Tekelec EAGLE[®] 5 SAS - Release 34.0 Database Administration - Features

Table of Chapters

Table of Contents List of Figures List of Tables List of Flowcharts Chapter 1. Introduction Chapter 2. X.25 Gateway Configuration Chapter 3. STP LAN Configuration Chapter 4. Database Transport Access (DTA) Configuration Chapter 5. GSM MAP Screening Configuration Chapter 6. Eagle Support for Integrated Sentinel Configuration Index

Tekelec EAGLE[®] 5 Signaling Application System

Release 34.0

Database Administration Manual - Features

910-0097-001 Revision B October 2005

Copyright[©] 2005 Tekelec. All Rights Reserved Printed in U.S.A.

Notice

Information in this documentation is subject to change without notice. Unauthorized use or copying of this documentation can result in civil or criminal penalties.

Any export of Tekelec products is subject to the export controls of the United States and the other countries where Tekelec has operations.

No part of this documentation may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying or recording, for any purpose without the express written permission of an authorized representative of Tekelec.

Other product names used herein are for identification purposes only, and may be trademarks of their respective companies.

Trademarks

The Tekelec logo, EAGLE, G-Flex, G-Port, IP⁷, IP⁷Edge, IP⁷ Secure Gateway, and TALI are registered trademarks of Tekelec, Inc. TekServer is a trademark of Tekelec, Inc. All other trademarks are the property of their respective owners.

Patents

This product is covered by one or more of the following U.S. and foreign patents:

U.S. Patent Numbers:

5,008,929, 5,953,404, 6,167,129, 6,324,183, 6,327,350, 6,606,379, 6,639,981, 6,647,113, 6,662,017, 6,735,441, 6,745,041, 6,765,990, 6,795,546, 6,819,932, 6,836,477, 6,839,423, 6,885,872

Ordering Information

Additional copies of this document can be ordered from:

Tekelec Network Signaling Group Attention: Central Logistics 5200 Paramount Parkway Morrisville, North Carolina, 27560

Or e-mail your request to *CentralLogistics*@tekelec.com.

Table of Contents

Chapter 1. Introduction

Feature Overview1-2
X.25 Gateway1-2
STP LAN1-3
Database Transport Access1-3
GSM MAP Screening1-3
Eagle Support for Integrated Sentinel1-3
Manual Organization1-4
Related Publications1-4
Documentation Packaging and Updates1-9
Documentation Admonishments1-9
Customer Care Center1-10
Emergency Response1-10
Maintenance and Administration Subsystem1-11
Database Partitions1-12
Fixed Disk Drive1-13
Removable Cartridge1-14
List of Acronyms and Abbreviations1-15
Chapter 2. X.25 Gateway Configuration
The X.25 Gateway
Connectivity to the X.25 Node
Message Conversion2-3
Address Mapping2-3
X.25 Gateway Description
X.25 Gateway Routing2-5
Connection Determination2-5
X.25 Connection Control2-7
Same Link Management2-8
Logical Channel to Network Management Mapping
X. 25 Gateway Routing on Mated STPs
X.25 Gateway Configuration Procedures
Adding an X.25 LIM

Removing an X.25 LIM	2-18
Adding an X.25 Gateway Destination	2-25
Removing an X.25 Gateway Destination	2-31
Changing an X.25 Gateway Destination	2-34
Adding an X.25 Linkset	2-40
Removing a Linkset Containing X.25 Signaling Links	2-54
Changing an X.25 Linkset	2-61
Adding an X.25 Signaling Link	2-76
Removing an X.25 Signaling Link	2-91
Adding an X.25 Route	2-97
Removing an X.25 Route	2-113
Changing an X.25 Route	2-115
Changing the X.25 Signaling Link Parameters	2-130
Enabling the Large System # Links Controlled Feature	2-134

Chapter 3. STP LAN Configuration

STP LAN Feature Overview	
Message Sequencing	3-3
Message Format	3-3
TCP/IP Router	3-5
Hardware Requirements	
Node Requirements	
Gateway Screening	
Congestion Management	
STPLAN Provisioning	3-11
ACM-based or Mixed ACM- and DCM-Based	
Systems	
Pure DCM-Based Systems	
Understanding Firewall and Router Filtering	
IP Addresses	3-14
Network Configuration Procedures	
Adding an STP LAN Card	
Removing an STP LAN Card	
Adding a TCP/IP Data Link	
Removing a TCP/IP Data Link	
Adding a TCP/IP Node	
Removing a TCP/IP Node	

Chapter 4. Database Transport Access (DTA) Configuration	
DTA Feature Overview	4-2
Functional Description	4-4
Summary of the Gateway Screening Redirect Table	
Commands	
X.25/SS7 Gateway Description	4-9
X.25/SS7 Gateway Routing	4-10
Routing Management Mapping	4-12
SCCP Subsystem Management	4-13
EAGLE 5 SAS Requirements	4-14
Configuring the EAGLE 5 SAS for the DTA Feature	4-15
Gateway Screening Configuration	4-17
Changing the Gateway Screening Redirect Parameters	4-40
Disabling the Gateway Screening Redirect Function	4-51
Chapter 5. GSM MAP Screening Configuration	
Introduction	
GSM MAP Screening Overview	
GSM MAP Screening Details	
GSM MAP Screening Example	5-19
GSM MAP Screening Procedures	5-20
Activating the GSM MAP Screening Feature	5-24
Configuring the MTP MAP Screening Feature	5-37
Configuring a Linkset for the GSM MAP Screening	F 40
Feature	
Changing the System-Wide GSM MAP Screening Options	
Adding a GSM Subsystem Number Screening Entry	
Removing a GSM Subsystem Number Screening Entry	
Adding a GSM MAP Screening Operation Code	
Removing a GSM MAP Screening Operation Code	
Changing a GSM MAP Screening Operation Code	
Adding a GSM MAP Screening Entry	
Removing a GSM MAP Screening Entry	
Changing a GSM MAP Screening Entry	5-125

Chapter 6. Eagle Support for Integrated Sentinel Configuration
Introduction6-2
TCP/IP Link Provisioning6-5
Time Stamping6-6
EAGLE 5 SAS Provisioning6-6
Network Considerations6-8
IP Address Provisioning6-9
Route Configuration6-9
Network Limitations6-9
Enabling the Time Slot Counter Synchronization (TSCSYNC) and Eagle Support for Integrated Sentinel (E5IS) Features6-10
Configuring the Eagle Support for Integrated Sentinel Options
Adding a Sentinel Transport Card (STC)6-19
Removing a Sentinel Transport Card (STC)6-27
Index

910-0097-001 Rev B, October 2005

List of Figures

Figure 1-1.	Database Partitions	1-12
Figure 2-1.	X.25 Gateway Network	
Figure 2-2.	X.25 Gateway Connection Determination	
Figure 2-3.	X.25 Gateway Database Relationships	2-10
Figure 2-4.	Typical X.25/SS7 Gateway Configuration	2-12
Figure 3-1.	STP LAN Messages Embedded in TCP/IP Packets	3-4
Figure 3-2.	STPLAN Network with a TCP/IP Router	
Figure 3-3.	STPLAN in a Large Network	
Figure 3-4.	STPLAN Network with Subnet Routing	
Figure 3-5.	IP Address Bit Categorization	3-15
Figure 3-6.	STP LAN Database Relationships	3-16
Figure 3-7.	STP LAN Configuration Example	3-20
Figure 4-1.	Example of Configuration for the DTA Feature	4-3
-	DTA Encapsulation	
Figure 4-3.	X.25 Routing to a CPC	4-11
Figure 4-4.	Configuration of GTT for Routing Management	4-13
Figure 5-1.	GSM MAP Screening Overview	5-5
Figure 5-2.	GSM MAP Screening Details	5-10
Figure 5-3.	GSM MAP Screening Database Relationships	5-21
Figure 6-1.	Sentinel Monitoring via Hardware Connection	6-2
	Eagle Support for Integrated Sentinel Network	6-3
Figure 6-3.	ESP/EAGLE 5 SAS Network	6-4
	Ethernet Link Establishment - EMP Link Data	

List of Tables

Table 2-1.	Typical X.25/SS7 Gateway Routing Table	2-13
Table 2-2.	X.25 LIM Card Type Combinations	2-14
Table 2-3.	X.25 Linkset Configuration Table	2-41
Table 2-4.	Optional Linkset Parameters	2-42
Table 2-5.	Optional Linkset Parameters	2-64
Table 2-6.	X.25 Signaling Link Configuration Table	2-77
	Number of High-Speed and Low-Speed Links orted at 100% Traffic	2-79
	X.25/SS7 Gateway Route Configuration	
	VXWSLAN External Ports and Their Use	
	Values of IP Addresses	
	Invalid IP Address Error Codes	
Table 3-4.	STP LAN Configuration Example Database	3-19
	DCM Card Locations	
Table 4-1. DPC T	Maximum Encapsulation Length per DTA Type	4-7
Table 4-2.	Commands for the Gateway Screening Redirect	
	Cards Required in Specific Situations	
	Translation Type Parameters	
	Translation Type Parameters	
	Example GSM MAP Screening Table	
	System-Wide Screening Table	
Table 5-3.	GSM MAP Screening Linkset Configuration Table	
	Example GSM MAP Screening SSN Configuration	
	Example GSM MAP Screening Operation Code guration Table	5-66
Table 5-6.	Add GSM MAP Screening Entry Parameter inations	5-93
	Example CGPA GSM MAP Screening Configuration	5-95
	Example CDPA GSM MAP Screening Configuration	5-95

Table 5-9. Change GSM MAP Screening Entry Parameter	
Combinations	5-127
Table 6-1. Monitored Card Types	6-7
Table 6-2. Dual-Slot STC Locations	6-19
Table 6-3. Maximum Number of Low-Speed Signaling Links Monitored by an STC (either Dual-Slot or Single-Slot)	6-20
Table 6-4. Maximum Number of High-Speed Signaling Links Monitored by an STC (either Dual-Slot or Single-Slot)	
at 1 erlang of Traffic	6-21

List of Flowcharts

Flowchart 2-1. Adding an X.25 LIM to the Database	2-17
Flowchart 2-2. Removing an X.25 LIM	2-23
Flowchart 2-3. Adding an X.25 Gateway Destination	2-30
Flowchart 2-4. Removing an X.25 Gateway Destination	2-33
Flowchart 2-5. Changing an X.25 Gateway Destination	2-39
Flowchart 2-6. Adding an X.25 Linkset	2-50
Flowchart 2-7. Removing a Linkset Containing X.25 Signaling Links	2-60
Flowchart 2-8. Changing an X.25 Linkset	2-72
Flowchart 2-9. Adding an X.25 Signaling Link	2-87
Flowchart 2-10. Removing an X.25 Signaling Link	2-96
Flowchart 2-11. Adding an X.25 Route	2-102
Flowchart 2-12. Removing an X.25 Route	2-114
Flowchart 2-13. Changing an X.25 Route	2-119
Flowchart 2-14. Changing the X.25 Signaling Link Parameters	2-133
Flowchart 2-15. Enabling the Large System # Links Controlled Feature	2-138
Flowchart 3-1. Adding an STPLAN Card	
Flowchart 3-2. Removing an STP LAN Card	3-31
Flowchart 3-3. Adding a TCP/IP Data Link	
Flowchart 3-4. Removing a TCP/IP Data Link	
Flowchart 3-5. Adding a TCP/IP Node	3-46
Flowchart 3-6. Removing a TCP/IP Node	3-50
Flowchart 4-1. Configuring for the DTA Feature	4-28
Flowchart 4-2. Changing the Gateway Screening Redirect Parameters	4-47
Flowchart 4-3. Disabling the Gateway Screening Redirect Function	4-55
Flowchart 5-1. Activating the GSM MAP Screening Feature	5-32
Flowchart 5-2. Configuring the MTP MAP Screening Feature	5-41

Flowchart 5-3. Configuring a Linkset for the GSM MAP Screening Feature
Flowchart 5-4. Changing the System-Wide GSM MAP Screening Options
Flowchart 5-5. Adding a GSM Subsystem Number Screening Entry
Flowchart 5-6. Removing a GSM Subsystem Number Screening Entry
Flowchart 5-7. Adding a GSM MAP Screening Operation Code
Flowchart 5-8. Removing a GSM MAP Screening Operation Code
Flowchart 5-9. Changing a GSM MAP Screening Operation Code
Flowchart 5-10. Adding a GSM MAP Screening Entry 5-110
Flowchart 5-11. Removing a GSM MAP Screening Entry 5-123
Flowchart 5-12. Changing a GSM MAP Screening Entry 5-135
Flowchart 6-1. Enabling the TSCSYNC and E5IS Features
Flowchart 6-2. Configuring the Eagle Support for Integrated Sentinel Options
Flowchart 6-3. Adding a Sentinel Transport Card (STC)
Flowchart 6-4. Removing a Sentinel Transport Card (STC)

1

Introduction

Feature Overview	1-2
X.25 Gateway	1-2
STP LAN	1-3
Database Transport Access	1-3
GSM MAP Screening	1-3
Eagle Support for Integrated Sentinel	1-3
Manual Organization	1-4
Related Publications	1-4
Documentation Packaging and Updates	1-9
Documentation Admonishments	1-9
Customer Care Center	1-10
Emergency Response	1-10
Maintenance and Administration Subsystem	1-11
Database Partitions	1-12
List of Acronyms and Abbreviations	1-15

Feature Overview

The *Database Administration Manual – Features* describes the procedures necessary for database administration personnel or translations personnel to configure the EAGLE 5 SAS and its database to implement these features:

- X.25 Gateway
- STP LAN
- Database Transport Access
- GSM MAP Screening
- Eagle Support for Integrated Sentinel

NOTE: Previous editions of this manual contained the procedures for provisioning the Global Title Translation and Enhanced Global Title Translation features. These procedures have been removed from this manual and are now located in the *Database Administration Manual - Global Title Translation*.

NOTE: Before enabling any one of these features, make sure you have purchased the feature to be turned on. If you are not sure whether you have purchased the feature to be turned on, contact your Tekelec Sales Representative or Account Representative.

NOTE: Database administration privileges are password restricted. Only those persons with access to the command class "Database Administration" can execute the administrative functions. Refer to the *Commands Manual* for more information on command classes and commands allowed by those classes.

It is possible for two or more users to make changes to the same database element at any time during their database administration sessions. It is strongly recommended that only one user at a time make any changes to the database.

X.25 Gateway

The X.25 Gateway feature provides connectivity between SS7 and X.25 networks. This feature enables cellular (IS.41) applications using different transport services to connect. The gateway is physically positioned between the SS7 network and the X.25 network and transports IS.41 messages from one network to the other using the SS7 Transaction Capability Application Part (TCAP) protocol.

STP LAN

The STP LAN feature provides a TCP/IP connection from any interface shelf to support external applications. Message signaling units (MSUs) that are processed by the EAGLE 5 SAS can be copied and directed through the LAN interface to an external server or microcomputer application such as a usage measurements system. The gateway screening feature must be available on the STP in order to use the STP LAN feature.

The feature requires an STPLAN card, either the Application Communications Module (ACM) running the **stplan** application, or the Database Communications Module (DCM) running the **vxwslan** application.

Database Transport Access

The Database Transport Access (DTA) feature provides a mechanism for the redirection of specific Message signaling units (MSUs) to a customized database. The EAGLE 5 SAS uses gateway screening to qualify incoming MSUs for redirection. Once gateway screening is passed, the original MSU is encapsulated into a new MSU and routed to its new destination.

GSM MAP Screening

The GSM MAP Screening feature examines the Mobile Application Part (MAP) level of incoming SCCP messages to against predefined criteria in the system database to determine whether or not to allow an external server to interrogate an HLR and obtain information about the location and/or state of a GSM subscriber. This feature also allows the user to control which external entities can request this information, and what information they can request before allowing the message to pass through to the HLR.

Eagle Support for Integrated Sentinel

The Eagle Support for Integrated Sentinel feature allows the network traffic on the EAGLE 5 SAS's signaling links to be monitored by an ESP (extended services platform) without additional intrusive cabling. Message Signaling Units (MSUs), alarms, and events are copied to the Sentinel to provide the network traffic monitoring. The monitored traffic is delivered to the Sentinel using the EAGLE 5 SAS's STCs (Sentinel Transport Cards) which are connected to the ESP subsystem by Ethernet links. The ESP subsystem delivers the monitored traffic to the Sentinel.

Manual Organization

Throughout this document, the terms database and system software are used. Database refers to all data that can be administered by the user, including shelves, cards, links, routes, global title translation tables, and gateway screening tables. System software refers to data that cannot be administered by the user, including generic program loads (GPLs).

This document is organized into the following sections.

Chapter 1, "Introduction," contains an overview of the features described in this manual, general information about the database, and the organization of this manual.

Chapter 2, "X.25 Gateway Configuration," describes the X.25 Gateway feature and the procedures necessary to configure the EAGLE 5 SAS to support this feature.

Chapter 3, "STP LAN Configuration," describes the STP LAN feature and the procedures necessary to configure the EAGLE 5 SAS to support this feature.

Chapter 4, "Database Transport Access (DTA) Configuration," describes the Database Transport Access (DTA) feature and the procedures necessary to configure the EAGLE 5 SAS to support this feature.

Chapter 5, "GSM MAP Screening Configuration," describes the GSM MAP Screening feature and the procedures necessary to configure the EAGLE 5 SAS to support this feature.

Chapter 6, "Eagle Support for Integrated Sentinel Configuration," describes the Eagle Support for Integrated Sentinel feature and the procedures necessary to configure the EAGLE 5 SAS to support this feature.

Related Publications

The *Database Administration Manual – Features* is part of the EAGLE 5 SAS documentation and may refer to one or more of the following manuals:

- The *Commands Manual* contains procedures for logging into or out of the EAGLE 5 SAS, a general description of the terminals, printers, the disk drive used on the system, and a description of all the commands used in the system.
- The *Commands Pocket Guide* is an abridged version of the *Commands Manual*. It contains all commands and parameters, and it shows the command-parameter syntax.
- The *Commands Quick Reference Guide* contains an alphabetical listing of the commands and parameters. The guide is sized to fit a shirt-pocket.

- The *Commands Error Recovery Manual* contains the procedures to resolve error message conditions generated by the commands in the *Commands Manual*. These error messages are presented in numerical order.
- The *Database Administration Manual Gateway Screening* contains a description of the Gateway Screening (GWS) feature and the procedures necessary to configure the EAGLE 5 SAS to implement this feature.
- The *Database Administration Manual Global Title Translation* contains procedural information required to configure an EAGLE 5 SAS to implement these features:
 - Global Title Translation
 - Enhanced Global Title Translation
 - Variable Length Global Title Translation
 - Interim Global Title Modification
 - Intermediate GTT Load Sharing
 - ANSI-ITU-China SCCP Conversion
- The *Database Administration Manual IP7 Secure Gateway* contains procedural information required to configure the EAGLE 5 SAS to implement the SS7-IP Gateway.
- The *Database Administration Manual SEAS* contains the EAGLE 5 SAS configuration procedures that can be performed from the Signaling Engineering and Administration Center (SEAC) or a Signaling Network Control Center (SNCC). Each procedure includes a brief description of the procedure, a flowchart showing the steps required, a list of any EAGLE 5 SAS commands that may be required for the procedure but that are not supported by SEAS, and a reference to optional procedure-related information, which can be found in one of these manuals:
 - Database Administration Manual Gateway Screening
 - Database Administration Manual Global Title Translation
 - Database Administration Manual SS7
- The *Database Administration Manual SS7* contains procedural information required to configure an EAGLE 5 SAS to implement the SS7 protocol.
- The *Database Administration Manual System Management* contains procedural information required to manage the EAGLE 5 SAS database and GPLs, and to configure basic system requirements such as user names and passwords, system-wide security requirements, and terminal configurations.
- The *Dimensioning Guide for EPAP Advanced DB Features* is used to provide EPAP planning and dimensioning information. This manual is used by Tekelec personnel and EAGLE 5 SAS customers to aid in the sale, planning,

implementation, deployment, and upgrade of EAGLE 5 SAS systems equipped with one of the EAGLE 5 SAS EPAP Advanced Database (EADB) Features.

- The *ELAP Administration Manual* defines the user interface to the EAGLE 5 SAS LNP Application Processor on the MPS/ELAP platform. The manual defines the methods for accessing the user interface, menus, screens available to the user and describes their impact. It provides the syntax and semantics of user input, and defines the output the user receives, including information and error messages, alarms, and status.
- The *EPAP Administration Manual* describes how to administer the EAGLE 5 SAS Provisioning Application Processor on the MPS/EPAP platform. The manual defines the methods for accessing the user interface, menus, and screens available to the user and describes their impact. It provides the syntax and semantics of user input and defines the output the user receives, including messages, alarms, and status.
- The *Feature Manual EIR* provides instructions and information on how to install, use, and maintain the EIR feature on the Multi-Purpose Server (MPS) platform of the EAGLE 5 SAS. The feature provides network operators with the capability to prevent stolen or disallowed GSM mobile handsets from accessing the network.
- The *Feature Manual G-Flex C7 Relay* provides an overview of a feature supporting the efficient management of Home Location Registers in various networks. This manual gives the instructions and information on how to install, use, and maintain the G-Flex feature on the Multi-Purpose Server (MPS) platform of the EAGLE 5 SAS.
- The *Feature Manual G-Port* provides an overview of a feature providing the capability for mobile subscribers to change the GSM subscription network within a portability cluster while retaining their original MSISDNs. This manual gives the instructions and information on how to install, use, and maintain the G-Port feature on the Multi-Purpose Server (MPS) platform of the EAGLE 5 SAS.
- The *Feature Manual INP* provides the user with information and instructions on how to implement, utilize, and maintain the INAP-based Number Portability (INP) feature on the Multi-Purpose Server (MPS) platform of the EAGLE 5 SAS.
- The *FTP-Based Table Retrieve Application (FTRA) User Guide* describes how to set up and use a PC to serve as the offline application for the EAGLE 5 SAS FTP Retrieve and Replace feature.
- The *Hardware Manual* EAGLE 5 SAS contains hardware descriptions and specifications of Tekelec's signaling products. These include the EAGLE 5 SAS, OEM-based products such as the ASi 4000 Service Control Point (SCP), the Netra-based Multi-Purpose Server (MPS), and the Integrated Sentinel with Extended Services Platform (ESP) subassembly.

- The Hardware Manual provides an overview of each system and its subsystems, details of standard and optional hardware components in each system, and basic site engineering. Refer to this manual to obtain a basic understanding of each type of system and its related hardware, to locate detailed information about hardware components used in a particular release, and to help configure a site for use with the system hardware.
- The *Hardware Manual Tekelec 1000 Application Server* provides general specifications and a description of the Tekelec 1000 Applications Server (T1000 AS). This manual also includes site preparation, environmental and other requirements, procedures to physically install the T1000 AS, and troubleshooting and repair of Field Replaceable Units (FRUs).
- The *Hardware Manual Tekelec 1100 Application Server* provides general specifications and a description of the Tekelec 1100 Applications Server (T1000 AS). This manual also includes site preparation, environmental and other requirements, procedures to physically install the T1100 AS, and troubleshooting and repair of Field Replaceable Units (FRUs).
- The *Installation Manual* EAGLE 5 SAS contains cabling requirements, schematics, and procedures for installing the EAGLE 5 SAS along with LEDs, Connectors, Cables, and Power Cords to Peripherals. Refer to this manual to install components or the complete systems.
- The *Installation Manual Integrated Applications* provides the installation information for integrated applications such as EPAP 4.0 or earlier (Netra-based Multi-Purpose Server (MPS) platform) and Sentinel. The manual includes information about frame floors and shelves, LEDs, connectors, cables, and power cords to peripherals. Refer to this manual to install components or the complete systems.
- The LNP Database Synchronization Manual LSMS with EAGLE 5 SAS describes how to keep the LNP databases at the LSMS and at the network element (the EAGLE 5 SAS is a network element) synchronized through the use of resynchronization, audits and reconciles, and bulk loads. This manual is contained in both the LSMS documentation set and in the EAGLE 5 SAS documentation set.
- The *LNP Feature Activation Guide* contains procedural information required to configure the EAGLE 5 SAS for the LNP feature and to implement these parts of the LNP feature on the EAGLE 5 SAS:
 - LNP services
 - LNP options
 - LNP subsystem application
 - Automatic call gapping
 - Triggerless LNP feature

- Increasing the LRN and NPANXX Quantities on the EAGLE 5 SAS
- Activating and Deactivating the LNP Short Message Service (SMS) feature
- The *Maintenance Manual* contains procedural information required for maintaining the EAGLE 5 SAS and the card removal and replacement procedures. The *Maintenance Manual* provides preventive and corrective maintenance procedures used in maintaining the different systems.
- The *Maintenance Pocket Guide* is an abridged version of the Maintenance Manual and contains all the corrective maintenance procedures used in maintaining the EAGLE 5 SAS.
- The *Maintenance Emergency Recovery Pocket Guide* is an abridged version of the Maintenance Manual and contains the corrective maintenance procedures for critical and major alarms generated on the EAGLE 5 SAS.
- The MPS Platform Software and Maintenance Manual EAGLE 5 SAS with Tekelec 1000 Application Server describes the platform software for the Multi-Purpose Server (MPS) based on the Tekelec 1000 Application Server (T1000 AS) and describes how to perform preventive and corrective maintenance for the T1000 AS-based MPS. This manual should be used with the EPAP-based applications (EIR, G-Port, G-Flex, and INP).
- The MPS Platform Software and Maintenance Manual EAGLE 5 SAS with Tekelec 1100 Application Server describes the platform software for the Multi-Purpose Server (MPS) based on the Tekelec 1100 Application Server (T1100 AS) and describes how to perform preventive and corrective maintenance for the T1100 AS-based MPS. This manual should be used with the ELAP-based application (LNP).
- The *Provisioning Database Interface Manual* defines the programming interface that populates the Provisioning Database (PDB) for the EAGLE 5 SAS features supported on the MPS/EPAP platform. The manual defines the provisioning messages, usage rules, and informational and error messages of the interface. The customer uses the PDBI interface information to write his own client application to communicate with the MPS/EPAP platform.
- The *Previously Released Features Manual* summarizes the features of previous EAGLE, EAGLE 5 SAS, and IP⁷ Secure Gateway releases, and it identifies the release number of their introduction.
- The *Release Documentation* contains the following documents for a specific release of the system:
 - *Feature Notice* Describes the features contained in the specified release. The Feature Notice also provides the hardware baseline for the specified release, describes the customer documentation set, provides information about customer training, and explains how to access the Customer Support Website.

Release Notice - Describes the changes made to the system during the lifecycle of a release. The Release Notice includes Generic Program Loads (GPLs), a list of PRs resolved in a build, and all known PRs.

NOTE: The *Release Notice* is maintained solely on Tekelec's Customer Support site to provide you with instant access to the most up-to-date release information.

- *System Overview* Provides high-level information on SS7, the IP7 Secure Gateway, system architecture, LNP, and EOAP.
- *Master Glossary* Contains an alphabetical listing of terms, acronyms, and abbreviations relevant to the system.
- Master Index Lists all index entries used throughout the documentation set.
- The *System Manual EOAP* describes the Embedded Operations Support System Application Processor (EOAP) and provides the user with procedures on how to implement the EOAP, replace EOAP-related hardware, device testing, and basic troubleshooting information.

Documentation Packaging and Updates

Customer documentation is updated whenever significant changes that affect system operation or configuration are made.

The document part number is shown on the title page along with the current revision of the document, the date of publication, and the software release that the document covers. The bottom of each page contains the document part number and the date of publication.

Documentation Admonishments

Admonishments are icons and text that may appear in this and other Tekelec manuals that alert the reader to assure personal safety, to minimize possible service interruptions, and to warn of the potential for equipment damage.

Following are the admonishments, listed in descending order of priority.

DANGER: (This icon and text indicate the possibility of <i>personal injury</i> .)
CAUTION: (This icon and text indicate the possibility of <i>service interruption</i> .)

WARNING:

(This icon and text indicate the possibility of *equipment damage*.)

Customer Care Center

The Customer Care Center offers a point of contact through which customers can receive support for problems that may be encountered during the use of Tekelec's products. The Customer Care Center is staffed with highly trained engineers to provide solutions to your technical questions and issues seven days a week, twenty-four hours a day. A variety of service programs are available through the Customer Care Center to maximize the performance of Tekelec products that meet and exceed customer needs.

To receive technical assistance, call the Customer Care Center at one of the following locations:

Tekelec, UK

 Phone:
 +44 1784 467 804

 Fax:
 +44 1784 477 120

 Email:
 ecsc@tekelec.com

Tekelec, USA

Phone (within the continental US) 888-367-8552 (888-FOR-TKLC) (outside the continental US) +1 919-460-2150.

```
Email: support@tekelec.com.
```

When your call is received, the Customer Care Center issues a Customer Service Report (CSR). Each CSR includes an individual tracking number. When a CSR is issued, the Customer Care Center determines the classification of the trouble. The CSR contains the serial number of the system, problem symptoms, and messages. The Customer Care Center assigns the CSR to a primary engineer, who will work to solve the problem. The Customer Care Center closes the CSR when the problem is resolved.

If a critical problem exists, the Customer Care Center initiates emergency procedures (see the following topic, "Emergency Response").

Emergency Response

If a critical service situation occurs, the Customer Care Center offers emergency response twenty-four hours a day, seven days a week. The emergency response provides immediate coverage, automatic escalation, and other features to ensure a rapid resolution to the problem.

A critical situation is defined as an EAGLE 5 SAS or LSMS problem that severely affects service, traffic, or maintenance capabilities, and requires immediate corrective action. Critical problems affect service or system operation, resulting in:

- Failure in the system that prevents transaction processing
- Reduction in EAGLE 5 SAS capacity or in EAGLE 5 SAS traffic-handling capability
- Inability to restart the EAGLE 5 SAS
- Corruption of the database
- Inability to perform maintenance or recovery operations
- Inability to provide any required critical or major trouble notification
- Any other problem severely affecting service, capacity, traffic, and billing. Maintenance capabilities may be defined as critical by prior discussion and agreement with the Customer Care Center.

Maintenance and Administration Subsystem

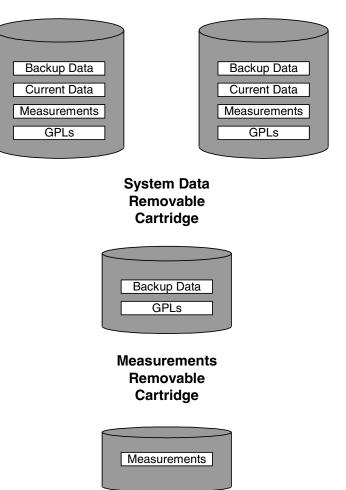
The maintenance and administration subsystem consists of two processors, MASP (maintenance and administration subsystem processor) A and MASP B.

Each MASP is made up of two cards, the GPSM-II card (general purpose service module) and the TDM (terminal disk module).

The GPSM-II card contains the communications processor and applications processor and provides connections to the IMT bus. The GPSM-II controls the maintenance and database administration activity.

The TDM contains the fixed disk drive, the terminal processor for the 16 serial I/O ports and interfaces to the MDAL (maintenance disk and alarm) card which contains the removable cartridge drive and alarm logic. There is only one MDAL card in the maintenance and administration subsystem and it is shared between the two MASPs.

The procedures in the *Database Administration Manual – Features* refer to the terms MASP and MDAL. The database commands, such as **rept-stat-db**, refer to the MASP because the MASP controls the input to the TDM and MDAL, and output from the TDM and MDAL. The MDAL is only referred to when inserting or removing the removable cartridge because the removable cartridge drive resides on the MDAL.


For more information on these cards, go to the Hardware Manual - EAGLE 5 SAS.

Database Partitions

The data that the EAGLE 5 SAS uses to perform its functions are stored in two separate areas: the fixed disk drives, and the removable cartridge. The following sections describe these areas and data that is stored on them. These areas and their partitions are shown in Figure 1-1.

STANDBY FIXED DISK

Figure 1-1. Database Partitions

ACTIVE FIXED DISK

Fixed Disk Drive

There are two fixed disk drives on the system. The fixed disk drives contain the "master" set of data and programs for the system. The two fixed disk drives are located on the terminal disk modules (TDMs). Both disks have the same files. The data stored on the fixed disks is partially replicated on the various cards in the system. Changes made during database administration sessions are sent to the appropriate cards.

The data on the fixed disks can be viewed as four partitions.

- Current partition
- Backup partition
- Measurements partition
- Generic program loads (GPLs) partition

The data which can be administered by users is stored in two partitions on the fixed disk, a current database partition which has the tables which are changed by on-line administration, and a backup database partition which is a user-controlled copy of the current partition.

All of the on-line data administration commands effect the data in the current partition. The purpose of the backup partition is to provide the users with a means of rapidly restoring the database to a known good state if there has been a problem while changing the current partition.

A full set of GPLs is stored on the fixed disk, in the GPL partition. There is an approved GPL and a trial GPL for each type of GPL in this set and a utility GPL, which has only an approved version. Copies of these GPLs are downloaded to the system cards. The GPL provides each card with its functionality. For example, the **ss7ansi** GPL provides MTP functionality for link interface modules (LIMs).

Measurement tables are organized as a single partition on the fixed disk. These tables are used as holding areas for the measurement counts.

Removable Cartridge

A removable cartridge is used for two purposes.

- To hold an off-line back-up copy of the administered data and system GPLs
- To hold a copy of the measurement tables

Because of the size of the data stored on the fixed disk drives on the TDMs, a single removable cartridge cannot store all of the data in the database, GPL and measurements partitions.

To use a removable cartridge to hold the system data, it must be formatted for system data. To use a removable cartridge to hold measurements data, it must be formatted for measurements data. The system provides the user the ability to format a removable cartridge for either of these purposes. A removable cartridge can be formatted on the system by using the **format-disk** command. More information on the **format-disk** command can be found in the *Commands Manual*. More information on the removable cartridge drive can be found in the *Hardware Manual - EAGLE 5 SAS*.

The removable cartridge drive is located on the MDAL card in card location 1117.

Additional and preformatted removable cartridges are available from the Customer Care Center.

List of Acronyms and Abbreviations

ACM	. Application Communications Module
ACMENET	.The card type assigned to an ACM with the ent-card command.
ACT	The action taken, either copy the MSU for the STP LAN feature or redirect the MSU for the gateway screening redirect function, if the NSFI is STOP.
ACT	Activate
AFTPC	Affected Point Code
AINF	.Application Interface Appliqué
ALIAS	. The alias of the global title translation type
ALIASA	.The ANSI alias point code
ALIASI	. The ITU international alias point code
ALIASN	. The ITU national alias point code
ANSI	. American National Standards Institute
APC	.Adjacent Point Code
APCA	. The ANSI adjacent point code
APCI	. The ITU international adjacent point code
APCN	The ITU national adjacent point code
API	. Application Programming Interface
APPL	. The application software assigned to the card.
ARP	.Address Resolution Protocol
AST	Associated State for Maintenance
ATM	.Asynchronous Transfer Mode
ATMTSEL	.ATM Timing Selector
BEI	.Broadcast Exception Indicator
BLKDPC	.Blocked Destination Point Code
BLKOPC	.Blocked Originating Point Code
BPS	.Bits per Second or Bytes per Second
CANC	.Cancel
CAP	. The maximum percentage of ethernet capacity for the STP LAN node connection.
CDPA	.Called Party Address

CDR	.Call Detail Record
CGPA	.Calling Party Address
CHG	.Change
CLLI	.Common Language Location Identifier
Cmd Rej	.Command Rejected
CPC	.Capability Point Code
CPCA	.ANSI capability point code
CPCI	.ITU international capability point code
CPCN	.ITU national capability point code
CSPC GRP	The name of the concerned signaling point code group that contains the point codes that should be notified of the subsystem status.
CSPC	.Concerned Signaling Point Code
CSR	.Customer Service Report
DCE	.Data Communication Equipment
DCM	.Database Communications Module
DE	.Destination Entity
DESTFLD	Allowed Affected Destination Field
DHCP	.Dynamic Host Configuration Protocol
DLK	.Data Link
DLT	.Delete
DPC	.Destination Point Code
DPCA	ANSI Destination Point Code
DPCI	.ITU International Destination Point Code
DPCN	.ITU National Destination Point Code
DPCSSN	.The global title translation performed on the DPC and subsystem number of the MSU
DPL	.Dual-Port Link Layer
DS0	.Digital Signal Zero (56 or 64 Kbs/second)
DS0A	.Digital Signal Level - 0
DSM	.Database Services Module
DTA	.Database Transport Access
DTE	.Data Terminal Equipment

ECM	Error Correction Method
EGTA	The end value of a range of global title addresses
EILA	Enhanced Integrated LIM Applique
EIS	Eagle Integrated Sentinel
ELAP	Eagle LNP Application Processor
ELEI	Exception List Exclusion Indicator
ENT	Enter
EOAM	Enhanced Operations, Administration, and Maintenance
EOAP	Embedded Operations Support System Application Processor
EPAP	Eagle Provisioning Application Processor
ESP	Extended Services Platform
FISU	Fill In Signal Unit
FTP	File Transfer Protocol
GLS	Gateway Loading Services — The application software for the gateway screening loading services
GPL	Generic Program Load
GRP	The name of the concerned signaling point code group
GPSM	General Purpose Service Module
GRT	Gateway Routing Table
GSM	Global System for Mobile Communications
GT	Global Title Routing Indicator
GTA	Global Title Address
GTT	Global Title Translation
GWS	Gateway Screening
GWSA	Gateway Screening Application
GWSD	Gateway Screening Message Discard
GWSM	Gateway Screening Mode
Н0	The H0 heading code in the service information octet.
H1	The H1 heading code in the service information octet.
HMUX	
	High-Speed Multiplexer

ICMP	Internet Control Message Protocol
ID	Identity
ILA	Integrated LIM Applique
IMT	Interprocessor Message Transport
INP	INAP-based Number Portability
IP	Internet Protocol
IPADDR	IP Address
IPAPPL	IP Application
IPLIM	The application software for TCP/IP point-to-point connectivity
IPPORT	IP Port
IPRTE	IP Router
IS-NR	In Service - Normal
IP-SCP	Signaling Control Point with an IP Interface
ISUP	ISDN User Part
ITU	International Telecommunications Union
ITU-I	ITU International
ITU-N	ITU National
L1MODE	The mode of operation used to select the link clocking source at layer 1
L2TSET	The level 2 timer set table
L3MODE	The logical layer 3 address of the X.25 connection
L3TSET	The level 3 timer set table
LAN	Local Area Network
LC	Logical Channel
LC2NM	Logical Channel to Network Management
LIM	Link Interface Module
LIMDS0	A LIM with a DS0A interface
LIMOCU	A LIM with an OCU interface
LIMV35	A LIM with a V.35 interface
LNKS	The number of signaling links in the linkset
LNP	Local Number Portability

LOC	.Card Location
LS	.Link Set
LSMS	. Local Service Management System
LSN	.Link Set Name
LST	.The linkset type of the specified linkset
MAP	.Mated Application
MAP	.Mobile Application Part
MAS	.Maintenance and Administration Subsystem
MASP	.Maintenance and Administration Subsystem Processor
MAU	.Media Access Unit
MDAL	.Maintenance Disk and Alarm Card
MPC	.Mate Point Code
MPCA	ANSI Mate Point Code
MPCI	.ITU International Mate Point Code
MPCN	.ITU National Mate Point Code
MPS	. The maximum packet size (in bytes) allowed on an X.25 signaling link
MPS	.Multi-Purpose Server
MRC	.Message routing under congestion
MRN	.Mated Relay Node
MRN	.Message Reference Number
MSISDN	.Mobile Station (international) ISDN Number
MSSN	.Mate Subsystem Number
MSU	.Message Signaling Unit
MTP	.Message Transfer Part
MTPRSE	. The node adjacent to the linkset is equipped with the MTP restart capability.
MTPRSI	.MTP Restart Indicator
MULT	.The multiplicity indicator for a mated point code
N1	.The maximum number of bits in a frame
N2	.The maximum number of retransmission attempts to complete a transmission.

NC	The network cluster of an ANSI point code, expressed as ni-nc-ncm.
NCM	The network cluster member of an ANSI point code, expressed as ni-nc-ncm.
NDGT	The number of digits contained in the global title translation.
NGT	The new type of global title translation
NI	The network identifier of an ANSI point code, expressed as ni-nc-ncm.
NIC	Internet Network Information Center
NIC	The network indicator code in the service information octet.
NPC	The ITU national point code.
NSFI	Next Screening Function Identifier
NSR/ACT	The field in gateway screening retrieve command outputs containing either the gateway screening stop action set name, if the NSFI is STOP, or the next screening reference name.
OAP	Operations Support System Application Processor
OCU	
000	Office Channel Unit
	Office Channel Unit Out of Service - Maintenance Disabled
OOS-MT-DSBLD	
OOS-MT-DSBLD	Out of Service - Maintenance Disabled Originating Point Code
OOS-MT-DSBLD	Out of Service - Maintenance Disabled Originating Point Code Point Code
OOS-MT-DSBLD OPC PC PCA	Out of Service - Maintenance Disabled Originating Point Code Point Code
OOS-MT-DSBLD OPC PC PCA PCI	Out of Service - Maintenance Disabled Originating Point Code Point Code ANSI Point Code
OOS-MT-DSBLD OPC PC PCA PCI PCN	Out of Service - Maintenance Disabled Originating Point Code Point Code ANSI Point Code ITU International Point Code
OOS-MT-DSBLD OPC PC PCA PCI PCN PCR	Out of Service - Maintenance Disabled Originating Point Code Point Code ANSI Point Code ITU International Point Code ITU National Point Code
OOS-MT-DSBLD OPC PC PCA PCI PCN PCR PCRN1	Out of Service - Maintenance Disabled Originating Point Code Point Code ANSI Point Code ITU International Point Code ITU National Point Code ITU National Point Code Preventive Cyclic Retransmission The threshold of the number of MSUs available for retransmission used with the PCR method of error
OOS-MT-DSBLD OPC PC PCA PCI PCN PCR PCRN1	Out of Service - Maintenance Disabled Originating Point Code Point Code ANSI Point Code ITU International Point Code ITU National Point Code ITU National Point Code Preventive Cyclic Retransmission The threshold of the number of MSUs available for retransmission used with the PCR method of error correction on signaling links.
OOS-MT-DSBLD OPC PC PCA PCI PCN PCR PCRN1 PCRN2	Out of Service - Maintenance Disabled Originating Point Code Point Code ANSI Point Code ITU International Point Code ITU National Point Code ITU National Point Code Preventive Cyclic Retransmission The threshold of the number of MSUs available for retransmission used with the PCR method of error correction on signaling links. The threshold of the number of MSU octets available for retransmission used with the PCR method of error correction on signaling links.

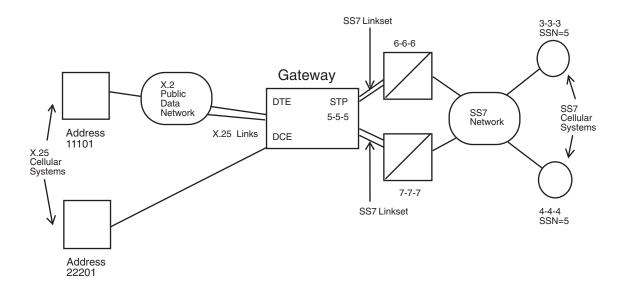
PDU	Protocol Data Unit
PORT	. The port on the LIM assigned to the signaling link.
PORT A LSET	. The name of the linkset to which port A of the signaling link is assigned.
PORT B LSET	. The name of the linkset to which port B of the signaling link is assigned.
PRI	The priority of a single message or the beginning message priority in a range of priorities in the service information octet.
PST	Primary State for Maintenance
PVC	.Permanent Virtual Circuit
PVN	Private Virtual Network
RC	The relative cost value of a route, a mated application, or a mated relay node
REPT-STAT	.Report Status
RI	. The routing indicator in the called party address (CDPA) and the calling party address (CGPA).
RST	Restore
RT	The type of routing performed for messages originating in the SS7 domain and destined for the X.25 domain.
RTRV	Retrieve
SADDR	a pseudo X.25 network address used to address an SS7 application entity.
SCCP	Signaling Connection Control Part – The application software used by the TSMs for the global title translation (GTT) feature.
SCP	.Service Control Point
SCRN	Screen Set Name
SCRSET	Screen Set
SEAC	.Signaling Engineering and Administration Center
SEAS	.Signaling Engineering and Administration System
SENS	.Scalable Enhanced Network Stack - VxWorks TCP/IP Stack
SI	. The service indicator for the service information octet, which are the last two bits of the subservice field.
SIO	Service Information Octet

SLC	Signaling Link Code
SLK	Signaling Link
SLS	Signaling Link Selector
SLSCI	5- to 8-bit SLS Conversion Indicator
SLTSET	The signaling link test message record associated with the linkset.
SNCC	Signaling Network Control Center
SOL	Solitary Multiplicity
SPC	Secondary Point Code
SR	The name of the screening reference.
SRM	Subsystem routing messages
SS7 ADDR	The dummy X.25 address assigned to the SS7 destination entity on the SS7 side of the circuit.
SS7 APC	Adjacent Point Codes in the SS7 domain
SS7 DPC	SS7 Destination Point Code
SS7	Signaling System #7
SS7ANSI	The application software for the ANSI SS7 signaling links
SS7GX25	The application software for the X.25/SS7 gateway feature
SSA	Subsystem Allowed network management message
SSN	SS7 Subsystem Number
SSP	Subsystem Prohibited network management message
SST	Secondary State for Maintenance
SST	Subsystem Status Test network management message
STC	Sentinel Transport Card
STP LAN	A feature that copies MSUs selected through the gateway screening process and sends these MSUs to an external host computer for further processing.
STP	Signal Transfer Point
STPLAN	The application software used with the ACM for the STP LAN feature
SVC	Switched Virtual Circuit
SVCA	Automatic Switched Virtual Circuit

SVCR	Remote Switched Virtual Circuit
T1	The amount of time to wait before retransmitting a frame.
ТСАР	Transaction Capability Application Part
ТСР	Transmission Control Protocol
TCP/IP	
TDM	Terminal Disk Module
TFA	Transfer Allowed network management message
TFATCABMLQ	the TFA/TCA broadcast minimum link quantity
TFP	Transfer Prohibited network management message
TSC	Time Slot Counter
TSET	Transmitter Signaling Element Timing
TSM	Translation Services Module
ТТ	Translation Type
TTN	Translation Type Name
TVG	Ticket Voucher Group
ТҮРЕ	
TYPEA	The ANSI global title translation type
TYPEI	
TYPEN	
UAM	Unsolicited Alarm Message
UDP	User Datagram Protocol
VCI	Virtual Channel Identifier
VPI	Virtual Path Identifier
VSCCP	
VXWSLAN	
WIN	
WNP	Wireless Number Portability
X.25 APC	Adjacent Point Codes in the X.25 domain
X.25 DE	X.25 Destination Entity

X25 ADDR	The X.25 network address of the X.25 destination entity or the SS7 node.
XADDR	The X.25 address assigned to the X.25 destination entity on the X.25 side of the circuit
XLAT	.Translate Indicator
ХРС	a pseudo point code, along with a pseudo subsystem number, used by the SS7 network to address an X.25. application entity
XSSN	a pseudo subsystem number, along with a pseudo point code, used by the SS7 network to address an X.25 application entity

2


X.25 Gateway Configuration

The X.25 Gateway	2–2
X.25 Gateway Description	2–4
X.25 Gateway Routing	2–5
X.25 Gateway Configuration Procedures	2–9
Adding an X.25 LIM	2–14
Removing an X.25 LIM	2–18
Adding an X.25 Gateway Destination	2–25
Removing an X.25 Gateway Destination	2–31
Changing an X.25 Gateway Destination	2–34
Adding an X.25 Linkset	2–40
Removing a Linkset Containing X.25 Signaling Links	2–54
Changing an X.25 Linkset	2–61
Adding an X.25 Signaling Link	2–76
Removing an X.25 Signaling Link	2–91
Adding an X.25 Route	2–97
Removing an X.25 Route	. 2–113
Changing an X.25 Route	. 2–115
Changing the X.25 Signaling Link Parameters	.2–130
Enabling the Large System # Links Controlled Feature	.2–134

The X.25 Gateway

The EAGLE 5 SAS X.25/SS7 gateway feature provides connectivity between SS7 and X.25 networks. This enables cellular (IS.41) applications using different transport services to connect. The gateway is physically positioned between the SS7 network and X.25 network. See Figure 2-1. The gateway transports IS.41 messages from one network to the other using the SS7 Transaction Capability Application Part (TCAP) protocol.

Figure 2-1. X.25 Gateway Network

The X.25 gateway requires a new communications capability between SS7 and X.25 networks. The gateway uses a LIM card running the **ss7gx25** application. The LIM supports the DS0A, OCU, or V.35 interfaces at lines speeds of 4800, 9600, 19,200, 56,000, and 64,000 bps.

The card looks and operates like any other LIM card. The card is labeled as a LIM-DS0, LIM-V35, and so forth. It can perform gateway screening. It must also provide three distinct functional components: MTP (Level 3) processing, IS.41 gateway and X.25 conversion.

The MTP Level 3 processing is similar to the operation on SS7 LIM cards. The IS.41 gateway function converts the MTP portion of the packet to X.25 protocol. The X.25 function controls the X.25 protocol and the X.25 link status.

Connectivity to the X.25 Node

The gateway supports these two types of connectivity to the X.25 node:

- direct connectivity
- connectivity through a public or private data network

If the gateway has a direct link to the X.25 node, the gateway appears as a DCE to the X.25 node. The gateway can also connect to the X.25 node through a public data network where it appears as a DTE to the X.25 network.

Message Conversion

The gateway performs the message conversion for all TCAP traffic in both directions. The message conversion removes and adds protocol envelopes used by the X.25 and SS7 networks. The TCAP portion of the data is not changed. The MTP/SCCP of SS7 is converted to X.25 and reverse, depending upon the traffic direction. TCAP is passed through the gateway unchanged. IS.41 uses TCAP as the "carrier."

Address Mapping

In order to route traffic between networks, the gateway performs address mapping between the X.25 domain and the SS7 domain. The X.25 application entities and the SS7 application entities must have addresses not only in their domain but also in the opposite network domain. For example, the X.25 application entity is addressed by the SS7 network using a pseudo point code and pseudo subsystem number (XPC and XSSN). Conversely, the SS7 application entity must be addressed by the X.25 network using a pseudo X.25 network address (SADDR).

X.25 Gateway Description

X.25 requires that any data that is transmitted must be sent on a connection. A connection represents a route between two application entities (one in the X.25 domain and one in the SS7 domain). It must exist before any messages can be transferred. The connection can be one of three types:

- PVC (permanent virtual circuit): A fixed connection that can only be altered through administration.
- SVCA (switched virtual circuit-automatic): A connection established by the STP as soon as the X.25 gateway card initializes.
- SVCR (switched virtual circuit-remote): A connection established by the X.25-user end when necessary.

For these connections, a route must be defined through administration. Every application entity that can be connected through the gateway must be defined. The association between the application entities must also be defined.

An X.25 link appears to the STP as though it is an SS7 link. Adjacent point codes are either the originating point code of the X.25 distant end (if the connection is direct), or a virtual point code (if the connection is through a network). This is equivalent to routing through an adjacent STP to the signaling points connected to it. See Figure 2-1.

As messages travel from the X.25 network to the SS7 network, the gateway determines the destination point code (DPC) and adds the SS7 SCCP and MTP envelopes to the TCAP message. The gateway determines the virtual circuit and removes the SCCP and MTP envelopes on messages transmitted from the SS7 network side to an X.25 destination.

Other attributes of the gateway are as follows:

- Each X.25 link supports up to 255 logical channels as SVCs or PVCs or a combination.
- The EAGLE 5 SAS supports up to 1024 X.25 logical connections. If the 2000 X.25 routes feature is turned on, shown by the entry X252000 = on entry in the rtrv-feat command output, the EAGLE 5 SAS supports up to 2000 X.25 logical connections.
- All X.25 network-initiated calls are accepted when the calling X.25 node is correctly defined in the STP.
- Gateway screening is supported from the X.25 to the SS7 network.
- Routing does not occur through the X.25 gateway between two X.25 points.
- X.25 networks that do not supply the calling address in the call request are not supported for network-initiated connections.

X.25 Gateway Routing

Gateway routing is performed through four different functions:

- Connection Determination
- X.25 Connection Control
- Same-Link Management
- Logical Channel to Network Management Mapping

Connection Determination

The destination address for X.25 is defined as a destination element (X.25 DE). An X.25 DE is an object on the X.25 network to which a connection can be made and has a point code assigned to it. An X.25 link can be either point-to-point (direct) or through an intermediary network. A destination for SS7 is a point code, plus an optional subsystem number (SSN).

A destination for X.25 is dependent upon whether a connection is established. A connection is defined as a pair of destinations that are exchanging messages. The destination for X.25 is an X.25 address before connection, and a logical channel (LC) after connection. One of the destinations must be in the X.25 domain and the other in the SS7 domain. See Figure 2-2.

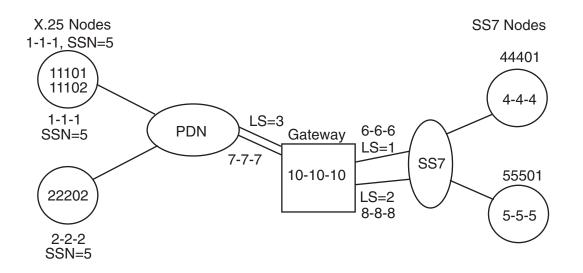


Figure 2-2. X.25 Gateway Connection Determination

The connection is determined using the gateway routing table (GRT). This process can be divided by whether the message arrives from the X.25 side (inbound) or the SS7/MTP side (outbound):

• Inbound messages:

If the logical channel on which the message arrives is in the connected state, it already points to an entry in the gateway routing table. The destination point code (DPC) is the value in the SS7 point code field. The origination point code (OPC) is the value in the X.25 point code field.

For an incoming SVC (SVCR), the X.25 user must first establish the connection.

• Outbound messages:

The DPC is used to locate the connection on which to send the message. The order of the lookup in the GRT is as follows:

1. The STP locates an entry in the X.25 point code field that matches the DPC. If no entry is found for that point code, the gateway produces MRN #1140 and the MSU is discarded.

NOTE: If no entry is found, or an SVCA defined, the connection cannot be established.

- **2.** The STP verifies that the OPC matches the SS7 point code field. If there is no match, the gateway produces MRN #1134 and the MSU is discarded.
- **3.** Once the connection entry is found in the Gateway Routing Table (GRT), the STP examines the card address field and proceeds as follows:

If	then
the card address is the same as the card that receives the MSU,	the routing is complete and the message passes to format conversion.
the card address is not the same card that receives the MSU,	the STP passes the MSU to "single link" management for the card defined in the card address field.

X.25 Connection Control

There is an additional routing requirement, connection routing and control, that is different from SS7 routing.

A connection must be established before any message can be transferred between the STP and an X.25 DE. A connection is established depending upon when and where the connection is made.

A fixed connection route is defined through administration and can be either PVC (permanent virtual circuit), SVCA (switched virtual circuit-automatic) or SVCR (switched virtual circuit - remote). If the connection type field is PVC, the PVC is already established when the link is initialized through provisioning in the public data network (PDN) and STP. The PVC remains in effect while the link is operational.

If the connection type field is SVCA, the connection is established by the designated LIM card (defined in the location field) immediately after the link becomes initialized. It is possible that the remote end becomes available during this cycle, and makes the connection from the remote end. The remote end could make the connection to any card. The connection remains in effect while the link is operational or until the remote end fails or clears the connection.

If the connection type field is SVCR, the connection can only be made by the X.25 DE as follows:

If an X.25 DE wants to send a message to an SS7 node, and the STP has not established a connection to that node, the X.25 DE attempts to establish one before sending the message. The X.25 DE establishes the connection by sending a call request to the STP with identification in the calling address field, and the SS7 node in the called address field.

When the STP receives the incoming call, the STP verifies both the calling and called addresses using the X.25 address and SS7 address fields. If the STP finds an entry for the X.25 address pair, it checks to see if a connection is active.

If	then
the connection is active,	the STP clears the incoming call.
the connection is not active, and the SS7 point code is accessible from the STP,	it is set as active. Otherwise, the STP clears the incoming call.
an entry for the X.25 address pair is not found,	the STP checks the X.25 destination table to see if the designated X.25 addresses are present.
both addresses are present (the caller is in the X.25 domain and the called address is in the SS7 domain),	the connection is established and a temporary entry is added to the database.

Same Link Management

X.25 requires that if there is a set of links into a PDN (or directly to an X.25 DE), a response to a request must be returned on the same link and logical channel as the request was received. Because MTP routing does not use a particular link on a linkset, it is likely that a response would go to a non-originating LIM. Same link management assures that the message is sent out on the same link. This is achieved by each LIM informing all others LIMs when the state of a connection changes.

Logical Channel to Network Management Mapping

The EAGLE 5 SAS X.25/SS7 gateway also provides management procedures for failed X.25 logical channels. This feature allows traffic destined for failed logical channels to be rerouted to an alternate route.

When configuring logical channel to network management mapping (LC2NM), you must determine if the X.25 entity is expecting associated queries and responses to use the same logical channel, or if they may be assigned to different logical channels. If associated queries and responses can be received over different logical channels, load balancing and failure recovery through alternate routing is supported.

If logical channel to network management mapping is enabled, and the X.25 entity can receive associated queries and responses on different logical channels, data destined to a failed logical channel is diverted by forced rerouting procedures in the EAGLE 5 SAS to the alternate route. All other associated traffic is diverted, and the logical channels to which associated traffic is assigned are made unavailable.

If the X.25 entity expects all associated queries and responses to be received on the same logical channel, traffic is still diverted to the alternate route if the logical channel fails. Forced rerouting procedures are not needed in this case.

If the alternate route is not available, the EAGLE 5 SAS uses level three network management procedures. For example, an X.25 link interface module (LIM) determines a logical channel has failed. Network management diverts traffic away from the failed logical channel to a defined terminate route.

No network management messages are sent outside the EAGLE 5 SAS, and therefore should have no adverse effects on the SS7 network. The EAGLE 5 SAS uses SS7 network management procedures in software to divert traffic from the failed X.25 signaling link to another X.25 signaling link.

If route management mapping is not enabled on the X.25 linkset, there is no indication of logical channel failures. An unsolicited alarm message (UAM) output is created, which provides a textual message to indicate failure of an X.25 logical channel. All traffic destined to the failed logical channel is discarded.

If X.25 level 2 should fail within the X.25 LIM, all X.25 routes associated with the LIM are considered unavailable and forced rerouting procedures are used.

In either of the above cases, when the logical channel is restored to service, network management will divert traffic back to the newly restored logical channel.

X. 25 Gateway Routing on Mated STPs

If the network uses two STPs as gateways between an X.25 network (or set of X.25 networks) and the SS7 network, there are special routing considerations.

To use the mated STPs, you must define two connections between each pair of nodes that communicate through the mated pair. The view is different for the X.25 node and the SS7 node. To the SS7 node, there is one destination for the messages. To the X.25 node, there are two X.25 address pairs that represent this same logical connection.

The X.25 application on one MSC sees two connection paths to another MSC – one is primary the other secondary.

X.25 Gateway Configuration Procedures

For the EAGLE 5 SAS to implement the X.25/SS7 gateway feature, the EAGLE 5 SAS must be configured to support the X.25 network. These items must be configured to support the X.25 network.

- X.25 LIMs
- X.25 gateway destinations
- X.25 linksets
- X.25 signaling links
- X.25 routes
- X.25 signaling link parameters if the default X.25 signaling link parameters need to be changed

The procedures shown in this chapter use a variety of commands. If more information on these commands is needed, go to the *Commands Manual* to find the required information.

In addition to the X.25 gateway destinations, X.25 linksets, X.25 signaling links, X.25 routes, and X.25 signaling link parameters, other entities must be provisioned in the database to support the X.25 network. The entities that are required for the particular X.25 entity are listed with the particular procedure. They are also shown here to give an overview of what is required to configure the EAGLE 5 SAS to support the X.25 network. These entities must also be provisioned in the order that they are shown.

Figure 2-3 shows the relationships of the database elements that are configured in these procedures.

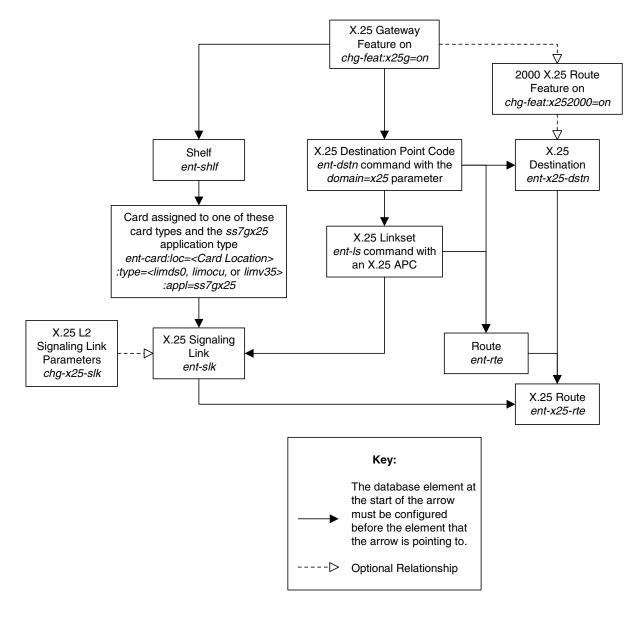
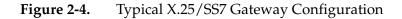


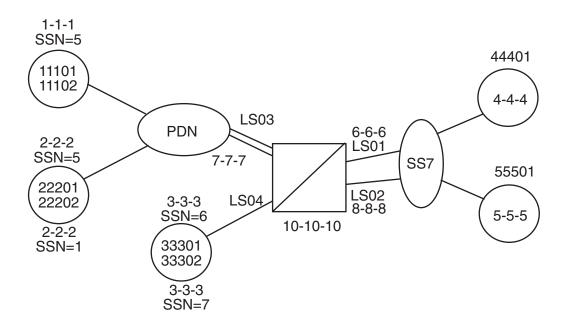
Figure 2-3. X.25 Gateway Database Relationships

 The X.25/SS7 gateway feature must be turned on with the chg-feat:x25g=on command. If the database is to contain more that 1024 X.25 destinations and routes, the 2000 X.25 routes feature must be turned on with the chg-feat:x252000=on command. The rtrv-feat command is used to verify whether these features are on or off.

NOTE: Once the X.25 gateway feature and the 2000 X.25 routes features are turned on with the chg-feat command, they cannot be turned off.

2. Make sure that the required shelf is in the database with the **rtrv-shlf** command. If it is not in the database, add it with the **ent-shlf** command.


- 3. Make sure the cards that the X.25 signaling links will be assigned to are in the database with the rtrv-card command. These cards must be LIMs (card types limds0, limocu, or limv35) and must have the ss7gx25 application assigned to them. If these cards are not in the database, add them with the ent-card command, specifying a LIM (:type=limds0, :type=limocu, or :type=limv35) and the ss7gx25 application (:appl=ss7gx25).
- 4. The X.25 network configuration for the EAGLE 5 SAS requires linksets, routes, and X.25 destinations. These entities use point codes and these point codes must be defined in the database. Verify that the necessary point codes are in the database with the rtrv-dstn command. If they are not in the database, add them with the ent-dstn command. The point codes must also be assigned to the X.25 domain.


NOTE: No database entity used for the X.25/SS7 gateway feature can contain ITU international and ITU national point codes. The ent-dstn command does not allow an ITU international or ITU national point code to be assigned to the X.25 domain.

- 5. The X.25 destination, used to assign an X.25 address to a point code, must be in the database. Verify this with the rtrv-x25-dstn command. If it is not in the database, add it with the ent-x25-dstn command, specifying a point code in the X.25 domain.
- 6. The linksets that will contain the X.25 signaling links must be in the database. These linksets must be assigned an adjacent point code (APC) that is in the X.25 domain. Verify this with the rtrv-ls command. If the APC is in the X.25 domain, the entry x25 is shown in the DOMAIN field of the output. If the necessary linksets are not in the database, add them with the ent-ls command, specifying an APC that is in the database and in the X.25 domain, added in step 4.
- 7. The X.25 signaling links must be in the database. Verify this with the rtrv-slk command. The X.25 signaling links are assigned to linksets in the X.25 domain, from step 6 and to LIMs with the ss7gx25 application, from step 3. They also have dashes in the L2TSET field in the rtrv-slk command. If the necessary X.25 signaling links are not in the database, add them with the ent-slk command. These signaling links must be assigned to LIMs with the ss7gx25 application and to linksets whose APC is in the X.25 domain.
- 8. When the X.25 signaling links are added to the database, there are parameters that control the behavior of these signaling links that are not configured with the ent-slk command and are assigned default values. These values can be changed with the chg-x25-slk command. If you wish to change the values for these parameters, display the current values with the rtrv-x25-slk command. Change these values with the chg-x25-slk command.

- 9. The point codes assigned to each of the X.25 destinations must also be assigned to a route. A route must also be assigned to the linksets containing the X.25 APCs. Verify this with the rtrv-rte command. If the necessary routes are not in the database, add them to the database with the ent-rte command, specifying a point code assigned to an X.25 destination, from step 5, and a linkset with an X.25 APC, from step 6.
- 10. The X.25 routes, containing the X.25 addresses from step 5, and the X.25 signaling links from step 7, must be in the database. The connection type assigned to each X.25 route must conform to the number of connection types allowed for X.25 signaling link assigned to the X.25 route. This is shown in output of the rtrv-x25-slk command, from step 8, in the PVC and sVC fields. Verify this with the rtrv-x25-rte command. If the X.25 routes are not in the database, add them with the ent-x25-rte command.

Figure 2-4 shows a typical network configuration and Table 2-1 shows the information in the gateway routing table (GRT) after the typical network is provisioned.

Conn #	X.25 Address	SS7 Address	X.25 Point Code/ SSN	SS7 Point Code/ SSN	Connection Type	Location	Port	Logical Channel
1	11101	44401	1-1-1/5	4-4-4/5	PVC	1205	А	1
2	11102	55501	1-1-1/5	5-5-5/5	PVC	1206	А	2
3	22201	44401	2-2-2/5	4-4-4/5	PVC	1205	А	2
4	22202	55501	2-2-2/10	5-5-5/10	PVC	1206	А	1
5	33301	44401	3-3-3/6	4-4-4/6	Auto-SVC	1207	А	
6	33302	55501	3-3-3/7	5-5-5/7	Auto-SVC	1207	А	

Table 2-1.Typical X.25/SS7 Gateway Routing Table

Adding an X.25 LIM

This procedure is used to add an X.25 LIM to the database using the ent-card command. The ent-card command uses these parameters.

:loc – The location of the card being added to the database.

:type – The type of card being added to the database. The X.25 LIM can be assigned to one of three card types: limds0, limocu, or limv35. Table 2-2 shows the names and part numbers of the cards that can be configured as X.25 LIMs in the database. This can be used to verify that the card being entered into the database matches the card physically installed in the EAGLE 5 SAS.

Table 2-2.X.25 LIM Card Type Combinations

Card Name	Part Number	Card Type (:type)
LIM or	870-1014-XX	limds0, limocu, limv35
LIM-AINF	870-1488-XX	mituso, mitocu, mitvos
EILA	870-2049-XX	limds0, limocu, limv35
LIM-DS0	870-1009-XX	limds0
LINI-D30	870-1485-XX	mnuso
LIM-OCU	870-1010-XX	limocu
LINI-OCU	870-1486-XX	lintocu
LIM-V.35	870-1012-XX	limv35
LIIVI- V .33	870-1487-XX	iiiitv35
		link interface module using
		talled in place of the LIM-DS0,
	DS0, LIM-OCU, or l	figured in the database as LIM-V.35 card.
	, ,	

:app1 – The application software or GPL that is assigned to the card. For this procedure, the value of this parameter is **ss7gx25**.

:force – If the global title translation feature is on, the force=yes parameter allows the LIM to be added to the database even if the current SCCP transactions-per-second threshold is unable to support the additional SCCP transaction-per-second capacity created by adding the LIM. This parameter is obsolete and is no longer used.

The shelf to which the card is to be added, must already be in the database. This can be verified with the **rtrv-shlf** command. If the shelf is not in the database, see the "Adding a Shelf" procedure in the *Database Administration Manual* – *System Management*.

The card cannot be added to the database if the specified card location already has a card assigned to it.

Before an X.25 LIM can be configured in the database, the X.25 gateway feature must be turned on with the **chg-feat** command. The **rtrv-feat** command can verify that the X.25 gateway feature is on.

NOTE: Once the X.25 gateway feature is turned on with the chg-feat command, it cannot be turned off.

The examples in this procedure are used to configure an X.25 LIM on a LIM-V.35 card in card slot 1202 in the database.

Procedure

1. Display the cards in the EAGLE 5 SAS using the **rtrv-card** command. This is an example of the possible output.

rlghnc	xa03w 05-0	9-28 09:12	:36 GMT EAGLE5	34.0	.0			
CARD	TYPE	APPL	LSET NAME	LINK	SLC	LSET NAME	LINK	SLC
1101	TSM	SCCP						
1102	TSM	GLS						
1113	GPSM	EOAM						
1114	TDM-A							
1115	GPSM	EOAM						
1116	TDM-B							
1117	MDAL							
1117	MDAL							
1201	LIMDS0	SS7ANSI	sp2	A	0	spl	В	0
1203	LIMDS0	SS7ANSI	sp3	A	0			
1204	LIMDS0	SS7ANSI	sp3	A	1			
1206	LIMDS0	SS7ANSI	nsp3	A	1	nsp4	В	1
1207	LIMV35	SS7GX25	nspl	A	0			
1208	LIMV35	SS7GX25	nspl	A	1			
1216	ACMENET	STPLAN						
1301	TSM	SCCP						
1308	LIMDS0	SS7ANSI	sp6	A	1	sp7	В	0
1314	LIMDS0	SS7ANSI	sp7	A	1	sp5	В	1
1317	ACMENET	STPLAN						

The cards should be distributed throughout the EAGLE 5 SAS for proper power distribution. Refer to the *Installation Manual - EAGLE 5 SAS* for the shelf power distribution.

If the **APPL** field of the **rtrv-card** command output shows cards assigned to the **ss7gx25** GPL, skip steps 2, and 3, and go to step 4.

2. Verify that the X.25 gateway and global title translation features are on, by entering the rtrv-feat command. If the X.25 gateway feature is on, the x25G field should be set to on For this example, the X.25 gateway feature is off.

If the global title translation feature is on, shown by the entry **GTT** = on in the **rtrv-feat** output, then the EAGLE 5 SAS must contain the proper number of SCCP cards to support the X.25 LIM being added.

NOTE: The rtrv-feat command output contains other fields that are not used by this procedure. If you wish to see all the fields displayed by the

rtrv-feat command, see the rtrv-feat command description in the Commands Manual.

If the X.25 gateway feature is on and the global title translation feature is off, skip steps 3, 4, and 5, and go to step 6.

If the X.25 gateway and global title translation features are on, skip steps 3, and 4 and go to step 5.

3. If the X.25 gateway feature is not on, shown by the **x25G** = off entry in the rtrv-feat command output in step 2, turn the X.25 gateway feature on by entering this command.

```
chg-feat:x25g=on
```

NOTE: Once the X.25 gateway feature is turned on with the chg-feat command, it cannot be turned off.

When the **chg-feat** has successfully completed, this message should appear.

```
rlghncxa03w 05-09-07 00:57:31 GMT EAGLE5 34.0.0
CHG-FEAT: MASP A - COMPLTD
```

- **4.** Using Table 2-2 on page 2-14 as a reference, verify that the card has been physically installed into the proper location.
- 5. Add the card using the ent-card command.

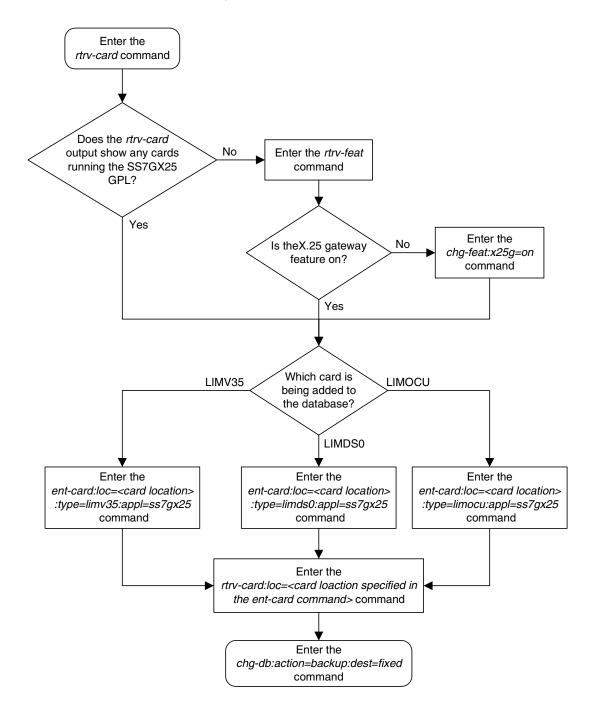
For this example, enter this command.

ent-card:loc=1202:type=limv35:appl=ss7gx25

When this command has successfully completed, this message should appear.

```
rlghncxa03w 05-09-12 09:12:36 GMT EAGLE5 34.0.0
ENT-CARD: MASP A - COMPLTD
```

6. Verify the changes using the **rtrv-card** command with the card location specified. For this example, enter this command.


```
rtrv-card:loc=1202
```

This is an example of the possible output.

```
rlghncxa03w 05-09-28 09:12:36 GMT EAGLE5 34.0.0
CARD TYPE APPL LSET NAME LINK SLC LSET NAME LINK SLC
1202 LIMV35 SS7GX25
```

7. Backup the new changes using the chg-db:action=backup:dest=fixed command. These messages should appear, the active Maintenance and Administration Subsystem Processor (MASP) appears first.

BACKUP (FIXED) : MASP A - Backup starts on active MASP.BACKUP (FIXED) : MASP A - Backup on active MASP to fixed disk complete.BACKUP (FIXED) : MASP A - Backup starts on standby MASP.BACKUP (FIXED) : MASP A - Backup on standby MASP to fixed disk complete.

Flowchart 2-1. Adding an X.25 LIM to the Database

Removing an X.25 LIM

This procedure is used to remove an X.25 LIM from the database using the dlt-card command.

The card being removed must exist in the database.

CAUTION: If the X.25 LIM is the last X.25 LIM in service, removing this card from the database will cause X.25 traffic to be lost.

The examples in this procedure are used to remove the X.25 LIM in card location 1202.

Canceling the REPT-STAT-CARD Command

Because the **rept-stat-card** command used in this procedure can output information for a long period of time, the **rept-stat-card** command can be canceled and the output to the terminal stopped. There are three ways that the **rept-stat-card** command can be canceled.

- Press the F9 function key on the keyboard at the terminal where the rept-stat-card command was entered.
- Enter the canc-cmd without the trm parameter at the terminal where the rept-stat-card command was entered.
- Enter the canc-cmd:trm=<xx>, where <xx> is the terminal where the rept-stat-card command was entered, from another terminal other that the terminal where the rept-stat-card command was entered. To enter the canc-cmd:trm=<xx> command, the terminal must allow Security Administration commands to be entered from it and the user must be allowed to enter Security Administration commands. The terminal's permissions can be verified with the rtrv-secu-trm command. The user's permissions can be verified with the rtrv-user or rtrv-secu-user commands.

For more information about the canc-cmd command, go to the Commands Manual.

Procedure

1. Display the cards in the database using the **rtrv-card** command. The X.25 LIMs are shown by the entry **ss7gx25** in the **APPL** field. This is an example of the possible output.

rlghno	cxa03w 05-0	9-28 09:12	:36 GMT EAGLE5	34.0	.0			
CARD	TYPE	APPL	LSET NAME	LINK	SLC	LSET NAME	LINK	SLC
1101	TSM	SCCP						
1102	TSM	GLS						
1113	GPSM	EOAM						
1114	TDM-A							
1115	GPSM	EOAM						
1116	TDM-B							
1117	MDAL							
1201	LIMDS0	SS7ANSI	sp2	A	0	spl	В	0
1202	LIMV35	SS7GX25						
1203	LIMDS0	SS7ANSI	sp3	A	0			
1204	LIMDS0	SS7ANSI	sp3	A	1			
1206	LIMDS0	SS7ANSI	nsp3	A	1	nsp4	В	1
1207	LIMV35	SS7GX25	nspl	A	0			
1208	LIMV35	SS7GX25	nsp1	A	1			
1216	ACMENET	STPLAN						
1301	TSM	SCCP						
1308	LIMDS0	SS7ANSI	sp6	A	1	sp7	В	0
1314	LIMDS0	SS7ANSI	sp7	A	1	sp5	В	1
1317	ACMENET	STPLAN						

2. Display the current configuration of the X.25 routes in the database by entering the rtrv-x25-rte command. This is an example of the possible output.

rlghncxa03w 05-09	-12 09:12:36 GMT	EAGLE5	34.0.	0			
X25 ADDR	SS7 ADDR	TYPE	LOC	PORT	LC	RT	LC2NM
2510010011234567	342342341234567	pvc	1202	a	02	xpc	no
251001002	234234231	pvc	1202	a	04	рс	no
51200105	34223422845	svca	1202	a		pc	no
2510103	232330	pvc	1206	a	06	xpc	yes
2510103	232330	svcr		-		рс	no
2516019002	24247235	svca	1206	a		pc	no
345454	4545434	svca	1206	a		pc	no
X.25 ROUTE TABLE	IS 30 % FULL						

3. Remove the X.25 route assigned to the card that you wish to remove (in this example, 1202) by entering the dlt-x25-rte command. For this example, enter these commands.

```
dlt-x25-rte:xaddr=2510010011234567:saddr=342342341234567
dlt-x25-rte:xaddr=251001002:saddr=234234231
dlt-x25-rte:xaddr=51200105:saddr=34223422845
```

When each of these commands have successfully completed, this message should appear.

rlghncxa03w 05-09-12 09:12:36 GMT EAGLE5 34.0.0 DLT-X25-RTE: MASP A - X.25 Route table 45% full DLT-X25-RTE: MASP A - COMPLTD 4. Display the status of the X.25 signaling link assigned to the card by entering the rept-stat-slk command, specifying the card location and the signaling link. For this example, enter this command.

```
rept-stat-slk:loc=1202:link=a
```

This is an example of the possible output.

```
rlghncxa03w 05-09-12 09:12:36 GMT EAGLE5 34.0.0

SLK LSN CLLI PST SST AST

1202,A lsngwy ----- IS-NR Avail ----

ALARM STATUS = No Alarms.

UNAVAIL REASON = --

Command Completed.
```

5. If the X.25 signaling link is not in an OOS-MT-DSBLD state, deactivate the X.25 signaling link using the dact-slk command. For this example, enter this command.

dact-slk:loc=1202:link=a

When this command has successfully completed, this message should appear.

```
rlghncxa03w 05-09-12 09:12:36 GMT EAGLE5 34.0.0
Deactivate Link message sent to card
```

6. Display the cards that are in service with the rept-stat-card:stat=nr command.

rept-stat-card:stat=nr

This is an example of the possible output.

rlghn	lcxa03w 05-09-	27 16:43	:42 GMT	EAGLE5 34.0.0		
CARD	VERSION	TYPE	APPL	PST	SST	AST
1101	113-003-000	TSM	SCCP	IS-NR	Active	
1102	113-003-000	TSM	GLS	IS-NR	Active	
1109	113-003-000	HMUX	BPHMUX	IS-NR	Active	
1110	113-003-000	HMUX	BPHMUX	IS-NR	Active	
1201	113-003-000	LIMDS0	SS7ANSI	IS-NR	Active	
1202	113-003-000	LIMV35	SS7GX25	IS-NR	Active	
1203	113-003-000	LIMDS0	SS7ANSI	IS-NR	Active	
1204	113-003-000	LIMDS0	SS7ANSI	IS-NR	Active	
1206	113-003-000	LIMDS0	SS7ANSI	IS-NR	Active	
1207	113-003-000	LIMV35	SS7GX25	IS-NR	Active	
1208	113-003-000	LIMV35	SS7GX25	IS-NR	Active	
1209	113-003-000	HMUX	BPHMUX	IS-NR	Active	
1210	113-003-000	HMUX	BPHMUX	IS-NR	Active	
1216	113-003-000	ACMENET	STPLAN	IS-NR	Active	
1301	113-003-000	TSM	SCCP	IS-NR	Active	
1308	113-003-000	LIMDS0	SS7ANSI	IS-NR	Active	
1309	113-003-000	HMUX	BPHMUX	IS-NR	Active	
1310	113-003-000	HMUX	BPHMUX	IS-NR	Active	
1314	113-003-000	LIMDS0	SS7ANSI	IS-NR	Active	
1317	113-003-000	ACMENET	STPLAN	IS-NR	Active	

7. If the signaling link on the card to be removed from the database is the last signaling link in a linkset, the force=yes parameter must be used with the dlt-slk command. To verify this, enter the rtrv-ls command with the linkset name shown in step 1 (LSET NAME field). For this example, enter this command.

rtrv-ls:lsn=lsngwy

This is an example of the possible output

rlghncxa03w 05-09-28 16:31:35 GMT EAGLE5 34.0.0 L3T SLT GWS GWS GWS														
LSN lsngwy					SET	SET	BEI	LST	LNKS	AC	T MES	DIS	SLSCI	
		I 		TFATCABM	LQ MT 		E AS	L8 -						
IPGWAPC MATELSN IPTPS LSUSEALM SLKUSEALM no														
				TYPE LIMV35	SET		3	MODE		T		Nl	N2	-
	LOC	LINK	SLC	TYPE	LP SET		3	AT TS			VCI	VP	I L	L
	LOC	LINK	SLC	TYPE				ATM TSEL		VCI	VP:	I CR	E1ATI C4 SI	
	LOC	LINK	SLC	TYPE	IPLI	IML2								
	LOC	LINK	SLC	TYPE										
	LOC	LINK	SLC	TYPE				ECM			PCR N2		E1 PORT	TS
	LOC	LINK	SLC	TYPE		BPS		ECM			PCR N2	T1 LOC	T1 PORT	TS
Link set	table	is (10 c	of 1024)	1% 1	Eull								

8. Inhibit the card using the **rmv-card** command, specifying the card location. If the LIM to be inhibited contains the only signaling link in the linkset that in service, the **force=yes** parameter must also be specified. For this example, enter this command.

rmv-card:loc=1202:force=yes

When this command has successfully completed, this message should appear.

rlghncxa03w 05-09-12 09:12:36 GMT EAGLE5 34.0.0 Card has been inhibited.

9. Remove the signaling link on the specified card by using the dlt-slk command. If the output of step 7 shows that the signaling link being removed is the last signaling link in a linkset, the force=yes parameter must be used. For this example, enter this command.

dlt-slk:loc=1202:link=a:force=yes

When this command has successfully completed, this message should appear.

rlghncxa03w 05-09-12 09:12:36 GMT EAGLE5 34.0.0 DLT-SLK: MASP A - COMPLTD

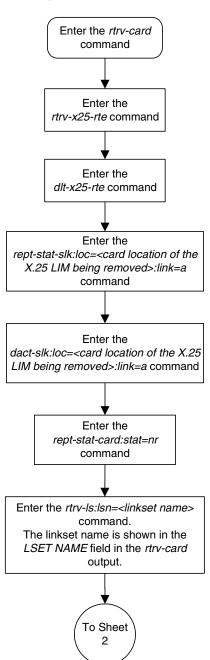
10. Remove the card using the dlt-card command with the card location of the card to be removed. The dlt-card command has only one parameter, loc, which is the location of the card. For this example, enter this command.

dlt-card:loc=1202

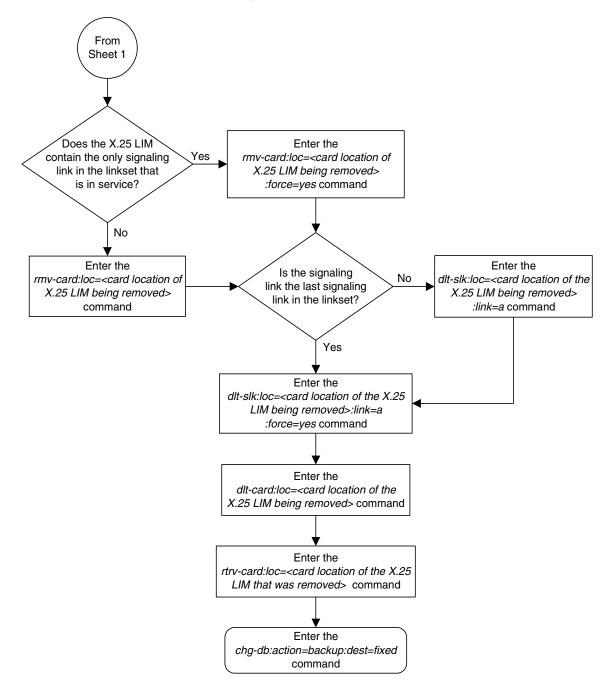
When this command has successfully completed, this message should appear.

```
rlghncxa03w 05-09-12 09:12:36 GMT EAGLE5 34.0.0
DLT-CARD: MASP A - COMPLTD
```

11. Verify the changes using the **rtrv-card** command specifying the card that was removed in step 11. For this example, enter this command.


rtrv-card:loc=1202

When this command has successfully completed, this message should appear.


E2144 Cmd Rej: Location invalid for hardware configuration

12. Backup the new changes using the chg-db:action=backup:dest=fixed command. These messages should appear, the active Maintenance and Administration Subsystem Processor (MASP) appears first.

```
BACKUP (FIXED) : MASP A - Backup starts on active MASP.BACKUP (FIXED) : MASP A - Backup on active MASP to fixed disk complete.BACKUP (FIXED) : MASP A - Backup starts on standby MASP.BACKUP (FIXED) : MASP A - Backup on standby MASP to fixed disk complete.
```


Flowchart 2-2. Removing an X.25 LIM (Sheet 1 of 2)

Flowchart 2-2. Removing an X.25 LIM (Sheet 2 of 2)

Adding an X.25 Gateway Destination

This procedure is used to add an X.25 destination to the database using the **ent-x25-dstn** command.

The ent-x25-dstn command uses these parameters.

:xaddr – The X.25 network address of the X.25 destination entity or the SS7 node.

:dpc – The real SS7 point code assigned to a real SS7 node or the dummy point code for an X.25 destination entity. The value for this parameter is an ANSI point code.

:ssn – The subsystem number of the destination point code to be assigned to the X.25 address.

The examples in this procedure are based on the example network shown in Figure 2-4 and Table 2-1.

A destination point code (DPC) in the X.25 domain – see the "Adding a ANSI Destination Point Code" procedure in the *Database Administration Manual* – SS7.

NOTE: The point code assigned to the X.25 address in the X.25 destination cannot be an ITU international or ITU national point code. The ent-dstn command does not allow an ITU international or ITU national point code to be assigned to the X.25 domain.

The destination point code specified with the ent-x25-dstn command must be a full point code. Cluster point codes and network routing point codes cannot be specified for X.25 destinations. For more information on cluster point codes, go to the "Cluster Routing and Management Diversity" section in the *Database Administration Manual – SS7*. For more information on network routing point codes, go to the "Network Routing" section in the *Database Administration Manual – SS7*.

The X.25 gateway destination to be added cannot already be in the database. This can be verified in step 2.

The X.25/SS7 gateway feature must be turned on. Verify this by entering the **rtrv-feat** command. If the X.25/SS7 gateway feature is off, shown by the entry **X25G** = off in the output of the **rtrv-feat** command, it can be turned on by entering the **chg-feat:x25g=on** command.

If the database is to contain more than 1024 X.25 destinations and routes, The 2000 X.25 routes feature must be turned on. Verify this by entering the rtrv-feat command. If the 2000 X.25 routes feature is off, shown by the entry X252000 = off in the output of the rtrv-feat command, it can be turned on by entering the chg-feat:x252000=on command.

NOTE: Once the X.25 gateway feature and the 2000 X.25 routes features are turned on with the chg-feat command, they cannot be turned off.

Canceling the RTRV-DSTN Command

Because the **rtrv-dstn** command used in this procedure can output information for a long period of time, the **rtrv-dstn** command can be canceled and the output to the terminal stopped. There are three ways that the **rtrv-dstn** command can be canceled.

- Press the **F9** function key on the keyboard at the terminal where the **rtrv-dstn** command was entered.
- Enter the canc-cmd without the trm parameter at the terminal where the rtrv-dstn command was entered.
- Enter the canc-cmd:trm=<xx>, where <xx> is the terminal where the rtrv-dstn command was entered, from another terminal other that the terminal where the rtrv-dstn command was entered. To enter the canc-cmd:trm=<xx> command, the terminal must allow Security Administration commands to be entered from it and the user must be allowed to enter Security Administration commands. The terminal's permissions can be verified with the rtrv-secu-trm command. The user's permissions can be verified with the rtrv-user or rtrv-secu-user commands.

For more information about the canc-cmd command, go to the Commands Manual.

Procedure

 Verify that the X.25 gateway feature is on, by entering the rtrv-feat command. If the X.25 gateway feature is on, the x25G field should be set to on. For this example, the X.25 gateway feature is off.

NOTE: The rtrv-feat command output contains other fields that are not used by this procedure. If you wish to see all the fields displayed by the rtrv-feat command, see the rtrv-feat command description in the *Commands Manual*.

If the X.25 gateway feature is on, skip step 2 and go to step 3.

If the X.25 gateway feature is not on, go to step 2.

2. If the X.25 gateway feature is not on, shown by the X25G = off entry in the rtrv-feat command output in step 1, turn the X.25 gateway feature on by entering this command.

chg-feat:x25g=on

NOTE: Once the X.25 gateway feature is turned on with the chg-feat command, it cannot be turned off.

When the **chg-feat** has successfully completed, this message should appear.

rlghncxa03w 05-09-07 00:57:31 GMT EAGLE5 34.0.0 CHG-FEAT: MASP A - COMPLTD **3.** Display the DPCs in the database by entering the **rtrv-dstn** command. This is an example of the possible output.

rlqhncxa03w 05-09-28 16:02:05 GMT EAGLE5 34.0.0 DPCA CLLI BEI ELEI ALIASI ALIASN DOMAIN 020-002-* rlghncbb000 yes yes ----- SS7 004-004-004 ----- yes --- SS7 005-005-005 ----- yes --- SS7 240-012-004 rlghncbb001 yes ---1-111-111111SS7240-012-005 rlghncbb002 yes ---1-112-211112SS7240-012-006 rlghncbb003 yes ---1-112-311113SS7
 240-012-008
 yes
 1-112-5
 11113
 SS7

 001-001-001
 yes
 -- X25
 002-002-002 ----- yes --- X25 003-003-003 ----- yes --- X25
 DPCI
 CLLI
 BEI
 ELEI
 ALIASA
 ALIASN
 DOMAIN

 2-131-1
 rlghncbb023
 no
 -- 222-210-000
 12001
 SS7

 2-131-2
 --- no
 -- 222-211-001
 12002
 SS7

 2-131-3
 -- no
 -- 222-211-002
 12003
 SS7
 CLLI BEI ELEI ALIASA CLLI BEI ELEI ALIASA ALIASI DOM. rlghncbb013 no --- 222-200-200 2-121-1 SS7 DPCN ALIASI DOMAIN 11211 11212 rlghncbb013 no --- 222-200-201 2-121-2 SS7 DESTINATION ENTRIES ALLOCATED: 2000 FULL DPC(s): 14 NETWORK DPC(s):0CLUSTER DPC(s):1TOTAL DPC(s):15CAPACITY (% FULL):1%X-LIST ENTRIES ALLOCATED:500

If the required DPC is not in the database, go to the "Adding a Destination Point Code" procedure in the *Database Administration Manual - SS7* and add the DPC to the database.

4. Display the X.25 destinations in the database by entering the **rtrv-x25-dstn** command. This is an example of the possible output.

```
rlghncxa03w 05-09-28 21:16:37 GMT EAGLE5 34.0.0
X25 ADDR SS7 DPC SSN
220525586456772 240-012-004 002
234234231 240-012-005 113
23423422834 244-010-006 235
2342342325 244-010-006 236
23423423 244-010-007 112
423423045656767 244-010-008 112
9342 244-010-006 234
X.25 DSTN TABLE IS 30 % FULL
```

If the database is to contain more than 1024 X.25 destinations and routes, the X.25 gateway feature and the 2000 X.25 routes feature must be turned on. If the 2000 X.25 routes feature is on, the **x252000** field in the **rtrv-feat** command output in step 1 should be set to **on**.

If the database is to contain 1024 X.25 destinations and routes or less, skip step 5 and go to step 6.

If the 2000 X.25 routes feature is on, skip step 5 and go to step 6.

If the 2000 X.25 routes feature is off, and the database is to contain more than 1024 X.25 destinations and routes, go to step 5.

5. If the 2000 X.25 routes feature is not on, shown by the **x252000** = off entry in the rtrv-feat command output in step 1, turn the 2000 X.25 routes feature on by entering this command.

```
chg-feat:x252000=on
```

NOTE: Once the 2000 X.25 routes feature is turned on with the chg-feat command, it cannot be turned off.

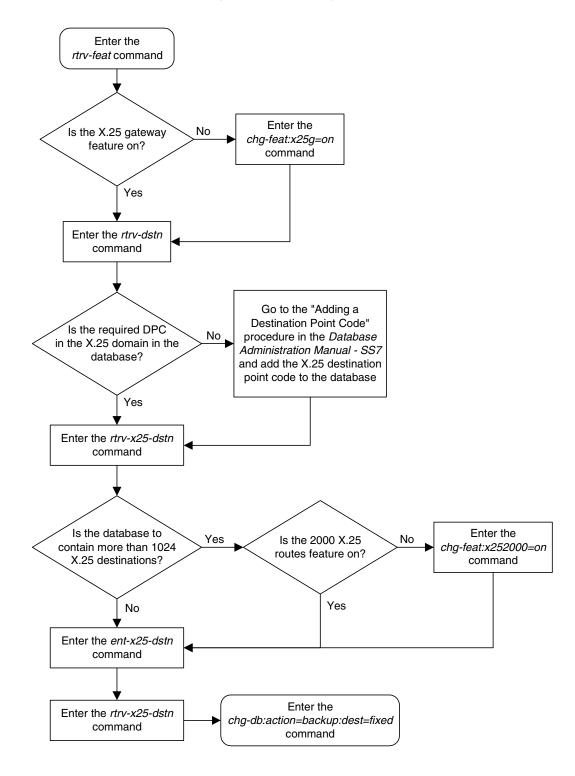
When the **chg-feat** has successfully completed, this message should appear.

```
rlghncxa03w 05-09-07 00:57:31 GMT EAGLE5 34.0.0
CHG-FEAT: MASP A - COMPLTD
```

6. Add the X.25 destination to the database using the ent-x25-dstn command. For this example, enter these commands.

```
ent-x25-dstn:xaddr=11101:dpc=001-001-001:ssn=5
ent-x25-dstn:xaddr=11102:dpc=001-001-001:ssn=5
ent-x25-dstn:xaddr=22201:dpc=002-002-002:ssn=5
ent-x25-dstn:xaddr=22202:dpc=002-002-002:ssn=10
ent-x25-dstn:xaddr=33301:dpc=003-003-003:ssn=6
ent-x25-dstn:xaddr=33302:dpc=003-003-003:ssn=7
ent-x25-dstn:xaddr=44401:dpc=004-004-004
ent-x25-dstn:xaddr=55501:dpc=005-005-005
```

When each of these commands have successfully completed, this message should appear.


```
rlghncxa03w 05-09-28 08:38:53 GMT EAGLE5 34.0.0
X.25 DSTN TABLE 33 % FULL
ENT-X25-DSTN: MASP A - COMPLTD
```

7. Verify the changes using the **rtrv-x25-dstn** command. This is an example of the possible output.

rlqhncxa03w 05-0	9-28 21:16:37	GMT EAGLE5 34.0.0
X25 ADDR	SS7 DPC	SSN
11101	001-001-001	005
11102	001-001-001	005
22201	002-002-002	005
22202	002-002-002	010
220525586456772	240-012-004	002
234234231	240-012-005	113
23423422834	244-010-006	235
2342342325	244-010-006	236
23423423		112
33301	003-003-003	006
33302	003-003-003	007
3450912	244-010-005	114
423423045656767	244-010-008	112
44401	004-004-004	005
55501	005-005-005	005
9342	244-010-006	234
X.25 DSTN TABLE	IS 30 % FULL	

8. Backup the new changes using the chg-db:action=backup:dest=fixed command. These messages should appear, the active Maintenance and Administration Subsystem Processor (MASP) appears first.

BACKUP (FIXED) : MASP A - Backup starts on active MASP.
BACKUP (FIXED) : MASP A - Backup on active MASP to fixed disk complete.
BACKUP (FIXED) : MASP A - Backup starts on standby MASP.
BACKUP (FIXED) : MASP A - Backup on standby MASP to fixed disk complete.

Flowchart 2-3. Adding an X.25 Gateway Destination

Removing an X.25 Gateway Destination

This procedure is used to remove an X.25 destination from the database using the dlt-x25-dstn command.

The dlt-x25-dstn command has only one parameter, xaddr, which is the X.25 network address of the X.25 destination entity or the SS7 node.

The examples in this procedure are used to remove the X.25 destination **33301** from the database.

The X.25 gateway destination to be removed must be in the database. This can be verified in step 1.

The X.25 gateway destination to be removed cannot have any X.25 routes assigned to it. This can be verified in step 2.

Procedure

1. Display the X.25 destinations in the database by entering the **rtrv-x25-dstn** command. This is an example of the possible output.

```
      rlghncxa03w 05-09-28 21:16:37 GMT EAGLES 34.0.0

      X25 ADDR
      SS7 DPC
      SSN

      11101
      001-001-001
      005

      22201
      002-002-002
      005

      22022
      002-002-002
      010

      234234231
      240-012-004
      002

      2342342325
      244-010-006
      235

      23423423
      244-010-007
      112

      33301
      003-003-003
      006

      33302
      003-003-003
      007

      3450912
      244-010-006
      114

      423423045656767
      244-010-008
      112

      44401
      004-004-004
      005

      55501
      005-005-005
      005

      9342
      244-010-006
      234

      X.25 DSTN TABLE IS
      30 % FULL
```

2. Verify that there are no X.25 routes assigned to the X.25 destination to be removed by entering the **rtrv-x25-rte** command. This is an example of the possible output.

 rlghncxa03w 05-09-28 21:16:37 GMT EAGLES 34.0.

 X25 ADDR
 SS7 ADDR
 TYPE
 LOC
 PORT
 LC
 RT
 LC2NM

 11101
 44401
 pvc
 1205
 a
 01
 xpc
 no

 11102
 55501
 pvc
 1206
 a
 02
 pc
 no

 22201
 44401
 pvc
 1205
 a
 01
 xpc
 ypc

 33301
 44401
 pvc
 1206
 a
 01
 xpc
 ypc

 33302
 55501
 pvc
 1207
 a
 - pc
 no

 33302
 55501
 svca
 1207
 a
 - pc
 no

 X.25 ROUTE TABLE IS
 30 % FULL
 svca
 1207
 a
 - pc
 no

3. If the X.25 destination to be removed, shown in the x25 ADDR column in the output of step 1, is shown in either the x25 ADDR or ss7 ADDR columns in the output of step 2, then the X.25 destination has an X.25 route assigned to it. Remove these X.25 routes by using the dlt-x25-rte command. For this example, enter this command.

dlt-x25-rte:xaddr=33301:saddr=44401

When this command has successfully completed, this message should appear.

```
rlghncxa03w 05-09-28 11:43:04 GMT EAGLE5 34.0.0
DLT-X25-RTE: MASP A - X.25 Route table 45% full
DLT-X25-RTE: MASP A - COMPLTD
```

4. Verify the changes using the **rtrv-x25-rte** command. This is an example of the possible output.

```
      rlghncxa03w 05-09-28 21:16:37 GMT EAGLES 34.0.

      X25 ADDR
      SS7 ADDR
      TYPE
      LOC
      PORT
      LC
      RT
      LC2NM

      11101
      44401
      pvc
      1205
      a
      01
      xpc
      no

      11102
      55501
      pvc
      1206
      a
      02
      pc
      no

      22201
      44401
      pvc
      1205
      a
      02
      pc
      no

      22202
      55501
      pvc
      1206
      a
      01
      xpc
      yes

      33302
      55501
      svca
      1207
      a
      --
      pc
      no

      X.25 ROUTE TABLE IS
      30 % FULL
      svca
      1207
      a
      --
      pc
      no
```

5. Remove the X.25 destination from the database using the dlt-x25-dstn command. For this example, enter this command.

dlt-x25-dstn:xaddr=33301

When this command has successfully completed, this message should appear.

rlghncxa03w 05-09-28 08:38:53 GMT EAGLE5 34.0.0 X.25 DSTN TABLE 33 % FULL DLT-X25-DSTN: MASP A - COMPLTD

6. Verify the changes using the rtrv-x25-dstn command. This is an example of the possible output.

```
      rlghncxa03w 05-09-28 21:16:37
      GMT
      EAGLE5 34.0.0

      X25 ADDR
      SS7 DPC
      SSN

      11101
      001-001-001
      005

      22201
      002-002-002
      005

      22202
      002-002-002
      010

      220525586456772
      240-012-004
      002

      234234231
      240-012-005
      113

      2342342325
      244-010-006
      236

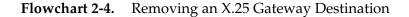
      23423423
      244-010-007
      112

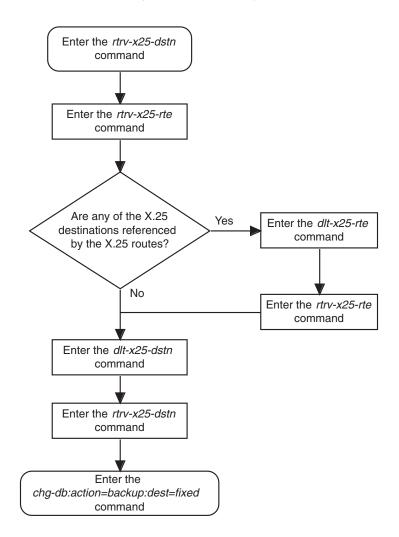
      33302
      003-003-003
      007

      3450912
      244-010-006
      114

      423423045656767
      244-010-008
      112

      44401
      004-004-004
      005


      55501
      005-005-005
      005


      9342
      244-010-006
      234

      X.25 DSTN TABLE IS
      30 % FULL
```

7. Backup the new changes using the chg-db:action=backup:dest=fixed command. These messages should appear, the active Maintenance and Administration Subsystem Processor (MASP) appears first.

BACKUP (FIXED) : MASP A - Backup starts on active MASP.
BACKUP (FIXED) : MASP A - Backup on active MASP to fixed disk complete.
BACKUP (FIXED) : MASP A - Backup starts on standby MASP.
BACKUP (FIXED) : MASP A - Backup on standby MASP to fixed disk complete.

Changing an X.25 Gateway Destination

This procedure is used to change the attributes of an X.25 destination in the database using the **chg-x25-dstn** command.

The chg-x25-dstn command uses these parameters.

:xaddr – The X.25 network address of the X.25 destination entity or the SS7 node.

:dpc – The real SS7 point code assigned to a real SS7 node or the dummy point code for an X.25 destination entity. The value for this parameter is an ANSI point code.

:ssn – The subsystem number of the destination that is assigned to the X.25 address.

The examples in this procedure are used to change the DPC and SSN of the X.25 destination **33301** in the database to the DPC 011-011-011 and the SSN 230.

The X.25 gateway destination to be changed must be in the database and cannot have any X.25 routes assigned to it. This can be verified in steps 1 and 2.

If the destination point code (DPC) is changed, the new DPC must be in the database. This can be verified in step 5 with the **rtrv-dstn** command. If the new DPC is not in the database, go to the "Adding a ANSI Destination Point Code" procedure in the *Database Administration Manual* – *SS7*.

NOTE: The point code assigned to the X.25 address in the X.25 destination cannot be an ITU international or ITU national point code. The ent-dstn command does not allow an ITU international or ITU national point code to be assigned to the X.25 domain.

The destination point code specified with the chg-x25-dstn command must be a full point code. Cluster point codes and network routing point codes cannot be specified for X.25 destinations. For more information on cluster point codes, go to the "Cluster Routing and Management Diversity" section in the *Database Administration Manual* – SS7. For more information on network routing point codes, go to the "Network Routing" section in the *Database Administration Manual* – SS7.

Canceling the RTRV-DSTN Command

Because the **rtrv-dstn** command used in this procedure can output information for a long period of time, the **rtrv-dstn** command can be canceled and the output to the terminal stopped. There are three ways that the **rtrv-dstn** command can be canceled.

- Press the F9 function key on the keyboard at the terminal where the rtrv-dstn command was entered.
- Enter the canc-cmd without the trm parameter at the terminal where the rtrv-dstn command was entered.
- Enter the canc-cmd:trm=<xx>, where <xx> is the terminal where the rtrv-dstn command was entered, from another terminal other that the terminal where the rtrv-dstn command was entered. To enter the canc-cmd:trm=<xx> command, the terminal must allow Security Administration commands to be entered from it and the user must be allowed to enter Security Administration commands. The terminal's permissions can be verified with the rtrv-secu-trm command. The user's permissions can be verified with the rtrv-user or rtrv-secu-user commands.

For more information about the canc-cmd command, go to the Commands Manual.

Procedure

1. Display the X.25 destinations in the database by entering the **rtrv-x25-dstn** command. This is an example of the possible output.

. 0

rlghncxa03w 05-0	9-28	21:1	L6:37	GMT	EAGLE5	34.0
X25 ADDR	SS7	DPC		SSN		
11101	001	-001-	-001	005		
11102	001	-001-	-001	005		
22201	002	-002-	-002	005		
22202	002	-002-	-002	010		
220525586456772	240	-012-	-004	002		
234234231	240	-012-	-005	113		
23423422834	244	-010-	-006	235		
2342342325	244	-010-	-006	236		
23423423	244	-010-	-007	112		
33301	003	-003-	-003	006		
33302	003	-003-	-003	007		
3450912	244	-010-	-005	114		
423423045656767	244	-010-	-008	112		
44401	004	-004-	-004	005		
55501	005	-005-	-005	005		
9342	244	-010-	-006	234		
X.25 DSTN TABLE	IS :	30 %	FULL			

2. Verify that there are no X.25 routes assigned to the X.25 destination to be changed by entering the **rtrv-x25-rte** command. This is an example of the possible output.

```
      rlghncxa03w 05-09-28 21:16:37 GMT EAGLES 34.0.

      X25 ADDR
      SS7 ADDR
      TYPE
      LOC
      PORT
      LC
      RT
      LC2NM

      11101
      44401
      pvc
      1205
      a
      01
      xpc
      no

      11102
      55501
      pvc
      1206
      a
      02
      pc
      no

      22201
      44401
      pvc
      1205
      a
      01
      xpc
      yes

      33301
      44401
      pvc
      1206
      a
      01
      xpc
      yes

      33302
      55501
      pvc
      1207
      a
      --
      pc
      no

      33302
      55501
      svca
      1207
      a
      --
      pc
      no

      X.25 ROUTE TABLE IS
      30 % FULL
      svca
      1207
      a
      --
      pc
      no
```

3. If the X.25 destination to be removed, shown in the x25 ADDR column in the output of step 1, is shown in either the x25 ADDR or ss7 ADDR columns in the output of step 2, then the X.25 destination has an X.25 route assigned to it. Remove these X.25 routes by using the dlt-x25-rte command. For this example, enter this command.

dlt-x25-rte:xaddr=33301:saddr=44401

When this command has successfully completed, this message should appear.

```
rlghncxa03w 05-09-28 11:43:04 GMT EAGLE5 34.0.0
DLT-X25-RTE: MASP A - X.25 Route table 45% full
DLT-X25-RTE: MASP A - COMPLTD
```

4. Verify the changes using the **rtrv-x25-rte** command. This is an example of the possible output.

rlghncxa03w	05-09-28 21:16:37 GMT	EAGLE5	34.0.	0			
X25 ADDR	SS7 ADDR	TYPE	LOC	PORT	LС	RT	LC2NM
11101	44401	pvc	1205	a	01	xpc	no
11102	55501	pvc	1206	a	02	pc	no
22201	44401	pvc	1205	a	02	pc	no
22202	55501	pvc	1206	a	01	xpc	yes
33302	55501	svca	1207	a		pc	no
X.25 ROUTE T	ABLE IS 30 % FULL						

5. If the DPC is being changed, display the DPCs in the database by entering the **rtrv-dstn** command. This is an example of the possible output.

rlghncxa03w 05-09-28 16:02:05 GMT EAGLE5 34.0.0 CLLI BEI ELEI ALIASI ALIASN DPCA DOMAIN 020-002-* rlghncbb000 yes yes ----- SS7 004-004-004 ----- yes --- SS7 005-005-005 ----- yes --- SS7 240-012-004 rlghncbb001 yes ---1-111-111111SS7240-012-005 rlghncbb002 yes ---1-112-211112SS7240-012-006 rlghncbb003 yes ---1-112-311113SS7

 240-012-008
 ---- yes
 -- 1-112-3
 11113
 SS7

 240-012-008
 ---- yes
 -- 1-113-5
 11114
 SS7

 001-001-001
 ---- yes
 -- ----- X25

 002-002-002
 ----- yes
 ------ X25

 003-003-003 ----- yes --- X25 011-011-011 ----- Yes --- X25
 DPCI
 CLLI
 BEI
 ELEI
 ALIASA
 ALIASN
 DOMAIN

 2-131-1
 rlghncbb023
 no
 -- 222-210-000
 12001
 SS7

 2-131-2
 --- no
 -- 222-211-001
 12002
 SS7

 2-131-3
 --- no
 -- 222-211-002
 12003
 SS7

 DPCN
 CLLI
 BEI
 ELEI
 ALIASA
 ALIASI
 DOM.

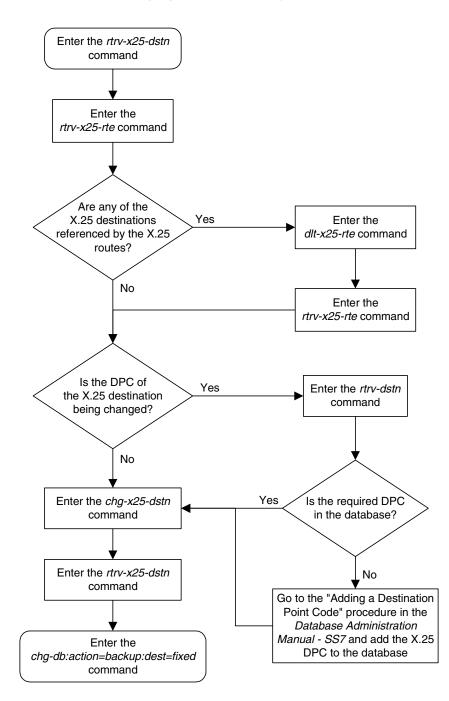
 11211
 rlghncbb013
 no
 -- 222-200-200
 2-121-1
 SS7

 11212
 rlghncbb013
 no
 -- 222-200-201
 2-121-2
 SS7
 ALIASI DOMAIN DESTINATION ENTRIES ALLOCATED: 2000 FULL DPC(s): 15 CLUSTER DPC(s): TOTAL DPC(s): CAPACITY (% FULL): NETWORK DPC(s): 0 1 16 1 % X-LIST ENTRIES ALLOCATED: 500

If the required DPC is not in the database, go to the "Adding a Destination Point Code" procedure in the *Database Administration Manual - SS7* and add the DPC to the database.

6. Change the attributes of the X.25 destination using the chg-x25-dstn command. For this example, enter this command.

chg-x25-dstn:xaddr=33301:dpc=011-011-011:ssn=230


When this command has successfully completed, this message should appear.

rlghncxa03w 05-09-28 08:38:53 GMT EAGLE5 34.0.0 X.25 DSTN TABLE 33 % FULL CHG-X25-DSTN: MASP A - COMPLTD 7. Verify the changes using the rtrv-x25-dstn command. This is an example of the possible output.

rlghncxa03w 05-0	9-28 21:16:37	GMT EAGLE5 34.0.0
X25 ADDR	SS7 DPC	SSN
11101	001-001-001	005
11102	001-001-001	005
22201	002-002-002	005
22202	002-002-002	010
220525586456772	240-012-004	002
234234231	240-012-005	113
23423422834	244-010-006	235
2342342325	244-010-006	236
23423423	244-010-007	112
33301	011-011-011	230
33302	003-003-003	007
3450912	244-010-005	114
423423045656767	244-010-008	112
44401	004-004-004	005
55501	005-005-005	005
9342	244-010-006	234
X.25 DSTN TABLE	IS 30 % FULL	

8. Backup the new changes using the chg-db:action=backup:dest=fixed command. These messages should appear, the active Maintenance and Administration Subsystem Processor (MASP) appears first.

BACKUP (FIXED) : MASP A - Backup starts on active MASP.BACKUP (FIXED) : MASP A - Backup on active MASP to fixed disk complete.BACKUP (FIXED) : MASP A - Backup starts on standby MASP.BACKUP (FIXED) : MASP A - Backup on standby MASP to fixed disk complete.

Flowchart 2-5. Changing an X.25 Gateway Destination

Adding an X.25 Linkset

This procedure is used to add X.25 linksets to the EAGLE 5 SAS using the ent-ls command. To add SS7 linksets, go to the "Adding an SS7 Linkset" procedure in the *Database Administration Manual* – SS7.

The **ent-ls** command uses these parameters.

:1sn – The name of the linkset. The linkset name can contain up to 10 characters, with the first character being a letter. However, the SEAS interface supports only eight characters. If this linkset is displayed on the SEAS interface and the linkset name contains more than eight characters, only the first eight characters in the linkset name are shown. If this linkset name contains more than eight characters can be specified.

:apc/apca – Adjacent point code – the point code identifying the node that is next to the EAGLE 5 SAS.

NOTE: See Chapter 2, "Configuring Destination Tables," in the *Database Administration Manual - SS7* for a definition of the point code types that are used on the EAGLE 5 SAS.

:1st - The linkset type of the specified linkset

:clli - The Common Language Location Identifier assigned to this point code. The value of the clli parameter is only displayed in the rtrv-ls command output when a specific linkset is being displayed with the rtrv-ls:lsn=<linkset name> command.

:sltset – The signaling link test message record to be associated with the linkset.

:13tset – The level 3 timer set table. This parameter identifies which level three timer set is to be assigned to this linkset.

:scrn – The name of the screenset to be assigned to this linkset if gateway screening is to be used.

:gwsa – Gateway screening action determines whether gateway screening (GWS) is on or off for the specified link set.

:gwsm – Gateway screening messaging is used to turn on or off the display of messages generated for each screened message. When an MSU is rejected by gateway screening, a message is output to alert personnel of the event.

:gwsd – Gateway screening MSU discard is used to turn on or off the discarding of MSUs that bypass the gateway screening function due to load-shedding. Also use this parameter with the redirect function; MSUs that cannot be screened are discarded if you specify gwsd=on.

:bei – The broadcast exception indicator. This parameter indicates whether TFP (transfer prohibited) messages are allowed to be broadcast on the linkset. The yes parameter means TFPs are not broadcast. The no parameter means

TFPs are broadcast. The **bei=yes** parameter must be specified, or the **bei** parameter must be omitted.

The examples in this procedure are based on the example network shown in Figure 2-4 and Table 2-3 and are used to add X.25 linksets **1s03** and **1s04** to the database.

Table 2-3.X.25 Linkset Configuration Table

Linksets	Linkset APC	# LINKS	LST	GWSA	GWSD	SCRN
ls03	007-007-007	2	А	ON	OFF	SCR0
ls04	003-003-003	1	А	ON	ON	SCR2

The EAGLE 5 SAS can contain 1024 linksets, with a maximum of 255 of these linksets being gateway linksets. A gateway linkset is a linkset that contains routes to a different network.

The linkset to be added cannot be in the database. This can be verified in step 1 of this procedure.

The adjacent point code (APC) must be defined in the database. This can be verified in step 2 of this procedure. The domain of the point code is shown in the **DOMAIN** field in the output of the **rtrv-dstn** command (step 2). The adjacent point code must be a full point code and cannot be a cluster point code.

If the APC is not in the destination point code table, go to the "Adding a ANSI Destination Point Code" procedure in the *Database Administration Manual – SS7*. and add the point code to the destination point code table.

NOTE: The adjacent point code for the X.25 linkset cannot be an ITU international or ITU national point code. An ITU international or ITU national point code cannot be assigned to the X.25 domain.

An X.25 APC cannot be referenced by an X.25 route that has the logical channel to network management function turned on (lc2nm=yes). Enter the rtrv-x25-dstn command to show the association of the point codes to X.25 addresses. Enter the rtrv-x25-rte command to show which X.25 routes have the logical channel to network management function turned on. This is shown by the entry no in the LC2NM field in the output of the rtrv-x25-rte command. The APC cannot be associated with an X.25 address that is assigned to an X.25 route that has the logical channel to network management function turned on (lc2nm=yes).

The gwsa, gwsm, and gwsd parameters can only be specified if the scrn parameter is defined. Enter the rtrv-ls command to verify that the scrn parameter is defined for the specified linkset. If the scrn parameter is defined, a gateway screening screen set name is shown in the SCRN field of the output. This gateway screening screen set name must also be defined as a gateway screening screen set entity. This can be verified with the rtrv-scrset command. The gwsd parameter allows the discarding of messages that should have gone through the gateway screening process, but did not. The gwsd parameter is only intended to be used with the Database Transport Access (DTA) feature. If you are not using the DTA feature, the gwsd parameter should not be specified or should be set to no (gwsd=no).

CAUTION: When Gateway Screening is in the screen test mode, as defined by the linkset parameters gwsa=off and gwsm=on, the gateway screening action in the gateway screening stop action set specified by the actname parameter of the gateway screening screen set at the end of the gateway screening process will be performed.

If the clli parameter is specified with the ent-ls command, the value of the clli parameter must match the CLLI value of the adjacent point code of the linkset. The CLLI value of the adjacent point code is shown in the CLLI field of the rtrv-dstn command.

Other Optional Parameters

The ent-ls command contains other optional parameters, shown in Table 2-5. These optional parameters cannot be used to configure an X.25 linkset. These parameters are discussed in more detail in either the "Adding an SS7 Linkset" procedure in the *Database Administration Manual* - *SS7*.

Table 2-4.Optional Linkset Parameters

slsci	asl8	mtprse	nis
slsrsb	itutfr	apci/apcn/apcn24	ipgwapc
multgc	gsmscrn	iptps	lsusealm
slsocbit	slkusealm	apcntype	

Canceling the REPT-STAT-LS, RTRV-LS, and RTRV-DSTN Commands

Because the rept-stat-ls, rtrv-ls, and rtrv-dstn commands used in this procedure can output information for a long period of time, the rept-stat-ls, rtrv-ls, and rtrv-dstn commands can be canceled and the output to the terminal stopped. There are three ways that the rept-stat-ls, rtrv-ls, and rtrv-dstn commands can be canceled.

- Press the F9 function key on the keyboard at the terminal where the rept-stat-ls, rtrv-ls, or rtrv-dstn commands were entered.
- Enter the canc-cmd without the trm parameter at the terminal where the rept-stat-ls, rtrv-ls, or rtrv-dstn commands were entered.
- Enter the canc-cmd:trm=<xx>, where <xx> is the terminal where the rept-stat-ls, rtrv-ls, or rtrv-dstn commands were entered, from another terminal other that the terminal where the rept-stat-ls, rtrv-ls, or rtrv-dstn commands were entered. To enter the canc-cmd:trm=<xx>

command, the terminal must allow Security Administration commands to be entered from it and the user must be allowed to enter Security Administration commands. The terminal's permissions can be verified with the rtrv-secu-trm command. The user's permissions can be verified with the rtrv-user or rtrv-secu-user commands.

For more information about the canc-cmd command, go to the *Commands Manual*.

Procedure

1. Display the current linkset configuration using the **rtrv-ls** command. This is an example of the possible output.

rlghncxa03w 05-09-28 11:43:04 GMT EAGLE5 34.0.0

LSN lsa1 lsa2 lsa3 ls01 ls02	APCA (SS7) 240-020-000 240-030-000 240-040-000 006-006-006 008-008-008		L3T SLT SET SET 1 1 1 2 1 3 1 1 1 1		a C C	LNKS 1 3 5 1 1	ACT off on off on	off on off	DIS off on off off	no yes yes no	NIS off off off off off
LSN 1s6 1s7 1s8	APCA (X25) 244-010-004 244-012-005 244-012-006		L3T SLT SET SET 1 4 1 5 1 6		LST a c c	LNKS 6 3 8	ACT off on	GWS MES off on off	DIS off on		NIS off off off
LSN lsi1 lsi2 lsi3	APCI (SS7) 1-111-1 1-111-2 1-111-3		L3T SLT SET SET 1 1 1 2 1 3	BEI yes	a c	LNKS 1 3 5	ACT off on	off on	DIS off on	SLSCI 	NIS
LSN lsn1 lsn2 lsn3	APCN (SS7) 11111 11112 11113		L3T SLT SET SET 1 1 1 2 1 3		a c	LNKS 1 3 5	ACT off on	off	DIS off on		NIS off off off
LSN	APCN24 (SS7)	SCRN	L3T SLT SET SET L3T SLT	BEI	LST	LNKS	ACT	GWS MES GWS	DIS	SLSCI	NIS
	APCN (SS7) APCN24 (SS7) Dle is (14 of	SCRN		BEI			GWS	GWS	GWS		

2. Display the point codes in the destination point code table by using the **rtrv-dstn** command. This is an example of the possible output.

rlghncxa03w	05-09-28 16	:02:0)5 GMT	EAGLE5	34.0.0	
DPCA	CLLI	BEI	ELEI	ALIASI	ALIASN	DOMAIN
004-004-004		yes				SS7
005-005-005		yes				SS7
006-006-006		no				SS7
008-008-008		no				SS7
240-012-004	rlghncbb001	yes		1-111-1	11111	SS7
240-012-005	rlghncbb002	yes		1-112-2	11112	SS7
240-012-006	rlghncbb003	yes		1-112-3	11113	SS7
240-012-008		yes		1-113-5	11114	SS7
001-001-001		yes				X25
002-002-002		yes				X25
003-003-003		yes				X25
007-007-007		yes				X25
244-010-004	ls06clli	no				X25
244-012-005	ls07clli	no				X25
244-012-006	ls08clli	no				X25
244-012-007		no				X25
244-012-008		no				X25
DPCI	CLLI	BEI	ELEI	ALIASA	ALIASN	DOMAIN
2-131-1	rlghncbb023	no		222-210-	000 12001	SS7
2-131-2		no		222-211-	001 12002	SS7
2-131-3		no		222-211-	002 12003	SS7
DPCN	CLLI	BEI	ELEI	ALIASA	ALIASI	DOMAIN
11211	rlghncbb013	no		222-200-	200 2-121-1	SS7
11212	rlghncbb013	no		222-200-	201 2-121-2	SS7

Destination table is (22 of 2000) 1% full

If the required DPC is not in the database, go to the "Adding a Destination Point Code" procedure in the *Database Administration Manual - SS7* and add the DPC to the database.

NOTE: If the screen set assigned to the linkset is not being changed, or if the screen set that you wish to assign to the linkset is assigned to other linksets (shown in the SCRN field of the rtrv-ls command output in step 1), skip step 3 and go to step 4.

3. Verify that the gateway screening screen set that is to be assigned to the linkset is in the database by entering the **rtrv-scrset** command. This is an example of the possible output.

```
rlghncxa03w 05-09-28 16:37:05 GMT EAGLE5 34.0.0
ENTIRE GWS DATABASE IS 1% FULL
CDPA + AFTPC TABLES ARE 1% FULL
THERE ARE 243 SCREEN SETS AVAILABLE
THE FOLLOWING ARE OVER 80% FULL:
SCRN NSFI NSR/ACT FULL RULES TABLES DESTFLD
SCRN NSFI NSR/ACT FULL RULES TABLES DESTFLD
fld1 OPC 1% 5 4 NO
gws1 OPC gws4 1% 9 7 NO
gws2 BLKOPC gws5 1% 5 4 NO
ls01 SIO ls02 1% 3 3 YES
scr1 OPC opc1 1% 37 10 YES
scr2 OPC opc2 2% 75 22 YES
scr3 OPC opc3 2% 75 22 YES
scr3 OPC opc1 51% 2075 22 NO
scr5 OPC opc1 51% 2075 22 NO
scr5 OPC opc1 51% 2075 22 NO
scr5 OPC opc1 51% 2075 22 YES
scr6 OPC opc1 51% 2075 22 YES
```

If you wish to examine the contents of a particular screen set, enter the rtrv-scrset:scrn=<screen set name> command specifying a screen set name shown in the SCRN field of either the rtrv-scrset command executed in this step or the rtrv-ls command executed in step 1. for this example, enter the rtrv-scrset:scrn=scrl command This is an example of the possible output.

rtrv-scrset:scrn=scr1

rlghn	cxa03w 0	5-09-14	16	:39:04	GMT	EAGLE5	34.0.0
SCRN	NSFI	NSR/ACT	Г	RULES	DES	STFLD	
scrl	OPC	opcl		3	Y		
	BLKDPC	bkd2		2			
	CGPA	cgpl		3			
	TT	tt1		3			
	TT	tt2		3			
	TT	tt3		4			
	CDPA	cdp1		3			
	CDPA	cdp2		3			
	CDPA	cdp3		4			
	AFTPC	end1		9			

The output of this command shows the screens that make up the screen set. These screens can be examined by entering the gateway screening retrieve command corresponding the to the value in the **NSFI** field and specifying the screening reference name shown in the **NSR/ACT** field. For this example, you enter these commands to examine the screens in the screen set.

```
rtrv-scr-opc:sr=opc1
rtrv-scr-blkdpc:sr=bkd2
rtrv-scr-cgpa:sr=cgp1
rtrv-scr-tt:sr=tt1
rtrv-scr-tt:sr=tt2
rtrv-scr-tt:sr=tt3
rtrv-scr-cdpa:sr=cdp1
rtrv-scr-cdpa:sr=cdp2
rtrv-scr-cdpa:sr=cdp3
rtrv-scr-aftpc:sr=end1
```

If the screen set that you wish to assign to the linkset is not in the database, go to the "Adding a Screen Set" procedure in the *Database Administration Manual* - *Gateway Screening* and add the screen set to the database.

NOTE: If a new X.25 point code was added in step 2, skip steps 4 and 5, and go to step 6.

4. Display the X.25 destinations in the database by entering the **rtrv-x25-dstn** command with the point code to be assigned to the linkset, shown in the **rtrv-dstn** output in step 2.

```
rtrv-x25-dstn:dpca=244-012-008
```

This is an example of the possible output.

rlghncxa03w	05-09-28	21:16:37	GMT	EAGLE5	34.0.0
X25 ADDR	SS7	DPC	SSN		
234234231	244	-012-008	113		
234234231	244	-012-008	113		
X.25 DSTN TA	ABLE IS 3	30 % FULL			

If the new APC of the linkset is not shown in the **rtrv-x25-dstn** output, skip step 5, and go to step 6.

If the new APC of the linkset is shown in the **rtrv-x25-dstn** output, go to step 5.

5. Display the X.25 routes by entering the **rtrv-x25-rte** command with the **xaddr** parameter value shown in step 4. For this example, enter this command.

```
rtrv-x25-rte:xaddr=234234231
```

This is an example of the possible output.

rlghncxa03w 05-09-28 21:16:37 GMT EAGLE5 34.0.0 X25 ADDR SS7 ADDR TYPE LOC PORT LC RT LC2NM 234234231 44401 pvc 1205 a 01 xpc no X.25 ROUTE TABLE IS 30 % FULL If the LC2NM value in the X.25 route is no, go to step 6.

If the LC2NM value in the X.25 route is yes, the new linkset APC cannot be used in the X.25 linkset. To use the new linkset APC in the X.25 linkset, the LC2NM value of the X.25 route associated with the new linkset APC must be no. The LC2NM value must be changed to no, or another X.25 point code must be chosen.

To chose another X.25 point code, repeat this procedure from step 2.

To change the LC2NM value, perform the "Changing an X.25 Route" procedure on page 2-115. Then go to step 6.

- 6. Using the outputs from steps 1 through 5 as a guide, add the new linkset using the ent-ls command. The new linkset must meet these conditions.
 - The new linkset cannot already be in the database the linkset configuration is shown in the output of step 1.
 - The APC of the new linkset must be in the destination point code table, but cannot be either the EAGLE 5 SAS's point code or the EAGLE 5 SAS's capability point code – shown in the outputs of steps 2 and 3. The adjacent point code for the X.25 linkset cannot be an ITU international or ITU national point code.
 - The new linkset cannot use an APC assigned to an X.25 address that is assigned to an X.25 route that has the logical channel to network management function turned on (shown by the entry **yes** in the **LC2NM** field in the output of step 5). The output of step 4 shows which X.25 addresses are assigned to the point codes that can be used as APCs for linksets. The output of step 5 shows the X.25 addresses used by the X.25 routes.

For this example, enter these commands.

```
ent-ls:lsn=ls03:apca=007-007-007:lst=a:gwsa=on:scrn=scr1
```

ent-ls:lsn=ls04:apca=003-003-003:lst=a:gwsa=on:scrn=scr2

When each of these commands have successfully completed, this message should appear.

```
rlghncxa03w 05-09-28 16:23:21 GMT EAGLE5 34.0.0
Link set table is ( 16 of 1024) 2% full
ENT-LS: MASP A - COMPLTD
```

7. Verify the changes using the **rtrv-ls** command with the linkset name that was specified in step 6. For this example, enter these commands.

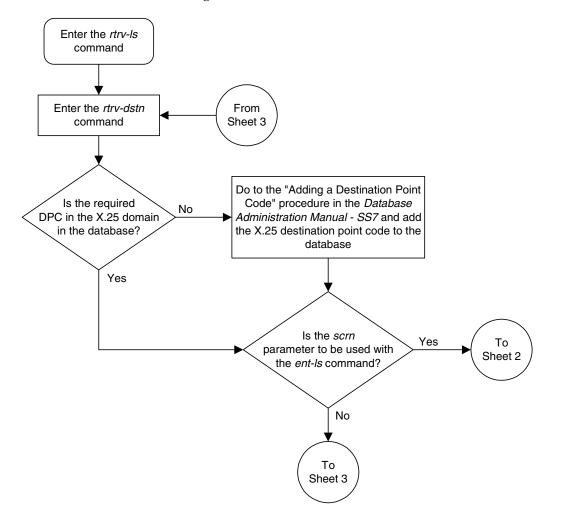
rtrv-ls:lsn=ls03

This is an example of the possible output.

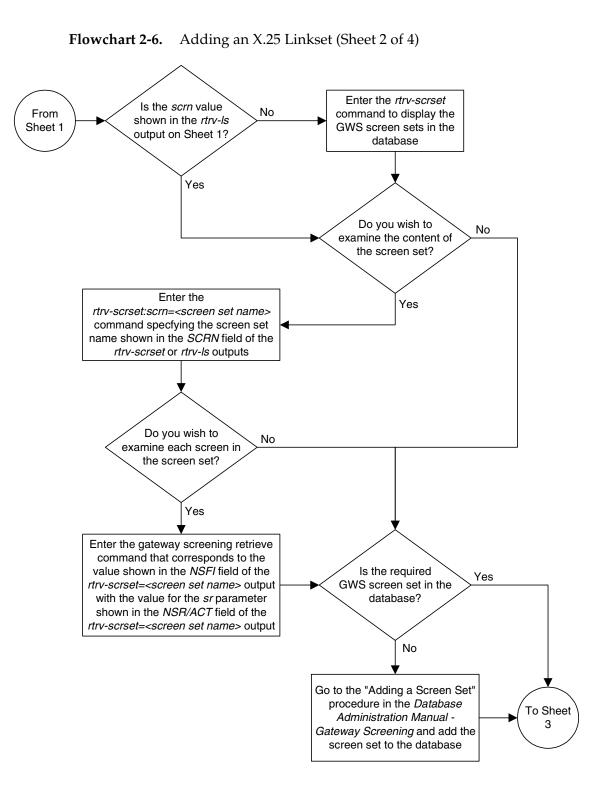
rlghncxa03w 05-09-28 11:43:04 GMT EAGLE5 34.0.0

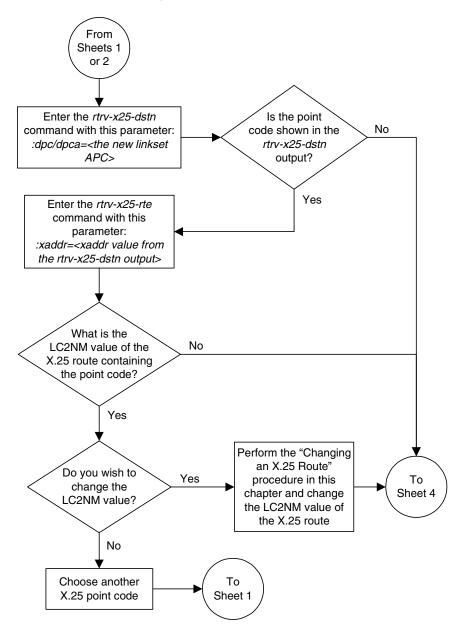
GWS GWS GWS L3T SLT LSN APCA (X25) SCRN SET SET BEI LST LNKS ACT MES DIS SLSCI NIS 007-007-007 scr1 1 1 yes a 0 on off off --- off ls03 CLLI TFATCABMLQ MTPRSE ASL8 ---- ------ ---IPGWAPC MATELSN IPTPS LSUSEALM SLKUSEALM ---- --- --no - - -L2T L1 PCR PCR LOC LINK SLC TYPE SET BPS MODE TSET ECM N1 N2 LP ATM LOC LINK SLC TYPE SET BPS TSEL VCI VPI LL LP ATM E1ATM LOC LINK SLC TYPE SET BPS TSEL VCI VPI CRC4 SI SN LOC PORT SLC TYPE IPLIML2 LOC PORT SLC TYPE L2T PCR PCR E1 E1 LOC LINK SLC TYPE SET BPS ECM N1 N2 LOC PORT TS L2T PCR PCR T1 T1 LOC LINK SLC TYPE SET BPS ECM N1 N2 LOC PORT TS Link set table is (16 of 1024) 2% full

rtrv-ls:lsn=ls04

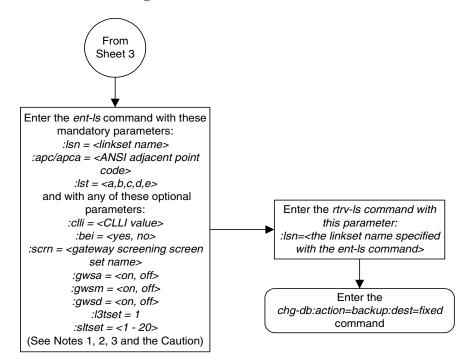

This is an example of the possible output.

rlghncxa03w 05-09-28 08:40:38 GMT EAGLE5 34.0.0


L3T SLT GWS GWS GWS LSN APCA (X25) SCRN SET SET BEI LST LNKS ACT MES DIS SLSCI NIS ls04 003-003-003 scr2 1 1 yes a 0 on off off --- off CLLI TFATCABMLQ MTPRSE ASL8 - - ----- ------IPGWAPC MATELSN IPTPS LSUSEALM SLKUSEALM ---- --no ---L2T L1 PCR PCR LOC LINK SLC TYPE SET BPS MODE TSET ECM N1 N2 LP ATM LP ATM LOC LINK SLC TYPE SET BPS TSEL VCI VPI LL LP ATM E1ATM LOC LINK SLC TYPE SET BPS TSEL VCI VPI CRC4 SI SN LOC PORT SLC TYPE IPLIML2 LOC PORT SLC TYPE L2T PCR PCR E1 E1 LOC LINK SLC TYPE SET BPS ECM N1 N2 LOC PORT TS L2T PCR PCR T1 T1 LOC LINK SLC TYPE SET BPS ECM N1 N2 LOC PORT TS Link set table is (16 of 1024) 2% full


8. Backup the new changes using the chg-db:action=backup:dest=fixed command. These messages should appear, the active Maintenance and Administration Subsystem Processor (MASP) appears first.

BACKUP (FIXED) : MASP A - Backup starts on active MASP.BACKUP (FIXED) : MASP A - Backup on active MASP to fixed disk complete.BACKUP (FIXED) : MASP A - Backup starts on standby MASP.BACKUP (FIXED) : MASP A - Backup on standby MASP to fixed disk complete.



Flowchart 2-6. Adding an X.25 Linkset (Sheet 1 of 4)

Flowchart 2-6. Adding an X.25 Linkset (Sheet 3 of 4)

Flowchart 2-6. Adding an X.25 Linkset (Sheet 4 of 4)

Notes:

1. The adjacent point code must be a full point code, cannot be an alias point code, and must be shown in the *rtrv-dstn* output.

2. The *gwsa*, *gwsm*, and *gwsd* parameters can be specified only if the *scrn* parameter is specified.

3. The *gwsd=on* parameter can be specified only with the *gwsa=on* parameter.

Caution: When Gateway Screening is in the screen test mode, as defined by the linkset parameters *gwsa=off* and *gwsm=on*, the gateway screening action in the gateway screening stop action set specified by the *actname* parameter of the gateway screening screen set at the end of the gateway screening process will be performed.

Removing a Linkset Containing X.25 Signaling Links

This procedure is used to remove a linkset with X.25 signaling links from the database using the dlt-ls command. To remove linksets with SS7 signaling links, go to the "Removing a Linkset Containing SS7 Signaling Links" procedure in the *Database Administration Manual* – *SS7*.

The dlt-ls command has only one parameter, lsn, which is the name of the linkset to be removed from the database.

The examples in this procedure are used to remove linkset **1s04** from the database.

The linkset to be removed must exist in the database. This can be verified in step 1.

To remove a linkset, all links associated with the linkset must be removed. This can be verified in step 3.

All X.25 routes associated with the X.25 signaling links in the linkset must be removed. This can be verified in step 4.

The linkset to be removed cannot be referenced by a routeset. This can be verified in step 6.

Canceling the REPT-STAT-LS and RTRV-LS Commands

Because the **rept-stat-ls** and **rtrv-ls** commands used in this procedure can output information for a long period of time, the **rept-stat-ls** and **rtrv-ls** commands can be canceled and the output to the terminal stopped. There are three ways that the **rept-stat-ls** and **rtrv-ls** commands can be canceled.

- Press the F9 function key on the keyboard at the terminal where the rept-stat-ls or rtrv-ls commands were entered.
- Enter the canc-cmd without the trm parameter at the terminal where the rept-stat-ls or rtrv-ls commands were entered.
- Enter the canc-cmd:trm=<xx>, where <xx> is the terminal where the rept-stat-ls or rtrv-ls commands were entered, from another terminal other that the terminal where the rept-stat-ls or rtrv-ls commands were entered. To enter the canc-cmd:trm=<xx> command, the terminal must allow Security Administration commands to be entered from it and the user must be allowed to enter Security Administration commands. The terminal's permissions can be verified with the rtrv-secu-trm command. The user's permissions can be verified with the rtrv-user or rtrv-secu-user commands.

For more information about the canc-cmd command, go to the *Commands Manual*.

Procedure

1. Display the current linkset configuration using the **rtrv-ls** command. This is an example of the possible output.

rlghncxa03w 05-09-28 11:43:04 GMT EAGLE5 34.0.0

			L3T SLI			GWS	GWS	GWS		
LSN	APCA (SS7)	SCRN			LST LNKS				SLSCI	NIS
lsal	240-020-000	scr1	1 1	yes a	a 1	off	off	off	no	off
lsa2	240-030-000	scr2	1 2	no d	c 3	on	on	on	yes	off
lsa3	240-040-000	scr3	1 3	yes d	c 5	off	off	off	yes	off
ls01	006-006-006	scrl	1 1	yes a	a 1	on	off	off	no	off
ls02	008-008-008	scr1	1 1	yes a	a 1	on	off	off	yes	off
			L3T SLI			GWS	GWS	GWS		
LSN	APCA (X25)	SCRN	SET SEI	'BEI I	LST LNKS	ACT	MES	DIS	SLSCI	NIS
ls03	007-007-007	scrl	1 1	yes a	a 3	on	off	off		off
ls04	003-003-003	scr2	1 1	yes a	a 1	on	off	off		off
ls6	244-010-004	scr4	1 4	no a	a 6	off	off	off		off
ls7	244-012-005	scr5	1 5	no c	с 3	on	on	on		off
ls8	244-012-006	scr6	1 6	no c	c 8	off	off	off		off
			L3T SLI				GWS			
LSN	APCI (SS7)	SCRN	SET SET	'BEI I	LST LNKS					NIS
lsi1	1-111-1	scr1	1 1	yes a	a 1	off	off	off		
lsi2	1-111-2	scr2	1 2	no c	c 3	on	on	on		
lsi3	1-111-3	scr3	1 3	yes o	c 5	off	off	off		
			L3T SLI				GWS			
LSN	APCN (SS7)	SCRN			LST LNKS					
lsn1	11111	scr1	1 1	yes a				off		off
lsn2	11112	scr2	1 2		с 3	on	on	on		off
lsn3	11113	scr3	1 3	yes o	c 5	off	off	off		off
						awa	aua	awa		
1.011		GODA	L3T SLT				GWS		at aat	NTO
LSN	APCN24 (SS7)	SCRN	SET SET	BEI I	LST LNKS	ACT	MES	DIS	SLSCI	NIS
			L3T SLI			CWC	GWS	CMC		
LSN (CHINA)	APCN (SS7)	SCRN			LST LNKS				et ect	NTC
LON (CHINA)	APCN (557)	SCRN	SEI SEI		цот пика	ACI	мьз	012	рпрст	NIS
			L3T SLI			GMG	GWS	GWC		
T.CM (CUTNA)	APCN24 (SS7)	COM			LST LNKS				GT.CCT	NTC
TON (CUTINY)	ALCN74 (991)	DCKN	ומס ימט	ן דיית	TINUS TINUS	ACI	ывэ	610	TJOTE	TT D
Link set tak	ole is (16 of	1024)	2% full							
LIIN SEU LAL	TC TP (TO OI	1027)	Z O LULI							

2. Select a linkset whose APC is shown in the output of step 1 and is assigned to the X.25 domain. Display the signaling links in that linkset using the rtrv-1s command, specifying the linkset name of the linkset you wish to remove from the database. For this example, enter this command.

rtrv-ls:lsn=ls04

This is an example of the possible output.

rlghncxa03	rlghncxa03w 05-09-28 11:43:04 GMT EAGLE5 34.0.0										
LSN ls04) SCRN scr2		ET BEI		lnks a		DIS S	
		ncwd4(FFATCABML 	Q MTP 						
	IPGW no			SN IPT 	PS LS 		I SLKU	SEALM			
				TYPE LIMV35			MOD	E TSET 			PCR N2
	LOC	LINK	SLC	TYPE		BPS		E TSET	ECM		PCR N2
	LOC	LINK	SLC	TYPE	LP SET	BPS		TM SEL	VCI	VP	I LL
	LOC	LINK	SLC	TYPE		BPS	ATM TSEL	V	CI V	PI CR	E1ATM C4 SI SN
	LOC	PORT	SLC	TYPE	IPLI	ML2					
	LOC	PORT	SLC	TYPE							
	LOC	LINK	SLC	TYPE	L2T SET	BPS	ECM	PCR N1			E1 PORT TS
	LOC	LINK	SLC	TYPE	L2T SET	BPS	ECM	PCR N1			T1 PORT TS
Link set t	able	is (1	L6 of	£ 1024)	2% fu	11					

3. Display the X.25 routes in the database by entering the **rtrv-x25-rte** command. This is an example of the possible output.

05-09-28 21:16:37 GMT	EAGLE5	34.0.	0			
SS7 ADDR	TYPE	LOC	PORT	LC	RT	LC2NM
44401	pvc	1205	a	01	xpc	no
55501	pvc	1206	a	02	pc	no
44401	pvc	1205	a	02	pc	no
55501	pvc	1206	a	01	xpc	yes
44401	svca	1207	a		pc	no
55501	svca	1207	a		pc	no
TABLE IS 30 % FULL						
	SS7 ADDR 44401 55501 44401 55501 44401 55501	SS7 ADDR TYPE 44401 pvc 55501 pvc 44401 pvc 55501 pvc 44401 pvc 55501 pvc 55501 pvc 55501 pvc 55501 svca 55501 svca	SS7 ADDR TYPE LOC 44401 pvc 1205 55501 pvc 1206 44401 pvc 1205 55501 pvc 1206 44401 svca 1207 55501 svca 1207	44401pvc1205a55501pvc1206a44401pvc1205a55501pvc1206a44401svca1207a55501svca1207a	SS7 ADDRTYPELOCPORTLC44401pvc1205a0155501pvc1206a0244401pvc1205a0155501pvc1206a0144401svca1207a55501svca1207a	SS7 ADDR TYPE LOC PORT LC RT 44401 pvc 1205 a 01 xpc 55501 pvc 1206 a 02 pc 44401 pvc 1205 a 01 xpc 55501 pvc 1205 a 01 xpc 55501 pvc 1206 a 01 xpc 44401 svca 1207 a pc 55501 svca 1207 a pc

4. If any X.25 routes shown in the output of step 3 are assigned to the X.25 signaling links shown in the output of step 2, remove those X.25 routes by using the dlt-x25-rte command. For this example, enter these commands.

```
dlt-x25-rte:xaddr=33301:saddr=44401
dlt-x25-rte:xaddr=33302:saddr=55501
```

When each of these commands have successfully completed, this message should appear.

```
rlghncxa03w 05-09-28 11:45:17 GMT EAGLE5 34.0.0
DLT-X25-RTE: MASP A - X.25 Route table is 4
DLT-X25-RTE: MASP A - COMPLTD
```

5. Display the routes in the database by using the rtrv-rte command, specifying the name of the linkset you wish to remove. For this example, enter this command.

```
rtrv-rte:lsn=ls04
```

This is an example of the possible output.

```
rlghncxa03w 05-09-28 11:43:04 GMT EAGLE5 34.0.0
LSN DPCA RC
ls04 003-003-003 10
```

If the X.25 linkset is shown in the **rtrv-rte** output, go to the "Removing a Route" procedure in the *Database Administration Manual - SS7* and remove the routes from the database.

6. If any routes reference the linkset to be removed, remove that reference by using the dlt-rte command specifying the linkset to be removed. For this example, enter this command.

dlt-rte:dpca=003-003-003:lsn=1s04

When this command has successfully completed, this message should appear.

```
rlghncxa03w 05-09-28 11:45:17 GMT EAGLE5 34.0.0
DLT-RTE: MASP A - COMPLTD
```

7. Deactivate the X.25 signaling links in the linkset using the dact-slk command. For this example, enter this command.

```
dact-slk:loc=1207:link=a
```

When this command has successfully completed, this message should appear.

```
rlghncxa03w 05-09-28 08:41:12 GMT EAGLE5 34.0.0 Deactivate Link message sent to card
```

8. Verify that the signaling link status is out of service maintenance disabled (OOS-MT-DSBLD) using the rept-stat-1s command. This is an example of the possible output.

rlghncxa03	3w 05-09-28 08:	40:38 GMT EA	GLE5 34.0.0	
LSN	APCA	PST	SST	AST
lsa1	240-020-000	IS-NR	Allowed	
lsa2	240-030-000	IS-NR	Allowed	GWS
lsa3	240-040-000	IS-NR	Allowed	
ls01	006-006-006	IS-NR	Allowed	GWS
ls02	008-008-008	IS-NR	Allowed	GWS
ls03	007-007-007	IS-NR	Allowed	GWS
ls04	003-003-003	OOS-MT-DSBLD	Prohibit	GWS
LSN	APCI	PST	SST	AST
lsi1	1-111-1	IS-NR	Allowed	
lsi2	1-111-2	IS-NR	Allowed	
lsi3	1-111-3	IS-NR	Allowed	
LSN	APCN	PST	SST	AST
lsn1	11111	IS-NR	Allowed	
lsn2	11112	IS-NR	Allowed	
lsn3	11113	IS-NR	Allowed	
Command Co	ompleted.			

9. If any signaling links in the linkset are the last signaling link on a card, the card must be placed out of service before that signaling link can be removed. Verify this by entering the rtrv-slk command and specifying each of the card locations shown in the output of step 2. Do not specify the link parameter. For this example, enter this command.

rtrv-slk:loc=1207

This is an example of the possible output.

rlghncxa0	3w 05-09-28	21:17	7:04 GMT	EAGLE	5 34.0.	0				
				L2T		L1			PCR	PCR
LOC LINK	LSN	SLC	TYPE	SET	BPS	MODE	TSET	ECM	Nl	N2
1207 A	LS04	0	LIMV35	1	56000	DTE		BASIC		

10. If the output of step 9 shows that any of the signaling links in the specified linkset are the last signaling links on the card, place that card out of service by using the rmv-card command, specifying the card location to be taken out of service. For this example, enter this command.

rmv-card:loc=1207

When this command has successfully completed, this message should appear. rlghncxa03w 05-09-28 11:11:28 GMT EAGLE5 34.0.0 Card has been inhibited.

11. Remove all X.25 signaling links in the linkset using the dlt-slk command. For this example, enter this command.

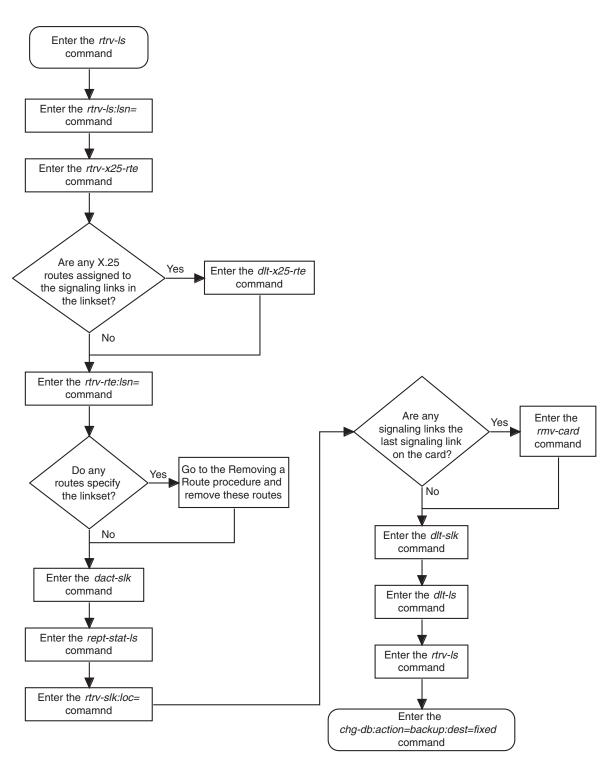
dlt-slk:loc=1207:link=a

When this command has successfully completed, this message should appear. rlghncxa03w 05-09-28 08:41:17 GMT EAGLE5 34.0.0 DLT-SLK: MASP A - COMPLTD **12.** Remove the linkset using the dlt-ls command. For this example, enter this command.

dlt-ls:lsn=ls04

When this command has successfully completed, this message should appear.

rlghncxa03w 05-09-28 16:03:12 GMT EAGLE5 34.0.0 Link set table is (15 of 1024) 1% full DLT-LS: PSM A - COMPLTD


13. Verify the changes using the **rtrv-ls** command.

rlghncxa03w 05-09-28 11:43:04 GMT EAGLE5 34.0.0

			L3T S	SLT				GWS	GWS	GWS		
LSN	APCA (SS7)	SCRN	SET S	SET	BEI	LST	LNKS	ACT	MES	DIS	SLSCI	NIS
lsa1	240-020-000	scrl	1 3	1	yes	a	1	off	off	off	no	off
lsa2	240-030-000	scr2	1 2	2	no	С	3	on	on	on	yes	off
lsa3	240-040-000	scr3	1 3	3	yes	С	5	off	off	off	yes	off
ls01	006-006-006	scr1	1 1	1	yes	a	1	on	off	off	no	off
ls02	008-008-008	scr1	1 1	1	yes	a	1	on	off	off	yes	off
			L3T S	SLT				GWS	GWS	GWS		
LSN	APCA (X25)	SCRN	SET S	SET	BEI	LST	LNKS	ACT	MES	DIS	SLSCI	NIS
ls03	007-007-007	scrl	1 :	1	yes	а	3	on	off	off		off
ls6	244-010-004	scr4	1 4	4	no	а	6	off	off	off		off
ls7	244-012-005	scr5	1 5	5	no	С	3	on	on	on		off
ls8	244-012-006	scr6	1 0	6	no	С	8	off	off	off		off
			L3T S	SLT				GWS	GWS	GWS		
LSN	APCI (SS7)	SCRN	SET S	SET	BEI	LST	LNKS	ACT	MES	DIS	SLSCI	NIS
lsi1	1-111-1	scrl	1 1	1	yes	а	1	off	off	off		
lsi2	1-111-2	scr2	1 2	2	no	С	3	on	on	on		
lsi3	1-111-3	scr3	1 3	3	yes	С	5	off	off	off		
			L3T S	SLT				GWS	GWS	GWS		
LSN	APCN (SS7)	SCRN	SET S	SET	BEI	LST	LNKS	ACT	MES	DIS	SLSCI	NIS
lsn1	11111	scrl	1 1	1	yes	а	1	off	off	off		off
lsn2	11112	scr2	1 2	2	no	С	3	on	on	on		off
lsn3	11113	scr3	1 3	3	yes	С	5	off	off	off		off
			L3T S						GWS			
LSN	APCN24 (SS7)	SCRN	SET S	SET	BEI	LST	LNKS	ACT	MES	DIS	SLSCI	NIS
			L3T S						GWS			
LSN (CHINA)	APCN (SS7)	SCRN	SET S	SET	BEI	LST	LNKS	ACT	MES	DIS	SLSCI	NIS
			L3T S						GWS			
LSN (CHINA)	APCN24 (SS7)	SCRN	SET S	SET	BEI	LST	LNKS	ACT	MES	DIS	SLSCI	NIS
Link set tab	le is (15 of	1024)	1% fi	ull								

14. Backup the new changes using the chg-db:action=backup:dest=fixed command. These messages should appear, the active Maintenance and Administration Subsystem Processor (MASP) appears first.

BACKUP (FIXED) : MASP A - Backup starts on active MASP.
BACKUP (FIXED) : MASP A - Backup on active MASP to fixed disk complete.
BACKUP (FIXED) : MASP A - Backup starts on standby MASP.
BACKUP (FIXED) : MASP A - Backup on standby MASP to fixed disk complete.

Flowchart 2-7. Removing a Linkset Containing X.25 Signaling Links

Changing an X.25 Linkset

This procedure is used to change the definition of linksets that contain X.25 signaling links using the **chg-ls** command. To change SS7 linksets, go to the "Changing an SS7 Linkset" procedure in the *Database Administration Manual* – *SS7*. The **chg-ls** command uses these parameters.

:1sn – The name of the linkset. The linkset name can contain up to 10 characters, with the first character being a letter. However, the SEAS interface supports only eight characters. If this linkset is displayed on the SEAS interface and the linkset name contains more than eight characters, only the first eight characters in the linkset name are shown. If this linkset name contains more than eight characters can be specified.

:apc/apca – ANSI adjacent point code – the point code identifying the node that is next to the EAGLE 5 SAS. ITU point codes cannot be used for an X.25 linkset.

NOTE: See Chapter 2, "Configuring Destination Tables," in the *Database Administration Manual - SS7* for a definition of the point code types that are used on the EAGLE 5 SAS.

:1st - The linkset type of the specified linkset

:clli - The Common Language Location Identifier assigned to this point code. The value of the clli parameter is only displayed in the rtrv-ls command output when a specific linkset is being displayed with the rtrv-ls:lsn=<linkset name> command.

:sltset – The signaling link test message record to be associated with the linkset.

:13tset – The level 3 timer set table. This parameter identifies which level three timer set is to be assigned to this linkset. Currently, only one is supported.

:scrn – The name of the screenset to be assigned to this linkset if gateway screening is to be used.

:gwsa – Gateway screening action determines whether gateway screening (GWS) is on or off for the specified link set.

:gwsm – Gateway screening messaging is used to turn on or off the display of messages generated for each screened message. When an MSU is rejected by gateway screening, a message is output to alert personnel of the event.

:gwsd – Gateway screening MSU discard is used to turn on or off the discarding of MSUs that bypass the gateway screening function due to load-shedding. Also use this parameter with the redirect function; MSUs that cannot be screened are discarded if you specify gwsd=on.

:bei – The broadcast exception indicator. This parameter indicates whether TFP (transfer prohibited) messages are allowed to be broadcast on the linkset. The yes parameter means TFPs are not broadcast. The no parameter means TFPs are broadcast. For an X.25 linkset, the bei=yes parameter must be specified, or the bei parameter must be omitted.

:nlsn – The new name of the linkset

The linkset to be changed must exist in the database.

If the adjacent point code (APC) is changed, the new APC must be in the destination point code table and must be defined as a true point code in the destination point code table and cannot be an alias point code. The domain of the new APC must be the same as the APC being changed. The new APC of the linkset cannot match the self ID of the EAGLE 5 SAS. The new APC must be a full point code and cannot be a cluster point code.

The signaling link configuration of the linkset can be verified by entering the rtrv-ls:lsn=<linkset name> command specifying the linkset name as shown
in step 6.

Use the **rtrv-dstn** command to verify that the new APC is in the destination point code table and to verify the domain of the new APC. If the new APC is not shown in the **rtrv-dstn** command output, go to the "Adding a ANSI Destination Point Code" in the *Database Administration Manual – SS7* and add the new APC to the destination point code table.

To change the APC of a linkset, all signaling links in the linkset must be in the OOS-MT-DSBLD state.

The domain of the linkset's APC cannot be changed using the chg-ls command. For example, if the current domain of the APC is X.25, the new APC must also be in the X.25 domain. To change the domain of the linkset's APC, the linkset must be removed from the database using the dlt-ls command and re-entered with the new APC in the different domain using the ent-ls command. To remove the X.25 linkset, go to the "Removing a Linkset Containing X.25 Signaling Links" procedure on page 2-54. To add the X.25 linkset, go to the "Adding an X.25 Linkset" procedure on page 2-40. To add an SS7 linkset, go to the "Adding an SS7 Linkset" procedure in the *Database Administration Manual – SS7*. The gwsa, gwsm, and gwsd parameters can only be specified if the scrn parameter is defined. Enter the rtrv-ls command to verify that the scrn parameter is defined for the specified linkset. If the scrn parameter is defined, a gateway screening screen set name is shown in the SCRN field of the output. This gateway screening screen set name must also be defined as a gateway screening screen set entity. This can be verified with the rtrv-scrset command.

The gwsd parameter allows the discarding of messages that should have gone through the gateway screening process, but could not. The gwsd parameter is only intended to be used with the database transport access (DTA) feature. If you are not using the DTA feature, the gwsd parameter should not be specified or should be set to off (gwsd=off).

If the gwsa=off parameter is specified, then the gwsd=off parameter must be specified.

CAUTION: When Gateway Screening is in the screen test mode, as defined by the linkset parameters gwsa=off and gwsm=on, the gateway screening action in the gateway screening stop action set specified by the actname parameter of the gateway screening screen set at the end of the gateway screening process will be performed.

An X.25 APC cannot be referenced by an X.25 route that has the logical channel to network management function turned on (lc2nm=yes). Use the rtrv-x25-dstn command to verify which point codes are assigned to each X.25 address. Use the rtrv-x25-rte to verify which X.25 address is assigned to each X.25 route and to verify which X.25 route has the logical channel to network management function turned on, shown by the entry yes in the LC2NM field.

The word **SEAS** cannot be used as a value for the **scrn** parameter of the **chg-ls** command. The word **SEAS** is used in the **rtrv-ls** command output, in the **SCRN** field, to show gateway linksets created on the SEAS interface. A gateway linkset combines the functions of a gateway screening screen set and an SS7 linkset specifying the **gwsa=on** and **scrn** parameters. Like an EAGLE 5 SAS gateway screening screen set, a gateway linkset defines the screening references that are to be used to screen the messages on the linkset. It also defines the linkset whose messages are to be screened. A gateway linkset can only be configured from a SEAS terminal and not from an EAGLE 5 SAS terminal.

If the clli parameter is specified with the chg-ls command, the value of the clli parameter must match the CLLI value of the adjacent point code of the linkset. The CLLI value of the adjacent point code is shown in the CLLI field of the rtrv-dstn command.

In this procedure, the examples are used to change the definition of a linkset named 1s7. The attributes of linkset 1s7 that are changed in this example are the APC, the gateway screening screen set name, and to change the linkset type to A. For any optional parameters not specified with the chg-ls command, the values for those parameters are not changed.

Other Optional Parameters

The chg-ls command contains other optional parameters, shown in Table 2-5. These optional parameters cannot be used to configure an X.25 linkset. These parameters are discussed in more detail in either the "Adding an SS7 Linkset" or Changing an SS7 Linkset" procedures in the *Database Administration Manual* - SS7.

Table 2-5.Optional Linkset Parameters

slsci	asl8	mtprse
slsrsb	itutfr	sapci/sapcn/sapcn24
multgc	gsmscrn	iptps
slsocbit	matelsn	apci/apcn/apcn24
nis	action	lsusealm
slkusealm	tfatcabmlq	apcntype

Canceling the RTRV-DSTN and RTRV-LS Commands

Because the **rtrv-dstn** and **rtrv-ls** commands used in this procedure can output information for a long period of time, the **rtrv-dstn** and **rtrv-ls** commands can be canceled and the output to the terminal stopped. There are three ways that the **rtrv-dstn** and **rtrv-ls** commands can be canceled.

- Press the F9 function key on the keyboard at the terminal where the rtrv-dstn or rtrv-ls commands were entered.
- Enter the canc-cmd without the trm parameter at the terminal where the rtrv-dstn or rtrv-ls commands were entered.
- Enter the canc-cmd:trm=<xx>, where <xx> is the terminal where the rtrv-dstn or rtrv-ls commands were entered, from another terminal other that the terminal where the rtrv-dstn or rtrv-ls commands were entered. To enter the canc-cmd:trm=<xx> command, the terminal must allow Security Administration commands to be entered from it and the user must be allowed to enter Security Administration commands. The terminal's permissions can be verified with the rtrv-secu-trm command. The user's permissions can be verified with the rtrv-user or rtrv-secu-user commands.

For more information about the canc-cmd command, go to the Commands Manual.

Procedure

1. Display the current linkset configuration using the **rtrv-ls** command. This is an example of the possible output.

-	-		-									
rlghncxa03w	05-09-28 11:43	:04 GM			34.0	0.0						
			L3T S						GWS			
LSN	APCA (SS7)	SCRN			BEI	LST	LNKS				SLSCI	
lsa1	240-020-000	scrl		1	yes	а	1	off	off	off	no	off
lsa2	240-030-000	scr2	1 2	2	no	С	3	on	on	on	yes	off
lsa3	240-040-000	scr3	1 3	3	yes	С	5	off	off	off	yes	off
ls1	240-012-004	scrl	1 1	1	yes	а	4	off	off	off	yes	off
ls2	240-012-005	scr2	1 2	2	yes	С	2	on	on	on	yes	off
ls3	240-012-006	scr3	1 3	3	yes	С	5	off	off	off	no	off
ls01	002-002-002	scr1	1 1	1	no	С	0	on	off	off	yes	off
ls02	004-004-004	scr1	1 1	1	no	b	0	on	off	off	no	off
ls03	003-003-003	scr1	1 1	1	no	d	0	on	off	off	no	off
ls04	001-002-003	scr2	1 1	1	no	a	0	on	off	on	yes	off
ls06	002-007-008	scr4	1 1	1	no	a	0	on	off	off	yes	off
			L3T S	SLT				GWS	GWS	GWS		
LSN	APCA (X25)	SCRN	SET S	SET	BEI	LST	LNKS	ACT	MES	DIS	SLSCI	NIS
ls6	244-010-004	scr4	1 4	4	no	a	6	off	off	off		off
ls7	244-012-005	scr5	1 5	5	no	С	3	on	on	on		off
ls8	244-012-006	scr6	1 6	6	no	С	8	off	off	off		off
			L3T S	SLT				GWS	GWS	GWS		
LSN	APCI (SS7)	SCRN	SET S	SET	BEI	LST	LNKS				SLSCI	NIS
lsi1	1-111-1	scr1		1	yes		1			off		
lsi2	1-111-2	scr2		2	no	C	3	on	on	on		
lsi3	1-111-3	scr3		3	yes		5			off		
lsi7	3-150-4	scrl		1	no	a	0	on		off		
1017	5 150 1	DCII		-	110	u	0	011	OLT	OLL		
			L3T S	SLT				GWS	GWS	GWS		
LSN	APCN (SS7)	SCRN			BRT	T.ST	TWKS				SLSCI	NTS
lsn1	11111	scrl		1	yes		1			off		off
lsn2	11112	scr2		2	no	c	3	on	on	on		off
lsn3	11113	scr3		3	yes		5			off		off
lsn5	10685	scr3		3 1	no	a	0	on		off		off
19113	10005	SCIS	1 1	T	110	a	0	011	OLL	OLL		OII
			י חייד	0 T m				CMC	CMC	CMC		
T ON	1 DONO 4 (007)	CODM	L3T S		рпт	тат	TNUC		GWS		at aat	NTO
LSN	APCN24 (SS7)	SCRN	SET 3	SEI	BEI	LST	LINKS	ACT	MES	DIS	SLSCI	NIS
				a				aa	aa	~~~~		
			L3T S						GWS			
LSN (CHINA)	APCN (SS7)	SCRN	SET S	SET	BEI	LS.L	LNKS	AC.I.	MES	DIS	SLSCI	NIS
/ >			L3T S						GWS			
LSN (CHINA)	APCN24 (SS7)	SCRN	SET S	SET	BEI	LST	LNKS	ACT	MES	DIS	SLSCI	NIS
Link set tab	le is (22 of	1024)	2% fi	ull								

If the adjacent point code (APC) of the linkset is being changed, go to step 2. If the APC is not being changed, go to step 3. In this example, the APC of the linkset is being changed, so proceed to step 2.

2. Display the point codes in the destination point code table by using the rtrv-dstn command. This is an example of the possible output.

rlghncxa03w	05-09-28 16	:02:0)5 GMT	EAGLE5	34.0.0	
DPCA	CLLI	BEI	ELEI	ALIASI	ALIASN	DOMAIN
004-004-004		yes				SS7
005-005-005		yes				SS7
006-006-006		no				SS7
008-008-008		no				SS7
240-012-004	rlghncbb001	yes		1-111-1	11111	SS7
240-012-005	rlghncbb002	yes		1-112-2	11112	SS7
240-012-006	rlghncbb003	yes		1-112-3	11113	SS7
240-012-008		yes		1-113-5	11114	SS7
001-001-001		yes				X25
002-002-002		yes				X25
003-003-003		yes				X25
007-007-007		yes				X25
244-010-004	ls06clli	no				X25
244-012-005	ls07clli	no				X25
244-012-006	ls08clli	no				X25
244-012-007		no				X25
244-012-008		no				X25
DPCI	CLLI	BEI	ELEI	ALIASA	ALIASN	DOMAIN
2-131-1	rlghncbb023	no		222-210-	000 12001	SS7
2-131-2		no		222-211-	001 12002	SS7
2-131-3		no		222-211-	002 12003	SS7
DPCN	CLLI	BEI	ELEI	ALIASA	ALIASI	DOMAIN
11211	rlghncbb013	no		222-200-	200 2-121-1	SS7
11212	rlghncbb013	no		222-200-	201 2-121-2	SS7

Destination table is (22 of 2000) 1% full

If the new APC of the linkset is not shown in the **rtrv-dstn** output, go to the "Adding a Destination Point Code" procedure and add the point code to the database. Skip steps 3 and 4, and go to step 5.

If the new APC of the linkset is shown in the **rtrv-dstn** output, go to step 3.

3. Display the X.25 destinations in the database by entering the **rtrv-x25-dstn** command with the point code shown in the **rtrv-dstn** output in step 2.

rtrv-x25-dstn:dpca=244-012-008

This is an example of the possible output.

rlghncxa03w 05-09-28 11:43:04 GMT EAGLE5 34.0.0 X25 ADDR SS7 DPC SSN 234234231 244-012-008 113 X.25 DSTN TABLE IS 30 % FULL

If the new APC of the linkset is not shown in the **rtrv-x25-dstn** output, skip step 4, and go to step 5.

If the new APC of the linkset is shown in the **rtrv-x25-dstn** output, go to step 4.

4. Display the X.25 routes by entering the **rtrv-x25-rte** command with the **xaddr** parameter value shown in step 3. For this example, enter this command.

```
rtrv-x25-rte:xaddr=234234231
```

This is an example of the possible output.

rlghncxa03w 05-09-28 21:16:37 GMT EAGLE5 34.0.0 X25 ADDR SS7 ADDR TYPE LOC PORT LC RT LC2NM 234234231 44401 pvc 1205 a 01 xpc no X.25 ROUTE TABLE IS 30 % FULL

If the LC2NM value in the X.25 route is no, go to step 5.

If the LC2NM value in the X.25 route is yes, the new linkset APC cannot be used in the X.25 linkset. To use the new linkset APC in the X.25 linkset, the LC2NM value of the X.25 route associated with the new linkset APC must be no. The LC2NM value must be changed to no, or another X.25 point code must be chosen.

To chose another X.25 point code, repeat this procedure from step 2.

To change the LC2NM value, perform the "Changing an X.25 Route" procedure on page 2-115. Then go to step 5.

NOTE: If the screen set assigned to the linkset is not being changed, or if the screen set that you wish to assign to the linkset is assigned to other linksets (shown in the SCRN field of the rtrv-ls command output in step 1), skip step 5 and go to step 6.

5. Verify that the gateway screening screen set that is to be assigned to the linkset is in the database by entering the **rtrv-scrset** command. This is an example of the possible output.

```
rlghncxa03w 05-09-28 16:37:05 GMT EAGLE5 34.0.0
ENTIRE GWS DATABASE IS 1% FULL
CDPA + AFTPC TABLES ARE 1% FULL
THERE ARE 243 SCREEN SETS AVAILABLE
THE FOLLOWING ARE OVER 80% FULL:
SCRN NSFI NSR/ACT FULL RULES TABLES DESTFLD
SCRN NSFI NSR/ACT FULL RULES TABLES DESTFLD
fld1 OPC fld2 1% 5 4
                                                                              NO
                                          1%
gws1 OPC gws4
gws2 BLKOPC gws5
ls01 SIO ls02
                                                      9 7
5 4
3 3
                                                                              NO
                                           1%
1%
                                                                              NO
ls01 SIO
scr1 OPC
                                                                              YES
                       opc1
opc2
                                          1% 37 10
                                                                              YES
                                          2% 75 22
scr2 OPC
                                                                           YES

      Sc12
      OPC
      OpC2
      2%
      75
      22

      scr3
      OPC
      opc3
      2%
      75
      22

      scr4
      OPC
      opc1
      51%
      2075
      22

      scr5
      OPC
      opc1
      51%
      2075
      22

      scr6
      OPC
      opc1
      51%
      2075
      22

      ss28
      OPC
      opc1
      51%
      2075
      22

      wrd1
      SIO
      iec
      1%
      6
      5

                                                                           YES
                                                                           NO
                                                                           YES
                                                                           NO
                                                                              YES
                                                                               YES
```

If you wish to examine the contents of a particular screen set, enter the rtrv-scrset:scrn=<screen set name> command specifying a screen set name shown in the SCRN field of either the rtrv-scrset command executed in this step or the rtrv-ls command executed in step 1. for this example, enter the rtrv-scrset:scrn=scrl command This is an example of the possible output.

rtrv-scrset:scrn=scr1

rlghn	cxa03w 0	5-09-14	16	:39:04	GMT	EAGLE5	34.0.0
SCRN	NSFI	NSR/ACI		RULES	DES	STFLD	
scr1	OPC	opc1		3	Y		
	BLKDPC	bkd2		2			
	CGPA	cgpl		3			
	TT	tt1		3			
	TT	tt2		3			
	TT	tt3		4			
	CDPA	cdp1		3			
	CDPA	cdp2		3			
	CDPA	cdp3		4			
	AFTPC	end1		9			

The output of this command shows the screens that make up the screen set. These screens can be examined by entering the gateway screening retrieve command corresponding the to the value in the **NSFI** field and specifying the screening reference name shown in the **NSR/ACT** field. For this example, you enter these commands to examine the screens in the screen set.

```
rtrv-scr-opc:sr=opc1
```

```
rtrv-scr-blkdpc:sr=bkd2
rtrv-scr-cgpa:sr=cgp1
rtrv-scr-tt:sr=tt1
rtrv-scr-tt:sr=tt2
rtrv-scr-tt:sr=tt3
rtrv-scr-cdpa:sr=cdp1
rtrv-scr-cdpa:sr=cdp2
rtrv-scr-cdpa:sr=cdp3
rtrv-scr-aftpc:sr=end1
```

If the screen set that you wish to assign to the linkset is not in the database, go to the "Adding a Screen Set" procedure in the *Database Administration Manual* - *Gateway Screening* and add the screen set to the database.

Display the current linkset configuration of the linkset to be changed using the rtrv-ls command with the linkset name. For this example, enter this command.

rtrv-ls:lsn=ls7

This is an example of the possible output.

rlqhncxa03w 05-09-28 11:43:04 GMT EAGLE5 34.0.0 L3T SLT GWS GWS GWS LSN APCA (X25) SCRN SET SET BEI LST LNKS ACT MES DIS SLSCI NIS 244-012-005 scr5 1 5 no c 3 on on on --- off 1s7 CLLI TFATCABMLQ MTPRSE ASL8 ls07clli ---- - -IPGWAPC MATELSN IPTPS LSUSEALM SLKUSEALM ---- --no L2T PCR PCR L1LOC LINK SLC TYPE SET BPS MODE TSET ECM N1 N2 1205 A 0 LIMV35 - 56000 DTE -- BASIC --- ----1206 A 1 LIMV35 - 56000 DTE -- BASIC --- ----1207 A 2 LIMV35 - 64000 DTE -- BASIC --- ----L2T L1 PCR PCR LOC LINK SLC TYPE SET BPS MODE TSET ECM N1 N2 LP ATM LOC LINK SLC TYPE SET BPS TSEL VCI VPI LL LP ATM E1ATM TSEL VCI VPI CRC4 SI SN LOC LINK SLC TYPE SET BPS LOC PORT SLC TYPE IPLIML2 LOC PORT SLC TYPE L2T PCR PCR E1 E1 LOC LINK SLC TYPE SET BPS ECM N1 N2 LOC PORT TS PCR PCR T1 T1 L2T LOC LINK SLC TYPE SET BPS ECM N1 N2 LOC PORT TS Link set table is (22 of 1024) 2% full

7. Deactivate the signaling links in the linkset using the dact-slk command. For this example, enter these commands.

```
dact-slk:loc=1205:link=a
dact-slk:loc=1206:link=a
```

dact-slk:loc=1207:link=a

When each of these commands have successfully completed, this message should appear.

```
rlghncxa03w 05-09-28 08:41:12 GMT EAGLE5 34.0.0 Deactivate Link message sent to card
```

8. Change the linkset configuration using the chg-ls command. For this example, enter this command.

chg-ls:lsn=ls7:apca=244-012-008:scrn=scr7:lst=a

This command example changes the APC of the linkset to **244-012-008**, changes the gateway screening screen set name to **scr7** and changes the linkset type to A.

When this command has successfully completed, this message should appear.

```
rlghncxa03w 05-09-28 08:38:45 GMT EAGLE5 34.0.0
Link set table is ( 22 of 1024) 2% full
CHG-LS: MASP A - COMPLTD
```

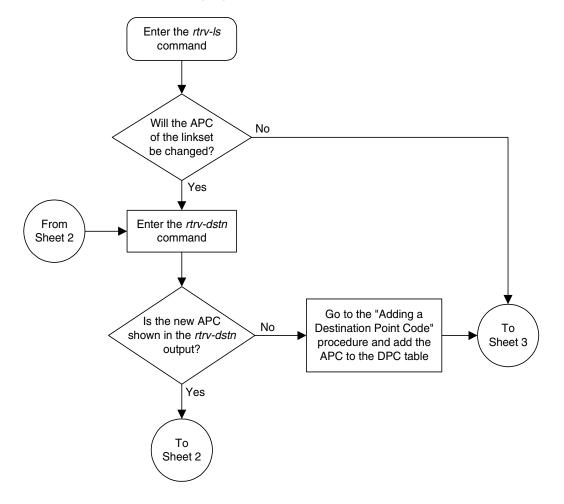
9. Verify the changes using the **rtrv-ls** command, specifying the linkset name that was changed in step 8. For this example, enter this command.

rtrv-ls:lsn=ls7

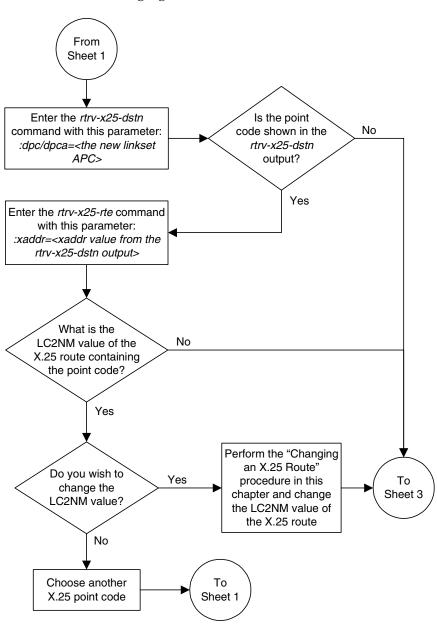
This is an example of the possible output.

rlghncxa03w 05-09-28 11:43:04 GMT EAGLE5 34.0.0												
				SLT					GWS			
LSN A	APCA	(X25) SC	RN SET	SET	BEI	LST	LNKS	ACT	MES	DIS	SLSCI	NIS
ls7 2	244-012	2-008 sc	c7 1	5	no	a	3	on	on	on		off
CLLI TFATCABMLQ MTPRSE ASL8												
IPGWAPC MATELSN IPTPS LSUSEALM SLKUSEALM												
no												
L2T L1 PCR PCR												
						L1						
		K SLC TYPE							ECM			
	5 A		35 -						BASIC			
1200	5 A	1 LIMV	35 -	5	6000	DTE		1	BASIC	2		
120	/ A	2 LIMV	35 -	6	4000	DTE		I	BASIC	2		
			LP		-	AT						-
LOC	LINK	SLC TYPE	SET	BP	5	TS	EL	`	VCI	VI	PI L	L
			T.D		7	ATM					E1ATI	vī
LOC	T.TNK	SLC TYPE		BPS				<i>IC</i> T	VD	r C'I	RC4 SI	
100		She iiin	511	DID				VCI	VII		ICT DI	51
LOC	LINK	SLC TYPE	IPL	IML2								
LOC	LINK	SLC TYPE										
			L2T				PCI	R PO	CR	E1	E1	
LOC	LINK	SLC TYPE	SET	BP	S	ECM	N1	N2	2	LOC	PORT	TS
			L2T				PCI	R PO	CR	Τ1	Τ1	
LOC	LINK	SLC TYPE	SET	BP	S	ECM	N1	N	2	LOC	PORT	TS
Link set table	e is (22 of 102	1) 2%	full								

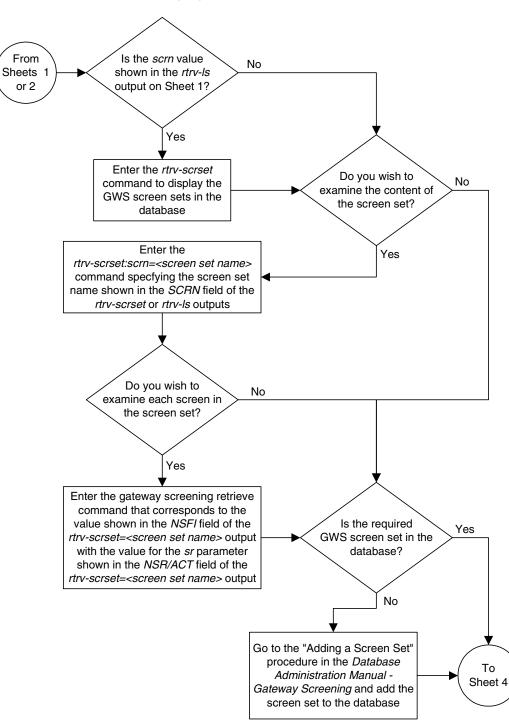
10. Activate the signaling links that were deactivated in step 8 using the **act-slk** command. For this example, enter these commands.

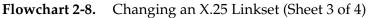

```
act-slk:loc=1205:link=a
act-slk:loc=1206:link=a
act-slk:loc=1207:link=a
```

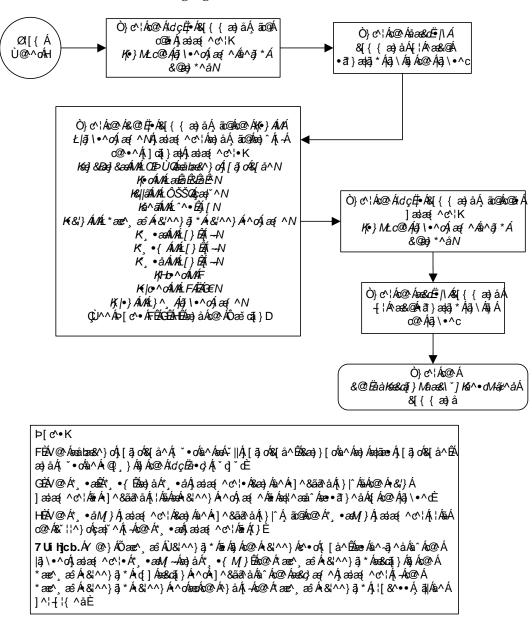
When each of these commands have successfully completed, this message should appear.


```
rlghncxa03w 05-09-28 08:41:12 GMT EAGLE5 34.0.0 Activate Link message sent to card
```

11. Backup the new changes using the chg-db:action=backup:dest=fixed command. These messages should appear, the active Maintenance and Administration Subsystem Processor (MASP) appears first.


BACKUP (FIXED) : MASP A - Backup starts on active MASP.
BACKUP (FIXED) : MASP A - Backup on active MASP to fixed disk complete.
BACKUP (FIXED) : MASP A - Backup starts on standby MASP.
BACKUP (FIXED) : MASP A - Backup on standby MASP to fixed disk complete.




Flowchart 2-8. Changing an X.25 Linkset (Sheet 1 of 4)

Flowchart 2-8. Changing an X.25 Linkset (Sheet 2 of 4)

Flowchart 2-8. Changing an X.25 Linkset (Sheet 4 of 4)

Adding an X.25 Signaling Link

This procedure is used to add an X.25 signaling link to the database using the **ent-slk** command. To add SS7 signaling links to the database, go to the "Adding an SS7 Signaling Link" procedure in the *Database Administration Manual – SS7*.

The ent-slk command uses these parameters to configure an X.25 signaling link.

:loc – The card location of the LIM that the X.25 signaling link will be assigned to.

:link – The signaling link on the card specified in the **loc** parameter. For an X.25 signaling link, this parameter value is A.

:1sn – The name of the linkset that will contain the signaling link.

:slc – The signaling link code. The SLC must be unique within the linkset. It must be the same at both the EAGLE 5 SAS location and the distant node.

:11mode – The mode of operation used to select the link clocking source at layer 1. One end of a V.35 link must be DTE and the other end must be DCE.

:bps – The transmission rate for the link in bits per second.

:tset – Transmitter signal element timing.

:ecm – Error correction method.

:pcrn1 – The threshold of the number of MSUs available for retransmission. If the error correction method being used is PCR, and this threshold is reached, no new MSUs or FISUs are sent. The retransmission cycle is continued up to the last MSU entered into the retransmission buffer in the order in which they were originally transmitted.

:pcrn2 – The threshold of the number of MSU octets available for retransmission. If the error correction method being used is PCR, and this threshold is reached, no new MSUs or FISUs are sent. The retransmission cycle is continued up to the last MSU entered into the retransmission buffer in the order in which they were originally transmitted.

These parameters of the ent-slk command cannot be used to configure an X.25 signaling link: bps=1544000, bps=2048000, l2tset, lpset, atmtsel, vci, vpi, ll, ts, elport, elloc, tlport, ipliml2, elatmcrc4, elatmsi, elatmsn. For more information on using these parameters, go to the "Adding an SS7 Signaling Link" procedure in the Database Administration Manual – SS7

The examples in this procedure are based on the example network shown in Figure 2-4on page 2-12 and Table 2-6 on page 2-77 and are used to add X.25 signaling links to cards 1205, 1206, and 1207.

SI	LK	LSN	SLC	TYPE	BPS
LOC	LINK				
1205	А	LS03	0	LIMV35	56000
1206	А	LS03	1	LIMV35	56000
1207	А	LS04	0	LIMV35	64000

Table 2-6.X.25 Signaling Link Configuration Table

These items must be provisioned in the database before an X.25 signaling link can be added:

- A shelf see the "Adding a Shelf" procedure in the *Database Administration Manual System Management*.
- An LIM (card type limocu, limds0, or limv35) assigned to the ss7gx25 application see the "Adding an X.25 LIM" procedure on page 2-14.
- A destination point code (DPC) assigned to the X.25 domain see the "Adding a ANSI Destination Point Code" procedure in the *Database Administration Manual SS7*.
- A linkset whose adjacent point code (APC) is in the X.25 domain see the "Adding an X.25 Linkset" procedure on page 2-40

Verify that the X.25 signaling link has been physically installed (all cable connections have been made).

If the llmode or tset parameters are specified, the card type must be limv35.

The tset parameter can only be specified with the llmode=dce parameter. When llmode=dce is specified and the tset parameter is not specified, the value of the tset parameter is set to off, and dashes are shown in the TSET column in the rtrv-slk output. The default value for the llmode parameter is dte.

The transmission rate of the X.25 signaling link can be either 4800 (bps=4800), 9600 (bps=9600), 19200 (bps=19200), 56000 (bps=56000), or 64000 (bps=64000) bits per second. If the card type is either limds0 or limocu, the transmission rate of the X.25 signaling link can be either 56000 or 64000. The transmission rates 4800, 9600, or 19200 can be specified only if the card type is limv35. The default value for the X.25 signaling link transmission rate is 56000.

The **lltset** parameter cannot be specified for an X.25 signaling link, but its value is defaulted to **ll** and is shown in the **LlTSET** column in the **rtrv-slk** output.

The linkset must be in the database. The number of signaling links in a linkset cannot exceed 16. The number of signaling links in the linkset is shown in the **LNKS** column of the **rtrv-ls** command output.

The APC of the linkset assigned to the signaling link must be in the X.25 domain. Use the **rtrv-dstn** command to verify the domain of the APC of the linkset.

Requirements for EAGLE 5 SASs Containing more than 700 Signaling Links

To provision an EAGLE 5 SAS with more than 700 signaling links (currently the EAGLE 5 SAS can have maximum capacities of 1200 or 1500 signaling links), the following additional requirements must be met:

- The Measurements Platform feature must be enabled. Perform these procedures in the *Database Administration Manual System Management* to enable the Measurements Platform Feature:
 - "Adding an MCPM"
 - "Configuring the IP Communications Link for the Measurements Platform Feature"
 - "Adding an FTP Server"
- To provision more than 1200 signaling links, the Large System # Links controlled feature must be enabled for 1500 signaling links. For more information on enabling this feature, go to "Enabling the Large System # Links Controlled Feature" procedure on page 2-134.

NOTE: An X.25 signaling link cannot be assigned to a Multiport LIM.

For more information on these hardware components, go to the *Installation Manual - EAGLE 5 SAS*.

Determining the Number of High-Speed and Low-Speed Signaling Links

The EAGLE 5 SAS contain either a maximum of 1200 or 1500 signaling links, depending the hardware that is installed. The method of determining the number of high-speed and low-speed signaling links that can be in the EAGLE 5 SAS is shown in the next section.

An EAGLE 5 SAS containing either 1200 or 1500 signaling links can contain the following quantities of signaling links:

- 1200 low-speed signaling links
- 115 high-speed ATM signaling links (signaling links assigned to either ATMANSI or ATMITU applications)
- 100 signaling links assigned to either the IPLIM or IPLIMI applications.
- 64 signaling links assigned to single-slot EDCMs running either the **ss7ipgw** or **ipgwi** application, or combinations of the **ss7ipgw** and **ipgwi** applications. If DCMs are present in the EAGLE 5 SAS, there can be a maximum of 2 signaling links assigned to the **ss7ipgw** application and 2 signaling links assigned to the **ipgwi** application.

Table 2-7 shows the combinations of high-speed signaling links and low-speed signaling links allowed in the EAGLE 5 SAS.

Number of High-Speed ATM Signaling Links	Number of Low-Speed Signaling Links	Number of IP Signaling Links	Number of Low-Speed Signaling Links
0	1500	0	1500
0	1200	0	1200
1	1199	1	1199
5	1195	5	1195
15	1185	15	1185
20	1180	20	1180
30	1165	30	1165
40	1150	40	1040
60	1110	60	880
80	1025	80	720
90	950	90	560
100	875	100	400
115	800		J

Table 2-7.Number of High-Speed and Low-Speed LinksSupported at 100% Traffic

Canceling the REPT-STAT-SLK and RTRV-SLK Commands

Because the **rept-stat-slk** and **rtrv-slk** commands used in this procedure can output information for a long period of time, the **rept-stat-slk** and **rtrv-slk** commands can be canceled and the output to the terminal stopped.

There are three ways that the **rept-stat-slk** and **rtrv-slk** commands can be canceled.

- Press the F9 function key on the keyboard at the terminal where the rept-stat-slk or rtrv-slk commands were entered.
- Enter the canc-cmd without the trm parameter at the terminal where the rept-stat-slk or rtrv-slk commands were entered.
- Enter the canc-cmd:trm=<xx>, where <xx> is the terminal where the rept-stat-slk or rtrv-slk commands were entered, from another terminal other that the terminal where the rept-stat-slk or rtrv-slk commands were entered. To enter the canc-cmd:trm=<xx> command, the terminal must allow Security Administration commands to be entered from it and the user must be allowed to enter Security Administration commands. The terminal's permissions can be verified with the rtrv-secu-trm command. The user's

permissions can be verified with the **rtrv-user** or **rtrv-secu-user** commands.

For more information about the canc-cmd command, go to the *Commands Manual*.

Procedure

1. Display the cards in the database using the rtrv-card command. The X.25 LIMs are shown by the entry ss7gx25 in the APPL field. This is an example of the possible output.

rlghnc	xa03w 05-0	9-28 09:12	:36 GMT EAGLE5	34.0	.0			
CARD	TYPE	APPL	LSET NAME	LINK	SLC	LSET NAME	LINK	SLC
1101	TSM	SCCP						
1113	GPSM	EOAM						
1114	TDM-A							
1115	GPSM	EOAM						
1116	TDM-B							
1117	MDAL							
1201	LIMDS0	SS7ANSI	sp2	A	0	spl	В	0
1202	LIMV35	SS7GX25						
1203	LIMDS0	SS7ANSI	sp3	A	0			
1204	LIMDS0	SS7ANSI	sp3	A	1			
1206	LIMDS0	SS7ANSI	nsp3	A	1	nsp4	В	1
1207	LIMV35	SS7GX25	nspl	A	0			
1208	LIMV35	SS7GX25	nspl	A	1			
1216	ACMENET	STPLAN						
1301	TSM	SCCP						
1308	LIMDS0	SS7ANSI	sp6	A	1	sp7	В	0
1314	LIMDS0	SS7ANSI	sp7	A	1	sp5	В	1
1317	ACMENET	STPLAN						

If the required card is not in the database, go to the "Adding an X.25 LIM" procedure on page 2-14 and add the card to the database.

2. Display the current linkset configuration using the **rtrv-ls** command. This is an example of the possible output.

L3T SLT GWS GWS GWS APCA (SS7) SCRN SET SET BEI LST LNKS ACT MES DIS SLSCI NIS LSN lsa1 240-020-000 scrl 1 1 yes a 1 off off no off lsa2 240-030-000 scr2 1 2 no c 3 on on on yes off 240-040-000scr313yesc5off off off yesoff006-006-006scr11yesa1onoff off nooff008-008-008scr11yesa1onoff off yesoff lsa3 ls01 ls02 L3T SLT GWS GWS GWS APCA (X25) SCRN SET SET BEI LST LNKS ACT MES DIS SLSCI NIS LSN ls6 244-010-004 scr4 1 4 no a 6 off off off --off 244-012-005 scr5 1 5 no c 3 on on on --off ls7 244-012-006 scr6 1 6 no c 8 off off off --- off ls8 L3T SLT GWS GWS GWS APCI (SS7) SCRN SET SET BEI LST LNKS ACT MES DIS SLSCI NIS LSN

 1-111-1
 scr1
 1
 yes a
 1
 off off off -- --

 1-111-2
 scr2
 1
 2
 no
 c
 3
 on
 on
 on
 --

 1-111-3
 scr3
 1
 3
 yes c
 5
 off off off
 -- -
 lsi1 lsi2 lsi3 L3T SLT GWS GWS GWS APCN (SS7) SCRN SET SET BEI LST LNKS ACT MES DIS SLSCI NIS LSN

 11111
 scr1
 1
 yes a
 1
 off off off --- off

 11112
 scr2
 1
 2
 no
 c
 3
 on
 on
 on
 --- off

 11113
 scr3
 1
 3
 yes c
 5
 off off off off --- off

 lsn1 lsn2 11113 lsn3 L3T SLT GWS GWS GWS LSN APCN24 (SS7) SCRN SET SET BEI LST LNKS ACT MES DIS SLSCI NIS L3T SLT GWS GWS GWS LSN (CHINA) APCN (SS7) SCRN SET SET BEI LST LNKS ACT MES DIS SLSCI NIS L3T SLT GWS GWS GWS LSN (CHINA) APCN24 (SS7) SCRN SET SET BEI LST LNKS ACT MES DIS SLSCI NIS Link set table is (14 of 1024) 1% full

rlqhncxa03w 05-09-28 11:43:04 GMT EAGLE5 34.0.0

If the required linkset is not in the database, go to the "Adding an X.25 Linkset" procedure on page 2-40 and add the linkset to the database.

3. Display the current signaling link configuration using the **rtrv-slk** command. This is an example of the possible output.

rigin	licxau	5W 05-09-26	21:10	5:37 GMI	L2T	10 34.0.	L1			PCR	PCR
LOC	LINK	LON	ST.C	TYPE		BPS		TSET	ECM	PCR N1	PCR N2
1201		lsn1201a		LIMDSO	1	56000			BASIC		
1201		lsn1201b		LIMDS0	1	56000			PCR	76	3800
1202		lsn1202a				64000			BASIC		
1202		lsn1202b		LIMV35	3	64000	DCE	ON	BASIC		
1203		lsn1203a		LIMV35	1	56000		ON	BASIC		3800
1203		lsn1203b		LIMV35	1	56000		OFF	PCR	120	5034
1204		lsn1204a				64000	DCE	ON	PCR	76	3800
1204		lsn1204b		LIMV35		64000	DCE	ON	PCR	76	3800
1301					-				BASIC		
					LP		ATI	М			
LOC	LINK	LSN	SLC	TYPE	SET	BPS	TSI	EL	VCI	VP	I LL
1302	А	atmansi0	0	LIMATM	3	1544000	INT	TERNAL	35	15	0
1305		atmansil	0	LIMATM		1544000		FERNAL	100	20	2
1318	A	atmansi0	1	LIMATM	9	1544000	LII	NE	150	25	4
					LP		ATM				E1ATM
LOC	LINK	LSN	SLC	TYPE	SET	BPS	TSEL	VC:	I VP:	I CR	C4 SI SI
No L:	inks S	Set up.									
LOC	LINK	LSN	SLC	TYPE	IPL:	IML2					
No L:	inks S	Set up.									
LOC	LINK	LSN	SLC	TYPE							
No L:	inks S	Set up.									
					L2T			PCR	PCR	E1	E1
LOC	LINK	LSN	SLC	TYPE	SET	BPS	ECM	Nl	N2	LOC	PORT T
No L:	inks S	Set up.									
LOC	T.TNK	LSN	SLC	TYPE	L2T SET	BPS	ECM	PCR N1	PCR N2	T1 LOC	T1 PORT T
			510		201	215	ц ст.1		-14	100	10101 1
NO Ĺ:	inks S	Set up.									
SLK 1	table	is (12 of 1	L200)	1% full.							

rlghncxa03w 05-09-28 21:16:37 GMT EAGLE5 34.0.0

NOTE: If the rtrv-slk output in step 3 shows that the maximum number of signaling links is 1500, skip step 4 and go to step 5.

NOTE: If the rtrv-slk output in step 3 shows that the maximum number of signaling links is 1200, and the signaling link being added increases the number beyond 1200, do not perform step 4, but go to "Enabling the Large System # Links Controlled Feature" procedure on page 2-134 and enable the Large System # Links controlled feature for 1500 signaling links. Then go to step 5.

NOTE: If the rtrv-slk output in step 3 shows that the maximum number of signaling links is 1200, and the signaling link being added will not increase the number beyond 1200, skip step 4 and go to step 5.

4. Display the status of the Large System # Links controlled feature by entering the rtrv-ctrl-feat command. The following is an example of the possible output.

```
rlghncxa03w 05-09-28 21:15:37 GMT EAGLE5 34.0.0
The following features have been permanently enabled:
```

```
Feature NamePartnumStatusQuantityIPGWx Signaling TPS893012814on20000ISUP Normalization89300201on----Command Class Management893005801on----LNP Short Message Service893006001on----Intermed GTT Load Sharing893006901on----XGTT Table Expansion893006101off----XMAP Table Expansion893007701off----HC-MIM SLK Capacity893012707on64
```

The following features have been temporarily enabled:

Feature Name	Partnum	Status	Quantity	Trial Period Left
Zero entries found.				

The following features have expired temporary keys:

Feature Name Partnum Zero entries found.

If the Large System # Links controlled feature is not enabled or on, go to "Enabling the Large System # Links Controlled Feature" procedure on page 2-134 and enable Large System # Links controlled feature for 1500 signaling links. Then go to step 5.

5. Add the X.25 signaling link using the ent-slk command. For this example, enter these commands.

ent-slk:loc=1205:link=a:lsn=ls03:slc=0

```
ent-slk:loc=1206:link=a:lsn=ls03:slc=1
```

ent-slk:loc=1207:link=a:lsn=ls04:slc=0:bps=64000

When each of these commands have successfully completed, this message should appear.

```
rlghncxa03w 05-09-28 08:29:03 GMT EAGLE5 34.0.0
ENT-SLK: MASP A - COMPLTD
```

6. Verify the changes using the rtrv-slk command with the card location specified in step 5. For this example, enter these commands.

rtrv-slk:loc=1205

This is an example of the possible output.

rlghncxa03	3w 05-09-28	21:16	5:37 GMT	EAGLE	5 34.0.	0				
				L2T		L1			PCR	PCR
LOC LINK	LSN	SLC	TYPE	SET	BPS	MODE	TSET	ECM	N1	N2
1205 A	ls03	0	LIMV35	11	56000	DTE		BASIC		

rtrv-slk:loc=1206

This is an example of the possible output.

rlghncxa03w 05-09-28 21:16:37 GMT EAGLE5 34.0.0

					L2T		L1			PCR	PCR
LOC	LINK	LSN	SLC	TYPE	SET	BPS	MODE	TSET	ECM	Nl	N2
1206	A	ls03	1	LIMV35	11	56000	DTE		BASIC		

rtrv-slk:loc=1207

This is an example of the possible output.

rlghncxa0	3w 05-09-28	21:10	5:37 GMT	EAGLE	5 34.0.	0				
				L2T		L1			PCR	PCR
LOC LINK	LSN	SLC	TYPE	SET	BPS	MODE	TSET	ECM	N1	N2
1207 A	ls04	0	LIMV35	11	64000	DTE		BASIC		

NOTE: If the X.25 signaling link parameters for the newly added X.25 signaling link are not being changed, skip steps 7 through 9 and go to step 10.

7. Display the values of the X.25 signaling link you wish to change using the rtrv-x25-s1k command. This is an example of the possible output.

rlghn	cxa03w	05-0	09-28	21:10	6:3	7 GMT EA	GLE5	34.0.	0	
LOC	PORT	Τ1	Nl	N2	Κ	L3MODE	PVC	SVC	WIN	MPS
1202	A	9	1080	13	6	DTE	255	0	2	128
1205	A	5	2104	10	7	DTE	0	1	3	256
1206	A	5	2104	10	7	DTE	0	1	3	256
1207	A	5	2104	10	7	DTE	0	1	3	256
1301	A	5	1080	10	7	DTE	0	255	3	128

8. Change the X.25 signaling link parameter values using the **chg-x25-slk** command. For this example, enter these commands.

```
chg-x25-slk:loc=1205:port=a:t1=2:n1=1080:n2=5:k=1:l3mode=dte
:pvc=2:svc=0:win=6:mps=128
```

chg-x25-slk:loc=1206:port=a:t1=4:n1=2104:n2=12:k=3:l3mode=dce :pvc=2:svc=0:win=3:mps=256

chg-x25-slk:loc=1207:port=a:t1=8:n1=2104:n2=7:k=6:l3mode=dce
:pvc=0:svc=2:win=2:mps=256

When each of these commands have successfully completed, this message should appear.

rlghncxa03w 05-09-28 11:43:04 GMT EAGLE5 34.0.0 CHG-X25-SLK: MASP A - COMPLTD **9.** Verify the changes using the **rtrv-x25-slk** command. This is an example of the possible output.

 rlghn
 xa 03
 05-0-28
 21:1:3:7
 GMT
 EAGLES
 34.0.0

 LOC
 PORT
 T1
 N1
 N2
 K
 L3MODE
 PVC
 SVC
 WIN
 MPS

 1202
 A
 9
 1080
 13
 6
 DTE
 255
 0
 2
 128

 1205
 A
 2
 1080
 5
 1
 DTE
 2
 0
 6
 128

 1206
 A
 4
 2104
 12
 3
 DCE
 2
 0
 3
 256

 1207
 A
 8
 2104
 7
 6
 DCE
 0
 2
 2
 266

 1301
 A
 5
 1080
 10
 7
 DTE
 0
 255
 3
 128

10. Put the X.25 LIMs in service using the **rst-card** command with the card location specified in step 5. For this example, enter these commands.

```
rst-card:loc=1205
rst-card:loc=1206
rst-card:loc=1207
```

When each of these commands have successfully completed, this message should appear.

rlghncxa03w 05-09-28 08:21:07 GMT EAGLE5 34.0.0 Card has been allowed.

11. Activate the X.25 signaling links using the **act-slk** command with the card location and the signaling link specified in step 5. For this example, enter these commands.

```
act-slk:loc=1205:link=a
act-slk:loc=1206:link=a
act-slk:loc=1207:link=a
```

When each of these commands have successfully completed, this message should appear.

```
rlghncxa03w 05-09-28 08:31:24 GMT EAGLE5 34.0.0 Activate Link message sent to card
```

12. Check the status of the X.25 signaling link using the rept-stat-slk command with the card location and the signaling link specified in step 5 for each X.25 signaling link added in step 5. The state of the X.25 signaling link should be in service normal (IS-NR) after the link has completed alignment (shown in the PST field). For this example, enter these commands.

rept-stat-slk:loc=1205:link=a

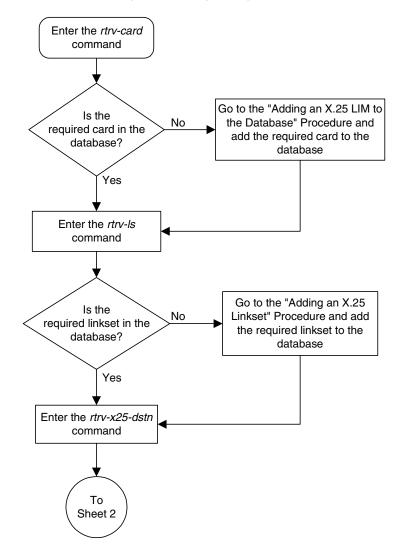
This is an example of the possible output.

rlghncxa	a03w 05-09	-28 17:00:36	GMT EAGLE5	34.0.0	
SLK	LSN	CLLI	PST	SST	AST
1205,A	ls03		IS-NR	Avail	
ALARM	STATUS	= No alar	rm		
UNAVAI	IL REASON	=			
Command	Completed				

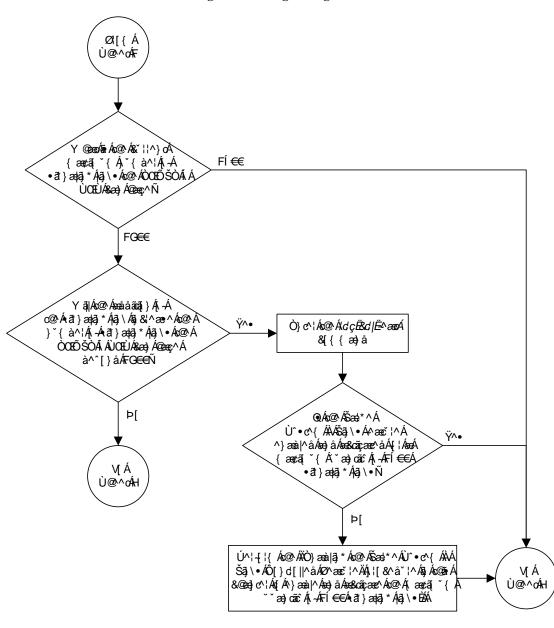
rept-stat-slk:loc=1206:link=a

This is an example of the possible output.

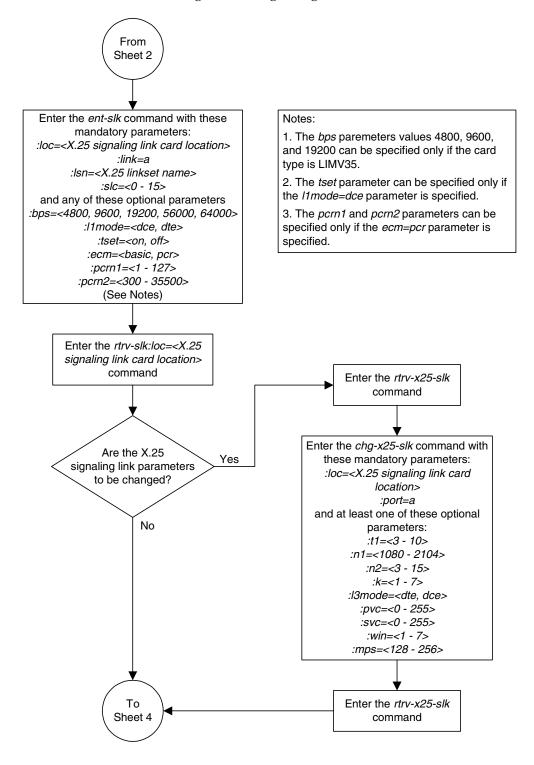
rlghncxa	103w 05-09	-28 17:00:36	GMT EAGLE	5 34.0.0	
SLK	LSN	CLLI	PST	SST	AST
1206,A	ls03		IS-NR	Avail	
ALARM	STATUS	= No alar	cm		
UNAVAI	L REASON	=			
Command	Completed				

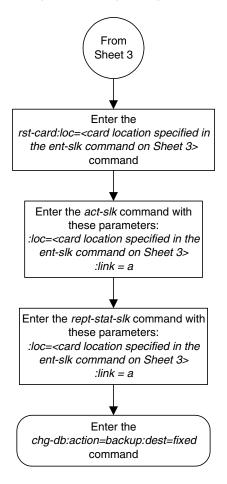

rept-stat-slk:loc=1207:link=a

This is an example of the possible output.


rlghncxa	03w 05-09	-28 17:00:36	GMT	EAGLE5	34.0.0	
SLK	LSN	CLLI	PST		SST	AST
1207,A	ls04		IS-N	IR	Avail	
ALARM	STATUS	= No alar	rm			
UNAVAI	L REASON	=				
Command	Completed					

13. Backup the new changes using the chg-db:action=backup:dest=fixed command. These messages should appear, the active Maintenance and Administration Subsystem Processor (MASP) appears first.


BACKUP (FIXED) : MASP A - Backup starts on active MASP.BACKUP (FIXED) : MASP A - Backup on active MASP to fixed disk complete.BACKUP (FIXED) : MASP A - Backup starts on standby MASP.BACKUP (FIXED) : MASP A - Backup on standby MASP to fixed disk complete.


Flowchart 2-9. Adding an X.25 Signaling Link (Sheet 1 of 4)

Flowchart 2-9. Adding an X.25 Signaling Link (Sheet 2 of 4)

Flowchart 2-9. Adding an X.25 Signaling Link (Sheet 3 of 4)

Flowchart 2-9. Adding an X.25 Signaling Link (Sheet 4 of 4)

Removing an X.25 Signaling Link

This procedure is used to remove an X.25 signaling link from the database using the dlt-slk command. To remove SS7 signaling links from the database, go to the "Removing an SS7 Signaling Link" procedure in the *Database Administration Manual* – *SS7*.

The dlt-slk command uses these parameters.

:loc – The card location of the LIM that the X.25 signaling link is assigned to.

:link – The signaling link on the card location specified in the **loc** parameter. For an X.25 signaling link, this parameter value is A.

:force – This parameter must be used to remove the last link in a linkset without having to remove all of the routes that referenced the linkset.

The examples in this procedure are used to remove the X.25 signaling link assigned to card 1207 from the database.

The X.25 signaling link to be removed must exist in the database.

All X.25 routes associated with this link must be removed before the X.25 signaling link can be removed. See the "Removing an X.25 Route" procedure on page 2-113.

Canceling the RTRV-SLK Command

Because the **rtrv-slk** command used in this procedure can output information for a long period of time, the **rtrv-slk** command can be canceled and the output to the terminal stopped. There are three ways that the **rtrv-slk** command can be canceled.

- Press the **F9** function key on the keyboard at the terminal where the **rtrv-slk** command was entered.
- Enter the canc-cmd without the trm parameter at the terminal where the rtrv-slk command was entered.
- Enter the canc-cmd:trm=<xx>, where <xx> is the terminal where the rtrv-slk command was entered, from another terminal other that the terminal where the rtrv-slk command was entered. To enter the canc-cmd:trm=<xx> command, the terminal must allow Security Administration commands to be entered from it and the user must be allowed to enter Security Administration commands. The terminal's permissions can be verified with the rtrv-secu-trm command. The user's permissions can be verified with the rtrv-user or rtrv-secu-user commands.

For more information about the canc-cmd command, go to the Commands Manual.

Procedure

1. Display the current link configuration using the **rtrv-slk** command. This is an example of the possible output.

rlghncxa03w 05-09-28 21:16:37 GMT EAGLE5 34.0.0									
			L2T		L1			PCR	PCR
LOC LINK LSN		TYPE	SET	BPS	MODE		ECM	Nl	N2
1201 A lsn1201a	0	LIMDS0	1	56000			BASIC		
1201 B lsn1201b	0	LIMDS0	1	56000			PCR	76	3800
1202 A lsn1202a	0	LIMV35	-	64000	DTE		BASIC		
1202 B lsn1202b	1	LIMV35	3	64000	DCE	ON	BASIC		
1203 A lsn1203a	0	LIMV35	1	56000	DCE	ON	BASIC		3800
1203 B lsn1203b	0	LIMV35	1	56000		OFF	PCR	120	5034
1204 A lsn1204a	1	LIMV35	3	64000	DCE	ON	PCR	76	3800
1204 B lsn1204b	1	LIMV35	3	64000	DCE	ON	PCR	76	3800
1205 A 1s03	0	LIMV35	-	56000	DTE		BASIC		
1206 A 1s03	1		-	56000	DTE		BASIC		
1207 A 1s04	0	LIMV35	-	64000	DTE		BASIC		
1301 A lsn1301a	0	LIMDS0	-	56000			BASIC		
			тD		7 (11)				
LOC LINK LON	at a	TUDE	LP	סתת	ATM		WOT	TTD.	т тт
LOC LINK LSN 1302 A atmansi0		TYPE	SET		TSE		VCI	VP 15	
	0	LIMATM	3	1544000		ERNAL			
1305 A atmansi1	0	LIMATM	4	1544000		ERNAL		20	
1318 A atmansi0	1	LIMATM	9	1544000	LIN	16	150	25	4
			LP		ATM				E1ATM
LOC LINK LSN	SLC	TYPE			TSEL	VC	I VP	T CR	C4 SI SN
	520		021	210	1022			- 010	01 01 01
No Links Set up.									
LOC LINK LSN	SLC	TYPE	IPL:	IML2					
No Links Set up.									
LOC LINK LSN	SLC	TYPE							
No Links Set up.									
			L2T			PCR	PCR	E1	E1
LOC LINK LSN	SLC	TYPE	SET	BPS	ECM	N1	N2	LOC	PORT TS
No Links Set up.									
			L2T			PCR	PCR	Τ1	T1
LOC LINK LSN	SLC	TYPE	SET	BPS	ECM	N1	N2	LOC	PORT TS
No Links Set up.									
SIK table is (15 of 1	2001	18 full							
SLK table is (15 of 1200) 1% full.									

2. Deactivate the X.25 signaling link to be removed using the dact-slk command, using the output from step 1 to obtain the card location and the signaling link to be removed. For this example, enter this command.

```
dact-slk:loc=1207:link=a
```

When this command has successfully completed, this message should appear.

```
rlghncxa03w 05-09-28 08:41:12 GMT EAGLE5 34.0.0 Deactivate Link message sent to card
```

3. Verify that the X.25 signaling link is out of service - maintenance (OOS-MT) using the **rept-stat-slk** command, using the card location and the signaling link. For this example, enter this command.

```
rept-stat-slk:loc=1207:link=a
```

This is an example of the possible output.

rlghncxa03w 05-09-28 17:00:36 GMT EAGLE5 34.0.0 SLK LSN CLLI PST SST AST 1207,A 1s04 ----- OOS-MT Unavail ----ALARM STATUS = * 0221 REPT-LKF: X25 link unavailable UNAVAIL REASON = X25FL Command Completed.

4. Before the X.25 signaling link can be removed from the database, any X.25 routes associated with the X.25 signaling link must be removed from the database. Enter the **rtrv-x25-rte** command to display the X.25 routes in the database. This is an example if the possible output.

```
      rlghncxa03w 05-09-28 21:16:37 GMT EAGLES 34.0.0

      X25 ADDR
      SS7 ADDR
      TYPE
      LOC
      PORT
      LC
      RT
      LC2NM

      11101
      44401
      pvc
      1205
      a
      01
      xpc
      no

      11102
      55501
      pvc
      1206
      a
      02
      pc
      no

      22201
      44401
      pvc
      1205
      a
      01
      xpc
      yes

      33301
      44401
      pvc
      1206
      a
      01
      xpc
      yes

      33302
      55501
      pvc
      1207
      a
      --
      pc
      no

      X.25 ROUTE TABLE IS
      30 % FULL
      svca
      1207
      a
      --
      pc
      no
```

5. If any X.25 routes shown in the output of step 5 are assigned to the X.25 signaling links shown in the output of step 4, remove those X.25 routes by using the dlt-x25-rte command. For this example, enter these commands.

```
dlt-x25-rte:xaddr=33301:saddr=44401
dlt-x25-rte:xaddr=33302:saddr=55501
```

When each of these commands have successfully completed, this message should appear.

```
rlghncxa03w 05-09-28 11:43:04 GMT EAGLE5 34.0.0
DLT-X25-RTE: MASP A - X.25 Route table 30% full
DLT-X25-RTE: MASP A - COMPLTD
```

6. Verify the changes using the **rtrv-x25-rte** command. This is an example of the possible output.

 rlghncxa03w 05-09-28 21:16:37 GMT EAGLES 34.0.0

 X25 ADDR
 SS7 ADDR
 TYPE
 LOC
 PORT
 LC
 RT
 LC2NM

 11101
 44401
 pvc
 1205
 a
 01
 xpc
 no

 11102
 55501
 pvc
 1206
 a
 02
 pc
 no

 22201
 44401
 pvc
 1205
 a
 02
 pc
 no

 22202
 55501
 pvc
 1206
 a
 01
 xpc
 yes

 X.25 ROUTE TABLE IS
 30 % FULL
 S
 S
 S
 S
 S
 S
 S

7. Because there can only be one X.25 signaling link assigned to a LIM, that card must be inhibited. Enter the rmv-card command and specify the location of the card to be inhibited. The card location is shown in the output of rept-stat-slk command executed in step 4. For this example, enter this command.

```
rmv-card:loc=1207
```

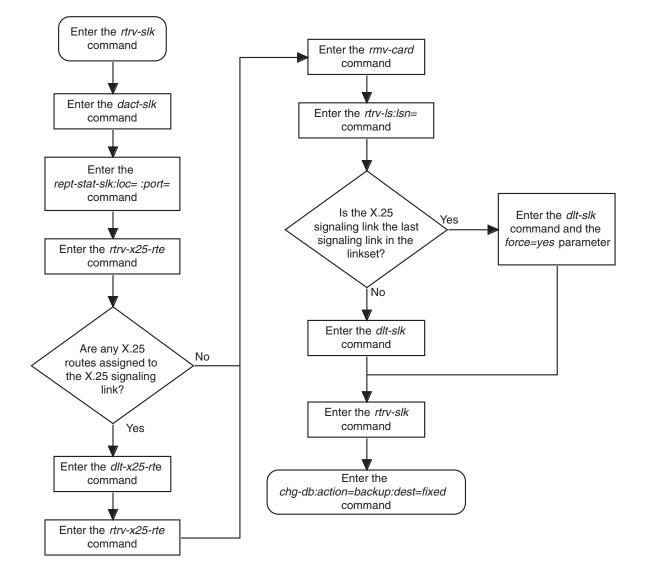
When this command has successfully completed, this message should appear.

rlghncxa03w 05-09-28 08:41:12 GMT EAGLE5 34.0.0 Card has been inhibited.

8. Remove the X.25 signaling link from the database using the dlt-slk command. If this X.25 signaling link is the last link in a linkset, the force=yes parameter must be specified. For this example, enter this command.

dlt-slk:loc=1207:link=a:force=yes

When this command has successfully completed, this message should appear.


rlghncxa03w 05-09-28 08:41:17 GMT EAGLE5 34.0.0 DLT-SLK: MASP A - COMPLTD **9.** Verify the changes using the **rtrv-slk** command. This is an example of the possible output.

righ	ncxa0	3w 05-09-28	21:10	5:37 GMT	EAGLE	≤5 34.0.	0				
					L2T		L1			PCR	PCR
LOC	LINK	LSN	SLC	TYPE	SET	BPS	MODE	TSET	ECM	N1	N2
1201	A	lsn1201a	0	LIMDS0	1	56000			BASIC		
1201	В	lsn1201b	0	LIMDS0	1	56000			PCR	76	3800
1202	A	lsn1202a	0	LIMV35	-	64000	DTE		BASIC		
1202	В	lsn1202b	1	LIMV35	3	64000	DCE	ON	BASIC		
1203	A	lsn1203a	0	LIMV35	1	56000	DCE	ON	BASIC	76	3800
1203	В	lsn1203b	0	LIMV35	1	56000	DCE	OFF	PCR	120	5034
1204	A	lsn1204a	1	LIMV35	3	64000	DCE	ON	PCR	76	3800
1204	В	lsn1204b	1	LIMV35	3	64000	DCE	ON	PCR	76	3800
1205	A	ls03	0	LIMV35	-	56000	DTE		BASIC		
1206	А	ls03	1	LIMV35	-	56000	DTE		BASIC		
1301	A	lsn1301a	0	LIMDS0	-	56000			BASIC		
					LP		ATM	1			
LOC	LINK	LSN	SLC	TYPE	SET	BPS	TSE	3L	VCI	VP	I LL
1302	A	atmansi0	0	LIMATM	3	1544000	INT	ERNAL	35	15	0
1305	А	atmansil	0	LIMATM	4	1544000	INT	ERNAL	100	20	2
1318	A	atmansi0	1	LIMATM	9	1544000	LIN	ΙE	150	25	4
					LP		ATM				E1ATM
LOC	LINK	LSN	SLC	TYPE	SET	BPS	TSEL	VC:	I VP:	I CR	C4 SI SN
No L:	inks S	Set up.									
LOC	LINK	LSN	SLC	TYPE	IPLI	IML2					
No L:	inks §	Set up.									
TOG	T T.117	T ON	at a								
LOC	LINK	LSN	SLC	TYPE							
No L:	inks S	Set up.									
					L2T			PCR	PCR	E1	E1
LOC	LINK	LSN	SLC	TYPE	SET	BPS	ECM	Nl	N2	LOC	PORT TS
No L:	inks S	Set up.									
					L2T			PCR	PCR	T1	T1
LOC	LINK	LSN	SLC	TYPE	SET	BPS	ECM	Nl	N2	LOC	PORT TS
No L:	inks S	Set up.									
SLK 1	table	is (15 of 1	200)	1% full.							

rlqhncxa03w 05-09-28 21:16:37 GMT EAGLE5 34.0.0

10. Backup the new changes using the chg-db:action=backup:dest=fixed command. These messages should appear, the active Maintenance and Administration Subsystem Processor (MASP) appears first.

BACKUP (FIXED) : MASP A - Backup starts on active MASP.
BACKUP (FIXED) : MASP A - Backup on active MASP to fixed disk complete.
BACKUP (FIXED) : MASP A - Backup starts on standby MASP.
BACKUP (FIXED) : MASP A - Backup on standby MASP to fixed disk complete.

Flowchart 2-10. Removing an X.25 Signaling Link

Adding an X.25 Route

This procedure is used to add an X.25 route to the database using the **ent-x25-rte** command.

The ent-x25-rte command uses these parameters.

:xaddr – The X.25 address assigned to the X.25 destination entity on the X.25 side of the circuit.

:saddr – The dummy X.25 address assigned to the SS7 destination entity on the SS7 side of the circuit.

: type – The type of X.25 connection that the link is expected to maintain.

:loc – The card location of the LIM containing the X.25 signaling link that will maintain the connection. For an automatic virtual circuit, this link is the link on which the EAGLE 5 SAS initially attempts the connection. However, if this attempt fails, the connection may be established by the X.25 destination entity on any other link in this link's linkset.

:port – The signaling link on the card specified in the **loc** parameter. For an X.25 signaling link, this parameter value is A.

:1c – The number of the logical channel on the X.25 signaling link to which the PVC connection is assigned. This parameter is mandatory if the **type=pvc** parameter is specified. If the **type=svca** or **type=svcr** parameters are specified, the logical channel number is arbitrary and cannot be specified.

:rt – The type of routing to perform for messages originating in the SS7 domain and destined for the X.25 domain. Two types of routing are available:
(1) Route on X.25 destination point code (XPC) and (2) Route using X.25 origination and destination point code combinations (PC).

:lc2nm – Invokes network management for failures and recoveries of logical channels. When the logical channel being used to carry data fails, network management reroutes traffic to an alternate route. The logical channel to network management mapping (LC2NM) feature handles this process.

The examples in this procedure are based on the example network shown in Figure 2-4 and Table 2-8 and are used to add X.25 signaling links to cards 1205, 1206, and 1207.

Conn #	X.25 Address	SS7 Address	X.25 Point Code/ SSN	SS7 Point Code/ SSN	Connection Type	Location	Port	Logical Channel
1	11101	44401	1-1-1/5	4-4-4/5	PVC	1205	А	1
2	11102	55501	1-1-1/5	5-5-5/5	PVC	1206	А	2
3	22201	44401	2-2-2/5	4-4-4/5	PVC	1205	А	2
4	22202	55501	2-2-2/10	5-5-5/10	PVC	1206	А	1
5	33301	44401	3-3-3/6	4-4-4/6	Auto-SVC	1207	А	
6	33302	55501	3-3-3/7	5-5-5/7	Auto-SVC	1207	А	

Table 2-8.X.25/SS7 Gateway Route Configuration

These items must be provisioned in the database before an X.25 route can be added:

- A LIM assigned to the ss7gx25 application see the "Adding an X.25 LIM" procedure on page 2-14.
- An destination point code (DPC) assigned to the X.25 domain and a DPC assigned to the SS7 domain see the "Adding a ANSI Destination Point Code" procedure in the *Database Administration Manual SS*7.

NOTE: ITU international or ITU national point codes cannot be assigned to the X.25 domain.

- An X.25 destination see the "Adding an X.25 Gateway Destination" procedure on page 2-25
- A linkset whose adjacent point code (APC) is in the X.25 domain see the "Adding an X.25 Linkset" procedure on page 2-40
- A signaling link assigned to a linkset containing an X.25 APC see the "Adding an X.25 Signaling Link" procedure on page 2-76
- A route assigned to the linkset containing the X.25 APC see the "Adding a Route Containing an X.25 DPC" procedure in the *Database Administration Manual SS*7.

The X.25 gateway route to be added cannot already be in the database. The combination of the two X.25 addresses must be unique in the X.25 route table. The combination of point code/SSNs assigned to the two X.25 addresses must be unique in the X.25 route table. This can be verified with the **rtrv-x25-rte** command.

The point codes assigned to each of the X.25 destinations must also be assigned to a route. This can be verified with the **rtrv-rte** command.

The point codes assigned to each of the X.25 destinations must be a full point code. Cluster point codes and network routing point codes cannot be specified for X.25 destinations. For more information on cluster point codes, go to the "Cluster Routing and Management Diversity" section in the *Database Administration Manual – SS7*. For more information on network routing point codes, go to the "Network Routing" section in the *Database Administration Manual – SS7*.

Two new parameters have been added to the ent-x25-rte command, rt and lc2nm. The rt parameter defines the type of routing to perform on messages originating in the SS7 domain and destined for the X.25 domain. This parameter has two values, xpc and pc. The rt=xpc parameter routes the message based on the X.25 destination point code. The rt=pc parameter routes the message based on the X.25 origination and destination point code combination.

If the **rt=xpc** parameter is specified, the point code associated with the X.25 address used for this X.25 route cannot be in the X.25 route table. This can be verified with the **rtrv-x25-rte** command.

The X.25 network is connection oriented. All traffic from one node to another node uses one and only one logical channel. Once a logical channel is mapped to a pair of nodes, it cannot be used by any other pair of nodes.

When a logical channel on a particular X.25 route can no longer carry traffic between two nodes, the traffic between those two nodes can be rerouted to alternate routes with the logical channel to network management function and is specified by the **lc2nm** parameter. This function maps logical channel failures and recoveries to SS7 network management messages so that the alternate routing for the X.25 routes can be managed.

If the lc2nm=yes parameter is specified, then network management for logical channel failures and recoveries is performed. If the lc2nm=no parameter is specified, there is no network management for logical channel failures and recoveries.

If the X.25 route has the lc2nm parameter set to yes, and this X.25 route contains an X.25 destination whose X.25 destination point code is a member of a cluster, make sure that the bei parameter of the cluster containing the X.25 destination point code is set to no. Enter the rtrv-x25-dstn command to verify the destination point code that is assigned to the X.25 destination. Enter the rtrv-dstn command to verify that the X.25 destination point code is a member of a cluster and to verify the value of the bei parameter of the cluster. If the X.25 destination point code is not a member of a cluster, and you wish to use the lc2nm=yes parameter with the X.25 route, enter the rtrv-dstn command to verify that the value of the bei parameter for that X.25 destination point code is set to no. To change the existing value the bei parameter, go to the "Changing a Destination Point Code" procedure in the Database Administration Manual – SS7. For more information on the interaction of X.25 destination point codes and clusters, go to the "Adding a ANSI Destination Point Code" procedure in the Database Administration Manual – SS7. To specify the lc2nm=yes parameter, the rt=xpc parameter must be specified, and the point code that the message is to be routed on (xpc) cannot be an adjacent point code. This can be verified by first entering the rtrv-x25-dstn command to find the point code and X.25 address association, then the rtrv-ls command to display the linksets and the adjacent point codes they are assigned to. Any X.25 address that is associated with an adjacent point code, comparing the outputs of the rtrv-x25-dstn and rtrv-ls commands, cannot be used if the ent-x25-rte command specifies the lc2nm=yes parameter.

If the **lc2nm=yes** parameter is specified for the X.25 route in the linkset and the linkset has gateway screening associated with it, gateway screening must be configured to allow TFA and TFP network management messages on this linkset to pass through the EAGLE 5 SAS. Go to the *Database Administration Manual* - *Gateway Screening* for details on how to create a screen that allows network management messages.

To allow TFA messages to pass through the EAGLE 5 SAS on this linkset, the allowed SIO screen must contain these parameters: si=0, h0=4, h1=5. To allow TFP messages to pass through the EAGLE 5 SAS on this linkset, the allowed SIO screen must contain these parameters: si=0, h0=4, h1=1. This can be verified with the **rtrv-scr-sio** command. If the allowed SIO screen that allows TFA and TFP messages is not in the database, go to the "Adding an Allowed SIO Screen" procedure in the *Database Administration Manual - Gateway Screening* to add the allowed SIO screen with these parameters. If the required allowed SIO screen does not contain the parameters to allow the TFA and TFP messages, go to the "Changing an Allowed SIO Screen" procedure in the *Database Screening* to change the parameters of this allowed SIO screen.

Procedure

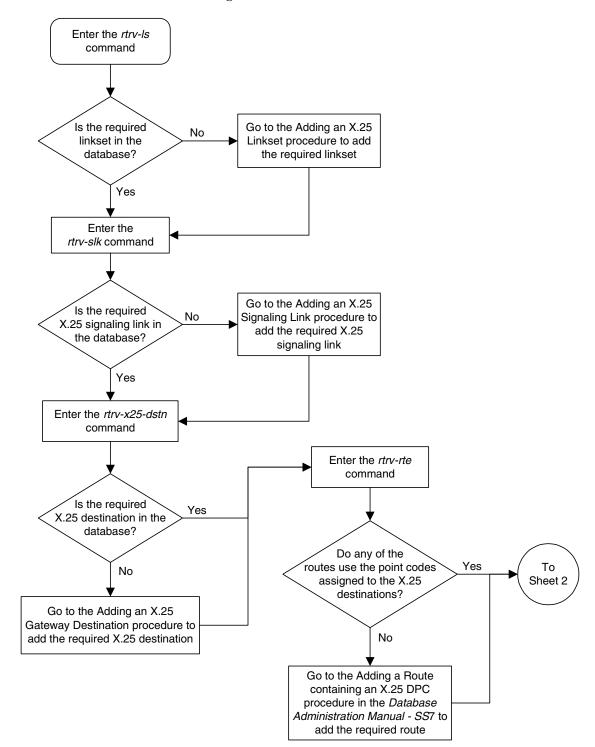
1. Display the current X.25 route configuration using the **rtrv-x25-rte** command. This is an example of the possible output.

rlghncxa03w 05-09-28 21:16:37 GMT EAGLES 34.0.0X25 ADDRSS7 ADDRTYPELOCPORTLCRTLC2NM2510010011234567342342341234567pvc1201a02xpcyes251001002234234231pvc1201a04pcno512001053422342845svca1202a--pcno2510103232330pvc1201a06xpcyes25100190224247235svca3205a--pcno345454454534svca1201a--pcno345454S0 % FULLsvca1201a--pcno

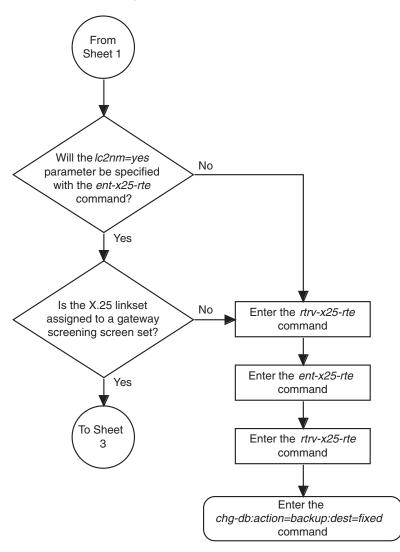
2. Add the X.25 route using the **ent-x25-rte** command. For this example, enter these commands.

```
ent-x25-rte:xaddr=11101:saddr=44401:type=pvc:loc=1205:port=a:lc=1
ent-x25-rte:xaddr=11102:saddr=55501:type=pvc:loc=1206:port=a:lc=2
ent-x25-rte:xaddr=22201:saddr=44401:type=pvc:loc=1205:port=a:lc=2
ent-x25-rte:xaddr=22201:saddr=55501:type=pvc:loc=1206:port=a:lc=1
ent-x25-rte:xaddr=33301:saddr=44401:type=svca:loc=1207:port=a
ent-x25-rte:xaddr=33302:saddr=55502:type=svca:loc=1207:port=a
```

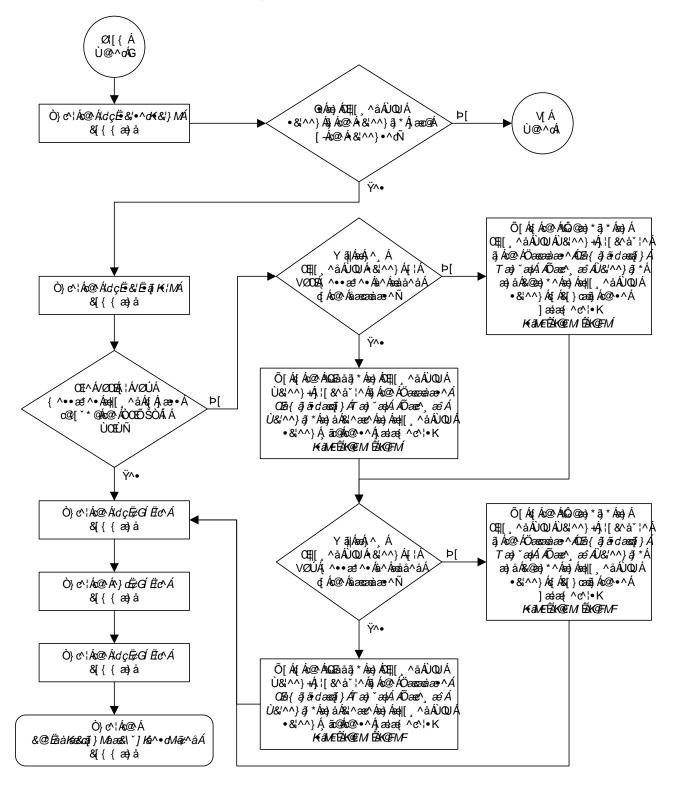
When each of these commands have successfully completed, this message should appear.

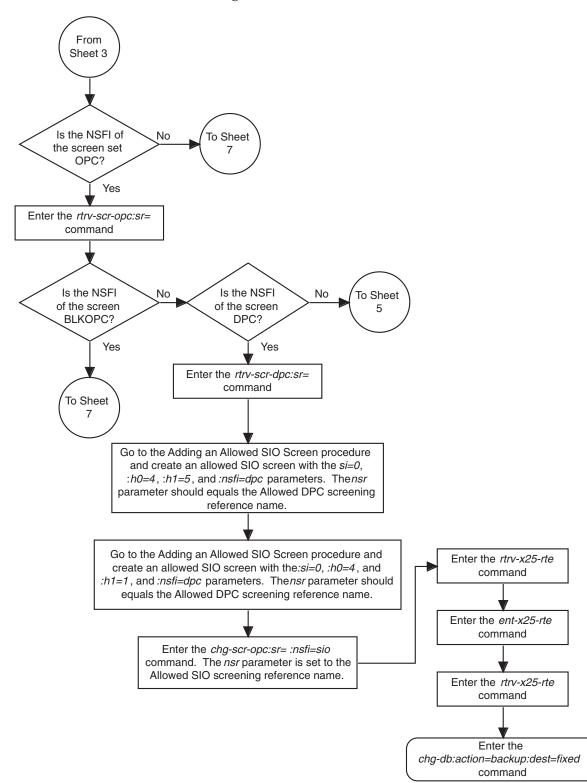

rlghncxa03w 05-09-28 11:43:04 GMT EAGLE5 34.0.0 ENT-X25-RTE: MASP A - X.25 Route table 32% full ENT-X25-RTE: MASP A - COMPLTD

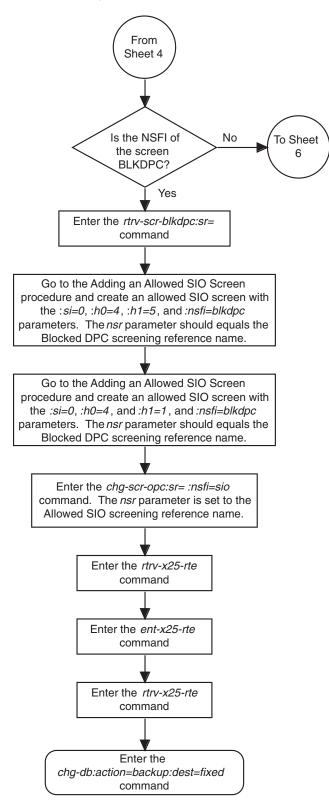
3. Verify the changes using the **rtrv-x25-rte** command. This is an example of the possible output.

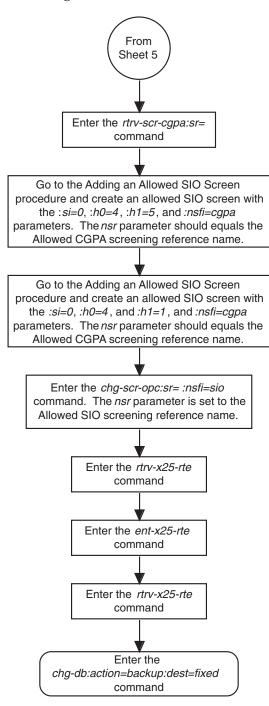

rlghncxa03w 05-09	-28 21:16:37 GMT	EAGLE5	34.0.0				
X25 ADDR	SS7 ADDR	TYPE	LOC	PORT	LC	RT	LC2NM
11101	44401	pvc	1205	a	01	рс	no
11102	55501	pvc	1206	a	02	рс	no
22201	44401	pvc	1205	a	02	рс	no
22202	55501	pvc	1206	a	01	рс	no
2510010011234567	342342341234567	pvc	1201	a	02	xpc	yes
251001002	234234231	pvc	1201	a	04	рс	no
2510103	232330	pvc	1201	a	06	xpc	yes
2510103	232330	svcr		-		рс	no
2516019002	24247235	svca	3205	a		рс	no
33301	44401	svca	1207	a		рс	no
33302	55501	svca	1207	a		рс	no
345454	4545434	svca	1201	a		рс	no
51200105	34223422845	svca	1202	a		рс	no
6389012	57982	pvc	1301	a	01	xpc	yes
X.25 ROUTE TABLE	IS 30 % FULL						

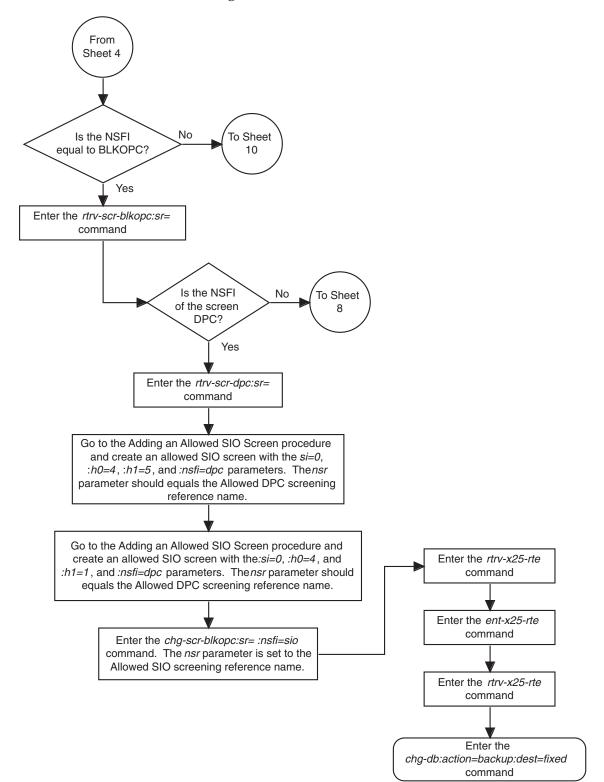
4. Backup the new changes using the chg-db:action=backup:dest=fixed command. These messages should appear, the active Maintenance and Administration Subsystem Processor (MASP) appears first.

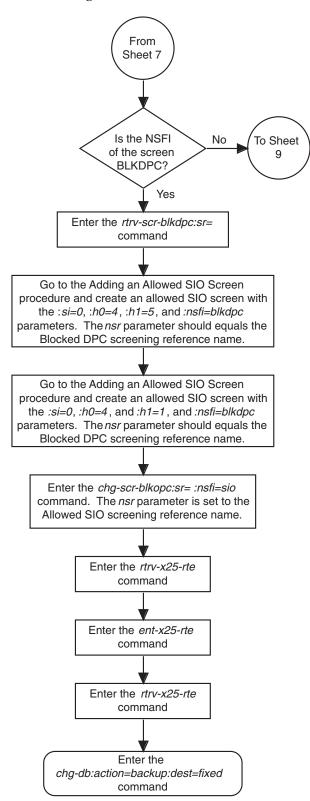

BACKUP (FIXED) : MASP A - Backup starts on active MASP.
BACKUP (FIXED) : MASP A - Backup on active MASP to fixed disk complete.
BACKUP (FIXED) : MASP A - Backup starts on standby MASP.
BACKUP (FIXED) : MASP A - Backup on standby MASP to fixed disk complete.

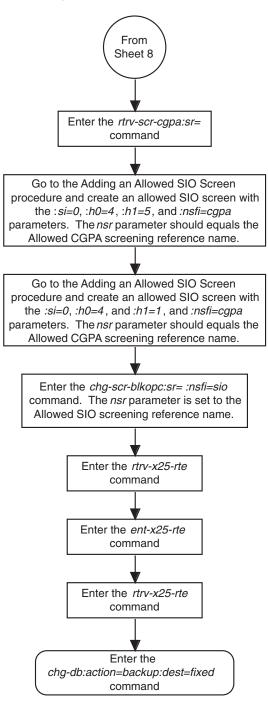

Flowchart 2-11. Adding an X.25 Route (Sheet 1 of 11)

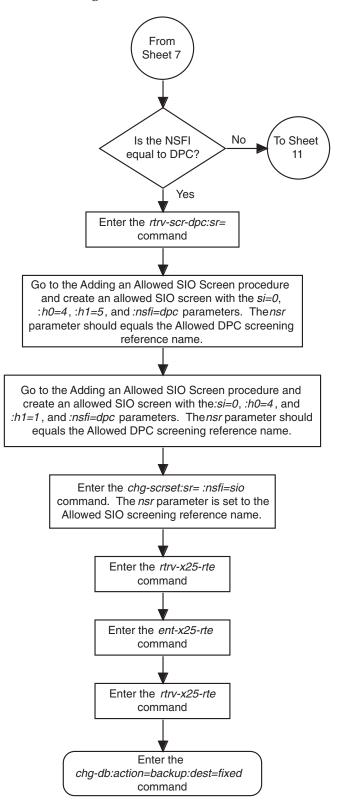

Flowchart 2-11. Adding an X.25 Route (Sheet 2 of 11)

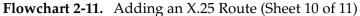

Flowchart 2-11. Adding an X.25 Route (Sheet 3 of 11)

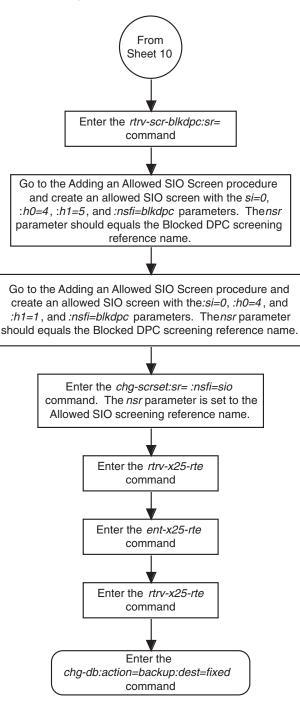

Flowchart 2-11. Adding an X.25 Route (Sheet 4 of 11)


Flowchart 2-11. Adding an X.25 Route (Sheet 5 of 11)


Flowchart 2-11. Adding an X.25 Route (Sheet 6 of 11)


Flowchart 2-11. Adding an X.25 Route (Sheet 7 of 11)




Flowchart 2-11. Adding an X.25 Route (Sheet 8 of 11)

Flowchart 2-11. Adding an X.25 Route (Sheet 9 of 11)

Flowchart 2-11. Adding an X.25 Route (Sheet 11 of 11)

Removing an X.25 Route

This procedure is used to remove an X.25 route from the database using the dlt-x25-rte command.

The dlt-x25-rte command uses these parameters.

:xaddr – The X.25 address assigned to the X.25 destination entity on the X.25 side of the circuit.

:saddr – The dummy X.25 address assigned to the SS7 destination entity on the SS7 side of the circuit.

The examples in this procedure are used to remove the X.25 route with the X.25 address (**xaddr**) of 22202 and an SS7 address (**saddr**) of 55501.

The X.25 route to be removed must be in the database. This can be verified in step 1.

Procedure

- -

1. Display the current X.25 route configuration using the **rtrv-x25-rte** command. This is an example of the possible output.

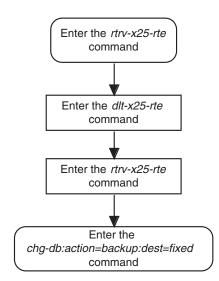
rlghncxa03w 05-09	-28 21:16:37 GMT	EAGLE5	34.0.	0			
X25 ADDR	SS7 ADDR	TYPE	LOC	PORT	LC	RT	LC2NM
11101	44401	pvc	1205	а	01	рс	no
11102	55501	pvc	1206	a	02	pc	no
22201	44401	pvc	1205	a	02	pc	no
22202	55501	pvc	1206	а	01	pc	no
2510010011234567	342342341234567	pvc	1201	a	02	xpc	yes
251001002	234234231	pvc	1201	a	04	pc	no
2510103	232330	pvc	1201	а	06	xpc	yes
2510103	232330	svcr		-		pc	no
2516019002	24247235	svca	3205	а		pc	no
33301	44401	svca	1207	а		pc	no
33302	55501	svca	1207	а		pc	no
345454	4545434	svca	1201	а		pc	no
51200105	34223422845	svca	1202	а		pc	no
6389012	57982	pvc	1301	а	01	xpc	yes
X.25 ROUTE TABLE	IS 30 % FULL						

2. Remove the X.25 route using the dlt-x25-rte command. For this example, enter this command.

dlt-x25-rte:xaddr=22202:saddr=55501

When this command has successfully completed, this message should appear.

```
rlghncxa03w 05-09-28 11:43:04 GMT EAGLE5 34.0.0
DLT-X25-RTE: MASP A - X.25 Route table 30% full
DLT-X25-RTE: MASP A - COMPLTD
```


3. Verify the changes using the **rtrv-x25-rte** command. This is an example of the possible output.

rlghncxa03w 05-09	-28 21:16:37 GMT	EAGLE5	34.0.	0			
X25 ADDR	SS7 ADDR	TYPE	LOC	PORT	LC	RT	LC2NM
11101	44401	pvc	1205	a	01	pc	no
11102	55501	pvc	1206	a	02	pc	no
22201	44401	pvc	1205	a	02	pc	no
2510010011234567	342342341234567	pvc	1201	a	02	xpc	yes
251001002	234234231	pvc	1201	a	04	pc	no
2510103	232330	pvc	1201	а	06	xpc	yes
2510103	232330	svcr		-		pc	no
2516019002	24247235	svca	3205	a		pc	no
33301	44401	svca	1207	а		pc	no
33302	55501	svca	1207	a		pc	no
345454	4545434	svca	1201	a		pc	no
51200105	34223422845	svca	1202	a		pc	no
6389012	57982	pvc	1301	a	01	xpc	yes
X.25 ROUTE TABLE	IS 30 % FULL						

4. Backup the new changes using the chg-db:action=backup:dest=fixed command. These messages should appear, the active Maintenance and Administration Subsystem Processor (MASP) appears first.

```
BACKUP (FIXED) : MASP A - Backup starts on active MASP.
BACKUP (FIXED) : MASP A - Backup on active MASP to fixed disk complete.
BACKUP (FIXED) : MASP A - Backup starts on standby MASP.
BACKUP (FIXED) : MASP A - Backup on standby MASP to fixed disk complete.
```

Flowchart 2-12. Removing an X.25 Route

Changing an X.25 Route

This procedure is used to change the attributes of an X.25 route in the database using the chg-x25-rte command.

The chg-x25-rte command uses these parameters.

:xaddr – The X.25 address assigned to the X.25 destination entity on the X.25 side of the circuit.

:saddr – The alias X.25 address assigned to the SS7 destination entity on the SS7 side of the circuit.

: type – The type of X.25 connection that the link is expected to maintain.

:loc – The card location of the LIM containing the X.25 signaling link that maintains the connection.

:port – The signaling link on the card specified in the *loc* parameter. For an X.25 signaling link, this parameter value is A.

:rt – The type of routing to perform for messages originating in the SS7 domain and destined for the X.25 domain. Two types of routing are available: (1) route on X.25 destination point code (XPC) and (2) route using X.25 origination and destination point code combinations (PC).

:lc2nm – Invokes SS7 MTP network management for failures and recoveries of logical channels.

The examples in this procedure are used to change the attributes of the X.25 route with the X.25 address (**xaddr**) of 11102 and an SS7 address (**saddr**) of 55501. The new configuration of this X.25 route has a connection type of **svca**, no logical channel assignment, and is assigned to the X.25 signaling link on card 1215.

The X.25 route to be changed must be in the database. This can be verified in step 1.

The card location assigned to the X.25 route must be an X.25 card (card type **ss7x25g**). This can be verified with the **rtrv-card** command.

The signaling link assigned to the X.25 route must be in the database and must be assigned to a linkset. The linkset must be assigned to a route associated with an X.25 destination and must contain an APC in the X.25 domain. This can be verified by entering these commands:

- **rtrv-slk** to display the signaling links
- rtrv-ls to display the linksets
- **rtrv-rte** to display the routes
- rtrv-x25-dstn to display the X.25 destinations
- rtrv-dstn to display the destination point codes.

If the lc2nm=yes parameter is specified with the chg-x25-rte command, the SS7 point code assigned to the X.25 address used by the xaddr parameter must be unique in the X.25 routing table.

The **rt=xpc** parameter must be specified with the **chg-x25-rte** command if the **lc2nm=yes** is specified.

If the X.25 destination is an adjacent entity, the lc2nm=no parameter must be specified with the chg-x25-rte command.

If the X.25 route has the lc2nm parameter set to yes, and this X.25 route contains an X.25 destination whose X.25 destination point code is a member of a cluster, make sure that the bei parameter of the cluster containing the X.25 destination point code is set to no. Enter the rtrv-x25-dstn command to verify the destination point code that is assigned to the X.25 destination. Enter the rtrv-dstn command to verify that the X.25 destination point code is a member of a cluster and to verify the value of the bei parameter of the cluster. If the X.25 destination point code is not a member of a cluster, and you wish to use the lc2nm=yes parameter with the X.25 route, enter the rtrv-dstn command to verify that the value of the bei parameter, go to the "Changing a Destination Point Code" procedure in the Database Administration Manual – SS7. For more information on the interaction of X.25 destination point codes and clusters, go to the "Adding a ANSI Destination Point Code" procedure in the Database Administration Manual – SS7.

If the lc2nm=yes parameter is specified for the X.25 route in the linkset and the linkset has gateway screening associated with it, gateway screening must be configured to allow TFA and TFP network management messages on this linkset to pass through the EAGLE 5 SAS. Refer to the *Database Administration Manual* - *Gateway Screening* for details on how to create a screen that allows network management messages.

To allow TFA messages to pass through the EAGLE 5 SAS on this linkset, the allowed SIO screen must contain these parameters: si=0, h0=4, h1=5. To allow TFP messages to pass through the EAGLE 5 SAS on this linkset, the allowed SIO screen must contain these parameters: si=0, h0=4, h1=1. This can be verified with the **rtrv-scr-sio** command. If the allowed SIO screen that allows TFA and TFP messages is not in the database, go to the "Adding an Allowed SIO Screen" procedure in the *Database Administration Manual - Gateway Screening* to add the allowed SIO screen with these parameters. If the required allowed SIO screen does not contain the parameters to allow the TFA and TFP messages, go to the "Changing an Allowed SIO Screen" procedure in the *Database Screening* to change the parameters of this allowed SIO screen.

Procedure

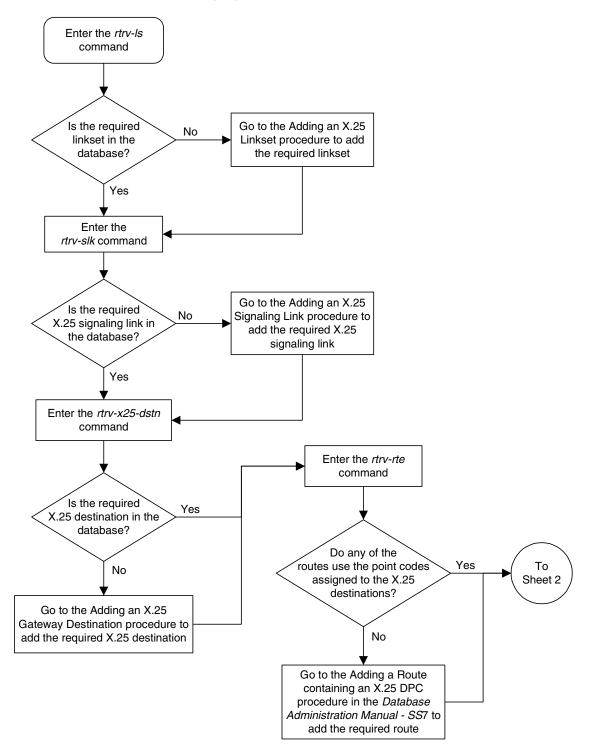
1. Display the current X.25 route configuration using the **rtrv-x25-rte** command. This is an example of the possible output.

rlghncxa03w 05-09	-28 21:16:37 GMT	EAGLE5	34.0.	0			
X25 ADDR	SS7 ADDR	TYPE	LOC	PORT	LC	RT	LC2NM
11101	44401	pvc	1205	a	01	рс	no
11102	55501	pvc	1206	a	02	рс	no
22201	44401	pvc	1205	a	02	рс	no
22202	55501	pvc	1206	a	01	рс	no
2510010011234567	342342341234567	pvc	1201	a	02	xpc	yes
251001002	234234231	pvc	1201	a	04	рс	no
2510103	232330	pvc	1201	a	06	xpc	yes
2510103	232330	svcr		-		рс	no
2516019002	24247235	svca	3205	a		рс	no
33301	44401	svca	1207	a		рс	no
33302	55501	svca	1207	а		pc	no
345454	4545434	svca	1201	а		рс	no
51200105	34223422845	svca	1202	a		рс	no
6389012	57982	pvc	1301	а	01	xpc	yes
X.25 ROUTE TABLE	IS 30 % FULL						

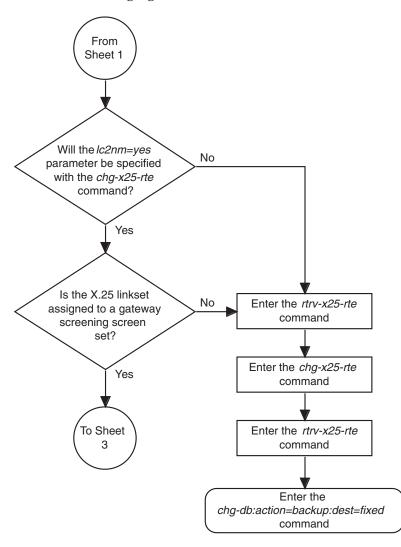
2. Change the attributes of the X.25 route using the **chg-x25-rte** command. For this example, enter this command.

chg-x25-rte:xaddr=11102:saddr=55501:type=svca:loc=1215:port=a

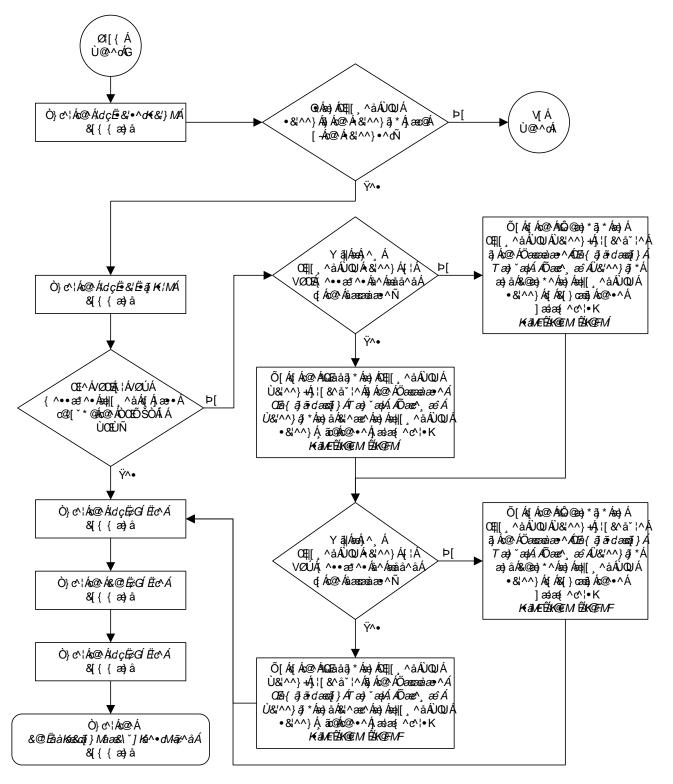
When this command has successfully completed, this message should appear.

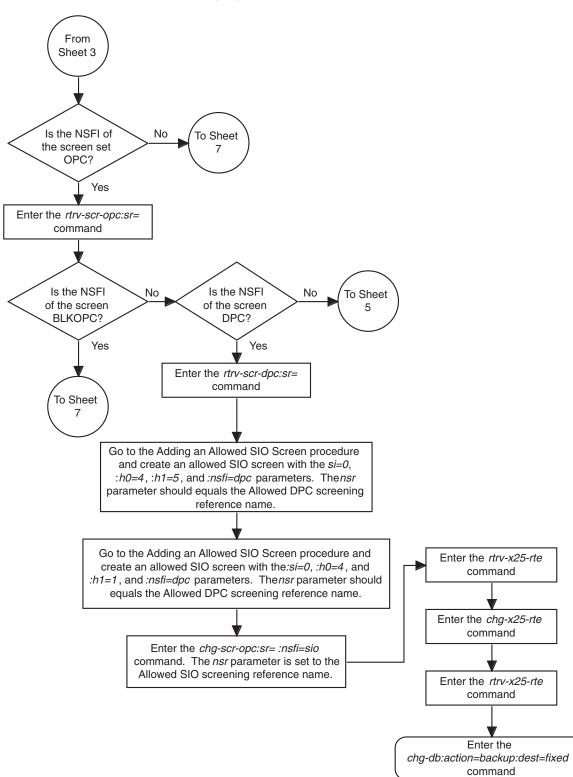

```
rlghncxa03w 05-09-28 11:43:04 GMT EAGLE5 34.0.0
CHG-X25-RTE: MASP A - X.25 Route table 30% full
CHG-X25-RTE: MASP A - COMPLTD
```

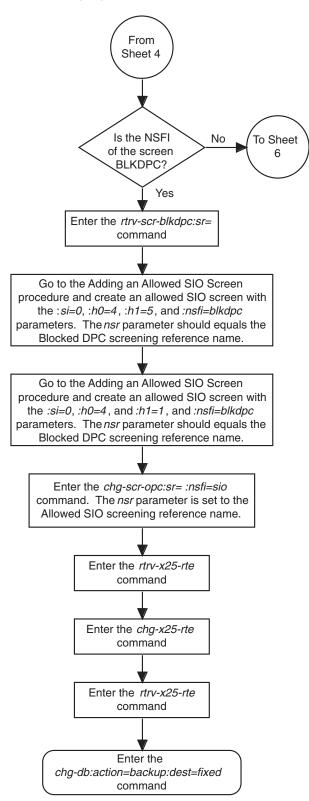
3. Verify the changes using the **rtrv-x25-rte** command. This is an example of the possible output.

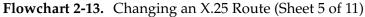

rlghncxa03w 05-09	-28 21:16:37 GMT	EAGLE5	5 34.0.0				
X25 ADDR	SS7 ADDR	TYPE	LOC	PORT	LC	RT	LC2NM
11101	44401	pvc	1205	a	01	pc	no
11102	55501	svca	1215	a		pc	no
22201	44401	pvc	1205	a	02	рс	no
22202	55501	pvc	1206	a	01	pc	no
2510010011234567	342342341234567	pvc	1201	a	02	xpc	yes
251001002	234234231	pvc	1201	a	04	рс	no
2510103	232330	pvc	1201	a	06	xpc	yes
2510103	232330	svcr		-		pc	no
2516019002	24247235	svca	3205	a		рс	no
33301	44401	svca	1207	a		pc	no
33302	55501	svca	1207	a		pc	no
345454	4545434	svca	1201	a		рс	no
51200105	34223422845	svca	1202	a		pc	no
6389012	57982	pvc	1301	a	01	xpc	yes
X.25 ROUTE TABLE	IS 30 % FULL						

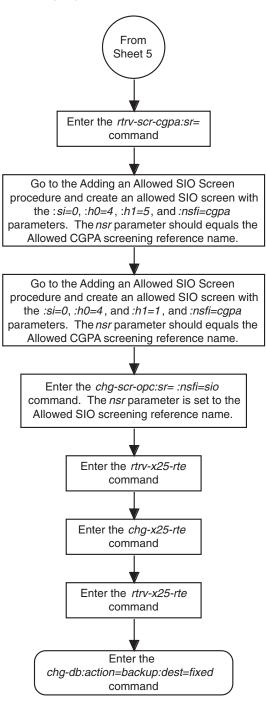
4. Backup the new changes using the chg-db:action=backup:dest=fixed command. These messages should appear, the active Maintenance and Administration Subsystem Processor (MASP) appears first.

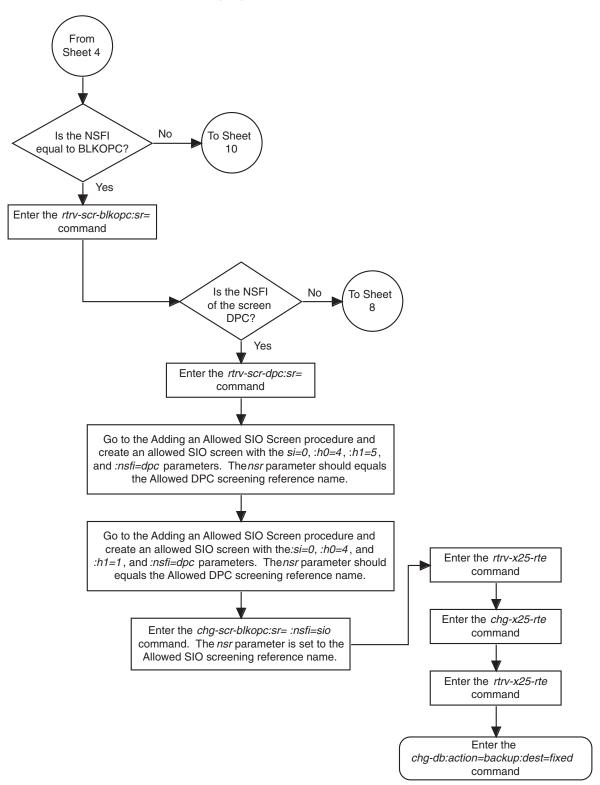

BACKUP (FIXED) : MASP A - Backup starts on active MASP.
BACKUP (FIXED) : MASP A - Backup on active MASP to fixed disk complete.
BACKUP (FIXED) : MASP A - Backup starts on standby MASP.
BACKUP (FIXED) : MASP A - Backup on standby MASP to fixed disk complete.

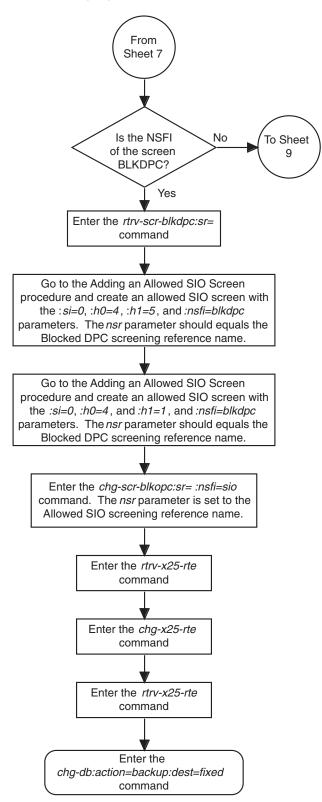

Flowchart 2-13. Changing an X.25 Route (Sheet 1 of 11)

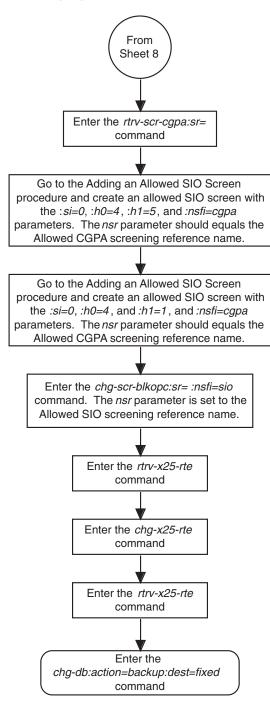

Flowchart 2-13. Changing an X.25 Route (Sheet 2 of 11)

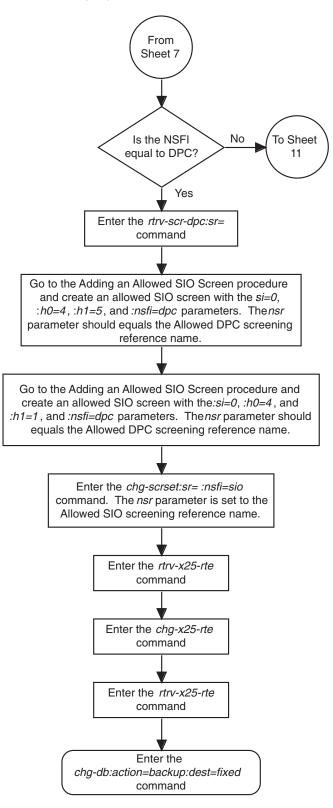


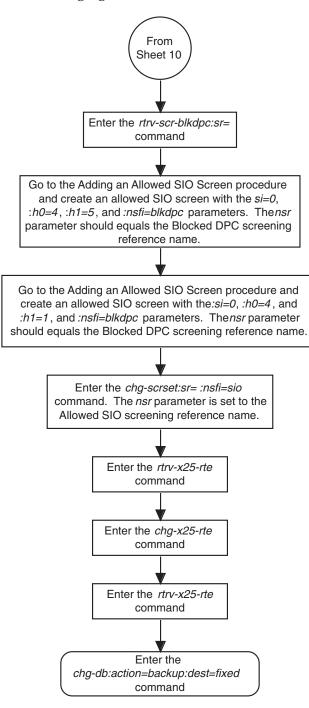

Flowchart 2-13. Changing an X.25 Route (Sheet 3 of 11)


Flowchart 2-13. Changing an X.25 Route (Sheet 4 of 11)




Flowchart 2-13. Changing an X.25 Route (Sheet 6 of 11)


Flowchart 2-13. Changing an X.25 Route (Sheet 7 of 11)


Flowchart 2-13. Changing an X.25 Route (Sheet 8 of 11)

Flowchart 2-13. Changing an X.25 Route (Sheet 9 of 11)

Flowchart 2-13. Changing an X.25 Route (Sheet 10 of 11)

Flowchart 2-13. Changing an X.25 Route (Sheet 11 of 11)

Changing the X.25 Signaling Link Parameters

This procedure is used to change any of the X.25 signaling link parameters using the chg-x25-slk command.

The chg-x25-slk command uses these parameters.

:loc – The card location of the LIM containing the X.25 signaling link

:port – The signaling link on the card specified in the **loc** parameter. For an X.25 signaling link, this parameter value is A.

:t1 – The amount of time to wait before retransmitting a frame.

:n1 – The maximum number of bits in a frame.

:n2 – The maximum number of retransmission attempts to complete a transmission.

:k – The maximum number of outstanding I frames.

:13mode – The logical layer 3 address of the connection

:pvc – The total number of the permanent virtual circuits (PVCs) available on this X.25 signaling link.

:svc – The total number of the switched virtual circuits (SVCs) available on this X.25 signaling link.

:win – The number of packets allowed for a window on this X.25 signaling link.

:mps – The maximum packet size (in bytes) allowed on this X.25 signaling link.

The examples in this procedure are used to change the attributes of the X.25 signaling link assigned to card 1204.

The X.25 signaling link whose parameters are being changed must be in the database. This can be verified by entering the **rtrv-slk** command. The X.25 signaling links are shown by the dashes in the **L2TSET** column in the output.

Procedure

1. Display the values of the X.25 signaling link you wish to change using the rtrv-x25-slk command. This is an example of the possible output.

rlghncxa03w 05-09-28 21:16:37 GMT EAGLE5 34.0.0 LOC PORT T1 N1 N2 K L3MODE PVC SVC WIN MPS 1201 A 10 2104 15 7 DCE 25 1202 A 9 2104 13 6 DTE 255 205 1 256 25 205 255 0 2 256 8 1080 11 5 DCE 10 10 3 1203 A 128 1204 A 7 1080 9 4 DTE 0 255 4 128 1205 A 6 2104 7 3 DCE 100 0 5 256 1206 A 5 2104 5 2 DTE 0 100 6 256 1207 A 4 1080 3 1 DCE 100 100 7 128 1208 A 5 2104 10 7 DTE 0 255 3 256

2. Deactivate the X.25 signaling link using the dact-slk command, using the card location and the signaling link. For this example, enter this command.

```
dact-slk:loc=1204:link=a
```

When this command has successfully completed, this message should appear.

```
rlghncxa03w 05-09-28 08:41:12 GMT EAGLE5 34.0.0
Deactivate SLK message sent to card
```

3. Verify that the X.25 signaling link is out of service - maintenance (OOS-MT) using the **rept-stat-slk** command, using the card location and the signaling link. For this example, enter this command.

```
rept-stat-slk:loc=1204:link=a
```

This is an example of the possible output.

rlghncxa03w 05-09-28 17:00:36 GMT EAGLE5 34.0.0 SLK LSN CLLI PST SST AST 1204,A nsp1 ----- OOS-MT Unavail ----ALARM STATUS = * 0221 REPT-LKF: X25 link unavailable UNAVAIL REASON = X25FL Command Completed.

4. Place the card assigned to the X.25 signaling link out of service using the **rmv-card** command, specifying the location of the card. For this example, enter this command.

rmv-card:loc=1204

When this command has successfully completed, this message should appear.

```
rlghncxa03w 05-09-28 08:41:12 GMT EAGLE5 34.0.0 Card has been inhibited.
```

5. Change the X.25 signaling link parameter values using the **chg-x25-s1k** command. For this example, enter this command.

```
chg-x25-slk:loc=1204:port=a:t1=10:n1=2104:n2=4:k=7:l3mode=dce
:pvc=5:svc=10:win=2:mps=256
```

When this command has successfully completed, this message should appear.

```
rlghncxa03w 05-09-28 11:43:04 GMT EAGLE5 34.0.0
CHG-X25-SLK: MASP A - COMPLTD
```

6. Verify the changes using the **rtrv-x25-slk** command, specifying the card location. This is an example of the possible output.

rlghno	cxa03w	05-0	9-28	21:16	5:37	7 GMT EAG	GLE5	34.0.0	C	
LOC	PORT	Τ1	N1	N2	К	L3MODE	PVC	SVC	WIN	MPS
1201	A	10	2104	15	7	DCE	25	205	1	256
1202	A	9	2104	13	6	DTE	255	0	2	256
1203	A	8	1080	11	5	DCE	10	10	3	128
1204	A	10	2104	4	7	DCE	5	10	2	256
1205	A	6	2104	7	3	DCE	100	0	5	256
1206	A	5	2104	5	2	DTE	0	100	6	256
1207	A	4	1080	3	1	DCE	100	100	7	128
1208	A	3	1080	5	2	DTE	1	1	6	128

7. Place the card back into service using the **rst-card** command, specifying the location of the card. For this example, enter this command.

```
rst-card:loc=1204
```

When this command has successfully completed, this message should appear.

```
rlghncxa03w 05-09-28 08:41:12 GMT EAGLE5 34.0.0 Card has been allowed.
```

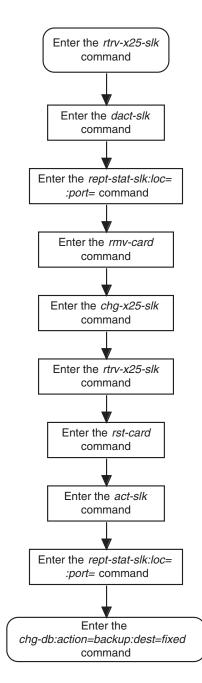
8. Activate the X.25 signaling link using the act-slk command, specifying the card location and the signaling link. For this example, enter this command.

```
act-slk:loc=1204:link=a
```

When this command has successfully completed, this message should appear.

```
rlghncxa03w 05-09-28 08:31:24 GMT EAGLE5 34.0.0 Activate SLK message sent to card
```

9. Check the status of the X.25 signaling link using the **rept-stat-slk** command, specifying the card location and the signaling link. The state of the X.25 signaling link should be in service normal (IS-NR) after the link has completed alignment (shown in the **PST** field). For this example, enter this command.


```
rept-stat-slk:loc=1204:link=a
```

This is an example of the possible output.

rlghncxa03w 05-09-28 17:00:36 GMT EAGLE5 34.0.0 SLK LSN CLLI PST SST AST 1204,A nsp1 ----- IS-NR Avail ----ALARM STATUS = No alarm UNAVAIL REASON: Command Completed.

10. Backup the new changes using the chg-db:action=backup:dest=fixed command. These messages should appear, the active Maintenance and Administration Subsystem Processor (MASP) appears first.

BACKUP (FIXED) : MASP A - Backup starts on active MASP.BACKUP (FIXED) : MASP A - Backup on active MASP to fixed disk complete.BACKUP (FIXED) : MASP A - Backup starts on standby MASP.BACKUP (FIXED) : MASP A - Backup on standby MASP to fixed disk complete.

Flowchart 2-14. Changing the X.25 Signaling Link Parameters

Enabling the Large System # Links Controlled Feature

This procedure is used to enable the Large System # Links controlled feature using the feature's part number and a feature access key.

The feature access key for the Large System # Links controlled feature is based on the feature's part number and the serial number of the EAGLE 5 SAS, making the feature access key site-specific.

This feature allows the EAGLE 5 SAS to contain up to 1500 signaling links.

The enable-ctrl-feat command enables the controlled feature by inputting the controlled feature's access key and the controlled feature's part number with these parameters:

: fak – The feature access key generated by the feature access key generator. The feature access key contains 13 alphanumeric characters and is not case sensitive.

:partnum – The Tekelec-issued part number of the Large System # Links controlled feature, 893005901.

The enable-ctrl-feat command requires that the database contain a valid serial number for the EAGLE 5 SAS, and that this serial number is locked. This can be verified with the rtrv-serial-num command. The EAGLE 5 SAS is shipped with a serial number in the database, but the serial number is not locked. The serial number can be changed, if necessary, and locked once the EAGLE 5 SAS is on-site, with the ent-serial-num command. The ent-serial-num command uses these parameters.

:serial – The serial number assigned to the EAGLE 5 SAS. The serial number is not case sensitive.

:lock – Specifies whether or not the serial number is locked. This parameter has only one value, **yes**, which locks the serial number. Once the serial number is locked, it cannot be changed.

NOTE: To enter and lock the EAGLE 5 SAS's serial number, the ent-serial-num command must be entered twice, once to add the correct serial number to the database with the serial parameter, then again with the serial and the lock=yes parameters to lock the serial number. You should verify that the serial number in the database is correct before locking the serial number. The serial number can be found on a label affixed to the control shelf (shelf 1100).

This feature cannot be temporarily enabled (with the temporary feature access key).

Once this feature is enabled with the **enable-ctrl-feat** command, the feature is also activated. The **chg-ctrl-feat** command is not necessary to activate the feature.

This feature cannot be disabled with the **chg-ctrl-feat** command and the **status=off** parameter.

Procedure

1. Display the status of the Large System # Links controlled feature by entering the rtrv-ctrl-feat command. The following is an example of the possible output.

```
rlghncxa03w 05-09-28 21:15:37 GMT EAGLE5 34.0.0
The following features have been permanently enabled:
                           Partnum Status Quantity
Feature Name
IPGWx Signaling TPS893012814on20000ISUP Normalization893000201on----
Command Class Management 893005801 on
                                                 _ _ _ _
LNP Short Message Service 893006601 on
                                                 ----
Intermed GTT Load Sharing 893006901 on
XGTT Table Expansion893006101onXMAP Table Expansion893007710offRoutesets893006401onHC-MIM SLK Capacity893012707on
                                                400000
                                                 _ _ _ _
                                               6000
                          893012707 on
                                                 64
The following features have been temporarily enabled:
                          Partnum Status Quantity Trial Period Left
Feature Name
Zero entries found.
The following features have expired temporary keys:
```

Feature Name Zero entries found. Partnum

If the **rtrv-ctrl-feat** output shows that the controlled feature is permanently enabled for the desired quantity or for a quantity that is greater than the desired quantity, no further action is necessary. This procedure does not need to be performed.

NOTE: If the rtrv-ctrl-feat output in step 1 shows any controlled features, or if the Large System # Links controlled feature is enabled for a quantity that is less than the desired quantity, skip steps 2 through 5, and go to step 6.

2. Display the serial number in the database with the **rtrv-serial-num** command. This is an example of the possible output.

```
rlghncxa03w 05-09-28 21:15:37 GMT EAGLE5 34.0.0
System serial number = nt00001231
System serial number is not locked.
rlghncxa03w 05-09-28 21:15:37 GMT EAGLE5 34.0.0
Command Completed
```

NOTE: If the serial number is correct and locked, skip steps 3, 4, and 5, and go to step 6. If the serial number is correct but not locked, skip steps 3 and 4, and go to step 5. If the serial number is not correct, but is locked, this feature cannot be enabled and the remainder of this procedure cannot be performed. Contact the Customer Care Center to get an incorrect and locked serial number changed. Refer to "Customer Care Center" on page 1-10 for the contact information. The serial number can be found on a label affixed to the control shelf (shelf 1100).

3. Enter the correct serial number into the database using the **ent-serial-num** command with the **serial** parameter.

For this example, enter this command.

ent-serial-num:serial=<EAGLE 5 SAS's correct serial number>
When this command has successfully completed, the following message
should appear.

rlghncxa03w 05-09-28 21:15:37 GMT EAGLE5 34.0.0 ENT-SERIAL-NUM: MASP A - COMPLTD

4. Verify that the serial number entered into step 3 was entered correctly using the rtrv-serial-num command. This is an example of the possible output.

```
rlghncxa03w 05-09-28 21:15:37 GMT EAGLE5 34.0.0
System serial number = nt00001231
System serial number is not locked.
rlghncxa03w 05-09-28 21:15:37 GMT EAGLE5 34.0.0
Command Completed
```

If the serial number was not entered correctly, repeat steps 5 and 6 and re-enter the correct serial number.

5. Lock the serial number in the database by entering the ent-serial-num command with the serial number shown in step 2, if the serial number shown in step 2 is correct, or with the serial number shown in step 4, if the serial number was changed in step 3, and with the lock=yes parameter.

For this example, enter this command.

```
ent-serial-num:serial=<EAGLE 5 SAS's serial number>:lock=yes
When this command has successfully completed, the following message
should appear.
```

```
rlghncxa03w 05-09-28 21:15:37 GMT EAGLE5 34.0.0
ENT-SERIAL-NUM: MASP A - COMPLTD
```

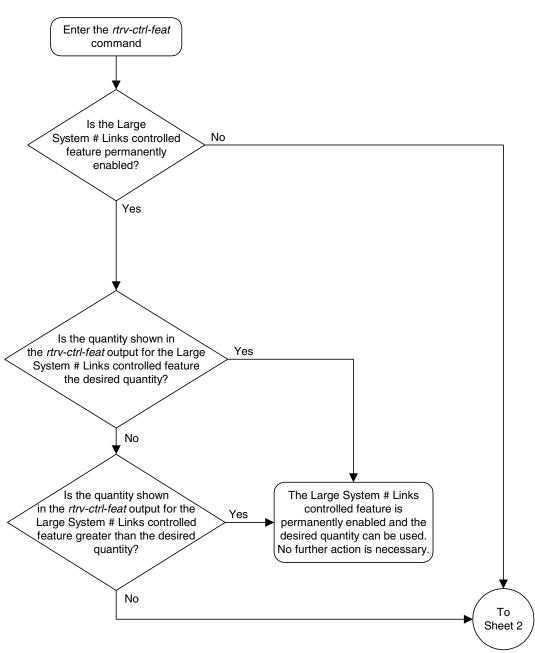
6. Enable the Large System # Links controlled feature for the desired quantity with the enable-ctrl-feat command specifying the part number corresponding to the new quantity of signaling links and the feature access key. To increase the number of signaling links the EAGLE 5 SAS can contain to 1500, enter this command.

enable-ctrl-feat:partnum=893005901:fak=<Large System # Links
feature access key>

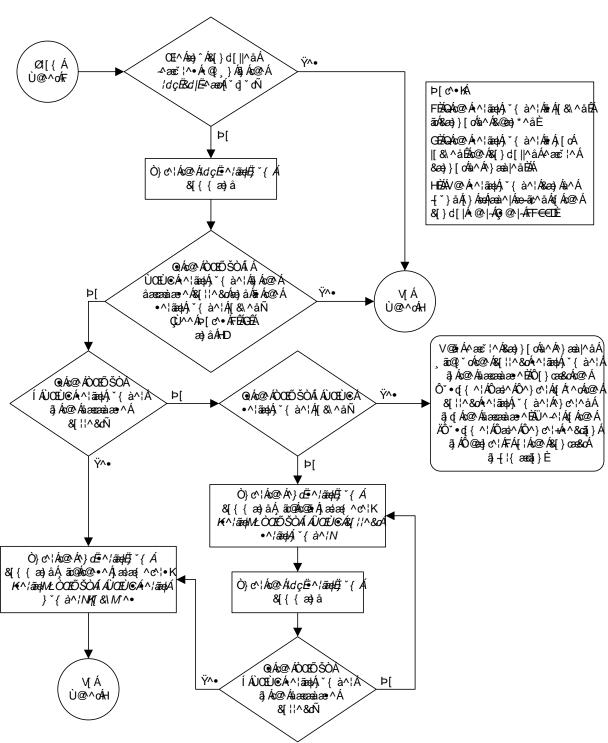
NOTE: A temporary feature access key cannot be specified to enable this feature.

NOTE: The values for the feature access key (the fak parameter) are provided by Tekelec. If you do not have the controlled feature part number or the feature access key for the feature you wish to enable, contact your Tekelec Sales Representative or Account Representative.

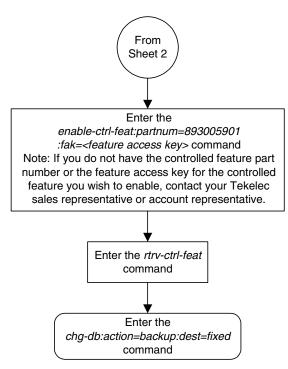
When the **enable-crtl-feat** command has successfully completed, this message should appear.


rlghncxa03w 05-09-28 21:15:37 GMT EAGLE5 34.0.0 ENABLE-CTRL-FEAT: MASP B - COMPLTD

7. Verify the changes by entering the **rtrv-ctrl-feat** command. The following is an example of the possible output.


```
rlghncxa03w 05-09-28 21:15:37 GMT EAGLE5 34.0.0
The following features have been permanently enabled:
Feature NamePartnumStatusQuantityIPGWx Signaling TPS893012814on20000ISUP Normalization893000201on----
Command Class Management 893005801 on
                                               ----
LNP Short Message Service 893006601 on
                                               _ _ _ _
                                               ----
Intermed GTT Load Sharing 893006901 on
XGTT Table Expansion 893006101 on
                                              4000000
XMAP Table Expansion893007710 onLarge System # Links893005901 on
                                              3000
                                              1500
                                               6000
Routesets
                           893006401 on
Routesets893006401onHC-MIM SLK Capacity893012707on
                                               64
The following features have been temporarily enabled:
Feature Name
                         Partnum Status Quantity Trial Period Left
Zero entries found.
The following features have expired temporary keys:
Feature Name
                           Partnum
Zero entries found.
```

8. Backup the new changes using the chg-db:action=backup:dest=fixed command. These messages should appear, the active Maintenance and Administration Subsystem Processor (MASP) appears first.


BACKUP (FIXED) : MASP A - Backup starts on active MASP.
BACKUP (FIXED) : MASP A - Backup on active MASP to fixed disk complete.
BACKUP (FIXED) : MASP A - Backup starts on standby MASP.
BACKUP (FIXED) : MASP A - Backup on standby MASP to fixed disk complete.

Flowchart 2-15. Enabling the Large System # Links Controlled Feature (Sheet 1 of 3)

Flowchart 2-15. Enabling the Large System # Links Controlled Feature (Sheet 2 of 3)

Flowchart 2-15. Enabling the Large System # Links Controlled Feature (Sheet 3 of 3)

3

STP LAN Configuration

STP LAN Feature Overview	
TCP/IP Router	
Hardware Requirements	
Node Requirements	
Gateway Screening	
STPLAN Provisioning	
Understanding Firewall and Router Filtering	
IP Addresses	
Network Configuration Procedures	
Adding an STP LAN Card	
Removing an STP LAN Card	
Adding a TCP/IP Data Link	
Removing a TCP/IP Data Link	
Adding a TCP/IP Node	
Removing a TCP/IP Node	

STP LAN Feature Overview

The STP LAN feature provides a TCP/IP connection from any interface shelf to support external applications. Message signal units (MSUs) that are processed by the EAGLE 5 SAS can be copied and directed through the LAN interface to an external server or microcomputer application such as a usage measurements EAGLE 5 SAS. The gateway screening feature must be available on the STP in order to use the STP LAN feature.

The feature requires an STPLAN card, either the application communications module (ACM) running the **stplan** application, or database communications module (DCM) running the **vxwslan** application, which provides an ethernet interface at the backplane, as well as the processing power required to support TCP/IP message encapsulation.

The STPLAN card receives SS7 MSUs from the Interprocessor Message Transport (IMT) bus and copies the MSUs into memory resident on the STPLAN card. The EAGLE 5 SAS encapsulates the copied MSU into TCP/IP packets and sends the encapsulated message over the ethernet to the host computer or to a TCP/IP router. The host computer is responsible for assembling and processing the packets it receives. The TCP/IP router routes the messages to a host computer on another network.

Each STPLAN card has one ethernet port. The Transmission Control Protocol (TCP) and User Datagram Protocol (UDP) are supported at the transport layer. Internet Protocol (IP), Internet Control Message Protocol (ICMP) and Address Resolution Protocol (ARP) are supported at the network layer.

If the ACM is used as the STPLAN card, the EAGLE 5 SAS uses a special cable assembly for the ethernet connection, which is connected to an external media access unit (MAU). From the MAU, the customer can attach any compatible host EAGLE 5 SAS. The host system must be using TCP/IP as the higher layer protocol, and must support either 10base2 ethernet or 10baseT ethernet as the transmission method.

If the DCM is used as the STPLAN card, only 10baseT ethernet is supported by the EAGLE 5 SAS. The ethernet connection is made directly to the EAGLE 5 SAS backplane and no external media access unit (MAU) is used. The MAU is incorporated in the DCM.

This implementation does not support standard TCP/IP protocols such as TELNET and FTP. However, it supports EAGLE 5 SAS applications that are built on TCP/IP using the Socket Application Programming Interface (API). The protocol stack is not biased toward any particular application.

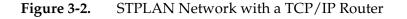
Message Sequencing

The STPLAN card adds a time stamp to the message before sending it to the LAN. The time stamp maintains a one second granularity and is synchronized with the host computer. This synchronization requires the host computer to be capable of responding to the time and date queries on the UDP port 37. The receiver can use the time stamp to provide sequencing within an application. The STP LAN application does not use sequence numbers for messages.

Message Format

Because TCP/IP is a stream-oriented protocol, the host computer can receive multiple messages in a single packet, or the message can be divided among different packets. Figure 3-1 on page 3-4 shows an example of both. There are multiple MSUs in the first packet with one of the MSUs divided between the first packet and the second packet.

This list describes the fields used in these packets:


- STP/LAN Protocol Version (a 1-byte value) The type of EAGLE 5 SAS message being carried from the LIMs to the STPLAN card. The only valid value for this field is 1.
- Time Stamp Type (a 1-byte value) The type of timestamp that is being used in the message. The only valid value for this field is 1, indicating that the supported timestamp type is the UNIX style timestamp (a 32-bit number containing the time elapsed since 00:00:00 hour, January 1, 1970).
- MSU Count (a 1-byte value) How many MSUs are actually contained in the packet.
- Total Length (a 2-byte value) The total length, in bytes, of the data plus the MSU headers embedded inside the packet. This length should not be greater than 485 bytes.
- Port ID (a 2-byte value) The ID of the port on the LIM which copied the data to the STPLAN card. The valid range for this field is 0–511.
- Timestamp (a 4-byte value) The actual timestamp at which the message is sent out to the host.
- MSU Length (a 2-byte value) The length of the actual MSU in bytes. The sum of the MSU lengths of all the MSUs in the packet plus the sum of the sizes of the single MSU headers should be equal to the number contained in the Total Length field.
- MSU The MSU that is contained in the packet.

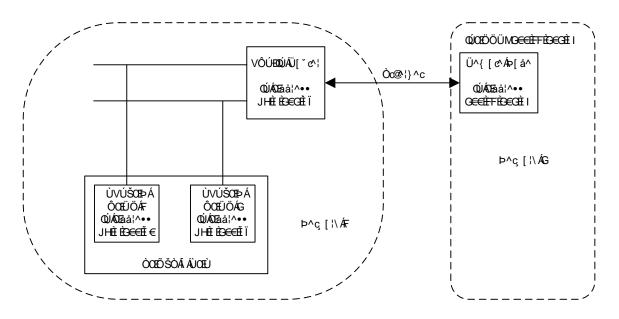
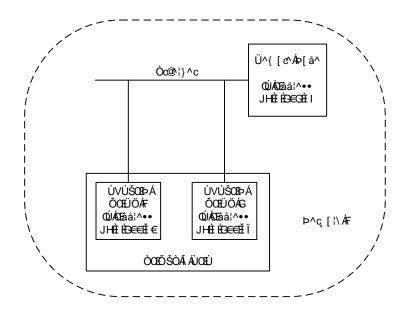

Packet 1	Packet 2
STP/LAN Protocol Version (1 byte)	Remainder of MSU
Time Stamp Type (1 byte)	Port ID (2 bytes)
MSU Count (1 byte)	Time Stamp (4 bytes)
Total Length (2 bytes)	MSU Length (2 bytes)
Port ID (2 bytes)	MSU
Time Stamp (4 bytes)	MSO
MSU Length (2 bytes)	Port ID (2 bytes)
MSU	Time Stamp (4 bytes)
Wise	MSU Length (2 bytes)
Port ID (2 bytes)	MSU
Time Stamp (4 bytes)	MSU
MSU Length (2 bytes)	
MSU	
Port ID (2 bytes)	
Time Stamp (4 bytes)	
MSU Length (2 bytes)	
Start of MSU	

Figure 3-1. STP LAN Messages Embedded in TCP/IP Packets

TCP/IP Router

A TCP/IP router is used to route STPLAN messages from the EAGLE 5 SAS to a remote host in another network or subnetwork. Figure 3-2 on page 3-5 shows an example of the STPLAN feature using a TCP/IP router.



NOTE: The term "STPLAN Card" used in Figure 3-2 on page 3-5 refers to either an ACM running the stplan application or a DCM running the vxwslan application.

In this example, STPLAN cards 1 and 2, with IP addresses 193.4.202.50 and 193.4.202.57, need to route their traffic to the remote host at IP address 200.11.202.44. The STPLAN cards and the remote host are in two different networks; the network ID of the STPLAN cards is 193.4.202 and the network ID of the remote host is 200.11.202. The EAGLE 5 SAS can connect only to TCP/IP nodes that are in the same network as the EAGLE 5 SAS. To permit communication between the STPLAN cards and an external network, a TCP/IP router is placed in between the EAGLE 5 SAS and the remote host. The TCP/IP router is located in the same network as the EAGLE 5 SAS, with the IP address of 193.4.202.87. The messages can now be sent to the remote host through the TCP/IP router.

A TCP/IP default router must be entered into the database when the class and network ID of the data link's IP address and host's IP address do not match or when subnet routing is used. The TCP/IP router is entered into the database with the ent-ip-node command. The EAGLE 5 SAS cannot distinguish between a large network and the use of subnet routing, and cannot detect the omission of a TCP/IP router. In a large network, no TCP/IP routers are required because all the nodes are directly connected to a single ethernet. See Figure 3-3 on page 3-6.

NOTE: The term "STPLAN Card" used in Figure 3-3 on page 3-6 refers to either an ACM running the stplan application or a DCM running the vxwslan application.

If a user is using subnet routing and as a result, multiple ethernets, TCP/IP routers are required and must be configured in the EAGLE 5 SAS. See Figure 3-4 on page 3-7.

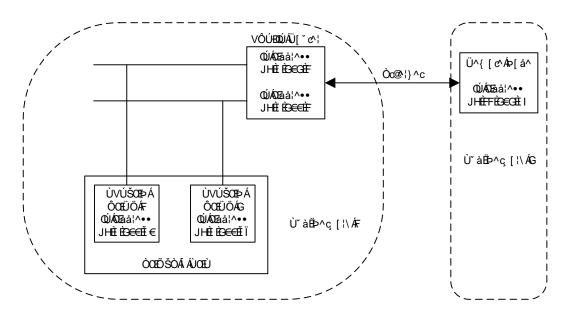
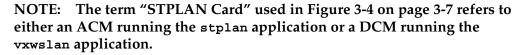



Figure 3-4. STPLAN Network with Subnet Routing

For the examples shown in Figures 3-3 and 3-4, the IP addresses of the TCP/IP data links and the remote node are the same. In Figure 3-3 on page 3-6, the remote node is in the same network as the TCP/IP data links, so no TCP/IP router is needed. In Figure 3-4 on page 3-7, the user is using subnet routing. The remote node is in one subnetwork, and the TCP/IP data links are in another subnetwork. Even though the network portion of the IP addresses of the TCP/IP data links and the remote node are the same (93, a class A IP address), a TCP/IP router is required because the user is using subnet routing.

If, when configuring STPLAN according to the network in Figure 3-4 on page 3-7, the TCP/IP router is not configured with the ent-ip-node command, the EAGLE 5 SAS does not detect that the TCP/IP router has been omitted, and no warnings are given in this case. The EAGLE 5 SAS sees the remote node as a TCP/IP node in the same network as the TCP/IP data links, because of the class of the IP addresses, and does not require the user to specify the iprte parameter of the ent-ip-node command.

Hardware Requirements

The hardware requirements and configuration include these items:

- A maximum of 10 ACMs or DCMs are necessary to support the EAGLE 5 SAS traffic. However, if the node capacity is less than the EAGLE 5 SAS capacity, the EAGLE 5 SAS may need more ACMs or DCMs. The EAGLE 5 SAS supports up to 32 ACMs or DCMs.
- One ACM or DCM is required for each host. The assignment of the LIMs is done automatically by the EAGLE 5 SAS.
- For the ACM, the ethernet cable from the node terminates to an adapter (part number 830-0425-01) and a media access unit (P/N 804-0059-01 for 10base2 ethernet or P/N 804-0144-01 for 10baseT ethernet). Only the A port (the top port) of the ACM is used.
- For the DCM using 10baseT ethernet only, one of two cables can be used to connect the DCM to the node, a straight-thru cable (P/N 830-0704-XX) or a transmit/receive cross-over cable (P/N 830-0728-XX). The cable from the node terminates directly to the backplane and does not use any adapters. The cable connects to port A (the top port) on the DCM.

Refer to the *Hardware Manual - EAGLE 5 SAS* for more information about the ACM and DCM.

Node Requirements

In order for a node to communicate with the ACM or DCM, you must configure the node system to perform or include these items:

- The node system must include an ethernet driver, TCP/IP protocol interface, and application software to process the incoming messages.
- The node TCP/IP protocol must be able to accept connections and supply an accurate time/date stamp over UDP port 37. (See RFC 868.)
- If multiple nodes are receiving data, the node application must be able to correlate related messages that are received on different nodes. Because of the load-balancing feature, the EAGLE 5 SAS cannot guarantee a constant LIM-to-node path.

Gateway Screening

Gateway screening tables can be configured to screen messages for certain attributes. The screening process results in a message being accepted or rejected into the network. The criteria for message screening depends on the type of message received by the EAGLE 5 SAS, and the contents of the gateway screening tables.

You can send a copy of the message that has passed all of the screening criteria to a node. To stop the screening process and, at the same time, send a copy of the message to the STP LAN application, the next screening function identifier (NSFI) of the screen where the gateway screening process stops must be set to stop, and a gateway screening stop action set containing the copy gateway screening stop action must be assigned to that screen. The linkset containing the SS7 messages copied to the STP LAN application must have a gateway screening screenset assigned to it and the gwsa or gwsm parameter must be set to on.

CAUTION: When Gateway Screening is in the screen test mode, as defined by the linkset parameters gwsa=off and gwsm=on, the gateway screening action in the gateway screening stop action set specified by the actname parameter of the gateway screening screen set at the end of the gateway screening process will be performed.

Gateway screening functions are defined using screening tables or screensets which contain a set of rules. Each screenset is uniquely identified by a screenset name. A screenset is a collection of screening references or rules, each assigned a unique screening reference name. Each screening reference belongs to a specific category, which indicates the criteria that is used to either accept or reject an incoming MSU. For example, the category "blkopc" rejects all MSUs with the OPCs specified in the screening reference.

The screening parameters (point codes, routing indicator, subsystem number, and so forth) are used to match information in the SS7 message.

Each group of screening references is referred to as a screen set and is identified by a particular screen set name (**SCRN**). The screen set can then be applied to a particular linkset. This allows, for example, for specific OPCs with particular SIOs and DPCs to be allowed into the network.

There are two basic functions, allow and block. In an allowed screen (for example, allowed DPC), if a match is found and the next screening function identifier (nsfi) is equal to anything but stop, the next screening reference (nsr) is identified and the screening process continues. If the next screening function identifier is stop, the message is processed and no further screening takes place. If no match is found, the message is rejected. If the next screening function identifier is stop and a gateway screening stop action set that contains the copy gateway screening stop action is assigned to the screen, the EAGLE 5 SAS sends a copy of the message to the STP LAN application.

If.... then... a match is found and the next the message is rejected and no screening function identifier is further screening takes place. fail, no match is found and the next the next screening reference is screening function identifier is identified and the screening equal to anything but stop, process continues. the next screening function the message is processed and no identifier is equal to **stop**, further screening takes place. the next screening function identifier is equal to stop and a the message is processed and the gateway screening stop action EAGLE 5 SAS sends a copy of the containing the copy gateway message to the STP LAN screening stop action is assigned to application. the screen

In a blocked screen (for example, blocked DPC):

The allowed OPC and DPC screens are useful in the gateway screening process when specifying particular sets of point codes that are allowed to send or receive messages to or from another network. The blocked OPC and DPC screens are useful in the gateway screening process to specify particular sets of point codes that are not allowed to send or receive messages to or from another network.

Congestion Management

If a message reaches the outbound "stop and copy" phase of the gateway screening process, and the LIM that is designated to transmit a copy of the message to the node is congested, the copy of the message is not transmitted to the node. The STP disables the application only on the particular LIM that is experiencing congestion.

Conversely, a message may arrive on an inbound LIM that is in danger of congestion while the outbound LIM is not in danger of congestion. As the message was not screened on the inbound LIM, it is not marked to be copied to the ACM or DCM.

Go to the *Database Administration Manual - Gateway Screening* for information on configuring gateway screening entities.

STPLAN Provisioning

The STPLAN application allows the user to selectively copy outbound messages to a remote node for further processing. The messages that are copied to the remote node are actually selected for copying on the inbound linkset by the Gateway Screening feature. The messages that pass the screening criteria set for that linkset are processed by the EAGLE 5 SAS, and are copied prior to being transmitted on the outbound link.

The external connection to the remote node consists of several ACMs or DCMs equipped with Ethernet interfaces using the TCP/IP protocol to communicate to an external processing device running software that receives and processes the messages. Each ACM or DCM card (or STPLAN card) supports a single remote destination node. Each STPLAN card may also support a single default router.

On the EAGLE 5 SAS, the LAN interface is implemented through a pool of STPLAN cards. For reliability, STPLAN cards are provisioned on an "N+1" redundancy basis so that in case of failure of one such card, performance can be maintained during the time required to replace it.

STPLAN cards are provisioned per site based on two factors:

- **1.** The total number of cards in the EAGLE 5 SAS which require STPLAN service.
- **2.** The expected number of messages per second to be transferred by the EAGLE 5 SAS.

An ACM card and a DCM card are capable of supporting different traffic loads. Systems which are ACM-based, or which contain both ACM- and DCM-based STPLAN cards, must use one set of provisioning rules. Systems which are purely DCM-based must use a second set of provisioning rules.

ACM-based or Mixed ACM- and DCM-Based

Systems

In order to determine the number of STPLAN cards required in a particular site, the following two numbers should be calculated. One number is based on the number of cards in the EAGLE 5 SAS (equation number 1) and the other number is based on the amount of traffic the EAGLE 5 SAS is handling (equation number 2). The larger number should be used. These variables are used in these equations.

LSL = The number of low-speed LIMs in the EAGLE 5 SAS

HSL = The number of high-speed ATM LIMs or DCMs (running either the iplim or iplimi applications) in the EAGLE 5 SAS

SCCP = The number of SCCP cards in the EAGLE 5 SAS

- 1. [(LSL + HSL + SCCP)/30, with the answer rounded up to the next whole number] + 1 = Number of STPLAN cards
- **2.** (HSL/2) + [(LSL @ 0.4 Erlang)/20, with the answer rounded up to the next whole number] + 1 = Number of STPLAN cards

For example, if an EAGLE 5 SAS were equipped with 200 low-speed LIMs, 13 high-speed ATM LIMs or DCMs, and 10 SCCP cards, the following calculations would be used to determine "N+1."

1. Based on the number of cards in the EAGLE 5 SAS:

[(200 LSL LIMs + 13 HSL LIMs or DCMs + 10 SCCP cards)/30 = 7.4, rounded-up to 8] + 1 = 9 STPLAN cards.

2. Based on the amount of traffic the EAGLE 5 SAS is handling:

[(13 HSL LIMs or DCMs/2) = 6.5, rounded-up to 7] + [(200 LSL LIMs @ .4 Erlang/20) = 10] + 1 = 18 STPLAN cards

This EAGLE 5 SAS would require 18 STPLAN cards.

If the rate of low-speed LIM traffic per second to be transferred to the STPLAN application is some value other than .4 Erlang, than that portion of the equation may be scaled accordingly.

For example, one card's worth of traffic @ 0.4 Erlang equals two cards worth of traffic @ 0.2 Erlang.

Pure DCM-Based Systems

In order to determine the number of STPLAN cards required in a particular site, the following two numbers should be calculated. One number is based on the number of cards in the EAGLE 5 SAS (equation number 1) and the other number is based on the amount of traffic the EAGLE 5 SAS is handling (equation number 2). The larger number should be used. These variables are used in these equations.

LSL = The number of low-speed LIMs in the EAGLE 5 SAS

HSL = The number of high-speed ATM LIMs or DCMs (running either the iplim or iplimi applications) in the EAGLE 5 SAS

SCCP = The number of SCCP cards in the EAGLE 5 SAS

- 1. [(LSL + HSL + SCCP)/30, with the answer rounded up to the next whole number] + 1 = Number of STPLAN cards
- **2.** (HSL/2) + [(LSL @ 0.4 Erlang)/30, with the answer rounded up to the next whole number] + 1 = Number of STPLAN cards

For example, if an EAGLE 5 SAS were equipped with 200 low-speed LIMs, 13 high-speed ATM LIMs, and 10 SCCP cards, the following calculations would be used to determine "N+1."

1. Based on the number of cards in the EAGLE 5 SAS:

[(200 LSL LIMs + 13 HSL LIMs or DCMs + 10 SCCP cards)/30 = 7.4, rounded-up to 8] + 1 = 9 STPLAN cards.

2. Based on the amount of traffic the EAGLE 5 SAS is handling:

[(13 HSL LIMs or DCMs/2) = 6.5, rounded-up to 7] + [(200 LSL LIMs @ .4 Erlang/30) = 10] + 1 = 15 STPLAN cards

This EAGLE 5 SAS would require 15 STPLAN cards.

If the rate of low-speed LIM traffic per second to be transferred to the STPLAN application is some value other than .4 Erlang, than that portion of the equation may be scaled accordingly.

For example, one card's worth of traffic @ 0.4 Erlang equals two cards worth of traffic @ 0.2 Erlang.

Understanding Firewall and Router Filtering

Firewall protocol filtering for the interface between the EAGLE 5 SAS's DCM and the host computer is defined in Table 3-1.

Interface	TCP/IP Port	Use	Inbound	Outbound
	1024 to 5000 ¹	STP LAN Traffic	Yes	Yes
10BASE-TX	7	UDP Echo (ping)	Yes	Yes
10DA3L-1X	37	Time/Date	Yes	Yes
	N/A		Yes	Yes

Table 3-1.VXWSLAN External Ports and Their Use

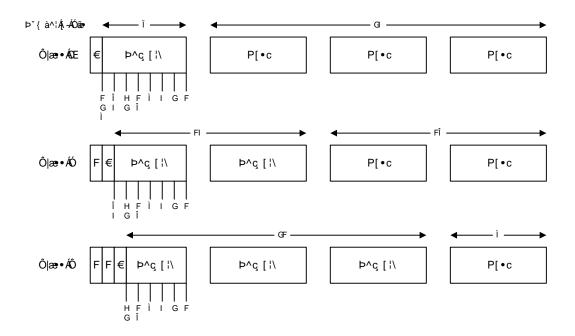
1. The TCP/IP port is the port number configured with the **ipport** parameter of the **ent-ip-node** command. The value of the **ipport** parameter is shown in the **IPPORT** field of the **rtrv-ip-node** command output. The values for this parameter are in the range 1024–5000.

2. ARP is used to provide TCP communication. The customer network will provide this information as appropriate.

The VXWSLAN application requires a data pipe of up to 10 Mb. The actual percentage of this pipe that is used (the maximum) is defined by the cap parameter of the ent-ip-node command. There can be more than one connection from the EAGLE 5 SAS to the node defined by the ipaddr (the node's IP address) parameter of the ent-ip-node command. The total capacity of all connections to a specific node cannot exceed 100%.

IP Addresses

An IP address contains 32 bits grouped into four segments or octets. Each octet contains eight bits. The range of values for an octet is from 0 (all bits in the octet are 0) to 255 (all bits in the octet are 1). The four octets of an IP address are grouped into three different identifiers: the class ID, the network number and the host number. The value in the class ID determines how the rest of the bits in the ip address are categorized, mainly into the network number and the host number. The value of the class ID are in the first octet. If the first bit in the first octet is 0, the IP address is a class A IP address. If the first two bits in the first octet are 1 and 0, the IP address is a class B IP address. If the first three bits in the first octet are 1, 1, and 0, the IP address is a class of IP address are not supported by the EAGLE 5 SAS. The loopback IP addresses (127.*.*.) are not supported by the EAGLE 5 SAS.


The network number of the IP address is the part of an IP address that identify the network that the host belongs to. The octets that make up the network number depend on the class of the IP address. For class A IP addresses, the network number is the bits in the first octet minus the class ID bits (the first bit of the first octet). For class B IP addresses, the network number is the bits in the first octet minus the class ID bits (the first two bits of the first octet) plus the bits in the second octet. For class C IP addresses, the network number is the bits in the first octet minus the class ID bits (the first three bits in the first octet) plus the bits in the second and third octets.

The host number of an IP address is the part of an IP address that identify a specific host on a network. The host number contains all the bits that do not belong to the class ID or the network number. For class A IP addresses, the host number contains all the bits in the second, third and fourth octets. For class B IP addresses, the host number contains all the bits in the bits in the third and fourth octets. For class C IP addresses, the host number contains all the bits number contains all the bits in the fourth octet.

Table 3-2 summarizes the IP address values for the classes of IP addresses. Figure 3-5 illustrates the different parts of the IP addresses in each class of IP addresses.

IP Address Class	IP Address Format	Class ID Bits	Range of IP Address Values				
А	N.H.H.H	0	1.0.0.1 to 126.255.255.254				
В	N.N.H.H	1, 0	128.1.0.1 to 191.254.255.254				
С	N.N.N.H	1, 1, 0	192.0.1.1 to 223.255.254.254				
N = Network Number, H = Host Number							

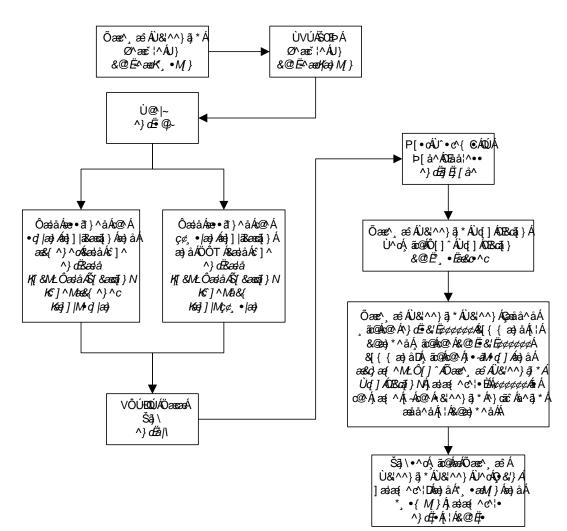
Table 3-2. Values of IP Addresses
--

Figure 3-5. IP Address Bit Categorization

The EAGLE 5 SAS does not allow IP addresses to be entered that contain an invalid class ID, network number or host number. Valid class ID values are shown in Table 3-2. Valid network numbers and host numbers cannot contain all 0 bits or all 1 bits. For example, the class A IP address 10.0.0.0 is invalid because it contains a host number of '0.0.0'. A class B IP address of 128.0.10.5 is also invalid because the network number is '0.0' (remember the network number for a class B address is the bits in the first octet minus the class ID bits). The class C IP address of 192.0.1.255 is also invalid because it contains a host number of '255' (all ones). One of the error codes shown in Table 3-3 will be generated when an invalid IP address is entered.

Table 3-3.Invalid IP Address Error Codes

Error Code	Error Message
E2028	Octet 1 is out of range, 1223
E2071	Network Number Invalid
E2072	Host Number Invalid
E2070	IP Address invalid for Address Class


Network Configuration Procedures

To support the STP LAN feature, you must configure these database elements that are specific to the STP LAN feature.

- ACM or DCM
- TCP/IP Data Link
- IP Node

When the EAGLE 5 SAS is booted, each module gets the configuration information from the database. Figure 3-6 on page 3-16 shows the database elements that must be configured, and the order in which they should be configured.

These procedures use a variety of commands. If you need more information on these commands, refer to the *Commands Manual* to find the required information.

This list describes the database entities (shown in Figure 3-6 on page 3-16) that must be configured for the STP LAN feature.

 The STP LAN and gateway screening features must be turned on. Verify that these features are turned on with the rtrv-feat command. If either of these the features are not on, shown with the entries GWS = off (if the gateway screening feature is off), and LAN = off (if the STP LAN feature is off), in the rtrv-feat command output, enter the chg-feat:gws=on command to turn on the gateway screening feature, and the chg-feat:lan=on command to turn on the STP LAN feature.

NOTE: Once the gateway screening and STP LAN features are turned on with the chg-feat command, they cannot be turned off.

- 2. Make sure that the required shelf is in the database with the **rtrv-shlf** command. If it is not in the database, add it with the **ent-shlf** command.
- 3. Make sure the cards that the TCP/IP data links will be assigned to are in the database with the rtrv-card command. These cards can be either ACMs (card type acmenet) or DCMs (card type dcm). The ACM must have the stplan application assigned to it. The DCM must have the vxwslan application assigned to it. If these cards are not in the database, add them with the ent-card command, specifying an ACM with the type=acmenet and appl=stplan parameters, or a DCM with the type=dcm and appl=vxwslan parameters.
- 4. The TCP/IP data links needed by the STP LAN feature must be in the database. Verify this by entering the rtrv-dlk command. If the necessary TCP/IP data links are not in the database, add them with the ent-dlk command. Make sure that the card location specified in the ent-dlk command is an ACM or DCM shown in step 3.
- 5. The TCP/IP nodes used by the STP LAN feature must be in the database. Verify this by entering the rtrv-ip-node command. If the necessary TCP/IP nodes are not in the database, add them with the ent-ip-node command with a card location assigned to a TCP/IP data link shown in step 4.
- 6. The STP LAN feature uses gateway screening to select the messages that are copied and sent to the STP LAN application on an ACM or DCM. A gateway screening stop action set containing the COPY gateway screening stop action must be assigned to the gateway screening entity where the gateway screening process stops (the NSFI of the screen is STOP). Enter the rtrv-gws-actset command to display the gateway screening stop action sets in the database. The database contains at least two gateway screening stop action as shown in

bold in the example output. These gateway screening stop actions are always in the database and cannot be changed or removed.

7. Verify that the necessary gateway screening entities have been configured with the required gateway screening stop action set, by entering the appropriate gateway screening retrieve command specifying the actname parameter with the gateway screening stop action name shown in the rtrv-gws-actset command output.

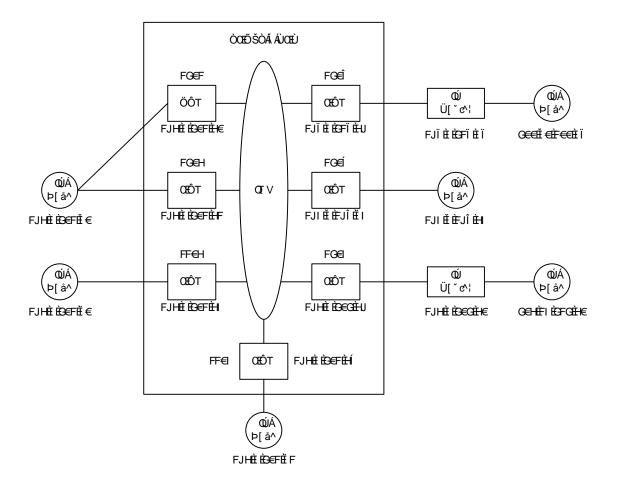
```
rtrv-scrset:actname=copy
rtrv-scr-opc:actname=copy
rtrv-scr-blkopc:actname=copy
rtrv-scr-dpc:actname=copy
rtrv-scr-dpc:actname=copy
rtrv-scr-destfld:actname=copy
rtrv-scr-destfld:actname=copy
rtrv-scr-cgpa:actname=copy
rtrv-scr-tt:actname=copy
rtrv-scr-cdpa:actname=copy
rtrv-scr-aftpc:actname=copy
```

If a gateway screening entity is configured to copy messages to an STP LAN application, the entry **STOP** appears in the **NSFI** field and the **NSR/ACT** field contains the name of the gateway screening stop action set specified in the gateway screening retrieve command (see the following example).

rlghncxa03w 05-09-20 21:17:37 GMT EAGLE5 34.0.0 SCREEN = ALLOWED OPC SR NI NC NCM NSFI NSR/ACT opcl 010 010 010 STOP COPY opcl 010 010 012 STOP COPY

If the desired gateway screening entity is not configured to copy messages to the STP LAN application, configure these entities to copy messages to the STP LAN application. Go to the *Database Administration Manual - Gateway Screening* for information on configuring gateway screening entities.

8. The linkset containing the messages copied for the STP LAN application must have a gateway screening assigned to it. Either the gwsa or gwsm parameters of the linkset must be set to on. Verify this with the rtrv-ls command. If the desired linkset does not have a gateway screening assigned to it, shown in the SCRN field of the rtrv-ls output, or the GWSA or GWSM field is set to off, refer to either the "Changing an X.25 Linkset" procedure on page 2-61 or to the "Changing an SS7 Linkset" procedure in the Database Administration Manual - SS7 and change the scrn, gwsa, and gwsm parameters of the desired linkset.



CAUTION: When Gateway Screening is in the screen test mode, as defined by the linkset parameters gwsa=off and gwsm=on, the gateway screening action in the gateway screening stop action set specified by the actname parameter of the gateway screening screen set at the end of the gateway screening process will be performed.

The STP LAN configuration procedures in this chapter use the sample network information shown in Table 3-4. Figure 3-7 on page 3-20 shows a diagram of this sample network.

Card Location	Interface Address	TCP/IP Router Address	STP LAN Node Address	STP LAN Port ID
1103	193.4.201.34		193.4.201.70	1024
1104	193.4.201.35		193.4.201.71	1024
1201	193.4.201.30		193.4.201.50	1024
1203	193.4.201.31		193.4.201.50	1024
1204	193.4.202.39	193.4.202.30	200.50.100.47	2000
1205	194.5.198.74		194.5.198.34	3000
1206	197.4.217.39	197.4.217.47	203.14.212.30	4000

Table 3-4. STP LAN Configuration Example Database

Figure 3-7. STP LAN Configuration Example

Adding an STP LAN Card

This procedure is used to add a card supporting the STP LAN feature, either a DCM running the **vwxslan** GPL or an ACM running the **stplan**, to the database using the **ent-card** command. The **ent-card** command uses these parameters:

:loc – The location of the card being added to the database.

:type – The type of card being added to the database. For this procedure, the value of this parameter is either dcm (for the DCM) or acmenet (for the ACM).

:appl - The application software or GPL that is assigned to the card. For this
procedure, the value of this parameter is vwxslan (for the GPL assigned to the
DCM) or stplan (for the GPL assigned to the ACM).

:force – Allow the LIM to be added to the database even if there are not enough cards running the SCCP or VSCCP GPLs to support the number of LIMs. This parameter is obsolete and is no longer used.

The DCM can be inserted only in the odd numbered card slots of the extension shelf. Slot 09 of each shelf contains the HMUX card or HIPR card, thus the DCM cannot be inserted in slot 09. The DCM can be inserted in the control shelf, but only in slots 01, 03, 05, and 07. The DCM occupies two card slots, so the even numbered card slot adjacent to the odd numbered slot where the DCM has been inserted must be empty, as shown in Table 3-5. The DCM is connected to the network through the odd numbered card slot connector.

Location of the DCM	Empty Card Location	Location of the DCM	Empty Card Location
Slot 01	Slot 02	Slot 11	Slot 12
Slot 03	Slot 04	Slot 13	Slot 14
Slot 05	Slot 06	Slot 15	Slot 16
Slot 07	Slot 08	Slot 17	Slot 18

Table 3-5.DCM Card Locations

Before the card can be configured in the database for the STP LAN feature, the STP LAN and gateway screening features must be turned on with the chg-feat command. The gateway screening feature must be on before the STP LAN feature can be turned on. The rtrv-feat command can verify that the STP LAN, and gateway screening features are on.

NOTE: Once the gateway screening and STP LAN features are turned on with the chg-feat command, they cannot be turned off.

The shelf to which the card is to be added must already be in the database. This can be verified with the **rtrv-shlf** command. If the shelf is not in the database, see the "Adding a Shelf" procedure in the *Database Administration Manual* – *System Management*.

The card cannot be added to the database if the specified card location already has a card assigned to it.

The EAGLE 5 SAS can contain a maximum of 32 cards running either the STPLAN or VXWSLAN applications.

The examples in this procedure are used to add a DCM in card slot 1201 and an ACM in card slot 1204 to the database.

Procedure

1. Display the cards in the EAGLE 5 SAS using the rtrv-card command. Cards should be distributed throughout the EAGLE 5 SAS for proper power distribution. Refer to the *Installation Manual - EAGLE 5 SAS* for the shelf power distribution. This is an example of the possible output.

rlghncxa03w 05-09-25 09:58:31 GMT EAGLE5 34.0.0

r.rduuc.	(a03w 05-05	9-25 09:58:	SI GMI EA	AGLE5	34.0.	0				
CARD	TYPE	APPL	LSET NAME	E	LINK	SLC	LSET	NAME	LINK	SLC
1101	TSM	SCCP								
1102	TSM	GLS								
1103	ACMENET	STPLAN								
1104	ACMENET	STPLAN								
1113	GPSM	EOAM								
1114	TDM-A									
1115	GPSM	EOAM								
1116	TDM-B									
1117	MDAL									
1203	ACMENET	STPLAN								
1205	ACMENET	STPLAN								
1206	ACMENET	STPLAN								
1211	LIMDS0	SS7ANSI	lsn1		A	0	lsn2		В	1
1212	LIMV35	SS7GX25	lsngwy		A	0				
1213	LIMV35	SS7ANSI	lsn2		A	0	lsn1		В	1
1216	LIMDS0	SS7ANSI	sp2		A	0	spl		В	0
1303	LIMDS0	SS7ANSI	sp3		A	0				
1304	LIMDS0	SS7ANSI	sp3		A	1				
1306	LIMDS0	SS7ANSI	nsp3		A	1	nsp4		В	1
1307	LIMV35	SS7GX25	nspl		A	0				
1308	LIMV35	SS7GX25	nspl		A	1				

If the **APPL** field of the **rtrv-card** command output shows cards assigned to either the **STPLAN** or **VWXSLAN** GPLs, skip steps 2, 3, and 4, and go to step 5.

2. Verify that the STP LAN and the gateway screening features are on, by entering the rtrv-feat command. If the STP LAN feature is on, the LAN field should be set to on. If the gateway screening feature is on, the GWS field should be set to on. For this example, the STP LAN and gateway screening features are off.

NOTE: The rtrv-feat command output contains other fields that are not used by this procedure. If you wish to see all the fields displayed by the rtrv-feat command, see the rtrv-feat command description in the *Commands Manual*.

If the gateway screening and STP LAN features are on, skip steps 3 and 4 and go to step 5. If the gateway screening feature is not on, go to step 3. If the gateway screening feature is on, but the STP LAN feature is off, skip step 3 and go to step 4.

3. If the gateway screening feature is not on, shown by the GWS = off entry in the rtrv-feat command output in step 2, turn the gateway screening feature on by entering this command.

```
chg-feat:gws=on
```

NOTE: Once the gateway screening feature is turned on with the chg-feat command, it cannot be turned off.

When the chg-feat has successfully completed, this message should appear.

```
rlghncxa03w 05-09-20 21:18:37 GMT EAGLE5 34.0.0
CHG-FEAT: MASP A - COMPLTD
```

4. Turn the STP LAN feature on by entering this command.

chg-feat:lan=on

NOTE: Once the STP LAN feature is turned on with the chg-feat command, it cannot be turned off.

When the chg-feat has successfully completed, this message should appear.

```
rlghncxa03w 05-09-20 21:19:37 GMT EAGLE5 34.0.0
CHG-FEAT: MASP A - COMPLTD
```

5. Verify that the card has been physically installed into the proper location.

CAUTION: If the version of the BPDCM GPL on the DCM card does not match the BPDCM GPL version in the database when the DCM is inserted into the card slot, UAM 0002 is generated indicating that these GPL versions do not match. If UAM 0002 has been generated, perform the alarm clearing procedure for UAM 0002 in the *Maintenance Manual* before proceeding with this procedure.

6. Add the card to the database using the ent-card command. For this example, enter these commands.

ent-card:loc=1201:type=dcm:appl=vwxslan

ent-card:loc=1204:type=acmenet:appl=stplan

When each of these commands has successfully completed, this message should appear.

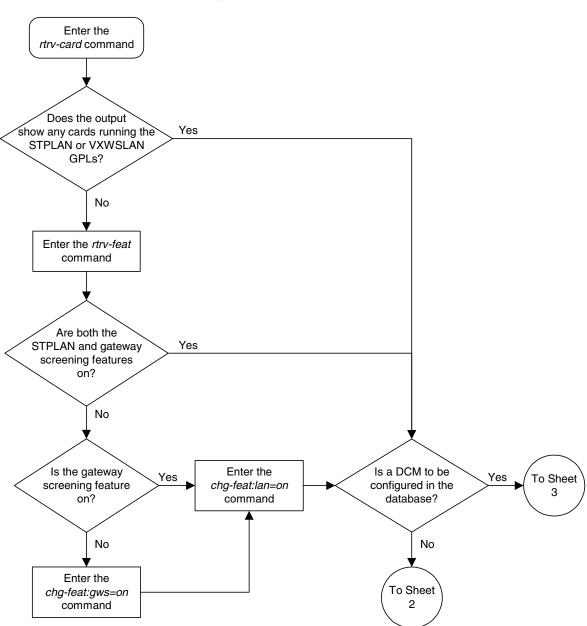
rlghncxa03w 05-09-20 21:21:37 GMT EAGLE5 34.0.0 ENT-CARD: MASP A - COMPLTD

7. Verify the changes using the rtrv-card command with the card location specified. For this example, enter these commands.

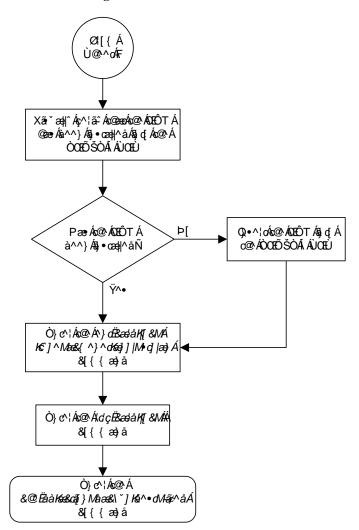
```
rtrv-card:loc=1201
```

This is an example of the possible output.

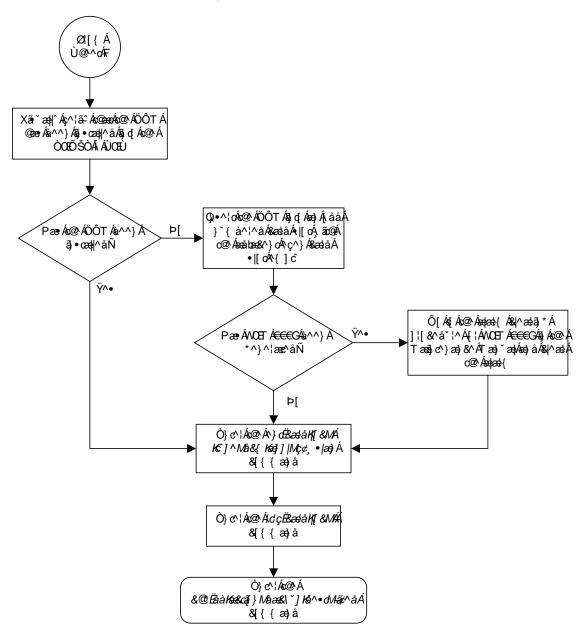
```
rlghncxa03w 05-09-20 21:22:37 GMT EAGLE5 34.0.0
CARD TYPE APPL LSET NAME LINK SLC LSET NAME LINK SLC
1201 DCM VWXSLAN
```


rtrv-card:loc=1204

This is an example of the possible output.


rlghncxa03w 05-09-20 21:23:37 GMT EAGLE5 34.0.0 CARD TYPE APPL LSET NAME LINK SLC LSET NAME LINK SLC 1204 ACMENET STPLAN

8. Backup the new changes, using the chg-db:action=backup:dest=fixed command. These messages should appear; the active Maintenance and Administration Subsystem Processor (MASP) appears first.


BACKUP (FIXED) : MASP A - Backup starts on active MASP.BACKUP (FIXED) : MASP A - Backup on active MASP to fixed disk complete.BACKUP (FIXED) : MASP A - Backup starts on standby MASP.BACKUP (FIXED) : MASP A - Backup on standby MASP to fixed disk complete.

Flowchart 3-1. Adding an STPLAN Card (Sheet 1 of 3)

Flowchart 3-1. Adding an STPLAN Card (Sheet 2 of 3)

Flowchart 3-1. Adding an STPLAN Card (Sheet 3 of 3)

Removing an STP LAN Card

This procedure is used to remove a card supporting the STP LAN feature, either a DCM running the vwxslan GPL or an ACM running the stplan GPL, from the database using the dlt-card command.

The card cannot be removed if it does not exist in the database.

No TCP/IP data links can be assigned to the card you wish to remove from the database.

CAUTION: If the card being removed from the database is the last in-service card supporting the STP LAN feature (either DCM or ACM), removing this card from the database will disable the STP LAN feature.

The examples in this procedure are used to remove the DCM in card location 1201 from the database.

Procedure

1. Display the cards in the database using the **rtrv-card** command. This is an example of the possible output.

rlghnc	xa03w 05-0	9-25 09:58	:31 GI	MT EAGLE5	34.0	. 0				
CARD	TYPE	APPL	LSET	NAME	LINK	SLC	LSET	NAME	LINK	SLC
1101	TSM	SCCP								
1102	TSM	GLS								
1103	ACMENET	STPLAN								
1104	ACMENET	STPLAN								
1113	GPSM	EOAM								
1114	TDM-A									
1115	GPSM	EOAM								
1116	TDM-B									
1117	MDAL									
1201	DCM	VXWSLAN								
1203	ACMENET	STPLAN								
1204	ACMENET	STPLAN								
1205	ACMENET	STPLAN								
1206	ACMENET	STPLAN								
1211	LIMDS0	SS7ANSI	lsn1		A	0	lsn2		В	1
1212	LIMV35	SS7GX25	lsng	мy	A	0				
1213	LIMV35	SS7ANSI	lsn2		A	0	lsn1		В	1
1216	LIMDS0	SS7ANSI	sp2		A	0	sp1		В	0
1303	LIMDS0	SS7ANSI	sp3		A	0				
1304	LIMDS0	SS7ANSI	sp3		A	1				
1306	LIMDS0	SS7ANSI	nsp3		A	1	nsp4		В	1
1307	LIMV35	SS7GX25	nsp1		A	0				
1308	LIMV35	SS7GX25	nsp1		A	1				
_										

2. The ACMs are shown by the entry **STPLAN** in the **APPL** field. Display the status of the TCP/IP data link assigned to the card you wish to remove by entering the **rept-stat-dlk** command. For this example, enter this command.

rept-stat-dlk:loc=1201

This is an example of the possible output.

```
rlghncxa03w 05-09-20 21:17:37 GMT EAGLE5 34.0.0
DLK PST SST AST
1201 IS-NR Avail ---
ALARM STATUS = No Alarms.
Command Completed.
```

3. If the TCP/IP data link is not in an OOS-MT-DSBLD state, deactivate the TCP/IP data link assigned to the card using the **canc-dlk** command. For this example, enter this command.

canc-dlk:loc=1201

When this command has successfully completed, this message should appear.

```
rlghncxa03w 05-09-20 21:18:37 GMT EAGLE5 34.0.0 Deactivate Link message sent to card.
```

4. Inhibit the card using the **rmv-card** command, specifying the card location. For this example, enter this command.

rmv-card:loc=1201

When this command has successfully completed, this message should appear.

```
rlghncxa03w 05-09-20 21:19:37 GMT EAGLE5 34.0.0
Card has been inhibited.
```

5. Display the TCP/IP nodes in the database by entering the **rtrv-ip-node** command. This is an example of the possible output.

```
rlghncxa03w05-09-2021:20:37GMTEAGLE534.0.0IPADDRIPPORTIPAPPLLOCCAP193.4.201.501024stplan121610%193.4.201.701024stplan130410%193.4.201.701024stplan110310%193.4.201.711024stplan110410%193.4.202.302000stplan131740%193.4.201.984000stplan120110%
```

6. Remove the TCP/IP node assigned to the card location containing the TCP/IP data link to be removed from the database using the dlt-ip-node command. For this example, enter this command.

```
dlt-ip-node:ipaddr=193.4.201.98:ipappl=stplan:ipport=4000
:loc=1201
```

When this command has successfully completed, this message should appear.

```
rlghncxa03w 05-09-20 21:21:37 GMT EAGLE5 34.0.0
DLT-IP-NODE: MASP A - COMPLTD
```

7. Remove the data link from the specified card by using the dlt-dlk command. For this example, enter this command.

```
dlt-dlk:loc=1201
```

When this command has successfully completed, this message should appear.

```
rlghncxa03w 05-09-20 21:22:37 GMT EAGLE5 34.0.0
DLT-DLK: MASP A - COMPLTD
```

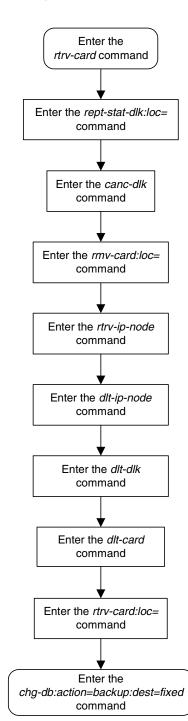
8. Remove the card using the dlt-card command with the card location of the card to be removed. The dlt-card command has only one parameter, loc, which is the location of the card. For this example, enter this command.

```
dlt-card:loc=1201
```

When this command has successfully completed, this message should appear.

```
rlghncxa03w 05-09-20 21:23:37 GMT EAGLE5 34.0.0
DLT-CARD: MASP A - COMPLTD
```

9. Verify the changes using the **rtrv-card** command specifying the card that was removed in step 8. For this example, enter this command.


```
rtrv-card:loc=1201
```

When this command has successfully completed, this message should appear.

E2144 Cmd Rej: Location invalid for hardware configuration

10. Backup the new changes using the **chg-db:action=backup:dest=fixed** command. These messages should appear; the active Maintenance and Administration Subsystem Processor (MASP) appears first.

BACKUP (FIXED) : MASP A - Backup starts on active MASP.BACKUP (FIXED) : MASP A - Backup on active MASP to fixed disk complete.BACKUP (FIXED) : MASP A - Backup starts on standby MASP.BACKUP (FIXED) : MASP A - Backup on standby MASP to fixed disk complete.

Flowchart 3-2. Removing an STP LAN Card

Adding a TCP/IP Data Link

This procedure is used to add a TCP/IP data link to the database using the ent-dlk command.

The ent-dlk command uses these parameters:

:loc – The card location of the ACM or DCM that the TCP/IP data link will be assigned to.

:ipaddr – The TCP/IP data link's IP address

:speed – The transmission rate of the TCP/IP data link, either 10 Mb/s (speed=10) or 100 Mb/s (speed=100). The default value for this optional parameter is 10. The speed=100 parameter can be specified only if the application running on the STPLAN card is VXWSLAN. The application running on the card is shown in the APPL field of the rtrv-card command output.

This examples used in this procedure are based on the example network shown in Figure 3-7 on page 3-20 and Table 3-4 on page 3-19.

The STP LAN and gateway screening features must be turned on. Verify this by entering the rtrv-feat command. If either the STP LAN feature or gateway screening feature is off, they can be turned on by entering the chg-feat:lan=on command for the STP LAN feature and the chg-feat:gws=on command for the gateway screening feature.

NOTE: Once the gateway screening and STP LAN features are turned on with the chg-feat command, they cannot be turned off.

The card that the TCP/IP data link is assigned to must be an ACM running the stplan application or a DCM running the vxwslan application. This can be verified in step 2 with the rtrv-card command. The ACM is shown by the entries ACMENET in the TYPE field and STPLAN in the APPL field of the rtrv-card command output. The DCM is shown by the entries DCM in the TYPE field and VXWSLAN in the APPL field of the rtrv-card command output. If the ACM or DCM is not shown in the rtrv-card command output, go to the "Adding an STP LAN Card" procedure on page 3-21 and add the required card to the database.

The specified card cannot have a TCP/IP data link assigned to it, nor can the TCP/IP data link be in the database. This can be verified in step 1.

The IP address to be assigned to the TCP/IP data link cannot be assigned to a TCP/IP node or to a TCP/IP router. Enter the **rtrv-ip-node** command to display the IP addresses of the TCP/IP nodes and the TCP/IP routers. This can be verified in step 2.

Procedure

1. Display the data links in the database by entering the **rtrv-dlk** command. This is an example of the possible output.

```
rlghncxa03w 05-09-20 21:16:37 GMT EAGLE5 34.0.0
LOC IPADDR LINK SPEED
1103 193.4.201.34 10Mbit
1104 193.4.201.35 10Mbit
```

2. Display the TCP/IP nodes and TCP/IP routers by entering the **rtrv-ip-node** command. This is an example of the possible output.

rlghncxa03w 05-09-20 21:17:37 GMT EAGLE5 34.0.0 IPADDR IPPORT IPAPPL LOC CAP IPRTE 193.4.201.70 1024 stplan 1103 10% --193.4.201.71 1024 stplan 1104 10% --

If the IP address being assigned to the TCP/IP data link in this procedure matches any IP address values shown in steps 1 or 2, choose an IP address value that is not shown in steps 1 or 2 and go to step 3.

3. Display the cards in the database by entering the **rtrv-card** command. This is an example of the possible output.

rlghnc	xa03w 05-0	9-25 09:58	3:31 GMT EAGLE5	34.0	.0				
CARD	TYPE	APPL	LSET NAME	LINK	SLC	LSET	NAME	LINK	SLC
1101	TSM	SCCP							
1102	TSM	GLS							
1103	ACMENET	STPLAN							
1104	ACMENET	STPLAN							
1113	GPSM	EOAM							
1114	TDM-A								
1115	GPSM	EOAM							
1116	TDM-B								
1117	MDAL								
1201	DCM	VXWSLAN							
1203	ACMENET	STPLAN							
1204	ACMENET	STPLAN							
1205	ACMENET	STPLAN							
1206	ACMENET	STPLAN							
1211	LIMDS0	SS7ANSI	lsn1	А	0	lsn2		В	1
1212	LIMV35	SS7GX25	lsngwy	А	0				
1213	LIMV35	SS7ANSI	lsn2	А	0	lsn1		В	1
1216	LIMDS0	SS7ANSI	sp2	А	0	sp1		В	0
1303	LIMDS0	SS7ANSI	ap3	А	0				
1304	LIMDS0	SS7ANSI	ap3	А	1				
1306	LIMDS0	SS7ANSI	nsp3	А	1	nsp4		В	1
1307	LIMV35	SS7GX25	nspl	А	0				
1308	LIMV35	SS7GX25	nspl	A	1				

The STP LAN card that will be specified in step 4 must be shown in the **rtrv-card** output in this step, but cannot be shown in the **loc** column of the **rtrv-dlk** output in step 1.

If the required STP LAN card is not shown in the **rtrv-card** output, perform the "Adding an STP LAN Card" procedure on page 3-21 and add the STP LAN card to the database.

If the STP LAN card is shown in the rtrv-dlk output, either select an STP LAN card that is shown in the rtrv-card output, but not shown in the rtrv-dlk output, or perform the "Adding an STP LAN Card" procedure on page 3-21 and add the STP LAN card to the database.

If the **speed=100** parameter will be specified in step 4, the application running on the STP LAN card must be VXWSLAN.

4. Add the data link to the database by entering the ent-dlk command. For this example, enter these commands.

```
ent-dlk:loc=1201:ipaddr=193.4.201.30:speed=100
ent-dlk:loc=1203:ipaddr=193.4.201.31
ent-dlk:loc=1204:ipaddr=193.4.202.39
ent-dlk:loc=1205:ipaddr=194.5.198.74
ent-dlk:loc=1206:ipaddr=197.4.217.39
```

When each of these commands has successfully completed, this message should appear.

```
rlghncxa03w 05-09-20 21:19:37 GMT EAGLE5 34.0.0
ENT-DLK: MASP A - COMPLTD
```

The ent-dlk command assigns the IP address (ipaddr) to the STP LAN card (ACM or DCM). If the network is a private network (not on the Internet), you can assign any unique address. If the STP LAN card is on the Internet, you must obtain an IP address from the Internet Network Information Center (NIC). Refer to the "IP Addresses" section on page 3-14 for information on the IP address values used in the ent-dlk command.

If the **speed=100** parameter will be specified with the **ent-dlk** command, the application running on the STP LAN card must be VXWSLAN.

5. Verify the changes using the **rtrv-dlk** command with the card location specified in step 4. For this example, enter these commands.

```
rtrv-dlk:loc=1201
```

This is an example of the possible output.

rlghncxa03w 05-09-20 21:20:37 GMT EAGLE5 34.0.0 LOC IPADDR LINK SPEED 1201 193.4.201.30 100Mbit

rtrv-dlk:loc=1203

This is an example of the possible output.

rlghncxa03w 05-09-20 21:20:37 GMT EAGLE5 34.0.0 LOC IPADDR LINK SPEED 1203 193.4.201.31 10Mbit

rtrv-dlk:loc=1204

This is an example of the possible output.

rlghncxa03w 05-09-20 21:20:37 GMT EAGLE5 34.0.0 LOC IPADDR LINK SPEED 1204 193.4.202.39 10Mbit

rtrv-dlk:loc=1205

This is an example of the possible output.

rlghncxa03w 05-09-20 21:20:37 GMT EAGLE5 34.0.0 LOC IPADDR LINK SPEED 1205 194.5.198.74 10Mbit

rtrv-dlk:loc=1206

This is an example of the possible output.

rlghncxa03w 05-09-20 21:20:37 GMT EAGLE5 34.0.0 LOC IPADDR LINK SPEED 1206 197.4.217.39 10Mbit

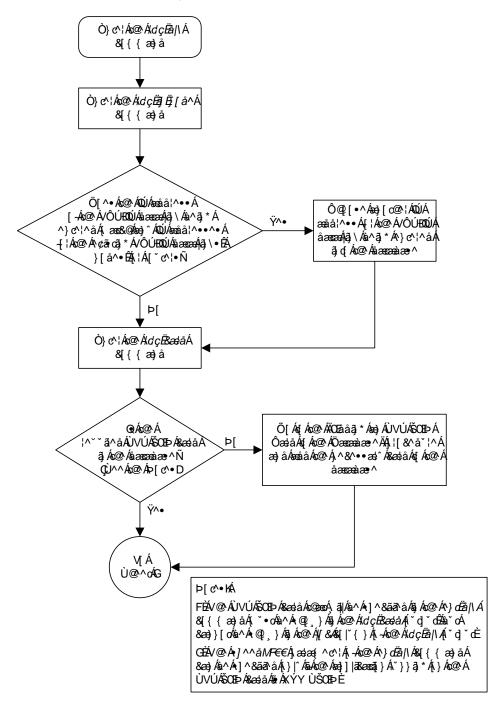
6. Place the cards into service by entering the **rst-card** command with the card location specified in step 4. For this example, enter these commands.

```
rst-card:loc=1201
rst-card:loc=1203
rst-card:loc=1204
rst-card:loc=1205
rst-card:loc=1206
```

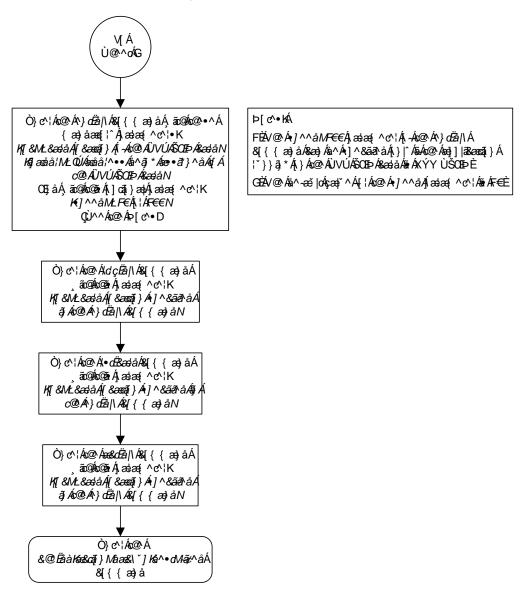
This message should appear when each command has successfully completed.

```
rlghncxa03w 05-09-20 21:21:37 GMT EAGLE5 34.0.0 Card has been allowed.
```

7. Place the data links into service by entering the act-dlk command with the card location specified in step 4. For this example, enter these commands.


```
act-dlk:loc=1201
act-dlk:loc=1203
act-dlk:loc=1204
act-dlk:loc=1205
act-dlk:loc=1206
This measure should act
```

This message should appear when each command has successfully completed.


```
rlghncxa03w 05-09-20 21:22:37 GMT EAGLE5 34.0.0
Activate Link message sent to card
```

8. Backup the new changes using the chg-db:action=backup:dest=fixed command. These messages should appear; the active Maintenance and Administration Subsystem Processor (MASP) appears first.

BACKUP (FIXED) : MASP A - Backup starts on active MASP.
BACKUP (FIXED) : MASP A - Backup on active MASP to fixed disk complete.
BACKUP (FIXED) : MASP A - Backup starts on standby MASP.
BACKUP (FIXED) : MASP A - Backup on standby MASP to fixed disk complete.

Flowchart 3-3. Adding a TCP/IP Data Link (Sheet 1 of 2)

Flowchart 3-3. Adding a TCP/IP Data Link (Sheet 2 of 2)

Removing a TCP/IP Data Link

This procedure is used to remove a TCP/IP data link from the database using the dlt-dlk command.

The examples used in this procedure are used to remove the TCP/IP data link on card 1204 from the database.

The card that the TCP/IP data link is assigned to must be an ACM running the **stplan** application or a DCM running the **vxwslan** application. This can be verified with the **rtrv-card** command. The ACM is shown by the entries **ACMENET** in the **TYPE** field and **STPLAN** in the **APPL** field of the **rtrv-card** command output. The DCM is shown by the entries **DCM** in the **TYPE** field and **VXWSLAN** in the **APPL** field of the **rtrv-card** command output.

The specified card must have a TCP/IP data link assigned to it and the TCP/IP data link must be in the database. This can be verified in step 1.

Procedure

1. Display the data links in the database by entering the **rtrv-dlk** command. This is an example of the possible output.

```
rlghncxa03w 05-09-20 21:16:37 GMT EAGLE5 34.0.0
LOC IPADDR LINK SPEED
1103 193.4.201.34 10Mbit
1104 193.4.201.35 10Mbit
1201 193.4.201.30 100Mbit
1203 193.4.201.31 10Mbit
1204 193.4.202.39 10Mbit
1205 194.5.198.74 10Mbit
1206 197.4.217.39 10Mbit
```

2. Place the TCP/IP data link to be removed out of service using the canc-dlk command, using the output from step 1 to obtain the card location of the TCP/IP data link to be removed. For this example, the TCP/IP data link to be removed is assigned to card 1204. Enter this command.

canc-dlk:loc=1204

When the command has successfully completed, this message should appear.

```
rlghncxa03w 05-09-20 21:17:37 GMT EAGLE5 34.0.0
Deactivate Link message sent to card.
```

3. Verify that the TCP/IP data link is out of service - maintenance disabled (OOS-MT-DSBLD) using the rept-stat-dlk command. For this example, enter this command.

```
rept-stat-dlk:loc=1204
```

This is an example of the possible output.

```
Rrlghncxa03w 05-09-20 21:18:37 GMT EAGLES 34.0.0
DLK PST SST AST
1204 OOS-MT-DSBLD Unavail ---
ALARM STATUS =
Command Completed.
```

4. Place the card specified in step 3 out of service by using the **rmv-card** command. For this example, enter this command.

rmv-card:loc=1204

This message should appear.

```
rlghncxa03w 05-09-20 21:19:37 GMT EAGLE5 34.0.0 Card has been inhibited.
```

5. Display the TCP/IP nodes in the database by entering the rtrv-ip-node command. This is an example of the possible output.

```
rlghncxa03w 05-09-20 21:20:37 GMT EAGLE5 34.0.0IPADDRIPPORTIPAPPLLOCCAPIPRTE193.4.201.501024stplan120110%--193.4.201.501024stplan120310%--193.4.201.701024stplan110310%--193.4.201.711024stplan110410%--194.5.198.343000stplan120540%--200.50.100.474000stplan120640%197.4.217.47203.14.212.302000stplan120440%193.4.202.30
```

6. Remove the TCP/IP node assigned to the card location containing the TCP/IP data link to be removed from the database using the dlt-ip-node command. For this example, enter this command.

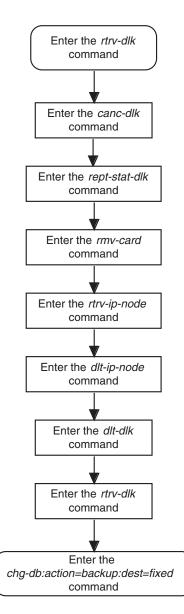
dlt-ip-node:ipaddr=193.4.202.30:ipappl=stplan:ipport=2000
:loc=1204

This message should appear.

rlghncxa03w 05-09-20 21:21:37 GMT EAGLE5 34.0.0 DLT-IP-NODE: MASP A - COMPLTD 7. Remove the data link from the database using the dlt-dlk command. The dlt-dlk command has only one parameter, loc, which is the location of the ACM or DCM containing the TCP/IP data link. For this example, enter this command.

dlt-dlk:loc=1204

This message should appear.


rlghncxa03w 05-09-20 21:22:37 GMT EAGLE5 34.0.0 DLT-DLK: MASP A - COMPLTD

8. Verify the changes using the **rtrv-dlk** command. This is an example of the possible output.

```
rlghncxa03w 05-09-20 21:23:37 GMT EAGLE5 34.0.0
LOC IPADDR LINK SPEED
1103 193.4.201.34 10Mbit
1104 193.4.201.35 10Mbit
1201 193.4.201.30 100Mbit
1203 193.4.201.31 10Mbit
1205 194.5.198.74 10Mbit
1206 197.4.217.39 10Mbit
```

9. Backup the new changes using the chg-db:action=backup:dest=fixed command. These messages should appear; the active Maintenance and Administration Subsystem Processor (MASP) appears first.

BACKUP (FIXED) : MASP A - Backup starts on active MASP.
BACKUP (FIXED) : MASP A - Backup on active MASP to fixed disk complete.
BACKUP (FIXED) : MASP A - Backup starts on standby MASP.
BACKUP (FIXED) : MASP A - Backup on standby MASP to fixed disk complete.

Flowchart 3-4. Removing a TCP/IP Data Link

Adding a TCP/IP Node

This procedure is used to add a TCP/IP node to the database using the **ent-ip-node** command.

The **ent-ip-node** command uses these parameters:

:ipaddr – The node's IP address.

:ipapp1 – The IP application supported by the node.

:ipport – The logical IP port to address the application on the node.

:loc – The card location of the ACM or DCM that contains the TCP/IP link that will be directly connected to the node.

:cap – The maximum percentage of ethernet capacity for this node connection. This capacity is added to other connections to this node for the total capacity of the node.

:iprte - The IP address of the TCP/IP router.

This examples used in this procedure are based on the example network shown in Figure 3-7 on page 3-20 and Table 3-4 on page 3-19.

The TCP/IP node cannot already be in the database. This can be verified in step 1.

The specified card must have a TCP/IP data link assigned to it. This can be verified in step 2.

The IP address assigned to the TCP/IP node cannot be assigned to any other TCP/IP nodes, TCP/IP routers, or TCP/IP data links.

The class of the IP address (ipaddr) must match the class of the assigned TCP/IP data link's IP address only if the iprte parameter is not specified with the ent-ip-node command. The EAGLE 5 SAS supports three classes of IP addresses, class A, class B, and class C. Class A IP addresses can contain only the values 1 to 127 in the first field of the IP address. Class B IP addresses can contain only the values 128 to 191 in the first field of the IP address. Class C IP addresses can contain only the values 192 to 223 in the first field of the IP address. No IP address can contain the value 127 in the first field of the IP address. These IP addresses are reserved for loopback.

The network portion of the IP address (**ipaddr**) must match the network portion of the IP address assigned to the TCP/IP data link only if the **iprte** parameter is not specified with the **ent-ip-node** command. The network portion of the IP address is based on the class of the IP address. If the IP address is a class A IP address, the first field is the network portion of the IP address. If the IP address is a class B IP address, the first two fields are the network portion of the IP address. If the IP address is a class C IP address, the first three fields are the network portion of the IP address. Solve the IP address. For example, if the IP address of the TCP/IP data link is 193.5.207.150, a class C IP address, the network portion of the IP address for the TCP/IP node must be 193.5.207.

Refer to the "IP Addresses" on page 3-14 for more information of the TCP/IP router.

If the iprte parameter is specified with the ent-ip-node command, the class and network portion of the TCP/IP router's IP address must match the class and network portion of the TCP/IP data link and cannot match the IP address of the TCP/IP node being added to the database. If subnet routing is being used, the iprte parameter must be specified with the ent-ip-node command. Refer to the "TCP/IP Router" section on page 3-5 for more information of the TCP/IP router.

The capacity of all connections to the IP address cannot be greater than 100%. This is shown in the **CAP** field of the **rtrv-ip-node** command output.

Procedure

1. Display the TCP/IP nodes in the database by entering the **rtrv-ip-node** command. This is an example of the possible output.

```
rlghncxa03w 05-09-20 21:16:37 GMT EAGLE5 34.0.0
IPADDR IPPORT IPAPPL LOC CAP IPRTE
193.4.201.70 1024 stplan 1103 10% --
193.4.201.71 1024 stplan 1104 10% --
```

2. Display the TCP/IP data links in the database by entering the **rtrv-dlk** command. This is an example of the possible output.

```
rlghncxa03w 05-09-20 21:17:37 GMT EAGLE5 34.0.0
LOC IPADDR
                   LINK SPEED
1103 193.4.201.34
                     10Mbit
1104 193.4.201.35
                     10Mbit
1201 193.4.201.30
                     100Mbit
1203 193.4.201.31
                    10Mbit
1204 193.4.202.39
                    10Mbit
1205 194.5.198.74 10Mbit
1206 197.4.217.39
                     10Mbit
```

3. Add the TCP/IP nodes to the database by entering the **ent-ip-node** command. For this example, enter these commands.

```
ent-ip-node:loc=1201:ipaddr=193.4.201.50:ipappl=stplan
:ipport=1024:cap=10
```

```
ent-ip-node:loc=1203:ipaddr=193.4.201.50:ipappl=stplan
:ipport=1024:cap=10
```

```
ent-ip-node:loc=1204:ipaddr=203.14.212.30:ipappl=stplan
:ipport=2000 :cap=40:iprte=193.4.202.30
```

```
ent-ip-node:loc=1205:ipaddr=194.5.198.34:ipappl=stplan
:ipport=3000:cap=40
```

```
ent-ip-node:loc=1206:ipaddr=200.50.100.47:ipappl=stplan
:ipport=4000:cap=40:iprte=197.4.217.47
```

When each of these commands has successfully completed, this message should appear.

```
rlghncxa03w 05-09-20 21:18:37 GMT EAGLE5 34.0.0
ENT-IP-NODE: MASP A - COMPLTD
```

4. Verify the changes using the **rtrv-ip-node** command. This is an example of the possible output.

rlghncxa03w 05-09	9-20 21:1	9:37 GMT	' EAGLE	5 34.	0.0
IPADDR	IPPORT	IPAPPL	LOC	CAP	IPRTE
193.4.201.50	1024	stplan	1201	10%	
193.4.201.50	1024	stplan	1203	10%	
193.4.201.70	1024	stplan	1103	10%	
193.4.201.71	1024	stplan	1104	10%	
194.5.198.34	3000	stplan	1205	40%	
200.50.100.47	4000	stplan	1206	40%	197.4.217.47
203.14.212.30	2000	stplan	1204	40%	193.4.202.30

5. Place the data links into service by entering the act-dlk command. For this example, enter these commands.

```
act-dlk:loc=1201
act-dlk:loc=1203
act-dlk:loc=1204
act-dlk:loc=1205
act-dlk:loc=1206
This message should appear when each command has successfully
completed.
rlghncxa03w 05-09-20 21:20:37 GMT EAGLE5 34.0.0
Activate Link message sent to card
```

6. Check the status of the data links using the rept-stat-dlk command, specifying the card locations of the data links entered in step 5. The link should be in service-normal (IS-NR) after the link has been activated. This is an example of the possible output.

```
rlghncxa03w 05-09-20 21:21:37 GMT EAGLE5 34.0.0

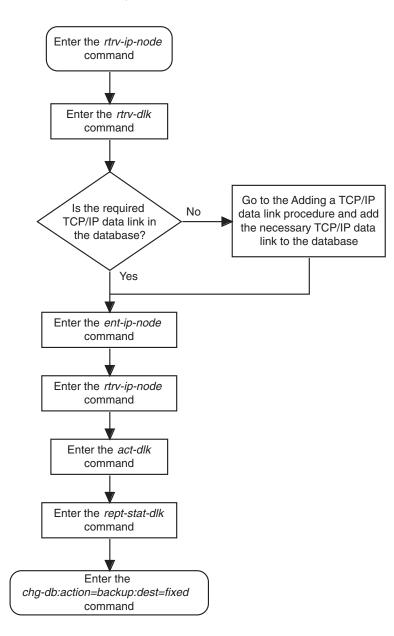
DLK PST SST AST

1103 IS-NR Avail ----

1201 IS-NR Avail ----

1203 IS-NR Avail ----

1204 IS-NR Avail ----


1205 IS-NR Avail ----

1206 IS-NR Avail ----

Command Completed.
```

7. Backup the new changes using the chg-db:action=backup:dest=fixed command. These messages should appear; the active Maintenance and Administration Subsystem Processor (MASP) appears first.

BACKUP (FIXED) : MASP A - Backup starts on active MASP.
BACKUP (FIXED) : MASP A - Backup on active MASP to fixed disk complete.
BACKUP (FIXED) : MASP A - Backup starts on standby MASP.
BACKUP (FIXED) : MASP A - Backup on standby MASP to fixed disk complete.

Flowchart 3-5. Adding a TCP/IP Node

Removing a TCP/IP Node

This procedure is used to remove a TCP/IP node from the database using the dlt-ip-node command.

The dlt-ip-node command uses these parameters:

:ipaddr – The node's IP address.

:ipapp1 – The IP application supported by the node.

:ipport – The logical IP port that addresses the application on the node.

:loc – The card location of the ACM or DCM that contains the TCP/IP link that is directly connected to the node.

:force – Whether or not to remove all applications associated with the node, thus removing the entire node from the database.

The examples used in this procedure are used to remove the TCP/IP node with the IP address 193.4.201.71 from the database.

The TCP/IP node must be in the database. This can be verified in step 1.

The specified card must have a TCP/IP data link assigned to it. This can be verified in step 2.

The card that the TCP/IP data link is assigned to must be an ACM running the **stplan** application or a DCM running the **vxwslan** application. This can be verified with the **rtrv-card** command. The ACM is shown by the entries **ACMENET** in the **TYPE** field and **STPLAN** in the **APPL** field of the **rtrv-card** command output. The DCM is shown by the entries **DCM** in the **TYPE** field and **VXWSLAN** in the **APPL** field of the **rtrv-card** command output.

Procedure

1. Display the TCP/IP nodes in the database by entering the **rtrv-ip-node** command. This is an example of the possible output.

rlghncxa03w 05-09	9-20 21:1	6:37 GMI	EAGLE	34.	0.0
IPADDR	IPPORT	IPAPPL	LOC	CAP	IPRTE
193.4.201.50	1024	stplan	1201	10%	
193.4.201.50	1024	stplan	1203	10%	
193.4.201.70	1024	stplan	1103	10%	
193.4.201.71	1024	stplan	1104	10%	
194.5.198.34	3000	stplan	1205	40%	
200.50.100.47	4000	stplan	1206	40%	197.4.217.47
203.14.212.30	2000	stplan	1204	40왕	193.4.202.30

2. Display the TCP/IP data links in the database by entering the **rtrv-dlk** command. This is an example of the possible output.

rlghncxa03w 05-09-20 21:17:37 GMT EAGLE5 34.0.0 LOC IPADDR LINK SPEED 1103 193.4.201.34 10Mbit 1104 193.4.201.35 10Mbit 1201 193.4.201.30 100Mbit 1203 193.4.201.31 10Mbit 1204 193.4.202.39 10Mbit 1205 194.5.198.74 10Mbit 1206 197.4.217.39 10Mbit

3. Place the TCP/IP data link assigned to the TCP/IP node to be removed from the database out of service using the canc-dlk command, using the outputs from steps 1 and 2 to obtain the card location (shown in the LOC field of both outputs) of the TCP/IP data link to be placed out of service. For this example, the TCP/IP data link to be placed out of service is assigned to card 1104. Enter this command.

canc-dlk:loc=1104

When the command has successfully completed, this message should appear.

```
rlghncxa03w 05-09-20 21:18:37 GMT EAGLE5 34.0.0 Deactivate Link message sent to card.
```

 Verify that the TCP/IP data link is out of service - maintenance disabled (OOS-MT-DSBLD) using the rept-stat-dlk command. For this example, enter this command.

```
rept-stat-dlk:loc=1104
```

This is an example of the possible output.

```
Rrlghncxa03w 05-09-20 21:19:37 GMT EAGLE5 34.0.0
DLK PST SST AST
1104 OOS-MT-DSBLD Unavail ---
ALARM STATUS =
Command Completed.
```

5. Place the card assigned to the TCP/IP node to be removed out of service by using the **rmv-card** command, specifying the card location used in step 3. For this example, enter this command.

```
rmv-card:loc=1104
```

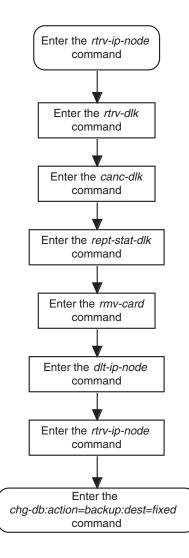
This message should appear.

```
rlghncxa03w 05-09-20 21:20:37 GMT EAGLE5 34.0.0
Card has been inhibited.
```

6. Remove the TCP/IP node to the database using the dlt-ip-node command. For this example, enter this command.

dlt-ip-node:ipaddr=193.4.201.71:ipappl=stplan:ipport=1024
:loc=1104

This message should appear.


rlghncxa03w 05-09-20 21:21:37 GMT EAGLE5 34.0.0 DLT-IP-NODE: MASP A - COMPLTD

7. Verify the changes using the rtrv-ip-node command. This is an example of the possible output.

```
rlghncxa03w05-09-2021:22:37GMTEAGLE534.0.0IPADDRIPPORTIPAPPLLOCCAPIPRTE193.4.201.501024stplan120110%--193.4.201.501024stplan120310%--193.4.201.701024stplan110310%--194.5.198.343000stplan120540%--200.50.100.474000stplan120640%197.4.217.47203.14.212.302000stplan120440%193.4.202.30
```

8. Backup the new changes using the chg-db:action=backup:dest=fixed command. These messages should appear; the active Maintenance and Administration Subsystem Processor (MASP) appears first.

BACKUP (FIXED) : MASP A - Backup starts on active MASP.BACKUP (FIXED) : MASP A - Backup on active MASP to fixed disk complete.BACKUP (FIXED) : MASP A - Backup starts on standby MASP.BACKUP (FIXED) : MASP A - Backup on standby MASP to fixed disk complete.

Flowchart 3-6. Removing a TCP/IP Node

Database Transport Access (DTA) Configuration

DTA Feature Overview	4–2
Functional Description	4–4
Summary of the Gateway Screening Redirect Table Commands	
X.25/SS7 Gateway Description	4–9
X.25/SS7 Gateway Routing	4–10
Routing Management Mapping	4–12
SCCP Subsystem Management	4–13
EAGLE 5 SAS Requirements	4–14
Configuring the EAGLE 5 SAS for the DTA Feature	4–15
Changing the Gateway Screening Redirect Parameters	4–40
Disabling the Gateway Screening Redirect Function	4–51

This section shows how to configure the EAGLE 5 SAS to implement the database transport access (DTA) feature. It also shows how to change the configuration as the requirements of the DTA feature change, and how to disable the DTA feature and the configuration changes that need to be made as a result of disabling the DTA feature.

The procedures shown in this chapter use a variety of commands. If more information on these commands is needed, go to the *Commands Manual* to find the required information.

DTA Feature Overview

This feature allows data to be routed through the SS7 network using the SCCP protocol without relying on TCAP as the upper level protocol.

In the case of specialized applications, MSUs containing SCCP and proprietary data must be sent through the network to customer-specific databases. However, these MSUs may need additional processing before being routed to their final destination.

The DTA feature provides a mechanism for the redirection of specific MSUs to a customized database. The EAGLE 5 SAS uses gateway screening to qualify incoming MSUs for redirection.

Once gateway screening is passed, the original MSU is encapsulated into a new MSU and routed to its new destination.

Figure 4-1 shows a typical configuration for the DTA feature.

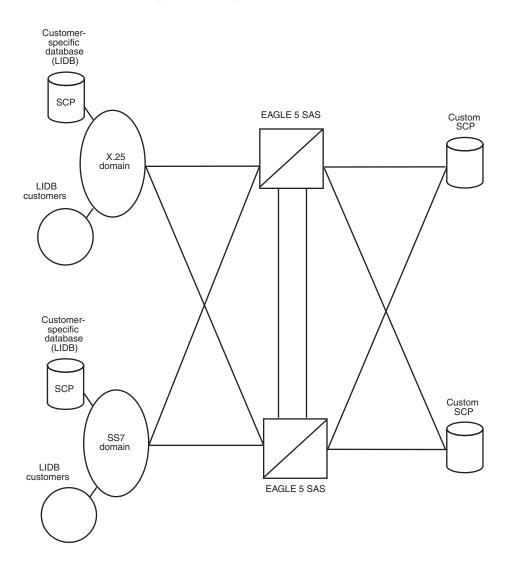


Figure 4-1. Example of Configuration for the DTA Feature

The new routing is specified by a redirection table that specifies the destination point code (DPC) and a new called party address. The routing indicator and the subsystem number are defined within the called party address.

The MSU is then passed to the SCP on the specified linkset where the application data is processed for a customized application.

Once the SCP has processed the user data, the SCP sends the MSU back to the EAGLE 5 SAS. At the EAGLE 5 SAS, the MSU is routed to its final destination either in the SS7 network or in the X.25 network. The SCP determines the routing for the MSU, providing it in the routing label of the MTP portion of the MSU and in the SCCP called party address.

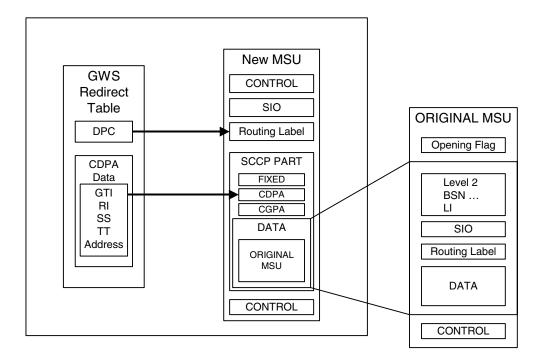
The SCP also provides new calling party address information to support billing applications. The SCP is considered as the originator (OPC) and the calling party.

If the original destination is located within an X.25 network, the EAGLE 5 SAS uses its X.25 gateway feature to route the MSU to the X.25 network. The EAGLE 5 SAS selects a logical channel according to an X.25 routing table and sends the MSU on that logical channel.

If the selected logical channel fails, the EAGLE 5 SAS uses enhanced network management to reroute the MSU to a new X.25 logical channel. There are up to 1024 logical channels supported on the X.25/SS7 gateway.

As an optional feature, MSUs that are redirected to an SCP can also be copied using the STP LAN feature. This provides a copy of the redirected MSU to be routed over a TCP/IP interface to an adjunct processor. The copied MSU can then be processed for a variety of applications such as usage measurements.

The EAGLE 5 SAS does not provide any conversion of the copied MSU; it merely provides a copy of the redirected MSU after encapsulation of the original MSU. The copy is conducted by the LIM transmitting the redirected MSU.


If this feature is used, either the Applications Communications Module (ACM), running the STPLAN application, or the Database Communications Module (DCM), running the VXWSLAN application, is required. These cards provide an ethernet interface supporting TCP/IP applications. For more information regarding the STP LAN feature, see Chapter 3, "STP LAN Configuration."

Functional Description

The principal function within the EAGLE 5 SAS for this feature is gateway screening. This feature allows the EAGLE 5 SAS to examine all incoming MSUs and determine whether or not they should be allowed into the network. Gateway screening looks at the routing label of the incoming MSU and matches this information with the EAGLE 5 SAS's gateway screening tables.

To support the DTA feature, a gateway screening stop action set containing the **rdct** (redirect) gateway screening stop action is assigned to the last screen in the screening process. The redirect gateway screening stop action selects the MSU that is redirected for the DTA feature. The screening table for the DTA feature examines the routing label (OPC, DPC) and the SIO fields of the MSU.

Once the MSU has been qualified for redirection by the gateway screening function, the original MSU is encapsulated into the data portion of SCCP within a new SS7 MSU, including all level two and level three headers. A redirect routing table identifies the DPC to be inserted into the routing label of the redirected MSU. In addition, the called party address in the SCCP portion of the MSU is modified according to the parameters set in the redirect routing table. Figure 4-2 illustrates the encapsulation process.

Figure 4-2. DTA Encapsulation

The global title function is used to determine which of the SCPs the MSU is routed to. In the event of subsystem failures, SCCP subsystem management determines which of the SCPs is available. The global title function provides the routing information and routes the MSU to the available SCP.

The global title function requires either the Translation Services Module (TSM) or Database Services Module (DSM) which contains the global title translation tables.

Once the MSU has received its routing information, the MSU can be sent to the appropriate SCP (specified by the EAGLE 5 SAS's redirection table and global title). The SCP then processes the user data contained within the encapsulated MSU. Once processing has been completed, the MSU is sent back to the EAGLE 5 SAS for final routing.

The DTA feature will redirect MSUs to either ANSI or ITU nodes, depending on the value of the DPC in the redirect routing table, but the redirect routing table can contain only one DPC value. If the incoming message type is not the same as the DPC in the redirect routing table, the message is tunneled to the redirect DPC.

The subsystem number in the called party address determines whether the MSU is processed as an ANSI MSU or an ITU MSU. If the subsystem number is 0, the MSU is an ANSI MSU. If the subsystem number is 250, the MSU is an ITU MSU (an MSU containing either a ITU-I point code, 14-bit ITU-N point code, ITU-I Spare point code, or 14-bit ITU-N Spare point code). If the subsystem number is 251, the MSU is an ITU-N24 MSU (an MSU containing a 24-bit ITU-N point code).

Tunneling uses an MTP2/MTP3/SCCP header based on the network type of the DTA DPC to allow any incoming message to be routed to the DTA DPC. A wrapper is placed around the message (an ANSI wrapper around an ITU message, or an ITU wrapper around an ANSI message), and sends the message to the DTA DPC. The destination removes the wrapper and processes the original information.

Discarding MSUs

MSUs can be discarded for these reasons:

- Gateway screening is not available or the MSU does not pass gateway screening.
- The gateway screening redirect function is disabled.
- The MSU is too large to be encapsulated
- The DPC for the gateway screening redirect function is prohibited or congested.
- The EAGLE 5 SAS's SCCP subsystem is prohibited.

The discarding of MSUs is controlled by gwsd linkset parameter. If the gwsd=on parameter is specified for the linkset, and one or more of the conditions in the previous list are encountered, MSUs on the linkset are discarded. If the gwsd=off parameter is specified for the linkset, and one or more of the conditions in the previous list are encountered, MSUs on the linkset are routed to its original destination. Each of the MSU discard conditions are discussed in the following paragraphs.

If gateway screening is not available or the MSU does not pass gateway screening, the MSU is discarded. An unsolicited alarm message (UAM) is not generated. This condition is not dependent on the linkset gwsd parameter value. The MSGWSDSLIM measurement is pegged.

If the redirect mode is set to 'off' in the redirect function, either with the chg-gws-redirect:enabled=off or dlt-gws-redirect commands, and the linkset gwsd=on parameter is specified for the linkset, the MSU is discarded, MRN 1084 is generated, and the DTAMSULOST measurement is pegged. If the linkset gwsd=off parameter is specified for the linkset, the MSU is routed to its original destination, MRN 1084 is not generated, and the DTAMSULOST measurement is not pegged.

If an MSU is too large to be encapsulated, the MSU may be discarded, depending on the linkset's gwsd parameter value. The maximum length of the MSU is dependent on the number of digits contained in the global title address and on the network type of the DPC in the MSU, as shown in Table 4-1 on page 4-7.

MSU DPC Type	GTA Length		
	1 digit	21 digits	
ANSI	250 bytes	240 bytes	
ITU-I	253 bytes	243 bytes	
ITU-I Spare	253 bytes	243 bytes	
ITU-N	253 bytes	243 bytes	
ITU-N Spare	253 bytes	243 bytes	
ITU-N24	250 bytes	240 bytes	

 Table 4-1.
 Maximum Encapsulation Length per DTA DPC Type

MSUs that are too long are discarded based on the linkset gwsd parameter value. If the linkset gwsd=on parameter is specified for the linkset, the MSU is discarded, MRN 1084 is generated, and the DTAMSULOST measurement is pegged. If the linkset gwsd=off parameter is specified for the linkset, the MSU is routed to its original destination, MRN 1085 is generated, but the DTAMSULOST measurement is not pegged.

If the DPC of the gateway screening redirect function is the DPC of an external node, and if the route to this DPC is prohibited, or if this DPC is available, but the congestion level is above the priority of the MSU (for DTA, this priority is always 0), the MSU will not be encapsulated and will be discarded or routed according to the linkset's gwsd parameter value. If the linkset's gwsd value is on, the MSU is discarded, MRN 1084 is generated, and the DTAMSULOST measurement is pegged. If the linkset's gwsd value is off, the MSU is routed to its original destination, MRN 1084 is not generated, and the DTAMSULOST measurement is not pegged.

If the DPC for the gateway screening redirect function is the EAGLE 5 SAS's point code, the MSU is sent to the EAGLE 5 SAS's SCCP subsystem for GTT processing. If the EAGLE 5 SAS's SCCP subsystem is prohibited, the MSU will not be encapsulated and will be discarded or routed according to the linkset's gwsd parameter value. If the linkset's gwsd value is on, the MSU is discarded, MRN 1084 is generated, and the DTAMSULOST measurement is pegged. If the linkset's gwsd value is off, the MSU is routed to its original destination, MRN 1084 is not generated, and the DTAMSULOST measurement is not pegged.

MRNs 1084 and 1085 are discussed in greater detail in the Maintenance Manual.

Measurements

Two measurements are provided to indicate the number of MSUs discarded: DTAMSULOST and MSGWSDSLIM.

The DTAMSULOST measurement counts the number of MSUs discarded because gateway screening is not available. This can be caused by a number of events, including congestion in the EAGLE 5 SAS.

The MSGWSDSLIM counts the number of MSUs discarded because the received MSU was too large to be encapsulated or because the redirect function was disabled.

DTAMSULOST and MSGWSDSLIM are explained in greater detail in the *Maintenance Manual*.

Summary of the Gateway Screening Redirect Table Commands

The following set of commands is used to administer the gateway screening redirect table.

Table 4-2.Commands for the Gateway Screening Redirect
Table

Command	Explanation and action
ent-gws-redirect	The ent-gws-redirect command is used to enter the routing table for redirected MSUs.
chg-gws-redirect	The chg-gws-redirect command is used to modify the existing redirect routing table.
dlt-gws-redirect	The dlt-gws-redirect command is used to delete the redirect table from the database.
rtrv-gws-redirect	The rtrv-gws-redirect command is used to display the parameters of an existing redirect routing table.

X.25/SS7 Gateway Description

The X.25/SS7 gateway feature allows SCCP traffic to be routed over X.25 networks. X.25 protocol data units (PDUs) received over X.25 links are converted to SS7 MSUs for routing over the SS7 networks.

This protocol conversion does not affect the level four data. SCCP remains intact, with no conversion. This feature can be used for a variety of applications using the SCCP protocol over X.25 networks.

In addition to protocol conversion, the EAGLE 5 SAS also provides route management of X.25 logical channels. Traffic destined to a failed logical channel is diverted to an alternate route without loss of data. The EAGLE 5 SAS uses SS7 network management procedures to divert traffic and maintain data integrity.

The EAGLE 5 SAS supports 1024 logical channels. All X.25 entities are assigned an SS7 point code and SCCP subsystem number. The individual X.25 connections are assigned X.25 addresses, as well as alias point codes.

These are then mapped in the routing table to logical channels. This allows X.25 messages (which use connection-oriented procedures) to be routed and maintained in the SS7 network (which uses connectionless procedures).

Messages originating from the SS7 network destined for the X.25 network can be routed by the DPC assigned to the X.25 entity in the X.25 routing table (called Xpc). This allows SS7 entities to address the X.25 network without knowing X.25 addresses.

The X.25 routing table provides the X.25 address of each X.25 entity, an SS7 point code for each of the X.25 entities, the connection type used by the X.25 route, a subsystem number for SCCP routing, the method of routing to be used (Xpc or normal SS7 routing) and the logical channel to be used between each of the specified X.25 entities and the SS7 entities.

Routing by the X.25 point code assignment allows many SS7 entities to communicate to one X.25 entity without each SS7 entity having to know the X.25 address, and allows all SS7 entities to connect to the X.25 entity over one logical channel.

This provides for easier routing table administration. Without this capability, every possible connection between X.25 and SS7 entities would have to be defined in the X.25 routing table.

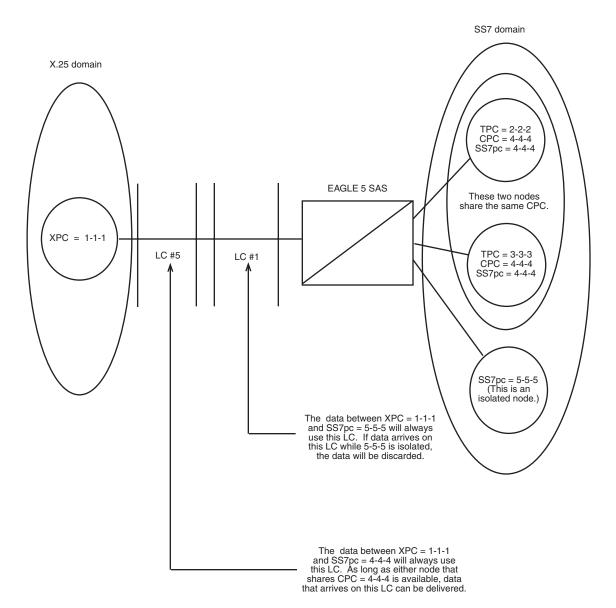
For more information on the X.25/SS7 gateway feature, see Chapter 2, "X.25 Gateway Configuration."

X.25/SS7 Gateway Routing

To support the gateway function, the entities within the X.25 network must be assigned an SS7 point code. This point code is assigned in the X.25 routing table using administration commands.

The routing table specifies the X.25 address, the SS7 point code assigned to both the X.25 entities and any SS7 entities that need to connect to X.25, a subsystem number for the X.25 entities, and the logical channel to be used on the X.25 link for connections between the specified entities.

Each EAGLE 5 SAS connection to the X.25 network is assigned an X.25 address as well. This allows routing of data from the X.25 network to the SS7 network. An SCCP subsystem number is assigned to the X.25 destination to enable global title translation to the X.25 entity.


Logical channels are also assigned in the X.25 routing table. Each X.25 entity must be assigned an SS7 destination to allow logical channel assignments to be made for the connection.

If there are to be several SS7 entities connecting to the X.25 entity over the same logical channel, a 'wild card' entry can be made in the routing table. This allows any SS7 entity to establish a connection over the specified logical channel, but only one connection can be made at any one time.

When data arrives on a LC destined for a node in the SS7 domain, the current X.25 gateway layer checks to see if the node is isolated. If so, the data is discarded.

This is shown in Figure 4-3. This figure also shows that it is possible to connect an Xpc to an SS7 point code (SS7pc) through an LC, where the SS7pc is a capability point code (CPC). This technique provides a higher availability of service to the Xpc.

NOTE: A CPC is a group of individual nodes, where each node is identified by an individual point code. Collectively, when these nodes are grouped by point codes into a CPC, this group of nodes provides a capability. In this case, the capability is global titling.

Figure 4-3. X.25 Routing to a CPC

910-0097-001 Rev B, October 2005

Routing Management Mapping

The X.25/SS7 gateway also provides management procedures for failed X.25 logical channels. This feature allows traffic destined for failed logical channels to be rerouted to an alternate route.

When configuring route management mapping, called logical channel to network management mapping, or LC2NM, it must be determined if the X.25 entity will be expecting associated queries and responses to use the same logical channel or if they may be assigned to different logical channels.

If associated queries and responses can be received over different logical channels, then failure recovery through alternate routing can be supported.

If route management mapping is enabled, and the X.25 entity can receive associated queries and responses on different logical channels, data destined to a failed logical channel is diverted by forced rerouting procedures in the EAGLE 5 SAS to the alternate route. All other associated traffic is diverted as well, and the logical channels to which associated traffic is assigned are made unavailable.

If the X.25 entity expects all associated queries and responses to be received on the same logical channel, traffic is still diverted to the alternate route if the logical channel fails. Forced rerouting procedures are not needed in this case.

If the alternate route is not available, the EAGLE 5 SAS uses level three network management procedures. For example, an X.25 Link Interface Module (LIM) determines a logical channel has failed. Network management diverts traffic away from the failed logical channel to a defined terminate route.

No network management messages are sent outside the EAGLE 5 SAS, and therefore should have no adverse effects on the SS7 network. The EAGLE 5 SAS uses SS7 network management procedures in software to divert traffic from the failed X.25 signaling link to another X.25 signaling link.

If route management mapping is not enabled on the X.25 linkset, there is no indication of logical channel failures. An unsolicited alarm message (UAM) output is created, which provides a textual message to indicate failure of an X.25 logical channel. All traffic destined to the failed logical channel is discarded.

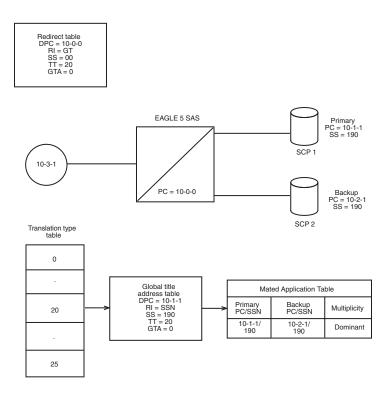
If X.25 level 2 should fail within the X.25 LIM, all X.25 routes associated with the LIM are considered unavailable and forced rerouting procedures are used.

In either of the above cases, when the logical channel is restored to service, network management will divert traffic back to the newly restored logical channel.

SCCP Subsystem Management

The EAGLE 5 SAS provides SCCP subsystem management for all transactions sent to an SCP. In the case of the DTA feature, subsystem management is provided for the customized SCP. The customized SCP is deployed in a quad configuration adjacent to the EAGLE 5 SAS. The links connecting the EAGLE 5 SAS and the SCP must be configured in such a way to support SCCP subsystem management.

The application supported by the dual SCPs is duplicated in both entities. The applications can be configured in one of the following two modes: dominant or load-shared.


When configured as dominant, one SCP is configured to receive all queries. This assignment is made in EAGLE 5 SAS routing tables. In the event the dominant SCP fails, traffic is diverted by SCCP subsystem management to the mate application.

If load sharing is configured, both SCPs will receive queries. SCCP ensures that all associated transactions are sent to the same SCP. Load sharing allows traffic to be distributed to both SCPs evenly, preventing congestion at one SCP.

If there is a failure in a load sharing configuration, all traffic is diverted by SCCP subsystem management to the mate SCP. When the failed SCP is restored, the EAGLE 5 SAS resumes load sharing.

Figure 4-4 shows an EAGLE 5 SAS configured with primary and backup SCPs.

Figure 4-4. Configuration of GTT for Routing Management

EAGLE 5 SAS Requirements

There are no specific hardware requirements to support the DTA feature. However, if the following specific situations exist, the following cards are required.

 Table 4-3.
 Cards Required in Specific Situations

If	Required Card			
Interworking with an X.25 network with the OCU interface	LIM-OCU*			
Interworking with an X.25 network with the DSOA interface	LIM-DS0*			
Interworking with an X.25 network with the V.35 interface	LIM-V.35*			
STPLAN feature is used	Application Communication Module			
useu	DCM			
	Application Service Module			
	TSM-256			
Subsystem	TSM-512			
management is used	TSM-768			
	TSM-1024			
	DSM			
* A Link Interface Module with the AINF interface (labeled as either LIM or EILA) can also be used. The AINF interface can be configured as either an OCU, DS0, or V.35 interface.				

Configuring the EAGLE 5 SAS for the DTA Feature

This procedure is used to add all the items to the EAGLE 5 SAS's database that are necessary to implement the DTA feature.

The following features must be turned on:

Gateway screening

Global title translation

X.25/SS7 gateway feature

Verify that these features are turned on by entering the **rtrv-feat** command. If any of these features are turned off, they can be turned on by entering one of the following commands:

chg-feat:gws=on - if the gateway screening feature is off (GWS = off in the
rtrv-feat command output)

chg-feat:gtt=on - if the global title translation feature is off (GTT = off in the rtrv-feat command output)

chg-feat:x25g=on - if the X.25 gateway feature is off (X25G = off in the
rtrv-feat command output)

NOTE: Once the gateway screening, X.25 gateway, and global title translation features are turned on with the chg-feat command, they cannot be turned off.

The following items must be provisioned in the database before the EAGLE 5 SAS can be provisioned for the DTA feature:

- LIMs assigned to the ss7gx25 application and LIMs assigned to the ss7ansi application that are necessary to implement the DTA feature "Adding an X.25 LIM" on page 2-14 and "Adding an SS7 LIM" procedure in the Database Administration Manual System Management. The LIMs can be verified by entering the rtrv-card command.
- SCCP cards assigned to either the sccp or vsccp applications that are necessary to implement the DTA feature Adding an SCCP Card procedure in the *Database Administration Manual Global Title Translation*. The SCCP cards can be verified by entering the rtrv-card command.
- If you wish to redirect MSUs on IP cards (cards running the iplim, iplimi, ss7ipgw, or ipgwi applications), then IP cards assigned to the iplim, iplimi, ss7ipgw, or ipgwi applications must be in the database see the Adding an IP Card procedure in the *Database Administration Manual IP⁷ Secure Gateway*. The IP cards can be verified by entering the rtrv-card command. If MSUs on IP cards are being redirected, the IP cards must be assigned to TALI sockets or SCTP associations, and application routing keys, according to the application assigned to the IP card.

The IP configuration can be verified by entering these commands, as appropriate: rtrv-appl-rtkey, rtrv-appl-sock, rtrv-as, rtrv-assoc, rtrv-ip-lnk. Perform the procedures in Chapter 3, "IP⁷ Secure Gateway Configuration Procedures" of the *Database Administration Manual - IP⁷ Secure Gateway* to update the IP⁷ Secure Gateway Configuration as necessary.

- X.25 destination point codes (DPCs) and SS7 DPCs that are necessary to implement the DTA feature - " Adding a Destination Point Code" procedure in the *Database Administration Manual – SS7*. The DPCs can be verified by entering the rtrv-dstn command. The SS7 DPCs can be either ANSI, ITU-I, ITU-N, ITU-I Spare, ITU-N Spare, or ITU-N24 point codes. X.25 DPCs must be ANSI point codes.
- X.25 destinations that are necessary to implement the DTA feature see "Adding an X.25 Gateway Destination" on page 2-25. The X.25 destinations can be verified by entering the rtrv-x25-dstn command.
- Linksets whose adjacent point codes (APCs) are in the X.25 domain and linksets whose APCs are in the SS7 domain that are necessary to implement the DTA feature – see one of these procedures: "Adding an SS7 Linkset" procedure in the Database Administration Manual – SS7, "Adding an X.25 Linkset" on page 2-40, " Changing an SS7 Linkset" procedure in the Database *Administration Manual – SS7*, or "Changing an X.25 Linkset" on page 2-61. The APCs of SS7 linksets can be either ANSI, ITU-I, ITU-N, ITU-I Spare, ITU-N Spare, or ITU-N24 point codes. The APCs of X.25 linksets must be ANSI point codes. The linksets can be verified by entering the rtrv-ls command. The linksets whose traffic is to be redirected by the DTA feature, must have gateway screening allowed (specify the gwsa=on parameter) and must reference a gateway screening screen set. The name of the screen set is shown in the **SCRN** field of the **rtrv-ls** command output. The name of the screen set is specified by the scrn parameter in either the ent-ls or chg-ls commands. The screen set referenced by the linkset must be in the database. All gateway screening entities must be in the database before the necessary linkset can be added to the database or changed to reference the necessary screen set. See the "Gateway Screening Configuration" section on page 4-17 to make sure that the necessary gateway screening entities are in the database for this feature. To enhance the reliability of the DTA feature, the gateway screening message discard function should be turned on with the gwsd=on parameter.
- Signaling links assigned to linksets containing X.25 APCs and signaling links assigned to linksets containing SS7 APCs that are necessary to implement the DTA feature "Adding an SS7 Signaling Link" procedure in the *Database Administration Manual* SS7 and "Adding an X.25 Signaling Link" on page 2-76. The APCs of SS7 linksets can be either ANSI, ITU-I, ITU-N, ITU-I Spare, ITU-N Spare, or ITU-N24 point codes. The APCs of X.25 linksets must be ANSI point codes. The signaling links can be verified by entering the rtrv-slk command.
- Routes assigned to linksets containing X.25 APCs and routes assigned to linksets containing SS7 APCs that are necessary to implement the DTA

feature - "Adding a Route Containing an SS7 DPC" and "Adding a Route Containing an X.25 DPC" procedures in the *Database Administration Manual* – *SS7*. The DPCs of SS7 routes and APCs of SS7 linksets can be either ANSI, ITU-I, ITU-N, ITU-I Spare, ITU-N Spare, or ITU-N24 point codes. The DPCs of X.25 routes and APCs of X.25 linksets must be ANSI point codes. The routes can be verified by entering the **rtrv-rte** command.

X.25 routes that are necessary to implement the DTA feature – see "Adding an X.25 Route" on page 2-97. The X.25 routes can be verified by entering the rtrv-x25-rte command.

Gateway Screening Configuration

The DTA feature uses gateway screening to select the messages that are redirected. A gateway screening stop action set containing the **rdct** (redirect) gateway screening stop action must be assigned to one of these gateway screening entities where the gateway screening process stops (the NSFI of the screen is STOP).

- Allowed OPC
- Blocked OPC
- Allowed SIO
- Allowed DPC
- Blocked DPC
- Allowed Destination Field
- Allowed ISUP Message Type

Enter the **rtrv-gws-actset** command to display the gateway screening stop action sets in the database. The database contains one gateway screening stop action set that contain the **rdct** gateway screening stop action as shown in bold in the example output. This gateway screening stop action is always in the database and cannot be changed or removed.

For more information on configuring gateway screening stop action sets, see the "Configuring Gateway Screening Stop Action Sets" procedure in the *Database Administration Manual - Gateway Screening*.

CAUTION: Redirecting SLTA/SLTM messages prevents SLTA/SLTM messages from being returned to the EAGLE 5 SAS. The signaling link carrying these messages will fail if these messages are not returned to the EAGLE 5 SAS. To prevent SLTA/SLTM messages from being redirected, gateway screening stop action sets containing the redirect stop action should not be assigned to the following screens:

- Allowed OPC screens containing the adjacent point code of a linkset
- Allowed SIO screens containing the service indicator values 1 (SI=1) or 2 (SI=2)
- Allowed DPC screens containing the EAGLE 5 SAS's point code.

To verify that the screen set being used with the gateway screening redirect function, enter the rtrv-scrset:scrn=<screen set name assigned to the linkset being used> command. If the last screen in the screen set is OPC, BLKOPC, SIO, DPC, BLKDPC, DESTFLD, or ISUP, enter the gateway screening retrieve command corresponding to the last screen in the screen set, with the screening reference name shown in the rtrv-scrset output. For example, if the last screen in the screen set is ISUP, enter the rtrv-scr-isup command with the sr parameter. If the NSR/ACT value shown in the retrieve output is a gateway screening stop action set name that contains the rdct stop action, shown in the rtrv-gws-actset output, this screen set, but the rdct gateway screening stop action is not assigned to the last screen in the screen set, go to the *Database Administration Manual - Gateway Screening* and perform one of these procedures, as appropriate, to assign the rdct gateway screening stop action to the last screen in the screen set.

- "Changing an Allowed ISUP Message Type Screen"
- "Changing an Allowed Affected Destination Field Screen"
- "Changing a Blocked DPC Screen"
- "Changing an Allowed DPC Screen"
- "Changing an Allowed SIO Screen"
- "Changing a Blocked OPC Screen"
- "Changing an Allowed OPC Screen"

If the last screen in the screen set is CGPA, TT, CDPA, or AFTPC, it is recommended that either this screen set is changed so that the last screen in the screen set is OPC, BLKOPC, SIO, DPC, BLKDPC, DESTFLD, or ISUP with the rdct gateway screening stop action, or that another screen set with OPC, BLKOPC, SIO, DPC, BLKDPC, DESTFLD, or ISUP as the last screen in the screen set with the rdct gateway screening stop action be used. To find another screen set, enter the rtrv-scrset command, then enter the rtrv-scrset command again with one of the screen set names shown in the first rtrv-scrset output. If the last screen in the screen set is OPC, BLKOPC, SIO, DPC, BLKDPC, DESTFLD, or ISUP, enter the gateway screening retrieve command corresponding to the last screen in the screen set, with the screening reference name shown in the **rtrv-scrset** output. Repeat this entering the **rtrv-scrset** commands until a desirable screen set is found. If a desirable screen set cannot be found, either add a new screen set, or change the existing screen set. To add a new screen set, go to the *Database Administration Manual - Gateway Screening* and perform one of these procedures, as appropriate, and assign the **rdct** gateway screening stop action to the last screen in the screen set.

- "Adding an Allowed ISUP Message Type Screen"
- "Adding an Allowed Affected Destination Field Screen"
- "Adding a Blocked DPC Screen"
- "Adding an Allowed DPC Screen"
- "Adding an Allowed SIO Screen"
- "Adding a Blocked OPC Screen"
- "Adding an Allowed OPC Screen"

If you wish to change the existing screen set, go to the *Database Administration Manual - Gateway Screening* and perform one of these procedures, as appropriate. Make sure the last screen in the screen set has the **rdct** gateway screening stop action assigned.

- "Changing an Allowed ISUP Message Type Screen"
- "Changing an Allowed Affected Destination Field Screen"
- "Changing a Blocked DPC Screen"
- "Changing an Allowed DPC Screen"
- "Changing an Allowed SIO Screen"
- "Changing a Blocked OPC Screen"
- "Changing an Allowed OPC Screen"

Verify that the necessary gateway screening entities have been configured with the required gateway screening stop action set, by entering the appropriate gateway screening retrieve command specifying the actname parameter with the gateway screening stop action name shown in the rtrv-gws-actset command output.

- rtrv-scr-opc:actname=rdct to display the allowed OPC screens
- **rtrv-scr-blkopc:actname=rdct** to display the blocked OPC screens
- rtrv-scr-sio:actname=rdct to display the allowed SIO screens
- rtrv-scr-dpc:actname=rdct to display the allowed DPC screens
- **rtrv-scr-blkdpc:actname=rdct** to display the blocked DPC screens

- rtrv-scr-destfld:actname=rdct to display the allowed destination field screens
- **rtrv-scr-isup:actname=rdct** to display the allowed ISUP message type screens

If a gateway screening entity is configured to redirect, the entry **STOP** appears in the **NSFI** field, the **NSR/ACT** field contains the name of the gateway screening stop action set specified in the gateway screening retrieve command (see the following example).

```
      rlghncxa03w 05-09-07 00:17:31 GMT EAGLE5 34.0.0

      SCREEN = ALLOWED OPC

      SR
      NI
      NC
      NCM
      NSFI
      NSR/ACT

      opc1
      010
      010
      010
      STOP
      RDCT

      opc1
      010
      010
      012
      STOP
      RDCT
```

If the necessary gateway screening entities are not in the database, add them to the database using one of these procedures in the *Database Administration Manual* - *Gateway Screening*.

- "Adding an Allowed ISUP Message Type Screen"
- "Adding an Allowed Affected Destination Field Screen"
- "Adding a Blocked DPC Screen"
- "Adding an Allowed DPC Screen"
- "Adding an Allowed SIO Screen"
- "Adding a Blocked OPC Screen"
- "Adding an Allowed OPC Screen"

If the necessary gateway screening entities are in the database, use one these procedures in the *Database Administration Manual - Gateway Screening* to assign the redirect gateway screening stop action to them.

- "Changing an Allowed ISUP Message Type Screen"
- "Changing an Allowed Affected Destination Field Screen"
- "Changing a Blocked DPC Screen"
- "Changing an Allowed DPC Screen"
- "Changing an Allowed SIO Screen"
- "Changing a Blocked OPC Screen"
- "Changing an Allowed OPC Screen"

CAUTION: When Gateway Screening is in the screen test mode, as defined by the linkset parameters gwsa=off and gwsm=on, the gateway screening action in the gateway screening stop action set specified by the actname parameter of the gateway screening screen set at the end of the gateway screening process will be performed. A screen set is required to start the screening process. Enter the **rtrv-scrset** command to verify that the necessary screen set is in the database. If the necessary screen set is not in the database, use the "Adding a Screen Set" in the in the *Database Administration Manual - Gateway Screening* and add the necessary screen set to the database. If the necessary screen set is in the database and the next screening function identifier (NSFI) needs to be changed, use the "Changing a Screen Set" in the in the *Database Administration Manual - Gateway Screening* to change the NSFI of the screen set.

Canceling the RTRV-GTT, RTRV-MAP, and RTRV-GTA Commands

Because the rtrv-gtt, rtrv-map, and rtrv-gta commands used in this procedure can output information for a long period of time, the rtrv-gtt, rtrv-map, and rtrv-gta commands can be canceled and the output to the terminal stopped. There are three ways that the rtrv-gtt, rtrv-map, and rtrv-gta commands can be canceled.

- Press the F9 function key on the keyboard at the terminal where the rtrv-gtt, rtrv-map, or rtrv-gta commands were entered.
- Enter the canc-cmd without the trm parameter at the terminal where the rtrv-gtt, rtrv-map, or rtrv-gta commands were entered.
- Enter the canc-cmd:trm=<xx>, where <xx> is the terminal where the rtrv-gtt, rtrv-map, or rtrv-gta commands were entered, from another terminal other that the terminal where the rtrv-gtt, rtrv-map, or rtrv-gta commands were entered. To enter the canc-cmd:trm=<xx> command, the terminal must allow Security Administration commands to be entered from it and the user must be allowed to enter Security Administration commands. The terminal's permissions can be verified with the rtrv-secu-trm command. The user's permissions can be verified with the rtrv-user or rtrv-secu-user commands.

For more information about the canc-cmd command, go to the Commands Manual.

Procedure

1. Verify that the gateway screening redirect function is disabled by entering the rtrv-gws-redirect command. The following is an example of the possible output.

rlghncxa03w 05-09-07 00:17:31 GMT EAGLE5 34.0.0

ENABLED DPCA RI SSN TT GTA

Redirect function data is not provisioned.

If the gateway screening redirect function is enabled, the **ent-gws-redirect** command in step 2 cannot be executed.

Provision the gateway screening redirect function by entering the following command. This example is using the destination point code (dpc) 009-002-001, the routing indicator (ri) GT, the subsystem number (ssn) 15, the global title translation type (tt) 225, the global title address (gta) 9105551212, and the enabled parameter is equal to on.

ent-gws-redirect:dpc=009-002-001:ri=gt:ssn=15:tt=225 :gta=9105551212:enabled=on

 :dpc/dpca/dpci/dpcn/dpcn24 – The destination point code, either an ANSI, ITU-I, ITU-N, ITU-I Spare, ITU-N Spare, or ITU-N24 point code, that the message is being redirected to. The point code used for this parameter must be in the database as a destination point code of a route, shown in the rtrv-rte output, or must be the STP's site point code, shown in the rtrv-sid output.

:dpc/dpca – an ANSI point code

:dpci – an ITU-I or ITU-I Spare point code

:dpcn – a 14-bit ITU-N or 14-bit ITU-N Spare point code

:dpcn24 – a 24-bit ITU-N point code

If you wish to use a destination point code as a value for this parameter, verify that the destination point code has a route assigned to it by entering the **rtrv-rte** command with the point code value being assigned to the gateway screening redirect function. The dpc parameter specified with the **rtrv-rte** command must correspond to the parameter value being specified as shown in the list preceding this paragraph.

For this example, enter the **rtrv-rte:dpca=009-002-001** command. The following is an example of the possible output.

rlghncxa03w 05-09-07 00:19:31 GMT EAGLE5 34.0.0 DPCA ALIASI ALIASN CLLI LSN RC APC 009-002-001 ------ dtaclli ls02 0 009-002-001

If you wish to use the STP's point code for the dpc parameter, enter the rtrv-sid command to find the STP's point code. The following is an example of the possible output.

rlghncxa03w	05-09-07	00:20:31	GMT EAGLE5	34.0.0	C		
PCA	PCI		PCN		CLLI		PCTYPE
144-201-001	0-12	23-1	11211		rlghn	cxa03w	ANSI
	s-0-12	23-1	s-11211				
CPCA							
002-002-002	002	2-002-003	002-	002-004	1	002-002-0	05
002-002-006	002	2-002-007	002-	002-008	3	002-002-0	09
004-002-001	004	4-003-003	144-	212-003	3		
CPCA (LNP)							
005-005-002	005-	-005-004	005-00	5-005			
CPCI							
1-001-1	1-0	001-2	1-00	1-3		1-001-4	
1-002-1	1-0	002-2	1-00	2-3		1-002-4	
2-001-1	7 - 2	222-7					

Database Transport Access (DTA) Configuration

CPCN			
02091	02092	02094	02097
02191	02192	11177	

The EAGLE 5 SAS's point code is shown in either the PCA, PCI, PCN, or PCN24 fields of the rtrv-sid command output. The rtrv-sid command will show either the PCN or PCN24 fields along with the PCA and PCI fields.

- :ri The CDPA routing indicator for the redirected message. If the routing indicator is ssn, the DPC and SSN shown in the output of the rtrv-gws-redirect command, is the final destination of the redirected message. If the routing indicator is gt, additional global title translation is required to determine the final destination of the redirected message.
- :ssn The CDPA subsystem to which the redirected message is bound for
- :tt The CDPA translation type of the global title translation
- :gta The CDPA global title translation address
- :enabled Whether the messages that have passed GWS are to be redirected (on) or discarded based on the linkset's gwsd parameter value (off). If the enabled parameter is off and the linkset's gwsd value is on, the MSU is discarded, MRN 1084 is generated, and the DTAMSULOST measurement is pegged. If the enabled parameter is off and the linkset's gwsd value is off, the MSU is routed to its original destination, MRN 1084 is not generated, and the DTAMSULOST measurement is not pegged.

When the command has been completed successfully, the following message should appear.

```
rlghncxa03w 05-09-07 00:21:31 GMT EAGLE5 34.0.0
ENT-GWS-REDIRECT: MASP A - COMPLTD
```

3. Verify the changes by entering the **rtrv-gws-redirect** command. The following is an example of the possible output.

rlghncxa03w 05-09-07 00:22:31 GMT EAGLE5 34.0.0 ENABLED DPCA RI SSN TT GTA on 009-002-001 GT 15 225 9105551212 4. Verify if the enhanced global title translation feature is on or off by entering the rtrv-feat command. If the enhanced global title translation feature is on, the EGTT field should be set to on.

NOTE: The rtrv-feat command output contains other fields that are not used by this procedure. If you wish to see all the fields displayed by the rtrv-feat command, see the rtrv-feat command description in the *Commands Manual*.

If the enhanced global title translation feature is on, the rtrv-tt, ent-tt, rtrv-gtt, and ent-gtt commands cannot be executed. Instead, the rtrv-gttset, ent-gttset, rtrv-gttsel, ent-gttsel, rtrv-gta, and ent-gta are used to verify and configure the global title translation data.

NOTE: If the enhanced global title translation is on, skip steps 5, and 6, and go to step 7 on page 4-26.

5. Verify the global title translation data in the database for the translation type specified in the output of step 3 on page 4-23 by entering the **rtrv-gtt** command with the **type** and **gta** parameters, specifying the values shown in step 3 on page 4-23 in the **TT** and **GTA** fields of the **rtrv-gws-redirect** command output. For this example, enter this command.

rtrv-gtt:type=225:gta=9105551212

The following is an example of the possible output.

rlghncxa03w 05-09-07 00:24:31 GMT EAGLE5 34.0.0 TYPEA TTN NDGT 225 DTA7 10 GTT TABLE IS 10% FULL. (27000 of 269999) START GTA END GTA XLAT RI PCA SSN NGT 9105551212 DPCSSN GT 009-002-001 15 ---

If the global title translation data is shown in the **rtrv-gtt** command output, no further action is necessary. Go to step 9 on page 4-27.

6. Verify that the global title translation type shown in the output of step 3 on page 4-23, in the TT field, is in the database by entering the rtrv-tt command with the type parameter corresponding to the point code type shown in the rtrv-gws-redirect output and shown in Table 4-4.

Table 4-4.Translation Type Parameters

Point Code Type	DPC Parameter shown in the rtrv-gws-redirect output	Translation Type Parameter
ANSI	ANSI DPC/DPCA	
ITU-I or ITU-I Spare	DPCI	typei
ITU-N or ITU-N Spare	DPCN	typen
ITU-N24	DPCN24	typen24

In this example, the global title translation type is **225** and the DPC value is an ANSI point code. The **typea** parameter should be specified with the **rtrv-tt** command. The translation type is shown in the **TYPEA** field. For this example, enter this command.

rtrv-tt:typea=225

The following is an example of the possible output.

```
rlghncxa03w 05-09-07 00:25:31 GMT EAGLE5 34.0.0
TYPEA TTN NDGT
225 DTA7 10
```

If the translation type is shown in the **rtrv-tt** output, perform the "Adding a Global Title Translation" procedure in the *Database Administration Manual* - *Global Title Translation* and configure a global title translation entry that contains the values shown in the **rtrv-gws-redirect** output in step 3. This procedure is finished.

If the translation type is not shown in the **rtrv-tt** output, perform the "Adding a Translation Type" and "Adding a Global Title Translation" procedures in the *Database Administration Manual - Global Title Translation* and configure a global title translation entry that contains the values shown in the **rtrv-gws-redirect** output in step 3. This procedure is finished.

NOTE: If the enhanced global title translation is off, do not perform steps 7, 8, and 9. This procedure is finished.

7. Verify that the global title translation type specified in the output of step 3 on page 4-23, in the **TT** field, is in the database by entering the **rtrv-gttsel** command with the **tt** parameter.

For this example, enter the **rtrv-gttsel:tt=225** command. The following is an example of the possible output.

rlghncxa03w 05-09-07 00:27:31 GMT EAGLE5 34.0.0 GTIA TT NP NAI GTTSN 2 225 -- --- dta7

If the translation type is not in the database, this message is displayed in the scroll area of the terminal display.

No GTT Selectors matching the specified criteria were found.

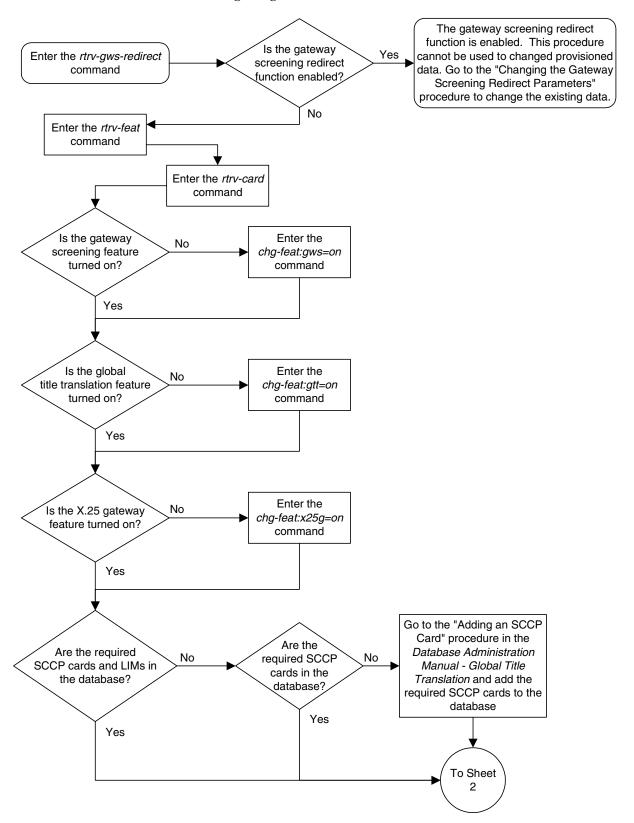
If the translation type is shown in the **rtrv-gttsel** command output, go to step 8 and verify that the global title address data is in the database.

If the translation type is not shown in the **rtrv-gttsel** command output, perform the "Adding a GTT Set," "Adding a GTT Selector," and "Adding Global Title Address Information" procedures in the *Database Administration Manual* - *Global Title Translation* and configure a global title address entry that contains the values shown in the **rtrv-gws-redirect** output in step 3. This procedure is finished.

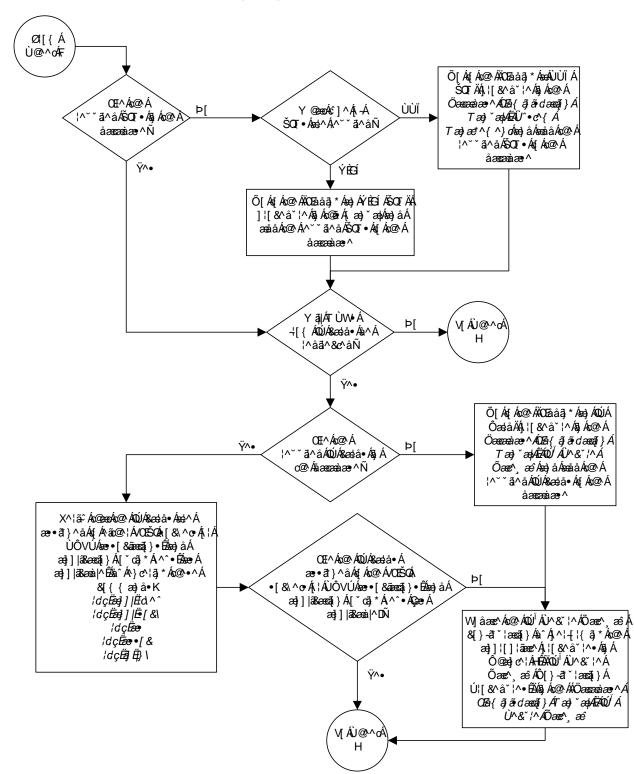
8. The new global title address data must be in the database. Verify the global title translation data in the database for the translation type specified in the output of step 7 by entering the **rtrv-gta** command with the **GTTSN** value shown in the output of step 7, and with the **GTA**, **SSN**, and **DPC** values shown in the output of step 3 on page 4-23. For this example, enter this command.

```
rtrv-gta:gttsn=dta7:gta=9195551212:ssn=15:pca=009-002-001
```

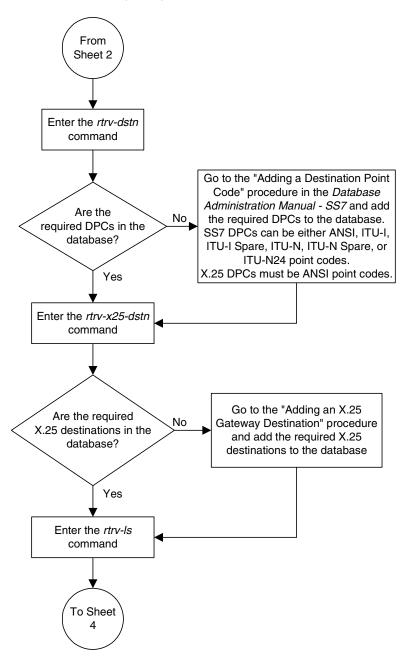
The following is an example of the possible output.

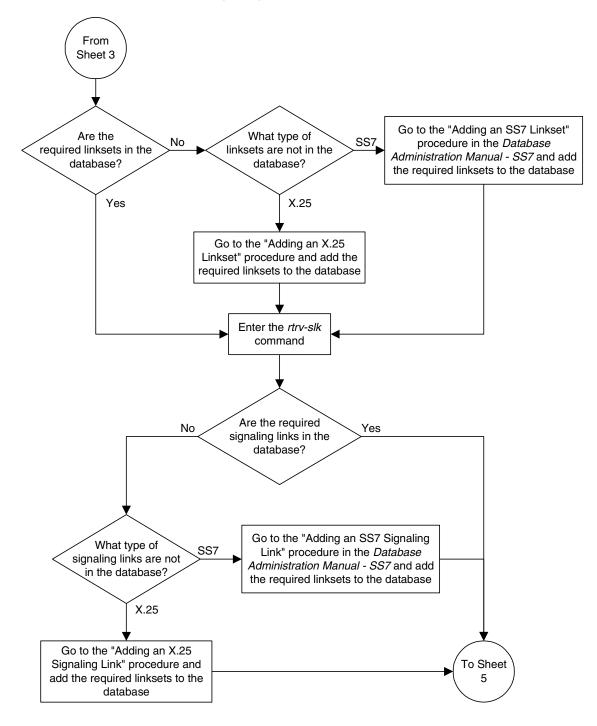

rlghncxa03w 05-09-07 00:28:31 GMT EAGLE5 34.0.0 GTTSN NETDOM NDGT dta7 ansi 10 GTA TABLE IS 1 % FULL (17 of 269999) START GTA END GTA XLAT RI PCA SSN CCGT NTT

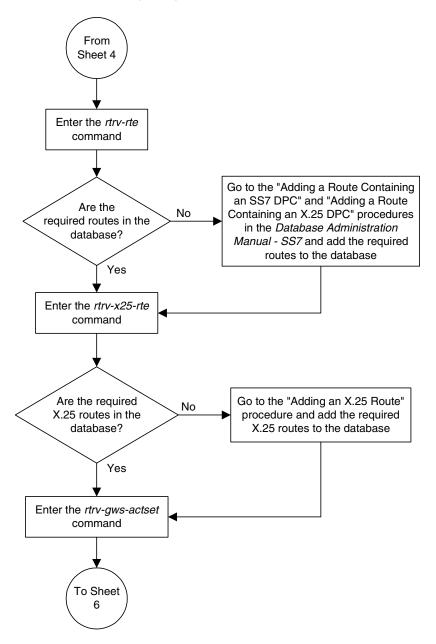
If the required global title translation data is shown in the **rtrv-gta** command output, no further action is necessary. Go to step 9.

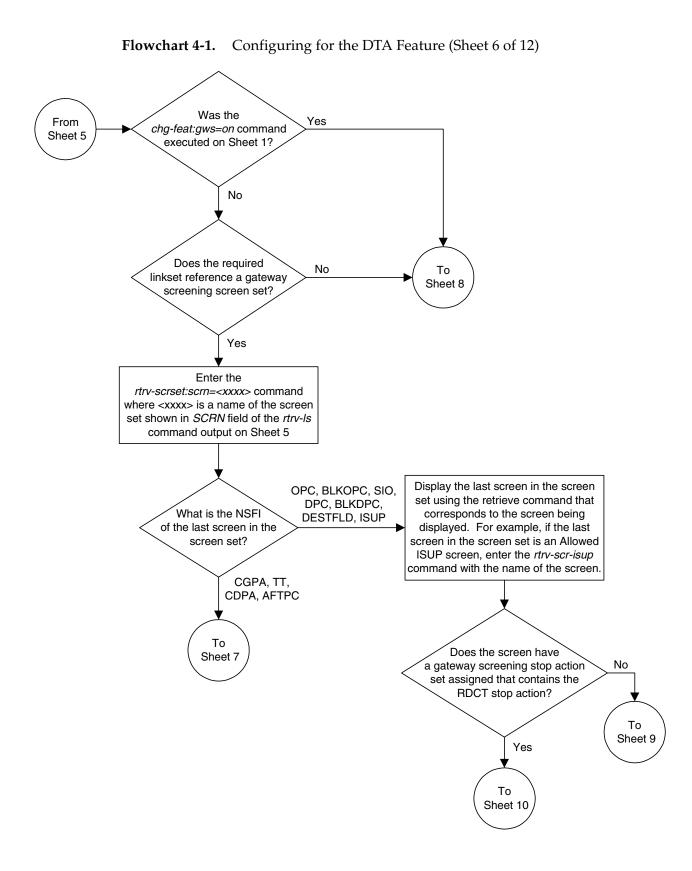

If the required global title translation data is not shown in the **rtrv-gta** command output, perform the "Adding Global Title Address Information" procedure in the *Database Administration Manual - Global Title Translation* and configure a global title address entry that contains the values shown in the **rtrv-gws-redirect** output in step 3. This procedure is finished.

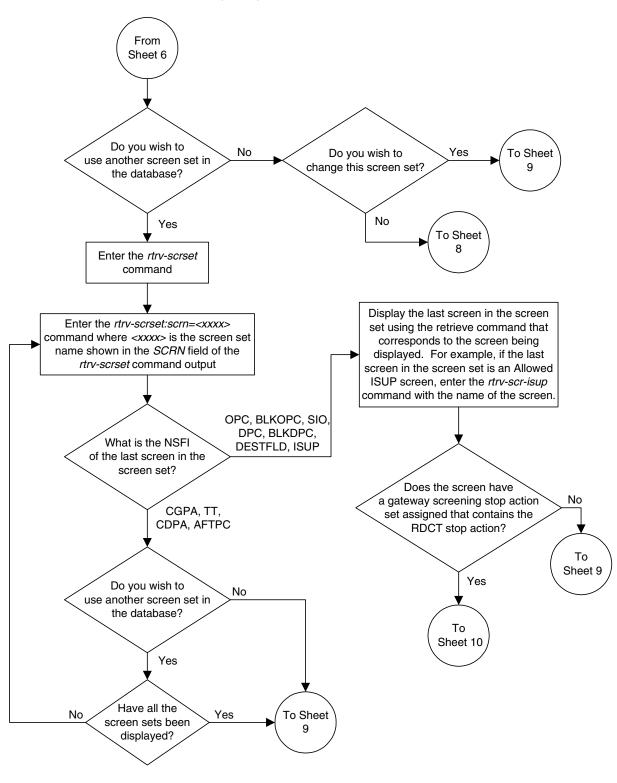
9. Backup the new changes using the chg-db:action=backup:dest=fixed command. The following messages should appear, the active Maintenance and Administration Subsystem Processor (MASP) appears first.


BACKUP (FIXED) : MASP A - Backup starts on active MASP. BACKUP (FIXED) : MASP A - Backup on active MASP to fixed disk complete. BACKUP (FIXED) : MASP A - Backup starts on standby MASP. BACKUP (FIXED) : MASP A - Backup on standby MASP to fixed disk complete.

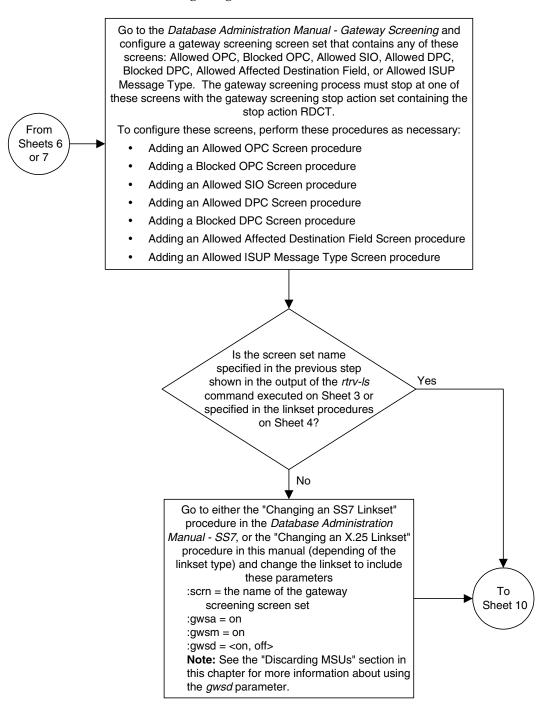

Flowchart 4-1. Configuring for the DTA Feature (Sheet 1 of 12)

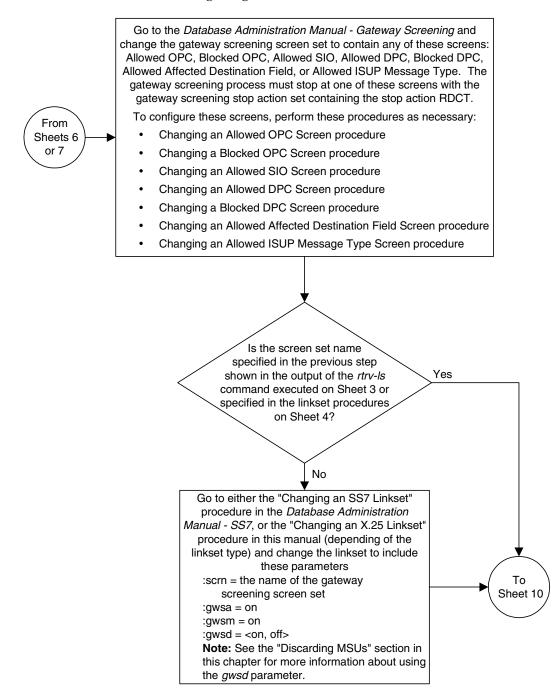

Flowchart 4-1. Configuring for the DTA Feature (Sheet 2 of 12)

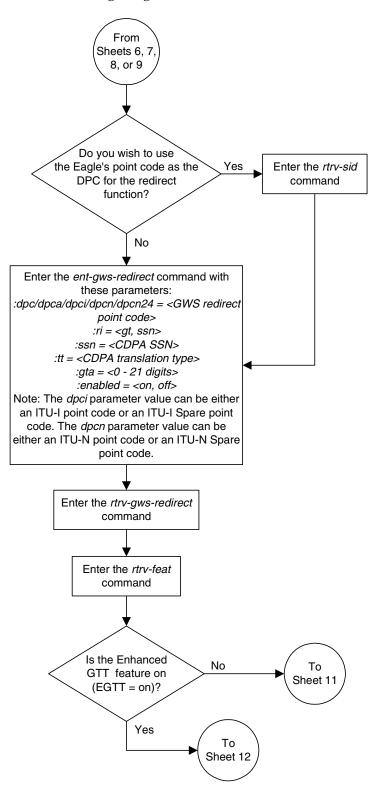

Flowchart 4-1. Configuring for the DTA Feature (Sheet 3 of 12)



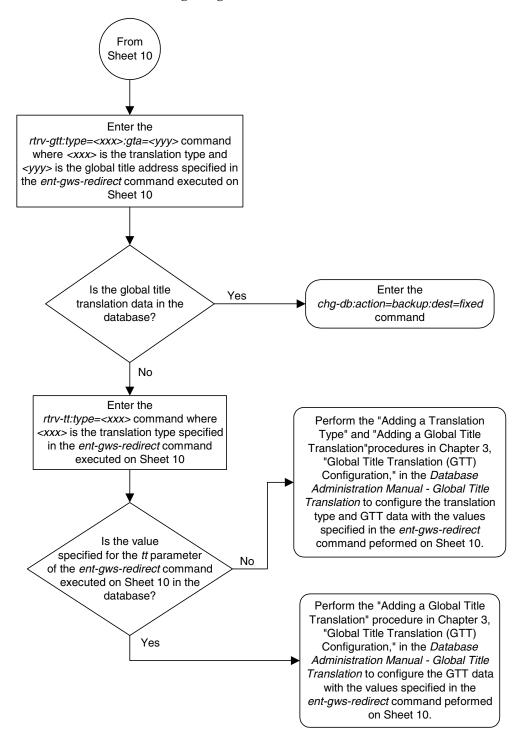
Flowchart 4-1. Configuring for the DTA Feature (Sheet 4 of 12)


Flowchart 4-1. Configuring for the DTA Feature (Sheet 5 of 12)

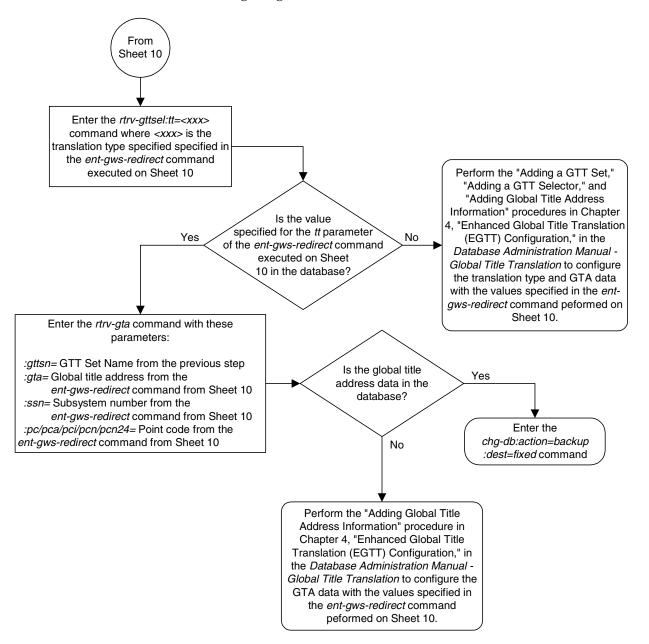



Flowchart 4-1. Configuring for the DTA Feature (Sheet 7 of 12)

Flowchart 4-1. Configuring for the DTA Feature (Sheet 8 of 12)



Flowchart 4-1. Configuring for the DTA Feature (Sheet 9 of 12)



Flowchart 4-1. Configuring for the DTA Feature (Sheet 10 of 12)

Flowchart 4-1. Configuring for the DTA Feature (Sheet 11 of 12)

Flowchart 4-1. Configuring for the DTA Feature (Sheet 12 of 12)

Changing the Gateway Screening Redirect Parameters

To change the configuration to support the DTA feature, one or more of the gateway screening redirect function's attributes can be changed using the chg-gws-redirect command. This procedure shows the steps necessary to change these attributes.

The gateway screening redirect function's data must be in the database and the gateway screening redirect function must be enabled, shown by the entry **on** in the enabled field of the **rtrv-gws-redirect** command output.

Any of the gateway screening redirect function's attributes can be changed. The new attributes, and any database entities required to support these attributes, must be in the database.

Canceling the RTRV-GTT and RTRV-GTA Commands

Because the **rtrv-gtt** and **rtrv-gta** commands used in this procedure can output information for a long period of time, the **rtrv-gtt** and **rtrv-gta** commands can be canceled and the output to the terminal stopped. There are three ways that the **rtrv-gtt** and **rtrv-gta** commands can be canceled.

- Press the F9 function key on the keyboard at the terminal where the rtrv-gtt or rtrv-gta commands were entered.
- Enter the canc-cmd without the trm parameter at the terminal where the rtrv-gtt or rtrv-gta commands were entered.
- Enter the canc-cmd:trm=<xx>, where <xx> is the terminal where the rtrv-gtt or rtrv-gta commands were entered, from another terminal other that the terminal where the rtrv-gtt or rtrv-gta commands were entered. To enter the canc-cmd:trm=<xx> command, the terminal must allow Security Administration commands to be entered from it and the user must be allowed to enter Security Administration commands. The terminal's permissions can be verified with the rtrv-secu-trm command. The user's permissions can be verified with the rtrv-user or rtrv-secu-user commands.

For more information about the canc-cmd command, go to the Commands Manual.

The examples in this procedure are used to change the gateway screening redirect function's attributes to these values. The routing indicator is not being changed.

- :dpc 009-003-001
- :ssn-45
- :tt 175
- :gta 3365841342

Procedure

1. Verify the gateway screening redirect function attributes by entering the **rtrv-gws-redirect** command. The following is an example of the possible output.

```
rlghncxa03w 05-09-07 00:17:31 GMT EAGLE5 34.0.0
ENABLED DPCA RI SSN TT GTA
on 003-175-010 GT 15 225 9105551212
```

If the DPC, shown in the **DPC** field, is not being changed, skip, 2, and 3, and go to step 4 on page 4-42.

NOTE: If the DPC is being changed to the EAGLE 5 SAS's point code, skip step 2 and go to step 3.

2. Verify that the new DPC is in the database and has a route assigned to it. Verify this by entering the **rtrv-rte** command with the new DPC, in this example, 009-003-001.

```
rlghncxa03w 05-09-07 00:19:31 GMT EAGLE5 34.0.0
DPCA ALIASI ALIASN CLLI LSN RC APC
009-003-001 ------ dtaclli1 ls02 0 009-001-001
```

If the required route to the DPC is not shown in the **rtrv-rte** command output, go to the "Adding a Route Containing an X.25 DPC" or "Adding a Route Containing an SS7 DPC" procedures in the *Database Administration Manual - SS7* and add the route to the DPC to the database.

NOTE: If the DPC is being changed to a point code in the routing table, shown in the output of step 2, skip step 3 and go to step 4 on page 4-42.

3. Display the EAGLE 5 SAS's point code by entering the **rtrv-sid** command. The following is an example of the possible output.

PCA	05-09-07 00:20:31 PCI 0-123-1 s-0-123-1	GMT EAGLE5 34.0. PCN 11211 s-11211	0 CLLI rlghncxa03w	PCTYPE ANSI
CPCA				
002-002-002	002-002-003	002-002-00	4 002-002	-005
002-002-006	002-002-007	002-002-00	8 002-002	-009
004-002-001	004-003-003	144-212-00	3	
CPCA (LNP) 005-005-002	005-005-004	005-005-005		
CPCI				
1-001-1	1-001-2	1-001-3	1-001-4	
1-002-1	1-002-2	1-002-3	1-002-4	
2-001-1	7-222-7			
CPCN 02091 02191	02092 02192	02094 11177	02097	

The EAGLE 5 SAS's point code is shown in either the PCA, PCI, PCN, or PCN24 fields of the rtrv-sid command output. The rtrv-sid command will show either the PCN or PCN24 fields along with the PCA and PCI fields.

- 4. Change the parameters for the gateway screening redirect function by entering the chg-gws-redirect command with any of these parameters:
 - :dpc/dpca/dpci/dpcn/dpcn24 The destination point code, either an ANSI, ITU-I, ITU-N, ITU-I Spare, ITU-N Spare, or ITU-N24 point code, that the message is being redirected to. The point code used for this parameter must be in the database as a destination point code of a route, shown in the rtrv-rte output, or must be the STP's site point code, shown in the rtrv-sid output.

:dpc/dpca – an ANSI point code

:dpci – an ITU-I or ITU-I Spare point code

:dpcn – a 14-bit ITU-N or 14-bit ITU-N Spare point code

:dpcn24 – a 24-bit ITU-N point code

- •:ri the global title translation routing indicator, either gt or ssn
- •:ssn the subsystem number, from 2 to 255
- •:tt the global title translation type, from 1 to 255
- •:gta the global title address containing from 1 to 21 digits.

For this example, enter this command. In this example, the **ri** parameter is not being changed.

```
chg-gws-redirect:dpc=009-003-001:ssn=45:tt=175:gta=3365841342
```

When the command has been completed successfully, the following message should appear.

```
rlghncxa03w 05-09-07 00:21:31 GMT EAGLE5 34.0.0
CHG-GWS-REDIRECT: MASP A - COMPLTD
```

5. Verify the changes by entering the **rtrv-gws-redirect** command. The following is an example of the possible output.

```
rlghncxa03w 05-09-07 00:22:31 GMT EAGLE5 34.0.0
ENABLED DPCA RI SSN TT GTA
on 009-003-001 GT 45 175 3365841342
```

If only the DPC parameter was changed in step 4, skip steps 6 through 10, go to step 11 on page 4-46.

6. Verify if the enhanced global title translation feature is on or off by entering the rtrv-feat command. If the enhanced global title translation feature is on, the EGTT field should be set to on.

For this example, the enhanced global title translation feature is on.

NOTE: The rtrv-feat command output contains other fields that are not used by this procedure. If you wish to see all the fields displayed by the rtrv-feat command, see the rtrv-feat command description in the *Commands Manual*.

If the enhanced global title translation feature is on, the rtrv-tt, ent-tt, rtrv-gtt, and ent-gtt commands cannot be executed. Instead, the rtrv-gttset, ent-gttset, rtrv-gttsel, ent-gttsel, rtrv-gta, and ent-gta are used to verify and configure the global title translation data.

NOTE: If the enhanced global title translation is on, skip steps 7 and 8, and go to step 9 on page 4-45.

7. The new global title address data must be in the database. Verify the global title translation data in the database for the translation type specified in the output of step 5 on page 4-42 by entering the **rtrv-gtt** command with the **type** and **gta** parameters. For this example, enter this command.

rtrv-gtt:type=175:gta=3365841342

The following is an example of the possible output.

rlghncxa03w 05-09-07	00:24:31 GMT EAGLE5 34	.0.0				
TYPEA TTN NDG	Т					
175 DTA7 10						
GTT TABLE IS 10% FULL	. (27000 of 269999)					
START GTA	END GTA	XLAT	RI	PCA	SSN	NGT
3365841342		DPCSSN	GT	009-003-001	45	

If the global title translation data is shown in the **rtrv-gtt** command output, no further action is necessary. Go to step 11 on page 4-46.

8. The new translation type must be in the database. Verify that the global title translation type specified in the **rtrv-gws-redirect** output in step 5 on page 4-42 in the **TT** field, is in the database by entering the **rtrv-tt** command with the type parameter corresponding to the point code type shown in the **rtrv-gws-redirect** output in step 5 on page 4-42 and Table 4-5.

Point Code Type	DPC Parameter shown in the rtrv-gws-redirect output	Translation Type Parameter
ANSI	DPC/DPCA	typea
ITU-I or ITU-I Spare	DPCI	typei
ITU-N or ITU-N Spare	DPCN	typen
ITU-N24	DPCN24	typen24

In this example, the new global title translation type is **175**. The **typea** parameter should be specified with the **rtrv-tt** command. The translation type is shown in the **TYPEA** field. For this example, enter this command.

rtrv-tt:typea=175

The following is an example of the possible output.

```
rlghncxa03w 05-09-07 00:25:31 GMT EAGLE5 34.0.0
TYPEA TTN NDGT
175 DTA7 10
```

If the translation type is shown in the **rtrv-tt** output, perform the "Adding a Global Title Translation" procedure in the *Database Administration Manual* - *Global Title Translation* and configure a global title translation entry that contains the values shown in the **rtrv-gws-redirect** output in step 5 on page 4-42. This procedure is finished.

If the translation type is not shown in the **rtrv-tt** output, perform the "Adding a Translation Type" and "Adding a Global Title Translation" procedures in the *Database Administration Manual - Global Title Translation* and configure a global title translation entry that contains the values shown in the **rtrv-gws-redirect** output in step 5 on page 4-42. This procedure is finished.

NOTE: If the enhanced global title translation is off, do not perform steps 9, 10, and 11. This procedure is finished.

9. Verify that the global title translation type specified in the output of step 5, in the TT field, is in the database by entering the rtrv-gttsel command with the tt parameter.

For this example, enter the **rtrv-gttsel:tt=175** command. The following is an example of the possible output.

rlghncxa03w 05-09-07 00:27:31 GMT EAGLE5 34.0.0 GTIA TT NP NAI GTTSN 2 175 -- --- dta7

If the translation type is not in the database, this message is displayed in the scroll area of the terminal display.

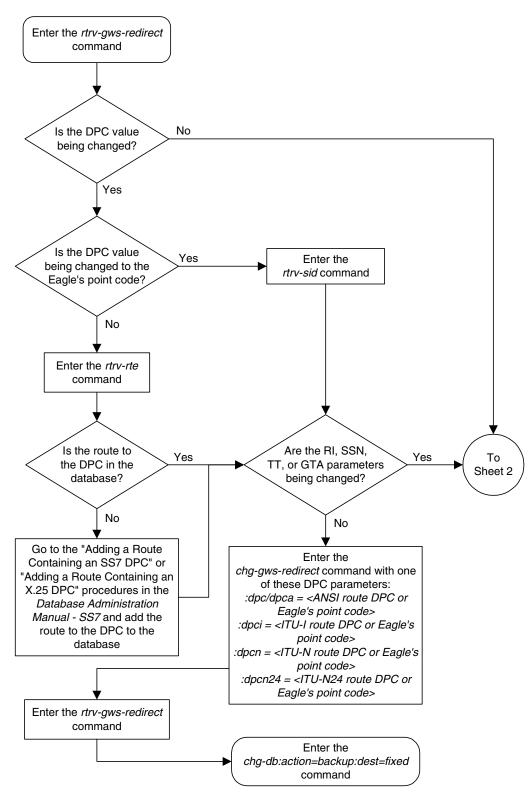
No GTT Selectors matching the specified criteria were found.

If the translation type is shown in the **rtrv-gttsel** command output, go to step 10 and verify that the global title address data is in the database.

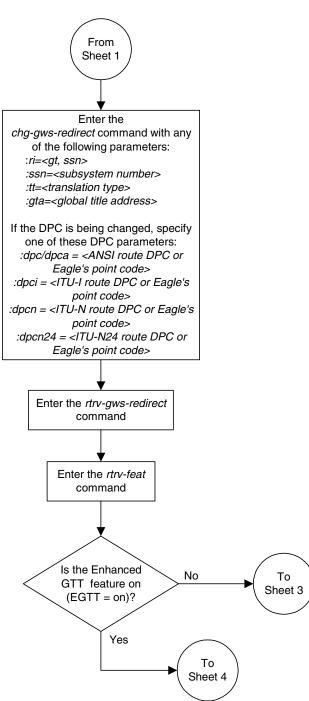
If the translation type is not shown in the **rtrv-gttsel** command output, perform the "Adding a GTT Set," "Adding a GTT Selector," and "Adding Global Title Address Information" procedures in the *Database Administration Manual - Global Title Translation* and configure a global title address entry that contains the values shown in the **rtrv-gws-redirect** output in step 3. This procedure is finished.

10. The new global title address must be in the database. Verify the global title translation data in the database for the translation type specified in the output of step 5 on page 4-42 by entering the **rtrv-gta** command with the **GTTSN** value shown in the output of step 9 and with the **GTA**, **SSN**, and **DPC** values shown in the output of step 5 on page 4-42. For this example, enter this command.

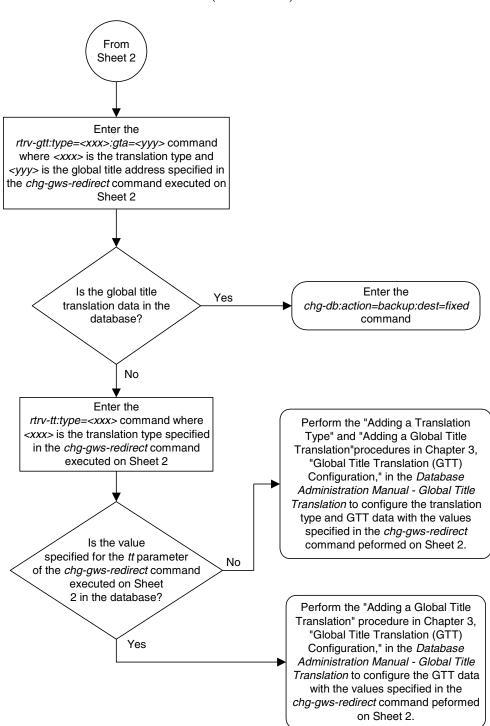
```
rtrv-gta:gttsn=dta7:gta=3365841342:pca=009-003-001:ssn=45
```

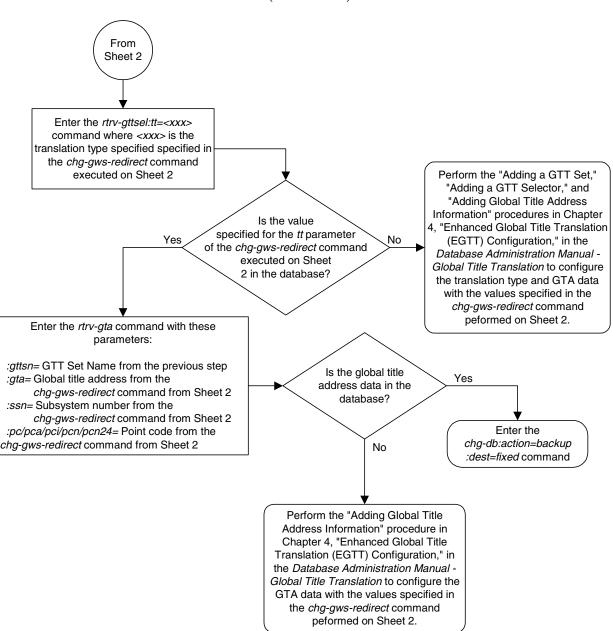

rlghncxa03w 05-09-07 00:28:31 GMT EAGLE5 34.0.0 GTTSN NETDOM NDGT t800 ansi 10 GTA TABLE IS 1 % FULL (17 of 269999) START GTA END GTA XLAT RI PCA SSN CCGT NTT

If the required global title translation data is shown in the **rtrv-gta** command output, no further action is necessary. Go to step 11 on page 4-46.


If the required global title translation data is not shown in the **rtrv-gta** command output, perform the "Adding Global Title Address Information" procedure in the *Database Administration Manual - Global Title Translation* and configure a global title address entry that contains the values shown in the **rtrv-gws-redirect** output in step 5 on page 4-42. This procedure is finished.

11. Backup the new changes using the chg-db:action=backup:dest=fixed command. The following messages should appear, the active Maintenance and Administration Subsystem Processor (MASP) appears first.


BACKUP (FIXED) : MASP A - Backup starts on active MASP. BACKUP (FIXED) : MASP A - Backup on active MASP to fixed disk complete. BACKUP (FIXED) : MASP A - Backup starts on standby MASP. BACKUP (FIXED) : MASP A - Backup on standby MASP to fixed disk complete.


Flowchart 4-2. Changing the Gateway Screening Redirect Parameters (Sheet 1 of 4)

Flowchart 4-2. Changing the Gateway Screening Redirect Parameters (Sheet 2 of 4)

Flowchart 4-2. Changing the Gateway Screening Redirect Parameters (Sheet 3 of 4)

Flowchart 4-2. Changing the Gateway Screening Redirect Parameters (Sheet 4 of 4)

Disabling the Gateway Screening Redirect Function

This procedure is used to turn off the gateway screening redirect function using either the dlt-gws-redirect or chg-gws-redirect commands. Turning off the gateway screening redirect function also turns off the DTA feature.

Procedure

1. Verify that the gateway screening redirect function is enabled by entering the **rtrv-gws-redirect** command. The following is an example of the possible output.

rlghncxa03w 05-09-07 00:17:31 GMT EAGLE5 34.0.0 ENABLED DPCA RI SSN TT GTA on 009-002-001 GT 15 225 9105551212

2. Disable the gateway screening redirect function by entering the dlt-gws-redirect command or the chg-gws-redirect:enabled=off command.

When the **dlt-gws-redirect** command has been completed successfully, the following message should appear.

rlghncxa03w 05-09-07 00:18:31 GMT EAGLE5 34.0.0 DLT-GWS-REDIRECT: MASP A - COMPLTD

When the **chg-gws-redirect** command has been completed successfully, the following message should appear.

```
rlghncxa03w 05-09-07 00:19:31 GMT EAGLE5 34.0.0
CHG-GWS-REDIRECT: MASP A - COMPLTD
```

3. Display the gateway screening stop action sets in the database by entering the rtrv-gws-actset command. The entry rdct is displayed in the ACT1 through the ACT10 fields in any gateway screening stop action sets that have the redirect gateway screening stop action assigned to them. The following is an example of the possible output.

4. All gateway screening entities that have been assigned the redirect function must have the redirect function turned off. Check the gateway screening entities for any screening references that have the redirect gateway screening stop action assigned to them.

Enter each of the following commands with the actname parameter specifying the name of the gateway screening stop action set shown in step 3 that contains the redirect gateway screening stop action. If a redirect gateway screening stop action has been assigned to a gateway screening entity, the name of the gateway screening stop action appears after the NSR/ACT field.

If a redirect gateway screening stop action has not been assigned to a gateway screening entity, the command is rejected with this message.

E3680 Cmd Rej: No match on ACTNAME parameter during retrieve

rtrv-scr-opc:actname=rdct

The following is an example of the possible output.

rlghno	cxa03w 05	-09-07	00:21:31	GMT	EAGLE5	34.0.0	
SCREEN = ALLOWED OPC							
SR	NI	NC	NCM	1	ISFI	NSR/ACT	
DTA1	240	001	010	5	STOP	RDCT	

rtrv-scr-blkopc:actname=rdct

The following is an example of the possible output.

rlghncxa03w 05-09-07 00:22:31 GMT EAGLE5 34.0.0 SCREEN = BLOCKED OPC SR NI NC NCM NSFI NSR/ACT DTA2 C C C STOP RDCT

rtrv-scr-sio:actname=rdct

The following is an example of the possible output.

rlghncxa03w 05-09-07 00:23:31 GMT EAGLE5 34.0.0 SCREEN = ALLOWED SIO SR NIC PRI SI H0 H1 NSFI NSR/ACT DTA3 1 3 4 -- -- STOP RDCT

rtrv-scr-dpc:actname=rdct

The following is an example of the possible output.

rlghno	cxa03w 05-	-09-07 00):24:31 GM	T EAGLE5	34.0.0
SCREEN = ALLOWED DPC					
SR	NI	NC	NCM	NSFI	NSR/ACT
DTA4	243	015	001	STOP	RDCT

rtrv-scr-blkdpc:actname=rdct

The following is an example of the possible output.

rlghncxa03w 05-09-07 00:25:31 GMT EAGLE5 34.0.0 SCREEN = BLOCKED DPC SR NI NC NCM NSFI NSR/ACT DTA5 C C C STOP RDCT

rtrv-scr-destfld:actname=rdct

The following is an example of the possible output.

rlghncxa03w 05-09-07 00:26:31 GMT EAGLE5 34.0.0 SCREEN = ALLOWED DESTFLD SR NI NC NCM NSFI NSR/ACT DTA6 240 001 010 STOP RDCT

5. If any of the necessary gateway screening entities displayed in step 4 have been assigned a gateway screening stop action containing the redirect gateway screening stop action, change the gateway screening stop action for these entities to a gateway screening stop action displayed in step 3 that does not have the redirect gateway screening stop action assigned to it, or to have no gateway screening stop action set assigned to the gateway screening entity with the actname=none parameter.

These command examples are based on the example outputs shown in step 4.

chg-scr-opc:sr=dta1:ni=240:nc=001:ncm=010:actname=none

When this command has successfully completed, the following message should appear.

rlghncxa03w 05-09-07 00:27:31 GMT EAGLE5 34.0.0 CHG-SCR-OPC: SCREEN SET AFFECTED - DTA1 55% FULL CHG-SCR-OPC: MASP A - COMPLTD

chg-scr-blkdpc:sr=dta2:nc=c:ni=c:ncm=c:actname=none

When this command has successfully completed, the following message should appear.

rlghncxa03w 05-09-07 00:28:31 GMT EAGLE5 34.0.0 CHG-SCR-BLKOPC: SCREEN SET AFFECTED - DTA2 55% FULL CHG-SCR-OPC: MASP A - COMPLTD

chg-scr-sio:sr=dta3:nic=1:pri=3:si=4:actname=none

When this command has successfully completed, the following message should appear.

```
rlghncxa03w 05-09-07 00:29:31 GMT EAGLE5 34.0.0
CHG-SCR-SIO: SCREEN SET AFFECTED - DTA3 55% FULL
CHG-SCR-SIO: MASP A - COMPLTD
```

chg-scr-dpc:sr=dta4:ni=243:nc=015:ncm=001:actname=none

When this command has successfully completed, the following message should appear.

rlghncxa03w 05-09-07 00:30:31 GMT EAGLE5 34.0.0 CHG-SCR-DPC: SCREEN SET AFFECTED - DTA4 55% FULL CHG-SCR-DPC: MASP A - COMPLTD

chg-scr-blkdpc:sr=dta5:nc=c:ni=c:ncm=c:actname=none

When this command has successfully completed, the following message should appear.

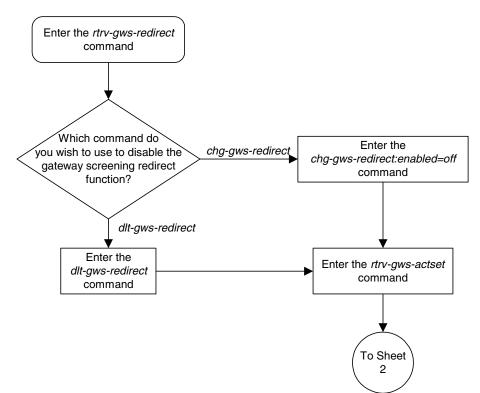
```
rlghncxa03w 05-09-07 00:31:31 GMT EAGLE5 34.0.0
CHG-SCR-BLKDPC: SCREEN SET AFFECTED - DTA5 55% FULL
CHG-SCR-BLKDPC: MASP A - COMPLTD
```

chg-scr-destfld:sr=dta6:ni=240:nc=001:ncm=010:actname=none

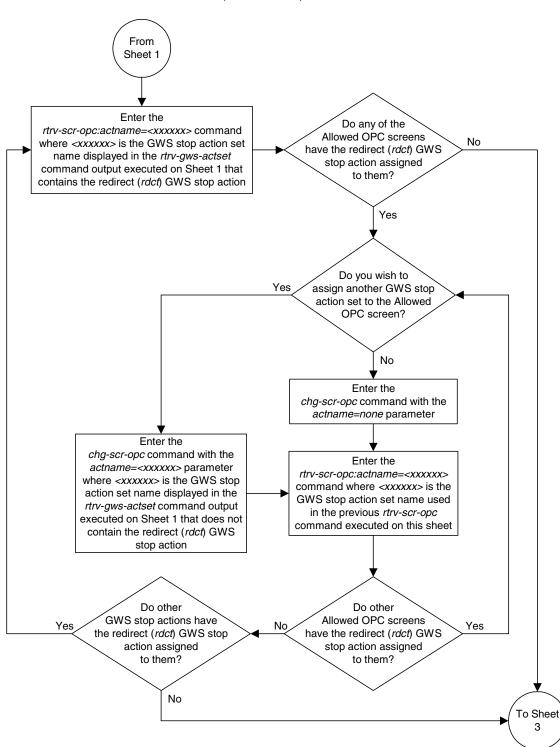
When this command has successfully completed, the following message should appear.

```
rlghncxa03w 05-09-07 00:32:31 GMT EAGLE5 34.0.0
CHG-SCR-DESTFLD: SCREEN SET AFFECTED - DTA6 55% FULL
CHG-SCR-DESTFLD: MASP A - COMPLTD
```

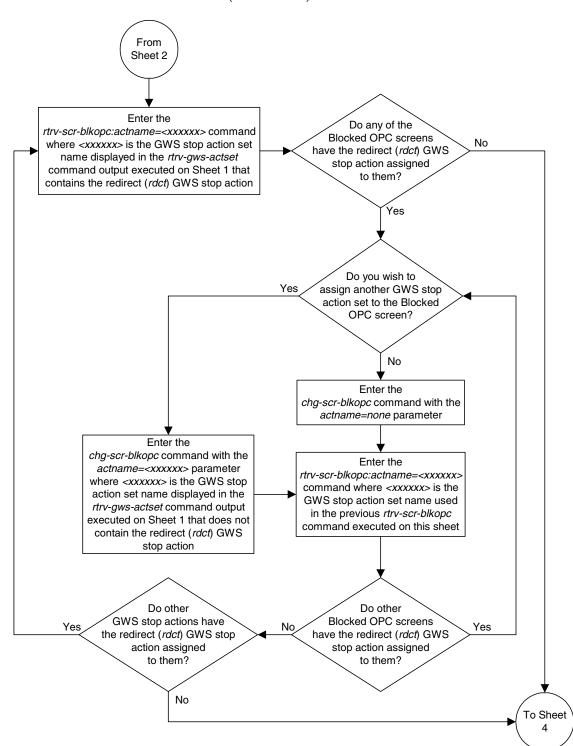
6. Verify that the changes have been made by entering any of the following commands with the actname parameter and the name of the gateway screening stop action set used in step 4.

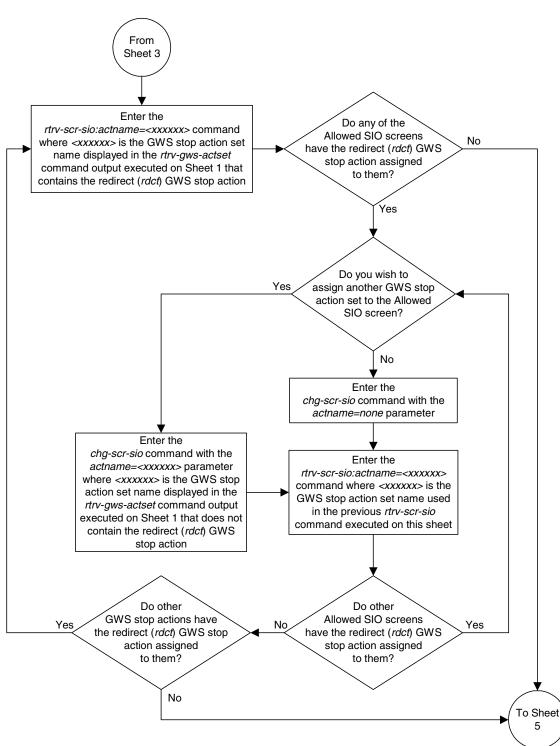

```
rtrv-scr-opc:actname=rdct
rtrv-scr-blkopc:actname=rdct
rtrv-scr-sio:actname=rdct
rtrv-scr-dpc:actname=rdct
rtrv-scr-blkdpc:actname=rdct
rtrv-scr-destfld:actname=rdct
```

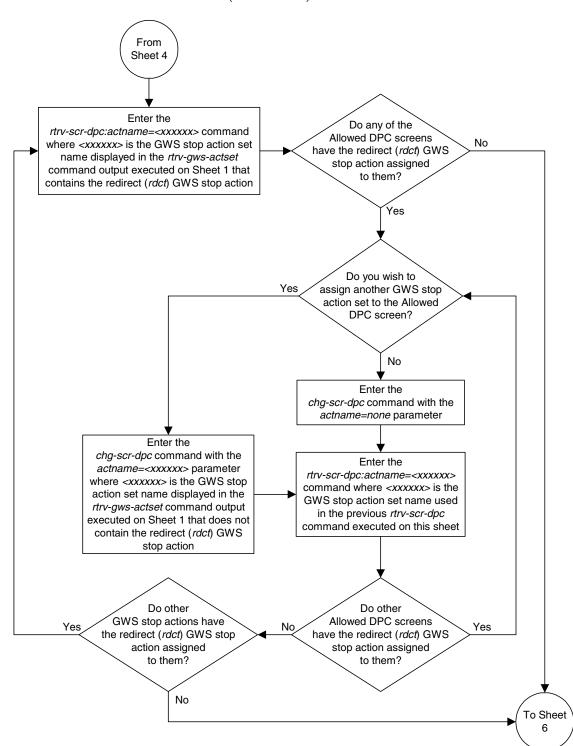
None of the screens should contain any entries assigned to the gateway screening redirect function. When each these commands are executed, this message should appear.

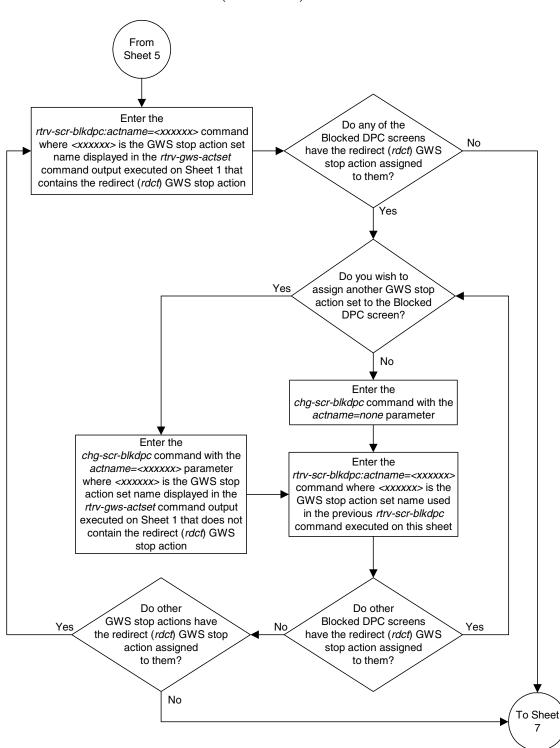

E3680 Cmd Rej: No match on ACTNAME parameter during retrieve

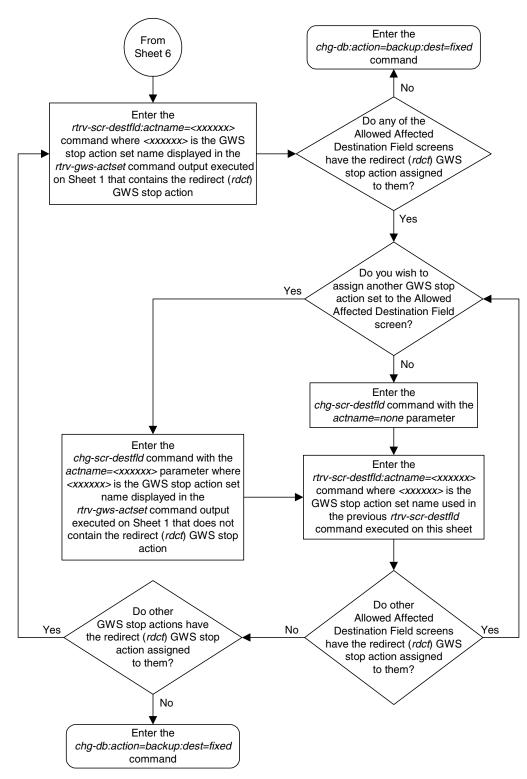
7. Backup the new changes using the chg-db:action=backup:dest=fixed command. The following messages should appear, the active Maintenance and Administration Subsystem Processor (MASP) appears first.


BACKUP (FIXED) : MASP A - Backup starts on active MASP.BACKUP (FIXED) : MASP A - Backup on active MASP to fixed disk complete.BACKUP (FIXED) : MASP A - Backup starts on standby MASP.BACKUP (FIXED) : MASP A - Backup on standby MASP to fixed disk complete.


Flowchart 4-3. Disabling the Gateway Screening Redirect Function (Sheet 1 of 7)


Flowchart 4-3. Disabling the Gateway Screening Redirect Function (Sheet 2 of 7)


Flowchart 4-3. Disabling the Gateway Screening Redirect Function (Sheet 3 of 7)


Flowchart 4-3. Disabling the Gateway Screening Redirect Function (Sheet 4 of 7)

Flowchart 4-3. Disabling the Gateway Screening Redirect Function (Sheet 5 of 7)

Flowchart 4-3. Disabling the Gateway Screening Redirect Function (Sheet 6 of 7)

Flowchart 4-3. Disabling the Gateway Screening Redirect Function (Sheet 7 of 7)

Database Transport Access (DTA) Configuration

GSM MAP Screening Configuration

Introduction
GSM MAP Screening Overview
GSM MAP Screening Details
GSM MAP Screening Example
GSM MAP Screening Procedures
Activating the GSM MAP Screening Feature
Configuring the MTP MAP Screening Feature
Configuring the MTP MAP Screening Feature
Changing the System-Wide GSM MAP Screening Options
Adding a GSM Subsystem Number Screening Entry
Removing a GSM Subsystem Number Screening Entry
Adding a GSM MAP Screening Operation Code
Removing a GSM MAP Screening Operation Code
Changing a GSM MAP Screening Operation Code
Adding a GSM MAP Screening Entry
Removing a GSM MAP Screening Entry 5–115
Changing a GSM MAP Screening Entry 5–125

Introduction

Traditionally, STP message screening has been limited to the MTP and SCCP levels; this has been sufficient to meet operators' needs. However, GSM mobile operators have an increasing need for screening at the Mobile Application Part (MAP) level. This need is driven by advanced network capabilities and proliferating roaming agreements.

New features that require this enhanced screening capability are Inter-operator Short Message Service (SMS) and Any Time Interrogation (ATI). The GSM MAP Screening feature focuses on solving the screening needs associated with ATI, which is defined in MAP version 3. An ATI message allows an external server to interrogate an HLR and obtain information about the location and/or state of a GSM subscriber. It may be desirable to control which external entities can request this information, and what information they can request before allowing the message to pass through to the HLR.

This feature allow the user to provision which MAP SSNs are affected, which MAP operations codes to screen, which origination points are allowed, and which error messages to use.

NOTE: GSM MAP Screening can be used with linksets containing ITU international or ITU national adjacent point codes whether or not the Enhanced GSM MAP Screening feature is enabled and on. GSM MAP Screening can be used with linksets containing ANSI adjacent point codes only if the Enhanced GSM MAP screening feature is enabled and on.

GSM MAP Screening Overview

An SCCP MSU arrives at the EAGLE 5 SAS on a linkset with the gsmscrn parameter value set to on. If the DPC of the MSU is the EAGLE 5 SAS's point code, the MSU is processed by Global Title Translation and Gateway Screening on the called party address (CDPA). Any applicable SCCP/MTP conversions are also performed on the MSU. The MSU is passed on to GSM MAP Screening. GSM MAP screening is then performed on the MSU before forwarding it to the destination. If the gsmscrn parameter of the linkset is set to off, GSM MAP Screening is not performed on the MSU.

If the DPC of the MSU is not the EAGLE 5 SAS's point code, the message is routed to its destination using MTP routing. GSM MAP Screening is not performed on the MSU.

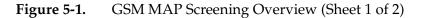
If the MTP MAP Screening feature is enabled and turned on, and the DPC of the MSU is not the EAGLE 5 SAS's point code, the MSU (SCCP message types 9 - UDT, or

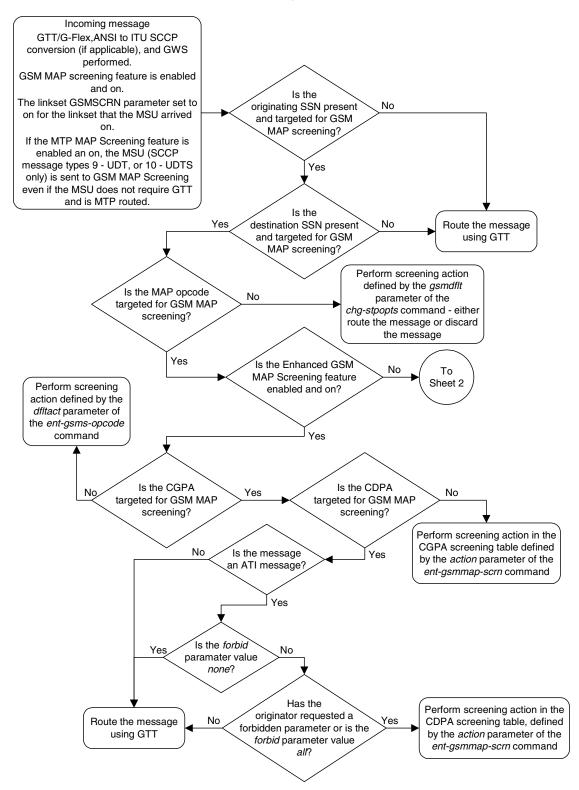
10 - UDTS only) is sent to GSM MAP Screening without being processed by Global Title Translation and Gateway Screening on the called party address. GSM MAP screening is then performed on the MSU before forwarding the MSU to its destination. When GSM MAP Screening on the message has completed, the EAGLE 5 SAS performs one of the following actions:

- Route the message to destination
- Discard the message
- Forward the message to a new destination
- Duplicate the message. Send the original message to the original destination, and send the duplicate message to a new destination.
- Duplicate the message and send the duplicate message to a new destination. Discard the original message.
- Return an error message to the originator.

GSM MAP screening first checks to see whether the calling party SSN and called party SSN are present and targeted to be screened or not.

If both SSNs are targeted, it then checks for the MAP operations code of the message to know whether it is targeted to be screened or not. If the MAP operations code is not targeted to be screened, then the EAGLE 5 SAS either discards or routes the message, defined by the gsmdflt parameter of the chg-stpopts command. If the MAP operations code is targeted to be screened, GSM MAP screening checks the calling party address of the message to know whether it is targeted for screening or not.


If the CGPA (calling party address) of the message is not targeted for GSM MAP Screening, then the screening action defined in the MAP operations code table by the dfltact parameter of the ent-gsms-opcode command is performed on the message.


If the CGPA of the message is targeted for screening and the Enhanced GSM MAP Screening feature is enabled and on, GSM MAP Screening checks the CDPA (called party address) of the message to know whether or not it is targeted for screening. If the CDPA of the message is targeted for screening, GSM MAP screening checks to see if the ATI request contains the forbidden parameter value provisioned for the CDPA. If there is no forbidden parameter in the ATI request, the message is not an ATI request, or the provisioned forbidden parameter value for the CDPA is **none**, the message is routed to the destination. If the message is an ATI request and contains the forbidden parameter value provisioned for the CDPA, or the provisioned forbidden parameter value is **all**, GSM MAP screening performs the screening action defined in the CDPA screening table by the **action** parameter of the **ent-gsmmap-scrn** command.

If the CDPA of the message is not targeted for screening, GSM MAP screening checks to see if the ATI request contains the forbidden parameter value provisioned for the CGPA. If there is no forbidden parameter in the ATI request, the message is not an ATI request, or the provisioned forbidden parameter value for the CGPA is none, the message is routed to the destination. If the message is an ATI request and contains the forbidden parameter value provisioned for the CGPA, or the provisioned forbidden parameter value is all, GSM MAP screening performs the screening action defined in the CGPA screening table by the action parameter of the ent-gsmmap-scrn command.

If the CGPA of the message is targeted for screening and the Enhanced GSM MAP Screening feature is not enabled and off, GSM MAP Screening checks the CGPA (calling party address) of the message to know whether or not it is targeted for screening. If the CGPA of the message is targeted for screening, GSM MAP screening checks to see if the ATI request contains the forbidden parameter value provisioned for the CGPA. If there is no forbidden parameter in the ATI request, the message is not an ATI request, or the provisioned forbidden parameter value for the CGPA is **none**, the message is routed to the destination. If the message is an ATI request and contains the forbidden parameter value provisioned for the CGPA, or the provisioned forbidden parameter value is **all**, GSM MAP screening performs the screening action defined in the CGPA screening table by the **action** parameter of the **ent-gsmmap-scrn** command.

Figure 5-1 on page 5-5 shows overview of GSM MAP screening functionality.

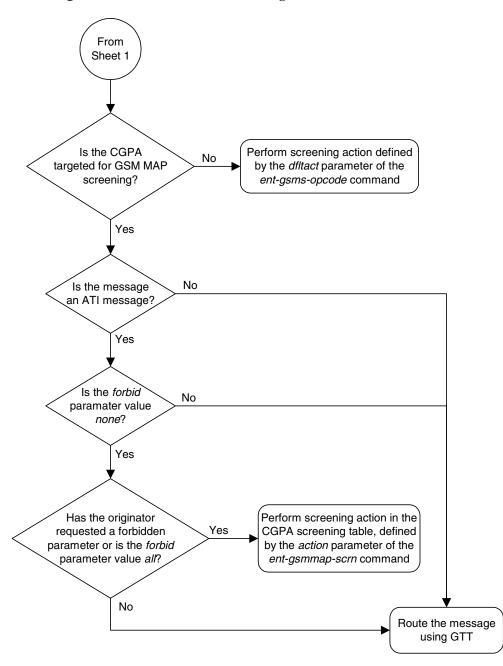


Figure 5-1. GSM MAP Screening Overview (Sheet 2 of 2)

GSM MAP Screening Details

GSM MAP screening verifies the MAP message format and performs screening before the message is routed to the destination. The following database tables are used in performing GSM MAP screening:

- SSN table
- MAP operations code table
- STP option table
- MAP screening table

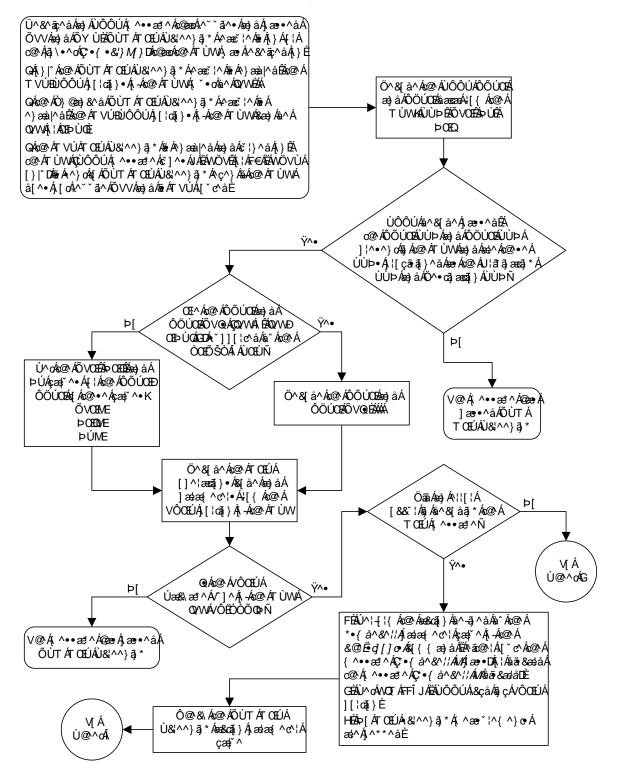
GSM MAP Screening is performed in the following stages.

- **1.** The following fields from SCCP message are decoded:
 - The SSN from the calling party address
 - The SSN from the called party address
 - The global title address from the calling party address
 - The global title address from the called party address (only if the Enhanced GSM MAP Screening feature is enabled and turned on).

NOTE: If the MTP MAP Screening is enabled and turned on, the MSU (SCCP message types 9 - UDT, or 10 - UDTS only) is sent to GSM MAP Screening even if the MSU does not require GTT and is MTP routed.

- **2.** GSM MAP Screening performs a lookup in the origination SSN table for an entry with the SSN of calling party address. If an entry is not found, GSM MAP screening is stopped and the message is routed to its destination using global title translation.
- **3.** GSM MAP Screening performs a lookup in the destination SSN table for an entry with the SSN of called party address. If an entry is not found, GSM MAP screening is stopped and the message is routed to its destination using global title translation.
- 4. GSM MAP Screening checks to see if the CGPA and CDPA GTI values are supported in the EAGLE 5 SAS. The EAGLE 5 SAS supports only these GTI values: for an ANSI message GTI value of 2; for an ITU message GTI values of 2 or 4. If the CGPA and CDPA GTI values are supported, the GTA values are decoded. If the GTI values are not supported in the EAGLE 5 SAS, the GTA, NAI, and NP values for the CGPA or CDPA are set to asterisk (*). The asterisk (*) values for the GTA, NAI, and NP parameters allows the action of the provisioned wildcard entries for the CGPA/CDPA MAP screening tables to be performed, or the action for the OPCODE table to be performed (if no wildcard entries are provisioned for the CGPA or CDPA in the GSM MAP screening table).

- 5. The MAP operations code and parameters are extracted from the MAP message. If the TCAP Package Type of the message is ITU TC-BEGIN, GSM MAP Screening continues. If the If the TCAP Package Type of the message is not ITU TC-BEGIN, GSM MAP Screening is stopped and the message is routed to its destination using global title translation, as if the message passed GSM MAP screening. If the TCAP portion is not in a valid format, the action defined by the GSM MAP screening decode error action from the STP option table (pass or discard) is performed and a UIM is generated indicating that an Invalid TCAP message received.
- 6. GSM MAP Screening performs a lookup in the MAP screening table for an entry with the MAP operations code of the MAP message. If an entry is not found, the default action from the STP option table is performed. If the default action parameter value is **pass**, the message is routed to its destination. If the default action parameter value is **discard**, the message is discarded.
- 7. GSM MAP Screening performs a lookup in the GSM MAP screening table for an entry containing the global title address of the calling party address. If an entry is not found in the GSM MAP screening table, the screening action defined in the GSM MAP operations code table by the dfltact parameter of the ent-gsms-opcode command is performed.
- 8. If the Enhanced GSM MAP Screening feature is enabled and turned on, GSM MAP Screening performs a lookup for an entry for the called party address in the GSM MAP screening table.
- 9. If an entry is found in the MAP screening table, the forbidden parameter from the GSM MAP screening table is checked. If the forbidden parameter value is none, the message is routed to its destination. If the forbidden parameter value is all, the screening action defined in the GSM MAP screening table by the action parameter of the ent-gsmmap-scrn command is performed. For any other forbidden parameter, the parameter list of the message is examined. If the message is an ATI request and the forbidden parameter is found in the parameter list, then the screening action defined in the GSM MAP screening table by the action parameter of the ent-gsmmap-scrn command is performed.


The screening actions defined by the dfltact parameter of the ent-gsms-opcode command and the action parameter of the ent-gsmmap-scrn command are:

- DISCARD do not route the MSU. The MSU is discarded (thrown away) and the appropriate UIM is issued. This is the default action value.
- PASS route the message as normal to the destination and the appropriate UIM is issued.
- ATIERR do not route the MSU and send a rejection message back to the originator.

- ROUTE route the message as normal to the original destination node, defined by global title translation.
- FORWARD route the original message to the forward node. The original message is not sent to the original node. If, however, the forwarded node is not available for routing then the MSU is routed to the original node, defined by global title translation.
- DUPLICATE route the message as normal to the original destination, defined by global title translation, and route a copy of the original message to the duplicate node. If the MSU fails to route to the duplicate node, then a UIM is generated indicating the duplicate routing failure.
- DUPLICATE AND DISCARD route the original message to the duplicate node. The original message is not sent to the original node. If, however, the duplicate node is not available for routing then the MSU is discarded.

Figure 5-2 on page 5-10 shows how GSM MAP screening is performed.

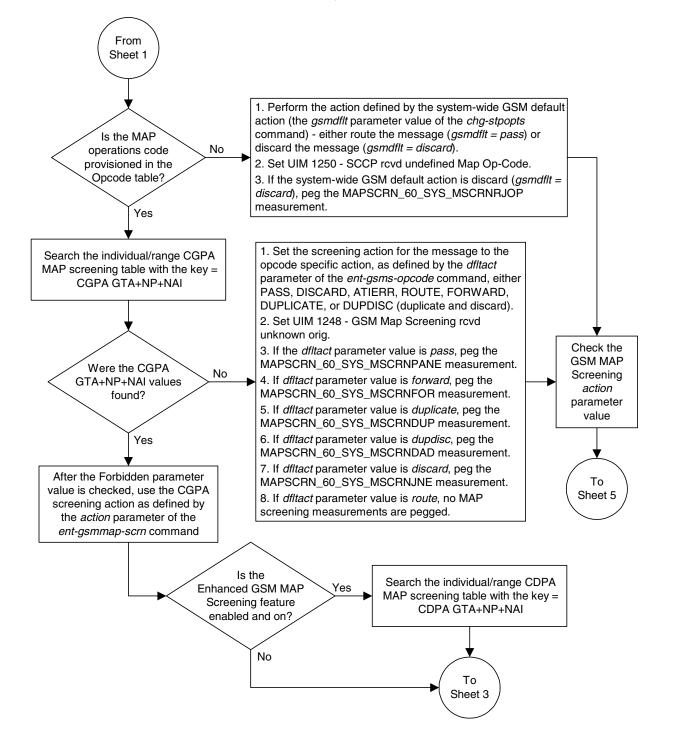


Figure 5-2. GSM MAP Screening Details (Sheet 2 of 9)

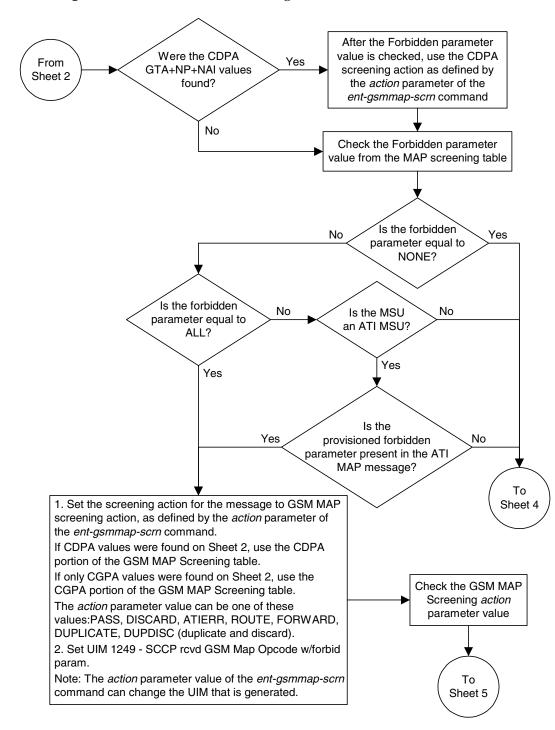
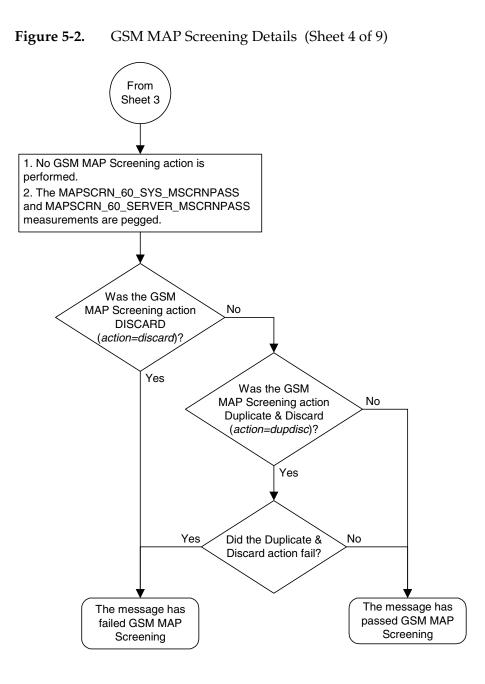



Figure 5-2. GSM MAP Screening Details (Sheet 3 of 9)

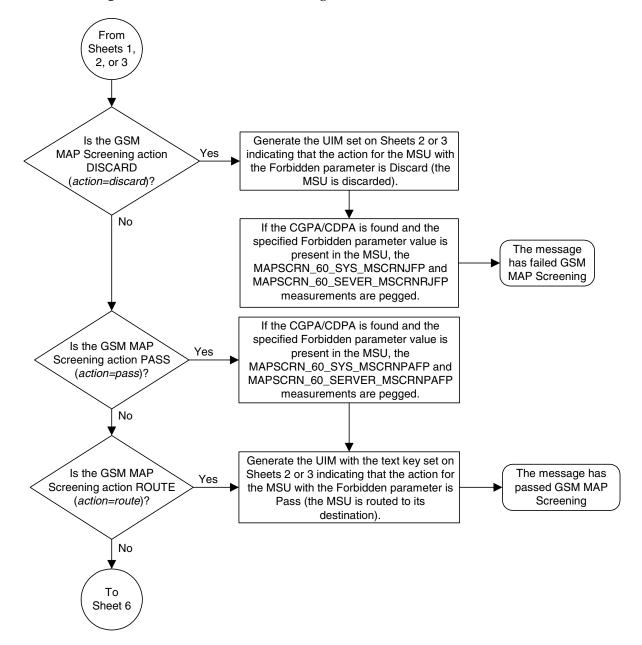


Figure 5-2. GSM MAP Screening Details (Sheet 5 of 9)

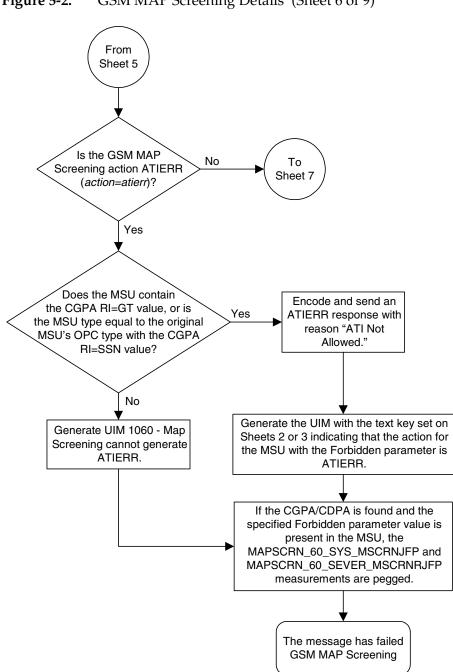
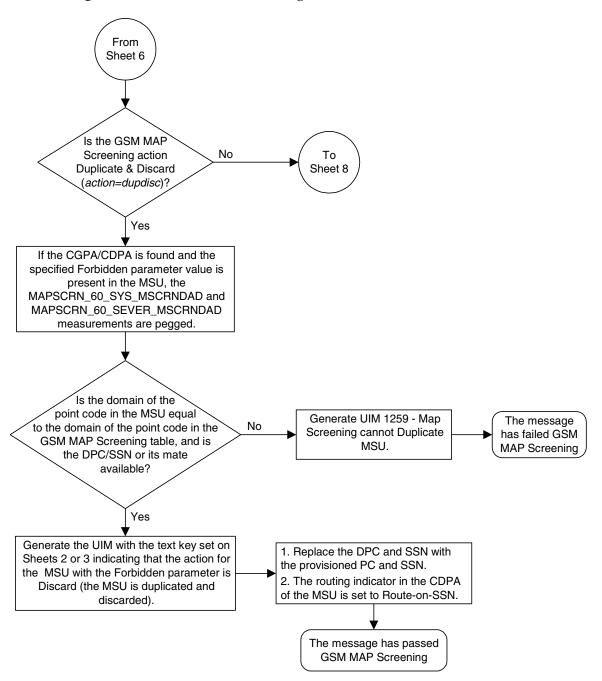
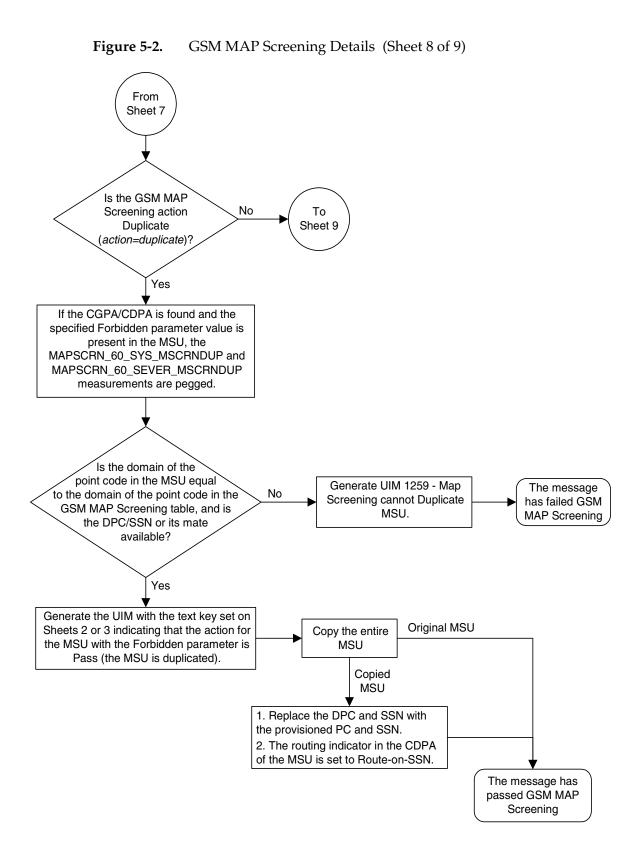
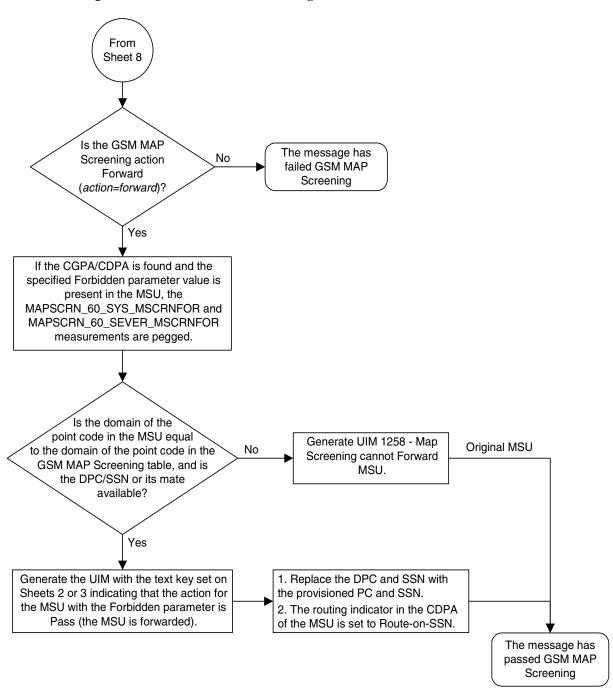





Figure 5-2. GSM MAP Screening Details (Sheet 6 of 9)

Figure 5-2. GSM MAP Screening Details (Sheet 7 of 9)

Figure 5-2. GSM MAP Screening Details (Sheet 9 of 9)

GSM MAP Screening Example

Table 5-1 shows an example of the GSM MAP screening table.

Table 5-1.Example GSM MAP Screening Table

Authorized Origination Point (E.164 address)	Numbering Plan	Nature of Address Indicator	MAP Operations Code	Forbidden Parameters	Screening Action	
6611273888	1	4	ATI_Request	All	Discard	
6611273444	1	4	SRI_for_SM	All	Discard	
6611273444	1	4	ATI_Request	Subscriber state	ATI-error	
5431111888	1	4	FW_SM	None		
5431111777	1	4	ATI_Request	All	Pass	

In this example,

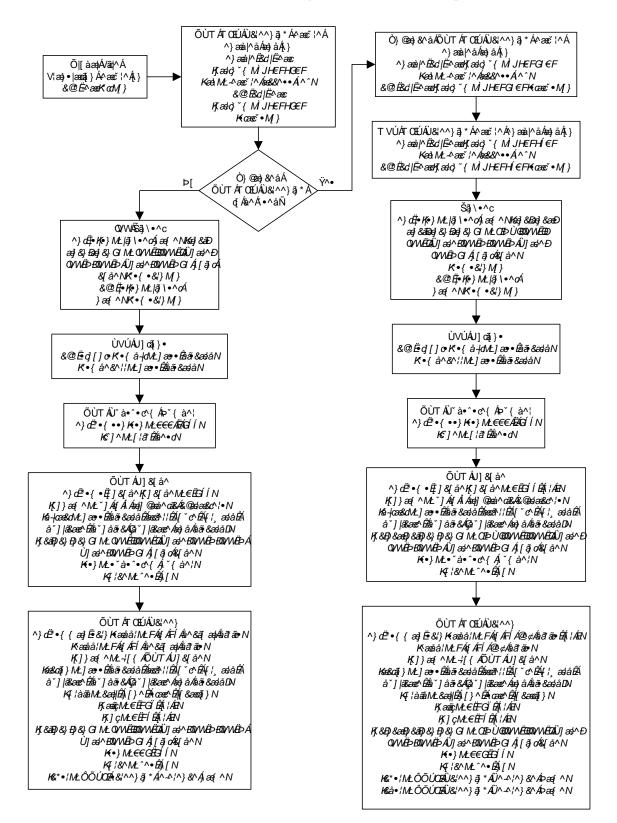
- Any ATI_Request message from 6611273888 containing the numbering plan value of 1 and nature of address indicator value of 4 would be discarded.
- Any SRI_for_SM from 6611273444 containing the numbering plan value of 1 and nature of address indicator value of 4 would be discarded.
- An ATI_Request message from 6611273444 containing the numbering plan value of 1 and nature of address indicator value of 4 requesting the Location only would be routed. An ATI_Request message from 6611273444 requesting both the Location and Subscriber state would result in an ATI-error message being sent back to the originator. An ATI_Request message from 6611273444 requesting the Subscriber state only would result in an ATI-error message being sent back to the originator.
- A FW_SM message from 5431111888 containing the numbering plan value of 1 and nature of address indicator value of 4 would be routed successfully, because no parameters are forbidden.
- Any ATI_Request from 5431111777 containing the numbering plan value of 1 and nature of address indicator value of 4 would be routed successfully because of the "Pass" screening action. This could be used for testing purposes prior to screening.

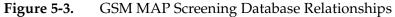
Table 5-2 shows an example of the system-wide screening table. It specifies the action to be taken in the event that a MAP operations code was defined for MAP screening, but no specific entry was found in the MAP screening table.

Table 5-2.System-Wide Screening Table

MAP Operations Code	Operations Code Specific Screening Action
ATI	ATI-error
SRI_for_SM	Discard

GSM MAP Screening Procedures


The following procedures describe the steps needed to add, remove, or change GSM MAP Screening data in the database.


The items administered in this section are:

- Linkset with GSM MAP Screening enabled
- STP options for GSM MAP Screening
- GSM SSN
- GSM Opcodes
- GSM MAP Screening entries

The procedures shown in this chapter use a variety of commands. For more information on these commands, refer to the *Commands Manual*.

Figure 5-3 shows the relationships of the database elements that are configured in these procedures.

The following is a brief description of the GSM MAP Screening entities. These entities must be configured in the order that they are shown.

1. The Global Title Translation (GTT) feature must be turned on with the chg-feat command using the gtt=on parameter. The global title translation feature must be on before the GSM MAP Screening feature can be enabled and turned on. Verify that the GTT feature is on using the rtrv-feat command.

NOTE: Once the Global Title Translation (GTT) feature is turned on with the chg-feat command, it cannot be turned off.

The GTT feature must be purchased before turning on the GTT feature. If you are not sure whether you have purchased the GTT feature, contact your Tekelec Sales Representative or Account Representative.

2. The GSM MAP Screening feature must be enabled with the enable-ctrl-feat command, and turned on with the chg-ctrl-feat command. Verify the status of the GSM MAP Screening feature with the rtrv-ctrl-feat command.

NOTE: Once the GSM MAP Screening feature is enabled and turned on, it cannot be disabled or turned off.

3. To use GSM MAP Screening on all types of linksets including ANSI linksets, or to provision CDPA entries in the GSM MAP Screening table, the Enhanced GSM MAP Screening feature must be enabled with the enable-ctrl-feat command, and turned on with the chg-ctrl-feat command. Verify the status of the Enhanced GSM MAP Screening features with the rtrv-ctrl-feat command.

NOTE: Once the Enhanced GSM MAP Screening feature is enabled and turned on, it cannot be disabled or turned off.

- 4. MSUs that do not require global title translation and are MTP routed can be sent to GSM MAP Screening only of the MTP MAP Screening feature is enabled with the enable-ctrl-feat command, and turned on with the chg-ctrl-feat command. The Enhanced GSM MAP Screening feature must be enabled and turned on to enable and turn on the MTP MAP Screening feature.
- 5. Linksets containing the gsmscrn=on parameter must be in the database. The gsmscrn=on parameter allows the messages on these linksets to be screened by the GSM MAP Screening feature. Verify this with the rtrv-ls command. If the necessary linksets are not in the database, add them with the ent-ls command, specifying the gsmscrn=on parameter. If the necessary linksets are in the database, but do not contain the gsmscrn=on parameter, change these linksets with the chg-ls command, specifying the gsmscrn=on parameter. If the Enhanced GSM MAP screening feature is enabled and on, the adjacent point code of the linkset can be any type. If the Enhanced GSM MAP screening feature is not enabled and off, the adjacent point code of the linkset can be either an ITU international, ITU international spare, or 14 bit ITU

national, 14-bit ITU national spare, or 24-bit ITU national point code. The EAGLE 5 SAS can contain either 14 bit or 24-bit ITU national point codes, but not both at the same time.

- 6. The GSM MAP screening options, gsmdflt (GSM MAP screening default action) and gsmdecerr (GSM MAP screening decode error action), can be changed with the chg-stpopts command. The current values for these options can be verified with the rtrv-stpopts command. The gsmdflt parameter allows the user to specify the default screening action (PASS or DISCARD) that occurs when a MAP operations code contained in the MSU is not found in the GSM MAP operations code table. The gsmdecerr parameter allows the user to specify the default screening action (PASS or DISCARD) that occurs when a MAP operations code table. The gsmdecerr parameter allows the user to specify the default screening action (PASS or DISCARD) that occurs when an error is detected in the TCAP layer of the MSU being screened. Such errors included an invalid value for a parameter, length error, missing data, and so on.
- 7. The origination and destination subsystem numbers that are being screened using the GSM MAP screening feature need to be provisioned in the database. These subsystem numbers are shown in the rtrv-gsmssn-scrn command and provisioned using the ent-gsmssn-scrn command.
- 8. The concerned GSM MAP screening operation codes and the default screening action for the operation code need to be provisioned in the database. These operation codes are shown in the rtrv-gsms-opcode command and provisioned using the ent-gsms-opcode command. The ent-gsms-opcode allows the user to provision a list of all operation codes that the EAGLE 5 SAS uses in performing GSM screening.
- 9. The GSM MAP screening entries that filter or allow TCAP messages for certain MAP operation codes need to be provisioned in the database. The GSM MAP screening entries are shown in the rtrv-gsmmap-scrn command and provisioned using the ent-gsmmap-scrn command. The messages are filtered or allowed based on the origination addresses (saddr/eaddr), numbering plan value (npv), nature of address indicator value (naiv), MAP opnames (opname), and forbidden (forbid) parameters. If the Enhanced GSM MAP Screening feature is enabled and on, the CGPA and CDPA of the messages are checked by the GSM MAP Screening table. If the Enhanced GSM MAP Screening feature is not enabled and off, only the CGPA of the messages are checked by the GSM MAP Screening table.

Activating the GSM MAP Screening Feature

The GSM MAP screening feature is activated by enabling the GSM MAP Screening feature with the enable-ctrl-feat command, then by turing the feature on with the chg-ctrl-feat command. The status of the GSM MAP Screening feature can be verified with the rtrv-ctrl-feat command. Before the GSM MAP Screening feature is activated, the global title translation feature must be on. This can be verified with the rtrv-feat command.

NOTE: Once the global title translation feature is turned on with the chg-feat command, it cannot be turned off.

The global title translation feature must be purchased before you turn the feature on with the chg-feat command. If you are not sure if you have purchased the global title translation feature, contact your Tekelec Sales Representative or Account Representative.

This procedure can also be used to enable and turn on the Enhanced GSM MAP Screening feature. The enable-ctrl-feat and chg-ctrl-feat commands are used to enable and turn on the Enhanced GSM MAP Screening feature. The GSM MAP Screening feature must be enabled and turned on before the Enhanced GSM MAP Screening feature is enabled and turned on.

The **enable-ctrl-feat** command enables the feature by inputting the feature's access key and the feature's part number with these parameters:

:fak – The feature access key supplied by Tekelec. The feature access key contains 13 alphanumeric characters and is not case sensitive.

:partnum – The Tekelec-issued part number of the GSM MAP Screening and Enhanced GSM MAP Screening features.

- The GSM MAP Screening feature, 893013201
- The Enhanced GSM MAP Screening feature, 893012401

The enable-ctrl-feat command requires that the database contain a valid serial number for the EAGLE 5 SAS, and that this serial number is locked. This can be verified with the rtrv-serial-num command. The EAGLE 5 SAS is shipped with a serial number in the database, but the serial number is not locked. The serial number can be changed, if necessary, and locked once the EAGLE 5 SAS is on-site, with the ent-serial-num command. The ent-serial-num command uses these parameters.

:serial – The serial number assigned to the EAGLE 5 SAS. The serial number is not case sensitive.

:lock – Specifies whether or not the serial number is locked. This parameter has only one value, **yes**, which locks the serial number. Once the serial number is locked, it cannot be changed.

NOTE: To enter and lock the EAGLE 5 SAS's serial number, the ent-serial-num command must be entered twice, once to add the correct serial number to the database with the serial parameter, then again with the serial and the lock=yes parameters to lock the serial number. You should verify that the serial number in the database is correct before locking the serial number. The serial number can be found on a label affixed to the control shelf (shelf 1100).

The GSM MAP Screening and Enhanced GSM MAP Screening features cannot be temporarily enabled (with the temporary feature access key).

Once these features have been enabled, the features must be activated with the chg-ctrl-feat command. The chg-ctrl-feat command uses these parameters:

:partnum – The Tekelec-issued part number of the GSM MAP Screening and Enhanced GSM MAP Screening features.

- The GSM MAP Screening feature, 893013201
- The Enhanced GSM MAP Screening feature, 893012401

:status=on – used to activate the features that customer has purchased and enabled.

NOTE: Once the GSM MAP Screening and Enhanced GSM MAP Screening features are turned on, they cannot be turned off.

The status of the features in the EAGLE 5 SAS is shown with the **rtrv-ctrl-feat** command.

The GSM MAP Screening feature requires that either TSMs or DSMs are installed and provisioned in the EAGLE 5 SAS. The Enhanced GSM MAP Screening feature require that DSMs are installed and provisioned in the EAGLE 5 SAS. TSMs are shown by the entry **TSM** in the **TYPE** column of the **rtrv-card** output and **SCCP** in the **APPL** column of the **rtrv-card** output. DSMs are shown by the entry **DSM** in the **TYPE** column of the **rtrv-card** output and **SCCP** in the **APPL** column of the **rtrv-card** output and **SCCP** in the **APPL** column of the **rtrv-card** output.

If the Enhanced GSM MAP Screening feature is being enabled and turned on, any cards with the TSM card type running the SCCP application in the EAGLE 5 SAS must be replaced by DSMs. Contact the Customer Care Center before replacing any SCCP cards. Refer to "Customer Care Center" on page 1-10 for the contact information.

Procedure

1. Display the status of the controlled features by entering the **rtrv-ctrl-feat** command. The following is an example of the possible output.

```
rlghncxa03w 05-09-28 21:15:37 GMT EAGLE5 34.0.0
The following features have been permanently enabled:
Feature NamePartnumStatusQuantityIPGWx Signaling TPS893012814on20000ISUP Normalization893000201on----
Command Class Management 893005801 on
                                                      ----
LNP Short Message Service 893006601 on
                                                      _ _ _ _
                                                      _ _ _ _
Intermed GTT Load Sharing 893006901 on
                                                    400000
XGTT Table Expansion 893006101 on
XMAP Table Expansion893007710 offLarge System # Links893005910 on
                                                     ----
                                                      2000

        Routesets
        893006401
        on

        HC-MIM SLK Capacity
        893012707
        on

                                                      6000
                                                      64
The following features have been temporarily enabled:
Feature Name
                             Partnum Status Quantity Trial Period Left
Zero entries found.
```

The following features have expired temporary keys:

Partnum

Feature Name Zero entries found.

If the GSM MAP Screening feature (shown in the **rtrv-ctrl-feat** output as **GSM Map Screening (GMS)**) is enabled and on, no further action is necessary. This procedure does not need to be performed.

If you wish to use the Enhanced GSM MAP Screening feature, and the Enhanced GSM MAP Screening feature (shown in the rtrv-ctrl-feat output as Enhanced GMS (EGMS)) is enabled and on, no further action is necessary. This procedure does not need to be performed.

If the GSM MAP Screening feature is enabled and off, skip steps 2 through 7 and go to step 8.

If the Enhanced GSM MAP Screening feature is enabled and off, skip steps 2 through 10 and go to step 11.

2. Display the cards in the EAGLE 5 SAS using the rtrv-card command. The GSM MAP Screening feature requires that TSMs or DSMs are in the database. The Enhanced GSM MAP Screening feature requires that DSMs are in the database. This is an example of the possible output.

rlghnc	xa03w 05-0	9-25 09:58	:31 GMT EAGLE5	34.0	.0			
CARD	TYPE	APPL	LSET NAME	LINK	SLC	LSET NAME	LINK	SLC
1113	GPSM	EOAM						
1114	TDM-A							
1115	GPSM	EOAM						
1116	TDM-B							
1117	MDAL							
1201	LIMDS0	SS7ANSI	sp2	A	0	spl	В	0
1203	LIMDS0	SS7ANSI	sp3	A	0			
1204	LIMDS0	SS7ANSI	sp3	A	1			
1206	LIMDS0	SS7ANSI	nsp3	A	1	nsp4	В	1
1207	LIMV35	SS7GX25	nsp1	A	0			
1208	LIMV35	SS7GX25	nsp1	A	1			
1216	ACMENET	STPLAN						
1308	LIMDS0	SS7ANSI	sp6	A	1	sp7	В	0
1314	LIMDS0	SS7ANSI	sp7	A	1	sp5	В	1
1317	ACMENET	STPLAN						

TSMs are shown by the entry **TSM** in the **TYPE** column and **SCCP** in the **APPL** column of the **rtrv-card** output. DSMs are shown by the entry **DSM** in the **TYPE** column and **SCCP** in the **APPL** column of the **rtrv-card** output.

If the Enhanced GSM MAP Screening feature is being enabled and turned on, and the **rtrv-card** output shows TSM card types in the EAGLE 5 SAS, these cards must be replaced by DSMs. Contact the Customer Care Center before replacing any SCCP cards. Refer to "Customer Care Center" on page 1-10 for the contact information.

If no SCCP cards are shown in the **rtrv-card** output, perform the "Adding an SCCP Card" procedure in the *Database Administration Manual - Global Title Translation* and add the required SCCP cards to the database.

If DSMs are in the EAGLE 5 SAS, go to step 3.

NOTE: If the rtrv-ctrl-feat output in step 1 shows any controlled features, skip steps 3 through 6, and go to step 7.

3. Display the serial number in the database with the **rtrv-serial-num** command. This is an example of the possible output.

```
rlghncxa03w 05-09-28 21:15:37 GMT EAGLE5 34.0.0
System serial number = nt00001231
System serial number is not locked.
rlghncxa03w 05-09-28 21:15:37 GMT EAGLE5 34.0.0
Command Completed
```

NOTE: If the serial number is correct and locked, skip steps 4, 5, and 6, and go to step 7. If the serial number is correct but not locked, skip steps 4 and 5, and go to step 6. If the serial number is not correct, but is locked, the GSM MAP Screening and Enhanced GSM MAP Screening features cannot be enabled and the remainder of this procedure cannot be performed. Contact the Customer Care Center to get an incorrect and locked serial number changed. Refer to "Customer Care Center" on page 1-10 for the contact information. The serial number can be found on a label affixed to the control shelf (shelf 1100).

4. Enter the correct serial number into the database using the ent-serial-num command with the serial parameter.

For this example, enter this command.

ent-serial-num:serial=<EAGLE 5 SAS's correct serial number> When this command has successfully completed, the following message should appear.

rlghncxa03w 05-09-28 21:15:37 GMT EAGLE5 34.0.0 ENT-SERIAL-NUM: MASP A - COMPLTD

5. Verify that the serial number entered into step 4 was entered correctly using the rtrv-serial-num command. This is an example of the possible output.

```
rlghncxa03w 05-09-28 21:15:37 GMT EAGLE5 34.0.0
System serial number = nt00001231
System serial number is not locked.
rlghncxa03w 05-09-28 21:15:37 GMT EAGLE5 34.0.0
Command Completed
```

If the serial number was not entered correctly, repeat steps 4 and 5 and re-enter the correct serial number.

6. Lock the serial number in the database by entering the ent-serial-num command with the serial number shown in step 3, if the serial number shown in step 3 is correct, or with the serial number shown in step 5, if the serial number was changed in step 4, and with the lock=yes parameter.

For this example, enter this command.

```
ent-serial-num:serial=<EAGLE 5 SAS's serial number>:lock=yes
```

When this command has successfully completed, the following message should appear.

```
rlghncxa03w 05-09-28 21:15:37 GMT EAGLE5 34.0.0
ENT-SERIAL-NUM: MASP A - COMPLTD
```

7. Enable the GSM MAP Screening feature with the enable-ctrl-feat command specifying the part number for the GSM MAP Screening feature and the feature access key. Enter this command.

enable-ctrl-feat:partnum=893013201:fak=<GSM MAP Screening
feature access key>

NOTE: A temporary feature access key cannot be specified to enable this feature.

NOTE: The values for the feature access key (the fak parameter) are provided by Tekelec. If you do not have the feature access key for the GSM MAP Screening feature, contact your Tekelec Sales Representative or Account Representative.

When the **enable-ctrl-feat** command has successfully completed, this message should appear.

```
rlghncxa03w 05-09-28 21:15:37 GMT EAGLE5 34.0.0
ENABLE-CTRL-FEAT: MASP B - COMPLTD
```

8. Turn the GSM MAP Screening feature on with the chg-ctrl-feat command specifying the part number for the GSM MAP Screening feature and the status=on parameter. Enter this command.

```
chg-ctrl-feat:partnum=893013201:status=on
```

NOTE: Once the GSM MAP Screening feature is turned on, it cannot be turned off.

When the **chg-ctrl-feat** command has successfully completed, this message should appear.

```
rlghncxa03w 05-09-28 21:15:37 GMT EAGLE5 34.0.0
CHG-CTRL-FEAT: MASP B - COMPLTD
```

9. Verify the changes by entering the **rtrv-ctrl-feat** command with the GSM MAP Screening feature part number. Enter this command.

```
rtrv-ctrl-feat:partnum=893013201
```

The following is an example of the possible output.

```
rlghncxa03w 05-09-28 21:15:37 GMT EAGLE5 34.0.0

The following features have been permanently enabled:

Feature Name Partnum Status Quantity

GSM Map Screening (GMS) 893013201 on ----

The following features have been temporarily enabled:

Feature Name Partnum Status Quantity Trial Period Left

Zero entries found.

The following features have expired temporary keys:

Feature Name Partnum

Zero entries found.
```

NOTE: If you do not wish to enable and turn on the Enhanced GSM MAP Screening feature, skip steps 10, 11, and 12, and go to step 13.

10. Enable the Enhanced GSM MAP Screening feature with the **enable-ctrl-feat** command specifying the part number for the Enhanced GSM MAP Screening feature and the feature access key. Enter this command.

enable-ctrl-feat:partnum=893012401:fak=<Enhanced GSM MAP
Screening feature access key>

NOTE: A temporary feature access key cannot be specified to enable this feature.

NOTE: The values for the feature access key (the fak parameter) are provided by Tekelec. If you do not have the feature access key for the Enhanced GSM MAP Screening feature, contact your Tekelec Sales Representative or Account Representative.

When the **enable-ctrl-feat** command has successfully completed, this message should appear.

```
rlghncxa03w 05-09-28 21:15:37 GMT EAGLE5 34.0.0
ENABLE-CTRL-FEAT: MASP B - COMPLTD
```

11. Turn the Enhanced GSM MAP Screening feature on with the chg-ctrl-feat command specifying the part number for the Enhanced GSM MAP Screening feature and the status=on parameter. Enter this command.

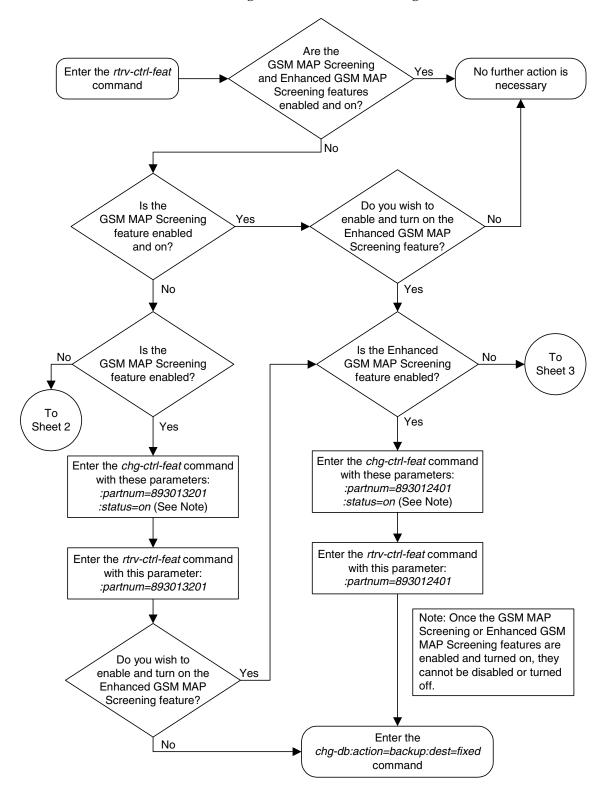
chg-ctrl-feat:partnum=893012401:status=on

NOTE: Once the Enhanced GSM MAP Screening feature is turned on, it cannot be turned off.

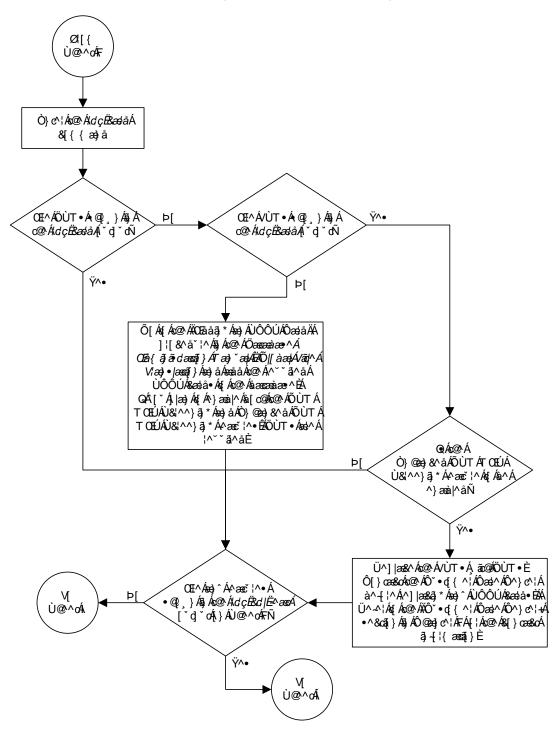
When the chg-ctrl-feat command has successfully completed, this message should appear.

```
rlghncxa03w 05-09-28 21:15:37 GMT EAGLE5 34.0.0
CHG-CTRL-FEAT: MASP B - COMPLTD
```

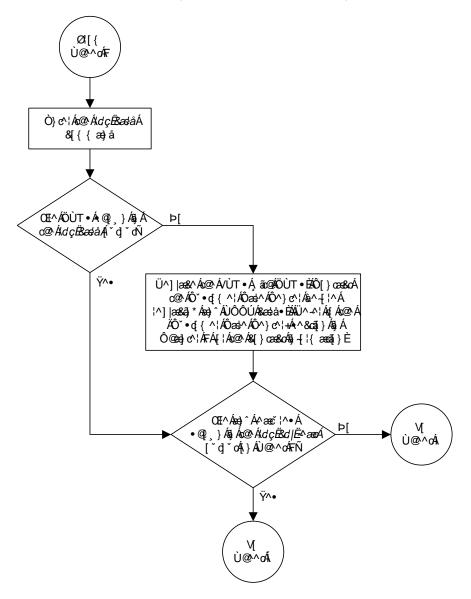
12. Verify the changes by entering the **rtrv-ctrl-feat** command with the Enhanced GSM MAP Screening feature part number. Enter this command.

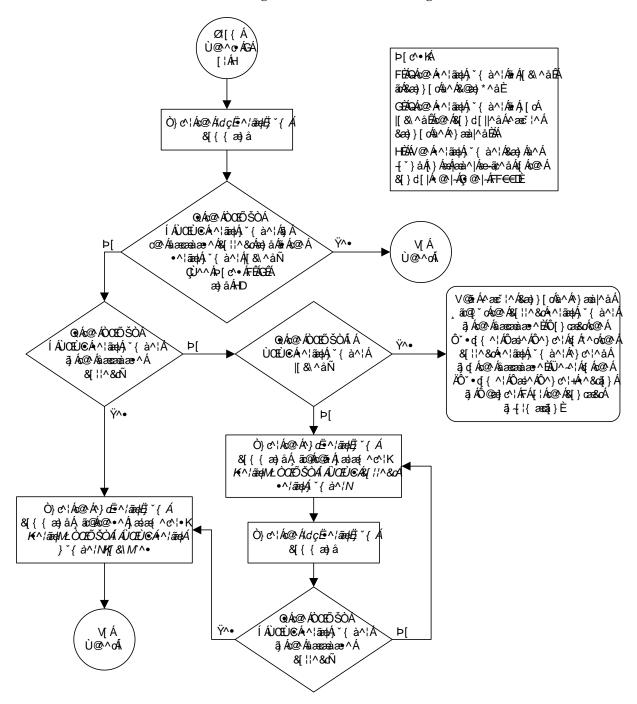

rtrv-ctrl-feat:partnum=893012401

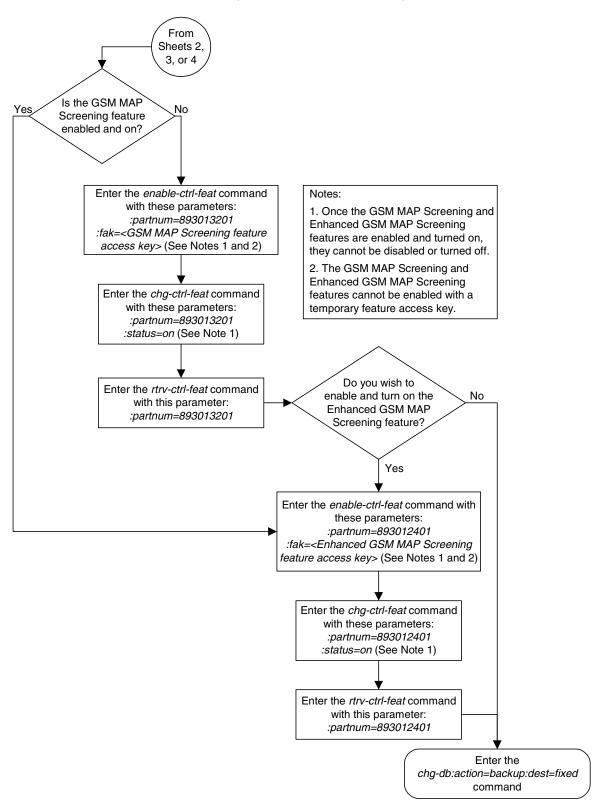
The following is an example of the possible output.						
rlghncxa03w 05-09-28 21:15:37 GMT EAGLE5 34.0.0 The following features have been permanently enabled:						
Feature Name Enhanced GMS (EGMS)	Partnum 893012401		Quantity			
The following features have been temporarily enabled:						
Feature Name Zero entries found.	Partnum	Status	Quantity	Trial Period Left		
The following features have expired temporary keys:						
Feature Name Zero entries found.	Partnum					


GSM MAP Screening Configuration

13. Backup the new changes using the chg-db:action=backup:dest=fixed command. These messages should appear, the active Maintenance and Administration Subsystem Processor (MASP) appears first.


BACKUP (FIXED): MASP A - Backup starts on active MASP. BACKUP (FIXED): MASP A - Backup on active MASP to fixed disk complete. BACKUP (FIXED): MASP A - Backup starts on standby MASP. BACKUP (FIXED): MASP A - Backup on standby MASP to fixed disk complete.


Flowchart 5-1. Activating the GSM MAP Screening Feature (Sheet 1 of 5)


Flowchart 5-1. Activating the GSM MAP Screening Feature (Sheet 2 of 5)

Flowchart 5-1. Activating the GSM MAP Screening Feature (Sheet 3 of 5)

Flowchart 5-1. Activating the GSM MAP Screening Feature (Sheet 4 of 5)

Flowchart 5-1. Activating the GSM MAP Screening Feature (Sheet 5 of 5)

Configuring the MTP MAP Screening Feature

The MTP MAP screening feature is enabled with the enable-ctrl-feat command. Once enabled, the feature can be turned on or off with the chg-ctrl-feat command. If the feature is already on, it can only be turned off. If the feature is off, it can only be turned on.

Before the MTP MAP Screening feature is enabled and turned on, the Enhanced GSM MAP Screening feature must be enabled and on. The Measurements Platform must also be enabled.

The status of the MTP MAP Screening and Enhanced GSM MAP Screening features can be verified with the rtrv-ctrl-feat command. The rtrv-measopts command shows whether the Measurements Platform is enabled or not.

The **enable-ctrl-feat** command enables the feature by inputting the feature's access key and the feature's part number with these parameters:

:fak – The feature access key supplied by Tekelec. The feature access key contains 13 alphanumeric characters and is not case sensitive.

:partnum – The Tekelec-issued part number of the MTP MAP Screening feature, 893013501

The MTP MAP Screening feature cannot be temporarily enabled (with a temporary feature access key).

The chg-ctrl-feat command uses these parameters:

:partnum – The Tekelec-issued part number of the MTP MAP Screening feature, 893013501.

:status=on – used to turn the MTP MAP Screening feature on.

:status=off - used to turn the MTP MAP Screening feature off.

NOTE: Turning the MTP MAP Screening feature on allows GSM MAP Screening to be performed on all SCCP messages, even if these messages do not require Global Title Translation and are MTP routed. The value of the GSMSCRN parameter of the linkset carrying these SCCP messages must be YES.

NOTE: Turning the MTP MAP Screening feature off allows GSM MAP Screening to be performed only on those SCCP messages, on linksets with the GSMSCRN=YES value, that have passed Global Title Translation and Gateway Screening.

Procedure

1. Display the status of the controlled features by entering the **rtrv-ctrl-feat** command. The following is an example of the possible output.

```
rlghncxa03w 05-09-28 21:15:37 GMT EAGLE5 34.0.0
The following features have been permanently enabled:
Feature NamePartnumStatusQuantityIPGWx Signaling TPS893012814on20000ISUP Normalization893000201on----
Command Class Management 893005801 on
                                          ----
LNP Short Message Service 893006601 on
                                          _ _ _ _
                                          _ _ _ _
Intermed GTT Load Sharing 893006901 on
                                         400000
XGTT Table Expansion 893006101 on
- - - -
                                          2000
                        893006401 on
                                          6000
Routesets
HC-MIM SLK Capacity 893012707 on
                                           64
The following features have been temporarily enabled:
Feature Name
                       Partnum Status Quantity Trial Period Left
Zero entries found.
The following features have expired temporary keys:
```

Feature Name Zero entries found.

If the MTP MAP Screening feature (shown in the **rtrv-ctrl-feat** output as **MTP Map Screening**) is enabled and on, and you do not wish to turn the feature off, no further action is necessary. If you wish to turn this feature off, skip steps 2 through 4, and go to step 5.

If the MTP MAP Screening feature is enabled and off, skip steps 2 through 4 and go to step 5 to turn the feature on.

2. If the **rtrv-ctrl-feat** in step 1 shows that the Enhanced GSM MAP Screening feature is enabled and on, skip this step and go to step 3.

Partnum

If the **rtrv-ctrl-feat** in step 1 shows that the Enhanced GSM MAP Screening feature is not enabled or off, perform the "Activating the GSM MAP Screening Feature" procedure on page 5-24 to enable and turn on the Enhanced GSM MAP Screening feature. **3.** Verify whether or nor the Measurements Platform option is enabled (**PLATFORMENABLE = on**) using the **rtrv-measopts** command.

```
rlghncxa03w 05-09-01 16:02:05 GMT EAGLE5 34.0.0
PLATFORMENABLE = on
COLLECT15MIN = off
CLLIBASEDNAME = off
-----
SYSTOTSTP = off
SYSTOTTT = off
```

NOTE: The rtrv-measopts command output contains other fields that are not used by this procedure. If you wish to see all the fields displayed by the rtrv-measopts command, see the rtrv-measopts command description in the *Commands Manual*.

If the Measurements Platform is not enabled, perform the "Configuring the Measurements Platform Feature" procedure in the *Database Administration Manual - System Management* to enabled the Measurements Platform.

4. Enable the MTP MAP Screening feature with the enable-ctrl-feat command specifying the part number for the MTP MAP Screening feature and the feature access key. Enter this command.

```
enable-ctrl-feat:partnum=893013501:fak=<MTP MAP Screening
feature access key>
```

NOTE: A temporary feature access key cannot be specified to enable this feature.

NOTE: The values for the feature access key (the fak parameter) are provided by Tekelec. If you do not have the feature access key for the Enhanced GSM MAP Screening feature, contact your Tekelec Sales Representative or Account Representative.

When the **enable-ctrl-feat** command has successfully completed, this message should appear.

```
rlghncxa03w 05-09-28 21:15:37 GMT EAGLE5 34.0.0
ENABLE-CTRL-FEAT: MASP B - COMPLTD
```

5. Turn the MTP MAP Screening feature on or off with the chg-ctrl-feat command specifying the part number for the Enhanced GSM MAP Screening feature and either the status=on or status=off parameter.

To turn the MTP MAP Screening feature on, enter this command.

chg-ctrl-feat:partnum=893013501:status=on

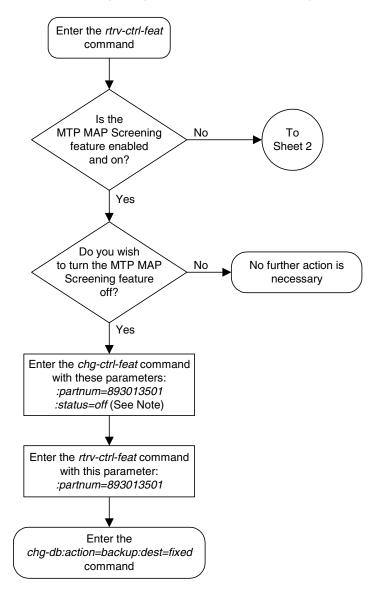
To turn the MTP MAP Screening feature off, enter this command.

chg-ctrl-feat:partnum=893013501:status=off

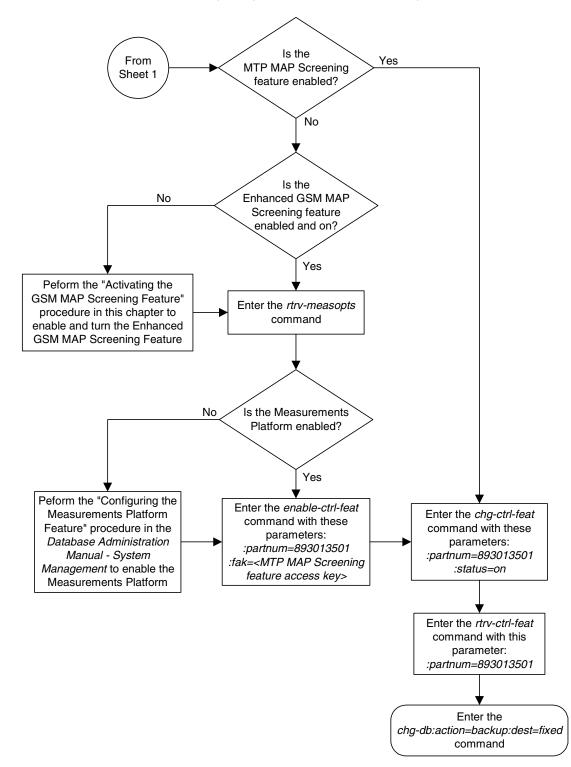
When the chg-ctrl-feat command has successfully completed, this message should appear.

```
rlghncxa03w 05-09-28 21:15:37 GMT EAGLE5 34.0.0
CHG-CTRL-FEAT: MASP B - COMPLTD
```

6. Verify the changes by entering the rtrv-ctrl-feat command with the MTP MAP Screening feature part number. Enter this command.


```
rtrv-ctrl-feat:partnum=893013501
```

The following is an example of the possible output if the feature was turned on in step 5.


rlghncxa03w 05-09-28 21:15:37 GMT EAGLE5 34.0.0 The following features have been permanently enabled: Feature NamePartnumStatuMTP MAP Screening893013501on Partnum Status Quantity ----The following features have been temporarily enabled: Partnum Status Quantity Trial Period Left Feature Name Zero entries found. The following features have expired temporary keys: Feature Name Partnum Zero entries found. The following is an example of the possible output if the feature was turned off in step 5. rlghncxa03w 05-09-28 21:15:37 GMT EAGLE5 34.0.0 The following features have been permanently enabled: Feature NamePartnumStatusQuantityMTP MAP Screening893013501off----The following features have been temporarily enabled: Feature Name Partnum Status Quantity Trial Period Left Zero entries found. The following features have expired temporary keys: Feature Name Partnum Zero entries found.

7. Backup the new changes using the chg-db:action=backup:dest=fixed command. These messages should appear, the active Maintenance and Administration Subsystem Processor (MASP) appears first.

BACKUP (FIXED): MASP A - Backup starts on active MASP.BACKUP (FIXED): MASP A - Backup on active MASP to fixed disk complete.BACKUP (FIXED): MASP A - Backup starts on standby MASP.BACKUP (FIXED): MASP A - Backup on standby MASP to fixed disk complete.

Flowchart 5-2. Configuring the MTP MAP Screening Feature (Sheet 1 of 2)

Flowchart 5-2. Configuring the MTP MAP Screening Feature (Sheet 2 of 2)

Configuring a Linkset for the GSM MAP Screening Feature

This procedure is used to configure SS7 linksets for the GSM MAP Screening feature using the gsmscrn parameter of either the ent-ls or chg-ls command.

The gsmscrn parameter specifies whether or not GSM MAP screening is applied to messages arriving on the linkset. This parameter can be applied to all linksets, but this parameter can be specified for linksets with ANSI adjacent point codes only if the Enhanced GSM MAP Screening feature is enabled and on. The values for this parameter are on (GSM MAP screening is applied to the linkset) or off (GSM MAP screening is not applied to the linkset). GSM MAP screening is used to screen GSM MAP messages to control which external entities can request information about a GSM subscriber and the specific information these entities can request before allowing the GSM MAP message to pass through to the HLR.

Before the gsmscrn parameter can be specified for a specific linkset, the GSM MAP screening feature must be enabled and on. The status of the GSM MAP Screening feature, and if applicable the Enhanced GSM MAP screening feature, is shown in the rtrv-ctrl-feat command output with the entries GSM Map Screening (GMS) (for the GSM MAP Screening feature) and Enhanced GMS (EGMS) (for the Enhanced GSM MAP Screening feature). Perform the "Activating the GSM MAP Screening Feature" procedure on page 5-24 to enable and turn on either of these features as required.

The value of the gsmscrn parameter is only displayed in the rtrv-ls command output when a specific linkset is being displayed with the rtrv-ls:lsn=<linkset name> command.

To configure a linkset for the GSM MAP Screening feature, the ent-ls or chg-ls commands uses these mandatory parameters in addition to the gsmscrn parameter.

:lsn – The name of the linkset. The linkset name can contain up to 10 characters, with the first character being a letter.

:apc/apca/apci/apcn/apcn24 – Adjacent point code – the point code identifying the node that is next to the EAGLE 5 SAS. This parameter is only mandatory for the ent-ls command.

NOTE: See Chapter 2, "Configuring Destination Tables" in the *Database Administration Manual - SS7* for a definition of the point code types that are used on the EAGLE 5 SAS and for a definition of the different formats that can be used for ITU national point codes.

NOTE: The EAGLE 5 SAS can contain a 14-bit ITU-N point code (apcn) or a 24-bit ITU-N point code (apcn24), but not both at the same time.

:lst – The linkset type of the specified linkset This parameter is only mandatory for the **ent-ls** command.

The ent-ls and chg-ls commands contain other optional parameters that can be used to configure a linkset. These parameters are not shown here because they are not necessary for configuring a linkset for the GSM MAP Screening feature. These parameters are explained in more detail in the "Adding an SS7 Linkset" procedure or in the "Changing an SS7 Linkset" procedure in the *Database Administration Manual - SS7*, or in the ent-ls and chg-ls command descriptions in the *Commands Manual*.

The EAGLE 5 SAS can contain 1024 linksets, with a maximum of 255 of these linksets being gateway linksets. A gateway linkset is a linkset that contains routes to a different network.

This examples used in this procedure are based on the examples shown in Table 5-3.

Linkset Names	Linkset APC	LST	GSMSCRN				
New Linksets Being Added							
lsn5	10685	а	on				
lsi7	3-150-4	a	on				
Existing Linkset Being Changed							
lsn4	N/A	N/A	on				

Table 5-3.GSM MAP Screening Linkset Configuration Table

The linkset to be added cannot be in the database. This can be verified in step 1 of this procedure.

Canceling the RTRV-LS and RTRV-DSTN Commands

Because the **rtrv-ls** and **rtrv-dstn** commands used in this procedure can output information for a long period of time, the **rtrv-ls** and **rtrv-dstn** commands can be canceled and the output to the terminal stopped. There are three ways that the **rtrv-ls** and **rtrv-dstn** commands can be canceled.

- Press the F9 function key on the keyboard at the terminal where the rtrv-ls or rtrv-dstn commands were entered.
- Enter the canc-cmd without the trm parameter at the terminal where the rtrv-ls or rtrv-dstn commands were entered.
- Enter the canc-cmd:trm=<xx>, where <xx> is the terminal where the rtrv-ls or rtrv-dstn commands were entered, from another terminal other that the terminal where the rtrv-ls or rtrv-dstn commands were entered. To enter the canc-cmd:trm=<xx> command, the terminal must allow Security Administration commands to be entered from it and the user must be allowed to enter Security Administration commands. The terminal's permissions can be verified with the rtrv-secu-trm command. The user's permissions can be verified with the rtrv-user or rtrv-secu-user commands.

For more information about the canc-cmd command, go to the Commands Manual.

Procedure

1. Display the current linkset configuration using the **rtrv-ls** command. This is an example of the possible output.

rlghncxa03w	05-09-10 11		MT EA	GLE5	34.	0.0						
-			L3T	SLT				GWS	GWS	GWS		
LSN	APCA (SS) SCRN	SET	SET	BEI	LST	LNKS	ACT	MES	DIS	SLSCI	NIS
lsa1	240-020-00) scr1	1	1	yes	a	1	off	off	off	no	off
lsa2	240-030-00) scr2	1	2	no	С	3	on	on	on	yes	off
lsa3	240-040-00) scr3	1	3	yes	С	5	off	off	off	yes	off
ls04	001-002-00	8 scr2	1	1	no	а	4	on	off	on	yes	off
				SLT					GWS			
LSN	APCA (X2	5) SCRN	SET	SET	BEI	LST	LNKS	ACT	MES	DIS	SLSCI	NIS
ls6	244-010-00	scr4	1	4	no	а	6	off	off	off		off
ls7	244-012-00	5 scr5	1	5	no	С	3	on	on	on		off
ls8	244-012-00	5 scr6	1	6	no	С	8	off	off	off		off
				SLT					GWS			
LSN	APCI (SS	7) SCRN	SET	SET	BEI	LST	LNKS				SLSCI	NIS
lsi1	1-111-1	scr1	1	1	yes	а	1	off	off			
lsi2	1-111-2	scr2	1	2	no	С	3	on	on	on		
lsi3	1-111-3	scr3	1	3	yes	С	5	off	off	off		
				SLT					GWS			
LSN	APCN (SS										SLSCI	
lsn1	11111	scr1	1	1	yes		1	on		off		off
lsn2	11112	scr2	1	2	no	С	3	on	on	on		off
lsn3	11113	scr3	1	3	yes		5	on		off		off
lsn5	10685	scr1	1	3	yes	a	4	on	OII	off		off
			т о п					aua	aua	aua		
T ON				SLT	рпт	тат	TNIZO		GWS		at aat	NTO
LSN	APCN24 (SS	7) SCRN	SET	SET	BEI	LST	LINKS	ACT	MES	DIS	SLSCI	NIS
			топ	SLT				awa	GWS	awa		
LSN (CHINA)) SCRN			прт	тот	TNEC				SLSCI	NTC
LSN (CHINA)	APCN (SS	() SCRN	SEI	SEI	DEI	цэт	LINKS	ACI	MES	DIS	SUSCI	NIS
			T.3 m	SLT				CWC	GWS	CWC		
LSN (CHINA)	APCN24 (SS) SCRN			דיזם	T.Cm	LNKC				SLSCI	NTC
LON (CRINA)	ALCIN74 (22	, acrin	эсı	961	DET	цот	Слиго	ACI	MES	510	рпост	1110
Link set tak	ole is (13	of 1024)	1%	full								

NOTE: If the APC of an existing linkset is not being changed, skip steps 2 and 3, and go to step 4.

2. Display the point code and capability point code of the EAGLE 5 SAS by using the **rtrv-sid** command. This is an example of the possible output.

```
rlghncxa03w 05-09-10 11:43:04 GMT EAGLE5 34.0.0

        PCA
        PCI
        PCN
        CLLI
        PCTYPH

        001-001-001
        3-150-4
        13482
        rlghncxa03w
        OTHER

        s-3-150-4
        s-13482
        s-13482
        s-13482

                                                                                                                 PCTYPE
CPCA

        002-002-002
        002-002-003
        002-002-004
        002-002-005

        002-002-006
        002-002-007
        002-002-008
        002-002-009

        004-002-001
        004-003-003
        144-212-003
        002-002-009

CPCA (LNP)
005-005-002 005-005-004 005-005-005
CPCI
1-001-1
                            1-001-2 1-001-3 1-001-4
CPCN
                            02092 02094
02192 11177
02091
                                                                                02097
02191
                                02192
                                                                  11177
```

If you wish to use ITU-I or ITU-N spare point codes with GSM MAP Screening, and the **rtrv-sid** output does not show any ITU-I or ITU-N spare point codes, add ITU-I and ITU-N spare point codes, as necessary, to the self identification of the EAGLE 5 SAS by performing the "Changing the Self-Identification of the EAGLE 5 SAS" procedure in the *Database Administration Manual - SS7*.

3. Display the point codes in the destination point code table by using the rtrv-dstn command with the linkset's adjacent point code. For this example, enter these commands.

```
rtrv-dstn:dpci=3-150-4
```

This is an example of the possible output.

rlghncxa03w 05-09-10 11:43:04 GMT EAGLE5 34.0.0 DPCI CLLI BEI ELEI ALIASA ALIASN/N24 DOMAIN 3-150-4 lsi7clli yes --- ----- SS7 SPC NCAI

rtrv-dstn:dpcn=10685

This is an example of the possible output.

rlghncxa03w	05-09-10 11:4	3:04	GMT E	AGLE5 34.0.0		
DPCN	CLLI	BEI	ELEI	ALIASA	ALIASI	DOMAIN
10685	lsn5clli	yes				SS7
	SPC	NCA	I			

If the point code specified in the **rtrv-dstn** command in this step is not in the database, the following message is displayed.

rlghncxa03w 05-09-10 11:43:04 GMT EAGLE5 34.0.0 DPCA CLLI BEI ELEI ALIASI ALIASN/N24 DOMAIN No destinations meeting the requested criteria were found Destination table is (28 of 2000) 1% full If a linkastic being added to the database on the adjacent point code

If a linkset is being added to the database, or the adjacent point code of the linkset is being changed, and the adjacent point code is not shown in the **rtrv-dstn** command output, go to the "Adding a Destination Point Code" procedure in the *Database Administration Manual* - *SS7* and add the adjacent point code to the destination point code table.

NOTE: An ANSI point code can be used as the APC of a linkset for GSM MAP Screening only if the Enhanced GSM MAP Screening feature is enabled and on.

4. Verify that the GSM MAP Screening feature is enabled and on by entering the rtrv-ctrl-feat command with the part number of the GSM MAP Screening feature. Enter this command.

rtrv-ctrl-feat:partnum=893013201

The following is an example of the possible output.

rlghncxa03w 05-09-28 21:15:37 GMT EAGLE5 34.0.0 The following features have been permanently enabled:								
Feature Name GSM Map Screening (GMS)	Partnum 893013201		Quantity 					
The following features ha	The following features have been temporarily enabled:							
Feature Name Zero entries found.	Partnum	Status	Quantity	Trial	Period Left			
The following features have expired temporary keys:								
Feature Name Zero entries found.	Partnum							

If the GSM MAP screening feature is not enabled or off, go to the "Activating the GSM MAP Screening Feature" procedure on page 5-24 to enable and turn on the GSM MAP screening feature.

NOTE: If ANSI point codes are not being used, skip step 5 and go to step 6.

5. Verify that the Enhanced GSM MAP Screening feature is enabled and on by entering the rtrv-ctrl-feat command with the part number of the Enhanced GSM MAP Screening feature. Enter this command.

rtrv-ctrl-feat:partnum=893012401

The following is an example of the possible output.

rlghncxa03w 05-09-28 21:15:37 GMT EAGLE5 34.0.0 The following features have been permanently enabled:							
Feature Name Enhanced GMS (EGMS)	Partnum 893012401		Quantity				
The following features have been temporarily enabled:							
Feature Name Zero entries found.	Partnum	Status	Quantity	Trial Period Left			
The following features have expired temporary keys:							
Feature Name Zero entries found.	Partnum						
If the Enhanced CSM MAP acrossing feature is not enabled or off go to the							

If the Enhanced GSM MAP screening feature is not enabled or off, go to the "Activating the GSM MAP Screening Feature" procedure on page 5-24 to enable and turn on the Enhanced GSM MAP screening feature.

NOTE: If no existing linksets are being changed, skip steps 6 and go to step 7.

6. Display the current linkset configuration of the linkset to be changed using the rtrv-ls command with the linkset name. For this example, enter this command.

rtrv-ls:lsn=lsn4

This is an example of the possible output.

rlghncxa03w 05-09-17 11:43:04 GMT EAGLE5 34.0.0										
LSN lsn4	AP 09		7) SCRN scr3					T MES off		
			TFATCABMI 1			L8 SLSF - 1	RSB IT on		SMSCR	N
	IPGW no		LSN IP7			SLKUSE	EALM			
				L2T		L1			PCR	PCR
	LOC	LINK S	LC TYPE		BPS					N2
	1205	b 0	LIMDS0		56000					
	1213	b 1	LIMOCU	1	56000			BASIC	2	
	1211	a 2	LIMDS0	1	56000			BASIC	2	
	1207	b 3	LIMV35	1	64000	DCE	OFF	BASIC	2	
	LOC	LINK SI	C TYPE	LP SET	BPS	ATN		VCI	VF	I LL
	TOC	LINK DL		001	DID	101		VCI	•1	
				LP		ATM				E1ATM
	LOC	LINK SL	C TYPE	SET	BPS	TSEL	VC	I VF	PI CR	C4 SI SN
	LOC	LINK SL	C TYPE	IPLI	ML2					
	LOC	LINK SL	C TYPE							
	LOC	LINK SL	C TYPE		BPS	ECM	PCR N1	PCR N2	E1 LOC	E1 PORT TS
	LOC	LINK SL	C TYPE	L2T SET	BPS	ECM	PCR N1	PCR N2	T1 LOC	T1 PORT TS
Link set t	able	is (21	of 1024)	2% fu	111					

NOTE: If you are not adding a new linkset to the database, skip step 7 and go to step 8.

7. Add the new linkset to the database using the ent-ls command. For this example, enter these commands.

```
ent-ls:lsn=lsn5:apcn=10685:lst=a:gsmscrn=on
```

ent-ls:lsn=lsi7:apci=3-150-4:lst=a:gsmscrn=on

NOTE: An ANSI point code can be used as the APC of a linkset for GSM MAP Screening only if the Enhanced GSM MAP Screening feature is enabled and on.

The apci parameter value can be either an ITU-I point code or an ITU-I spare point code.

The apcn parameter value can be either an ITU-N point code or an ITU-N spare point code.

When each of these commands have successfully completed, this message should appear.

```
rlghncxa03w 05-09-17 16:23:21 GMT EAGLE5 34.0.0
Link set table is ( 21 of 1024) 2% full
ENT-LS: MASP A - COMPLTD
```

NOTE: If you are not changing an existing linkset in the database, skip step 8 and go to step 9.

8. Change the gsmscrn parameter value in the existing linkset in the database using the chg-ls command. For this example, enter this command.

chg-ls:lsn=lsn4:gsmscrn=on

NOTE: The gsmscrn parameter can be specified for a linkset with an ANSI APC only if the Enhanced GSM MAP Screening feature is enabled and on.

When this commands has successfully completed, this message should appear.

```
rlghncxa03w 05-09-17 16:23:21 GMT EAGLE5 34.0.0
Link set table is ( 21 of 1024) 2% full
CHG-LS: MASP A - COMPLTD
```

9. Verify the changes using the **rtrv-ls** command specifying the linkset name specified in either steps 7 or 8 with the **lsn** parameter. For this example, enter these commands.

rtrv-ls:lsn=lsn4

This is an example of the possible output.

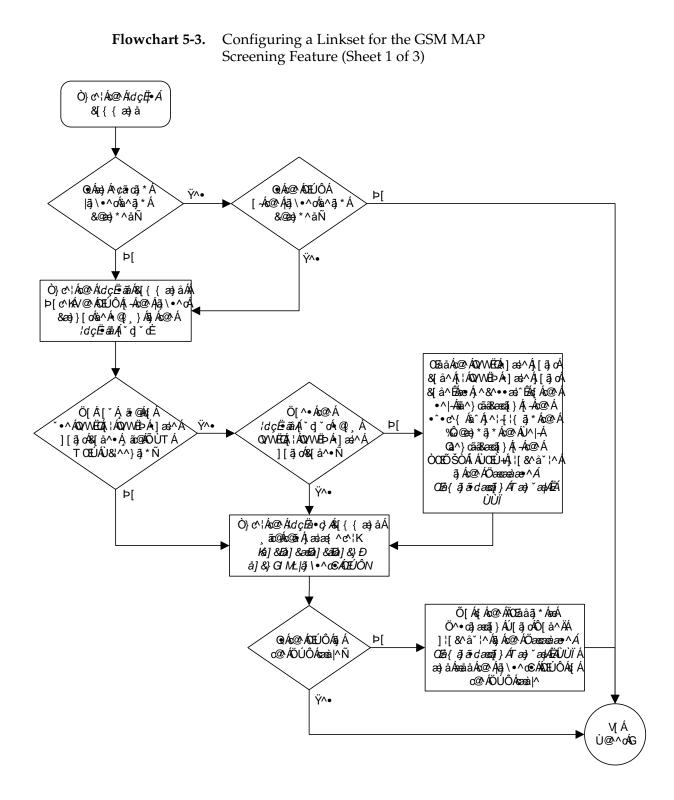
rlghncxa03w 05-09-17 11:43:04 GMT EAGLE5 34.0.0						
LSN	APCN (SS7)		LAT SLT SET BEI LST	GWS GWS LNKS ACT MES	GWS DIS SLSCI NIS	
lsn4	09786	scr3 1 2			off no on	
	CLLI TF. lsn4clli 1	ATCABMLQ MTE		SRSB ITUTFR O	SSMSCRN	
	IPGWAPC MATELSN no		SUSEALM SLKU	JSEALM		
		L2T	L1		PCR PCR	
	LOC LINK SLC			E TSET ECM	N1 N2	
		LIMDSO 1	56000			
		LIMOCU 1 LIMDS0 1	56000 56000			
		LIMV35 1		COFF BASIC		
	LOC LINK SLC T	LP YPE SET		NTM SEL VCI	VPI LL	
	LOC LINK SLC T	LP YPE SET	ATM BPS TSEL	VCI VE	E1ATM PI CRC4 SI SN	
	LOC LINK SLC T	YPE IPLI	IML2			
	LOC LINK SLC T	YPE				
	LOC LINK SLC T	L2T YPE SET	BPS ECM	PCR PCR I N1 N2	E1 E1 LOC PORT TS	
	LOC LINK SLC T	L2T YPE SET	BPS ECM	PCR PCR I N1 N2	T1 T1 LOC PORT TS	
Link set t	able is (21 of	1024) 2% fi	111			
rtrv-ls:	lsn=lsn5					
This is an	example of the p	possible out	tput.			
rlghncxa03	3w 05-09-17 11:43		LE5 34.0.0 L3T SLT	GWS GWS	GWS	
LSN	APCN (SS7)				DIS SLSCI NIS	
lsn5	10685	none 1 2	2 no a	0 off off	off no off	
	CLLI TF. lsn5clli 1	ATCABMLQ MTE		SRSB ITUTFR O on c	SSMSCRN on	

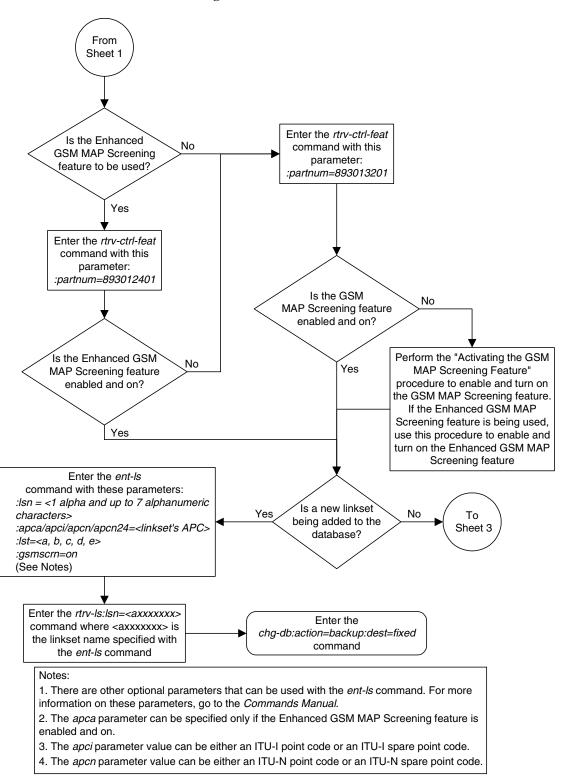
IPGWAPC MATELSN IPTPS LSUSEALM SLKUSEALM

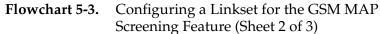
		L2T		L1			PCR	PCR
LOC	LINK SLC TYPE	SET	BPS	MODE	TSET	ECM	Nl	N2
		LP		ATN	4			

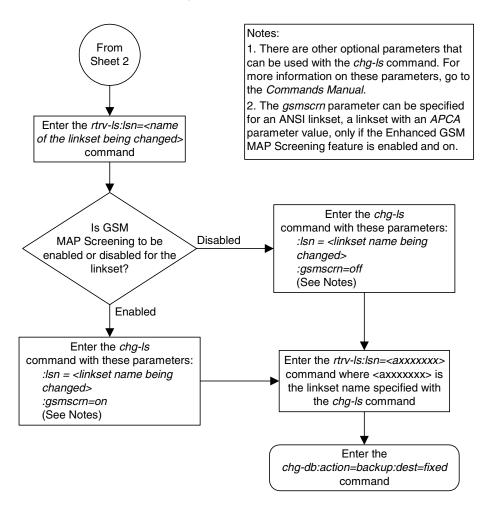
LOC I	LINK SLC TYPE	SET BPS	TSE	L	VCI	VP	I LI	L
LOC I	LINK SLC TYPE	LP SET BPS	ATM TSEL	VC	I VPI	CR(E1ATM C4 SI	
LOC I	LINK SLC TYPE	IPLIML2						
LOC I	LINK SLC TYPE							
LOC I	LINK SLC TYPE	L2T SET BPS	ECM	PCR N1	PCR N2	E1 LOC	E1 PORT	TS
LOC I	LINK SLC TYPE	L2T SET BPS	ECM	PCR N1	PCR N2	T1 LOC	T1 PORT	TS

Link set table is (21 of 1024) 2% full


rtrv-ls:lsn=lsi7


This is an example of the possible output.


rlghncxa03w 05-09-17 11:43:04 GMT EAGLE5 34.0.0 L3T SLT GWS GWS GWS APCI (SS7) SCRN SET SET BEI LST LNKS ACT MES DIS SLSCI NIS LSN 3-150-4 none 1 2 no a 0 off off no lsi7 off TFATCABMLQ MTPRSE ASL8 SLSRSB ITUTFR GSMSCRN CLUT lsn7clli 1 --- 1 off on IPGWAPC MATELSN IPTPS LSUSEALM SLKUSEALM no ----- ------L2T L1 PCR PCR LOC LINK SLC TYPE SET BPS MODE TSET ECM N1 N2 LP ATM LOC LINK SLC TYPE SET BPS TSEL VCI VPI LL LP ATM E1ATM LOC LINK SLC TYPE SET BPS TSEL VCI VPI CRC4 SI SN LOC LINK SLC TYPE IPLIML2 LOC LINK SLC TYPE L2T PCR PCR E1 E1 LOC LINK SLC TYPE SET BPS ECM N1 N2 LOC PORT TS L2T PCR PCR T1 T1 LOC LINK SLC TYPE SET BPS ECM N1 N2 LOC PORT TS Link set table is (21 of 1024) 2% full


10. Back up the new changes using the chg-db:action=backup:dest=fixed command. These messages should appear, the active Maintenance and Administration Subsystem Processor (MASP) appears first.

BACKUP (FIXED) : MASP A - Backup starts on active MASP.BACKUP (FIXED) : MASP A - Backup on active MASP to fixed disk complete.BACKUP (FIXED) : MASP A - Backup starts on standby MASP.BACKUP (FIXED) : MASP A - Backup on standby MASP to fixed disk complete.

Flowchart 5-3. Configuring a Linkset for the GSM MAP Screening Feature (Sheet 3 of 3)

Changing the System-Wide GSM MAP Screening Options

The GSM MAP screening options can be changed with the chg-stpopts command after the GSM MAP screening feature has been activated. The chg-stpopts command contains two options for GSM MAP screening.

- gsmdflt GSM MAP screening default action Allows the user to specify the default screening action (PASS or DISCARD) that occurs when a MAP operations code contained in the MSU is not found in the GSM MAP operations code table.
- gsmdecerr GSM MAP screening decode error action Allows the user to specify the default screening action (PASS or DISCARD) that occurs when an error is detected in the TCAP layer of the MSU being screened. Such errors included an invalid value for a parameter, length error, missing data, and so on.

The GSM MAP Screening feature must be enabled and on before performing this procedure. Use the **rtrv-ctrl-feat** command to verify the status of the GSM MAP Screening feature. If the GSM MAP Screening feature is not enabled and off, go to the "Activating the GSM MAP Screening Feature" procedure on page 5-24 to enable and turn on the GSM MAP screening feature.

When the GSM MAP screening feature is activated, the values for the gsmdflt and gsmdecerr parameters are set to pass. The current values for these options can be verified with the rtrv-stpopts command.

Procedure

1. Verify that the GSM MAP Screening feature is enabled and on by entering the rtrv-ctrl-feat command with the part number of the GSM MAP Screening feature. Enter this command.

rtrv-ctrl-feat:partnum=893013201

The following is an example of the possible output.

rlghncxa03w 05-09-28 21:15:37 GMT EAGLE5 34.0.0 The following features have been permanently enabled: Feature Name Partnum Status Quantity GSM Map Screening (GMS) 893013201 on ----The following features have been temporarily enabled: Feature Name Partnum Status Quantity Trial Period Left Zero entries found. The following features have expired temporary keys: Feature Name Partnum Zero entries found. If the GSM MAP screening feature is not enabled or off, go to the "Activating the GSM MAP Screening Feature" procedure on page 5-24 to enable and turn on the GSM MAP screening feature.

2. Display the existing values for the gsmdflt and gsmdecerr parameters by entering the rtrv-stpopts command. The value for the gsmdflt parameter is shown in the GSMSDFLT field. The value for the gsmdecerr parameter is shown in the GSMDECERR field. This is an example of the possible output.

```
rlghncxa03w 05-09-17 16:02:05 GMT EAGLE5 34.0.0
STP OPTIONS
------
GSMDFLT PASS
GSMDECERR PASS
```

NOTE: The rtrv-stpopts command output contains other fields that are not used by this procedure. If you wish to see all the fields displayed by the rtrv-stpopts command, see the rtrv-stpopts command description in the *Commands Manual*.

3. Change either the GSM MAP screening default action (gsmdflt) and GSM MAP screening decode error action (gsmdecerr) options using the chg-stpopts command.

If you wish to change both options, enter the chg-stpopts command with the gsmdflt and gsmdecerr parameters as shown in this example.

```
chg-stpopts:gsmdflt=discard:gsmdecerr=discard
```

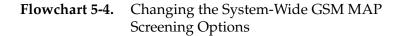
If you wish to change only one option, enter the chg-stpopts command with either the gsmdflt and gsmdecerr parameters as shown in these examples.

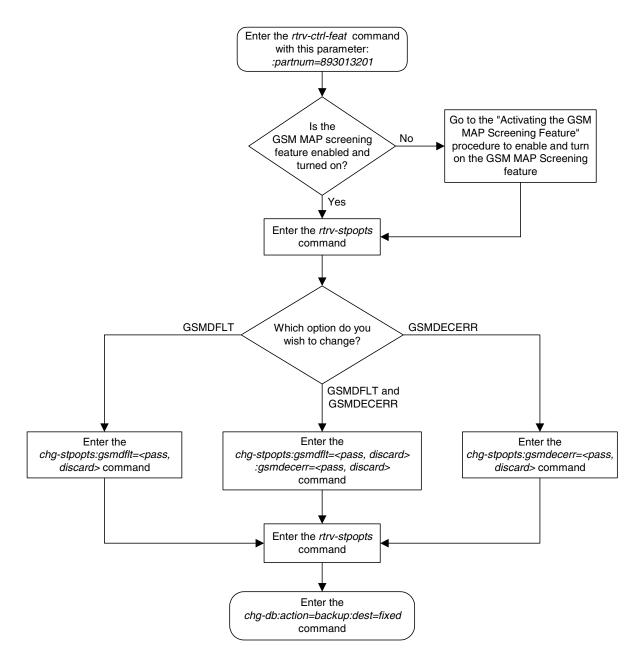
chg-stpopts:gsmdflt=discard

chg-stpopts:gsmdecerr=discard

For this example, the GSM MAP screening error code action is being changed.

When this command has successfully completed, this message should appear.


```
rlghncxa03w 05-09-07 00:22:57 GMT EAGLE5 34.0.0
CHG-STPOPTS: MASP A - COMPLTD
```


4. Verify the changes using the **rtrv-stpopts** command. This is an example of the possible output.

```
rlghncxa03w 05-09-17 16:02:05 GMT EAGLE5 34.0.0
STP OPTIONS
------
GSMDFLT PASS
GSMDECERR DISCARD
```

NOTE: The rtrv-stpopts command output contains other fields that are not used by this procedure. If you wish to see all the fields displayed by the rtrv-stpopts command, see the rtrv-stpopts command description in the *Commands Manual*. 5. Backup the new changes using the chg-db:action=backup:dest=fixed command. These messages should appear, the active Maintenance and Administration Subsystem Processor (MASP) appears first.

BACKUP (FIXED): MASP A - Backup starts on active MASP.BACKUP (FIXED): MASP A - Backup on active MASP to fixed disk complete.BACKUP (FIXED): MASP A - Backup starts on standby MASP.BACKUP (FIXED): MASP A - Backup on standby MASP to fixed disk complete.

Adding a GSM Subsystem Number Screening Entry

Use this procedure to provision the origination and destination SSNs (subsystem numbers) to be screened with the GSM MAP screening feature using the **ent-gsmssn-scrn** command.

The ent-gsmssn-scrn command uses these parameters.

:ssn – The subsystem number contained in either the calling party address (CGPA) or the called party address (CDPA) contained in the MAP message.

:type – The type of SSN, either an origination SSN (orig) or a destination SSN (dest). The origination SSN is found in the calling party address of the message. The destination SSN is found in the called party address of the message.

The GSM MAP Screening feature must be enabled and on before performing this procedure. Use the **rtrv-ctrl-feat** command to verify the status of the GSM MAP Screening feature. If the GSM MAP Screening feature is not enabled and off, go to the "Activating the GSM MAP Screening Feature" procedure on page 5-24 to enable and turn on the GSM MAP screening feature.

You cannot specify an **ssn** and **type** parameter combination that already exists in the database.

This examples used in this procedure are based on the examples shown in Table 5-4.

Table 5-4. Example GSM MAP Screening SSN Configuration Table Table

SSN	ТҮРЕ
250	orig
251	dest

Procedure

1. Verify that the GSM MAP Screening feature is enabled and on by entering the rtrv-ctrl-feat command with the part number of the GSM MAP Screening feature. Enter this command.

rtrv-ctrl-feat:partnum=893013201

The following is an example of the possible output.

rlghncxa03w 05-09-28 21:15:37 GMT EAGLE5 34.0.0 The following features have been permanently enabled: Feature Name Partnum Status Quantity GSM Map Screening (GMS) 893013201 on ---- The following features have been temporarily enabled: Feature Name Partnum Status Quantity Trial Period Left Zero entries found. The following features have expired temporary keys: Feature Name Partnum Zero entries found.

If the GSM MAP screening feature is not enabled or off, go to the "Activating the GSM MAP Screening Feature" procedure on page 5-24 to enable and turn on the GSM MAP screening feature.

2. Display the GSM MAP Screening subsystem numbers in the database using the rtrv-gsmssn-scrn command. This is an example of the possible output.

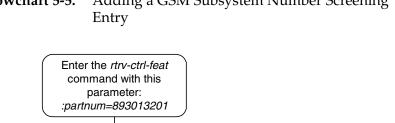
```
rlghncxa03w 05-09-07 00:28:31 GMT EAGLE5 34.0.0
SSN ORIG DEST
2 Yes No
10 Yes Yes
GSM Map Screening table is (2 of 512) 1% full
RTRV-GSMSSN-SCRN: MASP A - COMPLTD
```

3. Add the new subsystem numbers to be screened to the database with the **ent-gsmssn-scrn** command. For this example, enter these commands:

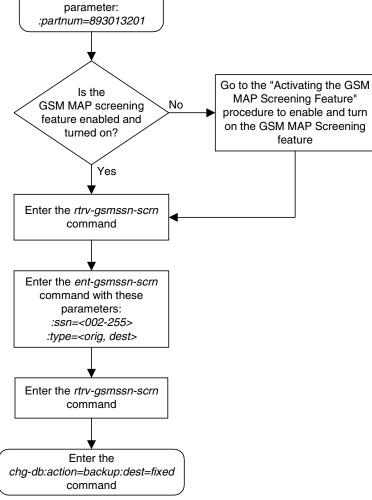
```
ent-gsmssn-scrn:ssn=250:type=orig
```

ent-gsmssn-scrn:ssn=251:type=dest

When each of these commands has successfully completed, this message appears.


```
rlghncxa03w 05-09-07 00:29:31 GMT EAGLE5 34.0.0
ENT-GSMSSN-SCRN: MASP A - COMPLTD
```

4. Verify the changes using the **rtrv-gsmssn-scrn** command. This is an example of the possible output.


```
rlghncxa03w 05-09-07 00:28:31 GMT EAGLE5 34.0.0
SSN ORIG DEST
2 Yes No
10 Yes Yes
250 Yes No
251 No Yes
GSM Map Screening table is (4 of 512) 1% full
RTRV-GSMSSN-SCRN: MASP A - COMPLTD
```

5. Backup the new changes using the chg-db:action=backup:dest=fixed command. These messages should appear, the active Maintenance and Administration Subsystem Processor (MASP) appears first.

BACKUP (FIXED) : MASP A - Backup starts on active MASP.BACKUP (FIXED) : MASP A - Backup on active MASP to fixed disk complete.BACKUP (FIXED) : MASP A - Backup starts on standby MASP.BACKUP (FIXED) : MASP A - Backup on standby MASP to fixed disk complete.

Flowchart 5-5. Adding a GSM Subsystem Number Screening

Removing a GSM Subsystem Number Screening Entry

Use this procedure to remove an SSN (subsystem number) from the GSM MAP SSN screening table using the dlt-gsmssn-scrn command.

The dlt-gsmssn-scrn command uses these parameters.

:ssn – The subsystem number contained in either the calling party address (CGPA) or the called party address (CDPA) contained in the MAP message.

:type – The type of SSN, either an origination SSN (orig) or a destination SSN (dest). The origination SSN is found in the calling party address of the message. The destination SSN is found in the called party address of the message.

The **ssn** and **type** parameter combination specified in the **dlt-gsmssn-scrn** command must be in the database.

Procedure

1. Display the GSM MAP Screening subsystem numbers in the database using the rtrv-gsmssn-scrn command. This is an example of the possible output.

```
rlghncxa03w 05-09-07 00:28:31 GMT EAGLE5 34.0.0
SSN ORIG DEST
2 Yes No
10 Yes Yes
250 Yes No
251 No Yes
GSM Map Screening table is (4 of 512) 1% full
RTRV-GSMSSN-SCRN: MASP A - COMPLTD
```

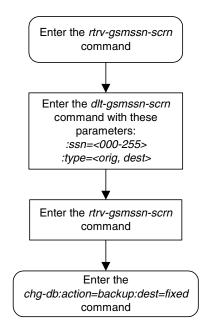
2. Remove the subsystem number from the database with the dlt-gsmssn-scrn command. For this example, enter this command.

```
dlt-gsmssn-scrn:ssn=010:type=orig
dlt-gsmssn-scrn:ssn=251:type=dest
```

When each of these commands has successfully completed, this message appears.

```
rlghncxa03w 05-09-07 00:29:31 GMT EAGLE5 34.0.0
DLT-GSMSSN-SCRN: MASP A - COMPLTD
```

3. Verify the changes using the **rtrv-gsmssn-scrn** command. This is an example of the possible output.


```
rlghncxa03w 05-09-07 00:28:31 GMT EAGLE5 34.0.0
SSN ORIG DEST
2 Yes No
10 No Yes
250 Yes No
GSM Map Screening table is (3 of 512) 1% full
RTRV-GSMSSN-SCRN: MASP A - COMPLTD
```

GSM MAP Screening Configuration

4. Backup the new changes using the chg-db:action=backup:dest=fixed command. These messages should appear, the active Maintenance and Administration Subsystem Processor (MASP) appears first.

BACKUP (FIXED) : MASP A - Backup starts on active MASP.
BACKUP (FIXED) : MASP A - Backup on active MASP to fixed disk complete.
BACKUP (FIXED) : MASP A - Backup starts on standby MASP.
BACKUP (FIXED) : MASP A - Backup on standby MASP to fixed disk complete.

Flowchart 5-6. Removing a GSM Subsystem Number Screening Entry

Adding a GSM MAP Screening Operation Code

Use this procedure to provision the concerned GSM MAP screening operation codes and the default screening action for the operation code in the database using the ent-gsms-opcode command. This procedure allows the user to provision a list of all operation codes that the EAGLE 5 SAS uses in performing GSM screening.

The ent-gsms-opcode command uses these parameters.

:opcode – The MAP operation code. This parameter refers to the actual decimal value of the MAP operation codes from the TCAP layer of GSM MAP messages.

:opname – The name of operation code. This parameter lets the user give a meaningful name to the MAP operation code (opcode) entered. This name is then used by subsequent commands such as dlt-/chg-gsms-opcode and ent-/chg-/dlt-/rtrv-gsmmap-scrn.

:dfltact – The default screening action. This parameter lets the user define a default screening action for the MAP operation code (opcode) entered. The default screening action is used when a matching CGPA (calling party) address is not found in the GSM MAP screening table or when a CGPA address is found but does not have the correct npv and naiv parameters as defined by the ent-gsmmap-scrn command. One of these actions can be assigned.

- **pass** Route the message as normal to the destination.
- discard The MSU is to be discarded.
- atierr An ATI (Any Time Interrogation) reject message is generated. This option is only valid for ATI MAP operation codes.
- route Route the message as normal to the original destination node.
- forward Route the original message to the forward node. The original message is not sent to the original node. If, however, the forwarded node is not available for routing then the MSU is routed to the original node.
- **duplicate** Route the message as normal to the original destination and route a copy of the original message to the duplicate node.
- dupdisc Duplicate and discard Route the original message to the duplicate node. The original message is not sent to the original node.

:pc/pca/pci/pcn/pcn24 – The ANSI point code (pc/pca), ITU-I point code or ITU-I spare point code (pci), 14-bit ITU-N point code or 14-bit ITU-N spare point code (pcn), or 24-bit ITU-N point code (pcn24) of the node that the MSU is routed to by the forward, duplicate, or dupdisc screening actions. The EAGLE 5 SAS can contain 14-bit ITU-N point codes or 24-bit ITU-N point codes, but not both. To specify the pc/pca parameters, the Enhanced GSM MAP Screening feature must be enabled and on.

:ssn – The subsystem number of the node that the MSU is routed to by the forward, duplicate, or dupdisc screening actions

:force – The mated application override. Is the GSM MAP screening operation code to be entered without a mated application in the database (yes or no)?

The GSM MAP Screening feature must be enabled and on before performing this procedure. Use the **rtrv-ctrl-feat** command to verify the status of the GSM MAP Screening feature. If the GSM MAP Screening feature is not enabled and off, go to the "Activating the GSM MAP Screening Feature" procedure on page 5-24 to enable and turn on the GSM MAP screening feature.

The **opcode** parameter value must be a number between 0 and 255 or an asterisk (*). The **opcode=*** parameter can be specified only if the Enhanced GSM MAP Screening feature is enabled and on. Use the **rtrv-ctrl-feat** command to verify the status of the Enhanced GSM MAP Screening feature. If the Enhanced GSM MAP Screening feature is not enabled or off, go to the "Activating the GSM MAP Screening Feature" procedure on page 5-24 to enable and turn on the Enhanced GSM MAP screening feature.

The **opname** parameter value must be no more than 8 alphanumeric characters.

The word **none** cannot be used as a value for the **opname** parameter.

The dfltact=atierr parameter cannot be specified unless the value of the operation code (opcode) referenced by the opname parameter value is 71. The atierr option is only valid for ATI MAP operation codes; opcode=71 signifies an ATI MAP operation code.

The value specified for the **opcode** parameter cannot already exist in the GSM MAP operation code table.

The value specified for the **opname** parameter cannot already be used in the GSM MAP operation code table.

The pc/pca/pci/pcn/pcn24 and ssn values must be shown in the rtrv-map output, otherwise, the force=yes parameter must be specified. If the pc/pca/pci/pcn/pcn24 and ssn values are not shown in the rtrv-map output, and a new mated application is to be added, go to the "Provisioning a Mated Application" procedure in the *Database Administration Manual* - *Global Title Translation* and add the required mated application with the pc/pca/pci/pcn/pcn24 and ssn values:

The force=yes parameter can be specified only with the pc/pca/pci/pcn/pcn24 and ssn parameters.

The dfltact=forward, dfltact=duplicate, or dfltact=dupdisc parameters can be specified only with the pc/pca/pci/pcn/pcn24 and ssn parameters. If the pc/pca/pci/pcn/pcn24 and ssn parameters are specified, the dfltact=forward, dfltact=duplicate, or dfltact=dupdisc parameters must be specified.

The pc/pca/pci/pcn/pcn24 and ssn parameters must be specified together.

The pc/pca/pci/pcn/pcn24 parameter values must be the DPC of a route. The pc/pca parameter value must be a full point code. The pc/pca parameter value can be a member of a cluster point code when that cluster point code is the DPC of a route. This can be verified with the rtrv-rte command. If the pc/pca/pci/pcn/pcn24 value is not shown in the rtrv-rte as the DPC of a route, go to the "Adding a Route Containing an SS7 DPC" procedure in the Database Administration Manual - SS7 and add a new route containing the pc/pca/pci/pcn/pcn24 value.

This examples used in this procedure are based on the examples shown in Table 5-5.

OPCODE	OPNAME	DFLTACT	PC/PCA/PCI/PCN /PCN24	SSN
100	pass100	pass	N/A	N/A
150	discard1	discard	N/A	N/A
71	ati	atierr	N/A	N/A
25	route25	route	N/A	N/A
139	fwd139	forward	3-159-7	128
187	dup187	duplicate	11519	79
93	dd93	dupdisc	5-25-3	200
36	for1	forward	002-002-002	10
*	star	pass	N/A	N/A

Table 5-5.Example GSM MAP Screening Operation Code
Configuration Table

Procedure

1. Verify that the GSM MAP Screening feature is enabled and on by entering the rtrv-ctrl-feat command with the part number of the GSM MAP Screening feature. Enter this command.

rtrv-ctrl-feat:partnum=893013201

The following is an example of the possible output.

```
rlghncxa03w 05-09-28 21:15:37 GMT EAGLE5 34.0.0

The following features have been permanently enabled:

Feature Name Partnum Status Quantity

GSM Map Screening (GMS) 893013201 on ----

The following features have been temporarily enabled:

Feature Name Partnum Status Quantity Trial Period Left

Zero entries found.

The following features have expired temporary keys:

Feature Name Partnum

Zero entries found.
```

If the GSM MAP screening feature is not enabled or off, go to the "Activating the GSM MAP Screening Feature" procedure on page 5-24 to enable and turn on the GSM MAP screening feature.

2. Display the GSM MAP screening operation codes in the database using the **rtrv-gsms-opcode** command. This is an example of the possible output.

rlghncx	a03w 05-09	-10 11:43:0	4 GMT EAGLE5	34.0.0
OPCODE	OPNAME	DFLTACT	PCA	SSN
OPCODE	OPNAME	DFLTACT	PCI	SSN
OPCODE	OPNAME	DFLTACT	PCN	SSN
OPCODE	OPNAME	DFLTACT	PCN24	SSN
OPCODE 22 50	OPNAME sri pass50	DFLTACT disc pass		
GSMMS O	PCODE Tabl	e (2 of 257) is 1% full	

NOTE: If the dfltact parameter value will be either pass, discard, or route, skip steps 3 and 4, and go to step 5.

NOTE: If the dfltact parameter value will be atierr, skip steps 3 through 5, and go to step 6.

3. The point code and subsystem number being assigned to the GSM OPCODE must be in the mated application table. Enter the rtrv-map command with the pci/pcn/pcn24 and ssn values that will be specified with the ent-gsms-opcode command in step 6. For this example, enter these commands.

rtrv-map:pci=3-159-7:ssn=128

This is an example of the possible output.

rlghncxa03w 05-09-25 09:42:31 GMT EAGLE5 34.0.0 MAP TABLE IS 2 % FULL (20 of 1024) PCI SSN RC MULT MPCA MSSN MATERC MULT SRM MRC GRP NAME SSO 3-159-7 128 10 SOL YES GRP01 ON

rtrv-map:pcn=11519:ssn=79

This is an example of the possible output.

rlghncxa03w 05-09-25 09:42:31 GMT EAGLE5 34.0.0

MAP TABLE IS 2 % FULL (20 of 1024)

PCN	SSN	RC MULT MPCN	MSSN	MATERC MULT	SRM	MRC	GRP NAME	SSO
11519	79	10 SOL			YES	YES	GRP01	ON

rtrv-map:pci=5-25-3:ssn=200

This is an example of the possible output.

rlghncxa03w 05-09-25 09:42:31 GMT EAGLE5 34.0.0

MAP TABLE IS 2 % FULL (20 of 1024)

PCI SSN RC MULT MPCI MSSN MATERC MULT SRM MRC GRP NAME SSO 5-25-3 200 10 SOL YES YES GRP01 ON

rtrv-map:pca=002-002-002:ssn=10

This is an example of the possible output.

rlghncxa03w 05-09-25 09:42:31 GMT EAGLE5 34.0.0

E2452 Cmd Rej: Remote point code does not exist in MAP table

If the point code and subsystem number is not shown in the **rtrv-map** output, go to the "Provisioning a Mated Application" procedure in the *Database Administration Manual - Global Title Translation* and add the required point code and subsystem number to the mated application table.

NOTE: If the point code and subsystem number is not shown in the rtrv-map output, and is not added to the database in one of these procedures, the force=yes parameter must be specified with the ent-gsms-opcode command in step 6.

4. The point code specified with the ent-gsms-opcode command must be the DPC of a route. If the point code specified with the ent-gsms-opcode command is an ANSI point code, the point code can be a member of a cluster point code when that cluster point code is the DPC of a route.

Enter the **rtrv-rte** command with the **dpc** parameter specifying the point code to be used with the **ent-gsms-opcode** command to verify whether or not the point code is the DPC of a route. For this example, enter these commands.

rtrv-rte:dpci=3-159-7

This is an example of the possible output.

rlghncxa03w 05-09-07	11:43:04 GMT	EAGLE5	34.0.0	
DPCI ALIASN/N24	ALIASA	CLLI	LSN	RC APC
3-159-7 12111	240-111-111	idp1	ls100001	10 1-234-5
			ls100002	10 1-234-6
			ls100003	20 1-234-7
			ls100004	30 1-234-1
			ls100005	40 1-234-2
			ls100006	50 1-234-3

rtrv-rte:dpcn=11519

This is an example of the possible output.

rlghncxa03w	05-09-07 11:	43:04 GMT	EAGLE5	34.0.0	
DPCN	ALIASA	ALIASI	CLLI	LSN	RC APC
11519	011-222-11	1 0-001-1	ndp1	ls200001	10 11111
				ls200002	10 11112
				ls200003	20 11113
				ls200004	30 11114
				ls200005	40 11115
				ls200006	50 11116

rtrv-rte:dpci=5-25-3

This is an example of the possible output.

rlghncxa03w 05-09-07 11:43:04 GMT EAGLE5 34.0.0						
DPCI	ALIASN/N24	ALIASA	CLLI	LSN	RC APC	
5-25-3	07659	240-039-150	idp1	ls100001	10 5-25-3	
				ls100002	10 3-250-6	
				ls100003	20 7-34-7	
				ls100004	30 6-98-1	
				ls100005	40 3-142-2	
				ls100006	50 1-178-3	
rtrv-rte:dpca=002-002-002						
rlghncxa	a03w 05-09-25	09:42:31 GM	I EAGLE5 3	4.0.0		
DPCA	ALIASI A	ALIASN/N24	CLLI	LSN	RC APCA	
002-002	-002			- lsn1	10 002-002-002	

If the point code is not shown in the **rtrv-rte** output, or, if the point code is an ANSI point code, the point code is not a member of a cluster point code when that cluster point code is the DPC of a route, go to the "Adding a Route Containing an SS7 DPC" procedure in the *Database Administration Manual* -*SS7* and add the required route to the database. NOTE: If the opcode=* or the pc/pca parameters are not being used in this procedure, skip step 5, and go to step 6.

5. Verify that the Enhanced GSM MAP Screening feature is enabled and on by entering the rtrv-ctrl-feat command with the part number of the Enhanced GSM MAP Screening feature. Enter this command.

```
rtrv-ctrl-feat:partnum=893012401
```

The following is an example of the possible output.

rlghncxa03w 05-09-28 21:15:37 GMT EAGLE5 34.0.0 The following features have been permanently enabled:							
Feature Name Enhanced GMS (EGMS)	Partnum 893012401		Quantity 				
The following features have been temporarily enabled:							
Feature Name Zero entries found.	Partnum	Status	Quantity	Trial	Period Left		
The following features have expired temporary keys:							
Feature Name Zero entries found.	Partnum						

If the Enhanced GSM MAP screening feature is not enabled or off, go to the "Activating the GSM MAP Screening Feature" procedure on page 5-24 to enable and turn on the Enhanced GSM MAP screening feature.

6. Add the new GSM MAP screening operation codes to the database with the ent-gsms-opcode command. For this example, enter these commands:

```
ent-gsms-opcode:opcode=100:opname=pass100:dfltact=pass
ent-gsms-opcode:opcode=150:opname=discard1:dfltact=discard
ent-gsms-opcode:opcode=71:opname=ati:dfltact=atierr
ent-gsms-opcode:opcode=25:opname=route25:dfltact=route
ent-gsms-opcode:opcode=139:opname=fwd139:dfltact=forward
:pci=3-159-7:ssn=128
ent-gsms-opcode:opcode=187:opname=dup187:dfltact=duplicate
:pcn=11519:ssn=79
ent-gsms-opcode:opcode=93:opname=dd93:dfltact=dupdisc
:pci=5-25-3:ssn=200
ent-gsms-opcode:opcode=36:opname=for1:dfltact=forward
:pca=002-002:ssn=10
ent-gsms-opcode:opcode=*:opname=star1:dfltact=pass
When each of these commands has successfully completed, this message
```

appears.

```
rlghncxa03w 05-09-10 11:43:04 GMT EAGLE5 34.0.0
ENT-GSMS-OPCODE: MASP A - COMPLTD
```

NOTES:

- If the pc/pca/pci/pcn/pcn24, ssn, dfltact=forward, dfltact=duplicate, or dfltact=dupdisc parameters are specified with the ent-gsms-opcode command, and the pc/pca/pci/pcn/pcn24 and ssn values are not in the mated application table (see step 3), the force=yes parameter must be specified with the ent-gsms-opcode command.
- 2. The word "none" cannot be used as a value for the opname parameter.
- 3. The pc/pca/pci/pcn/pcn24 value must be shown in the rtrv-rte output as the DPC of a route (see step 4). The pc/pca value must be a full point code value. The pc/pca value can be a member of a cluster point code when that cluster point code is the DPC of a route.
- 4. If the pc/pca/pci/pcn/pcn24 or ssn parameters are specified with the ent-gsms-opcode command, the dfltact parameter value must be either forward, duplicate, or dupdisc.
- 5. If the dfltact parameter value is either forward, duplicate, or dupdisc, the pc/pca/pci/pcn/pcn24 and ssn parameters must be specified with the ent-gsms-opcode command.
- 6. If the dfltact parameter value is either pass, discard, route, or atierr, the pc/pca/pci/pcn/pcn24 and ssn parameters cannot be specified with the ent-gsms-opcode command.
- The dfltact=atierr parameter cannot be specified unless the value of the operation code (opcode) referenced by the opname parameter value is 71. The atierr option is only valid for ATI MAP operation codes; opcode=71 signifies an ATI MAP operation code.
- 8. To specify the opcode=* or pc/pca parameters, the Enhanced GSM MAP Screening feature must be enabled and on (see step 5).
- Verify the changes using the rtrv-gsms-opcode command and specifying the opcode parameter value used in step 6. For this example, enter these commands.

rtrv-gsms-opcode:opcode=025

This is an example of the possible output.

```
rlghncxa03w 05-09-10 11:43:04 GMT EAGLE5 34.0.0

OPCODE OPNAME DFLTACT

25 route25 route

GSMMS OPCODE Table (11 of 257) is 4% full

rtrv-gsms-opcode:opcode=071

This is an example of the possible output.

rlghncxa03w 05-09-10 11:43:04 GMT EAGLE5 34.0.0

OPCODE OPNAME DFLTACT

71 ati atierr

GSMMS OPCODE Table (11 of 257) is 4% full
```

rtrv-gsms-opcode:opcode=093

This is an example of the possible output.

rlghncxa03w 05-09-10 11:43:04 GMT EAGLE5 34.0.0 OPCODE OPNAME DFLTACT PCI SSN 93 dd93 dupdc 5-25-3 200

GSMMS OPCODE Table (11 of 257) is 4% full

rtrv-gsms-opcode:opcode=100

This is an example of the possible output.

rlghncxa03w 05-09-10 11:43:04 GMT EAGLE5 34.0.0 OPCODE OPNAME DFLTACT 100 pass100 pass

GSMMS OPCODE Table (11 of 257) is 4% full

rtrv-gsms-opcode:opcode=139

This is an example of the possible output.

rlghncxa03w 05-09-10 11:43:04 GMT EAGLE5 34.0.0 OPCODE OPNAME DFLTACT PCI SSN 139 fwd139 fwd 3-159-7 128

GSMMS OPCODE Table (11 of 257) is 4% full

rtrv-gsms-opcode:opcode=150

This is an example of the possible output.

rlghncxa03w 05-09-10 11:43:04 GMT EAGLE5 34.0.0 OPCODE OPNAME DFLTACT 150 discard1 disc

GSMMS OPCODE Table (11 of 257) is 4% full

rtrv-gsms-opcode:opcode=187

This is an example of the possible output.

rlghncxa03w 05-09-10 11:43:04 GMT EAGLE5 34.0.0 OPCODE OPNAME DFLTACT PCN SSN 187 dup187 dup1 11519 79

GSMMS OPCODE Table (11 of 257) is 4% full

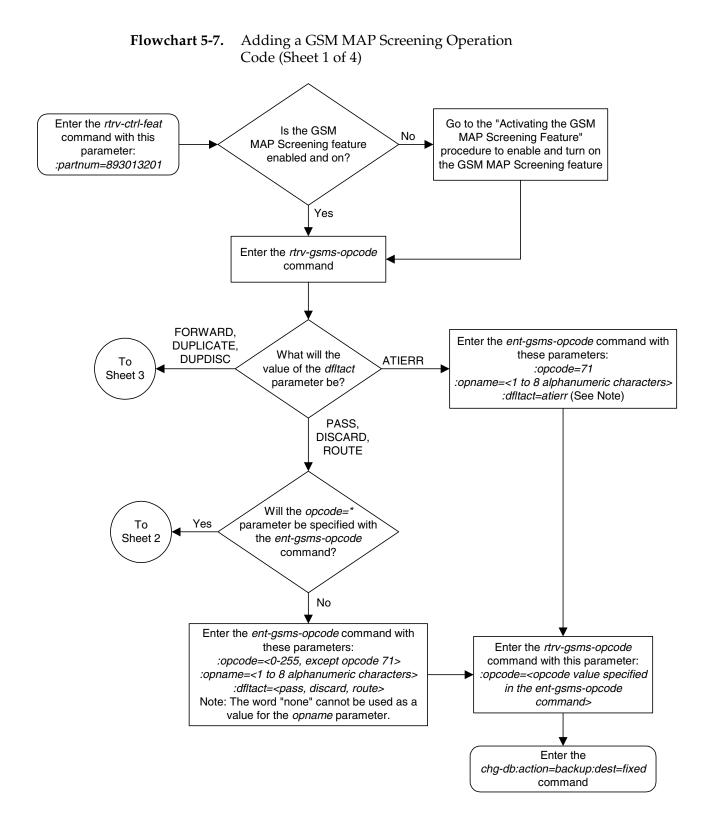
rtrv-gsms-opcode:opcode=36

This is an example of the possible output.

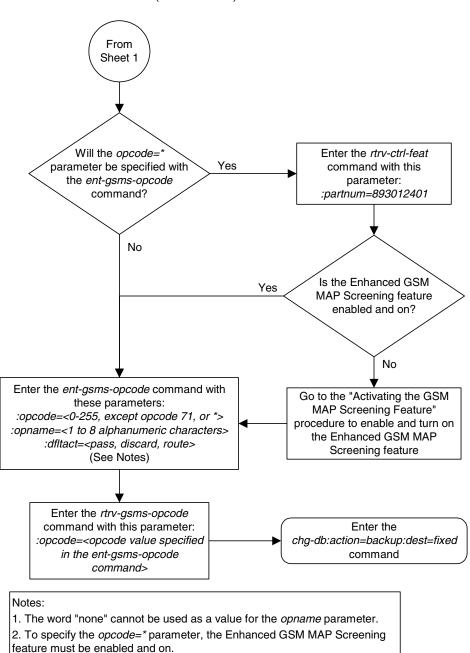
rlghncxa03w 05-09-10 11:43:04 GMT EAGLE5 34.0.0 OPCODE OPNAME DFLTACT PCA SSN 36 for1 fwd 002-002-002 10

GSMMS OPCODE Table (11 of 257) is 4% full

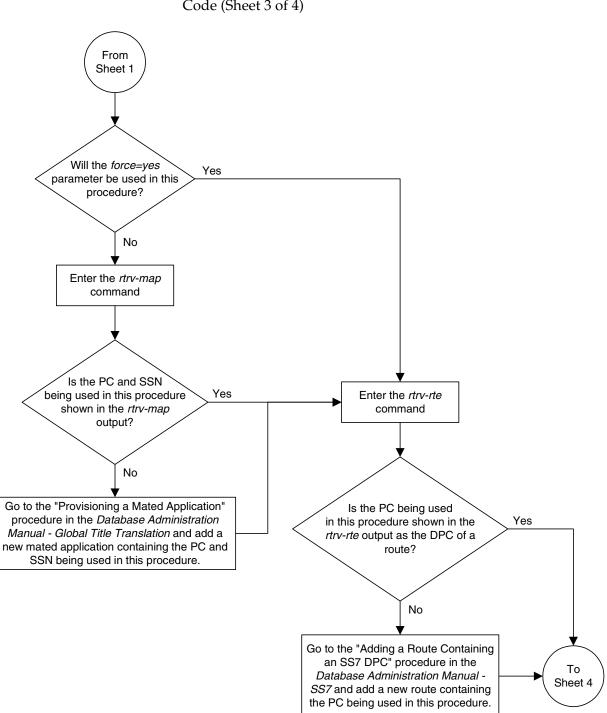
rtrv-gsms-opcode:opcode=*

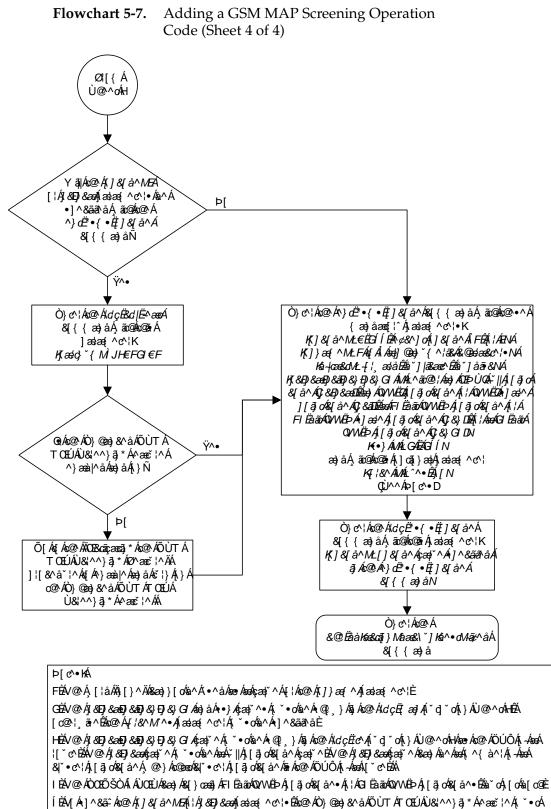

This is an example of the possible output.

rlghncxa03w 05-09-10 11:43:04 GMT EAGLE5 34.0.0
OPCODE OPNAME DFLTACT
 * star pass
GSMMS OPCODE Table (11 of 257) is 4% full


GSM MAP Screening Configuration

8. Backup the new changes using the chg-db:action=backup:dest=fixed command. These messages should appear, the active Maintenance and Administration Subsystem Processor (MASP) appears first.


BACKUP (FIXED) : MASP A - Backup starts on active MASP.
BACKUP (FIXED) : MASP A - Backup on active MASP to fixed disk complete.
BACKUP (FIXED) : MASP A - Backup starts on standby MASP.
BACKUP (FIXED) : MASP A - Backup on standby MASP to fixed disk complete.


910-0097-001 Rev B, October 2005

Flowchart 5-7. Adding a GSM MAP Screening Operation Code (Sheet 2 of 4)

Flowchart 5-7. Adding a GSM MAP Screening Operation Code (Sheet 3 of 4)

Removing a GSM MAP Screening Operation Code

Use this procedure to remove GSM MAP screening operation codes and the default screening action for that operation code using the dlt-gsms-opcode command.

The dlt-gsms-opcode command uses only one parameter, opname. The value for the opname parameter is the user-defined name for the operation code shown in the rtrv-gsms-opcode command output.

The **opname** value being removed cannot be referenced by any GSM MAP screening entries (shown in the **rtrv-gsmmap-scrn** command output). Use the "Removing a GSM MAP Screening Entry" procedure on page 5-115 to remove any GSM MAP screening entries that reference the **opname** name value being removed from the database.

Procedure

1. Display the GSM MAP screening opcodes in the database using the **rtrv-gsms-opcode** command. This is an example of the possible output.

rlghncxa03w 05-09-10 11:43:04 GMT EAGLE5 34.0.0

OPCODE	OPNAME	DFLTACT	PCA	SSN
36	for1	fwd	002-002-002	10
OPCODE	OPNAME	DFLTACT	PCI	SSN
93	dd93	dupdc	5-25-3	200
139	fwd139	fwd	3-159-7	128
OPCODE	OPNAME	DFLTACT	PCN	SSN
187	dup187	dupl	11519	79
OPCODE	OPNAME	DFLTACT	PCN24	SSN
OPCODE 22 25 50 71 100 150 *	OPNAME sri route25 pass50 ati pass100 discard1 star	DFLTACT disc route pass atierr pass disc pass		
GSMMS O	PCODE Tabl	e (11 of 25	57) is 4% full	

2. Display the GSM MAP screening entries that reference the **opname** value being removed from the database using the **rtrv-gsmmap-scrn** command specifying the **opname** parameter with the **opname** value being removed from the database. For this example, enter this command.

rtrv-gsmmap-scrn:opname=sri

This is an example of the possible output if the **rtrv-gsmmap-scrn** output contains no entries that reference the **opname** value being removed.

rlghncxa03w 05-09-20 09:07:58 GMT EAGLE5 34.0.0

Single CgPA H	Intries	for	OPNAME:	sri		
SADDR	NPV	NAIV	FORBID	ACTION	PCA	SSN CGSR
SADDR	NPV	NAIV	FORBID	ACTION	PCI	SSN CGSR
SADDR	NPV	NAIV	FORBID	ACTION	PCN	SSN CGSR
SADDR	NPV	NAIV	FORBID	ACTION	PCN24	SSN CGSR
SADDR	NPV	NAIV	FORBID	ACTION	CGSR	

Range CgPA Entries for OPNAME: sri

SADDR	EADDR	NPV	NAIV	FORBID	ACTION	PCA	SSN	CGSR
SADDR	EADDR	NPV	NAIV	FORBID	ACTION	PCI	SSN	CGSR
SADDR	EADDR	NPV	NAIV	FORBID	ACTION	PCN	SSN	CGSR
SADDR	EADDR	NPV	NAIV	FORBID	ACTION	PCN24	SSN	CGSR
SADDR	EADDR	NPV	NAIV	FORBID	ACTION	CGSR		

GSM Map Screening table is (1500 of 4000) 38% full

This is an example of the possible output if the **rtrv-gsmmap-scrn** output contains entries that reference the **opname** value being removed.

rtrv-gsmmap-scrn:opname=sri

rlghncxa03w 05-09-20 09:07:58 GMT EAGLE5 34.0.0

```
Single CgPA Entries for OPNAME: sri
```

SADDR	NPV	NAIV	FORBID	ACTION	PCA	SSN	CGSR
SADDR	NPV	NAIV	FORBID	ACTION	PCI	SSN	CGSR
SADDR	NPV	NAIV	FORBID	ACTION	PCN	SSN	CGSR
SADDR	NPV	NAIV	FORBID	ACTION	PCN24	SSN	CGSR
SADDR	NPV	NATV	FORBID	ACTION	CGSR		
BIIDDIC	TAT A	14111 0	TORDID	11011010	CODIC		
91946200000005	1	0	none	pass	sri1		

```
Range CgPA Entries for OPNAME: sri
```

SADDR	EADDR	NPV	NAIV	FORBID	ACTION	PCA	SSN	CGSR
SADDR	EADDR	NPV	NAIV	FORBID	ACTION	PCI	SSN	CGSR
SADDR	EADDR	NPV	NAIV	FORBID	ACTION	PCN	SSN	CGSR
SADDR	EADDR	NPV	NAIV	FORBID	ACTION	PCN24	SSN	CGSR
	EADDR 919461900000000 919463000000000	4	NAIV 1 *	FORBID all all	ACTION pass disc	CGSR sri2 sri3		

GSM Map Screening table is (1500 of 4000) 38% full

If the GSM MAP screening entry in this step contains any CGPA entries, go to the "Removing a GSM MAP Screening Entry" procedure on page 5-115 to remove the CGPA entries shown in this step.

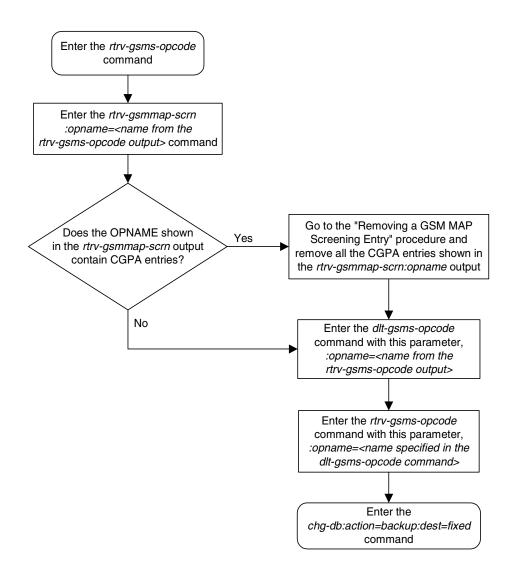
3. Remove the GSM MAP opname value from the database using the dlt-gsms-opcode command. For this example, enter this command.

```
dlt-gsms-opcode:opname=sri
```

When this command has successfully completed, this message appears.

```
rlghncxa03w 05-09-07 00:29:31 GMT EAGLE5 34.0.0
DLT-GSMS-OPCODE: MASP A - COMPLTD
```

4. Verify the changes using the **rtrv-gsms-opcode** command with the **opname** parameter value specified in step 3. For this example, enter this command.


```
rtrv-gsms-opcode:opname=sri
```

This is an example of the possible output.

```
rlghncxa03w 05-09-10 11:43:04 GMT EAGLE5 34.0.0
E3892 Cmd Rej: OPNAME does not exist in the database
```

5. Backup the new changes using the chg-db:action=backup:dest=fixed command. These messages should appear, the active Maintenance and Administration Subsystem Processor (MASP) appears first.

BACKUP (FIXED) : MASP A - Backup starts on active MASP.BACKUP (FIXED) : MASP A - Backup on active MASP to fixed disk complete.BACKUP (FIXED) : MASP A - Backup starts on standby MASP.BACKUP (FIXED) : MASP A - Backup on standby MASP to fixed disk complete.

Flowchart 5-8. Removing a GSM MAP Screening Operation Code

Changing a GSM MAP Screening Operation Code

Use this procedure to change the attributes of the GSM MAP screening operation codes using the **chg-gsms-opcode** command. The procedure allows you to change the default screening action and the operation-code name for a specific operation code. The **chg-gsms-opcode** command uses these parameters.

:opname – The user-defined name for the operation code shown in the rtrv-gsms-opcode command output.

:nopname – The new user-defined name for the operation code.

:ndfltact - The new default screening action.

- **pass** Route the message as normal to the destination.
- discard The MSU is to be discarded.
- atierr An ATI (Any Time Interrogation) reject message is generated. This option is only valid for ATI MAP operation codes.
- route Route the message as normal to the original destination node.
- forward Route the original message to the forward node. The original message is not sent to the original node. If, however, the forwarded node is not available for routing then the MSU is routed to the original node.
- duplicate Route the message as normal to the original destination and route a copy of the original message to the duplicate node.
- **dupdisc** Duplicate and discard Route the original message to the duplicate node. The original message is not sent to the original node.

:npc/npca/npci/npcn/npcn24 – The new ANSI point code (npc/npca), new ITU-I point code or ITU-I spare point code (npci), new 14-bit ITU-N point code or 14-bit ITU-N spare point code (npcn), or new 24-bit ITU-N point code (npcn24) of the node that the MSU is routed to by the forward, duplicate, or dupdisc screening actions. The EAGLE 5 SAS can contain 14-bit ITU-N point codes or 24-bit ITU-N point codes, but not both. The npc/npca parameters can be specified only if the Enhanced GSM MAP Screening feature is enabled and on.

:nssn – The new subsystem number of the node that the MSU is routed to by the **forward**, **duplicate**, or **dupdisc** screening actions

:force – The mated application override. Is the GSM MAP screening operation code to be entered without a mated application in the database (yes or no)?

The **nopname** parameter value must be no more than 8 alphanumeric characters.

The reserved word **none** cannot be used as a value for the **nopname** parameter.

The ndfltact=atierr parameter cannot be specified unless the value of the operation code (opcode) referenced by the opname parameter value is 71. The atierr option is only valid for ATI MAP operation codes; opcode=71 signifies an ATI MAP operation code.

The npc/npca/npci/npcn/npcn24 and nssn values must be shown in the rtrv-map output, otherwise, the force=yes parameter must be specified. If the npc/npca/npci/npcn/npcn24 and nssn values are not shown in the rtrv-map output, and a new mated application is to be added, go to the "Provisioning a Mated Application" procedure in the Database Administration Manual - Global Title Translation and add the required mated application with the npc/npca/npci/npcn/npcn24 and nssn values.

The force=yes parameter can be specified only with the npc/npca/npci/ npcn/npcn24 and nssn parameters.

The ndfltact=forward, ndfltact=duplicate, or ndfltact=dupdisc parameters can be specified only with the npc/npca/npci/npcn/npcn24 and nssn parameters. If the npc/npca/npci/npcn/npcn24 and nssn parameters are specified, the ndfltact=forward, ndfltact=duplicate, or ndfltact=dupdisc parameters must be specified.

The npc/npca/npci/npcn/npcn24 and nssn parameters must be specified together.

The npc/npca/npci/npcn/npcn24 parameter values must be the DPC of a route or a member of a cluster route. This can be verified with the rtrv-rte command. If the npc/npca/npci/npcn/npcn24 value is not shown in the rtrv-rte as the DPC of a route, go to the "Adding a Route Containing an SS7 DPC" procedure in the *Database Administration Manual* - *SS7* and add a new route containing the npc/npca/npci/npcn/npcn24 value.

Procedure

1. Display the GSM MAP screening operation codes in the database using the rtrv-gsms-opcode command. This is an example of the possible output.

rlghncxa03w 05-09-10 11:43:04 GMT EAGLE5 34.0.0

OPCODE	OPNAME	DFLTACT	PCA	SSN
36	for1	fwd	002-002-002	10
OPCODE	OPNAME	DFLTACT	PCI	SSN
93	dd93	dupdc	5-25-3	200
139	fwd139	fwd	3-159-7	128
OPCODE	OPNAME	DFLTACT	PCN	SSN
187	dup187	dupl	11519	79
OPCODE	OPNAME	DFLTACT	PCN24	SSN
OPCODE	OPNAME	DFLTACT		
22	sri	disc		
25	route25	route		
50	pass50	pass		
71	ati	atierr		
150	discard1	disc		
*	star	pass		
GSMMS O	PCODE Tabl	e (10 of 25	7) is 4% full	

NOTE: If the default action parameter value will be changed to either pass, discard, route, or atierr, or the npc/npca/npci/npcn/npcn24 and nssn parameters are not to be specified, skip steps 2, 3, and 4, and go to step 5.

2. The point code and subsystem number being assigned to the GSM operations code must be in the mated application table. Enter the rtrv-map command with the npc/npca/npci/npcn/npcn24 and nssn values that will be specified with the chg-gsms-opcode command in step 5. For this example, enter this command.

rtrv-map:pci=4-38-1:ssn=50

This is an example of the possible output.

rlghncxa03w 05-09-25 09:42:31 GMT EAGLE5 34.0.0 MAP TABLE IS 2 % FULL (20 of 1024) PCI SSN RC MULT MPCI MSSN MATERC MULT SRM MRC GRP NAME SSO 4-38-1 50 10 SOL YES YES GRP01 ON

If the point code is not shown in the **rtrv-map** output, go to the "Provisioning a Mated Application" procedure in the *Database Administration Manual - Global Title Translation* and add the required point code and subsystem number to the mated application table.

NOTE: If the point code and subsystem number is not shown in the rtrv-map output, and is not added to the database in one of these procedures, the force=yes parameter must be specified with the chg-gsms-opcode command in step 5.

3. The point code specified with the chg-gsms-opcode command must be the DPC of a route. If the point code specified with the chg-gsms-opcode command is an ANSI point code, the point code can be a member of a cluster point code when that cluster point code is the DPC of a route.

Enter the **rtrv-rte** command with the **dpc** parameter specifying the point code to be used with the **chg-gsms-opcode** command to verify whether or not the point code is the DPC of a route. For this example, enter these commands.

rtrv-rte:dpci=4-38-1

This is an example of the possible output.

```
rlghncxa03w 05-09-07 11:43:04 GMT EAGLE5 34.0.0
DPCI ALIASN ALIASA CLLI LSN RC APCI
4-38-1 12111 240-111-111 idp1 ls300001 10 4-38-1
ls300002 10 2-66-7
ls300003 20 5-87-4
```

If the point code is not shown in the **rtrv-rte** output, if the point code is an ANSI point code, the point code is not a member of a cluster point code when that cluster point code is the DPC of a route, go to the "Adding a Route Containing an SS7 DPC" procedure in the *Database Administration Manual* - *SS7* and add the required route to the database.

NOTE: If the npc/npca parameters are not being used in this procedure, or if the rtrv-gsms-opcode output in step 1 shows ANSI point code values (pc/pca parameter values) or the opcode=* parameter value, skip step 4, and go to step 5.

4. Verify that the Enhanced GSM MAP Screening feature is enabled and on by entering the rtrv-ctrl-feat command with the part number of the Enhanced GSM MAP Screening feature. Enter this command.

rtrv-ctrl-feat:partnum=893012401

The following is an example of the possible output.

rlghncxa03w 05-09-28 21:15:37 GMT EAGLE5 34.0.0 The following features have been permanently enabled: Feature Name Partnum Status Quantity Enhanced GMS (EGMS) 893012401 on ----The following features have been temporarily enabled: Feature Name Partnum Status Quantity Trial Period Left Zero entries found. The following features have expired temporary keys: Feature Name Partnum Zero entries found. If the Embanced CEM MAD according feature is not enabled or off on to the

If the Enhanced GSM MAP screening feature is not enabled or off, go to the "Activating the GSM MAP Screening Feature" procedure on page 5-24 to enable and turn on the Enhanced GSM MAP screening feature.

5. Change the attributes of GSM MAP screening operation codes in the database with the chg-gsms-opcode command. For this example, enter these commands:

chg-gsms-opcode:opname=pass100:ndfltact=discard

```
chg-gsms-opcode:opname=discard1:nopname=pass1:ndfltact=pass
```

chg-gsms-opcode:opname=sri:nopname=irs

```
chg-gsms-opcode:opname=fwd139:nopname=fwd1000:npci=4-38-1
:nssn=50
```

When each of these commands has successfully completed, this message appears.

```
rlghncxa03w 05-09-10 11:43:04 GMT EAGLE5 34.0.0
GSM Map Op-Code Table is (8 of 256) 3% full
CHG-GSMS-OPCODE: MASP A - COMPLTD
```

NOTES:

- If the npc/npca/npci/npcn/npcn24, nssn, ndfltact=forward, ndfltact=duplicate, or ndfltact=dupdisc parameters are specified with the chg-gsms-opcode command, and the npc/npca/npci/npcn/npcn24 and nssn values are not in the mated application table (see step 2), the force=yes parameter must be specified with the chg-gsms-opcode command.
- 2. The ndfltact=atierr parameter cannot be specified unless the value of the operation code (opcode) referenced by the nopname parameter value is 71.
- 3. If the npc/npca/npci/npcn/npcn24 or nssn parameters are specified with the chg-gsms-opcode command, the resulting dfltact parameter value, either the current value or new value, must be either forward, duplicate, or dupdisc.
- 4. If the dfltact parameter value is being changed to either forward, duplicate, or dupdisc, the npc/npca/npci/npcn/npcn24 and nssn parameters must be specified with the chg-gsms-opcode command.
- 5. If the dfltact parameter value is being changed to either pass, discard, route, or atierr, the npc/npca/npci/npcn/npcn24 and nssn parameters cannot be specified with the chg-gsms-opcode command.
- 6. The word "none" cannot be used as a value for the opname or nopname parameters.
- 7. The npc/npca/npci/npcn/npcn24 value must be shown in the rtrv-rte output as the DPC of a route (see step 3). The npc/npca value must be a full point code value. The npc/npca value can be a member of a cluster point code when that cluster point code is the DPC of a route.
- 8. To specify the npc/npca parameter, the Enhanced GSM MAP Screening feature must be enabled and on (see step 4).

6. Verify the changes using the rtrv-gsms-opcode command with the opname parameter value specified in step 5. If the opname parameter value was changed in step 5, the new opname parameter value should be specified with the rtrv-gsms-opcode command. For this example, enter these commands.

rtrv-gsms-opcode:opanme=pass100

This is an example of the possible output.

```
rlghncxa03w 05-09-10 11:43:04 GMT EAGLE5 34.0.0
OPCODE OPNAME DFLTACT
100 pass100 discard
```

GSMMS OPCODE Table (10 of 257) is 4% full

rtrv-gsms-opcode:opname=pass1

This is an example of the possible output.

```
rlghncxa03w 05-09-10 11:43:04 GMT EAGLE5 34.0.0
OPCODE OPNAME DFLTACT
150 pass1 pass
```

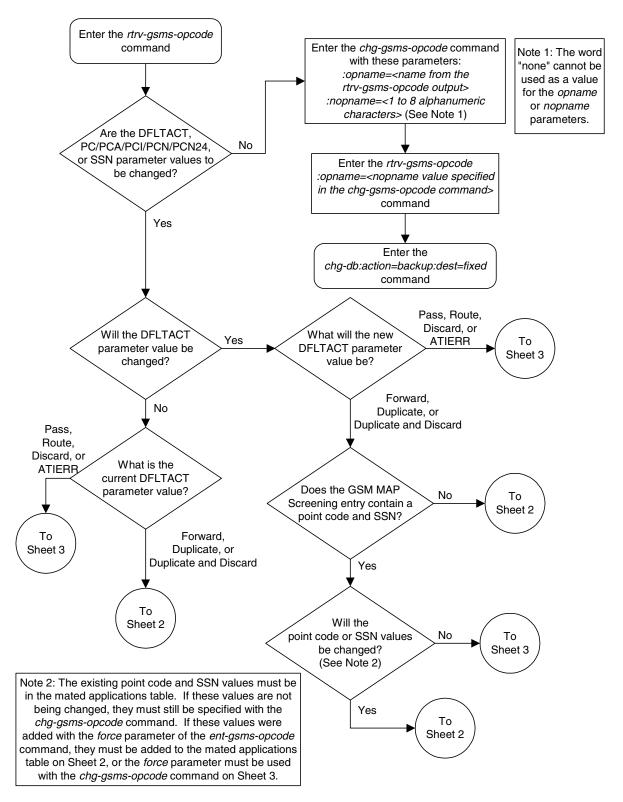
GSMMS OPCODE Table (10 of 257) is 4% full

rtrv-gsms-opcode:opname=irs

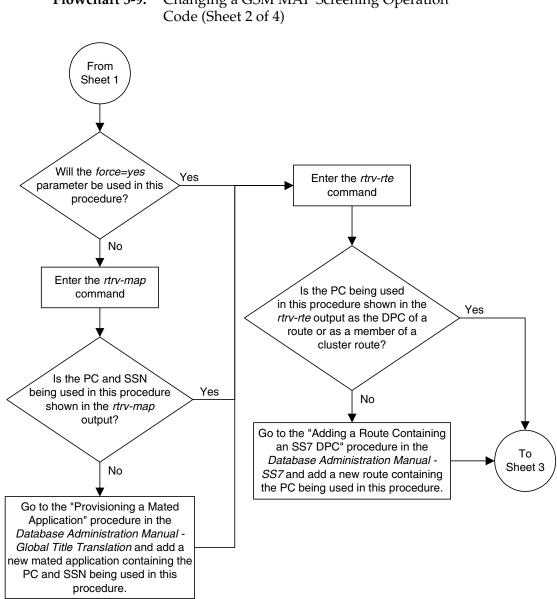
This is an example of the possible output.

rlghncxa03w 05-09-10 11:43:04 GMT EAGLE5 34.0.0 OPCODE OPNAME DFLTACT 22 irs disc

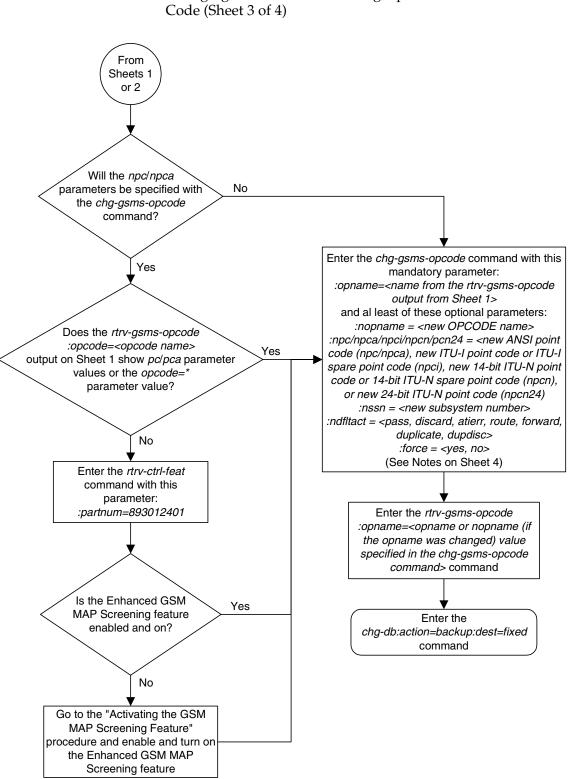
GSMMS OPCODE Table (10 of 257) is 4% full


rtrv-gsms-opcode:opname=fwd1000

This is an example of the possible output.


rlghncxa03w 05-09-10 11:43:04 GMT EAGLE5 34.0.0 OPCODE OPNAME DFLTACT PCI SSN 139 fwd1000 fwd 4-38-1 50 GSMMS OPCODE Table (10 of 257) is 4% full

7. Backup the new changes using the chg-db:action=backup:dest=fixed command. These messages should appear, the active Maintenance and Administration Subsystem Processor (MASP) appears first.


BACKUP (FIXED) : MASP A - Backup starts on active MASP.BACKUP (FIXED) : MASP A - Backup on active MASP to fixed disk complete.BACKUP (FIXED) : MASP A - Backup starts on standby MASP.BACKUP (FIXED) : MASP A - Backup on standby MASP to fixed disk complete.

Flowchart 5-9. Changing a GSM MAP Screening Operation Code (Sheet 1 of 4)

Changing a GSM MAP Screening Operation Flowchart 5-9.

Flowchart 5-9. Changing a GSM MAP Screening Operation

Flowchart 5-9. Changing a GSM MAP Screening Operation Code (Sheet 4 of 4)

Þ[♂∙KÁ

FĚV@Á,[¦åÄä;[}^Äá&aaa}}[ońahÁ*•håÁæe Áæáçaa*hÁt¦Ás@Át]}æ;hÁt¦Á,[]}æ;hÁtælæe;horh•È \dot{H} 8() cæit Á 1 8(å ^ Á FEÁQÁc@ ÁU ÚÔU ÖÒÁ, æt ^ Ási Ási ^ ā * Ási@e) * ^ å Át Ászá, æt ^ Ási@ezÁs() cæit • Á 0@ Åå- $faaesof_{i}$ $aetee(^ c^{i} A_{ce}^{i} ^{i} ^{A_{i}}) = of_{a}^{i} ^{A_{i}} \tilde{a}ae^{i} A_{i}^{i} , aeta \tilde{E}_{a}^{i}) = aetee A_{i}^{i} A_{i}^{i} = of_{a}^{i} ^{A_{i}} A_{i}^{i}$ IÈX@?Á,]&D)]&aB)]&aB)]&3D)]&}D)]&}CIÁae)åÁ,••}Aé;aeĭ^•Á,`•Óas^Á,@Q,}Á9,Áo@^ÁdçË;ae)Á,`d,`d,`d [}ÂÙ@^^AGÈAA\$@^A;]&D;]&aD;]&aD;]&}D;]&}CIA{:\A;••}A\$;aa;^•A*A\$;[^A;@_,`}A\$;A\$;@A /dçË æ}Á,čq`dĚs@∘Á,//&^M^•A,íæ;æ;^c^¦Á,č•oAs^Á]^&ãæ}åÈ ÍÈV@^Á;]&D;]&aeD;]&aeD;]&3;D;]&3;G/xé;aeĭ^Á;ĭ•o%a^Á;Q;_}Á§;Ás@^ÁdçËc^Á;ĭd;ĭo%a;}ÁÙ@^o%GÁ æki@ÁÖÚÔĄĹ-ÁsaÁ[čchĚV@Ą;]&Ð]&aa¢ka;*^ĄĹčoAsaĂčl||ĄĹ[ā;ck&[å^Ak;æř^ĔV@Ą;]&Đ]&aaA çæ‡`^Á&æa) Áa^Áæák, ^{ à^¦Ái, Áæá&i`•c^¦Á; [ā; có&i å^Á; @} Ás@æeó&i`•c^¦Á; [ā; có&i å^Áa; Ás@ ÁÖÚÔÁ; Á æÁljčc^ÈÁ Î ÊKQAKo@A&~{aastanf, astast; ^c^:|Astast; ^A#;Ash^ä; *Astoge; *^&As[A^#c@:|Af /; astabE&*`] |38aae^Ê#;|A*`] && &ÊA c@:Á;|&E)|&aeD)|&aD)|&}E)|&}G|Aéa}åÁ;••}Aíaebae(^c^¦•Á;`•oAb^^A]^&ãa3^åÈ ¨Ι ἘἶΔΑἑ@Αἑ+kæ&dAĺætæ; ^ d^¦Áşæ; ^ ÁਙĂà^ā; * Á&@et; * ^åÁţĺ Á`ão@¦Á¦æ•Ēåã&ætåÊk/ č d^ÊŦÁææ}/¦ÊÅ c@(Á;]&Ð] &æÐ] & Ð] & Ð] & G Á⇔ åÁ•••} Á ææ (^c^\+Áæ) [Ó\a^Á] ^&ãã^ åĚ ÌÈÁ/@.Á//&^M^•AÍælæet_^c^\&æa)&a^A1]^&ãã&à/á}}/ ã@\$x@.Á.1&Ð1&æÐ1&æD1&}D1&}D1&}G/A[Á }••}Aĺæ¦æ{^ơ∿¦•È J ÉV @ ÁOOEŐŠ ÓÁ ÁUOEÙ Ásea) ÁS[} cæaj ÁFI Ëa ãvÁQVVEÞ Á, [ā, cÁS[å^• Á, ¦ ÁGI Ëa ãvÁQVVEÞ Á, [ā, cÁS[å^• ÉA à`oÁ[oÁà[c@È F€ĚÁ/(Á)^&ã^Á@A,/&Ð/8æ4,ææ4,^c^¦•Ês@AÔ}@e4&^åAÔÙT ÁT ŒÚÂÛ&\^^}ā,*Á^æĕ`¦^Á {`•oÁà^Ár}æà|^åÁæ)åÁ(}È $FFEXA} (M_{A} \wedge A_{A}) (M_{A}) (M_{A$ å`] |a&aaz^ÉÁ, ¦Ásੈ`] åã &ÉÉv@Á,[´ã, cÁ&[`å^Ása) åÁ, ••}Á, adaa; ^c^¦•Á,``•cÁs∧Á;] ^&ãã àÁ, ãc@ko@Á & @ Ė = { • Ė] & [å^/& [{ a) ੈ à Ė A & @ A [] ā d & @ A [] ā d & [å ^ Å & a + ^ • Ò { A ` { a^ / A & A ` A & A }] A à^∄ * Á&@ee) * ^ åÉ&@e Á [∄ cÁ&[å^Áee) å Á`à•^• c^{{ A`{ à^} A = ae{ ^c^{+} A ``• cA}^A] ^ &ãa? å Á ãc@Á c@Á&`;;^} o4çæ;* ^• Á{; ¦A@•^A; æ;æ; ^c^;• ĚA FCHŽQÁ(})^Áv@Aj[ā)xó&[å^Á;¦Á`à•^•c^{Aj`{à^¦Áşæp`^/ás/Áş/ð]*Á&@ee)*^åÉ&@eAj[ā)xó&[å^Á;¦Á •`à•^•c^{Aj`{à^¦Áşæp`^Ás^aj*Á&@ee)*^åÁ;`•xósa^Á]^&ãæ3såÁ;ãc@&@Aj^,Áşæp`^Á;¦Á@A] æbæt ^c/lÁs^ā,*Á&@æb,*^åÈÁÝ@ Á&`ll^} ofşæt ^Át lÁc@ Át [ā of&t å^Át lÁ`à•^•c'{ Á`{ à^\A] ælæ{ ^c^¦Á;[cÁs^ąੋ * Á&@ee) * ^åÁ; `• cÁs^Á;] ^ &ãæ? åÈÁ/@:Á;å-{cæ&cA;ælæ? ^c^¦Ás[^• Á;[cÁ@eæç^Ás;Á à^Á]^&ããð å ÈÁAQ[¦Á¢æq{]|^ÊÉ\$\$Á@^Á\$`¦\^}ơÅ[ã] ướ\$[å^Á\$*Á\$*Á\$*Á\$*Á\$*ÉCË€€CË€€CÉ€€CÉ€€CÉ€

• `à•^• c^{ Å` { à^| Á∎ Â EÂ⇔ġ å Áv@ Â [∄ ơ&[å ^ Á∎ Áa^∄ * Ás@a) * ^ å Át Å & & AÆE HÆE E HÆE E HÆs HÅs) å Á c@ Á` à• c^{ Å` { à^| Á∎ Â [∂&@a) * ∄ * É&@ Á] & & Aæj ææt ^ c' ! Áçæt ^ Å [` |å Åa ^ Ás@ Á ^ Å [ã oÁ &[å^ Áçæt ^ ÁçEE HEEE HEEE HÆs HDÅs) å Ás@ Á ••} Aj ææt ^ c' ! Áçæt ^ Å [` |å Åa ^ Ás@ Ás` !!^}) of sæt ^ Áç

Adding a GSM MAP Screening Entry

Use this procedure to provision the GSM MAP screening entries that filter or allow TCAP messages for certain MAP operation codes in the database using the ent-gsmmap-scrn command. The messages are filtered or allowed based on the origination addresses (saddr/eaddr), numbering plan value (npv), nature of address indicator value (naiv), MAP opnames (opname), and forbidden (forbid) parameters.

The ent-gsmmap-scrn command uses these parameters.

: saddr – The origination address (1 - 15 decimal digits, 1 - 15 hex digits, or *) for a single entry or the starting origination address for a range of entries of the CGPA/CDPA entry to be screened.

:eaddr – The ending origination address (1 - 15 decimal digits or 1 - 15 hex digits) for a range of entries of the CGPA/CDPA entry to be screened.

:action – The screening action to take if a message is forbidden as defined by the **forbid** parameter. One of these actions can be assigned.

- **pass** Route the message as normal to the destination.
- discard The MSU is to be discarded.
- atierr An ATI (Any Time Interrogation) reject message is generated. This option is only valid for ATI MAP operation codes.
- route Route the message as normal to the original destination node.
- forward Route the original message to the forward node. The original message is not sent to the original node. If, however, the forwarded node is not available for routing then the MSU is routed to the original node.
- duplicate Route the message as normal to the original destination and route a copy of the original message to the duplicate node.
- **dupdisc** Duplicate and discard Route the original message to the duplicate node. The original message is not sent to the original node.

:pc/pca/pci/pcn/pcn24 – The ANSI point code (pc/pca), ITU-I point code or ITU-I spare point code (pci), 14-bit ITU-N point code or 14-bit ITU-N spare point code (pcn), or 24-bit ITU-N point code (pcn24) of the node that the MSU is routed to by the forward, duplicate, or dupdisc screening actions. The EAGLE 5 SAS can contain 14-bit ITU-N point codes or 24-bit ITU-N point codes, but not both. To specify the pc/pca parameters, the Enhanced GSM MAP Screening feature must be enabled and on.

:ssn – The subsystem number of the node that the MSU is routed to by the forward, duplicate, or dupdisc screening actions

:force – The mated application override. Is the GSM MAP screening operation code to be entered without a mated application in the database (yes or no)?

:forbid – The forbidden parameter value. If a forbidden parameter is detected, the message is rejected by the action defined by the **action** parameter. One of four forbidden parameter values can be specified.

- all All parameters are forbidden. Take the specified screening action defined by the action parameter for incoming messages that contain the entered address and operation code combination.
- none No parameters are forbidden. Take the specified screening action defined by the action parameter for incoming messages that contain the entered address and operation code combination.
- state Take the specified screening action defined by the action parameter for incoming messages that contain state as the forbidden parameter for the entered address and operation code combination.
- location Take the specified screening action defined by the action parameter for incoming messages that contain location as the forbidden parameter for the entered address and operation code combination.

NOTE: The state and location values are valid only for GSM ATI messages.

:naiv – The nature of address value (0 - 15 or *).

:npv – The numbering plan value (0 - 127 or *).

:opname – The user-defined name for the operation code. The opname value references the operation code (opcode) shown in the rtrv-gsms-opcode command. GSM MAP screening is performed on the specified address or addresses for the referenced operation code.

:cgsr – The CGPA screening reference name consisting of 1 alphabetic character and 3 optional alphanumeric characters.

:cdsr – The CDPA screening reference name consisting of 1 alphabetic character and 3 optional alphanumeric characters.

Table 5-6 shows the parameter combinations that can be used in this procedure.

Enhanced GSM MA	P Screening Feature	Enabled and On	GSM MAP Scree	ening Feature Enabled	d and On Only			
Entry Containing a Point Code and SSN ¹	Point Code and Point Code and the Action SSN ¹ SSN ¹ ATIERR ¹		Entry Containing a Point Code and SSN ¹	Entry Without a Point Code and SSN ¹	Entry containing the Action ATIERR ¹			
	Mandatory Parameters							
:opname = opname value ²	:opname = opname value ²	:opname = opname value containing opcode=71 ²	:opname = opname value ²	:opname = opname value ²	:opname = opname value containing opcode=71 ²			
:cgsr = CSGR name ³	:cgsr = CGSR	:cgsr = CGSR	:cgsr = CGSR name ³	:cgsr = CGSR name ³	:cgsr = CGSR name ³			
	name ³	name ³	saddr = 0 - 15 decimal digits ^{4, 5, 6}	saddr = 0 - 15 decimal digits ^{4, 5, 6}	saddr = 0 - 15 decimal digits ^{4, 5, 6}			

Enhanced GSM MA	P Screening Feature	e Enabled and On	GSM MAP Scree	ening Feature Enable	d and On Only
Entry Containing a Point Code and SSN ¹	de and Point Code and the Actio I ¹ SSN ¹ ATIERR		Entry Containing a Point Code and SSN ¹	Entry Without a Point Code and SSN ¹	Entry containing the Action ATIERR ¹
	•	Optiona	al Parameters		
:saddr = 0 - 15 hex digits, or * ⁴ , ⁵ , ⁶	:saddr = 0 - 15 hex digits, or * ⁴ , ⁵ , ⁶	:saddr = 0 - 15 hex digits, or * ⁴ , ⁵ , ⁶	:eaddr = 0 - 15 decimal digits ^{4, 5, 6}	:eaddr = 0 - 15 decimal digits $4, 5, 6$:eaddr = 0 - 15 decimal digits $4, 5, 6$
:eaddr = 0 - 15 hex digits ^{4, 5, 6, 7}	:eaddr = 0 - 15 hex digits ^{4, 5, 6, 7}	:eaddr = 0 - 15 hex digits ^{4, 5, 6, 7}	:forbid = all, none	:forbid = all, none	:forbid = state, location
:cdsr = CDSR name ³	:cdsr = CDSR name ³	:cdsr = CDSR name ³	action = forward, duplicate, dupdisc ⁹	action = pass, discard, route	:action = atierr
:forbid = all, none	:forbid = all, none	:forbid = state, location	:npv = 0 - 15, or * ⁸	:npv = 0 - 15, or * ⁸	:npv = 0 - 15, or * ⁸
:action = forward, duplicate, dupdisc ⁹	:action = pass, discard, route	:action = atierr	:naiv = 0 - 127, or * ⁸	:naiv = 0 - 127, or * ⁸	:naiv = 0 - 127, or * ⁸
:npv = 0 - 15, or * ⁸	:npv = 0 - 15, or * ⁸	:npv = 0 - 15, or * ⁸	:pci/pcn/pcn24 = point code value ^{10, 11, 12, 13}		
:naiv = 0 - 127, or * ⁸	:naiv = 0 - 127, or * ⁸	:naiv = 0 - 127, or * ⁸	ssn = SSN value ¹³		
:pc/pca/pci/pcn/ pcn24 = point code value ^{10, 11, 12, 13}			:force=yes ¹³		
:ssn = SSN value ¹³	1				
:force=yes ¹³	1				
Notes:	1	1	1		1

Table 5-6. Add GSM MAP Screening Entry Parameter Combinations (Continued)

- 1. When a CGPA entry (cgsr parameter is specified without the cdsr parameter) is added to the GSM MAP Screening table, a default wild card entry is created for the CGPA entry, thus adding two entries to the GSM MAP Screening table. The default wild card CDPA entry is not shown in the rtrv-gsmmap-scrn output. As a result, the GSM MAP Screening table must have at least two free entries in order to provision a CGPA entry in the GSM MAP Screening table. When the first provisioned wildcard (*) CDPA entry is added to a CGPA entry, the number of entries in the GSM MAP Screening table, shown in the GSM MAP Screening command outputs, does not change.
- 2. The opname parameter value must be shown in either the rtrv-gsms-opcode Of rtrv-gsmmap-scrn Output.
- 3. The case and case parameter values consist of 1 alphabetic character and up to 3 optional alphanumeric characters. If the cdse parameter is not specified, a CGPA entry with a default wild card CDPA entry is created in the GSM MAP Screening table (see Note 1). If the cdsr parameter is specified, a CDPA entry is created in the GSM MAP Screening table.
- 4. If a single entry is specified for the CGPA/CDPA (that is, the eader parameter is not specified) then the sader/npv/naiv/opname parameter combination cannot exist in the GSM MAP Screening table. 5. If a range of entries is specified for the CGPA/CDPA (that is, the eader parameter is specified) then the
- sadar/eadar/npv/naiv/opname parameter combination cannot exist in the GSM MAP Screening table or overlap with another range entry in the GSM MAP Screening table.
- 6. The eader parameter value must contain the same number of digits as the sader parameter value. The eader parameter value must be greater than the sadar parameter value. The sadar parameter must be specified with the eadar parameter.
- 7. The eader parameter cannot be specified with the sadar=* parameter.
- 8. If the Enhanced GSM MAP Screening feature is not enabled or off, and either the npv or naiv parameters are specified, both the npv and naiv parameters must be specified. If the asterisk (*) is specified for either the npv or naiv parameters, the asterisk must be specified for both the npv and naiv parameters. If numbers are specified for either the npv or naiv parameters, numbers must be specified for both the npv and naiv parameters.
- 9. If the action parameter values are either forward, duplicate, Or dupdisc, the point code and ssn parameters must be specified with the ent-gsmmap-scrn command.
- 10. The point code value must be the DPC of a route or a member of a cluster route. The pc/pca value must be a full point code, The pc/pca value can be a member of a cluster point code when that cluster point code is the DPC of a route. This can be verified with the rtrv-rte command. If the point code value is not shown in the rtrv-rte output as the DPC of a route, go to the "Adding a Route Containing an SS7 DPC" procedure in the Database Administration Manual SS7 and add a new route containing the point code value.
- 11. The EAGLE 5 SAS can contain 14-bit ITU-N point codes or 24-bit ITU-N point codes, but not both at the same time. 12. If either the point code or ssn parameters are specified, then both the point code and ssn parameters must be specified.
- 13. The point code and subsystem number values specified with the ent-gsmmap-scrn command must be shown in the rtry-map output, otherwise, the force=yes parameter must be specified. If the point code and subsystem number values are not shown in the rtrv-map output, and a new mated application is to be added, go to the "Provisioning a Mated Application" procedure in the Database Administration Manual - Global Title Translation and add the required mated application with the point code and subsystem number values.

GSM screening entries can either be single entries or range entries. Single entries have precedence in screening over range entries. Thus the single entry table is searched first and if a match is found, the range table is never searched. Range entries may overlap single entries.

If a message is screened and does not contain matching GTA, NPV, and NAIV values, the message is rejected. The message is rejected with the default action defined by the ent-gsms-opcode command for the operation code (opcode) parameter entry referenced by the operation name (opname) parameter.

This examples used in this procedure are based on the examples shown in Tables 5-7 and 5-8.

CGSR	SADDR	EADDR	NPV	NAIV	OPNAME	FORBID	ACTION	PC/PCA/ PCI/PCN/ PCN24	SSN
cg01	9194600000		5	75	pass50	none	pass	N/A	N/A
cg02	252555100000	252700000000	12	37	discard1	all	discard	N/A	N/A
cg03	8284540000	8284600000			ati	state	atierr	N/A	N/A
cg04	2416546464		0	127	route25	none	route	N/A	N/A
cg05	854000000	857000000	3	99	dd93	all	forward	3-201-7	100
cg06	154363000000	15500000000	8	86	sri	all	duplicate	9384	30
cg07	368900000	369000000	9	111	dup187	none	dupdisc	4-102-6	150

Table 5-7. Example CGPA GSM MAP Screening Configuration Table

Table 5-8.	Example CDPA GSM MAP Screening Configuration Table

CGSR	CDSR	SADDR	EADDR	OPNAME	NPV	NAIV	FORBID	ACTION	PC/PCA/ PCI/PCN/ PCN24	SSN
cg01	cd01			pass50	6	15	all	pass	N/A	N/A
cg02	cd15			discard1	10	15	all	discard	N/A	N/A
cg07	cd10			dup187	11	57	all	dupdisc	5-97-2	135

Procedure

1. Display the GSM MAP screening operation codes in the database using the **rtrv-gsms-opcode** command. This is an example of the possible output.

rlghncxa03w 05-09-10 11:43:04 GMT EAGLE5 34.0.0

OPCODE	OPNAME	DFLTACT	PCA	SSN
36	for1	fwd	002-002-002	10
OPCODE	OPNAME	DFLTACT	PCI	SSN
93	dd93	dupdc	5-25-3	200
139	fwd139	fwd	3-159-7	128
OPCODE	OPNAME	DFLTACT	PCN	SSN
187	dup187	dupl	11519	79
OPCODE	OPNAME	DFLTACT	PCN24	SSN
OPCODE 22 25 50 71 150 *	OPNAME sri route25 pass50 ati discard1 star	DFLTACT disc route pass atierr disc pass		

```
GSMMS OPCODE Table (10 of 257) is 4% full
```

NOTE: If the desired GSM MAP screening operation code entry is not shown in the rtrv-gsms-opcode output, go to the "Adding a GSM MAP Screening Operation Code" procedure on page 5-64 and add the required entry. Skip step 2 and go to step 3.

If either the forbid=state, forbid=location, or action=atierr parameters are to be assigned to the GSM MAP screening entry, the GSM MAP screening operation code table must contain an entry containing the operation code value 71.

2. Enter the rtrv-gsmmap-scrn command with an opname value shown in the rtrv-gsms-opcode command output in step 1 to display the GSM MAP screening entries in the database. For this example, enter these commands.

```
rtrv-gsmmap-scrn:opname=pass50
```

This is an example of the possible output.

```
rlghncxa03w 05-09-20 09:07:58 GMT EAGLE5 34.0.0
Single CgPA Entries for OPNAME: pass50
SADDR NPV NAIV FORBID ACTION PCA SSN CGSR
SADDR NPV NAIV FORBID ACTION PCI SSN CGSR
SADDR NPV NAIV FORBID ACTION PCN SSN CGSR
```

GSM MAP Screening Configuration

SADDR	NPV NAIV FORBI	D ACTION PCN24	SSN CGSR					
SADDR	NPV NAIV FORBI	D ACTION CGSR						
	tries for OPNAME:	-						
SADDR	EADDR	NPV NAIV FORBID A	CTION PCA	SSN CGSR				
SADDR	EADDR	NPV NAIV FORBID A	CTION PCI	SSN CGSR				
SADDR	EADDR	NPV NAIV FORBID A	CTION PCN	SSN CGSR				
SADDR	EADDR	NPV NAIV FORBID A	CTION PCN24	SSN CGSR				
SADDR	EADDR	NPV NAIV FORBID A	CTION CGSR					
GSM Man Scree	ning table is (15	00 of 4000) 38% ful	1					
-	-		-					
rtrv-gsmmap-scrn:opname=discard1 This is an example of the possible output.								
I his is an exa	ample of the boss	sidle outdut.						
		GMT EAGLE5 34.0.0						
rlghncxa03w 0		GMT EAGLE5 34.0.0						
rlghncxa03w 0 Single CgPA E	5-09-20 09:07:58	GMT EAGLE5 34.0.0 : discardl	SSN CGSR					
rlghncxa03w 0 Single CgPA E	5-09-20 09:07:58 ntries for OPNAME	GMT EAGLE5 34.0.0 : discard1 D ACTION PCA	SSN CGSR SSN CGSR					
rlghncxa03w 0 Single CgPA E SADDR	5-09-20 09:07:58 ntries for OPNAME NPV NAIV FORBI	GMT EAGLE5 34.0.0 : discard1 D ACTION PCA D ACTION PCI						
rlghncxa03w 0 Single CgPA E SADDR SADDR	5-09-20 09:07:58 ntries for OPNAME NPV NAIV FORBI NPV NAIV FORBI NPV NAIV FORBI	GMT EAGLE5 34.0.0 : discard1 D ACTION PCA D ACTION PCI	SSN CGSR SSN CGSR					
rlghncxa03w 0 Single CgPA E SADDR SADDR SADDR	5-09-20 09:07:58 ntries for OPNAME NPV NAIV FORBI NPV NAIV FORBI NPV NAIV FORBI	GMT EAGLES 34.0.0 : discard1 D ACTION PCA D ACTION PCI D ACTION PCN D ACTION PCN24	SSN CGSR SSN CGSR					
rlghncxa03w 0 Single CgPA E SADDR SADDR SADDR SADDR	5-09-20 09:07:58 ntries for OPNAME NPV NAIV FORBI NPV NAIV FORBI NPV NAIV FORBI NPV NAIV FORBI	GMT EAGLES 34.0.0 : discard1 D ACTION PCA D ACTION PCI D ACTION PCN D ACTION PCN24	SSN CGSR SSN CGSR					
rlghncxa03w 0 Single CgPA E SADDR SADDR SADDR SADDR SADDR	5-09-20 09:07:58 ntries for OPNAME NPV NAIV FORBI NPV NAIV FORBI NPV NAIV FORBI NPV NAIV FORBI NPV NAIV FORBI	GMT EAGLES 34.0.0 : discard1 D ACTION PCA D ACTION PCI D ACTION PCN D ACTION PCN24 D ACTION CGSR discard1	SSN CGSR SSN CGSR					
rlghncxa03w 0 Single CgPA E SADDR SADDR SADDR SADDR SADDR SADDR	5-09-20 09:07:58 ntries for OPNAME NPV NAIV FORBI NPV NAIV FORBI NPV NAIV FORBI NPV NAIV FORBI NPV NAIV FORBI	GMT EAGLES 34.0.0 : discard1 D ACTION PCA D ACTION PCI D ACTION PCN D ACTION PCN24 D ACTION CGSR discard1	SSN CGSR SSN CGSR SSN CGSR	SSN CGSR				
rlghncxa03w 0 Single CgPA E SADDR SADDR SADDR SADDR SADDR SADDR	5-09-20 09:07:58 ntries for OPNAME NPV NAIV FORBI NPV NAIV FORBI NPV NAIV FORBI NPV NAIV FORBI NPV NAIV FORBI	GMT EAGLES 34.0.0 : discard1 D ACTION PCA D ACTION PCI D ACTION PCN D ACTION PCN24 D ACTION CGSR discard1	SSN CGSR SSN CGSR SSN CGSR	SSN CGSR SSN CGSR				

SADDR	EADDR	NPV NAIV FORBID ACTION PCN24 S	SN
SADDR	EADDR	NPV NAIV FORBID ACTION CGSR	

GSM Map Screening table is (1500 of 4000) 38% full

CGSR

rtrv-gsmmap-scrn:opname=ati

This is an example of the possible output.

rlghncxa03w 05-09-20 09:07:58 GMT EAGLE5 34.0.0

Single	CgPA	Entries	for	OPNAME:	ati

SADDR	NPV	NAIV	FORBID	ACTION	PCA	SSN CGSR
SADDR	NPV	NAIV	FORBID	ACTION	PCI	SSN CGSR
SADDR	NPV	NAIV	FORBID	ACTION	PCN	SSN CGSR
SADDR	NPV	NAIV	FORBID	ACTION	PCN24	SSN CGSR
SADDR	NPV	NAIV	FORBID	ACTION	CGSR	
919462000000005	1	0	locat	atierr	ati1	

Range CgPA Entries for OPNAME: ati

SADDR	EADDR	NPV	NAIV	FORBID	ACTION	PCA	SSN	CGSR
SADDR	EADDR	NPV	NAIV	FORBID	ACTION	PCI	SSN	CGSR
SADDR	EADDR	NPV	NAIV	FORBID	ACTION	PCN	SSN	CGSR
SADDR	EADDR	NPV	NAIV	FORBID	ACTION	PCN24	SSN	CGSR
SADDR	EADDR	NPV	NAIV	FORBID	ACTION	CGSR		
919461888888888	919461900000000	4	1	locat	atierr	ati2		
919462000000000	919463000000000	*	*	locat	atierr	ati3		

GSM Map Screening table is (1500 of 4000) 38% full

rtrv-gsmmap-scrn:opname=route25

This is an example of the possible output.

rlghncxa03w 05-09-20 09:07:58 GMT EAGLE5 34.0.0

Single CgPA Ent	ries for	OPNAME:	route25	5	
SADDR	NPV NAIV	FORBID	ACTION	PCA	SSN CGSR
SADDR	NPV NAIV	FORBID	ACTION	PCI	SSN CGSR
SADDR	NPV NAIV	FORBID	ACTION	PCN	SSN CGSR
SADDR	NPV NAIV	FORBID	ACTION	PCN24	SSN CGSR
SADDR	NPV NAIV	FORBID	ACTION	CGSR	

Range CgPA Entries for OPNAME: route25

SADDREADDRNPVNAIVFORBIDACTIONPCASSNCGSRSADDREADDRNPVNAIVFORBIDACTIONPCISSNCGSRSADDREADDRNPVNAIVFORBIDACTIONPCNSSNCGSR

SADDR	EADDR	NPV NAIV F	ORBID ACTION	PCN24	SSN CGSR
SADDR	EADDR	NPV NAIV F	ORBID ACTION	CGSR	

GSM Map Screening table is (1500 of 4000) 38% full

rtrv-gsmmap-scrn:opname=dd93

This is an example of the possible output.

rlghncxa03w 05-09-20 09:07:58 GMT EAGLE5 34.0.0

Single CgPA Entries for OPNAME: dd93

SADDR	NPV	NAIV	FORBID	ACTION	PCA	SSN	CGSR
SADDR	NPV	NAIV	FORBID	ACTION	PCI	SSN	CGSR
SADDR	NPV	NAIV	FORBID	ACTION	PCN	SSN	CGSR
SADDR	NPV	NAIV	FORBID	ACTION	PCN24	SSN	CGSR
SADDR	NPV	NAIV	FORBID	ACTION	CGSR		

Range CgPA Entries for OPNAME: dd93

SADDR	EADDR	NPV NAIV FORBID ACTION PCA	SSN CGSR
SADDR	EADDR	NPV NAIV FORBID ACTION PCI	SSN CGSR
SADDR	EADDR	NPV NAIV FORBID ACTION PCN	SSN CGSR
SADDR	EADDR	NPV NAIV FORBID ACTION PCN24	SSN CGSR
SADDR	EADDR	NPV NAIV FORBID ACTION CGSR	

GSM Map Screening table is (1500 of 4000) 38% full

rtrv-gsmmap-scrn:opname=sri

This is an example of the possible output.

rlghncxa03w 05-09-20 09:07:58 GMT EAGLE5 34.0.0

Single CgPA Entries for OPNAME: sri

SADDR	NPV	NAIV	FORBID	ACTION	PCA	SSN	CGSR
SADDR	NPV	NAIV	FORBID	ACTION	PCI	SSN	CGSR
SADDR	NPV	NAIV	FORBID	ACTION	PCN	SSN	CGSR
SADDR	NPV	NAIV	FORBID	ACTION	PCN24	SSN	CGSR
SADDR	NPV	NAIV	FORBID	ACTION	CGSR		

Range CgPA Entries for OPNAME: sri

SADDR	EADDR	NPV NAIV FORBID ACTION PCA	SSN CGSR
SADDR	EADDR	NPV NAIV FORBID ACTION PCI	SSN CGSR

GSM MAP Screening Configuration

SADDR	EADDR	NPV NAIV FORBID ACTION PCN	SSN CGSR
SADDR	EADDR	NPV NAIV FORBID ACTION PCN24	SSN CGSR
SADDR	EADDR	NPV NAIV FORBID ACTION CGSR	

GSM Map Screening table is (1500 of 4000) 38% full

rtrv-gsmmap-scrn:opname=dup187

This is an example of the possible output.

rlghncxa03w 05-09-20 09:07:58 GMT EAGLE5 34.0.0

Single CgPA	Entries	for (OPNAME:	dup187			
SADDR	NPV	NAIV	FORBID	ACTION	PCA	SSN	CGSR
SADDR	NPV	NAIV	FORBID	ACTION	PCI	SSN	CGSR
SADDR	NPV	NAIV	FORBID	ACTION	PCN	SSN	CGSR
SADDR	NPV	NAIV	FORBID	ACTION	PCN24	SSN	CGSR
SADDR	NPV	NAIV	FORBID	ACTION	CGSR		

Range CgPA Entries for OPNAME: dup187

SADDR	EADDR	NPV	NAIV	FORBID	ACTION	PCA	SSN	CGSR
SADDR	EADDR	NPV	NAIV	FORBID	ACTION	PCI	SSN	CGSR
SADDR	EADDR	NPV	NAIV	FORBID	ACTION	PCN	SSN	CGSR
SADDR	EADDR	NPV	NAIV	FORBID	ACTION	PCN24	SSN	CGSR
SADDR	EADDR	NPV	NAIV	FORBID	ACTION	CGSR		
GSM Map Screenin	ng table is (150	0 of	4000)	38% fi	1 11			

910-0097-001 Rev B, October 2005

NOTE: If the action parameter value will be either pass, discard, route, or atierr, skip steps 3 and 4, and go to step 5.

3. The point code and subsystem number being assigned to the GSM MAP screening entry must be in the mated application table. Enter the rtrv-map command with the pci/pcn/pcn24 and ssn values that will be specified with the ent-gsmmap-scrn command in step 6. For this example, enter these commands.

rtrv-map:pci=3-201-7:ssn=100

This is an example of the possible output.

rlghncxa03w 05-09-25 09:42:31 GMT EAGLE5 34.0.0

MAP TABLE IS 2 % FULL (20 of 1024)

PCI	SSN	RC MULT MPCI	MSSN	MATERC MULT SR	I MRC	GRP NAME	SSO
3-201-7	100	10 SOL		YE	YES	GRP01	ON

rtrv-map:pcn=9384:ssn=30

This is an example of the possible output.

rlghncxa03w 05-09-25 09:42:31 GMT EAGLE5 34.0.0

MAP TABLE IS 2 % FULL (20 of 1024)

PCN	SSN	RC MULT MPCN	MSSN	MATERC MULT	SRM	MRC	GRP NAME	SSO
9384	30	10 SOL			YES	YES	GRP01	ON

rtrv-map:pci=4-102-6:ssn=150

This is an example of the possible output.

rlghncxa03w 05-09-25 09:42:31 GMT EAGLE5 34.0.0

MAP TABLE IS	2 % FULL	(20 of 1024)				
PCI 4-102-6	SSN RC MUL 150 10 SOL		MSSN	MATERC MULT SR YE	GRP NAME GRP01	SSO ON

If the point code and subsystem number is not shown in the **rtrv-map** output, go to the "Provisioning a Mated Application" procedure in the *Database Administration Manual* - *Global Title Translation* and add the required point code and subsystem number to the mated application table.

NOTE: If the point code and subsystem number is not shown in the rtrv-map output, and is not added to the database in one of these procedures, the force=yes parameter must be specified with the ent-gsmmap-scrn command in step 6.

4. The point code specified with the ent-gsmmap-scrn command must be the DPC of a route. If the point code specified with the ent-gsmmap-scrn command is an ANSI point code, the point code can be a member of a cluster point code when that cluster point code is the DPC of a route. Enter the rtrv-rte command with the dpc parameter specifying the point code to be used with the ent-gsmmap-scrn command to verify whether or not the point code is the DPC of a route. For this example, enter these commands.

rtrv-rte:dpci=3-201-7

This is an example of the possible output.

rlghncxa03w	05-09-07	11:43:04 GM	r EAGLE5	34.0.0		
DPCI	ALIASN	ALIASA	CLLI		LSN	RC APCI
3-201-7	12111	240-111-2	111 idp1		ls100001	10 1-234-5
					ls100002	10 1-234-6
					ls100003	20 1-234-7
					ls100004	30 1-234-1
					ls100005	40 1-234-2
					ls100006	50 1-234-3

rtrv-rte:dpcn=9384

This is an example of the possible output.

rlghncxa03w	05-09-07 11	:43:04 GMT	EAGLE5 34	4.0.0	
DPCN	ALIASA	ALIASI	CLLI	LSN	RC APCN
9384	011-222-111	0-001-1	ndp1	ls200001	10 11111
				ls200002	10 11112
				ls200003	20 11113
				ls200004	30 11114
				ls200005	40 11115
				ls200006	50 11116

rtrv-rte:dpci=4-102-6

This is an example of the possible output.

rlghncxa03w	05-09-07	11:43:04 GMT	EAGLE5	34.0.0		
DPCI	ALIASN	ALIASA	CLLI		LSN	RC APCI
4-102-6	7659	240-039-15	0 idp1		ls100001	10 5-25-3
					ls100002	10 3-250-6
					ls100003	20 7-34-7
					ls100004	30 6-98-1
					ls100005	40 3-142-2
					ls100006	50 1-178-3

If the point code is not shown in the **rtrv-rte** output, if the point code is an ANSI point code, the point code is not a member of a cluster point code when that cluster point code is the DPC of a route, go to the "Adding a Route Containing an SS7 DPC" procedure in the *Database Administration Manual* - *SS7* and add the required route to the database.

NOTE: If any of the following parameters or values are not being used in this procedure, skip step 5 and go to step 6.

- saddr=*
- cdsr
- pc/pca
- The saddr or eaddr parameter values containing hex digits.

If the rtrv-gsmmap-scrn output in step 2 shows any of the parameters or values listed above, skip step 5, and go to step 6.

5. Verify that the Enhanced GSM MAP Screening feature is enabled and on by entering the rtrv-ctrl-feat command with the part number of the Enhanced GSM MAP Screening feature. Enter this command.

rtrv-ctrl-feat:partnum=893012401

The following is an example of the possible output.

rlghncxa03w 05-09-28 21:15:37 GMT EAGLE5 34.0.0 The following features have been permanently enabled:									
Feature Name Enhanced GMS (EGMS)	Partnum 893012401		Quantity						
The following features have been temporarily enabled:									
Feature Name Zero entries found.	Partnum	Status	Quantity	Trial	Period Left				
The following features have expired temporary keys:									
Feature Name Zero entries found.	Partnum								

If the Enhanced GSM MAP screening feature is not enabled or off, go to the "Activating the GSM MAP Screening Feature" procedure on page 5-24 to enable and turn on the Enhanced GSM MAP screening feature.

NOTE: If a CDPA entry is being added to an existing CGPA entry, skip steps 6 and 7, and go to step 8.

6. Add the new CGPA GSM MAP screening entries to the database with the ent-gsmmap-scrn command. See Table 5-6 on page 5-93 for the parameter combinations that can be used with the ent-gsmmap-scrn command.

For this example, enter these commands:

```
ent-gsmmap-scrn:saddr=9194600000:npv=5:naiv=75:opname=pass50
        :forbid=none:action=pass:cgsr=cg01
```

```
ent-gsmmap-scrn:saddr=252555100000:eaddr=252700000000:npv=12
    :naiv=37:opname=discard1:forbid=all:action=discard
    :cgsr=cg02
```

ent-gsmmap-scrn:saddr=8284540000:eaddr=8284600000:opname=ati
 :forbid=state:action=atierr:cgsr=cg03

```
ent-gsmmap-scrn:saddr=2416546464:opname=route25
:forbid=none:action=route:npv=0:naiv=127:cgsr=cg04
ent-gsmmap-scrn:saddr=854000000:eaddr=8570000000:opname=dd93
:forbid=all:action=forward:npv=3:naiv=99:pci=3-201-7
:ssn=100:cgsr=cg05
ent-gsmmap-scrn:saddr=154363000000:eaddr=1550000000000
:opname=sri:forbid=all:action=duplicate:npv=8:naiv=86
:pcn=9384:ssn=30:cgsr=cg06
ent-gsmmap-scrn:saddr=368900000:eaddr=369000000:opname=dup187
:forbid=none:action=dupdisc:npv=9:naiv=111:pci=4-102-6
:ssn=150:cgsr=cg07
```

When each of these commands has successfully completed, this message appears.

```
rlghncxa03w 05-09-20 09:07:58 GMT EAGLE5 34.0.0
GSM Map Screening table is (1512 of 4000) 38% full
ENT-GSMMAP-SCRN: MASP A - COMPLTD
```

7. Verify the changes using the rtrv-gsmmap-scrn command and specifying the opname and cgsr parameter values specified in step 6. For this example, enter these commands:

```
rtrv-gsmmap-scrn:opname=pass50
This is an example of the possible output.
rlghncxa03w 05-09-20 09:07:58 GMT EAGLE5 34.0.0
Single CgPA Entries for OPNAME: pass50
NPV NAIV FORBID ACTION PCA
SADDR
                                           SSN CGSR
SADDR
            NPV NAIV FORBID ACTION PCI
                                            SSN CGSR
SADDR
            NPV NAIV FORBID ACTION PCN
                                            SSN CGSR
SADDR
            NPV NAIV FORBID ACTION PCN24
                                            SSN CGSR
SADDR
            NPV NAIV FORBID ACTION CGSR
9194600000
            5 75 none pass cg01
```

Range CgPA Entries for OPNAME: pass50

SADDR	EADDR	NPV	NAIV	FORBID	ACTION	PCA	SSN	CGSR
SADDR	EADDR	NPV	NAIV	FORBID	ACTION	PCI	SSN	CGSR
SADDR	EADDR	NPV	NAIV	FORBID	ACTION	PCN	SSN	CGSR
SADDR	EADDR	NPV	NAIV	FORBID	ACTION	PCN24	SSN	CGSR
SADDR	EADDR	NPV	NAIV	FORBID	ACTION	CGSR		

GSM Map Screening table is (1512 of 4000) 38% full

rtrv-gsmmap-scrn:opname=discard1

This is an example of the possible output.

rlghncxa03w 05-09-20 09:07:58 GMT EAGLE5 34.0.0

Single	CgPA	Entries	for	OPNAME:	discard1

SADDR	NPV	NAIV	FORBID	ACTION	PCA	SSN	CGSR
SADDR	NPV	NAIV	FORBID	ACTION	PCI	SSN	CGSR
SADDR	NPV	NAIV	FORBID	ACTION	PCN	SSN	CGSR
SADDR	NPV	NAIV	FORBID	ACTION	PCN24	SSN	CGSR
SADDR	NPV	NAIV	FORBID	ACTION	CGSR		

Range CgPA Entries for OPNAME: discard1

SADDR	EADDR	NPV	NAIV	FORBID	ACTION	PCA	SSN	CGSR
SADDR	EADDR	NPV	NAIV	FORBID	ACTION	PCI	SSN	CGSR
SADDR	EADDR	NPV	NAIV	FORBID	ACTION	PCN	SSN	CGSR
SADDR	EADDR	NPV	NAIV	FORBID	ACTION	PCN24	SSN	CGSR
SADDR 252555100000	EADDR 252700000000	NPV 12	NAIV 37	FORBID all	ACTION discard			

GSM Map Screening table is (1512 of 4000) 38% full

rtrv-gsmmap-scrn:opname=ati

This is an example of the possible output.

rlghncxa03w 05-09-20 09:07:58 GMT EAGLE5 34.0.0

Single CgPA	A Entries	for	OPNAME:	ati			
SADDR	NPV	NAIV	FORBID	ACTION	PCA	SSN	CGSR
SADDR	NPV	NAIV	FORBID	ACTION	PCI	SSN	CGSR
SADDR	NPV	NAIV	FORBID	ACTION	PCN	SSN	CGSR
SADDR	NPV	NAIV	FORBID	ACTION	PCN24	SSN	CGSR
SADDR	NPV	NAIV	FORBID	ACTION	CGSR		

Range CgPA Entries for OPNAME: ati

SADDR	EADDR	NPV	NAIV	FORBID	ACTION	PCA	SSN	CGSR
SADDR	EADDR	NPV	NAIV	FORBID	ACTION	PCI	SSN	CGSR
SADDR	EADDR	NPV	NAIV	FORBID	ACTION	PCN	SSN	CGSR
SADDR	EADDR	NPV	NAIV	FORBID	ACTION	PCN24	SSN	CGSR
SADDR	EADDR	NPV	NAIV	FORBID	ACTION	CGSR		

8284540000 8284600000 * * state atierr cg03

GSM Map Screening table is (1512 of 4000) 38% full

rtrv-gsmmap-scrn:opname=route25

This is an example of the possible output.

rlghncxa03w 05-09-20 09:07:58 GMT EAGLE5 34.0.0

Single CgPA En	tries for	OPNAME:	route2	5	
SADDR	NPV NAI	V FORBID	ACTION	PCA	SSN CGSR
SADDR	NPV NAI	V FORBID	ACTION	PCI	SSN CGSR
SADDR	NPV NAI	V FORBID	ACTION	PCN	SSN CGSR
SADDR	NPV NAJ	V FORBID	ACTION	PCN24	SSN CGSR
SADDR 2416546464	NPV NAJ 0 127	V FORBID none	ACTION route	CGSR cg04	

Range CgPA Entries for OPNAME: ati

SADDR	EADDR	NPV	NAIV	FORBID	ACTION	PCA	SSN	CGSR
SADDR	EADDR	NPV	NAIV	FORBID	ACTION	PCI	SSN	CGSR
SADDR	EADDR	NPV	NAIV	FORBID	ACTION	PCN	SSN	CGSR
SADDR	EADDR	NPV	NAIV	FORBID	ACTION	PCN24	SSN	CGSR
SADDR	EADDR	NPV	NAIV	FORBID	ACTION	CGSR		

GSM Map Screening table is (1512 of 4000) 38% full

rtrv-gsmmap-scrn:opname=dd93

This is an example of the possible output.

rlghncxa03w 05-09-20 09:07:58 GMT EAGLE5 34.0.0

Single CgPA Entries for OPNAME: dd93

SADDR	NPV	NAIV	FORBID	ACTION	PCA	SSN	CGSR
SADDR	NPV	NAIV	FORBID	ACTION	PCI	SSN	CGSR
SADDR	NPV	NAIV	FORBID	ACTION	PCN	SSN	CGSR
SADDR	NPV	NAIV	FORBID	ACTION	PCN24	SSN	CGSR
SADDR	NPV	NAIV	FORBID	ACTION	CGSR		

Range CgPA Entries for OPNAME: dd93

SADDR	EADDR	NPV NAIV	FORBID ACTION	PCA	SSN CGSR
SADDR	EADDR	NPV NAIV	FORBID ACTION	PCI	SSN CGSR
854000000	857000000	3 99	all fwd	3-201-7	100 cg05

SADDR	EADDR	NPV NAIV FORBID ACTION PCN	SSN CGSR
SADDR	EADDR	NPV NAIV FORBID ACTION PCN24	SSN CGSR
SADDR	EADDR	NPV NAIV FORBID ACTION CGSR	

GSM Map Screening table is (1512 of 4000) 38% full

rtrv-gsmmap-scrn:opname=sri

This is an example of the possible output.

rlghncxa03w 05-09-20 09:07:58 GMT EAGLE5 34.0.0

Single CgPA Entries for OPNAME: sri

SADDR	NPV NAIV FORBID ACTION PCA	SSN CGSR
SADDR	NPV NAIV FORBID ACTION PCI	SSN CGSR
SADDR	NPV NAIV FORBID ACTION PCN	SSN CGSR
SADDR	NPV NAIV FORBID ACTION PCN24	SSN CGSR
SADDR	NPV NAIV FORBID ACTION CGSR	

Range CgPA Entries for OPNAME: sri

	-																

SADDR	EADDR	NPV	NAIV	FORBID	ACTION	PCA	SSN	CGSR
SADDR	EADDR	NPV	NAIV	FORBID	ACTION	PCI	SSN	CGSR
SADDR 1534363000000	EADDR 155000000000	NPV 8	NAIV 86	FORBID all	ACTION dupl	PCN 9384	SSN 30	CGSR cg06
SADDR	EADDR	NPV	NAIV	FORBID	ACTION	PCN24	SSN	CGSR
SADDR	EADDR	NPV	NAIV	FORBID	ACTION	CGSR		

GSM Map Screening table is (1512 of 4000) 38% full

rtrv-gsmmap-scrn:opname=dup187

This is an example of the possible output.

rlghncxa03w 05-09-20 09:07:58 GMT EAGLE5 34.0.0

Single CgPA Entries for OPNAME: dup187

-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	_	_	_	-	-	-	-	-	-	-	-	

SADDR	NPV NAIV	FORBID	ACTION	PCA	SSN CGS	R
SADDR	NPV NAIV	FORBID	ACTION	PCI	SSN CGS	R
SADDR	NPV NAIV	FORBID	ACTION	PCN	SSN CGS	R
SADDR	NPV NAIV	FORBID	ACTION	PCN24	SSN CGS	R
SADDR	NPV NAIV	FORBID	ACTION	CGSR		

Range CgPA Entries for OPNAME: dup187

SADDR EADDR NPV NAIV FORBID ACTION PCA

SSN CGSR

SADDR 368900000	EADDR 369000000	NPV 9	NAIV 111	FORBID none		PCI 4-102-6		CGSR cg07
SADDR	EADDR	NPV	NAIV	FORBID	ACTION	PCN	SSN	CGSR
SADDR	EADDR	NPV	NAIV	FORBID	ACTION	PCN24	SSN	CGSR
SADDR	EADDR	NPV	NAIV	FORBID	ACTION	CGSR		
GSM Map Screenin	ng table is (1512	2 of	4000)) 38% fi	ıll			

NOTE: If a CDPA entry is not being added, or if the Enhanced GSM MAP Screening feature is not enabled or off (see the rtrv-ctrl-feat output in step 5), skip steps 8 and 9, and go to step 10.

8. Add the new CDPA GSM MAP screening entries to the database with the ent-gsmmap-scrn command. See Table 5-6 on page 5-93 for the parameter combinations that can be used with the ent-gsmmap-scrn command.

For this example, enter these commands:

```
ent-gsmmap-scrn:opname=pass50:npv=6:naiv=15:forbid=all
:action=pass:cgsr=cg01:cdsr=cd01
```

```
ent-gsmmap-scrn:opname=dup187:npv=11:naiv=57:forbid=all
:pci=5-97-2:ssn=135:action=dupdisc:cgsr=cg07:cdsr=cd10
```

When each of these commands has successfully completed, this message appears.

```
rlghncxa03w 05-09-20 09:07:58 GMT EAGLE5 34.0.0
GSM Map Screening table is (1512 of 4000) 38% full
ENT-GSMMAP-SCRN: MASP A - COMPLTD
```

9. Verify the changes using the rtrv-gsmmap-scrn command and specifying the opname, cgsr, and cdsr parameter values specified in step 8. For this example, enter these commands:

rtrv-gsmmap-scrn:opname=pass50:cgsr=cg01:cdsr=cd01

This is an example of the possible output.

rlghncxa03w 05-09-20 09:07:58 GMT EAGLE5 34.0.0

SADDR	NPV	NAIV	FORBID	ACTION	CDSR
*	6	15	all	pass	cd01

GSM Map Screening table is (1512 of 4000) 38% full

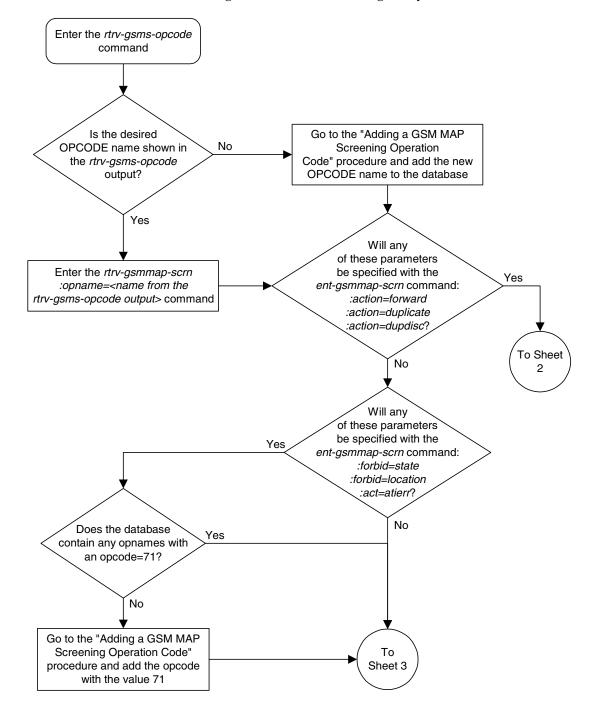
rtrv-gsmmap-scrn:opname=discard1:cgsr=cg02:cdsr=cd15

This is an example of the possible output.

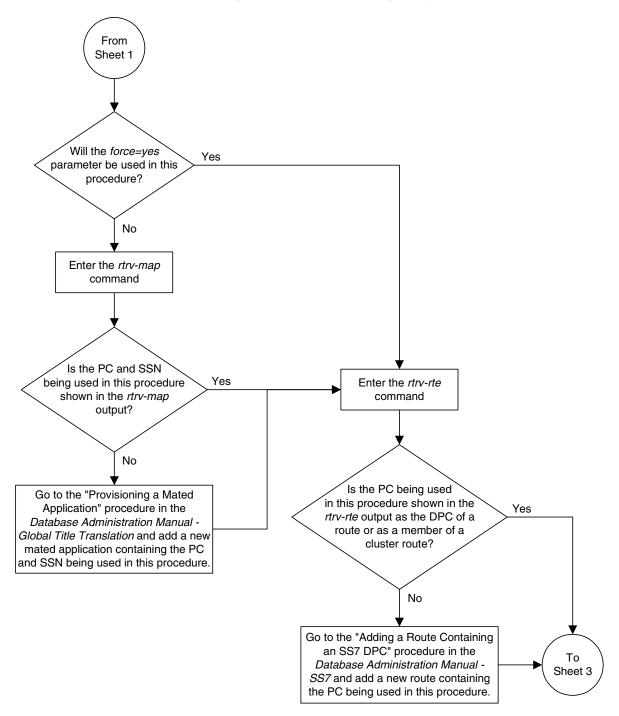
rlghncxa03w 05-09-20 09:07:58 GMT EAGLE5 34.0.0

SADDR NPV NAIV FORBID ACTION CDSR * 10 15 all disc cd15

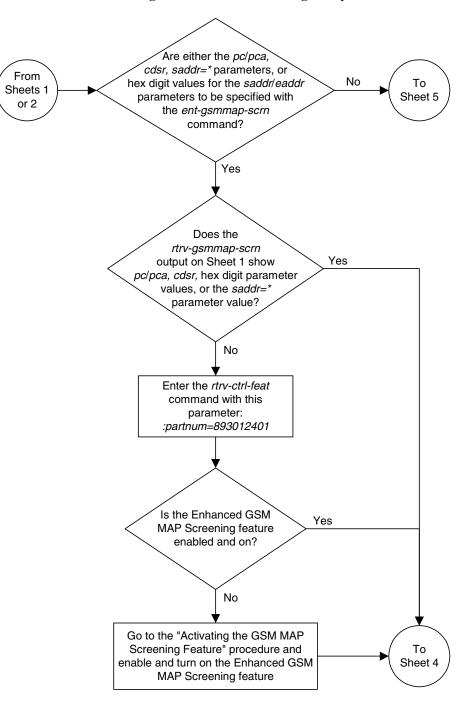
GSM Map Screening table is (1512 of 4000) 38% full

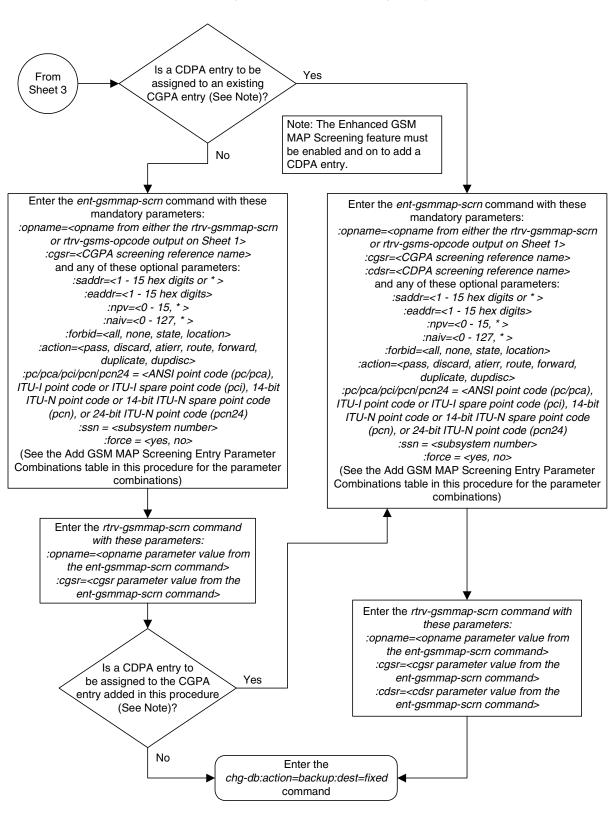

rtrv-gsmmap-scrn:opname=dup187:cgsr=cg07:cdsr=cd10

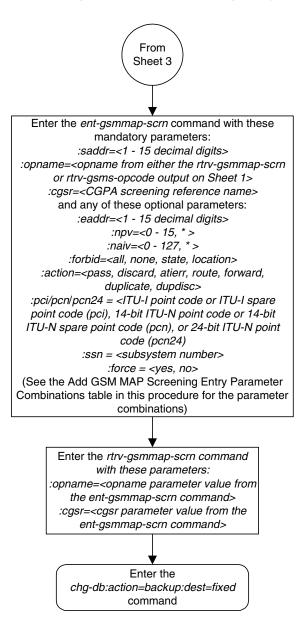
This is an example of the possible output.


rlghncxa03w 05-09-20 09:07:58 GMT EAGLE5 34.0.0 SADDR NPV NAIV FORBID ACTION PCI SSN CDSR * 11 57 all dupdc 5-97-2 135 cd10 GSM Map Screening table is (1512 of 4000) 38% full

10. Backup the new changes using the chg-db:action=backup:dest=fixed command. These messages should appear, the active Maintenance and Administration Subsystem Processor (MASP) appears first.


BACKUP (FIXED) : MASP A - Backup starts on active MASP.BACKUP (FIXED) : MASP A - Backup on active MASP to fixed disk complete.BACKUP (FIXED) : MASP A - Backup starts on standby MASP.BACKUP (FIXED) : MASP A - Backup on standby MASP to fixed disk complete.


Flowchart 5-10. Adding a GSM MAP Screening Entry (Sheet 1 of 5)


Flowchart 5-10. Adding a GSM MAP Screening Entry (Sheet 2 of 5)

Flowchart 5-10. Adding a GSM MAP Screening Entry (Sheet 3 of 5)

Flowchart 5-10. Adding a GSM MAP Screening Entry (Sheet 4 of 5)

Flowchart 5-10. Adding a GSM MAP Screening Entry (Sheet 5 of 5)

Removing a GSM MAP Screening Entry

Use this procedure to remove the GSM MAP screening entries that filter or allow TCAP messages containing MAP operation codes, origination addresses, and forbidden parameters using the dlt-gsmmap-scrn command. The dlt-gsmmap-scrn command uses these parameters:

:opname – The user-defined name for the operation code. The opname value references the operation code (opcode) shown in the rtrv-gsms-opcode command output.

:cgsr – The CGPA screening reference name

:cdsr – The CDPA screening reference name

If the GSM MAP Screening entry contains CDPA entries, the individual CDPA entries can be removed without removing the CGPA entry. However, if you wish to remove the CGPA entry, all CDPA entries assigned to the CGPA entry must be removed before the CGPA entry can be removed.

To remove CDPA entries, the opname, cgsr, and cdsr parameters must be specified with the dlt-gsmmap-scrn command. To remove CGPA entries, the opname and cgsr parameters must be specified with the dlt-gsmmap-scrn command.

Unlike GTT (Global Title Translation) entries, the GSM MAP screening commands do not support splits of ranges during removing or changing entries.

Procedure

1. Display the GSM MAP screening operation codes in the database using the **rtrv-gsms-opcode** command. This is an example of the possible output.

rlghncxa03w 05-09-10 11:43:04 GMT EAGLE5 34.0.0

OPCODE	OPNAME	DFLTACT	PCA	SSN
36	for1	fwd	002-002-002	10
OPCODE	OPNAME	DFLTACT	PCI	SSN
93	dd93	dupdc	5-25-3	200
139	fwd139	fwd	3-159-7	128
OPCODE	OPNAME	DFLTACT	PCN	SSN
187	dup187	dupl	11519	79
OPCODE	OPNAME	DFLTACT	PCN24	SSN
OPCODE 22 25 50 71 150 *	OPNAME sri route25 pass50 ati discard1 star	DFLTACT disc route pass atierr disc pass		
GSMMS O	PCODE Tabl	e (10 of 2	57) is 4% full	

2. Enter the **rtrv-gsmmap-scrn** command with an **opname** value shown in the rtrv-gsms-opcode command output in step 1 to display the CGPA GSM MAP screening entries. For this example, enter these commands.

	0	is example, enter ti	lese commande	•
	-scrn:opname=p	MT EAGLE5 34.0.0		
2	tries for OPNAME:			
SADDR	NPV NAIV FORBII	O ACTION PCA	SSN CGSR	
SADDR	NPV NAIV FORBIE	D ACTION PCI	SSN CGSR	
SADDR	NPV NAIV FORBID	D ACTION PCN	SSN CGSR	
SADDR	NPV NAIV FORBID	O ACTION PCN24	SSN CGSR	
SADDR 9194600000	NPV NAIV FORBII 5 75 none			
	ries for OPNAME:			
SADDR	EADDR	NPV NAIV FORBID AC	TION PCA	SSN CGSR
SADDR	EADDR	NPV NAIV FORBID AC	TION PCI	SSN CGSR
SADDR	EADDR	NPV NAIV FORBID AC	TION PCN	SSN CGSR
SADDR	EADDR	NPV NAIV FORBID AC	TION PCN24	SSN CGSR
SADDR	EADDR	NPV NAIV FORBID AC	TION CGSR	
GSM Map Screen:	ing table is (151	.2 of 4000) 38% full		
rtrv-gsmmap-	-scrn:opname=a	ati		
This is an exar	nple of the possi	ble output.		
rlghncxa03w 05	-09-20 09:07:58 G	MT EAGLE5 34.0.0		
	tries for OPNAME:			
SADDR	NPV NAIV FORBID		SSN CGSR	
SADDR	NPV NAIV FORBID) ACTION PCI	SSN CGSR	
SADDR	NPV NAIV FORBID) ACTION PCN	SSN CGSR	
SADDR	NPV NAIV FORBID	ACTION PCN24	SSN CGSR	
SADDR 91946200000000	NPV NAIV FORBII 5 1 0 locat			
5 5	ries for OPNAME:			
SADDR	EADDR	NPV NAIV FORBID AC	TION PCA	SSN CGSR
SADDR	EADDR	NPV NAIV FORBID AC	TION PCI	SSN CGSR

SADDR	EADDR	NPV	NAIV	FORBID	ACTION	PCA	SSN	CGSR
SADDR	EADDR	NPV	NAIV	FORBID	ACTION	PCI	SSN	CGSR
SADDR	EADDR	NPV	NAIV	FORBID	ACTION	PCN	SSN	CGSR
SADDR	EADDR	NPV	NAIV	FORBID	ACTION	PCN24	SSN	CGSR

SADDRNPVNAIVFORBIDACTIONCGSR82845400008284600000**stateatierrcg039194618888888919461900000041locatatierrati91946200000009194630000000**locatatierratierr

GSM Map Screening table is (1512 of 4000) 38% full

rtrv-gsmmap-scrn:opname=sri

This is an example of the possible output.

rlghncxa03w 05-09-20 09:07:58 GMT EAGLE5 34.0.0

Single CgPA Entries for OPNAME: sri

SADDR	NPV	NAIV	FORBID	ACTION	PCA	SSN	CGSR
SADDR	NPV	NAIV	FORBID	ACTION	PCI	SSN	CGSR
SADDR	NPV	NAIV	FORBID	ACTION	PCN	SSN	CGSR
SADDR	NPV	NAIV	FORBID	ACTION	PCN24	SSN	CGSR
SADDR	NPV	NAIV	FORBID	ACTION	CGSR		

Range CgPA Entries for OPNAME: sri

SADDR	EADDR	NPV	NAIV	FORBID	ACTION	PCA	SSN	CGSR
SADDR	EADDR	NPV	NAIV	FORBID	ACTION	PCI	SSN	CGSR
SADDR 1534363000000	EADDR 155000000000	NPV 8	NAIV 86	FORBID all	ACTION dupl	PCN 9384	SSN 30	CGSR cq06
1551565666666	1330000000000	0	00	arr	aapı	5501	50	egee
SADDR	EADDR	NPV	NAIV	FORBID	ACTION	PCN24	SSN	CGSR
SADDR	EADDR	NPV	NAIV	FORBID	ACTION	CGSR		

GSM Map Screening table is (1512 of 4000) 38% full

NOTE: The rtrv-gsmmap-scrn output in step 2 shows only the CGPA entries in the MAP screening table for the specified OPNAME. The CGPA entries in step 2 could contain CDPA entries that would have to be removed before the CGPA entry could be removed. CDPA entries can be in the MAP screening table only if the Enhanced GSM MAP Screening feature is enabled and on.

If any of the following parameters or values are shown in the rtrv-gsmmap-scrn output in step 2, the Enhanced GSM MAP Screening feature is enabled and on. Skip step 3 and go to step 4.

- saddr=*
- pc/pca
- The saddr or eaddr parameter values containing hex digits.

If the rtrv-gsmmap-scrn output in step 2 does not show any of these parameters or values, it is possible that the Enhanced GSM MAP Screening feature is enabled and on. Perform step 3 to verify the status of the Enhanced GSM MAP Screening feature.

3. Enter the **rtrv-ctrl-feat** command with the part number of the Enhanced GSM MAP Screening feature. Enter this command.

rtrv-ctrl-feat:partnum=893012401

The following is an example of the possible output.

rlghncxa03w 05-09-28 21:15:37 GMT EAGLE5 34.0.0 The following features have been permanently enabled: Feature Name Partnum Status Quantity Enhanced GMS (EGMS) 893012401 on ----The following features have been temporarily enabled: Feature Name Partnum Status Quantity Trial Period Left Zero entries found. The following features have expired temporary keys: Feature Name Partnum Zero entries found. NOTE: If step 3 shows that the Enhanced GSM MAP Screening feature is not enabled or off, CDPA entries cannot be in the MAP screening table. Skip step 4 and go to step 5.

4. To display the CDPA entries assigned to the CGPA entry shown in step 2, enter the rtrv-gsmmap-scrn command with the opname and cgsr parameter values specified shown in step 2. For this example, enter these commands.

rtrv-gsmmap-scrn:opname=pass50:cgsr=cg01

rlghncxa03w 05-09-20 09:07:58 GMT EAGLE5 34.0.0

Single CdPA Ent	ries for	OPNAME:	pass50	and CGSR:	cg01
SADDR	NPV NAIN	FORBID	ACTION	PCA	SSN CDSR
SADDR	NPV NAIV	FORBID	ACTION	PCI	SSN CDSR
SADDR	NPV NAIV	FORBID	ACTION	PCN	SSN CDSR
SADDR	NPV NAIV	FORBID	ACTION	PCN24	SSN CDSR
SADDR *	NPV NAIN 6 15	FORBID all	ACTION pass	CDSR cd01	

Range CdPA Entries for OPNAME: pass50 and CGSR: cg01 $\,$

SADDR	EADDR	NPV	NAIV	FORBID	ACTION	PCA	SSN	CDSR
SADDR	EADDR	NPV	NAIV	FORBID	ACTION	PCI	SSN	CDSR
SADDR	EADDR	NPV	NAIV	FORBID	ACTION	PCN	SSN	CDSR
SADDR	EADDR	NPV	NAIV	FORBID	ACTION	PCN24	SSN	CDSR
SADDR	EADDR	NPV	NAIV	FORBID	ACTION	CDSR		

GSM Map Screening table is (1512 of 4000) 38% full

rtrv-gsmmap-scrn:opname=ati:cgsr=cg03

This is an example of the possible output.

rlghncxa03w 05-09-20 09:07:58 GMT EAGLE5 34.0.0

Single CdPA Entries for OPNAME: ati and CGSR: cg03

SADDR	NPV	NAIV	FORBID	ACTION	PCA	SSN	CDSR
SADDR	NPV	NAIV	FORBID	ACTION	PCI	SSN	CDSR
SADDR	NPV	NAIV	FORBID	ACTION	PCN	SSN	CDSR
SADDR	NPV	NAIV	FORBID	ACTION	PCN24	SSN	CDSR
SADDR 919461000000130		NAIV 16		ACTION atierr			

Range CdPA Entries for OPNAME: ati and CGSR: cg03

EADDR	NPV	NAIV	FORBID	ACTION	PCA	SSN	CDSR
EADDR	NPV	NAIV	FORBID	ACTION	PCI	SSN	CDSR
EADDR	NPV	NAIV	FORBID	ACTION	PCN	SSN	CDSR
EADDR	NPV	NAIV	FORBID	ACTION	PCN24	SSN	CDSR
EADDR	NPV	NAIV	FORBID	ACTION	CDSR		
5450000000	*	*	state	atierr	cd15		
919464000000000	11	95	locat	atierr	ati7		
80365000000000	*	*	locat	atierr	ati9		
	EADDR EADDR EADDR EADDR 545000000 919464000000000	EADDR NPV EADDR NPV EADDR NPV EADDR NPV	EADDR NPV NAIV EADDR NPV NAIV EADDR NPV NAIV EADDR NPV NAIV 5450000000 * * 91946400000000 11 95	EADDRNPVNAIVFORBIDEADDRNPVNAIVFORBIDEADDRNPVNAIVFORBIDEADDRNPVNAIVFORBID5450000000***919464000000001195locat	EADDRNPVNAIVFORBIDACTIONEADDRNPVNAIVFORBIDACTIONEADDRNPVNAIVFORBIDACTIONEADDRNPVNAIVFORBIDACTION5450000000**stateatierr919464000000001195locatatierr	EADDRNPVNAIVFORBIDACTIONPCIEADDRNPVNAIVFORBIDACTIONPCNEADDRNPVNAIVFORBIDACTIONPCN24EADDRNPVNAIVFORBIDACTIONCDSR5450000000**stateatierrcd15919464000000001195locatatierrati?	EADDRNPVNAIVFORBIDACTIONPCISSNEADDRNPVNAIVFORBIDACTIONPCNSSNEADDRNPVNAIVFORBIDACTIONPCN24SSNEADDRNPVNAIVFORBIDACTIONCDSR5450000000**stateatierrcd15919464000000001195locatatierrati?

GSM Map Screening table is (1512 of 4000) 38% full

rtrv-gsmmap-scrn:opname=sri:cgsr=cg06

This is an example of the possible output.

rlghncxa03w 05-09-20 09:07:58 GMT EAGLE5 34.0.0

Single CgPA Entries for OPNAME: sri and CGSR: cg06

SADDR	NPV	NAIV	FORBID	ACTION	PCA	SSN	CDSR
SADDR	NPV	NAIV	FORBID	ACTION	PCI	SSN	CDSR
SADDR	NPV	NAIV	FORBID	ACTION	PCN	SSN	CDSR
SADDR	NPV	NAIV	FORBID	ACTION	PCN24	SSN	CDSR
SADDR	NPV	NAIV	FORBID	ACTION	CDSR		

Range CgPA Entries for OPNAME: sri and CGSR: cg06

SADDR	EADDR	NPV	NAIV	FORBID	ACTION	PCA	SSN	CDSR
SADDR	EADDR	NPV	NAIV	FORBID	ACTION	PCI	SSN	CDSR
SADDR	EADDR	NPV	NAIV	FORBID	ACTION	PCN	SSN	CDSR
SADDR	EADDR	NPV	NAIV	FORBID	ACTION	PCN24	SSN	CDSR
SADDR	EADDR	NPV	NAIV	FORBID	ACTION	CDSR		

GSM Map Screening table is (1512 of 4000) 38% full

5. Remove the GSM MAP screening entries from the database with the dlt-gsmmap-scrn command.

If CDPA entries are being removed, these parameters must be specified with the dlt-gsmmap-scrn command: opname, cgsr, and cdsr.

If the GSM MAP Screening entry contains CDPA entries, the individual CDPA entries can be removed without removing the CGPA entry. However, if you wish to remove the CGPA entry, all CDPA entries assigned to the CGPA entry must be removed before the CGPA entry can be removed.

To remove a CGPA entry, enter the dlt-gsmmap-scrn command with the opname, and cgsr parameter values.

For this example, enter these commands:

dlt-gsmmap-scrn:opname=pass50:cgsr=cg01:cdsr=cd01

dlt-gsmmap-scrn:opname=ati:cgsr=cg03:cdsr=cd15

dlt-gsmmap-scrn:opname=sri:cgsr=cg06

To remove the CGPA entry cg01 from the opname pass50 (now that CGPA entry cg01 has no CDPA entries assigned), enter this command:

```
dlt-gsmmap-scrn:opname=pass50:cgsr=cg01
```

When each of these commands has successfully completed, this message appears.

rlghncxa03w 05-09-20 09:07:58 GMT EAGLE5 34.0.0 GSM Map Screening table is (1508 of 4000) 38% full DLT-GSMMAP-SCRN: MASP A - COMPLTD

6. Verify the changes using the rtrv-gsmmap-scrn command with the opname parameter value used in step 5. If CDPA entries were removed from CGPA entries without removing the CGPA entry, specify the opname and cgsr parameter values used in step 5 with the rtrv-gsmmap-scrn command.

For this example, enter these commands:

rtrv-gsmmap-scrn:opname=pass50

This is an example of the possible output.

rlghncxa03w 05-09-20 09:07:58 GMT EAGLE5 34.0.0

Single CgPA Entries for OPNAME: pass50

SADDR	NPV	NAIV	FORBID	ACTION	PCA	SSN	CGSR
SADDR	NPV	NAIV	FORBID	ACTION	PCI	SSN	CGSR
SADDR	NPV	NAIV	FORBID	ACTION	PCN	SSN	CGSR
SADDR	NPV	NAIV	FORBID	ACTION	PCN24	SSN	CGSR
SADDR	NPV	NAIV	FORBID	ACTION	CGSR		

Range CgPA Entries for OPNAME: pass50

SADDR	EADDR	NPV	NAIV	FORBID	ACTION	PCA	SSN	CGSR
SADDR	EADDR	NPV	NAIV	FORBID	ACTION	PCI	SSN	CGSR
SADDR	EADDR	NPV	NAIV	FORBID	ACTION	PCN	SSN	CGSR
SADDR	EADDR	NPV	NAIV	FORBID	ACTION	PCN24	SSN	CGSR
SADDR	EADDR	NPV	NAIV	FORBID	ACTION	CGSR		

GSM Map Screening table is (1508 of 4000) 38% full

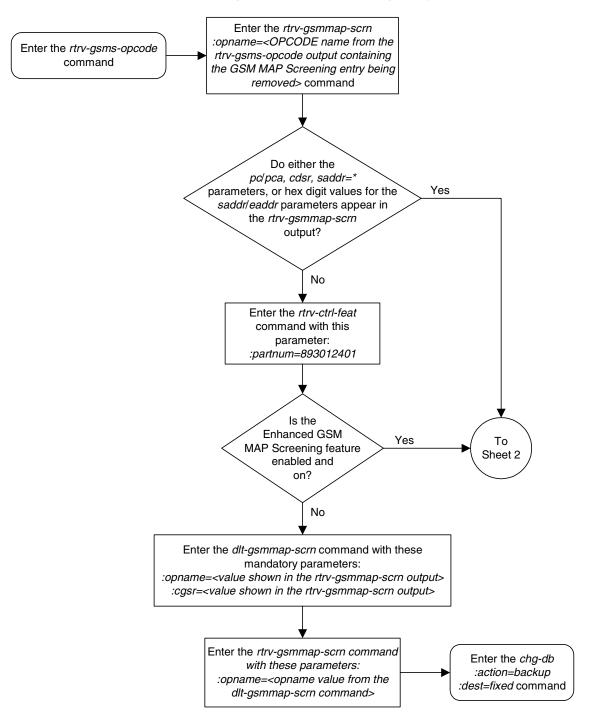
rtrv-gsmmap-scrn:opname=ati:cgsr=cg03

This is an example of the possible output.

rlghncxa03w 05-09-20 09:07:58 GMT EAGLE5 34.0.0

Single CdPA Entries for OPNAME: ati and CGSR: cg03

SADDR	NPV	NAIV	FORBID	ACTION	PCA	SSN CDSR
SADDR	NPV	NAIV	FORBID	ACTION	PCI	SSN CDSR
SADDR	NPV	NAIV	FORBID	ACTION	PCN	SSN CDSR
SADDR	NPV	NAIV	FORBID	ACTION	PCN24	SSN CDSR
SADDR 919461000000130		NAIV 16		ACTION atierr		


Range CdPA Entries for OPNAME: ati and CGSR: cg03

				-				
SADDR	EADDR	NPV	NAIV	FORBID	ACTION	PCA	SSN	CDSR
SADDR	EADDR	NPV	NAIV	FORBID	ACTION	PCI	SSN	CDSR
SADDR	EADDR	NPV	NAIV	FORBID	ACTION	PCN	SSN	CDSR
SADDR	EADDR	NPV	NAIV	FORBID	ACTION	PCN24	SSN	CDSR
	EADDR 919464000000000 8036500000000000		NAIV 95 *	FORBID locat locat	ACTION atierr atierr	ati7		

GSM Map Screening table is (1508 of 4000) 38% full

7. Backup the new changes using the chg-db:action=backup:dest=fixed command. These messages should appear, the active Maintenance and Administration Subsystem Processor (MASP) appears first.

BACKUP (FIXED) : MASP A - Backup starts on active MASP.BACKUP (FIXED) : MASP A - Backup on active MASP to fixed disk complete.BACKUP (FIXED) : MASP A - Backup starts on standby MASP.BACKUP (FIXED) : MASP A - Backup on standby MASP to fixed disk complete.

Flowchart 5-11. Removing a GSM MAP Screening Entry (Sheet 1 of 2)

Enter the rtrv-gsmmap-scrn command with these parameters: From :opname=<opname value specified in Sheet 1 rtrv-gsmmap-scrn command on Sheet 1> :cgsr=<cgsr value from the rtrv-gsmmap-scrn command on Sheet 1> Does the entry No being removed contain **CDPA** entries? Yes Enter the dlt-gsmmap-scrn command with these parameters: :opname=<value shown in the rtrv-gsmmap-scrn output> cgsr=<value shown in the rtrv-gsmmap-scrn output> :cdsr=<value shown in the rtrv-gsmmap-scrn output> Have all CDPA No Yes entries been removed? Are other CDPA Is the CGPA Yes Yes entries being entry being removed? removed? No No Enter the rtrv-gsmmap-scrn Enter the *dlt-gsmmap-scrn* command with these parameters: command with these parameters: :opname=<opname value from the :opname=<value shown in the dlt-gsmmap-scrn command> rtrv-gsmmap-scrn output> :cgsr=<cgsr value from the :cgsr=<value shown in the dlt-gsmmap-scrn command> rtrv-gsmmap-scrn output> Enter the rtrv-gsmmap-scrn command Enter the with these parameters: chg-db:action=backup:dest=fixed :opname=<opname value from the command dlt-gsmmap-scrn command>

Flowchart 5-11. Removing a GSM MAP Screening Entry (Sheet 2 of 2)

Changing a GSM MAP Screening Entry

Use this command to change the attributes of the GSM MAP screening entries that filter or allow TCAP messages for certain MAP operation codes using the chg-gsmmap-scrn command. The SCCP messages contain MAP operation codes, origination addresses, numbering plan values, nature of address indicator values, and forbidden parameters.

The chg-gsmmap-scrn command uses these parameters.

:opname – The user-defined name for the operation code. The opname value references the operation code (opcode) defined with the ent-gsms-opcode command. GSM MAP screening is performed on the specified address or addresses for the referenced operation code.

:naction – The new screening action to take if a message is forbidden as defined by the **forbid** parameter value. One of these actions can be assigned.

- **pass** Route the message as normal to the destination.
- discard The MSU is to be discarded.
- **atierr** An ATI (Any Time Interrogation) reject message is generated. This option is only valid for ATI MAP operation codes.
- route Route the message as normal to the original destination node.
- forward Route the original message to the forward node. The original message is not sent to the original node. If, however, the forwarded node is not available for routing then the MSU is routed to the original node.
- duplicate Route the message as normal to the original destination and route a copy of the original message to the duplicate node.
- **dupdisc** Duplicate and discard Route the original message to the duplicate node. The original message is not sent to the original node.

:npc/npca/npci/npcn/npcn24 - The new ANSI point code (npc/npca), new ITU-I point code or ITU-I spare point code (npci), new 14-bit ITU-N point code or 14-bit ITU-N spare point code (npcn), or new 24-bit ITU-N point code (npcn24) of the node that the MSU is routed to by the forward, duplicate, or dupdisc screening actions. The EAGLE 5 SAS can contain 14-bit ITU-N point codes or 24-bit ITU-N point codes, but not both.

:nssn – The new subsystem number of the node that the MSU is routed to by the **forward**, **duplicate**, or **dupdisc** screening actions

: force – The mated application override. Is the GSM MAP screening operation code to be entered without a mated application in the database (yes or no)?

:nforbid – The new forbidden parameter value. If a forbidden parameter is detected, the message is rejected by the action defined by the **action** parameter value. One of four forbidden parameter values can be specified.

- all All parameters are forbidden. Take the specified screening action defined by the naction parameter for incoming messages that contain the entered address and operation code combination.
- none No parameters are forbidden. Take the specified screening action defined by the naction parameter for incoming messages that contain the entered address and operation code combination.
- state Take the specified screening action defined by the naction parameter for incoming messages that contain state as the forbidden parameter for the entered address and operation code combination.
- location Take the specified screening action defined by the naction parameter for incoming messages that contain location as the forbidden parameter for the entered address and operation code combination.

:cgsr – The current CGPA screening reference name.

:cdsr – The current CDPA screening reference name.

:ncgsr – The new CGPA screening reference name consisting of 1 alphabetic character and 3 optional alphanumeric characters.

:ncdsr – The new CDPA screening reference name consisting of 1 alphabetic character and 3 optional alphanumeric characters.

If a message is screened and does not contain matching **npv** and **naiv** values, the message is rejected. The message is rejected with the default action defined by the **chg-gsms-opcode** command for the operation code (**opcode**) parameter entry referenced by the operation name (**opname**) parameter.

Table 5-9 on page 5-127 shows the parameter combinations that can be used in this procedure.

Enhanced GSM MAP S	Screening Feature E	nabled and On	GSM MAP Screer	ning Feature Enabled	and On Only
Entry Containing a Point Code and SSN	Entry Without a Point Code and SSN	Entry containing Entry Containing a Point the Action Code and SSN ATIERR		Entry Without a Point Code and SSN	Entry containing the Action ATIERR
		Mandator	y Parameters		
:opname = current opname value ²	:opname = current opname value ²	:opname = current opname value containing opcode=71 ²	:opname = current opname value ²	:opname = current opname value ²	:opname = current opname value containing opcode=71 ²
cgsr = current CGSR value	cgsr = current: CGSR value:	cgsr = current: CGSR value:	:cgsr = current CGSR value	cgsr = current: CGSR value:	:cgsr = current CGSR value
		Optional	Parameters ¹		
:cdsr = current CDSR value ^{3, 4}	:cdsr = current CDSR value ^{3, 4}	:cdsr = current CDSR value ^{3, 4}	:nforbid = all, none	:nforbid = all, none	:nforbid = state, location
:nforbid = all, none	:nforbid = all, none	:nforbid = state, location	:naction = forward, duplicate, dupdisc ⁶	:naction = pass, discard, route	:naction = atierr
:naction = forward, duplicate, dupdisc ⁶	naction = pass, discard, route	:naction = atierr	:ncgsr = new CGSR value	ncgsr = new CGSR value	:ncgsr = new CGSR value
:ncgsr = new CGSR value 4, 5	:ncgsr = new CGSR value ^{4, 5}	:ncgsr = new CGSR value ^{4, 5}	:npci/npcn/npcn24 =point code value ^{7, 8, 9, 10}		
:ncdsr = new CDSR value 3, 5	:ncdsr = new CDSR value ^{3, 5}	:ncdsr = new CDSR value ^{3, 5}	nssn = SSN value ^{7, 8, 9, 10}		
:npc/npca/npci/npcn/ npcn24 = point code value ^{7, 8, 9, 10}			:force=yes ⁹		
:nssn = SSN value ^{7, 8, 9, 10}					
:force=yes ⁹					
Notes:	L	1			1

Table 5-9. Change GSM MAP Screening Entry Parameter Combinations

1.At least one optional parameter must be specified with the chg-gsmmap-scrn command. If the cdsr parameter is specified, at least one other optional parameter must be specified with the chg-gsmmap-scrn command.

2. The opname parameter value must be shown in the rtrv-gsms-opcode Output.

3. The cdsr parameter must be specified when the ncdsr parameter is specified.

4. The **ncgsr** parameter should not be specified when the **cdsr** parameter is specified.

5. The ncgsr and ncdsr parameters cannot be specified together.

6. If the new or current (if unchanged) action parameter values are either forward, duplicate, or dupdisc, the point code and nssn parameters must be specified with the chg-gsmmap-scrn command. If the point code or subsystem number values are not being changed, the point code and subsystem number parameters must be specified with the current values for these parameters.

- 7. If only the point code or subsystem number value is being changed, the point code or subsystem number value being changed must be specified with the new value for the parameter being changed. The current value for the point code or subsystem number parameter not being changed must be specified. The naction parameter does not have to be specified. For example, if the current point code is pca=002-002-002 and the subsystem number is 50, and the point code is being changed to pca=003-003-003 and the subsystem number is not changing, the npca parameter value would be the new point code value (003-003-003) and the nssn parameter value would be the current value (50).
- 8. The point code value must be the DPC of a route or a member of a cluster route. The npc/npca value must be a full point code, The npc/npca value can be a member of a cluster point code when that cluster point code is the DPC of a route. This can be verified with the rtrv-rte command. If the point code value is not shown in the rtrv-rte output as the DPC of a route, go to the "Adding a Route Containing an SS7 DPC" procedure in the Database Administration Manual SS7 and add a new route containing the point code value.

9. The EAGLE 5 SAS can contain 14-bit ITU-N point codes or 24-bit ITU-N point codes, but not both at the same time.

10. The point code and subsystem number values specified with the chg-gsmmap-scrn command must be shown in the rtrv-map output, otherwise, the force-yes parameter must be specified. If the point code and subsystem number values are not shown in the rtrv-map output, and a new mated application is to be added, go to the "Provisioning a Mated Application" procedure in the Database Administration Manual - Global Title Translation and add the required mated application with the point code and subsystem number values.

Procedure

1. Display the GSM MAP screening operation codes in the database using the **rtrv-gsms-opcode** command. This is an example of the possible output.

rlghncxa03w 05-09-10 11:43:04 GMT EAGLE5 34.0.0

OPCODE 36	OPNAME for1	DFLTACT fwd	PCA 002-002-002	SSN 10
OPCODE 93 139	OPNAME dd93 fwd139	DFLTACT dupdc fwd	PCI 5-25-3 3-159-7	SSN 200 128
OPCODE 187	OPNAME dup187	DFLTACT dupl	PCN 11519	SSN 79
OPCODE	OPNAME	DFLTACT	PCN24	SSN
OPCODE	OPNAME	DFLTACT		
22	sri	disc		
25	route25	route		
50	pass50	pass		
71	ati	atierr		
150	discard1	disc		
*	star	pass		

```
GSMMS OPCODE Table (10 of 257) is 4% full
```

If the default action for the GSM MAP screening entry will be **atierr**, or the **forbid** parameter value will be **location** or **state**, the **opname** value must contain an **opcode** value of 71.

2. Enter the rtrv-gsmmap-scrn command with an opname value shown in the rtrv-gsms-opcode command output in step 1 to display the CGPA GSM MAP screening entries to change. For this example, enter this command.

```
rtrv-gsmmap-scrn:opname=ati
```

This is an example of the possible output.

rlghncxa03w 05-09-20 09:07:58 GMT EAGLE5 34.0.0									
Single CgPA Entries for OPNAME: ati									
SADDR	NPV	NAIV	FORBID	ACTION	PCA	SSN (CGSR		
SADDR	NPV	NAIV	FORBID	ACTION	PCI	SSN (CGSR		
SADDR	NPV	NAIV	FORBID	ACTION	PCN	SSN (CGSR		
SADDR	NPV	NAIV	FORBID	ACTION	PCN24	SSN (CGSR		
SADDR 919462000000005				ACTION atierr					

Range CgPA Entries for OPNAME: ati

					_ ~			~~~
SADDR	EADDR	NPV	NAIV	FORBID	ACTION	PCA	SSN	CGSR
SADDR	EADDR	NDV	ΝΛΤΥ	FORBID	ACTION	DCT	CCM	CGSR
SADDI	EADDI	INE V	IVATV	FORBID	ACTION	FCI	551	CGDIC
SADDR	EADDR	NPV	NAIV	FORBID	ACTION	PCN	SSN	CGSR
SADDR	EADDR	NPV	NAIV	FORBID	ACTION	PCN24	SSN	CGSR
SADDR	EADDR	NPV	NAIV	FORBID	ACTION	CGSR		
8284540000	8284600000	*	*	state	atierr	cg03		
919461888888888	919461900000000	4	1	locat	atierr	ati2		
919462000000000	919463000000000	*	*	locat	atierr	ati3		

GSM Map Screening table is (1512 of 4000) 38% full

rtrv-gsmmap-scrn:opname=dd93

This is an example of the possible output.

rlghncxa03w 05-09-20 09:07:58 GMT EAGLE5 34.0.0

Single CgPA Entries for OPNAME: dd93

SADDR	NPV	NAIV	FORBID	ACTION	PCA	SSN	CGSR
SADDR	NPV	NAIV	FORBID	ACTION	PCI	SSN	CGSR
SADDR	NPV	NAIV	FORBID	ACTION	PCN	SSN	CGSR
SADDR	NPV	NAIV	FORBID	ACTION	PCN24	SSN	CGSR
SADDR	NPV	NAIV	FORBID	ACTION	CGSR		

Range CgPA Entries for OPNAME: dd93

SADDR	EADDR	NPV	NAIV	FORBID	ACTION	PCA	SSN	CGSR
SADDR 854000000	EADDR 857000000	NPV 3	NAIV 99	FORBID all	ACTION fwd	PCI 3-201-7		CGSR cg05
SADDR	EADDR	NPV	NAIV	FORBID	ACTION	PCN	SSN	CGSR
SADDR	EADDR	NPV	NAIV	FORBID	ACTION	PCN24	SSN	CGSR
SADDR	EADDR	NPV	NAIV	FORBID	ACTION	CGSR		

GSM Map Screening table is (1512 of 4000) 38% full

NOTE: If the npc/npca or ncdsr parameters are being specified in this procedure, the Enhanced GSM MAP Screening feature must be enabled and on. If these parameters are not being specified in this procedure, skip step 3 and go to step 4.

If any of the following parameters or values are shown in the rtrv-gsmmap-scrn output in step 2, the Enhanced GSM MAP Screening feature is enabled and on. Skip step 3 and go to step 4.

- saddr=*
- pc/pca
- The saddr or eaddr parameter values containing hex digits.

If the rtrv-gsmmap-scrn output in step 2 does not show any of these parameters or values, it is possible that the Enhanced GSM MAP Screening feature is enabled and on. If you wish to use the npc/npca or ncdsr parameters, perform step 3 to verify the status of the Enhanced GSM MAP Screening feature.

3. Verify that the Enhanced GSM MAP Screening feature is enabled and on by entering the **rtrv-ctrl-feat** command with the part number of the Enhanced GSM MAP Screening feature. Enter this command.

rtrv-ctrl-feat:partnum=893012401

The following is an example of the possible output.

rlghncxa03w 05-09-28 21:15:37 GMT EAGLE5 34.0.0 The following features have been permanently enabled: Feature Name Partnum Status Quantity Enhanced GMS (EGMS) 893012401 on ----The following features have been temporarily enabled: Feature Name Partnum Status Quantity Trial Period Left Zero entries found. The following features have expired temporary keys: Feature Name Partnum Zero entries found.

If the Enhanced GSM MAP screening feature is not enabled or off, and you wish to use the npc/npca or ncdsr parameters, go to the "Activating the GSM MAP Screening Feature" procedure on page 5-24 to enable and turn on the Enhanced GSM MAP screening feature.

NOTE: If the Enhanced GSM MAP Screening feature is not enabled or off, or if CDPA entries are not being changed, skip step 4 and go to step 5.

4. Enter the rtrv-gsmmap-scrn command with an opname and cgsr values shown in the rtrv-gsmmap-scrn command output in step 2 to display the CDPA GSM MAP screening entries to change. For this example, enter this command.

rtrv-gsmmap-scrn:opname=ati:cgsr=cg03

rlghncxa03w 05-09-20 09:07:58 GMT EAGLE5 34.0.0

This is an example of the possible output.

Single CdPA Ent	ries fo	OPNAME:	ati and	d CGSR: cg03		
SADDR	NPV NA	V FORBID	ACTION	PCA	SSN CDSR	
SADDR	NPV NA	V FORBID	ACTION	PCI	SSN CDSR	
SADDR	NPV NA	V FORBID	ACTION	PCN	SSN CDSR	
SADDR	NPV NA	V FORBID	ACTION	PCN24	SSN CDSR	
SADDR 919461000000130		V FORBID locat				

Range CdPA Entries for OPNAME: ati and CGSR: cg03

SADDR	EADDR	NPV	NAIV	FORBID	ACTION	PCA	SSN	CDSR
SADDR	EADDR	NPV	NAIV	FORBID	ACTION	PCI	SSN	CDSR
SADDR	EADDR	NPV	NAIV	FORBID	ACTION	PCN	SSN	CDSR
SADDR	EADDR	NPV	NAIV	FORBID	ACTION	PCN24	SSN	CDSR
SADDR	EADDR	NPV	NAIV	FORBID	ACTION	CDSR		
4329290000	545000000	*	*	state	atierr	cd15		
91946300000000	919464000000000	11	95	locat	atierr	ati7		
80354900000000	80365000000000	*	*	locat	atierr	ati9		

GSM Map Screening table is (1512 of 4000) 38% full

rtrv-gsmmap-scrn:opname=dd93:cgsr=cg05

This is an example of the possible output.

rlghncxa03w 05-09-20 09:07:58 GMT EAGLE5 34.0.0

cinalo	CADA	Entries	for	ODNAME.	4402	and	CCCP.	aa0 E	
singre	Capa	Entries	LOL	OPNAME:	aa93	and	CGSR:	cgus	

SADDR	NPV	NAIV	FORBID	ACTION	PCA	SSN	CDSR
SADDR	NPV	NAIV	FORBID	ACTION	PCI	SSN	CDSR
SADDR	NPV	NAIV	FORBID	ACTION	PCN	SSN	CDSR
SADDR	NPV	NAIV	FORBID	ACTION	PCN24	SSN	CDSR
SADDR	NPV	NAIV	FORBID	ACTION	CDSR		

Range CgPA Entries for OPNAME: dd93 and CGSR: cg05

SADDR	EADDR	NPV NAIV FORBID ACTI	ON PCA SSN CDSR
SADDR	EADDR	NPV NAIV FORBID ACTI	ON PCI SSN CDSR
SADDR	EADDR	NPV NAIV FORBID ACTI	ON PCN SSN CDSR
SADDR	EADDR	NPV NAIV FORBID ACTI	ON PCN24 SSN CDSR
SADDR	EADDR	NPV NAIV FORBID ACTI	ON CDSR
GSM Map Screeni	ng table is (151	of 4000) 38% full	

NOTE: If the action parameter value will be either pass, discard, route, or atierr, or the pci/pcn/pcn24 and ssn values will not be changed, skip steps 3 and 4, and go to step 5.

5. The point code and subsystem number being assigned to the GSM MAP screening entry must be in the mated application table. Enter the rtrv-map command with the npc/npca/npci/npcn/npcn24 and nssn values that will be specified with the chg-gsmmap-scrn command in step 5. For this example, enter these commands.

rtrv-map:pci=5-79-2:ssn=89

This is an example of the possible output.

rlghncxa03w 05-09-25 09:42:31 GMT EAGLE5 34.0.0 MAP TABLE IS 2 % FULL (20 of 1024) PCI SSN RC MULT MPCI MSSN MATERC MULT SRM MRC GRP NAME SSO 5-79-2 89 10 SOL YES YES GRP01 ON

If the point code and subsystem number is not shown in the **rtrv-map** output, go to the "Provisioning a Mated Application" procedure in the *Database Administration Manual - Global Title Translation* and add the required point code and subsystem number to the mated application table.

NOTE: If the point code and subsystem number is not shown in the rtrv-map output, and is not added to the database in one of these procedures, the force=yes parameter must be specified with the chg-gsmmap-scrn command in step 5.

6. The point code specified with the chg-gsmmap-scrn command must be the DPC of a route. Enter the rtrv-rte command with the dpc parameter specifying the point code to be used with the chg-gsmmap-scrn command to verify whether or not the point code is the DPC of a route. For this example, enter these commands.

rtrv-rte:dpci=5-79-2

This is an example of the possible output.

```
rlghncxa03w 05-09-07 11:43:04 GMT EAGLE5 34.0.0
DPCI ALIASN ALIASA CLLI LSN RC APCI
5-79-2 1501 230-101-191 idp9 ls100001 10 1-234-5
ls100002 10 3-65-4
```

If the point code is not shown in the **rtrv-rte** output, go to the "Adding a Route Containing an SS7 DPC" procedure in the *Database Administration Manual - SS7* and add the required route to the database.

7. Change the GSM MAP screening entry with the chg-gsmmap-scrn command. Table 5-9 on page 5-127 shows the parameter combinations that can be used with the chg-gsmmap-scrn command.

For this example, the Enhanced GSM MAP Screening feature is enabled and on. Enter these commands:

```
chg-gsmmap-scrn:opname=dd93:cgsr=cg05:nforbid=none:npci=5-79-2
:nssn=89
```

When this command has successfully completed, this message appears.

```
rlghncxa03w 05-09-20 09:07:58 GMT EAGLE5 34.0.0
GSM Map Screening table is (1512 of 4000) 38% full
CHG-GSMMAP-SCRN: MASP A - COMPLTD
```

8. Verify the changes using the rtrv-gsmmap-scrn command, specifying the opname parameter value used in step 7. If the cdsr parameter was specified in step 7, specify the cgsr, and cdsr parameter values used in step 7 with the opname parameter value.

For this example, the Enhanced GSM MAP Screening feature is enabled and on. Enter these commands:

rtrv-gsmmap-scrn:opname=ati:cgsr=cg03:cdsr=cd15

This is an example of the possible output.

rlghncxa03w 05-09-20 09:07:58 GMT EAGLE5 34.0.0 SADDR EADDR NPV NAIV FORBID ACTION CDSR 8284540000 8284600000 * * none pass cd15 GSM Map Screening table is (1512 of 4000) 38% full

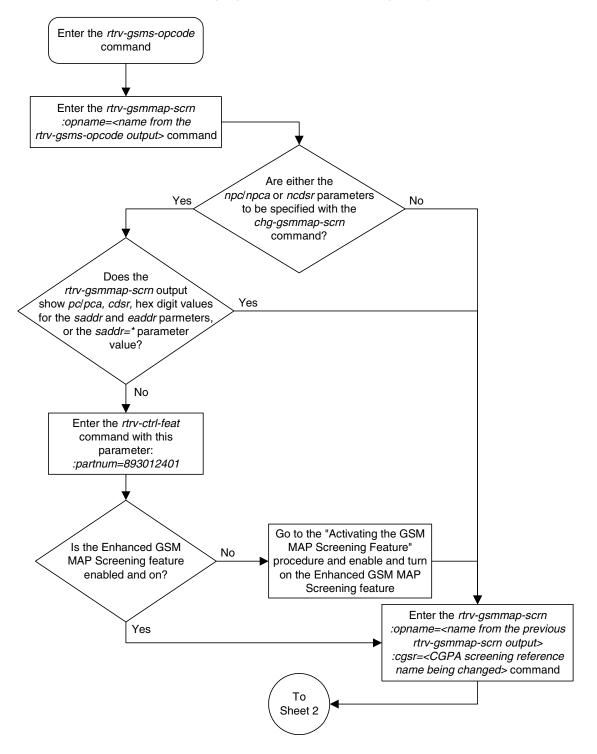
rtrv-gsmmap-scrn:opname=dd93

This is an example of the possible output.

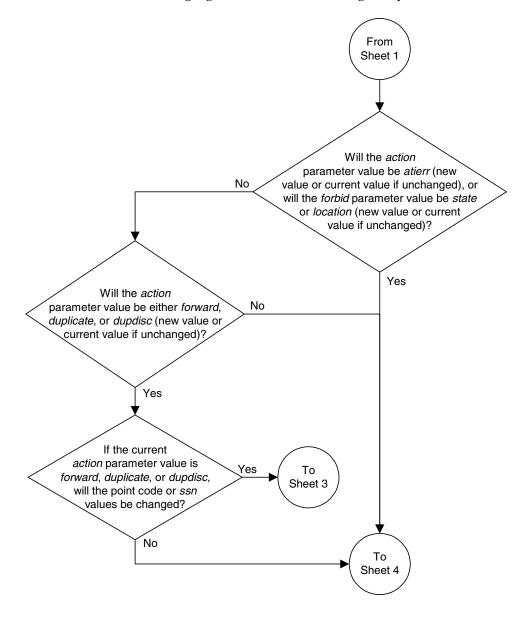
rlghncxa03w 05-09-20 09:07:58 GMT EAGLE5 34.0.0

Single	CgPA	Entries	for	OPNAME:	dd93	
--------	------	---------	-----	---------	------	--

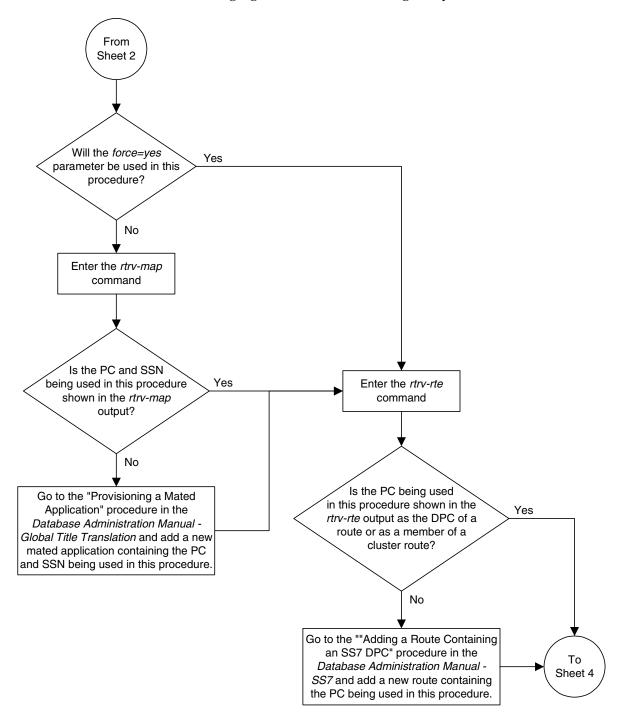
SADDR	NPV NAIV	FORBID	ACTION	PCA	SSN CGSR
SADDR	NPV NAIV	FORBID	ACTION	PCI	SSN CGSR
SADDR	NPV NAIV	FORBID	ACTION	PCN	SSN CGSR
SADDR	NPV NAIV	FORBID	ACTION	PCN24	SSN CGSR
SADDR	NPV NAIV	FORBID	ACTION	CGSR	

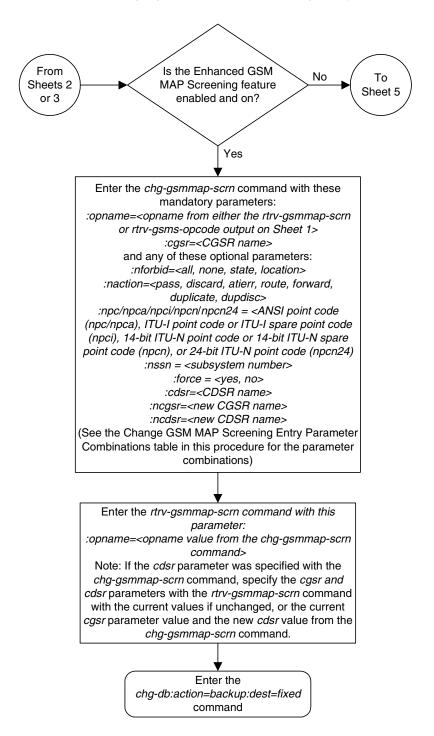

Range CgPA Entries for OPNAME: dd93

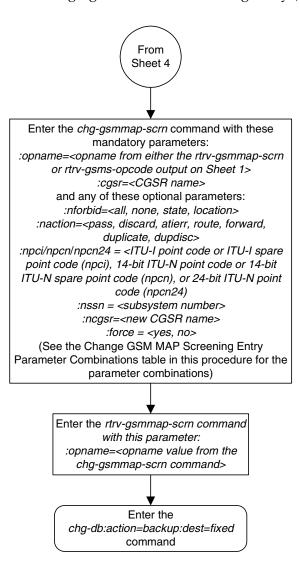
SADDR	EADDR	NPV	NAIV	FORBID	ACTION	PCA	SSN	CGSR
SADDR 854000000	EADDR 860000000	NPV 3	NAIV 99	FORBID none	ACTION fwd	PCI 5-79-2		CGSR cg05
SADDR	EADDR	NPV	NAIV	FORBID	ACTION	PCN	SSN	CGSR
SADDR	EADDR	NPV	NAIV	FORBID	ACTION	PCN24	SSN	CGSR
SADDR	EADDR	NPV	NAIV	FORBID	ACTION	CGSR		


GSM Map Screening table is (1512 of 4000) 38% full

9. Backup the new changes using the chg-db:action=backup:dest=fixed command. These messages should appear, the active Maintenance and Administration Subsystem Processor (MASP) appears first.


```
BACKUP (FIXED) : MASP A - Backup starts on active MASP.BACKUP (FIXED) : MASP A - Backup on active MASP to fixed disk complete.BACKUP (FIXED) : MASP A - Backup starts on standby MASP.BACKUP (FIXED) : MASP A - Backup on standby MASP to fixed disk complete.
```



Flowchart 5-12. Changing a GSM MAP Screening Entry (Sheet 1 of 5)


Flowchart 5-12. Changing a GSM MAP Screening Entry (Sheet 2 of 5)

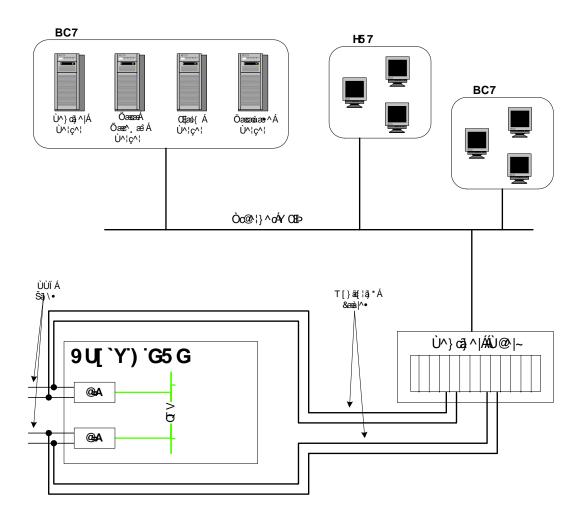
Flowchart 5-12. Changing a GSM MAP Screening Entry (Sheet 3 of 5)

Flowchart 5-12. Changing a GSM MAP Screening Entry (Sheet 4 of 5)

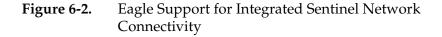
GSM MAP Screening Configuration

6

Eagle Support for Integrated Sentinel Configuration


Introduction	6–2
TCP/IP Link Provisioning	6–5
Time Stamping	6–6
EAGLE 5 SAS Provisioning	6–6
Network Considerations	6–8
Enabling the Time Slot Counter Synchronization (TSCSYNC) and Eagle Support for Integrated Sentinel (E5IS) Features6	5-10
Configuring the Eagle Support for Integrated Sentinel Options	-13
Adding a Sentinel Transport Card (STC)6	-19
Removing a Sentinel Transport Card (STC)	-27

Introduction


The Eagle Support for Integrated Sentinel feature allows the network traffic on the EAGLE 5 SAS's signaling links to be monitored by an ESP (extended services platform) without additional intrusive cabling.

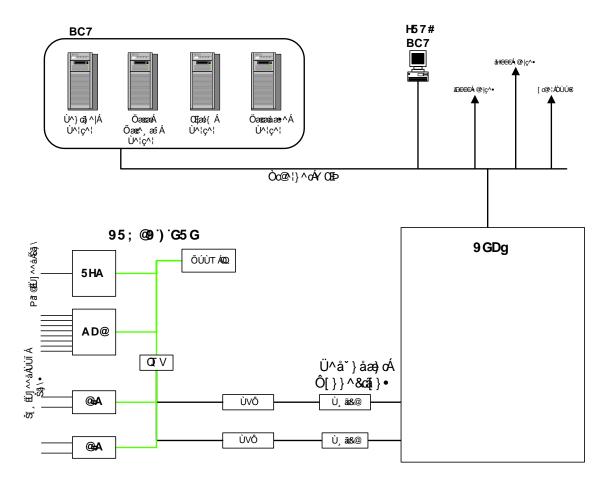
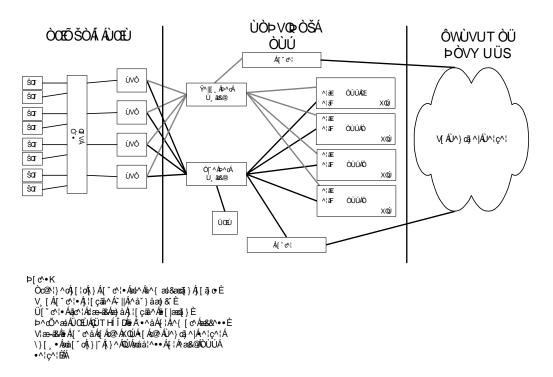

For an ESP to monitor the network traffic on the EAGLE 5 SAS's signaling links without this feature requires physical, clamp-on connections to the EAGLE 5 SAS's SS7 signaling links in order to monitor SS7 traffic (see Figure 6-1). This monitoring method involves costs for cable installation and maintenance for each SS7 link that is to be monitored.

Figure 6-1. Sentinel Monitoring via Hardware Connection



This feature eliminates the need to have intrusive hardware for each link that is to be monitored. The monitoring is performed by an Ethernet connection from an STC (Sentinel Transport Card) to the ESP (see Figure 6-2). Message Signaling Units (MSUs), alarms, and events may be copied to the ESP subsystem over the Ethernet link to provide the network traffic monitoring

As can be seen in Figure 6-2, this new method of connectivity removes the cabling and clamps from each monitored SS7 link. By incorporating a TCP/IP stack on each LIM and having the STCs serve as IP routers, the ESP subsystem may communicate directly with the SS7 LIMs. Figure 6-3 shows the logical communications pathway.

Figure 6-3. ESP/EAGLE 5 SAS Network

The STC communicates to the LIM by the IMT bus; the IP messages are simply encapsulated in an IMT wrapper between the cards. The STCs are provisioned in an n+1 configuration for redundancy. Each STC Ethernet port has a separate connection path to each Ethernet switch in order to provide an alternate path in the event of an Ethernet link failure. Note that the figure depicts a redundant network; this assures that a single network failure will not halt EAGLE 5 SAS or ESP operations. As shown in Figure 6-3, one or more ESPs may be connected to a single Ethernet switch. The number of STCs required corresponds to the number of SS7 links that are to be associated with the Eagle Support for Integrated Sentinel feature, plus an additional STC for redundancy.

A dual-slot STC can support and monitor up to 32 low-speed SS7 signaling links at one (1) erlang of traffic. To provision dual-slot STCs in an n+1 configuration to monitor a 500 low-speed SS7 signaling link EAGLE 5 SAS, 17 dual-slot STCs are required to monitor all 500 signaling links (500 / 32 = 16 dual-slot STCs, plus 1 for redundancy).

A single-slot STC can support and monitor up to 40 low-speed SS7 signaling links at one (1) erlang of traffic. To provision single-slot STCs in an n+1 configuration to monitor a 500 low-speed SS7 signaling link EAGLE 5 SAS, 14 single-slot STCs are required to monitor all 500 signaling links (500 / 40 = single-slot 13 STCs, plus 1 for redundancy).

The LIMs are assigned private network addresses. The IP message origination address specified is that of the LIM. The IP message destination address is that of the VIP (virtual IP address) contained within the ESP server. The STC serves as a router from the LIM to the ESP servers.

TCP/IP Link Provisioning

The IP communications link, used to transmit copied MSUs between the EAGLE 5 SAS and the ESP subsystem, is dynamically configured by the Sentinel. This is performed automatically as part of the operations for coming into service. A special function, part of the card's application software, is to establish communications with the ESP subsystem by sending a service request message (see Figure 6-4).

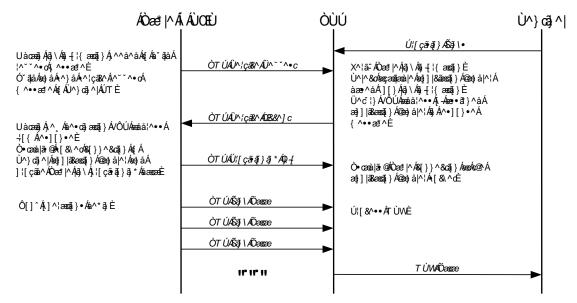


Figure 6-4. Ethernet Link Establishment - EMP Link Data

8]U[fUa`XYd]Whg`YlUad`Y`cZ bcfaU``]b_`XUHUaYggU[Y'Zck"

The LIM receiving the service accept response then opens a new socket using the specified IP address and port as the destination using standard TCP/IP socket messaging. The ESP server configured to service the port responds to the connect request and the socket is now available for normal operations. MSUs are copied from the LIM through the STC to the ESP server, then to the Sentinel.

If the LIM is unsuccessful with its initial link service request, it will reattempt link establishment with the ESP subsystem after delaying for a short period (that is, approximately 15 seconds). The LIM continuously repeats the link establishment procedure until it is successful. If the LIM ever loses its IP connection to the ESP server, the LIM will automatically begin reestablishment operations.

The STCs use DHCP (Dynamic Host Configuration Protocol) to provision themselves with IP addresses. The ESP subsystem contains a DHCP server and a DHCP client resides on the STC. The STC receives its IP address from the DHCP server in accordance with the DHCP standard.

A custom routing protocol, TRP (Tekelec Routing Protocol) manages the multiple redundant links and provides a faster network convergence than is possible with standard routing protocols.

Time Stamping

The MSU information will be delivered to the ESP subsystem with an accurate time stamp (± 5 milliseconds). This allows the Sentinel to correlate a call's messages for CDR (Call Detail Record) operations.

EAGLE 5 SAS Provisioning

To provision this feature, these items are required:

- STCs are installed in the EAGLE 5 SAS
- The TSC (Time Slot Counter) Synchronization feature is enabled in the EAGLE 5 SAS. TSC synchronization is supplied by the GPSM-II cards in card locations 1113 and 1115.
- A timing source for the low-speed signaling links and for the TSC (Time Slot Counter) synchronization feature

If the EAGLE 5 SAS does not contain LIMDS0 cards, but contains TDM part numbers 870-0774-15 or later, the clock source for any low-speed links and for the TSC (Time Slot Counter) synchronization feature used by the Integrated Sentinel can be generated from the high-speed master clock source. An external BITS clock is not required.

If an external BITS clock is connected to an EAGLE 5 SAS without LIMDS0 cards, but with TDM part numbers 870-0774-15 or later, the external BITS clock must be used as the clock source for any low-speed links and for the TSC (Time Slot Counter) synchronization feature.

If LIMDS0 cards are present in the EAGLE 5 SAS, the external BITS clock is required for timing of the DS0 signaling links and for TSC (Time Slot Counter) synchronization used by the Integrated Sentinel. If the EAGLE 5 SAS also contains TDM part numbers 870-0774-15 or later along with the LIMDS0 cards, this procedure can be used to select the source of the high-speed master clock for the high-speed links using external timing. The high-speed master clock source cannot be used to generate the clock source for any low-speed links and for the TSC (Time Slot Counter) synchronization feature.

• A Network Time Protocol (NTP) timing source from the ESP server

An "n + 1" STC configuration is required to provide redundancy for this feature.

The connection from the EAGLE 5 SAS to the ESP is an Ethernet connection with a minimum bandwidth of 10 Mbps. The dual-slot STC contains two 10 Mbps Ethernet ports. The single-slot STC contains two 100 Mbps Ethernet ports.

Refer to the *Hardware Manual - EAGLE 5 SAS* for more information about the GPSM-II and STCs.

A dual-slot STC can support and monitor up to 32 low-speed SS7 signaling links at one (1) erlang of traffic. To provision dual-slot STCs in an n+1 configuration to monitor a 500 low-speed SS7 signaling link EAGLE 5 SAS, 17 dual-slot STCs are required to monitor all 500 signaling links (500 / 32 = 16 dual-slot STCs, plus 1 for redundancy).

A single-slot STC can support and monitor up to 40 low-speed SS7 signaling links at one (1) erlang of traffic. To provision single-slot STCs in an n+1 configuration to monitor a 500 low-speed SS7 signaling link EAGLE 5 SAS, 14 single-slot STCs are required to monitor all 500 signaling links (500 / 40 = single-slot 13 STCs, plus 1 for redundancy).

The n+1 STC configuration requires that a minimum of two STCs must be provisioned in the database. If single-slot STCs are being provisioned in the database, a minimum of two single-slot STCs must be provisioned.

Table 6-1 shows the signaling links on these cards can be monitored by this feature.

Card Application (APPL Value Used by the ent-card Command	Card Type (TYPE Value Used by the ent-card Command)	Card Name
SS7ANSI, CCS7ITU	LIMDS0	LIM-DS0, EILA, ILA, MPL
	LIMOCU	LIM-OCU, EILA, ILA, MPL
	LIMV35	LIM-V.35, EILA, ILA, MPL
	LIME1	E1/T1 MIM, LIM-E1
	LIMT1	E1/T1 MIM
	LIMCH	E1/T1 MIM, LIM-E1
ATMANSI	LIMATM	LIM-ATM
ATMITU	LIME1ATM	E1-ATM

Table 6-1.Monitored Card Types

The signaling links assigned to the cards running either the **ss7ansi** or **ccs7itu** applications are low-speed signaling links transmitting at either 56 kbps or 64 kbps. Signaling links assigned to the **atmansi** and **atmitu** applications are high-speed signaling links transmitting at 1.544 Mbps (**atmansi**) or 2.048 Mbps (**atmitu**).

Because the performance of a single-slot STC is higher than a dual-slot STC, a dual-slot STC cannot replace a single-slot STC. If a single-slot STC replaces a dual-slot STC, and it is the only single-slot STC in the EAGLE 5 SAS, another single-slot STC must be added to the EAGLE 5 SAS. To add the additional single-slot STC, go to the "Adding a Sentinel Transport Card (STC)" procedure on page 6-19.

In order to perform the necessary IP routing within the EAGLE 5 SAS switch, a private virtual network (PVN) is incorporated; the PVN represents the internal IP addressing scheme for every card within the EAGLE 5 SAS switch. Each card has an auto-assigned, default, Class B private IP address (for example, 172.28.60.16).

NOTE: The EAGLE 5 SAS uses a default value of 172.20.50.0 for the PVN address. The crafts person may change the default value by specifying a new network portion of an IP address and a network mask; the host portion is auto-configured. The EAGLE 5 SAS requires use of the lower 10 bits of address space for auto-configuration of internal networking schemes. The entered mask value may be up to 255.255.252.0

Network Considerations

There are three networks used to connect the EAGLE 5 SAS to the ESP subsystem (see Figure 6-3, "ESP/EAGLE 5 SAS Network," on page 6-4:

- The EAGLE 5 SAS containing the STCs
- The two Ethernet switches
- The ESP servers

The monitored information is sent from the EAGLE 5 SAS to the ESP servers through the Ethernet switches, then forwarded to the Sentinel by the isolation routers. Each router will have one Ethernet port designated as the physical demarcation point between the customer network and the ESP subsystem.

IP Address Provisioning

The ESP subsystem requires IP addresses for these items:

- ESP external network:
 - Three IP addresses on the customer network for the ESP isolation routers, one IP address for HSRP, one IP address for each router (two total)
 - One netmask
 - One IP address for the default router.
- ESP internal network -- Contiguous IP block routed within their network (last octet range 1-67 for 17 servers). The Sentinel considers each ESP server a separate processing element, therefore each ESP server needs its own IP address.
- Routes to their network to route to the VIP network already defined within ESP subsystem.

CAUTION: These IP addresses can be changed, as well as the PVN IP address in the EAGLE 5 SAS, contact the Customer Care Center (refer to "Customer Care Center" on page 1-10 for the contact information) before attempting to change these IP addresses.

Route Configuration

No explicit routing tables are provisioned in the ESP subsystem. Use of the single customer provided default router address is assumed for outgoing traffic. All incoming traffic will use the HSRP address provided by the isolation routers.

Network Limitations

The maximum length of the network cables between the ESP server frame and the STC cards is limited to 328 feet (100 meters). This limitation is the maximum length that any 10/100BaseT cable can be run.

Enabling the Time Slot Counter Synchronization (TSCSYNC) and Eagle Support for Integrated Sentinel (E5IS) Features

The Eagle Support for Integrated Sentinel feature requires that the Time Slot Counter Synchronization (TSCSYNC) and Eagle Support for Integrated Sentinel (E5IS) features are enabled with the chg-feat command using the tscsync and e5is parameters. This procedure is used to enable these features.

NOTE: Once the Time Slot Counter Synchronization and Eagle Support for Integrated Sentinel features are turned on with the chg-feat command, they cannot be turned off.

The Time Slot Counter Synchronization and Eagle Support for Integrated Sentinel features must be purchased before turning on these features. If you are not sure whether you have purchased the Time Slot Counter Synchronization or Eagle Support for Integrated Sentinel features, contact your Tekelec Sales Representative or Account Representative.

Procedure

 Verify that the Eagle Support for Integrated Sentinel feature and Time Slot Counter Synchronization features are on, by entering the rtrv-feat command. If the Eagle Support for Integrated Sentinel feature is on, the E51S field should be set to on. If the Time Slot Counter Synchronization feature is on, the TSCSYNC field should be set to on. For this example, the Eagle Support for Integrated Sentinel feature and Time Slot Counter Synchronization features are off.

NOTE: The rtrv-feat command output contains other fields that are not used by this procedure. If you wish to see all the fields displayed by the rtrv-feat command, see the rtrv-feat command description in the *Commands Manual*.

NOTE: If both the Eagle Support for Integrated Sentinel feature and Time Slot Counter Synchronization features are on, then no further action is necessary. If you wish to change the EISCOPY or PVN IP address options, go to the "Configuring the Eagle Support for Integrated Sentinel Options" procedure on page 6-13. If you wish to add STCs to the database, go to the "Adding a Sentinel Transport Card (STC)" procedure on page 6-19.

NOTE: If the Time Slot Counter Synchronization feature is on, go to step 2.

2. Turn the Time Slot Counter Synchronization and Eagle Support for Integrated Sentinel features on by entering one of these commands, depending on whether or not the rtrv-feat output in step 1 shows that the Time Slot Counter Synchronization feature is on.

If the Time Slot Counter Synchronization feature is not on, enter this command.

chg-feat:tscsync=on:e5is=on

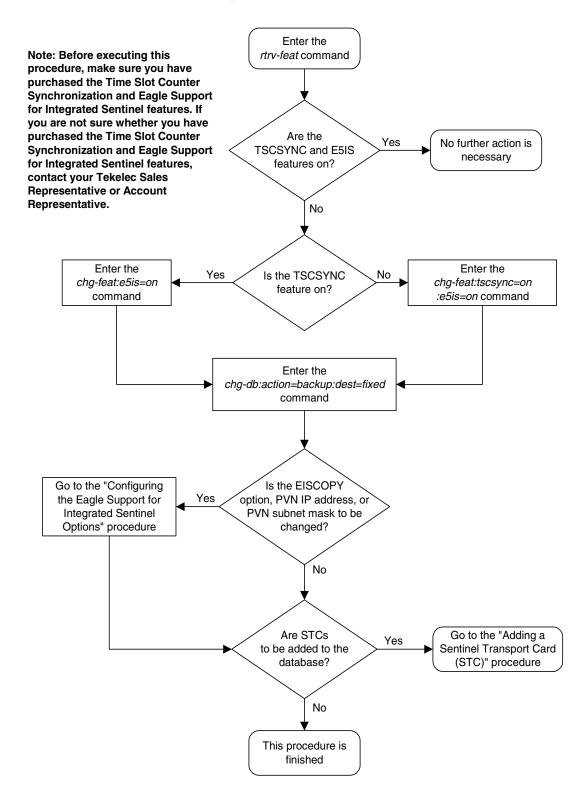
If the Time Slot Counter Synchronization feature is on, enter this command. chg-feat:e5is=on

NOTE: Once the Time Slot Counter Synchronization and Eagle Support for Integrated Sentinel features are turned on with the chg-feat command, they cannot be turned off.

The Time Slot Counter Synchronization and Eagle Support for Integrated Sentinel features must be purchased before turning on these features. If you are not sure whether you have purchased the Time Slot Counter Synchronization or Eagle Support for Integrated Sentinel features, contact your Tekelec Sales Representative or Account Representative.

When the **chg-feat** has successfully completed, this message should appear.

rlghncxa03w 05-09-20 21:18:37 GMT EAGLE5 34.0.0 CHG-FEAT: MASP A - COMPLTD


3. Back up the new changes using the chg-db:action=backup:dest=fixed command. These messages should appear, the active Maintenance and Administration Subsystem Processor (MASP) appears first.

BACKUP (FIXED) : MASP A - Backup starts on active MASP.BACKUP (FIXED) : MASP A - Backup on active MASP to fixed disk complete.BACKUP (FIXED) : MASP A - Backup starts on standby MASP.BACKUP (FIXED) : MASP A - Backup on standby MASP to fixed disk complete.

4. If the EISCOPY or PVN IP address options are to be changed, go to the "Configuring the Eagle Support for Integrated Sentinel Options" procedure on page 6-13.

If STCs are to be added to the database, Go to the "Adding a Sentinel Transport Card (STC)" procedure on page 6-19 to provision the EAGLE 5 SAS with the required number of STCs.

Flowchart 6-1. Enabling the TSCSYNC and E5IS Features

Configuring the Eagle Support for Integrated Sentinel Options

This procedure is used to configure the EISCOPY option and the PVN IP address options for the Eagle Support for Integrated Sentinel feature.

To set the EISCOPY function for the Eagle Support for Integrated Sentinel feature, the eiscopy parameter is specified with the chg-eisopts command. The eiscopy=on parameter enables the EISCOPY function for the Eagle Support for Integrated Sentinel feature. The eiscopy=off parameter turns off the EISCOPY function for the Eagle Support for Integrated Sentinel feature. The EISCOPY function allows the EAGLE 5 SAS to copy MSUs to the ESP subsystem. The default value for the eiscopy parameter is off.

The IP communications link, used to transmit copied MSUs between the EAGLE 5 SAS and the ESP subsystem, is dynamically configured by the Sentinel. The LIMs are assigned Class B private network IP addresses (for example, 172.28.60.16), creating a private virtual network (PVN). The IP message origination address is the address of the LIM. The IP message destination address is that of the VIP (virtual IP address) contained within the ESP server.

The EAGLE 5 SAS uses a default value of 172.20.50.0 for the PVN address. The default value may be changed by specifying a new network portion of an IP address and a network mask. The host portion of these PVN addresses are configured automatically.

To change the network portion of the PVN address and the PVN submask used by the PVN addresses within the EAGLE 5 SAS, enter the chg-netopts command with the pvn and pvnmask parameters. The EISCOPY function must be disabled (eiscopy=off) in order to make these changes.

To change either the EISCOPY option or the PVN IP address options, the Eagle Support for Integrated Sentinel feature (**E515**) must be enabled.

CAUTION: Contact the Customer Care Center (refer to "Customer Care Center" on page 1-10 for the contact information) before performing this procedure.

Procedure

1. Verify that the Eagle Support for Integrated Sentinel feature is on, by entering the rtrv-feat command. If the Eagle Support for Integrated Sentinel feature is on, the E5IS field should be set to on.

NOTE: The rtrv-feat command output contains other fields that are not used by this procedure. If you wish to see all the fields displayed by the rtrv-feat command, see the rtrv-feat command description in the *Commands Manual*.

NOTE: If the Eagle Support for Integrated Sentinel feature is not on, go to the "Enabling the Time Slot Counter Synchronization (TSCSYNC) and Eagle Support for Integrated Sentinel (E5IS) Features" procedure on page 6-10 and enable the Eagle Support for Integrated Sentinel feature.

2. Display the EISCOPY option by entering the **rtrv-eisopts** command. This is an example of the possible output.

```
rlghncxa03w 05-09-28 09:12:36 GMT EAGLE5 34.0.0
EISOPTION STATUS
-----
EISCOPY OFF
```

NOTE: If the EISCOPY option is off, skip step 3 and go to step 4. NOTE: If the EISCOPY option is on and the PVN IP address of the EAGLE 5 SAS and the PVN subnet mask are not being changed, skip steps 3 through 7, and go to step 8.

CAUTION: Changing the EISCOPY option to off will disable the Eagle Support for Integrated Sentinel feature.

3. Turn the EISCOPY option off by entering the chg-eisopts command with the eiscopy=off parameter.

When the **chg-eisopts** has successfully completed, this message should appear.

```
rlghncxa03w 05-09-20 21:18:37 GMT EAGLE5 34.0.0
CHG-EISOPTS: MASP A - COMPLTD
```

4. Display the cards in the database using the **rtrv-card** command. This is an example of the possible output.

rlghncz	ka03w 05-09	9-28 09:12	:36 GMT EAGLE5	34.0.	. 0				
CARD	TYPE	APPL	LSET NAME	LINK	SLC	LSET	NAME	LINK	SLC
1101	TSM	SCCP							
1113	GPSM	EOAM							
1114	TDM-A								
1115	GPSM	EOAM							
1116	TDM-B								
1117	MDAL								
1201	LIMDS0	SS7ANSI	sp2	A	0	sp1		В	0
1203	LIMDS0	SS7ANSI	sp3	A	0				
1204	LIMDS0	SS7ANSI	sp3	A	1				
1206	LIMDS0	SS7ANSI	nsp3	A	1	nsp4		В	1
1207	LIMV35	SS7GX25	nspl	A	0				
1208	LIMV35	SS7GX25	nspl	A	1				
1216	ACMENET	STPLAN							
1301	TSM	SCCP							
1308	LIMDS0	SS7ANSI	sp6	A	1	sp7		В	0
1314	LIMDS0	SS7ANSI	sp7	A	1	sp5		В	1
1317	ACMENET	STPLAN							

If the **rtrv-card** output shows no STCs, shown by the entries **STC** in the **TYPE** column and **EROUTE** in the **APPL** column, go to the "Adding a Sentinel Transport Card (STC)" procedure on page 6-19.

NOTE: If the PVN IP address of the EAGLE 5 SAS and the PVN subnet mask are not being changed, skip steps 5, 6, and 7, and go to step 8.

5. Display the PVN IP address of the EAGLE 5 SAS and the PVN subnet mask by entering the **rtrv-netopts** command. This is an example of the possible output.

```
rlghncxa03w 05-09-28 09:12:36 GMT EAGLE5 34.0.0
NET OPTIONS STATUS
------
PVN 172.20.50.0
PVNMASK 255.255.252.0
```

6. Change the PVN IP address of the EAGLE 5 SAS and the PVN subnet mask by entering the chg-netopts command with the pvn and pvnmask parameters. For this example, enter this command.

```
chg-netopts:pvn=198.30.75.133:pvnmask=255.255.252.0
```

When the **chg-netopts** has successfully completed, this message should appear.

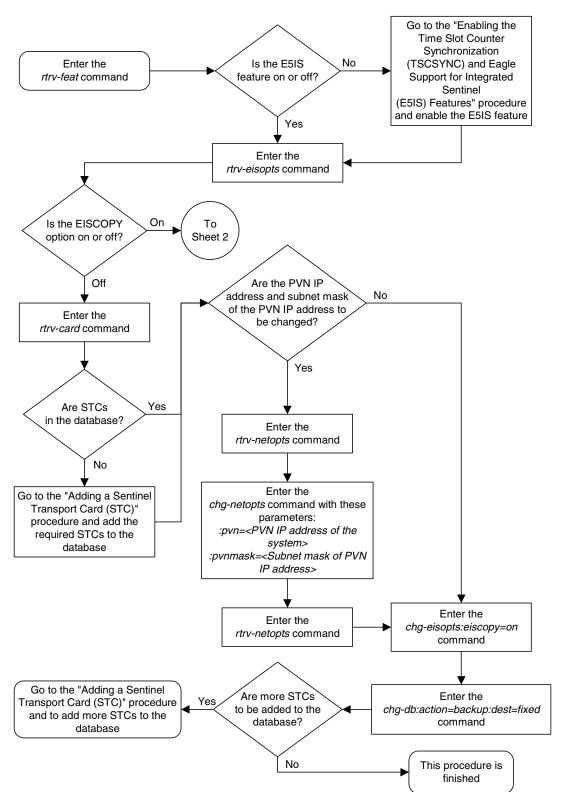
```
rlghncxa03w 05-09-20 21:18:37 GMT EAGLE5 34.0.0
CHG-NETOPTS: MASP A - COMPLTD
```

7. Verify the changes using the **rtrv-netopts** command. This is an example of the possible output.

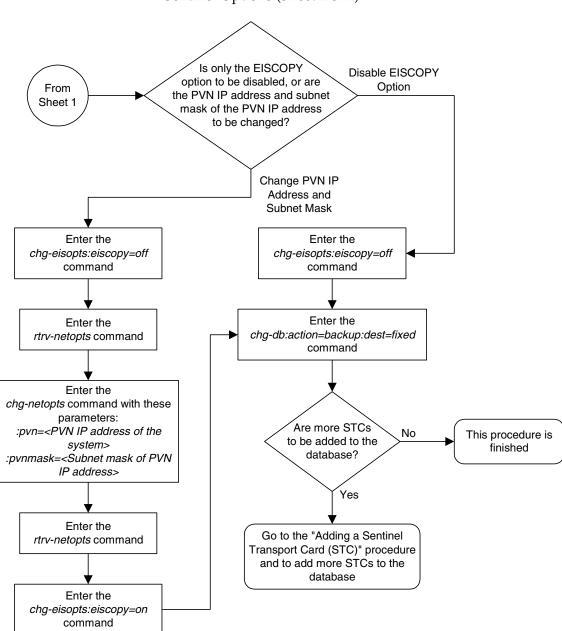
rlghncxa03w 05-09-28 09:12:36 GMT EAGLE5 34.0.0 NET OPTIONS STATUS -----PVN 198.30.75.133 PVNMASK 255.255.252.0

CAUTION: If the EISCOPY option is not being enabled, skip this step and go to step 9. The Eagle Support for the Integrated Sentinel feature will be disabled if this step is not performed.

8. Turn the EISCOPY option on by entering the chg-eisopts command with the eiscopy=on parameter.


When the **chg-eisopts** has successfully completed, this message should appear.

rlghncxa03w 05-09-20 21:18:37 GMT EAGLE5 34.0.0 CHG-EISOPTS: MASP A - COMPLTD


9. Back up the new changes using the chg-db:action=backup:dest=fixed command. These messages should appear, the active Maintenance and Administration Subsystem Processor (MASP) appears first.

BACKUP (FIXED) : MASP A - Backup starts on active MASP.BACKUP (FIXED) : MASP A - Backup on active MASP to fixed disk complete.BACKUP (FIXED) : MASP A - Backup starts on standby MASP.BACKUP (FIXED) : MASP A - Backup on standby MASP to fixed disk complete.

10. If more STCs are to be added to the database, go to the "Adding a Sentinel Transport Card (STC)" procedure on page 6-19 to provision the EAGLE 5 SAS with the increased number of STCs.

Flowchart 6-2. Configuring the Eagle Support for Integrated Sentinel Options (Sheet 1 of 2)

Flowchart 6-2. Configuring the Eagle Support for Integrated Sentinel Options (Sheet 2 of 2)

Adding a Sentinel Transport Card (STC)

This procedure is used to add an STC (Sentinel Transport Card) to the database using the ent-card command. The STC provides an interface between the EAGLE 5 SAS and the ESP (extended services platform) used to monitor network traffic on the EAGLE 5 SAS's signaling links for the Eagle Support for Integrated Sentinel feature. The STC allows the ESP subsystem to monitor the EAGLE 5 SAS's signaling links without additional intrusive cabling.

The ent-card command uses these parameters.

:loc – The location of the card being added to the database.

:type – The type of card being added to the database. For this procedure, the value of this parameter is stc.

:app1 – The application software or GPL that is assigned to the card. For this procedure, the value of this parameter is **eroute**.

: force – Allow the LIM to be added to the database even if there are not enough SCCP cards to support the number of LIMs in the EAGLE 5 SAS. This parameter is obsolete and is no longer used.

The STC can be either a single-slot STC or a dual-slot STC.

The dual-slot STC can be inserted only in the odd numbered card slots of the extension shelf. Slot 09 of each shelf contains the HMUX card or HIPR card, thus the dual-slot STC cannot be inserted in slot 09. The dual-slot STC can be inserted in the control shelf, but only in slots 1101, 1103, 1105, 1107, and 1111. Slots 1113, 1115 and 1117 are reserved for MASPs A and B and the MDAL card. The dual-slot STC occupies two card slots, so the even numbered card slot must be empty and not provisioned in the database, as shown in Table 6-2. The dual-slot STC is connected to the network through the odd numbered card slot connector.

Location of the STC	rr		Empty Card Location		
Slot 01	Slot 02	Slot 11	Slot 12		
Slot 03	Slot 04	Slot 13	Slot 14		
Slot 05	Slot 06	Slot 15	Slot 16		
Slot 07	Slot 08	Slot 17	Slot 18		

Table 6-2.Dual-Slot STC Locations

The single-slot STC can be inserted into any card slot, except an even numbered card slot adjacent to a dual-slot card, shown in Table 6-2, slots 09 and 10 in each shelf, and slots 1113 through 1118.

The shelf to which the card is to be added, must already be in the database. This can be verified with the **rtrv-shlf** command. If the shelf is not in the database, see the "Adding a Shelf" procedure in the *Database Administration Manual - System Management*.

In order to enable the EISCOPY option, with the **chg-eisopts** command, and to comply with the n+1 STC configuration requirement, a minimum of two STCs must be provisioned in the database. If single-slot STCs are being provisioned in the database, a minimum of two single-slot STCs must be provisioned.

The number of SS7 signaling links that can be monitored by an STC varies depending the following criteria:

- Whether the STC is a dual-slot STC or single-slot STC
- The type of signaling link (defined by the application running on the card the signaling link is assigned to)
- The amount of traffic and the size of the MSUs being handled by the EAGLE 5 SAS

The number of SS7 signaling links that can be monitored by an STC is shown in Tables 6-3 and 6-4.

Table 6-3.Maximum Number of Low-Speed Signaling Links
Monitored by an STC (either Dual-Slot or Single-Slot)

Card Type	Card Application	Traffic Rate and Average MSU Size	Maximum Number of Signaling Links
Dual-Slot STC	(low-speed signaling 20-byte average MSU size		32
	links)	0.8 erlang of traffic with 20-byte average MSU size	40
		0.8 erlang of traffic with 40-byte average MSU size	48
Single-Slot STC	SS7ANSI, CCS7ITU (low-speed signaling	1 erlang of traffic with 20-byte average MSU size	40
	links)	0.8 erlang of traffic with 20-byte average MSU size	50
		0.8 erlang of traffic with 40-byte average MSU size	60

Table 6-4.Maximum Number of High-Speed Signaling LinksMonitored by an STC (either Dual-Slot or Single-Slot)at 1 erlang of Traffic

Card Application	MSU Size	Maximum Number of Signaling Links
ATMANSI	20 - 207	2
	208 - 272	1
ATMITU	20 - 207	2
	208 - 272	1

A dual-slot STC can support and monitor up to 32 low-speed SS7 signaling links at one (1) erlang of traffic. To provision dual-slot STCs in an n+1 configuration to monitor a 500 low-speed SS7 signaling link EAGLE 5 SAS, 17 dual-slot STCs are required to monitor all 500 signaling links (500 / 32 = 16 dual-slot STCs, plus 1 for redundancy).

A single-slot STC can support and monitor up to 40 low-speed SS7 signaling links at one (1) erlang of traffic. To provision single-slot STCs in an n+1 configuration to monitor a 500 low-speed SS7 signaling link EAGLE 5 SAS, 14 single-slot STCs are required to monitor all 500 signaling links (500 / 40 = single-slot 13 STCs, plus 1 for redundancy).

Each shelf can contain up to three STCs.

The examples in this procedure are used to add an STC in these card locations: 1303, 2101, and 2102.

Procedure

1. Display the cards in the database using the **rtrv-card** command. This is an example of the possible output.

rlghnc	xa03w 05-0	9-28 09:12	:36 GMT EAGLE5	34.0	.0				
CARD	TYPE	APPL	LSET NAME	LINK	SLC	LSET	NAME	LINK	SLC
1102	TSM	GLS							
1113	GPSM	EOAM							
1114	TDM-A								
1115	GPSM	EOAM							
1116	TDM-B								
1117	MDAL								
1201	LIMDS0	SS7ANSI	sp2	A	0	sp1		В	0
1203	LIMDS0	SS7ANSI	sp3	A	0				
1204	LIMDS0	SS7ANSI	sp3	A	1				
1206	LIMDS0	SS7ANSI	nsp3	A	1	nsp4		В	1
1207	LIMV35	SS7GX25	nsp1	A	0				
1208	LIMV35	SS7GX25	nsp1	A	1				
1216	ACMENET	STPLAN							
1301	TSM	SCCP							
1308	LIMDS0	SS7ANSI	sp6	A	1	sp7		В	0
1314	LIMDS0	SS7ANSI	sp7	A	1	sp5		В	1
1317	ACMENET	STPLAN							

The cards should be distributed throughout the EAGLE 5 SAS for proper power distribution. Refer to the *Installation Manual - EAGLE 5 SAS* for the shelf power distribution.

2. Verify that the Eagle Support for Integrated Sentinel feature is on, by entering the rtrv-feat command. If the Eagle Support for Integrated Sentinel feature is on, the E5IS field should be set to on.

NOTE: The rtrv-feat command output contains other fields that are not used by this procedure. If you wish to see all the fields displayed by the rtrv-feat command, see the rtrv-feat command description in the *Commands Manual*.

NOTE: If the Eagle Support for Integrated Sentinel feature is not on, go to the "Enabling the Time Slot Counter Synchronization (TSCSYNC) and Eagle Support for Integrated Sentinel (E5IS) Features" procedure on page 6-10 and enable the Eagle Support for Integrated Sentinel feature.

3. Add the STC using the **ent-card** command. For this example, enter these commands. A dual-slot STC can be inserted only in an odd numbered slot and the adjacent even card slot must be empty, as shown in Table 6-2 on page 6-19. A single-slot STC can be inserted into any card slot except an even numbered card slot adjacent to a dual-slot card, slots 09 and 10 in each shelf, and slots 1113 through 1118.

```
ent-card:loc=1303:type=stc:appl=eroute
ent-card:loc=2101:type=stc:appl=eroute
ent-card:loc=2102:type=stc:appl=eroute
```

When this command has successfully completed, this message should appear.

```
rlghncxa03w 05-09-12 09:12:36 GMT EAGLE5 34.0.0
ENT-CARD: MASP A - COMPLTD
```

4. Verify the changes using the **rtrv-card** command with the card location specified in step 3. For this example, enter these commands.

```
rtrv-card:loc=1303
```

This is an example of the possible output.

```
rlghncxa03w 05-09-28 09:12:36 GMT EAGLE5 34.0.0
CARD TYPE APPL LSET NAME LINK SLC LSET NAME LINK SLC
1303 STC EROUTE
```

rtrv-card:loc=2101

This is an example of the possible output.

rlghncxa03w 05-09-28 09:12:36 GMT EAGLE5 34.0.0 CARD TYPE APPL LSET NAME LINK SLC LSET NAME LINK SLC 2101 STC EROUTE

rtrv-card:loc=2101

This is an example of the possible output.

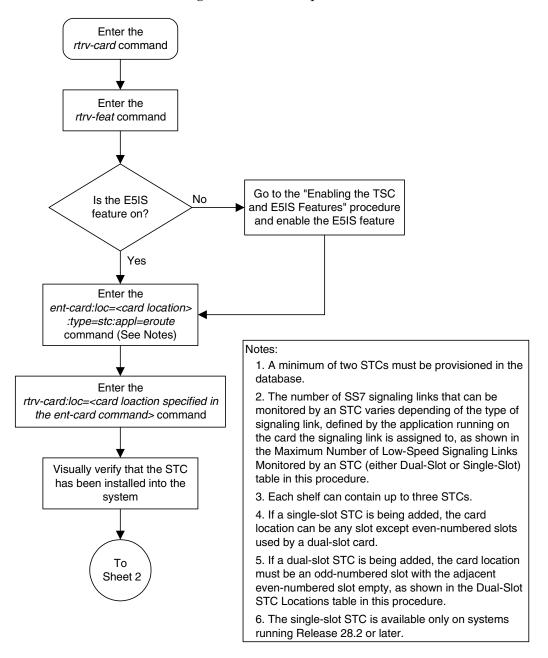
```
rlghncxa03w 05-09-28 09:12:36 GMT EAGLE5 34.0.0
CARD TYPE APPL LSET NAME LINK SLC LSET NAME LINK SLC
2102 STC EROUTE
2102 STC EROUTE
```

5. Verify that the card to be entered has been physically installed into the card location specified in step 3.

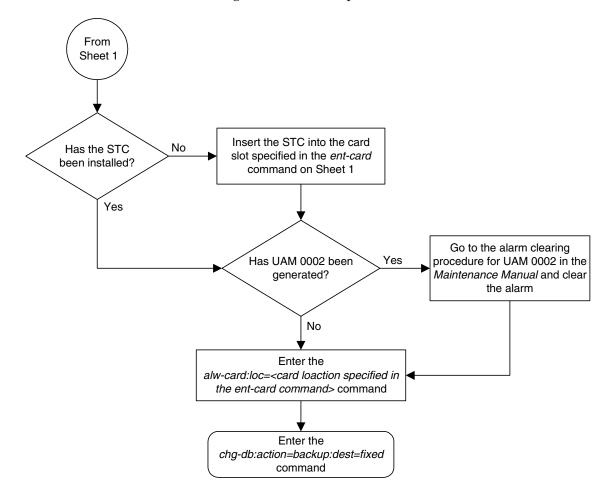
CAUTION: If the version of the BP GPL on the STC does not match the BP GPL version in the database when the STC is inserted into the card slot, UAM 0002 is generated indicating that these GPL versions do not match. If UAM 0002 has been generated, perform the alarm clearing procedure for UAM 0002 in the *Maintenance Manual* before proceeding with this procedure.

6. Put the STC added in step 3 into service using the **alw-card** command specifying the card location specified in step 3. For this example, enter this command.

alw-card:loc=1303 alw-card:loc=2101


alw-card:loc=2102

When this command has successfully completed, this message should appear.


rlghncxa03w 05-09-28 09:12:36 GMT EAGLE5 34.0.0 Card has been allowed.

7. Back up the new changes using the chg-db:action=backup:dest=fixed command. These messages should appear, the active Maintenance and Administration Subsystem Processor (MASP) appears first.

```
BACKUP (FIXED) : MASP A - Backup starts on active MASP.
BACKUP (FIXED) : MASP A - Backup on active MASP to fixed disk complete.
BACKUP (FIXED) : MASP A - Backup starts on standby MASP.
BACKUP (FIXED) : MASP A - Backup on standby MASP to fixed disk complete.
```


Flowchart 6-3. Adding a Sentinel Transport Card (STC) (Sheet 1 of 2)

Flowchart 6-3. Adding a Sentinel Transport Card (STC) (Sheet 2 of 2)

Removing a Sentinel Transport Card (STC)

This procedure is used to remove an STC from the database using the dlt-card command.

CAUTION: If the STC is the last STC in service, removing this card from the database will disable the Eagle Support for Integrated Sentinel feature.

CAUTION: If removing the STC reduces the quantity of STCs in the EAGLE 5 SAS below number of STCs required by the ESP subsystem, the performance of the Eagle Support for Integrated Sentinel feature will be degraded.

The examples in this procedure are used to remove the STC in card location 1303.

Canceling the REPT-STAT-CARD Command

Because the **rept-stat-card** command used in this procedure can output information for a long period of time, the **rept-stat-card** command can be canceled and the output to the terminal stopped. There are three ways that the **rept-stat-card** command can be canceled.

- Press the F9 function key on the keyboard at the terminal where the rept-stat-card command was entered.
- Enter the canc-cmd without the trm parameter at the terminal where the rept-stat-card command was entered.
- Enter the canc-cmd:trm=<xx>, where <xx> is the terminal where the rept-stat-card command was entered, from another terminal other that the terminal where the rept-stat-card command was entered. To enter the canc-cmd:trm=<xx> command, the terminal must allow Security Administration commands to be entered from it and the user must be allowed to enter Security Administration commands. The terminal's permissions can be verified with the rtrv-secu-trm command. The user's permissions can be verified with the rtrv-user or rtrv-secu-user commands.

For more information about the canc-cmd command, go to the Commands Manual.

Procedure

1. Display the cards in the database using the **rtrv-card** command. This is an example of the possible output.

rlghncxa03w 05-09-28 09:12:36 GMT EAGLE5				34.0	.0				
CARD	TYPE	APPL	LSET NAME	LINK	SLC	LSET	NAME	LINK	SLC
1101	TSM	SCCP							
1103	DCM	VXWSLAN							
1113	GPSM	EOAM							
1114	TDM-A								
1115	GPSM	EOAM							
1116	TDM-B								
1117	MDAL								
1201	LIMDS0	SS7ANSI	sp2	A	0	sp1		В	0
1202	LIMDS0	SS7ANSI	sp2	A	1	nsp3		В	0
1202	LIMV35	SS7GX25	lsngwy	A	0				
1203	LIMDS0	SS7ANSI	sp3	А	0				
1204	LIMDS0	SS7ANSI	sp3	А	1				
1205	LIMOCU	CCS7ITU	itu1	А	0				
1206	LIMDS0	SS7ANSI	nsp3	A	1	nsp4		В	0
1207	LIMV35	SS7GX25	nspl	А	0				
1208	LIMV35	SS7GX25	nspl	А	1				
1212	TSM	SCCP							
1214	TSM	GLS							
1215	DCM	VXWSLAN							
1301	LIMATM	ATMANSI	lsnatm1	A	0				
1303	STC	EROUTE							
1305	DCM	VXWSLAN							
1308	LIMDS0	SS7ANSI	sp6	A	0	sp7		В	0
1311	LIMDS0	SS7ANSI	sp2	A	2	sp1		В	1
			sp7	A1	1	sp3		B1	2
1315	LIMDS0	SS7ANSI	sp7	A	2	sp5		В	0
1318	LIMATM	ATMANSI	lsnatm1	A	1				
2101	STC	EROUTE							
2102	STC	EROUTE							
2105	STC	EROUTE							

An STC is identified by the entries **STC** in the **TYPE** field and **EROUTE** in the **APPL** field.

2. Display the status of the STC being removed with the rept-stat-card command with the location of the STC. For this example, enter this command.

rept-stat-card:loc=1303

This is an example of the possible output.

rlghnc	xa03w 05-09-2	7 16:43:42	GMT EAGLE	5 34.0.0					
CARD	VERSION	TYPE	APPL	PST	SST	AST			
1303	113-003-000	STC	EROUTE	IS-NR	Active				
ALAR	M STATUS	= No Ala	rms.						
BP G	PL version =	002-108-00	0						
IMT	BUS A	= Conn							
IMT	BUS B	= Conn							
EROU	TE % OCCUP	= 50%							
NTP	NTP broadcast = VALID								

```
      STC IP PORT A:
      IS-NR
      Active
      -----

      ALARM STATUS = No Alarms.
      IS-NR
      Active
      -----

      ALARM STATUS = No Alarms.
      Command Completed.
      -----
      -----
```

3. Inhibit the card using the **rmv-card** command, specifying the card location. For this example, enter these commands.

```
rmv-card:loc=1303
```

When this command has successfully completed, this message should appear.

```
rlghncxa03w 05-09-12 09:12:36 GMT EAGLE5 34.0.0
Card has been inhibited.
```

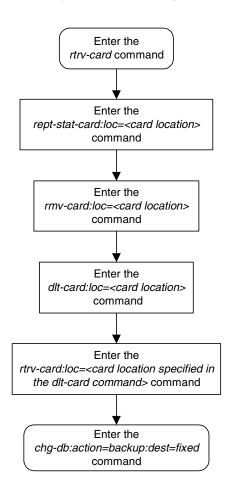
4. Remove the card using the dlt-card command. The dlt-card command has only one parameter, loc, which is the location of the card. For this example, enter these commands.

```
dlt-card:loc=1303
```

When this command has successfully completed, this message should appear.

```
rlghncxa03w 05-09-12 09:12:36 GMT EAGLE5 34.0.0
DLT-CARD: MASP A - COMPLTD
```

5. Verify the changes using the **rtrv-card** command specifying the card that was removed in step 4. For this example, enter these commands.


rtrv-card:loc=1303

When this command has successfully completed, this message should appear.

E2144 Cmd Rej: Location invalid for hardware configuration

6. Back up the new changes using the chg-db:action=backup:dest=fixed command. These messages should appear, the active Maintenance and Administration Subsystem Processor (MASP) appears first.

BACKUP (FIXED) : MASP A - Backup starts on active MASP.BACKUP (FIXED) : MASP A - Backup on active MASP to fixed disk complete.BACKUP (FIXED) : MASP A - Backup starts on standby MASP.BACKUP (FIXED) : MASP A - Backup on standby MASP to fixed disk complete.

Flowchart 6-4. Removing a Sentinel Transport Card (STC)

Index

Α

Activating the Enhanced GSM MAP Screening Feature, 5-24, 5-32, 5-33, 5-34, 5-35, 5-36 Activating the GSM MAP Screening Feature, 5-24, 5-32, 5-33, 5-34, 5-35, 5-36 Adding a GSM MAP Screening Entry, 5-92, 5-110, 5-111, 5-112, 5-113, 5-114 Adding a GSM MAP Screening Operation Code, 5-64, 5-74, 5-75, 5-76, 5-77 Adding a GSM Subsystem Number Screening Entry, 5-59, 5-61 Adding a TCP/IP Data Link, 3-32 Adding a TCP/IP Node, 3-43 Adding an X.25 Gateway Destination, 2-25 Adding an X.25 Linkset, 2-40 Adding an X.25 Route, 2-97 Adding an X.25 Signaling Link, 2-76 appl, 2-11 ATMANSI, 6-7, 6-21 ATMITU, 6-7, 6-21

В

BPDCM GPL, 6-24

С

CCS7ITU, 6-7, 6-20 Changing a GSM MAP Screening Entry, 5-125, 5-135, 5-136, 5-137, 5-138, 5-139 Changing a GSM MAP Screening Operation Code, 5-82, 5-88, 5-89, 5-90, 5-91 Changing a Linkset, 2-61 Changing an X.25 Gateway Destination, 2-34 Changing an X.25 Route, 2-115 Changing the System-Wide GSM MAP Screening Options, 5-56, 5-58 Changing the X.25 Signaling Link Parameters, 2-130 Configuring a Linkset for the GSM MAP Screening Feature, 5-43, 5-53, 5-54, 5-55 Configuring for the DTA Feature, 4-15

Configuring the MTP MAP Screening Feature, 5-37, 5-41, 5-42 Connection definition, 2-5 Connection determination, 2-5 Controlled Feature Large System # Links - Enabling, 2-134 Customer Care Center, 1-10

D

Destination element definition, 2-5 DHCP, 6-6 Disabling the Gateway Screening Redirect Function, 4-51 dpc, 2-25 dual-slot STC, 6-4, 6-7, 6-8, 6-19, 6-21, 6-23 Dynamic Host Configuration Protocol, 6-6

Ε

E1/T1 MIM, 6-7 E1-ATM, 6-7 EAGLE 5 SAS Provisioning, 6-6 Eagle Support for Integrated Sentinel, 1-3, 6-2, 6-4, 6-10, 6-11, 6-13, 6-14, 6-19, 6-22, 6-27 EILA, 6-7 Emergency response, 1-10 Enabling the Large System # Links Controlled Feature, 2-134 Enhanced GSM MAP Screening Activating, 5-24, 5-32, 5-33, 5-34, 5-35, 5-36 Errors - contacting the Customer Care Center, 1-10 ESP, 1-3, 6-2, 6-3, 6-4, 6-7, 6-19 Ethernet, 6-7 extended services platform, 6-2, 6-19

F

feature X.25 Gateway, 1-2 Fixed connection, 2-7

G

Gateway configuration procedure, 2-9 Gateway routing, 2-5 Global Title Translation, 5-24 GSM MAP Screening Activating, 5-24, 5-32, 5-33, 5-34, 5-35, 5-36 Adding an Entry, 5-92, 5-110, 5-111, 5-112, 5-113, 5-114 Adding Operation Code, 5-64, 5-74, 5-75, 5-76, 5-77 Changing an, 5-125, 5-135, 5-136, 5-137, 5-138, 5-139 Changing Operation Code, 5-82, 5-88, 5-89, 5-90, 5-91 Changing System-Wide Options, 5-56, 5-58 Configuring a Linkset, 5-43, 5-53, 5-54, 5-55 Enhanced Activating, 5-24, 5-32, 5-33, 5-34, 5-35, 5-36 Removing an Entry, 5-115, 5-123, 5-124 Removing Operation Code, 5-78, 5-81 GSM Subsystem Number Screening Entry Adding, 5-59, 5-61 Removing, 5-62, 5-63

Η

HMUX, 6-7, 6-19 HMUXTVG option, 6-7

I

ILA, 6-7 Integrated Sentinel Eagle Support, 1-3, 6-2, 6-4, 6-10, 6-11, 6-13, 6-14, 6-19, 6-22, 6-27

L

Large System # Links Controlled Feature Enabling, 2-134 LIM-ATM, 6-7 LIMATM, 6-7 LIMCH, 6-7 LIM-DS0, 6-7 LIMDS0, 6-7 limds0, 2-11 LIME1, 6-7 LIME1ATM, 6-7 LIM-OCU, 6-7 LIMOCU, 6-7 limocu, 2-11 LIMT1, 6-7 LIM-V.35, 6-7 LIMV35, 6-7 limv35, 2-11 Linkset GSM MAP Screening Configuring, 5-43, 5-53, 5-54, 5-55

Μ

Mated STPs X.25 gateway routing, 2-9 Measurements Platform, 5-39 MiM E1T1, 6-7 MPL, 6-7 MTP envelopes, 2-4 MTP MAP Screening Configuring, 5-37, 5-41, 5-42

0

Operation Code GSM MAP Screening Adding, 5-64, 5-74, 5-75, 5-76, 5-77 Changing, 5-82, 5-88, 5-89, 5-90, 5-91 Removing, 5-78, 5-81

Ρ

private virtual network, 6-8, 6-13 Problems - contacting the Customer Care Center, 1-10 PVC, 2-4 PVN, 6-8, 6-13, 6-14, 6-15 PVN subnet mask, 6-14, 6-15

R

removing SS7 LIM, 6-27 Removing a GSM MAP Screening Entry, 5-115, 5-123, 5-124 Removing a GSM MAP Screening Operation Code, 5-78, 5-81 Removing a GSM Subsystem Number Screening Entry, 5-62, 5-63 Removing a Linkset Containing X.25 Signaling Links, 2-54 Removing a TCP/IP Data Link, 3-39 Removing a TCP/IP Node, 3-47 Removing an ACM, 3-28 Removing an X.25 Gateway Destination, 2-31 Removing an X.25 LIM, 2-18 Removing an X.25 Route, 2-113

Removing an X.25 Signaling Link, 2-91

S

Same link management, 2-8 SCCP envelopes, 2-4 Sentinel Transport Card, 6-3, 6-4, 6-5, 6-6, 6-7, 6-8, 6-9, 6-10, 6-11, 6-15, 6-16, 6-19, 6-20, 6-23, 6-24, 6-25, 6-26, 6-27, 6-28, 6-30 dual-slot, 6-4, 6-7, 6-8, 6-19, 6-21, 6-23 single-slot, 6-4, 6-7, 6-8, 6-19, 6-21, 6-23 single-slot STC, 6-4, 6-7, 6-8, 6-19, 6-21, 6-23 SS7 signaling links, 6-4, 6-7, 6-21 SS7ANSI, 6-7, 6-20 ss7gx25, 2-11 ssn, 2-25 STC, 6-3, 6-4, 6-5, 6-6, 6-7, 6-8, 6-9, 6-10, 6-11, 6-15, 6-16, 6-19, 6-20, 6-23, 6-24, 6-25, 6-26, 6-27, 6-28, 6-30 dual-slot, 6-4, 6-7, 6-8, 6-19, 6-21, 6-23 single-slot, 6-4, 6-7, 6-8, 6-19, 6-21, 6-23

Support - contacting the Customer Care Center, 1-10
SVC-Automatic, 2-4
SVC-Incoming, 2-4
System-Wide GSM MAP Screening Options Changing, 5-56, 5-58

Т

T1 MIM, 6-7 TCAP, 1-2, 2-2 TCP/IP Link Provisioning, 6-5 Technical Assistance - contacting the Customer Care Center, 1-10 Time Slot Counter, 6-6 Time Slot Counter Synchronization, 6-6, 6-10, 6-11 Time Stamping, 6-6 TSC, 6-6 TSC Synchronization, 6-6

U

UDP echo, 3-13

Х

X.25 Connectivity, 2-3
X.25 connection control, 2-7
X.25 Gateway Destinations, 2-9
X.25 Gateway feature, 1-2
X.25 LIMs, 2-9
X.25 linksets, 2-9
X.25 Routes, 2-9
X.25 Signaling Link Parameters, 2-9
X.25 Signaling links, 2-9
X.25/SS7 IS41 Rev. A Gateway Overview, 2-2
X252000, 2-25
X25G, 2-25
xaddr, 2-25

Index