standby MASP.
 BACKUP (FIXED) : MASP A - Backup on standby MASP to fixed disk complete.
   ```
Changing a GTT Action Set

This procedure is used to change the attributes of a GTT action set using the chg-gttaset command. The chg-gttaset command uses these parameters.

:actsn – The current name of the GTT action set shown in the rtrv-gttaset output.

:nactsn – The new name of the GTT action set consisting of one alphabetic character and up to eight alphanumeric characters.

:actid1 – The identifier of the GTT action that is being added to the GTT action set.

:actid2 – The identifier of the GTT action that is being added to the GTT action set.

:actid3 – The identifier of the GTT action that is being added to the GTT action set.

:actid4 – The identifier of the GTT action that is being added to the GTT action set.

:actid5 – The identifier of the GTT action that is being added to the GTT action set.

:actid6 – The identifier of the GTT action that is being added to the GTT action set.

:on=testmode – The GTT action set is used only by the test message tool.

:off=testmode – The GTT action set is used for real-time message processing.

The values of the actid parameters are shown in either the rtrv-gttact output or assigned to an existing GTT action set and shown in the rtrv-gttaset output.

1. Display the existing GTT action sets in the database by entering this command.

   rtrv-gttaset:on=refcnt

   This is an example of the possible output.

   rlghncxa03w 10-07-07 00:29:31 GMT EAGLE5 42.0.0

   ACTSN  REFCNT  TEST  ActIds
   MODE
   -------------------------------
   act1   0     off  action1   (DUP),action4   (DUP),action25  (FWD),
           ------,------,------
   act2   1     off  action2   (DISC),------,------,
           ------,------,------
   act3   0     off  action2   (DISC),------,------,
           ------,------,------
   act5   0     on   action1   (DUP),action3   (DUP),action4   (DUP),
           action20  (DUP),action21  (DUP),action17  (TCAPERR)

   GTT-ASET table is (4 of 20000) 1% full.

   If error message “E3557 Cmd Rej: EGTT must be ON before this command can be entered” is displayed, this procedure cannot be performed.

   If error message “E3557 Cmd Rej: EGTT must be ON before this command can be entered” is displayed, and the rtrv-gttaset output contains no entries, this procedure cannot be performed.

   If error message “E3557 Cmd Rej: EGTT must be ON before this command can be entered” is not displayed and entries are displayed in the rtrv-gttaset output, continue the procedure by performing one of these steps.
If all the new ACTID entries for the GTT action set are shown in the `rtrv-gttaset` output, continue the procedure with Step 3.

If any of the new ACTID entries for the GTT action set are not shown in the `rtrv-gttaset` output, continue the procedure with Step 2.

2. Display the GTT action entries in the database by entering the `rtrv-gttact` command.

This is an example of the possible output.

```
910-6277-001 Revision A, January 2012
```
If the required GTT actions are shown in the `rtrv-gttact` output, continue the procedure with Step 3.

If the required GTT actions are not shown in the `rtrv-gttact` output, perform the Adding a GTT Action procedure to add the required GTT actions to the database. After the Adding a GTT Action procedure has been performed, continue the procedure with Step 3.

3. Change the GTT action set using the `chg-gttaset` command.

A GTT action set can contain these combinations of GTT actions.

- A GTT action set can contain a maximum of six GTT actions.
- The GTT action set can contain one GTT action whose `ACT` value is either `disc`, `udts`, `tcaperr`, or `fwd`.
- If the `ACT` value one of the GTT actions in the GTT action set is `fwd`, the `ACT` values of the other GTT actions in the GTT action set can only be `dup`.
- The GTT action set can contain a maximum of five GTT actions whose `ACT` value is `dup`.
- GTT actions whose `ACT` value is `disc`, `udts`, `tcaperr`, or `fwd` must be the last entry in the GTT action set.
- All the `ACTID` values in the GTT action set must be unique.

If the name of the GTT action set will be changed with the `nactsn` parameter, the `nactsn` parameter value cannot be `none`. When the GTT action set name is changed, all references to the current GTT action set name are changed to the new GTT action set name.

For this example, enter this command.

```
```

When this command has successfully completed, this message should appear.

```
rghncxa03w 10-07-07 00:29:31 GMT EAGLE5 42.0.0
GTT-ASET table is (4 of 20000) 1% full.
CHG-GTTASET: MASP A - COMPLTD
```

If the `on=testmode` parameter is specified, this message appears in the output of the `chg-gttaset` command in addition to the other information that is displayed.

```
WARNING: Processing of traffic shall be affected when testmode is ON
```

4. Verify the changes using the `rtrv-gttaset` command with the current name of the GTT action set that was changed, if the name the GTT action set was not changed in Step 3, or the new name of the GTT action set if the name of the GTT action set was changed in Step 3.
For this example, enter this command.

```
rtrv-gttaset:actsn=act10
```

The following is an example of the possible output.

```
righncxa03w 10-07-07 00:27:31 GMT EAGLE5 42.0.0
ACTSN TEST ActIds
 MODE
act10 on action20 (DUP),action4 (DUP),action21 (DUP),
 action25 (FWD),------,------

GTT-ASET table is (4 of 20000) 1% full.
```

5. Backup the new changes using the `chg-db:action=backup:dest=fixed` command.

These messages should appear, the active Maintenance and Administration Subsystem Processor (MASP) appears first.

```
BACKUP (FIXED) : MASP A - Backup starts on active MASP.
BACKUP (FIXED) : MASP A - Backup on active MASP to fixed disk complete.
BACKUP (FIXED) : MASP A - Backup starts on standby MASP.
BACKUP (FIXED) : MASP A - Backup on standby MASP to fixed disk complete.
```

Adding a GTT Action Path Entry

This procedure to add a GTT action path entry to the database using the `ent-gttapath` command. The `ent-gttapath` command uses these parameters.

- `:gtttpn` – The name of the GTT action path entry consisting of one alphabetic character followed by up to four alphanumeric characters.
- `:cdgttsn` – The name of the GTT set whose SETTYPE value is CDGTA.
- `:cdgta` – The GTA value in the GTA entry shown in the `rtrv-gta` output that is assigned to the CDGTA GTT set.
- `:cggttsn` – The name of the GTT set whose SETTYPE value is CGGTA.
- `:cggta` – The GTA value in the GTA entry shown in the `rtrv-gta` output that is assigned to the CGGTA GTT set.
- `:opgttsn` – The name of the GTT set whose SETTYPE value is OPCODE.
- `:opcode` – The OPCODE value in the GTA entry shown in the `rtrv-gta` output that is assigned to the OPCODE GTT set.
- `:acn` – The ACN value in the GTA entry shown in the `rtrv-gta` output that is assigned to the OPCODE GTT set.
- `:family` – The FAMILY value in the GTA entry shown in the `rtrv-gta` output that is assigned to the OPCODE GTT set.
pkgtype – The PKGTYPE value in the GTA entry shown in the rtrv-gta output that is assigned to the OPCODE GTT set.

One of the features shown in Table 128: GTT Actions Features Part Numbers must be enabled to add a GTT action path to the database.

**Table 128: GTT Actions Features Part Numbers**

<table>
<thead>
<tr>
<th>GTT Actions Features</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>GTT Action - DISCARD</td>
<td>893027501</td>
</tr>
<tr>
<td>GTT Action - Duplicate</td>
<td>893027601</td>
</tr>
<tr>
<td>GTT Action - Forward</td>
<td>893037501</td>
</tr>
</tbody>
</table>

The status of these features is shown in the rtrv-ctrl-feat command output. If the desired feature is not enabled, perform the Activating the GTT Actions Features procedure to enable the desired feature.

1. Display the GTT action path entries in the database by entering the rtrv-gttapath command. This is an example of the possible output.

```
rghncxa03w 10-07-07 00:27:31 GMT EAGLE5 42.0.0

GTT Actions Features
OpData
 GTT Action - DISCARD
 GTT Action - Duplicate
 GTT Action - Forward

GTT-PATH table is (7 of 10000) 1% full.

If error message “E3451 Cmd Rej: Controlled Feature is not enabled” is not displayed and the rtrv-gttapath output contains 10,000 entries, this procedure cannot be performed. The database can contain a maximum of 10,000 GTT action sets.
If error message “E3451 Cmd Rej: Controlled Feature is not enabled” is not displayed and the rtrv-gttpath output contains less than 10,000 entries, continue the procedure with Step 2.

If error message “E3451 Cmd Rej: Controlled Feature is not enabled” is displayed, perform the Activating the GTT Actions Features procedure to enable one or more of the GTT Actions features. After the Activating the GTT Actions Features procedure has been performed, continue the procedure with Step 2.

2. Display the GTT sets in the database by entering the rtrv-gttset command.

This is an example of the possible output.

```
rlghncxa03w 10-07-07 00:29:31 GMT EAGLE5 42.0.0

<table>
<thead>
<tr>
<th>GTTSN</th>
<th>NETDOM</th>
<th>SETTYPE</th>
<th>NDGT</th>
</tr>
</thead>
<tbody>
<tr>
<td>cdgtt1</td>
<td>ansi</td>
<td>CDGTA</td>
<td>6</td>
</tr>
<tr>
<td>opcode1</td>
<td>ansi</td>
<td>OPCODE</td>
<td>-</td>
</tr>
<tr>
<td>opcode2</td>
<td>itu</td>
<td>OPCODE</td>
<td>-</td>
</tr>
<tr>
<td>opcode3</td>
<td>ansi</td>
<td>OPCODE</td>
<td>-</td>
</tr>
<tr>
<td>cdssn1</td>
<td>ansi</td>
<td>CDSSN</td>
<td>-</td>
</tr>
<tr>
<td>cggta1</td>
<td>ansi</td>
<td>CGGTA</td>
<td>0</td>
</tr>
<tr>
<td>cdgtt2</td>
<td>itu</td>
<td>CDGTA</td>
<td>0</td>
</tr>
<tr>
<td>cgpc1</td>
<td>ansi</td>
<td>CGPC</td>
<td>-</td>
</tr>
<tr>
<td>cgpc2</td>
<td>ansi</td>
<td>CGSSN</td>
<td>-</td>
</tr>
<tr>
<td>cgssn2</td>
<td>ansi</td>
<td>CGSSN</td>
<td>-</td>
</tr>
<tr>
<td>opc2</td>
<td>ansi</td>
<td>OPC</td>
<td>-</td>
</tr>
<tr>
<td>opcode6</td>
<td>itu</td>
<td>OPCODE</td>
<td>-</td>
</tr>
<tr>
<td>opcode7</td>
<td>itu</td>
<td>OPCODE</td>
<td>-</td>
</tr>
<tr>
<td>cdssn6</td>
<td>itu</td>
<td>CDSSN</td>
<td>-</td>
</tr>
<tr>
<td>cdssn7</td>
<td>itu</td>
<td>CDSSN</td>
<td>-</td>
</tr>
<tr>
<td>setans010</td>
<td>ansi</td>
<td>CDGTA</td>
<td>6</td>
</tr>
<tr>
<td>cggtset1</td>
<td>ansi</td>
<td>CGGTA</td>
<td>6</td>
</tr>
</tbody>
</table>
```

A CDGTA GTT set, CGGTA GTT set, or OPCODE GTT set must be specified for the GTT action path.

If the desired GTT sets are not shown in the rtrv-gttset output, perform the Adding a GTT Set procedure to add the required GTT sets. After the required GTT sets have been added, perform the Adding Global Title Address Information procedure to add the GTA entries with the information required for the GTT action path.

If all the desired information for the GTT action path entry was added to the database by performing the Adding a GTT Set and the Adding Global Title Address Information procedures, continue the procedure with Step 4.

If any of the GTT sets shown in the rtrv-gttset output will be used for the GTT action path entry, continue the procedure with Step 3.

3. Display the GTA entries that are associated with the GTT set shown in Step 2 by entering the rtrv-gta command with the name of the GTT set.

For this example enter these commands.

```
rtrv-gta:gttsn=cdgtt1
```

This is an example of the possible output.

```
rlghncxa03w 10-07-07 00:29:31 GMT EAGLE5 42.0.0

<table>
<thead>
<tr>
<th>GTTSN</th>
<th>NETDOM</th>
<th>SETTYPE</th>
<th>NDGT</th>
</tr>
</thead>
</table>
```

This is an example of the possible output.

rtrv-gta:gttsn=opcode6

If a CDGTA GTT set will be specified for the GTT action path entry (the GTT action path \texttt{cdgta} parameter value), a value must be in the GTA column of a GTA entry (the GTT action path \texttt{cdgta} parameter value) that is assigned to the CDGTA GTT set.

If a CGGTA GTT set will be specified for the GTT action path entry (the GTT action path \texttt{cggta} parameter value), a value must be in the GTA column of a GTA entry (the GTT action path \texttt{cggta} parameter value) that is assigned to the CGGTA GTT set.

If an OPCODE GTT set will be specified for the GTT action path entry (the GTT action path \texttt{opgta} parameter value), these values must be in the GTA entry that is assigned to the OPCODE GTT set.

• GTT action path OPCODE value must be in the OPCODE column of the GTA entry.
• GTT action path ACN value must be in the ACN column of an ITU GTA entry.
• GTT action path FAMILY value must be in the FAMILY column of an ANSI GTA entry.
• GTT action path PKGTYPE value must be in the PKGTYPE column of the GTA entry.

If the required information for the GTT action path entry is shown in the \texttt{rtrv-gta} output, continue the procedure with \textit{Step 4}.

If the required information for the GTT action path entry is not shown in the \texttt{rtrv-gta} output, continue the procedure by performing one of these steps.
4. Add the GTT action path entry to the database using the `ent-gttapath` command with these parameters.

If a CDGTA GTT set will be specified for the GTT action path entry, specify these parameters.

- `cdgttsn` - the name of the GTT set shown in Step 2 or provisioned with the Adding a GTT Set procedure whose SETTYPE value is CDGTA.
- `cdgta` - the GTA value shown in Step 3 or provisioned with the Adding Global Title Address Information procedure. The GTA entry must be associated with the `cdgttsn` parameter value.

If a CGGTA GTT set will be specified for the GTT action path entry, specify these parameters.

- `cggttsn` - the name of the GTT set shown in Step 2 or provisioned with the Adding a GTT Set procedure whose SETTYPE value is CGGTA.
- `cggta` - the GTA value shown in Step 3 or provisioned with the Adding Global Title Address Information procedure. The GTA entry must be associated with the `cggttsn` parameter value.

If an OPCODE GTT set will be specified for the GTT action path entry, specify these parameters.

- `opgttsn` - the name of the GTT set shown in Step 2 or provisioned with the Adding a GTT Set procedure whose SETTYPE value is CDGTA.
- If the OPCODE GTA entry is an ANSI OPCODE GTA entry, specify the `family` and `pkgtype` parameters and values shown in Step 3 or provisioned with the Adding Global Title Address Information procedure. The GTA entry must be associated with the `opgttsn` parameter value.
- If the OPCODE GTA entry is an ITU OPCODE GTA entry, specify the `acn` and `pkgtype` parameters and values shown in Step 3 or provisioned with the Adding Global Title Address Information procedure. The GTA entry must be associated with the `opgttsn` parameter value.

For this example, enter these commands.

```
ent-gttapath:gttpn=pth10:cdgttsn=cdgtt1:cdgta=919460
ent-gttapath:gttpn=pth11:cdgttsn=cdgtt1:cdgta=919460:cggttsn=cggta1:cggta=800555
ent-gttapath:gttpn=pth12:cdgttsn=cdgtt1:cdgta=919460:cggttsn=cggta1:cggta=800555
:opgttsn=opccode11:opcode=100:family=20:pkgtype=any
ent-gttapath:gttpn=pth13:opgttsn=opcode6:opcode=60:acn=90:pkgtype=any
```

When each of these commands have successfully completed, this message should appear.

```
rlghncxa03w 10-07-07 00:29:31 GMT EAGLE5 42.0.0
GTT-PATH table is (11 of 10000) 1% full.
ENT-GTTAPATH: MASP A - COMPLTD
```
5. Verify the changes using the `rtrv-gttapath` command with the `gttpn` parameter and value specified in Step 4.

For this example, enter these commands.

```
rtrv-gttapath:gttpn=pth10
```

```
rlhcncxa03w 10-07-07 00:30:31 GMT EAGLE5 42.0.0
GTTPN OPGTTSN CGGTTSN CDGTTSN
--------------------------------------------------
pth10 --------- --------- cdgtt1
    CDGTA = 919460                       ECDGTA = 919460

GTT-PATH table is (11 of 10000) 1% full.
```

```
rtrv-gttapath:gttpn=pth11
```

```
rlhcncxa03w 10-07-07 00:30:31 GMT EAGLE5 42.0.0
GTTPN OPGTTSN CGGTTSN CDGTTSN
--------------------------------------------------
pth11 opccode11 --------- cdgtt1
    CGGTA = 800555                       ECGGTA = 800555
    CDGTA = 919460                       ECDGTA = 919460

GTT-PATH table is (11 of 10000) 1% full.
```

```
rtrv-gttapath:gttpn=pth12
```

```
rlhcncxa03w 10-07-07 00:30:31 GMT EAGLE5 42.0.0
GTTPN OPGTTSN CGGTTSN CDGTTSN
--------------------------------------------------
pth12 opcode6 --------- ---------
    OPCODE = 60     PKGTYPE = any        ACN = 90
    CGGTA = 800555                       ECGGTA = 800555
    CDGTA = 919460                       ECDGTA = 919460

GTT-PATH table is (11 of 10000) 1% full.
```

```
rtrv-gttapath:gttpn=pth13
```

```
rlhcncxa03w 10-07-07 00:30:31 GMT EAGLE5 42.0.0
GTTPN OPGTTSN CGGTTSN CDGTTSN
--------------------------------------------------
pth13 opcode6 ---------
    OPCODE = 60     PKGTYPE = any        ACN = 90

GTT-PATH table is (11 of 10000) 1% full.
```
6. Backup the new changes using the `chg-db:action=backup:dest=fixed` command. These messages should appear, the active Maintenance and Administration Subsystem Processor (MASP) appears first.

```
BACKUP (FIXED) : MASP A - Backup starts on active MASP.
BACKUP (FIXED) : MASP A - Backup on active MASP to fixed disk complete.
BACKUP (FIXED) : MASP A - Backup starts on standby MASP.
BACKUP (FIXED) : MASP A - Backup on standby MASP to fixed disk complete.
```

Removing a GTT Action Path Entry

This procedure is used to remove a GTT action path entry from the database using the `dlt-gttapath` command.

The `dlt-gttapath` command uses this parameter.

:gttpn – The name of the GTT action path entry as shown in the `rtrv-gttapath` output.

1. Display the existing GTT action path entries in the database by entering the `rtrv-gttapath` command.

This is an example of the possible output.

```
rlghncxa03w 10-07-07 00:27:31 GMT EAGLE5 42.0.0

<table>
<thead>
<tr>
<th>GTTPN</th>
<th>OPGTTSN</th>
<th>CGGTTSN</th>
<th>CDGTTSN</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>path1</td>
<td>---------</td>
<td>setans010</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CDGTA = 336684</td>
<td>ECDGTA = 336684</td>
<td></td>
</tr>
<tr>
<td>path2</td>
<td>opcode1</td>
<td>cggtset1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>OPCODE = 10</td>
<td>PKGTYPE = any</td>
<td>FAMILY = 20</td>
</tr>
<tr>
<td></td>
<td>CGGTA = 333333</td>
<td>ECGGTA = 333333</td>
<td></td>
</tr>
<tr>
<td>path3</td>
<td>---------</td>
<td>cggtset1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CGGTA = 333333</td>
<td>ECGGTA = 333333</td>
<td></td>
</tr>
<tr>
<td>path4</td>
<td>opcode1</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td></td>
<td>OPCODE = 10</td>
<td>PKGTYPE = any</td>
<td>FAMILY = 20</td>
</tr>
<tr>
<td>path5</td>
<td>opcode2</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td></td>
<td>OPCODE = 30</td>
<td>PKGTYPE = any</td>
<td>ACN = 50</td>
</tr>
<tr>
<td>path6</td>
<td>opcode2</td>
<td>cggtset1</td>
<td>setans010</td>
</tr>
<tr>
<td></td>
<td>OPCODE = 30</td>
<td>PKGTYPE = any</td>
<td>ACN = 50</td>
</tr>
<tr>
<td></td>
<td>CGGTA = 333333</td>
<td>ECGGTA = 333333</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CDGTA = 336684</td>
<td>ECDGTA = 336684</td>
<td></td>
</tr>
<tr>
<td>path7</td>
<td>opcode1</td>
<td>cggtset1</td>
<td>setans010</td>
</tr>
<tr>
<td></td>
<td>OPCODE = 10</td>
<td>PKGTYPE = any</td>
<td>FAMILY = 20</td>
</tr>
<tr>
<td></td>
<td>CGGTA = 333333</td>
<td>ECGGTA = 333333</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CDGTA = 336684</td>
<td>ECDGTA = 336684</td>
<td></td>
</tr>
</tbody>
</table>

GTT-PATH table is (7 of 10000) 1% full.

If no entries are displayed in this step, this procedure cannot be performed.
If entries are displayed in this step, continue the procedure with Step 2.

2. Remove the GTT action path entry from the database by entering the `dlt-gttapath` command with the name of the GTT action path entry that will be removed.

For this example, enter this command.

```
dlt-gttapath:gttpn=path7
```

When the command has successfully completed, this message should appear:

```
rlghncxa03w 09-07-07 00:29:31 GMT EAGLE5 41.1.0
GTT-PATH table is (6 of 10000) 1% full.
DLT-GTTAPATH: MASP A - COMPLTD
```

3. Verify the changes using the `rtrv-gttapath` command with the `gttpn` parameter value specified in Step 2.

For this example, enter this command.

```
rtrv-gttapath:gttpn=path7
```

The following message is displayed.

```
E5378 Cmd Rej: Specified path name doesn't exist
```

4. Backup the new changes using the `chg-db:action=backup:dest=fixed` command.

These messages should appear, the active Maintenance and Administration Subsystem Processor (MASP) appears first.

```
BACKUP (FIXED) : MASP A - Backup starts on active MASP.
BACKUP (FIXED) : MASP A - Backup on active MASP to fixed disk complete.
BACKUP (FIXED) : MASP A - Backup starts on standby MASP.
BACKUP (FIXED) : MASP A - Backup on standby MASP to fixed disk complete.
```

### Changing a GTT Action Path Entry

This procedure is used to change the attributes of a GTT action path entry using the `chg-gttapath` command.

The `chg-gttapath` command uses these parameters.

- `gttpn` – The current name of the GTT action path entry shown in the `rtrv-gttapath` output.
- `ngttpn` – The new name of the GTT action path entry consisting of one alphabetic character followed by up to four alphanumeric characters.
- `cdgttsn` – The name of the GTT set whose `SETTYPE` value is CDGTA.
- `cdgta` – The GTA value in the GTA entry shown in the `rtrv-gta` output that is assigned to the CDGTA GTT set.
- `cggttsn` – The name of the GTT set whose `SETTYPE` value is CGGTA.
:cggtta – The GTA value in the GTA entry shown in the rtrv-gta output that is assigned to the CGGTA GTT set.

:opgttsn – The name of the GTT set whose SETTYPE value is OPCODE.

:opcode – The OPCODE value in the GTA entry shown in the rtrv-gta output that is assigned to the OPCODE GTT set.

:acn – The ACN value in the GTA entry shown in the rtrv-gta output that is assigned to the OPCODE GTT set.

:family – The FAMILY value in the GTA entry shown in the rtrv-gta output that is assigned to the OPCODE GTT set.

:pkgtype – The PKGTYPE value in the GTA entry shown in the rtrv-gta output that is assigned to the OPCODE GTT set.

1. Display the existing GTT action path entries in the database using the rtrv-gttapath command. This is an example of the possible output.

```
r1ghncxa03w 10-07-07 00:27:31 GMT EAGLE5 42.0.0

+--+
| GTTPN | OPGTTSN | CGGTTSN | CDGTTSN |
|---------+---------+---------+---------|
path1	--------	---------	setans010
	CDGTA = 336684	ECDGTA = 336684	
path2	opcode1	cggtset1	--------
	OPCODE = 10	PKGTYPE = any	FAMILY = 20
	CGGTA = 333333	ECGGTA = 333333	
path3	--------	cggtset1	--------
	CGGTA = 333333	ECGGTA = 333333	
path4	opcode1	--------	--------
	OPCODE = 10	PKGTYPE = any	FAMILY = 20
path5	opcode2	--------	--------
	OPCODE = 30	PKGTYPE = any	ACN = 50
	ACN = 50	ECGGTA = 333333	ECDGTA = 336684
path6	opcode2	cggtset1	setans010
	OPCODE = 30	PKGTYPE = any	ACN = 50
	CGGTA = 333333	ECGGTA = 333333	ECDGTA = 336684
path7	opcode1	cggtset1	setans010
	OPCODE = 10	PKGTYPE = any	FAMILY = 20
	CGGTA = 333333	ECGGTA = 333333	ECDGTA = 336684
pth10	--------	--------	cgdta1
	CDGTA = 919460	ECDGTA = 919460	
pth11	--------	cgdta1	cgdta1
	CGGTA = 800555	ECGGTA = 800555	ECDGTA = 919460
pth12	opcode11	cgdta1	cgdta1
	OPCODE = 100	PKGTYPE = any	FAMILY = 20
	CGGTA = 800555	ECGGTA = 800555	ECDGTA = 919460
+--+
```
If error message “E3451 Cmd Rej: Controlled Feature is not enabled” is displayed, this procedure cannot be performed as there are no entries to change.

If error message “E3451 Cmd Rej: Controlled Feature is not enabled” is not displayed continue the procedure with Step 2.

2. Display the GTT sets in the database by entering the `rtrv-gttset` command.

This is an example of the possible output.

```
rightcxa03w 10-07-07 00:29:31 GMT EAGLE5 42.0.0

GTTSN NETDOM SETTYPE NDGT
cdgtt1 ansi CDGTA 6
opcode1 ansi OPCODE
opcode2 itu OPCODE
opcode3 ansi OPCODE
cdssn1 ansi CDSSN
cggtal ansi CGGTA 0
cdgtt2 itu CDGTA 0
cgpc1 ansi CGPC
cgpc2 ansi CGSSN
cgssn2 ansi CGSSN
opc2 ansi OPC
opcode6 itu OPCODE
opcode7 itu OPCODE
cdssn6 itu CDSSN
cdssn7 itu CDSSN
setans010 ansi CDGTA 6
cggta1 ansi CGGTA 6
cggta3 ansi CGGTA 6
```

A CDGTA GTT set, CGGTA GTT set, or OPCODE GTT set must be specified for the GTT action path.

If the desired GTT sets are not shown in the `rtrv-gttset` output, perform the Adding a GTT Set procedure to add the required GTT sets. After the required GTT sets have been added, perform the Adding Global Title Address Information procedure to add the GTA entries with the information required for the GTT action path.

If all the desired information for the GTT action path entry was added to the database by performing the Adding a GTT Set and the Adding Global Title Address Information procedures, continue the procedure with Step 4.

If any of the GTT sets shown in the `rtrv-gttset` output will be used for the GTT action path entry, continue the procedure with Step 3.

3. Display the GTA entries that are associated with the GTT set shown in Step 2 by entering the `rtrv-gta` command with the name of the GTT set.

For this example enter these commands.

```
rtrv-gta:gttsn=cdgtt1
```
This is an example of the possible output.

righncxa03w 10-07-07 00:29:31 GMT EAGLE5 42.0.0

GTTSN NETDOM SETTYPE NDGT
cdgt1 ansi CDGTA 6

GTA table is (14 of 269999) 1% full.

START GTA END GTA XLAT RI PC
919460  919460 DPC SSN  002-002-002
  SSN=--- CGGT=no CGGTMOD=NO
  GTMOTHID=--------- TESTMODE=off
  LOOPSET = none FALLBACK=sysdflt CGCNVSN=---------
  OPTSN=--------- CGSELID=----- CDSELID=-----
  ACTSN=--------- PPMEASREQD= NO

rtrv-gta:gttsn=cggta3

This is an example of the possible output.

righncxa03w 10-07-07 00:29:31 GMT EAGLE5 42.0.0

GTTSN NETDOM SETTYPE NDGT
cggta3 ansi CGGT 6

GTA table is (14 of 269999) 1% full.

START GTA END GTA XLAT RI PC
800555  800555 DPC SSN  002-002-002
  SSN=--- CGGT=no CGGTMOD=NO
  GTMOTHID=--------- TESTMODE=off
  LOOPSET = none FALLBACK=sysdflt CGCNVSN=---------
  OPTSN=--------- CGSELID=----- CDSELID=-----
  ACTSN=--------- PPMEASREQD= NO

rtrv-gta:gttsn=opcode6

This is an example of the possible output.

righncxa03w 10-07-07 00:29:31 GMT EAGLE5 42.0.0

GTTSN NETDOM SETTYPE NDGT
opcode6 itu OPCODE -

GTA table is (14 of 269999) 1% full.

FAMILY OPCODE PKGTYPE XLAT RI PC
ACN 60 OPCODE PKGTYPE XLAT RI PC
60 90 any DPC SSN  2-002-2
  SSN=--- CGGT=no CGGTMOD=NO
  GTMOTHID=--------- TESTMODE=off
  LOOPSET = none FALLBACK=sysdflt CGCNVSN=---------
  OPTSN=--------- CGSELID=----- CDSELID=----- OPCSN=---------
  ACTSN=--------- PPMEASREQD= NO
If a CDGTA GTT set will be specified for the GTT action path entry (the GTT action path cdgttsn parameter value), a value must be in the GTA column of a GTA entry (the GTT action path cdgta parameter value) that is assigned to the CDGTA GTT set.

If a CGGTA GTT set will be specified for the GTT action path entry (the GTT action path cggqtsn parameter value), a value must be in the GTA column of a GTA entry (the GTT action path cggta parameter value) that is assigned to the CGGTA GTT set.

If an OPCODE GTT set will be specified for the GTT action path entry (the GTT action path opgqtsn parameter value), these values must be in the GTA entry that is assigned to the OPCODE GTT set.

- GTT action path OPCODE value must be in the OPCODE column of the GTA entry.
- GTT action path ACN value must be in the ACN column of an ITU GTA entry.
- GTT action path FAMILY value must be in the FAMILY column of an ANSI GTA entry.
- GTT action path PKGTYPE value must be in the PKGTYPE column of the GTA entry.

If the required information for the GTT action path entry is shown in the rtrv-gta output, continue the procedure with Step 4.

if the required information for the GTT action path entry is not shown in the rtrv-gta output, continue the procedure by performing one of these steps.

- If other GTT sets of the set type that you wish to use for the GTT action path entry are shown in the Step 2 and you wish to use one of these GTT sets, repeat this step with the name of the GTT set shown in Step 2.
- If other GTT sets of the set type that you wish to use for the GTT action path entry are not shown in the Step 2, add the required information for the GTT action path entry by performing the Adding Global Title Address Information procedure with the name of the GTT set that was specified in this step. After the Adding Global Title Address Information procedure has been performed, continue the procedure with Step 4.

4. Change the GTT action path entry using the chg-gttapath command.

For this example, enter this command.

```
```

When this command has successfully completed, this message should appear.

```
rlghncxa03w 10-07-07 00:29:31 GMT EAGLE5 42.0.0
GTT-PATH table is (11 of 10000) 1% full.
CHG-GTTAPATH: MASP A - COMPLTD
```

5. Verify the changes using the rtrv-gttapath command with the current name of the GTT action path entry that was changed, if the name the GTT action path entry was not changed in Step 4, or the new name of the GTT action path entry if the name of the GTT action path entry was changed in Step 4.

For this example, enter this command.

```
rtrv-gttapath:gttpn=pth20
```
The following is an example of the possible output.

```
rlghncxa03w 10-07-07 00:27:31 GMT EAGLE5 42.0.0

GTTPN OPGTTSN CGGTTSN CDGTTSN

pth20 opcode6 cggtta3 cdgtt1

OPCODE = 90 PKGTYPE = any ACN = 60
CGGTA = 800555 ECGGTA = 800555
CDGTA = 919460 ECDGTA = 919460

GTT-PATH table is (11 of 10000) 1% full.
```

6. Backup the new changes using the `chg-db:action=backup:dest=fixed` command. These messages should appear, the active Maintenance and Administration Subsystem Processor (MASP) appears first.

```
BACKUP (FIXED) : MASP A - Backup starts on active MASP.
BACKUP (FIXED) : MASP A - Backup on active MASP to fixed disk complete.
BACKUP (FIXED) : MASP A - Backup starts on standby MASP.
BACKUP (FIXED) : MASP A - Backup on standby MASP to fixed disk complete.
```

### Changing the Unique GTT Selector Option

This procedure is used to change the unique GTT selector option using the `chg-sccpopts` command with this parameter.

`:unqgttsel` – This parameter specifies whether a GTT selector search is performed on overlapped GTT selectors. This parameter has two values.

- **bestmatch** - Overlapped GTT selectors are searched if non-overlapped GTT selectors are not found.
- **exactmatch** - Only non-overlapped GTT selectors are searched.

1. Display the existing unique GTT selector option value by entering the `rtrv-sccpopts` command. This is an example of the possible output.

```
rlghncxa03w 10-07-17 16:02:17 GMT EAGLE5 42.0.0

SCCP OPTIONS

UNQGTTSEL bestmatch
```

The `rtrv-sccpopts` output contains other fields that are not used in this procedure. If you wish to see these fields, refer to the `rtrv-sccpopts` command description in the Commands Manual.

2. Change the unique GTT selector option value by entering the `chg-sccpopts` command with the `unqgttsel` parameter.

For this example, enter this command.

```
chg-sccpopts:unqgttsel=exactmatch
```
When the `chg-sccpopts` command has successfully completed, this message should appear.

```
rlghncxa03w 10-07-07 00:22:57 GMT EAGLE5 42.0.0
CHG-STPOPTS: MASP A - COMPLTD
```

3. Verify the changes using the `rtrv-sccpopts` command. This is an example of the possible output.

```
rlghncxa03w 10-07-17 16:02:05 GMT EAGLE5 42.0.0
SCCP OPTIONS

UNQGTTSSEL exactmatch
```

The `rtrv-sccpopts` output contains other fields that are not used in this procedure. If you wish to see these fields, refer to the `rtrv-sccpopts` command description in the Commands Manual.

4. Back up the new changes using the `chg-db:action=backup:dest=fixed` command. These messages should appear, the active Maintenance and Administration Subsystem Processor (MASP) appears first.

```
BACKUP (FIXED) : MASP A - Backup starts on active MASP.
BACKUP (FIXED) : MASP A - Backup on active MASP to fixed disk complete.
BACKUP (FIXED) : MASP A - Backup starts on standby MASP.
BACKUP (FIXED) : MASP A - Backup on standby MASP to fixed disk complete.
```
Appendix A

Controlled Feature Activation Procedures

Topics:

- Introduction.....724
- Activating the IGTTLS feature.....724
- Clearing a Temporary FAK Alarm.....728
- Turning the IGTTLS Feature Off.....729
- Enabling the XGTT Table Expansion Feature.....731
- Enabling the XMAP Table Expansion Feature.....736
- Activating the ANSI/ITU SCCP Conversion Feature.....741
- Activating the Flexible GTT Load Sharing Feature.....746
- Turning the Flexible GTT Load Sharing Feature Off.....751
- Activating the Origin-Based SCCP Routing Feature.....752
- Activating the Hex Digit Support for GTT Feature.....757
- Activating the Weighted GTT Load Sharing Feature.....761
- Activating the Transaction-Based GTT Load Sharing Feature.....765
- Activating the SCCP Loop Detection Feature.....770
- Activating the E5-SM4G/E5-SM8G-B Throughput Capacity Feature.....774
- Activating the Advanced GT Modification Feature.....780
- Activating the GTT Load Sharing with Alternate Routing Indicator Feature.....784
- Turning the GTT Load Sharing with Alternate Routing Indicator Feature Off.....789
- Activating the Support for 16 GTT Lengths in VGTT Feature.....790
- Activating the Flexible Linkset Optional Based Routing Feature.....794

Appendix A, Controlled Feature Activation Procedures, describes the procedures necessary to activate and deactivate features (features that require a feature access key to be activated) contained in this manual.
<table>
<thead>
<tr>
<th>Feature Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Activating the TCAP Opcode Based Routing Feature</td>
<td>799</td>
</tr>
<tr>
<td>Enabling a TOBR Opcode Quantity</td>
<td>801</td>
</tr>
<tr>
<td>Activating the GTT Actions Features</td>
<td>804</td>
</tr>
<tr>
<td>Activating the XUDT UDT Conversion Feature</td>
<td>810</td>
</tr>
</tbody>
</table>
Introduction

Controlled features are features that are activated using a feature access key. These features can either be on or off, or features that operate at a particular performance level. Only the controlled features that are used in this manual are covered in this appendix.

The feature access key allows the user to enable and activate a controlled feature in the EAGLE 5 ISS by entering either a permanent feature access key or a temporary feature access key. By requiring a feature access key to enable and activate a controlled feature, unauthorized enabling and activation of a controlled feature can be prevented. The feature access key is supplied by Tekelec.

Features enabled with a permanent feature access key remain enabled for as long as the EAGLE 5 ISS remains in service. Once features are permanently enabled, they cannot be disabled.

Features enabled with a temporary feature access key are enabled for only 30 days. On the twenty-third day, seven days before the temporary key expires, a major alarm (UAM 0367) is generated to inform the user that the one or more temporary feature access keys will expire soon.

If a temporary feature access key expires, the controlled feature is disabled and a critical alarm (UAM 0368) is generated.

Any attempts to enable the controlled feature with the temporary feature access key are rejected. The controlled feature can be enabled only by entering the permanent feature access key for the controlled feature.

To clear the critical alarm (UAM 0368), the user can either enter the chg-ctrl-feat command with the alarm=clear parameter, or permanently enable the controlled feature by entering the permanent feature access key for the controlled feature.

Activating the IGTTLS feature

This procedure is used to enable and activate the Intermediate GTT Load Sharing feature.

The feature access key is based on the feature’s part number and the serial number of the EAGLE 5 ISS, making the feature access key site-specific.

The enable-ctrl-feat command enables the Intermediate GTT Load Sharing feature by inputting the feature’s access key and the feature’s part number with these parameters:

: fak – The feature access key generated by the feature access key generator. The feature access key contains 13 alphanumeric characters and is not case sensitive.

If the feature is being enabled with a temporary feature access key, the feature must not be in the in-use, expired, or unavailable state.

The enable-ctrl-feat command requires that the database contain a valid serial number for the EAGLE 5 ISS, and that this serial number is locked. This can be verified with the rtrv-serial-num command. The EAGLE 5 ISS is shipped with a serial number in the database, but the serial number is not locked. The serial number can be changed, if necessary, and locked once the EAGLE 5 ISS is on-site, with the ent-serial-num command. The ent-serial-num command uses these parameters.

:serial – The serial number assigned to the EAGLE 5 ISS. The serial number is not case sensitive.

:lock – Specifies whether or not the serial number is locked. This parameter has only one value, yes, which locks the serial number. Once the serial number is locked, it cannot be changed.

Note: To enter and lock the EAGLE 5 ISS’s serial number, the ent-serial-num command must be entered twice, once to add the correct serial number to the database with the serial parameter, then again with the serial and the lock=yes parameters to lock the serial number. You should verify that the serial number in the database is correct before locking the serial number. The serial number can be found on a label affixed to the control shelf (shelf 1100).

Once the feature has been enabled, the feature must be activated with the chg-ctrl-feat command. The chg-ctrl-feat command uses these parameters:


:status=on – used to activate the features that customer has purchased and enabled.

The status of the controlled features in the EAGLE 5 ISS is shown with the rtrv-ctrl-feat command.

The examples in this procedure are used to enable and activate the Intermediate GTT Load Sharing feature.

1. Display the status of the Intermediate GTT Load Sharing feature by entering the rtrv-ctrl-feat command.

The following is an example of the possible output.

```
rlghncxa03w 06-10-28 21:15:37 GMT EAGLE5 36.0.0
The following features have been permanently enabled:

Feature Name Partnum Status Quantity
Command Class Management 893005801 on ----
LNP Short Message Service 893006601 on ----
Intermed GTT Load Sharing 893006901 off ----
XGTT Table Expansion 893006101 off ----
XMAP Table Expansion 893007710 on 3000
Large System # Links 893005910 on 2000
Routesets 893006401 on 6000
HC-MIM SLK Capacity 893012707 on 64

The following features have been temporarily enabled:

Feature Name Partnum Status Quantity Trial Period Left
Zero entries found.

The following features have expired temporary keys:
```

910-6277-001 Revision A, January 2012
Feature Name | Partnum
---|---
Zero entries found.

If the `rtrv-ctrl-feat` output shows that the feature is permanently enabled, and its status is on, no further action is necessary.

If the feature is permanently enabled, and its status is off, skip steps 2 through 6, and go to step 7.

If the feature is temporarily enabled, and you wish to permanently enable this feature, or the temporary feature access key for that feature has expired, skip steps 2 through 5, and go to step 6.

If the feature is to remain temporarily enabled, and its status is off, skip steps 2 through 6, and go to step 7. If the feature’s status is on, no further action is necessary.

If the feature is to remain temporarily enabled, and its status is on, no further action is necessary.

**Note:** If the `rtrv-ctrl-feat` output in step 1 shows any controlled features, skip steps 2 through 5, and go to step 6. If the `rtrv-ctrl-feat` output shows the HC-MIMSLK Capacity feature with a quantity of 64, steps 2 through 5 must be performed.

2. Display the serial number in the database with the `rtrv-serial-num` command. This is an example of the possible output.

```
rlghncxa03w 06-10-28 21:15:37 GMT EAGLE5 36.0.0
System serial number = nt00001231
System serial number is not locked.
```

**Note:** If the serial number is correct and locked, skip steps 3, 4, and 5, and go to step 6. If the serial number is correct but not locked, skip steps 3 and 4, and go to step 5. If the serial number is not correct, but is locked, this feature cannot be enabled and the remainder of this procedure cannot be performed. Contact the Customer Care Center to get an incorrect and locked serial number changed. Refer to Customer Care Center for the contact information. The serial number can be found on a label affixed to the control shelf (shelf 1100).

3. Enter the correct serial number into the database using the `ent-serial-num` command with the serial parameter.

For this example, enter this command.

```
ent-serial-num:serial=<EAGLE 5 ISS’s correct serial number>
```

When this command has successfully completed, the following message should appear.

```
rlghncxa03w 06-10-28 21:15:37 GMT EAGLE5 36.0.0
ENT-SERIAL-NUM: MASP A - COMPLTD
```

4. Verify that the serial number entered into step 3 was entered correctly using the `rtrv-serial-num` command. This is an example of the possible output.

```
rlghncxa03w 06-10-28 21:15:37 GMT EAGLE5 36.0.0
System serial number = nt00001231
System serial number is not locked.
```
If the serial number was not entered correctly, repeat steps 3 and 4 and re-enter the correct serial number.

5. Lock the serial number in the database by entering the `ent-serial-num` command with the serial number shown in step 2, if the serial number shown in step 2 is correct, or with the serial number shown in step 4, if the serial number was changed in step 3, and with the `lock=yes` parameter.

For this example, enter this command.

```
ent-serial-num:serial=<EAGLE 5 ISS’s serial number>:lock=yes
```

When this command has successfully completed, the following message should appear.

```
ENT-SERIAL-NUM: MASP A - COMPLTD
```

6. Enable the Intermediate GTT Load Sharing feature with either a permanent key or temporary key by entering the `enable-ctrl-feat` command. For this example, enter this command.

```
enable-ctrl-feat:partnum=893006901:fak=<IGTTLS feature access key>
```

**Note:** The values for the feature access key (the `fak` parameter) are provided by Tekelec. If you do not have the feature access key for the Intermediate GTT Load Sharing feature, contact your Tekelec Sales Representative or Account Representative.

When the `enable-ctrl-feat` command has successfully completed, this message should appear.

```
ENABLE-CTRL-FEAT: MASP B - COMPLTD
```

**Note:** If a temporarily enabled feature was permanently enabled in step 6, and the status of the temporarily enabled feature was on, skip step 7 and go to step 8.

7. Display the cards in the EAGLE 5 ISS using the `rtrv-card` command. The IGGTLS features requires that service modules are in the database. This is an example of the possible output.

```
CARD TYPE APPL LSET NAME PORT SLC LSET NAME PORT SLC
1102 TSM GLS
1113 GPSM OAM
1114 TDM-A
1115 GPSM OAM
1116 TDM-B
1117 MDAL
1201 LIMDS0 SS7ANSI sp2 A 0 sp1 B 0
1203 LIMDS0 SS7ANSI sp3 A 0
1204 LIMDS0 SS7ANSI sp3 A 1
1206 LIMDS0 SS7ANSI nsp3 A 1 nsp4 B 1
1216 DCM STPLAN
1308 LIMDS0 SS7ANSI sp6 A 1 sp7 B 0
1314 LIMDS0 SS7ANSI sp7 A 1 sp5 B 1
1317 DCM STPLAN
```

Service modules are shown by the entries SCCP or VSCCP in APPL column. If the `rtrv-card` output shows no service modules, or that the type of service modules required to support the IGGTLS feature is not in the database, perform **Adding a Service Module** to make sure that the proper hardware is in place to support the IGGTLS feature.
8. The Intermediate GTT Load Sharing feature enabled in step 6 must be turned on using the `chg-ctrl-feat` command, specifying the Intermediate GTT Load Sharing feature part number used in step 6 and the `status=on` parameter. For this example, enter this command.

```
chg-ctrl-feat:partnum=893006901:status=on
```

When this command has successfully completed, the following message should appear.

```
rlghncxa03w 06-10-28 21:15:37 GMT EAGLE5 36.0.0
CHG-CTRL-FEAT: MASP B - COMPLTD
```

9. Verify the changes by entering the `rtrv-ctrl-feat` command. The following is an example of the possible output.

```
rlghncxa03w 06-10-28 21:15:37 GMT EAGLE5 36.0.0
The following features have been permanently enabled:

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Partnum</th>
<th>Status</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Command Class Management</td>
<td>893005801</td>
<td>on</td>
<td>----</td>
</tr>
<tr>
<td>LNP Short Message Service</td>
<td>893006601</td>
<td>on</td>
<td>----</td>
</tr>
<tr>
<td>Intermed GTT Load Sharing</td>
<td>893006901</td>
<td>on</td>
<td>----</td>
</tr>
<tr>
<td>XGTT Table Expansion</td>
<td>893006101</td>
<td>off</td>
<td>----</td>
</tr>
<tr>
<td>XMAP Table Expansion</td>
<td>893007710</td>
<td>on</td>
<td>3000</td>
</tr>
<tr>
<td>Large System # Links</td>
<td>893005910</td>
<td>on</td>
<td>2000</td>
</tr>
<tr>
<td>Routesets</td>
<td>893006401</td>
<td>on</td>
<td>6000</td>
</tr>
<tr>
<td>HC-MIM SLK Capacity</td>
<td>893012707</td>
<td>on</td>
<td>64</td>
</tr>
</tbody>
</table>

The following features have been temporarily enabled:

```
rlghncxa03w 06-10-28 21:15:37 GMT EAGLE5 36.0.0
The following features have been permanently enabled:

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Partnum</th>
<th>Status</th>
<th>Quantity</th>
<th>Trial Period Left</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zero entries found.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The following features have expired temporary keys:

```
rlghncxa03w 06-10-28 21:15:37 GMT EAGLE5 36.0.0
Zero entries found.
```

10. Backup the new changes using the `chg-db:action=backup:dest=fixed` command.

These messages should appear, the active Maintenance and Administration Subsystem Processor (MASP) appears first.

```
BACKUP (FIXED) : MASP A - Backup starts on active MASP.
BACKUP (FIXED) : MASP A - Backup on active MASP to fixed disk complete.
BACKUP (FIXED) : MASP A - Backup starts on standby MASP.
BACKUP (FIXED) : MASP A - Backup on standby MASP to fixed disk complete.
```

### Clearing a Temporary FAK Alarm

This procedure is used to clear the critical alarm, UAM 0368, generated when a a temporary feature access key has expired, using the `chg-ctrl-feat` command.

The `chg-ctrl-feat` command uses the following parameters:

`:partnum` - The part number of the controlled feature that was temporarily enabled and is causing the alarm.
:alarm=clear - Clears UAM 0368, Temp Key(s) have expired.

The controlled feature must have been temporarily enabled and is now in danger of expiration or in an expired state.

1. Display the controlled feature that has the expired feature access key by entering the `rtrv-ctrl-feat:expired=yes` command.

The following is an example of the possible output.

```
rlghncxa03w 06-10-28 21:17:37 GMT EAGLE5 36.0.0
The following features have expired temporary keys:
Feature Name Part Num
Intermed GTT Load Sharing 893006901
```

2. Clear the EAGLE 5 ISS alarm in the database by entering the `chg-ctrl-feat` command.

For example, enter this command.

```
chg-ctrl-feat:partnum=893006901:alarm=clear
```

When this command has successfully completed, the following message should appear.

```
rlghncxa03w 06-10-28 21:16:37 GMT EAGLE5 36.0.0
CHG-CTRL-FEAT: MASP A - COMPLTD
```

3. Verify that the alarm has cleared in the database by using the `rtrv-ctrl-feat:expired=yes` command.

The following is an example of the possible output.

```
rlghncxa03w 06-10-28 21:16:37 GMT EAGLE5 36.0.0
0367.0181 * SYSTEM Temp Key(s) expiration alarm cleared.
```

4. Backup the new changes using the `chg-db:action=backup:dest=fixed` command.

These messages should appear, the active Maintenance and Administration Subsystem Processor (MASP) appears first.

```
BACKUP (FIXED) : MASP A - Backup starts on active MASP.
BACKUP (FIXED) : MASP A - Backup on active MASP to fixed disk complete.
BACKUP (FIXED) : MASP A - Backup starts on standby MASP.
BACKUP (FIXED) : MASP A - Backup on standby MASP to fixed disk complete.
```

Turning the IGTTLS Feature Off

This procedure is used to turn off the IGTTLS feature, using the `chg-ctrl-feat` command.

The `chg-ctrl-feat` command uses the following parameters:

:partnum - The part number of the IGTTLS feature, 893006901.
:status=off - used to deactivate the IGTTLS feature.

The status of the IGTTLS controlled feature must be on and is shown with the `rtrv-ctrl-feat` command.
The GTT Load Sharing with Alternate Routing Indicator feature must be turned off before the IGTTLS feature can be turned off.

**CAUTION:** If the IGTTLS feature is deactivated, the ent-mrn and chg-mrn commands cannot be executed, and mated relay node groups and point codes cannot be configured in the database. The mated relay node groups and point codes can be displayed with the rtrv-mrn command and removed from the database with the dlt-mrn command if the IGTTLS feature is deactivated.

1. Display the status of the IGTTLS feature by entering the `rtrv-ctrl-feat:partnum=893006901` command.

   The following is an example of the possible output.

   ```
 rlnghncxa03w 06-10-28 21:15:37 GMT EAGLE5 36.0.0
 The following features have been permanently enabled:
 Grid Name Feature Name Partnum Status Quantity
 Intermed Gtt Load Sharing 893006901 on ----
 The following features have been temporarily enabled:
 Grid Name Feature Name Partnum Status Quantity Trial Period Left
 The following features have expired temporary keys:
 Grid Name Feature Name Partnum
   ```

   If the status of the IGTTLS feature is off, or if the IGTTLS feature is not enabled, this procedure cannot be performed.

2. Before the IGTTLS feature can be turned off, the GTT Load Sharing with Alternate Routing Indicator feature must be turned off.

   Verify the status of the GTT Load Sharing with Alternate Routing Indicator feature by entering the `rtrv-ctrl-feat:partnum=893027401` command.

   The following is an example of the possible output.

   ```
 rlnghncxa03w 09-02-28 21:15:37 GMT EAGLE5 40.1.0
 The following features have been permanently enabled:
 Feature Name Partnum Status Quantity
 GTT LS ARI 893027401 on ----
 The following features have been temporarily enabled:
 Feature Name Partnum Status Quantity Trial Period Left
 Zero entries found.
 The following features have expired temporary keys:
 Feature Name Partnum
 Zero entries found.
   ```

   If the GTT Load Sharing with Alternate Routing Indicator feature is not enabled and turned on, continue the procedure with **Step 3**.
If the GTT Load Sharing with Alternate Routing Indicator feature is enabled and turned on, perform *Turning the GTT Load Sharing with Alternate Routing Indicator Feature Off* to turn the GTT Load Sharing with Alternate Routing Indicator feature off. After the GTT Load Sharing with Alternate Routing Indicator feature has been turned off, continue the procedure with *Step 3.*

3. Turn off the IGTTLS feature by entering the `chg-ctrl-feat` command with the `status=off` parameter.

   For example, enter this command.
   ```
 chg-ctrl-feat:partnum=893006901:status=off
   ```
   When this command has successfully completed, the following message should appear.
   ```
 rlghncxa03w 06-10-28 21:16:37 GMT EAGLE5 36.0.0
 CHG-CTRL-FEAT: MASP A - COMPLTD
   ```

4. Verify that the IGTTLS feature has been turned off by using the `rtrv-ctrl-feat:partnum=893006901` command. The following is an example of the possible output.

   ```
 rlghncxa03w 06-10-28 21:15:37 GMT EAGLE5 36.0.0
 The following features have been permanently enabled:
 Feature Name Partnum Status Quantity
 Intermed Gtt Load Sharing 893006901 off ----
 The following features have been temporarily enabled:
 Feature Name Partnum Status Quantity Trial Period Left
 Zero entries found.
 The following features have expired temporary keys:
 Feature Name Partnum
 Zero entries found.
   ```

5. Backup the new changes using the `chg-db:action=backup:dest=fixed` command.

   These messages should appear, the active Maintenance and Administration Subsystem Processor (MASP) appears first.
   ```
 BACKUP (FIXED) : MASP A - Backup starts on active MASP.
 BACKUP (FIXED) : MASP A - Backup on active MASP to fixed disk complete.
 BACKUP (FIXED) : MASP A - Backup starts on standby MASP.
 BACKUP (FIXED) : MASP A - Backup on standby MASP to fixed disk complete.
   ```

---

### Enabling the XGTT Table Expansion Feature

This procedure is used to enable the XGTT Table Expansion feature using the feature’s part number and a feature access key.

The feature access key for the XGTT Table Expansion feature is based on the feature’s part number and the serial number of the EAGLE 5 ISS, making the feature access key site-specific.
This feature allows the user to increase the maximum number of entries in the global title translation table from 269,999 entries to either 400,000 or 1,000,000 entries. Each level of increase has its own part number.

- Increase to 400,000 entries – part number 893006101
- Increase to 1,000,000 entries – part number 893006110

This feature requires that the following hardware is installed:

- GPSM-II or E5-MCAP cards are installed in card locations 1113 and 1115.

**CAUTION:** Never install or initialize MCAP cards in card locations 1113 and 1115 after GPSM-II cards have been installed and features that require GPSM-II cards have been provisioned. Attempting to initialize MCAP cards with features requiring GPSM-II cards will cause an EAGLE 5 ISS outage. Before replacing an existing GPSM-II card in card locations 1113 or 1115, contact the Customer Care Center. Refer to [Customer Care Center](#) for the contact information.

- For a maximum of 400,000 entries, all service modules in the EAGLE 5 ISS can be either DSMs or E5-SM4G cards.
- For a maximum of 1,000,000 entries, all service modules in the EAGLE 5 ISS must be DSMs or E5-SM4G cards.

The service module requirements are dependent on any other GTT-related features that are enabled. Perform *Adding a Service Module* to make sure that the proper hardware is in place to support the XGTT Table Expansion feature.

The XGTT Table Expansion feature requires that the Global Title Translation (GTT) feature is enabled with the `chg-feat` command using the `gtt=on` parameters.

**Note:** Once the Global Title Translation feature is turned on with the `chg-feat` command, it cannot be turned off.

The Global Title Translation feature must be purchased before it can be turned on. If you are not sure whether you have purchased the Global Title Translation feature, contact your Tekelec Sales Representative or Account Representative.

The `enable-ctrl-feat` command enables the XGTT Table Expansion feature by inputting the feature’s access key and the feature’s part number with these parameters:

- `:fak` – The feature access key provided by Tekelec. The feature access key contains 13 alphanumeric characters and is not case sensitive.
- `:partnum` – The Tekelec-issued part number of the XGTT Table Expansion feature, for 400,000 entries – 893006101, for 1,000,000 entries – 893006110

The `enable-ctrl-feat` command requires that the database contain a valid serial number for the EAGLE 5 ISS, and that this serial number is locked. This can be verified with the `rtrv-serial-num` command. The EAGLE 5 ISS is shipped with a serial number in the database, but the serial number is not locked. The serial number can be changed, if necessary, and locked once the EAGLE 5 ISS is on-site, with the `ent-serial-num` command. The `ent-serial-num` command uses these parameters:

- `:serial` – The serial number assigned to the EAGLE 5 ISS. The serial number is not case sensitive.
- `:lock` – Specifies whether or not the serial number is locked. This parameter has only one value, `yes`, which locks the serial number. Once the serial number is locked, it cannot be changed.
Note: To enter and lock the EAGLE 5 ISS's serial number, the ent-serial-num command must be entered twice, once to add the correct serial number to the database with the serial parameter, then again with the serial and the lock=yes parameters to lock the serial number. You should verify that the serial number in the database is correct before locking the serial number. The serial number can be found on a label affixed to the control shelf (shelf 1100).

This feature cannot be temporarily enabled (with the temporary feature access key).

Once this feature is enabled with the enable-ctrl-feat command (for either 400,000 or 1,000,000 entries), the feature is also activated. This feature cannot be disabled with the chg-ctrl-feat command. The chg-ctrl-feat command cannot be used with this procedure.

1. Display the status of the XGTT Table Expansion feature by entering the rtrv-ctrl-feat command.

The following is an example of the possible output.

```
rlghncxa03w 06-10-28 21:15:37 GMT EAGLE5 36.0.0
The following features have been permanently enabled:

Feature Name Partnum Status Quantity
Command Class Management 893005801 on ----
LNP Short Message Service 893006601 on ----
Intermed GTT Load Sharing 893006901 on ----
XGTT Table Expansion 893006101 off ----
XMAP Table Expansion 893007710 on 3000
Large System # Links 893005910 on 2000
Routesets 893006401 on 6000
HC-MIM SLK Capacity 893012707 on 64

The following features have been temporarily enabled:

Feature Name Partnum Status Quantity Trial Period Left
Zero entries found.

The following features have expired temporary keys:

Feature Name Partnum
Zero entries found.
```

If the rtrv-ctrl-feat output shows that the feature is permanently enabled for the desired quantity or for a quantity that is greater than the desired quantity, no further action is necessary. This procedure does not need to be performed.

If the quantity shown for the XGTT Table Expansion feature is less than the desired quantity, skip steps 2 through 5, and go to step 6.

2. Display the cards in the EAGLE 5 ISS using the rtrv-card command.

The XGTT Table Expansion feature requires that service modules are in the database. This is an example of the possible output.

```
rlghncxa03w 09-05-25 09:58:31 GMT EAGLE5 41.0.0
CARD TYPE APPL LSET NAME PORT SLC LSET NAME PORT SLC
1102 TSM GLS
1113 GPSM OAM
1114 TDM-A
1115 GPSM OAM
1116 TDM-B
1117 MDAL
1201 LIMDS0 SS7ANSI sp2 A 0 sp1 B 0
```
Service modules are shown by the entries SCCP or VSCCP in APPL column. If the rtrv-card output shows no service modules, Perform Adding a Service Module to add the necessary service modules.

If the rtrv-card output shows that the type of service module required to support the XGTT Table Expansion feature is not in the database, perform Adding a Service Module to make sure that the proper service modules are in place to support the XGTT Table Expansion feature.

3. Display the serial number in the database with the rtrv-serial-num command.

Note: If the rtrv-ctrl-feat output in step 1 shows any controlled features, or if the XGTT Table Expansion feature is enabled for a quantity that is less than the desired quantity, skip steps 3 through 6, and go to step 7. If the rtrv-ctrl-feat output shows only the HC-MIM SLK Capacity feature with a quantity of 64, steps 3 through 6 must be performed.

This is an example of the possible output.

```
rlghncxa03w 06-10-28 21:15:37 GMT EAGLE5 36.0.0
System serial number = nt00001231
System serial number is not locked.
```

4. Enter the correct serial number into the database using the ent-serial-num command with the serial parameter.

Note: If the serial number is correct and locked, skip steps 4, 5, and 6, and go to step 7. If the serial number is correct but not locked, skip steps 4 and 5, and go to step 6. If the serial number is not correct, but is locked, this feature cannot be enabled and the remainder of this procedure cannot be performed. Contact the Customer Care Center to get an incorrect and locked serial number changed. Refer to Customer Care Center for the contact information. The serial number can be found on a label affixed to the control shelf (shelf 1100).

For this example, enter this command.

```
ent-serial-num:serial=<EAGLE 5 ISS’s correct serial number>
```

When this command has successfully completed, the following message should appear.

```
rlghncxa03w 06-10-28 21:15:37 GMT EAGLE5 36.0.0
ENT-SERIAL-NUM: MASP A - COMPLTD
```

5. Verify that the serial number entered into step 4 was entered correctly using the rtrv-serial-num command.

This is an example of the possible output.

```
rlghncxa03w 06-10-28 21:15:37 GMT EAGLE5 36.0.0
System serial number = nt00001231
```
System serial number is not locked.

If the serial number was not entered correctly, repeat steps 4 and 5 and re-enter the correct serial number.

6. Lock the serial number in the database by entering the ent-serial-num command with the serial number shown in step 3, if the serial number shown in step 3 is correct, or with the serial number shown in step 5, if the serial number was changed in step 4, and with the lock=yes parameter.

For this example, enter this command.

```
ent-serial-num:serial=<EAGLE 5 ISS's serial number>:lock=yes
```

When this command has successfully completed, the following message should appear.

```
rlghncxa03w 06-10-28 21:15:37 GMT EAGLE5 36.0.0
ENT-SERIAL-NUM: MASP A - COMPLTD
```

7. Enable the XGTT Table Expansion feature for the desired quantity with the enable-ctrl-feat command specifying the part number corresponding to the new quantity of entries for the GTT table and the feature access key.

For this example, enter one of these commands.

To increase the number of entries in the GTT table to 400,000, enter this command.

```
enable-ctrl-feat:partnum=893006101:fak=<XGTT Table Expansion feature access key>
```

To increase the number of entries in the GTT table to 1,000,000, enter this command.

```
enable-ctrl-feat:partnum=893006110:fak=<XGTT Table Expansion feature access key>
```

**Note:** A temporary feature access key cannot be specified to enable this feature.

**Note:** The values for the feature access key (the fak parameter) are provided by Tekelec. If you do not have the feature access key for the XGTT Table Expansion feature, contact your Tekelec Sales Representative or Account Representative.

When the enable-ctrl-feat command has successfully completed, this message should appear.

```
rlghncxa03w 06-10-28 21:15:37 GMT EAGLE5 36.0.0
ENABLE-CTRL-FEAT: MASP B - COMPLTD
```

8. Verify the changes by entering the rtrv-ctrl-feat command with the part number specified in step 7.

Enter one of these commands.

```
rtrv-ctrl-feat:partnum=893006101
```

The following is an example of the possible output.

```
rlghncxa03w 06-10-28 21:15:37 GMT EAGLE5 36.0.0
The following features have been permanently enabled:

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Partnum</th>
<th>Status</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>XGTT Table Expansion</td>
<td>893006101</td>
<td>on</td>
<td>400000</td>
</tr>
</tbody>
</table>
```
Enabling the XMAP Table Expansion Feature

This procedure is used to enable the XMAP Table Expansion feature using the feature's part number and a feature access key.

The feature access key for the XMAP Table Expansion feature is based on the feature’s part number and the serial number of the EAGLE 5 ISS, making the feature access key site-specific.

This feature allows the user to increase the maximum number of entries in the mated application table from 1024 entries to either 2000 or 3000 entries. Each level of increase has its own part number.

- Increase to 2000 entries – part number 893007701
- Increase to 3000 entries – part number 893007710

This feature requires that the following hardware is installed:
• GPSM-II or E5-MCAP cards are installed in card locations 1113 and 1115. **CAUTION:** Never install or initialize MCAP cards in card locations 1113 and 1115 after GPSM-II cards have been installed and features that require GPSM-II cards have been provisioned. Attempting to initialize MCAP cards with features requiring GPSM-II cards will cause an EAGLE 5 ISS outage. Before replacing an existing GPSM-II card in card locations 1113 or 1115, contact the Customer Care Center. Refer to Customer Care Center for the contact information.

• For a maximum of 2000 or 3000 entries, all service modules in the EAGLE 5 ISS can be either DSMs or E5-SM4G cards.

The service module requirements are dependent on any other GTT-related features that are enabled. Perform *Adding a Service Module* to make sure that the proper hardware is in place to support the XMAP Table Expansion feature.

The XMAP Table Expansion feature requires that the Global Title Translation (GTT) feature is enabled with the `chg-feat` command using the `gtt=on` parameters.

**Note:** Once the Global Title Translation feature is turned on with the `chg-feat` command, it cannot be turned off.

The Global Title Translation feature must be purchased before it can be turned on. If you are not sure whether you have purchased the Global Title Translation feature, contact your Tekelec Sales Representative or Account Representative.

The `enable-ctrl-feat` command enables the controlled feature by inputting the feature’s access key and the feature’s part number with these parameters:

`:fak` – The feature access key generated by the feature access key generator. The feature access key contains 13 alphanumeric characters and is not case sensitive.

`:partnum` – The Tekelec-issued part number of the XMAP Table Expansion feature, for 2,000 entries – 893007701, for 3,000 entries – 893007710

The `enable-ctrl-feat` command requires that the database contain a valid serial number for the EAGLE 5 ISS, and that this serial number is locked. This can be verified with the `rtrv-serial-num` command. The EAGLE 5 ISS is shipped with a serial number in the database, but the serial number is not locked. The serial number can be changed, if necessary, and locked once the EAGLE 5 ISS is on-site, with the `ent-serial-num` command. The `ent-serial-num` command uses these parameters.

`:serial` – The serial number assigned to the EAGLE 5 ISS. This serial number is not case sensitive.

`:lock` – Specifies whether or not the serial number is locked. This parameter has only one value, `yes`, which locks the serial number. Once the serial number is locked, it cannot be changed.

**Note:** To enter and lock the EAGLE 5 ISS’s serial number, the `ent-serial-num` command must be entered twice, once to add the correct serial number to the database with the `serial` parameter, then again with the `serial` and the `lock=yes` parameters to lock the serial number. You should verify that the serial number in the database is correct before locking the serial number. The serial number can be found on a label affixed to the control shelf (shelf 1100).

This feature cannot be temporarily enabled (with the temporary feature access key).

Once this feature is enabled with the `enable-ctrl-feat` command (for either 2000 or 3000 entries), the feature is also activated. This feature cannot be disabled with the `chg-ctrl-feat` command. The `chg-ctrl-feat` command cannot be used with this procedure.
1. Display the status of the XMAP Table Expansion feature by entering the `rtrv-ctrl-feat` command.

The following is an example of the possible output.

```
rlghncxa03w 06-10-28 21:15:37 GMT EAGLE5 36.0.0
The following features have been permanently enabled:

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Partnum</th>
<th>Status</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Command Class Management</td>
<td>893005801</td>
<td>on</td>
<td>----</td>
</tr>
<tr>
<td>LNP Short Message Service</td>
<td>893006601</td>
<td>on</td>
<td>----</td>
</tr>
<tr>
<td>Intermed GTT Load Sharing</td>
<td>893006901</td>
<td>on</td>
<td>----</td>
</tr>
<tr>
<td>XGTT Table Expansion</td>
<td>893006101</td>
<td>on</td>
<td>400000</td>
</tr>
<tr>
<td>XMAP Table Expansion</td>
<td>893007710</td>
<td>off</td>
<td>----</td>
</tr>
<tr>
<td>Large System # Links</td>
<td>893005910</td>
<td>on</td>
<td>2000</td>
</tr>
<tr>
<td>Routesets</td>
<td>893006401</td>
<td>on</td>
<td>6000</td>
</tr>
<tr>
<td>HC-MIM SLK Capacity</td>
<td>893012707</td>
<td>on</td>
<td>64</td>
</tr>
</tbody>
</table>

The following features have been temporarily enabled:

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Partnum</th>
<th>Status</th>
<th>Quantity</th>
<th>Trial Period Left</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Zero entries found.

The following features have expired temporary keys:

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Partnum</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Zero entries found.

If the `rtrv-ctrl-feat` output shows that the feature is permanently enabled for the desired quantity or for a quantity that is greater than the desired quantity, no further action is necessary. This procedure does not need to be performed.

If the quantity shown for the XMAP Table Expansion feature is less than the desired quantity, skip steps 2 through 7, and go to step 8.

2. Display the cards in the EAGLE 5 ISS using the `rtrv-card` command.

The XMAP Table Expansion feature requires that service modules are in the database. This is an example of the possible output.

```
rlghncxa03w 09-05-25 09:58:31 GMT EAGLE5 41.0.0
CARD   TYPE      APPL      LSET NAME     PORT SLC LSET NAME     PORT SLC
1102   TSM       GLS                   |
1113   GPSM      OAM                   |
1114   TDM-A     |
1115   GPSM      OAM                   |
1116   TDM-B     |
1117   MDAL      |
1201   LIMDS0    SS7ANSI   sp2     A  0   sp1     B  0
1203   LIMDS0    SS7ANSI   sp3     A  0                   |
1204   LIMDS0    SS7ANSI   sp3     A  1                   |
1206   LIMDS0    SS7ANSI   nsp3    A  1   nsp4    B  1
1216   DCM       STPLAN               |
1308   LIMDS0    SS7ANSI   sp6     A  1   sp7     B  0
1314   LIMDS0    SS7ANSI   sp7     A  1   sp5     B  1
1317   DCM       STPLAN               |
```

Service modules are shown by the entries `SCCP` or `VSCCP` in `APPL` column. If the `rtrv-card` output shows no service modules, Perform Adding a Service Module to add the necessary service modules.

3. Display the serial number in the database with the `rtrv-serial-num` command.
Note: If the `rtrv-ctrl-feat` output in Step 1 shows any controlled features, continue the procedure with Step 7. If the `rtrv-ctrl-feat` output shows only the HC-MIM SLK Capacity feature with a quantity of 64, Step 3 through Step 6 must be performed.

This is an example of the possible output.

```
rlghncxa03w 06-10-28 21:15:37 GMT EAGLE5 36.0.0
System serial number = nt00001231

rlghncxa03w 06-10-28 21:15:37 GMT EAGLE5 36.0.0
Command Completed
```

4. Enter the correct serial number into the database using the `ent-serial-num` command with the serial parameter.

Note: If the serial number is correct and locked, continue the procedure with Step 7. If the serial number is correct but not locked, continue the procedure with Step 6. If the serial number is not correct, but is locked, this feature cannot be enabled and the remainder of this procedure cannot be performed. Contact the Customer Care Center to get an incorrect and locked serial number changed. Refer to Customer Care Center for the contact information. The serial number can be found on a label affixed to the control shelf (shelf 1100).

For this example, enter this command.

```
ent-serial-num:serial=<EAGLE 5 ISS’s correct serial number>
```

When this command has successfully completed, the following message should appear.

```
rlghncxa03w 06-10-28 21:15:37 GMT EAGLE5 36.0.0
ENT-SERIAL-NUM:  MASP A - COMPLTD
```

5. Verify that the serial number entered into step 4 was entered correctly using the `rtrv-serial-num` command.

This is an example of the possible output.

```
rlghncxa03w 06-10-28 21:15:37 GMT EAGLE5 36.0.0
System serial number = nt00001231

rlghncxa03w 06-10-28 21:15:37 GMT EAGLE5 36.0.0
Command Completed
```

If the serial number was not entered correctly, repeat steps 4 and 5 and re-enter the correct serial number.

6. Lock the serial number in the database by entering the `ent-serial-num` command with the serial number shown in step 3, if the serial number shown in step 3 is correct, or with the serial number shown in step 5, if the serial number was changed in step 4, and with the `lock=yes` parameter.

For this example, enter this command.

```
ent-serial-num:serial=<EAGLE 5 ISS’s serial number>:lock=yes
```
When this command has successfully completed, the following message should appear.

```
rlghncxa03w 06-10-28 21:15:37 GMT EAGLE5 36.0.0
ENT-SERIAL-NUM: MASP A - COMPLTD
```

7. Enable the XMAP Table Expansion feature for the desired quantity with the `enable-ctrl-feat` command specifying the part number corresponding to the new quantity of entries for the mated application table and the feature access key.

For this example, enter one of these commands.

To increase the number of entries in the mated application table to 2000, enter this command.

```
enable-ctrl-feat:partnum=893007701:fak=<XMAP Table Expansion feature access key>
```

To increase the number of entries in the mated application table to 3000, enter this command.

```
enable-ctrl-feat:partnum=893007710:fak=<XMAP Table Expansion feature access key>
```

Note: A temporary feature access key cannot be specified to enable this feature.

Note: The values for the feature access key (the `fak` parameter) are provided by Tekelec. If you do not have the feature access key for the XMAP Table Expansion feature, contact your Tekelec Sales Representative or Account Representative.

When the `enable-ctrl-feat` command has successfully completed, this message should appear.

```
rlghncxa03w 06-10-28 21:15:37 GMT EAGLE5 36.0.0
ENABLE-CTRL-FEAT: MASP B - COMPLTD
```

8. Verify the changes by entering the `rtrv-ctrl-feat` command with the part number used in step 7.

Enter one of these commands.

```
rtrv-ctrl-feat:partnum=893007701
```

The following is an example of the possible output.

```
rlghncxa03w 06-10-28 21:15:37 GMT EAGLE5 36.0.0
The following features have been permanently enabled:

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Partnum</th>
<th>Status</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>XMAP Table Expansion</td>
<td>893007701</td>
<td>on</td>
<td>2000</td>
</tr>
</tbody>
</table>

The following features have been temporarily enabled:

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Partnum</th>
<th>Status</th>
<th>Quantity</th>
<th>Trial Period Left</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zero entries found.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The following features have expired temporary keys:

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Partnum</th>
<th>Status</th>
<th>Quantity</th>
<th>Trial Period Left</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zero entries found.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

```
rtrv-ctrl-feat:partnum=893007710
```

The following is an example of the possible output.

```
rlghncxa03w 06-10-28 21:15:37 GMT EAGLE5 36.0.0
```
The following features have been permanently enabled:

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Partnum</th>
<th>Status</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>XMAP Table Expansion</td>
<td>893007710</td>
<td>on</td>
<td>3000</td>
</tr>
</tbody>
</table>

The following features have been temporarily enabled:

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Partnum</th>
<th>Status</th>
<th>Quantity</th>
<th>Trial Period Left</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Zero entries found.

The following features have expired temporary keys:

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Partnum</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Zero entries found.

9. Backup the new changes using the `chg-db:action=backup:dest=fixed` command.

These messages should appear, the active Maintenance and Administration Subsystem Processor (MASP) appears first.

```plaintext
BACKUP (FIXED) : MASP A - Backup starts on active MASP.
BACKUP (FIXED) : MASP A - Backup on active MASP to fixed disk complete.
BACKUP (FIXED) : MASP A - Backup starts on standby MASP.
BACKUP (FIXED) : MASP A - Backup on standby MASP to fixed disk complete.
```

## Activating the ANSI/ITU SCCP Conversion Feature

This procedure is used to enable and turn on the ANSI/ITU SCCP Conversion feature using the feature’s part number and a feature access key.

The feature access key for the ANSI/ITU SCCP Conversion feature is based on the feature’s part number and the serial number of the EAGLE 5 ISS, making the feature access key site-specific.

The `enable-ctrl-feat` command enables the feature by inputting the feature’s access key and the feature’s part number with these parameters:

- `.fak` – The feature access key provided by Tekelec. The feature access key contains 13 alphanumeric characters and is not case sensitive.
- `.partnum` – The Tekelec-issued part number of the ANSI/ITU SCCP Conversion feature, 893012001.

The `enable-ctrl-feat` command requires that the database contain a valid serial number for the EAGLE 5 ISS, and that this serial number is locked. This can be verified with the `rtrv-serial-num` command. The EAGLE 5 ISS is shipped with a serial number in the database, but the serial number is not locked. The serial number can be changed, if necessary, and locked once the EAGLE 5 ISS is on-site, with the `ent-serial-num` command. The `ent-serial-num` command uses these parameters.

- `.serial` – The serial number assigned to the EAGLE 5 ISS. The serial number is not case sensitive.
- `.lock` – Specifies whether or not the serial number is locked. This parameter has only one value, `yes`, which locks the serial number. Once the serial number is locked, it cannot be changed.

**Note:** To enter and lock the EAGLE 5 ISS’s serial number, the `ent-serial-num` command must be entered twice, once to add the correct serial number to the database with the `.serial` parameter, then again with the `.serial` and the `.lock=yes` parameters to lock the serial number. You should verify
that the serial number in the database is correct before locking the serial number. The serial number can be found on a label affixed to the control shelf (shelf 1100).

This feature cannot be temporarily enabled (with the temporary feature access key).

Once this feature has been enabled, the feature must be activated with the chg-ctrl-feat command. The chg-ctrl-feat command uses these parameters:

:status=on – used to turn the ANSI/ITU SCCP Conversion feature on.

Note: Once this feature has been turned on, it cannot be turned off.

The status of the features in the EAGLE 5 ISS is shown with the rtrv-ctrl-feat command.

The ANSI/ITU SCCP Conversion feature requires that the Global Title Translation (GTT) feature is turned on with the chg-feat command using the gtt=on parameters.

Note: Once the Global Title Translation feature is turned on with the chg-feat command, it cannot be turned off.

The Global Title Translation feature must be purchased before it can be turned on. If you are not sure whether you have purchased the Global Title Translation feature, contact your Tekelec Sales Representative or Account Representative.

The ANSI/ITU SCCP Conversion feature requires that service modules are installed and provisioned in the EAGLE 5 ISS. Service modules can be DSMs or E5-SM4G cards. DSMs and E5-SM4G cards are shown by the entry DSM in the TYPE column and VSCCP in the APPL column of the rtrv-card output.

The ANSI/ITU SCCP Conversion feature cannot be enabled if either the SCCPCNV or TCAPCNV features are on. This can be verified by entering the rtrv-feat command. If the SCCPCNV feature is on, the SCCPCNV field is set to on. If the TCAPCNV feature is on, the TCAPCNV field is set to on. If either the SCCPCNV or TCAPCNV features are on, the ANSI/ITU SCCP Conversion feature cannot be enabled and this procedure cannot be performed. If either of these features are on and you wish to enable the ANSI/ITU SCCP Conversion feature, contact the Customer Care Center. Refer to the Customer Care Center section for the contact information.

1. Display the status of the controlled features by entering the rtrv-ctrl-feat command.

The following is an example of the possible output.

```
rlighncxa03w 06-10-28 21:15:37 GMT EAGLE5 36.0.0
The following features have been permanently enabled:

Feature Name Partnum Status Quantity
Command Class Management 893005801 on ----
LNP Short Message Service 893006601 on ----
Intermed GTT Load Sharing 893006901 on ----
XGTT Table Expansion 893006101 on 400000
XMAP Table Expansion 893007710 off ----
Large System # Links 893005910 on 2000
Routesets 893006401 on 6000
HC-MIM SLK Capacity 893012707 on 64

The following features have been temporarily enabled:

Feature Name Partnum Status Quantity Trial Period Left
Zero entries found.
```
The following features have expired temporary keys:

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Partnum</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Zero entries found.

If the ANSI/ITU SCCP Conversion feature (shown in the `rtrv-ctrl-feat` output as SCCP Conversion) is enabled and on, no further action is necessary. This procedure does not need to be performed.

If the ANSI/ITU SCCP Conversion feature is enabled and but not on, skip steps 2 through 8 and go to step 9.

2. Verify whether or not the SCCPCNV or TCAPCNV features are on by entering the `rtrv-feat` command.

If the SCCPCNV feature is on, the SCCPCNV field is set to on. If the TCAPCNV feature is on, the TCAPCNV field is set to on.

Note: The `rtrv-feat` command output contains other fields that are not used by this procedure. If you wish to see all the fields displayed by the `rtrv-feat` command, see the `rtrv-feat` command description in the Commands Manual.

Note: If either the SCCPCNV or TCAPCNV features are on, the ANSI/ITU SCCP Conversion feature cannot be enabled and this procedure cannot be performed. If either of these features are on and you wish to enable the ANSI/ITU SCCP Conversion feature, contact the Customer Care Center. Refer to the Customer Care Center section for the contact information.

Note: If the `rtrv-ctrl-feat` output in step 1 or the `rtrv-feat` output in step 2 shows that any of the features shown in Adding a Service Module are enabled or turned on, skip step 3 and go to step 4.

Note: If the `rtrv-ctrl-feat` output in step 2 shows that the GTT feature is not on, perform the Adding a Service Module procedure to turn the GTT feature on and to add the appropriate service modules, according to the Adding a Service Module procedure, to support the GTT and ANSI/ITU SCCP Conversion features. Skip step 3 and go to step 4.

3. Display the cards in the EAGLE 5 ISS using the `rtrv-card` command.

The ANSI/ITU SCCP Conversion feature requires that service modules are in the database. This is an example of the possible output.

```
rlghncxa03w 09-05-25 09:58:31 GMT EAGLE5 41.0.0
CARD TYPE APPL LSET NAME PORT SLC LSET NAME PORT SLC
1102 TSM GLS
1113 GPSM OAM
1114 TDM-A
1115 GPSM OAM
1116 TDM-B
1117 MDAL
1201 LIMDS0 SS7ANSI sp2 A 0 sp1 B 0
1203 LIMDS0 SS7ANSI sp3 A 0
1204 LIMDS0 SS7ANSI sp3 A 1
1206 LIMDS0 SS7ANSI nsp3 A 1 nsp4 B 1
1216 DCM STPLAN
1308 LIMDS0 SS7ANSI sp6 A 1 sp7 B 0
1314 LIMDS0 SS7ANSI sp7 A 1 sp5 B 1
1317 DCM STPLAN
```

DSM sand E5-SM4G cards are shown by the entry DSM in the TYPE column and VSCCP in the APPL column of the `rtrv-card` output.
If the appropriate service modules are in the EAGLE 5 ISS (see the *Adding a Service Module* procedure), go to step 4.

4. **Display the serial number in the database with the `rtrv-serial-num` command.**

**Note:** If the `rtrv-ctrl-feat` output in step 1 shows any controlled features, skip steps 4 through 7, and go to step 8. If the `rtrv-ctrl-feat` output shows only the HC-MIM SLK Capacity feature with a quantity of 64, steps 4 through 7 must be performed.

This is an example of the possible output.

```
rlghncxa03w 06-10-28 21:15:37 GMT EAGLE5 36.0.0
System serial number = nt00001231
System serial number is not locked.
rlghncxa03w 06-10-28 21:15:37 GMT EAGLE5 36.0.0
Command Completed
```

5. **Enter the correct serial number into the database using the `ent-serial-num` command with the `serial` parameter.**

**Note:** If the serial number is correct and locked, skip steps 5, 6, and 7, and go to step 8. If the serial number is correct but not locked, skip steps 5 and 6, and go to step 7. If the serial number is not correct, but is locked, this feature cannot be enabled and the remainder of this procedure cannot be performed. Contact the Customer Care Center to get an incorrect and locked serial number changed. Refer to *Customer Care Center* for the contact information. The serial number can be found on a label affixed to the control shelf (shelf 1100).

For this example, enter this command.

```
ent-serial-num:serial=<EAGLE 5 ISS’s correct serial number>
```

When this command has successfully completed, the following message should appear.

```
rlghncxa03w 06-10-28 21:15:37 GMT EAGLE5 36.0.0
ENT-SERIAL-NUM: MASP A - COMPLTD
```

6. **Verify that the serial number entered into step 5 was entered correctly using the `rtrv-serial-num` command.** This is an example of the possible output.

```
rlghncxa03w 06-10-28 21:15:37 GMT EAGLE5 36.0.0
System serial number = nt00001231
System serial number is not locked.
rlghncxa03w 06-10-28 21:15:37 GMT EAGLE5 36.0.0
Command Completed
```

If the serial number was not entered correctly, repeat steps 4 and 5 and re-enter the correct serial number.

7. **Lock the serial number in the database by entering the `ent-serial-num` command with the serial number shown in step 4, if the serial number shown in step 4 is correct, or with the serial number shown in step 6, if the serial number was changed in step 5, and with the `lock=yes` parameter.**

For this example, enter this command.

```
ent-serial-num:serial=<EAGLE 5 ISS’s serial number>:lock=yes
```
When this command has successfully completed, the following message should appear.

```
rlghnca03w 06-10-28 21:15:37 GMT EAGLE5 36.0.0
ENT-SERIAL-NUM: MASP A - COMPLTD
```

8. Enable the ANSI/ITU SCCP Conversion feature with the `enable-ctrl-feat` command specifying the part number for the ANSI/ITU SCCP Conversion and the feature access key. Enter this command.

```
enable-ctrl-feat:partnum=893012001:fak=<ANSI/ITU SCCP Conversion feature access key>
```

**Note:** The ANSI/ITU SCCP Conversion feature cannot be enabled with a temporary feature access key.

**Note:** The values for the feature access key (the `fak` parameter) are provided by Tekelec. If you do not have the feature access key for the ANSI/ITU SCCP Conversion feature, contact your Tekelec Sales Representative or Account Representative.

When the `enable-ctrl-feat` command has successfully completed, this message should appear.

```
rlghnca03w 06-10-28 21:15:37 GMT EAGLE5 36.0.0
ENABLE-CTRL-FEAT: MASP B - COMPLTD
```

9. Turn the ANSI/ITU SCCP Conversion feature on with the `chg-ctrl-feat` command specifying the part number for the ANSI/ITU SCCP Conversion and the `status=on` parameter. Enter this command.

```
chg-ctrl-feat:partnum=893012001:status=on
```

**Note:** Once the ANSI/ITU SCCP Conversion feature is turned on, it cannot be turned off.

**Note:** The called party/calling party address indicator bit in the MSU may be modified as soon as the ANSI/ITU SCCP Conversion is enabled and turned on, depending on the destination network of the MSU. If the MSU is sent to an ITU-I network, the value of the called party/calling party address indicator bit in the MSU may be changed to 0. If the MSU is sent to an ANSI or ITU-N network, the value of the called party/calling party address indicator bit in the MSU may be changed to 1. If you wish to set the value of the called party/calling party address indicator bit in the MSU after the ANSI/ITU SCCP Conversion is enabled and turned on, perform the Configuring the ANSI to ITU-N SCCP Conversion Option procedure.

When the `chg-ctrl-feat` command has successfully completed, this message should appear.

```
rlghnca03w 06-10-28 21:15:37 GMT EAGLE5 36.0.0
CHG-CTRL-FEAT: MASP B - COMPLTD
```

10. Verify the changes by entering the `rtrv-ctrl-feat` command with the ANSI/ITU SCCP Conversion feature part number. Enter this command.

```
rtrv-ctrl-feat:partnum=893012001
```

The following is an example of the possible output.

```
rlghnca03w 06-10-28 21:15:37 GMT EAGLE5 36.0.0
The following features have been permanently enabled:

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Partnum</th>
<th>Status</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCCP Conversion</td>
<td>893012001</td>
<td>on</td>
<td>----</td>
</tr>
</tbody>
</table>
```

910-6277-001 Revision A, January 2012 745
The following features have been temporarily enabled:

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Partnum</th>
<th>Status</th>
<th>Quantity</th>
<th>Trial Period Left</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Zero entries found.

The following features have expired temporary keys:

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Partnum</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Zero entries found.

11. Backup the new changes using the `chg-db:action=backup:dest=fixed` command. These messages should appear, the active Maintenance and Administration Subsystem Processor (MASP) appears first.

```
BACKUP (FIXED) : MASP A - Backup starts on active MASP.
BACKUP (FIXED) : MASP A - Backup on active MASP to fixed disk complete.
BACKUP (FIXED) : MASP A - Backup starts on standby MASP.
BACKUP (FIXED) : MASP A - Backup on standby MASP to fixed disk complete.
```

Activating the Flexible GTT Load Sharing Feature

This procedure is used to enable and turn on the Flexible GTT Load Sharing feature using the feature’s part number and a feature access key.

The feature access key for the Flexible GTT Load Sharing feature is based on the feature’s part number and the serial number of the EAGLE 5 ISS, making the feature access key site-specific.

The `enable-ctrl-feat` command enables the feature by inputting the feature’s access key and the feature’s part number with these parameters:

`:fak` – The feature access key generated by the feature access key generator. The feature access key contains 13 alphanumeric characters and is not case sensitive.

`:partnum` – The Tekelec-issued part number of the Flexible GTT Load Sharing feature, 893015401.

The `enable-ctrl-feat` command requires that the database contain a valid serial number for the EAGLE 5 ISS, and that this serial number is locked. This can be verified with the `rtrv-serial-num` command. The EAGLE 5 ISS is shipped with a serial number in the database, but the serial number is not locked. The serial number can be changed, if necessary, and locked once the EAGLE 5 ISS is on-site, with the `ent-serial-num` command. The `ent-serial-num` command uses these parameters:

`:serial` – The serial number assigned to the EAGLE 5 ISS. The serial number is not case sensitive.

`:lock` – Specifies whether or not the serial number is locked. This parameter has only one value, `yes`, which locks the serial number. Once the serial number is locked, it cannot be changed.

**Note:** To enter and lock the EAGLE 5 ISS’s serial number, the `ent-serial-num` command must be entered twice, once to add the correct serial number to the database with the `serial` parameter, then again with the `serial` and the `lock=yes` parameters to lock the serial number. You should verify that the serial number in the database is correct before locking the serial number. The serial number can be found on a label affixed to the control shelf (shelf 1100).

This feature cannot be temporarily enabled (with the temporary feature access key).

Once this feature is enabled, provisioning for this feature can be performed, but the feature will not work until the feature is turned on with the `chg-ctrl-feat` command.
Once this feature has been enabled, the feature must be turned on with the `chg-ctrl-feat` command. The `chg-ctrl-feat` command uses these parameters:

- `:partnum` – The Tekelec-issued part number of the Flexible GTT Load Sharing feature, 893015401.
- `:status=on` – used to turn the Flexible GTT Load Sharing feature on.

Once the Flexible GTT Load Sharing feature has been turned on, it be can be turned off. For more information on turning the Flexible GTT Load Sharing feature off, go to the Turning the Flexible GTT Load Sharing Feature Off procedure.

The status of the features in the EAGLE 5 ISS is shown with the `rtrv-ctrl-feat` command.

The Flexible GTT Load Sharing feature requires that DSMs, E5-SM4G, or E5-SM8G-B cards are installed and provisioned in the EAGLE 5 ISS. DSMs, E5-SM4G, and E5-SM8G-B are shown by the entries DSM in the TYPE column and VSCCP in the APPL column of the `rtrv-card` output.

1. Display the status of the controlled features by entering the `rtrv-ctrl-feat` command. The following is an example of the possible output.

   ```
 rlghncxa03w 06-10-28 21:15:37 GMT EAGLE5 36.0.0
 The following features have been permanently enabled:

 Feature Name Partnum Status Quantity
 Command Class Management 893005801 on ----
 LNP Short Message Service 893006601 on ----
 Intermed GTT Load Sharing 893006901 on ----
 XGTT Table Expansion 893006101 on 400000
 XMAP Table Expansion 893007710 off ----
 Large System # Links 893005910 on 2000
 Routesets 893006401 on 6000
 HC-MIM SLK Capacity 893012707 on 64

 The following features have been temporarily enabled:

 Feature Name Partnum Status Quantity Trial Period Left
 Zero entries found.

 The following features have expired temporary keys:

 Feature Name Partnum
 Zero entries found.
   ```

   If the Flexible GTT Load Sharing feature is enabled and turned on, no further action is necessary. This procedure does not need to be performed.

   If the Flexible GTT Load Sharing feature is enabled and not turned on, skip steps 2 through 8 and go to step 9.

   If the Flexible GTT Load Sharing feature is not enabled, go to step 2.

2. Display the cards in the EAGLE 5 ISS using the `rtrv-card` command.

   The Flexible GTT Load Sharing feature requires that DSMs, E5-SM4G, or E5-SM8G-B cards running the VSCCP application are in the database. This is an example of the possible output.

   ```
 rlghncxa03w 09-05-25 09:58:31 GMT EAGLE5 41.0.0
 CARD TYPE APPL LSET NAME PORT SLC LSET NAME PORT SLC
 1102 TSM GLS
 1113 GSM OAM
 1114 TDM-A
 1115 GSM OAM
 1116 TDM-B
   ```
There are three types of service modules, DSMs, E5-SM4G, or E5-SM8G-B cards running the VSCCP application. DSMs, E5-SM4G, and E5-SM8G-B cards are shown by the entries DSM in the TYPE column and VSCCP in the APPL column.

If no service modules are shown in the rtrv-card output, perform Adding a Service Module to add DSMs, E5-SM4G, or E5-SM8G-B cards to the EAGLE 5 ISS.

If DSMs or E5-SM4G or E5-SM8G-B cards running the VSCCP application are in the EAGLE 5 ISS, go to step 4.

Note: If the rtrv-ctrl-feat output in step 1 shows any controlled features, skip steps 3 through 6, and go to step 7. If the rtrv-ctrl-feat output shows only the HC-MIMSLK Capacity feature with a quantity of 64, steps 3 through 6 must be performed.

3. Display the serial number in the database with the rtrv-serial-num command. This is an example of the possible output.

    rlghncxa03w 06-10-28 21:15:37 GMT EAGLE5 36.0.0
    System serial number = nt00001231

    Note: If the serial number is correct and locked, skip steps 4, 5, and 6, and go to step 7. If the serial number is correct but not locked, skip steps 4 and 5, and go to step 6. If the serial number is not correct, but is locked, this feature cannot be enabled and the remainder of this procedure cannot be performed. Contact the Customer Care Center to get an incorrect and locked serial number changed. Refer to Customer Care Center for the contact information. The serial number can be found on a label affixed to the control shelf (shelf 1100).

4. Enter the correct serial number into the database using the ent-serial-num command with the serial parameter.

   For this example, enter this command.

   ent-serial-num:serial=<EAGLE 5 ISS’s correct serial number>

   When this command has successfully completed, the following message should appear.
5. Verify that the serial number entered into step 4 was entered correctly using the `rtrv-serial-num` command. This is an example of the possible output.

```
rlghncxa03w 06-10-28 21:15:37 GMT EAGLE5 36.0.0
System serial number = nt00001231
System serial number is not locked.
```

If the serial number was not entered correctly, repeat steps 4 and 5 and re-enter the correct serial number.

6. Lock the serial number in the database by entering the `ent-serial-num` command with the serial number shown in step 3, if the serial number shown in step 3 is correct, or with the serial number shown in step 5, if the serial number was changed in step 4, and with the `lock=yes` parameter.

For this example, enter this command.

```
ent-serial-num:serial=<EAGLE 5 ISS’s serial number>:lock=yes
```

When this command has successfully completed, the following message should appear.

```
rlghncxa03w 06-10-28 21:15:37 GMT EAGLE5 36.0.0
ENT-SERIAL-NUM: MASP A - COMPLTD
```

**Note:** If the `ri=gt` parameter will not be used for GTT (with the `ent-/chg-gtt` commands) or GTA (with the `ent-/chg-gta` commands) provisioning, or if the `rtrv-ctrl-feat` output in step 1 shows the Intermediate GTTLoad Sharing feature is enabled and turned on, skip this step and go to step 8.

7. To use the `ri=gt` parameter with the GTT or GTA provisioning when the Flexible GTT Load Sharing feature is enabled, the Intermediate GTT Load Sharing feature must be enabled and turned on.

Perform the [Activating the IGTTLS feature](#) procedure to enable and turn on the Intermediate GTT Load Sharing feature.

8. Enable the Flexible GTT Load Sharing feature with the `enable-ctrl-feat` command specifying the part number for the Flexible GTT Load Sharing feature and the feature access key. Enter this command.

```
enable-ctrl-feat:partnum=893015401:fak=<Flexible GTT Load Sharing feature access key>
```

**Note:** The Flexible GTT Load Sharing feature cannot be enabled with a temporary feature access key.

**Note:** The values for the feature access key (the `fak` parameter) are provided by Tekelec. If you do not have the feature access key for the Flexible GTT Load Sharing feature, contact your Tekelec Sales Representative or Account Representative.
When the enable-crtl-feat command has successfully completed, this message should appear.

```
rlghncxa03w 06-10-28 21:15:37 GMT EAGLE5 36.0.0
ENABLE-CTRL-FEAT: MASP B - COMPLTD
```

**CAUTION:** Once the Flexible GTTLoad Sharing feature is enabled, provisioning for Flexible Intermediate GTTLoad Sharing, using the ent-mrn, dlt-mrn, chg-mrn, and rtrv-mrn commands, can be performed, but the EAGLE 5 ISS will not perform Flexible Intermediate GTTLoad Sharing on GTT traffic requiring intermediate global title translation until the Flexible GTTLoad Sharing is turned on in **Step 9**.

**CAUTION:** Once the Flexible GTTLoad Sharing feature is enabled, provisioning for Flexible Final GTTLoad Sharing, using the ent-map, dlt-map, chg-map, and rtrv-map commands, can be performed, but the EAGLE 5 ISS will not perform Flexible Final GTTLoad Sharing on GTT traffic requiring final global title translation until the Flexible GTTLoad Sharing is turned on in **Step 9**.

9. Turn the Flexible GTT Load Sharing feature on with the chg-crtl-feat command specifying the part number for the Flexible GTT Load Sharing feature and the status=on parameter. Enter this command.

```
chg-crtl-feat:partnum=893015401:status=on
```

When the chg-crtl-feat command has successfully completed, this message should appear.

```
rlghncxa03w 06-10-28 21:15:37 GMT EAGLE5 36.0.0
CHG-CTRL-FEAT: MASP B - COMPLTD
```

10. Verify the changes by entering the rtrv-ctrl-feat command with the Flexible GTT Load Sharing feature part number. Enter this command.

```
rtrv-ctrl-feat:partnum=893015401
```

The following is an example of the possible output.

```
rlghncxa03w 06-10-28 21:15:37 GMT EAGLE5 36.0.0
The following features have been permanently enabled:

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Partnum</th>
<th>Status</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flexible GTT Load Sharing</td>
<td>893015401</td>
<td>on</td>
<td>----</td>
</tr>
</tbody>
</table>

The following features have been temporarily enabled:

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Partnum</th>
<th>Status</th>
<th>Quantity</th>
<th>Trial Period Left</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Zero entries found.</td>
</tr>
</tbody>
</table>

The following features have expired temporary keys:

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Partnum</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Zero entries found.</td>
</tr>
</tbody>
</table>
```

11. Backup the new changes using the chg-db:action=backup:dest=fixed command. These messages should appear, the active Maintenance and Administration Subsystem Processor (MASP) appears first.

```
BACKUP (FIXED) : MASP A - Backup starts on active MASP.
BACKUP (FIXED) : MASP A - Backup on active MASP to fixed disk complete.
```
Turning the Flexible GTT Load Sharing Feature Off

This procedure is used to turn off the Flexible GTT Load Sharing feature, using the chg-ctrl-feat command.

The chg-ctrl-feat command uses the following parameters:

:partnum - The part number of the Flexible GTT Load Sharing feature, 893015401.
:status=off – used to turn off the Flexible GTT Load Sharing feature.

The status of the Flexible GTT Load Sharing controlled feature must be on and is shown with the rtrv-ctrl-feat command.

**CAUTION:** If the Prepaid SMS Intercept Phase 1 feature is turned off, the screening of incoming messages from an MSC by the EAGLE 5 ISS will not be performed.

**CAUTION:** If the Flexible GTT Load Sharing feature is turned off, provisioning for Flexible Final GTT Load Sharing can be performed with the ent-map, dlt-map, chg-map, and rtrv-map commands. The EAGLE 5 ISS will not perform Flexible Final GTT Load Sharing on GTT traffic requiring final global title translation.

1. Display the status of the Flexible GTT Load Sharing feature by entering the rtrv-ctrl-feat:partnum=893015401 command.

   The following is an example of the possible output.

   ```
 rlghncxa03w 06-10-28 21:15:37 GMT EAGLE5 36.0.0
 The following features have been permanently enabled:

 Feature Name Partnum Status Quantity
 Flexible GTT Load Sharing 893015401 on ----

 The following features have been temporarily enabled:

 Feature Name Partnum Status Quantity Trial Period Left
 Zero entries found.

 The following features have expired temporary keys:

 Feature Name Partnum
 Zero entries found.
   ```

   If the status of the Flexible GTT Load Sharing feature is off, or if the Flexible GTT Load Sharing feature is not enabled, this procedure cannot be performed.

2. Turn off the Flexible GTT Load Sharing feature by entering the chg-ctrl-feat command with the status=off parameter.

   For example, enter this command.

   ```
 chg-ctrl-feat:partnum=893015401:status=off
   ```
When this command has successfully completed, the following message should appear.

```
rlghncxa03w 06-10-28 21:16:37 GMT EAGLE5 36.0.0
CHG-CTRL-FEAT: MASP A - COMPLTD
```

3. Verify that the Flexible GTT Load Sharing feature has been turned off by using the `rtrv-ctrl-feat:partnum=893015401` command. The following is an example of the possible output.

```
rlghncxa03w 06-10-28 21:15:37 GMT EAGLE5 36.0.0
The following features have been permanently enabled:
 Feature Name Partnum Status Quantity
 Flexible GTT Load Sharing 893015401 off ----

The following features have been temporarily enabled:
 Feature Name Partnum Status Quantity Trial Period Left
 Zero entries found.

The following features have expired temporary keys:
 Feature Name Partnum
 Zero entries found.
```

4. Backup the new changes using the `chg-db:action=backup:dest=fixed` command. These messages should appear, the active Maintenance and Administration Subsystem Processor (MASP) appears first.

```
BACKUP (FIXED) : MASP A - Backup starts on active MASP.
BACKUP (FIXED) : MASP A - Backup on active MASP to fixed disk complete.
BACKUP (FIXED) : MASP A - Backup starts on standby MASP.
BACKUP (FIXED) : MASP A - Backup on standby MASP to fixed disk complete.
```

**Activating the Origin-Based SCCP Routing Feature**

This procedure is used to enable and turn on the Origin-Based SCCP Routing feature using the feature’s part number and a feature access key.

The feature access key for the Origin-Based SCCP Routing feature is based on the feature’s part number and the serial number of the EAGLE 5 ISS, making the feature access key site-specific.

The `enable-ctrl-feat` command enables the feature by inputting the feature’s access key and the feature’s part number with these parameters:

- `:fak` – The feature access key generated by the feature access key generator. The feature access key contains 13 alphanumeric characters and is not case sensitive.

The `enable-ctrl-feat` command requires that the database contain a valid serial number for the EAGLE 5 ISS, and that this serial number is locked. This can be verified with the `rtrv-serial-num` command. The EAGLE 5 ISS is shipped with a serial number in the database, but the serial number is not locked. The serial number can be changed, if necessary, and locked once the EAGLE 5 ISS is on-site, with the `ent-serial-num` command. The `ent-serial-num` command uses these parameters.
:serial – The serial number assigned to the EAGLE 5 ISS. The serial number is not case sensitive.

:lock – Specifies whether or not the serial number is locked. This parameter has only one value, yes, which locks the serial number. Once the serial number is locked, it cannot be changed.

**Note:** To enter and lock the EAGLE 5 ISS’s serial number, the ent-ser-num command must be entered twice, once to add the correct serial number to the database with the serial parameter, then again with the serial and the lock=yes parameters to lock the serial number. You should verify that the serial number in the database is correct before locking the serial number. The serial number can be found on a label affixed to the control shelf (shelf 1100).

This feature cannot be temporarily enabled (with the temporary feature access key).

Once this feature is enabled, provisioning for this feature can be performed, but the feature will not work until the feature is turned on with the chg-ctrl-feat command.

Once this feature has been enabled, the feature must be turned on with the chg-ctrl-feat command. The chg-ctrl-feat command uses these parameters:

:partnum – The Tekelec-issued part number of the Origin-Based SCCP Routing feature, 893014301.

:status=on – used to turn the Origin-Based SCCP Routing feature on.

Once the Origin-Based SCCP Routing feature has been turned on, it be cannot be turned off.

The status of the features in the EAGLE 5 ISS is shown with the rtrv-ctrl-feat command.

The Origin-Based SCCP Routing feature requires that DSMs or E5-SM4G cards are installed and provisioned in the EAGLE 5 ISS. DSMs and E5-SM4G cards are shown by the entries DSM in the TYPE column and VSCCP in the APPL column of the rtrv-card output.

Before the Origin-Based SCCP Routing feature can be enabled, the EGTT feature must be turned on. The state of the EGTT feature can be verified using the rtrv-feat command.

1. Display the status of the Origin-Based SCCP Routing feature by entering the rtrv-ctrl-feat command. The following is an example of the possible output:

```
rlghncxa03w 06-10-28 21:15:37 GMT EAGLE5 36.0.0
The following features have been permanently enabled:

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Partnum</th>
<th>Status</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Command Class Management</td>
<td>893005801</td>
<td>on</td>
<td>----</td>
</tr>
<tr>
<td>LNP Short Message Service</td>
<td>893006601</td>
<td>on</td>
<td>----</td>
</tr>
<tr>
<td>Intermed GTT Load Sharing</td>
<td>893006901</td>
<td>on</td>
<td>----</td>
</tr>
<tr>
<td>HC-MIM SLK Capacity</td>
<td>893012707</td>
<td>on</td>
<td>64</td>
</tr>
</tbody>
</table>

The following features have been temporarily enabled:

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Partnum</th>
<th>Status</th>
<th>Quantity</th>
<th>Trial Period Left</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zero entries found.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The following features have expired temporary keys:

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Partnum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zero entries found.</td>
<td></td>
</tr>
</tbody>
</table>
```

If the Origin-Based SCCP Routing feature is enabled and turned on, no further action is necessary. This procedure does not need to be performed.

If the Origin-Based SCCP Routing feature is enabled but not turned on, skip steps 2 through 9 and go to step 10.

If the Origin-Based SCCP Routing feature is not enabled, go to step 2.
2. Verify that the EGTT feature is on, by entering the `rtrv-feat` command. If the EGTT feature is on, the `EGTT` field should be set to `on`.

**Note:** The `rtrv-feat` command output contains other fields that are not used by this procedure. If you wish to see all the fields displayed by the `rtrv-feat` command, see the `rtrv-feat` command description in the *Commands Manual*.

**Note:** If the EGTT feature is on, shown by the entry `EGTT = on` in the `rtrv-feat` command output in step 2, skip step 3 and go to step 4.

3. Turn the enhanced global title translation feature on by entering this command.

```
chg-feat:egtt=on
```

If the GTT feature is not on, turn the GTT feature on by specifying the `gtt=on` parameter with the `egtt=on` parameter.

**Note:** Once the Enhanced Global Title Translation (EGTT) feature is turned on with the `chg-feat` command, it cannot be turned off.

The EGTT feature must be purchased before turning it on. If you are not sure whether you have purchased the EGTT feature, contact your Tekelec Sales Representative or Account Representative.

When the `chg-feat` has successfully completed, this message should appear.

```
rlghncxa03w 06-10-25 09:57:41 GMT EAGLE5 36.0.0
CHG-FEAT: MASP A - COMPLTD
```

4. Display the cards in the EAGLE 5 ISS using the `rtrv-card` command. The Origin-Based SCCP Routing feature requires that DSMs or E5-SM4G cards running the VSCCP application are in the database. This is an example of the possible output.

```
rlghncxa03w 09-05-25 09:58:31 GMT EAGLE5 41.0.0
CARD TYPE APPL LSET NAME PORT SLC LSET NAME PORT SLC
1102 TSM GLS
1113 GPSM OAM
1114 TDM-A OAM
1115 GPSM OAM
1116 TDM-B OAM
1117 MDAL OAM
1201 LIMDS0 SS7ANSI sp2 A 0 sp1 B 0
1203 LIMDS0 SS7ANSI sp3 A 0
1204 LIMDS0 SS7ANSI sp3 A 1
1206 LIMDS0 SS7ANSI nsp3 A 1 nsp4 B 1
1216 DCM STPLAN
1301 DSM VSCCP
1303 DSM VSCCP
1305 DSM VSCCP
1308 LIMDS0 SS7ANSI sp6 A 1 sp7 B 0
1314 LIMDS0 SS7ANSI sp7 A 1 sp5 B 1
1317 DCM STPLAN
```

There are two types of service modules, DSMs or E5-SM4G cards running the VSCCP application. DSMs and E5-SM4G cards are shown by the entries `DSM` in the `TYPE` column and `VSCCP` in the `APPL` column.

If no service modules are shown in the `rtrv-card` output, perform *Adding a Service Module* to add DSMs or E5-SM4G cards to the EAGLE 5 ISS.

If DSMs or E5-SM4G cards running the VSCCP application are in the EAGLE 5 ISS, go to step 5.
Note: If the rtrv-ctrl-feat output in step 1 shows any controlled features, skip steps 5 through 8, and go to step 9. If the rtrv-ctrl-feat output shows only the HC-MIMSLK Capacity feature with a quantity of 64, steps 5 through 8 must be performed.

5. Display the serial number in the database with the rtrv-serial-num command. This is an example of the possible output.

    righncxa03w 06-10-28 21:15:37 GMT EAGLE5 36.0.0
    System serial number = nt00001231
    System serial number is not locked.

    righncxa03w 06-10-28 21:15:37 GMT EAGLE5 36.0.0
    Command Completed

Note: If the serial number is correct and locked, skip steps 6, 7, and 8, and go to step 9. If the serial number is correct but not locked, skip steps 5 and 7, and go to step 8. If the serial number is not correct, but is locked, this feature cannot be enabled and the remainder of this procedure cannot be performed. Contact the Customer Care Center to get an incorrect and locked serial number changed. Refer to Customer Care Center for the contact information. The serial number can be found on a label affixed to the control shelf (shelf 1100).

6. Enter the correct serial number into the database using the ent-serial-num command with the serial parameter.

   For this example, enter this command.

   ent-serial-num:serial=<EAGLE 5 ISS’s correct serial number>

   When this command has successfully completed, the following message should appear.

   righncxa03w 06-10-28 21:15:37 GMT EAGLE5 36.0.0
   ENT-Serial-NUM: MASP A - COMPLTD

7. Verify that the serial number entered into step 6 was entered correctly using the rtrv-serial-num command. This is an example of the possible output.

   righncxa03w 06-10-28 21:15:37 GMT EAGLE5 36.0.0
   System serial number = nt00001231
   System serial number is not locked.
   righncxa03w 06-10-28 21:15:37 GMT EAGLE5 36.0.0
   Command Completed

   If the serial number was not entered correctly, repeat steps 6 and 7 and re-enter the correct serial number.

8. Lock the serial number in the database by entering the ent-serial-num command with the serial number shown in step 5, if the serial number shown in step 5 is correct, or with the serial number shown in step 7, if the serial number was changed in step 6, and with the lock=yes parameter.

   For this example, enter this command.

   ent-serial-num:serial=<EAGLE 5 ISS’s serial number>:lock=yes

   When this command has successfully completed, the following message should appear.
9. Enable the Origin-Based SCCP Routing feature with the `enable-ctrl-feat` command specifying the part number for the Origin-Based SCCP Routing feature and the feature access key. Enter this command.

```
enable-ctrl-feat:partnum=893014301:fak=<Origin-Based SCCP Routing feature access key>
```

**Note:** The Origin-Based SCCP Routing feature cannot be enabled with a temporary feature access key.

**Note:** The values for the feature access key (the `fak` parameter) are provided by Tekelec. If you do not have the feature access key for the Origin-Based SCCP Routing feature, contact your Tekelec Sales Representative or Account Representative.

When the `enable-ctrl-feat` command has successfully completed, this message should appear.

```
rlghncca03w 06-10-28 21:15:37 GMT EAGLE5 36.0.0
ENABLE-CTRL-FEAT: MASP B - COMPLTD
```

**CAUTION:** Once the Origin-Based SCCP Routing feature is enabled, provisioning for Origin-Based SCCP Routing can be performed except for provisioning the Origin-Based SCCP Routing GTT mode hierarchy for linksets and system wide default GTT mode option with one of the Origin-Based SCCP Routing GTT mode hierarchies. The Origin-Based SCCP Routing GTT mode hierarchy for linksets and system wide default GTT mode option with one of the Origin-Based SCCP Routing GTT mode hierarchies can be provisioned only when the Origin-Based SCCP Routing feature is enabled and turned on. The EAGLE 5 ISS will not perform Origin-Based SCCP Routing on GTT traffic until the Origin-Based SCCP Routing is turned on in step 10.

10. Turn the Origin-Based SCCP Routing feature on with the `chg-ctrl-feat` command specifying the part number for the Origin-Based SCCP Routing feature and the `status=on` parameter. Enter this command.

```
chg-ctrl-feat:partnum=893014301:status=on
```

When the `chg-ctrl-feat` command has successfully completed, this message should appear.

```
rlghncca03w 06-10-28 21:15:37 GMT EAGLE5 36.0.0
CHG-CTRL-FEAT: MASP B - COMPLTD
```

11. Verify the changes by entering the `rtrv-ctrl-feat` command with the Origin-Based SCCP Routing feature part number. Enter this command.

```
rtrv-ctrl-feat:partnum=893014301
```

The following is an example of the possible output.

```
rlghncca03w 06-10-28 21:15:37 GMT EAGLE5 36.0.0
The following features have been permanently enabled:

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Partnum</th>
<th>Status</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Origin Based SCCP Routing</td>
<td>893014301</td>
<td>on</td>
<td>----</td>
</tr>
</tbody>
</table>

The following features have been temporarily enabled:

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Partnum</th>
<th>Status</th>
<th>Quantity</th>
<th>Trial Period Left</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zero entries found.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```
The following features have expired temporary keys:

| Feature Name | Partnum | Zero entries found. |

12. Backup the new changes using the `chg-db:action=backup:dest=fixed` command. These messages should appear, the active Maintenance and Administration Subsystem Processor (MASP) appears first.

<table>
<thead>
<tr>
<th>BACKUP (FIXED)</th>
<th>MASP A - Backup starts on active MASP.</th>
</tr>
</thead>
<tbody>
<tr>
<td>BACKUP (FIXED)</td>
<td>MASP A - Backup on active MASP to fixed disk complete.</td>
</tr>
<tr>
<td>BACKUP (FIXED)</td>
<td>MASP A - Backup starts on standby MASP.</td>
</tr>
<tr>
<td>BACKUP (FIXED)</td>
<td>MASP A - Backup on standby MASP to fixed disk complete.</td>
</tr>
</tbody>
</table>

### Activating the Hex Digit Support for GTT Feature

This procedure is used to enable and turn on the Hex Digit Support for GTT feature using the feature’s part number and a feature access key.

The feature access key for the Hex Digit Support for GTT feature is based on the feature’s part number and the serial number of the EAGLE 5 ISS, making the feature access key site-specific.

The `enable-ctrl-feat` command enables the feature by inputting the feature’s access key and the feature’s part number with these parameters:

:fa$k – The feature access key provided by Tekelec. The feature access key contains 13 alphanumeric characters and is not case sensitive.


The `enable-ctrl-feat` command requires that the database contain a valid serial number for the EAGLE 5 ISS, and that this serial number is locked. This can be verified with the `rtrv-serial-num` command. The EAGLE 5 ISS is shipped with a serial number in the database, but the serial number is not locked. The serial number can be changed, if necessary, and locked once the EAGLE 5 ISS is on-site, with the `ent-serial-num` command. The `ent-serial-num` command uses these parameters.

:serial – The serial number assigned to the EAGLE 5 ISS. The serial number is not case sensitive.

:lock – Specifies whether or not the serial number is locked. This parameter has only one value, yes, which locks the serial number. Once the serial number is locked, it cannot be changed.

**Note:** To enter and lock the EAGLE 5 ISS’s serial number, the `ent-serial-num` command must be entered twice, once to add the correct serial number to the database with the `serial` parameter, then again with the `serial` and the `lock=yes` parameters to lock the serial number. You should verify that the serial number in the database is correct before locking the serial number. The serial number can be found on a label affixed to the control shelf (shelf 1100).

This feature cannot be temporarily enabled (with the temporary feature access key).

Once this feature is enabled, the feature is also activated. The `chg-ctrl-feat` command cannot be used to turn this feature on. Once this feature is enabled, the feature cannot be turned off.

The status of the feature in the EAGLE 5 ISS is shown with the `rtrv-ctrl-feat` command.
The Hex Digit Support for GTT feature requires that DSMs or E5-SM4Gs are installed and provisioned in the EAGLE 5 ISS. DSMs and E5-SM4Gs are shown by the entries DSM in the TYPE column and VSCCP in the APPL column of the rtrv-card output.

Before the Hex Digit Support for GTT feature can be enabled, the GTT feature must be turned on. The state of the GTT feature can be verified using the rtrv-feat command.

1. Display the status of the Hex Digit Support for GTT feature by entering the rtrv-ctrl-feat command.

The following is an example of the possible output.

```
rlghncxa03w 06-10-28 21:15:37 GMT EAGLE5 36.0.0
The following features have been permanently enabled:
Feature Name Partnum Status Quantity
Command Class Management 893005801 on ----
LNP Short Message Service 893006601 on ----
Intermed GTT Load Sharing 893006901 on ----
HC-MIM SLK Capacity 893012707 on 64
The following features have been temporarily enabled:
Feature Name Partnum Status Quantity Trial Period Left
Zero entries found.
The following features have expired temporary keys:
Feature Name Partnum
Zero entries found.
```

If the Hex Digit Support for GTT feature is enabled, the entry Hex Digit Support for GTT is shown in the rtrv-ctrl-feat output. No further action is necessary. This procedure does not need to be performed.

If the Hex Digit Support for GTT feature is not enabled, continue the procedure with Step 2.

2. Verify that the GTT feature is on, by entering the rtrv-feat command. If the GTT feature is on, the GTT field should be set to on.

   Note: The rtrv-feat command output contains other fields that are not used by this procedure. If you wish to see all the fields displayed by the rtrv-feat command, see the rtrv-feat command description in the Commands Manual.

   If the GTT feature is not on, perform Adding a Service Module to turn the GTT feature on and add DSMs or E5-SM4G cards to the EAGLE 5 ISS. After the GTT feature is turned on and the DSMs or E5-SM4G cards have been added, continue the procedure with Step 4.

   If the GTT feature is on, continue the procedure with Step 3.

3. Display the cards in the EAGLE 5 ISS using the rtrv-card command. The Hex Digit Support for GTT feature requires that DSMs or E5-SM4G cards running the VSCCP application are in the database. This is an example of the possible output.

```
rlghncxa03w 09-05-25 09:58:31 GMT EAGLE5 41.0.0
CARD TYPE APPL LSET NAME PORT SLC LSET NAME PORT SLC
1102 TSM GLS
1113 GPSM OAM
1114 TDM-A
1115 GPSM OAM
1116 TDM-B
```
There are two types of service modules, DSMs or E5-SM4Gs running the VSCCP application. DSMs and E5-SM4Gs are shown by the entries DSM in the TYPE column and VSCCP in the APPL column.

If no service modules are shown in the rtrv-card output, perform Adding a Service Module to add DSMs or E5-SM4Gs to the EAGLE 5 ISS. After the DSMs or E5-SM4Gs have been added, continue the procedure with Step 4.

If DSMs or E5-SM4Gs running the VSCCP application are in the EAGLE 5 ISS, continue the procedure with Step 4.

4. Display the serial number in the database with the rtrv-serial-num command.

Note: If the rtrv-ctrl-feat output in Step 1 shows any controlled features, continue the procedure with Step 8. If the rtrv-ctrl-feat output shows only the HC-MIM SLK Capacity feature with a quantity of 64, Step 4 through Step 7 must be performed.

This is an example of the possible output.

```
rlghncxa03w 06-10-28 21:15:37 GMT EAGLE5 36.0.0
System serial number = nt00001231
System serial number is not locked.
rlghncxa03w 06-10-28 21:15:37 GMT EAGLE5 36.0.0
Command Completed
```

5. Enter the correct serial number into the database using the ent-serial-num command with the serial parameter.

Note: If the serial number is correct and locked, continue the procedure with Step 8. If the serial number is correct but not locked, continue the procedure with Step 7. If the serial number is not correct, but is locked, this feature cannot be enabled and the remainder of this procedure cannot be performed. Contact the Customer Care Center to get an incorrect and locked serial number changed. Refer to Customer Care Center for the contact information. The serial number can be found on a label affixed to the control shelf (shelf 1100).

For this example, enter this command.

```
ent-serial-num:serial=<EAGLE 5 ISS’s correct serial number>
```

When this command has successfully completed, the following message should appear.

```
rlghncxa02w 06-10-28 21:15:37 GMT EAGLE5 36.0.0
ENT-SERIAL-NUM: MASP A - COMPLTD
```

6. Verify that the serial number entered in Step 5 was entered correctly using the rtrv-serial-num command.
This is an example of the possible output.

```
rlghncxa03w 06-10-28 21:15:37 GMT EAGLE5 36.0.0
System serial number = nt00001231
System serial number is not locked.
```

If the serial number was not entered correctly, repeat Step 5 and Step 6 and re-enter the correct serial number.

7. Lock the serial number in the database by entering the `ent-serial-num` command with the serial number shown in Step 4, if the serial number shown in Step 4 is correct, or with the serial number shown in Step 6, if the serial number was changed in Step 5, and with the `lock=yes` parameter. For this example, enter this command.

```
ent-serial-num:serial=<EAGLE 5 ISS’s serial number>:lock=yes
```

When this command has successfully completed, the following message should appear.

```
rlghncxa03w 06-10-28 21:15:37 GMT EAGLE5 36.0.0
ENT-SERIAL-NUM: MASP A - COMPLTD
```

8. Enable the Hex Digit Support for GTT feature with the `enable-ctrl-feat` command specifying the part number for the Hex Digit Support for GTT feature and the feature access key. Enter this command.

```
enable-ctrl-feat:partnum=893018501:fak=<Hex Digit Support for GTT feature access key>
```

**Note:** The Hex Digit Support for GTT feature cannot be enabled with a temporary feature access key.

**Note:** The values for the feature access key (the `fak` parameter) are provided by Tekelec. If you do not have the feature access key for the Hex Digit Support for GTT feature, contact your Tekelec Sales Representative or Account Representative.

When the `enable-ctrl-feat` command has successfully completed, this message should appear.

```
rlghncxa03w 06-10-28 21:15:37 GMT EAGLE5 36.0.0
ENABLE-CTRL-FEAT: MASP B - COMPLTD
```

9. Verify the changes by entering the `rtrv-ctrl-feat` command with the part number used in Step 8.

```
rtrv-ctrl-feat:partnum=893018501
```

The following is an example of the possible output.

```
righncxa03w 06-10-28 21:15:37 GMT EAGLE5 36.0.0
The following features have been permanently enabled:

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Partnum</th>
<th>Status</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hex Digit Support for GTT</td>
<td>893018501</td>
<td>on</td>
<td>----</td>
</tr>
</tbody>
</table>

The following features have been temporarily enabled:

| Feature Name | Partnum | Status | Quantity | Trial Period Left |
```
Zero entries found.

The following features have expired temporary keys:

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Partnum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zero entries found.</td>
<td></td>
</tr>
</tbody>
</table>

10. Backup the new changes using the `chg-db:action=backup:dest=fixed` command.

These messages should appear, the active Maintenance and Administration Subsystem Processor (MASP) appears first.

```
BACKUP (FIXED) : MASP A - Backup starts on active MASP.
BACKUP (FIXED) : MASP A - Backup on active MASP to fixed disk complete.
BACKUP (FIXED) : MASP A - Backup starts on standby MASP.
BACKUP (FIXED) : MASP A - Backup on standby MASP to fixed disk complete.
```

## Activating the Weighted GTT Load Sharing Feature

This procedure is used to enable and turn on the Weighted GTT Load Sharing feature using the feature’s part number and a feature access key.

The feature access key for the Weighted GTT Load Sharing feature is based on the feature’s part number and the serial number of the EAGLE 5 ISS, making the feature access key site-specific.

The `enable-ctrl-feat` command enables the feature by inputting the feature’s access key and the feature’s part number with these parameters:

- `:fak` – The feature access key provided by Tekelec. The feature access key contains 13 alphanumeric characters and is not case sensitive.
- `:partnum` – The Tekelec-issued part number of the Weighted GTT Load Sharing feature, 893017001.

The `enable-ctrl-feat` command requires that the database contain a valid serial number for the EAGLE 5 ISS, and that this serial number is locked. This can be verified with the `rtrv-serial-num` command. The EAGLE 5 ISS is shipped with a serial number in the database, but the serial number is not locked. The serial number can be changed, if necessary, and locked once the EAGLE 5 ISS is on-site, with the `ent-serial-num` command. The `ent-serial-num` command uses these parameters:

- `:serial` – The serial number assigned to the EAGLE 5 ISS. The serial number is not case sensitive.
- `:lock` – Specifies whether or not the serial number is locked. This parameter has only one value, `yes`, which locks the serial number. Once the serial number is locked, it cannot be changed.

**Note:** To enter and lock the EAGLE 5 ISS’s serial number, the `ent-serial-num` command must be entered twice, once to add the correct serial number to the database with the `serial` parameter, then again with the `serial` and the `lock=yes` parameters to lock the serial number. You should verify that the serial number in the database is correct before locking the serial number. The serial number can be found on a label affixed to the control shelf (shelf 1100).

This feature cannot be temporarily enabled (with the temporary feature access key).

Once this feature has been enabled, the feature must be turned on with the `chg-ctrl-feat` command. The `chg-ctrl-feat` command uses these parameters:

- `:partnum` – The Tekelec-issued part number of the Weighted GTT Load Sharing feature, 893017001.
Once the Weighted GTT Load Sharing feature has been turned on, it cannot be turned off.

The status of the features in the EAGLE 5 ISS is shown with the `rtrv-ctrl-feat` command.

The Weighted GTT Load Sharing feature requires that DSMs or E5-SM4G cards are installed and provisioned in the EAGLE 5 ISS. DSMs and E5-SM4G cards are shown by the entries DSM in the TYPE column and VSICP in the APPL column of the `rtrv-card` output.

Before the Weighted GTT Load Sharing feature can be enabled, the GTT feature must be turned on. The state of the GTT feature can be verified using the `rtrv-feat` command.

1. Display the status of the Weighted GTT Load Sharing feature by entering the `rtrv-ctrl-feat` command. The following is an example of the possible output.

   ```plaintext
 righncxa03w 06-10-28 21:15:37 GMT EAGLE5 36.0.0
 The following features have been permanently enabled:
 Feature Name Partnum Status Quantity
 Command Class Management 893005801 on ----
 LNP Short Message Service 893006601 on ----
 Intermed GTT Load Sharing 893006901 on ----
 HC-MIM SLK Capacity 893012707 on 64
 The following features have been temporarily enabled:
 Feature Name Partnum Status Quantity Trial Period Left
 Zero entries found.
 The following features have expired temporary keys:
 Feature Name Partnum
 Zero entries found.
   ```

   If the Weighted GTT Load Sharing feature is enabled and turned on, no further action is necessary. This procedure does not need to be performed.

   If the Weighted GTT Load Sharing feature is enabled and but not turned on, skip steps 2 through 8 and go to step 9.

   If the Weighted GTT Load Sharing feature is not enabled, go to step 2.

2. Verify that the GTT feature is on, by entering the `rtrv-feat` command. If the GTT feature is on, the GTT field should be set to on.

   **Note:** The `rtrv-feat` command output contains other fields that are not used by this procedure. If you wish to see all the fields displayed by the `rtrv-feat` command, see the `rtrv-feat` command description in the *Commands Manual*.

   If the GTT feature is on, shown by the entry GTT = on in the `rtrv-feat` command output in step 2, go to step 3.

   If the GTT feature is off, perform *Adding a Service Module* to turn the GTT feature on and add the required number of DSMs or E5-SM4G cards. After *Adding a Service Module* is performed, skip step 3 and go to step 4.
3. Display the cards in the EAGLE 5 ISS using the `rtrv-card` command. The Weighted GTT Load Sharing feature requires that DSMs or E5-SM4G cards running the VSCCP application are in the database. This is an example of the possible output.

<table>
<thead>
<tr>
<th>CARD</th>
<th>TYPE</th>
<th>APPL</th>
<th>LSET NAME</th>
<th>PORT</th>
<th>SLC</th>
<th>LSET NAME</th>
<th>PORT</th>
<th>SLC</th>
</tr>
</thead>
<tbody>
<tr>
<td>1102</td>
<td>TSM</td>
<td>GLS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1113</td>
<td>GPSM</td>
<td>OAM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1114</td>
<td>TDM-A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1115</td>
<td>GPSM</td>
<td>OAM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1116</td>
<td>TDM-B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1117</td>
<td>MDAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1201</td>
<td>LIMDS0</td>
<td>SS7ANSI</td>
<td>sp2</td>
<td>A</td>
<td>0</td>
<td>sp1</td>
<td>B</td>
<td>0</td>
</tr>
<tr>
<td>1203</td>
<td>LIMDS0</td>
<td>SS7ANSI</td>
<td>sp3</td>
<td>A</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1204</td>
<td>LIMDS0</td>
<td>SS7ANSI</td>
<td>sp3</td>
<td>A</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1206</td>
<td>LIMDS0</td>
<td>SS7ANSI</td>
<td>sp3</td>
<td>A</td>
<td>1</td>
<td>nsp4</td>
<td>B</td>
<td>1</td>
</tr>
<tr>
<td>1216</td>
<td>DCM</td>
<td>STPLAN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1301</td>
<td>DSM</td>
<td>VSCCP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1303</td>
<td>DSM</td>
<td>VSCCP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1305</td>
<td>DSM</td>
<td>VSCCP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1308</td>
<td>LIMDS0</td>
<td>SS7ANSI</td>
<td>sp6</td>
<td>A</td>
<td>1</td>
<td>sp7</td>
<td>B</td>
<td>0</td>
</tr>
<tr>
<td>1314</td>
<td>LIMDS0</td>
<td>SS7ANSI</td>
<td>sp7</td>
<td>A</td>
<td>1</td>
<td>sp5</td>
<td>B</td>
<td>1</td>
</tr>
<tr>
<td>1317</td>
<td>DCM</td>
<td>STPLAN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

There are two types of service modules, DSMs or E5-SM4G cards running the VSCCP application. DSMs and E5-SM4G cards are shown by the entries DSM in the `TYPE` column and VSCCP in the `APPL` column.

If DSMs or E5-SM4G cards running the VSCCP application are in the EAGLE 5 ISS, go to step 4.

Note: If the `rtrv-ctrl-feat` output in step 1 shows any controlled features, skip steps 4 through 7, and go to step 8. If the `rtrv-ctrl-feat` output shows only the HC-MIMSLK Capacity feature with a quantity of 64, steps 4 through 7 must be performed.

4. Display the serial number in the database with the `rtrv-serial-num` command. This is an example of the possible output.

```
rlghncxa03w 06-10-28 21:15:37 GMT EAGLE5 36.0.0
System serial number = nt00001231
System serial number is not locked.
```

Note: If the serial number is correct and locked, skip steps 5, 6, and 7, and go to step 8. If the serial number is correct but not locked, skip steps 5 and 6, and go to step 7. If the serial number is not correct, but is locked, this feature cannot be enabled and the remainder of this procedure cannot be performed. Contact the Customer Care Center to get an incorrect and locked serial number changed. Refer to Customer Care Center for the contact information. The serial number can be found on a label affixed to the control shelf (shelf 1100).

5. Enter the correct serial number into the database using the `ent-serial-num` command with the `serial` parameter.

For this example, enter this command.

```
ent-serial-num:serial=<EAGLE 5 ISS’s correct serial number>
```
6. Verify that the serial number entered into step 5 was entered correctly using the `rtrv-serial-num` command. This is an example of the possible output.

```
rlghncxa03w 06-10-28 21:15:37 GMT EAGLE5 36.0.0
System serial number = nt00001231
System serial number is not locked.
Command Completed
```

If the serial number was not entered correctly, repeat steps 5 and 6 and re-enter the correct serial number.

7. Lock the serial number in the database by entering the `ent-serial-num` command with the serial number shown in step 4, if the serial number shown in step 4 is correct, or with the serial number shown in step 6, if the serial number was changed in step 5, and with the `lock=yes` parameter.

For this example, enter this command.

```
ent-serial-num:serial=<EAGLE 5 ISS’s serial number>:lock=yes
```

When this command has successfully completed, the following message should appear.

```
rlghncxa03w 06-10-28 21:15:37 GMT EAGLE5 36.0.0
ENT-SERIAL-NUM: MASP A - COMPLTD
```

8. Enable the Weighted GTT Load Sharing feature with the `enable-ctrl-feat` command specifying the part number for the Weighted GTT Load Sharing feature and the feature access key. Enter this command.

```
enable-ctrl-feat:partnum=893017001:fak=<Weighted GTT Load Sharing feature access key>
```

**Note:** The Weighted GTT Load Sharing feature cannot be enabled with a temporary feature access key.

**Note:** The feature access key (the `fak` parameter) is provided by Tekelec. If you do not have the feature access key for the Weighted GTT Load Sharing feature, contact your Tekelec Sales Representative or Account Representative.

When the `enable-ctrl-feat` command has successfully completed, this message should appear.

```
rlghncxa03w 06-10-28 21:15:37 GMT EAGLE5 36.0.0
ENABLE-CTRL-FEAT: MASP B - COMPLTD
```

9. Turn the Weighted GTT Load Sharing feature on with the `chg-ctrl-feat` command specifying the part number for the Weighted GTT Load Sharing feature and the `status=on` parameter. Enter this command.

```
chg-ctrl-feat:partnum=893017001:status=on
```

**Note:** Once this feature is turned on, it cannot be turned off.
When the `chg-crtl-feat` command has successfully completed, this message should appear.

```
rlghncxa03w 06-10-28 21:15:37 GMT EAGLE5 36.0.0
CHG-CTRL-FEAT: MASP B - COMPLTD
```

10. Verify the changes by entering the `rtrv-crtl-feat` command with the Weighted GTT Load Sharing feature part number. Enter this command.

```
rtrv-crtl-feat:partnum=893017001
```

The following is an example of the possible output.

```
rlgncxa03w 06-10-28 21:15:37 GMT EAGLE5 36.0.0
The following features have been permanently enabled:

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Partnum</th>
<th>Status</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weighted GTT Load-Sharing</td>
<td>893017001</td>
<td>on</td>
<td>----</td>
</tr>
</tbody>
</table>

The following features have been temporarily enabled:

```
Feature Name              Partnum    Status  Quantity     Trial Period Left
Zero entries found.
```

The following features have expired temporary keys:

```
Feature Name              Partnum
Zero entries found.
```

11. Backup the new changes using the `chg-db:action=backup:dest=fixed` command. These messages should appear, the active Maintenance and Administration Subsystem Processor (MASP) appears first.

```
BACKUP (FIXED) : MASP A - Backup starts on active MASP.
BACKUP (FIXED) : MASP A - Backup on active MASP to fixed disk complete.
BACKUP (FIXED) : MASP A - Backup starts on standby MASP.
BACKUP (FIXED) : MASP A - Backup on standby MASP to fixed disk complete.
```

Activating the Transaction-Based GTT Load Sharing Feature

This procedure is used to enable and turn on the Transaction-Based GTT Load Sharing feature using the feature’s part number and a feature access key.

The feature access key for the Transaction-Based GTT Load Sharing feature is based on the feature’s part number and the serial number of the EAGLE 5 ISS, making the feature access key site-specific.

The `enable-crtl-feat` command enables the feature by inputting the feature’s access key and the feature’s part number with these parameters:

- `:fak` – The feature access key provided by Tekelec. The feature access key contains 13 alphanumeric characters and is not case sensitive.
- `:partnum` – The Tekelec-issued part number of the Transaction-Based GTT Load Sharing feature, 893017101.

The `enable-crtl-feat` command requires that the database contain a valid serial number for the EAGLE 5 ISS, and that this serial number is locked. This can be verified with the `rtrv-serial-num` command.
command. The EAGLE 5 ISS is shipped with a serial number in the database, but the serial number is not locked. The serial number can be changed, if necessary, and locked once the EAGLE 5 ISS is on-site, with the ent-serial-num command. The ent-serial-num command uses these parameters.

:serial – The serial number assigned to the EAGLE 5 ISS. The serial number is not case sensitive.

:lock – Specifies whether or not the serial number is locked. This parameter has only one value, yes, which locks the serial number. Once the serial number is locked, it cannot be changed.

Note: To enter and lock the EAGLE 5 ISS’s serial number, the ent-serial-num command must be entered twice, once to add the correct serial number to the database with the serial parameter, then again with the serial and the lock=yes parameters to lock the serial number. You should verify that the serial number in the database is correct before locking the serial number. The serial number can be found on a label affixed to the control shelf (shelf 1100).

This feature cannot be temporarily enabled (with the temporary feature access key).

Once this feature is enabled, provisioning for this feature can be performed, but the feature will not work until the feature is turned on with the chg-ctrl-feat command.

Once this feature has been enabled, the feature must be turned on with the chg-ctrl-feat command. The chg-ctrl-feat command uses these parameters:

:partnum – The Tekelec-issued part number of the Transaction-Based GTT Load Sharing feature, 893017101.

:status=on – used to turn the Transaction-Based GTT Load Sharing feature on.

Once the Transaction-Based GTT Load Sharing feature has been turned on, it cannot be turned off.

The status of the features in the EAGLE 5 ISS is shown with the rtrv-ctrl-feat command.

The Transaction-Based GTT Load Sharing feature requires that DSMs or E5-SM4G cards are installed and provisioned in the EAGLE 5 ISS. DSMs and E5-SM4G cards are shown by the entries DSM in the TYPE column and VSCCP in the APPL column of the rtrv-card output.

1. Display the status of the Transaction-Based GTT Load Sharing feature by entering the rtrv-ctrl-feat command. The following is an example of the possible output.

```
rlghncxa03w 06-10-28 21:15:37 GMT EAGLE5 36.0.0
The following features have been permanently enabled:

Feature Name                  Partnum    Status  Quantity
Command Class Management      893005801  on      ----
LNP Short Message Service     893006601  on      ----
Intermed GTT Load Sharing     893006901  on      ----
HC-MIM SLK Capacity           893012707  on      64

The following features have been temporarily enabled:

Feature Name                  Partnum    Status  Quantity     Trial Period Left
Zero entries found.

The following features have expired temporary keys:

Feature Name                  Partnum
Zero entries found.
```

If the Transaction-Based GTT Load Sharing feature is enabled and turned on, no further action is necessary. This procedure does not need to be performed.
If the Transaction-Based GTT Load Sharing feature is enabled and not turned on, skip steps 2 through 7 and go to step 8.

If the Transaction-Based GTT Load Sharing feature is not enabled, go to step 2.

2. Verify that the GTT feature is on, by entering the `rtrv-feat` command. If the GTT feature is on, the `GTT` field should be set to `on`.

 Note: The `rtrv-feat` command output contains other fields that are not used by this procedure. If you wish to see all the fields displayed by the `rtrv-feat` command, see the `rtrv-feat` command description in the *Commands Manual*.

 If the GTT feature is on, shown by the entry `GTT = on` in the `rtrv-feat` command output in step 2, go to step 3.

 If the GTT feature is off, perform *Adding a Service Module* to turn the GTT feature on and add the required number of DSMs or E5-SM4G cards. After *Adding a Service Module* is performed, skip step 3 and go to step 4.

3. Display the cards in the EAGLE 5 ISS using the `rtrv-card` command. The Transaction-Based GTT Load Sharing feature requires that DSMs or E5-SM4G cards running the VSCCP application are in the database. This is an example of the possible output.

<table>
<thead>
<tr>
<th>CARD</th>
<th>TYPE</th>
<th>APPL</th>
<th>LSET NAME</th>
<th>PORT SLC</th>
<th>LSET NAME</th>
<th>PORT SLC</th>
</tr>
</thead>
<tbody>
<tr>
<td>1102</td>
<td>TSM</td>
<td>GLS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1113</td>
<td>GPSM</td>
<td>OAM</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1114</td>
<td>TDM-A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1115</td>
<td>GPSM</td>
<td>OAM</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1116</td>
<td>TDM-B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1117</td>
<td>MDAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1201</td>
<td>LIMDS0</td>
<td>SS7ANSI</td>
<td>sp2</td>
<td>A</td>
<td>sp1</td>
<td>B</td>
</tr>
<tr>
<td>1203</td>
<td>LIMDS0</td>
<td>SS7ANSI</td>
<td>sp3</td>
<td>A</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1204</td>
<td>LIMDS0</td>
<td>SS7ANSI</td>
<td>sp3</td>
<td>A</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1216</td>
<td>DCM</td>
<td>STPLAN</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1301</td>
<td>DSM</td>
<td>VSCCP</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1303</td>
<td>DSM</td>
<td>VSCCP</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1305</td>
<td>DSM</td>
<td>VSCCP</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1308</td>
<td>LIMDS0</td>
<td>SS7ANSI</td>
<td>sp6</td>
<td>A</td>
<td>sp7</td>
<td>B</td>
</tr>
<tr>
<td>1314</td>
<td>LIMDS0</td>
<td>SS7ANSI</td>
<td>sp7</td>
<td>A</td>
<td>sp5</td>
<td>B</td>
</tr>
<tr>
<td>1317</td>
<td>DCM</td>
<td>STPLAN</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

 There are two types of service modules, DSMs or E5-SM4G cards running the VSCCP application. DSMs and E5-SM4G cards are shown by the entries `DSM` in the `TYPE` column and `VSCCP` in the `APPL` column.

 If DSMs or E5-SM4G cards running the VSCCP application are in the EAGLE 5 ISS, go to step 4.

 Note: If the `rtrv-ctrl-feat` output in step 1 shows any controlled features, skip steps 4 through 7, and go to step 8. If the `rtrv-ctrl-feat` output shows only the HC-MIMSLK Capacity feature with a quantity of 64, steps 4 through 7 must be performed.

4. Display the serial number in the database with the `rtrv-serial-num` command. This is an example of the possible output.

 `righncxa03w 06-10-28 21:15:37 GMT EAGLE5 36.0.0`
 System serial number = nt00001231
 System serial number is not locked.
Note: If the serial number is correct and locked, skip steps 5, 6, and 7, and go to step 8. If the serial number is correct but not locked, skip steps 5 and 6, and go to step 7. If the serial number is not correct, but is locked, this feature cannot be enabled and the remainder of this procedure cannot be performed. Contact the Customer Care Center to get an incorrect and locked serial number changed. Refer to Customer Care Center for the contact information. The serial number can be found on a label affixed to the control shelf (shelf 1100).

5. Enter the correct serial number into the database using the ent-serial-num command with the serial parameter.

For this example, enter this command.

```
ent-serial-num:serial=<EAGLE 5 ISS’s correct serial number>
```

When this command has successfully completed, the following message should appear.

```
rlghncxa03w 06-10-28 21:15:37 GMT EAGLE5 36.0.0
ENT-SERIAL-NUM: MASP A - COMPLTD
```

6. Verify that the serial number entered into step 5 was entered correctly using the rtrv-serial-num command. This is an example of the possible output.

```
rlghncxa03w 06-10-28 21:15:37 GMT EAGLE5 36.0.0
System serial number = nt00001231
System serial number is not locked.
rlghncxa03w 06-10-28 21:15:37 GMT EAGLE5 36.0.0
Command Completed
```

If the serial number was not entered correctly, repeat steps 5 and 6 and re-enter the correct serial number.

7. Lock the serial number in the database by entering the ent-serial-num command with the serial number shown in step 4, if the serial number shown in step 4 is correct, or with the serial number shown in step 6, if the serial number was changed in step 5, and with the lock=yes parameter.

For this example, enter this command.

```
ent-serial-num:serial=<EAGLE 5 ISS’s serial number>:lock=yes
```

When this command has successfully completed, the following message should appear.

```
rlghncxa03w 06-10-28 21:15:37 GMT EAGLE5 36.0.0
ENT-SERIAL-NUM: MASP A - COMPLTD
```

8. Enable the Transaction-Based GTT Load Sharing feature with the enable-ctrl-feat command specifying the part number for the Transaction-Based GTT Load Sharing feature and the feature access key. Enter this command.

```
enable-ctrl-feat:partnum=893017101:fak=<Transaction-Based GTT Load Sharing feature access key>
```

Note: The Transaction-Based GTT Load Sharing feature cannot be enabled with a temporary feature access key.
Note: The values for the feature access key (the fak parameter) are provided by Tekelec. If you do not have the feature access key for the Transaction-Based GTT Load Sharing feature, contact your Tekelec Sales Representative or Account Representative.

When the enable-crtl-feat command has successfully completed, this message should appear.

```
rlghncxa03w 06-10-28 21:15:37 GMT EAGLE5 36.0.0
ENABLE-CTRL-FEAT: MASP B - COMPLTD
```

CAUTION: Once the Transaction-Based GTTLoad Sharing feature is enabled, provisioning for Transaction-Based GTTLoad Sharing can be performed, but the EAGLE 5 ISS will not perform Transaction-Based GTTLoad Sharing on GTT traffic until the Transaction-Based GTTLoad Sharing is turned on in step 8.

Note: If you do not wish to turn the Transaction-Based GTTLoad Sharing feature on, skip step 9 and go to step 10.

9. Turn the Transaction-Based GTT Load Sharing feature on with the chg-crtl-feat command specifying the part number for the Transaction-Based GTT Load Sharing feature and the status=on parameter.

Enter this command.

```
chg-crtl-feat:partnum=893017101:status=on
```

Note: Once this feature is turned on, it cannot be turned off.

When the chg-crtl-feat command has successfully completed, this message should appear.

```
rlghncxa03w 06-10-28 21:15:37 GMT EAGLE5 36.0.0
CHG-CTRL-FEAT: MASP B - COMPLTD
```

10. Verify the changes by entering the rtrv-crtl-feat command with the Transaction-Based GTT Load Sharing feature part number. Enter this command.

```
rtrv-crtl-feat:partnum=893017101
```

The following is an example of the possible output.

```
rlghncxa03w 06-10-28 21:15:37 GMT EAGLE5 36.0.0
The following features have been permanently enabled:

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Partnum</th>
<th>Status</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transaction Based GTT LS</td>
<td>893017101</td>
<td>on</td>
<td>----</td>
</tr>
</tbody>
</table>

The following features have been temporarily enabled:

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Partnum</th>
<th>Status</th>
<th>Quantity</th>
<th>Trial Period Left</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zero entries found.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The following features have expired temporary keys:

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Partnum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zero entries found.</td>
<td></td>
</tr>
</tbody>
</table>
11. Backup the new changes using the \texttt{chg-db:action=backup:dest=fixed} command. These messages should appear, the active Maintenance and Administration Subsystem Processor (MASP) appears first.

\begin{verbatim}
BACKUP (FIXED) : MASP A - Backup starts on active MASP.
BACKUP (FIXED) : MASP A - Backup on active MASP to fixed disk complete.
BACKUP (FIXED) : MASP A - Backup starts on standby MASP.
BACKUP (FIXED) : MASP A - Backup on standby MASP to fixed disk complete.
\end{verbatim}

Activating the SCCP Loop Detection Feature

This procedure is used to enable and turn on the SCCP Loop Detection feature using the feature’s part number and a feature access key.

The feature access key for the SCCP Loop Detection feature is based on the feature’s part number and the serial number of the EAGLE 5 ISS, making the feature access key site-specific.

The \texttt{enable-ctrl-feat} command enables the feature by inputting the feature’s access key and the feature’s part number with these parameters:

\begin{itemize}
\item [:fak] – The feature access key provided by Tekelec. The feature access key contains 13 alphanumeric characters and is not case sensitive.
\item [:partnum] – The Tekelec-issued part number of the SCCP Loop Detection feature, 893016501.
\end{itemize}

The \texttt{enable-ctrl-feat} command requires that the database contain a valid serial number for the EAGLE 5 ISS, and that this serial number is locked. This can be verified with the \texttt{rtrv-serial-num} command. The EAGLE 5 ISS is shipped with a serial number in the database, but the serial number is not locked. The serial number can be changed, if necessary, and locked once the EAGLE 5 ISS is on-site, with the \texttt{ent-serial-num} command. The \texttt{ent-serial-num} command uses these parameters:

\begin{itemize}
\item [:serial] – The serial number assigned to the EAGLE 5 ISS. The serial number is not case sensitive.
\item [:lock] – Specifies whether or not the serial number is locked. This parameter has only one value, \texttt{yes}, which locks the serial number. Once the serial number is locked, it cannot be changed.
\end{itemize}

\textbf{Note:} To enter and lock the EAGLE 5 ISS’s serial number, the \texttt{ent-serial-num} command must be entered twice, once to add the correct serial number to the database with the \texttt{serial} parameter, then again with the \texttt{serial} and the \texttt{lock=\texttt{yes}} parameters to lock the serial number. You should verify that the serial number in the database is correct before locking the serial number. The serial number can be found on a label affixed to the control shelf (shelf 1100).

This feature cannot be temporarily enabled (with the temporary feature access key).

Once this feature is enabled, provisioning for this feature can be performed, but the feature will not work until the feature is turned on with the \texttt{chg-ctrl-feat} command. The \texttt{chg-ctrl-feat} command uses these parameters:

\begin{itemize}
\item [:partnum] – The Tekelec-issued part number of the SCCP Loop Detection feature, 893016501.
\item [:status=\texttt{on}] – used to turn the SCCP Loop Detection feature on.
\end{itemize}

Once the SCCP Loop Detection feature has been turned on, it cannot be turned off.

The status of the features in the EAGLE 5 ISS is shown with the \texttt{rtrv-ctrl-feat} command.
Once the SCCP Loop Detection feature is turned on, SCCP Loop Detection is performed on MSUs requiring global title translation. For more information on the SCCP Loop Detection feature, refer to the SCCP Loop Detection section.

1. Display the status of the SCCP Loop Detection feature by entering the `rtrv-ctrl-feat` command. The following is an example of the possible output.

```
rlghncxa03w 06-10-28 21:15:37 GMT EAGLE5 36.0.0
The following features have been permanently enabled:
Feature Name Partnum Status Quantity
HC-MIM SLK Capacity 893012707 on 64
Intermed GTT Load Sharing 893006901 on ----
G-Port Circ Route Prevent 893007001 on ----
Network Security Enhance 893009101 off ----
EAGLE OA&M IP Security 893400001 off ----
Flexible GTT Load-Sharing 893015401 on ----
Origin Based SCCP Routing 893014301 on ----
SCCP Loop Detection 893016501 on ----
The following features have been temporarily enabled:
Feature Name Partnum Status Quantity Trial Period Left
Zero entries found.
The following features have expired temporary keys:
Feature Name Partnum
Zero entries found.
```

If the SCCP Loop Detection feature is enabled and turned on, no further action is necessary. This procedure does not need to be performed.

If the SCCP Loop Detection feature is enabled and but not turned on, skip steps 2 through 9 and go to step 10.

If the SCCP Loop Detection feature is not enabled, go to step 2.

2. Verify that the GTT feature is on, by entering the `rtrv-feat` command. If the GTT feature is on, the GTT field should be set to on.

```
NOTE: The `rtrv-feat` command output contains other fields that are not used by this procedure. If you wish to see all the fields displayed by the `rtrv-feat` command, see the `rtrv-feat` command description in the Commands Manual.
```

If the GTT feature is on, shown by the entry GTT = on in the `rtrv-feat` command output in skip step 3 and go to step 4.

If the GTT feature is off, perform step 3 to turn the GTT feature on.

3. Turn the global title translation feature on by entering this command.

```
chg-feat:gtt=on
```

NOTE: Once the Global Title Translation (GTT) feature is turned on with the `chg-feat` command, it cannot be turned off. The GTT feature must be purchased before turning it on. If you are not sure whether you have purchased the GTT feature, contact your Tekelec Sales Representative or Account Representative.
When the `chg-feat` command has successfully completed, this message should appear.

```
rlghncxa03w 07-03-25 09:57:41 GMT EAGLE5 35.6.0
CHG-FEAT: MASP A - COMPLTD
```

4. Display the cards in the EAGLE 5 ISS using the `rtrv-card` command. The SCCP Loop Detection feature requires that DSMs or E5-SM4G cards running the VSCCP application are in the database. This is an example of the possible output.

```
rlghncxa03w 09-05-25 09:58:31 GMT EAGLE5 41.0.0
CARD TYPE APPL LSET NAME PORT SLC LSET NAME PORT SLC
1102 TSM GLS
1113 GPSM OAM
1114 TDM-A
1115 GPSM OAM
1116 TDM-B
1117 MDAL
1201 LIMDS0 SS7ANSI sp2 A 0 sp1 B 0
1203 LIMDS0 SS7ANSI sp3 A 0
1204 LIMDS0 SS7ANSI sp3 A 1
1206 LIMDS0 SS7ANSI nsp3 A 1 nsp4 B 1
1216 DCM STPLAN
1301 DSM VSCCP
1303 DSM VSCCP
1305 DSM VSCCP
1308 LIMDS0 SS7ANSI sp6 A 1 sp7 B 0
1314 LIMDS0 SS7ANSI sp7 A 1 sp5 B 1
1317 DCM STPLAN
```

There are two types of service modules, DSMs or E5-SM4G cards running the VSCCP application. DSMs and E5-SM4G cards are shown by the entries `DSM` in the `TYPE` column and `VSCCP` in the `APPL` column.

If no service modules are shown in the `rtrv-card` output, perform *Adding a Service Module* to add DSMs or E5-SM4G cards to the EAGLE 5 ISS.

If DSMs or E5-SM4G cards running the VSCCP application are in the EAGLE 5 ISS, go to step 5.

**Note:** If the `rtrv-ctrl-feat` output in step 1 shows any controlled features, skip steps 5 through 8, and go to step 9. If the `rtrv-ctrl-feat` output shows only the HC-MIMSLK Capacity feature with a quantity of 64, steps 5 through 8 must be performed.

5. Display the serial number in the database with the `rtrv-serial-num` command. This is an example of the possible output.

```
rlghncxa03w 06-10-28 21:15:37 GMT EAGLE5 36.0.0
System serial number = nt00001231
System serial number is not locked.
```

```
rlghncxa03w 06-10-28 21:15:37 GMT EAGLE5 36.0.0
Command Completed
```

**Note:** If the serial number is correct and locked, continue the procedure with *Step 9*. If the serial number is correct but not locked, continue the procedure with *Step 8*. If the serial number is not correct, but is locked, this feature cannot be enabled and the remainder of this procedure cannot be performed. Contact the Customer Care Center to get an incorrect and locked serial number changed. Refer to *Customer Care Center* for the contact information. The serial number can be found on a label affixed to the control shelf (shelf 1100).
6. Enter the correct serial number into the database using the `ent-serial-num` command with the `serial` parameter.

For this example, enter this command.

```
ent-serial-num:serial=<EAGLE 5 ISS’s correct serial number>
```

When this command has successfully completed, the following message should appear.

```
rlghncxa03w 06-10-28 21:15:37 GMT EAGLE5 36.0.0
ENT-SERIAL-NUM: MASP A - COMPLTD
```

7. Verify that the serial number entered into Step 6 was entered correctly using the `rtrv-serial-num` command. This is an example of the possible output.

```
rlghncxa03w 06-10-28 21:15:37 GMT EAGLE5 36.0.0
System serial number = nt00001231
System serial number is not locked.
rlghncxa03w 06-10-28 21:15:37 GMT EAGLE5 36.0.0
Command Completed
```

If the serial number was not entered correctly, repeat steps 6 and 7 and re-enter the correct serial number.

8. Lock the serial number in the database by entering the `ent-serial-num` command with the serial number shown in Step 5, if the serial number shown in Step 5 is correct, or with the serial number shown in Step 7, if the serial number was changed in Step 6, and with the `lock=yes` parameter.

For this example, enter this command.

```
ent-serial-num:serial=<EAGLE 5 ISS’s serial number>:lock=yes
```

When this command has successfully completed, the following message should appear.

```
rlghncxa03w 06-10-28 21:15:37 GMT EAGLE5 36.0.0
ENT-SERIAL-NUM: MASP A - COMPLTD
```

9. Enable the SCCP Loop Detection feature with the `enable-ctrl-feat` command specifying the part number for the SCCP Loop Detection feature and the feature access key. Enter this command.

```
enable-ctrl-feat:partnum=893016501:fak=<SCCP Loop Detection feature access key>
```

**Note:** The SCCP Loop Detection feature cannot be enabled with a temporary feature access key.

**Note:** The values for the feature access key (the `fak` parameter) are provided by Tekelec. If you do not have the feature access key for the SCCP Loop Detection feature, contact your Tekelec Sales Representative or Account Representative.

**CAUTION:** Once the SCCP Loop Detection feature is enabled, provisioning for SCCP Loop Detection can be performed, but the EAGLE 5 ISS will not perform SCCP Loop Detection on GTT traffic until the SCCP Loop Detection feature is turned on in step 10.

When the `enable-ctrl-feat` command has successfully completed, this message should appear.

```
rlghncxa03w 06-10-28 21:15:37 GMT EAGLE5 36.0.0
ENABLE-CTRL-FEAT: MASP B - COMPLTD
```
10. Turn the SCCP Loop Detection feature on with the `chg-ctrl-feat` command specifying the part number for the SCCP Loop Detection feature and the `status=on` parameter.

   Enter this command.

   `chg-ctrl-feat:partnum=893016501:status=on`

   **Note:** Once this feature is turned on, it cannot be turned off.

   When the `chg-ctrl-feat` command has successfully completed, this message should appear.

   rlghncxa03w 06-10-28 21:15:37 GMT EAGLE5 36.0.0
   CHG-CTRL-FEAT: MASP B - COMPLTD

11. Verify the changes by entering the `rtrv-ctrl-feat` command with the SCCP Loop Detection feature part number. Enter this command.

   `rtrv-ctrl-feat:partnum=893016501`

   The following is an example of the possible output.

   rlghncxa03w 07-03-28 21:15:37 GMT EAGLE5 35.6.0
   The following features have been permanently enabled:

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Partnum</th>
<th>Status</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCCP Loop Detection</td>
<td>8930165101</td>
<td>on</td>
<td>----</td>
</tr>
</tbody>
</table>

   The following features have been temporarily enabled:

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Partnum</th>
<th>Status</th>
<th>Quantity</th>
<th>Trial Period Left</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zero entries found.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

   The following features have expired temporary keys:

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Partnum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zero entries found.</td>
<td></td>
</tr>
</tbody>
</table>

12. Backup the new changes using the `chg-db:action=backup:dest=fixed` command. These messages should appear, the active Maintenance and Administration Subsystem Processor (MASP) appears first.

   BACKUP (FIXED) : MASP A - Backup starts on active MASP.
   BACKUP (FIXED) : MASP A - Backup on active MASP to fixed disk complete.
   BACKUP (FIXED) : MASP A - Backup starts on standby MASP.
   BACKUP (FIXED) : MASP A - Backup on standby MASP to fixed disk complete.

### Activating the E5-SM4G/ E5-SM8G-B Throughput Capacity Feature

This procedure is used to enable a quantity of SCCP transactions per second for the E5-SM4G/E5-SM8G-B Throughput Capacity feature using the quantity’s part number and a feature access key.

The feature access key is based on the feature’s part number and the serial number of the EAGLE 5 ISS, making the feature access key site-specific.
The `enable-ctrl-feat` command enables the E5-SM4G/E5-SM8G-B Throughput Capacity feature by inputting the feature’s access key and the feature’s part number with these parameters:

- `:fak` – The feature access key provided by Tekelec. The feature access key contains 13 alphanumeric characters and is not case sensitive.
- `:partnum` – The Tekelec-issued part number of the quantity of SCCP transactions per second that is being enabled. These are the quantities that can be enabled and their part numbers.
  - 893019101 - 5000 SCCP transactions per second
  - 893019102 - 6800 SCCP transactions per second
  - 893019103 - 10000 SCCP transactions per second

A temporary feature access key cannot be used to enable a quantity of SCCP transactions per second.

The GTT feature must be turned on to enable a quantity of SCCP transactions per second.

The status of the GTT feature is shown in the `rtrv-feat` command output.

The `enable-ctrl-feat` command requires that the database contain a valid serial number for the EAGLE 5 ISS, and that this serial number is locked. This can be verified with the `rtrv-serial-num` command. The EAGLE 5 ISS is shipped with a serial number in the database, but the serial number is not locked. The serial number can be changed, if necessary, and locked once the EAGLE 5 ISS is on-site, with the `ent-serial-num` command. The `ent-serial-num` command uses these parameters.

- `:serial` – The serial number assigned to the EAGLE 5 ISS. The serial number is not case sensitive.
- `:lock` – Specifies whether or not the serial number is locked. This parameter has only one value, `yes`, which locks the serial number. Once the serial number is locked, it cannot be changed.

**Note:** To enter and lock the EAGLE 5 ISS serial number, the `ent-serial-num` command must be entered twice, once to add the correct serial number to the database with the `serial` parameter, then again with the `serial` and the `lock=yes` parameters to lock the serial number. You should verify that the serial number in the database is correct before locking the serial number. The serial number can be found on a label affixed to the control shelf (shelf 1100).

The status of the features in the EAGLE 5 ISS is shown with the `rtrv-ctrl-feat` command.

**Table 34: SCCP Throughput Capacity** in the *Adding a Service Module* procedure shows the maximum system transactions per second capacities that can be achieved when the E5-SM4G/E5-SM8G-B Throughput Capacity feature is enabled with a quantity of 5000, 6800, and 10,000 SCCP transactions per second.

1. Display the status of the E5-SM4G/E5-SM8G-B Throughput Capacity feature by entering the `rtrv-ctrl-feat` command. This is an example of the possible output.

```
rlghncxa03w 09-07-28 21:15:37 GMT EAGLE5 41.1.0
The following features have been permanently enabled:

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Partnum</th>
<th>Status</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Command Class Management</td>
<td>893005801</td>
<td>on</td>
<td>-----</td>
</tr>
<tr>
<td>Intermed GTT Load Sharing</td>
<td>893006901</td>
<td>off</td>
<td>-----</td>
</tr>
<tr>
<td>XGTT Table Expansion</td>
<td>893006101</td>
<td>off</td>
<td>-----</td>
</tr>
<tr>
<td>XMAP Table Expansion</td>
<td>893007710</td>
<td>on</td>
<td>3000</td>
</tr>
<tr>
<td>Large System # Links</td>
<td>893005910</td>
<td>on</td>
<td>2000</td>
</tr>
<tr>
<td>Routesets</td>
<td>893006401</td>
<td>on</td>
<td>6000</td>
</tr>
<tr>
<td>HC-MIM SLK Capacity</td>
<td>893012707</td>
<td>on</td>
<td>64</td>
</tr>
</tbody>
</table>

The following features have been temporarily enabled:
```
The E5-SM4G/E5-SM8G-B Throughput Capacity feature can be enabled for a quantity of 5000 SCCP transactions per second or 6800 SCCP transactions per second.

Note: If the 5000 SCCP transactions per second quantity is enabled, and an EPAP-based feature is enabled, the number of SCCP transactions per second is limited to 3125.

If the E5-SM4G/E5-SM8G-B Throughput Capacity feature is enabled 6800 SCCP transactions per second, shown by the entry E5-SM4G Throughput Cap with the value 6800 in the Quantity column, no further action is necessary. This is the maximum number of SCCP transactions per second that can be enabled.

If the quantity for the E5-SM4G Throughput Capacity feature is 5000 SCCP transactions per second, and you wish to enable the 6800 SCCP transactions per second quantity, continue the procedure with Step 8. If you do not wish to enable the 6800 SCCP transactions per second quantity, then the remainder of this procedure cannot be performed.

If neither the quantities of 5000 or 6800 SCCP transactions per second are shown in the Quantity column of the rtrv-ctrl-feat output, continue the procedure with Step 2.

2. To enable the E5-SM4G Throughput Capacity feature, the GTT feature must be turned on. The GTT feature is shown by the entry GTT in the rtrv-feat output.

Enter the rtrv-feat command to verify whether or not the GTT feature is on.

If the GTT feature is turned on, continue the procedure with Step 3.

If the GTT feature is turned off, perform Adding a Service Module to turn the GTT feature on and to add the required number of E5-SM4G cards to the database. After Adding a Service Module has been performed, continue the procedure with Step 4.

3. Verify the number of E5-SM4G cards that are provisioned in the database using the rept-stat-gpl:gpl=sccphc command. This is an example of the possible output.

```
righncxa03w 09-07-01 11:40:26 GMT EAGLE5 41.1.0
GPL CARD RUNNING APPROVED TRIAL
SCCPHC 1201 126-002-000 126-002-000 126-003-000
SCCPHC 1203 126-002-000 126-002-000 126-003-000
SCCPHC 1207 126-002-000 126-002-000 126-003-000
SCCPHC 1213 126-002-000 126-002-000 126-003-000
SCCPHC 1215 126-002-000 126-002-000 126-003-000
SCCPHC 1305 126-002-000 126-002-000 126-003-000
SCCPHC 1313 126-002-000 126-002-000 126-003-000
SCCPHC 2103 126-002-000 126-002-000 126-003-000
```

Command Completed

If the required number of E5-SM4G cards are provisioned in the database, continue the procedure with Step 4.

If the required number of E5-SM4G cards are not provisioned in the database, perform Adding a Service Module to add the required number of E5-SM4G cards to the database. After Adding a Service Module has been performed, continue the procedure with Step 4.
4. Display the serial number in the database with the `rtrv-serial-num` command. This is an example of the possible output.

**Note:** If the `rtrv-ctrl-feat` output in *Step 1* shows any controlled features, continue the procedure with *Step 8*. If the `rtrv-ctrl-feat` output shows only the HC-MIM SLK Capacity feature with a quantity of 64, *Step 4* through *Step 7* must be performed.

```
rlghncxa03w 09-07-28 21:15:37 GMT EAGLE5 41.1.0
System serial number = nt00001231

rlghncxa03w 09-07-28 21:15:37 GMT EAGLE5 41.1.0
Command Completed
```

**Note:** If the serial number is correct and locked, continue the procedure with *Step 8*. If the serial number is correct but not locked, continue the procedure with *Step 7*. If the serial number is not correct, but is locked, this feature cannot be enabled and the remainder of this procedure cannot be performed. Contact the Customer Care Center to get an incorrect and locked serial number changed. Refer to *Customer Care Center* for the contact information. The serial number can be found on a label affixed to the control shelf (shelf 1100).

5. Enter the correct serial number into the database using the `ent-serial-num` command with the `serial` parameter.

For this example, enter this command.

```
ent-serial-num:serial=<EAGLE 5 ISS’s correct serial number>
```

When this command has successfully completed, this message should appear.

```
rlghncxa03w 07-07-28 21:15:37 GMT EAGLE5 41.1.0
ENT-SERIAL-NUM: MASP A - COMPLTD
```

6. Verify that the serial number entered into *Step 5* was entered correctly using the `rtrv-serial-num` command. This is an example of the possible output.

```
rlghncxa03w 09-07-28 21:15:37 GMT EAGLE5 41.1.0
System serial number = nt00001231

rlghncxa03w 09-07-28 21:15:37 GMT EAGLE5 41.1.0
Command Completed
```

If the serial number was not entered correctly, repeat *Step 5* and *Step 6* and re-enter the correct serial number.

7. Lock the serial number in the database by entering the `ent-serial-num` command with the serial number shown in *Step 4*, if the serial number shown in *Step 4* is correct, or with the serial number shown in *Step 6*, if the serial number was changed in *Step 5*, and with the `lock=yes` parameter.

For this example, enter this command.

```
ent-serial-num:serial=<EAGLE 5 ISS’s serial number>:lock=yes
```

When this command has successfully completed, this message should appear.

```
rlghncxa03w 09-07-28 21:15:37 GMT EAGLE5 41.1.0
ENT-SERIAL-NUM: MASP A - COMPLTD
```
8. Enable the E5-SM4G Throughput Capacity feature for a quantity of 5000 or 6800 SCCP transactions per second by entering the `enable-ctrl-feat` command with the part number of the quantity. These are the part numbers that can be used in this procedure.

- 893019101 - 5000 SCCP transactions per second
- 893019102 - 6800 SCCP transactions per second
- 893019103 - 10000 SCCP transactions per second

To enable the E5-SM4G Throughput Capacity feature for a quantity of 5000 SCCP transactions per second, enter this command.

```
enable-ctrl-feat:partnum=893019101:fak=<feature access key for 5000 SCCP transactions per second>
```

**Note:** If the 5000 SCCP transactions per second quantity is enabled, and an EPAP-based feature is enabled, the number of SCCP transactions per second is limited to 3125.

To enable the E5-SM4G Throughput Capacity feature for a quantity of 6800 SCCP transactions per second, enter this command.

```
enable-ctrl-feat:partnum=893019102:fak=<feature access key for 6800 SCCP transactions per second>
```

```
enable-ctrl-feat:partnum=893019103:fak=<feature access key for 10000 SCCP transactions per second>
```

**Note:** The E5-SM4G Throughput Capacity feature cannot be enabled with a temporary feature access key.

**Note:** The value for the feature access key (the `fak` parameter) is provided by Tekelec. If you do not have the feature access key for the SCCP transactions per second quantity, contact your Tekelec Sales Representative or Account Representative.

When the `enable-ctrl-feat` command has successfully completed, this message should appear.

```
rlghncxa03w 09-07-28 21:15:37 GMT EAGLE5 41.1.0
ENABLE-CTRL-FEAT: MASP B - COMPLTD
```

9. Verify the changes by entering the `rtrv-ctrl-feat` command with the E5-SM4G Throughput Capacity feature part number specified in Step 8.

If the quantity of 5000 SCCP transactions per second was enabled and turned on, enter this command.

```
rtrv-ctrl-feat:partnum=893019101
```

This is an example of the possible output.

```
rigthncxa03w 09-07-28 21:15:37 GMT EAGLE5 41.1.0
The following features have been permanently enabled:

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Partnum</th>
<th>Status</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>E5-SM4G Throughput Cap</td>
<td>893019101</td>
<td>on</td>
<td>5000</td>
</tr>
</tbody>
</table>

The following features have been temporarily enabled:

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Partnum</th>
<th>Status</th>
<th>Quantity</th>
<th>Trial Period Left</th>
</tr>
</thead>
</table>

Zero entries found.

The following features have expired temporary keys:
Feature Name Partnum
Zero entries found.

If the quantity of 6800 SCCP transactions per second was enabled and turned on, enter this command.

rtrv-ctrl-feat:partnum=893019102

This is an example of the possible output.

rlghncxa03w 09-07-28 21:15:37 GMT EAGLE5 41.1.0
The following features have been permanently enabled:

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Partnum</th>
<th>Status</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>E5-SM4G Throughput Cap</td>
<td>893019102</td>
<td>on</td>
<td>6800</td>
</tr>
</tbody>
</table>

The following features have been temporarily enabled:

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Partnum</th>
<th>Status</th>
<th>Quantity</th>
<th>Trial Period Left</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zero entries found.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The following features have expired temporary keys:

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Partnum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zero entries found.</td>
<td></td>
</tr>
</tbody>
</table>

If the quantity of 10000 SCCP transactions per second was enabled and turned on, enter this command.

rtrv-ctrl-feat:partnum=893019103

This is an example of the possible output.

rlghncxa03w 09-07-28 21:15:37 GMT EAGLE5 41.1.0
The following features have been permanently enabled:

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Partnum</th>
<th>Status</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>E5-SM4G Throughput Cap</td>
<td>893019103</td>
<td>on</td>
<td>10000</td>
</tr>
</tbody>
</table>

The following features have been temporarily enabled:

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Partnum</th>
<th>Status</th>
<th>Quantity</th>
<th>Trial Period Left</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zero entries found.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The following features have expired temporary keys:

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Partnum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zero entries found.</td>
<td></td>
</tr>
</tbody>
</table>

10. Backup the new changes using the chg-db:action=backup:dest=fixed command. These messages should appear, the active Maintenance and Administration Subsystem Processor (MASP) appears first.

BACKUP (FIXED) : MASP A - Backup starts on active MASP.
BACKUP (FIXED) : MASP A - Backup on active MASP to fixed disk complete.
BACKUP (FIXED) : MASP A - Backup starts on standby MASP.
BACKUP (FIXED) : MASP A - Backup on standby MASP to fixed disk complete.
Activating the Advanced GT Modification Feature

This procedure is used to enable and turn on the Advanced GT Modification feature using the feature’s part number and a feature access key.

The feature access key for the Advanced GT Modification feature is based on the feature’s part number and the serial number of the EAGLE 5 ISS, making the feature access key site-specific.

The enable-ctrl-feat command enables the feature by inputting the feature’s access key and the feature’s part number with these parameters:

: fak – The feature access key provided by Tekelec. The feature access key contains 13 alphanumeric characters and is not case sensitive.

: partnum – The Tekelec-issued part number of the Advanced GT Modification feature. There are three part numbers associated with the Advanced GT Modification feature.

- 893021801 - AMGTT - provides GT modification to both the called party address and the calling party address of SCCP messages. This part number can be specified only if no Advanced GT Modification feature is currently enabled.
- 893021802 - AMGTT CdPA Only - provides GT modification to the called party address of SCCP messages only. This feature and its part number is shown in the rtrv-ctrl-feat output only if the MGTT feature from previous releases was turned on when the Eagle 5 ISS was upgraded to the release containing the Advanced GT Modification feature. This part number cannot be specified with the enable-ctrl-feat command.
- 893021803 - AMGTT CgPA Upgrade - provides GT modification to the calling party address and called party address of SCCP messages. This part number can be specified only if the AMGTT CdPA Only feature (part number 893021802) is enabled.

For more information on the Advanced GT Modification feature, refer to the Advanced GT Modification Feature section.

The enable-ctrl-feat command requires that the database contain a valid serial number for the EAGLE 5 ISS, and that this serial number is locked. This can be verified with the rtrv-serial-num command. The EAGLE 5 ISS is shipped with a serial number in the database, but the serial number is not locked. The serial number can be changed, if necessary, and locked once the EAGLE 5 ISS is on-site, with the ent-serial-num command. The ent-serial-num command uses these parameters.

: serial – The serial number assigned to the EAGLE 5 ISS. The serial number is not case sensitive.

: lock – Specifies whether or not the serial number is locked. This parameter has only one value, yes, which locks the serial number. Once the serial number is locked, it cannot be changed.

Note: To enter and lock the EAGLE 5 ISS’s serial number, the ent-serial-num command must be entered twice, once to add the correct serial number to the database with the serial parameter, then again with the serial and the lock=yes parameters to lock the serial number. You should verify that the serial number in the database is correct before locking the serial number. The serial number can be found on a label affixed to the control shelf (shelf 1100).

These features cannot be temporarily enabled (with the temporary feature access key).

Once any of these features are enabled, they are also activated. The chg-ctrl-feat command cannot be used to turn these features on. Once any of these features are enabled, they cannot be turned off.
The status of the Advanced GT Modification features is shown in the rtrv-ctrl-feat command output.

Before the Advanced GT Modification feature can be enabled, the GTT feature must be turned on. The state of the GTT feature can be verified using the rtrv-feat command.

1. Display the status of the Advanced GT Modification feature by entering the rtrv-ctrl-feat command.

 The following is an example of the possible output.

   ```
   rllhncxa03w 06-10-28 21:15:37 GMT EAGLE5 38.0.0
   The following features have been permanently enabled:
   Feature Name       Partnum     Status  Quantity
   Command Class Management  893005801  on      ----
   LNP Short Message Service 893006601  on      ----
   Intermed GTT Load Sharing 893006901  on      ----
   HC-MIM SLK Capacity       893012707  on      64
   The following features have been temporarily enabled:
   Feature Name       Partnum     Status  Quantity     Trial Period Left
   Zero entries found.
   The following features have expired temporary keys:
   Feature Name       Partnum
   Zero entries found.
   ```

 If the AMGTT or AMGTT CgPA Upgrade feature is enabled, no further action is necessary. This procedure does not need to be performed.

 If the AMGTT CdPA Only feature is enabled, and you do not wish to enable the AMGTT CgPA Upgrade feature, no further action is necessary.

 If the AMGTT CdPA Only feature is enabled, and you wish to enable the AMGTT CgPA Upgrade feature, continue the procedure with Step 8.

 If none of the Advanced GT Modification features are enabled, continue the procedure with Step 2.

2. Verify that the GTT feature is on, by entering the rtrv-feat command. If the GTT feature is on, the GTT field should be set to on.

 Note: The rtrv-feat command output contains other fields that are not used by this procedure. If you wish to see all the fields displayed by the rtrv-feat command, see the rtrv-feat command description in the Commands Manual.

 If the GTT feature is not on, perform Adding a Service Module to turn the GTT feature on and add the appropriate service modules to the EAGLE 5 ISS. After the GTT feature is turned on and the service modules have been added, continue the procedure with Step 4.

 If the GTT feature is on, continue the procedure with Step 3.

3. Display the cards in the EAGLE 5 ISS using the rtrv-card command. The Advanced GT Modification feature requires that service modules are in the database. This is an example of the possible output.

   ```
   rllhncxa03w 09-05-25 09:58:31 GMT EAGLE5 41.0.0
   CARD   TYPE      APPL      LSET NAME     PORT SLC LSET NAME     PORT SLC
   ```
There are two types of service modules, DSMs or E5-SM4Gs running the VSCCP application. DSMs and E5-SM4Gs are shown by the entries DSM in the TYPE column and VSCCP in the APPL column.

If no service modules are shown in the rtrv-card output, perform Adding a Service Module to add the appropriate service modules to the EAGLE 5 ISS. After the service modules have been added, continue the procedure with Step 4.

If service modules are in the EAGLE 5 ISS, continue the procedure with Step 4.

4. Display the serial number in the database with the rtrv-serial-num command.

 Note: If the rtrv-ctrl-feat output in Step 1 shows any controlled features, continue the procedure with Step 8. If the rtrv-ctrl-feat output shows only the HC-MIM SLK Capacity feature with a quantity of 64, Step 4 through Step 7 must be performed.

 This is an example of the possible output.

 rlghncca03w 06-10-28 21:15:37 GMT EAGLE5 38.0.0
 System serial number = nt00001231
 System serial number is not locked.

 rlghncca03w 06-10-28 21:15:37 GMT EAGLE5 38.0.0
 Command Completed

5. Enter the correct serial number into the database using the ent-serial-num command with the serial parameter.

 Note: If the serial number is correct and locked, continue the procedure with Step 8. If the serial number is correct but not locked, continue the procedure with Step 7. If the serial number is not correct, but is locked, this feature cannot be enabled and the remainder of this procedure cannot be performed. Contact the Customer Care Center to get an incorrect and locked serial number changed. Refer to Customer Care Center for the contact information. The serial number can be found on a label affixed to the control shelf (shelf 1100).

 For this example, enter this command.

 ent-serial-num:serial=<EAGLE 5 ISS’s correct serial number>

 When this command has successfully completed, the following message should appear.

 rlghncca03w 06-10-28 21:15:37 GMT EAGLE5 38.0.0
 ENT-SERIAL-NUM: MASP A - COMPLTD
6. Verify that the serial number entered in Step 5 was entered correctly using the rtrv-serial-num command.

This is an example of the possible output.

```
rlghncxa03w 06-10-28 21:15:37 GMT EAGLE5 38.0.0
System serial number = nt00001231
System serial number is not locked.
```

If the serial number was not entered correctly, repeat Step 5 and Step 6 and re-enter the correct serial number.

7. Lock the serial number in the database by entering the ent-serial-num command with the serial number shown in Step 4, if the serial number shown in Step 4 is correct, or with the serial number shown in Step 6, if the serial number was changed in Step 5, and with the lock=yes parameter.

For this example, enter this command.

```
ent-serial-num:serial=<EAGLE 5 ISS's serial number>:lock=yes
```

When this command has successfully completed, the following message should appear.

```
rlghncxa03w 06-10-28 21:15:37 GMT EAGLE5 38.0.0
ENT-SERIAL-NUM: MASP A - COMPLTD
```

8. Enable the Advanced GT Modification feature with the enable-ctrl-feat command specifying the part number for the Advanced GT Modification feature and the feature access key.

If the AMGTT feature is being enabled, enter this command.

```
enable-ctrl-feat:partnum=893021801:fak=<AMGTT feature access key>
```

If the AMGTT CgPA Upgrade feature is being enabled, enter this command.

```
enable-ctrl-feat:partnum=893021803:fak=<AMGTT CgPA Upgrade feature access key>
```

Note: Neither the AMGTT nor the AMGTT CgPA Upgrade feature can be enabled with a temporary feature access key.

Note: The values for the feature access key (the fak parameter) are provided by Tekelec. If you do not have the feature access key for the AMGTT or the AMGTT CgPA Upgrade feature, contact your Tekelec Sales Representative or Account Representative.

When the enable-ctrl-feat command has successfully completed, this message should appear.

```
rlghncxa03w 06-10-28 21:15:37 GMT EAGLE5 38.0.0
ENABLE-CTRL-FEAT: MASP B - COMPLTD
```

9. Verify the changes by entering the rtrv-ctrl-feat command with the part number used in Step 8.

If the AMGTT feature was enabled in Step 8, enter this command.

```
rtrv-ctrl-feat:partnum=893021801
```
The following is an example of the possible output.

```
rlghncxa03w 06-10-28 21:15:37 GMT EAGLE5 38.0.0
The following features have been permanently enabled:

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Partnum</th>
<th>Status</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMGTT</td>
<td>893021801</td>
<td>on</td>
<td>----</td>
</tr>
</tbody>
</table>

The following features have been temporarily enabled:

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Partnum</th>
<th>Status</th>
<th>Quantity</th>
<th>Trial Period Left</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zero entries found.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The following features have expired temporary keys:

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Partnum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zero entries found.</td>
<td></td>
</tr>
</tbody>
</table>
```

If the AMGTT CgPA Upgrade feature was enabled in Step 8, enter this command.

```
rtrv-ctrl-feat:partnum=893021803
```

The following is an example of the possible output.

```
rlghncxa03w 06-10-28 21:15:37 GMT EAGLE5 38.0.0
The following features have been permanently enabled:

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Partnum</th>
<th>Status</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMGTT CgPA Upgrade</td>
<td>893021803</td>
<td>on</td>
<td>----</td>
</tr>
</tbody>
</table>

The following features have been temporarily enabled:

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Partnum</th>
<th>Status</th>
<th>Quantity</th>
<th>Trial Period Left</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zero entries found.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The following features have expired temporary keys:

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Partnum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zero entries found.</td>
<td></td>
</tr>
</tbody>
</table>
```

10. Backup the new changes using the `chg-db:action=backup:dest=fixed` command.

These messages should appear, the active Maintenance and Administration Subsystem Processor (MASP) appears first.

```
BACKUP (FIXED) : MASP A - Backup starts on active MASP.
BACKUP (FIXED) : MASP A - Backup on active MASP to fixed disk complete.
BACKUP (FIXED) : MASP A - Backup starts on standby MASP.
BACKUP (FIXED) : MASP A - Backup on standby MASP to fixed disk complete.
```

Activating the GTT Load Sharing with Alternate Routing Indicator Feature

This procedure is used to enable and turn on the GTT Load Sharing with Alternate Routing Indicator feature using the feature’s part number and a feature access key.
The feature access key for the GTT Load Sharing with Alternate Routing Indicator feature is based on
the feature’s part number and the serial number of the EAGLE 5 ISS, making the feature access key
site-specific.

The `enable-ctrl-feat` command enables the feature by inputting the feature’s access key and the
feature’s part number with these parameters:

:fk – The feature access key generated by the feature access key generator. The feature access key
contains 13 alphanumeric characters and is not case sensitive.

:partnum – The Tekelec-issued part number of the GTT Load Sharing with Alternate Routing Indicator
feature, 893027401.

To enable the GTT Load Sharing with Alternate Routing Indicator feature, the IGTTLS feature must
be enabled and turned on, and the Flexible GTT Load Sharing feature must be enabled. Perform
`Activating the IGTTLS feature` to enable and turn on the IGTTLS feature. Perform `Activating the Flexible
GTT Load Sharing Feature` to enable the Flexible GTT Load Sharing feature.

The `enable-ctrl-feat` command requires that the database contain a valid serial number for the
EAGLE 5 ISS, and that this serial number is locked. This can be verified with the `rtrv-serial-num
command. The EAGLE 5 ISS is shipped with a serial number in the database, but the serial number
is not locked. The serial number can be changed, if necessary, and locked once the EAGLE 5 ISS is
on-site, with the `ent-serial-num` command. The `ent-serial-num` command uses these parameters.

:serial – The serial number assigned to the EAGLE 5 ISS. The serial number is not case sensitive.

:lock – Specifies whether or not the serial number is locked. This parameter has only one value, yes,
which locks the serial number. Once the serial number is locked, it cannot be changed.

Note: To enter and lock the EAGLE 5 ISS’s serial number, the `ent-serial-num` command must be
entered twice, once to add the correct serial number to the database with the `serial` parameter, then
again with the `serial` and the `lock=yes` parameters to lock the serial number. You should verify
that the serial number in the database is correct before locking the serial number. The serial number
can be found on a label affixed to the control shelf (shelf 1100).

This feature cannot be temporarily enabled (with the temporary feature access key).

Once this feature is enabled, provisioning for this feature can be performed, but the feature will not
work until the feature is turned on with the `chg-ctrl-feat` command. The `chg-ctrl-feat
command uses these parameters.

:partnum – The Tekelec-issued part number of the GTT Load Sharing with Alternate Routing Indicator
feature, 893027401.

:status=on – used to turn the GTT Load Sharing with Alternate Routing Indicator feature on.

Once the GTT Load Sharing with Alternate Routing Indicator feature has been turned on, it be can be
turned off. For more information on turning the GTT Load Sharing with Alternate Routing Indicator
feature off, perform `Turning the GTT Load Sharing with Alternate Routing Indicator Feature Off`.

The status of the features in the EAGLE 5 ISS is shown with the `rtrv-ctrl-feat` command.

When the GTT Load Sharing with Alternate Routing Indicator feature is turned on, loadsharing
between MAP sets and MRN sets can be performed. This is done by allowing MRN sets to be
provisioned in MAP sets, and MAP sets to be provisioned in MRN sets. When the search in the current
set (MAP or MRN) is successful but all the destinations in that set are unavailable/prohibited, the
extended search is performed in the other set (MRN or MAP) that is assigned to the current set. The
extended search from the MAP set to the MRN set, or from the MRN set to the MAP set, is performed
only once to prevent the endless searching of a loadsharing node.
1. Display the status of the controlled features by entering the `rtrv-ctrl-feat` command. The following is an example of the possible output.

```
rlghncxa03w 09-02-28 21:15:37 GMT EAGLE5 40.1.0
The following features have been permanently enabled:

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Partnum</th>
<th>Status</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Command Class Management</td>
<td>893005801</td>
<td>on</td>
<td>----</td>
</tr>
<tr>
<td>LNP Short Message Service</td>
<td>893006601</td>
<td>on</td>
<td>----</td>
</tr>
<tr>
<td>Intermed GTT Load Sharing</td>
<td>893006901</td>
<td>on</td>
<td>----</td>
</tr>
<tr>
<td>XGTT Table Expansion</td>
<td>893006101</td>
<td>on</td>
<td>400000</td>
</tr>
<tr>
<td>XMAP Table Expansion</td>
<td>893007710</td>
<td>off</td>
<td>----</td>
</tr>
<tr>
<td>Large System # Links</td>
<td>893005910</td>
<td>on</td>
<td>2000</td>
</tr>
<tr>
<td>Routesets</td>
<td>893006401</td>
<td>on</td>
<td>6000</td>
</tr>
<tr>
<td>HC-MIM SLK Capacity</td>
<td>893012707</td>
<td>on</td>
<td>64</td>
</tr>
</tbody>
</table>

The following features have been temporarily enabled:

```

```
Feature Name                  | Partnum    | Status | Quantity | Trial Period Left
-------------------------------|------------|--------|----------|------------------
Zero entries found.

The following features have expired temporary keys:

```
Feature Name | Partnum |
Zero entries found.

If the GTT Load Sharing with Alternate Routing Indicator feature is enabled and turned on, no further action is necessary. This procedure does not need to be performed.

If the GTT Load Sharing with Alternate Routing Indicator feature is enabled and but not turned on, continue the procedure with Step 8.

If the GTT Load Sharing with Alternate Routing Indicator feature is not enabled, continue the procedure by performing one of these steps.

- If the `rtrv-ctrl-feat` output shows the HC-MIM SLK Capacity feature with a quantity of 64 and other features, continue the procedure with Step 6.
- If the `rtrv-ctrl-feat` output shows only the HC-MIM SLK Capacity feature with a quantity of 64, continue the procedure with Step 2.

2. Display the serial number in the database with the `rtrv-serial-num` command. This is an example of the possible output.

```
rlghncxa03w 09-02-28 21:15:37 GMT EAGLE5 40.1.0
System serial number = nt00001231
System serial number is not locked.

rlghncxa03w 09-02-28 21:15:37 GMT EAGLE5 40.1.0
Command Completed

Note: If the serial number is correct and locked, continue the procedure with Step 6. If the serial number is correct but not locked, continue the procedure with Step 5. If the serial number is not correct, but is locked, this feature cannot be enabled and the remainder of this procedure cannot be performed. Contact the Customer Care Center to get an incorrect and locked serial number changed. Refer to Customer Care Center for the contact information. The serial number can be found on a label affixed to the control shelf (shelf 1100).

3. Enter the correct serial number into the database using the `ent-serial-num` command with the serial parameter.
For this example, enter this command.

```
ent-serial-num:serial=<EAGLE 5 ISS's correct serial number>
```

When this command has successfully completed, the following message should appear.

```
rlghncxa03w 09-02-28 21:15:37 GMT EAGLE5 40.1.0
ENT-SERIAL-NUM: MASP A - COMPLTD
```

4. **Verify that the serial number entered into Step 3 was entered correctly using the \texttt{rtrv-serial-num} command. This is an example of the possible output.**

```
rlghncxa03w 09-02-28 21:15:37 GMT EAGLE5 40.1.0
System serial number = nt00001231
System serial number is not locked.
rlghncxa03w 09-02-28 21:15:37 GMT EAGLE5 40.1.0
Command Completed
```

If the serial number was not entered correctly, repeat Step 3 and Step 4 and re-enter the correct serial number.

5. **Lock the serial number in the database by entering the \texttt{ent-serial-num} command with the serial number shown in Step 2, if the serial number shown in Step 2 is correct, or with the serial number shown in Step 4, if the serial number was changed in Step 3, and with the lock=yes parameter.**

For this example, enter this command.

```
ent-serial-num:serial=<EAGLE 5 ISS's serial number>:lock=yes
```

When this command has successfully completed, the following message should appear.

```
rlghncxa03w 09-02-28 21:15:37 GMT EAGLE5 40.1.0
ENT-SERIAL-NUM: MASP A - COMPLTD
```

6. **To enable the GTT Load Sharing with Alternate Routing Indicator feature, the IGTTLS feature must be enabled and turned on, and the Flexible GTT Load Sharing feature must be enabled.**

If the \texttt{rtrv-ctrl-feat} output in Step 1 that the IGTTLS is enabled and turned on (shown by the entry Intermed GTT Load Sharing), and the Flexible GTT Load Sharing feature is enabled (shown by the entry Flexible GTT Load Sharing), continue the procedure with Step 7.

If the IGTTLS feature is not enabled and turned on, perform \textit{Activating the IGTTLS feature} to enable and turn on the IGTTLS feature.

If the Flexible GTT Load Sharing feature is not enabled, perform the \textit{Activating the Flexible GTT Load Sharing Feature} to enable the Flexible GTT Load Sharing feature.

After the IGTTLS has been enabled and turned on, and the Flexible GTT Load Sharing feature has been enabled, continue the procedure with Step 7.

7. **Enable the GTT Load Sharing with Alternate Routing Indicator feature with the \texttt{enable-ctrl-feat} command specifying the part number for the GTT Load Sharing with Alternate Routing Indicator feature and the feature access key. Enter this command.**

```
enable-ctrl-feat:partnum=893027401:fak=<GTT Load Sharing with Alternate Routing Indicator feature access key>
```
The GTT Load Sharing with Alternate Routing Indicator feature cannot be enabled with a temporary feature access key.

The values for the feature access key (the `fak` parameter) are provided by Tekelec. If you do not have the feature access key for the GTT Load Sharing with Alternate Routing Indicator feature, contact your Tekelec Sales Representative or Account Representative.

When the `enable-crtl-feat` command has successfully completed, this message should appear.

```
righncxa03w 09-02-28 21:15:37 GMT EAGLE5 40.1.0
ENABLE-CTRL-FEAT: MASP B - COMPLTD
```

**CAUTION:** Once the GTT Load Sharing with Alternate Routing Indicator feature is enabled, provisioning for GTT Load Sharing with Alternate Routing Indicator feature can be performed, but load sharing using alternate routing indicators will not be performed, until the GTT Load Sharing with Alternate Routing Indicator is turned on in Step 8.

8. Turn the GTT Load Sharing with Alternate Routing Indicator feature on with the `chg-ctrl-feat` command specifying the part number for the GTT Load Sharing with Alternate Routing Indicator feature and the `status=on` parameter. Enter this command.

```
chg-ctrl-feat:partnum=893027401:status=on
```

When the `chg-crtl-feat` command has successfully completed, this message should appear.

```
righncxa03w 09-02-28 21:15:37 GMT EAGLE5 40.1.0
CHG-CTRL-FEAT: MASP B - COMPLTD
```

9. Verify the changes by entering the `rtrv-ctrl-feat` command with the GTT Load Sharing with Alternate Routing Indicator feature part number. Enter this command.

```
rtrv-ctrl-feat:partnum=893027401
```

The following is an example of the possible output.

```
righncxa03w 09-02-28 21:15:37 GMT EAGLE5 40.1.0
The following features have been permanently enabled:

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Partnum</th>
<th>Status</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>GTT LS ARI</td>
<td>893027401</td>
<td>on</td>
<td>----</td>
</tr>
</tbody>
</table>

The following features have been temporarily enabled:

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Partnum</th>
<th>Status</th>
<th>Quantity</th>
<th>Trial Period Left</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Zero entries found.

The following features have expired temporary keys:

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Partnum</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Zero entries found.

10. Backup the new changes using the `chg-db:action=backup:dest=fixed` command. These messages should appear, the active Maintenance and Administration Subsystem Processor (MASP) appears first.

```
BACKUP (FIXED) : MASP A - Backup starts on active MASP.
BACKUP (FIXED) : MASP A - Backup on active MASP to fixed disk complete.
```
Turning the GTT Load Sharing with Alternate Routing Indicator Feature Off

This procedure is used to turn off the GTT Load Sharing with Alternate Routing Indicator feature, using the \texttt{chg-ctrl-feat} command.

The \texttt{chg-ctrl-feat} command uses the following parameters:

\begin{itemize}
 \item \texttt{:partnum} - The part number of the GTT Load Sharing with Alternate Routing Indicator feature, 893027401.
 \item \texttt{:status=off} - used to turn off the GTT Load Sharing with Alternate Routing Indicator feature.
\end{itemize}

The status of the GTT Load Sharing with Alternate Routing Indicator feature must be \texttt{on} and is shown with the \texttt{rtrv-ctrl-feat} command.

\begin{table}
\begin{tabular}{l c c c}
\hline
Feature Name & Partnum & Status & Quantity \\
\hline
\texttt{GTT LS ARI} & 893027401 & \texttt{on} & ---- \\
\hline
\end{tabular}
\end{table}

\textbf{CAUTION:} If the GTT Load Sharing with Alternate Routing Indicator feature is turned off, provisioning for the GTT Load Sharing with Alternate Routing Indicator feature can be performed, but load sharing using alternate routing indicators will not be performed.

1. Display the status of the GTT Load Sharing with Alternate Routing Indicator feature by entering the \texttt{rtrv-ctrl-feat:partnum=893027401} command.

The following is an example of the possible output.

\begin{verbatim}
rlghncxa03w 09-02-28 21:15:37 GMT EAGLE5 40.1.0
The following features have been permanently enabled:
Feature Name Partnum Status Quantity
GTT LS ARI 893027401 on ----

The following features have been temporarily enabled:
Feature Name Partnum Status Quantity Trial Period Left
Zero entries found.

The following features have expired temporary keys:
Feature Name Partnum
Zero entries found.
\end{verbatim}

If the status of the GTT Load Sharing with Alternate Routing Indicator feature is off, or if the GTT Load Sharing with Alternate Routing Indicator feature is not enabled, this procedure cannot be performed.

2. Turn off the GTT Load Sharing with Alternate Routing Indicator feature by entering the \texttt{chg-ctrl-feat} command with the \texttt{status=off} parameter.

For example, enter this command.

\texttt{chg-ctrl-feat:partnum=893027401:status=off}
When this command has successfully completed, the following message should appear.

```
rlghncxa03w 09-02-28 21:16:37 GMT EAGLE5 40.1.0
CHG-CTRL-FEAT: MASP A - COMPLTD
```

3. Verify that the GTT Load Sharing with Alternate Routing Indicator feature has been turned off by using the `rtrv-ctrl-feat:partnum=893027401` command. The following is an example of the possible output.

```
rlghncxa03w 09-02-28 21:15:37 GMT EAGLE5 40.1.0
The following features have been permanently enabled:
Feature Name              Partnum    Status  Quantity
GTT LS ARI                893027401  off     ----

The following features have been temporarily enabled:
Feature Name              Partnum    Status  Quantity     Trial Period Left
Zero entries found.

The following features have expired temporary keys:
Feature Name              Partnum
Zero entries found.
```

4. Backup the new changes using the `chg-db:action=backup:dest=fixed` command. These messages should appear, the active Maintenance and Administration Subsystem Processor (MASP) appears first.

```
BACKUP (FIXED) : MASP A - Backup starts on active MASP.
BACKUP (FIXED) : MASP A - Backup on active MASP to fixed disk complete.
BACKUP (FIXED) : MASP A - Backup starts on standby MASP.
BACKUP (FIXED) : MASP A - Backup on standby MASP to fixed disk complete.
```

Activating the Support for 16 GTT Lengths in VGTT Feature

This procedure is used to enable and turn on the Support for 16 GTT Lengths in VGTT feature using the feature’s part number and a feature access key.

This feature allows the translation type or GTT set to contain 11 to 16 global title addresses of different lengths.

The feature access key for the Support for 16 GTT Lengths in VGTT feature is based on the feature’s part number and the serial number of the EAGLE 5 ISS, making the feature access key site-specific.

The `enable-ctrl-feat` command enables the feature by inputting the feature’s access key and the feature’s part number with these parameters:

- `:fak` – The feature access key provided by Tekelec. The feature access key contains 13 alphanumeric characters and is not case sensitive.
The enable-ctrl-feat command requires that the database contain a valid serial number for the EAGLE 5 ISS, and that this serial number is locked. This can be verified with the rtrv-serial-num command. The EAGLE 5 ISS is shipped with a serial number in the database, but the serial number is not locked. The serial number can be changed, if necessary, and locked once the EAGLE 5 ISS is on-site, with the ent-serial-num command. The ent-serial-num command uses these parameters.

:serial – The serial number assigned to the EAGLE 5 ISS. The serial number is not case sensitive.

:lock – Specifies whether or not the serial number is locked. This parameter has only one value, yes, which locks the serial number. Once the serial number is locked, it cannot be changed.

Note: To enter and lock the EAGLE 5 ISS’s serial number, the ent-serial-num command must be entered twice, once to add the correct serial number to the database with the serial parameter, then again with the serial and the lock=yes parameters to lock the serial number. You should verify that the serial number in the database is correct before locking the serial number. The serial number can be found on a label affixed to the control shelf (shelf 1100).

This feature cannot be temporarily enabled (with the temporary feature access key).

Once this feature has been enabled, the feature must be turned on with the chg-ctrl-feat command. The chg-ctrl-feat command uses these parameters:

:status=on – used to turn the Support for 16 GTT Lengths in VGTT feature on.

Once the Support for 16 GTT Lengths in VGTT feature has been turned on, it cannot be turned off.

The status of the features in the EAGLE 5 ISS is shown with the rtrv-ctrl-feat command.

Before the Support for 16 GTT Lengths in VGTT feature can be enabled, the VGTT feature must be turned on. The state of the VGTT feature can be verified using the rtrv-feat command.

1. Display the features that are enabled by entering the rtrv-ctrl-feat command. The following is an example of the possible output.

```
rlghncxa03w 09-05-28 21:15:37 GMT EAGLE5 41.0.0
The following features have been permanently enabled:

Feature Name                  Partnum    Status  Quantity
Command Class Management     893005801  on      ----
LNP Short Message Service    893006601  on      ----
Intermed GTT Load Sharing    893006901  on      ----
HC-MIM SLK Capacity          893012707  on      64

The following features have been temporarily enabled:
Feature Name                  Partnum    Status  Quantity   Trial Period Left
Zero entries found.

The following features have expired temporary keys:
Feature Name                  Partnum
Zero entries found.
```

If the Support for 16 GTT Lengths in VGTT feature is enabled and turned on, shown by the entry VGTT with 16 GTT lengths in the rtrv-ctrl-feat output, no further action is necessary. This procedure does not need to be performed.

If the Support for 16 GTT Lengths in VGTT feature is enabled and but not turned on, continue the procedure with Step 9.
If the Support for 16 GTT Lengths in VGTT feature is not enabled, continue the procedure with **Step 2**.

2. Verify that the VGTT feature is on, by entering the `rtrv-feat` command. If the VGTT feature is on, the `VGTT` field should be set to `on`.

 Note: The `rtrv-feat` command output contains other fields that are not used by this procedure. If you wish to see all the fields displayed by the `rtrv-feat` command, see the `rtrv-feat` command description in the *Commands Manual*.

 If the VGTT feature is on, continue the procedure with **Step 4**.

 Note: If the `rtrv-ctrl-feat` output in Step 1 shows any controlled features, continue the procedure with **Step 8**. If the `rtrv-ctrl-feat` output shows only the HC-MIM SLK Capacity feature with a quantity of 64, **Step 4** through **Step 7** must be performed.

If the VGTT feature is off, continue the procedure with **Step 3**.

3. Turn the VGTT feature on by entering this command.

   ```
   chg-feat:vgtt=on
   ```

 If the GTT feature is not on, turn the GTT feature on by specifying the `gtt=on` parameter with the `vgtt=on` parameter.

 Note: Once the VGTT feature is turned on with the `chg-feat` command, it cannot be turned off. The VGTT feature must be purchased before turning it on. If you are not sure whether you have purchased the VGTT feature, contact your Tekelec Sales Representative or Account Representative.

 When the `chg-feat` has successfully completed, this message should appear:

   ```
   rrightncxa03w 09-05-25 09:57:41 GMT EAGLE5 41.0.0
   CHG-FEAT: MASP A - COMPLTD
   ```

 If the `rtrv-ctrl-feat` output in Step 1 shows any controlled features, continue the procedure with **Step 8**. If the `rtrv-ctrl-feat` output shows only the HC-MIM SLK Capacity feature with a quantity of 64, **Step 4** through **Step 7** must be performed.

4. Display the serial number in the database with the `rtrv-serial-num` command. This is an example of the possible output.

   ```
   rrightncxa03w 09-05-28 21:15:37 GMT EAGLE5 41.0.0
   System serial number = nt00001231
   System serial number is not locked.
   rrightncxa03w 09-05-28 21:15:37 GMT EAGLE5 41.0.0
   Command Completed
   ```

 Note: If the serial number is correct and locked, continue the procedure with **Step 8**. If the serial number is correct but not locked, continue the procedure with **Step 7**. If the serial number is not correct, but is locked, this feature cannot be enabled and the remainder of this procedure cannot be performed. Contact the Customer Care Center to get an incorrect and locked serial number changed. Refer to *Customer Care Center* for the contact information. The serial number can be found on a label affixed to the control shelf (shelf 1100).

5. Enter the correct serial number into the database using the `ent-serial-num` command with the serial parameter.
For this example, enter this command.

`ent-serial-num:serial=<EAGLE 5 ISS's correct serial number>`

When this command has successfully completed, the following message should appear.

```
rlghncxa03w 09-05-28 21:15:37 GMT EAGLE5 41.0.0
ENT-SERIAL-NUM: MASP A - COMPLTD
```

6. Verify that the serial number entered into Step 5 was entered correctly using the `rtrv-serial-num` command. This is an example of the possible output.

```
rlghncxa03w 09-05-28 21:15:37 GMT EAGLE5 41.0.0
System serial number = nt00001231
System serial number is not locked.
rlghncxa03w 09-05-28 21:15:37 GMT EAGLE5 41.0.0
Command Completed
```

If the serial number was not entered correctly, repeat Step 5 and Step 6 and re-enter the correct serial number.

7. Lock the serial number in the database by entering the `ent-serial-num` command with the serial number shown in Step 4, if the serial number shown in Step 4 is correct, or with the serial number shown in Step 6, if the serial number was changed in Step 5, and with the `lock=yes` parameter.

For this example, enter this command.

`ent-serial-num:serial=<EAGLE 5 ISS's serial number>:lock=yes`

When this command has successfully completed, the following message should appear.

```
rlghncxa03w 09-05-28 21:15:37 GMT EAGLE5 41.0.0
ENT-SERIAL-NUM: MASP A - COMPLTD
```

8. Enable the Support for 16 GTT Lengths in VGTT feature with the `enable-ctrl-feat` command specifying the part number for the Support for 16 GTT Lengths in VGTT feature and the feature access key. Enter this command.

`enable-ctrl-feat:partnum=893024801:fak=<Support for 16 GTT Lengths in VGTT feature access key>`

Note: The Support for 16 GTT Lengths in VGTT feature cannot be enabled with a temporary feature access key.

Note: The values for the feature access key (the `fak` parameter) are provided by Tekelec. If you do not have the feature access key for the Support for 16 GTT Lengths in VGTT feature, contact your Tekelec Sales Representative or Account Representative.

When the `enable-ctrl-feat` command has successfully completed, this message should appear.

```
rlghncxa03w 09-05-28 21:15:37 GMT EAGLE5 41.0.0
ENABLE-CTRL-FEAT: MASP B - COMPLTD
```

If you wish to turn the Support for 16 GTT Lengths in VGTT feature on at this time, continue the procedure with Step 9.

If you do not wish to turn the Support for 16 GTT Lengths in VGTT feature on at this time, continue the procedure with Step 10.
CAUTION: If the Support for 16 GTT Lengths in VGTT feature is not turned on, provisioning for VGTT with 16 GTT Lengths cannot be performed.

9. Turn the Support for 16 GTT Lengths in VGTT feature on with the `chg-ctrl-feat` command specifying the part number for the Support for 16 GTT Lengths in VGTT feature and the `status=on` parameter.

 Enter this command.

 `chg-ctrl-feat:partnum=893024801:status=on`

 Note: Once the Support for 16 GTT Lengths in VGTT feature is turned on, it cannot be turned off.

 When the `chg-ctrl-feat` command has successfully completed, this message should appear.

   ```
   rlghncxa03w 09-05-28 21:15:37 GMT EAGLE5 41.0.0
   CHG-CTRL-FEAT: MASP B - COMPLTD
   ```

10. Verify the changes by entering the `rtrv-ctrl-feat` command with the Support for 16 GTT Lengths in VGTT feature part number. Enter this command.

 `rtrv-ctrl-feat:partnum=893024801`

 The following is an example of the possible output.

    ```
    rlghncxa03w 09-05-28 21:15:37 GMT EAGLE5 41.0.0
    The following features have been permanently enabled:
    Feature Name               Partnum   Status Quantity
    VGTT with 16 GTT lengths   893024801 on     ----
    The following features have been temporarily enabled:
    Feature Name               Partnum    Status  Quantity     Trial Period Left
    Zero entries found.
    The following features have expired temporary keys:
    Feature Name               Partnum
    Zero entries found.
    ```

11. Backup the new changes using the `chg-db:action=backup:dest=fixed` command. These messages should appear, the active Maintenance and Administration Subsystem Processor (MASP) appears first.

    ```
    BACKUP (FIXED) : MASP A - Backup starts on active MASP.
    BACKUP (FIXED) : MASP A - Backup on active MASP to fixed disk complete.
    BACKUP (FIXED) : MASP A - Backup starts on standby MASP.
    BACKUP (FIXED) : MASP A - Backup on standby MASP to fixed disk complete.
    ```

Activating the Flexible Linkset Optional Based Routing Feature

This procedure is used to enable and turn on the Flexible Linkset Optional Based Routing feature using the feature’s part number and a feature access key.
The feature access key for the Flexible Linkset Optional Based Routing feature is based on the feature’s part number and the serial number of the EAGLE 5 ISS, making the feature access key site-specific. The enable-ctrl-feat command enables the feature by inputting the feature’s access key and the feature’s part number with these parameters:

:fa k – The feature access key provided by Tekelec. The feature access key contains 13 alphanumeric characters and is not case sensitive.

:partnum – The Tekelec-issued part number of the Flexible Linkset Optional Based Routing feature, 893027701.

The enable-ctrl-feat command requires that the database contain a valid serial number for the EAGLE 5 ISS, and that this serial number is locked. This can be verified with the rtrv-serial-num command. The EAGLE 5 ISS is shipped with a serial number in the database, but the serial number is not locked. The serial number can be changed, if necessary, and locked once the EAGLE 5 ISS is on-site, with the ent-serial-num command. The ent-serial-num command uses these parameters.

:serial – The serial number assigned to the EAGLE 5 ISS. The serial number is not case sensitive.

:lock – Specifies whether or not the serial number is locked. This parameter has only one value, yes, which locks the serial number. Once the serial number is locked, it cannot be changed.

Note: To enter and lock the EAGLE 5 ISS’s serial number, the ent-serial-num command must be entered twice, once to add the correct serial number to the database with the serial parameter, then again with the serial and the lock=yes parameters to lock the serial number. You should verify that the serial number in the database is correct before locking the serial number. The serial number can be found on a label affixed to the control shelf (shelf 1100).

This feature cannot be temporarily enabled (with the temporary feature access key).

Once this feature has been enabled, the feature must be turned on with the chg-ctrl-feat command. The chg-ctrl-feat command uses these parameters:

:partnum – The Tekelec-issued part number of the Flexible Linkset Optional Based Routing feature, 893027701.

:status=on – used to turn the Flexible Linkset Optional Based Routing feature on.

Once the Flexible Linkset Optional Based Routing feature has been turned on, it be cannot be turned off.

The status of the features in the EAGLE 5 ISS is shown with the rtrv-ctrl-feat command.

Before the Flexible Linkset Optional Based Routing feature can be enabled, the EGTT feature must be turned on. The state of the EGTT feature can be verified using the rtrv-feat command.

1. Display the features that are enabled by entering the rtrv-ctrl-feat command. The following is an example of the possible output.

```
rlgnxoa03w 09-05-28 21:15:37 GMT EAGLE5 41.0.0
The following features have been permanently enabled:

Feature Name              Partnum    Status  Quantity
Command Class Management  893005801  on      ----
LNP Short Message Service 893006601  on      ----
Intermed GTT Load Sharing 893006901  on      ----
HC-MIM SLK Capacity       893012707  on      64

The following features have been temporarily enabled:
Feature Name              Partnum    Status  Quantity     Trial Period Left
```

910-6277-001 Revision A, January 2012
Zero entries found.

The following features have expired temporary keys:

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Partnum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zero entries found.</td>
<td></td>
</tr>
</tbody>
</table>

If the Flexible Linkset Optional Based Routing feature is enabled and turned on, no further action is necessary. This procedure does not need to be performed.

If the Flexible Linkset Optional Based Routing feature is enabled and but not turned on, continue the procedure with Step 9.

If the Flexible Linkset Optional Based Routing feature is not enabled, continue the procedure with Step 2.

2. Verify that the EGTT feature is on, by entering the rtrv-feat command. If the EGTT feature is on, the EGTT field should be set to on.

Note: The rtrv-feat command output contains other fields that are not used by this procedure. If you wish to see all the fields displayed by the rtrv-feat command, see the rtrv-feat command description in the Commands Manual.

If the EGTT feature is on, shown by the entry EGTT = on, continue the procedure with Step 4.

Note: If the rtrv-ctrl-feat output in Step 1 shows any controlled features, continue the procedure with Step 8. If the rtrv-ctrl-feat output shows only the HC-MIM SLK Capacity feature with a quantity of 64, Step 4 through Step 7 must be performed.

If the EGTT feature is off, continue the procedure with Step 3.

3. Turn the enhanced global title translation feature on by entering this command.

```
chg-feat:egtt=on
```

If the GTT feature is not on, turn the GTT feature on by specifying the gtt=on parameter with the egtt=on parameter.

Note: Once the Enhanced Global Title Translation (EGTT) feature is turned on with the chg-feat command, it cannot be turned off.

The EGTT feature must be purchased before turning it on. If you are not sure whether you have purchased the EGTT feature, contact your Tekelec Sales Representative or Account Representative.

When the chg-feat has successfully completed, this message should appear:

```
rlghncxa03w 09-05-25 09:57:41 GMT EAGLE5 41.0.0
CHG-FEAT: MASP A - COMPLTD
```

Note: If the rtrv-ctrl-feat output in Step 1 shows any controlled features, continue the procedure with Step 8. If the rtrv-ctrl-feat output shows only the HC-MIM SLK Capacity feature with a quantity of 64, Step 4 through Step 7 must be performed.

4. Display the serial number in the database with the rtrv-serial-num command. This is an example of the possible output.

```
rlghncxa03w 09-05-28 21:15:37 GMT EAGLE5 41.0.0
System serial number = nt00001231
System serial number is not locked.
```
Command Completed

Note: If the serial number is correct and locked, continue the procedure with Step 8. If the serial number is correct but not locked, continue the procedure with Step 7. If the serial number is not correct, but is locked, this feature cannot be enabled and the remainder of this procedure cannot be performed. Contact the Customer Care Center to get an incorrect and locked serial number changed. Refer to Customer Care Center for the contact information. The serial number can be found on a label affixed to the control shelf (shelf 1100).

5. Enter the correct serial number into the database using the ent-serial-num command with the serial parameter.

For this example, enter this command.

```
ent-serial-num:serial=<EAGLE 5 ISS’s correct serial number>
```

When this command has successfully completed, the following message should appear.

```
rlnhncxa03w 09-05-28 21:15:37 GMT EAGLE5 41.0.0
ENT-SERIAL-NUM: MASP A - COMPLTD
```

6. Verify that the serial number entered into Step 5 was entered correctly using the rtrv-serial-num command. This is an example of the possible output.

```
rlnhncxa03w 09-05-28 21:15:37 GMT EAGLE5 41.0.0
System serial number = nt00001231
System serial number is not locked.
rlnhncxa03w 09-05-28 21:15:37 GMT EAGLE5 41.0.0
Command Completed
```

If the serial number was not entered correctly, repeat Step 5 and Step 6 and re-enter the correct serial number.

7. Lock the serial number in the database by entering the ent-serial-num command with the serial number shown in Step 4, if the serial number shown in Step 4 is correct, or with the serial number shown in Step 6, if the serial number was changed in Step 5, and with the lock=yes parameter.

For this example, enter this command.

```
ent-serial-num:serial=<EAGLE 5 ISS’s serial number>:lock=yes
```

When this command has successfully completed, the following message should appear.

```
rlnhncxa03w 09-05-28 21:15:37 GMT EAGLE5 41.0.0
ENT-SERIAL-NUM: MASP A - COMPLTD
```

8. Enable the Flexible Linkset Optional Based Routing feature with the enable-ctrl-feat command specifying the part number for the Flexible Linkset Optional Based Routing feature and the feature access key. Enter this command.

```
enable-ctrl-feat:partnum=893027701:fak=<Flexible Linkset Optional Based Routing feature access key>
```

Note: The Flexible Linkset Optional Based Routing feature cannot be enabled with a temporary feature access key.
Note: The values for the feature access key (the fak parameter) are provided by Tekelec. If you do not have the feature access key for the Flexible Linkset Optional Based Routing feature, contact your Tekelec Sales Representative or Account Representative.

When the enable-crtl-feat command has successfully completed, this message should appear.

```
rlghncxa03w 09-05-28 21:15:37 GMT EAGLE5 41.0.0
ENABLE-CTRL-FEAT: MASP B - COMPLTD
```

If you wish to turn the Flexible Linkset Optional Based Routing feature on at this time, continue the procedure with Step 9.

If you do not wish to turn the Flexible Linkset Optional Based Routing feature on at this time, continue the procedure with Step 10.

CAUTION: If the Flexible Linkset Optional Based Routing feature is not turned on, provisioning for Flexible Linkset Optional Based Routing cannot be performed.

9. Turn the Flexible Linkset Optional Based Routing feature on with the chg-crtl-feat command specifying the part number for the Flexible Linkset Optional Based Routing feature and the status=on parameter.

Enter this command.

```
chg-crtl-feat:partnum=893027701:status=on
```

When the chg-crtl-feat command has successfully completed, this message should appear.

```
rlghncxa03w 09-05-28 21:15:37 GMT EAGLE5 41.0.0
CHG-CTRL-FEAT: MASP B - COMPLTD
```

10. Verify the changes by entering the rtrv-crtl-feat command with the Flexible Linkset Optional Based Routing feature part number. Enter this command.

```
rtrv-crtl-feat:partnum=893027701
```

The following is an example of the possible output.

```
rlghncxa03w 09-05-28 21:15:37 GMT EAGLE5 41.0.0
The following features have been permanently enabled:

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Partnum</th>
<th>Status</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flex Lset Optnl Based Rtg</td>
<td>893027701</td>
<td>on</td>
<td>----</td>
</tr>
</tbody>
</table>

The following features have been temporarily enabled:

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Partnum</th>
<th>Status</th>
<th>Quantity</th>
<th>Trial Period Left</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zero entries found.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The following features have expired temporary keys:

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Partnum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zero entries found.</td>
<td></td>
</tr>
</tbody>
</table>
```
11. Backup the new changes using the `chg-db:action=backup:dest=fixed` command. These messages should appear, the active Maintenance and Administration Subsystem Processor (MASP) appears first.

```
BACKUP (FIXED) : MASP A - Backup starts on active MASP.
BACKUP (FIXED) : MASP A - Backup on active MASP to fixed disk complete.
BACKUP (FIXED) : MASP A - Backup starts on standby MASP.
BACKUP (FIXED) : MASP A - Backup on standby MASP to fixed disk complete.
```

Activating the TCAP Opcode Based Routing Feature

This procedure is used to enable and turn on the TCAP Opcode Based Routing feature using the feature’s part number and a feature access key.

The feature access key for the TCAP Opcode Based Routing feature is based on the feature’s part number and the serial number of the EAGLE 5 ISS, making the feature access key site-specific.

The `enable-ctrl-feat` command enables the feature by inputting the feature’s access key and the feature’s part number with these parameters:

- `:fak` – The feature access key provided by Tekelec. The feature access key contains 13 alphanumeric characters and is not case sensitive.
- `:partnum` – The Tekelec-issued part number of the TCAP Opcode Based Routing feature, 893027801.

This feature cannot be temporarily enabled (with the temporary feature access key).

Once this feature has been enabled, the feature must be turned on with the `chg-ctrl-feat` command. The `chg-ctrl-feat` command uses these parameters:

- `:partnum` – The Tekelec-issued part number of the TCAP Opcode Based Routing feature, 893027801.
- `:status=on` – used to turn the TCAP Opcode Based Routing feature on.

Once the TCAP Opcode Based Routing feature has been turned on, it be cannot be turned off.

Before the TCAP Opcode Based Routing feature can be enabled and turned on, the Flexible Linkset Optional Based Routing feature must be enabled and turned on. The status of the TCAP Opcode Based Routing feature and the Flexible Linkset Optional Based Routing feature is shown with the `rtrv-ctrl-feat` command.

1. Display the status of the TCAP Opcode Based Routing feature by entering the `rtrv-ctrl-feat` command. The following is an example of the possible output.

```
rlghncxa03w 09-05-28 21:15:37 GMT EAGLE5 41.0.0
The following features have been permanently enabled:

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Partnum</th>
<th>Status</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Command Class Management</td>
<td>893005801</td>
<td>on</td>
<td>----</td>
</tr>
<tr>
<td>LNP Short Message Service</td>
<td>893006601</td>
<td>on</td>
<td>----</td>
</tr>
<tr>
<td>Intermed GTT Load Sharing</td>
<td>893006901</td>
<td>on</td>
<td>----</td>
</tr>
<tr>
<td>HC-MIM SLK Capacity</td>
<td>893012707</td>
<td>on</td>
<td>64</td>
</tr>
</tbody>
</table>

The following features have been temporarily enabled:

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Partnum</th>
<th>Status</th>
<th>Quantity</th>
<th>Trial Period Left</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Zero entries found.
```
The following features have expired temporary keys:

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Partnum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zero entries found.</td>
<td></td>
</tr>
</tbody>
</table>

If the TCAP Opcode Based Routing feature is enabled and turned on, no further action is necessary. This procedure does not need to be performed.

If the TCAP Opcode Based Routing feature is enabled but not turned on, continue the procedure with **Step 3**.

If the TCAP Opcode Based Routing feature is not enabled, continue the procedure by performing one of these steps.

- If the Flexible Linkset Optional Based Routing feature is enabled and turned on, shown by the entry `Flex Lset Optnl Based Rtg` in the `rtrv-ctrl-feat` output, continue the procedure with **Step 2**.

- If the Flexible Linkset Optional Based Routing feature is not enabled or turned on, perform **Activating the Flexible Linkset Optional Based Routing Feature** to enable and turn on the Flexible Linkset Optional Based Routing feature. After the Flexible Linkset Optional Based Routing feature has been enabled and turned on, continue the procedure with **Step 2**.

2. Enable the TCAP Opcode Based Routing feature with the `enable-ctrl-feat` command specifying the part number for the TCAP Opcode Based Routing feature and the feature access key. Enter this command.

   ```
   enable-ctrl-feat:partnum=893027801:fak=<TCAP Opcode Based Routing feature access key>
   ```

 Note: The TCAP Opcode Based Routing feature cannot be enabled with a temporary feature access key.

 Note: The values for the feature access key (the `fak` parameter) are provided by Tekelec. If you do not have the feature access key for the TCAP Opcode Based Routing feature, contact your Tekelec Sales Representative or Account Representative.

 When the `enable-ctrl-feat` command has successfully completed, this message should appear.

   ```
   rlghncxa03w 09-05-28 21:15:37 GMT EAGLE5 41.0.0
   ENABLE-CTRL-FEAT: MASP B - COMPLTD
   ```

 If you wish to turn the TCAP Opcode Based Routing feature on at this time, continue the procedure with **Step 3**.

 If you do not wish to turn the TCAP Opcode Based Routing feature on at this time, continue the procedure with **Step 4**.

 CAUTION: If the TCAP Opcode Based Routing feature is not turned on, provisioning for the TCAP Opcode Based Routing feature cannot be performed.

3. Turn the TCAP Opcode Based Routing feature on with the `chg-ctrl-feat` command specifying the part number for the TCAP Opcode Based Routing feature and the `status=on` parameter. Enter this command.

   ```
   chg-ctrl-feat:partnum=893027801:status=on
   ```
When the `chg-crtl-feat` command has successfully completed, this message should appear.

```
rlghncxa03w 09-05-28 21:15:37 GMT EAGLE5 41.0.0
CHG-CTRL-FEAT: MASP B - COMPLTD
```

4. Verify the changes by entering the `rtrv-ctrl-feat` command with the TCAP Opcode Based Routing feature part number. Enter this command.

```
rtrv-ctrl-feat:partnum=893027801
```

The following is an example of the possible output.

```
rlghncxa03w 09-05-28 21:15:37 GMT EAGLE5 41.0.0
The following features have been permanently enabled:

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Partnum</th>
<th>Status</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCAP Opcode Based Routing</td>
<td>893027801</td>
<td>on</td>
<td>----</td>
</tr>
</tbody>
</table>

The following features have been temporarily enabled:

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Partnum</th>
<th>Status</th>
<th>Quantity</th>
<th>Trial Period Left</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zero entries found.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The following features have expired temporary keys:

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Partnum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zero entries found.</td>
<td></td>
</tr>
</tbody>
</table>

5. Backup the new changes using the `chg-db:action=backup:dest=fixed` command. These messages should appear, the active Maintenance and Administration Subsystem Processor (MASP) appears first.

```
BACKUP (FIXED) : MASP A - Backup starts on active MASP.
BACKUP (FIXED) : MASP A - Backup on active MASP to fixed disk complete.
BACKUP (FIXED) : MASP A - Backup starts on standby MASP.
BACKUP (FIXED) : MASP A - Backup on standby MASP to fixed disk complete.
```

### Enabling a TOBR Opcode Quantity

This procedure is used to enable a TOBR opcode quantity for the TCAP Opcode Based Routing (TOBR) feature. The TOBR opcode quantity is enabled using the feature’s part number and a feature access key.

The feature access key for the TOBR opcode quantity is based on the part number for the specific quantity and the serial number of the EAGLE 5 ISS, making the feature access key site-specific.

*Table 129: TOBR Opcode Quantity Part Numbers* shows the TOBR opcode quantities that can be enabled.

**Table 129: TOBR Opcode Quantity Part Numbers**

<table>
<thead>
<tr>
<th>TOBR Opcode Quantities</th>
<th>Part Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>893027901</td>
</tr>
<tr>
<td>6</td>
<td>893027902</td>
</tr>
<tr>
<td>TOBR Opcode Quantities</td>
<td>Part Numbers</td>
</tr>
<tr>
<td>------------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>12</td>
<td>893027903</td>
</tr>
<tr>
<td>24</td>
<td>893027904</td>
</tr>
<tr>
<td>48</td>
<td>893027905</td>
</tr>
<tr>
<td>96</td>
<td>893027906</td>
</tr>
<tr>
<td>1,000,000</td>
<td>893027907</td>
</tr>
</tbody>
</table>

Note: While the 1,000,000 TOBR opcode quantity can be enabled, the actual number of opcode translations that can be entered is controlled by the XGTT table expansion quantity that is enabled. For example, if the 1,000,000 TOBR opcode quantity is enabled, and the XGTT table expansion quantity is enabled for 400,000, a maximum of 400,000 TOBR opcode translations can be provisioned in the database.

The TCAP Opcode Based Routing feature must be enabled and turned on before a TOBR opcode quantity can be enabled. Perform Activating the TCAP Opcode Based Routing Feature to enable and turn on the TCAP Opcode Based Routing feature.

The enable-ctrl-feat command enables the TOBR opcode quantity by inputting the quantity's feature access key and the part number of the quantity with these parameters.

:fak – The feature access key provided by Tekelec. The feature access key contains 13 alphanumeric characters and is not case sensitive.

:partnum – The Tekelec-issued part number of the TOBR Opcode quantity. Table 129: TOBR Opcode Quantity Part Numbers shows the TOBR opcode quantity part numbers.

This feature cannot be temporarily enabled (with the temporary feature access key).

The chg-ctrl-feat command cannot be used with this procedure.

1. Display the features that are enabled by entering the rtrv-ctrl-feat command.

The following is an example of the possible output.

```
rightncx03w 09-05-28 21:15:37 GMT EAGLE5 41.0.0
The following features have been permanently enabled:

Feature Name Partnum Status Quantity
Command Class Management 893005801 on ----
LNP Short Message Service 893006601 on ----
Intermed GTT Load Sharing 893006901 on ----
XGTT Table Expansion 893006101 off ----
XMAP Table Expansion 893007710 on 3000
Large System # Links 893005910 on 2000
Routesets 893006401 on 6000
HC-MIM SLK Capacity 893012707 on 64

The following features have been temporarily enabled:

Feature Name Partnum Status Quantity Trial Period Left
Zero entries found.

The following features have expired temporary keys:
```

Translation
If the maximum TOBR opcode quantity, 1,000,000, is enabled, no further action is necessary. This procedure does not need to be performed.

If the TOBR opcode quantity is less than the desired quantity, continue the procedure with **Step 2**.

If a TOBR opcode quantity is not enabled, continue the procedure by performing one of these steps.

- If the TCAP Opcode Based Routing feature is enabled and turned on, shown by the entry **TCAP Opcode Based Routing** in this step, continue the procedure with **Step 2**.
- If the TCAP Opcode Based Routing feature is not enabled or turned on, perform **Activating the TCAP Opcode Based Routing Feature** to enabled and turn on the TCAP Opcode Based Routing feature. After the TCAP Opcode Based Routing feature has been enabled and turned on, continue the procedure with **Step 2**.

2. Enable the TOBR opcode quantity by entering the `enable-ctrl-feat` command with the part number of the desired quantity. **Table 129: TOBR Opcode Quantity Part Numbers** shows the TOBR opcode quantity part numbers.

   For this example, enter this command.

   ```
 enable-ctrl-feat:partnum=893027903:fak=<TOBR Opcode Quantity feature access key>
   ```

   **Note:** The TOBR opcode quantity enabled in this step must be greater than the quantity that is currently enabled, shown in **Step 1**.

   **Note:** A temporary feature access key cannot be specified to enable this feature.

   **Note:** The value for the feature access key (the `fak` parameter) is provided by Tekelec. If you do not have the feature access key for the TOBR opcode quantity that you wish to enable, contact your Tekelec Sales Representative or Account Representative.

   When the `enable-ctrl-feat` command has successfully completed, this message should appear.

   ```
 rlghncxa03w 09-05-28 21:15:37 GMT EAGLE5 41.0.0
 ENABLE-CTRL-FEAT: MASP B - COMPLTD
   ```

3. Verify the changes by entering the `rtrv-ctrl-feat` command with the part number specified in **Step 2**.

   For this example, enter this command.

   ```
 rtrv-ctrl-feat:partnum=893027903
   ```

   The following is an example of the possible output.

   ```
 rlghncxa03w 09-05-28 21:15:37 GMT EAGLE5 41.0.0
 The following features have been permanently enabled:

 Feature Name Partnum Status Quantity
 TOBR Opcode Quantity 893027903 on 12

 The following features have been temporarily enabled:

 Feature Name Partnum Status Quantity Trial Period Left
 Zero entries found.

 The following features have expired temporary keys:
   ```
4. Backup the new changes using the `chg-db:action=backup:dest=fixed` command.

These messages should appear, the active Maintenance and Administration Subsystem Processor (MASP) appears first.

```
BACKUP (FIXED) : MASP A - Backup starts on active MASP.
BACKUP (FIXED) : MASP A - Backup on active MASP to fixed disk complete.
BACKUP (FIXED) : MASP A - Backup starts on standby MASP.
BACKUP (FIXED) : MASP A - Backup on standby MASP to fixed disk complete.
```

### Activating the GTT Actions Features

This procedure is used to enable and turn on one or more of the GTT Actions features using the feature’s part number and a feature access key.

There are three GTT Actions features. *Table 130: GTT Actions Features Part Numbers* shown the feature names and their part numbers.

<table>
<thead>
<tr>
<th>GTT Actions Features</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>GTT Action - DISCARD</td>
<td>893027501</td>
</tr>
<tr>
<td>GTT Action - DUPLICATE</td>
<td>893027601</td>
</tr>
<tr>
<td>GTT Action - FORWARD</td>
<td>893037501</td>
</tr>
</tbody>
</table>

The GTT Actions features are described in the *GTT Actions* section.

The feature access key for the GTT Actions features is based on the feature’s part number, shown in *Table 130: GTT Actions Features Part Numbers* and the serial number of the EAGLE 5 ISS, making the feature access key site-specific.

The `enable-ctrl-feat` command enables the feature by inputting the feature’s access key and the feature’s part number with these parameters:

- `:fak` – The feature access key provided by Tekelec. The feature access key contains 13 alphanumeric characters and is not case sensitive.
- `:partnum` – The Tekelec-issued part number of the Advanced GT Modification feature, shown in *Table 130: GTT Actions Features Part Numbers*.

The `enable-ctrl-feat` command requires that the database contain a valid serial number for the EAGLE 5 ISS, and that this serial number is locked. This can be verified with the `rtrv-serial-num` command. The EAGLE 5 ISS is shipped with a serial number in the database, but the serial number is not locked. The serial number can be changed, if necessary, and locked once the EAGLE 5 ISS is on-site, with the `ent-serial-num` command. The `ent-serial-num` command uses these parameters:

- `:serial` – The serial number assigned to the EAGLE 5 ISS. The serial number is not case sensitive.
:lock – Specifies whether or not the serial number is locked. This parameter has only one value, yes, which locks the serial number. Once the serial number is locked, it cannot be changed.

Note: To enter and lock the EAGLE 5 ISS's serial number, the ent-serial-num command must be entered twice, once to add the correct serial number to the database with the serial parameter, then again with the serial and the lock=yes parameters to lock the serial number. You should verify that the serial number in the database is correct before locking the serial number. The serial number can be found on a label affixed to the control shelf (shelf 1100).

These features cannot be temporarily enabled (with the temporary feature access key).

Once the GTT Actions feature has been enabled, the feature must be turned on with the chg-ctrl-feat command. The chg-ctrl-feat command uses these parameters.

:partnum – The Tekelec-issued part number of the GTT Actions feature, shown in Table 130: GTT Actions Features Part Numbers.

:status=on – used to turn the GTT Actions feature on.

Once a GTT Actions feature is turned on, it cannot be turned off.

The status of the features in the EAGLE 5 ISS is shown with the rtrv-ctrl-feat command.

Before the GTT Actions features can be enabled, the EGTT feature must be turned on. The state of the EGTT feature can be verified using the rtrv-feat command.

1. Display the status of the features in the database by entering the rtrv-ctrl-feat command.

The following is an example of the possible output.

```
rlghncxa03w 10-07-28 21:15:37 GMT EAGLE5 42.0.0
The following features have been permanently enabled:

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Partnum</th>
<th>Status</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Command Class Management</td>
<td>893005801</td>
<td>on</td>
<td>----</td>
</tr>
<tr>
<td>LNP Short Message Service</td>
<td>893006601</td>
<td>on</td>
<td>----</td>
</tr>
<tr>
<td>Intermed GTT Load Sharing</td>
<td>893006901</td>
<td>on</td>
<td>----</td>
</tr>
<tr>
<td>HC-MIM SLK Capacity</td>
<td>893012707</td>
<td>on</td>
<td>64</td>
</tr>
</tbody>
</table>

The following features have been temporarily enabled:

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Partnum</th>
<th>Status</th>
<th>Quantity</th>
<th>Trial Period Left</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zero entries found.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The following features have expired temporary keys:

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Partnum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zero entries found.</td>
<td></td>
</tr>
</tbody>
</table>
```

If the desired GTT Actions feature is enabled and turned on, no further action is necessary. This procedure does not need to be performed.

If the desired GTT Actions feature is enabled, but not turned on, continue the procedure with Step 10.

If the desired GTT Actions feature is not enabled, continue the procedure by performing one of these steps.

- If any of these features are enabled, then the EGTT feature is turned on.
  - Origin-based SCCP Routing
  - Flexible Linkset Optional Based Routing
• MO SMS B-Party Routing
• Any GTT Actions feature

If any of the features shown in this list are enabled, continue the procedure with Step 3.
• If none of the features shown in the previous list are enabled, continue the procedure with Step 2.

2. Verify that the EGTT feature is on, by entering the `rtrv-feat` command. If the EGTT feature is on, the EGTT field should be set to on.

   **Note:** The `rtrv-feat` command output contains other fields that are not used by this procedure. If you wish to see all the fields displayed by the `rtrv-feat` command, see the `rtrv-feat` command description in the Commands Manual.

   If the EGTT feature is not on, perform the Adding a Service Module procedure to turn the EGTT feature on and add the appropriate service modules to the EAGLE 5 ISS. The EAGLE 5 ISS cannot contain any in-service DSMs if the GTT Action - DUPLICATE feature is being enabled.

   If the EGTT feature is on, or after the Adding a Service Module procedure has been performed, continue the procedure with Step 3.

3. Continue the procedure by performing one of these steps.

   No in-service DSMs can be provisioned in the database if the GTT Action - DUPLICATE feature is being enabled.

   If any of these features are enabled, shown in Step 1, then in-service DSMs are not provisioned in the database.

   • Support for 16 GTT Lengths in VGGT
   • Flexible Linkset Optional Based Routing
   • An LNP telephone number quantity that is 240 million numbers or greater.

   If any of the features in the previous list are enabled, or if the GTT Action - DUPLICATE feature is not being enabled, continue the procedure by performing one of these steps.

   • If the `rtrv-ctrl-feat` output in Step 1 shows any controlled features, continue the procedure with Step 9.
   • If the `rtrv-ctrl-feat` output shows only the HC-MIM SLK Capacity feature with a quantity of 64, Step 5 through Step 8 must be performed. Continue the procedure with Step 5.

   If none of the features shown in the first list in this step are enabled and the GTT Action - DUPLICATE feature is being enabled, continue the procedure with Step 4.

4. Verify that no in-service DSMs are provisioned in the database using the `rept-stat-card:appl=vsccp` command. This is an example of the possible output.

<table>
<thead>
<tr>
<th>CARD</th>
<th>VERSION</th>
<th>TYPE</th>
<th>GPL</th>
<th>PST</th>
<th>SST</th>
<th>AST</th>
</tr>
</thead>
<tbody>
<tr>
<td>1101</td>
<td>133-002-000</td>
<td>DSM</td>
<td>VSCCP</td>
<td>IS-NR</td>
<td>Active</td>
<td>-----</td>
</tr>
<tr>
<td>1103</td>
<td>133-002-000</td>
<td>DSM</td>
<td>VSCCP</td>
<td>IS-NR</td>
<td>Active</td>
<td>-----</td>
</tr>
<tr>
<td>1201</td>
<td>133-002-000</td>
<td>DSM</td>
<td>SCCPHC</td>
<td>IS-NR</td>
<td>Active</td>
<td>-----</td>
</tr>
<tr>
<td>1203</td>
<td>133-002-000</td>
<td>DSM</td>
<td>SCCPHC</td>
<td>IS-NR</td>
<td>Active</td>
<td>-----</td>
</tr>
<tr>
<td>1207</td>
<td>133-002-000</td>
<td>DSM</td>
<td>SCCPHC</td>
<td>IS-NR</td>
<td>Active</td>
<td>-----</td>
</tr>
<tr>
<td>1213</td>
<td>133-002-000</td>
<td>DSM</td>
<td>SCCPHC</td>
<td>IS-NR</td>
<td>Active</td>
<td>-----</td>
</tr>
<tr>
<td>1215</td>
<td>133-002-000</td>
<td>DSM</td>
<td>SCCPHC</td>
<td>IS-NR</td>
<td>Active</td>
<td>-----</td>
</tr>
<tr>
<td>1305</td>
<td>133-002-000</td>
<td>DSM</td>
<td>SCCPHC</td>
<td>IS-NR</td>
<td>Active</td>
<td>-----</td>
</tr>
<tr>
<td>1313</td>
<td>133-002-000</td>
<td>DSM</td>
<td>SCCPHC</td>
<td>IS-NR</td>
<td>Active</td>
<td>-----</td>
</tr>
</tbody>
</table>
A DSM is shown by the entry VSCCP in the GPL column in the rept-stat-card output. The state of the DSM is shown in the PST column in the rept-stat-card output. If the value in the PST column for a DSM is IS-NR, the DSM is an in-service DSM.

If in-service DSMs are shown in the rept-stat-card output, the in-service DSM must be replaced by an E5-SM4G card. Contact the Customer Care Center before replacing any service modules. Refer to the Customer Care Center section for the contact information.

After the in-service DSMs have been replaced, or if no in-service DSMs are shown in the rept-stat-card output, continue the procedure by performing one of these steps.

- If the rtrv-ctrl-feat output in Step 1 shows any controlled features, continue the procedure with Step 9.
- If the rtrv-ctrl-feat output shows only the HC-MIM SLK Capacity feature with a quantity of 64, Step 5 through Step 8 must be performed. Continue the procedure with Step 5.

5. Display the serial number in the database with the rtrv-serial-num command.

This is an example of the possible output.

```
rlghnctxa03w 10-07-28 21:15:37 GMT EAGLE5 42.0.0
System serial number = nt00001231
System serial number is not locked.
```

6. Enter the correct serial number into the database using the ent-serial-num command with the serial parameter.

**Note:** If the serial number is correct and locked, continue the procedure with Step 9. If the serial number is correct but not locked, continue the procedure with Step 8. If the serial number is not correct, but is locked, this feature cannot be enabled and the remainder of this procedure cannot be performed. Contact the Customer Care Center to get an incorrect and locked serial number changed. Refer to Customer Care Center for the contact information. The serial number can be found on a label affixed to the control shelf (shelf 1100).

For this example, enter this command.

```
ent-serial-num:serial=<EAGLE 5 ISS’s correct serial number>
```

When this command has successfully completed, the following message should appear.

```
rlghnctxa03w 10-07-28 21:15:37 GMT EAGLE5 42.0.0
ENT-SERIAL-NUM: MASP A - COMPLTD
```

7. Verify that the serial number entered in Step 6 was entered correctly using the rtrv-serial-num command.

This is an example of the possible output.

```
rlghnctxa03w 10-07-28 21:15:37 GMT EAGLE5 42.0.0
System serial number = nt00001231
System serial number is not locked.
```
If the serial number was not entered correctly, repeat Step 6 and Step 7 and re-enter the correct serial number.

8. Lock the serial number in the database by entering the `ent-serial-num` command with the serial number shown in Step 5, if the serial number shown in Step 5 is correct, or with the serial number shown in Step 7, if the serial number was changed in Step 6, and with the `lock=yes` parameter.

For this example, enter this command.

```
ent-serial-num:serial=<EAGLE 5 ISS’s serial number>:lock=yes
```

When this command has successfully completed, the following message should appear.

```
ENT-SERIAL-NUM: MASP A - COMPLTD
```

9. Enable the GTT Actions feature with the `enable-ctrl-feat` command specifying the part number for the GTT Actions feature and the feature access key.

The part numbers of the GTT Actions features are shown in Table 130: GTT Actions Features Part Numbers.

To enable the GTT Action - DISCARD feature, enter this command.

```
enable-ctrl-feat:partnum=893027501:fak=<GTT Action - DISCARD feature access key>
```

To enable the GTT Action - DUPLICATE feature, enter this command.

```
enable-ctrl-feat:partnum=893027601:fak=<GTT Action - DUPLICATE feature access key>
```

To enable the GTT Action - FORWARD feature, enter this command.

```
enable-ctrl-feat:partnum=893037501 :fak=<GTT Action - FORWARD feature access key>
```

**Note:** The values for the feature access key (the `fak` parameter) are provided by Tekelec. If you do not have the feature access key for the GTT Actions feature that you wish to enable, contact your Tekelec Sales Representative or Account Representative.

When the `enable-ctrl-feat` command has successfully completed, this message should appear.

```
ENABLE-CTRL-FEAT: MASP B - COMPLTD
```

If you wish to turn on the GTT Actions feature that was enabled in this step at this time, continue the procedure with Step 10.

If you do not wish to turn on the GTT Actions feature that was enabled in this step at this time, continue the procedure with Step 11.

10. Turn on the GTT Actions feature that was enabled in Step 9 by entering the `chg-ctrl-feat` command specifying the part number for the GTT Actions feature and the `status=on` parameter.

To turn the GTT Action - DISCARD feature on, enter this command.

```
chg-ctrl-feat:partnum=893027501:status=on
```
To turn the GTT Action - DUPLICATE feature on, enter this command.

```
chg-ctrl-feat:partnum=893027601:status=on
```

To turn the GTT Action - FORWARD feature on, enter this command.

```
chg-ctrl-feat:partnum=893037501 :status=on
```

When the `chg-ctrl-feat` command has successfully completed, this message should appear.

```
rlghncxa03w 10-07-28 21:15:37 GMT EAGLE5 42.0.0
CHG-CTRL-FEAT: MASP B - COMPLTD
```

**11.** Verify the changes by entering the `rtrv-ctrl-feat` command with the part number used in *Step 9*.

If the GTT Action - DISCARD feature was enabled in *Step 9*, enter this command.

```
rtrv-ctrl-feat:partnum=893027501
```

The following is an example of the possible output.

```
rlghncxa03w 10-07-28 21:15:37 GMT EAGLE5 42.0.0
The following features have been permanently enabled:

 Feature Name Partnum Status Quantity
 GTT Action - DISCARD 893027501 on ----

The following features have been temporarily enabled:

 Feature Name Partnum Status Quantity Trial Period Left
 Zero entries found.

The following features have expired temporary keys:

 Feature Name Partnum
 Zero entries found.
```

If the GTT Action - DUPLICATE feature was enabled in *Step 9*, enter this command.

```
rtrv-ctrl-feat:partnum=893027601
```

The following is an example of the possible output.

```
rlghncxa03w 10-07-28 21:15:37 GMT EAGLE5 42.0.0
The following features have been permanently enabled:

 Feature Name Partnum Status Quantity
 GTT Action - DUPLICATE 893027601 on ----

The following features have been temporarily enabled:

 Feature Name Partnum Status Quantity Trial Period Left
 Zero entries found.

The following features have expired temporary keys:

 Feature Name Partnum
 Zero entries found.
```

If the GTT Action - FORWARD feature was enabled in *Step 9*, enter this command.

```
rtrv-ctrl-feat:partnum=893037501
```

The following is an example of the possible output.

```
rlghncxa03w 10-07-28 21:15:37 GMT EAGLE5 42.0.0
The following features have been permanently enabled:

 Feature Name Partnum Status Quantity
 GTT Action - FORWARD 893037501 on ----

The following features have been temporarily enabled:

 Feature Name Partnum Status Quantity Trial Period Left
 Zero entries found.

The following features have expired temporary keys:

 Feature Name Partnum
 Zero entries found.
```
The following is an example of the possible output.

```
rightcxa03w 10-07-28 21:15:37 GMT EAGLE5 42.0.0
The following features have been permanently enabled:

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Partnum</th>
<th>Status</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>GTT Action - FORWARD</td>
<td>893037501</td>
<td>on</td>
<td>----</td>
</tr>
</tbody>
</table>

The following features have been temporarily enabled:

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Partnum</th>
<th>Status</th>
<th>Quantity</th>
<th>Trial Period Left</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Zero entries found.

The following features have expired temporary keys:

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Partnum</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Zero entries found.
```

12. Backup the new changes using the `chg-db:action=backup:dest=fixed` command.

These messages should appear, the active Maintenance and Administration Subsystem Processor (MASP) appears first.

```
BACKUP (FIXED) : MASP A - Backup starts on active MASP.
BACKUP (FIXED) : MASP A - Backup on active MASP to fixed disk complete.
BACKUP (FIXED) : MASP A - Backup starts on standby MASP.
BACKUP (FIXED) : MASP A - Backup on standby MASP to fixed disk complete.
```

**Activating the XUDT UDT Conversion Feature**

This procedure is used to enable and turn on the XUDT UDT Conversion feature using the feature’s part number and a feature access key.

The feature access key for the XUDT UDT Conversion feature is based on the feature’s part number and the serial number of the EAGLE 5 ISS, making the feature access key site-specific.

The `enable-ctrl-feat` command enables the feature by inputting the feature’s access key and the feature’s part number with these parameters.

: `fak` – The feature access key provided by Tekelec. The feature access key contains 13 alphanumeric characters and is not case sensitive.

: `partnum` – The Tekelec-issued part number of the XUDT UDT Conversion feature, 893035301.

The `enable-ctrl-feat` command requires that the database contain a valid serial number for the EAGLE 5 ISS, and that this serial number is locked. This can be verified with the `rtrv-serial-num` command. The EAGLE 5 ISS is shipped with a serial number in the database, but the serial number is not locked. The serial number can be changed, if necessary, and locked once the EAGLE 5 ISS is on-site, with the `ent-serial-num` command. The `ent-serial-num` command uses these parameters.

: `serial` – The serial number assigned to the EAGLE 5 ISS. The serial number is not case sensitive.

: `lock` – Specifies whether or not the serial number is locked. This parameter has only one value, `yes`, which locks the serial number. Once the serial number is locked, it cannot be changed.
**Note:** To enter and lock the EAGLE 5 ISS’s serial number, the `ent-serial-num` command must be entered twice, once to add the correct serial number to the database with the `serial` parameter, then again with the `serial` and the `lock=yes` parameters to lock the serial number. You should verify that the serial number in the database is correct before locking the serial number. The serial number can be found on a label affixed to the control shelf (shelf 1100).

This feature cannot be temporarily enabled (with the temporary feature access key).

Once this feature has been enabled, the feature must be turned on with the `chg-ctrl-feat` command. The `chg-ctrl-feat` command uses these parameters.

- `:partnum` – The Tekelec-issued part number of the XUDT UDT Conversion feature, 893035301.
- `:status=on` – used to turn the XUDT UDT Conversion feature on.

Once the XUDT UDT Conversion feature has been turned on, it cannot be turned off.

The status of the features in the EAGLE 5 ISS is shown with the `rtrv-ctrl-feat` command.

1. Display the features that are enabled by entering the `rtrv-ctrl-feat` command. The following is an example of the possible output.

```
rlghncxa03w 10-12-28 21:15:37 GMT EAGLE5 43.0.0
The following features have been permanently enabled:
Feature Name Partnum Status Quantity
Command Class Management 893005801 on ----
LNP Short Message Service 893006601 on ----
Intermed GTT Load Sharing 893006901 on ----
HC-MIM SLK Capacity 893012707 on 64

The following features have been temporarily enabled:
Feature Name Partnum Status Quantity Trial Period Left
Zero entries found.

The following features have expired temporary keys:
Feature Name Partnum
Zero entries found.
```

If the XUDT UDT Conversion feature is enabled and turned on, no further action is necessary. This procedure does not need to be performed.

If the XUDT UDT Conversion feature is enabled and but not turned on, continue the procedure with Step 7.

If the XUDT UDT Conversion feature is not enabled, continue the procedure with Step 6 if the `rtrv-ctrl-feat` output in Step 1 shows any controlled features. If the `rtrv-ctrl-feat` output shows only the HC-MIM SLK Capacity feature with a quantity of 64, Step 2 through Step 5 must be performed.

2. Display the serial number in the database with the `rtrv-serial-num` command. This is an example of the possible output.

```
rlghncxa03w 10-12-28 21:15:37 GMT EAGLE5 43.0.0
System serial number = nt00001231
System serial number is not locked.
```
Note: If the serial number is correct and locked, continue the procedure with Step 6. If the serial number is correct but not locked, continue the procedure with Step 5. If the serial number is not correct, but is locked, this feature cannot be enabled and the remainder of this procedure cannot be performed. Contact the Customer Care Center to get an incorrect and locked serial number changed. Refer to Customer Care Center for the contact information. The serial number can be found on a label affixed to the control shelf (shelf 1100).

3. Enter the correct serial number into the database using the `ent-serial-num` command with the `serial` parameter.

   For this example, enter this command.

   ```
 ent-serial-num:serial=<EAGLE 5 ISS’s correct serial number>
   ```

   When this command has successfully completed, the following message should appear.

   ```
 rlghncxa03w 10-12-28 21:15:37 GMT EAGLE5 43.0.0
 ENT-SERIAL-NUM: MASP A - COMPLTD
   ```

4. Verify that the serial number entered into Step 3 was entered correctly using the `rtrv-serial-num` command. This is an example of the possible output.

   ```
 rlghncxa03w 10-12-28 21:15:37 GMT EAGLE5 43.0.0
 System serial number = nt00001231
 System serial number is not locked.
   ```

   If the serial number was not entered correctly, repeat Step 3 and Step 4 and re-enter the correct serial number.

5. Lock the serial number in the database by entering the `ent-serial-num` command with the serial number shown in Step 2, if the serial number shown in Step 2 is correct, or with the serial number shown in Step 4, if the serial number was changed in Step 3, and with the lock=yes parameter.

   For this example, enter this command.

   ```
 ent-serial-num:serial=<EAGLE 5 ISS’s serial number>:lock=yes
   ```

   When this command has successfully completed, the following message should appear.

   ```
 rlghncxa03w 10-12-28 21:15:37 GMT EAGLE5 43.0.0
 ENT-SERIAL-NUM: MASP A - COMPLTD
   ```

6. Enable the XUDT UDT Conversion feature with the `enable-ctrl-feat` command specifying the part number for the XUDT UDT Conversion feature and the feature access key. Enter this command.

   ```
 enable-ctrl-feat:partnum=893035301:fak=<XUDT UDT Conversion feature access key>
   ```

   Note: The XUDT UDT Conversion feature cannot be enabled with a temporary feature access key.
Note: The values for the feature access key (the fak parameter) are provided by Tekelec. If you do not have the feature access key for the XUDT UDT Conversion feature, contact your Tekelec Sales Representative or Account Representative.

When the `enable-crtl-feat` command has successfully completed, this message should appear:

```
rlghncxa03w 10-12-28 21:15:37 GMT EAGLE5 43.0.0
ENABLE-CTRL-FEAT: MASP B - COMPLTD
```

If you do not wish to turn the XUDT UDT Conversion feature on at this time, continue the procedure with Step 8.

If you wish to turn the XUDT UDT Conversion feature on at this time, continue the procedure with Step 7.

**CAUTION:** If the XUDT UDT Conversion feature is not turned on, provisioning for XUDT UDT Conversion cannot be performed.

7. Turn the XUDT UDT Conversion feature on with the `chg-crtl-feat` command specifying the part number for the XUDT UDT Conversion feature and the `status=on` parameter.

Enter this command:

```
chg-crtl-feat:partnum=893035301:status=on
```

When the `chg-crtl-feat` command has successfully completed, this message should appear:

```
rlghncxa03w 10-12-28 21:15:37 GMT EAGLE5 43.0.0
CHG-CTRL-FEAT: MASP B - COMPLTD
```

8. Verify the changes by entering the `rtrv-crtl-feat` command with the XUDT UDT Conversion feature part number. Enter this command:

```
rtrv-crtl-feat:partnum=893035301
```

The following is an example of the possible output:

```
rlghncxa03w 10-12-28 21:15:37 GMT EAGLE5 43.0.0
The following features have been permanently enabled:

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Partnum</th>
<th>Status</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>XUDT UDT Conversion</td>
<td>893035301</td>
<td>on</td>
<td>----</td>
</tr>
</tbody>
</table>

The following features have been temporarily enabled:

Feature Name | Partnum | Status | Quantity | Trial Period Left
0 entries found.

The following features have expired temporary keys:

Feature Name | Partnum
0 entries found.
```

9. Backup the new changes using the `chg-db:action=backup:dest=fixed` command. These messages should appear, the active Maintenance and Administration Subsystem Processor (MASP) appears first.

```
BACKUP (FIXED) : MASP A - Backup starts on active MASP.
```
BACKUP (FIXED) : MASP A - Backup on active MASP to fixed disk complete.
BACKUP (FIXED) : MASP A - Backup starts on standby MASP.
BACKUP (FIXED) : MASP A - Backup on standby MASP to fixed disk complete.
Appendix B

MO SMS B-Party Routing Configuration Procedures

Topics:

- Introduction.....816
- Activating the MO SMS B-Party Routing Feature.....817
- Configuring the GSM MO SMS B-Party Routing Options.....822
- Configuring the IS-41 MO SMS B-Party Routing Options.....824
- Adding a Service Selector Entry for the MO SMS B-Party Routing Feature.....826
- Removing a Service Selector Entry.....835
- Changing the Attributes of a Service Selector Entry for the MO SMS B-Party Routing Feature.....838
- Turning the MO SMS B-Party Routing Feature Off.....847

Appendix B, MO SMS B-Party Routing Configuration Procedures, describes the procedures necessary to configure the EAGLE 5 ISS to perform global title translation on the MAP B-Party digits instead of the GTT called party address of the message.
Introduction

The MO SMS B-Party Routing feature allows global translation type (GTT) routing to be performed on IS41 MO SMDPP and GSM MO_FSM messages based on the SMS B-party digits from the MAP layer of the message.

If the B number is a short code, then a short message service (SMS) can be directed to a specific short message service center (SMSC) based on the short code dialed by the SMS sender. If the B number is the MSISDN/MDN of the SMS recipient, then the SMS can be directed to a specific SMSC based on subscriber groupings or types.

Provisioning the MO SMS B-Party Routing Feature

1. Enable the MO SMS B-Party Routing feature using the `enable-ctrl-feat` command. Perform the procedure Activating the MO SMS B-Party Routing Feature.

   Note: The MO SMS B-Party Routing feature can be turned on in this step using the `chg-ctrl-feat` command. If the MO SMS B-Party Routing feature is not turned on in this step, provisioning for the MO SMS B-Party Routing feature can still be performed. When the provisioning is completed, the MO SMS B-Party Routing feature can be turned on. The MO SMS B-Party Routing feature will not work until the feature is turned on.

2. Provision a GTT set that will be used by the MO SMS B-Party Routing feature using the `ent-gttset` command. Perform the procedure Adding a GTT Set.

3. Assign the GTT set to the B-Party GTT set name option. Perform one or both of these procedures.
   - If global translation type (GTT) routing will be performed on GSM MO_FSM messages, the GTT set name must be the value of the `bpartygttsn` parameter of the `chg-gsmsmsopts` command. Perform the procedure Configuring the GSM MO SMS B-Party Routing Options.
   - If global translation type (GTT) routing will be performed on IS41 MO SMDPP messages, the GTT set name must be the value of the `bpartygttsn` parameter of the `chg-is41smsmsopts` command. Perform the procedure Configuring the IS-41 MO SMS B-Party Routing Options.

4. Specify that global title translation needs to be performed on the MAP B-Party digits of the message. Perform one or both of these procedures.
   - If global translation type (GTT) routing will be performed on GSM MO_FSM messages, the value `mapbparty` must be specified for the `mosmsgttdig` parameter of the `chg-gsmsmsopts` command. Perform the procedure Configuring the GSM MO SMS B-Party Routing Options.
   - If global translation type (GTT) routing will be performed on IS41 MO SMDPP messages, the value `mapbparty` must be specified for the `mosmsgttdig` parameter of the `chg-is41smsmsopts` command. Perform the procedure Configuring the IS-41 MO SMS B-Party Routing Options.

5. Provision the service selectors for the MO SMS B-Party Routing feature using the `ent-srvsel` command. Perform the procedure Adding a Service Selector Entry for the MO SMS B-Party Routing Feature.

6. If the MO SMS B-Party Routing feature was not turned on in step 1, turn the feature on using the `chg-ctrl-feat` command. Perform the procedure Activating the MO SMS B-Party Routing Feature.
Activating the MO SMS B-Party Routing Feature

This procedure is used to enable and turn on the MO SMS B-Party Routing feature using the feature’s part number and a feature access key.

The feature access key for the MO SMS B-Party Routing feature is based on the feature’s part number and the serial number of the EAGLE 5 ISS, making the feature access key site-specific.

The `enable-ctrl-feat` command enables the MO SMS B-Party Routing feature by inputting the feature’s access key and the feature’s part number with these parameters:

- `:fak` – The feature access key provided by Tekelec. The feature access key contains 13 alphanumeric characters and is not case sensitive.
- `:partnum` – The Tekelec-issued part number of the MO SMS B-Party Routing feature, 893024601.

The `enable-ctrl-feat` command requires that the database contain a valid serial number for the EAGLE 5 ISS, and that this serial number is locked. This can be verified with the `rtrv-serial-num` command. The EAGLE 5 ISS is shipped with a serial number in the database, but the serial number is not locked. The serial number can be changed, if necessary, and locked once the EAGLE 5 ISS is on-site, with the `ent-serial-num` command. The `ent-serial-num` command uses these parameters:

- `:serial` – The serial number assigned to the EAGLE 5 ISS. The serial number is not case sensitive.
- `:lock` – Specifies whether or not the serial number is locked. This parameter has only one value, `yes`, which locks the serial number. Once the serial number is locked, it cannot be changed.

**Note:** To enter and lock the EAGLE 5 ISS’s serial number, the `ent-serial-num` command must be entered twice, once to add the correct serial number to the database with the `serial` parameter, then again with the `serial` and the `lock=yes` parameters to lock the serial number. You should verify that the serial number in the database is correct before locking the serial number. The serial number can be found on a label affixed to the control shelf (shelf 1100).

This feature cannot be temporarily enabled (with the temporary feature access key).

Once this feature is enabled, provisioning for this feature can be performed, but the feature will not work until the feature is turned on with the `chg-ctrl-feat` command. The `chg-ctrl-feat` command uses these parameters:

- `:partnum` – The Tekelec-issued part number of the MO SMS B-Party Routing feature, 893024601.
- `:status=on` – used to turn the MO SMS B-Party Routing feature on.

Once the MO SMS B-Party Routing feature has been turned on, it be can be turned off. For more information on turning the MO SMS B-Party Routing feature off, refer to the procedure *Turning the MO SMS B-Party Routing Feature Off*.

The status of the features in the EAGLE 5 ISS is shown with the `rtrv-ctrl-feat` command.

The MO SMS B-Party Routing feature requires that DSMs or E5-SM4G cards are installed and provisioned in the EAGLE 5 ISS. DSMs and E5-SM4G cards are shown by the entries `DSM` in the `TYPE` column and `VSCCP` in the `APPL` column of the `rtrv-card` output.

The MO SMS B-Party Routing feature also requires that the Global Title Translation (GTT) and Enhanced Global Title Translation (EGTT) features are turned on. The status of the Global Title Translation and Enhanced Global Title Translation features are shown in the `rtrv-feat` output.
1. Display the status of the controlled features by entering the `rtrv-ctrl-feat` command. The following is an example of the possible output.

```
rlghncxa03w 08-09-28 21:15:37 GMT EAGLE5 39.1.0
The following features have been permanently enabled:

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Partnum</th>
<th>Status</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Command Class Management</td>
<td>893005801</td>
<td>on</td>
<td></td>
</tr>
<tr>
<td>LNP Short Message Service</td>
<td>893006601</td>
<td>on</td>
<td></td>
</tr>
<tr>
<td>Intermed GTT Load Sharing</td>
<td>893006901</td>
<td>on</td>
<td></td>
</tr>
<tr>
<td>XGTT Table Expansion</td>
<td>893006101</td>
<td>on</td>
<td>400000</td>
</tr>
<tr>
<td>XMAP Table Expansion</td>
<td>893007710</td>
<td>off</td>
<td></td>
</tr>
<tr>
<td>Large System # Links</td>
<td>893005910</td>
<td>on</td>
<td>2000</td>
</tr>
<tr>
<td>Routesets</td>
<td>893006401</td>
<td>on</td>
<td>6000</td>
</tr>
<tr>
<td>HC-MIM SLK Capacity</td>
<td>893012707</td>
<td>on</td>
<td>64</td>
</tr>
</tbody>
</table>

The following features have been temporarily enabled:

```

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Partnum</th>
<th>Status</th>
<th>Quantity</th>
<th>Trial Period Left</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Zero entries found.

The following features have expired temporary keys:

```
<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Partnum</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Zero entries found.

If the MO SMS B-Party Routing feature is enabled and turned on, no further action is necessary. This procedure does not need to be performed.

If the MO SMS B-Party Routing is enabled and but not turned on, continue the procedure with Step 9.

If the MO SMS B-Party Routing is not enabled, continue the procedure with Step 2.

2. Display the cards in the EAGLE 5 ISS using the `rtrv-card` command.

The MO SMS B-Party Routing feature requires that DSMs or E5-SM4G cards running the VSCCP application are in the database. This is an example of the possible output.

```
rlghncxa03w 09-05-25 09:58:31 GMT EAGLE5 41.0.0
CARD   TYPE     APPL  LSET NAME  PORT SLC LSET NAME  PORT SLC
1102   TSM       GLS              |
1113   GPSM      OAM              |
1114   TDM-A     |
1115   GPSM      OAM              |
1116   TDM-B     |
1117   MDAL      |
1201   LIMDS0    SS7ANSI sp2     A 0  sp1     B 0
1203   LIMDS0    SS7ANSI sp3     A 0
1204   LIMDS0    SS7ANSI sp3     A 1
1206   LIMDS0    SS7ANSI nsp3    A 1 nsp4    B 1
1216   DCM       STPLAN           |
1301   DSM       VSCCP            |
1303   DSM       VSCCP            |
1305   DSM       VSCCP            |
1308   LIMDS0    SS7ANSI sp6     A 1  sp7     B 0
1314   LIMDS0    SS7ANSI sp7     A 1  sp5     B 1
1317   DCM       STPLAN           |
```

There are two types of service modules, DSMs or E5-SM4G cards running the VSCCP application. DSMs and E5-SM4G cards are shown by the entries DSM in the `TYPE` column and VSCCP in the `APPL` column.
If DSMs or E5-SM4G cards running the VSCCP application are in the EAGLE 5 ISS, continue the procedure with Step 3.

If no service modules are shown in the rtrv-card output, perform to add DSMs or E5-SM4G cards to the EAGLE 5 ISS. Make sure to turn the EGTT feature on while performing Adding a Service Module. After Adding a Service Module has been performed, continue the procedure with Step 4.

Note: If the rtrv-ctrl-feat output in Step 1 shows any controlled features, continue the procedure with Step 8. If the rtrv-ctrl-feat output shows only the HC-MIMSLK Capacity feature with a quantity of 64, Step 4 through Step 7 must be performed.

3. The Enhanced Global Title Translation (EGTT) feature must be turned on to enable the MO SMS B-Party Routing feature. Verify the status of the EGTT feature by entering the rtrv-feat command.

If the EGTT feature is on, the EGTT field should be set to on.

Note: The rtrv-feat command output contains other fields that are not used by this procedure. If you wish to see all the fields displayed by the rtrv-feat command, refer to the rtrv-feat command description in the Commands Manual.

If the EGTT feature is on, shown by the entry EGTT = on in the rtrv-feat command output, continue the procedure with Step 4.

If the EGTT feature is off, shown by the entry EGTT = off in the rtrv-feat command output, turn the EGTT feature on by entering this command.

chg-feat:egtt=on

Note: Once the Enhanced Global Title Translation (EGTT) feature is turned on with the chg-feat command, it cannot be turned off.

The EGTT feature must be purchased before turning it on. If you are not sure whether you have purchased the EGTT feature, contact your Tekelec Sales Representative or Account Representative.

When the chg-feat has successfully completed, this message should appear.

rlghncxa03w 08-09-25 09:57:41 GMT EAGLE5 39.1.0
CHG-FEAT: MASP A - COMPLTD

After the EGTT feature has been turned on, continue the procedure with Step 4.

Note: If the rtrv-ctrl-feat output in Step 1 shows any controlled features, continue the procedure with Step 8. If the rtrv-ctrl-feat output shows only the HC-MIMSLK Capacity feature with a quantity of 64, Step 4 through Step 7 must be performed.

4. Display the serial number in the database with the rtrv-serial-num command. This is an example of the possible output.

rlghncxa03w 08-09-28 21:15:37 GMT EAGLE5 39.1.0
System serial number = nt00001231
System serial number is not locked.

rlghncxa03w 08-09-28 21:15:37 GMT EAGLE5 39.1.0
Command Completed

Note: If the serial number is correct and locked, continue the procedure with Step 8. If the serial number is correct but not locked, continue the procedure with Step 7. If the serial number is not correct, but is locked, this feature cannot be enabled and the remainder of this procedure cannot be performed. Contact the Customer Care Center to get an incorrect and locked serial number.
changed. Refer to Customer Care Center for the contact information. The serial number can be found on a label affixed to the control shelf (shelf 1100).

5. Enter the correct serial number into the database using the ent-serial-num command with the serial parameter.

 For this example, enter this command.

 ent-serial-num:serial=<EAGLE 5 ISS’s correct serial number>

 When this command has successfully completed, the following message should appear.

 rghanncxa03w 08-09-28 21:15:37 GMT EAGLE5 39.1.0
 ENT-SERIAL-NUM: MASP A - COMPLTD

6. Verify that the serial number entered into Step 5 was entered correctly using the rtrv-serial-num command. This is an example of the possible output.

 rghanncxa03w 08-09-28 21:15:37 GMT EAGLE5 39.1.0
 System serial number = nt00001231
 System serial number is not locked.
 rghanncxa03w 08-09-28 21:15:37 GMT EAGLE5 39.1.0
 Command Completed

 If the serial number was not entered correctly, repeat Step 5 and Step 6 and re-enter the correct serial number.

7. Lock the serial number in the database by entering the ent-serial-num command with the serial number shown in Step 4, if the serial number shown in Step 4 is correct, or with the serial number shown in Step 6, if the serial number was changed in Step 5, and with the lock=yes parameter.

 For this example, enter this command.

 ent-serial-num:serial=<EAGLE 5 ISS’s serial number>:lock=yes

 When this command has successfully completed, the following message should appear.

 rghanncxa03w 08-09-28 21:15:37 GMT EAGLE5 39.1.0
 ENT-SERIAL-NUM: MASP A - COMPLTD

8. Enable the MO SMS B-Party Routing feature with the enable-ctrl-feat command specifying the part number for the MO SMS B-Party Routing feature and the feature access key. Enter this command.

 enable-ctrl-feat:partnum=893024601:fak=<MO SMS B-Party Routing feature access key>

 Note: The MO SMS B-Party Routing feature cannot be enabled with a temporary feature access key.

 Note: The values for the feature access key (the fak parameter) are provided by Tekelec. If you do not have the feature access key for the MO SMS B-Party Routing feature, contact your Tekelec Sales Representative or Account Representative.
When the `enable-crtl-feat` command has successfully completed, this message should appear.

```
rlghncxa03w 08-09-28 21:15:37 GMT EAGLE5 39.1.0
ENABLE-CTRL-FEAT: MASP B - COMPLTD
```

CAUTION: Once the MO SMS B-Party Routing feature is enabled, provisioning for MO SMS B-Party Routing feature can be performed, but the EAGLE 5 ISS will not perform global title translation on the MAP B-Party digits of any messages until the MO SMS B-Party Routing is turned on in Step 9.

If you wish to turn the MO SMS B-Party feature on at this time, continue the procedure with Step 9.

If you do not wish to turn the MO SMS B-Party feature on at this time, continue the procedure with Step 10.

9. Turn the MO SMS B-Party Routing feature on with the `chg-crtl-feat` command specifying the part number for the MO SMS B-Party Routing feature and the `status=on` parameter. Enter this command.

```
chg-crtl-feat:partnum=893024601:status=on
```

When this command has successfully completed, the following message should appear.

```
rlghncxa03w 08-09-28 21:15:37 GMT EAGLE5 39.1.0
CHG-CTRL-FEAT: MASP B - COMPLTD
```

10. Verify the changes by entering the `rtrv-crtl-feat` command with the MO SMS B-Party Routing feature part number. Enter this command.

```
rtrv-crtl-feat:partnum=893024601
```

The following is an example of the possible output.

```
rlghncxa03w 08-09-28 21:15:37 GMT EAGLE5 39.1.0
The following features have been permanently enabled:
Feature Name       Partnum    Status  Quantity
MO SMS B-Party Routing   893024601  on      ----
The following features have been temporarily enabled:
Feature Name       Partnum    Status  Quantity     Trial Period Left
Zero entries found.
The following features have expired temporary keys:
Feature Name       Partnum
Zero entries found.
```

11. Backup the new changes using the `chg-db:action=backup:dest=fixed` command. These messages should appear, the active Maintenance and Administration Subsystem Processor (MASP) appears first.

```
BACKUP (FIXED) : MASP A - Backup starts on active MASP.
BACKUP (FIXED) : MASP A - Backup on active MASP to fixed disk complete.
BACKUP (FIXED) : MASP A - Backup starts on standby MASP.
BACKUP (FIXED) : MASP A - Backup on standby MASP to fixed disk complete.
```
Configuring the GSM MO SMS B-Party Routing Options

This procedure is used to configure the MO SMS B-Party routing options for GSM messages using the chg-gsmsmsopts command with these parameters:

:bpartygttsn – the name of the GTT set, shown in the rtrv-gttset output, global title translation on the MAP B-Party digits of the GSM message will be performed on; or the value none indicating that global title translation on the MAP B-Party digits of the GSM message will not be performed on any GTT set.

:mosmsgttdig – the digits that are used for global title translation.

- sccpcdpa - the digits of the SCCP called party address portion of the message are used for global title translation.
- mapbparty - the MAP B-party number is used for global title translation.

The system default value for the bpartygttsn parameter is none. The system default value for the mosmsgttdig parameter is sccpcdpa.

This procedure can be performed only if the MO SMS B-Party Routing feature is enabled.

The set type of the GTT set name that will be specified for the bpartygttsn parameter must be CDGTA. The set type of the GTT set is shown in the SETTYPE column of the rtrv-gttset output. If the SETTYPE column is not shown in the rtrv-gttset output, all the GTT sets are CDGTA GTT sets.

If the value of the bpartygttsn parameter is none when this procedure is completed, the value of the mosmsgttdig parameter must be sccpcdpa.

1. Display the existing GSM MO SMS B-Party routing option values by entering the rtrv-gsmsmsopts command.

 This is an example of the possible output.

 rlnghncxa03w 09-07-28 21:15:37 GMT EAGLE5 41.1.0
 GSM SMS OPTIONS

 BPARTYGTTSN = NONE MOSMSGTTDIG = SCCPCDPA

 Note: The rtrv-gsmsmsopts command output contains other fields that are not used by this procedure. If you wish to see all the fields displayed by the rtrv-gsmsmsopts command, refer to the rtrv-gsmsmsopts command description in the Commands Manual.

 If the BPARTYGTTSN and MOSMSGTTDIG fields are not shown in the rtrv-gsmsmsopts output, the MO SMS B-Party Routing feature is not enabled. Perform the procedure Activating the MO SMS B-Party Routing Feature to enable the MO SMS B-Party Routing feature.

 If the BPARTYGTTSN and MOSMSGTTDIG fields are shown in the rtrv-gsmsmsopts output, the MO SMS B-Party Routing feature was enabled in this step, continue the procedure by performing one of these actions.

 - If a GTT set name will be specified, continue the procedure with Step 2.
 - If a GTT set name will not be specified, only the mosmsgttdig parameter value will be changed, continue the procedure with Step 3.
Note: The mosmsgtttdig parameter value can be mapbparty only if a GTT set name is specified for the bpartygttsn parameter value.

2. Display the GTT sets in the database using the rtrv-gttset command.

This is an example of the possible output.

```
rlghncxa03w 09-07-07 00:29:31 GMT EAGLE5 41.1.0
GTTSN   NETDOM SETTYPE NDGT
abcd1234  itu  CGGTA  12
gttset3  ansi  CGGTA  10
gttset6  ansi  OPC   -
gttset7  ansi  CGPC   -
gttset12 ansi  OPC   -
imsi     itu  CDGTA  15
l1db     ansi  CDGTA  10
t800     ansi  CDGTA  10
s1000    itu  CDGTA  15
s2000    itu  CGPC   -
```

GTT-SET table is (10 of 2000) 1% full.

The SETTYPE column is shown in the rtrv-gttset output only if the Origin-Based SCCP Routing feature or if the Flexible Linkset Optional Based Routing feature is enabled and turned on. The SETTYPE value of the GTT set name specified for the bpartygttsn parameter must be CDGTA if the Origin-Based SCCP Routing feature or if the Flexible Linkset Optional Based Routing feature is enabled and turned on. If the SETTYPE column is not shown in the rtrv-gttset output, all the GTT sets are CDGTA GTT sets.

If the required GTT set name is not shown in the rtrv-gttset output, perform Adding a GTT Set to add the required GTT set. After the new GTT set has been added to the database, continue the procedure with Step 3.

3. Configure the GSM MO SMS B-Party Routing options using the chg-gsmsmsopts command.

For this example, enter this command.

```
chg-gsmsmsopts:bpartygttsn=s1000:mosmsgtttdig=mapbparty
```

When the chg-gsmsmsopts command has successfully completed, this message should appear.

```
rlghncxa03w 08-09-07 00:22:57 GMT EAGLE5 39.1.0
CHG-GSMSMSOPTS: MASP A - COMPLTD
```

4. Verify the changes using the rtrv-gsmsmsopts command. This is an example of the possible output.

```
rlghncxa03w 09-07-28 21:15:37 GMT EAGLE5 41.1.0
GSM SMS OPTIONS
-------------------------------
BPARTYGTTSN  = s1000   MOSMSGTTTDIG = MAPBPARTY
```

5. Back up the new changes using the chg-db:action=backup:dest=fixed command. These messages should appear, the active Maintenance and Administration Subsystem Processor (MASP) appears first.

```
BACKUP (FIXED) : MASP A - Backup starts on active MASP.
BACKUP (FIXED) : MASP A - Backup on active MASP to fixed disk complete.
```
Configuring the IS-41 MO SMS B-Party Routing Options

This procedure is used to configure the MO SMS B-Party routing options for IS-41 messages using the chg-is41smsopts command with these parameters:

:bpartygttsn – the name of the GTT set, shown in the rtrv-gttset output, global title translation on the MAP B-Party digits of the IS-41 message will be performed on; or the value none indicating that global title translation on the MAP B-Party digits of the IS-41 message will not be performed on any GTT set.

:mosmsgttdig – the digits that are used for global title translation.

• scpcdp - the digits of the SCCP called party address portion of the message are used for global title translation.
• mapbparty - the MAP B-party number is used for global title translation.

The system default value for the bpartygttsn parameter is none. The system default value for the mosmsgttdig parameter is scpcdp.

This procedure can be performed only if the MO SMS B-Party Routing feature is enabled.

The set type of the GTT set name that will be specified for the bpartygttsn parameter must be CDGTA. The set type of the GTT set is shown in the SETTYPE column of the rtrv-gttset output. If the SETTYPE column is not shown in the rtrv-gttset output, all the GTT sets are CDGTA GTT sets.

If the value of the bpartygttsn parameter is none when this procedure is completed, the value of the mosmsgttdig parameter must be scpcdp.

1. Display the existing IS-41 MO SMS B-Party routing option values by entering the rtrv-is41smsopts command.

This is an example of the possible output.

```
rlghncxa03w 09-09-28 21:15:37 GMT EAGLE5 41.1.0
IS41 SMS OPTIONS
-------------------------------------
BPARTYGTTSN      = NONE
MOSMSGTTDIG      = SCCPCDPA
```

Note: The rtrv-is41smsopts command output contains other fields that are not used by this procedure. If you wish to see all the fields displayed by the rtrv-is41smsopts command, refer to the rtrv-is41smsopts command description in the Commands Manual.

If the BPARTYGTTSN and MOSMSGTTDIG fields are not shown in the rtrv-is41smsopts output, the MO SMS B-Party Routing feature is not enabled. Perform the procedure Activating the MO SMS B-Party Routing Feature to enable the MO SMS B-Party Routing feature.

If the BPARTYGTTSN and MOSMSGTTDIG fields are shown in the rtrv-is41smsopts output, the MO SMS B-Party Routing feature was enabled in this step, continue the procedure by performing one of these actions.
If a GTT set name will be specified, continue the procedure with Step 2.

If a GTT set name will not be specified, only the mosmsgttdig parameter value will be changed, continue the procedure with Step 3.

Note: The mosmsgttdig parameter value can be mapbparty only if a GTT set name is specified for the bpartygttsn parameter value.

2. Display the GTT sets in the database using the rtrv-gttsset command.

This is an example of the possible output.

```
rlghmcxa03w 09-07-07 00:29:31 GMT EAGLE5 41.1.0
GTTSET     NETDOM  SETTYPE  NDGT
abcd1234    itu     CGGTA    12
gttset3     ansi    CGGTA    10
gttset6     ansi    OPC      -
gttset7     ansi    CGPC     -
gttset12    ansi    OPC      -
imsi       itu     CDGTA    15
l1idb       ansi    CDGTA    10
t800        ansi    CDGTA    10
s1000       itu     CDGTA    15
s2000       itu     CGPC     -
```

The SETTYPE column is shown in the rtrv-gttsset output only if the Origin-Based SCCP Routing feature or if the Flexible Linkset Optional Based Routing feature is enabled and turned on. The SETTYPE value of the GTT set name specified for the bpartygttsn parameter must be CDGTA if the Origin-Based SCCP Routing feature or if the Flexible Linkset Optional Based Routing feature is enabled and turned on. If the SETTYPE column is not shown in the rtrv-gttsset output, all the GTT sets are CDGTA GTT sets.

If the required GTT set name is not shown in the rtrv-gttsset output, perform Adding a GTT Set to add the required GTT set. After the new GTT set has been added to the database, continue the procedure with Step 3.

3. Configure the IS-41 MO SMS B-Party Routing options using the chg-is41smsopts command.

For this example, enter this command.

```
chg-is41smsopts:bpartygttsn=s1000:mosmsgttdig=mapbparty
```

When the chg-is41smsopts command has successfully completed, this message should appear.

```
rlghmcxa03w 08-09-07 00:22:57 GMT EAGLE5 39.1.0
CHG-IS41SMSOPTS: MASP A - COMPLTD
```

4. Verify the changes using the rtrv-is41smsopts command. This is an example of the possible output.

```
rlghmcxa03w 09-09-28 21:15:37 GMT EAGLE5 41.1.0
IS41 SMS OPTIONS
----------------------------------------
BPARTYGTTSN     = s1000
MOSMSGTTDIG     = MAPBPARTY
```
5. Back up the new changes using the `chg-db:action=backup:dest=fixed` command. These messages should appear, the active Maintenance and Administration Subsystem Processor (MASP) appears first.

BACKUP (FIXED) : MASP A - Backup starts on active MASP.
BACKUP (FIXED) : MASP A - Backup on active MASP to fixed disk complete.
BACKUP (FIXED) : MASP A - Backup starts on standby MASP.
BACKUP (FIXED) : MASP A - Backup on standby MASP to fixed disk complete.

Adding a Service Selector Entry for the MO SMS B-Party Routing Feature

This procedure is used to provision an entry in the service selector table for the MO SMS B-Party Routing feature using the `ent-srvsel` command.

The `ent-srvsel` command uses these parameters.

:gti/gtia/gtii/gtin/gtin24 – The global title indicator. The GTI defines the domain as

- `gti` and `gtia` (ANSI) with GTI=2
- `gtii` (ITU international) with GTI=2 or GTI=4, and
- `gtin` and `gtin24` (ITU national) with GTI=2 or GTI=4.

The `gti` and `gtia` parameters are equivalent.

:serv – the DSM service - smsmr.

:tt – The global title translation. (0-255)

:ssn – The subsystem number. (0-255, or *)

:dfltact - The default action identifier that is associated with the service selector entry. This parameter has one of these values.

- A GTT action identifier shown in the `rtrv-gttact` output whose `ACTION` value is either `disc`, `udts`, or `tcaperr`.
- `fallback` - Fallback to the relay data. The relayed MSU is routed according to the routing data provided by the service.
- `falltoggtt` - Fallback to GTT. If the `gttselid` parameter has a value other than `none`, and the GTT selector search fails, the GTT selector search is performed again using the `gttselid=none` parameter.

:on=gttrqd - Global title translation is required after the service execution is complete and the message is relayed by the service.

:off=gttrqd - Global title translation is not required after the service execution is complete and the message is relayed by the service.

:gttselid - The GTT selector ID user for performing global title translation on messages that are relayed by the service. (0 - 65534)

:nai or :naiv – The nature of address indicator. See *Table 131: NAIV/NAI Mapping* for NAI/NAIV.

Note: The nature of address indicator parameters (naiv or nai) can be specified by supplying either a mnemonic or an explicit value. At no time may both the mnemonic and the explicit value be specified.
at the same time for the same parameter. You can specify either the naiv or nai parameter. *Table 131: NAIV/NAI Mapping* shows the mapping between the naiv and the nai parameters.

:np or :npv – The numbering plan. See *Table 132: NPV/NP Mapping* for NP/NPV mapping.

Note: The numbering plan parameters (:npv or :np) can be specified by supplying either a mnemonic or an explicit value. At no time may both the mnemonic and the explicit value be specified at the same time for the same parameter. You can specify either the npv or np parameter. *Table 132: NPV/NP Mapping* shows the mapping between the npv and the np parameters.

:snaí – The service nature of address indicator.

- natl — National significant number
- intl — International number
- rnidn — Routing number prefix and international dialed/directory number
- rnnndn — Routing number prefix and national dialed/directory number
- rnsdn — Routing number prefix and subscriber dialed/directory number
- ccrrndn — Country code, routing number, and national directory number
- sub — Subscriber number

:snp – The service numbering plan - e164

Table 131: NAIV/NAI Mapping

<table>
<thead>
<tr>
<th>NAIV</th>
<th>NAI</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>--</td>
<td>Unknown</td>
</tr>
<tr>
<td>1</td>
<td>Sub</td>
<td>Subscriber Number</td>
</tr>
<tr>
<td>2</td>
<td>Rsvd</td>
<td>Reserved for national use</td>
</tr>
<tr>
<td>3</td>
<td>Natl</td>
<td>National significant number</td>
</tr>
<tr>
<td>4</td>
<td>Intl</td>
<td>International number</td>
</tr>
<tr>
<td>5-127</td>
<td>---</td>
<td>Spare</td>
</tr>
</tbody>
</table>

Table 132: NPV/NP Mapping

<table>
<thead>
<tr>
<th>NPV</th>
<th>NP</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>--</td>
<td>Unknown</td>
</tr>
<tr>
<td>1</td>
<td>E164</td>
<td>ISDN/telephony numbering plan</td>
</tr>
<tr>
<td>2</td>
<td>Generic</td>
<td>Generic numbering plan</td>
</tr>
</tbody>
</table>
To perform this procedure, the MO SMS B-Party Routing feature must be enabled. Enter the `rtrv-ctrl-feat` command with the MO SMS B-Party Routing part number, 893024601, to verify whether or not the MO SMS B-Party Routing feature is enabled. If the MO SMS B-Party Routing feature is not enabled, perform the procedure *Activating the MO SMS B-Party Routing Feature* to enable MO SMS B-Party Routing feature.

ITU service selectors (defined by either the `gtii`, `gtin`, or `gtin24` parameters) can be specified only if the ANSIGFLEX STP option is not enabled. Enter the `rtrv-stpopts` command to verify whether or not the ANSIGFLEX STP option is enabled.

1. Verify the status of the MO SMS B-Party Routing feature by entering the `rtrv-ctrl-feat` command with the MO SMS B-Party Routing feature part number. Enter this command.

 `rtrv-ctrl-feat:partnum=893024601`

 The following is an example of the possible output.

```
rlghncxa03w 08-09-28 21:15:37 GMT EAGLE5 39.1.0
The following features have been permanently enabled:

Feature Name      Partnum    Status  Quantity
MO SMS B-Party Routing  893024610  on      ----

The following features have been temporarily enabled:

Feature Name      Partnum    Status  Quantity     Trial Period Left
Zero entries found.

The following features have expired temporary keys:

Feature Name      Partnum
Zero entries found.
```

If the MO SMS B-Party Routing feature has not been enabled, perform the procedure *Activating the MO SMS B-Party Routing Feature* procedure to enable this feature.

2. Display the service selector entries by entering this command `rtrv-srvsel` command.
rtrv-srvsel:num=20992:force=yes

The following is an example of the possible output.

rlghncxa03w 10-07-28 21:15:37 GMT EAGLE5 42.0.0

<table>
<thead>
<tr>
<th>GTIA</th>
<th>TT</th>
<th>NP</th>
<th>NAI</th>
<th>SSN</th>
<th>SNP</th>
<th>SNAI</th>
<th>SERV</th>
<th>GTTRQD</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>9</td>
<td>--</td>
<td>---</td>
<td>*</td>
<td>e212</td>
<td>int1</td>
<td>gflex</td>
<td>off</td>
</tr>
<tr>
<td>DFLTACT=fallback</td>
<td>GTTSELID=9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td>--</td>
<td>---</td>
<td>3</td>
<td>e164</td>
<td>int1</td>
<td>gflex</td>
<td>off</td>
</tr>
<tr>
<td>DFLTACT=fallback</td>
<td>GTTSELID=75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>253</td>
<td>--</td>
<td>---</td>
<td>4</td>
<td>e214</td>
<td>nat1</td>
<td>gflex</td>
<td>off</td>
</tr>
<tr>
<td>DFLTACT=fallback</td>
<td>GTTSELID=80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>GTII</th>
<th>TT</th>
<th>NP</th>
<th>NAI</th>
<th>SSN</th>
<th>SNP</th>
<th>SNAI</th>
<th>SERV</th>
<th>GTTRQD</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0</td>
<td>--</td>
<td>---</td>
<td>2</td>
<td>e164</td>
<td>int1</td>
<td>gflex</td>
<td>off</td>
</tr>
<tr>
<td>DFLTACT=fallback</td>
<td>GTTSELID=56</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>18</td>
<td>--</td>
<td>---</td>
<td>*</td>
<td>e164</td>
<td>rnsdn</td>
<td>inpmr</td>
<td>on</td>
</tr>
<tr>
<td>DFLTACT=fallback</td>
<td>GTTSELID=80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>e214</td>
<td>sub</td>
<td>*</td>
<td>e214</td>
<td>sub</td>
<td>gflex</td>
<td>off</td>
</tr>
<tr>
<td>DFLTACT=fallback</td>
<td>GTTSELID=98</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>GTIN</th>
<th>TT</th>
<th>NP</th>
<th>NAI</th>
<th>SSN</th>
<th>SNP</th>
<th>SNAI</th>
<th>SERV</th>
<th>GTTRQD</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
<td>--</td>
<td>---</td>
<td>3</td>
<td>e164</td>
<td>int1</td>
<td>gflex</td>
<td>off</td>
</tr>
<tr>
<td>DFLTACT=fallback</td>
<td>GTTSELID=8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>9</td>
<td>--</td>
<td>---</td>
<td>*</td>
<td>---</td>
<td>---</td>
<td>inpq</td>
<td>---</td>
</tr>
<tr>
<td>DFLTACT=---------</td>
<td>GTTSELID=-----</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>e164</td>
<td>nat1</td>
<td>*</td>
<td>e164</td>
<td>rnsdn</td>
<td>inpmr</td>
<td>on</td>
</tr>
<tr>
<td>DFLTACT=fallback</td>
<td>GTTSELID=432</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>9</td>
<td>---</td>
<td>---</td>
<td>4</td>
<td>---</td>
<td>---</td>
<td>inpq</td>
<td>---</td>
</tr>
<tr>
<td>DFLTACT=---------</td>
<td>GTTSELID=-----</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SRV SELECTOR table is (10 of 20992) 1 % full

Note: If the rtrv-srvsel command is entered with no other parameters specified, a maximum of 50 entries are displayed. To display more than 50 entries, the force=yes parameter must be specified with the rtrv-srvsel command and the num parameter value must be greater than 50. Since there can be a maximum of 20992 service selectors in the database, to display all the service selectors in the database, the force=yes and num=20992 parameters must be specified with the rtrv-srvsel command.

If the number of service selector entries is 20992, the new service selector entry cannot be added unless and existing service selector entry is removed from the database, or an existing service selector entry is changed with the new information for the MO SMS B-Party Routing feature.

Continue the procedure by performing one of these actions.

- If the number of service selector entries is 20992 and you wish to change an existing service selector entry, perform the procedure **Changing the Attributes of a Service Selector Entry for the MO SMS B-Party Routing Feature** using the service selector information that would have been used in this procedure. Do not perform the remainder of this procedure.
- If the number of service selector entries is 20992 and you wish to remove an existing service selector entry, perform the procedure **Removing a Service Selector Entry**. After the service selector entry has been removed, continue the procedure with Step 3.
- If the number of service selector entries is less than 20992, continue the procedure with Step 3.

3. ITU service selectors cannot be added to the database if the ANSIGFLEX STP option is enabled.
If ITU service selectors are not shown in the `rtrv-srvsel` output in Step 2, and ITU service selectors will be added, verify whether or not the ANSIGFLEX STP option is enabled by entering the `rtrv-stpopts` command.

The following is an example of the possible output.

```
rlghncxa03w 08-09-28 21:15:37 GMT EAGLE5 39.1.0
STP OPTIONS
-----------------------
ANSIGFLEX            no
```

Note: The `rtrv-stpopts` command output contains other fields that are not used by this procedure. If you wish to see all the fields displayed by the `rtrv-stpopts` command, refer to the `rtrv-stpopts` command description in the *Commands Manual*.

The value *yes* in the `rtrv-stpopts` output for the ANSIGFLEX field shows that the ANSIGFLEX STP option is enabled.

If any of these conditions are present.

- The value for the ANSIGFLEX field is *no*.
- ITU service selectors are shown in the `rtrv-srvsel` output in Step 2, shown by the GTII, GTIN, or GTIN24 columns.
- No ITU service selectors will be added.

Continue the procedure by performing one of these steps.

- Continue the procedure with Step 8 if:
 - The `off=gttrqd` parameter will be specified for the service selector entry, or
 - The `on=gttrqd` parameter will be specified value for the service selector entry and the `rtrv-srvsel` output contains entries whose GTTRQD value is on, and
 - The dfltact value will be either fallback or falltogtt.

- Continue the procedure with Step 7 if:
 - The `off=gttrqd` parameter will be specified for the service selector entry, or
 - The `on=gttrqd` parameter will be specified value for the service selector entry and the `rtrv-srvsel` output contains entries whose GTTRQD value is on, and
 - The dfltact value will be a GTT action identifier.

- Continue the procedure with Step 5 if the `on=gttrqd` parameter will be specified value for the service selector entry and the `rtrv-srvsel` output contains no entries whose GTTRQD value is on.

If the value for the ANSIGFLEX field is *yes*, continue the procedure with Step 4.

4. Change the ANSIGFLEX STP option value to *no* by entering this command.

```
chg-stpopts:off=ansigflex
```
When this command has successfully completed, the following message should appear.

\[\text{righncxa03w 08-09-28 21:15:37 GMT EAGLE5 39.1.0} \]
\[\text{CHG-STPOPTS: MASP A - COMPLTD} \]

CAUTION: After changing the ANSIGFLEX value to no in this step, and adding the ITU service selectors in *Step 8*, the ANSIGFLEX STP option cannot be enabled.

5. Enter this command to verify if any DSMs are in the database.

\[\text{rtrv-stp:gpl=vsccp} \]

This is an example of the possible output.

<table>
<thead>
<tr>
<th>Card</th>
<th>Part Number</th>
<th>Rev Serial Number</th>
<th>Type</th>
<th>DB</th>
<th>APPL</th>
<th>GPL Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>1101</td>
<td>870-1275-01</td>
<td>10245689323</td>
<td>DSM</td>
<td>4096</td>
<td>VSCCP</td>
<td>133-029-000</td>
</tr>
<tr>
<td>1201</td>
<td>870-1275-01</td>
<td>10245689337</td>
<td>DSM</td>
<td>4096</td>
<td>VSCCP</td>
<td>133-029-000</td>
</tr>
<tr>
<td>1301</td>
<td>870-1275-01</td>
<td>10245689353</td>
<td>DSM</td>
<td>4096</td>
<td>VSCCP</td>
<td>133-029-000</td>
</tr>
</tbody>
</table>

If no entries are shown in the *rtrv-stp* output, continue the procedure with *Step 6*.

If entries are shown in the *rtrv-stp* output, the EAGLE 5 ISS contains DSM cards. The on=gttrqd parameter cannot be specified if the EAGLE 5 ISS contains DSMs. To specify the on=gttrqd parameter, all the DSMs must be replaced by E5-SM4G cards. Contact the Customer Care Center before replacing any service modules. Refer to the *Customer Care Center* section for the contact information.

After the DSMs have been replaced, continue the procedure by performing one of these steps.

- Continue the procedure with *Step 8* if the dfltact value will be either *fallback* or *falltogtt*.
- Continue the procedure with *Step 7* if the dfltact value will be a GTT action identifier.

6. Enter this command to verify if any E5-SM4G cards are in the database.

\[\text{rtrv-stp:gpl=sccphc} \]

This is an example of the possible output.

<table>
<thead>
<tr>
<th>Card</th>
<th>Part Number</th>
<th>Rev Serial Number</th>
<th>Type</th>
<th>DB</th>
<th>APPL</th>
<th>GPL Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>1106</td>
<td>870-2860-01</td>
<td>10245689404</td>
<td>DSM</td>
<td>4096</td>
<td>SCCPHC</td>
<td>133-029-000</td>
</tr>
<tr>
<td>1206</td>
<td>870-2860-01</td>
<td>10245689453</td>
<td>DSM</td>
<td>4096</td>
<td>SCCPHC</td>
<td>133-029-000</td>
</tr>
<tr>
<td>1306</td>
<td>870-2860-01</td>
<td>10245689499</td>
<td>DSM</td>
<td>4096</td>
<td>SCCPHC</td>
<td>133-029-000</td>
</tr>
</tbody>
</table>

If entries no are shown in the *rtrv-stp* output, the EAGLE 5 ISS does not contain any E5-SM4G cards. To specify the on=gttrqd parameter, the EAGLE 5 ISS must contain E5-SM4G cards. Perform the *Adding a Service Module* procedure to add E5-SM4G cards to the database.

If entries are shown in the *rtrv-stp* output or the *Adding a Service Module* procedure has been performed, continue the procedure by performing one of these steps.

- Continue the procedure with *Step 8* if the dfltact value will be either *fallback* or *falltogtt*.
- Continue the procedure with *Step 7* if the dfltact value will be a GTT action identifier.

7. Display the GTT action identifiers by entering the *rtrv-gttact* command.
This is an example of the possible output.

```
rlghncxa03w 10-07-28 21:15:37 GMT EAGLE5 42.0.0
ACTID ACTION ATCAPERR ITCAPERR UDTSER UIMREQD
---------------------------------------------------------
action2 disc --- --- --- off
ACTID ACTION PCA RI SSN MRNSET MAPSET
-----------------------------------------------------------------------
action1 dup 002-002-002 gt --- DFLT ----- CDGTMODID = ---------
          CGGTMODID = --------- USEICMSG = off
          CGPCOGMSG = defl CGPCA = ---
action3 dup 003-003-003 gt --- 1 ------ CDGTMODID = ---------
          CGGTMODID = --------- USEICMSG = off
          CGPCOGMSG = defl CGPCA = ---
ACTID ACTION PCI RI SSN MRNSET MAPSET
-----------------------------------------------------------------------
ACTID ACTION PCN RI SSN MRNSET MAPSET
-----------------------------------------------------------------------
ACTID ACTION PCN24 RI SSN MRNSET MAPSET
-----------------------------------------------------------------------
GTT-ACT table is (3 of 2000) 1% full.
```

The `dfltact` parameter value must be a GTT action identifier (the `ACTID` value in the `rtrv-gttact` output) whose `ACTION` value is either `disc`, `udts`, or `tcaperr`.

If the desired GTT action identifier is not shown in the `rtrv-gttact` output, add the desired GTT action identifier by performing the Adding a GTT Action procedure.

If the desired GTT action identifier is shown in the `rtrv-gttact` output or the Adding a GTT Action procedure was performed, continue the procedure with Step 8.

8. Add the new service selector for the MO SMS B-Party Routing feature by entering the `ent-srvsel` command with the appropriate parameter combinations shown in Table 133: Parameter Combinations for Adding Service Selectors for the MO SMS B-Party Routing Feature.

Table 133: Parameter Combinations for Adding Service Selectors for the MO SMS B-Party Routing Feature

<table>
<thead>
<tr>
<th>ANSI Service Selector</th>
<th>ITU Service Selector</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mandatory Parameters</td>
<td></td>
</tr>
<tr>
<td>:gti/gtia = 2</td>
<td>:gtii/gtin/gtin24 = 2, 4</td>
</tr>
<tr>
<td>:serv = smsmr</td>
<td>:serv = smsmr</td>
</tr>
<tr>
<td>:tt = 0-255</td>
<td>:tt = 0-255</td>
</tr>
<tr>
<td>ANSI Service Selector</td>
<td>ITU Service Selector</td>
</tr>
<tr>
<td>-----------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>:snp = e164</td>
<td>:snp = e164</td>
</tr>
<tr>
<td>:snai = sub, natl, intl, rnrdn, rsdn, ccrndn</td>
<td>:snai = sub, natl, intl, rnrdn, rsdn, ccrndn</td>
</tr>
<tr>
<td></td>
<td>:nai or :naiv - See the Note</td>
</tr>
<tr>
<td></td>
<td>:np or :npv - See the Note</td>
</tr>
</tbody>
</table>

Optional Parameters

<table>
<thead>
<tr>
<th>Optional Parameters</th>
<th>Optional Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>:dfltact = the disc/udts/tcaperr GTT action identifier shown in the rtrv-gttact output, fallback, or falltogett. Default value = fallback</td>
<td>:dfltact = the disc/udts/tcaperr GTT action identifier shown in the rtrv-gttact output, fallback, or falltogett. Default value = fallback</td>
</tr>
<tr>
<td>:on=gttrqd - This parameter cannot be specified if the off=gttrqd parameter is specified. Default value=off</td>
<td>:on=gttrqd - This parameter cannot be specified if the off=gttrqd parameter is specified. Default value=off</td>
</tr>
<tr>
<td>:off=gttrqd - This parameter cannot be specified if the on=gttrqd parameter is specified. Default value=off</td>
<td>:off=gttrqd - This parameter cannot be specified if the on=gttrqd parameter is specified. Default value=off</td>
</tr>
<tr>
<td>:gttselid = 0 - 65534. Default value = no value is specified.</td>
<td>:gttselid = 0 - 65534. Default value = no value is specified.</td>
</tr>
</tbody>
</table>

Note: The nai and naiv, and the np and npv parameters cannot be specified together in the ent-srvsel command. Refer to Table 131: NAIV/NAI Mapping for the nai and naiv parameter values. Refer to Table 132: NPV/NP Mapping for the np and npv parameter values. The nai, naiv, np, and npv parameters can be specified only if the gtii/gtin/gtin24 parameter value is 4.

For this example, enter these commands.

```
```

When each of these commands have successfully completed, the following message should appear.

```
rlghncxa03w 08-09-28 21:15:37 GMT EAGLE5 39.1.0
ENT-SRVSEL: MASP A - COMPLTD
```

9. Verify the changes using the rtrv-srvsel command and specifying these parameters and values that were specified in Step 8.

- gtii/gtia
- tt
- ssn
- serv=smsmr
- snp=e164
• snai
• The np/npv parameter must be specified with the rtrv-srvsel command if the gtii/gtin/gtin24=4 parameter was specified in Step 8.
• The nai/naiv parameter must be specified with the rtrv-srvsel command if the gtii/gtin/gtin24=4 parameter was specified in Step 8.

For this example, enter these commands.

```
```

This is an example of the possible output.

```
rlghncxa03w 10-07-28 21:15:37 GMT EAGLE5 42.0.0
GTIA    TT   NP       NAI   SSN  SNP   SNAI   SERV   GTTRQD
2       25   --       ----  50   e164  natl   smsmr  off
DFLTACT=action2   GTTSELID=3
SRV SELECTOR table is (13 of 20992)   1 % full
```

```
```

This is an example of the possible output.

```
rlghncxa03w 10-07-28 21:15:37 GMT EAGLE5 42.0.0
GTII    TT   NP       NAI   SSN  SNP   SNAI   SERV   GTTRQD
2       35   --       ----  60   e164  intl   smsmr  off
DFLTACT=fallback  GTTSELID=none
SRV SELECTOR table is (13 of 20992)   1 % full
```

```
rtrv-srvsel:gtin=4:serv:smsmr:tt=45:ssn=70:snp=e164:snai=sub
:nai=intl:npv=5
```

This is an example of the possible output.

```
rlghncxa03w 10-07-28 21:15:37 GMT EAGLE5 42.0.0
GTIN    TT   NP       NAI   SSN  SNP   SNAI   SERV   GTTRQD
4       45   e210     intl  75   e164  sub    smsmr  on
DFLTACT=fallback  GTTSELID=none
SRV SELECTOR table is (13 of 20992)   1 % full
```

10. Backup the new changes using the chg-db:action=backup:dest=fixed command. These messages should appear, the active Maintenance and Administration Subsystem Processor (MASP) appears first.

```
BACKUP (FIXED) : MASP A - Backup starts on active MASP.
BACKUP (FIXED) : MASP A - Backup on active MASP to fixed disk complete.
BACKUP (FIXED) : MASP A - Backup starts on standby MASP.
BACKUP (FIXED) : MASP A - Backup on standby MASP to fixed disk complete.
```
Removing a Service Selector Entry

This procedure is used to remove a service selector using the dlt-srvsel command. The dlt-srvsel command uses these parameters.

:gti/gtia/gtii/gtin/gtin24 – The global title indicator. The GTI defines the domain as

- gti and gtia (ANSI) with GTI=2
- gtii (ITU international) with GTI=2 or GTI=4, and
- gtin and gtin24 (ITU national) with GTI=2 or GTI=4.

The gti and gtia parameters are equivalent.

:tt – The global title translation value shown in the rtrv-srvsel output for the service selector that is being removed.

:ssn – The subsystem number value shown in the rtrv-srvsel output for the service selector that is being removed.

:nai or :naiv – The nature of address indicator value shown in the rtrv-srvsel output for the service selector that is being removed. (See Table 134: NAIV/NAI Mapping for NAI/NAIV mapping)

Note: The nature of address indicator parameters (naiv or nai) can be specified by supplying either a mnemonic or an explicit value. At no time may both the mnemonic and the explicit value be specified at the same time for the same parameter. You can specify either the naiv or nai parameter. Table 134: NAIV/NAI Mapping shows the mapping between the naiv and the nai parameters.

:np or :npv – The numbering plan value shown in the rtrv-srvsel output for the service selector that is being removed. (See Table 135: NPV/NP Mapping for NP/NPV mapping)

Note: The numbering plan parameters (npv or np) can be specified by supplying either a mnemonic or an explicit value. At no time may both the mnemonic and the explicit value be specified at the same time for the same parameter. You can specify either the npv or np parameter. Table 135: NPV/NP Mapping shows the mapping between the npv and the np parameters.

Table 134: NAIV/NAI Mapping

<table>
<thead>
<tr>
<th>NAIV</th>
<th>NAI</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>--</td>
<td>Unknown</td>
</tr>
<tr>
<td>1</td>
<td>Sub</td>
<td>Subscriber Number</td>
</tr>
<tr>
<td>2</td>
<td>Rsvd</td>
<td>Reserved for national use</td>
</tr>
<tr>
<td>3</td>
<td>Natl</td>
<td>National significant number</td>
</tr>
<tr>
<td>4</td>
<td>Intl</td>
<td>International number</td>
</tr>
<tr>
<td>5-127</td>
<td>---</td>
<td>Spare</td>
</tr>
</tbody>
</table>
Table 135: NPV/NP Mapping

<table>
<thead>
<tr>
<th>NPV</th>
<th>NP</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>--</td>
<td>Unknown</td>
</tr>
<tr>
<td>1</td>
<td>E164</td>
<td>ISDN/telephony numbering plan</td>
</tr>
<tr>
<td>2</td>
<td>Generic</td>
<td>Generic numbering plan</td>
</tr>
<tr>
<td>3</td>
<td>X121</td>
<td>Data numbering plan</td>
</tr>
<tr>
<td>4</td>
<td>F69</td>
<td>Telex numbering plan</td>
</tr>
<tr>
<td>5</td>
<td>E210</td>
<td>Maritime mobile numbering plan</td>
</tr>
<tr>
<td>6</td>
<td>E212</td>
<td>Land mobile numbering plan</td>
</tr>
<tr>
<td>7</td>
<td>E214</td>
<td>ISDN/mobile numbering plan</td>
</tr>
<tr>
<td>8</td>
<td>Private</td>
<td>Private network or network-specific numbering plan</td>
</tr>
<tr>
<td>9-15</td>
<td>---</td>
<td>Spare</td>
</tr>
</tbody>
</table>

The service selector that is being removed from the database must be shown in the `rtrv-srvsel` output.

1. Display the service selector entries by entering this command `rtrv-srvsel` command.

 `rtrv-srvsel:num=20992:force=yes`

 The following is an example of the possible output.

 righncxa03w 10-07-28 21:15:37 GMT EAGLE5 42.0.0

 GTIA TT NP NAI SSN SNP SNAI SERV GTTRQD
 2 9 -- --- * e212 int1 gflex off
 DFLTACT=fallback GTTSELID=9
 2 10 -- --- 3 e164 int1 gflex off
 DFLTACT=fallback GTTSELID=75
 2 25 -- ---- 50 e164 nat1 smsmr off
 DFLTACT=action2 GTTSELID=3
 2 253 -- --- 4 e214 nat1 gflex off
 DFLTACT=fallback GTTSELID=80
 DFLTACT=fallback GTTSELID=56
 2 18 -- --- * e164 rnsdn inpmr on
 DFLTACT=fallback GTTSELID=80
 2 35 -- ---- 60 e164 int1 smsmr off
 DFLTACT=fallback GTTSELID=none
Note: If the `rtrv-srvsel` command is entered with no other parameters specified, a maximum of 50 entries are displayed. To display more than 50 entries, the `force=yes` parameter must be specified with the `rtrv-srvsel` command and the `num` parameter value must be greater than 50. Since there can be a maximum of 20992 service selectors in the database, to display all the service selectors in the database, the `force=yes` and `num=20992` parameters must be specified with the `rtrv-srvsel` command.

2. From the `rtrv-srvsel` output in **Step 1**, select the service selector that will be removed. Record all the values for this service selector. These values will be used in **Step 4** with the `rtrv-srvsel` command to verify that the service selector has been removed from the database.

3. Remove the service selector from the database by entering the `dlt-srvsel` command with the appropriate parameter combinations shown in **Table 136: Parameter Combinations for Removing Service Selectors**.

Table 136: Parameter Combinations for Removing Service Selectors

<table>
<thead>
<tr>
<th>ANSI Service Selector</th>
<th>ITU Service Selector</th>
</tr>
</thead>
<tbody>
<tr>
<td>:gti/gtia = 2</td>
<td>:gtii/gtin/gtin24 = 2, 4</td>
</tr>
<tr>
<td>tt = the value shown in the <code>rtrv-srvsel</code> output.</td>
<td>tt = the value shown in the <code>rtrv-srvsel</code> output.</td>
</tr>
<tr>
<td>ssn = the value shown in the <code>rtrv-srvsel</code> output.</td>
<td>ssn = the value shown in the <code>rtrv-srvsel</code> output.</td>
</tr>
<tr>
<td>:nai :naiv - the value shown in the <code>rtrv-srvsel</code> output. See the Note</td>
<td>:np :npv - the value shown in the <code>rtrv-srvsel</code> output. See the Note</td>
</tr>
<tr>
<td>Note: The <code>nai</code> and <code>naiv</code>, and the <code>np</code> and <code>npv</code> parameters cannot be specified together in the <code>dlt-srvsel</code> command. Refer to Table 134: NAIV/NAI Mapping for the <code>nai</code> and <code>naiv</code> parameter values. Refer to Table 135: NPV/NP Mapping for the <code>np</code> and <code>npv</code> parameter values. The <code>nai</code>, <code>naiv</code>, <code>np</code>, and <code>npv</code> parameters can be specified only if the <code>gti/gtin/gtin24</code> parameter value is 4.</td>
<td></td>
</tr>
</tbody>
</table>

For this example, enter these commands.

dlt-srvsel:gtia=2:tt=25:ssn=50
4. Verify the changes using the `rtrv-srvsel` command and specifying the values that were recorded in Step 2.

For this example, enter these commands.

```
```

When each of these commands have successfully completed, this output is displayed showing that the service selector is not in the database.

```
righncxa03w 08-09-28 21:15:37 GMT EAGLE5 39.1.0
DLT-SRVSEL: MASP A - COMPLTD
```

5. Backup the new changes using the `chg-db:action=backup:dest=fixed` command. These messages should appear, the active Maintenance and Administration Subsystem Processor (MASP) appears first.

```
BACKUP (FIXED) : MASP A - Backup starts on active MASP.
BACKUP (FIXED) : MASP A - Backup on active MASP to fixed disk complete.
BACKUP (FIXED) : MASP A - Backup starts on standby MASP.
BACKUP (FIXED) : MASP A - Backup on standby MASP to fixed disk complete.
```

Changing the Attributes of a Service Selector Entry for the MO SMS B-Party Routing Feature

This procedure is used to provision an entry in the service selector table for the MO SMS B-Party Routing feature using the `chg-srvsel` command.

The `chg-srvsel` command uses these parameters.

- `gti/gtia/gtii/gtin/gtin24` – The global title indicator. The GTI defines the domain as:
 - `gti` and `gtia` (ANSI) with GTI=2
 - `gtii` (ITU international) with GTI=2 or GTI=4, and
 - `gtin` and `gtin24` (ITU national) with GTI=2 or GTI=4.

- The `gti` and `gtia` parameters are equivalent.

- `nserv` – the DSM service - `smsmr`.

Dlt-srvsel:

```
dlt-srvsel:gtii=2::tt=35:ssn=60

```

When each of these commands have successfully completed, the following message should appear.

```
righncxa03w 08-09-28 21:15:37 GMT EAGLE5 39.1.0
DLT-SRVSEL: MASP A - COMPLTD
```

4. Verify the changes using the `rtrv-srvsel` command and specifying the values that were recorded in Step 2.

For this example, enter these commands.

```
```

When each of these commands have successfully completed, this output is displayed showing that the service selector is not in the database.

```
righncxa03w 08-09-28 21:15:37 GMT EAGLE5 39.1.0
GTIN TT NP NAI SSN SNP SNAI SERV
No SRV Selector found in range
```

5. Backup the new changes using the `chg-db:action=backup:dest=fixed` command. These messages should appear, the active Maintenance and Administration Subsystem Processor (MASP) appears first.

```
BACKUP (FIXED) : MASP A - Backup starts on active MASP.
BACKUP (FIXED) : MASP A - Backup on active MASP to fixed disk complete.
BACKUP (FIXED) : MASP A - Backup starts on standby MASP.
BACKUP (FIXED) : MASP A - Backup on standby MASP to fixed disk complete.
```

Changing the Attributes of a Service Selector Entry for the MO SMS B-Party Routing Feature

This procedure is used to provision an entry in the service selector table for the MO SMS B-Party Routing feature using the `chg-srvsel` command.

The `chg-srvsel` command uses these parameters.

- `gti/gtia/gtii/gtin/gtin24` – The global title indicator. The GTI defines the domain as:
 - `gti` and `gtia` (ANSI) with GTI=2
 - `gtii` (ITU international) with GTI=2 or GTI=4, and
 - `gtin` and `gtin24` (ITU national) with GTI=2 or GTI=4.

- The `gti` and `gtia` parameters are equivalent.

- `nserv` – the DSM service - `smsmr`.
:tt – The global title translation type value shown in the rtrv-srvsel output for the service selector that is being changed.

:ssn – The subsystem number shown in the rtrv-srvsel output for the service selector that is being changed.

:ndfltact - The default action identifier that is associated with the service selector entry. This parameter has one of these values.

- A GTT action identifier shown in the rtrv-gttact output whose ACTION value is either disc, udts, or tcaperr.
- fallback - Fallback to the relay data. The relayed MSU is routed according to the routing data provided by the service.
- falltogett - Fallback to GTT. If the gttselid parameter has a value other than none, and the GTT selector search fails, the GTT selector search is performed again using the gttselid=none parameter.

:on=gttrqd - Global title translation is required after the service execution is complete and the message is relayed by the service.

:off=gttrqd - Global title translation is not required after the service execution is complete and the message is relayed by the service.

:ngttselid - The GTT selector ID user for performing global title translation on messages that are relayed by the service. (0 - 65534, or none)

:nai or :naiv – The nature of address indicator shown in the rtrv-srvsel output for the service selector that is being changed. See Table 137: NAIV/NAI Mapping for NAI/NAIV mapping.

Note: The nature of address indicator parameters (naiv or nai) can be specified by supplying either a mnemonic or an explicit value. At no time may both the mnemonic and the explicit value be specified at the same time for the same parameter. You can specify either the naiv or nai parameter. Table 137: NAIV/NAI Mapping shows the mapping between the naiv and the nai parameters.

:np or :npv– The numbering plan value shown in the rtrv-srvsel output for the service selector that is being changed. See Table 138: NPV/NP Mapping for NP/NPV mapping.

Note: The numbering plan parameters (npv or np) can be specified by supplying either a mnemonic or an explicit value. At no time may both the mnemonic and the explicit value be specified at the same time for the same parameter. You can specify either the npv or np parameter. Table 138: NPV/NP Mapping shows the mapping between the npv and the np parameters.

:nsnai – The service nature of address indicator.

- natl — National significant number
- intl — International number
- rnidn — Routing number prefix and international dialed/directory number
- rnsdn — Routing number prefix and subscriber dialed/directory number
- ccrcrn — Country code, routing number, and national directory number
- sub — Subscriber number

:nsnp – The service numbering plan - e164
Table 137: NAIV/NAI Mapping

<table>
<thead>
<tr>
<th>NAIV</th>
<th>NAI</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>--</td>
<td>Unknown</td>
</tr>
<tr>
<td>1</td>
<td>Sub</td>
<td>Subscriber Number</td>
</tr>
<tr>
<td>2</td>
<td>Rsvd</td>
<td>Reserved for national use</td>
</tr>
<tr>
<td>3</td>
<td>Natl</td>
<td>National significant number</td>
</tr>
<tr>
<td>4</td>
<td>Intl</td>
<td>International number</td>
</tr>
<tr>
<td>5-127</td>
<td>---</td>
<td>Spare</td>
</tr>
</tbody>
</table>

Table 138: NPV/NP Mapping

<table>
<thead>
<tr>
<th>NPV</th>
<th>NP</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>--</td>
<td>Unknown</td>
</tr>
<tr>
<td>1</td>
<td>E164</td>
<td>ISDN/telephony numbering plan</td>
</tr>
<tr>
<td>2</td>
<td>Generic</td>
<td>Generic numbering plan</td>
</tr>
<tr>
<td>3</td>
<td>X121</td>
<td>Data numbering plan</td>
</tr>
<tr>
<td>4</td>
<td>F69</td>
<td>Telex numbering plan</td>
</tr>
<tr>
<td>5</td>
<td>E210</td>
<td>Maritime mobile numbering plan</td>
</tr>
<tr>
<td>6</td>
<td>E212</td>
<td>Land mobile numbering plan</td>
</tr>
<tr>
<td>7</td>
<td>E214</td>
<td>ISDN/mobile numbering plan</td>
</tr>
<tr>
<td>8</td>
<td>Private</td>
<td>Private network or network-specific numbering plan</td>
</tr>
<tr>
<td>9-15</td>
<td>---</td>
<td>Spare</td>
</tr>
</tbody>
</table>

To perform this procedure, the MO SMS B-Party Routing feature must be enabled. Enter the `rtrv-ctrl-feat` command with the MO SMS B-Party Routing part number, 893024601, to verify whether or not the MO SMS B-Party Routing feature is enabled. If the MO SMS B-Party Routing feature
1. Display the service selector entries by entering this command `rtrv-srvsel` command.

   ```
   rtrv-srvsel:num=20992:force=yes
   ```

 The following is an example of the possible output.

   ```
   rlghncxa03w 10-07-28 21:15:37 GMT EAGLE5 42.0.0
   GTRQD
   GTIA    TT   NP       NAI   SSN  SNP   SNAI  SERV    GTISELID
   2       9    --       *    e212 int1 gflex off
   DFLTACT=fallback  GTISELID=9
   2       10   --       3    e164 int1 gflex off
   DFLTACT=fallback  GTISELID=75
   2       25   --       50   e164 nat1 smsmr off
   DFLTACT=action2  GTISELID=3
   2       253  --       4    e214 nat1 gflex off
   DFLTACT=fallback  GTISELID=80
   GTII    TT   NP       NAI   SSN  SNP   SNAI  SERV    GTISELID
   2       0    --       2    e164 int1 gflex off
   DFLTACT=fallback  GTISELID=56
   2       18   --       *    e164 rnsdn inpmr on
   DFLTACT=fallback  GTISELID=80
   2       35   --       60   e164 int1 smsmr off
   DFLTACT=fallback  GTISELID=none
   4       0    e214     sub   *    e214 sub gflex off
   DFLTACT=fallback  GTISELID=98
   GTIN    TT   NP       NAI   SSN  SNP   SNAI  SERV    GTISELID
   2       2    --       3    e164 int1 gflex off
   DFLTACT=fallback  GTISELID=8
   2       9    --       *    ---    ---    inpq    ---
   DFLTACT=---------  GTISELID=-----
   4       2    e164     nat1 *    e164 rnsdn inpmr on
   DFLTACT=fallback  GTISELID=432
   4       9    ---       4    ---    ---    inpq    ---
   DFLTACT=---------  GTISELID=-----
   4       45   e210     int1 75   e164 sub smsmr on
   DFLTACT=fallback  GTISELID=none
   SRV SELECTOR table is (13 of 20992)   1 % full
   ```

 Note: If the `rtrv-srvsel` command is entered with no other parameters specified, a maximum of 50 entries are displayed. To display more than 50 entries, the `force=yes` parameter must be specified with the `rtrv-srvsel` command and the `num` parameter value must be greater than 50. Since there can be a maximum of 20992 service selectors in the database, to display all the service selectors in the database, the `force=yes` and `num=20992` parameters must be specified with the `rtrv-srvsel` command.

 If the value `smsmr` is shown in the `SERV` column of the `rtrv-srvsel` output, continue the procedure with **Step 3**.

 If the value `smsmr` is not shown in the `SERV` column of the `rtrv-srvsel` output, continue the procedure with **Step 2**.

2. Verify the status of the MO SMS B-Party Routing feature by entering the `rtrv-ctrl-feat` command with the MO SMS B-Party Routing feature part number. Enter this command.
rtrv-ctrl-feat:partnum=893024601

The following is an example of the possible output.

rlghncxa03w 08-09-28 21:15:37 GMT EAGLE5 39.1.0
The following features have been permanently enabled:

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Partnum</th>
<th>Status</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>MO SMS B-Party Routing</td>
<td>893024610</td>
<td>on</td>
<td>----</td>
</tr>
</tbody>
</table>

The following features have been temporarily enabled:

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Partnum</th>
<th>Status</th>
<th>Quantity</th>
<th>Trial Period Left</th>
</tr>
</thead>
</table>

Zero entries found.

The following features have expired temporary keys:

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Partnum</th>
</tr>
</thead>
</table>

Zero entries found.

If the MO SMS B-Party Routing feature has not been enabled, perform the procedure *Activating the MO SMS B-Party Routing Feature* procedure to enable this feature.

3. From the rtrv-srvsel output in *Step 1*, select the service selector that will be removed. Record all the values for this service selector. These values and the new values for the snp, snai, and serv parameters will be used in *Step 8* with the rtrv-srvsel command to verify the changes that will be made to the service selector.

Continue the procedure by performing one of these steps.

- Continue the procedure with *Step 7* if:
 - The off=gttrqd parameter will be specified for the service selector entry, or
 - The on=gttrqd parameter will be specified value for the service selector entry and the rtrv-srvsel output contains entries whose GTTRQD value is on, and
 - The ndfltact value will be either fallback or falltogtt.

- Continue the procedure with *Step 6* if:
 - The off=gttrqd parameter will be specified for the service selector entry, or
 - The on=gttrqd parameter will be specified value for the service selector entry and the rtrv-srvsel output contains entries whose GTTRQD value is on, and
 - The ndfltact value will be a GTT action identifier.

- Continue the procedure with *Step 4* if the on=gttrqd parameter will be specified value for the service selector entry and the rtrv-srvsel output contains no entries whose GTTRQD value is on.

4. Enter this command to verify if any DSMs are in the database.

rtrv-stp:gpl=vsccp

This is an example of the possible output.

<table>
<thead>
<tr>
<th>Card</th>
<th>Part Number</th>
<th>Rev Serial Number</th>
<th>Type</th>
<th>DB</th>
<th>APPL</th>
<th>GPL Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>1101</td>
<td>870-1275-01</td>
<td>W 10245689323</td>
<td>DSM</td>
<td>4096M</td>
<td>VSCCP</td>
<td>133-029-000</td>
</tr>
</tbody>
</table>
If no entries are shown in the \texttt{rtrv-stp} output, continue the procedure with \textbf{Step 5}.

If entries are shown in the \texttt{rtrv-stp} output, the EAGLE 5 ISS contains DSM cards. The \texttt{on=gttrqd} parameter cannot be specified if the EAGLE 5 ISS contains DSMs. To specify the \texttt{on=gttrqd} parameter, all the DSMs must be replaced by E5-SM4G cards. Contact the Customer Care Center before replacing any service modules. Refer to the \textit{Customer Care Center} section for the contact information.

After the DSMs have been replaced, continue the procedure by performing one of these steps.

- Continue the procedure with \textbf{Step 7} if the \texttt{ndfltact} value will be either \texttt{fallback} or \texttt{falltogtt}
- Continue the procedure with \textbf{Step 6} if the \texttt{ndfltact} value will be a GTT action identifier.

\textbf{5.} Enter this command to verify if any E5-SM4G cards are in the database.

\texttt{rtrv-stp:GPL=sccphc}

This is an example of the possible output.

\begin{verbatim}
```
Card Part Number Rev Serial Number Type DB APPL GPL Version
----  -----------  --- -------------  ----     --     ----     -----------
1106  870-2860-01  W    10245689404    DSM     4096M  SCCPHC   133-029-000
1206  870-2860-01  W    10245689453    DSM     4096M  SCCPHC   133-029-000
1306  870-2860-01  W    10245689499    DSM     4096M  SCCPHC   133-029-000
```
\end{verbatim}

If entries no are shown in the \texttt{rtrv-stp} output, the EAGLE 5 ISS does not contains any E5-SM4G cards. To specify the \texttt{on=gttrqd} parameter, the EAGLE 5 ISS must contain E5-SM4G cards. Perform the \textit{Adding a Service Module} procedure to add E5-SM4G cards to the database.

If entries are shown in the \texttt{rtrv-stp} output or the \textit{Adding a Service Module} procedure has been performed, continue the procedure by performing one of these steps.

- Continue the procedure with \textbf{Step 7} if the \texttt{ndfltact} value will be either \texttt{fallback} or \texttt{falltogtt}
- Continue the procedure with \textbf{Step 6} if the \texttt{ndfltact} value will be a GTT action identifier.

\textbf{6.} Display the GTT action identifiers by entering the \texttt{rtrv-gttact} command.

This is an example of the possible output.

\begin{verbatim}
```
ACTID      ACTION   ATCAPERR ITCAPERR UDTSEERR UIMREQD
-----------------  ---------  --------  --------  --------  ---------
action2    disc     ---      ---      ---     off

ACTID      ACTION   PCA           RI  SSN  MRNSET  MAPSET
-----------------  ---  ---  ---  ---  ---  ---
action1    dup      002-002-002   gt  ---  DFLT    -----  CDGTMODID = ---------  CGGTMODID = ---------
USEICMSG = off     CGPCOGMSG = dflt     CGPCA = ---

action3    dup      003-003-003   gt  ---  1       -----  CDGTMODID = ---------  CGGTMODID = ---------
USEICMSG = off     CGPCOGMSG = dflt     CGPCA = ---
```
\end{verbatim}
The `ndfltact` parameter value must be a GTT action identifier (the `ACTID` value in the `rtrv-gttact` output) whose `ACTION` value is either `disc`, `udts`, or `tcaperr`.

If the desired GTT action identifier is not shown in the `rtrv-gttact` output, add the desired GTT action identifier by performing the Adding a GTT Action procedure.

If the desired GTT action identifier is shown in the `rtrv-gttact` output or the Adding a GTT Action procedure was performed, continue the procedure with Step 7.

7. Change the service selector by entering the `chg-srvsel` command with the appropriate parameter combinations shown in Table 139: Parameter Combinations for Changing Service Selectors for the MO SMS B-Party Routing Feature.

Table 139: Parameter Combinations for Changing Service Selectors for the MO SMS B-Party Routing Feature

<table>
<thead>
<tr>
<th>ANSI Service Selector</th>
<th>ITU Service Selector</th>
</tr>
</thead>
<tbody>
<tr>
<td>:gti = 2</td>
<td>:gtii = 2</td>
</tr>
<tr>
<td>:gtia = 2</td>
<td>:gtin = 2</td>
</tr>
<tr>
<td>:gtin24 = 2</td>
<td>:gtii = 2</td>
</tr>
<tr>
<td>:tt = the value shown in the <code>rtrv-srvsel</code> output.</td>
<td>:tt = the value shown in the <code>rtrv-srvsel</code> output.</td>
</tr>
<tr>
<td>:ssn = the value shown in the <code>rtrv-srvsel</code> output.</td>
<td>:ssn = the value shown in the <code>rtrv-srvsel</code> output.</td>
</tr>
<tr>
<td>:nai or <code>naiv</code> - the value shown in the <code>rtrv-srvsel</code> output. See Note 1.</td>
<td>:np or <code>npv</code> - the value shown in the <code>rtrv-srvsel</code> output. See Note 1.</td>
</tr>
<tr>
<td>:nserv = smsmr (See Note 3)</td>
<td>:nserv = smsmr (See Note 3)</td>
</tr>
<tr>
<td>:nsnp = e164 (See Note 3)</td>
<td>:nsnp = e164 (See Note 3)</td>
</tr>
<tr>
<td>:nsnai = sub, natl, intl, mridn, rnsdn, ccrndn</td>
<td>:nsnai = sub, natl, intl, mridn, rmdrdn, rnsdn, ccrndn</td>
</tr>
</tbody>
</table>

See Note 1.

Optional Parameters (See Note 2)

- `nserv = smsmr` (See Note 3)
- `nsnp = e164` (See Note 3)
- `nsnai = sub, natl, intl, mridn, rnsdn, ccrndn`
ANSI Service Selector | ITU Service Selector
---|---
:ndfltact = the disc/udts/tcaperr GTT action identifier shown in the rtrv-gttact output, fallback, or falltogtt. | :ndfltact = the disc/udts/tcaperr GTT action identifier shown in the rtrv-gttact output, fallback, or falltogtt.
:off=gttrqd - This parameter cannot be specified if the on=gttrqd parameter is specified. | :off=gttrqd - This parameter cannot be specified if the on=gttrqd parameter is specified.
:off=gttrqd - This parameter cannot be specified if the on=gttrqd parameter is specified. | :off=gttrqd - This parameter cannot be specified if the on=gttrqd parameter is specified.
:ngttselid = 0 - 65534, or none. | :ngttselid = 0 - 65534, or none.

Notes:
1. The nai and naiv, and the np and npv parameters cannot be specified together in the chg-srvsel command. Refer to Table 137: NAI/NAI Mapping for the nai and naiv parameter values. Refer to Table 138: NPV/NP Mapping for the np and npv parameter values. The nai, naiv, np, and npv parameters can be specified only if the gtii/gtin/gtin24 parameter value is 4.
2. A minimum of one optional parameter must be specified for the chg-srvsel command. The value of any optional parameter that is not specified is not changed.
3. If the current SERV value is smsmr, the nserv and nsnp parameters cannot be specified. The SERV and SNP values cannot be changed.

For this example, enter these commands.

```
chg-srvsel:gtii=2:tt=35:ssn=60:nsnai=sub
chg-srvsel:gtin=2:tt=9:ssn=*/nserv=smsmr:nsnp=e164:nsnai=natl
```

When each of these commands have successfully completed, the following message should appear.

```
rlghncxa03w 08-09-28 21:15:37 GMT EAGLE5 39.1.0
CHG-SRVSEL: MASP A - COMPLTD
```

8. Verify the changes using the rtrv-srvsel command and specifying the values that were recorded in Step 3 and the new values for the snp, snai, and serv parameters, as applicable.

For this example, enter these commands.
This is an example of the possible output.

```

rlghncxa03w 10-07-28 21:15:37 GMT EAGLE5 42.0.0

<table>
<thead>
<tr>
<th>GTIA</th>
<th>TT</th>
<th>NP</th>
<th>NAI</th>
<th>SSN</th>
<th>SNP</th>
<th>SNAI</th>
<th>SERV</th>
<th>GTTRQD</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>25</td>
<td>--</td>
<td>----</td>
<td>50</td>
<td>e164</td>
<td>rnndn</td>
<td>smsmr</td>
<td>on</td>
</tr>
</tbody>
</table>

DFLTACT=action2  GTTSELID=3

SRV SELECTOR table is (13 of 20992)  1 % full
```

This is an example of the possible output.

```

rlghncxa03w 10-07-28 21:15:37 GMT EAGLE5 42.0.0

<table>
<thead>
<tr>
<th>GTII</th>
<th>TT</th>
<th>NP</th>
<th>NAI</th>
<th>SSN</th>
<th>SNP</th>
<th>SNAI</th>
<th>SERV</th>
<th>GTTRQD</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>35</td>
<td>--</td>
<td>sub</td>
<td>60</td>
<td>e164</td>
<td>sub</td>
<td>smsmr</td>
<td>off</td>
</tr>
</tbody>
</table>

DFLTACT=fallback  GTTSELID=none

SRV SELECTOR table is (13 of 20992)  1 % full
```

This is an example of the possible output.

```

rlghncxa03w 10-07-28 21:15:37 GMT EAGLE5 42.0.0

<table>
<thead>
<tr>
<th>GTIN</th>
<th>TT</th>
<th>NP</th>
<th>NAI</th>
<th>SSN</th>
<th>SNP</th>
<th>SNAI</th>
<th>SERV</th>
<th>GTTRQD</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>9</td>
<td>*</td>
<td>e214</td>
<td></td>
<td></td>
<td></td>
<td>nati</td>
<td>on</td>
</tr>
</tbody>
</table>

DFLTACT=action2  GTTSELID=70

SRV SELECTOR table is (13 of 20992)  1 % full
```

This is an example of the possible output.

```

rlghncxa03w 10-07-28 21:15:37 GMT EAGLE5 42.0.0

<table>
<thead>
<tr>
<th>GTIN</th>
<th>TT</th>
<th>NP</th>
<th>NAI</th>
<th>SSN</th>
<th>SNP</th>
<th>SNAI</th>
<th>SERV</th>
<th>GTTRQD</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>45</td>
<td>e210</td>
<td>intl</td>
<td>75</td>
<td>e164</td>
<td>nati</td>
<td>smsmr</td>
<td>on</td>
</tr>
</tbody>
</table>

DFLTACT=action2  GTTSELID=55

SRV SELECTOR table is (13 of 20992)  1 % full
```

This is an example of the possible output.
Turning the MO SMS B-Party Routing Feature Off

This procedure is used to turn off the MO SMS B-Party Routing feature using the `chg-ctrl-feat` command.

The `chg-ctrl-feat` command uses the following parameters:

:partnum - The part number of the MO SMS B-Party Routing feature, 893024601.
:status=off – used to turn off the MO SMS B-Party Routing feature.

The status of the MO SMS B-Party Routing feature must be **on** and is shown with the `rtrv-ctrl-feat` command.

CAUTION: If the MO SMS B-Party Routing feature is turned off, provisioning for MO SMS B-Party Routing can be performed with the `chg-gsmsmsopts`, `chg-is41smsopts`, `ent-srvsel`, `dlt-srvsel`, and `chg-srvsel` commands. The EAGLE 5 ISS will not perform global title translation on the MAP B-Party digits of the message.

1. Display the status of the MO SMS B-Party Routing feature by entering the `rtrv-ctrl-feat:partnum=893024601` command.

The following is an example of the possible output.

```
rlgnxcx03w 08-09-28 21:15:37 GMT EAGLE5 39.1.0
The following features have been permanently enabled:

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Partnum</th>
<th>Status</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>MO SMS B-Party Routing</td>
<td>893024601</td>
<td>on</td>
<td>-----</td>
</tr>
</tbody>
</table>

The following features have been temporarily enabled:

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Partnum</th>
<th>Status</th>
<th>Quantity</th>
<th>Trial Period Left</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zero entries found</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The following features have expired temporary keys:

```

Backup the new changes using the `chg-db:action=backup:dest=fixed` command. These messages should appear, the active Maintenance and Administration Subsystem Processor (MASP) appears first.

```
BACKUP (FIXED) : MASP A - Backup starts on active MASP.
BACKUP (FIXED) : MASP A - Backup on active MASP to fixed disk complete.
BACKUP (FIXED) : MASP A - Backup starts on standby MASP.
BACKUP (FIXED) : MASP A - Backup on standby MASP to fixed disk complete.
```
If the status of the MO SMS B-Party Routing feature is off, or if the MO SMS B-Party Routing feature is not enabled, this procedure cannot be performed.

2. Turn off the MO SMS B-Party Routing feature by entering the `chg-ctrl-feat` command with the `status=off` parameter.

For example, enter this command.

```
chg-ctrl-feat:partnum=893024601:status=off
```

When this command has successfully completed, the following message should appear.

```
rlghncxa03w 08-09-28 21:16:37 GMT EAGLE5 39.1.0
CHG-CTRL-FEAT: MASP A - COMPLTD
```

3. Verify that the MO SMS B-Party Routing feature has been turned off by using the `rtrv-ctrl-feat:partnum=893024601` command. The following is an example of the possible output.

```
rlghncxa03w 08-09-28 21:15:37 GMT EAGLE5 39.1.0
The following features have been permanently enabled:
Feature Name           Partnum    Status  Quantity
MO SMS B-Party Routing 893024601  off     ----
The following features have been temporarily enabled:
Feature Name           Partnum    Status  Quantity     Trial Period Left
Zero entries found.
The following features have expired temporary keys:
Feature Name           Partnum
Zero entries found.
```

4. Backup the new changes using the `chg-db:action=backup:dest=fixed` command.

These messages should appear, the active Maintenance and Administration Subsystem Processor (MASP) appears first.

```
BACKUP (FIXED) : MASP A - Backup starts on active MASP.
BACKUP (FIXED) : MASP A - Backup on active MASP to fixed disk complete.
BACKUP (FIXED) : MASP A - Backup starts on standby MASP.
BACKUP (FIXED) : MASP A - Backup on standby MASP to fixed disk complete.
```
Appendix C

MO SMS Prepaid Intercept on B-Party Configuration Procedures

Topics:

- Introduction.....850
- Activating the Prepaid SMS Intercept Phase 1 Feature.....850
- Configuring the B-Party Check Option for the Prepaid SMS Intercept Phase 1 Feature.....854
- Configuring Point Code Entries for the Prepaid SMS Intercept Phase 1 Feature.....856
- Configuring GTA Entries for the Prepaid SMS Intercept Phase 1 Feature.....864
- Turning the Prepaid SMS Intercept Phase 1 Feature Off.....868

Appendix C, MO SMS Prepaid Intercept on B-Party Configuration Procedures, describes the procedures necessary to configure the EAGLE 5 ISS to redirect MO SMS messages from a prepaid B-party subscriber to a specific SMSC.
Introduction

The MO SMS Prepaid Intercept on B-Party feature allows the existing Prepaid Intercept Phase 1 feature to redirect MO SMS messages based on whether the B-Party of the subscriber is prepaid.

Note: The B-party is checked only if the A-party is not a prepaid subscriber.

Provisioning the MO SMS Prepaid Intercept on B-Party Feature

1. Enable the MO SMS Prepaid Intercept on B-Party feature using the `enable-ctrl-feat` command and turn the MO SMS Prepaid Intercept on B-Party on using the `chg-ctrl-feat` command. Perform the procedure *Activating the Prepaid SMS Intercept Phase 1 Feature*.
2. Configure the service selectors for the MO SMS Prepaid Intercept on B-Party feature using the `ent-srvsel` command. Perform the procedure *Adding a Service Selector Entry for the MO SMS B-Party Routing Feature*.
3. Configure entries in the PPSOPTS table for a prepaid portability type using the `chg-ppsopts` command. Perform these procedures.
 - To configure the point code entries in the PPSOPTS table, perform the procedure *Configuring Point Code Entries for the Prepaid SMS Intercept Phase 1 Feature*.
 - To configure the GTA entries in the PPSOPTS table, perform the procedure *Configuring GTA Entries for the Prepaid SMS Intercept Phase 1 Feature*.
4. Configure the B-Party check option. Perform the procedure *Configuring the B-Party Check Option for the Prepaid SMS Intercept Phase 1 Feature*.

Activating the Prepaid SMS Intercept Phase 1 Feature

This procedure is used to enable and turn on the Prepaid SMS Intercept Phase 1 feature.

The feature access key is based on the feature’s part number and the serial number of the EAGLE 5 ISS, making the feature access key site-specific.

The `enable-ctrl-feat` command enables the Prepaid SMS Intercept Phase 1 feature by inputting the feature’s access key and the feature’s part number with these parameters:

- `:fak` – The feature access key provided by Tekelec. The feature access key contains 13 alphanumeric characters and is not case sensitive
- `:partnum` – The Tekelec-issued part number of the Prepaid SMS Intercept Phase 1 feature, 893006701.

If the feature is being enabled with a temporary feature access key, the feature must not be in the `in-use`, `expired`, or `unavailable` state.

The `enable-ctrl-feat` command requires that the database contain a valid serial number for the EAGLE 5 ISS, and that this serial number is locked. This can be verified with the `rtrv-serial-num` command. The EAGLE 5 ISS is shipped with a serial number in the database, but the serial number is not locked. The serial number can be changed, if necessary, and locked once the EAGLE 5 ISS is on-site, with the `ent-serial-num` command. The `ent-serial-num` command uses these parameters.

- `:serial` – The serial number assigned to the EAGLE 5 ISS. The serial number is not case sensitive.
Specifies whether or not the serial number is locked. This parameter has only one value, `yes`, which locks the serial number. Once the serial number is locked, it cannot be changed.

Note: To enter and lock the EAGLE 5 ISS’s serial number, the `ent-serial-num` command must be entered twice, once to add the correct serial number to the database with the `serial` parameter, then again with the `serial` and the `lock=yes` parameters to lock the serial number. You should verify that the serial number in the database is correct before locking the serial number. The serial number can be found on a label affixed to the control shelf (shelf 1100).

Once the feature has been enabled, the feature must be activated with the `chg-ctrl-feat` command. The `chg-ctrl-feat` command uses these parameters:

- **:partnum** – The Tekelec-issued part number of the Prepaid SMS Intercept Phase 1 feature, 893006701.
- **:status=on** – used to turn the Prepaid SMS Intercept Phase 1 feature on.

The status of the features in the EAGLE 5 ISS is shown with the `rtrv-ctrl-feat` command.

The Prepaid SMS Intercept Phase 1 requires that DSMs or E5-SM4G cards are installed and provisioned in the EAGLE 5 ISS. The `rtrv-stp` command can be used to verify if DSMs or E5-SM4G cards are provisioned in the database. Specifying the `type=dsm` parameter with the `rtrv-stp` command displays the DSMs and E5-SM4G cards.

1. Display the status of the Prepaid SMS Intercept Phase 1 feature by entering the `rtrv-ctrl-feat` command.

The following is an example of the possible output.

```
righncxa03w 08-09-28 21:15:37 GMT EAGLE5 39.1.0
The following features have been permanently enabled:

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Partnum</th>
<th>Status</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Command Class Management</td>
<td>893005801</td>
<td>on</td>
<td>----</td>
</tr>
<tr>
<td>Intermed GTT Load Sharing</td>
<td>893006701</td>
<td>off</td>
<td>----</td>
</tr>
<tr>
<td>XGTT Table Expansion</td>
<td>893006101</td>
<td>off</td>
<td>----</td>
</tr>
<tr>
<td>XMAP Table Expansion</td>
<td>893007710</td>
<td>on</td>
<td>3000</td>
</tr>
<tr>
<td>Large System # Links</td>
<td>893005910</td>
<td>on</td>
<td>2000</td>
</tr>
<tr>
<td>Routesets</td>
<td>893006401</td>
<td>on</td>
<td>6000</td>
</tr>
<tr>
<td>HC-MIM SLK Capacity</td>
<td>893012707</td>
<td>on</td>
<td>64</td>
</tr>
</tbody>
</table>

The following features have been temporarily enabled:

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Partnum</th>
<th>Status</th>
<th>Quantity</th>
<th>Trial Period Left</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zero entries found.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The following features have expired temporary keys:

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Partnum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zero entries found.</td>
<td></td>
</tr>
</tbody>
</table>
```

If the `rtrv-ctrl-feat` output shows that the Prepaid SMS Intercept Phase 1 feature is permanently enabled, and its status is `on`, no further action is necessary.

If the Prepaid SMS Intercept Phase 1 feature is permanently enabled, and its status is `off`, continue the procedure with **Step 10**.

If the Prepaid SMS Intercept Phase 1 feature is temporarily enabled, and you wish to permanently enable this feature, or the temporary feature access key for that feature has expired, continue the procedure with **Step 9**.
If the Prepaid SMS Intercept Phase 1 feature is to remain temporarily enabled, and its status is off, continue the procedure with **Step 10**. If the feature’s status is on, no further action is necessary.

If the Prepaid SMS Intercept Phase 1 feature is to remain temporarily enabled, and its status is **on**, no further action is necessary.

If the Prepaid SMS Intercept Phase 1 feature is not enabled, continue the procedure with **Step 2**.

2. If the `rtrv-ctrl-feat` output in **Step 1** shows any controlled features, continue the procedure with **Step 9**. If the `rtrv-ctrl-feat` output shows only the HC-MIM SLK Capacity feature with a quantity of 64, **Step 3** through **Step 6** must be performed.

3. Display the serial number in the database with the `rtrv-serial-num` command. This is an example of the possible output.

```
rlghncxa03w 08-09-28 21:15:37 GMT EAGLE5 39.1.0
System serial number = nt00001231
System serial number is not locked.
```

Note: If the serial number is correct and locked, continue the procedure with **Step 7**. If the serial number is correct but not locked, continue the procedure with **Step 6**. If the serial number is not correct, but is locked, this feature cannot be enabled and the remainder of this procedure cannot be performed. Contact the Customer Care Center to get an incorrect and locked serial number changed. Refer to **Customer Care Center** for the contact information. The serial number can be found on a label affixed to the control shelf (shelf 1100).

4. Enter the correct serial number into the database using the `ent-serial-num` command with the `serial` parameter.

For this example, enter this command.

```
ent-serial-num:serial=<EAGLE 5 ISS’s correct serial number>
```

When this command has successfully completed, the following message should appear.

```
rlghncxa03w 08-09-28 21:15:37 GMT EAGLE5 39.1.0
ENT-SERIAL-NUM: MASP A - COMPLTD
```

5. Verify that the serial number entered into **Step 4** was entered correctly using the `rtrv-serial-num` command. This is an example of the possible output.

```
rlghncxa03w 08-09-28 21:15:37 GMT EAGLE5 39.1.0
System serial number = nt00001231
System serial number is not locked.
```

If the serial number was not entered correctly, repeat **Step 4** and **Step 5** and re-enter the correct serial number.

6. Lock the serial number in the database by entering the `ent-serial-num` command with the serial number shown in **Step 3**, if the serial number shown in **Step 3** is correct, or with the serial number shown in **Step 5**, if the serial number was changed in **Step 4**, and with the `lock=yes` parameter.
For this example, enter this command.

```
ent-serial-num:serial=<EAGLE 5 ISS’s serial number>:lock=yes
```

When this command has successfully completed, the following message should appear.

```
rlghncxa03w 08-09-28 21:15:37 GMT EAGLE5 39.1.0
ENT-SERIAL-NUM: MASP A - COMPLTD
```

7. Verify that the GTT feature is on, by entering the `rtrv-feat` command. If the GTT feature is on, the GTT field should be set to `on`.

Note: The `rtrv-feat` command output contains other fields that are not used by this procedure. If you wish to see all the fields displayed by the `rtrv-feat` command, see the `rtrv-feat` command description in the *Commands Manual*.

If the GTT feature is not on, perform *Adding a Service Module* to turn the GTT feature on and add DSMs or E5-SM4G cards to the EAGLE 5 ISS. After the GTT feature is turned on and the DSMs or E5-SM4G cards have been added, continue the procedure with *Step 9*.

If the GTT feature is on, continue the procedure with *Step 8*.

8. Display any DSMs or E5-SM4G cards by entering this command.

```
rtrv-stp:type=dsm
```

This is an example of the possible output if DSMs or E5-SM4G cards are provisioned in the database.

```
rlghncxa03w 08-09-28 21:15:37 GMT EAGLE5 39.1.0
Card  Part Number  Rev Serial Number  Type     DB     APPL     GPL Version
-----  -----------  --- -------------  ----     --     ----     -----------
1105   870-1275-03 W    10245689323   DSM      40696M VSCCP     027-010-000
1214   870-1275-03 W    10245689333   DSM      40696M VSCCP     027-010-000
2107   870-1275-03 W    10245689343   DSM      40696M VSCCP     027-010-000
Command Completed.
```

This is an example of the possible output if there are no DSMs or E5-SM4G cards provisioned in the database.

```
rlghncxa03w 08-09-28 21:15:37 GMT EAGLE5 39.1.0
Card  Part Number  Rev Serial Number  Type     DB     APPL     GPL Version
-----  -----------  --- -------------  ----     --     ----     -----------
Command Completed.
```

If no DSMs or E5-SM4G cards are shown in this step, perform *Adding a Service Module* to add the required cards. After the cards have been added, continue the procedure with *Step 9*.

If cards are shown in this step, continue the procedure with *Step 9*.

9. Enable the Prepaid SMS Intercept Phase 1 feature with either a permanent key or temporary key by entering the `enable-ctrl-feat` command. For this example, enter this command.

```
enable-ctrl-feat:partnum=893006701:fak=<Prepaid SMS Intercept Phase 1 feature access key>
```

Note: The values for the feature access key (the `fak` parameter) are provided by Tekelec. If you do not have the feature access key for the Prepaid SMS Intercept Phase 1 feature, contact your Tekelec Sales Representative or Account Representative.
When the `enable-crtl-feat` command has successfully completed, this message should appear.

```
rlghncxa03w 08-09-28 21:15:37 GMT EAGLE5 39.1.0
ENABLE-CTRL-FEAT: MASP B - COMPLTD
```

10. The Prepaid SMS Intercept Phase 1 feature must be turned on using the `chg-crtl-feat` command, specifying the Prepaid SMS Intercept Phase 1 feature part number and the `status=on` parameter. For this example, enter this command.

```
chg-crtl-feat:partnum=893006701:status=on
```

When this command has successfully completed, the following message should appear.

```
rlghncxa03w 08-09-28 21:15:37 GMT EAGLE5 39.1.0
CHG-CTRL-FEAT: MASP B - COMPLTD
```

11. Verify the changes by entering the `rtrv-crtl-feat` command with the Prepaid SMS Intercept Phase 1 part number. Enter this command.

```
rtrv-crtl-feat:partnum=893006701
```

The following is an example of the possible output.

```
rlghncxa03w 08-09-28 21:15:37 GMT EAGLE5 39.1.0
The following features have been permanently enabled:
  Feature Name          Partnum    Status  Quantity
  Prepaid SMS Intercept Ph1 893006701  on      ----

The following features have been temporarily enabled:
  Feature Name          Partnum    Status  Quantity  Trial Period Left
  Zero entries found.

The following features have expired temporary keys:
  Feature Name          Partnum
  Zero entries found.
```

12. Backup the new changes using the `chg-db:action=backup:dest=fixed` command.

These messages should appear, the active Maintenance and Administration Subsystem Processor (MASP) appears first.

```
BACKUP (FIXED) : MASP A - Backup starts on active MASP.
BACKUP (FIXED) : MASP A - Backup on active MASP to fixed disk complete.
BACKUP (FIXED) : MASP A - Backup starts on standby MASP.
BACKUP (FIXED) : MASP A - Backup on standby MASP to fixed disk complete.
```

Configuring the B-Party Check Option for the Prepaid SMS Intercept Phase 1 Feature

This procedure is used to configure the B-Party check option shown in the `rtrv-ppsopts` command output using the `bpartychk` parameter of the `chg-ppsopts` command. The `bpartychk` parameter has two values:
• off — Prepaid Check on B-Party is not performed
• on — Prepaid Check on B-Party is performed.

Point code and global title address (GTA) entries can also be configured with the chg-ppsopts command. Perform the procedure Configuring Point Code Entries for the Prepaid SMS Intercept Phase 1 Feature to configure the point code entries. Perform the procedure Configuring GTA Entries for the Prepaid SMS Intercept Phase 1 Feature to configure the GTA entries.

The Prepaid SMS Intercept Phase 1 feature must be enabled and turned on before this procedure can be performed. The status of the Prepaid SMS Intercept Phase 1 feature can be verified by entering the rtrv-ctrl-feat command. Perform the procedure Activating the Prepaid SMS Intercept Phase 1 Feature to enable and turn on the Prepaid SMS Intercept Phase 1 feature, if necessary.

1. Display the status of the Prepaid SMS Intercept Phase 1 feature by entering this command.

 rtrv-ctrl-feat:partnum=893006701

 The following is an example of the possible output.

 rlghncxa03w 08-09-28 21:15:37 GMT EAGLE5 39.1.0
 The following features have been permanently enabled:

 Feature Name Partnum Status Quantity
 Prepaid SMS Intercept Ph1 893006701 on ----

 The following features have been temporarily enabled:

 Feature Name Partnum Status Quantity Trial Period Left
 Zer0 entries found.

 The following features have expired temporary keys:

 Feature Name Partnum
 Zer0 entries found.

 If the Prepaid SMS Intercept Phase 1 feature is enabled and turned on, continue the procedure with Step 2.

 If the Prepaid SMS Intercept Phase 1 feature is not enabled or not turned on, perform the procedure Activating the Prepaid SMS Intercept Phase 1 Feature to enable and turn on the Prepaid SMS Intercept Phase 1 feature. After the Prepaid SMS Intercept Phase 1 feature has been enabled and turned on, continue the procedure with Step 2.

2. Display the current BPARTYCHK value in the rtrv-ppsopts output by entering this command.

 rtrv-ppsopts:ppt=1

 This is an example of the possible output.

 rlghncxa03w 09-03-07 00:34:31 GMT EAGLE5 40.1.0
 Prepaid SMS Options
 """
 BPARTYCHK = ON
 PPT PCA/PCI/PCN SSN RI
 --- --------------------- ----
 1 PCA: 001-001-002 NONE SSN
 """

3. Configure the BPARTYCHK value by entering one of these commands.

 If the current BPARTYCHK value is on, enter this command.
chg-ppsopts:bpartychk=off

If the current BPARTYCHK value is off, enter this command.

chg-ppsopts:bpartychk=on

When the chg-ppsopts command has successfully completed, this message should appear.

rlghncxa03w 08-09-07 11:44:13 GMT EAGLE5 39.1.0
CHG-PPSOPTS: MASP A - COMPLTD

4. Verify the changes by entering this command.

rtrv-ppsopts:ppt=1

This is an example of the possible output.

rlghncxa03w 09-03-07 00:34:31 GMT EAGLE5 40.1.0
Prepaid SMS Options

BPARTYCHK = OFF
PPT PCA/PCI/PCN SSN RI
--- ----------- ---- ---
1 PCA: 001-001-002 NONE SSN

5. Backup the new changes using the chg-db:action=backup:dest=fixed command. These messages should appear, the active Maintenance and Administration Subsystem Processor (MASP) appears first.

BACKUP (FIXED) : MASP A - Backup starts on active MASP.
BACKUP (FIXED) : MASP A - Backup on active MASP to fixed disk complete.
BACKUP (FIXED) : MASP A - Backup starts on standby MASP.
BACKUP (FIXED) : MASP A - Backup on standby MASP to fixed disk complete.

If you do not wish to configure point code and global title address (GTA) entries in the PPSOPTS table, this procedure is finished.

If you wish to configure point code and global title address (GTA) entries in the PPSOPTS table, perform these procedures as applicable.

• To configure point code entries, perform the procedure Configuring Point Code Entries for the Prepaid SMS Intercept Phase 1 Feature.
• To configure GTA entries, perform the procedure Configuring GTA Entries for the Prepaid SMS Intercept Phase 1 Feature.

Configuring Point Code Entries for the Prepaid SMS Intercept Phase 1 Feature

This procedure is used to add point code entries to the PPSOPTS table, or remove point code entries from the PPSOPTS table using these parameters of the chg-ppsopts command.

:ppt – The prepaid portability type number of the entry that is being changed, from 1 to 32.
pc/pca/pci/pcn – The point code for the IN platform, or the value none. The value none removes the point code from the entry that is being changed.

- pc/pca - An ANSI point code
- pci - An ITU-I point code
- pcn - A 14-bit ITU-N point code

Note: Refer to Chapter 2, Configuring Destination Tables in the *Database Administration Manual - SS7* for a definition of the point code types that are used on the EAGLE 5 ISS and for a definition of the different formats that can be used for ITU national point codes.

:ri – The routing indicator for the IN platform

- gt - Routes on the GT value. If the Intermediate Global Title Loadsharing feature is enabled and turned on, the mated relay node (MRN) table is used to determine how the message is routed. If the Intermediate Global Title Loadsharing feature is not enabled or not turned on, the message is routed to the point code in the entry that is being changed.
- ssn - Routes on the SSN value. The mated application (MAP) table determines how the message is routed.

:setid – The MRN set or MAP set ID that contains the point code in the entry that us being changed. This parameter can be specified only if the Flexible GTT Load Sharing feature is enabled. This parameter must be specified if the Flexible GTT Load Sharing feature is enabled. If the Flexible GTT Load Sharing feature is enabled, the point code must be in the MRN set or MAP set specified by the setid parameter. If the ssn parameter is specified with the ri=ssn parameter, the point code and SSN value must be in the MAP set specified by the setid parameter.

:ssn – The subsystem number that is assigned to the point code entry. The values for this parameter are 2 - 255, or none. The value none removes the existing subsystem number from the point code entry. The default value for this parameter is none.

Table 140: CHG-PPSOPTS Parameter Combinations shows the parameter combinations that can be used in this procedure.

<table>
<thead>
<tr>
<th>Adding a Point Code Entry</th>
<th>Removing a Point Code or SSN Entry</th>
</tr>
</thead>
<tbody>
<tr>
<td>:ppt = the prepaid portability type that is being changed</td>
<td>:ppt = the prepaid portability type that is being changed</td>
</tr>
<tr>
<td>:pc/pca/pci/pcn = the point code value that is being added</td>
<td>:pc/pca/pci/pcn = none</td>
</tr>
<tr>
<td>:ri = gt, ssn</td>
<td>:ssn = none</td>
</tr>
<tr>
<td>:setid = the MRN or MAP set ID containing the point code</td>
<td></td>
</tr>
<tr>
<td>:ssn = 2 - 255</td>
<td></td>
</tr>
</tbody>
</table>

Global title address (GTA) entries and the B-Party check option can also be configured with the chg-ppsopts command. Perform Configuring the B-Party Check Option for the Prepaid SMS Intercept.
Phase 1 Feature to configure the B-Party check option. Perform Configuring GTA Entries for the Prepaid SMS Intercept Phase 1 Feature to configure the GTA entries.

The Prepaid SMS Intercept Phase 1 feature must be enabled and turned on before this procedure can be performed. The status of the Prepaid SMS Intercept Phase 1 feature can be verified by entering the `rtrv-ctrl-feat` command. Perform Activating the Prepaid SMS Intercept Phase 1 Feature to enable and turn on the Prepaid SMS Intercept Phase 1 feature, if necessary.

The point code that will be specified in this procedure must be the DPC of a route. This can be verified by entering the `rtrv-rte` command with the `dpca/dpci/dpcn` parameter. The `dpca/dpci/dpcn` parameter value must be the point code that will be specified in this procedure.

Canceling the RTRV-MRN and RTRV-MAP Commands

Because the `rtrv-mrn` and `rtrv-map` commands used in this procedure can output information for a long period of time, the `rtrv-mrn` and `rtrv-map` commands can be canceled and the output to the terminal stopped. There are three ways that the `rtrv-mrn` and `rtrv-map` commands can be canceled.

- Press the `F9` function key on the keyboard at the terminal where the `rtrv-mrn` and `rtrv-map` commands were entered.
- Enter the `canc-cmd` without the `trm` parameter at the terminal where the `rtrv-mrn` and `rtrv-map` commands were entered.
- Enter the `canc-cmd:trm=<xx>`, where `<xx>` is the terminal where the `rtrv-mrn` and `rtrv-map` commands were entered, from another terminal other that the terminal where the `rtrv-mrn` and `rtrv-map` commands were entered. To enter the `canc-cmd:trm=<xx> command, the terminal must allow Security Administration commands to be entered from it and the user must be allowed to enter Security Administration commands. The terminal’s permissions can be verified with the `rtrv-secu-trm` command. The user’s permissions can be verified with the `rtrv-user` or `rtrv-secu-user` commands.

For more information about the `canc-cmd` command, refer to the Commands Manual.

1. Display the status of the Prepaid SMS Intercept Phase 1 feature by entering this command.

 `rtrv-ctrl-feat:partnum=893006701`

 The following is an example of the possible output.

 | rlghncxa03w 08-09-28 21:15:37 GMT EAGLE5 39.1.0 | The following features have been permanently enabled:
 | Feature Name | Partnum | Status | Quantity |
 | Prepaid SMS Intercept Ph1 | 893006701 | on | ---- |

 The following features have been temporarily enabled:

 | Feature Name | Partnum | Status | Quantity | Trial Period Left |
 | Zero entries found. | | | | |

 The following features have expired temporary keys:

 | Feature Name | Partnum |
 | Zero entries found. | |

 If the Prepaid SMS Intercept Phase 1 feature is enabled and turned on, continue the procedure with **Step 2**.
If the Prepaid SMS Intercept Phase 1 feature is not enabled or not turned on, perform **Activating the Prepaid SMS Intercept Phase 1 Feature** to enable and turn on the Prepaid SMS Intercept Phase 1 feature. After the Prepaid SMS Intercept Phase 1 feature has been enabled and turned on, continue the procedure with **Step 2**.

2. Display the PPSOPTS table by entering the `rtrv-ppsopts` command. This is an example of the possible output.

```
rlgncxa03w 09-03-07 00:34:31 GMT EAGLE5 40.1.0
Prepaid SMS Options
-------------
BPARTYCHK = ON
PPT PCA/PCI/PCN SSN RI Set ID
--- ------------------ ---- --- -----
1     PCA: 001-001-002 NONE SSN 1
2     PCA: 001-002-003 NONE GT 1
3     -------------------- NONE GT DFLT
4     -------------------- NONE GT DFLT
5     -------------------- NONE GT DFLT
6     -------------------- NONE GT DFLT
7     -------------------- NONE GT DFLT
8     -------------------- NONE GT DFLT
9     -------------------- NONE GT DFLT
10    -------------------- NONE GT DFLT
11    -------------------- NONE GT DFLT
12    -------------------- NONE GT DFLT
13    -------------------- NONE GT DFLT
14    -------------------- NONE GT DFLT
15    -------------------- NONE GT DFLT
16    -------------------- NONE GT DFLT
17    -------------------- NONE GT DFLT
18    -------------------- NONE GT DFLT
19    -------------------- NONE GT DFLT
20    -------------------- NONE GT DFLT
21    -------------------- NONE GT DFLT
22    -------------------- NONE GT DFLT
23    -------------------- NONE GT DFLT
24    -------------------- NONE GT DFLT
25    -------------------- NONE GT DFLT
26    -------------------- NONE GT DFLT
27    -------------------- NONE GT DFLT
28    -------------------- NONE GT DFLT
29    -------------------- NONE GT DFLT
30    -------------------- NONE GT DFLT
31    -------------------- NONE GT DFLT
32    -------------------- NONE GT DFLT

GTA
---
910460
910461
NONE
N
If the Flexible GTT Load Sharing feature is not enabled, the SETID column is not shown in the `rtrv-ppsopts` output.

If you wish to remove a point code or SSN entry, continue the procedure with Step 7.

If you wish to add a new point code entry, continue the procedure with Step 3.

3. Verify that the new point code is the DPC of a route by entering the `rtrv-rte` command with the appropriate `dpc` parameter, according to the point code format, and the new point code. For this example, enter this command.

```
rtrv-rte:dpca=001-001-004
```

This is an example of the possible output.

```
rlghncxa03w 08-09-07 00:34:31 GMT EAGLE5 39.1.0

<table>
<thead>
<tr>
<th>DPCA</th>
<th>ALIASI</th>
<th>ALIASN/N24</th>
<th>LSN</th>
<th>RC</th>
<th>APCA</th>
</tr>
</thead>
<tbody>
<tr>
<td>001-001-004</td>
<td>-------</td>
<td>------------</td>
<td>-----</td>
<td>----</td>
<td>001-001-004</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>lsn3</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

RTX:No CLLI:--------
```

If the new point code value is the DPC of a route, continue the procedure with Step 4.

If the new point code value is not the DPC of a route, perform one of the Adding a Route procedures in the Database Administration Manual - SS7 to add the required route with the new point code value as the DPC of the route. A proxy point code cannot be assigned to the DPC of the route. After the new route has been added, continue the procedure by performing one of these actions.

- If the routing indicator of the entry that is being changed will be `gt`, and the SETID column is not shown in the `rtrv-ppsopts` output, continue the procedure with Step 7.
- If the routing indicator of the entry that is being changed will be `gt`, and the SETID column is shown in the `rtrv-ppsopts` output, continue the procedure with Step 5.
- If the routing indicator of the entry that is being changed will be `ssn`, continue the procedure with Step 6.

If the new point code value is the DPC of a route, or if a new route was added, continue the procedure by performing one of these actions.

4. Display the attributes of the DPC of the route shown in Step 3 by using the `rtrv-dstn` command and specifying the DPC of the route. For this example, enter this command.

```
rtrv-dstn:dpca=001-001-004
```
This is an example of the possible output.

A proxy point code (a point code value is shown in the PPC column) cannot be assigned to the point code that will be added in this procedure. If a proxy point code is shown in this step, choose another point code and repeat Step 3 and Step 4.

If a proxy point code is not assigned to the point code that will be added in this procedure, continue the procedure by performing one of these actions.

- If the routing indicator of the entry that is being changed will be gt, and the SETID column not is shown in the rtrv-ppsopts output, continue the procedure with Step 7.
- If the routing indicator of the entry that is being changed will be gt, and the SETID column is shown in the rtrv-ppsopts output, continue the procedure with Step 5.
- If the routing indicator of the entry that is being changed will be ssn, continue the procedure with Step 6.

5. Display the MRN entries in the database by entering the rtrv-mrn command.

This is an example of the possible output.

If the new point code value is not shown in the rtrv-mrn output, perform Provisioning MRN Entries to add the new point code to an MRN set. After the MRN set has been added, continue the procedure with Step 7.

If the new point code value is shown in the rtrv-mrn output, continue the procedure with Step 7.

6. Display the MAP entries in the database by entering the rtrv-map command with the appropriate pc parameter, according to the point code format, and the new point code. If the ssn parameter will be specified with the chg-ppsopts command, specify the ssn parameter and value with the rtrv-map command, along with the appropriate pc parameter. For this example, enter this command.

rtrv-map:pca=001-001-004:ssn=25

This is an example of the possible output.
If the Flexible GTT Load Sharing feature is not enabled, the MAPSET ID row is not shown in the rtrv-map output, and the MAP table capacity is either 1024, 2000, or 3000.

If the new point code value is not shown in the rtrv-map output, perform the one of the Provisioning a Mated Application procedures in Global Title Translation (GTT) Overview to add the new point code to a MAP group or a MAP set. After the point code has been added to the MAP group or MAP set, continue the procedure with Step 7. If the ssn parameter will be specified with the chg-ppsopts command, the new SSN value must be specified with the new point code value.

If the new point code value and SSN value if required, is shown in the rtrv-map output, continue the procedure with Step 7.

7. Configure the point code entry by entering the chg-ppsopts command. Perform one of these substeps.

a) If a point code or SSN entry is being removed from the PPSOPTS table, enter the chg-ppsopts command with the prepaid portability type and the appropriate pc parameter, according to the point code format, with the value none. If the SSN entry is being removed, the ssn=none parameter must be specified with the chg-ppsopts command. For this example, enter one of these commands.

   chg-ppsopts:ppt=1:pca=none
   chg-ppsopts:ppt=1:ssn=none
   chg-ppsopts:ppt=1:pca=none:ssn=none

b) If a point code entry is being added to the PPSOPTS table, and the routing indicator value will be gt, enter the chg-ppsopts command with these parameters.

   • The prepaid portability type - ppt
   • The appropriate pc parameter and value, according to the point code format
   • The ri=gt parameter
   • If the SETID column is shown in the rtrv-ppsopts output in Step 2, the setid parameter must be specified with the chg-ppsopts command. The setid parameter value must be the MRN set ID that contains the point code value.
   • The ssn parameter can be specified for this entry.

   For this example, enter this command.


c) If a point code entry is being added to the PPSOPTS table, and the routing indicator value will be ssn, enter the chg-ppsopts command with these parameters.

   • The prepaid portability type - ppt
   • The appropriate pc parameter and value, according to the point code format
   • The ri=ssn parameter
   • If the SETID column is shown in the rtrv-ppsopts output in Step 2, the setid parameter must be specified with the chg-ppsopts command. The setid parameter value must be the MAP set ID that contains the point code value.
   • The ssn parameter can be specified for this entry. If the ssn parameter is specified for this entry, the SSN value must be shown with the point code value in the rtrv-map output. If
the `setid` parameter is specified, the point code and SSN values must be in the MAP set specified by the `setid` parameter.

For this example, enter this command.

```
```

When the `chg-ppsopts` command has successfully completed, this message should appear.

```
rlghncxa03w 08-09-07 11:44:13 GMT EAGLE5 39.1.0
CHG-PPSOPTS: MASP A - COMPLTD
```

8. Verify the changes using the `rtrv-ppsopts` command with the `ppt` parameter value specified in Step 7.

If a point code entry was removed in Step 7, for this example, enter this command.

```
rtrv-ppsopts:ppt=1
```

This is an example of the possible output.

```
rlghncxa03w 09-03-07 00:34:31 GMT EAGLE5 40.1.0
Prepaid SMS Options

BPARTYCHK = ON
PPT PCA/PCI/PCN SSN RI Set ID
--- ------------------- ---- --- -------
1 NONE GT DFLT
```

If a point code entry was added in Step 7, for this example, enter this command.

```
rtrv-ppsopts:ppt=3
```

This is an example of the possible output if the `RI` value is `GT`.

```
rlghncxa03w 09-03-07 00:34:31 GMT EAGLE5 40.1.0
Prepaid SMS Options

BPARTYCHK = ON
PPT PCA/PCI/PCN SSN RI Set ID
--- ------------------- ---- --- -------
3 PCA: 001-001-004 NONE GT 2
```

This is an example of the possible output if the `RI` value is `SSN`.

```
rlghncxa03w 09-03-07 00:34:31 GMT EAGLE5 40.1.0
Prepaid SMS Options

BPARTYCHK = ON
PPT PCA/PCI/PCN SSN RI Set ID
--- ------------------- ---- --- -------
3 PCA: 001-001-004 25 SSN 2
```

9. Backup the new changes using the `chg-db:action=backup:dest=fixed` command. These messages should appear, the active Maintenance and Administration Subsystem Processor (MASP) appears first.

```
BACKUP (FIXED) : MASP A - Backup starts on active MASP.
BACKUP (FIXED) : MASP A - Backup on active MASP to fixed disk complete.
```
If you do not wish to configure global title address (GTA) entries and the B-Party check option in the PPSOPTS table, this procedure is finished.

If you wish to configure global title address (GTA) entries and the B-Party check option in the PPSOPTS table, perform these procedures as applicable.

- To configure GTA entries, perform Configuring GTA Entries for the Prepaid SMS Intercept Phase 1 Feature.
- To configure the B-Party check option, perform Configuring the B-Party Check Option for the Prepaid SMS Intercept Phase 1 Feature.

### Configuring GTA Entries for the Prepaid SMS Intercept Phase 1 Feature

This procedure is used to add global title address (GTA) entries to the PPSOPTS table, remove GTA entries from the PPSOPTS table, or replace existing GTA entries with new GTA entries using these parameters of the `chg-ppsopts` command.

- **:gta** – The global title address that is being added, consisting of 1 to 15 digits, or the global title address that is being removed, shown in the `rtrv-ppsopts` output.

- **:gta1** – The global title address that is being added, consisting of 1 to 15 digits.

- **:gta2** – The global title address that is being added, consisting of 1 to 15 digits.

- **:gta3** – The global title address that is being added, consisting of 1 to 15 digits.

- **:ngta** – The global title address value that replaces an existing GTA entry. If a new GTA being added, the `ngta` parameter value must contain 1 to 15 digit. If an existing GTA entry is being removed, the `ngta` parameter value must be `none`.

The GTA entry is the address for an IN platform and determines whether or not an incoming message is screening by the Prepaid SMS Intercept Phase 1 feature.

The PPSOPTS table can contain a maximum of 32 GTA entries. To remove or replace a GTA entry, a GTA entry must be shown in the `rtrv-ppsopts` output. To add GTA entries, blank GTA entries must be shown in the `rtrv-ppsopts` output.

A maximum of four GTA entries can be added with the `chg-ppsopts` command. To add more than four GTA entries to the PPSOPTS table, enter the `chg-ppsopts` command with the `gta`, `gta1`, `gta2`, and `gta3` parameters as needed to add the desired number of GTA entries, up to the maximum of 32 GTA entries.

Point code entries and the B-Party check option can also be configured with the `chg-ppsopts` command. Perform the procedure Configuring the B-Party Check Option for the Prepaid SMS Intercept Phase 1 Feature to configure the B-Party check option. Perform the procedure Configuring Point Code Entries for the Prepaid SMS Intercept Phase 1 Feature to configure the point code entries.

The Prepaid SMS Intercept Phase 1 feature must be enabled and turned on before this procedure can be performed. The status of the Prepaid SMS Intercept Phase 1 feature can be verified by entering the `rtrv-ctrl-feat` command. Perform the procedure Activating the Prepaid SMS Intercept Phase 1 Feature to enable and turn on the Prepaid SMS Intercept Phase 1 feature, if necessary.
1. Display the status of the Prepaid SMS Intercept Phase 1 feature by entering this command.

   rtrv-ctrl-feat:partnum=893006701

   The following is an example of the possible output.

   rlghncxa03w 08-09-28 21:15:37 GMT EAGLE5 39.1.0
   The following features have been permanently enabled:

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Partnum</th>
<th>Status</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prepaid SMS Intercept Ph1</td>
<td>893006701</td>
<td>on</td>
<td>----</td>
</tr>
</tbody>
</table>

   The following features have been temporarily enabled:

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Partnum</th>
<th>Status</th>
<th>Quantity</th>
<th>Trial Period Left</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

   Zero entries found.

   The following features have expired temporary keys:

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Partnum</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

   Zero entries found.

   If the Prepaid SMS Intercept Phase 1 feature is enabled and turned on, continue the procedure with
   Step 2.

   If the Prepaid SMS Intercept Phase 1 feature is not enabled or not turned on, perform the procedure
   Activating the Prepaid SMS Intercept Phase 1 Feature to enable and turn on the Prepaid SMS Intercept
   Phase 1 feature. After the Prepaid SMS Intercept Phase 1 feature has been enabled and turned on,
   continue the procedure with Step 2.

2. Display the PPSOPTS table by entering the rtrv-ppsopts command. This is an example of the possible output.

   rlghncxa03w 09-03-07 00:34:31 GMT EAGLE5 40.1.0
   Prepaid SMS Options
   -------------------
   BPARTYCHK        = OFF
   PPT
<table>
<thead>
<tr>
<th>PCA/PCI/PCN</th>
<th>SSN</th>
<th>RI</th>
</tr>
</thead>
<tbody>
<tr>
<td>001-001-002</td>
<td>NONE</td>
<td>SSN</td>
</tr>
<tr>
<td>001-002-003</td>
<td>NONE</td>
<td>GT</td>
</tr>
<tr>
<td>002-002-003</td>
<td>NONE</td>
<td>GT</td>
</tr>
<tr>
<td>002-002-004</td>
<td>NONE</td>
<td>GT</td>
</tr>
<tr>
<td>002-002-005</td>
<td>NONE</td>
<td>GT</td>
</tr>
<tr>
<td>002-002-006</td>
<td>NONE</td>
<td>GT</td>
</tr>
<tr>
<td>002-002-007</td>
<td>NONE</td>
<td>GT</td>
</tr>
<tr>
<td>002-002-008</td>
<td>NONE</td>
<td>GT</td>
</tr>
<tr>
<td>002-002-009</td>
<td>NONE</td>
<td>GT</td>
</tr>
<tr>
<td>002-002-010</td>
<td>NONE</td>
<td>GT</td>
</tr>
<tr>
<td>002-002-011</td>
<td>NONE</td>
<td>GT</td>
</tr>
<tr>
<td>002-002-012</td>
<td>NONE</td>
<td>GT</td>
</tr>
<tr>
<td>002-002-013</td>
<td>NONE</td>
<td>GT</td>
</tr>
<tr>
<td>002-002-014</td>
<td>NONE</td>
<td>GT</td>
</tr>
<tr>
<td>002-002-015</td>
<td>NONE</td>
<td>GT</td>
</tr>
<tr>
<td>002-002-016</td>
<td>NONE</td>
<td>GT</td>
</tr>
<tr>
<td>002-002-017</td>
<td>NONE</td>
<td>GT</td>
</tr>
<tr>
<td>002-002-018</td>
<td>NONE</td>
<td>GT</td>
</tr>
<tr>
<td>002-002-019</td>
<td>NONE</td>
<td>GT</td>
</tr>
<tr>
<td>002-002-020</td>
<td>NONE</td>
<td>GT</td>
</tr>
<tr>
<td>002-002-021</td>
<td>NONE</td>
<td>GT</td>
</tr>
<tr>
<td>002-002-022</td>
<td>NONE</td>
<td>GT</td>
</tr>
<tr>
<td>002-002-023</td>
<td>NONE</td>
<td>GT</td>
</tr>
<tr>
<td>002-002-024</td>
<td>NONE</td>
<td>GT</td>
</tr>
</tbody>
</table>
To remove a GTA entry or replace a GTA entry, the GTA entry must be shown in the `rtrv-ppsopts` output. To add a new GTA entry, entries with the word `NONE` must be shown in the `rtrv-ppsopts` output. If there are 32 entries shown in the `rtrv-ppsopts` output, a GTA entry can only be removed or replaced.

3. Configure the GTA entries by entering the `chg-ppsopts` command with the `gta`, `gta1`, `gta2`, `gta3`, or `ngta` parameters as required. Perform one of these substeps.

a) To add a new GTA entry, enter the `chg-ppsopts` command with the `gta`, `gta1`, `gta2`, and `gta3` parameters as needed to add the desired number of GTA entries. For this example, enter this command.

```
chg-ppsopts: gta=800556: gta1=801478: gta2=460972: gta3=461875
```

The new GTA values cannot be shown in the `rtrv-ppsopts` output.

Repeat this substep as needed to add the desired number of GTA entries, up to the maximum of 32 GTA entries.
b) To replace an existing GTA entry, enter the chg-ppsopts command with the gta and ngta parameters. The GTA value that is being replaced must be shown in the rtrv-ppsopts output. The new GTA value cannot be shown in the rtrv-ppsopts output. For this example, enter this command.

```
chg-ppsopts: gta=910461: ngta=910527
```

c) To remove an existing GTA entry, enter the chg-ppsopts command with the gta and ngta=none parameters. The GTA value that is being removed must be shown in the rtrv-ppsopts output. For this example, enter this command.

```
chg-ppsopts: gta=910460: ngta=none
```

When the chg-ppsopts command has successfully completed, this message should appear.

```
rlghncxa03w 08-09-07 11:44:13 GMT EAGLE5 39.1.0
CHG-PPSOPTS: MASP A - COMPLTD
```

4. Verify the changes by entering the rtrv-ppsopts command. This is an example of the possible output.

```
rlghncxa03w 09-03-07 00:34:31 GMT EAGLE5 40.1.0
Prepaid SMS Options

 BPARTYCHK = OFF
```

```
PPT PCA/PCI/PCN SSN RI
1-----001-001-002-----NONE SSN
2-----001-002-003-----NONE GT
3-----001-003-004-----NONE GT
4-----001-004-005-----NONE GT
5-----001-005-006-----NONE GT
6-----001-006-007-----NONE GT
7-----001-007-008-----NONE GT
8-----001-008-009-----NONE GT
9-----001-009-010-----NONE GT
10-----001-010-011-----NONE GT
11-----001-011-012-----NONE GT
12-----001-012-013-----NONE GT
13-----001-013-014-----NONE GT
14-----001-014-015-----NONE GT
15-----001-015-016-----NONE GT
16-----001-016-017-----NONE GT
17-----001-017-018-----NONE GT
18-----001-018-019-----NONE GT
19-----001-019-020-----NONE GT
20-----001-020-021-----NONE GT
21-----001-021-022-----NONE GT
22-----001-022-023-----NONE GT
23-----001-023-024-----NONE GT
24-----001-024-025-----NONE GT
25-----001-025-026-----NONE GT
26-----001-026-027-----NONE GT
27-----001-027-028-----NONE GT
28-----001-028-029-----NONE GT
29-----001-029-030-----NONE GT
30-----001-030-031-----NONE GT
31-----001-031-032-----NONE GT
32-----001-032-033-----NONE GT
```

GTA
5. Backup the new changes using the `chg-db:action=backup:dest=fixed` command. These messages should appear, the active Maintenance and Administration Subsystem Processor (MASP) appears first.

```
BACKUP (FIXED) : MASP A - Backup on active MASP.
BACKUP (FIXED) : MASP A - Backup on active MASP to fixed disk complete.
BACKUP (FIXED) : MASP A - Backup on standby MASP.
BACKUP (FIXED) : MASP A - Backup on standby MASP to fixed disk complete.
```

If you do not wish to configure point code entries and the B-Party check option in the PPSOPTS table, this procedure is finished.

If you wish to configure point code entries and the B-Party check option in the PPSOPTS table, perform these procedures as applicable.

- To configure point code entries, perform the procedure [Configuring Point Code Entries for the Prepaid SMS Intercept Phase 1 Feature](#).
- To configure the B-Party check option, perform the procedure [Configuring the B-Party Check Option for the Prepaid SMS Intercept Phase 1 Feature](#).

### Turning the Prepaid SMS Intercept Phase 1 Feature Off

This procedure is used to turn off the Prepaid SMS Intercept Phase 1 feature, using the `chg-ctrl-feat` command.
The `chg-ctrl-feat` command uses the following parameters:

- `:partnum` - The part number of the Prepaid SMS Intercept Phase 1, 893006701.
- `:status=off` - used to turn off the Prepaid SMS Intercept Phase 1 feature.

The status of the Prepaid SMS Intercept Phase 1 feature must be on and is shown with the `rtrv-ctrl-feat` command.

**CAUTION:** If the Prepaid SMS Intercept Phase 1 feature is turned off, the screening of incoming messages from an MSC by the EAGLE 5 ISS based on the MAP operation code will not be performed.

1. Display the status of the Prepaid SMS Intercept Phase 1 feature by entering the `rtrv-ctrl-feat:partnum=893006701` command.

   The following is an example of the possible output.

   ```
 rlghncxa03w 08-09-28 21:15:37 GMT EAGLE5 39.1.0
 The following features have been permanently enabled:
 Feature Name Partnum Status Quantity
 Prepaid SMS Intercept Ph1 893006701 on ----
 The following features have been temporarily enabled:
 Feature Name Partnum Status Quantity Trial Period Left
 Zero entries found.
 The following features have expired temporary keys:
 Feature Name Partnum
 Zero entries found.
 If the status of the Prepaid SMS Intercept Phase 1 is off, or if the Prepaid SMS Intercept Phase 1 is not enabled, this procedure cannot be performed.

2. Turn off the Prepaid SMS Intercept Phase 1 by entering the `chg-ctrl-feat` command with the `status=off` parameter.

 For example, enter this command.

 `chg-ctrl-feat:partnum=893006701:status=off`

 When this command has successfully completed, the following message should appear.

   ```
   rlghncxa03w 08-09-28 21:16:37 GMT EAGLE5 39.1.0
   CHG-CTRL-FEAT: MASP A - COMPLTD
   ```

3. Verify that the Prepaid SMS Intercept Phase 1 has been turned off by using the `rtrv-ctrl-feat:partnum=893006701` command. The following is an example of the possible output.

   ```
   rlghncxa03w 08-09-28 21:15:37 GMT EAGLE5 39.1.0
   The following features have been permanently enabled:
   Feature Name          Partnum  Status  Quantity
   Prepaid SMS Intercept Ph1 893006701  off  ----
   The following features have been temporarily enabled:
   ```
4. **Backup the new changes using the `chg-db:action=backup:dest=fixed` command.**

These messages should appear, the active Maintenance and Administration Subsystem Processor (MASP) appears first.

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Partnum</th>
<th>Status</th>
<th>Quantity</th>
<th>Trial Period Left</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Zero entries found.

The following features have expired temporary keys:

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Partnum</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Zero entries found.
Glossary

<table>
<thead>
<tr>
<th>A</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-Port</td>
<td>ANSI-41 Mobile Number Portability</td>
</tr>
<tr>
<td></td>
<td>A feature that enables IS-41 subscribers to change their service provider</td>
</tr>
<tr>
<td></td>
<td>while retaining the same Mobile Dialed Number (MDN).</td>
</tr>
<tr>
<td>ACN</td>
<td>Application Content Name</td>
</tr>
<tr>
<td>AIQ</td>
<td>AnalyzedInformation Query</td>
</tr>
<tr>
<td></td>
<td>Name for the local subsystem and service for the ANSI41 AIQ feature.</td>
</tr>
<tr>
<td>AMGTT</td>
<td>Advanced GT Modification</td>
</tr>
<tr>
<td></td>
<td>A feature that allows modification of the GTA digits parameter. The user</td>
</tr>
<tr>
<td></td>
<td>can configure a number of leading digits of the GT address that can be deleted,</td>
</tr>
<tr>
<td></td>
<td>or a set of specified digits that can be added to the beginning of the GTA,</td>
</tr>
<tr>
<td></td>
<td>or both. The same applies to trailing digits for prefix and suffix modification.</td>
</tr>
<tr>
<td>ANSI</td>
<td>American National Standards Institute</td>
</tr>
<tr>
<td></td>
<td>An organization that administers and coordinates the U.S. voluntary</td>
</tr>
<tr>
<td></td>
<td>standardization and conformity assessment system. ANSI develops and publishes</td>
</tr>
<tr>
<td></td>
<td>standards. ANSI is a non-commercial, non-government organization which is funded by more than 1000 corporations, professional bodies, and enterprises.</td>
</tr>
</tbody>
</table>
A

ANSI41 AIQ The short name for the ANSI-41 AnalyzedInformation Query.

ATINP ATI Number Portability Query feature

ATINPQ ATI Number Portability Query (Name of the local subsystem)

ATM Asynchronous Transfer Mode

A packet-oriented transfer mode that uses an asynchronous time division multiplexing technique to multiplex information flow in fixed blocks, called cells.

A high-bandwidth, low-delay switching, and multiplexing technology to support applications that include high-speed data, local area network interconnection, multimedia application and imaging, and residential applications such as video telephony and other information-based services.

B

B-Party Called Party (as in CdPA or CdPN)

The called subscriber. This is the subscriber to whom the call is being placed.

C

CCGT Cancel Called Global Title

CdPA Called Party Address

The field in the SCCP portion of the MSU that contains the additional addressing information of the destination of the MSU. Gateway screening uses this additional
information to determine if MSUs that contain the DPC in the routing label and the subsystem number in the called party address portion of the MSU are allowed in the network where the EAGLE 5 ISS is located.

CgPA

Calling Party Address

The point code and subsystem number that originated the MSU. This point code and subsystem number are contained in the calling party address in the SCCP portion of the signaling information field of the MSU. Gateway screening uses this information to determine if MSUs that contain this point code and subsystem number area allowed in the network where the EAGLE 5 ISS is located.

Cluster

A group of signaling points whose point codes have identical values for the network and cluster fields of the point codes. A cluster entry in the routing table is shown as an asterisk (*) in the member field of the point code, for example, 111-011-*. Cluster entries can be provisioned only as ANSI destination point codes.

control cards

Cards that occupy slots 1113 through 1118 of the control shelf on an EAGLE 5 ISS and perform OAM, TDM, and database functions for the EAGLE 5 ISS. The legacy set consists of the single-slot GPSM-II card running the OAM application and EOAM GPL, the single-slot TDM card, and the dual-slot MDAL card. The E5-based set consists of the dual-slot E5-MASP card (the E5-MCAP module and the E5-TDM...
module) and the dual-slot E5-MDAL card.

CPC
Capability Point Code
A capability point code used by the SS7 protocol to identify a group of functionally related STPs in the signaling network.

credit card drive
Flash memory credit card-shaped drive used in the flush-mounted USB port on an E5-MCAP card for upgrade; it could be used for disaster recovery.

CSPC
Concerned Signaling Point Code
The point code that receives subsystem allowed and subsystem prohibited status messages about a particular global title translation node. These messages are broadcast from SCCP management.

Database
All data that can be administered by the user, including cards, destination point codes, gateway screening tables, global title translation tables, links, LNP services, LNP service providers, location routing numbers, routes, shelves, subsystem applications, and 10 digit telephone numbers.

DPC
Destination Point Code
DPC refers to the scheme in SS7 signaling to identify the receiving signaling point. In the SS7 network, the point codes are numeric addresses which uniquely identify each signaling point. This point code
D

can be adjacent to the EAGLE 5 ISS, but does not have to be.

DPCA
Destination Point Code ANSI

DPCI
Destination Point Code International

DPCN
Destination Point Code National

DSM
Database Service Module.
The DSM provides large capacity SCCP/database functionality. The DSM is an application card that supports network specific functions such as EAGLE Provisioning Application Processor (EPAP), Global System for Mobile Communications (GSM), EAGLE Local Number Portability (ELAP), and interface to Local Service Management System (LSMS).

E

E1
The European equivalent of T1 that transmits digital data over a telephone network at 2.048 Mbps.

E5-MASP card
E5-based dual-slot card that consists of the E5-MCAP module (occupies slot 1113 and slot 1115) and the E5-TDM module (occupies slot 1114 and slot 1116) in an EAGLE 5 ISS control shelf. Used when the E5-MDAL card is used.

E5-MCAP card
The module contains the Communications Processor and Applications Processor and provides connections to the IMT
bus. Controls the maintenance and database administration activity and performs both application and communication processing. Runs the OAM application and OAMHC GPL. Occupies slot 1113 and slot 1115 in an EAGLE 5 ISS control shelf. Used when the E5-MDAL card is used. Contains two USB ports.

E5-MDAL card

The E5 MDAL card processes alarm requests, provides general purpose relays, and provides fan control. Occupies slots 1117 and 1118 in an EAGLE 5 ISS Control Shelf. Used with E5-MASP cards. Does NOT contain a drive for removable cartridges.

E5-TDM card

The E5-TDM card provides the EAGLE 5 ISS with 16 ports for user terminals, contains fixed disk storage and distributes Composite Clocks and High Speed Master clocks throughout the EAGLE 5 ISS. Occupies slot 1114 and slot 1116 in an EAGLE 5 ISS Control Shelf. Used when the E5-MDAL card is used.

EGMS

Enhanced GSM MAP Screening feature

EGTT

Enhanced Global Title Translation

A feature that is designed for the signaling connection control part (SCCP) of the SS7 protocol. The EAGLE 5 ISS uses this feature to determine to which service database to send the query message when a Message Signaling Unit (MSU) enters the system.
<table>
<thead>
<tr>
<th>E</th>
<th>Equipment Identity Register</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A network entity used in GSM networks, as defined in the 3GPP Specifications for mobile networks. The entity stores lists of International Mobile Equipment Identity (IMEI) numbers, which correspond to physical handsets (not subscribers). Use of the EIR can prevent the use of stolen handsets because the network operator can enter the IMEI of these handsets into a 'blacklist' and prevent them from being registered on the network, thus making them useless.</td>
</tr>
</tbody>
</table>

| Enhanced Global Title Translation | See EGTT. |

<table>
<thead>
<tr>
<th>ETT</th>
<th>Existing Translation Type</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>The translation type value included in the called party address of a unitdata (UDT) or extended unitdata (XUDT) message on an incoming or outgoing gateway link set, which will be used for the translation type mapping function.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>F</th>
<th>Feature Access Key</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>The feature access key allows the user to enable a controlled feature in the system by entering either a permanent feature access key or a temporary feature access key. The feature access key is supplied by Tekelec.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Flexible GTT Loadsharing</th>
<th>Flexible GTT Load Sharing (FGTTLs) provides more flexible GTT load sharing arrangements for GTT traffic.</th>
</tr>
</thead>
</table>
F

fixed disk drive
Hard drive on the TDM card and the E5-TDM card.

Flexible GTT Load Sharing
See FGTTLS.

FLOBR
Flexible Linkset Optional Based Routing
A feature that provides the capability to fully customize the desired routing translation. When flexible routing is used, the routing translation can cascade from one GTT translation table to any other GTT translation table.

flush-mounted USB port
USB port on the E5-MCAP card; used with credit card flash memory drives for upgrades and could be used for disaster recovery.

G

G-Flex
GSM Flexible numbering
A feature that allows the operator to flexibly assign individual subscribers across multiple HLRs and route signaling messages, based on subscriber numbering, accordingly.

GPL
Generic Program Load
Software that allows the various features in the system to work. GPLs and applications are not the same software.

G-Port
GSM Mobile Number Portability
A feature that provides mobile subscribers the ability to change the GSM subscription network within a portability cluster, while retaining their original MSISDN(s).
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>G</td>
<td></td>
</tr>
</tbody>
</table>
| GPSM-II card | General Purpose Service Module II
Contains the communications processor and applications processor and provides connections to the Interprocessor Message Transport (IMT) bus. The GPSM-II card can run on the OAM, IPS, or MCP applications.
This card runs various GPLs and applications in the EAGLE 5 ISS. As a control card, it runs the OAM application and EOAM GPL. Used when the legacy TDM card and MDAL card are used. |
| GSM | Global System for Mobile Communications |
| GT | Global Title Routing Indicator |
| GTA | Global Title Address |
| GTI | Global Title Indicator |
| GTT | Global Title Translation
A feature of the signaling connection control part (SCCP) of the SS7 protocol that the EAGLE 5 ISS uses to determine which service database to send the query message when an MSU enters the EAGLE 5 ISS and more information is needed to route the MSU. These service databases also verify calling card numbers and credit card numbers. The service databases are identified in the SS7 network by a point code and a subsystem number. |

H
HC-MIM
High Capacity Multi-Channel Interface Module

A card that provides access to eight E1/T1 ports residing on backplane connectors A and B. Each data stream consists of 24 T1 or 31 E1 DS0 signaling links assigned in a time-division multiplex (TDM) manner. Each channel occupies a unique timeslot in the data stream and can be selected as a local signaling link on the interface card. Each card has 8 E1 or 8 T1 port interfaces with a maximum of 64 signaling links provisioned among the 8 E1/T1 ports.

HIPR
High-Speed IMT Packet Router

A card that provides increased system throughput and traffic capacity. HIPR moves EAGLE from an intra-shelf ring topology to an intra-shelf switch topology. HIPR acts as a gateway between the intra-shelf IMT BUS, running at 125Mbps, and the inter-shelf operating at 1.0625Gbps. The HIPR card will seat in the same slot as an HMUX card (slots xx09 & xx10 of each shelf).

HMUX
High-Speed Multiplexer

A card that supports the requirements for up to 1500 links, allowing communication on IMT buses between cards, shelves and frames. HMUX cards interface to 16 serial links, creating a ring from a series of point to point links. Each HMUX card provides a bypass multiplexer to maintain the ring’s integrity as cards are removed and inserted into an operational shelf.

High-Speed IMT Multiplexer, a replacement card for the IPMX.
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID</td>
<td>Identity, identifier</td>
</tr>
<tr>
<td>IDP</td>
<td>Initial Detection Point</td>
</tr>
<tr>
<td>IGGTLS</td>
<td>Intermediate Global Title Translation Load Sharing</td>
</tr>
<tr>
<td>IMSI</td>
<td>International Mobile Subscriber Identity</td>
</tr>
<tr>
<td>IN</td>
<td>Intelligent Network</td>
</tr>
<tr>
<td></td>
<td>A network design that provides an open platform for developing, providing and managing services.</td>
</tr>
<tr>
<td>INP</td>
<td>INAP-based Number Portability</td>
</tr>
<tr>
<td></td>
<td>Tekelec’s INP can be deployed as a stand-alone or an integrated signal transfer point/number portability solution. With Tekelec’s stand-alone NP server, no network reconfiguration is required to implement number portability. The NP server delivers a much greater signaling capability than the conventional SCP-based approach. Intelligent Network (IN) Portability</td>
</tr>
<tr>
<td>INTL</td>
<td>FNAI class International</td>
</tr>
<tr>
<td>IP</td>
<td>Internet Protocol</td>
</tr>
<tr>
<td></td>
<td>IP specifies the format of packets, also called datagrams, and the addressing scheme. The network layer for the TCP/IP protocol suite widely used on Ethernet networks, defined in STD 5, RFC 791. IP is a connectionless, best-effort packet switching protocol. It provides packet routing, fragmentation and</td>
</tr>
<tr>
<td>Term</td>
<td>Definition</td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
</tr>
<tr>
<td>re-assembly</td>
<td>re-assembly through the data link layer.</td>
</tr>
<tr>
<td>IPGWx</td>
<td>Point-to-multipoint MTP-User signaling (e.g. ISUP, TCAP) over IP capability. Typically used for A link connectivity which require routing keys. Far End not required to support MTP3. The IPGWx GPLs (IPGWI, SS7IPGW) run on the SSEDCM/E5-ENET cards.</td>
</tr>
<tr>
<td>IS-41</td>
<td>Interim Standard 41</td>
</tr>
<tr>
<td>IS-41</td>
<td>Same as and interchangeable with ANSI-41. A standard for identifying and authenticating users, and routing calls on mobile phone networks. The standard also defines how users are identified and calls are routed when roaming across different networks.</td>
</tr>
<tr>
<td>ISDN</td>
<td>Integrated Services Digital Network</td>
</tr>
<tr>
<td>ISDN</td>
<td>Integrates a number of services to form a transmission network. For example, the ISDN network integrates, telephony, facsimile, teletext, Datex-J, video telephony and data transfer services, providing users with various digital service over a single interface: voice, text, images, and other data.</td>
</tr>
<tr>
<td>ISS</td>
<td>Integrated Signaling System</td>
</tr>
<tr>
<td>ITU</td>
<td>International Telecommunications Union</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>ITU-N</td>
<td>ITU-National</td>
</tr>
<tr>
<td>Key</td>
<td>For the ICNP feature, a unique DS value used to access a table entry, consisting of a number length and number type.</td>
</tr>
<tr>
<td>latched USB port</td>
<td>On the E5-MCAP card, a USB port with a lockable latch. Used with removable media (flash memory "thumb" drives) to install and back up customer data.</td>
</tr>
<tr>
<td>LIDB</td>
<td>Line Information Database</td>
</tr>
<tr>
<td>LIM</td>
<td>Link Interface Module</td>
</tr>
<tr>
<td></td>
<td>Provides access to remote SS7, IP and other network elements, such as a Signaling Control Point (SCP) through a variety of signaling interfaces (DS0, MPL, E1/T1 MIM, LIM-ATM, E1-ATM, IPLIMx, IPGWx). The LIMs consist of a main assembly and possibly, an interface appliqué board. These appliqués provide level one and some level two functionality on SS7 signaling links.</td>
</tr>
<tr>
<td>LNP</td>
<td>Local Number Portability</td>
</tr>
<tr>
<td>Load Sharing</td>
<td>A type of routing used by global title translation to route MSUs. This type of routing is used when a second point code and subsystem is defined for the primary point code and subsystem. Traffic is shared equally between the replicated point codes and subsystems.</td>
</tr>
</tbody>
</table>
L

LSN

Link Set Name
The name of the link set.

M

MAP

Mobile Application Part

MAP Group
The MAP entities in an entity set used for the distribution of traffic.

MAS
Maintenance and Administration Subsystem
A set of cards located in the Control Shelf, used to provide a central management point for the EAGLE 5 ISS. The MAS provides user interface, maintenance communication, peripheral services, alarm processing, system disk interface, and measurements using the following three subassemblies: GPSM-II, TDM, and MDAL.

MASP
Maintenance and Administration Subsystem Processor
The Maintenance and Administration Subsystem Processor (MASP) function is a logical pairing of the GPSM-II card and the TDM card. The GPSM-II card is connected to the TDM card by means of an Extended Bus Interface (EBI) local bus.

The MDAL card contains the removable cartridge drive and alarm logic. There is only one MDAL card in the Maintenance and Administration Subsystem (MAS) and it is shared between the two MASPs.

Mated Application
The point codes and subsystem numbers of the service databases
<table>
<thead>
<tr>
<th>M</th>
<th>that messages are routed to for global title translation.</th>
</tr>
</thead>
<tbody>
<tr>
<td>MCAP</td>
<td>Maintenance Communications & Applications Processor</td>
</tr>
<tr>
<td>MNP</td>
<td>Mobile Number Portability</td>
</tr>
</tbody>
</table>
| **MO** | Magneto Optical
Managed Object
Mobile Originated
Refers to a connection established by a mobile communication subscriber. Everything initiated by the mobile station is known as mobile originated. |
| **MPS** | Multi-Purpose Server
The Multi-Purpose Server provides database/reload functionality and a variety of high capacity/high speed offboard database functions for applications. The MPS resides in the General Purpose Frame.
Messages Per Second
A measure of a message processor’s performance capacity. A message is any Diameter message (Request or Answer) which is received and processed by a message processor. |
| **MRN** | Message Reference Number
An unsolicited numbered message (alarm or information) that is displayed in response to an alarm condition detected by the system or in response to an event that has occurred in the system.
Mated Relay Node |
M

A mated relay node (MRN) group is provisioned in the database to identify the nodes that the traffic is load shared with, and the type of routing, either dominant, load sharing, or combined dominant/load sharing.

MSU

Message Signal Unit

The SS7 message that is sent between signaling points in the SS7 network with the necessary information to get the message to its destination and allow the signaling points in the network to set up either a voice or data connection between themselves. The message contains the following information:

- The forward and backward sequence numbers assigned to the message which indicate the position of the message in the traffic stream in relation to the other messages.
- The length indicator which indicates the number of bytes the message contains.
- The type of message and the priority of the message in the signaling information octet of the message.
- The routing information for the message, shown in the routing label of the message, with the identification of the node that sent message (originating point code), the identification of the node receiving the message (destination point code), and the signaling link selector which the EAGLE 5 ISS uses to pick which link set and signaling link to use to route the message.
MTP
Message Transfer Part
The levels 1, 2, and 3 of the SS7 protocol that control all the functions necessary to route an SS7 MSU through the network.

MTT
Mapped SS7 Message Translation Type
Message Text Table

NAI
Nature of Address Indicator
Standard method of identifying users who request access to a network.
Network Access Identifier

NAIV
NAI Value

NP
Number Plan

NPV
Numbering Plan Value

OPC
Originating Point Code

PC
Point Code
The identifier of a signaling point or service control point in a network. The format of the point code can be one of the following types:
- ANSI point codes in the format network indicator-network cluster-network cluster member (ni-nc-ncm).
- Non-ANSI domestic point codes in the format network.
P

indicator-network
cluster-network cluster member
\textit{(ni-nc-ncm)}.

- Cluster point codes in the format
 network indicator-network
 cluster-* or network indicator-*-*.

- ITU international point codes in
 the format \textit{zone-area-id}.

- ITU national point codes in the
 format of a 5-digit number
 \textit{(nnnnn)}, or 2, 3, or 4 numbers
 (members) separated by dashes
 \textit{(m1-m2-m3-m4)} as defined by
 the Flexible Point Code system
 option. A group code is required
 \textit{(m1-m2-m3-m4-gc)} when the
 ITUDUPPC feature is turned on.

- 24-bit ITU national point codes
 in the format main signaling
 area-subsignaling area-service
 point \textit{(msa-ssa-sp)}.

\begin{tabular}{ll}
PCA & Point Code ANSI \\
PCI & Peripheral Component Interface \\
 & Point Code International \\
 & Protocol Control Information \\
 & Peripheral Component \\
 & Interconnect \\
PCN & Point Code National \\
 & Product Change Notice \\
PPSMS & Prepaid Short Message Service \\
 & Prepaid Short Message Service \\
 & Intercept \\
\end{tabular}

\textbf{R}
<table>
<thead>
<tr>
<th>R</th>
<th>Glossary</th>
</tr>
</thead>
<tbody>
<tr>
<td>RC</td>
<td>Relative Cost</td>
</tr>
<tr>
<td>removable cartridge</td>
<td>MO cartridge used in the drive on the legacy MDAL card.</td>
</tr>
<tr>
<td>removable cartridge drive</td>
<td>Media drive for removable MO cartridges on the legacy MDAL card.</td>
</tr>
<tr>
<td>removable media</td>
<td>Flash memory or “thumb” drives used in the latched USB port on an E5-MCAP card for installation and backup of customer data.</td>
</tr>
<tr>
<td>RI</td>
<td>Routing Indicator</td>
</tr>
<tr>
<td>Route</td>
<td>A signaling path from an LSP to an RSP using a specified Link Set</td>
</tr>
<tr>
<td>S</td>
<td>Glossary</td>
</tr>
<tr>
<td>SBR</td>
<td>Session Binding Repository</td>
</tr>
<tr>
<td></td>
<td>A highly available, distributed database for storing Diameter session binding data.</td>
</tr>
<tr>
<td>SCCP</td>
<td>Signaling Connection Control Part</td>
</tr>
<tr>
<td>SCCPCNV</td>
<td>SCCP Conversion</td>
</tr>
<tr>
<td></td>
<td>A feature that allow the system to convert MTP-routed SCCP messages from ANSI to ITU format and to convert ITU formatted messages to ANSI.</td>
</tr>
<tr>
<td>SCCP Routing Control</td>
<td>The portion of the SCCP subsystem that determines where SCCP messages are routed.</td>
</tr>
</tbody>
</table>
SCMG

SCCP Management
SCMG manages the status of subsystems and SCCP-capable signaling points (SPs). It maintains the status of remote SCCP SPs and that of local subsystems.

SCP

Service Control Point
Service Control Points (SCP) are network intelligence centers where databases or call processing information is stored. The primary function of SCPs is to respond to queries from other SPs by retrieving the requested information from the appropriate database, and sending it back to the originator of the request.

SCRC

SCCP Routing Control

SEAS

Signaling Engineering and Administration System
An interface defined by Bellcore and used by the Regional Bell Operating Companies (RBOCs), as well as other Bellcore Client Companies (BCCs), to remotely administer and monitor the signaling points in their network from a central location.

Signaling Link

The transmission path connecting the EAGLE 5 ISS to other signaling points in the network and providing access to ANSI SS7 and ITU SS7 network elements. The signaling link is connected to the EAGLE 5 ISS at the link interface module (LIM).

SLS

Signaling Link Selector
<table>
<thead>
<tr>
<th>S</th>
<th>SMS</th>
<th>Short Message Service</th>
</tr>
</thead>
<tbody>
<tr>
<td>SMSC</td>
<td>Short Message Service Center</td>
<td></td>
</tr>
<tr>
<td>SNR</td>
<td>Subsystem Normal Routing</td>
<td></td>
</tr>
</tbody>
</table>
| **SPC** | Secondary Point Code
 The SPC enables the EAGLE 5 ISS to assume more than one point code for SS7 routing. The EAGLE 5 ISS uses the SPC for routing and provisioning as if the SPC were an actual point code of the EAGLE 5 ISS. The EAGLE 5 ISS supports one ANSI true point code and up to seven secondary point codes.
 Spare Point Code |
| **SRI** | Send_Route_Information Message |
| **SS** | Subsystem
 Supplementary Services |
| **SS7** | Signaling System #7 |
| **SSN** | Subsystem Number
 The subsystem number of a given point code. The subsystem number identifies the SCF application that should receive the message, or the subsystem number of the destination point code to be assigned to the LNP subsystem of the EAGLE 5 ISS.
 A value of the routing indicator portion of the global title translation data commands indicating that no further global title translation is required for the specified entry.
 Subsystem Number |
S

Used to update the CdPA.

STP

Signal Transfer Point

The STP is a special high-speed switch for signaling messages in SS7 networks. The STP routes core INAP communication between the Service Switching Point (SSP) and the Service Control Point (SCP) over the network.

STPLAN

Signaling Transfer Point Local Area Network

The application used by the SLAN card and E5-SLAN card to support the STP LAN feature. This application does not support 24-bit ITU-N point codes.

T

Transmission Level 1

A T1 interface terminates or distributes T1 facility signals for the purpose of processing the SS7 signaling links carried by the E1 carrier.

A leased-line connection capable of carrying data at 1,544,000 bits-per-second.

TCAP

Transaction Capabilities Application Part

TCAPCNV

TCAP Conversion

A feature that allows the system to convert MTP-routed TCAP messages from ANSI to ITU format and to convert ITU formatted messages to ANSI.

TDM

Terminal Disk Module
<table>
<thead>
<tr>
<th>T</th>
<th>Time Division Multiplexing</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOBR</td>
<td>TCAP Opcode Based Routing</td>
</tr>
<tr>
<td></td>
<td>A feature that encompasses opcode-based routing and TCAP segmentation, and CdPA SSN-based routing.</td>
</tr>
<tr>
<td>TPC</td>
<td>True Point Code</td>
</tr>
<tr>
<td>TPS</td>
<td>Transactions Per Second</td>
</tr>
<tr>
<td>Translation Type</td>
<td>See TT.</td>
</tr>
<tr>
<td>TT</td>
<td>Translation Type.</td>
</tr>
<tr>
<td></td>
<td>Resides in the Called Party Address (CdPA) field of the MSU and determines which service database is to receive query messages. The translation type indicates which Global Title Translation table determines the routing to a particular service database.</td>
</tr>
<tr>
<td>TTN</td>
<td>Translation Type Name</td>
</tr>
<tr>
<td>U</td>
<td>Unsolicited Alarm Message</td>
</tr>
<tr>
<td>UAM</td>
<td>A message sent to a user interface whenever there is a fault that is service-affecting or when a previous problem is corrected. Each message has a trouble code and text associated with the trouble condition.</td>
</tr>
<tr>
<td>UDT</td>
<td>Unitdata Transfer</td>
</tr>
</tbody>
</table>
U

UDTS
Unitdata Transfer Service
An error response to a UDT message.

UIM
Unsolicited Information Message
A message sent to a user interface whenever there is a fault that is not service-affecting or when a previous problem is corrected. Each message has a trouble code and text associated with the trouble condition.

USB port
Receptacle for flash memory drives on personal computers. On the E5-MDAL card, a flush-mounted USB port used with credit card flash memory drives for upgrade. On the E5-MCAP card, a latched USB port for use with flash memory “thumb” drives for installation and backup of customer data.

V

V-Flex
Voicemail Flexible Routing
An advanced database application based on the industry proven EAGLE 5 ISS. Deployed as a local subsystem on the EAGLE platform, V-Flex centralizes voicemail routing.

VGTT
Variable Length GTT
A feature that provides the ability to provision global title entries of varying lengths to a single translation type or GTT set. Users are able to assign global title entries of up to 10 different lengths to a single translation type or GTT set.
V

VSCCP VxWorks Signaling Connection Control Part

The application used by the Service Module card to support EPAP-related features and LNP features. If an EPAP-related or LNP feature is not turned on, and a Service Module card is present, the VSCCP application processes normal GTT traffic.

X

XLAT Translate Indicator

XGTT Expanded GTT (GTT Table Expansion).

XMAP Expanded MAP Table

XUDT Extended User Data

XUDTS Extended Unitdata Service message

An error response to an XUDT message.